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Preface

The 37th International Cryptology Conference (Crypto 2017) was held at the
University of California, Santa Barbara, USA, during August 20–24, 2017, sponsored
by the International Association for Cryptologic Research.

There were 311 submissions to Crypto 2017, a substantial increase from previous
years. The Program Committee, aided by nearly 350 external reviewers, selected
72 papers to appear in the program. We are indebted to all the reviewers for their service.
Their reviews and discussions, if printed out, would consume about a thousand pages.

Two papers—“Identity-Based Encryption from the Diffie-Hellman Assumption,” by
Nico Döttling and Sanjam Garg, and “The first Collision for Full SHA-1,” by Marc
Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov—were
honored as best papers. A third paper—“Watermarking Cryptographic Functionalities
from Standard Lattice Assumptions,” by Sam Kim and David J. Wu—was honored as
best paper authored exclusively by young researchers.

Crypto was the venue for the 2017 IACR Distinguished Lecture, delivered by Shafi
Goldwasser. Crypto also shared an invited speaker, Cédric Fournet, with the 30th IEEE
Computer Security Foundations Symposium (CSF 2017), which was held jointly with
Crypto.

We are grateful to Steven Myers, the Crypto general chair; to Shai Halevi, author
of the IACR Web Submission and Review system; to Alfred Hofmann, Anna Kramer,
and their colleagues at Springer; to Sally Vito of UCSB Conference Services; and, of
course, everyone who submitted a paper to Crypto and everyone who attended the
conference.

August 2017 Jonathan Katz
Hovav Shacham
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Boosting Authenticated Encryption Robustness
with Minimal Modifications

Tomer Ashur1(B), Orr Dunkelman2, and Atul Luykx1,3

1 imec-COSIC, KU Leuven, Leuven, Belgium
{tashur,atul.luykx}@esat.kuleuven.be

2 University of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il

3 Department of Computer Science, University of California, Davis,
One Shields Ave, Davis, CA 95616, USA

Abstract. Secure and highly efficient authenticated encryption (AE)
algorithms which achieve data confidentiality and authenticity in the
symmetric-key setting have existed for well over a decade. By all conven-
tional measures, AES-OCB seems to be the AE algorithm of choice on
any platform with AES-NI: it has a proof showing it is secure assuming
AES is, and it is one of the fastest out of all such algorithms. However,
algorithms such as AES-GCM and ChaCha20+Poly1305 have seen more
widespread adoption, even though they will likely never outperform AES-
OCB on platforms with AES-NI. Given the fact that changing algorithms
is a long and costly process, some have set out to maximize the security
that can be achieved with the already deployed algorithms, without sac-
rificing efficiency: ChaCha20+Poly1305 already improves over GCM in
how it authenticates, GCM-SIV uses GCM’s underlying components to
provide nonce misuse resistance, and TLS1.3 introduces a randomized
nonce in order to improve GCM’s multi-user security. We continue this
line of work by looking more closely at GCM and ChaCha20+Poly1305 to
see what robustness they already provide over algorithms such as OCB,
and whether minor variants of the algorithms can be used for appli-
cations where defense in depth is critical. We formalize and illustrate
how GCM and ChaCha20+Poly1305 offer varying degrees of resilience
to nonce misuse, as they can recover quickly from repeated nonces, as
opposed to OCB, which loses all security. More surprisingly, by intro-
ducing minor tweaks such as an additional XOR, we can create a GCM
variant which provides security even when unverified plaintext is released.

Keywords: Authenticated encryption · Robust · AES · OCB ·
ChaCha20 · Poly1305 GCM · RUP

1 Introduction

Authenticated encryption (AE) is well established within the research commu-
nity as the method to achieve confidentiality and authenticity using symmetric

c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part III, LNCS 10403, pp. 3–33, 2017.
DOI: 10.1007/978-3-319-63697-9 1
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keys. Initially introduced as a response to a need in practice [6,7], it has caught
on in recent years. As a result, AE is used in many different environments, each
with their own security and efficiency requirements. For this reason, the ongo-
ing CAESAR competition [20], which aims to identify the next generation of
authenticated encryption schemes, drafted three use cases as guides to what AE
schemes should target: lightweight, high-performance, and defense in depth.

Within the high-performance category, OCB [43,64,65] is one of the most
competitive AE schemes. Over ten years old, it is well known for its speed, and
theoretically achieves the best performance when measured in block cipher calls.
Although OCB has been standardized [1,44], adoption has remained limited, for
which its patents are usually assumed to be the main cause.

Instead, GCM [49] was chosen as the baseline algorithm with which to
compare in the CAESAR competition. GCM is widely adopted and standard-
ized [1,24], and although it remains slower than OCB due to the additional uni-
versal hash on the output, it is getting more competitive as a result of improved
hardware support [30]. ChaCha20+Poly1305 [12,13,56] is a popular alternative
for settings where AES-NI is not implemented.

OCB, GCM, and ChaCha20+Poly1305 all target the high-performance cate-
gory. Other than the fact that GCM and ChaCha20+Poly1305 are already widely
adopted, and setting aside differences between using AES versus ChaCha20,
from a conventional point of view there seems to be little reason to prefer them
over OCB.

1.1 Robust Algorithms

The increased adoption of AE has been accompanied by an improved under-
standing of the limits of AE security within the research community. Even though
OCB, GCM, and ChaCha20+Poly1305 are secure as proved in the conventional
models (relative to their underlying primitives), questions often arise as to how
robust they are once one of the assumptions in those models no longer holds.
Already in 2002, Ferguson [25] pointed out that with a birthday bound attack
on OCB one can mount forgeries, and Joux [42] illustrated with his “forbid-
den attack” how one can similarly construct forgeries for GCM after a repeated
nonce. Furthermore, many have expressed concerns with the improved effective-
ness of multi-key brute-force attacks [14,16,17,21,28] when applied to widely
deployed algorithms.

Given the fact that modifying and deploying algorithms requires significant
effort, and that the longer algorithms are used, the more their components are
optimized, there has been interest in finding minimal modifications to deployed
algorithms so that they are robust to settings which break one of the assumptions
of the conventional security definitions. For example, TLS added extra nonce
randomization to combat easier key-recovery attacks in the multi-key setting,
which was later analyzed by Bellare and Tackmann [11]. The combination of
ChaCha20+Poly1305 is neither a direct application of Encrypt-then-MAC [6]
nor a copy of GCM: the authentication key used for Poly1305 is changed for
every message, thereby preventing attacks which make GCM fragile. Going a
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step further, worries about nonce misuse in GCM have led Gueron and Lindell
to use the components underlying GCM in order to create GCM-SIV [31], an
algorithm that provides best possible security even when nonces are repeated.
The common theme among these modifications is to squeeze as much security
out of the schemes without sacrificing efficiency.

1.2 Release of Unverified Plaintext

Previous modifications have focused on providing additional security in the
multi-key setting, or when nonces are repeated. However, other robust security
properties, such as security with variable-length tags [63], under distinguishable
decryption failures [19], or under release of unverified plaintext [3] are equally
desirable. The CAESAR competition’s use case describing defense in depth lists
authenticity and limited confidentiality damage from release of unverified plain-
texts (RUP) as desirable properties [15].

One of the advantages of schemes secure under release of unverified plain-
text is that they provide another line of defense with faulty implementations: if
an implementation for whatever reason fails to check authenticity, then RUP-
confidentiality guarantees that if the ciphertext did not originate from the
sender or was modified en route, the resulting decrypted plaintext will look like
garbage. Furthermore, there are settings where a RUP-secure AE scheme pro-
vides desirable properties beyond confidentiality and authenticity; in AppendixC
we explain informally how our construction can be used to efficiently prevent the
crypto-tagging attack in Tor, which is an attack on user anonymity.

State-of-the-art research might give the impression that achieving RUP secu-
rity by minimally modifying existing schemes is out of reach: all designs providing
such security either require significant changes, a completely new design, or an
additional pass, making the schemes slower and adding design complexity. This
is because so far the only solutions provided are essentially variable-input-length
(VIL) ciphers [8], which can be viewed as block ciphers that can process arbi-
trarily long messages. However, VIL ciphers are “heavy” constructions, requiring
often three or more passes over the plaintext in order to ensure sufficient mixing,
or relying on subtle design choices to achieve security.

1.3 Contributions

We continue the line of research on robust AE design by exploring properties
and variants of OCB, GCM, and ChaCha20+Poly1305 which go beyond the
conventional view of AE.

Our first contribution focuses on analyzing the difference in nonce robust-
ness provided by OCB, GCM, and ChaCha20+Poly1305, to provide a framework
complementing the work of others [18,25,42,53]. The conventional nonce misuse
models are very black and white about security: GCM and ChaCha20+Poly1305
do not provide security under nonce misuse since an adversary can determine
the XOR of two plaintexts when both are encrypted under the same nonce.
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However, what the conventional security models do not capture is that this inse-
curity affects only the involved plaintexts and does not “spill” onto others. If,
for example, a faulty implementation repeats a nonce for a pair of plaintexts
and then changes it correctly, confidentiality is only compromised for the plain-
texts in the pair, and not for future plaintexts. In some sense, GCM (with 96 bit
nonces) and ChaCha20+Poly1305 allow one to gracefully recover from re-used
nonces by making them unique again, leading us to formalize such a definition,
nonce-misuse resilience: plaintexts encrypted under unique nonces remain com-
partmentalized even when other plaintexts are compromised.

Within this model we establish that OCB is not resilient to nonce misuse,
confirm that GCM with 96 bit nonces only provides confidentiality resilience,
and that ChaCha20+Poly1305 provides both authenticity and confidentiality
resilience, thereby formally showing that ChaCha20+Poly1305’s choice to depart
from both the Encrypt-then-MAC and GCM designs boosts robustness to nonce
misuse. Inspired by this result, one can also tweak GCM to achieve the same level
of nonce misuse resilience by applying Minematsu and Iwata’s composition [53].

Our second, more surprising contribution is a minor modification to GCM
which achieves both RUP confidentiality and authenticity, which neither OCB,
GCM, nor ChaCha20+Poly1305 currently provide. Our design approach is
generic, meaning it can add RUP security to a general class of encryption
schemes. The core idea is to use a digest of the ciphertext to “hide” the nonce
in such a way that recovering it properly requires that no change was made to
the ciphertext. As a result, if a change did occur, it would affect the nonce,
which, when used by the decryption algorithm, would decrypt the ciphertext
into meaningless data.

2 Related Work

Our approach to analyzing nonce misuse differs from the line of research on
online nonce misuse resistance [4,27,36], which seeks to analyze schemes which
are not able to provide the best possible robustness to nonce misuse [66], but
are able to guarantee more than nonce misuse resilience. Böck, Zauner, Devlin,
Somorovsky, and Jovanovic [18] investigate the practical applicability of nonce-
misusing attacks in TLS by searching for servers which repeat nonces with GCM.

Besides nonce misuse, another extension to the basic AE security model con-
siders what happens when decryption algorithms may output multiple decryp-
tion errors [19]. Further research explored the security of known AE schemes
when their decryption algorithms release partially decrypted plaintext before
verification is complete [3], also known as the release of unverified plaintext
(RUP) model. Both the multiple decryption error and RUP models were unified
by Barwell, Page, and Stam [5] in the subtle AE framework, by using a “leak-
age” function which captures information leaked via a side channel. The “leak-
age” function represents any information that can be received through additional
channels. Hoang, Krovetz, and Rogaway introduce the concept of “Robust AE”
(RAE) [35] which formalizes one of the strongest types of security that an AE
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scheme can satisfy. Our use of the term “robust” describes a gradient, in which
RAE represents the most robust form of AE, and conventional definitions the
most basic form.

Imamura, Minematsu, and Iwata [37] show that ChaCha20+Poly1305 main-
tains authenticity in the RUP setting.

We follow Shrimpton and Terashima [71] in taking a modular approach to
the problem of adding RUP security to encryption schemes, by first providing
a solution in the most general form possible, and then providing an instanti-
ation. Furthermore, our construction is similar to the lower half of Shrimpton
and Terashima’s PIV construction. However, their goal is to achieve something
similar to a VIL cipher, which we argue might be overkill in some scenarios. Note
that combining SIV [66] with our construction would result in a solution very
similar to PIV. RIV [2] is another construction which takes a modular approach
in designing a robust AE scheme.

For a survey on ways to construct VIL ciphers, see Shrimpton and
Terashima’s paper [71]. All the previous methods are generic approaches to
designing VIL ciphers, although there are dedicated approaches as well, such
as AEZ [35], which in fact aims for RAE.

Hirose, Sasaki, and Yasuda [33] presented a construction similar to ours.
However, their construction only accounts for changes over the tag, rather than
the entire ciphertext, hence their solution only provides limited robustness and
would, for example, not prevent the Tor crypto-tagging attack described in
AppendixC. In recent work, Hirose, Sasaki, and Yasuda [34] introduce con-
structions which do account for changes over the entire ciphertext, and focus on
formalizing how such AE constructions make verification unskippable.

3 Preliminaries

3.1 Notation

The set of strings of length not greater than xbits is {0, 1}≤x, and the set
of strings of arbitrary length is {0, 1}∗. Unless specified otherwise, all sets are
subsets of {0, 1}∗. If X,Y ∈ {0, 1}∗, then |X| is the length of X, and X ‖ Y and
XY denote the concatenation of X and Y .

Let ε denote the empty string, and let 0n denote the n-bit string consisting
of only zeros. Given a block size n, the function lenn(X) represents the length of
X modulo 2n as an n-bit string, and X0∗n is X padded on the right with 0-bits
to get a string of length a multiple of n. If X ∈ {0, 1}∗, then |X|n = �|X| /n� is
X’s length in n-bit blocks. The operation

X[1]X[2] · · · X[x] n←− X (1)

denotes splitting X into substrings such that |X[i]| = n for i = 1, . . . , x − 1,
0 < |X[x]| ≤ n, and X[1]‖X[2]‖ · · · ‖X[x] = X.

The set of n-bit strings is also viewed as the finite field GF (2n), by mapping
an−1 . . . a1a0 to the polynomial a(x) = an−1 + an−2x+ · · · + a1xn−1 + a0xn−1 ∈
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GF (2)[x], and fixing an irreducible polynomial which defines multiplication in
the field. For n = 128, the irreducible polynomial is 1 + x + x2 + x7 + x128, the
one used for GCM.

The function int(Y ) maps the j bit string Y = aj−1 . . . a1a0 to the integer
i = aj−12j−1 + · · · + a12 + a0, and strj(i) maps the integer i = aj−12j−1 + · · · +
a12 + a0 < 2j to the j bit string aj−1 . . . a1a0. Let incm(X) denote the function
which adds one modulo 2m to X when viewed as an integer:

incm(X) := strm(int(X) + 1 mod 2m) .

Define msbj(X) to be the function that returns the j most significant bits of X,
and lsbj(X) the j least significant bits.

For a keyed function defined on a domain K × X, we write F (K,X) and
FK(X) interchangeably. If the function has three inputs, K × N × X, then the
second input will often be written as a superscript, F (K,N,X) = FN

K (X). If
E : {0, 1}n → {0, 1}m is a function, then the notation

F ← E(C ‖ ·) (2)

defines F to be the function from {0, 1}n−|C| to {0, 1}m which maps an element
X ∈ {0, 1}n−|C| to E(C ‖ X).

The expression a
?= b evaluates to 	 if a equals b, and ⊥ otherwise.

3.2 Adversaries and Advantages

An adversary A is an algorithm which interacts with an oracle O. Let AO = 1
be the event that A outputs 1 when interacting with O, then define

Δ
A

(f ; g) :=
∣
∣
∣P

[

Af = 1
]

− P
[

Ag = 1
]∣
∣
∣ , (3)

which is the advantage of A in distinguishing f from g, where f and g are viewed
as random variables. The notation can be extended to multiple oracles by setting
O = (O1, . . . , O�).

We assume that all keyed functions do not change their output length under
different keys, that is, |FK(X)| is the same for all K ∈ K. Given a keyed function
F , define $F to be the algorithm which, given X as input, outputs a string chosen
uniformly at random from the set of strings of length |FK(X)| for any key K.
When given the same input, $F returns the same output. Often $F is called a
random oracle.

3.3 Authenticated Encryption Schemes

The syntax for conventional authenticated encryption (AE) schemes specifies
an encryption and decryption algorithm, where the decryption algorithm may
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output either plaintext or a single, pre-defined error symbol. Formally, an AE
scheme is a tuple of functions — encryption Enc and decryption Dec — where

Enc : K × N × M → C , (4)
Dec : K × N × C → M ∪ {⊥} , (5)

with K the keys, N the nonces, M the messages, C the ciphertexts, and ⊥ an
error symbol not contained in M, which represents verification failure. It must
be the case that for all K ∈ K, N ∈ N, and M ∈ M,

DecN
K(EncN

K(M)) = M . (6)

AE schemes must provide both chosen-ciphertext confidentiality and authen-
ticity. The AE advantage of adversary A against Π = (Enc,Dec) is

AEΠ(A) := Δ
A

(EncK ,DecK ; $Enc,⊥) , (7)

where A is nonce-respecting, meaning the same nonce is never queried twice to
Enc. Nonces may be repeated with Dec. Furthermore, A cannot use the output
of an ON

1 query as the input to an ON
2 with the same nonce N , otherwise such

queries result in trivial wins.

4 Resilience to Nonce Misuse

Rogaway and Shrimpton [66,67] formalize the best possible security when adver-
saries may re-use nonces. They illustrate how such nonce misuse resistance can
be achieved using the construction SIV, which was later the inspiration for GCM-
SIV [31].

Finding attacks against OCB, GCM, and ChaCha20+Poly1305 which exploit
repeated nonces is relatively straightforward. When nonces are repeated, OCB
is not much better than ECB mode [57] since one can easily identify when
plaintext blocks are repeated across messages in the same block position. In
GCM, keystreams are tied to nonces, hence all messages encrypted with the
same nonce will use the same keystream, allowing one to recover the XOR of
plaintexts; furthermore, authenticity is broken using Joux’s forbidden attack [42].
ChaCha20+Poly1305 suffers from similar attacks as GCM. However, looking
more closely at the nonce misusing attacks, one can see that the three algorithms
behave very differently.

For a description of OCB, GCM, and ChaCha20+Poly1305, and the notation
we use see Appendices A.1, A.2, and A.3, respectively.

4.1 OCB Attacks

OCB computes two intermediate keys L and R, which it uses to mask the
block cipher inputs and outputs. The value L is computed as the output of the
block cipher when given 0n as input, L := EK(0n), and remains fixed per key.
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The value R changes per nonce, and is computed by encrypting L ⊕ N under
the block cipher. Finally, the masks are computed as γi · L ⊕ R.

Ferguson [25] illustrates how to recover the intermediate key L by finding a
collision using a birthday-bound attack, and subsequently shows how to perform
forgeries with L for any nonce. In fact, a chosen-plaintext confidentiality attack
can be performed as well, by XORing the sequence (γ1 ·L, γ2 ·L, . . . , γm ·L) to the
plaintext and ciphertext in order to remove dependence on L. This compromises
OCB’s confidentiality under any nonce N since repeated plaintext blocks in the
same message will encrypt to the same ciphertext block. Below we show how to
recover L using a nonce-repeating attack.

Fig. 1. An illustration of two queries which would form the first step of the OCB
attack. In both cases R = EK(L ⊕ N).

Our attack needs to repeat a particular nonce four times, and works best
when τ = n. First, encrypt an arbitrary full-block message M1 of block length m
under nonce N . Receive the corresponding tag T1 and let S1 denote the checksum
used to generate T1, so that T1 = EK(S1 ⊕ Z[m]), where Z[m] = γmL ⊕ R.
Encrypt another message M2 of length greater than m blocks under the same
nonce N , with the mth block of M2 equal to M2[m] = S1. The two queries are
depicted in Fig. 1. Note that the corresponding ciphertext block C2[m] equals

EK(S1 ⊕ Z[m]) ⊕ Z[m] , (8)

and so
C2[m] ⊕ T1 = Z[m] = γmL ⊕ R . (9)

Encrypt another two messages M ′
1 and M ′

2 under nonce N where M ′
1 has length

m′ = m, performing the same steps as above to receive T ′
1 and C2[m′] such that

C2[m′] ⊕ T ′
1 = Z[m′] = γm′L ⊕ R . (10)
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Then L can be recovered from

C2[m] ⊕ T1 ⊕ C2[m′] ⊕ T ′
1 = (γm ⊕ γm′)L . (11)

4.2 Chosen-Plaintext Confidentiality

Although the above attack against OCB requires a nonce to be repeated four
times, once those repetitions have occurred, OCB can no longer guarantee secu-
rity. As already observed by Joux [42], one cannot apply a similar confidentiality
attack to GCM, since every new nonce generates a new, roughly independent
keystream, and no information can be determined from the plaintext without
knowing anything about the keystream. The intuition that no information about
the plaintext can be determined from other keystreams can be formalized with
the following definition.

Definition 1. Let A be an adversary and (Enc,Dec) an AE scheme, then the
CPA resilience advantage of A against (Enc,Dec) is defined as

Δ
A

(EncK ,EncK ; $Enc,EncK) , (12)

where A may re-use nonces with O2, but it may not re-use nonces with O1, nor
may it use a nonce already queried to O2 for an O1-query and vice versa.

The above definition allows adversaries to perform nonce-reusing attacks with
EncK , but forces the adversary to win by distinguishing EncK from $Enc using
a nonce-respecting attack, thereby capturing the intuition that a scheme which
provides confidentiality resilience to nonce misuse must maintain confidential-
ity for properly generated nonces, even if the attacker is given the power to
re-use other nonces. Note that the form of our definition follows the framework
of Barwell, Page, and Stam [5], by separately providing oracles representing the
adversary’s goal (EncK versus $Enc), as well as oracles representing the adver-
sary’s power (the second EncK).

In order for schemes to be secure according to the above definition, they must
ensure that encryption under one nonce is roughly independent from encryp-
tion under another, even if adversaries may gain information by re-using nonces
with the encryption oracle. Proving that GCM with 96 bit nonces satisfies this
definition up to the birthday bound is straightforward. First note that adver-
saries which only have access to GCM encryption are essentially interacting
with a stream cipher, CTR mode, since unless a nonce is repeated, no two block
cipher calls are ever the same. This fact holds even if EK(0n) is released to the
adversary, since this value is never output by the underlying CTR mode. Then,
after applying a PRP-PRF switch, the keystreams generated by the underlying
CTR mode under different nonces are independent of each other and uniformly
distributed. Therefore interacting with (EncK ,EncK) is indistinguishable from
interacting with ($Enc,EncK). Similar reasoning applies to ChaCha20, assuming
the underlying ChaCha20 block function is a good PRF.
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Furthermore, OCB does not provide security according to the above defini-
tion, because an adversary can make nonce-repeating queries to EncK via its O2

oracle to recover L, and can then perform a confidentiality attack with its other
oracle. Similarly, GCM with non-96 bit nonces does not provide nonce resilient
confidentiality: since adversaries can recover EK(0n) = L (e.g. using Joux’s for-
bidden attack [42]), they can manipulate the counters used in the underlying
CTR mode to perform a confidentiality attack, since GHASHL is applied to the
nonce before using it in CTR mode (see e.g. Fig. 5).

4.3 Authenticity

Unlike confidentiality, if a nonce is repeated with GCM, then attackers can
recover the authentication key, allowing one to construct forgeries for arbitrary
nonces, as illustrated by Joux [42]. Therefore, even though 96-bit-nonce GCM
is resilient to nonce misuse when considering chosen plaintext confidentiality
attacks, it is not resilient with respect to authenticity. Similarly, OCB is not
resilient to nonce misuse with respect to authenticity.

With ChaCha20+Poly1305, authentication keys are changed with every
nonce, hence even if a nonce is repeated and the authentication key recovered, an
adversary will only be able to forge ciphertexts under the compromised nonce.
Such authentication resilience can be formalized as follows.

Definition 2. Let A be an adversary and (Enc,Dec) an AE scheme, then the
authenticity resilience advantage of A against (Enc,Dec) is

Δ
A

(EncK ,DecK ; EncK ,⊥) , (13)

where if a nonce is used twice with O1, then it cannot be used in an O2 query,
and adversaries may not query ON

1 (M) = C followed by ON
2 (C).

Here the EncK oracle is the adversary’s power, since it may repeat nonces
with that oracle. The challenge of the adversary is to distinguish DecK and ⊥,
by constructing a forgery with a nonce which has not been repeated to EncK .

The only difference between the above definition and the conventional defin-
ition of authenticity is in the restrictions on the adversary: in the conventional
definition adversaries must be nonce-respecting, whereas in this definition they
may repeat nonces, but may not use repeated nonces to construct forgeries.

One way for schemes to provide authenticity resilience is to ensure that tags
verified during decryption under one nonce are independent of verification under
another. For example, assuming that the ChaCha20 block function behaves as a
PRF, each keystream generated by ChaCha20 under one nonce is independent of
the keystreams generated under different nonces, since, as was the case with 96-
bit-nonce GCM, no two block function calls are the same. Furthermore, Poly1305
is keyed using the output of the keystream. This means that, after replacing the
ChaCha20 block function by a uniformly random function, each nonce picks a
different, independently distributed instance of ChaCha20+Poly1305. In partic-
ular, tag production and verification under one nonce is independent of other
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nonces. Say that an adversary submits a decryption query (N,C). If N was
never queried to any previous EncK query, then tag verification is independent
of all previous EncK queries, and it is unlikely that a forgery will be successful.
Even if N was queried previously to EncK , then it could have only been queried
once to EncK , and tag verification will be independent of all other EncK queries,
meaning the adversary will have no better chance of attacking the scheme than
if it had been nonce-respecting.

OCB and GCM do not satisfy the above definition because an adversary can
use the EncK oracle to recover intermediate keys, and perform forgeries. However,
there is an easy way for 96-bit-nonce GCM to mimic ChaCha20+Poly1305 such
that it does become resilient to nonce re-use: produce an additional keystream
block with its underlying CTR mode, and use the output of that block as the
authentication key for each nonce. Minematsu and Iwata [53] consider a gen-
eral version of this construction written in terms of a variable-output-length
PRF and a MAC, and by replacing the PRF with CTR mode and the MAC
with GHASH, one can construct a variant of GCM which provides authenticity
resilience under nonce misuse, with security justification following along the lines
of ChaCha20+Poly1305.

4.4 Chosen-Ciphertext Confidentiality

Much like in the conventional settings, schemes which achieve both chosen-
plaintext confidentiality and authenticity resilience, achieve chosen-ciphertext
confidentiality resilience, as defined below.

Definition 3. The CCA confidentiality resilience advantage of A against
(Enc,Dec) is

Δ
A

(EncK ,EncK ,DecK ; $,EncK ,⊥) , (14)

where nonces may not be repeated with queries to O1, a nonce used twice with
O2 cannot be used for an O3 query, a query ON

1 (M) = C or ON
2 (M) = C may

not be followed by ON
3 (C), and finally a nonce N used to query ON

1 may not be
re-used to query ON

2 , and vice versa.

The fact that CPA confidentiality and authenticity resilience imply the above
definition follows from a straightforward application of the triangle inequality:

Δ
A

(EncK ,EncK ,DecK ; $,EncK ,⊥) ≤ Δ
A

(EncK ,EncK ,DecK ; EncK ,EncK ,⊥)

(15)

+ Δ
A

(EncK ,EncK ,⊥ ; $,EncK ,⊥) (16)

The first term on the right hand side can be bounded above by authenticity of
(Enc,Dec), and the second term by confidentiality.
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5 Adding RUP Security to Encryption Schemes

In this section we introduce our generic method of adding RUP security to a
class of encryption schemes. Following Shrimpton and Terashima [71], we take
a modular approach in designing our construction. We start by describing the
generic components from which the construction will be made, namely tweakable
block ciphers and encryption schemes, and the security requirements they must
satisfy, SPRP and SRND [32], respectively. The advantage of this approach is that
the sufficient conditions to achieve security under release of unverified plaintext
are made explicit, and then, depending upon the available primitives, different
instantiations of the construction can be considered without resorting to new
proofs.

Following a discussion of the components, we describe the construction, and
discuss informally why it enhances the security of the underlying encryption
scheme. The generic construction achieves RUPAE, meaning it provides both
authenticity and confidentiality even if unverified plaintext is released. A formal
security argument for the construction is given in AppendixB. Finally we com-
plete the section by discussing an instantiation, GCM-RUP, which uses GCM’s
components to create a scheme which provides RUP-security.

5.1 Definitions

Following the RUP-model [3], we focus on designing separated AE schemes,
where the decryption algorithm is split into plaintext computation and veri-
fication algorithms, to ensure that the decryption algorithm does not “hide”
weaknesses behind the error symbol. Furthermore, our construction will com-
municate nonces in-band, meaning it will encrypt them and consider them as
part of the ciphertext. As a result, the nonce no longer needs to be synchronized
or communicated explicitly, as sufficient information is contained in the value
S. This changes the syntax slightly, since now the decryption and verification
algorithms no longer accept an explicit nonce input.

Formally, a separated AE scheme which communicates nonces in-band is a
triplet of functions — encryption SEnc, decryption SDec, and verification SVer
— where

SEnc : K × N × M → C , (17)
SDec : K × C → M , (18)
SVer : K × C → {⊥,	} . (19)

with K the keys, N the nonces, M the messages, and C the ciphertexts. Recall that
the symbols 	 and ⊥ represent success and failure of verification, respectively,
and we assume that neither are elements of M. It must be the case that for all
K ∈ K, N ∈ N, and M ∈ M,

SDecK(SEncN
K(M)) = M and SVerK(SEncN

K(M)) = 	 . (20)
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From a separated AE scheme (SEnc,SDec,SVer) one can reconstruct the
following conventional AE scheme (AEnc,ADec):

AEncN
K(M) := SEncN

K(M) (21)

ADecK(C) :=

{

SDecK(C) if SVerK(C) = 	
⊥ otherwise ,

(22)

where we assume that the AE scheme communicates nonces in-band as well.
Separated AE schemes must provide both chosen-ciphertext confidentiality

and authenticity. Both of these security aspects are captured in the RUPAE
measure of Barwell, Page, and Stam [5]. We adopt a stronger version of their
definition, by requiring the decryption algorithm to look “random” as well. Let Π
denote a separated AE scheme (SEnc,SDec,SVer), then the RUPAE -advantage
of adversary A against Π is

RUPAEΠ(A) := Δ
A

(SEncK ,SDecK ,SVerK ; $SEnc, $SDec,⊥) , (23)

where A is nonce-respecting, meaning the same nonce is never queried twice to
SEnc. Nonces may be repeated with SDec and SVer. Furthermore, A cannot use
the output of an ON

1 query as the input to an ON
2 or ON

3 query with the same
nonce N , otherwise such queries result in trivial wins.

5.2 Generic Construction

Components. A tweakable block cipher [47] is a pair of functions (E,D), with

E : K × T × X → X (24)
D : K × T × X → X , (25)

where K is the key space, T the tweak space, and X the domain, where X = {0, 1}x

is a set of strings of a particular length. For all K ∈ K and T ∈ T it must be the
case that ET

K is a permutation with DT
K as inverse. We will need to measure the

SPRP quality of the tweakable block cipher, which is defined as

SPRP(A) := Δ
A

(

EK ,DK ; π, π−1
)

, (26)

where K is chosen uniformly at random from K, and (π, π−1) is a family of
independent, uniformly distributed random permutations over X indexed by T.

Although Liskov, Rivest, and Wagner [47] introduced the concept of finite-
tweak-length (FTL) block ciphers, for our construction we need tweakable block
ciphers that can process variable tweak lengths (VTL). Starting from an FTL
block cipher, one can construct a VTL block cipher by compressing the tweak
using a universal hash function, and using the resulting output as the tweak
for the FTL block cipher, as explained by Coron et al. [22]. Minematsu and
Iwata [54] introduce the XTX construction which extends tweak length while
minimizing security loss.
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There are a few dedicated constructions of FTL block ciphers: the hash func-
tion SKEIN [26] contains an underlying tweakable block cipher, the CAESAR
competition candidates Joltik [41] and Deoxys [40] also developed new tweak-
able block ciphers, and the TWEAKEY framework [39] tackles the problem
of designing tweakable block ciphers in general. Besides dedicated construc-
tions, there are also constructions of tweakable block ciphers using regular block
ciphers; see for example Rogaway’s XE and XEX constructions [64], Mine-
matsu’s beyond-birthday bound construction [52], Landecker, Shrimpton, and
Terashima’s CLRW2 construction [45], and Mennink’s beyond-birthday bound
constructions [51].

An encryption scheme (Enc,Dec) is a separated AE scheme without SVer.
The basic security requirement for encryption schemes is chosen-plaintext con-
fidentiality, but this is not sufficient for our purpose. In particular, a mode like
CBC [55] will not work, since during decryption a change in the nonce will only
affect the first decrypted plaintext block. We need encryption schemes where dur-
ing decryption a change in the nonce will result in the entire plaintext changing.
Modes such as CTR [55], OFB [55], and the encryption of OCB [43,64,65] suf-
fice. In particular, it is necessary that both encryption and decryption algorithms
give uniform random output when distinct nonces are input across both encryp-
tion and decryption. For example, with CTR mode, decryption is the same as
encryption, and if nonces are never repeated across both algorithms then its
output will always look uniformly random.

We use Shrimpton and Terashima’s [71] SRND measure for encryption
schemes, which was introduced by Halevi and Rogaway [32]:

SRND(A) := Δ
A

(EncK ,DecK ; $Enc, $Dec) , (27)

where K is chosen uniformly at random from K, and A must use a different
nonce for every query it makes, to both of its oracles.

Description. Let (Enc,Dec) be an encryption scheme with key space K, nonce
space N, message space M, and ciphertext space C. Let (E,D) be a tweakable
block cipher with T = N × C, X = N, and key space K. Let α ∈ {0, 1}τ be some
pre-defined constant. Then define the separated AE scheme (SEnc,SDec,SVer)
as follows. The key space is K2, with keys denoted by (K,L), the nonce space is
N, the message space is M, and the ciphertext space is N × C:

SEncN
K,L(M) :=

(

EC
L (N), C

)

(28)

with C := EncN
K(α ‖ M) (29)

SDecK,L(S,C) := lsb|C|−τ

(

DecN ′
K (C)

)

(30)

with N ′ := DC
L (S) (31)

SVerK,L(S,C) :=
(

msbτ

(

DecN ′
K (C)

)
?= α

)

. (32)
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Fig. 2. Adding RUP security to an existing encryption scheme. The circles indicate
duplication of the value.

The construction is depicted in Fig. 2.
The construction adds robustness to the encryption scheme (Enc,Dec) by

compressing the ciphertext via the tweak of the tweakable block cipher, and
using that information to encrypt the nonce. As a result, during decryption,
if any bit of the ciphertext is modified, then the ciphertext will result in a
different tweak with essentially probability one, and the tweakable block cipher
will decrypt the nonce into some random value, which is used as the new nonce
for Dec. By assumption, Dec will output garbage, or more precisely, plaintext
which is unrelated to any other plaintext queried.

Similarly, if the ciphertext is kept the same, and the encrypted nonce, S,
is modified, then the tweakable block cipher will be queried on an input for
which it has not been queried on before with the given tweak computed from
the ciphertext. As a result, the decryption of S will be random, and Dec’s output
will look random as well.

With respect to authenticity, our construction follows the encode-then-
encipher paradigm [9], which uses redundancy in the plaintext in order to guar-
antee authenticity. The level of authenticity is determined by the length of the
constant α: if verification can be removed, then α’s length is set to zero. How-
ever, the only requirement from α is to be known to both sides, and users may
use any predictable bits already present in the plaintext.

5.3 GCM-RUP

We illustrate an instantiation of the construction using familiar primitives,
namely those used to construct GCM [49,50]. The resulting instantiation uses
three independent keys, but only makes three minor modifications to AES-GCM
in order to achieve RUP security:
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1. the plaintext is prepended by a string of zero bits of length τ ,
2. the nonce N instead of GHASH(ε,N) is used to generate the mask for the

polynomial hash, and
3. the output of GHASH is XORed with the nonce before it is encrypted.

See Fig. 3 for an illustration.

N

GHL
ε /96

/32 inc32 inc32 inc32 inc32

EK1 EK1 EK1 EK1

msbτ+|M|

+

M0τ

EncK1

GHK2EK3

+

+

S

A

C
EK2,K3

Fig. 3. Instantiation of our construction using GCM’s components. Changes from GCM
are indicated using a dashed pattern, and the dotted boxes point out the underlying
encryption scheme and tweakable block cipher. Filled circles indicate duplication of the
values. GH is GHASH, and /m indicates the number of bits on a wire. The value L is
EK1(0

n), and A represents associated data.

Appendix A.2 contains a description of the GCM components that we
use to describe the instantiation, including the function GHASH, defined in
Algorithm 3, and CTR mode, defined in Algorithm4. Note that our formaliza-
tion above did not include associated data, whereas GCM-RUP does, however it
is straightforward to extend the definitions and generic construction to include
it.

Since the generic construction’s security relies on generating random nonce
input during decryption, in order to maintain security up to the birthday bound
on the block size, as is the case with GCM, the nonce size in the instantiation
is fixed to be the same as the block size. The encryption scheme underlying the
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Algorithm 1. GCM-RUPK1K2K3(A,M)

Input: K1K2K3 ∈ {0, 1}3n, A ∈ {0, 1}≤n232 , M ∈ {0, 1}≤n232

Output: (S, C) ∈ {0, 1}n × {0, 1}τ+|M|

1 M ← 0τ ‖ M
2 L ← EK1(0

n)
3 I ← GHASHL(ε, N)
4 m ← |M |n
5 F ← EK1(msb96(I) ‖ ·)
6 S ← CTR[F ](inc32(lsb32(I)), m)
7 C ← M ⊕ msb|M|(S)
8 T ← GHASHK2(N‖A, C)
9 S ← EK3(I ⊕ T ) ⊕ T

10 return (S, C)

instantiation, (Enc,Dec), is the same as GCM without authentication, or in other
words CTR mode, therefore Enc and Dec are identical, and so the SRND quality
of (Enc,Dec) can be measured by looking only at Enc-queries. This allows us to
use the GCM confidentiality result of Niwa et al. [58,59], which gives (Enc,Dec)
an SRND-bound of

0.5(σ + q + d + 1)2

2n
+

64 · q(σ + q + d)
2n

, (33)

where σ is the total number of blocks queried, q the number of Enc queries, d
the number of Dec queries, and the nonce length is n bits, which is the block
size as well.

Security of the underlying tweakable block cipher follows from the XTX
construction of Minematsu and Iwata [54], where we extend the tweak space of
a block cipher to arbitrary tweak size by XORing GHASH to both the input and
output of the block cipher. Hence the SPRP-quality of the underlying tweakable
block cipher is

q2(	 + 1)
2n

, (34)

where q is the total number of queries made to the tweakable block cipher, and
	 is the maximal tweak length, or in other words, the maximal ciphertext and
associated data length in blocks.

Putting together the results along with the result of AppendixB, we get the
following bound for the instantiation.

Theorem 1. Let A be a RUPAE-adversary against the instantiation making at
most q SEnc queries, and v SDec and SVer queries. Say that at most σ blocks
are queried, with 	 the maximum ciphertext and associated data block length of
any query, then A’s advantage is at most

0.5(σ + q + v + 1)2

2n
+

64 · q(σ + q + v)
2n

+

(q + v)2(	 + 1)
2n

+ 2
v(q + v + 1)
2n − q − v

. (35)



20 T. Ashur et al.

If q + v ≤ 2n−1, then since q + v ≤ σ, the bound can be simplified to

3 · 64 · σ2

2n
+

σ2(	 + 1)
2n

, (36)

which is similar to GCM’s security bounds [38,58].
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A Algorithm Descriptions

In this section we provide descriptions of OCB, GCM, and ChaCha20+Poly1305.
The descriptions are only given to the level of detail sufficient for the paper. The
notation is borrowed various sources: the description of OCB by Rogaway, Bellare,
and Black [65], the description of GCM by Iwata, Ohashi, and Minematsu [38], and
the documents by Procter analyzing ChaCha20+Poly1305 [61,62].

A.1 OCB

In this section we describe the OCB mode of operation [43,64,65]. We focus
on OCB version 1 [65], however our results extend to all versions of OCB. We
do not include associated data as we do not need it for the OCB attacks. The
reference used for the figure, pseudocode, and notation below is from [65]. Let
E : K × {0, 1}n → {0, 1}n be a block cipher and let τ denote the tag length,
which is an integer between 0 and n. Let γ1, γ2, . . . be constants, whose values
depend on the version of OCB used; for example, in OCB1 [65] these are Gray
codes. Then Algorithm 2 gives pseudocode describing OCB encryption, and Fig. 4
provides an accompanying diagram.

A.2 GCM

In this section we describe the GCM mode of operation [49,50] with nonces
of 128 bit length. We let E : {0, 1}128 × {0, 1}128 → {0, 1}128 denote a block
cipher. The function GHASH is defined in Algorithm 3. Algorithm 5 provides
pseudocode for GCM encryption, which also uses the keystream generator CTR
mode in Algorithm 4. See Fig. 5 for an illustration.
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Algorithm 2. OCBK(N,M)
Input: K ∈ {0, 1}n, M ∈ {0, 1}∗

Output: C ∈ {0, 1}∗

1 M [1]M [2] · · · M [m]
n←− M

2 L ← EK(0n)
3 R ← EK(N ⊕ L)
4 for i = 1 to m do
5 Z[i] = γi · L ⊕ R
6 end
7 for i = 1 to m do
8 C[i] ← EK(M [i] ⊕ Z[i]) ⊕ Z[i]
9 end

10 X[m] ← lenn(M [m]) ⊕ L · x−1 ⊕ Z[m]
11 Y [m] ← EK(X[m])
12 C[m] ← Y [m] ⊕ M [m]
13 Checksum← M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m]0∗n ⊕ Y [m]

14 T ← msbτ

(
EK(Checksum ⊕ Z[m])

)

15 return C[1] · · · C[m]T

Algorithm 3. GHASHL(A,C)

Input: L ∈ {0, 1}n, A ∈ {0, 1}≤n(2n/2−1), C ∈ {0, 1}≤n(2n/2−1)

Output: Y ∈ {0, 1}n

1 X ← A0∗n ‖ C0∗n ‖ strn/2(|A|) ‖ strn/2(|C|)
2 X[1]X[2] · · · X[x]

n←− X
3 Y ← 0n

4 for j = 1 to x do
5 Y ← L · (Y ⊕ X[j])
6 end
7 return Y

Algorithm 4. CTR[F ](X,m)
Input: F : {0, 1}x → {0, 1}n , X ∈ {0, 1}x, m ∈ N

Output: S ∈ {0, 1}mn

1 I ← X
2 for j = 1 to m do
3 S[j] ← F (I)
4 I ← incx(I)

5 end
6 S ← S[1]S[2] · · · S[m]
7 return S
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N

+ L

EK

R

EK EK EK EK

+ + + +

+ + +

Z[1] Z[2] Z[3]′ Z[3]

Z[1] Z[2]

lenn

τ

M [1] M [2] M [3]

Checksum

C[1] C[2] C[3] T

Fig. 4. The OCB mode of operation applied to a plaintext of length at most three
blocks. The value L is EK(0n) and Z[3]′ = Z[3] ⊕ L · x−1.

N

GHL
ε

inc32/32 inc32 inc32 inc32

/96

EK EK EK EK

msb|M|

+

M

GHL

EK

+

T

A

C

Fig. 5. The GCM mode of operation with 128 bit nonces. GH is GHASH and /m

indicates the number of bits on a wire. The value L is EK(strn(0)).
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Algorithm 5. GCMK(N,A,M)

Input: K ∈ {0, 1}128, N ∈ {0, 1}128, A ∈ {0, 1}≤128·232 , M ∈ {0, 1}≤128·232

Output: (C, T ) ∈ {0, 1}≤128·232 × {0, 1}128

1 L ← EK(str128(0))
2 I ← GHASHL(ε, N)
3 m ← |M |128
4 F ← EK

(
msb96(I) ‖ ·

)

5 C ← M ⊕ msb|M|
(
CTR[F ] (inc32(lsb32(I)), m)

)

6 T ← EK(I) ⊕ GHASHL(A, C)
7 return (C, T )

A.3 ChaCha20+Poly1305

Our description of ChaCha20+Poly1305 is taken from the RFC [56] describing
it, as well as Procter’s analysis [61,62]. The combination of ChaCha20 [13] and
Poly1305 [12] is similar to that of GCM, with the main differences being the fact
that block cipher calls are replaced by ChaCha20’s block function calls, and the
key for Poly1305 is generated differently.

The ChaCha20 block function is denoted by

CC : {0, 1}256 × {0, 1}32 × {0, 1}96 → {0, 1}512 , (37)

which operates on keys of length 256 bits, a block number of length 32 bits,
a nonce of length 96 bits, and with an output of size 512 bits. The Poly1305
universal hash function is denoted by

Poly : {0, 1}128 × {0, 1}∗ → {0, 1}128 . (38)

The description of ChaCha20+Poly1305 encryption is given in Algorithm6.

Algorithm 6. CC&PolyK(N,A,M)

Input: K ∈ {0, 1}256, N ∈ {0, 1}96, A ∈ {0, 1}≤8·(264−1), M ∈ {0, 1}≤512·(232−1)

Output: (C, T ) ∈ {0, 1}|M| × {0, 1}128

1 F ← CCK(· , N)

2 C ← M ⊕ msb|M|
(
CTR[F ]

(
str32(1), |M |512

) )

3 L ← msb256 (F (str32(0)))

4 T ← lsb128(L) ⊕ Polymsb128(L)

(
A0∗128‖C0∗128‖str64(|A|8)‖str64(|C|8)

)

5 return (C, T )
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B Formal Security Argument For The Generic
Construction

We start by defining two reductions which use an adversary A playing the RUPAE
game against the construction S = (SEnc,SDec,SVer). Let B = (E,D) denote the
tweakable block cipher and E = (Enc,Dec) the encryption scheme. Furthermore,
let $S = ($SEnc, $SDec,⊥), $B := (π, π−1), where (π, π−1) is from the definition of
SPRP security in Eq. (26), and $E := ($Enc, $Dec). Then we define the following
two reductions:

1. A reduction B〈A〉 to the SPRP quality of the tweakable block cipher B, mean-
ing B〈A〉 will attempt to distinguish B from $B, using A, an algorithm which
is expecting either S or $S. The reduction B generates a key K indepen-
dently, and uses K to simulate the encryption scheme E. Then, B runs A,
and responds to A’s queries by reconstructing S using its own oracles, either
B or $B, and the simulated E.

2. A reduction C〈A〉 to the SRND quality of the encryption scheme E. In con-
trast with B, the reduction C simulates $B instead of B. Then using its own
oracles, either E or $E, and $B, C reconstructs S.

Theorem 2. The advantage of any nonce-respecting RUPAE adversary A
attempting to distinguish S from $S, making at most q SEnc queries, and at
most v SDec and SVer queries, is bounded above by

2
v(q + v)

|N| − q − v
+

v

2τ
+ SPRPB(B〈A〉) + SRNDE(C〈A〉) . (39)

Proof. Let S[Π,Σ] denote S using Π as tweakable block cipher and Σ as encryp-
tion scheme. By definition, we seek to bound

RUPAE(A) = Δ
A

(S[B,E] ; $S) . (40)

Applying the triangle inequality, we get

Δ
A

(S[B,E] ; $S) ≤ Δ
A

(S[B,E] ; S[$B,E]) + Δ
A

(S[$B,E] ; $S) (41)

Using reduction B〈A〉, we know that

Δ
A

(S[B,E] ; S[$B,E]) ≤ Δ
B〈A〉

(B ; $B) . (42)

Therefore we can focus on
Δ
A

(S[$B,E] ; $S) (43)

which in turn is bounded above by

Δ
A

(S[$B,E] ; S[$B, $E]) + Δ
A

(S[$B, $E] ; $S) . (44)
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The analysis of these two remaining terms relies on computing the probability
that A makes a query which results in a nonce collision during a decryption
query, thereby violating the SRND game’s requirement. In the analysis below,
we find that the probability of such an occurence is at most

ε :=
v(q + v)

|N| − q − v
. (45)

Therefore, using the reduction C〈A〉 we know that the first term of Eq. (44) is
bounded by

ε + Δ
C〈A〉

(E ; $E) , (46)

and the bound for
Δ
A

(S[$B, $E] ; $S) (47)

is given below.
Say that A generates SEnc inputs (N1,M1), (N2,M2), . . . , (Nq,Mq), and

SDec and SVer inputs (S1, C1), (S2, C2), . . . , (Sv, Cv), where (Si, Ci) could be
the input to either an SDec or SVer query. Let N∗

i denote the nonce input to
$Dec resulting from the query (Si, Ci), that is

N∗
i = π−1,Ci(Si) . (48)

Similarly, define M∗
i and α∗

i such that

α∗
i ‖M∗

i = $N∗
i

Dec(Ci) . (49)

We call N∗
i , M∗

i , and α∗
i the “decrypted” nonces, plaintexts, and constants,

respectively.
If the nonces Ni and N∗

j are distinct from each other then the SRND game’s
requirement is respected, hence $E will always give uniformly distributed and
independent output. Let event denote the event that either Ni = Nj for 1 ≤
i < j ≤ q, or N∗

i = N∗
j for 1 ≤ i < j ≤ v, or Ni = N∗

j for 1 ≤ i ≤ q and
1 ≤ j ≤ v. Then, by the fundamental lemma of game playing [10], Eq. (47) can
be bounded by

P
[

event
]

+ P
[

∃ i s.t. α∗
i = α

∣
∣
∣ event

]

, (50)

where event is the negation of event. Given event, the nonce input to $Dec will
always be distinct, hence the α∗

i are independent and uniformly distributed,
which means the quantity on the right is bounded above by v/2τ .

Therefore we focus on the probability of event, i.e. that there is a collision
in the Ni and N∗

j . By hypothesis, A is nonce-respecting, hence we know that
Ni = Nj for 1 ≤ i < j ≤ q. Therefore we focus on the case that a decrypted
nonce collides with some Ni, or another decrypted nonce.

Consider the query (Si, Ci) associated to the ith decrypted nonce N∗
i , and

say that event has not yet been triggered. Let (Nj ,Mj) be a previous SEnc
query, and (Sj , Cj) its corresponding output. By hypothesis, (Sj , Cj) = (Si, Ci).



26 T. Ashur et al.

If Cj = Ci, then the tweak input to (π, π−1) will be different for the SEnc and
SDec or SVer queries, hence the probability that N∗

i collides with Nj is at most
1/ |N|. If Cj = Ci, then Sj = Si, which means that (π, π−1) is queried under the
same tweak for both the SEnc and SDec or SVer queries. However, the probability
that

Nj = π−1,Cj (Sj) = π−1,Ci(Si) = N∗
i (51)

is at most 1/(|N| − q − v).
Now consider the probability that an SEnc query (Ni,Mi) is such that Ni

equals N∗
j for some previous SDec or SVer query. Since the adversary’s view is

independent of N∗
j , it can guess N∗

j with probability at most 1/(|N| − q − v).
Therefore, the probability that a decrypted nonce collides with some nonce Nj

is at most
qv

|N| − q − v
. (52)

Given that no decrypted nonces collide with any nonce Nj , we are left with
the event that two decrypted nonces collide with each other. However, similar
reasoning as above shows that this probability is bounded above by

v2

|N| − q − v
, (53)

Putting the above computations together, if A makes q SEnc queries, and v
SDec and SVer queries, then Eq. (47) is bounded above by

v(q + v)
|N| − q − v

+
v

2τ
. (54)

��

C Application to Tor

The advantage in coming up with new, robust AE schemes is that they can then
be used for applications which go beyond the traditional goals of ensuring data
confidentiality and authenticity between two communicating parties. Consider
for example Tor [23], which uses CTR mode [55] to ensure anonymity. CTR
mode is a basic encryption scheme which provides data confidentiality, and no
authenticity. In particular, its decryption algorithm provides no robustness to
changes in its ciphertext: a change in the ith bit of ciphertext will result in
the same change to the ith bit of the resulting plaintext. This property enables
the crypto-tagging attack [73] against Tor, which breaches anonymity. Using
an RAE [35] or encode-then-encipher [9,71] scheme prevents the crypto-tagging
attack, and potentially introduces a new level of robustness to Tor’s anonymity.
Hence, the Tor community has initiated a search for replacements for CTR
mode [48].

However, replacing CTR mode with known robust solutions not only comes
at an efficiency cost, but also increased design, and hence implementation, com-
plexity. This is because so far the only solutions provided for full robustness are
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essentially variable-input-length (VIL) ciphers [8], which can be viewed as block
ciphers that can process arbitrarily long messages. However, VIL ciphers are
“heavy” constructions, requiring often three or more passes over the plaintext in
order to ensure sufficient mixing, or relying on subtle design choices to achieve
security.

We now outline how our construction can be used in Tor to avoid the crypto-
tagging attack [73]. Our intention is not to provide a detailed description, but
to give a high-level overview.

C.1 Tor

Tor [23] is a circuit-based low-latency anonymous communication service. The
core idea underlying Tor is onion routing, a distributed overlay network designed
to anonymize TCP-based applications, presented by Syverson, Reed and Gold-
schlag in [72].

Generally speaking, Tor communication is encrypted and relayed by nodes
in the Tor-network via circuits. When building circuits, clients exchange keys
with several nodes, usually 3, where each node only knows its predecessor and
successor.

Clients prepare messages using multiple layers of encryption. First, the mes-
sage is encrypted using the key and nonce shared with the circuit’s last node.
The resulting ciphertext is then encrypted again with the keys and nonce of
the one-before-last node. This process is repeated for each node, until the first
node’s key is used.

The output of the multi-layered encryption is then sent from the client to the
first node, which decrypts one layer, and forwards the result to the next node.
In every step, another layer of encryption is removed, and the message is passed
forward, until it reaches the last node. The last node authenticates and forwards
the message to the intended recipient outside of the Tor network.

C.2 The Crypto-tagging Attack

By design, the Tor protocol offers an end-to-end integrity check, which the exit
node does by computing a SHA-1 digest of the decrypted message. Such a check
prevents e.g., attacks by rogue nodes which “tag” the encrypted message, and
then search outbound communication for the corresponding corrupted traffic.

In 2012, an anonymous email was sent to the Tor developers mailing list
describing the crypto-tagging attack [73]. In this attack, two nodes, the entry
and exit nodes, collude by tagging and untagging messages upon entry and exit
to the network, respectively, thereby making the changes transparent to all other
parties.1 Due to the mode of operation used for encryption, CTR mode, the
location of corrupt bits introduced at the entry to the network are maintained

1 Tagging can be done in several ways. We mention here only one: the entry node
XORs an identifing string to the message they are passing. Untagging is done by
XORing the same identifier by the exit node.
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through all decryptions, and can be removed by the exit node by just knowing
their location. Furthermore, since the integrity check is only performed by the
exit node, the corruption cannot be detected by intermediate nodes in the circuit.
Moreover, the attack is amplified by the fact that if only one of the nodes (i.e.,
either the entry node or the exit node) is malicious, the tagged message cannot
be verified, and the circuit is destroyed. Any new circuit where only one of the
nodes is malicious will also be destroyed, thus biasing the set of possible circuits
towards compromised ones.

An obvious solution to this problem is to add an authentication tag to each
layer of the encryption, allowing intermediate nodes to verify the data passed
through them and act according to some policy. However, in the discussion fol-
lowing the attack, such a solution was ruled out due to two main problems: (i)
by adding authentication tags, the available bandwidth for sending messages is
reduced, and (ii) the circuit’s length could be revealed, an undesirable property
in such systems.

C.3 Avoiding the Attack

We propose a different approach allowing intermediate nodes to release unverified
plaintext, using the generic construction proposed in Sect. 5. The only change
from the above procedure for preparing the message is how the nonces are chosen.

As before, clients start by encrypting the plaintext with the key and nonce of
the last node using CTR mode. Then, the ciphertext is compressed and used as
a tweak for the encryption of the nonce as per Fig. 2. Afterwards, the encrypted
nonce, S, is used as the nonce for the next layer of encryption, i.e., with the
keys of the one-before last node. This is repeated for each node of the circuit
all the way to the first one. The result is a multi-layered application of our
construction where the first layer receives the nonce and the plaintext as input,
and each subsequent layer receives the previous layer’s output. The new RUP
secure layered encryption mode of operation is presented in Fig. 6, where each
layer can be realized using e.g., the robust version of GCM presented in Sect. 5.3
with |α| = 0.

When the message is ready, the client sends the ciphertext, along with the
3-times encrypted nonce to the first node. The first node uses the decryption
algorithm as per Fig. 2 to remove the outermost encryption, and forwards the
result, as well as the now 2-times encrypted nonce, to the next node. After the
last layer of encryption has been removed by the last node, it authenticates the
message and sends it to the intended recipient.

The security against an adversary trying to mount the crypto-tagging attack
comes from the fact that any change to the ciphertext will affect the entire
message, effectively decrypting it to garbage. In other words, once decrypted by
a non-colluding node, the crypto-tag corrupts the nonce, which will then be used
to decrypt the message into garbage. Using the Tor terminology, by the time the
message reaches the exit node, the crypto-tag can no longer be removed and
the message is unrecognizable and should thus be dropped and the circuit is
torn down.
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Fig. 6. A RUP secure 3-node layered encryption. The three layers are distinguished by
their keys: (K1, L1), (K2, L2), and (K3, L3).

For example, consider a circuit with three nodes, and say that (S1, C1),
(S2, C2), and (S3, C3) are the outputs of the first, second, and third layers of
encryption, respectively. In particular, the client uses (N,P ) to produce (S1, C1),
then (S1, C1) to produce (S2, C2), and (S2, C2) to produce (S3, C3). Finally,
(S3, C3) is sent to the first node. Say that the first node is malicious, namely it
decrypts (S3, C3) and obtains (S2, C2), then proceeds to tag (S2, C2) and passes
(S′

2, C
′
2) instead of (S2, C2) as it is supposed to do. Then, assuming the second

node is honest, it will follow the protocol and decrypt (S′
2, C

′
2). However, by the

properties of our construction, we know that the decryption will be random since
(S2, C2) = (S′

2, C
′
2), and in particular, the first node will not be able to predict

anything about (S′
1, C

′
1), i.e., the decryption of (S′

2, C
′
2). As a result, the second

node will pass (S′
1, C

′
1) to the third node, and the third node will not be able

to conclude anything, regardless of whether it shares information with the first
node or not. In particular, it would not be able to conclude the source and the
destination of the message.

The disadvantage to our approach is that 16 extra bytes must be expropriated
to send the encrypted nonce S. However, unlike adding per-hop authentication
tags, the reduction in available bandwidth to send messages is fixed, and does
not change according to the circuit length. Furthermore, the solution can be
built efficiently using familiar components, and is simple enough to allow for
fast deployment.
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41. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1.3. CAESAR submissions (2015). http://
competitions.cr.yp.to/round2/joltikv13.pdf

42. Joux, A.: Comments on the draft GCM specification – authentication failuresin
NIST version of GCM. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
comments/800-38 Series-Drafts/GCM/Joux comments.pdf

43. Krovetz, T., Rogaway, P.: The OCB authenticated-encryption algorithm, June
2013. http://datatracker.ietf.org/doc/draft-irtf-cfrg-ocb

44. Krovetz, T., Rogaway, P.: The OCB authenticated-encryption algorithm. RFC
7253, May 2014

45. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (ed.) [68], pp.
14–30

46. Leander, G. (ed.): FSE 2015. LNCS, vol. 9054. Springer, Heidelberg (2015)
47. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3),

588–613 (2011)
48. Mathewson, N.: Cryptographic directions in Tor: past and future. In: Real World

Cryptography Conference (2016)
49. McGrew, D.A., Viega, J.: The security and performance of the galois/counter

mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30556-9 27

50. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
of operation (full version). IACR Cryptol. ePrint Arch. 2004, 193 (2004)

51. Mennink, B.: Optimally secure tweakable blockciphers. In: Leander, G. (ed.) [46],
pp. 428–448

52. Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03317-9 19

53. Minematsu, K., Iwata, T.: More on generic composition. In: Early Symmetric
Crypto (ESC) 2015, pp. 69–71 (2015)

54. Minematsu, K., Iwata, T.: Tweak-length extension for tweakable blockciphers. In:
Groth, J. (ed.) [29], pp. 77–93

55. National Institute of Standards and Technology: DES Modes of Operation. FIPS
81, December 1980

56. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF protocols. RFC 7539, May
2015

http://dx.doi.org/10.1007/978-3-662-47989-6_24
http://dx.doi.org/10.1007/978-3-319-47422-9_15
http://dx.doi.org/10.1007/978-3-662-45608-8_15
http://competitions.cr.yp.to/round2/deoxysv13.pdf
http://competitions.cr.yp.to/round2/deoxysv13.pdf
http://competitions.cr.yp.to/round2/joltikv13.pdf
http://competitions.cr.yp.to/round2/joltikv13.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://datatracker.ietf.org/doc/draft-irtf-cfrg-ocb
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://dx.doi.org/10.1007/978-3-642-03317-9_19


Boosting Authenticated Encryption Robustness with Minimal Modifications 33

57. NIST Special Publication 800–38A: Recommendation for block cipher modes of
operation - Modes and techniques. National Institute of Standards and Technology
(2001)

58. Niwa, Y., Ohashi, K., Minematsu, K., Iwata, T.: GCM security bounds reconsid-
ered. In: Leander, G. (ed.) [46], pp. 385–407

59. Niwa, Y., Ohashi, K., Minematsu, K., Iwata, T.: GCM security bounds reconsid-
ered. IACR Cryptol. ePrint Arch. 2015, 214 (2015)

60. Okamoto, T. (ed.): ASIACRYPT 2000. LNCS, vol. 1976. Springer, Heidelberg
(2000)

61. Procter, G.: A security analysis of the composition of chacha20 and poly1305.
IACR Cryptol. ePrint Arch. 2014, 613 (2014)

62. Procter, G.: The design and analysis of symmetric cryptosystems. Ph.D. thesis
(2015)

63. Reyhanitabar, R., Vaudenay, S., Vizár, D.: Authenticated encryption with variable
stretch. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031,
pp. 396–425. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53887-6 15

64. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 2

65. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

66. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) [74], pp. 373–390

67. Rogaway, P., Shrimpton, T.: Deterministic authenticated-encryption: a provable-
security treatment of the key-wrap problem. IACR Cryptol. ePrint Arch. 2006,
221 (2006)

68. Safavi-Naini, R., Canetti, R. (eds.): CRYPTO 2012. LNCS, vol. 7417. Springer,
Heidelberg (2012)

69. Sako, K., Sarkar, P. (eds.): ASIACRYPT 2013. LNCS, vol. 8269. Springer,
Heidelberg (2013)

70. Sarkar, P., Iwata, T. (eds.): ASIACRYPT 2014. LNCS, vol. 8873. Springer,
Heidelberg (2014)

71. Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length tweakable ciphers. In: Sako, K., Sarkar,P. (eds.) [69], pp. 405–423

72. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: 1997 IEEE Symposium on Security and Privacy, 4–7 May 1997,
Oakland, CA, USA, pp. 44–54. IEEE Computer Society (1997)

73. The 23 Raccoons. Analysis of the Relative Severity of Tagging Attacks, March 2012.
Email to the Tor developers mailing list https://lists.torproject.org/pipermail/
tor-dev/2012-March/003347.html

74. Vaudenay, S. (ed.): EUROCRYPT 2006. LNCS, vol. 4004. Springer, Heidelberg
(2006)

http://dx.doi.org/10.1007/978-3-662-53887-6_15
http://dx.doi.org/10.1007/978-3-540-30539-2_2
https://lists.torproject.org/pipermail/tor-dev/2012-March/003347.html
https://lists.torproject.org/pipermail/tor-dev/2012-March/003347.html


ZMAC: A Fast Tweakable Block Cipher Mode
for Highly Secure Message Authentication

Tetsu Iwata1, Kazuhiko Minematsu2(B), Thomas Peyrin3,4,5,
and Yannick Seurin6

1 Nagoya University, Nagoya, Japan
tetsu.iwata@nagoya-u.jp

2 NEC Corporation, Kawasaki, Japan
k-minematsu@ah.jp.nec.com

3 School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

4 School of Computer Science and Engineering,
Nanyang Technological University, Singapore, Singapore

5 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
thomas.peyrin@ntu.edu.sg

6 ANSSI, Paris, France
yannick.seurin@m4x.org

Abstract. We propose a new mode of operation called ZMAC allow-
ing to construct a (stateless and deterministic) message authentication
code (MAC) from a tweakable block cipher (TBC). When using a TBC
with n-bit blocks and t-bit tweaks, our construction provides security (as
a variable-input-length PRF) beyond the birthday bound with respect
to the block-length n and allows to process n + t bits of inputs per
TBC call. In comparison, previous TBC-based modes such as PMAC1,
the TBC-based generalization of the seminal PMAC mode (Black and
Rogaway, EUROCRYPT 2002) or PMAC TBC1k (Naito, ProvSec 2015)
only process n bits of input per TBC call. Since an n-bit block, t-bit
tweak TBC can process at most n + t bits of input per call, the effi-
ciency of our construction is essentially optimal, while achieving beyond-
birthday-bound security. The ZMAC mode is fully parallelizable and can
be directly instantiated with several concrete TBC proposals, such as
Deoxys and SKINNY. We also use ZMAC to construct a stateless and
deterministic Authenticated Encryption scheme called ZAE which is very
efficient and secure beyond the birthday bound.

Keywords: MAC · Tweakable block cipher · Authenticated encryption

1 Introduction

Block Cipher-Based MACs. A Message Authentication Code (MAC) is a
symmetric-key cryptographic function that ensures the authenticity of messages.
A large family of MACs (such as CBC-MAC [BKR00] or OMAC [IK03]) are con-
structed as modes of operation of some underlying block cipher. They are often
c© International Association for Cryptologic Research 2017
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provably secure and reasonably efficient, however, they also have inherent limita-
tions with respect to speed and security. First, such modes cannot process more
than n bits of input per block cipher call, where n is the block-length (in bits) of the
underlying block cipher. Second, most block cipher-based modes are secure only
up to the so-called birthday bound (i.e., up to 2n/2 message blocks), and very few
proposals, such as PMAC Plus [Yas11], achieve security beyond the birthday bound
(BBB), often at the cost of efficiency. For block ciphers with block-length 128,
birthday-bound security can be deemed to low in many situations.

For these reasons, a recent popular trend has been to design modes of oper-
ation for a stronger primitive, namely tweakable block ciphers (TBCs). In com-
parison to traditional block ciphers, TBCs take an extra t-bit input called the
tweak, and should behave as a family of 2t independent block ciphers indexed by
the tweak. This primitive was formalized by Liskov et al. [LRW02] (even though
the informal idea surfaced in several papers before), and turns out to be sur-
prisingly flexible for building various cryptographic functionalities. A TBC can
be either constructed in a generic way from a block cipher through a mode
of operation such as XEX [Rog04], or as a dedicated design such as Three-
fish [FLS+10], SCREAM [GLS+14], Deoxys-BC [JNP14a], Joltik-BC [JNP14b],
KIASU-BC [JNP14c], and SKINNY [BJK+16], these last four examples following
the so-called TWEAKEY framework [JNP14d].

The first construction of a parallelizable1 MAC from a TBC is
PMAC1 [Rog04], derived from the block cipher-based construction PMAC [BR02]
by abstracting the block cipher-based TBC implicitly used in PMAC. Assuming
that the underlying TBC has n-bit blocks and t-bit tweaks, PMAC1 processes
n bits of inputs per TBC call, handles messages of length up to (roughly) 2t

n-bit blocks, and is secure up to the birthday bound (i.e., up to roughly 2n/2

message blocks). This scheme is simple, efficient and fully parallelizable (all calls
to the TBC except the final one can be made in parallel). For these reasons, it
has been adopted for example by multiple TBC-based submissions to the CAE-
SAR competition for Authenticated Encryption (AE), e.g. SCREAM [GLS+14],
Deoxys [JNP14a], Joltik [JNP14b], or KIASU [JNP14c].

Several authors have proposed schemes that push security beyond the birth-
day bound. Naito [Nai15] proposed two constructions called PMAC TBC1k and
PMAC TBC3k which are reminiscent from PMAC Plus [Yas11]. As PMAC1, they
allow to process only n bits of inputs per TBC call, but their security is signifi-
cantly higher than for PMAC1: they are secure up to roughly 2n message blocks.
Recently, List and Nandi [LN17] proposed PMAC2x which extends the output
size of Naito’s PMAC TBC1k scheme from n to 2n bits without harming effi-
ciency nor security. (They also proposed a minor modification of PMAC TBC1k
with n-bit outputs called PMACx.) We remark that Minematsu and Iwata [MI17]
recently reported severe flaws in [LN17] (the ePrint version of [LN17] was sub-
sequently updated in order to fix these flaws).

1 Liskov et al. [LRW02] suggested a MAC construction from a TBC called TBC-MAC,
but the construction is serial.
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Our Contribution. We propose a new TBC-based MAC called ZMAC. As
PMAC TBC1k [Nai15] or PMAC2x/PMACx [LN17], it achieves BBB-security (as
a variable-input-length PRF) and it is fully parallelizable. However, our proposal
is more efficient than any of the previous schemes. Specifically, ZMAC processes
n+t bits of inputs per TBC call when using an n-bit block and t-bit tweak TBC,
whereas previous schemes are limited to n bits of inputs per TBC call, indepen-
dently of the tweak size (see Table 1 for a comparison with existing schemes).
To the best of our knowledge, this is the first TBC-based MAC that exploits
the full power of the tweak input of the underlying TBC. Note that an n-bit
block, t-bit tweak TBC cannot handle more than n + t bits of public input per
call, hence the efficiency of our construction is essentially optimal (a few tweak
bits are reserved for domain separation but the impact is very limited). The
tweak-length t of the TBC used in ZMAC can be arbitrary, which is important
since existing dedicated TBCs have various tweak-length, smaller (e.g. Threefish
or KIASU-BC) or larger (e.g. Deoxys-BC or SKINNY) than the block-length n.

Main Ideas of Our Design. Our construction follows the traditional “UHF-
then-PRF” paradigm: first, the message is hashed with a universal hash function
(UHF), and the resulting output is given to a fixed-input-length PRF. Build-
ing a BBB-secure fixed-input-length PRF from a TBC is more or less straight-
forward (one can simply use the “XOR of permutations” construction, which
has been extensively analyzed [Luc00,Pat08,Pat13,CLP14]). The most innova-
tive part of our work lies in the design of our TBC-based UHF, which we call
ZHASH. The structure of our proposal is reminiscent of Naito’s PMAC TBC1k
(and thus of PMAC Plus) combined with the XTX tweak extension construction
by Minematsu and Iwata [MI15]. We note that a TBC is often used to abstract
a block cipher-based construction to simplify the security proof, for example in
the case of PMAC and OCB [Rog04], where one can prove the security of TBC-
based abstraction and the construction of TBC itself separately. The TBC-based
abstraction eliminates the handling of masks, which simplifies the security proof.
That is, it is often the case that TBC-based constructions do not have masks,
where the masks are treated as tweaks. With ZMAC, we take the opposite direc-
tion to the common approach. We restore the masks in the construction, and
our scheme explicitly relies on the use of masks together with a TBC.

Application to Deterministic Authenticated Encryption. Following
List and Nandi [LN17], we use ZMAC to construct a (stateless) Deterministic
Authenticated Encryption (DAE) scheme (i.e., a scheme whose security does not
rely on the use of random IVs or nonces2 [RS06]). The resulting scheme, called
ZAE, is BBB-secure and very efficient: it processes on average n(n + t)/(2n + t)
input bits per TBC call (this complex form comes from the fact that the MAC,
resp. encryption part processes n + t, resp. n input bits per TBC call). Note
that when t = 0, this is (unsurprisingly) similar to standard double-pass block
cipher-based DAE schemes (n/2 bits per block cipher call), but as t grows,

2 DAE implies resistance against nonce-misuse by incorporating the nonce into the
associated data, and thus is also called Misuse-Resistant AE (MRAE).
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Table 1. Comparison of our designs ZMAC and ZAE with other MAC and DAE (a.k.a
MRAE) schemes. Column “# bits per call” refers to the number of bits of input
processed per primitive call. Notation: n is the block-length of the underlying BC/TBC,
t is the tweak-length of the underlying TBC. NR denotes the nonce-respecting scenario.

Scheme Prim. # bits per call Parallel Security Ref.

Message Authentication Code

CMAC BC n N n/2 [IK03]

PMAC BC n Y n/2 [BR02]

SUM-ECBC BC n/2 N 2n/3 [Yas10]

PMAC Plus BC n Y 2n/3 [Yas11]

PMAC1 TBC n Y n/2 [Rog04]

PMAC TBC1k TBC n Y n [Nai15]

PMACx/PMAC2x TBC n Y n [LN17]

ZMAC TBC n + t Y min{n, (n + t)/2} Sect. 3

Deterministic Authenticated Encryption

SIV BC n/2 Y n/2 [RS06]

SCT TBC n/2 Y n/2 (n for NR) [PS16]

SIVx TBC n/2 Y n [LN17]

ZAE TBC n(n + t)/(2n + t) Y min{n, (n + t)/2} Sect. 5

efficiency approaches n bits per TBC calls, i.e., the efficiency of an online block
cipher-based scheme (which cannot be secure in the DAE sense). We provide a
comparison with other DAE schemes in Table 1. We emphasize that ZAE is a
mere combination of ZMAC with a TBC-based encryption mode called IVCTRT
previously proposed in [PS16] through the SIV composition method [RS06]. Nev-
ertheless, we think the proposal of a concrete DAE scheme based on ZMAC is
quite relevant here, and helps further illustrate the performance gains allowed
by ZMAC (see Table 3 in Sect. 6).

Future Works. ZMAC achieves optimal efficiency while providing full n-bit
security (assuming t ≥ n). For this reason, it seems that this mode cannot
be substantially improved. However, it would be very interesting to study how
ZMAC’s design can influence ad-hoc TBC constructions: if one could construct
an efficient, BBB-secure n-bit block TBC with a very large tweak (something
which has not been studied much yet), this would lead to extremely efficient
MAC algorithms.

Organization. We give useful definitions in Sect. 2. Our new mode ZMAC is
defined in Sect. 3, and its security is analyzed in Sect. 4. Applications to Authen-
ticated Encryption are presented in Sect. 5. Finally, a performance estimation
for ZMAC and ZAE when Deoxys-BC or SKINNY are used to instantiate the TBC
is provided in Sect. 6.
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2 Preliminaries

Basic Notation. Let {0, 1}∗ be the set of all finite bit strings. For an integer
n ≥ 0, let {0, 1}n be the set of all bit strings of length n, and ({0, 1}n)+ be the set
of all bit strings of length a (non-zero) positive multiple of n. For X ∈ {0, 1}∗, |X|
is its length in bits, and for n ≥ 1, |X|n = �|X|/n� is its length in n-bit blocks.
The string of n zeros is denoted 0n. The concatenation of two bit strings X and
Y is written X ‖Y , or XY when no confusion is possible. For any X ∈ {0, 1}n

and i ≤ n, let msbi(X), resp. lsbi(X) be the first, resp. last i bits of X. For
non-negative integers a and d with a ≤ 2d − 1, let strd(a) be the d-bit binary
representation of a.

Given a bit string X ∈ {0, 1}i+j , we write

(X[1],X[2]) i,j←− X

where X[1] = msbi(X) and X[2] = lsbj(X). For X ∈ {0, 1}∗, we also define the
parsing into fixed-length subsequences of length n, denoted

(X[1],X[2], . . . ,X[m]) n←− X,

where m = |X|n, X[1] ‖X[2] ‖ . . . ‖X[m] = X, |X[i]| = n for 1 ≤ i < m and
0 ≤ |X[m]| ≤ n when |X| > 0. When |X| = 0, we let X[1] n←− X, where X[1] is
the empty string.

Let n and t be positive integers. For any X ∈ {0, 1}∗, we define the “one-zero
padding” ozp(X) to be X if |X| is a positive multiple of (n + t) and X ‖ 10c

for c = |X| mod (n + t) − 1 otherwise. We stress that ozp(·) is defined with
respect to (n + t)-bit blocks rather than n-bit blocks, and that the empty string
is padded to 10n+t−1.

For any X ∈ {0, 1}n and Y ∈ {0, 1}t, we define

X ⊕t Y
def=

{
msbt(X) ⊕ Y if t ≤ n,

(X ‖ 0t−n) ⊕ Y if t > n.

Hence, |X ⊕t Y | = t in both cases and if t = n then X ⊕t Y = X ⊕ Y .
Given a non-empty set X , we let X

$← X denote the draw of an element X
uniformly at random in X .

Galois Field. An element a in the Galois field GF(2n) will be interchangeably
represented as an n-bit string an−1 . . . a1a0, a formal polynomial an−1xn−1 +
· · · + a1x + a0, or an integer

∑n−1
i=0 ai2i. Hence, by writing 2 · a or 2a when no

confusion is possible, we mean the multiplication of a by 2 = x. This operation
is called doubling. For n = 128, we define the field GF(2n) (as is standard) by
the primitive polynomial x128 + x7 + x2 + x + 1. The doubling 2a over this field
is (a 
 1) if msb1(a) = 0 and (a 
 1) ⊕ (012010000111) if msb1(a) = 1, where
(a 
 1) denotes the left-shift of a by one bit.

Keyed Functions and Modes. A keyed function with key space K, domain
X , and range Y is a function F : K × X → Y. We write FK(X) for F (K,X).
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If Mode is a mode of operation for F using a single key K ∈ K for F , we write
Mode[FK ] instead of Mode[F ]K .

For any keyed function F : K × ({0, 1}n)+ → {0, 1}a for some a, we define
the collision probability of F as

CollF (n,m,m′) def= max
M∈({0,1}n)m

M ′∈({0,1}n)m′

M �=M ′

Pr[K $← K : FK(M) = FK(M ′)].

Tweakable Blockciphers. A tweakable blockcipher (TBC) is a keyed func-
tion Ẽ : K × T × M → M such that for each (K,T ) ∈ K × T , Ẽ(K,T, ·) is a
permutation over M. Here, K is the key and T is a public value called tweak.
Note that a conventional block cipher is a TBC such that the tweak space T is a
singleton. The output Ẽ(K,T,X) of the encryption of X ∈ M under key K ∈ K
and tweak T ∈ T may also be written ẼK(T,X) or ẼT

K(X). Following [PS16],
when the tweak space of Ẽ is TI = T × I for some I ⊂ N and for some set
T , we call T the effective tweak space of Ẽ, and we write Ẽi(K,T,X) to mean
Ẽ(K, (T, i),X). By convention we also write Ẽi

K(T,X) or Ẽi,T
K (X). The set I is

typically a small set used to generate a small number of distinct TBC instances
in the scheme, something we call domain separation. For T ′ = (T, i) ∈ TI , we
call i ∈ I the domain separation integer of tweak T ′.

Random Primitives. Let X , Y and T be non-empty finite sets. Let Func(X ,Y)
be the set of all functions from X to Y, and let Perm(X ) be the set of all
permutations over X . Moreover, let PermT (X ) be the set of all functions f :
T × X → X such that for any T ∈ T , f(T, ·) is a permutation over X .

A uniform random function (URF) with domain X and range Y, denoted
R : X → Y, is a random function with uniform distribution over Func(X ,Y).
Similarly, a uniform random permutation (URP) over X , denoted P : X → X , is
a random permutation with uniform distribution over Perm(X ). An n-bit URP is
a URP over {0, 1}n. Finally, a tweakable URP (TURP) with tweak space T and
message space X , denoted P̃ : T × X → X , is a random tweakable permutation
with uniform distribution over PermT (X ).

Security Notions. We recall standard security notions for (tweakable) block
ciphers and keyed functions.

Definition 1. Let Ẽ : K × T × X → X be a TBC, and let A be an adversary
with oracle access to a tweakable permutation whose goal is to distinguish Ẽ
and a TURP P̃ : T × X → X by oracle access. The advantage of A against
the Tweakable Pseudorandom Permutation-security (or TPRP-security) of Ẽ is
defined as

Advtprp
˜E

(A) def=
∣∣∣Pr[K $← K : A ˜EK ⇒ 1] − Pr[P̃ $← PermT (X ) : A˜P ⇒ 1]

∣∣∣ ,

where A ˜EK ⇒ 1 denotes the event that the final binary decision by A is 1.
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We remark that the above definition only allows A to make encryption
queries. If decryption queries are allowed, the corresponding notion is called
Strong TPRP (or STPRP) security. In this paper, we only use TPRP-security
for the TBC underlying our constructions. The standard PRP-security notion
for conventional block ciphers is recovered by letting the tweak space T be a
singleton.

Definition 2. For F : K × X → Y, let A be an adversary whose goal is to
distinguish FK and a URF R : X → Y by oracle access. The advantage of A
against the PRF-security of F is defined as

AdvprfF (A) def=
∣∣∣Pr[K $← K : AFK ⇒ 1] − Pr[R $← Func(X ,Y) : AR ⇒ 1]

∣∣∣ .

Moreover, for any F : K × X → Y and G : K′ × X → Y, the advantage of A in
distinguishing F and G is defined as

AdvdistF,G (A) def=
∣∣∣Pr[K $← K : AFK ⇒ 1] − Pr[K ′ $← K′ : AGK′ ⇒ 1]

∣∣∣ .

When a cryptographic scheme (or a mode of operation) Mode uses a (T)BC
of block-length n bits, the security bound (i.e., the best advantage for any adver-
sary with fixed resources) is typically a function of the query complexity of the
adversary (in terms of number q of queries or total number σ of queried blocks)
and n. When this function reaches 1 for query complexity 2n/2, we say that
Mode is secure up to the birthday bound, since this typically arises from the
birthday paradox on the block input of the (T)BC. Conversely, if the advantage
is negligibly small for any adversary of query complexity 2n/2, we say that Mode
is secure beyond the birthday bound (BBB-secure).

3 Specification of ZMAC

3.1 Overview

Let Ẽ : K×TI ×{0, 1}n → {0, 1}n be a TBC with tweak space TI = T ×I, where
T = {0, 1}t for some t > 0 and I ⊇ {0, 1, . . . , 9}. We present a construction of
a PRF ZMAC[Ẽ] : K × {0, 1}∗ → {0, 1}2n with variable-input-length and 2n-bit
outputs based on Ẽ.

The ZMAC mode has the following properties, holding for any effective tweak
size t > 0:

1. it uses a single key for calls to Ẽ;
2. the calls to Ẽ are parallelizable;
3. it processes on average n + t input bits per TBC call;
4. it is provably secure as long as the total length σ of queries in (n + t)-bit

blocks is small compared with 2min{n,(n+t)/2}.
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ZMAC is more efficient than any previous TBC-based MAC, which process
at most n bits per TBC call (e.g., when t = n, ZMAC is twice faster than
PMAC1). We emphasize that any mode based on an n-bit block, t-bit tweak
TBC can process at most n + t input bits per TBC call, thus ZMAC’s efficiency
is essentially optimal if one wants to achieve any meaningful provable security,
since otherwise there must be some part of the input which is not processed by
the TBC.3

Property 4 shows that the security of ZMAC is beyond the birthday bound
with respect to n. In particular, it is n-bit secure when t ≥ n. These properties
demonstrate that ZMAC is the first TBC-based MAC to fully use the power of
the underlying TBC.

We specify ZMAC with 2n-bit outputs, which will be useful for defining our
BBB-secure DAE scheme in Sect. 5. However, if one simply wants an n-bit-secure
MAC, one can truncate the output of ZMAC to n bits (which saves two TBC
calls in the finalization).

Design Rationale. The structure of ZMAC has some similarities with previous
BBB-secure TBC-based PRF constructions [Nai15,LN17]. However, there are
several innovative features that make ZMAC faster and n-bit secure.

The core idea of [Nai15,LN17] is to start from a TBC-based instantiation of
PHASH, the UHF underlying PMAC [Rog04]. PHASH is quite simple: it simply
XORs together the encryptions ẼK(i,Mi) of message blocks with the index i
of the block as tweak. In order to obtain a 2n-bit output, some linear layer is
applied to all encrypted blocks, as originally introduced by Yasuda [Yas11] in
his PMAC Plus block cipher-based PRF. This yields a 2n-bit message hash, to
which some finalization function (a fixed-input-length PRF) is applied to obtain
the final output.

Whereas the t-bit tweak in the previous schemes takes as input the index
of each message block, we crucially use both the message space and the tweak
space of the TBC to process n + t input bits in order to improve efficiency. The
block index is incorporated via (a variant of) a tweak extension scheme called
XTX [MI15], which allows to efficiently update the block index with only two
field doublings, somehow similarly to XEX [Rog04].

The above trick, however, is not enough to achieve BBB-security. Since we
process each (n + t)-bit input block by one call to an n-bit output TBC, the
input block and the output block are no longer in one-to-one correspondence.
Yet the BBB-security of previous schemes (where each input block is n-bit)
crucially relies on this fact (otherwise, one can find a collision with complexity
2n/2, resulting in n/2-bit security). Fortunately, this problem can be solved by
processing each (n + t)-bit input block with a Feistel-like permutation involving
one TBC call, and applying the linear layer to the output of this (n + t)-bit
permutation.

3 Alternatively, one can combine another large non-linear component such as a field
multiplication with an extra key, however this increases the implementation size.
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Fig. 1. Specification of ZMAC.

High-Level Structure of ZMAC. ZMAC consists of a hashing part

ZHASH[Ẽ] : K × ({0, 1}n+t)+ → {0, 1}n+t

and a finalization part

ZFIN[Ẽ] : K × {0, 1}n+t → {0, 1}2n.

Then, ZMAC is defined as the composition of ZHASH and ZFIN. When the input-
length is not a positive multiple of (n+ t) bits, one-zero padding (into (n+ t)-bit
blocks) is applied first. To separate inputs whose length is a positive multiple of
(n + t) bits or not, we use distinct domain separation integers in ZFIN.

The pseudocode for ZHASH, ZFIN, and ZMAC is shown in Fig. 1. See Fig. 2
and Fig. 3 illustrating ZHASH and ZFIN. Fig. 1 gives a unified specification that
covers both cases t ≤ n and t > n (note that the only operation which differs
in the two cases is the ⊕t operation). We describe more informally ZHASH
separately for t ≤ n and t > n, as well as ZFIN in the following sections.

3.2 Specification of ZHASH for the Case t ≤ N

We first define ZHASH[Ẽ] when t ≤ n. For simplicity, we assume n + t is even.
Before processing the input, ZHASH[Ẽ] computes two n-bit initial mask values
L� = Ẽ9

K(0t, 0n) and Lr = Ẽ9
K(0t−11, 0n).

Given input X ∈ ({0, 1}n+t)+, ZHASH[Ẽ] parses X into (n + t)-bit blocks
(X[1], . . . ,X[m]), parses each block X[i] as X�[i] = msbn(X[i]) and Xr[i] =
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ZHASH

X[1]

X� Xr

Ẽ8
K t

L�
Lr

t

2
0n

0t
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X� Xr

Ẽ8
K t

2 · L� 2 · Lr
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2

. . .

. . .

X[m]

X� Xr

Ẽ8
K t

2m−1 · L� 2m−1 · Lr

t

2
U

V

Fig. 2. The ZHASH hash function.

lsbt(X[i]), and computes, for i = 1 to m,

C�[i] = Ẽ8
K(2i−1Lr ⊕t Xr[i], 2i−1L� ⊕ X�[i]), (1)

Cr[i] = C�[i] ⊕t Xr[i]. (2)

Then ZHASH[Ẽ] computes two chaining values, U ∈ {0, 1}n and V ∈ {0, 1}t

defined as

U =
m⊕

i=1

2m−i+1C�[i],

V =
m⊕

i=1

Cr[i].

The final output is (U, V ).
As shown in Fig. 1, the field doublings are computed in an incremental man-

ner. Specifically, ZHASH[Ẽ] needs one call to Ẽ and three GF(2n) doublings to
process an (n + t)-bit block, plus two pre-processing calls to Ẽ. Obviously, the
calls to Ẽ are parallelizable.

3.3 Specification of ZHASH for the Case t > n

The hashing scheme ZHASH[Ẽ] for the case t > n is defined as follows (the two
internal masks L� and Lr are derived and incremented in the same way as in the
case t ≤ n).

– The input X is parsed into (n + t)-bit blocks as in the case t ≤ n, and each
block is further parsed into n, n, and t − n bit-blocks;
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ZFIN

Ẽi
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U

V Ẽi+1
K

U

V Ẽi+2
K

U

V Ẽi+3
K

U

V

Y [1] Y [2]

Fig. 3. The ZFIN finalization function.

– The first and second n-bit sub-blocks are processed in the same way as in the
case t = n. The third (t − n)-bit sub-block is directly fed to the tweak input
of the TBC as the last (t − n) bits of effective tweak;

– The output consists of two checksums, U ∈ {0, 1}n and V ∈ {0, 1}t, where
(U, msbn(V )) corresponds to the output for the case t = n, and lsbt−n(V )
corresponds to the sum of all third (t − n)-bit sub-blocks.

Hence, the computation of V is just written as the sum of all Cr blocks in the
unified specification of Fig. 1, since the last (t−n) bits of Cr[i] only contains the
last (t − n) bits of the input block X[i].

3.4 Finalization

The finalization function, denoted by ZFIN[Ẽ], takes the output of ZHASH[Ẽ],
(U, V ) ∈ {0, 1}n × {0, 1}t, and generates a 2n-bit output. It is defined as

ZFIN[ẼK ](i, U, V ) = (Ẽi
K(U, V ) ⊕ Ẽi+1

K (U, V ) ‖ Ẽi+2
K (U, V ) ⊕ Ẽi+3

K (U, V )),

where the first argument i is a non-negative integer used for domain separa-
tion. Note that if |i − j| ≥ 4, domain separation integers used for TBC calls
in ZFIN[ẼK ](i, ·, ·) and in ZFIN[ẼK ](j, ·, ·) are distinct. We use i = 0 when no
padding is applied, i.e., when M ∈ ({0, 1}n+t)+, and i = 4 otherwise.

We remark that ZFIN is close but not identical to finalization functions
used in previous works [Nai15,LN17]. For example, Naito [Nai15] employed
Ẽi

K(U, V ) ⊕ Ẽi+1
K (V,U) for building a PRF with n-bit outputs. One potential

advantage of ZFIN over using two independent instances of Naito’s construc-
tion is that ZFIN can be faster if the algorithm of Ẽ allows to leverage on the
similarity of inputs for computing Ẽi

K(U, V ) and Ẽi+1
K (U, V ).

4 The PRF Security of ZMAC

4.1 XT Tweak Extension

Our first step is to recast the use of masks 2i−1L� and 2i−1Lr as a way to extend
the tweak space of Ẽ. More specifically, we observe that the “core” construction
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of ZHASH in Eq. (1),

((T, i),X) �→ Ẽ8
K(2i−1Lr ⊕t T, 2i−1L� ⊕ X), (3)

keyed by (K, (L�, Lr)), is an instantiation of a CPA-secure variant of a tweak
extension scheme called XTX proposed in [MI15], which allows to extend the
tweak space of Ẽ8 from T = {0, 1}t to TJ = T × J with J = {1, . . . , 2n − 1}.
Following the naming convention for XE and XEX by Rogaway [Rog04] which
defines CPA- and CCA-secure TBCs based on a block cipher, we use XT to
denote the CPA-secure variant of XTX without output mask.

In order to describe the XT construction, we need the notion of partial AXU
hash function introduced by [MI15].

Definition 3. Let H : L×X → Y be a keyed function with key space L, domain
X , and range Y = {0, 1}n × {0, 1}t. We say that H is (n, t, ε)-partial almost-
XOR-universal ((n, t, ε)-pAXU) if for any X �= X ′, one has

max
δ∈{0,1}n

Pr[L $← L : HL(X) ⊕ HL(X ′) = (δ, 0t)] ≤ ε.

Now define the XT tweak extension scheme. Let Ẽ : K×T ×{0, 1}n → {0, 1}n

be a TBC with tweak space T = {0, 1}t and let H : L × T ′ → Y be a keyed
function with range Y = {0, 1}n × {0, 1}t. Let XT[Ẽ,H] be the TBC with key
space K × L, tweak space T ′, and message space {0, 1}n defined as

XT[Ẽ,H]K,L(T ′,X) = ẼK(Zr, Z� ⊕ X) where HL(T ′) = (Z�, Zr). (4)

The following lemma characterizes the security of XT[P̃,H] where Ẽ is
replaced by a TURP P̃. It is similar to [MI15, Theorem 1] and its proof is
deferred to the full version of the paper.

Lemma 1. Let XT[P̃,H] be defined as above, where P̃ : T × {0, 1}n → {0, 1}n

is a TURP and H is (n, t, ε)-pAXU. Then, for any adversary A making at most
q queries, one has

Advtprp
XT[˜P,H]

(A) ≤ q2ε

2
.

Assume for a moment that L� = Ẽ9
K(0t, 0n) and Lr = Ẽ9

K(0t−11, 0n) are
uniformly random (this will hold once the TBC underlying ZMAC has been
replaced by a TURP later in the security proof). Consider the function H with
key space {0, 1}n × {0, 1}n, domain TJ = T × J with J = {1, . . . , 2n − 1}, and
range {0, 1}n × {0, 1}t defined as

H(L�,Lr)(T, i) = (2i−1L�, 2i−1Lr ⊕t T ). (5)

Then observe that the construction of Eq. (3) is exactly XT[Ẽ8,H] with H
defined as above. We prove that H is pAXU in the following lemma.
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Lemma 2. Let H be defined as in Eq. (5). Then H is (n, t, 1/2n+min{n,t})-
pAXU.

Proof. Assume first that t ≤ n. Then, by definition of ⊕t, one has

H(L�,Lr)(T, i) = (2i−1L�, msbt(2i−1Lr) ⊕ T ).

Hence, we must upper bound

p
def= Pr

(L�,Lr)

[(
(2i−1 + 2j−1)L�, msbt((2i−1 + 2j−1)Lr) ⊕ T ⊕ T ′

)
= (δ, 0t)

]
for any distinct inputs (T, i), (T ′, j) ∈ TJ and any δ ∈ {0, 1}n.

If i = j, then necessarily T �= T ′, and hence

msbt((2i−1 + 2j−1)Lr) ⊕ T ⊕ T ′ = T ⊕ T ′ �= 0t.

Thus the probability p is zero.
If i �= j, then 2i−1 �= 2j−1. Therefore, 2i−1 + 2j−1 is a non-zero element over

GF(2n) and thus

p = Pr
(L�,Lr)

[(2i−1 + 2j−1)L� = δ, msbt((2i−1 + 2j−1)Lr) ⊕ T ⊕ T ′ = 0t]

= Pr
(L�,Lr)

[(2i−1 + 2j−1)L� = δ, msbt((2i−1 + 2j−1)Lr) = T ⊕ T ′]

=
1
2n

· 1
2t

=
1

2n+t
.

For the case t > n, observe that by definition of ⊕t,

H(L�,Lr)(T, i) = (2i−1L�, (2i−1Lr ‖ 0t−n) ⊕ T ).

Hence, we can use the previous analysis for the special case t = n, so that p is
at most 1/22n. In all cases, p is at most 1/2n+min{n,t}. ��

Combining Lemmas 1 and 2, we obtain the following for the construction of
Eq. (3) when Ẽ8

K is replaced by a TURP.

Lemma 3. Let XT[P̃,H] be defined as in Eq. (4) where P̃ : T ×{0, 1}n → {0, 1}n

is a TURP and H is defined as in Eq. (5). Then, for any adversary making at
most q queries,

Advtprp
XT[˜P,H]

(A) ≤ q2

2n+min{n,t}+1
.

4.2 Collision Probability of ZHASH

Let Ẽ′ : K′ × TJ × {0, 1}n → {0, 1}n be a TBC with tweak space TJ = T × J
where T = {0, 1}t and J = {1, . . . , 2n − 1} as before. We define ZHASH[Ẽ′] as
shown in Fig. 4 and depicted in Fig. 5. Note that, assuming that masking keys
L� and Lr are uniformly random rather than derived through Ẽ9

K , ZHASH[Ẽ] is
exactly ZHASH[XT[Ẽ8,H]], with H defined as in Eq. (5).

Let P̃J : TJ × {0, 1}n → {0, 1}n be a TURP. The following lemma plays a
central role in our security proof.
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Fig. 4. Pseudocode for the ZHASH construction using ˜E′ : K′ ×TJ ×{0, 1}n → {0, 1}n

with TJ = {0, 1}t × {1, 2, . . . , 2n − 1}.

Lemma 4. For any m,m′ ≤ 2min{n,(n+t)/2}, we have

Coll
ZHASH[˜PJ ](n + t,m,m′) ≤ 4

2n+min{n,t} .

Proof. Without loss of generality, we assume m ≤ m′. Let X = (X[1], . . . ,X[m])
and X ′ = (X ′[1], . . . , X ′[m′]) be two distinct messages of (n + t)-bit blocks. Let
(U, V ) = ZHASH[P̃J ](X) and (U ′, V ′) = ZHASH[P̃J ](X ′) be the outputs. We
define Xr[i], X�[i], C�[i], and Cr[i] following Fig. 4 augmented with the loop
index i. Let ΔU = U ⊕U ′, ΔV = V ⊕V ′, etc. A collision of ZHASH[P̃J ] outputs
is equivalent to (ΔU,ΔV ) = (0n, 0t).

We perform a case analysis. We first focus on the case t ≤ n, and consider
four sub-cases.

Case 1: m = m′, ∃h ∈ {1, . . . , m}, X[h] �= X ′[h], X[i] = X ′[i] for ∀i �= h. Then
we have

ΔU =
⊕

1≤i≤m

2m−i+1ΔC�[i] = 2m−h+1ΔC�[h],

ΔV =
⊕

1≤j≤m

ΔCr[j] = ΔCr[h].

Since the mapping (X�[i],Xr[i]) �→ (C�[i], Cr[i]) is a permutation, we have
(C�[h], Cr[h]) �= (C ′

�[h], C ′
r[h]) and thus we have either ΔC�[h] �= 0n or

ΔCr[h] �= 0t. This implies ΔU �= 0n or ΔV �= 0t.
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ZHASH

X[1]

X� Xr

Ẽ′1
K′

t

2
0n

0t

X[2]

X� Xr

Ẽ′2
K′

t

2

. . .

. . .

X[m]

X� Xr

Ẽ′m
K′

t

2
U

V

Fig. 5. The ZHASH hash function.

Case 2: m = m′, ∃h, s ∈ {1, . . . , m}, h �= s, X[h] �= X ′[h], X[s] �= X ′[s]. Then
we have

ΔU = 2m−h+1ΔC�[h] ⊕ 2m−s+1ΔC�[s] ⊕
⊕

1≤i≤m
i�=h,s

2m−i+1ΔC�[i]

︸ ︷︷ ︸
Δ1

,

ΔV = ΔCr[h] ⊕ ΔCr[s] ⊕
⊕

1≤i≤m
i�=h,s

ΔCr[i]

︸ ︷︷ ︸
Δ2

.

Observe that Δ1 and Δ2 are functions of variables of the form P̃J((T, i),X ′′)
where i /∈ {h, s} and T and X ′′ are determined by X and X ′. In particular,
by definition of a TURP, they are independent (as random variables) from
the other terms in the two right-hand sides. Hence, letting λh = 2m−h+1 and
λs = 2m−s+1, and using that since t ≤ n, Cr[i] = msbt(C�[i])⊕Xr[i], we have{

ΔU = 0n

ΔV = 0t ⇐⇒
{

λhΔC�[h] ⊕ λsΔC�[s] = Δ1

ΔCr[h] ⊕ ΔCr[s] = Δ2

⇐⇒
{

λhΔC�[h] ⊕ λsΔC�[s] = Δ1

msbt(ΔC�[h]) ⊕ ΔXr[h] ⊕ msbt(ΔC�[s]) ⊕ ΔXr[s] = Δ2

⇐⇒
{

λhΔC�[h] ⊕ λsΔC�[s] = Δ1

msbt(ΔC�[h] ⊕ ΔC�[s]) = Δ2 ⊕ ΔXr[h] ⊕ ΔXr[s].
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Hence, it follows that

Pr
[

ΔU = 0n

ΔV = 0t

]
≤ max

δ1∈{0,1}n

δ2∈{0,1}t

Pr
[

λhΔC�[h] ⊕ λsΔC�[s] = δ1
msbt(ΔC�[h] ⊕ ΔC�[s]) = δ2

]

≤ max
δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

Pr
[

λhΔC�[h] ⊕ λsΔC�[s] = δ1
ΔC�[h] ⊕ ΔC�[s] = δ3

]
.

Observe that since h �= s, λh ⊕ λs �= 0 and the linear system inside the last
probability above has a unique solution for any pair (δ1, δ3), namely

ΔC�[h] = (λsδ3 ⊕ δ1)/(λh ⊕ λs)
ΔC�[s] = δ3 ⊕ (λsδ3 ⊕ δ1)/(λh ⊕ λs).

Moreover, the random variables ΔC�[h] and ΔC�[s] are independent (as they
involve distinct tweaks) and their probability distributions are uniform over
either {0, 1}n or {0, 1}n \ {0n}, implying that their point probabilities are at
most 1/(2n − 1). Hence,

Pr
[

ΔU = 0n

ΔV = 0t

]
≤ max

δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

1
(2n − 1)2

≤ 2n−t

(2n − 1)2
≤ 4 · 2n−t

22n
≤ 4

2n+t
.

Case 3: m′ = m + 1. Then, isolating the terms corresponding to block indices
m and m + 1, we have

ΔU =
⊕

1≤i≤m

2m−i+1C�[i] ⊕
⊕

1≤i≤m+1

2m+1−i+1C ′
�[i]

= 2(C�[m] + 2C ′
�[m] + C ′

�[m + 1] ⊕ Δ1)

and

ΔV =
⊕

1≤≤m

Cr[i] ⊕
⊕

1≤i≤m+1

C ′
r[i]

= msbt(C�[m] + C ′
�[m] + C ′

�[m + 1]) ⊕ Δ2,

where Δ1 and Δ2 are independent (as random variables) from C�[m], C ′
�[m],

and C ′
�[m + 1]. Hence, exactly as for Case 2, the probability that ΔU = 0n

and ΔV = 0t is at most

max
δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

Pr
[

C�[m] + 2C ′
�[m] + C ′

�[m + 1] = δ1
C�[m] + C ′

�[m] + C ′
�[m + 1] = δ3

]
.
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Letting Y = C�[m] + C ′
�[m + 1] and Z = C ′

�[m], the linear system in the
probability above becomes {

Y + 2Z = δ1
Y + Z = δ3,

which has a unique solution over GF(2n) for any pair (δ1, δ3). Note that
Y and Z are uniformly random and independent (since Y involves domain
separation integer m + 1 but Z does not) and hence, the system is satisfied
with probability 1/22n. Therefore,

Pr
[

ΔU = 0n

ΔV = 0t

]
≤ max

δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

1
22n

=
1

2n+t
.

Case 4: m′ ≥ m + 2. Then, isolating terms corresponding to block indices m′

and m′ − 1, we have

ΔU = 2(2C ′
�[m

′ − 1] ⊕ C ′
�[m

′] ⊕ Δ1),
ΔV = msbt(C ′

�[m
′ − 1] ⊕ C ′

�[m
′]) ⊕ Δ2,

where Δ1 and Δ2 are independent of C ′
�[m

′ − 1] and C ′
�[m

′]. Moreover,
C ′

�[m
′ − 1] and C ′

�[m
′] are independent and uniformly random. Letting

Y = C ′
�[m

′] and Z = C ′
�[m

′ − 1], we can apply the same analysis as for
Case 3, and therefore, the collision probability is at most 1/2n+t.

In the above analysis, the collision probability is bounded by 4/2n+t for all cases,
which proves the lemma for the case t ≤ n.

We next consider the case t > n. We let Xw[i] = lsbt−n(X[i]) and Xr[i] =
lsbn(msb2n(X[i])), i.e., the (n + 1)-th to 2n-th bits of X[i]. For V ∈ {0, 1}t,
let V = msbn(V ) and W = lsbt−n(V ), thus V = (V ‖W ). The corresponding
variables are also defined for X ′.

We first focus on the case m = m′. When Xw[i] = X
′
w[i] for all 1 ≤ i ≤ m,

the analysis is the same as the case t ≤ n, since for each i-th input block, P̃J

takes exactly the same values (between X and X ′) for the last (t − n)-bit of T .
Thus the output collision probability (in particular, the first 2n-bit of output
(U, V )) is at most 4/22n.

If there exists an index i such that Xw[i] �= X
′
w[i] and Xw[j] = X

′
w[j] for all

j �= i, we have ΔW �= 0t−n, that is, the non-zero difference in the last (t − n)
bits of ΔV . Hence the collision probability is zero.

If there exist two (or more) distinct indices i, j such that Xw[i] �= X
′
w[i] and

Xw[j] �= X
′
w[j], the analysis is almost the same as (the Case 2 of) the case t ≤ n.

The collision probability of (U, V ) is at most 1/22n.
Finally, we consider the case m < m′. For both m′ = m + 1 and m′ ≥ m + 2,

we can apply the same arguments as the corresponding cases for t ≤ n and
the collision probability of (U, V ) is at most 1/22n. Summarizing, the collision
probability of (U, V ) is at most 4/22n. ��
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We remark that because of Case 1 when t ≤ n, ZHASH[P̃J ] is not almost
XOR universal (i.e., the output differential probability is not guaranteed to be
small).

4.3 PRF Security of Finalization

We prove that ZFIN is a fixed-input-length PRF with n-bit security. The key
observation is that, given V ∈ {0, 1}t, ZFIN is reduced to a pair of independent
instances of the sum of two independent random permutations, also called SUM2
by Lucks [Luc00]. More precisely, let SUM2 be a function that maps n-bit input
to n-bit output, such that SUM2(X) def= P1(X) ⊕ P2(X) for X ∈ {0, 1}n, using
two independent n-bit URPs P1 and P2.

On input (U, V ), each n-bit output in ZFIN is equivalent to SUM2(U) for
two independent n-bit URPs P1 and P2, and the sampling of the pair of these
URPs is independent for each V ∈ {0, 1}t and for the output blocks, thanks to
the domain separation.

SUM2 has been actively studied and BBB bounds have been proved [Luc00,
BI99]. Among them, Patarin [Pat08,Pat13] has proved that

AdvprfSUM2(A) ≤ O
( q

2n

)
,

for any adversary A using q queries. However, the constant is not known in the
literature. Here, following [PS16], we propose a well-accepted conjecture that
SUM2 is an n-bit secure PRF with a small constant.

Conjecture 1. For any adversary with q queries, AdvprfSUM2(A) ≤ Cq/2n holds for
some small constant C > 0.

For i ∈ {0, 4}, we let ZFINi[ẼK ](U, V ) = ZFIN[ẼK ](i, U, V ). Based on Conjec-
ture 1, the following lemma gives the PRF security of ZFINi in the information-
theoretic setting, i.e., when ẼK is replaced by a TURP P̃I : TI × {0, 1}n →
{0, 1}n.

Lemma 5. Let A be an adversary against the PRF-security of ZFINi[P̃I ] making
at most q queries. Then, for i ∈ {0, 4}, we have

Advprf
ZFINi[˜PI ]

(A) ≤
∑

T∈{0,1}t

2CqT

2n
≤ 2Cq

2n
,

where qT denotes the number of queries with V = T .

The proof is obtained by the standard hybrid argument and an observation that
adaptive choice of qT ’s does not help. Lemma 5 shows that ZFIN is a parallelizable
and n-bit secure PRF with (n+ t)-bit inputs using a TBC with n-bit blocks and
t-bit tweaks.

Alternative Constructions. We could build the finalization function from
[CDMS10,Min09]. Coron et al. [CDMS10] proposed a 2n-bit SPRP construction



52 T. Iwata et al.

using 3 TBC calls of n-bit block and tweak, and Minematsu [Min09] proposed a
2n-bit SPRP construction using 2 TBC calls with two GF(2n) multiplications.
Both constructions achieve n-bit security with small constants. As they are also
n-bit secure 2n-bit PRFs (via standard PRP-PRF switching), we could use them.
However, they are totally serial, hence if input to MAC is short (say 64 bytes)
and we have a parallel TBC computation unit, this choice of finalization will be
quite slower than ZFIN.

We could also use CENC by Iwata [Iwa06]. In a recent work by Iwata
et al. [IMV16], it is shown that P(X ‖ 0) ⊕ P(X ‖ 1) for X ∈ {0, 1}n−1, called
XORP[1], achieves n-bit PRF-security with constant 1, by making explicit that
this was in fact already proved by Patarin [Pat10]. However, we think the final-
ization based on this construction would be slightly more complex than ours.

4.4 PRF Security of ZMAC

We are now ready to state and prove the security result for ZMAC.

Theorem 1. Let A be an adversary against ZMAC[Ẽ] making at most q queries
of total length (in number of (n + t)-bit blocks) at most σ and running in time
at most time. Then there exists an adversary B against Ẽ making at most σ +
4q + 2 queries and running in time at most time + O(σ) such that

Advprf
ZMAC[ ˜E]

(A) ≤ Advtprp
˜E

(B) +
2.5σ2

2n+min{n,t} +
4Cq

2n
,

where the constant C > 0 is as specified in Conjecture 1.

Proof. Since ZMAC calls the underlying TBC Ẽ with a single key K, we can
replace ẼK by a TURP P̃I : TI ×{0, 1}n → {0, 1}n and focus on the information-
theoretic security of ZMAC[P̃I ]. Derivation of the computational counterpart is
standard.

Let G : KG×({0, 1}n+t)+ → {0, 1}n+t and F : KF ×{0, 1}n+t → {0, 1}2n. Let
CW3[GK1 , FK2 , FK3 ] be the three-key Carter-Wegman construction with inde-
pendent keys (K1,K2,K3) as defined by Black and Rogaway [BR05], i.e.,

CW3[GK1 , FK2 , FK3 ](M) =

{
FK2(GK1(ozp(M))) if M ∈ ({0, 1}n+t)+,

FK3(GK1(ozp(M))) otherwise.

It is easy to see that ZMAC[P̃I ] is a instantiation of CW3. Indeed,

ZMAC[P̃I ] = CW3
[
ZHASH[P̃I ],ZFIN0[P̃I ],ZFIN4[P̃I ]

]
,

and independence between the three components follows from domain separa-
tion of tweaks which implies that for distinct integers i, j ∈ I, P̃

i

I and P̃
j

I are
independent TURPs with tweak space T = {0, 1}t. Besides, as already observed
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in Sect. 4.2, since the masking keys L� = P̃
9

I(0
t, 0n) and Lr = P̃

9

I(0
t−11, 0n) are

uniformly random, one has

ZHASH[P̃I ] = ZHASH
[
XT[P̃

8

I ,H]
]
,

with H as defined by Eq. (5). Hence, by replacing XT[P̃
8

I ,H] by a TURP P̃J :
TJ ×{0, 1}n → {0, 1}n and ZFIN0, resp. ZFIN4 by independent random functions
R0, resp. R1 from {0, 1}n+t to {0, 1}n, we have that there exists an adversary

B′ against XT[P̃
8

I ,H] making at most σ queries and an adversary B′′ against
ZFIN0/4[P̃I ] making at most q queries such that

Advprf
ZMAC[˜PI ]

(A) = Advprf
CW3[ZHASH[XT[˜P

8
I ,H]],ZFIN0[˜PI ],ZFIN4[˜PI ]]

(A)

≤ Advprf
CW3[ZHASH[˜PJ ],R0,R1]

(A) + Advtprp
XT[˜P

8
I ,H]

(B′)

+ Advprf
ZFIN0[˜PI ]

(B′′) + Advprf
ZFIN4[˜PI ]

(B′′)

≤ Advprf
CW3[ZHASH[˜PJ ],R0,R1]

(A) +
σ2

2n+min{n,t}+1
+

4Cq

2n
, (6)

where the last inequality follows from Lemmas 3 and 5.
From Lemma 2 of [BR05] and Lemma 4, we have

Advprf
CW3[ZHASH[˜PJ ],R0,R1]

(A) ≤ max
m1,...,mq

∑
i�=j

Coll
ZHASH[˜PJ ](n + t,mi,mj)

≤ max
m1,...,mq

∑
i�=j

4
2n+min{n,t}

≤ 2q2

2n+min{n,t} , (7)

where the maximum is taken over all m1, . . . , mq such that
∑

i mi = σ. Com-
bining (6) and (7), we obtain the information-theoretic bound. ��

4.5 Other Variants of ZMAC

ZMAC has a wide range of variants, depending on the required level of security.
We briefly discuss some of them.

Eliminating The Input-Length Effect. ZMAC ensures security as long as
the total number of (n+ t)-bit blocks σ throughout queries is small compared to
2min{n,(n+t)/2}. If one wants to completely remove the effect of the input length
as in [Nai15,LN17] (i.e., to get security as long as the number of queries q is small
compared to 2min{n,(n+t)/2}), we suggest to use ZHASH. The underlying TBC Ẽ
needs to have a tweak space of the form {0, 1}t ×J ×I, where J = {1, 2, . . . , B}
for some B > 0 and I is a set of domain separation integers. Here, the effective
tweak space of Ẽ is {0, 1}t × J and the effective tweak-length is t′ = t + log2 B
bits.
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For finalization, we can use ZFIN[Ẽ] with an adequate domain separation.
From Lemma 4, the message hashing has a constant collision probability of
4/2n+min{n,t} for both cases of t ≤ n and t > n. The security bounds (for both
t ≤ n and t > n) are O(q2/2n+min{n,t}) plus the PRF bound of ZFIN[Ẽ], thus,
security does not degrade with the total input length.

On the downside, since we waste log2 B effective tweak bits to process the
input block index, this mode processes only n+ t input bits per TBC call rather
than the optimal amount n+t′. This is a trade-off between efficiency and security.

Birthday Security. If we only require up-to-birthday bound security, then
we could simply use XT[Ẽ] in the same manner to PMAC, that is, the message
hashing is mostly the same as ZHASH, however we XOR all TBC outputs C� in
Fig. 1 to form the final n-bit output. The finalization is done by a single TBC call
with an adequate domain separation, and hashing and finalization are composed
by CW3.

From Lemma 3 and the security proof for (TBC-based) PMAC1 found
in [Rog04], this variant has PRF advantage O(σ2/2n+min{n,t} + q2/2n), which is
slightly better than “standard” birthday bound O(σ2/2n). Efficiency is optimal
since n+t input bits are processed per TBC call for any Ẽ having effective tweak
space of t bits, for any t > 0.

5 Application to Authenticated Encryption: ZAE

As an application of ZMAC, we provide an efficient construction of a Determin-
istic Authenticated Encryption (DAE) scheme [RS06] from a TBC called ZAE.

Let us briefly recall the syntax and the security definition for a DAE scheme
(see [RS06] for details). A DAE scheme DAE is a tuple (K,AD,M, C,DAE.Enc,
DAE.Dec), where K, AD, M, and C are non-empty sets and DAE.Enc and
DAE.Dec are deterministic algorithms. The encryption algorithm DAE.Enc takes
as input a key K ∈ K, associated data AD ∈ AD, and a plaintext M ∈ M,
and returns a ciphertext C ∈ C. The decryption algorithm DAE.Dec takes as
input a key K ∈ K, associated data AD ∈ AD, and a ciphertext C ∈ C, and
returns either a message M ∈ M or the special symbol ⊥ indicating that the
ciphertext is invalid. We write DAE.EncK(AD,M), resp. DAE.DecK(AD,C) for
DAE.Enc(K,AD,M), resp. DAE.Dec(K,AD,C). As usual, we require that for
any tuple (K,AD,M) ∈ K × AD × M, one has

DAE.Dec(K,AD,DAE.Enc(K,AD,M)) = M.

The associated data AD is authenticated but not encrypted, and may include
a nonce, which is why DAE is sometimes called nonce-misuse resistant authen-
ticated encryption (MRAE), since for such a scheme the repetition of a nonce
does not hurt authenticity and only allows the adversary to detect repetitions
of inputs (AD,M) to the encryption algorithm.
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Definition 4. Let DAE be a DAE scheme. The advantage of an adversary A in
breaking the DAE-security of DAE is defined as

AdvdaeDAE(A) def=
∣∣∣Pr[K $← K : ADAE.EncK ,DAE.DecK ⇒ 1] − Pr[A$,⊥ ⇒ 1]

∣∣∣ ,

where oracle $(·, ·), on input (AD,M), returns a random bit string of length4

|DAE.EncK(AD,M)|, and oracle ⊥(·, ·) always returns ⊥. The adversary A is not
allowed to repeat an encryption query or to submit a decryption query (AD,C)
if a previous encryption query (AD,M) returned C.

In addition to ZMAC, our construction will rely on a (random) IV-based
encryption (ivE) scheme IVE. Such a scheme consists of a tuple (K, IV,M, C,
IVE.Enc, IVE.Dec), where K, IV, M, and C are non-empty sets and IVE.Enc and
IVE.Dec are deterministic algorithms. The encryption algorithm IVE.Enc takes
as input a key K ∈ K, an initialization value IV ∈ IV, and a plaintext M ∈ M,
and returns a ciphertext C ∈ C. The decryption algorithm IVE.Dec takes as input
a key K ∈ K, an IV IV ∈ IV, and a ciphertext C ∈ C, and returns a message
M ∈ M. Given K ∈ K, we let IVE.Enc$K denote the randomized algorithm which
takes as input M ∈ M, draws IV

$← IV, computes C = IVE.Enc(K, IV,M), and
returns (IV,C).

Definition 5. Let IVE be an IV-based encryption scheme. The advantage of an
adversary A in breaking the ivE-security of IVE is defined as

AdviveIVE(A) def=
∣∣∣Pr[K $← K : AIVE.Enc$K ⇒ 1] − Pr[A$ ⇒ 1]

∣∣∣ ,

where oracle $(·), on input M ∈ M, returns a random bit string of length
|IVE.Enc$K(M)|.

For our purposes, we consider the IV-based encryption mode IVCTRT pro-
posed in [PS16, Appendix B]. This mode uses a TBC Ẽ with tweak space
T ′ = {0, 1}t × I and message space {0, 1}n, and has 2n-bit IVs. We assume
10 ∈ I as all calls to Ẽ in IVCTRT will use domain separation integer 10 which
is distinct from all those used in ZMAC. The encryption IVCTRT[ẼK ].Enc(IV,M)
of a message M with initialization value IV under key K is defined as follows.
The IV and the message are parsed as

(IV [1], IV [2]) n,n←−− IV

(M [1], . . . ,M [m]) n←− M.

Let IV ′[1] = IV [1] ⊕t 0t, i.e., IV [1] is either padded with zeros up to t bits
when t > n or truncated to t bits when t ≤ n. Then, the ciphertext is C =
(C[1], . . . , C[m]) where X � Y denotes t-bit modular addition,

C[i] = M [i] ⊕ Ẽ10
K (IV ′[1] � i, IV [2]) for i = 1, . . . , m − 1,

C[m] = M [m] ⊕ msb|M [m]|(Ẽ10
K (IV ′[1] � m, IV [2])).

4 We assume that the length of DAE.EncK(AD,M) is independent from the key K.
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Fig. 6. Pseudocode for the ZAE deterministic authenticated encryption scheme. Algo-
rithm IVCTRT[ ˜EK ].Dec is similar to IVCTRT[ ˜EK ].Enc and hence omitted.

Our TBC-based BBB-secure DAE mode proposal ZAE follows the generic5

SIV construction [RS06], where the PRF is instantiated with ZMAC and the
IV-based encryption mode is instantiated with IVCTRT.

Let Ẽ be a TBC with tweak space T ′ = {0, 1}t × I where I ⊇ {0, 1, . . . , 10}
and message space {0, 1}n. The encryption ZAE[ẼK ].Enc(AD,M) of a message
M with associated data AD under key K is the pair C ′ = (IV,C) where

IV = ZMAC[ẼK ](encode(AD,M))

C = IVCTRT[ẼK ].Enc(IV,M).

The encode function is an injective mapping which pads AD and M indepen-
dently using the ozp() function, so that the bit length of the resulting strings
are multiples of (n + t). Then, it concatenates these two strings and appends
the n/2-bit representations of the lengths of AD and M (an n-bit representation
can naturally be used if more than 2n/2 AD and M blocks are possible). The
tag (synthetic IV) is 2n bits, which is inevitable for n-bit security of the SIV
construction, since a collision of two tags would immediately break the scheme.
See Fig. 6 for the pseudocode and Fig. 7 for a graphical representation of ZAE.

The security bound for ZAE is given in the following theorem. Here,
we let the length of a query (encryption or decryption) be the block

length of encode(AD,M), where (IV,C) 2n,|C′|−2n←−−−−−− C ′ and M ←
IVCTRT[ẼK ].Dec(IV,C) for a decryption query (AD,C ′).
5 The name SIV is used in [RS06] to denote either a generic construction of a DAE

scheme from a PRF and an IV-based encryption scheme, or the block cipher mode
of operation resulting from instantiating the PRF with (a variant of) CMAC and the
encryption scheme with the counter mode.
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Theorem 2. Let Ẽ be a TBC with tweak space T ′ = {0, 1}t × I and mes-
sage space {0, 1}n. Let A be an adversary attacking ZAE[Ẽ] making at most q
(encryption or decryption) queries, such that the total length of all its queries is
at most σ blocks of n bits6, and running in time at most time. Then there exists
an adversary B against Ẽ making at most 2σ + 4q + 2 chosen-plaintext queries
and running in time at most time + O(σ) such that

Advdae
ZAE[ ˜E]

(A) ≤ Advtprp
˜E

(B) +
3.5σ2

2n+min{n,t} +
4Cq

2n
+

q

22n
,

where the constant C is from Conjecture 1.

Proof. We prove the information-theoretic security of ZAE[P̃] where P̃ is a
TURP (the computational counterpart is standard). By Theorem 2 of [RS06],
there exists an adversary A′ attacking ZMAC[P̃] and an adversary A′′ attacking
IVCTRT[P̃], both making at most q queries of total length σ, such that

Advdae
ZAE[˜P]

(A) ≤ Advprf
ZMAC[˜P]

(A′) + Advive
IVCTRT[˜P]

(A′′) +
q

22n
. (8)

According to [PS16, Appendix B], we have

Advive
IVCTRT[˜P]

(A′′) ≤ σ2

2n+min{n,t} .

(In more details, the security bound from [PS16, Appendix B] is σ2/2n+t assum-
ing IV ′[1] is uniform in {0, 1}t, which is the case here only when t ≤ n. When
t > n, the security bound caps at σ2/22n since only the first n bits of IV ′[1] are
random.) The result follows by combining these two equations with Theorem 1.
The query complexity of B follows from the fact that ZAE makes at most 2 TBC
calls per n-bit block of input and the complexity of ZFIN and masks. ��

It is to be noted that for the encryption part IVCTRT there is no specific
efficiency benefit in having access to a TBC with a larger tweak input than n
bits. In contrary, for the ZMAC part, there is a direct gain in having a large tweak
if this is not too costly (say much smaller than a factor of two), since this increases
the amount of input bits per TBC call. In order to optimize performance, one
can thus use a TBC with t = n for the encryption part, but switch to a TBC
with t > n for the MAC part of the scheme, since building a TBC with a large
tweak usually leads to (slightly) slower performances than a TBC with a small
tweak [JNP14d].

Another direction to further increase performance of ZAE in practice, without
reducing its security, is to use a counter addition on only min{n, t} bits instead
of t bits, i.e. by redefining X � Y for Y ∈ {1, . . . , 2min{n,t}} to denote

msbmin{n,t}(X) + Y mod 2min{n,t} ‖ lsbt−min{n,t}(X),

6 Note that, for simplicity, the lengths are counted in n-bit blocks.
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Fig. 7. The ZAE deterministic authenticated encryption scheme with associated data.
Note that the n-bit value IV [1] is mapped to the t-bit value IV [1] ⊕t 0t to obtain the
initial t-bit counter.

that is, addition over the first min{n, t} bits and the remaining bits intact. One
could even consider having a LFSR-based counter instead of a modular addition
based counter to improve hardware implementations. We have not used these
improvements in ZAE specifications in order to simplify its description.

ZAE compares very favorably with existing TBC-based MRAE solutions both
in terms of efficiency and security. Indeed, it can process n + t message bits
per TBC call for the MAC part, and n bits per TBC call for the encryption
part. Other schemes such as SIV [RS06], SCT [PS16], or SIVx [LN17] can only
handle n message bits per TBC call in the MAC part. Moreover, ZAE is secure
beyond the birthday bound and hence provides better security than SIV (only
birthday security) or SCT (only birthday security in the nonce-misuse setting)
while leading to better performances.

We remark that ZMAC could also be used to improve OCB-like (more pre-
cisely its TBC-based generalization ΘCB [KR11]) or SCT-like designs: by chang-
ing the PMAC-like part that handles the associated data for ZMAC, one would
fully benefit from the efficiency improvement provided by our design.

6 MAC and AE Instances

In this section, we give instantiation examples of ZMAC and ZAE. There are many
possible ways to build a TBC, but in practice block cipher-based constructions
are generally less efficient than ad-hoc TBCs. Since our design leverages heavily
the possibilities offered by a large tweak, a candidate such as Threefish [FLS+10]
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is not very interesting as it handles only 128 bits of tweak input for a block size of
256/512/1024 bits. The effective efficiency gain would be limited (and Threefish
is much slower than AES on current platforms, due to AES-NI instruction sets).

One could also consider using block ciphers with large keys (in comparison
to their block size), but as remarked in [JNP14d], it remains unclear if one can
generally use the key input of a TBC as tweak input. For example, using AES-
256 while allocating half of its key input as tweak is a very bad idea, considering
the related-key attacks against AES-256, such as [BKN09].

Recently, Jean et al. [JNP14d] proposed a framework called TWEAKEY
and a generic construction STK for building ad-hoc tweakable Substitution-
Permutation Network (SPN) ciphers. The authors proposed three TBCs based
on the STK framework, Deoxys-BC [JNP14a], Joltik-BC [JNP14b], and KIASU-
BC [JNP14c], as part of three candidates for CAESAR authenticated encryption
competition [CAE]. In particular, Deoxys-BC is the TBC used in the Deoxys
CAESAR candidate (together with the SCT authenticated encryption mode),
selected for the third round of the competition. Later, SKINNY [BJK+16], a
lightweight family of TBCs based on similar ideas was proposed.

We will study here the performances of ZMAC and ZAE when instantiated
with Deoxys-BC and the 128-bit block versions of SKINNY. Note that for a
key size of 128 bits, both these ciphers offer versions with 128 or 256 bits
of tweak input (respectively Deoxys-BC-256/SKINNY-128-256 and Deoxys-BC-
384/SKINNY-128-384). It is interesting to compare the respective number of
rounds (and thus efficiencies) of these different versions (see Table 2).

Table 2. Number of rounds of Deoxys-BC-256/Deoxys-BC-384, and SKINNY-128-
128/SKINNY-128-256/SKINNY-128-384.

TBC t = 0 t = n t = 2n

Deoxys-BC – 14 16

SKINNY 40 48 56

This shows the strength of the ZMAC general design: for practical ad-hoc
TBC constructions, it seems that adding twice more input to the TBC slows
down the primitive by a much smaller factor than 2. Thus, we can expect the
efficiency to improve with the tweak-length.

6.1 Handling the Domain Separation of TBC Instances

In ZMAC and ZAE, we use several independent TBC instances through domain
separation integers. In detail, for ZMAC, one needs one TBC instance (Ẽ9

K)
for the generating the masking keys L� and Lr, one instance (Ẽ8

K) for the
hashing part, 4 instances (Ẽ0

K , Ẽ1
K , Ẽ2

K , Ẽ3
K) for the finalization function

when the message is a positive multiple of (n + t) bits, and 4 instances
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(Ẽ4
K , Ẽ5

K , Ẽ6
K , Ẽ7

K) for the finalization function when the message is not a
positive multiple of (n + t) bits. This sums up to 10 instances. Moreover, ZAE
requires one more instance (Ẽ10

K ) for the encryption part.
For all instances, encoding can be achieved by simply reserving 4 bits of

the tweak input of the TBC. This has the advantage of being very simple and
elegant, but it also means that in practice the message block size of ZMAC will
be a little unusual (as the tweak-length is usually a multiple of the block-length).

Another solution is to separate the instances using distinct field multiplica-
tions. This allows the message block size of ZMAC to be a multiple of the TBC
block size. However, the number of distinct multiplications is non-negligible and
will render the implementation much more complex.

Finally, a last solution could be to XOR into the state distinct words that are
dependent of the secret key (for example generated just like the masks L� and Lr,
but with different plaintext inputs). The advantage is that the implementation
is simple and it allows the message block size of ZMAC to be a multiple of the
TBC block size. However, more precomputations will be needed.

All these solutions represent different possible tradeoffs, and we note that
this issue is present for most TBC-based MAC or AE schemes.

6.2 Efficiency Comparisons

In this subsection, we report the efficiency estimates of our operating modes
ZMAC and ZAE, when the TBC is instantiated with Deoxys-BC and SKINNY,
while comparing with existing MAC and AE schemes.

We do not perform a comprehensive comparison with schemes combining a
(T)BC and a 2n-bit algebraic UHFs, such as a 256-bit variant of GMAC [MV04].
In principle such schemes can achieve n-bit security. However, the additional
implementation of an algebraic UHF would require more resources (memory for
software and gates for hardware) than pure (T)BC modes, which is not desirable
for the performance across multiple devices. Moreover, the existence of weak-key
class for the popular polynomial hash functions, such as [HP08,PC15], can be
an issue.

We will consider two scenarios: (1) long messages and (2) long messages
with equally long associated data (AD). For these two scenarios, the cost of
the precomputations or finalizations can be considered negligible (for bench-
marking, we used 65536 bytes for long messages or AD). Moreover, we note
that in ZMAC, the two calls for precomputation can be done in parallel, while
the calls in the finalization function ZFIN can also all be done in parallel. For
modern processors, where parallel encryptions (for bitslice implementations) or
pipelined encryptions (for implementations using the AES-NI instructions set)
are by far the most efficient strategy, having a finalization composed of four par-
allel encryption calls (like in ZMAC) or a single one (like in SCT) will not make
a big difference in terms of efficiency.

On an Intel Skylake processor Intel Core i5-6600, we measure that for long
messages AES-128 runs at 0.65 c/B (cycles/Byte), while Deoxys-BC-256 runs at
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Table 3. Estimated efficiencies (in c/B) of various MAC and AE primitives (for (1)
long messages and (2) long message with equally long AD) on a Intel Skylake processor.
For (2), the input bytes are the sum of message and AD bytes. NR denotes the nonce-
respecting scenario. GCM-SIV is proposed by [GL15]. (�) Performances are reported for
SIV instantiated with a fully parallelizable PRF (e.g., PMAC), while the specifications
from [RS06] use a PRF based on CMAC which has a limited parallelizability.

Mode Cipher Long M Long M Security

Long AD

Message Authentication Code

CMAC AES-128 2.68 – 64

PMAC AES-128 0.65 – 64

PMAC1 Deoxys-BC-256 0.87 – 64

PMAC TBC1k Deoxys-BC-256 0.87 – 128

ZMAC Deoxys-BC-256 0.61 – 128

ZMAC Deoxys-BC-384 0.52 – 128

ZMAC SKINNY-128-256 2.06 – 128

ZMAC SKINNY-128-384 1.60 – 128

(Deterministic) Authenticated Encryption

OCB AES-128 0.65 0.65 64 (NR)

GCM AES-128 0.65 0.65 64 (NR)

ΘCB Deoxys-BC-256 0.87 0.87 128 (NR)

SIV AES-128 1.30� 0.97� 64

GCM-SIV AES-128 0.95 0.80 64

SCT Deoxys-BC-256 1.74 1.30 64 (128 for NR)

SIVx Deoxys-BC-256 1.74 1.30 128

ZAE Deoxys-BC-256 1.48 1.04 128

ZAE Deoxys-BC-384 1.58 1.09 128

ZAE Deoxys-BC-256/Deoxys-BC-384 1.46 1.03 128

ZAE SKINNY-128-256 6.18 4.12 128

ZAE SKINNY-128-256 6.38 3.98 128

ZAE SKINNY-128-256/SKINNY-128-384 5.70 3.64 128

0.87 c/B, Deoxys-BC-384 runs at 0.99 c/B, SKINNY-128-256 at 4.12 c/B and
SKINNY-128-384 at 4.8 c/B. However, these numbers assume that the tweak
input of the ciphers is being used as a counter (as in SCT or SIVx). This can
make an important difference depending on the TBC considered, especially for
ciphers with a heavy key schedule. One can observe [BJK+16] that when the
tweak input is considered random (in opposition to being a counter), there is
not much efficiency penalty for SKINNY (probably due to the fact that the best
SKINNY implementations use high-parallelism bitslice strategy). For Deoxys-BC,
we have implemented a random tweak version and compared it with the case
where the tweak is used as a counter. We could observe that in the case of
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AES-NI implementations a penalty factor on efficiency of 1.4 must be taken in
account for Deoxys-BC-256, and a factor 1.8 for Deoxys-BC-384. We emphasize
that these penalties will probably not appear for other types of implementations
(table or bitslice implementations).

Taking into account all these considerations, we compare ZMAC and ZAE
efficiencies with its competitors7 in Table 3. One can see that ZMAC is the fastest
MAC, while providing n-bit security. Moreover, ZAE offers better performances
when compared to misuse-resistant competitors, while providing optimal n-bit
security, even in nonce-misuse scenario.

It is interesting to note that, as foreseen in previous section, for ZAE the
maximum speed might be achieved by using a TBC version with a large tweak
for the MAC part, and a TBC version with a small tweak for the encryption
part (typically Deoxys-BC-384 for the MAC part and Deoxys-BC-256 for the
encryption part). This is because ZMAC really benefits from using a TBC with
a large tweak, while the encryption part is not faster when using a TBC with a
large tweak (and a TBC with a large tweak is supposed to be slightly slower).
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Abstract. We initiate the study of message franking, recently intro-
duced in Facebook’s end-to-end encrypted message system. It targets
verifiable reporting of abusive messages to Facebook without compro-
mising security guarantees. We capture the goals of message franking
via a new cryptographic primitive: compactly committing authenticated
encryption with associated data (AEAD). This is an AEAD scheme for
which a small part of the ciphertext can be used as a cryptographic com-
mitment to the message contents. Decryption provides, in addition to the
message, a value that can be used to open the commitment. Security for
franking mandates more than that required of traditional notions asso-
ciated with commitment. Nevertheless, and despite the fact that AEAD
schemes are in general not committing (compactly or otherwise), we
prove that many in-use AEAD schemes can be used for message frank-
ing by using secret keys as openings. An implication of our results is the
first proofs that several in-use symmetric encryption schemes are com-
mitting in the traditional sense. We also propose and analyze schemes
that retain security even after openings are revealed to an adversary.
One is a generalization of the scheme implicitly underlying Facebook’s
message franking protocol, and another is a new construction that offers
improved performance.

Keywords: Authenticated encryption · Encrypted messaging

1 Introduction

Encrypted messaging systems are now used by more than a billion people, due
to the introduction of popular, industry-promoted products including What-
sApp [60], Signal [61], and Facebook Messenger [30]. These use specialized (non-
interactive) key exchange protocols, in conjunction with authenticated encryp-
tion, to protect messages. Many tools are based off the Signal protocol [44],
which itself was inspired by elements of the off-the-record (OTR) messaging pro-
tocol [20]. A primary design goal is end-to-end security: intermediaries including
the messaging service providers, or those with access to their systems, should
not be able to violate confidentiality or integrity of user messages.
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Scheme MO security Sender binding Rec. binding Enc Dec Ver

Encode-then-Encipher (Ideal) � � – – –

Encrypt-then-HMAC (one key) � � 2+1 2+1 2+1

HMAC-then-CBC � � 2+1 2+1 2+1

CtE1 � � � 3+1 3+1 1+1

CtE2 (Facebook) � � � 3+2 3+2 1+1

CEP � � � 2+1 2+1 1+1

Fig. 1. Summary of schemes investigated in this work. The columns indicate whether
the scheme meets multiple-opening (MO) security, sender binding, and receiver binding.
The last three columns indicate the number of cryptographic passes over a bit string of
length equal to the message plus the number of passes needed to handle the associated
data, for each of the three main operations. We omit comparisons with concrete encode-
then-encipher constructions, which vary in the number of passes required.

End-to-end security can be at odds with other security goals. A well known
example is dealing with filtering and reporting spam in the context of encrypted
email [39,56]. Similar issues arise in modern encrypted messaging systems. For
example, in Facebook’s system when one user sends harassing messages, phish-
ing links, malware attachments, etc., the recipient should be able to report the
malicious behavior so that Facebook can block or otherwise penalize the sender.
But end-to-end confidentiality means that Facebook must rely on users sending
examples of malicious messages. How can the provider know that the reported
message was the one sent? Reports could, in turn, become a vector for abuse
should they allow a malicious reporter to fabricate a message and convince the
provider it was the one sent [39].

Facebook messenger recently introduced a seeming solution for verifiable
abuse reporting that they refer to as message franking [31,47]. The idea is to
include in the report a cryptographic proof that the reported message was the
one sent, encrypted, by the particular sender. They offer a protocol (discussed
below) and a sensible, but informal and vague, discussion of security goals. At
present it is ultimately not clear what message franking provides, whether their
approach is secure, and if there exist better constructions. Given the critical role
message franking will play for most messaging services moving forward, more
study is clearly needed.

We therefore initiate the formal study of message franking. We introduce
the notion of compactly committing authenticated encryption with associated
data (AEAD) as the cryptographic primitive of merit that serves as the basis for
message franking. We provide security definitions, show how several widely used
existing AEAD schemes can already serve as compactly committing AEAD, give
an analysis of (a generalization of) the scheme underlying Facebook’s protocol,
and design a new scheme that has superior performance. A summary of schemes
treated in this work, and their efficiency, is shown in Fig. 1.
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Facebook’s message franking protocol. Facebook’s protocol works as fol-
lows, modulo a few details (see Sect. 3). A sender first generates a fresh key
for HMAC [3], and applies HMAC to the message. It then encrypts the HMAC
key and message using a conventional AEAD scheme with a symmetric key
shared with (just) the recipient, and sends along the resulting ciphertext and
the hash value to Facebook’s servers. Facebook signs the hash and forwards on
the whole package — signature, HMAC hash, and ciphertext — to the recipient,
who decrypts and checks the validity of the HMAC output using the recovered
HMAC key. Should the recipient want to report abuse, their software client sends
the signature, message, HMAC hash, and HMAC key to Facebook who can now
verify the signature and hash.

While descriptions of Facebook’s protocol do not use the term commitment,
intuitively that is the role played by HMAC. This may suggest viewing message
franking as simply a construction of committing encryption [23]. But committing
encryption views the entire ciphertext as the commitment and opens ciphertexts
by revealing the secret key. Neither is true of the Facebook scheme.

A new primitive: compactly committing AEAD. We introduce a new
cryptographic primitive that captures the properties targeted in verifiable abuse
reporting. We refer to it as compactly committing AEAD. This is an AEAD
scheme for which a small portion of the ciphertext can be used as a commit-
ment to the message. Decryption reveals an opening for the message, and the
scheme comes equipped with an additional verification algorithm that can check
the commitment. This formalization has some similarity to one for non-AEAD
symmetric encryption due to Gertner and Herzberg [36], but differs in important
ways and, in short, their treatment does not suffice for message franking (see
Sect. 9 for more detailed comparisons).

Formalizing security for committing AEAD schemes requires care. Informally
we want confidentiality, ciphertext integrity, and that the ciphertexts are bind-
ing commitments to their underlying plaintexts. While seemingly a straightfor-
ward adaptation of real-or-random style confidentiality and ciphertext integrity
notions would suffice [52,54,55], this turns out to provide only a weaker form
of security in which reporting abuse may invalidate security of the encryption
moving forward. In short, this is because the opening might reveal cryptographic
key material, e.g., if the secret key is itself used as the opening. We refer to this
as single-opening (SO) security. We formalize also multiple-opening (MO) secu-
rity notions which, in addition to the usual challenge oracles, gives the adversary
the ability to obtain regular encryptions and decryptions (which, by our syntax,
reveals the opening should a ciphertext be valid) under the target key. Analo-
gously to previous AEAD treatments [55], we formalize this both via an all-in-one
security game that simultaneously establishes confidentiality and integrity, and
as separate notions for confidentiality and integrity. We prove them equivalent.

Standard integrity notions like INT-CTXT do not by themselves imply that
the ciphertext is a binding commitment to the underlying message. We introduce
a notion called receiver binding, which is similar to the binding notions from the
commitment literature, notions from the robust encryption literature [1,32,33],
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and the prior notion of binding for committing encryption due to Gertner and
Herzberg. Importantly, we deal with the fact that only a portion of the ciphertext
is committing, and other details such as associated data. Achieving receiver
binding means that no computationally limited adversary can find two opening,
message pairs that verify for the same committing portion of a ciphertext.

At first glance this seemed like the end of the story with regards to binding
security. But in the message franking setting, schemes that are only receiver
binding may spectacularly fail to ensure verifiable abuse reporting. In partic-
ular, we show how schemes that are receiver binding still allow the following
attack: a sender carefully chooses a ciphertext so that an abusive message is
correctly decrypted by the receiver, but verification with the resulting opening
of that message fails. Such an attack is devastating and arises quickly without
careful design. We give an example of a natural performance improvement for
the Facebook scheme that provably enjoys confidentiality, ciphertext integrity,
and receiver binding, yet subtly falls to this attack. We therefore formalize and
target meeting a sender binding property that rules out such attacks.

Legacy schemes. With formal notions in place, we start by investigating
whether existing, in-use AEAD schemes are compactly committing. For these
legacy schemes the opening is taken to be the secret key and per-message ran-
domness used, and in each case we identify a small portion of the ciphertext
to take as the committing portion. In this context proving receiver binding also
proves the scheme to be committing in the more traditional sense.

As mentioned, AEAD schemes are not in general binding via simple counter-
examples. We therefore analyze specific constructions, focusing on three impor-
tant schemes. The first, Encode-then-Encipher [12], uses a variable-input-length
tweakable block cipher to build an authenticated encryption scheme by padding
messages with randomness and redundancy information (zero bits). We show
that, modeling the underlying tweakable cipher as ideal, one can show that tak-
ing a security-parameter number of bits of the ciphertext as the commitment
is both receiver and sender binding. Verification re-encrypts the message and
checks that the resulting ciphertext properly matches the commitment value.

We next investigate Encrypt-then-MAC constructions [9], which are particu-
larly relevant here given that Signal [44], and in turn Facebook messenger, uses
AES-CBC followed by HMAC for authenticated encryption of messages. In prac-
tice, one uses a key-derivation function to derive an encryption key and a MAC
key. Interestingly, if one uses as opening those two separate keys, then a simple
attack shows that this scheme is not receiver binding. If, however, one uses the
input to the KDF as the opening, we can prove receiver binding assuming the
KDF and MAC are collision resistant. Notably this rules out using CMAC [41],
PMAC [18], and Carter-Wegman MACs [59], but Encrypt-then-HMAC suffices.

This means that in Facebook messenger the underlying encryption already
suffices as a single-opening-secure committing AEAD scheme. Moreover, due
to ratcheting [14,26,45] Signal never reuses a symmetric key. Thus Face-
book could have avoided the dedicated HMAC commitment. Admittedly they
may be uncomfortable — for reason of psychological acceptability — with an
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architecture that sends decryption keys to Facebook despite the fact that this
represents no harm to future or past communications.

We finally investigate MAC-then-Encrypt, the mode of operation underlying
TLS 1.2 and before. The binding properties of MAC-then-Encrypt were briefly
investigated in a recent paper that used TLS 1.2 records as commitments [58],
including a brief proof sketch of receiver binding when taking the entire cipher-
text as the commitment. We expand on their proof sketch and provide a full
proof for the scheme instantiated with CBC-mode and HMAC (the instantia-
tion used in TLS), taking a small constant number of ciphertext blocks as the
committing portion. Interestingly this proof, unlike that of Encrypt-then-MAC,
required modeling the block cipher underlying CBC-mode as an ideal cipher and
HMAC as a random oracle [28].

Commit-then-Encrypt constructions. We next turn to analyzing generic
constructions that combine a commitment with an existing AE scheme. We
provide a generalization of the Facebook scheme, and show that it is multiple-
opening secure and both sender and receiver binding, assuming only that the
underlying AEAD scheme is sound and the commitment is unique. HMAC is
a unique commitment, thereby giving us the first formal security analysis of
Facebook’s message franking scheme. One can also use a non-malleable commit-
ment [29]. If one instead uses a malleable commitment, then the scheme will not
achieve ciphertext integrity.

We also offer an alternative composition that removes the need for non-
malleable commitments, and also can improve performance in the case that
associated data is relatively long. Briefly, we use a commitment to the associated
data and message as the associated data for the underlying AEAD scheme. This
indirectly binds the encryption ciphertext to the associated data, without paying
the cost of twice processing it.

Both these constructions are multiple-opening secure, since the commitment
opening is independent of the underlying AE keys. This is intuitively simple but
the proof requires care — commitments play a role in achieving CTXT and so
we must take care to show that unopened encryptions, despite using the same
keys as opened encryptions, retain ciphertext integrity. See the body for details.

The Committing Encrypt-and-PRF (CEP) scheme. The generic con-
structions that meet multiple-opening security are slower than existing (single-
opening secure) AEAD schemes, since they require an additional cryptographic
pass over the message. This represents approximately a 1.5x slowdown both for
encryption and decryption. For the expected workload in messaging applications
that consists primarily of relatively short plaintexts, this may not matter, but
if one wants to use committing AEAD for large plaintexts such as image and
video attachments or in streaming settings (e.g., a committing version of TLS)
the overhead will add up quickly.

We therefore offer a new AEAD scheme, called Committing Encrypt-and-
PRF (CEP) that simultaneously enjoys multiple-opening security while also
retaining the two-pass performance of standard AEAD schemes. As an additional
bonus we make the scheme nonce-based [54], meaning that it is derandomized
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and only needs to be used with non-repeating nonces. (We formalize nonce-based
committing AEAD in the body; it is largely similar as the randomized variant.)

The basic idea is to adapt an Encrypt-and-PRF style construction to be
compactly committing and multiple-opening. To do so we derive one-time use
PRF keys from the nonce, and compute a tag that is two-part. The commitment
value for the ciphertext is the output of a keyed hash that is simultaneously
a PRF when the key is private and collision resistant when it is adversarially
chosen. The latter is critical since receiver binding requires, in this context, a
collision-resistance property. If one stopped here, then the scheme would not be
secure, since openings reveal the PRF’s key, rendering it only CR, and CR is
not enough to prevent future ciphertext forgeries. We therefore additionally run
a one-time PRF (with key that is never opened) over this commitment value
to generate a tag that is also checked during decryption. Ultimately we prove
that the scheme achieves our notions of sender binding, receiver binding, and
multiple-opening confidentiality and ciphertext integrity.

We strove to make the scheme simple and fast. Instantiated with a stream
cipher such as AES-CTR-mode or ChaCha20, we require just a single secret key
and use the stream cipher to generate not only the one-time keys for the PRFs
but also a pad for encrypting the message. Because we need a collision-resistant
PRF, our suggested instantiation is HMAC, though other multi-property hash
functions [10] would work as well.

Future directions. Our work has focused on the symmetric encryption portion
of messaging protocols, but one can also ask how the landscape changes if one
holistically investigates the public-key protocols or key exchange in particular.
Another important direction is to understand the potential tension between com-
mitting AEAD and security in the face of selective opening attacks (SOA) [7,8].
Our current definitions do not model SOAs. (An SOA would allow, for example,
a compromise of the full cryptographic key, not just the ability to get openings.)
While it may seem that committing encryption and SOA security are at odds,
we actually conjecture that this is not fundamental (particularly in the ran-
dom oracle model), and future work will be able to show SOA-secure compactly
committing AEAD.

2 Preliminaries

We fix some alphabet Σ, e.g., Σ = {0, 1}. For any x ∈ Σ∗ let |x| denote its
length. We write x ←$ X to denote uniformly sampling from a set X. We write
X ‖ Y to denote concatenation of two strings. For a string X of n bits, we
will write X[i, . . . , j] for i < j ≤ n to mean the substring of X beginning at
index i and ending at index j. For notational simplicity, we assume that one can
unambiguously parse Z = X ‖ Y into its two parts, even for strings of varying
length. For strings X,Y ∈ {0, 1}∗ we write X ⊕ Y to denote taking the XOR of
X[1, . . . ,min{|X|, |Y |}] ⊕ Y [1, . . . ,min{|X|, |Y |}].

We use code-based games [13] to formalize security notions. A game G is a
sequence of pseudocode statements, with variables whose type will be clear from
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context. Variables are implicitly initialized to appropriate defaults for their type
(zero for integers, empty set for sets, etc.). Each variable is a random variable
in the probability distribution defined by the random coins used to execute the
game. We write Pr[G ⇒ y] to denote the event that the game outputs a value y.
Associated to this pseudocode is some fixed RAM model of computation where
most operations are unit cost. We will use “big-O” notation O(·) to hide only
small constants that do not materially impact the interpretation of our results.

We will work in the random oracle model (ROM) [11] and the ideal cipher
model (ICM). In the ROM, algorithms and adversaries are equipped with an
oracle that associates to each input a random output of some length that will
vary by, and be clear from, context. In the ICM, algorithms and adversaries
are equipped with a pair of oracles. The first takes input a key, a tweak, and a
message, all bit strings of some lengths k, t, and n, respectively. Each key, tweak
pair selects a random permutation on {0, 1}n. The second oracle takes as input
a key, a tweak, and an n-bit value, and returns the inverse of the permutation
selected by the key and tweak applied to the value.

Below, we will only discuss the time complexity of a reduction if bounding
it is non-trivial. Otherwise we will omit discussions of time complexity.

Symmetric encryption. A nonce-based authenticated encryption (AE) scheme
SE = (Kg, enc, dec) consists of a triple of algorithms. Associated to it are a
key space K ⊆ Σ∗, nonce space N ⊆ Σ∗, header space H ⊆ Σ∗, message
space M ⊆ Σ∗, and ciphertext space C ⊆ Σ∗. The randomized key genera-
tion algorithm Kg outputs a secret key K ∈ K. Canonically Kg selects K ←$ K
and outputs K. Encryption enc is deterministic and takes as input a four-tuple
(K,N,H,M) ∈ (Σ∗)4 and outputs a ciphertext C or a distinguished error sym-
bol ⊥. We require that enc(K,N,H,M) 
= ⊥ if (K,N,H,M) ∈ K×N ×H×M.
Decryption dec is deterministic and takes as input a tuple (K,N,H,C) ∈ (Σ∗)4

and outputs a message M or ⊥.
An SE scheme is correct if for any (K,N,H,M) ∈ K × N × H × M it holds

that dec(K,N,H, enc(K,N,H,M)) = M .
Some schemes that we will analyze predate the viewpoint of nonce-based

encryption, including generic compositions that utilize CTR or CBC mode. A
randomized SE scheme SE = (Kg, enc, dec) is the same as a nonce-based SE
scheme except that we omit nonces everywhere, and have enc take an additional
input, the coins, that are assumed to be drawn from some coin space R ⊆ σ∗.
Correctness now is met if for any (K,H,M,R) ∈ K × H × M × R it holds that
dec(K,H, enc(K,H,M ; R)) = M . We will focus on schemes that are public-coin,
meaning the ciphertext includes R explicitly. This is true, for example, of CTR
or CBC mode encryption. For notational simplicity, we will assume for such
schemes that enc outputs R concatenated with the remainder of the ciphertext.

Pseudorandom functions. For a function F : K×{0, 1}∗ → {0, 1}n and adver-
sary A we define the pseudorandom function (PRF) advantage of A to be

Advprf
F (A) =

∣
∣
∣Pr

[

K ←$ K : AF (K,·) = 1
]

− Pr
[

R ←$ Func : AR(·) = 1
]∣
∣
∣ .
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We define Func to be the space of all functions that output n bits.1 Informally,
we say the function F is a PRF if Advprf

F () is small for all efficient adversaries.
Below we will sometimes refer to the left-hand experiment as the “real world”
and the other as the “ideal world”.

In proofs it will be convenient to use multi-user PRF security [4]. We define
the MU-PRF advantage of an adversary A to be

Advmu-prf
F (A) =

∣
∣
∣Pr

[

AF (·,·) ⇒ 1
]

− Pr
[

AR(·,·) ⇒ 1
]∣
∣
∣ .

where F on input a key identifier S ∈ {0, 1}∗ and a message M , checks if
there is a key associated to S, and if not chooses a fresh one K[S] ←$ {0, 1}k.
It then returns F (K[S],M). The oracle R on input a key identifier S ∈ {0, 1}∗

and a message M , checks if there is a random function associated to S, and if
not chooses a fresh one R[S] ←$ Func. It returns R[S](M). Note that MU-PRF
security is implied by PRF security via a standard argument.

Collision-resistance. For a function F : {0, 1}∗ ×{0, 1}∗ → {0, 1}n and adver-
sary A, define the collision-resistance (CR) advantage as

Advcr
F (A) = Pr

[

((x1, x2), (x′
1, x

′
2)) ←$ A :

F (x1, x2) = F (x′
1, x

′
2),

(x1, x2) 
= (x′
1, x

′
2)

]

.

Informally, we say F is collision-resistant if Advcr
F () is small for all efficient

adversaries.

Commitment schemes with verification. A commitment scheme with ver-
ification CS = (Com,VerC) consists of two algorithms. Associated to any com-
mitment scheme is an opening space Kf ⊆ Σ∗, a message space M ⊆ Σ∗, and
a commitment space C ⊆ Σ∗. The algorithm Com is randomized and takes as
input a M ∈ Σ∗ and outputs a pair (K,C) ∈ Kf × C or an error symbol ⊥.
We assume that Com returns ⊥ with probability one if M /∈ M. The algorithm
VerC is deterministic. It takes input a tuple (K,C,M) ∈ Σ∗ and outputs a bit.
We assume that VerC returns 0 if its input (K,C,M) /∈ Kf ×C ×M. We assume
that the commitment values C are of some fixed length (typically denoted by t).

A commitment scheme (with verification) is correct if for all M ∈ M it holds
that Pr[VerC(Com(M),M) = 1] = 1 where the probability is over the coins
used by Com. We will not use the alternate definition of commitments with
opening [21]. We can formalize the binding security notion of our commitment
scheme as a game. Formally, the game vBINDCS,A first runs the adversary A who
outputs a tuple (Kc,M,K ′

c,M
′, C). The game then runs b ← VerC(Kc, C,M)

and b′ ← VerC(K ′
c, C,M ′). The game outputs true if M 
= M ′ and b = b′ = 1

and false otherwise. To a commitment scheme CS and adversary A we associate
the vBIND advantage

Advv-bind
CS (A) = Pr [ vBINDCS,A ⇒ true ] .

1 We are abusing the formalism here by sampling R from an infinite set; we do so for
notational consistency and simplicity.
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The probability is over the coins used by the game.
Commitment schemes should enjoy a hiding property as well. Tradition-

ally this is formalized as a left-or-right indistinguishability notion (q.v., [6]).
For our purposes we will target a stronger notion, analogous to real-or-
random (ROR) security for symmetric encryption. It asks that a com-
mitment be indistinguishable from a random bit string while the opening
remaining secret. Game ROR1CS,A runs an adversary A and gives it access
to an oracle Com to which it can query messages. The oracle computes
(Kc, C) ←$ Com(M) and returns C. The adversary outputs a bit, and the game
outputs true if the bit is one. Game ROR0CS,A is similar except that the ora-
cle returns a string of random bits of length |C| and the game outputs true
if the adversary outputs zero. We define the advantage by Advcs-ror

CS (A) =
|Pr [ ROR1CS,A ⇒ true ] − Pr [ ROR0CS,A ⇒ false ]|.
HMAC is a good commitment. Any PRF that is also collision-resistant
meets our security goals for commitments. In particular, one can build a com-
mitment scheme CS[F ] = (Com,VerC) works from any function F : K×{0, 1}∗ →
{0, 1}n as follows. Commitment Com(M) chooses a fresh value K ←$ K, com-
putes C ← F (K,M) and outputs (K,C). Verification VerC(K,C,M) outputs
one if F (K,M) = C and zero otherwise. Then the following theorem captures
the security of this commitment scheme, which rests on the collision resistance
and PRF security of F . A proof of this theorem appears in the full version of
the paper.

Theorem 1. Let F be a function and CS[F ] be the commitment scheme built
from it as described above. Then for any efficient adversaries A making at most
q queries in game ROR and A′ in game vBIND respectively, there exists a pair
of adversaries B,B′ so that

Advcs-ror
CS[F ](A) ≤ q ·Advprf

F (B) and Advv-bind
CS[F ] (A′) ≤ Advcr

F (B′) .

The adversary B runs in time that of A and makes the same number of oracle
queries as A. Adversary B′ runs in time that of A′.

As the underyling function needs to be both CR and a good PRF, a suitable
candidate would be HMAC [5], i.e., F (K,M) = HMAC(K,M). Other multi-
property hash functions [10] could be used as well. The Facebook franking scheme
(discussed in Sect. 3) uses a non-standard HMAC-based commitment based on
F (K,M) = HMAC(K,M ‖ K). We will assume HMAC remains a PRF when
used in this non-standard way. One can substantiate this assumption directly in
the random oracle model, or using techniques from the key-dependent message
literature [19,37].

3 Message Franking and End-to-End Encryption

In end-to-end encrypted messaging services there exists a tension between
message privacy and reporting abusive message contents to service providers.
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The latter is important to flag abusive accounts, but reports need to be verifi-
able, meaning that the provider can check the contents of the allegedly abusive
message and be certain that it was the message sent. Otherwise abuse-reporting
mechanisms could themselves be abused to make false accusations.

A recipient can send the allegedly abusive plaintext to the service provider,
but message privacy guarantees that the provider does not know whether the
alleged message was in fact the one sent.2 A seeming solution would be for the
service to log ciphertexts, and have the recipient disclose the secret key to allow
the provider to decrypt the ciphertext. Not only is this impractical due to the
storage requirements, but it also does not guarantee that the decrypted message
is correct. It could be that the recipient chose a key that somehow decrypts
the (legitimate) ciphertext to a fake message. Ultimately what is required for
this to work is for the encryption to be committing: no computationally efficient
adversary can find a secret key that decrypts the ciphertext to anything but the
originally encrypted message.

Facebook’s approach. Facebook recently detailed a new cryptographic mech-
anism [31,47] targeting verifiable abuse reporting on Facebook messenger, which
uses end-to-end encryption based on Signal [61]. The basic idea is to force the
sender to provide a commitment, sent in the clear, to the plaintext message. A
diagram of Facebook’s protocol, that they call “message franking” (as in “speak-
ing frankly”), is shown in Fig. 2. The sender first applies HMAC with a fresh key
Kf to the concatenation of the message and Kf to produce a value C2, and then
encrypts using an AEAD scheme the message and Kf to produce a ciphertext
C1 using a key Kr shared with the recipient. Then (C1, C2) is sent to Facebook.
Facebook applies HMAC with its own secret key KFB to C2 to get a tag a, and
sends to the recipient (C1, C2, a). The recipient decrypts C1, recovers the mes-
sage M and key Kf and checks the value C2 = HMAC(Kf ,M ‖ Kf ). To report
abuse, the recipient sends M , Kf , and a to Facebook. Facebook recomputes
HMAC(Kf ,M ‖ Kf ) and checks the tag a.

It is clear that the sender is using HMAC as a cryptographic commitment
to the message. (This terminology is not used in their technical specifications.)
The use of HMAC by Facebook to generate the tag a is simply to forego having
to store commitments, instead signing them so that they can be outsourced to
recipients for storage and verified should an abuse report come in.

There are interesting security issues that could arise with Facebook’s scheme,
and cryptographic abuse reporting in general, that are orthogonal to the ones
discussed here. In particular, binding Facebook’s tag to the communicating par-
ties seems crucial: otherwise a malicious party could create a sock-puppet (i.e.
fake) account, send itself an abusive message, then accuse a victim of having
sent it.

While the design looks reasonable, and the Facebook white paper provides
some informal discussion about security, there has been no formal analysis to

2 Of course, if the recipient is running a trusted client, then this assertion could be
trusted. We are concerned with the case that the client is subverted.
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(Open)

Alice Facebook BobKf ←$ {0, 1}n

C2 ← HMAC(Kf ,M ‖ Kf )

C1 ←$ Enc(Kr,M ‖ Kf ) md ← Alice ‖ Bob ‖ timestamp

s ← C2 ‖ md

a ← HMAC(KFB, s)

C1, C2

C1, C2, a

M ‖ Kf ← Dec(Kr, C1)

If M ‖ Kf = ⊥ then Return ⊥
If C2 
= HMAC(Kf ,M ‖ Kf ):

Return ⊥
Return M

M,Kf ,md, aC2 ← HMAC(Kf ,M ‖ Kf )

a′ ← HMAC(KFB, C2 ‖ md)

Return a = a′

Fig. 2. Facebook’s message franking protocol [47]. The key Kr is a one-time-use sym-
metric key derived as part of the record layer protocol. The top portion is the sending
of an encrypted message to the recipient. The bottom portion is the abuse reporting
protocol.

date. It is also not clear what security properties the main cryptographic con-
struction — combining a commitment with AEAD — should satisfy. We rectify
this by introducing, in the following section, the notion of committing AEAD.
This will allow us not only to analyze Facebook’s franking scheme, but to sug-
gest alternative designs, including ones that are legacy-compatible with existing
deployed AEAD schemes and do not, in particular, require adding an additional
dedicated commitment.

4 Committing AEAD

Formally, a committing AEAD scheme CE = (Kg,Enc,Dec,Ver) is a four-tuple of
algorithms. Associated to a scheme is a key space K ⊆ Σ∗, header space H ⊆ Σ∗,
message space M ⊆ Σ∗, ciphertext space C ⊆ Σ∗, opening space Kf ⊆ Σ∗, and
franking tag space T ⊆ Σ∗.

• Key generation: The randomized key generation algorithm Kg outputs a
secret key K ∈ K. We write K ←$ Kg to denote executing key generation.

• Encryption: Encryption Enc is randomized. The input to encryption is a
triple (K,H,M) ∈ (Σ∗)3 and the output is a pair (C1, C2) ∈ C × T or a
distinguished error symbol ⊥. Unlike with regular symmetric encryption, the
output includes two components: a ciphertext C1 and a franking tag C2. We
also refer to C2 as the commitment. We require that Enc(K,H,M) 
= ⊥
if (K,H,M) ∈ K × H × M. We write (C1, C2) ←$ Enc(K,H,M) to denote
executing encryption.

• Decryption: Decryption, which is deterministic, takes as input a tuple
(K,H,C1, C2) ∈ (Σ∗)4 and outputs a message, opening value pair (M,Kf ) ∈
M × Kf or ⊥. We write (M,Kf ) ← Dec(K,H,C1, C2) to denote executing
decryption.

• Verification: Verification, which is deterministic, takes as input a tuple
(H,M,Kf , C2) ∈ (Σ∗)4 and outputs a bit. For (H,M,Kf , C2) /∈ H × M ×
Kf × T , we assume that Ver outputs 0. We write b ← Ver(H,M,Kf , C2) to
denote executing verification.
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We will often place K in the subscript of relevant algorithms. For example,
EncK(H,M) = Enc(K,H,M) and DecK(H,C1, C2) = Dec(K,H,C1, C2).

We require that CE schemes output ciphertexts whose lengths are determined
solely by the length of the header and message. Formally this means that there
exists a function clen : N×N → N×N such that for all (K,H,M) ∈ K×H×M it
holds that Pr[(|C1|, |C2|) = clen(|H|, |M |)] = 1 where (C1, C2) ←$ EncK(H,M)
and the probability is over the coins used by encryption.

We say a CE scheme has decryption correctness if for all (K,H,M) ∈ K ×
H × M it holds that Pr[Dec(K,H,C1, C2) = M ] = 1 where the probability is
taken over the coins used to compute (C1, C2) ←$ Enc(K,H,M).

We say that a scheme has commitment correctness if for all (K,H,M) ∈
K × H × M it holds that Pr[Ver(H,M,Kf , C2) = 1] = 1 where the probability
is taken over the random variables used in the experiment

(C1, C2) ←$ EncK(H,M) ; (M,Kf ) ← DecK(H,C1, C2) ; Return (Kf , C2)

Our formulation of CE schemes is a generalization of that for conventional
(randomized) AE schemes in the following sense. One can consider an AE scheme
as a CE scheme that has encryption output the entire ciphertext as C2, decryption
output an empty string for the opening value, and has verify always return one.

Compactly committing AEAD. In our formalism, a ciphertext has two com-
ponents. A scheme may output C1 = ε and a C2 value that therefore consists
of the entire ciphertext. This embodies the traditional viewpoint on committing
AEAD, in which the entire ciphertext is viewed as the commitment. But we
are more general, and in particular our formalism allows schemes with compact
commitments, by which we mean schemes for which |C2| is small. In particu-
lar we will want |C2| to be linear in the security-parameter, rather than linear
in the message length. One can make any CE scheme compact by hashing the
ciphertext with a collision-resistant (CR) hash function, as we show formally in a
moment. But we will also show compact schemes that have better performance.

Single versus multiple openings. In some protocols, we may wish to use
a CE scheme so that multiple different ciphertexts, encrypted under the same
secret key, can be opened without endangering the privacy or integrity of other
unopened ciphertexts. In other contexts, the CE scheme’s opening need only be
“single-use” — the secret key will not continue to be used after an opening. An
example of the latter is Signal, which due to ratcheting effectively has a fresh
secret key per message. As we will now discuss, whether one wants single-opening
or multiple-opening CE must be reflected in the security definitions.

Confidentiality. We want our CE schemes to provide message confidentiality.
We will in fact adapt the stronger real-or-random notion from the AE litera-
ture (q.v., [55]) to CE. At a high level we ask that no adversary can distinguish
between legitimate CE encryptions and (pairs of) random bit strings. A complex-
ity arises in the multi-opening case, where we want confidentiality to hold even
after openings occur. We handle this by giving the attacker an additional pair
of oracles, one for encryption and decryption. We must take care to avoid trivial
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MO-REALCE,A:

K ←$ Kg

b′ ←$ AEnc,Dec,ChalEnc

Return b′

Enc(H, M)

(C1, C2) ←$ EncK(H, M)

Y1 ← Y1 ∪ {(H, C1, C2)}
Return (C1, C2)

Dec(H, C1, C2)

If (H, C1, C2) /∈ Y1 then

Return ⊥
(M, Kf ) ← DecK(H, C1, C2)

Return (M, Kf )

ChalEnc(H, M)

(C1, C2) ←$ EncK(H, M)

Return (C1, C2)

MO-RANDCE,A:

K ←$ Kg

b′ ←$ AEnc,Dec,ChalEnc

Return b′

Enc(H, M)

(C1, C2) ←$ EncK(H, M)

Y1 ← Y1 ∪ {(H, C1, C2)}
Return (C1, C2)

Dec(H, C1, C2)

If (H, C1, C2) /∈ Y1 then

Return ⊥
(M, Kf ) ← DecK(H, C1, C2)

Return (M, Kf )

ChalEnc(H, M)

(�1, �2) ← clen(|H|, |M |)
(C1, C2) ←$ {0, 1}�1 × {0, 1}�2

Return (C1, C2)

MO-CTXTCE,A:

K ←$ Kg ; win ← false

AEnc,Dec,ChalDec

Return win

Enc(H, M)

(C1, C2) ←$ EncK(H, M)

Y ← Y ∪ {(H, C1, C2)}
Return (C1, C2)

Dec(H, C1, C2)

Return DecK(H, C1, C2)

ChalDec(H, C1, C2)

If (H, C1, C2) ∈ Y then

Return ⊥
(M, Kf ) ← DecK(H, C1, C2)

If M 	= ⊥ then

win ← true

Return (M, Kf )

Fig. 3. Confidentiality (left two games) and ciphertext integrity (rightmost) games for
committing AEAD.

wins, of course, separating use of the real oracles from the challenge ones. We
also additionally require that the adversary can only query its decryption oracle
on valid ciphertexts returned from the encryption oracle. This all is formalized
in the games MO-REALCE,A and MO-RANDCE,A shown in Fig. 3. We measure
the multiple-openings real-or-random (MO-ROR) advantage of an adversary A
against a scheme CE by

Advmo-ror
CE (A) = |Pr [ MO-REALCE,A ⇒ 1 ] − Pr [ MO-RANDCE,A ⇒ 1 ]| .

The single-opening ROR (SO-ROR) games REALCE,A and RANDCE,A are iden-
tical to MO-REALCE,A and MO-RANDCE,A in Fig. 3 except that we omit the
Enc and Dec oracles. We measure the single-openings real-or-random (ROR)
advantage of an adversary A against a scheme CE by

Advror
CE (A) = |Pr [ REALCE,A ⇒ 1 ] − Pr [ RANDCE,A ⇒ 1 ]| .

Ciphertext integrity. We also want our CE schemes to enjoy ciphertext
integrity. As with confidentiality, we will lift the standard (randomized) AEAD
security notions to the multiple-opening and single-opening CE settings. The
game MO-CTXTCE,A is shown in Fig. 3. The adversary can obtain encryptions
and decryptions under the secret key, and its goal is to query a valid ciphertext
to a challenge decryption oracle. That ciphertext must not have been returned
by the encryption oracle. We measure the multiple-openings ciphertext integrity
(MO-CTXT) advantage of an adversary A against a scheme CE by

Advmo-ctxt
CE (A) = Pr [ MO-CTXTCE,A ⇒ true ] .
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s-BINDA
CE:

(K, H, C1, C2) ←$ A
(M ′, Kf ) ← Dec(K, H, C1, C2)

If M ′ = ⊥ then Return false

b ← Ver(H, M ′, Kf , C2)

If b = 0 then

Return true

Return false

r-BINDA
CE:

((H, M, Kf ), (H
′, M ′, K′

f ), C2) ←$ A
b ← Ver(H, M, Kf , C2)

b′ ← Ver(H′, M ′, K′
f , C2)

If (H, M) = (H′, M ′) then

Return false

Return (b = b′ = 1)

Fig. 4. Binding security games for committing AEAD. Sender binding (left game)
models a setting where a malicious sender wants to send a message, but prevent com-
mitment opening from succeeding. Receiver binding (right game) models a setting
where a sender and recipient collude to open a ciphertext to different messages.

As with confidentiality, we can also specify a single-opening version of security by
removing the decryption oracle Dec from game MO-CTXTCE,A. Let the result-
ing game be CTXTCE,A. We measure the single-openings ciphertext integrity
(CTXT) advantage of an adversary A against a scheme CE by

Advctxt
CE (A) = Pr [ CTXTCE,A ⇒ true ] .

All-in-one notions. We have given separate confidentiality and ciphertext
integrity notions. As with traditional AEAD security, however, we can alter-
natively give an all-in-one notion that simultaneously captures confidentiality
and integrity goals. We defer the details to the full version of this work.

Security for AEAD. Given the fact that CE schemes encompass (randomized)
AEAD schemes as well (see our comments above), we note that the RORand
CTXTnotions apply to standard (randomized) AE schemes. As a slight abuse of
notation, we will therefore use RORand CTXTand their associated games and
advantage measures for the security of traditional AE schemes.

Binding security notions. We introduce two security notions for binding:
sender binding and receiver binding. Sender binding ensures the sender of a
message is bound to the message it actually sent. In abuse-reporting scenarios,
this prevents the sender of an abusive message from generating a bogus com-
mitment that does not give the receiver the ability to report the message. The
pseudocode game s-BINDon the left-hand-side of Fig. 4 formalizes this require-
ment. To an adversary A and CE scheme CE we associate the “sender binding”
advantage

Advs-bind
CE (A) = Pr [ s-BINDCE,A ⇒ true ] .

The probability is over the coins used in the game.
A CE scheme can generically meet sender binding by running Ver during Dec

and having Dec return ⊥ if Ver returns 0. We omit the proof of this, which follows
by inspection. But legacy AEAD schemes do not do this, and one needs to check
sender binding. For new schemes we will see more efficient ways to achieve sender
binding.
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The second security notion, receiver binding, is a lifting of the more tradi-
tional binding notion from commitment schemes (see Sect. 2). This definition is
important in abuse reporting, where it formalizes the intuition that a malicious
receiver should not be able to accuse a non-abusive sender of having said some-
thing abusive. A malicious receiver could do this by opening one of the sender’s
ciphertexts to an abusive message instead of the one the sender intended.

The pseudocode game r-BIND is shown on the right in Fig. 4. It has an
adversary output a pair of triples containing associated data, a message, and an
opening. The adversary outputs a franking tag C2 as well. The adversary wins
if verification succeeds on both triples with C2 and the header/message pairs
differ. To a CE scheme CE and adversary A we associate the “receiver binding”
advantage

Advr-bind
CE (A) = Pr [ r-BINDCE,A ⇒ true ] .

The probability is over the coins used in the game.
It is important to note that r-BIND security does not imply s-BIND secu-

rity. These notions are, in fact, orthogonal. Moreover, our MO-RORand
MO-CTXTnotions do not generically imply either of the binding notions.

Discussion. Our definitions also allow associated data, sometimes referred to
as headers. This puts committing AEAD on equal footing with modern authen-
ticated encryption with associated data (AEAD) schemes [52], which require it.
That said, modern AEAD schemes are most often formalized as nonce-based,
meaning that instead of allowing internal randomness, a non-repeating value
(the nonce) is an explicit input and encryption is deterministic. Existing sys-
tems relevant to abuse complaints use randomized AEAD (e.g., Signal [44]) that
do not meet nonce-based AEAD security. That said, we will explore nonce-based
committing AEAD in Sect. 7.

5 Are Existing AEAD Schemes Committing?

In this section we will study whether existing AEAD schemes meet our security
goals for CE. We believe it is important to study legacy schemes for several
reasons. If existing AEAD schemes are also committing, it will have impor-
tant positive and negative implications for deployed protocols (such as OTR or
Facebook’s franking scheme) that implicitly rely on binding (or non-binding)
properties of symmetric encryption. It is also helpful for protocol designers who
may want to build a protocol on top of existing legacy encryption. If well-tested,
mature implementations of AEAD can be used as CE schemes without code
changes, the attack surface of new protocol implementations is minimized.

In this section we only examine the binding properties of schemes, since past
work has shown they meet standard definitions for confidentiality and integrity.
We will prove that encode-then-encipher and encrypt-then-MAC (EtM) satisfy
our binding notions in the ideal cipher model, with the additional requirement
that the MAC used in EtM is a collision-resistant PRF. We will prove MAC-
then-encrypt meets our binding notions in the random oracle and ideal cipher
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Enc(K, H, M):

R ←$ {0, 1}r

C ← ẼH
K (M ‖ R ‖ 0s)

� ← l + r + s − t

C1 ← C[1, . . . , �]

C2 ← C[� + 1, . . . , l + r + s]

Return (C1, C2)

Dec(K, H, C1, C2):

M ′ ‖ R′ ‖ Z ← D̃H
K (C1 ‖ C2)

If Z 	= 0s then

Return ⊥
Return (M ′, (R′, K))

Ver(H, M, Kf , C2):

R ‖ K ← Kf

� ← l + r + s − t

C ← ẼH
K (M ‖ R ‖ 0s)

Return C[�+1, . . . , l+r+s] = C2

Fig. 5. Encode-then-encipher as a committing AEAD scheme where the commitment
is the final t bits of the ciphertext. ˜EH and ˜DH refer to encryption and decryption for
a tweakable blockcipher where the header H is the tweak.

model. We will also show simple attacks that break binding for real-world modes
using Carter-Wegman MACs (GCM and ChaCha20/Poly1305).

5.1 Committing Encode-then-Encipher

The Encode-then-Encipher (EtE) construction of Bellare and Rogaway shows
how to achieve AE security for messages given only a variable-input-length
PRP [12]. Their construction is quite simple: given a key K ∈ K, encrypt a
message M ∈ M (|M| = 2l) with header H ∈ H by first drawing a random
string R ←$ {0, 1}r and computing c = ẼH

K (M ‖ R ‖ 0s) where ẼH is a tweak-
able, variable-input length cipher with the header as the tweak. Decrypting a
ciphertext M works by first running M ′ = D̃H

K(C) and checking whether the
last s bits of M ′ are all zero. If they are, we call the message “valid” and output
M , else we output ⊥. For compactness, we commit to only the last t bits of the
ciphertext. We must include the randomness used to encrypt in the opening of
the commitment. Detailed pseudocode is given in Fig. 5. We will assume that E
is an ideal tweakable cipher in our proof of r-BIND security.

Theorem 2. Let EtE[E] be the scheme defined above using an ideal tweakable
cipher E and parameters s, t > 0. Let A be any adversary making at most q

queries to its ideal cipher oracles. Then Advr-bind
EtE (A) ≤ q+1

2s + q2

2t .

The proof will appear in the full version of this work. The scheme achieves
perfect s-BIND security: the advantage of any adversary for is zero because the
output of decryption is simply re-computed in Ver.

5.2 Encrypt-then-MAC

The classic Encrypt-then-MAC (EtM) construction composes a symmetric
encryption scheme and a message authentication code (MAC), by first encrypt-
ing the message, then computing the MAC over the ciphertext and any associ-
ated data.
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Committing EtM. We analyze EtM as a committing AEAD scheme in the
case that the encryption and authentication keys are derived via a key deriva-
tion function (KDF) that is a collision-resistant pseudorandom function. The
scheme EtM[KDF, F,SE] is detailed in Fig. 6. Beyond the functions F and KDF,
the scheme also makes use of a public-coin randomized symmetric encryption
algorithm SE = (Kg, enc, dec) that does not use associated data and whose key
generation is a random selection of some fixed-length bit string. It is important
that the scheme is public coin, as we require the randomness to be recoverable
during decryption to be included in the opening.

Enc(K, H, M):

Ke ← KDFK(0)

Km ← KDFK(1)

R ←$ R
R ‖ C ← encKe (M ; R)

T ← FKm (H ‖ R ‖ C)

Return (R ‖ C, T )

Dec(K, H, C1, C2):

R ‖ C ← C1

Ke ← KDFK(0)

Km ← KDFK(1)

T ′ ← FKm (H ‖ R ‖ C1)

If T ′ 	= C2 then Return ⊥
M ← decKe (C1)

If M = ⊥ then Return ⊥
Return (M, (R, K))

Ver(H, M, (R, K), C2):

Ke ← KDFK(0)

Km ← KDFK(1)

C ← encKe (M ; R)

T ← FKm (H ‖ R ‖ C)

Return T = C2

Fig. 6. Committing AEAD scheme EtM[KDF, F, SE] that composes an encryption
scheme SE = (Kg, enc, dec) using random coins from R, a MAC F , and that derives
keys via a function KDF.

This scheme arises in practice. The Signal protocol [44], for example, uses
HKDF to derive keys for use with CTR mode encryption combined with HMAC.
The following theorem proves the committing EtM construction in Fig. 6 meets
r-BIND if the MAC and key derivation function are both collision-resistant
PRFs.

Theorem 3. Let EtM = EtM[KDF, F,SE] be the EtM construction using func-
tions F and KDF as well as encryption scheme SE. Let A be any r-BINDEtM

adversary. Then there exist adversaries B and C, each that run in time that
of A, such that Advr-bind

EtM (A) < Advcr
F (B) + Advcr

KDF(C).

The proof of this theorem will appear in the full version of this work. The
s-BIND security of EtM[KDF, F,SE] is perfect because verification re-encrypts
the plaintext to check the tag.

Two-key EtM is not binding. The use of a KDF to derive the encryption
and MAC keys above is requisite to achieve receiver binding security. Consider
omitting the KDF steps, and instead letting keys be a pair (Ke,Km) where each
component is chosen randomly. The opening output by encryption and used by
verification is instead (R, (Ke,Km)). The rest of the scheme remains the same as
that in Fig. 6. But it is easy to break the receiver binding for this two-key variant:
simply have an adversary A that chooses an arbitrary header H, message M , keys
(Ke,Km), and randomness R, and computes R ‖ C ← encKe(M ; R) and then
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Enc(K, H, M):

Ke, Km ← K

IV ←$ {0, 1}n

T ← ROKm (H ‖ M)

C ← CBCKe (Padn(M ‖ T ) ; IV )

� ← Padn(M ‖ T )/n

C′ ‖ C�−2 ‖ C�−1 ‖ C� ← C

Return (C′, IV ‖C�−2‖C�−1‖C�)

Dec(K, H, C1, C2):

Ke, Km ← K

IV ‖ C�−2 ‖ C�−1 ‖ C� ← C2

Cf ← C�−2 ‖ C�−1 ‖ C�

M‖T ← CBC−1
Ke (C1‖Cf ; IV )

T ′ ← ROKm (H ‖ M)

If T 	= T ′ then Return ⊥
Return (M, (Ke, Km))

Ver(H, M, Kf , C2):

Ke, Km ← Kf

IV ‖ C′
�−2 ‖ C′

�−1 ‖ C′
� ← C2

T ← ROKm (H ‖ M)

P ← Padn(M ‖ T )

C ← CBCKe (P ; IV )

C′ ‖ C′′
�−2 ‖ C′′

�−1 ‖ C′′
� ← C

Return
�∧

i=�−2
(C′′

i = C′
i)

Fig. 7. Committing authenticated encryption based on MtE composition of CBC mode
and a MAC modeled as a random oracle. The length � is defined to be Padn(M ‖T )/n.
The function Pad is the standard PKCS#7 padding used in TLS. The notation
CBCK(· ; IV ) and CBC−1

K (· ; IV ) means CBC mode encryption and decryption with
key K and initialization vector IV .

T ← FKm(H ‖R‖C). It then chooses another key K̃e 
= Ke, and computes M̃ ←
dec

˜Ke(R ‖ C). Finally, it outputs (H, (R, (Ke,Km))), (H, (R, (K̃e,Km))), T ). It
is easy to check that this adversary will win the r-BIND game with probability
close to one, assuming SE is such that decrypting the same ciphertext under
different keys yields distinct plaintexts with overwhelming probability.

5.3 MAC-then-Encrypt

The MAC-then-encrypt mode generically composes a MAC and an encryption
scheme by first computing the MAC of the header and message, then appending
the MAC to the message and encrypting them both. The pseudcode in Fig. 7
uses for concreteness CBC mode encryption and we refer to this committing
AEAD scheme as MtE. We will also assume the MAC is suitable to be modeled
as a keyed random oracle; HMAC-SHA256 is one such [28]. CBC with HMAC
in an MtE mode is a common cipher suite for modern TLS connections, which
motivated these choices. Prior work has investigated the security of MtE in
the sense of CTXT [42,51] and its ROR security is inherited directly from the
encryption mode. Below we will assume that the block size of n bits for the
cipher underlying CBC mode, and that our MACs have output length 2n bits.

Unlike with Encrypt-then-MAC, we are able to prove the two-key version of
MtE secure in the sense of receiver binding. The binding security of MtE in the
case where keys are derived via a KDF follows as a corollary, though we believe
better bounds can be achieved in this case.

A sketch of an argument that MtE is binding (in the traditional sense where
the entire ciphertext is the commitment) appeared in [58]. Their approach, which
only relied on modeling the MAC as a RO and made no assumptions about CBC
mode, led to a rather loose bound. We instead additionally model the cipher
underlying CBC as ideal. This results in a simpler and tighter proof. Our proof,
given in the full version of the paper, can also be readily adapted to when CTR
mode is used instead of CBC.
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Theorem 4. Let MtE be the scheme defined above using a random oracle and
an ideal cipher within CBC mode. For any r-BINDMtE adversary A making at
most qi queries to its ideal cipher and qr queries to its random oracle, it holds
that Advr-bind

MtE (A) < qiqr/22n.

The s-BIND advantage against compactly-committing MtE is zero, since the
commitment along with the output of a successful call to Dec uniquely defines
the inputs to Ver. Thus, no other ciphertext can be computed in Ver other than
the one previously decrypted in Dec, because the inputs to Ver are fixed by Dec.

5.4 Some Non-binding AEAD Schemes

In this section we will briefly detail attacks which break the receiver binding secu-
rity of some deployed AEAD schemes. In particular, typical schemes that use
MACs which are not collision resistant, such as Carter-Wegman MACs, do not
suffice. For completeness we spell out an example of breaking the receiver bind-
ing of GCM [46], an encrypt-then-MAC style construction that uses a Carter-
Wegman MAC.

A slight simplification of the GCM MAC is the function F shown in Fig. 8
applied to a ciphertext. (We ignore associated data for simplicity.) It uses a key
K for a block cipher E with block size n, as well as a nonce N . An initial point
P0 ← EK(0n) and a pad R ← EK(N) are computed. GCM uses an ε-almost
XOR universal (ε-AXU) [57] hash function computed by considering a ciphertext
of m encrypted message blocks an m-degree polynomial defined over a finite
field F. The field is a particular representation of GF(2128). This polynomial is
evaluated at the encryption point P0 and the result is XOR’d with the pad R.
The GCM AEAD scheme encrypts the message using CTR mode encryption
using EK and a random 96-bit IV concatenated with a 32-bit counter initially
set at one, and then MACs the resulting ciphertext C = C1, . . . , Cm to generate
a tag T = F (K, IV ‖ 032, C1, . . . , Cm).

F (K, N, (C1, . . . , Cm)):

P0 ← EK(0n)

R ← EK(N)

S ←
m∑

i=1
CiP

m−i
0

T ← R ⊕ S

Return T

Fig. 8. A simplified
description of the CW
MAC used in GCM.

A straightforward way to consider GCM as a com-
pactly committing AEAD is to have encryption output
as the commitment portion C2 the tag T , and the rest of
the ciphertext as the first portion C1. Decryption works
as usual for GCM, but additionally outputs (IV,K) as
the opening. Verification works by recomputing encryp-
tion and checking that the resulting tag matches the
commitment value C2. We denote this scheme simply by
GCM = (Kg,Enc,Dec,Ver) below.

We now give an r-BINDGCM adversary A. We
ignore associated data for simplicity. To win, A
must output ((M, (IV,K), (M ′, (IV ′,K ′), T ) so that Ver(M, (IV,K), T ) =
Ver(M ′, (IV ′,K ′), T ) = 1. We will build an A that chooses messages such that
|M | = |M ′|. The adversary A will start by choosing a ciphertext C1, . . . , Cm

such that
F (K, IV,C1, . . . , Cm) = F (K ′, IV ′, C1, . . . , Cm) (1)
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CtE1-Enc(K, H, M)

(Kf , C2) ←$ Com(H ‖ M)

C1 ←$ encK(C2, M ‖ Kf )

Return (C1, C2)

CtE2-Enc(K, H, M)

(Kf , C2) ←$ Com(H ‖ M)

C1 ←$ encK(H, M ‖ Kf )

Return (C1, C2)

CtE1-Dec(K, H, C1, C2)

(M ‖ Kf ) ← decK(C2, C1)

If M = ⊥ then Return ⊥
b ← VerC(Kf , C2, H ‖ M)

If b = 0 then

Return ⊥
Return (M, Kf )

CtE2-Dec(K, H, C1, C2)

(M ‖ Kf ) ← decK(H, C1)

If M = ⊥ then Return ⊥
b ← VerC(Kf , C2, H ‖ M)

If b = 0 then

Return ⊥
Return (M, Kf )

Fig. 9. Algorithms for two Commit-then-Encrypt variants. Facebook’s scheme uses
CtE2 with an HMAC-based commitment. CtE1-Ver and CtE2-Ver both just output
VerC(H, M, Kf , C2).

and letting M (resp. M ′) be the CTR-mode decryption of C1, . . . , Cm under
IV,K (resp. IV ′,K ′). Choosing the ciphertext such that condition 1 holds is
straightforward, as plugging in for the definition of F and rearranging, the adver-
sary must solve the equation

[
m∑

i=1

Ci(Pm−i + (P ′)m−i)

]

+ (EK(N) + EK′(N ′)) = 0

where P ← EK(0n) and P ′ ← EK′(0n). For example, pick arbitrary
C1, . . . , Cm−1 and solve for the Cm that satisfies the equation.

This attack works even if associated data is used, or if the whole
ciphertext is used as the commitment. A very similar attack works on
ChaCha20/Poly1305 [15]; a small tweak is required to handle the fact that not
every member of F2130−5 is a valid ciphertext block.

6 Composing Commitment and AEAD

In the last section we saw that existing AEAD schemes already realize (com-
pactly) committing AEAD in some cases. These schemes, however, only realize
single-opening security as the opening includes the secret key. We now turn to
schemes that achieve multi-opening committing AEAD, and focus specifically
on schemes that generically compose AEAD with a commitment scheme.

Commit-then-Encrypt. We start with a simple general construction, what
we call the Commit-then-Encrypt scheme.3 It combines a commitment scheme
CS = (Com,VerC) with an AEAD scheme SE = (Kg, enc, dec). Formally the
scheme CtE1[CS,SE] = (Kg,CtE1-Enc,CtE1-Dec,CtE1-Ver) works as shown in
Fig. 9.

The CtE1 scheme produces a commitment value to the message and associ-
ated data H, and then encrypts the message along with the opening of the com-
mitment. It uses as associated data during encryption the commitment value,
3 This name was also used in [36], but the scheme is distinct. See Sect. 9.
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but not H. This nevertheless binds the underlying AEAD ciphertext to H as
well as C2 — as we will show tampering with either will be detected and rejected
during decryption. One could additionally include H in the associated data for
enc, but this would be less efficient. Should a protocol want H to not be in the
commitment scope, one can instead include H only as associated data within
enc and omit it from the commitment.

The proofs of the next two theorems will appear in the full version.

Theorem 5 (CtE1 confidentiality). Let CtE1 = CtE1[CS,SE]. Let A be an
MO-RORCtE1 adversary making at most q queries to its oracles. Then we give
adversaries B1, B2, C such that

Advmo-ror
CtE1 (A) ≤ Advror

SE (B1) + Advror
SE (B2) + Advcs-ror

CS (C) .

The adversaries B1, B2, and C all make the same number of queries as A and
all run in time that of A plus at most O(q) overhead.

Theorem 6 (CtE1 ciphertext integrity). Let CtE1 = CtE1[CS,SE]. Let A
be an MO-CTXTCtE1 adversary making at most q queries to its oracles. Then
we give adversaries B, C such that

Advmo-ctxt
CtE1 (A) ≤ Advctxt

SE (B) + Advv-bind
CS (C) .

Adversary B makes the same number of queries as A and runs in time that of
A plus at most O(q) overhead. Adversary C runs in time that of A.

The receiver binding security of CtE1 is trivially implied by the security of
the underlying commitment scheme, as captured by the next theorem.

Theorem 7 (CtE1 receiver binding). Let CtE1 = CtE1[CS,SE]. Let A be
an r-BINDCtE1 adversary. Then Advr-bind

CtE1 (A) = Advv-bind
CS (A).

We conclude the section by noting CtE1 meets s-BIND security, since it runs
Ver during decryption.

Facebook’s scheme. The Facebook franking scheme (Sect. 3) is almost, but
not quite, an instantiation of CtE1 using HMAC as the commitment scheme
CS. One difference is that their franking scheme does not bind C2 to C1 by
including C2 in the associated data during encryption. The other difference is
that the Facebook scheme builds a commitment from HMAC by first generating
a random secret key, then using it to evaluate HMAC on the concatenation of the
message and the key itself (see Fig. 2 for a diagram). Assuming HMAC remains a
collision-resistant PRF when evaluated on its own key, we can prove Facebook’s
non-standard construction is a secure commitment (see Theorem 1).

To analyze Facebook’s scheme, then, we introduce the scheme CtE2[SE,CS] =
(Kg,CtE2-Enc,CtE2-Dec,CtE2-Ver) that works as shown in Fig. 9. Note that
Facebook does not discuss how to handle associated data, and so their scheme
is CtE2 using CS instantiated with HMAC and requiring H = ε.
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There are two benefits to the approach of CtE1: (1) proving ciphertext
integrity does not require any special properties of the commitment scheme, and
(2) it is more efficient because associated data is cryptographically processed
once, rather than twice. We therefore advocate CtE1, but analyze CtE2 here
since it is already in use.

CtE2 is not secure assuming just that CS is hiding and binding. The
reason is that such commitments can be malleable and this allows easy
violation of ciphertext integrity. Specifically, consider a commitment scheme
CSBad = (ComBad,VerBad) built using a standard commitment scheme CS =
(Com,VerC). Algorithm ComBad(M) runs (Kc, C) ←$ Com(M) and then outputs
(Kc, C ‖ 1). Algorithm VerBad(M,Kf , C ‖ b) runs VerC(M,Kf , C) and outputs
the result. An easy reduction shows that CSBad is both hiding and binding,
assuming CS is too. But it’s clear that CtE2[SE,CSBad] does not enjoy cipher-
text integrity. The adversary simply obtains one ciphertext, flips the last bit,
and submits to the challenge decryption oracle to win.

This shows that standard commitments with hiding and binding properties
are insufficient to instantiate CtE2. But if a scheme CS has unique commitments,
then we can in fact show security of CtE2. A scheme has unique commitments if
for any pair (Kc,M) ∈ Kf ×M it holds that there is a single commitment value
C ∈ C for which Ver(Kc, C,M) = 1. All hash-based CS schemes, including the
HMAC one used by Facebook’s franking scheme, have unique commitments. If
one wanted to use a scheme that does not have unique commitments, then one
would need the commitment to satisfy a form of non-malleability [29].

The following sequence of theorems captures the security of CtE2 assuming
a unique commitment scheme. Proofs appear in the full version.

Theorem 8 (CtE2 confidentiality). Let CtE2 = CtE2[CS,SE]. Let A be an
MO-RORCtE2 adversary making at most q oracle queries. Then we give adver-
saries B1, B2, C such that

Advmo-ror
CtE2[CS,SE](A) ≤ Advror

SE (B1) + Advror
SE (B2) + Advcs-ror

CS (C)

Adversaries B1, B2, and C all run in time that of A plus at most O(q) overhead
and make at most q queries.

Theorem 9 (CtE2 ciphertext integrity). Let CtE2 = CtE2[CS,SE] and
assume CS has unique commitments. Let A be an MO-CTXTCtE2 adversary
making at most q queries. Then we give adversaries B, C such that

Advmo-ctxt
CtE2[CS,SE](A) ≤ Advctxt

SE (B) + Advv-bind
CS (C).

Adversaries B and C both run in time that of as A plus at most O(q) overhead.
Adversary B makes at most q queries to its oracles.

Theorem 10 (CtE2 receiver binding). Let CtE2 = CtE2[CS,SE]. Let A be
an r-BINDCtE2 adversary. Then we give an adversary B such that

Advr-bind
CtE1[CS,SE](A) ≤ Advv-bind

CS (B).

Adversary B runs time that of A.
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Finally, note that CtE2 achieves s-BIND security because it verifies the com-
mitment during decryption.

7 Nonce-Based Committing AEAD and the CEP
Construction

The committing AEAD schemes thus far have all been randomized. Cryptogra-
phers have advocated that modern AEAD schemes, however, be designed to be
nonce-based. Here one replaces internal randomness during encryption with an
input, called the nonce. Security should hold as long as the nonce never repeats
throughout the course of encrypting messages with a particular key.

We formalize nonce-based committing AEAD and provide a construction of
it that additionally achieves a number of valuable properties. It will achieve a
multiple-opening security notion suitably modified to the nonce-based setting.
It is faster than the other multiple-opening schemes, requiring only two crypto-
graphic passes during encryption and decryption, and a single one during ver-
ification. It also reduces ciphertext stretch compared to the schemes of Sect. 6,
since the opening will be recomputed in the course of decryption and so does
not need to be sent in the encryption.

Nonce-based committing AEAD. A nonce-based CE scheme is a tuple of
algorithms nCE = (Kg,Enc,Dec,Ver). We define it exactly like CE schemes
(Sect. 4) except for the following differences. In addition to the other sets, we
associate to any nCE scheme a nonce space N ⊆ Σ∗. Encryption and decryption
are now defined as follows:

• Encryption: Encryption Enc is deterministic and takes as input a tuple
(K,N,H,M) ∈ (Σ∗)4 and outputs a pair (C1, C2) ∈ C ×T or a distinguished
error symbol ⊥. We require that for any (K,N,H,M) ∈ K × N × H × M it
is the case that Enc(K,N,H,M) 
= ⊥.

• Decryption: Decryption Dec is deterministic. It takes as input a quintu-
ple (K,N,H,C1, C2) ∈ (Σ∗)5 and outputs a message, opening value pair
(M,Kf ) ∈ M × Kf or ⊥.

Key generation and verification are unchanged relative to randomized CE
schemes. As for randomized schemes, we assume that the length of cipher-
texts are dictated only by the lengths of the header and message. We
will often write EncNK(H,M) for Enc(K,N,H,M) and DecNK(H,C1, C2) for
Dec(K,N,H,C1, C2).

Nonce-based security. We adapt the confidentiality and integrity security
notions from Sect. 4 to the nonce-based setting. Let game MO-nREALA

nCE be
the same as the game MO-RANDA

nCE (Fig. 3), except that all oracles take an
additional input N , Enc and Dec executions use that value N as the nonce,
the sets Y1,Y2 are instead updated with (N,H,C1, C2), and the decryption
oracle checks if (N,H,C1, C2) ∈ Y1. Similarly let game MO-nRANDA

nCE be
the same as MO-RANDA

nCE (Fig. 3), except that all oracles take an additional
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input N , and Enc and Dec use that value N as the nonce, and Y2 is updated
with (N,H,C1, C2). For a scheme nCE, we measure the nonce-based multiple-
openings real-or-random MO-nRORnCE advantage of an adversary A by

Advmo-nror
nCE (A) =

∣
∣Pr

[

MO-nREALA
nCE ⇒ 1

]

− Pr
[

MO-nRANDA
nCE ⇒ 1

]∣
∣ .

An adversary is nonce-respecting if its queries never repeat the same N across
a pair of encryption queries (two queries to Enc, two to ChalEnc, or one to
each). We will assume nonce-respecting MO-nRANDnCE adversaries.

Let MO-nCTXTA
nCE be the same as the game MO-CTXTA

nCE (Fig. 3), except
that all oracles take an additional input N , Enc and Dec executions use that
value N as the nonce, and the set Y is instead updated with (N,H,C1, C2). For
a scheme nCE, we measure the nonce-based multiple-openings real-or-random
MO-nCTXTnCE advantage of an adversary A by

Advmo-nctxt
nCE (A) = Pr

[

MO-nCTXTA
nCE ⇒ 1

]

.

As with randomized committing AEAD, we can provide single-opening versions
of the above definitions, and can give an all-in-one version of nonce-based MO
and SO security. We omit the details for the sake of brevity.

The sender binding notion s-BIND for nonce-based schemes is the same as for
randomized schemes except that the adversary also outputs a nonce N , which
is used with Dec. Because verification is unchanged, receiver binding security is
formalized exactly the same for randomized and nonce-based committing AEAD.

The Committing Encrypt-and-PRF scheme. One can analyze some tra-
ditional nonce-based AEAD schemes to show they are compactly committing.
As one example, it is easy to see that the EtE construction (Sect. 5.1) works
just as well with non-repeating nonces, but with only single-opening security.
The other schemes in Sect. 5 do not, but can be easily modified to by replacing
IV with EK(N). Here we focus on a new scheme that will have better overall
performance and security than previous ones. Unlike the legacy schemes studied
in Sect. 5 it will be provably secure for multiple openings. At the same time, it
will be more efficient than the schemes in Sect. 6.

The scheme CEP[G[K],F,Fcr] = (Kg,CEP-Enc,CEP-Dec,CEP-Ver) is in
the style of an Encrypt-and-PRF construction. It uses an underlying stream
cipher G[E] built from a block cipher E : {0, 1}k × {0, 1}n × {0, 1}n and func-
tions F, F cr : {0, 1}n × {0, 1}t → {0, 1}t. The key space is K = {0, 1}k and key
generation simply outputs a random draw from it. Encryption starts by using
the nonce with the key K to derive one-time keys for the keyed cryptographic
hash F cr and a PRF F , as well as to generate an encryption pad to XOR with
the message. We use a block cipher E in CTR mode to generate these values.
Finally it computes a binding value for H,M and applies F to that commitment
value to generate a tag. Detailed pseudocode is given in Fig. 10.

We will need F cr to both be CR (for binding) as well as secure as a one-time
PRF (for confidentiality). This rules out some otherwise desirable choices such as
CMAC [41], PMAC [53] and Carter-Wegman-style PRFs such as Poly1305 [16]
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CEP-EncN
K(H, M):

IV ← EK(N)

m ← �|M |/n
For i = 0 to m + 1 do

Pi ← EK(IV + i)

C1 ← (P2 ‖ · · · ‖ Pm+1) ⊕ M

C2 ← F cr
P0

(H ‖ M)

T ← FP1 (C2)

Return (C1 ‖ T, C2)

CEP-DecN
K(H, C1 ‖ T, C2):

m ← �|C1|/n
For i = 0 to m + 1 do

Pi ← EK(IV + i)

M ‖ ← (P2 ‖ · · · ‖Pm+1)⊕C1

C′
2 ← F cr

P0
(H ‖ M)

T ′ ← FP1 (C
′
2)

If T 	= T ′ ∨ C′
2 	= C2 then

Return ⊥
Return (M, P0)

CEP-Ver(H, M, Kf , C2):

C′
2 ← F cr

Kf
(H ‖ M)

If C′
2 	= C2 then Return 0

Return 1

Fig. 10. A nonce-based committing AEAD.

and UMAC [17]. These PRFs are some of the fastest available, but would make
CEP vulnerable to binding attacks. (See also the discussion in Sect. 5.4.)

The most obvious choice is HMAC, for which formal analyses support it
being a secure PRF for a key secret [2,3] and CR for adversarially chosen keys
of the same length (assuming the underlying hash function is CR). Other multi-
property hash functions [10] would also suffice.

The reason we use EK both for CTR mode and for key derivation is speed.
This ensures that we need ever only use a single key with E; in some environ-
ments rekeying can be almost as expensive as another invocation of E. In fact
we are simply using EK to build a stream cipher, and any nonce-based secure
stream cipher would do, e.g., ChaCha-20 [15].

One might wonder why have a tag T as well as the commitment value C2. The
reason is that to achieve multi-opening security, we must disclose the key used
with F cr, rendering the unforgeability of C2 values moot. If one instead omitted
T and only checked C ′

2 = C2 to attempt to achieve unforgeability, then there
exists a straightforward MO-nCTXT attack that obtains a ciphertext for a nonce
N , queries it to Dec to get the key for F cr, and then uses that to forge a new
ciphertext to be submitted to ChalDec. The application of F under a distinct
key provides ciphertext integrity even after an adversary obtains openings (keys
for F cr). Similarly, dropping the check during decryption that C ′

2 = C2 also leads
to an attack, but this time on sender binding.

Comparisons. Before getting into the formal security analysis in the next
section, we first compare CEP to the generic composition constructions that also
achieve multiple-opening security. The first benefit over other schemes is that
it is nonce-based, making it suitable for stateful as well as randomized settings
(see also Rogaway’s discussion of the benefits of nonce-based encryption [54]).

The second is that ciphertext expansion is reduced by a security parameter
number of bits compared to the generic composition constructions, because in
CEP we do not need to transport an explicit opening — the recipient recom-
putes it pseudorandomly from the secret key. Consequently, CEP ciphertexts are
shorter than Facebook’s by 256 bits.

The third is that encryption and decryption both save an entire crypto-
graphic pass over the associated data and message. For Facebook’s chosen
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algorithms (HMAC for the commitment, plus Encrypt-then-MAC using AES-
CBC and HMAC), this means that CEP offers more than a 50% speed-up for
both algorithms.4 While in some messaging settings encryption and decryp-
tion may not be particularly performance-sensitive operations, any cost savings
is desirable. In other contexts, such as if one starts using committing encryp-
tion on larger files (images, videos) sent over messaging applications or if one
wants abuse reporting for streaming communications, performance will be very
important.

CEP achieves the stronger multiple-opening security goal, setting it apart
from the legacy committing AEAD schemes from Sect. 5. At the same time,
CEP has equivalent or better performance than those schemes. With respect to
EtM and MtE, verification is reduced from two cryptographic passes to one.

8 Analysis of CEP

Useful abstractions. We will introduce some intermediate abstractions of the
underlying primitives. First, a nonce-based stream cipher G takes as input a key
K, a nonce N , and an output length �. It outputs a string of length � bits. The
second abstraction is of the implicit MAC used within CEP. It is the composition
F ◦F cr(P1, P0,H‖M) = FP1(F

cr
P0

(H‖M)) for random keys P0, P1 and any strings
H,M . The output is a t-bit string. We defer a discussion of the security properties
required from these abstractions to the full version of this work. There, we define
a nonce-based pseudorandom generator (PRG) security notion that mandates
attackers cannot distinguish between G’s output and random bit strings, as
well as a multi-user unforgeability notion MU-UF-CMAF◦F cr that captures the
unforgeability of F ◦ F cr when adversaries can attack it under multiple keys.

Security of CEP. We are now in position to formally analyze the confidentiality,
ciphertext integrity, and binding of CEP. We give theorems for each in turn, with
proofs deferred to the full version of the paper.

Theorem 11 (CEP confidentiality). Let CEP = CEP[G,F]. Let A be an
MO-nRORCEP adversary making at most q queries and whose queried messages
total at most σ bits. Then we give adversaries B, C,D such that

Advmo-nror
CEP (A) ≤ 2 ·Advprg

G (B) + 2 ·Advprf
F (C) + ·Advprf

F cr(D)

Adversary B makes at most q queries to its oracle, the sum of its total outputs
requested is σ bits. Adversary C makes at most q queries to its oracle, and never
repeats a key identifier. Adversary D make at most q queries to its oracle and
never repeats a key identifier. All adversaries run in time at most that of A plus
an overhead of at most O(q).

4 HMAC is slower than AES. If AES-NI is available, then the speed-up will be even
larger, since the HMAC passes will be the performance bottleneck.
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Theorem 12 (CEP ciphertext integrity). Let CEP = CEP[G, F]. Let A
be an MO-nCTXTCEP adversary making at most q queries with query inputs
totalling at most σn bits. Let F 2 be the tagging scheme described earlier. Then
we give adversaries B, C such that

Advmo-nctxt
CEP (A) ≤ Advprg

G (B) + Advmu-uf-cma
F 2 (C) .

Adversary B runs in time that of A plus at most O(q) overhead and makes q
queries totaling at most σn bits. Adversary C makes at most q queries and runs
in time that of A plus at most O(q) overhead.

Finally we turn to binding. Recall that any scheme that effectively runs com-
mitment verification during decryption achieves sender binding. The check that
C ′

2 = C2 during decryption accomplishes this, and so the scheme is perfectly
sender binding. For receiver binding, a simple reduction gives the following the-
orem showing that the CR of F cr implies binding of CEP.

Theorem 13 (CEP receiver binding). Let CEP = CEP[G, F]. Let A be any
r-BINDCEP adversary. Then we give an adversary B such that Advr-bind

CEP (A) ≤
Advcr

F cr(B) and B runs in time that of A.

9 Related Work

The primary viewpoint in the literature has been that committing encryption is
undesirable either because one wants deniability [20,22,50] or due to the theoret-
ical challenges associated with proving encryption confidentiality in the face of
adaptive compromises [23]. Thus while non-committing encryption has received
significant attention (q.v., [22–25,27,34,35,40,43,49,50,62–65]), there is a dearth
of literature on building purposefully committing encryption.

We are aware of only one previous work on building committing encryption
schemes, due to Gertner and Herzberg [36]. They give definitions that are insuf-
ficient for the message franking setting (in particular they do not capture server
binding or multiple opening security). They do not analyze AE schemes, and
focus only on building asymmetric primitives.

Our receiver binding security property is related to the concept of robust
encryption, introduced by Abdalla et al. [1]. They give two security notions
for public-key encryption (PKE). The stronger, called strong robustness, asks
that an adversarially-chosen ciphertext should only correctly decrypt under at
most one legitimate secret key. Mohassel [48] showed efficient ways of adapting
existing PKE schemes to be robust. Farshim et al. [32] subsequently pointed
out that some applications require robustness to adversarially generated secret
keys, and introduced a notion called complete robustness. In a later work,
Farshim, Orlandi, and Rosie [33] adapt these robustness definitions to the set-
ting of authenticated encryption, message authentication codes (MACs), and
pseudorandom functions (PRFs). They show that in this context, the simpler
full robustness notion of [32] is the strongest of those considered.
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These prior notions, in particular the full robustness for AE notion from [33],
do not suffice for formalizing binding for AEAD. First, it does not capture sender
binding. Second, for receiver binding, it turns out that the most straightforward
adaptation of full robustness to handle associated data fails to imply receiver
binding. We defer a more detailed explanation to the full version of this work.

Abdalla et al. [1] propose a generic composition of a commitment scheme
and PKE scheme to achieve robustness and Farshim et al. [33] show a variant
of this for the symmetric encryption setting. The latter construction commits to
the key, not the message, and could not be used to achieve the multiple opening
security targeted by our generic composition constructions.

Selective-opening security allows an adversary to adaptively choose to corrupt
some senders that sent (correlated) encrypted messages [8] or to compromise the
keys of a subset of receivers [38]. Bellare et al. [8] gave the first constructions
of schemes secure against selective-opening attacks for sender corruptions. Non-
committing encryption can be used to realize security for receiver corruptions.
Our definitions do not model selective-opening attacks, and as mentioned in the
introduction, assessing the viability of committing AEAD in selective-opening
settings is an interesting open problem.

Acknowledgments. The authors would like to thank the anonymous reviewers of
Crypto 2017 for their thoughtful comments, as well as Mihir Bellare for discussions
about robust encryption and its relation to binding. This work was funded in part by
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Abstract. A common requirement in practice is to periodically rotate
the keys used to encrypt stored data. Systems used by Amazon and
Google do so using a hybrid encryption technique which is eminently
practical but has questionable security in the face of key compromises
and does not provide full key rotation. Meanwhile, symmetric updatable
encryption schemes (introduced by Boneh et al. CRYPTO 2013) sup-
port full key rotation without performing decryption: ciphertexts created
under one key can be rotated to ciphertexts created under a different
key with the help of a re-encryption token. By design, the tokens do
not leak information about keys or plaintexts and so can be given to
storage providers without compromising security. But the prior work of
Boneh et al. addresses relatively weak confidentiality goals and does not
consider integrity at all. Moreover, as we show, a subtle issue with their
concrete scheme obviates a security proof even for confidentiality against
passive attacks.

This paper presents a systematic study of updatable Authenticated
Encryption (AE). We provide a set of security notions that strengthen
those in prior work. These notions enable us to tease out real-world
security requirements of different strengths and build schemes that sat-
isfy them efficiently. We show that the hybrid approach currently used in
industry achieves relatively weak forms of confidentiality and integrity,
but can be modified at low cost to meet our stronger confidentiality
and integrity goals. This leads to a practical scheme that has negligi-
ble overhead beyond conventional AE. We then introduce re-encryption
indistinguishability, a security notion that formally captures the idea of
fully refreshing keys upon rotation. We show how to repair the scheme of
Boneh et al., attaining our stronger confidentiality notion. We also show
how to extend the scheme to provide integrity, and we prove that it meets
our re-encryption indistinguishability notion. Finally, we discuss how to
instantiate our scheme efficiently using off-the-shelf cryptographic com-
ponents (AE, hashing, elliptic curves). We report on the performance of
a prototype implementation, showing that fully secure key rotations can
be performed at a throughput of approximately 116 kB/s.
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1 Introduction

To cryptographically protect data while stored, systems use authenticated
encryption (AE) schemes that provide strong message confidentiality as well as
ciphertext integrity. The latter allows detection of active attackers who manipu-
late ciphertexts. When data is stored for long periods of time, good key manage-
ment practice dictates that systems must support key rotation: moving encrypted
data from an old key to a fresh one. Indeed, key rotation is mandated by regula-
tion in some contexts, such as the payment card industry data security standard
(PCI DSS) that dictates how credit card data must be secured [PCI16]. Key
rotation can also be used to revoke old keys that are comprised, or to effect data
access revocation.

Deployed approaches to key rotation. Systems used in practice typically support
a type of key rotation using a symmetric key hierarchy. Amazon’s Key Manage-
ment Service [AWS], for example, enables users to encrypt a plaintext M under
a fresh data encapsulation key via Cdem = Enc(Kd,M) and then wrap Kd via
Ckem = Enc(K,Kd) under a long-term key K owned by the client. Here Enc is
an authenticated encryption (AE) scheme. By analogy with the use of hybrid
encryption in the asymmetric setting, we refer to such a scheme as a KEM/DEM
construction, with KEM and DEM standing for key and data encapsulation
mechanisms, respectively; we refer to the specific scheme as AE-hybrid.

The AE-hybrid scheme then allows a simple form of key rotation: the client
picks a fresh K ′ and re-encrypts Kd as C ′

kem = Enc(K ′,Dec(K,Ckem)). Note
that the DEM key Kd does not change during key rotation. When deployed
in a remote storage system, a client can perform key rotation just by fetching
from the server the small, constant-sized ciphertext Ckem, operating locally on
it to produce C ′

kem, and then sending C ′
kem back to the server. Performance is

independent of the actual message length. The Google Cloud Platform [Goo]
uses a similar approach to enable key rotation.

To our knowledge, the level of security provided by this widely deployed AE-
hybrid scheme has never been investigated, let alone formally defined in a secu-
rity model motivated by real-world security considerations. It is even arguable
whether AE-hybrid truly rotates keys, since the DEM key does not change. Cer-
tainly it is unclear what security is provided if key compromises occur, one of
the main motivations for using such an approach in the first place. On the other
hand, the scheme is fast and requires only limited data transfer between the
client and the data store, and appears to be sufficient to meet current regulatory
requirements.

Updatable encryption. Boneh, Lewi, Montgomery, and Raghunathan (BLMR)
[BLMR15] (the full version of [BLMR13]) introduced another approach to
enabling key rotation that they call updatable encryption. An updatable encryp-
tion scheme is a symmetric encryption scheme that, in addition to the usual triple
of (KeyGen,Enc,Dec) algorithms, comes with a pair of algorithms ReKeyGen and
ReEnc. The first, ReKeyGen, generates a compact rekey token given the old and
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new secret keys and a target ciphertext, while the second, ReEnc, uses a rekey
token output by the first to rotate the ciphertext without performing decryption.
For example, AE-hybrid can be seen as an instance of an updatable encryption
scheme in which the rekey token output by ReKeyGen is C ′

kem and where ReEnc
simply replaces Ckem with C ′

kem. BLMR introduced an IND-CPA-style security
notion in which adversaries can additionally obtain some rekey tokens. Their
definition is inspired by, but different from, those used for CCA-secure proxy
re-encryption schemes [CH07]. Given its obvious limitations when it comes to
key rotation, it is perhaps surprising that the AE-hybrid construction provably
meets the BLMR confidentiality notion for updatable encryption schemes.

BLMR also introduced and targeted a second security notion for updatable
encryption, called ciphertext independence. It demands that a ciphertext and
its rotation to another key are identically distributed to a ciphertext and a
rotation of another ciphertext (for the same message). The intuition is that
this captures the idea that true key rotation should refresh all randomness used
during encryption. This definition is not met by the AE-hybrid construction
above. But it is both unclear what attacks meeting their definition would prevent,
and, relatedly, whether more intuitive definitions exist.

BLMR gave a construction for an updatable encryption scheme and claimed
that it provably meets their two security definitions. Their construction clev-
erly combines an IND-CPA KEM with a DEM that uses a key-homomorphic
PRF [NPR99,BLMR15] to realize a stream cipher. This enables rotation of both
the KEM and the DEM keys, though the latter requires a number of operations
that is linear in the plaintext length. Looking ahead, their proof sketch has a
bug and we provide strong evidence that it is unlikely to be fixable. Moreover,
BLMR do not yet target or achieve any kind of authenticated encryption goal,
a must for practical use.

Our contributions. We provide a systematic treatment of AE schemes that sup-
port key rotation without decryption, a.k.a. updatable AE.

Specifically, we provide a new security notion for confidentiality, UP-IND,
that is strictly stronger than that of BLMR [BLMR15], a corresponding notion
for integrity, UP-INT (missing entirely from BLMR but essential for practice),
and a new notion called re-encryption indistinguishability (UP-REENC) that is
strictly stronger and more natural in capturing the spirit of “true key rotation”
than the ciphertext indistinguishability notion of BLMR.

Achieving our UP-REENC notion means that an attacker, having access to
both a ciphertext and the secret key used to generate it, should not be able to
derive any information that helps it attack a rotation of that ciphertext. Thus, for
example, an insider with access to the encryption keys at some point in time but
who is then excluded from the system cannot make use of the old keys to learn
anything useful once key rotation has been carried out on the AE ciphertexts.
Teasing out the correct form of this notion turns out to be a significant challenge
in our work.

Armed with this set of security notions, we go on to make better sense of the
landscape of constructions for updatable AE schemes. Table 1 summarises the
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security properties of the different schemes that we consider. Referring to this
table, our security notions highlight the limitations of the AE-hybrid scheme:
while it meets the confidentiality notion of BLMR, it only satisfies our UP-IND
and UP-INT notions when considering a severely weakened adversary who has no
access to any compromised keys. We propose an improved construction, KSS,
that satisfies both notions for any number of compromised keys and which is
easily deployable via small adjustments to AE-hybrid. KSS uses a form of secret
sharing to embed key shares in the KEM and DEM components to avoid the
issue of leaking the DEM key in the updating process, and adds a cryptographic
hash binding the KEM and DEM components to prevent mauling attacks. These
changes could easily be adopted by practitioners with virtually no impact on
performance, while concretely improving security.

However, the improved scheme KSS cannot satisfy our UP-REENC notion,
because it still uses a KEM/DEM-style approach in which the DEM key is never
rotated. The BLMR scheme might provide UP-REENC security, but, as noted
above, its security proof contains a bug which we consider unlikely to be fix-
able. Indeed, we show that proving the BLMR scheme confidential would imply
that one could also prove circular security [BRS03,CL01] for a particular type
of hybrid encryption scheme assuming only the key encapsulation is IND-CPA
secure. Existing counter-examples of IND-CPA secure, but circular insecure,
schemes [ABBC10,CGH12] do not quite rule out such a result. But the link to
the very strong notion of circular security casts doubt on the security of this
scheme. One can easily modify the BLMR scheme to avoid this issue, but even
having done so the resulting encryption scheme is still trivially malleable and so
cannot meet our UP-INT integrity notion.

We therefore provide another new scheme, ReCrypt, meeting all three of our
security notions: UP-IND, UP-INT and UP-REENC. We take inspiration from
the previous constructions, especially that of BLMR: key-homomorphic PRFs
provide the ability to fully rotate encryption keys; the KEM/DEM approach with
secret sharing avoids the issue of leaking the DEM key in the updating process;
and finally, adding a cryptographic hash to the KEM tightly binds the KEM and
DEM portions and prevents ciphertext manipulation. We go on to instantiate
the scheme using the Random Oracle Model (ROM) key-homomorphic PRF
from [NPR99], having the form H(M)k, where H is a hash function into a group
in which DDH is hard. This yields a construction of an updatable AE scheme
meeting all three of our security notions in the ROM under the DDH assumption.
We report on the performance of an implementation of ReCrypt using elliptic
curve groups, concluding that it is performant enough for practical use with
short plaintexts. However, because of its reliance on exponentiation, ReCrypt is
still orders of magnitude slower than our KSS scheme (achieving only UP-IND
and UP-INT security). This, currently, is the price that must be paid for true
key rotation in updatable encryption.

Summary. In summary, the main contributions of this paper are:
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Table 1. Summary of schemes studied. †In-use by practitioners today. *Introduced in
this work.

Scheme Section UP-IND UP-INT UP-REENC

AE-hybrid† 4.1 ✗ ✗ ✗

KSS∗ 4.3 ✓ ✓ ✗

BLMR 6 ✗ ✗ ✗

ReCrypt∗ 7 ✓ ✓ ✓

– To provide the first definitions of security for AE supporting key rotation
without exposing plaintext.

– To explain the gap between existing, deployed schemes using the KEM/DEM
approach and “full” refreshing of ciphertexts.

– To provide the first proofs of security for AE schemes using the KEM/DEM
approach, namely AE-hybrid and KSS.

– To detail the first updatable AE scheme, ReCrypt, that fully and securely
refreshes ciphertexts by way of key rotations without ever exposing plaintext
data. We implement a prototype and report on microbenchmarks, showing
that rotations can be performed in less than 9µs per byte.

2 Updatable AE

We turn to formalizing the syntax and semantics of AE schemes supporting
key rotation. Our approach extends that of Boneh et al. [BLMR15] (BLMR),
the main syntactical difference being that we allow rekey token generation, re-
encryption, and decryption to all return a distinguished error symbol ⊥. This
is required to enable us to later cater for integrity notions. We also modify the
syntax so that ciphertexts include two portions, a header and a body. In our
formulation, only the former is used during generation of rekey tokens (while in
BLMR the full ciphertext is formally required).

Definition 1 (Updatable AE). An updatable AE scheme is a tuple of algo-
rithms Π = (KeyGen, Enc, ReKeyGen, ReEnc, Dec) with the following proper-
ties:

– KeyGen() → k. Outputs a secret key k.
– Enc(k,m) → C. On input a secret key k and message m, outputs a ciphertext

C = (C̃, C) consisting of a ciphertext header C̃ and ciphertext body C.
– ReKeyGen(k1, k2, C̃) → Δ1,2,C̃ . On input two secret keys, k1 and k2, and a

ciphertext header C̃, outputs a rekey token or ⊥.
– ReEnc(Δ1,2,C̃ , (C̃, C)) → C2. On input a rekey token and ciphertext, outputs

a new ciphertext or ⊥. We require that ReEnc is deterministic.
– Dec(k,C) → m. On input a secret key k and ciphertext C outputs either a

message or ⊥.
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Fig. 1. Interaction between client and cloud during a ciphertext-dependent update.
Client retrieves a small ciphertext header, and runs ReKeyGen to produce a compact
rekey token Δ. The cloud uses this token to re-encrypt the data. At the end of the
update, the data is encrypted using k2, and cannot be recovered using only k1.

Of course we require that all algorithms are efficiently computable. Note
that, in common with [BLMR15], our definition is not in the nonce-based setting
that is widely used for AE. Rather, we will assume that Enc is randomised. We
consider this sufficient for a first treatment of updatable AE; it also reflects
common industry practice as per the schemes currently used by Amazon [AWS]
and Google [Goo]. We relegate the important problem of developing a parallel
formulation in the nonce-based setting to future work. Similarly, we assume that
all our AE schemes have single decryption errors, cf. [BDPS14], and we do not
consider issues such as release of unverified plaintext, cf. [ABL+14], tidiness,
cf. [NRS14] and length-hiding, cf. [PRS11].

Correctness. An updatable AE scheme is correct if decrypting a legitimately gen-
erated ciphertext reproduces the original message. Of course, legitimate cipher-
texts may be rotated through many keys, complicating the formalization of this
notion.

Definition 2 (Correctness). Fix an updatable AE scheme Π. For any mes-
sage m and any sequence of secret keys k1, . . . kT output by running KeyGen T
times, let C1 = (C̃1, C1) = Enc(k1,m) and recursively define for 1 ≤ t < T

Ct+1 = ReEnc(ReKeyGen(kt, kt+1, C̃t), Ct).

Then Π is correct if Dec(kT , CT ) = m with probability 1.

Compactness. We say that an updatable AE scheme is compact if the size of
both ciphertext headers and rekeying tokens are independent of the length of
the plaintext. In practice the sizes should be as small as possible, and for the
constructions we consider these are typically a small constant multiple of the
key length.

Compactness is important for efficiency of key rotation. Considering the
abstract architecture in Fig. 1, header values must be available to the key server
when rekey tokens are generated. Typically this will mean having to fetch them
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from storage. Likewise, the rekey token must be sent back to the storage system.
Note that there are simple constructions that are not compact, such as the one
that sets C̃ to be a standard authenticated encryption of the message and in
which ReKeyGen decrypts C̃, re-encrypts it, and outputs a “rekeying token” as
the new ciphertext.

Ciphertext-dependence. As formulated above, updatable AE schemes require
part of the ciphertext, the ciphertext header C̃, in order to generate a rekey
token. We will also consider schemes for which C̃ is the empty string, denoted
ε. We will restrict attention to schemes for which encryption either always out-
puts C̃ = ε or never does. In the former case we call the scheme ciphertext-
independent and, in the latter case, ciphertext-dependent. When discussing
ciphertext-independent schemes, we will drop C̃ from notation, e.g., writing Δi,j

instead of Δi,j,C̃ .
However, we primarily focus on ciphertext-dependent schemes which appear

to offer more flexibility and achieve stronger security guarantees (though it
is an open question whether a ciphertext-independent scheme can achieve
our strongest security notion). We do propose a very lightweight ciphertext-
independent scheme included in AppendixA.1, but we show it achieves strictly
weaker confidentiality and integrity notions. One can generically convert a
ciphertext-independent scheme into a ciphertext-dependent one, simply by deriv-
ing a ciphertext-specific key using some unique identifier for the ciphertext. We
omit the formal treatment of this trivial approach.

Directionality of rotations. Some updatable AE schemes are bidirectional, mean-
ing rekey tokens can be used to go forwards or backwards.

We only consider bi-directionality to be a feature of ciphertext-independent
schemes. Formally, we say that a scheme is bidirectional if there exists an efficient
algorithm Invert(·) that produces a valid rekey token Δj,i when given Δi,j as
input.

Schemes that are not bidirectional might be able to ensure that an adversary
cannot use rekey tokens to “undo” a rotation of a ciphertext. We will see that
ciphertext-dependence can help in building such unidirectional schemes, whereas
ciphertext-independent schemes seem harder to make unidirectional. This latter
difficulty is related to the long-standing problem of constructing unidirectional
proxy re-encryption schemes in the public key setting.

Relationship to proxy re-encryption. Proxy re-encryption targets a different set-
ting than updatable encryption (or AE): the functional ability to allow a cipher-
text encrypted under one key to be converted to a ciphertext decryptable by
another key. The conversion should not leak plaintext data, but, unlike key
rotation, it is not necessarily a goal of proxy re-encryption to remove all depen-
dency on the original key, formalised as indistinguishability of re-encryptions
(UP-REENC security) in our work. For example, previous work [CK05,ID03]
suggests twice encrypting plaintexts under different keys. To rotate, the previ-
ous outer key and a freshly generated outer key is sent to the proxy to perform
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conversion, but the inner key is never modified. Such an approach does not
satisfy the goals of key rotation.

That said, any bidirectional, ciphertext-independent updatable AE ends up
also being usable as a symmetric proxy re-encryption scheme (at least as for-
malized by [BLMR15]).

3 Confidentiality and Integrity for Updatable Encryption

Updatable AE should provide confidentiality for messages as well as integrity
of ciphertexts, even in the face of adversaries that obtain rekey tokens and
re-encryptions, and that can corrupt some number of secret keys. Finding
definitions that rule out trivial wins—e.g., rotating a challenge ciphertext to
a compromised key, or obtaining sequences of rekey tokens that allow such rota-
tions — is delicate. We provide a framework for doing so.

Our starting point will be a confidentiality notion which improves signifi-
cantly upon the previous notion of BLMR by including additional attack vectors,
and strengthening existing ones.

For ciphertext integrity, we develop a new definition, building on the usual
INT-CTXT notion for standard AE [BN00]. Looking ahead, we will target unidi-
rectional schemes that simultaneously achieve both UP-IND and UP-INT secu-
rity.

We will follow a concrete security approach in which we do not strictly define
security, but rather measure advantage as a function of the resources (running
time and number of queries) made by an adversary. Informally, schemes are
secure if no adversary with reasonable resources can achieve advantage far from
zero.

3.1 Message Confidentiality

The confidentiality game UP-IND is shown in the leftmost column of Fig. 2. The
adversary’s goal is to guess the bit b. Success implies that a scheme leaks partial
information about plaintexts. We paramaterise the game by two values t and κ.
The game initialises t+κ secret keys, κ of which are given to the adversary, and
t are kept secret for use in the oracles. We label the keys by k1, . . . , kt for the
uncompromised keys, and by kt+1, . . . kt+κ for the compromised keys. We require
at least one uncompromised key, but do not necessarily require any compromised
keys, i.e. t ≥ 1 and κ ≥ 0. We leave consideration of equivalences between models
with many keys and few keys and between models with active and static key
compromises as interesting problems for future work.

The game relies on two subroutines InvalidRK and InvalidRE to determine if a
re-keygen and re-encryption query, respectively, should be allowed. These pro-
cedures are efficiently computed by the game as a function of the adversarial
queries and responses. This reliance on the transcript we leave implicit in the
notation to avoid clutter. Different choices of invalidity procedures gives rise to
distinct definitions of security, and we explain two interesting ones in turn. Note
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UP-IND

b ←$ {0, 1}
k1, . . . , kt+κ ←$KeyGen()

b
′ ←$ AO

(kt+1, . . . , kt+κ)

return (b
′
= b)

Enc(i, m)

return Enc(ki, m)

ReKeyGen(i, j, C̃)

if InvalidRK(i, j, C̃) then return ⊥
Δi,j,C̃ ←$ReKeyGen(ki, kj , C̃)

return Δi,j,C̃

ReEnc(i, j, (C̃, C))

Δi,j,C̃ ←$ReKeyGen(ki, kj , C̃)

C
′
= (C̃

′
, C

′
) ← ReEnc(Δi,j,C̃ , (C̃, C))

if InvalidRE(i, j, C̃) then return C̃
′

else return C
′

LR(i, m0, m1)

if i > t then return ⊥
C ←$ Enc(ki, mb)

return C

UP-INT

win ← false

k1, . . . , kt+κ ←$KeyGen()

AO
(kt+1, . . . , kt+κ)

return win

Enc(i, m)

return Enc(ki, m)

ReKeyGen(i, j, C̃)

return ReKeyGen(ki, kj , C̃)

ReEnc(i, j, (C̃, C))

Δi,j,C̃ ←$ReKeyGen(ki, kj , C̃)

C
′ ← ReEnc(Δi,j,C̃ , (C̃, C))

return C
′

Try(i, C)

if InvalidCTXT(i, C) then return ⊥
M ← Dec(ki, C)

if M = ⊥ then return ⊥
win ← true

return M

Fig. 2. Confidentiality and integrity games for updatable encryption security.

that an invalid query (as determined by InvalidRE) still results in the adversary
learning the ciphertext header, giving greater power to the adversary. We believe
this to be an important improvement both in practice and theoretically over pre-
vious models, which consider only a partial compromise. The full compromise of
a client results in the adversary playing the role of the client in the key update
procedure, during which the server will return the ciphertext header. In practice,
it is likely that an adversary who has initially breached the client would use this
access to query related services.

Invalidity procedures. For the invalidity constraints used in UP-IND, we target
a strong definition, while preventing the adversary from trivially receiving a
challenge ciphertext re-encrypted to a compromised key.
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We use the ciphertext headers to determine whether a ciphertext has been
derived from a challenge ciphertext. It is natural to use only the headers since
these will be processed by the client when performing an update. We define a
procedure DerivedLR(i, C̃) that outputs true should C̃ have been derived from
the ciphertext header returned by an LR query.

Definition 3 (LR-derived headers). We recursively define function
DerivedLR(i, C̃) to output true iff any of the following conditions hold:

– C̃ was the ciphertext header output in response to a query LR(i,m0,m1)
– C̃ was the ciphertext header output in response to a query ReEnc(j, i, C ′) and

DerivedLR(j, C̃ ′) = true
– C̃ is the ciphertext header output by running ReEnc(Δj,i,C̃′ , C ′) where Δj,i,C̃′

is the result of a query ReKeyGen(j, i, C̃ ′) for which DerivedLR(j, C̃ ′) = true.

The predicate DerivedLR(i, C̃) is efficient to compute and can be computed
locally by the adversary. The most efficient way to implement it is to grow a
look-up table T indexed by a key identifier and a ciphertext header and whose
entries are sets of ciphertexts. Any query to LR(i,m0,m1) updates the table by
adding the returned ciphertext to the set T[i, C̃] where C̃ is the oracle’s returned
ciphertext header value. For a query ReEnc(j, i, C ′), if T[j, C̃ ′] is not empty,
then it adds the returned ciphertext to the set T[i, C̃∗] for C̃∗ the returned
ciphertext header. For a query ReKeyGen(j, i, C̃ ′) with return value Δj,i,C̃′ ,
apply ReEnc(Δj,i,C̃′ , C) for all ciphertexts C found in entry T[j, C̃ ′] and add
appropriate new entries to the table. In this way, one can maintain the table
in worst-case time that is quadratic in the number of queries, and compute in
constant time DerivedLR(i, C̃) by simply checking if T[i, C̃] is non-empty. If any
call to ReKeyGen or ReEnc in DerivedLR or the main oracle procedure returns ⊥,
then the entire procedure returns ⊥.

Note that DerivedLR relies on ReEnc being deterministic, a restriction we
made in Sect. 2. To complete the definition, we specify the invalidity procedures
that use DerivedLR as a subroutine:

– InvalidRK(i, j, C̃) outputs true if j > t and DerivedLR(i, C̃) = true. In words,
the target key is compromised and i, C̃ derives from an LR query.

– InvalidRE(i, j, C̃) outputs true if j > t and DerivedLR(i, C̃) = true. In words,
the target key is compromised and i, C̃ derives from an LR query.

We denote the game defined by using these invalidity procedures by UP-IND.
We associate to an UP-IND adversary A and scheme Π the advantage measure:

Advup-ind
Π,κ,t (A) = 2 · Pr

[
UP-INDA

Π,κ,t ⇒ true
] − 1.

This notion is very strong and bidirectional schemes cannot meet it.

Theorem 1. Let Π be a bidirectional updatable encryption scheme. Then there
exists an UP-IND adversary A that makes 2 queries and for which

Advup-indΠ,κ,t (A) = 1

for any κ ≥ 1 and t ≥ 1.
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Proof. We explicitly define the adversary A. It makes a query to C1 =
LR(1,m0,m1) for arbitrary messages m0 �= m1 and computes locally Ct+1 =
Enc(kt+1,m1). It then makes a query Δt+1,1,C̃t+1

= ReKeyGen(t+1, 1, C̃t+1). It
runs C ′ = ReEnc(Invert(Δt+1,1,C̃t+1

, Ct+1, C1), C1) locally and then decrypts C ′

using kt+1. It checks whether the result is m0 or m1 and returns the appropriate
bit. �	

BLMR confidentiality. In comparison, we define invalidity procedures corre-
sponding to those in BLMR’s security notion.

– InvalidBLMRRK(i, j, C̃) outputs true if i ≤ t < j or j ≤ t < i and outputs false
otherwise. In words, the query is not allowed if exactly one of the two keys is
compromised.

– InvalidBLMRRE(i, j, C̃) outputs true if j > t and false otherwise. In words, the
query is not allowed if the target key kj is compromised.

We denote the game defined by using these invalidity procedures by UP-IND-BI
(the naming will become clear presently). We associate to an UP-IND-BI adver-
sary A, scheme Π, and parameters κ, t the advantage measure:

Advup-ind-bi
Π,κ,t (A) = 2 · Pr

[
UP-IND-BIAΠ,κ,t ⇒ true

] − 1 .

A few observations are in order. First, it is apparent that the invalidity pro-
cedures for the BLMR notion are significantly stronger than ours, leading to
a weaker security notion: the BLMR procedures are not ciphertext-specific but
instead depend only on the compromise status of keys. We will show that this
difference is significant. In addition, the corresponding BLMR definition did not
consider leakage of the ciphertext header when InvalidBLMRRE returns true. Sec-
ond, for ciphertext-independent schemes in which C̃ = ε always, the BLMR
definition coincides with symmetric proxy re-encryption security (as also intro-
duced in their paper [BLMR15]). Third, the BLMR confidentiality notion does
not require unidirectional security of rekey tokens because it has the strong
restriction of disallowing attackers from obtaining rekey tokens Δi,j,C̃ with i > t
(so the corresponding key is compromised), but with j < t (for an uncom-
promised key). Thus, in principle, bidirectional schemes could meet this notion,
explaining our naming convention for the notion. Finally, the BLMR notion does
not require ciphertext-specific rekey tokens because the invalidity conditions are
based only on keys and not on the target ciphertext.

Detailed in AppendixA.1 is a bidirectional scheme that is secure in the
sense of UP-IND-BI. This result and the negative result that no bidirectional
scheme can achieve UP-IND given above (Theorem 1) yields as a corollary that
UP-IND-BI security is strictly weaker than UP-IND security. This illustrates the
enhanced strength of our UP-IND security notion compared to the corresponding
BLMR notion, UP-IND-BI.

Given that bidirectional, ciphertext-independent schemes have certain advan-
tages in terms of performance and deployment simplicity, practitioners may
prefer them in some cases. For that flexibility, one trades off control over the
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specificity of rekey tokens, which could be dangerous to confidentiality in some
compromise scenarios.

3.2 Ciphertext Integrity

We now turn to a notion of integrity captured by the game UP-INT shown in
Fig. 2. The adversary’s goal is to submit a ciphertext to the Try oracle that
decrypts properly. Of course, we must exclude the adversary from simply resub-
mitting valid ciphertexts produced by the encryption oracle, or derived from
such an encryption by way of re-encryption queries or rekey tokens.

In a bit more detail, in the Try oracle, we define a predicate InvalidCTXT
which captures whether the adversary has produced a trivial derivation of a
ciphertext obtained from the encryption oracle. This fulfills a similar role to
that of the InvalidRE and InvalidRK subroutines in the UP-IND game.

For the unidirectional security game UP-INT, we define InvalidCTXT(i, C =
(C̃, C)) inductively, outputting true if any of the following conditions hold:

– i > t, i.e. ki is known to the adversary
– (C̃, C) was output in response to a query Enc(i,m)
– (C̃, C) was output in response to a query ReEnc(j, i, C ′) and

InvalidCTXT(j, C ′) = true
– (C̃, C) is the ciphertext output by running ReEnc(Δj,i,C̃′ , C ′) for C ′ =

(C̃ ′, C
′
) where Δj,i,C̃′ was the result of a query ReKeyGen(j, i, C̃ ′) and

InvalidCTXT(j, C ′)) = true.

This predicate requires the transcript of queries thus far; to avoid clutter we leave
the required transcript implicit in our notation. The definition of InvalidCTXT
is quite permissive: it defines invalid ciphertexts as narrowly as possible, making
our security notion stronger. Notably, the adversary can produce any ciphertext
(valid or otherwise) using a corrupted key ki, and use the ReKeyGen oracle to
learn a token to update this ciphertext to a non-compromised key. Only the
direct re-encryption of the submitted ciphertext is forbidden.

We associate to an updatable encryption scheme Π, an UP-INT adversary
A, and parameters κ, t the advantage measure:

Advup-int
Π,κ,t (A) = Pr

[
UP-INTA

Π,κ,t ⇒ true
]

.

4 Practical Updatable AE Schemes

We first investigate the security of updatable AE schemes built using the
KEM/DEM approach sketched in the introduction. Such schemes are in wide-
spread use at present, for example in AWS’s and Google’s cloud storage systems,
yet have received no formal analysis to date. We produce the AE-hybrid con-
struction as a formalism of this common practice.

Using the confidentiality and integrity definitions from the previous section,
we discover that this construction offers very weak security against an adversary
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capable of compromising keys. Indeed, we are only able to prove security when
the number of compromised keys κ is equal to 0. Given the intention of key
rotation this is a somewhat troubling result.

On a positive note, we show a couple of simple tweaks to the AE-hybrid which
fix these issues. The resultant scheme, named KSS, offers improved security at
little additional cost.

We leave to the appendix our bidirectional, ciphertext-independent scheme
XOR-KEM which does not offer strong integrity guarantees but may be of inter-
est for other applications.

4.1 Authenticated Encryption

In the following constructions we make use of authenticated encryption (AE)
schemes which we define here.

Definition 4 (Authenticated encryption). An authenticated encryption
scheme π is a tuple of algorithms (K, E ,D). K is a randomised algorithm out-
putting keys. We denote by Ek(·) the randomised algorithm for encryption by key
k, and by Dk(·) decryption. Decryption is a deterministic algorithm and outputs
the distinguished symbol ⊥ to denote a failed decryption.

In keeping with our definitional choices for updatable AE, we consider ran-
domised AE schemes rather than nonce-based ones.

We use the all-in-one authenticated encryption security definition from
[RS06].

Definition 5 (Authenticated Encryption Security). Let π = (K, E ,D) be
an authenticated encryption scheme. Let Enc, Dec be oracles whose behaviors
depends on hidden values b ∈ {0, 1} and key k ←$ K. Enc takes as input a bit
string m and produces Ek(m) when b = 0, and produces a random string of the
same length otherwise. Dec takes as input a bit string C and produces Dk(C)
when b = 0, and produces ⊥ otherwise.

Let AE-RORA
π be the game in which an adversary A interacts with the Enc

and Dec oracles and must output a bit b′. The game outputs true when b = b′.
We require that the adversary not submit outputs from the Enc oracle to the Dec
oracle.

We define the advantage of A in the AE-ROR security game for π as:

Advae
π (A) = 2 · Pr

[
AE-RORA

π ⇒ true
] − 1.

Unless otherwise stated, our AE schemes will be length-regular, so that the
lengths of ciphertexts depend only on the lengths of plaintexts. This ensures that
the above definition also implies a standard “left-or-right” security definition.
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4.2 (In-)Security of AE-Hybrid Construction

Figure 3 defines an updatable AE scheme, AE-hybrid, for any AE scheme
π = (K, E ,D). This is a natural key-wrapping scheme that one might create
in the absence of security definitions. It is preferred by practitioners because
key rotation is straightforward and performant. Using this scheme means re-
keying requires constant time and communication, independent of the length of
the plaintext. In fact, we note that this scheme sees widening deployment for
encrypted cloud storage services. Both Amazon Web Services [AWS] and Google
Cloud Platform [Goo] use AE-hybrid to perform key rotations over encrypted
customer data.

We demonstrate severe limits of AE-hybrid: when keys are compromised
confidentiality and integrity cannot be recovered through re-encryption. Later
we will demonstrate straightforward modifications to AE-hybrid that allow it to
recover both confidentiality and integrity without impacting performance.

Enc(k, m)

x ←$ K
C̃ ←$ E(k, x)

C ←$ E(x, m)

return (C̃, C)

ReKeyGen(k1, k2, C̃)

x = D(k1, C̃)

if x = ⊥ return ⊥
Δ1,2,C̃ ←$ E(k2, x)

return Δ1,2,C̃

Dec(k, (C̃, C))

x = D(k, C̃)

if x = ⊥ return ⊥
m = D(x, C)

return m

KeyGen : return K
ReEnc(Δ1,2,C̃ , (C̃, C)) : return (Δ1,2,C̃ , C)

Fig. 3. Algorithms for the AE-hybrid updatable AE scheme.

Theorem 2 (AE-hybrid insecurity in the UP-IND sense). Let π =
(K, E ,D) be a symmetric encryption scheme and Π be the updatable AE scheme
AE-hybrid built using π as defined in Fig. 3.

Then there exists an adversary A making 2 queries such that Advup-indΠ,κ,t (A) =
1 for all κ ≥ 1 and t ≥ 1.

Proof. We construct a concrete adversary A satisfying the theorem statement.
A makes an initial query to LR(1,m0,m1) for distinct messages m0 �= m1

and receives challenge ciphertext C∗ = (E(k1, x), E(x,mb)). A subsequently calls
ReKeyGen(1, t+1, C∗). kt+1 is corrupted and thus InvalidRK returns true, so the
adversary receives the re-encrypted ciphertext header C̃ ′ = E(kt+1, x).

The adversary decrypts x = D(kt1 , C̃
′), computes mb = D(x,C

∗
) and checks

whether mb = m0 or m1. �	
The best one can achieve with this scheme is to prove security when κ = 0,

that is, security is not degraded beyond the underlying AE scheme when the
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adversary does not obtain any compromised keys. However, such a weak security
notion is not particularly interesting, since the intention of key rotation is to
provide enhanced security in the face of key compromises. We give proofs for the
weak security of the AE-hybrid scheme in the full version.

Similarly, AE-hybrid is trivially insecure in the UP-INT sense when κ ≥ 1.

Theorem 3 (AE-hybrid insecurity in the UP-INT sense). Let π =
(K, E ,D) be a symmetric encryption scheme and Π be the updatable AE scheme
AE-hybrid built using π as defined in Fig. 3.

Then there exists an adversary A making 2 queries and one Try query such
that Advup-intΠ,κ,t (A) = 1 for all κ ≥ 1 and t ≥ 1.

Proof. We construct a concrete adversary A satisfying the theorem statement.
A first queries Enc(1,m) to obtain an encryption C = (E(k1, x), E(x,m)),

and subsequently queries ReEnc(1, t + 1, C), receiving the re-encryption C ′ =
(E(kt+1, x), E(x,m)). Since A has key kt+1, A recovers x = D(kt+1, C̃

′) by per-
forming the decryption locally.

Finally, A constructs the ciphertext C∗ = (C̃, E(x,m′)) for some m′ �= m and
queries Try(1, C∗). Since C∗ is not derived from C and k1 is not compromised,
UP-INT outputs true. �	

4.3 Improving AE-Hybrid

We make small modifications to the AE-hybrid construction and show that the
resulting construction has both UP-IND and UP-INT security. These modifi-
cations include masking the DEM key stored inside the ciphertext header (to
gain UP-IND security), and including an encrypted hash of the message (for
UP-INT). We note that these modifications are straightforward to implement
on top of the AE-hybrid scheme and have only minimal impact on the scheme’s
performance in practice.

Let (K, E , D) be an AE scheme and h a hash function with �h output bits.
Then we define KSS (KEM/DEM with Secret Sharing) as in Fig. 4.

Theorem 4 (UP-IND Security of KSS). Let π = (K, E ,D) be a symmetric
encryption scheme and Π be the updatable AE scheme KSS built using π as
defined in Fig. 4. Then for any adversary A for the game UP-IND, making at
most q queries to the LR oracle, there exists an adversary B for the AE security
game where:

Advup-indΠ,κ,t (A) ≤ 2(t + q) · Advaeπ (B)

for all κ ≥ 0, t ≥ 1.

For brevity, we leave the full proof to the full version, but we briefly outline
the proof here. The proof proceeds in two phases. In the first phase, we use
a series of t game-hops to replace ciphertext headers produced by Enc under
each of t keys with random strings of the same length. We bound the difference
between each game with an AE adversary. In the second phase, we use q game-
hops (one for each LR query): each hop replacing encryption of the DEM with
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Enc(k, m)

x, y ←$ K
χ = x ⊕ y

C
1 ←$ E(x, m)

τ = E(x, h(m))

C̃ ←$ E(k, χ ‖ τ)

return (C̃, (y, C
1
))

ReKeyGen(k1, k2, C̃)

(χ ‖τ) = D(k1, C̃)

if (χ ‖ τ) = ⊥ return ⊥
y

′ ←$ K
return (y

′
, E(k2, (χ ⊕ y

′
) ‖ τ))

Dec(k, (C̃, C))

(χ ‖ τ) = D(k, C̃)

if (χ ‖ τ) = ⊥ return ⊥
x = χ ⊕ C

0

m = D(x, C
1
)

if D(x, τ) 	= h(m) then

return ⊥
return m

KeyGen() : return k ← K
ReEnc(Δ1,2,C̃ , (C̃, C)) : return (Δ1

1,2,C̃
, (C

0 ⊕ Δ0
1,2,C̃

, C
1
))

Fig. 4. Algorithms for the KSS updatable AE scheme.

a call to an AE encryption oracle. Again, we bound the difference between each
game with an AE adversary and in the end we get the stated result.

Our modification to include an encrypted hash of the ciphertext is in order
to provide a measure of integrity protection. As we will see in the following
theorem, collision resistance of the hash function is sufficient to provide UP-INT
security, since the hash itself is integrity-protected by the AE encryption of the
KEM. The hash itself is encrypted in order to avoid compromise of the ciphertext
header being sufficient to distinguish messages.

We achieve collision resistance by assuming h to be a random oracle. How-
ever, this assumption could be avoided by either re-using the DEM key x to
additionally key the hash function.

We note that this combination of hash function and AE encryption is used
to provide an additional integrity mechanism that works for any AE scheme.
However, some schemes may be able to avoid this additional computation by
re-using components of the AE encryption. For example, if an encrypt-then-
MAC scheme is used such that the encryption and MAC keys are both uniquely
derived from the DEM key x, then we conjecture that the MAC itself can be
used in place of the encrypted hash.

Theorem 5 (UP-INT Security of KSS). Let π = (K, E ,D) be a symmetric
encryption scheme, h be a cryptographic hash function modelled as a random
oracle with output length �h, and Π be the updatable AE scheme KSS built using
π and h as defined in Fig. 4. Then for any polynomial-time adversary A, making
at most qh queries to the random oracle h, there exists an adversary B for the
AE security game where:

Advup-intΠ,κ,t (A) ≤ t · Advaeπ (B) +
q2h
2�h

for all κ ≥ 0, t ≥ 1.
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This proof follows a similar format to the previous one: after t game hops
to establish the integrity of the ciphertext headers using t AE adversaries, the
adversary’s success depends on finding two ciphertexts which produce a collision
in h. We leave the full proof to the full version.

5 Indistinguishability of Re-encryptions

The KSS scheme in the previous section achieves message confidentiality and
ciphertext integrity, even though the actual DEM key is not modified in the
course of performing a rotation. Modifying the scheme to ensure the DEM key is
also rotated is non-trivial, requiring either significant communication complexity
(linear in the length of the encrypted message) between the key server and stor-
age, or the introduction of more advanced primitives such as key- homomorphic
PRFs. The question that arises is whether or not changing DEM keys leaves
KSS vulnerable to attacks not captured by the definitions introduced thus far.

BLMR’s brief treatment of updatable encryption attempts to speak to this
issue by requiring that all randomness be refreshed during a rotation. Intuitively
this would seem to improve security, but the goal they formalize for this, detailed
below, is effectively a correctness condition (i.e., it does not seem to account for
adversarial behaviors). It doesn’t help clarify what attacks would be ruled out
by changing DEM keys.

Exfiltration attacks. We identify an issue with our KSS scheme (and the other
schemes in the preceding section) in the form of an attack that is not captured
by the confidentiality definitions introduced so far. Consider our simple KSS
scheme in the context of our motivating key server and storage service application
(described in Sect. 2). Suppose an attacker compromises for some limited time
both the key server and the storage service. Then for each ciphertext (C̃, C)
encrypted under a key k1, the attacker can compute the DEM key y ⊕ χ = x
and exfiltrate it.

Suppose the compromise is cleaned up, and the service immediately generates
new keys and rotates all ciphertexts to new secret keys. For the KSS scheme, the
resulting ciphertexts will still be later decryptable using the previously exfiltrated
DEM keys.

Although a confidentiality issue—the attacker later obtains access to plain-
text data they should not have—our UP-IND security notion (and, by impli-
cation, the weaker BLMR confidentiality notion) do not capture these attacks.
Technically this is because the security game does not allow a challenge cipher-
text to be encrypted to a compromised key (or rotated to one). Intuitively, the
UP-IND notion gives up on protecting the plaintexts underlying such cipher-
texts, as the attacker in the above scenario already had access to the plaintext
in the first phase of the attack.

One might therefore argue that this attack is not very important. All of
the plaintext data eventually at risk of later decryption was already exposed to
the adversary in the first time period because she had access to both the key
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and ciphertexts. But quantitatively there is a difference: for a given ciphertext
an adversary in the first time period can exfiltrate just |x| bits per ciphertext
to later recover as much plaintext as she likes, whereas the trivial attack may
require exfiltrating the entire plaintext.

The chosen-message attack game of UP-IND does not capture different time
periods in which the adversary knows plaintexts in the first time period but
“forgets them” in the next. One could explicitly model this, perhaps via a two-
stage game with distinct adversaries in each stage, but such games are complex
and often difficult to reason about (cf., [RSS11]). We instead develop what we
believe is a more intuitive route that asks that the re-encryption of a cipher-
text should leak nothing about the ciphertext that was re-encrypted. We use
an indistinguishability-style definition to model this. The interpretation of our
definition is that any information derivable from a ciphertext (and its secret key)
before a re-encryption isn’t helpful in attacking the re-encrypted version.

Re-encryption indistinguishability. We formalize this idea via the game shown
in Fig. 5. The adversary is provided with a left-or-right re-encryption oracle,
ReLR, instead of the usual left-or-right encryption oracle, in addition to the
usual collection of compromised keys, a re-encryption oracle, encryption oracle,
and rekey token generation oracle. We assume that the adversary always submits
ciphertext pairs such that |C0| = |C1|.

UP-REENC

b ←$ {0, 1}
k1, . . . , kt+κ ←$KeyGen()

b
′ ←$ AO

(kt+1, . . . , kt+κ)

return (b
′
= b)

Enc(i, m)

return Enc(ki, m)

ReKeyGen(i, j, C̃)

if InvalidRK(i, j, C̃) then return ⊥
Δi,j,C̃ ←$ReKeyGen(ki, kj , C̃)

return Δi,j,C̃

ReEnc(i, j, (C̃, C))

Δi,j,C̃ ←$ReKeyGen(ki, kj , C̃)

C
′
= (C̃

′
, C

′
) ← ReEnc(Δi,j,C̃ , (C̃, C))

if InvalidRE(i, j, C̃) then return C̃
′

else return C
′

ReLR(i, j, C0, C1)

if j > t or |C0| 	= |C1| then return ⊥
for β ∈ {0, 1} do

Δi,j,C̃β
←$ReKeyGen(ki, kj , C̃β)

C
′
β ← ReEnc(Δi,j,C̃β

, Cβ)

if C
′
β = ⊥ then return ⊥

return C
′
b

Fig. 5. The game used to define re-encryption indistinguishability.

To avoid trivial wins, the game must disallow the adversary from simply
re-encrypting the challenge to a corrupted key. Hence we define a DerivedReLR
predicate, which is identical to the DerivedLR predicated defined in Sect. 3 for
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UP-IND security, except that it uses the ReLR challenge oracle. We give it in
full detail in the next definition.

Definition 6 (ReLR-derived headers). We recursively define the function
DerivedReLR(i, C̃) to output true iff C̃ �= ε and any of the following conditions
hold:

– C̃ was the ciphertext header output in response to a query ReLR(i, C0, C1).
– C̃ was the ciphertext header output in response to a query ReEnc(j, i, C ′) and

DerivedReLR(j, C̃ ′) = true.
– C̃ is the ciphertext header output by running ReEnc(Δj,i,C̃′ , C ′) where Δj,i,C̃′

is the result of a query ReKeyGen(j, i, C ′) for which DerivedReLR(j, C̃ ′) = true.

Then the subroutines InvalidRK, InvalidRE used in the game output true if
DerivedReLR(i, C̃) outputs true and j > t. We associate to an updatable encryp-
tion scheme Π, UP-REENC adversary A, and parameters κ, t the advantage
measure:

Advup-reenc
Π,κ,t (A) = 2 · Pr

[
UP-REENCA

Π,κ,t ⇒ true
] − 1 .

Informally, an updatable encryption scheme is UP-REENC secure if no adversary
can achieve advantage far from zero given reasonable resources (run time, queries,
and number of target keys).

Notice that exfiltration attacks as discussed informally above would not apply
to a scheme that meets UP-REENC security. Suppose otherwise, that the exfil-
tration still worked. Then one could build an UP-REENC adversary that worked
as follows. It obtains two encryptions of different messages under a compromised
key, calculates the DEM key (or whatever other information is useful for later
decryption) and then submits the ciphertexts to the ReLR oracle, choosing as
target a non-compromised key (j ≤ t). Upon retrieving the ciphertext, it uses
the DEM key to decrypt, and checks which message was encrypted. Of course
our notion covers many other kinds of attacks, ruling out even re-encryption
that allows a single bit of information to leak.

BLMR re-encryption security. BLMR introduced a security goal that we will call
basic re-encryption indistinguishability.1 In words, it asks that the distribution
of a ciphertext and its re-encryption should be identical to the distribution of
a ciphertext and a re-encryption of a distinct ciphertext of the same message.
More formally we have the following experiment, parameterized by a bit b and
message m.

1 BLMR called this ciphertext independence, but we reserve that terminology for
schemes that do not require ciphertexts during token generation as per Sect. 2.
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UP-REENC0b,m

k0, k1 ←$KeyGen()

for i ∈ [0, 1] do

Ci ←$ Enc(ki, m)

Δ0,1,C̃i
←$ ReKeyGen(k0, k1, C̃i)

C
′
i ←$ ReEnc(Δ1,0,C̃i

, Ci)

return (C1, C
′
b)

Then BLMR require that for all m and all ciphertext pairs (C,C ′)

|Pr[UP-REENC00,m ⇒ (C,C ′)] − Pr[UP-REENC01,m ⇒ (C,C ′)]| = 0

where the probabilities are over the coins used in the experiments.
This goal misses a number of subtleties which are captured by our defini-

tion. Our definition permits the adversary, for example, to submit any pair of
ciphertexts to the ReLR oracle. This includes ciphertexts which are encryptions
of distinct messages, and even maliciously formed ciphertexts which may not
even decrypt correctly. It is simple to exhibit a scheme that meets the BLMR
notion but trivially is insecure under ours.2

On the other hand, suppose a distinguisher exists that can with some proba-
bility ε distinguish between the outputs of UP-REENC01,m and UP-REENC00,m

for some m. Then there exists an adversary against our UP-REENC notion
which achieves advantage ε. This can be seen by the following simple argu-
ment. The adversary gets C ←$Enc(1,m), C ′ ←$Enc(1,m) and submits the tuple
(1, 2, C, C ′) to its ReLR oracle and receives a re-encryption of one of the cipher-
texts, C∗. The adversary then runs the distinguisher on (C,C∗) and outputs
whatever the distinguisher guesses. If the distinguisher is computationally effi-
cient, then so too is the UP-REENC adversary.

6 Revisiting the BLMR Scheme

The fact that the simple KEM/DEM schemes of Sect. 4 fail to meet re-encryption
security begs the question of finding new schemes that achieve it, as well as
UP-IND and UP-INT security. Our starting point is the BLMR construction
of an updatable encryption from key-homomorphic PRFs. Their scheme does
not (nor did it attempt to) provide integrity guarantees, and so trivially does
not meet UP-INT. But before seeing how to adapt it to become suitable as
an updatable AE scheme, including whether it meets our stronger notions of
UP-IND and UP-REENC security, we first revisit the claims of UP-IND-BI
security from [BLMR15].

As mentioned in the introduction, BLMR claim that the scheme can be shown
secure, and sketch a proof of UP-IND-BI security. Unfortunately the proof sketch

2 Such a scheme can be constructed by adding a redundant ciphertext bit to an existing
UP-IND-secure scheme, with the redundant bit being randomly generated during
encryption and preserved across re-encryptions.
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contains a bug, as we explain below. Interestingly revelation of this bug does
not lead to a direct attack on the scheme, and at the same time we could not
determine if the proof could be easily repaired. Instead we are able to show that
a proof is unlikely to exist.

Our main result of this section is the following: giving a proof showing the
BLMR UP-IND-BI security would imply the existence of a reduction show-
ing that (standard) IND-CPA security implies circular security [BRS03,CL01]
for a simple KEM/DEM style symmetric encryption scheme. The latter seems
quite unlikely given the known negative results about circular security [ABBC10,
CGH12], suggesting that the BLMR scheme is not likely to be provably secure.

First we recall some basic tools that BLMR use to build their scheme.

Definition 7 (Key-homomorphic PRF [BLMR15]). Consider an effi-
ciently computable function F : K × X → Y such that (K,⊕) and (Y,⊗) are
both groups. We say that the tuple (F,⊕,⊗) is a key-homomorphic PRF if the
following properties hold:

1. F is a secure pseudorandom function.
2. For every k1, k2 ∈ K and every x ∈ X , F (k1, x) ⊗ F (k2, x) = F (k1 ⊕ k2, x).

A simple example in the ROM is the function F (k, x) = H(x)k where Y = G

is a group in which the decisional Diffie–Hellman assumption holds.
As an application of key-homomorphic PRFs, BLMR proposed the follow-

ing construction. The construction follows a similar approach to the AE-hybrid
scheme, but by using a key-homomorphic PRF in place of regular encryption
the data encryption key can also be rotated.

Definition 8 (BLMR scheme). Let π be a symmetric-key IND-CPA encryp-
tion scheme π = (KG, E ,D). Furthermore, let F : K × X → Y be a key-
homomorphic PRF where (K,+) and (Y,+) are groups.

The BLMR scheme is the tuple of algorithms (KeyGen, Enc, ReKeyGen,
ReEnc, Dec) defined as follows:

– KeyGen(): returns k ← KG().
– Enc(k,m): samples a random x ←$ K and returns C̃ = E(k, x), and C =

(m1 + F (x, 1), . . . ,m� + F (x, �)).
– ReKeyGen(k1, k2, C̃): computes x = D(k1, C̃), samples a random x′ ←$ K and

returns Δ1,2,C̃ = (C̃ ′ = E(k2, x′), x′ − x).

– ReEnc(Δ1,2,C̃ , (C̃, C)): parses token as Δ1,2,C̃ = (C̃ ′, y), computes C
′
= (C1+

F (y, 1), . . . C� + F (y, l)) and returns (C̃ ′C
′
).

– Dec(k, (C̃, C)): computes x = D(C̃) and returns m = (C1 − F (x, 1), . . . C� −
F (x, l)).

Note that encryption here essentially performs a key wrapping step followed
by CTR mode encryption using the wrapped key x and PRF F .
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6.1 Negative Result About Provable UP-IND Security of BLMR

BLMR sketch a proof for the security of this construction in the UP-IND-BI
model (as we refer to it). However, the proof misses a subtle point: the interac-
tion with the ReKeyGen oracle behaves similarly to a decryption oracle and the
informal argument given that the IND-CPA security of the KEM is sufficient
to argue security is wrong. In fact, the ReCrypt scheme seems unlikely to be
provably secure even in our basic security model. To argue this, we show that
proving security of the BLMR scheme implies the 1-circular security of a specific
KEM/DEM construction. Figure 6 depicts the security game capturing a simple
form of 1-circular security for an encryption scheme π = (KG, E ,D).

While our main result here (Theorem 6), can be stated for the BLMR scheme
as described earlier, for the sake of simplicity we instead give the result for the
special case of using a simple one-time pad DEM instead of the key-homomorphic
PRF. This is a trivial example of what BLMR call a key-homomorphic PRG,
and their theorem statement covers this construction as well. We will show that
proving security for this special case is already problematic, and this there-
fore suffices to call into question their (more general) theorem. Thus encryption
becomes Enc(k,m) = E(k, r), r ⊕ m where E is an IND-CPA secure KEM. We
assume |m| = n. We then have ReKeyGen(k1, k2, C̃) = (E(k2, r′), r′ ⊕ D(k1, C̃)).
We have the following theorem:

Theorem 6. If one can reduce the ReCrypt UP-IND-BI-security to the IND-
CPA security of E, then one can show a reduction that Enc is 1-circular secure
assuming E is IND-CPA.

Proof. We start by introducing a slight variant of E , denoted E , shown in Fig. 6.
It adds a bit to the ciphertext3 that is read during decryption: if the bit is 1

Game 1-circular

b ←$ {0, 1}
k ←$ KG()

if b = 1 then

C ←$ Enc(k, k)

else

U ←$ {0, 1}n

C ←$ Enc(k, U)

b
′ ←$ A(C)

return (b = b
′
)

E(k, m)

return E(k, m)‖ 0

D(k, C‖ b)

if (b = 0) then

return D(k, C)

else

return k ⊕ D(k, C)

Fig. 6. Left: The 1-circular security game. Right: Definition of E , D used in the proof
of Theorem 6.

3 Notice that this scheme is not tidy in the sense of [NRS14]. While that doesn’t
affect the implications of our analysis—BLMR make no assumptions about tidiness—
finding a tidy counter-example is an interesting open question.
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BLR,ReKeyGen

U ←$ {0, 1}n

(C̃‖0, C) ←$LR(1, U, 0
n
)

(C̃
′‖0, C

′
) ←$ReKeyGen(1, 1, C̃‖ 1)

b
′ ←$ A(C̃

′‖0, C + C
′
)

return b
′

Fig. 7. Adversary B for UP-IND using as a subroutine the adversary A attacking
1-circular security of EncBad.

then decryption outputs the secret key xor’d with the plaintext. Let EncBad
be the same as Enc above but using E , i.e., EncBad(k,m) = E(k, r), r ⊕ m and
ReKeyGenBad(k1, k2, C) = E(k2, r′), r′ ⊕ D(k1, C).

If E is IND-CPA then E is as well. Thus if E is IND-CPA, then the security
claim of BLMR implies that EncBad is UP-IND-BI. We will now show that
UP-IND-BI security of EncBad implies the 1-circular security of EncBad. In turn
it’s easy to see that if EncBad is 1-circular secure then so too is Enc, and, putting
it all together, the claim of BLMR implies a proof that IND-CPA of E gives 1-
circular security of Enc.

It remains to show that UP-IND-BI security implies EncBad 1-circular secu-
rity. Let A be a 1-circular adversary against EncBad. Then we build an adversary
B against the UP-IND security of EncBad. It is shown in Fig. 7. The adversary
makes an LR query on a uniform message and the message 0n. If the UP-IND-BI
challenge bit is 1 then it gets back a ciphertext C1 = (E(k1, r)‖0, r ⊕ U) and if
it is 0 then C0 = (E(k1, r)‖0, r). Next it queries ReKeyGen oracle on the first
component of the returned ciphertext but with the trailing bit switched to 1. It
asks for a rekey token for rotating from k1 back to k1. The value returned by
this query is equal to E(k1, r′)‖0, r′ ⊕ k1 ⊕ r. By XOR’ing the second compo-
nent with the second component returned from the LR query the adversary gets
finally a ciphertext that is, in the left world, the encryption of k1 under itself
and, in the right world, the encryption of a uniform point under k1. Adversary
B runs a 1-circular adversary A on the final ciphertext and outputs whatever A
outputs. �	

The above result uses 1-circular security for simplicity of presentation, but
one can generalize the result to longer cycles by making more queries.

The result is relative, only showing that a proof of BLMR’s claim implies
another reduction between circular security and IND-CPA security for the par-
ticular KEM/DEM scheme Enc above. It is possible that this reduction exists,
however it seems unlikely. Existing counter-examples show IND-CPA schemes
that are not circular-secure [KRW15]. While these counter-examples do not have
the same form as the specific scheme under consideration, it may be that one
can build a suitable counter-example with additional effort.
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7 An Updatable AE Scheme with Re-encryption
Indistinguishability

We first point out that one can avoid the issues raised in Sect. 6 by replacing
the IND-CPA KEM with a proper AE scheme. This does not yet, however,
address integrity of the full encryption scheme. To provide integrity overall, we
can include a hash of the message in the ciphertext header. However, to prevent
this from compromising confidentiality during re-keying, we further mask the
hash by an extra PRF output.

This amended construction—which we refer to as ReCrypt—is detailed in
Fig. 8. It uses an AE scheme π = (KG, E ,D), a key-homomorphic PRF F :
K × X → Y, and a hash function h : {0, 1}∗ → Y.

In the remainder of this section we show that the new scheme meets our
strongest security notions for updatable encryption. We then assess the viabil-
ity of using this scheme in practice, discussing how to instantiate F for high
performance and reporting on performance of the full scheme.

7.1 Security of ReCrypt

We state three security theorems for ReCrypt: UP-IND, UP-INT, and
UP-REENC notions (proofs found in the full version). The proof of UP-INT
relies on the collision resistance of the hash h, while the other two proofs

KeyGen()

k ←$ KG()

return k

Enc(k, m)

x, y ←$ K
χ = x + y

τ = h(m) + F (x, 0)

C̃ = E(k, (χ, τ))

for 1 ≤ l ≤ �

Cl = ml + F (x, l)

return (C̃, C = (y, C1, . . . , C�))

ReKeyGen(ki, kj , C̃)

(χ, τ) = D(ki, C̃)

if (χ, τ) =⊥ return ⊥
x

′
, y

′ ←$ K
χ

′
= χ + x

′
+ y

′

τ
′
= τ + F (x

′
, 0)

C̃
′ ←$ E(kj , (χ

′
, τ

′
))

return Δi,j,C̃ = (C̃
′
, x

′
, y

′
)

ReEnc(Δi,j,C̃ , (C̃, C))

(C̃
′
, x

′
, y

′
) = Δi,j,C̃

y = C0

for 1 ≤ l ≤ �

C
′
l = Cl + F (x

′
, l)

return (C̃
′
, C

′
= (y + y

′
, . . . , C

′
�))

Dec(k, (C̃, C))

(χ, τ) ←$ D(k, C̃)

if (χ, τ) =⊥ return ⊥
y = C0

for 1 ≤ l ≤ �

ml = Cl − F (χ − y, l)

if h(m) + F (χ − y, 0) = τ then

return m = (m1, . . . , m�)

else

return ⊥

Fig. 8. The ReCrypt scheme.
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do not. For simplicity, and because we will later instantiate the PRF F in
the Random Oracle Model (ROM), we model h as a random oracle through-
out our analysis. This modelling of h could be avoided using the approach of
Rogaway [Rog06], since concrete collision-producing adversaries can be be
extracted from our proofs. Note also that the almost key-homomorphic PRF
construction in the standard model presented by BLMR would not achieve
UP-REENC since the number of re-encryptions is leaked by the ciphertext,
allowing an adversary to distinguish two re-encryptions.

Theorem 7 (UP-IND security of ReCrypt). Let π = (KG, E ,D) be an AE
scheme, F : K × X → Y be a key-homomorphic PRF, and let Π be the ReCrypt
scheme as depicted in Fig. 8.

Then for any adversary A against Π, there exist adversaries B, C such that

Advup-indΠ,κ,t (A) ≤ 2t · Advaeπ (B) + 2 · AdvprfF (C)

for all κ ≥ 0, t ≥ 1.

Theorem 8 (UP-INT security of ReCrypt). Let π = (KG, E ,D) be an AE
scheme, F : K × X → Y be a key-homomorphic PRF, h be a cryptographic
hash function modelled as a random oracle with outputs in Y, and let Π be the
ReCrypt scheme as depicted in Fig. 8.

Then for any adversary A against Π, there exists an adversary B such that

Advup-intΠ,κ,t (A) ≤ 2t · Advaeπ (B) +
q2 + q2h

|Y| +
q2

|X | · |Y|
for all κ ≥ 0, t ≥ 1, where the adversary makes qh queries to h, and q oracle
queries.

Theorem 9 (UP-REENC security of ReCrypt). Let π = (KG, E ,D) be an AE
scheme, F : K × X → Y be a key-homomorphic PRF, and let Π be the ReCrypt
scheme as depicted in Fig. 8.

Then for any adversary A against Π, there exist adversaries B, C such that

Advup-reencΠ,κ,t (A) ≤ 2t · Advaeπ (B) + 2 · AdvprfF (C)

for all κ ≥ 0, t ≥ 1.

The proofs for UP-IND, UP-INT and UP-REENC follow a similar structure,
proceeding in two phases. In the first phase, the AE security of π is used to show
that the value of x is hidden from an adversary. In the second phase, the PRF
security of F is used to show that outputs are indistinguishable to an adversary
with no knowledge of x. Full proofs are found in the full version.

7.2 Instantiating the Key-Homomorphic PRF

We dedicate the remainder of this section to analysis of ReCrypt for use in practi-
cal scenarios. We delve into the implementation details of the key-homomorphic
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PRF in order to further explore some of the subtle security issues that arise
when instantiating our scheme in practice.

While BLMR construct key-homomorphic PRFs in the standard model, a
more efficient route is to use the classic ROM construction due originally to
Naor, Pinkas, and Reingold [NPR99] in which F (k, x) = k · H(x) where H
is modelled as a random oracle H : X → G and G is a group (now written
additively, since we shall shortly move to the elliptic curve setting) in which
the decisional Diffie–Hellman (DDH) assumption holds.

Instantiation details. We will use (a subgroup of) G = E(Fp), an elliptic curve
over a prime order finite field. However, recall that encryption is done block-wise
as Cl = ml + F (x, l). Implicitly, it is assumed that messages m are already in
the group G. To make a practical scheme for encrypting data represented as
bitstrings, we additionally require an encoding function σ : {0, 1}n → G.

Additionally, the existence of such a function proves useful in the construction
of the PRF: we show how to instantiate the random oracle H using a regular
cryptographic hash function h : {0, 1}∗ → {0, 1}n, modelled as a random oracle,
together with the encoding function. We also use this definition of H for the
instantiation of the random oracle used in the computation of the ciphertext
header, which was needed to provide integrity. However, we add a unique prefix
to inputs to either computation of H to provide separation.

For a suitable message encoding function, we of course require the function
and its inverse to be efficiently computable. However, in addition we also require
the inverse to be uniquely defined. Suppose σ−1 is defined for all P ∈ G; then
there is the possibility of creating a conflict with the integrity requirements. For
example, suppose we have two points P, P ′ such that σ−1(P ) = σ−1(P ′) = m.
Then an adversary can potentially exploit this collision in σ−1 to construct a
forged ciphertext. While this might not threaten the integrity of the plaintext,
it would become problematic for ciphertext integrity.

One solution to this is to add a check to σ to verify that σ(σ−1(P )) = P ,
and return ⊥ if not.

In the following theorem, we prove the security of the ReCrypt scheme when
instantiated with a carefully chosen encoding function, and the Naor-Pinkas-
Reingold PRF.

Theorem 10. Let G = E(Fp) be an elliptic curve of prime order in which
the DDH assumption holds. For n ∈ O(log #G) let the encoding function σ :
{0, 1}n → G be an injective mapping such that for any point P outside of the
range, i.e. P �∈ {σ(x) : x ∈ {0, 1}n}, then σ−1(P ) =⊥.

Let H : {0, 1}n → G be defined as H(x) = σ(h(x)) for a cryptographic hash
function h modelled as a random oracle.

Then F (k, x) = k · H(x) is a key-homomorphic PRF.

By rejecting encoded messages outside of the range of σ, we effectively restrict
σ to be a bijection from {0, 1}n to a subset of G. Given this, it is easy to see
instantiating ReCrypt with this message encoding and key-homomorphic PRF
results in a secure updatable AE scheme as proven above.
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We identified two candidates for the message encoding function. The first
uses rejection sampling, in which a bitstring is first treated as an element of
Fp, with some redundancy, and subsequently mapped to the elliptic curve. If a
matching point cannot be found on the curve, the value is incremented (using
the redundancy) and another attempt is made. Repeating this process results in
a probabilistic method.

Corollary 1. Define the encoding function σ : x �→ E(Fp) mapping bitstrings of
length n to group elements by first equating the bitstring as an element x ∈ Fp.
Let x̄ be the minimum value of the set {x + i · 2n : 0 ≤ i <

⌊
p
2n

⌋} such
that (x̄, y) ∈ E(Fp) for some y. Then define σ(x) to be the point (x̄, ȳ) where
ȳ = min{y, p − y}.

The inverse mapping σ−1(P ) is computed by taking the x-coordinate and
reducing mod 2n. I.e. set x′ = x(P ) mod 2n and verify P �= σ(x′), otherwise
return ⊥.

Then σ satisfies the requirements of Theorem10.

See the full version Theorem 10 and Corollary 1.
As an alternative to rejection sampling, an injective mapping can be used

directly, again first treating the bitstring as an element of Fp. Some examples
include the SWU algorithm [SvdW06], Icart’s function [Ica09], and the Elligator
encoding [BHKL13].

Corollary 2. For a compatible elliptic curve E(Fp), the Elligator function
as defined in [BHKL13] satisfies the requirement of Theorem10 for all m ∈
{0, 1}�log(p−1)−1.

Proof. The Elligator function maps injectively from {1, . . . , p−1
2 } to E(Fp). For

the inverse map, if the returned value is greater than p−1
2 , we return ⊥. �	

7.3 Implementation and Performance

We now provide a concrete instantiation of the ReCrypt scheme using the method
described in Sect. 7.2 and report on the performance of our prototype implemen-
tation. Our goal is assess the performance gap between in-use schemes that do
not meet UP-REENC security, and ReCrypt, which does.

Implementation. We built our reference implementation using the Rust [MKI14]
programming language. This implementation uses Relic [AG], a cryptographic
library written in C, and the GNU multi-precision arithmetic library (GMP).
Our implementation is single-threaded and we measured performance on an Intel
CPU (Haswell), running at 3.8 GHz in turbo mode.

We use secp256k1 [Cer00] for the curve and SHA256 as the hash function
h. The plaintext block length is 31 bytes. We use AES128-GCM for the AE
scheme π.

The Relic toolkit provided a number of different curve options, as well as
access to the low level elliptic curve operations which was essential in our early
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prototyping and testing. However, Relic does not at the time of writing support
curves in Montgomery form, and therefore has an inefficient implementation of
scalar multiplication on Curve25519. Therefore, we choose secp256k1 because
it was the most performant among all curve implementations at our disposal
with (approximately) 128 bits of security. We project that Curve25519 would
offer comparable efficiency, whereas a hand-tuned, optimised variant of a specific
curve would result in a significant speedup.

We use a 31-byte block size with the random sampling encoding algorithm,
resulting in a probability of 1−2−256 to find a valid encoding for each block.

We also experimented with the injective encodings such as the Elligator
encoding [BHKL13]. The mapping did not appear to improve performance,
and moreover is incompatible with secp256k1. Additionally, we do not require
ciphertexts to be indistinguishable from random, one of the key benefits offered
by the Elligator encoding.

When a curve point is serialized, only the x coordinate and the sign of the
y coordinate (1-bit) needs to be recorded (using point compression). Since the
x coordinate requires strictly less than the full 32 bytes, we can serialize points
as 32 byte values. Each 32 byte serialized value represents 31 bytes of plaintext
giving a ciphertext expansion of 3%. Upon deserialization, the y coordinate must
be recomputed. This requires computing a square root, taking approximately
20 µs. Of course this cost can be avoided by instead serializing both x and y
coordinates. This creates a 64 byte ciphertext for each 31 bytes of plaintext
which is an expansion of 106%. We consider that to be unacceptable.

Microbenchmarks. Figure 9 shows wall clock times for ReCrypt operations over
various plaintext sizes. As might be expected given the nature of the crypto-
graphic operations involved, performance is far from competitive with conven-
tional AE schemes. For comparison, AES-GCM on the same hardware platform
encrypts 1 block, 1 KB, 1 MB and 1 GB of plaintext in 15µs, 24 µs, 9 ms, and
11 s, respectively. KSS has performance determined by that of AES-GCM, while
the performance of the ReCrypt scheme is largely determined by the scalar mul-
tiplications required to evaluate the PRF. Across all block sizes there is a 1000x
performance cost to achieve our strongest notion of security.

ReCrypt Time per CPU
Operation 1 block 1KB 1MB 1GB cycles/byte

Encrypt 663 s 10.0ms 9.2 s 2.6 hours 32.4K
ReEnc 302 s 8.8 ms 8.7 s 2.4 hours 30.7K
Decrypt 611 s 9.1 ms 8.6 s 2.4 hours 30.6K

ReKeyGen (total) 450 s 1.96M

Fig. 9. Processing times for ReCrypt operations measured on a 3.8 GHz CPU. 1 block
represents any plaintext ≤31 bytes. Number of iterations: 1000 (for 1 block, 1KB), 100
(for 1MB) and 1 (for 1GB). Cycles per byte given for 1MB ciphertexts.
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Discussion. Given this large performance difference, ReCrypt is best suited to
very small or very valuable plaintexts (ideally, both). Compact and high-value
plaintexts such as payment card information, personally identifiable informa-
tion, and sensitive financial information are likely targets for ReCrypt. If the
plaintext corpus is moderately or very large, cost and performance may prohibit
practitioners from using ReCrypt over more performant schemes like KSS that
give strictly weaker security.

8 Conclusion and Open Problems

We have given a systematic study of updatable AE, providing a hierarchy of
security notions meeting different real-world security requirements and schemes
that satisfy them efficiently. Along the way, we showed the limitations of cur-
rently deployed approach, as represented by AE-hybrid, improved it at low cost
to obtain the KSS scheme meeting our UP-IND and UP-INT notions, identi-
fied a flaw in the BLMR scheme, repaired it, and showed how to instantiate the
repaired scheme in the ROM. Through this, we arrived at ReCrypt, a scheme that
is secure in our strongest security models (UP-IND, UP-INT and UP-REENC).
We implemented ReCrypt and presented basic speed benchmarks for our proto-
type. The scheme is slow compared to the hybrid approaches but offers true key
rotation.

Our work puts updatable AE on a firm theoretical foundation and brings
schemes with improved security closer to industrial application. While there is a
rich array of different security models for practitioners to chose from, it is clear
that achieving strong security (currently) comes at a substantial price. Mean-
while weaker but still useful security notions can be achieved at almost zero cost
over conventional AE. It is an important challenge to find constructions which
lower the cost compared to ReCrypt without reducing security. But it seems that
fundamentally new ideas will be needed here, since what are essentially public
key operations are intrinsic to our construction.

From a more theoretical perspective, it would also be of interest to study the
exact relations between our security notions, in particular whether UP-REENC
is strong enough to imply UP-IND and UP-INT. There is also the question
of whether a scheme that is UP-REENC is necessarily ciphertext-dependent.
Finally, we reiterate the possibility of formulating updatable AE in the nonce-
based setting.
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A Bidirectional Updatable AE

A.1 XOR-KEM: A Bidirectional Updatable AE Scheme

The AE-hybrid and KSS schemes are unidirectional and ciphertext-dependent.
This means that in practice the client must fetch from storage ciphertext head-
ers in order to compute the rekey tokens needed to update individual cipher-
texts. It could be simpler to utilize a ciphertext-independent scheme that has
rekey tokens that work for any ciphertext encrypted with a particular key. This
would make the re-encryption process “non-interactive”, requiring that the key
holder only push a single rekey token to the place where ciphertexts are stored.
Given the obvious performance benefits that such a scheme would have, we also
provide such a scheme, called XOR-KEM. This scheme is exceptionally fast,
and is built from a (non-updatable) AE scheme that is assumed to be secure
against a restricted form of related-key attack (RKA). This latter notion adapts
the Bellare-Kohno RKA-security notions for block ciphers [BK03] to the set-
ting of AE schemes. To the best of our knowledge, this definition is novel, and
RKA secure AE may itself be of independent interest as a primitive. However,
the XOR-KEM scheme cannot meet our integrity notions against an attacker
in possession of compromised keys. (And because of its bidirectionality, XOR-
KEM also provides the counter-example that we used to separate UP-IND-BI
and UP-IND security in Sect. 3.1.)

Let (K, E , D) be an AE scheme. Then we define the ciphertext-independent
scheme, XOR-KEM, as follows:

– KeyGen(): return k ← K
– Enc(k,m): x ← K; C ← (x ⊕ k, E(x,M)); return C
– ReKeyGen(k1, k2): return Δ1,2 = k1 ⊕ k2
– ReEnc(Δ1,2, C = (C0, C1)): C ′ ← (Δ1,2 ⊕ C0, C1); return C ′

– Dec(k,C = (C0, C1)): return D(C0 ⊕ k,C1)

The XOR-KEM scheme has a similar format to the AE-hybrid scheme above.
However, instead of protecting the DEM key x by encrypting it, we instead
XOR it with the secret key k. The resulting scheme becomes a bidirectional,
ciphertext-independent scheme, and one that has extremely high performance
and deployability.

Note that although the value x⊕ k fulfils a similar purpose as the ciphertext
header in AE-hybrid, since this value is not needed in re-keying, it resides in the
ciphertext body.

We provide proofs in the full version that this scheme achieves UP-IND-BI,
and UP-INT-BI. However, the latter only holds when the adversary does not
have access to any corrupted keys, and relies on the AE scheme being secure
against a class of related-key attacks.
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Abstract. At EUROCRYPT 2016, Gay et al. presented the first
pairing-free public-key encryption (PKE) scheme with an almost tight
security reduction to a standard assumption. Their scheme is competitive
in efficiency with state-of-the art PKE schemes and has very compact
ciphertexts (of three group elements), but suffers from a large public key
(of about 200 group elements).

In this work, we present an improved pairing-free PKE scheme with an
almost tight security reduction to the Decisional Diffie-Hellman assump-
tion, small ciphertexts (of three group elements), and small public keys
(of six group elements). Compared to the work of Gay et al., our scheme
thus has a considerably smaller public key and comparable other charac-
teristics, although our encryption and decryption algorithms are some-
what less efficient.

Technically, our scheme borrows ideas both from the work of Gay
et al. and from a recent work of Hofheinz (EUROCRYPT, 2017). The
core technical novelty of our work is an efficient and compact designated-
verifier proof system for an OR-like language. We show that adding such
an OR-proof to the ciphertext of the state-of-the-art PKE scheme from
Kurosawa and Desmedt enables a tight security reduction.

Keywords: Public key encryption · Tight security

1 Introduction

Tight security reductions. We are usually interested in cryptographic
schemes that come with a security reduction to a computational assumption.
A security reduction shows that every attack on the scheme can be translated
into an attack on a computational assumption. Thus, the only way to break the
scheme is to solve an underlying mathematical problem. We are most interested
in reductions to well-investigated, “standard” assumptions, and in reductions

R. Gay—Supported by ERC Project aSCEND (639554).
D. Hofheinz—Supported by DFG grants HO 4534/4-1 and HO 4534/2-2.
L. Kohl—Supported by DFG grant HO 4534/2-2.

c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part III, LNCS 10403, pp. 133–160, 2017.
DOI: 10.1007/978-3-319-63697-9 5



134 R. Gay et al.

that are “tight”. A tight security reduction ensures that the reduction trans-
lates attacks on the scheme into attacks on the assumption that are of similar
complexity and success probability. In other words, the difficulty of breaking the
scheme is quantitatively not lower than the difficulty of breaking the investigated
assumption.

Tight security reductions are also beneficial from a practical point of view.
Indeed, assume that we choose the keylength of a scheme so as to guarantee that
the only way to break that scheme is to break a computational assumption on
currently secure parameters.1 Then, a tight reduction enables smaller keylength
recommendations (than with a non-tight reduction in which, say, the attack on
the assumption is much more complex than the attack on the scheme).

Tightly secure PKE schemes. The focus of this paper are public-key encryp-
tion (PKE) schemes with a tight security reduction. The investigation of this
topic was initiated already in 2000 by Bellare, Boldyreva, and Micali [3]. How-
ever, the first tightly secure encryption scheme based on a standard assumption
was presented only in 2012 [13], and was far from practical. Many more efficient
schemes were proposed [1,2,4,5,10–12,15,19,20] subsequently, but Gay et al. [9]
(henceforth GHKW) were the first to present a pairing-free tightly secure PKE
scheme from a standard assumption. Their PKE scheme has short ciphertexts
(of three group elements), and its efficiency compares favorably with the popular
Cramer-Shoup encryption scheme. Still, the GHKW construction suffers from a
large public key (of about 200 group elements). Figure 1 summarizes relevant
features of selected existing PKE schemes.

|pk | |c| − |m|
3 3 O(Q) 1 LIN = DDH

k + 1 k + 1 O(Q) k LIN k ≥ 1
O(1) O(λ) O(1) 2 LIN
O(λ) 47 O(λ) 2 LIN
O(λ) 12 O(λ) 2 LIN
O(λ) 6k O(λ) k LIN k ≥ 1
2λk 3k O(λ) k LIN k ≥ 1

2k(k + 5) k + 4 O(λ) k LIN k ≥ 2
20 28 O(λ) DCR

6 3 O(λ) 1 LIN = DDH
2k(k + 4) 4k O(λ) k LIN k ≥ 2

Fig. 1. Comparison amongst CCA-secure encryption schemes, where Q is the number
of ciphertexts, |pk | denotes the size (in groups elements) of the public key, and |c|−|m|
denotes the ciphertext overhead, ignoring smaller contributions from symmetric-key
encryption.

1 This is unfortunately different from current practice, which does not take into
account security reductions at all: practical keylength recommendations are such
that known attacks on the scheme itself are infeasible [18].
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Our contribution. In this work, we construct a pairing-free PKE scheme with
an almost2 tight security reduction to a standard assumption (the Decisional
Diffie-Hellman assumption), and with short ciphertexts and keys. Our scheme
improves upon GHKW in that it removes its main disadvantage (of large public
keys), although our encryption and decryption algorithms are somewhat less
efficient than those of GHKW.

Our construction can be seen as a variant of the state-of-the-art Kurosawa-
Desmedt PKE scheme [17] with an additional consistency proof. This consistency
proof ensures that ciphertexts are of a special form, and is in fact very efficient
(in that it only occupies one additional group element in the ciphertext). This
proof is the main technical novelty of our scheme, and is the key ingredient to
enable an almost tight security reduction.

Technical overview. The starting point of our scheme is the Kurosawa-
Desmedt PKE scheme from [17]. In this scheme, public parameters, public keys,
and ciphertexts are of the following form:3

pars = [A ] ∈ G
2×1 for random A ∈ Z

2×1
|G|

pk = [k�
0 A, k�

1 A ] ∈ G × G for random k0,k1 ∈ Z
2
|G|

C =
(
[ c = Ar ], EK(M)

)
for random r ∈ Z|G|,

K = [(k0 + τk1)�Ar],
and τ = H([c]).

(1)

Here, E is the encryption algorithm of a symmetric authenticated encryption
scheme, and H is a collision-resistant hash function.

In their (game-based) proof of IND-CCA security (with one scheme instance
and one challenge ciphertext), Kurosawa and Desmedt proceed as follows: first,
they use the secret key k0,k1 to generate the value K in the challenge ciphertext
from a given [c] = [Ar] (through K = [(k0+τk1)�c]). This enables the reduction
to forget the witness r, and thus to modify the distribution of c. Next, Kurosawa
and Desmedt use the Decisional Diffie-Hellman (DDH) assumption to modify the
setup of c to a random vector not in the span of A. Finally, they argue that this
change effectively randomizes the value K from the challenge ciphertext (which
then enables a reduction to the security of E).

To see that K is indeed randomized, note that once c /∈ span(A), the value
K = [(k0 + τk1)�c] depends on entropy in k0,k1 that is not leaked through pk .
Furthermore, Kurosawa and Desmedt show that even a decryption oracle leaks
no information about that entropy. (Intuitively, this holds since any decryption
query with c ∈ span(A) only reveals information about k0,k1 that is already
contained in pk . On the other hand, any decryption query with c /∈ span(A)

2 Like [5], we call our reduction almost tight, since its loss (of λ) is independent of the
number of challenges and users, but not constant.

3 In this paper, we use an implicit notation for group elements. That is, we write
[x] := gx ∈ G

n for a fixed group generator g ∈ G and a vector x ∈ Z
n
|G|, see [8]. We

also use the shorthand notation [x,y] := ([x], [y]).



136 R. Gay et al.

results in a computed key K that is independently random, and thus will lead
the symmetric authenticated encryption scheme to reject the whole ciphertext.)

An argument of Bellare, Boldyreva, and Micali [3] (which is applied in [3] to
the related Cramer-Shoup encryption scheme) shows that the security proof for
the Kurosawa-Desmedt scheme carries over to a setting with many users. Due
to the re-randomizability properties of the DDH assumption, the quality of the
corresponding security reduction does not degrade in the multi-user scenario.
The security proof of Kurosawa and Desmedt does however not immediately
scale to a larger number of ciphertexts. Indeed, observe that the final argument
to randomize K relies on the entropy in k0,k1. Since this entropy is limited,
only a limited number of ciphertexts (per user) can be randomized at a time.4

First trick: randomize k0. In our scheme, we adapt two existing techniques
for achieving tight security. The first trick, which we borrow from GHKW [9]
(who in turn build upon [5,15]), consists in modifying the secret key k0,k1

first, before randomizing the values K from challenge ciphertexts. Like the orig-
inal Kurosawa-Desmedt proof, our argument starts out by first using k0,k1 to
generate challenge ciphertexts, and then simultaneously randomizing all values c
from challenges (using the re-randomizability of DDH). But then we use another
reduction to DDH, with the DDH challenges embedded into k0 and in all chal-
lenge c, to simultaneously randomize all challenge K at once.

During this last reduction, we will (implicitly) set up k0 = k′
0 + αA⊥ for a

known k′
0, a known A⊥ ∈ Z

2×1
|G| with (A⊥)�A = 0, and an unknown α ∈ Z|G|

from the DDH challenge [α, β, γ]. We can thus decrypt all ciphertexts with c ∈
span(A) (since k�

0 Ar = k′�
0 Ar), and randomize all challenge ciphertexts (since

their c satisfies c /∈ span(A) and thus allows to embed β and γ into c and K,
respectively). However, we will not be able to answer decryption queries with
c /∈ span(A). Hence, before applying this trick, we will need to make sure that
any such decryption query will be rejected anyway.

Second trick: the consistency proof. We do not know how to argue (with
a tight reduction) that such decryption queries are rejected in the original
Kurosawa-Desmedt scheme from (1). Instead, we introduce an additional consis-
tency proof in the ciphertext, so ciphertexts in our scheme now look as follows:

C =
(
[ c = Ar ], π, EK(M)

)
for random r ∈ Z|G|,

K = [(k0 + τk1)�Ar],
and τ = H([c]).

(2)

Here, π is a proof (yet to be described) that shows the following statement:

c ∈ span(A) ∨ c ∈ span(A0) ∨ c ∈ span(A1), (3)

4 We note that a generic hybrid argument shows the security of the Kurosawa-Desmedt
scheme in a multi-ciphertext setting. However, the corresponding security reduction
loses a factor of Q in success probability, where Q is the number of challenge cipher-
texts.
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where A0,A1 ∈ Z
2×1
|G| are different (random but fixed) matrices. Our challenge

ciphertexts will satisfy (3) at all times, even after their randomization.
We will then show that all “inconsistent” decryption queries (with c /∈

span(A)) are rejected with a combination of arguments from GHKW [9] and
Hofheinz [11]. We will proceed in a number of hybrids. In the i-th hybrid, all
challenge ciphertexts are prepared with a value of k0 + Fi(τ|i) instead of k0,
where Fi(τ|i) is a random function applied to the first i bits of τ . Likewise,
in all decryption queries with inconsistent c (i.e., with c /∈ span(A)), we use
k0 +Fi(τ|i). Going from the i-th to the (i + 1)-th hybrid proceeds in a way that
is very similar to the one from GHKW: First, we set up the c value in each
challenge ciphertext to be in span(Aτi+1), where τi+1 is the (i + 1)-th bit of the
respective τ .

Next, we add a dependency of the used k0 on the (i+1)-th bit of τ . (That is,
depending on τi+1, we will use two different values of k0 both for preparing chal-
lenge ciphertexts, and for answering decryption queries.) This is accomplished
by adding random values kΔ with k�

ΔAτi+1 = 0 to k0. Indeed, for challenge
ciphertexts, adding such kΔ values results in the same computed keys K, and
thus cannot be detected. We note however that at this point, we run into a com-
plication: since decryption queries need not have c ∈ span(Aτi+1), we cannot
simply add random values kΔ with k�

ΔAτi+1 = 0 to k0. (This could be detected
in case c /∈ span(Aτi+1).) Instead, here we rely on a trick from [11], and use that
even adversarial c values must lie in span(A) or span(Ab) for b ∈ {0, 1}. (This
is also the reason why we will eventually have to modify and use k1. We give
more details on this step inside.)

Once k0 is fully randomized, the resulting K computed upon decryption
queries with c /∈ span(A) will also be random, and thus any such decryption
query will be rejected. Hence, using the first trick above, security of our scheme
follows.

We finally mention that our complete scheme generalizes to weaker assump-
tions, including the k-Linear family of assumptions (see Fig. 1).

Relation to existing techniques. We borrow techniques from both GHKW [9]
and Hofheinz [11], but we need to modify and adapt them for our strategy in
several important respects. While the argument from [9] also relies on a consis-
tency proof that a given ciphertext lies in one of three linear subspaces (span(A)
or span(Ab)), their consistency proof is very different from ours. Namely, their
consistency proof is realized entirely through a combination of different linear
hash proof systems, and requires orthogonal subspaces span(Ab). This requires a
large number (i.e., 2λ) of hash proof systems, and results in large public keys to
accommodate their public information. Furthermore, the ciphertexts in GHKW
require a larger [c] ∈ G

3k (compared to the Kurosawa-Desmedt scheme), but no
explicit proof π in C This results in ciphertexts of the same size as ours.

On the other hand, [11] presents a scheme with an explicit consistency proof
π for a statement similar to ours (and also deals with the arising technical com-
plications sketched above similarly). But his construction and proof are aimed at
a more generic setting which also accommodates the DCR assumption (both for
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the PKE and consistency proof constructions). As a consequence, his construc-
tion does not modify the equivalent of our secret key k0,k1 at all, but instead
modifies ciphertexts directly. This makes larger public keys and ciphertexts with
more “randomization slots” necessary (see Fig. 1), and in fact also leads to a
more complicated proof. Furthermore, in the discrete-log setting, the necessary
“OR”-style proofs from [11] require pairings, and thus his PKE scheme does as
well. In contrast, our scheme requires only a weaker notion of “OR”-proofs, and
we show how to instantiate this notion without pairings.

Crucial ingredient: efficient pairing-free OR-proofs. In the above argu-
ment, a crucial component is of course a proof π for (3). We present a designated-
verifier proof π that only occupies one group element (in the DDH case) in C.
While the proof nicely serves its purpose in our scheme, we also remark that our
construction is not as general as one would perhaps like: in particular, honest
proofs (generated with public information and a witness) can only be generated
for c ∈ span(A) (but not for c ∈ span(A0) or c ∈ span(A1)).

Our proof system is perhaps best described as a randomized hash proof
system. We will outline a slightly simpler version of the system which only proves
c ∈ span(A) ∨ c ∈ span(A0). In that scheme, the public key contains a value
[k�

y A], just like in a linear hash proof system (with secret key ky) for showing
c ∈ span(A) (see, e.g., [7]). Now given either the secret key ky or a witness r
to the fact that c = Ar, we can compute [k�

y c]. The idea of our system is to
encrypt this value [k�

y c] using a special encryption scheme that is parameterized
over c (and whose public key is also part of the proof system’s public key). The
crucial feature of that encryption scheme is that it becomes lossy if and only if
c ∈ span(A0).

We briefly sketch the soundness of our proof system: we claim that even in
a setting in which an adversary has access to many simulated proofs for valid
statements (with c ∈ span(A) ∪ span(A0)), it cannot forge proofs for invalid
statements. Indeed, proofs with c ∈ span(A) only depend on (and thus only
reveal) the public key [k�

y A]. Moreover, by the special lossiness of our encryption
scheme, proofs with c ∈ span(A0) do not reveal anything about ky. Hence, an
adversary will not gain any information about ky beyond k�

y A. However, any
valid proof for c /∈ span(A) ∪ span(A0) would reveal the full value of ky, and
thus cannot be forged by an adversary that sees only proofs for valid statements.

We remark that our proof system has additional nice properties, including
a form of on-the-fly extensibility to more general statements (and in particular
to more than two “OR branches”. We formalize this type of proof systems as
“qualified proof systems” inside.

Roadmap. After recalling some preliminaries in Sect. 2, we introduce the notion
of designated-verifier proof systems in Sect. 3, along with an instantiation in
Sect. 4. Finally, in Sect. 5, we present our encryption scheme (in form of a key
encapsulation mechanism).
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2 Preliminaries

2.1 Notations

We start by introducing some notation used throughout this paper. First we
denote by λ ∈ N the security parameter. By negl : N → R≥0 we denote a negligi-
ble function. For an arbitrary set B, by x ←R B we denote the process of sampling
an element x from B uniformly at random. For any bit string τ ∈ {0, 1}∗, we
denote by τi the i-th bit of τ and by τ|i ∈ {0, 1}i the bit string comprising the
first i bits of τ .

Let p be a prime, and k, � ∈ N such that � > k. Then for any matrix A ∈ Z
�×k
p ,

we write A ∈ Z
k×k
p for the upper square matrix of A, and A ∈ Z

(�−k)×k
p for the

lower � − k rows of A. With

span(A) := {Ar | r ∈ Z
k
p} ⊂ Z

�
p,

we denote the span of A.
For vectors v ∈ Z

2k
p , by v ∈ Z

k
p we denote the vector consisting of the upper

k entries of v and accordingly by v ∈ Z
k
p we denote the vector consisting of the

lower k entries of v.
As usual by A� ∈ Z

k×�
p we denote the transpose of A and if � = k and A is

invertible by A−1 ∈ Z
�×�
p we denote the inverse of A.

For � ≥ k by A⊥ we denote a matrix in Z
�×(�−k)
p with A�A⊥ = 0 and rank

� − k. We denote the set of all matrices with these properties as

orth(A) := {A⊥ ∈ Z
�×(�−k)
p | A�A⊥ = 0 and A⊥ has rank � − k}.

2.2 Hash Functions

A hash function generator is a probabilistic polynomial time algorithm H that,
on input 1λ, outputs an efficiently computable function H : {0, 1}∗ → {0, 1}λ,
unless domain and co-domain are explicitly specified.

Definition 1 (Collision Resistance). We say that a hash function generator
H outputs collision-resistant functions H, if for all PPT adversaries A and H ←R

H(1λ) it holds

AdvCR
H,A(λ) := Pr

[
x 	= x′ ∧ H(x) = H(x′) | (x, x′) ← A(1λ,H)

] ≤ negl(λ).

We say a hash function is collision resistant if it is sampled from a collision
resistant hash function generator.

Definition 2 (Universality). We say a hash function generator H is univer-
sal, if for every x, x′ ∈ {0, 1}∗ with x 	= x′ it holds

Pr
[
h(x) = h(x′) | h ←R H(1λ)

]
=

1
2λ

.

We say a hash function is universal if it is sampled from a universal hash func-
tion generator.
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Lemma 1 (Leftover Hash Lemma [16]). Let X ,Y be sets, � ∈ N and h : X →
Y be a universal hash function. Then for all X ←R X , U ←R Y and ε > 0 with
log |X | ≥ log |Y| + 2 log ε we have

Δ ((h, h(X)), (h, U)) ≤ 1
ε
,

where Δ denotes the statistical distance.

2.3 Prime-Order Groups

Let GGen be a PPT algorithm that on input 1λ returns a description G =
(G, p, P ) of an additive cyclic group G of order p for a 2λ-bit prime p, whose
generator is P .

We use the representation of group elements introduced in [8]. Namely, for a ∈
Zp, define [a] = aP ∈ G as the implicit representation of a in G. More generally,
for a matrix A = (aij) ∈ Z

�×k
p we define [A] as the implicit representation of A

in G:

[A] :=

⎛

⎝
a11P ... a1kP

a�1P ... a�kP

⎞

⎠ ∈ G
�×k

Note that from [a] ∈ G it is hard to compute the value a if the discrete logarithm
assumption holds in G. Obviously, given [a], [b] ∈ G and a scalar x ∈ Zp, one
can efficiently compute [ax] ∈ G and [a + b] ∈ G.

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH)
assumption from [8].

Definition 3 (Matrix Distribution). Let k, � ∈ N, with � > k and p be a
2λ-bit prime. We call D�,k a matrix distribution if it outputs matrices in Z

�×k
p

of full rank k in polynomial time.

In the following we only consider matrix distributions D�,k, where for all
A ←R D�,k the first k rows of A form an invertible matrix.

The D�,k-Matrix Diffie-Hellman problem is, for a randomly chosen A ←R

D�,k, to distinguish the between tuples of the form ([A], [Aw]) and ([A], [u]),
where w ←R Z

k
p and u ←R Z

�
p.

Definition 4 (D�,k-Matrix Diffie-Hellman D�,k-MDDH). Let D�,k be a
matrix distribution. We say that the D�,k-Matrix Diffie-Hellman (D�,k-MDDH)
assumption holds relative to a prime order group G if for all PPT adversaries A,

Advmddh
G,D�,k,A(λ) : = |Pr[A(G, [A], [Aw]) = 1] − Pr[A(G, [A], [u]) = 1]|

≤ negl(λ),

where the probabilities are taken over G := (G, p, P ) ←R GGen(1λ), A ←R

D�,k,w ←R Z
k
p,u ←R Z

�
p.
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For Q ∈ N, W ←R Z
k×Q
p and U ←R Z

�×Q
p , we consider the Q-fold

D�,k-MDDH assumption, which states that distinguishing tuples of the form
([A], [AW]) from ([A], [U]) is hard. That is, a challenge for the Q-fold D�,k-
MDDH assumption consists of Q independent challenges of the D�,k-MDDH
Assumption (with the same A but different randomness w). In [8] it is shown
that the two problems are equivalent, where the reduction loses at most a factor
� − k.

Lemma 2 (Random self-reducibility of D�,k-MDDH, [8]). Let �, k, Q ∈ N

with � > k and Q > � − k. For any PPT adversary A, there exists an adversary
B such that T (B) ≈ T (A) + Q · poly(λ) with poly(λ) independent of T (A), and

AdvQ-mddh
G,D�,k,A(λ) ≤ (� − k) · Advmddh

G,D�,k,B(λ) +
1

p − 1
.

Here

AdvQ-mddh
G,D�,k,A(λ) := |Pr[A(G, [A], [AW]) = 1] − Pr[A(G, [A], [U]) = 1]| ,

where the probability is over G := (G, p, P ) ←R GGen(1λ), A ←R U�,k,W ←R

Z
k×Q
p and U ←R Z

�×Q
p .

The uniform distribution is a particular matrix distribution that deserves
special attention, as an adversary breaking the U�,k-MDDH assumption can also
distinguish between real MDDH tuples and random tuples for all other possible
matrix distributions.

Definition 5 (Uniform distribution). Let �, k ∈ N, with � ≥ k, and a prime
p. We denote by U�,k the uniform distribution over all full-rank � × k matrices
over Zp. Let Uk := Uk+1,k.

Lemma 3 (D�,k-MDDH ⇒ U�,k-MDDH, [8]). Let D�,k be a matrix distribution.
For any adversary A on the U�,k-distribution, there exists an adversary B on the
D�,k-assumption such that T (B) ≈ T (A) and Advmddh

G,U�,k,A(λ) = Advmddh
G,D�,k,B(λ).

We state a tighter random-self reducibility property for case of the uniform
distribution.

Lemma 4 (Random self-reducibility of U�,k-MDDH, [8]). Let �, k, Q ∈ N

with � > k. For any PPT adversary A, there exists an adversary B such that
T (B) ≈ T (A) + Q · poly(λ) with poly(λ) independent of T (A), and

AdvQ-mddh
G,U�,k,A(λ) ≤ Advmddh

G,U�,k,B(λ) +
1

p − 1
.

We also recall this property of the uniform distribution, stated in [9].

Lemma 5 (Uk-MDDH ⇔ U�,k-MDDH). Let �, k ∈ N, with � > k. For any
adversary A, there exists an adversary B (and vice versa) such that T (B) ≈ T (A)
and Advmddh

G,U�,k,A(λ) = Advmddh
G,Uk,B(λ) .
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In this paper, for efficiency considerations, and to simplify the presentation
of the proof systems in Sect. 3, we are particularly interested in the case k = 1,
which corresponds to the DDH assumption, that we recall here.

Definition 6 (DDH). We say that the DDH assumption holds relative to a
prime order group G if for all PPT adversaries A,

Advddh
G,A(λ) : = |Pr[A(G, [a], [r], [ar]) = 1] − Pr[A(G, [a], [r], [b]| ≤ negl(λ),

where the probabilities are taken over G := (G, p, P ) ←R GGen(1λ), a, b, r
←R Zp.

Note that the DDH assumption is equivalent to D2,1-MDDH, where D2,1 is
the distribution that outputs matrices

(
1
a

)
, for a ←R Zp chosen uniformly at

random.

2.4 Public-Key Encryption

Definition 7 (Public-Key Encryption). A public-key encryption scheme is
a tuple of three PPT algorithms (Gen,Enc,Dec) such that:

Gen(1λ): returns a pair (pk , sk) of a public and a secret key.
Enc(pk ,M): given a public key pk and a message M ∈ M(λ), returns a
ciphertext C.
Dec(pk , sk , C): deterministically decrypts the ciphertext C to obtain a mes-
sage M or a special rejection symbol ⊥.

We say PKE := (Gen,Enc,Dec) is perfectly correct, if for all λ ∈ N,

Pr[Dec(pk , sk ,Enc(pk ,M)) = M ] = 1,

where the probability is over (pk , sk) ←R Gen(1λ) , C ←R Enc(pk ,M).

Definition 8 (Multi-ciphertext CCA security). For any public-key encryp-
tion scheme PKE = (Gen,Enc,Dec) and any stateful adversary A, we define
the following security experiment:

Expcca
PKE,A(λ):

(pk, sk) ←R Gen(1λ)
b ←R {0, 1}
Cenc := ∅
b′ ←R AOenc(·,·),Odec(·)(pk)
if b = b′ return 1
else return 0

Oenc(M0, M1):
if |M0| = |M1|

C ←R Enc(pk , Mb)
Cenc := Cenc ∪ {C}
return C

Odec(C):
if C /∈ Cenc

M := Dec(pk , sk , C)
return M

else return ⊥

We say PKE is IND-CCA secure, if for all PPT adversaries A, the advantage

Advcca
PKE,A(λ) :=

∣
∣
∣
∣Pr[Expcca

PKE,A(λ) = 1] − 1
2

∣
∣
∣
∣ ≤ negl(λ).



Kurosawa-Desmedt Meets Tight Security 143

2.5 Key Encapsulation Mechanism

Instead of presenting an IND-CCA secure encryption scheme directly, we con-
struct a key encapsulation mechanism (KEM) and prove that it satisfies the secu-
rity notion of indistinguishability against constrained chosen-ciphertext attacks
(IND-CCCA) [14]. By the results of [14], together with an arbitrary authen-
ticated symmetric encryption scheme, this yields an IND-CCA secure hybrid
encryption.5 Roughly speaking, the CCCA security experiment, in contrast to
the CCA experiment, makes an additional requirement on decryption queries.
Namely, in addition to the ciphertext, the adversary has to provide a predicate
implying some partial knowledge about the key to be decrypted. The idea of
hybrid encryption and the notion of a KEM was first formalized in [6].

Definition 9 (Key Encapsulation Mechanism). A key encapsulation mech-
anism is a tuple of PPT algorithms (KGen,KEnc,KDec) such that:

KGen(1λ): generates a pair (pk , sk) of keys.
KEnc(pk): on input pk, returns a ciphertext C and a symmetric key K ∈
K(λ), where K(λ) is the key-space.
KDec(pk , sk , C): deterministically decrypts the ciphertext C to obtain a key
K ∈ K(λ) or a special rejection symbol bot.

We say (Gen,Enc,Dec) is perfectly correct, if for all λ ∈ N,

Pr[KDec(pk , sk , C) = K] = 1,

where (pk , sk) ←R Gen(1λ), (K,C) ←R KEnc(pk) and the probability is taken
over the random coins of Gen and KEnc.

As mentioned above, for constrained chosen ciphertext security, the adversary
has to have some knowledge about the key up front in order to make a decryption
query. As in [14] we will use a measure for the uncertainty left and require it to
be negligible for every query, thereby only allowing decryption queries where the
adversary has a high prior knowledge of the corresponding key. We now provide
a formal definition.

Definition 10 (Multi-ciphertext IND-CCCA security). For any key
encapsulation mechanism KEM = (KGen,KEnc,KDec) and any stateful
adversary A, we define the following experiment:

Expccca
KEM,A(λ):

(pk, sk) ←R KGen(1λ)
b ←R {0, 1}
Cenc := ∅
b′ ←R AOenc,Odec(·,·)(pk)
if b = b′ return 1
else return 0

Oenc:
K0 ←R K(λ)
(C, K1) ←R KEnc(pk)
Cenc := Cenc ∪ {C}
return (C, Kb)

Odec(predi, Ci):
Ki := KDec(pk , sk , Ci)
if Ci /∈ Cenc and
if predi(Ki) = 1

return Ki

else return ⊥

5 The corresponding reduction is tight also in the multi-user and multi-ciphertext
setting. Suitable (one-time) secure symmetric encryption schemes exist even uncon-
ditionally [14].
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Here predi : K(λ) �→ {0, 1} denotes the predicate sent in the i-th decryption
query, which is required to be provided as the description of a polynomial time
algorithm (which can be enforced for instance by requiring it to be given in form
of a circuit). Let further Qdec be the number of total decryption queries made by
A during the experiment, which are independent of the environment (hereby we
refer to the environment the adversary runs in) without loss of generality. The
uncertainty of knowledge about the keys corresponding to decryption queries is
defined as

uncertA(λ) :=
1

Qdec

Qdec∑

i=1

PrK←RK(λ)[predi(K) = 1].

We say that the key encapsulation mechanism KEM is IND-CCCA secure,
if for all PPT adversaries with negligible uncertA(λ), for the advantage we have

Advccca
KEM,A(λ) :=

∣
∣
∣
∣Pr[Expccca

KEM,A(λ) = 1] − 1
2

∣
∣
∣
∣ ≤ negl(λ).

Note that the term uncertA(λ) in the final reduction (proving IND-CCA
security of the hybrid encryption scheme consisting of an unconditionally one-
time secure authenticated encryption scheme and an IND-CCCA secure KEM)
is statistically small (due to the fact that the symmetric building block is uncon-
ditionally secure). Thus we are able obtain a tight security reduction even if
the term uncertA(λ) is multiplied by the number of encryption and decryption
queries in the security loss (as it will be the case for our construction).

3 Qualified Proof Systems

The following notion of a proof system is a combination of a non-interactive
designated verifier proof system and a hash proof system. Our combined proofs
consist of a proof Π and a key K, where the key K can be recovered by the
verifier with a secret key and the proof Π. The key K can be part of the key in
the key encapsulation mechanism presented later and thus will not enlarge the
ciphertext size.

Definition 11 (Proof system). Let L = {Lpars} be a family of languages
indexed by the public parameters pars, with Lpars ⊆ Xpars and an efficiently
computable witness relation R. A proof system for L is a tuple of PPT algorithms
(PGen,PPrv,PVer,PSim) such that:

PGen(1λ): generates a public key ppk and a secret key psk.
PPrv(ppk , x, w): given a word x ∈ L and a witness w with R(x,w) = 1,
deterministically outputs a proof Π and a key K.
PVer(ppk , psk , x,Π): on input ppk, psk, x ∈ X and Π, deterministically
outputs a verdict b ∈ {0, 1} and in case b = 1 additionally a key K, else ⊥.
PSim(ppk , psk , x): given the keys ppk, psk and a word x ∈ X , deterministi-
cally outputs a proof Π and a key K.
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The following definition of a qualified proof system is a variant of “benign
proof systems” as defined in [11] tailored to our purposes. Compared to benign
proof systems, our proof systems feature an additional “key derivation” stage,
and satisfy a weaker soundness requirement (that is of course still sufficient for
our purpose). We need to weaken the soundness condition (compared to benign
proof systems) in order to prove soundness of our instantiation.

We will consider soundness relative to a language Lsnd ⊇ L. An adversary
trying to break soundness has access to an oracle simulating proofs and keys for
statements randomly chosen from Lsnd \ L and a verification oracle, which only
replies other than ⊥ if the adversary provides a valid proof and has a high a-
priori knowledge of the corresponding key. The adversary wins if it can provide
a valid verification query outside Lsnd. The adversary loses immediately if it
provides a valid verification query in Lsnd \ L. This slightly weird condition is
necessitated by our concrete instantiation which we do not know how to prove
sound otherwise. We will give more details in the corresponding proof in Sect. 4.2.
The weaker notion of soundness still suffices to prove our KEM secure, because
we employ soundness at a point where valid decryption queries in Lsnd \ L end
the security experiment anyway.

Definition 12 (Qualified Proof System). Let PS = (PGen,PPrv,
PVer,PSim) be a proof system for a family of languages L = {Lpars}. Let
Lsnd = {Lsnd

pars} be a family of languages, such that Lpars ⊆ Lsnd
pars . We say that

PS is Lsnd-qualified, if the following properties hold:

Completeness: For all possible public parameters pars, for all words x ∈ L,
and all witnesses w such that R(x,w) = 1, we have

Pr[PVer(ppk , psk , x,Π) = (1,K)] = 1,

where the probability is taken over (ppk , psk) ←R PGen (1λ) and (Π,K) :=
PPrv(ppk, x, w).
Uniqueness of the proofs: For all possible public parameters pars, all key
pairs (ppk , psk) in the output space of PGen (1λ), and all words x ∈ L, there
exists at most one Π such that PVer(ppk , psk , x,Π) outputs the verdict 1.
Perfect zero-knowledge: For all public parameters pars, all key pairs
(ppk , psk) in the range of PGen(1λ), all words x ∈ L, and all witnesses
w with R(x,w) = 1, we have

PPrv(ppk , x, w) = PSim(ppk , psk , x).

Constrained Lsnd-soundness: For any stateful PPT adversary A, we con-
sider the following soundness game (where PSim and PVer are implicitly
assumed to have access to ppk):
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Expcsnd
PS,A(λ):

(ppk , psk) ←R PGen(1λ)
AOsim,Over(·,·,·)(1λ, ppk)
if Over returned lose

return 0
if Over returned win

return 1
return 0

Osim:
x ←R Lsnd\L
(Π, K) ← PSim(psk , x)
return (x, Π, K)

Over(x, Π, pred):
(v, K) := PVer(psk , x, Π)
if v = 1 and pred(K) = 1

if x ∈ L
return K

else if x ∈ Lsnd

return lose and
abort

else return win and
abort

else return ⊥

Let Qver be the total number of oracle queries to Over and predi be the predi-
cate submitted by A on the i-th query. The adversary A loses and the experiment
aborts if the verification oracle answers lose on some query of A. The adversary
A wins, if the oracle Over returns win on some query (x,Π, pred) of A with
x /∈ Lsnd and the following conditions hold:

– The predicate corresponding to the i-th query is of the form predi : K∪{⊥} →
{0, 1} with predi(⊥) = 0 for all i ∈ {1, . . . , Qver}.

– For all environments E having at most running time of the described con-
strained soundness experiment, we require that

uncertsndA (λ) :=
1

Qver

Qver∑

i=1

PrK∈K[predi(K) = 1 when A runs in E ]

is negligible in λ.
Note that in particular the adversary cannot win anymore after the verifica-
tion oracle replied lose on one of its queries, as in this case the experiment
directly aborts and outputs 0. Let Advcsnd

Lsnd,PS,A(λ) := Pr[Expcsnd
PS,A(λ) = 1],

where the probability is taken over the random coins of A and Expcsnd
PS,A. Then

we say constrained Lsnd-soundness holds for PS, if for every PPT adversary
A, Advcsnd

Lsnd,PS,A(λ) = negl(λ).

To prove security of the key encapsulation mechanism later, we need to switch
between two proof systems. Intuitively this provides an additional degree of
freedom, allowing to randomize the keys of the challenge ciphertexts gradually.
To justify this transition, we introduce the following notion of indistinguishable
proof systems.

Definition 13 (Lsnd-indistinguishability of two proof systems). Let L ⊆
Lsnd be (families of) languages. Let PS0 := (PGen0,PPrv0,PVer0, PSim0)
and PS1 := (PGen1,PPrv1,PVer1,PSim1) proof systems for L. For every
adversary A, we define the following experiment (where PSimb and PVerb are
implicitly assumed to have access to ppk):
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ExpPS−ind

Lsnd,PS0,PS1,A(λ):

b ←R {0, 1}
(ppk , psk) ← PGenb(1

λ)

b′ ← AOb
sim,Ob

ver(·,·)(ppk)
if b = b′ return 1
else return 0

Ob
sim:

x ←R Lsnd\L
(Π, K) ← PSimb(psk , x)
return (x, Π, K)

Ob
ver(x, Π, pred):

(v, K) := PVerb(psk , x, Π)
if v = 1 and pred(K) = 1
and x ∈ Lsnd

return K
else return ⊥

As soon as A has submitted one query which is replied with lose by the verification
oracle, the experiment aborts and outputs 0.

We define the advantage function

AdvPS-ind
Lsnd,PS0,PS1,A(λ) :=

∣
∣
∣
∣Pr

[
ExpPS−ind

Lsnd,PS0,PS1,A(λ) = 1
]

− 1
2

∣
∣
∣
∣ .

We say PS0 and PS1 are Lsnd-indistinguishable, if for all (unbounded) algo-
rithms A the advantage AdvPS-ind

L,PS0,PS1,A(λ) is negligible in λ.

Note that we adopt a different (and simpler) definition for the verification
oracle in the indistinguishability game than in the soundness game, in particular
it leaks more information about the keys. We can afford this additional leakage
for indistinguishability, but not for soundness.

In order to prove security of the key encapsulation mechanism presented
in Sect. 5, we will require one proof system and the existence of a second proof
system it can be extended to. We capture this property in the following definition.

Definition 14 (L̃snd-extensibility of a proof system). Let L ⊆ Lsnd ⊆ L̃snd

be three (families of) languages. An Lsnd-qualified proof system PS for language
L is said to be L̃snd-extensible if there exists a proof system P̃S for L that
complies with L̃snd-constrained soundness and such that PS and P̃S are Lsnd-
indistinguishable.

4 The OR-Proof

In the following sections we explain how the public parameters parsPS are sam-
pled, how our system of OR-languages is defined and how to construct a qual-
ified proof system complying with constrained soundness respective to these
languages.

4.1 Public Parameters and the OR-Languages

First we need to choose a k ∈ N depending on the assumption we use to prove
security of our constructions. We invoke GGen(1λ) to obtain a group description
G = (G, p, P ) with |G| ≥ 22λ. Next we sample matrices A ←R D2k,k and
A0 ←R U2k,k, where we assume without loss of generality that A0 is full rank.
Let H0 and H1 be universal hash function generators returning functions of
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the form h0 : Gk+1 → Z
k
p and h1 : G2 → Zp respectively. Let h0 ←R H0 and

h1 ←R H1.
Altogether we define the public parameters for our proof system to comprise

parsPS := (k,G, [A], [A0], h0, h1).

We assume from now that all algorithms have access to parsPS without explicitly
stating it as input.

Additionally let A1 ∈ Z
2k×k
p be a matrix distributed according to U2k,k with

the restriction A0 = A1. Then we define the languages

L : = span([A]),
Lsnd : = span([A]) ∪ span([A0]),

L̃snd : = span([A]) ∪ span([A0]) ∪ span([A1]).

A crucial building block for the key encapsulation mechanism will be a proof
system PS that is Lsnd-qualified and L̃snd-extensible. We give a construction
based on D2k,k-MDDH in the following section.

4.2 A Construction Based on MDDH

The goal of this section is to construct an Lsnd-qualified proof system for L
based on D2k,k-MDDH for any matrix distribution D2k,k (see Definition 3). To
this aim we give a proof system PrePS := (PrePGen, P rePPrv, P rePVer,
P rePSim) for L in Fig. 2.

In case k = 1 this is sufficient, namely setting PGen := PrePGen, PPrv :=
PrePPrv, PVer := PrePVer and PSim := PrePSim, we can prove that PS :
= (PGen,PPrv,PVer,PSim) is Lsnd-qualified under the DDH assumption.
For the case k > 1 we give the construction of PS in the full version.

As a compromise between generality and readability, we decided to give the
proof in full detail for k = 1 (i.e. the DDH case), while sticking to the general
matrix notation. As for k = 1 a vector in Z

k
p = Z

1
p is merely a single element,

we do not use bold letters to denote for instance x and r in Zp (other than in
Fig. 2).

Theorem 1. If the DDH assumption holds in G, and h0, h1 are universal hash
functions, then for k = 1 the proof system PS := PrePS described in Fig. 2 is
Lsnd-qualified. Further, the proof system PS is L̃snd-extensible.

Proof. Completeness and perfect zero-knowledge follow straightforwardly from
the fact that for all r ∈ Zp, [KxA]r = Kx[Ar] and [KyA]r = Ky[Ar].

Uniqueness of the keys follows from the fact that the verification algorithm
computes exactly one proof [π] (plus the corresponding key [κ]), and aborts if
[π] 	= [π�].

We prove in Lemm 6 that PS satisfies constrained Lsnd-soundness.
In the full version we prove that PS is L̃snd-extensible. ��
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PrePGen(1λ)

Kx ←R Z
(k+1)×2k
p

Ky ←R Z
2×2k
p

ppk := ([KxA], [KyA])
psk := (Kx,Ky)

PrePVer(ppk , psk , [c], [π�])

x := h0(Kx[c]) ∈ Z
k
p

y := h1(Ky[c]) ∈ Zp

[π] := [A0] · x + [c] · y ∈ Z
k
p

[κ] := [A0] · x + [c] · y ∈ Z
k
p

[π] = [π�] (1, [κ])
(0, ⊥)

PrePPrv(ppk , [c], r)

x := h0([KxA]r) ∈ Z
k
p

y := h1([KyA]r) ∈ Zp

[π] := [A0] · x + [c] · y
[κ] := [A0] · x + [c] · y

PrePSim(ppk , psk , [c])

x := h0(Kx[c]) ∈ Z
k
p

y := h1(Ky[c]) ∈ Zp

[π] := [A0] · x + [c] · y
[κ] := [A0] · x + [c] · y

Fig. 2. Proof System PrePS for L. For k = 1 the proof system PS := PrePS is
Lsnd-qualified based on DDH.

Lemma 6 (Constrained Lsnd-soundness of PS). If the DDH assumption
holds in G, and h0, h1 are universal hash functions, then the proof system PS
described in Fig. 2 (for k = 1) complies with constrained Lsnd-soundness. More
precisely, for every adversary A, there exists an adversary B such that T (B) ≈
T (A) + (Qsim + Qver) · poly(λ) and

Advcsnd
PS,A(λ) ≤ Advddh

G,B(λ) + Qver · uncertsndA (λ) + (Qsim + Qver) · 2−Ω(λ),

where Qver, Qsim are the number of calls to Over and Osim respectively,
uncertsndA (λ) describes the uncertainty of the predicates provided by A (see Defi-
nition 12) and poly is a polynomial function independent of T (A).

Note that, as explained in Sect. 2.5, in the proof of IND-CCA security
of the final hybrid encryption scheme (where we will employ constrained
Lsnd-soundness of PS to prove IND-CCCA security of our KEM), the term
uncertsndA (λ) will be statistically small, so we can afford to get a security loss of
Qver · uncertsndA (λ) without compromising tightness.

Proof. We prove Lsnd-soundness of PS via a series of games, described in Fig. 3.
We start by giving a short overview of the proof.

The idea is to first randomize x used in simulated proofs of statements [c] ∈
Lsnd \L, using the DDH assumption and the Leftover Hash Lemma (Lemma 1).
This makes [π, κ] an encryption of y that becomes lossy if and only if [c] ∈
span([A0]). For the final proof step, let ([c], [π], [κ]) be an honestly generated
combined proof (with randomized x) with [c] ∈ Lsnd, that is there exists an
r ∈ Zp such that either [c] = [Ar] or [c] = [A0r]. In the former case, we have
y = h1(K�

y [c]) = h1([KyA]r), thus no information about Ky is leaked apart
from what is already contained in the public key. In the latter case, we have
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x
[c] ∈ Lsnd\L [κ] [c] /∈ L

G0 x := h0 (Kx[c]) [A0] · x + [c] · y
Lsnd

G1 x := h0 (Kx[c]) A0A
−1
0

(
[π�] − [c] · y

)
+ [c] · y A,A0

G2
u ←R Z

2
p

x := h0([u])
A0A

−1
0

(
[π�] − [c] · y

)
+ [c] · y A,A0

G3 x ←R Zp A0A
−1
0

(
[π�] − [c] · y

)
+ [c] · y A,A0

Fig. 3. Overview of the proof of Lsnd-constrained soundness of PS. The first column
shows how x is computed for queries to Osim. The second column shows how the key
[κ] is computed by the verifier in queries to Over when [c] /∈ L.

[π, κ] = [A0] · x + [c] · y = [A0](x + r · y), thus y, and in particular Ky, are
completely hidden by the randomized x. This implies that even knowing many
sound tuples ([c], [π], [κ]) for [c] ∈ Lsnd, an adversary cannot do better than
guessing y to produce a valid key for a statement outside Lsnd, and therefore,
only has negligible winning chances.

We start with the constrained Lsnd-soundness game, which we refer to as
game G. In the following we want to bound the probability

ε := Advcsnd
PS,A(λ).

We denote the probability that the adversary A wins the game Gi by

εi := AdvGi,A(λ).

G � G0: From game G0 on, on a valid verification query ([c],Π, pred) the
verification oracle will not return lose and abort anymore, but instead simply
return ⊥. This can only increase the winning chances of an adversary A. Thus
we obtain

ε ≤ ε0.

G0 � G1: We show that ε1 ≥ ε0. The difference between G0 and G1 is
that from game G1 on the oracle Over, on input ([c],Π, pred), first checks if
[c] ∈ span([A]). If this is the case, Over behaves as in game G0. Otherwise, it
does not check if [π�] = [π] anymore, and it computes

[κ] = A0A
−1

0

(
[π�] − [c] · y

)
+ [c] · y,

where y is computed as in G0. Note that this computation requires to know
A0, but not Kx, since x is not computed explicitly. This will be crucial for the
transition to game G2.
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We again have to show that this can only increase the winning chances of
the adversary, in particular we have to show that this change does not affect the
adversaries view on non-winning queries.

First, from game G0 on the verification oracle Over always returns ⊥ on
queries from Lsnd\L, and thus games G0 and G1 only differ when Over is queried
on statements with [c] /∈ Lsnd. Therefore it remains to show that for any query
([c], [π�], pred) to Over with [c] /∈ Lsnd, we have that if the query is winning in
G0, then it is also winning in G1. Suppose ([c], [π�],pred) satisfies the winning
condition in G0. Then, it must hold true that [π�] = [A0] · x + [c] · y and
pred

(
[A0] · x + [c] · y

)
= 1. In G1, the key is computed as

A0A
−1

0

(
[π�] − [c] · y

)
+ [c] · y = [A0] · x + [c] · y,

and thus the query is also winning in G1.
Note that for this step it is crucial that we only require a weakened soundness

condition of our proof systems (compared to benign proof systems [11]). Namely,
if instead the verification oracle in the soundness experiment Over returned the
key [κ] for valid statements x ∈ Lsnd\L, we could not argue that the proof
transition does necessarily at most increase the winning chances of an adversary.
This holds true as in game G1 on a statement x ∈ Lsnd\L with non-valid proof
(but with valid predicate respective to the proof) the key would be returned,
whereas in game G0 “⊥” would be returned.

G1 � G2: In this transition, we use the DDH assumption to change the way x
is computed in simulated proofs. More precisely, we build an adversary B such
that T (B) ≈ T (A) + (Qver + Qsim) · poly(λ) and

|ε2 − ε1| ≤ Advddh
G,B(λ) + 2−Ω(λ).

Let ([B], [h1, . . . ,hQsim
]) be a Qsim-fold DDH challenge. We build the adver-

sary B as follows. First B picks A,A0,A1 as described in Sect. 4.1. Further B
chooses K′

x ←R Z
2×2
p and Ky ←R Z

2×2
p and implicitely sets Kx = K′

x+U(A⊥)�

for some A⊥ ∈ orth(A), where U ∈ Z
2×1
p depends on the Qsim-fold DDH chal-

lenge (and cannot be computed by B). This will allow B to embed the Qsim-fold
DDH challenge into simulation queries. Note that even though B does not know
Kx explicitly, the special form of Kx still allows B to compute the public para-
meters [KxA] = [K′

xA] and [KyA].
For queries to Over containing [c] ∈ L, in order to compute x, B computes

Kx[c] = K′
x[c] using K′

x (note that B can check if [c] ∈ L since it knows A).
Answering queries to Over for c /∈ L does not require knowledge of x. Both cases
can thus be handled without concrete knowledge of Kx.

The adversary B prepares for queries to the simulation oracle Osim as follows.
First it chooses w ← Zp and defines [V] := w · [B]. Note that with overwhelming
probability over the choices of A and A0, the matrix (A⊥)�A0 is full rank and
thus (K′

x + U(A⊥)�)A0 is distributed statistically close to uniform over Zp.
Therefore replacing [(K′

x +U(A⊥)�)A0] by [V] is statistically indistinguishable
for the adversary A.
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On the i-th query to Osim, for all i ∈ [Qsim], the adversary B defines [ci] :=
A0[hi] and computes x := h0(w · [hi]). Further B can compute y := h1(Ky[ci])
as before. In case of a real DDH challenge, we have hi = Bri for ri ←R Zp

and thus we have [ci] = [A0ri] and x = h0(w · [Bri]) = h0([Vri]). By our
previous considerations [Vri] is statistically close to Kx[ci] and thus adversary
B simulates game G1. In case the adversary was given a random challenge, the
hi are distributed uniformly at random and the adversary simulates game G2.
Now we can employ the random self-reducibility of DDH (Lemma 2) to obtain
an adversary as claimed.

Note that in order to prove this transition we require that in the defini-
tion of constrained soundness the simulation oracle returns random challenges
(otherwise we would not be able to embedd the DDH challenge into simulation
queries). This is another reason why we cannot directly employ the notion of
benign proof systems [11].

G2 � G3: As h0 is universal, we can employ the Leftover Hash Lemma
(Lemma 1) to switch (h0, h0([v])) to (h0,u) in all simulation queries, where
u ←R Zp. A hybrid argument yields

|ε2 − ε3| ≤ Qsim/p.

Game G3: We show that ε3 ≤ Qver · uncertsndA (λ), where Qver is the number
of queries to Over and uncertsndA (λ) describes the uncertainty of the predicates
provided by the adversary as described in Definition 12.

We use a hybrid argument over the Qver queries to Over. To that end, we
introduce games G3.i for i = 0, . . . , Qver, defined as G3 except that for its first
i queries Over answers ⊥ on any query ([c], [π], pred) with [c] /∈ Lsnd. We have
ε3 = ε3.0, ε3.Qver = 0 and we show that for all i = 0, . . . , Qver − 1 it holds

|ε3.i − ε3.(i+1)| ≤ Pr
K∈K

[predi+1(K) = 1] + 2−Ω(λ),

where predi+1 is the predicate contained in the i + 1-th query to Over.
Games G3.i and G3.(i+1) behave identically on the first i queries to Over.

An adversary can only distinguish between the two, if it manages to provide a
valid (i + 1)-st query ([c], [π], pred) to Over with [c] /∈ Lsnd. In the following we
bound the probability of this happening.

From queries to Osim and the first i queries to Over the adversary can only
learn valid tuples ([c], [π], [κ]) with [c] ∈ Lsnd. As explained in the beginning,
such combined proofs reveal nothing about Ky beyond what is already revealed
in the public key, as either [c] = [Ar] for an r ∈ Zp and y = h1([Kyc]) =
h1([KyA]r) or [c] = [A0r] and [π, κ] = [A0](x + r · y). In the former case y
itself reveals no more about Ky than the public key, while in the latter case y is
hidden by the fully randomized x.

For any [c] /∈ Lsnd, y = h1[Kyc] computed by Over is distributed statistically
close to uniform from the adversary’s point of view because of the following.
First we can replace Ky by Ky + U(A⊥)� for U ←R Z

2×1
p and A⊥ ∈ orth(A)
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as both are distributed identically. By our considerations, this extra term is
neither revealed through the public key, nor through the previous queries to Osim

and Over.
Now Lemma 1 (Leftover Hash Lemma) implies that the distribution of y is

statistically close to uniform as desired. Since [c] /∈ span([A0]) we have [c] −
[A0]A

−1

0 [c] 	= 0, thus the key

[κ] := A0A
−1

0 [π�] +
(
[c] − A0A

−1

0 [c]
)

︸ ︷︷ ︸

=0

·y

computed by Over is statistically close to uniform over Zp. Altogether we obtain:

ε3 ≤ Qver · uncertsndA (λ) + Qver · 2−Ω(λ).

5 Key Encapsulation Mechanism

In this section we present our CCCA-secure KEM that builds upon a qualified
proof system for the OR-language as presented in Sect. 4.

Ingredients. Let parsPS be the public parameters for the underlying quali-
fied proof system comprising G = (G, p, P ) and A,A0 ∈ Z

2k×k
p (as defined

in Sect. 4.1). Recall that L = span([A]), Lsnd = span([A]) ∪ span([A0]) and
L̃snd = span([A])∪ span([A0])∪ span([A1]) (for A1 ∈ Z

2k×k
p as in Sect. 4.1). Let

further H be a collosion resistant hash function generator returning functions of
the form H : Gk → {0, 1}λ and let H ←R H. We will sometimes interpret values
τ ∈ {0, 1}λ in the image of H as elements in Zp via the map τ �→ ∑λ

i=1 τi · 2i−1.
In the following we assume that all algorithms implicitly have access to the

public parameters parsKEM := (parsPS,H).

Proof systems. We employ an Lsnd-qualified and L̃snd-extensible proof system
PS := (PGen,PPrv,PVer,PSim) for the language L as provided in Fig. 2
(respectively for k > 1 as provided in the full version). We additionally require
that the key space is a subset of G, which is satisfied by our construction in
Sect. 4.

Construction. The construction of the KEM is given in Fig. 4.

Efficiency. When using our qualified proof system from Sect. 4 (respectively
for k > 1 from the full version) to instantiate PS, the public parameters com-
prise 4k2 group elements (plus the descriptions of the group itself and four hash
functions). Further public keys and ciphertexts of our KEM contain 8k + 2k2,
resp. 4k group elements for k > 1.

We stress that our scheme does not require pairings and can be implemented
with k = 1, resulting in a tight security reduction to the DDH assumption in G.
As in this case the upper entries of the matrix A is 1, we get by with 3 group
elements in the public parameters. Further, we can save one hash function due to
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KGen(1λ)

(ppk , psk) ←R PGen(1λ)
k0,k1 ←R Z

2k
p

pk := (ppk , [k�
0 A], [k�

1 A])
sk := (psk ,k0,k1)

KEnc(pk)

r ←R Z
k
p

[c] := [A]r
(Π, [κ]) := PPrv(ppk , [c], r)
τ := H([c])

C := ([c], Π)
K := ([k�

0 A] + τ [k�
1 A])r + [κ]

KDec(pk , sk , C)
C := ([c], Π)

(b, [κ]) := PVer(psk , [c], Π)
b = 0 ⊥

τ := H([c])
K := (k0 + τk1)

�[c] + [κ]

Fig. 4. Construction of the KEM

the simpler underlying proof system. For the same reason, in case k = 1 public
keys and ciphertexts contain 6, resp. 3 group elements. Compared to the GHKW
scheme [9], our scheme thus has ciphertexts of the same size, but significantly
smaller public keys.

Without any optimizations, encryption and decryption take 8k2 + 12k,
resp. 6k2 + 14k exponentiations for k > 1. For DDH we have 11 for both cases
(again due to the simpler proof system and the distribution). Since most of these
are multi-exponentiations, however, there is room for optimizations. In compar-
ison, encryption and decyption in the GHKW scheme take 3k2 + k, resp. 3k
exponentiations (plus about λk group operations for encryption, and again with
room for optimizations). The main reason for our somewhat less efficient opera-
tions is the used qualified proof system. We explicitly leave open the construction
of a more efficient proof system.

To turn the KEM into a IND-CCA secure hybrid encryption scheme, we
require a quantitatively stronger security of the symmetric building block than
[9]. Namely, the uncertainty uncertA(λ) in our scheme has a stronger dependency
on the number of queries (Qenc ·Qdec instead of Qenc +Qdec). This necessitates
to increase the key size of the authenticated encryption scheme compared to [9].
Note though that one-time secure authenticated encryption schemes even exist
unconditionally and therefore in the reduction proving security of the hybrid
encryption scheme, the uncertainty uncertA(λ) will be statistically small.

Theorem 2. (Security of the KEM). If PS is Lsnd-qualified and L̃snd-
extensible to P̃S, if H is a collision resistant hash function and if the
D2k,k-MDDH assumption holds in G, then the key encapsulation mechanism
KEM described in Fig. 4 is perfectly correct and IND-CCCA secure. More pre-
cisely, for every IND-CCCA adversary A that makes at most Qenc encryption
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and Qdec decryption queries, there exist adversaries Bmddh, Bcsnd, Bind, B˜csnd
and Bcr with running time T (Bmddh) ≈ T (Bcsnd) ≈ T (Bind) ≈ T (Bcsnd) ≈
T (Bcr) ≈ T (A)+(Qenc +Qdec) ·poly(λ) respectively T (B˜csnd) ≈ T (A)+(Qenc +
Qenc · Qdec) · poly(λ) where poly is a polynomial independent of T (A), and such
that

Advccca
KEM,A(λ) ≤ 1

2
· Advcsnd

Lsnd,PS,Bcsnd(λ) +
1
2

· Advind
Lsnd,PS,˜PS,Bind(λ)

+ (2λ + 2 + k) · Advmddh
G,D2k,k,Bmddh(λ)

+
λ

2
· Advcsnd

˜Lsnd,˜PS,B ˜csnd(λ)

+
λ + 2

2
· Qenc · Qdec · uncertA(λ)

+ Advcr
H,Bcr(λ) + Qenc · 2−Ω(λ).

Proof. We use a series of games to prove the claim. We denote the probability
that the adversary A wins the i-th Game Gi by εi. An overview of all games is
given in Fig. 5.

The goal is to randomize the keys of all challenge ciphertexts and thereby
reducing the advantage of the adversary to 0. The methods employed here for
a tight security reduction require us to ensure that Odec aborts on ciphertexts
which are not in the span of [A], as we will no longer be able to answer those.
The justification of this step relies crucially on the additional consistency proof
Π and can be found in the full version.

Game G0: This game is the IND-CCCA security game (Definition 10).

G0 � G1: From game G1 on, we restrict the adversary to decryption queries
with a fresh tag, that is, a tag which has not shown up in any previous encryption
query. There are two conceivable bad events, where the adversary reuses a tag.

The first event is due to a collision of the hash function. That is, A provides a
decryption query ([c],Π), such that there exists a challenge ciphertext [c′] from
a previous encryption query with [c] 	= [c′], but H([c]) = H([c′]). In that case we
can straightforwardly employ A to obtain an adversary B attacking the collision
resistance of H in time T (B) ≈ T (A) + (Qenc + Qdec) · poly(λ) for a polynomial
poly independent of T (A). Thereby we obtain an upper bound on the described
event of Advcr

H,B(λ).
In the second event, A provides a valid decryption query ([c],Π), such that

[c] = [c′] for a previous challenge ciphertext [c′] 	= [c]. By the properties of PS,
the proof corresponding to a ciphertext [c] is unique, which in particular implies
[c] /∈ span([A]). We bound the probability that A submits a valid decryption
query ([c],Π) such that [c] /∈ span([A]) by Qdec · uncertA(λ), using a series of
hybrids: For i = 0, . . . , Qdec let G0.i be defined like G0, except Odec checks
the freshness of τ for the first i queries and operates as in game G0 from the
(i + 1)-st query on. Note that game G0.0 equals G0 and game G0.Qdec

equals
G1. We show that for all i ∈ {0, . . . , Qdec − 1}:

|ε0.i − ε0.(i+1)| ≤ Pr
K←RK

[predi+1(K) = 1].
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c [κ] Odec

G0 A PPrv

G1 A PPrv τ H

G2 A PSim τ PS

G3 A0 PSim τ D2k,k

G4 A0 PSim τ [c] ∈ span([A])

G5 A0 τ [c] ∈ span([A]) D2k,k

Fig. 5. Security of the KEM. Here column “ch. c” refers to the vector computed by
Oenc as part of the challenge ciphertexts, where A indicates that [c] ←R span([A]), for
instance. Column “ch. [κ]” refers to the key computed by Oenc as part of the key K. In
the column “Odec checks” we describe what Odec checks on input C = (pred, ([c], Π))
additionally to C /∈ Cenc and pred(K) = 1. By a fresh tag τ := H([c]) we denote a tag
not previously used in any encryption query. In case the check fails, the decryption
oracle outputs ⊥.

Game G0.i and game G0.(i+1) only differ when the (i + 1)-st query to Odec is
valid with [c] = [c′] for a previous challenge ciphertext [c′] 	= [c]. As all challenge
ciphertexts are in span([A]), they do not reveal anything about k0 beyond the
public key [k�

0 A]. Thus, for [c] /∈ span([A]), the value k�
0 [c] looks uniformly

random from the adversary’s point of view, proving the claimed distance between
game G0.i and game G0.(i+1). Altogether we obtain

|ε0 − ε1| ≤ Advcr
H,B(λ) + Qdec · uncertA(λ).

G1 � G2: From G2 on, the way challenge ciphertexts are computed is
changed. Namely, the simulation algorithmen PSim(psk , [c]) is used instead of
PPrv(ppk , [c], r) to compute (Π, [κ]). Since for all challenge ciphertexts we have
[c] ∈ L, the proofs and keys are equal by the perfect zero-knowledge property of
PS, and thus we have

ε1 = ε2.

G2 � G3: Game G3 is like G2 except the vectors [c] in the challenge ciphertexts
are chosen randomly in the span of [A0].

We first employ the Qenc-fold D2k,k-MDDH assumption to tightly switch the
vectors in the challenge ciphertexts from span([A]) to uniformly random vectors
over G

2k. Next we use the Qenc-fold U2k,k-MDDH assumption to switch these
vectors from random to [A0r].

To be specific, we build adversaries B, B′ such that for a polynomial poly
independent of T (A) we have T (B) ≈ T (B′) ≈ T (A) + (Qenc + Qdec) · poly(λ)
and
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|ε2 − ε3| ≤ AdvQenc-mddh
G,D2k,k,B (λ) + AdvQenc-mddh

G,U2k,k,B′ (λ).

Let ([A], [v1| . . . |vQenc ]) with [A] ∈ G
2k×k and [V] := [v1| . . . |vQenc ] ∈

G
2k×Qenc be the Qenc-fold D2k,k-MDDH challenge received by B. Then B sam-

ples (ppk , psk) ←R PGen(1λ), k0,k1 ←R Z
2k
p , b ←R {0, 1} and sends the public

key pk := (ppk , [k�
0 A], [k�

1 A]) to A.
On the i-th query to Oenc, B sets the challenge ciphertext to [c] := [vi],

next computes τ := H([c]), (Π, [κ]) := PSim(psk , [vi]) and finally K1 := (k�
0 +

τk�
1 )[c] (and K0 ←R K(λ) as usual). As B has generated the secret key itself,

for decryption queries it can simply follow KDec(pk , sk , C).
In case [V] = [AR], B perfectly simulates game G2. In case [V] is uniformly

random over G
2k×Qenc , B simulates an intermediary game H, where the chal-

lenge ciphertexts are chosen uniformly at random. Analogously we construct an
adversary B′ on the Qenc-fold U2k,k-MDDH assumption, who simulates game H
if [V] is uniformly at random over G

2k×Qenc , and game G3, if [V] = [A0R].
Altogether this proves the claim stated above.

Finally, from Lemma 4 (random self-reducibility of U2k,k-MDDH), Lemma 3
(D2k,k-MDDH ⇒ U2k,k-MDDH), and Lemma 2 (random self-reducibility of
D2k,k-MDDH), we obtain an adversary B′′ such that T (B′′) ≈ T (A) + (Qenc +
Qdec) · poly(λ) where poly is independent of T (A) and

|ε2 − ε3| ≤ (1 + k) · Advmddh
G,D2k,k,B′′(λ) +

2
p − 1

.

G3 � G4: We now restrict the adversary to decryption queries with [c] ∈
span([A]). For the justification we refer to the full version.

G4 � G5: In game G5, we change the keys [κ] computed by Oenc to random
over G. This is justified as follows.

Firstly, we can replace k0 by k0 + A⊥u with u ←R Z
k
p and A⊥ ∈ orth(A),

as those are identically distributed. Note that this change does neither affect
the public key, nor the decryption queries, since for all c ∈ span(A), c�(k0 +
A⊥u ) = c�k0. Thus, the term A⊥u only shows up when Oenc computes the

value [(A⊥u)�A0r] for r ←R Z
k
p as part of the key K1 (the key that is not

chosen at random by the security experiment).
Secondly, the distributions (A⊥u)�A0 and v� ←R Z

1×k
p are 1−2−Ω(λ)-close.

Altogether, we obtain that Oenc, on its j-th query for each j ∈ [Qenc], can
compute key K1 for rj ←R Z

k
p, and v ←R Z

k
p as

K1 :=
[
(k0 + τk1)

� A0rj

]
+ [v�rj ] + [κ].

We then switch from ([rj ], [v�rj ]) to ([rj ], [zj ]), where zj is a uniformly
random value over G, using the Qenc-fold Uk-MDDH assumption as follows.
On input ([B], [h1| . . . |hQenc ]) with B ←R Uk (that is B ∈ Z

(k+1)×k
p ) and

h1, . . . ,hQenc ∈ Z
k+1
p , B samples (ppk , psk) ←R PGen(1λ), k0,k1 ←R Z

2k
p ,

b ←R {0, 1} and sends the public key pk := (ppk , [k�
0 A], [k�

1 A]) to A. In the
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following for all j ∈ Qenc let [hj ] ∈ G
k comprise the upper k entries and [hj ] ∈ G

the (k+1)-st entry of [hj ] and similar for [B] let [B] ∈ G
k×k be the upper square

matrix of [B] and [B] ∈ G
1×k comprise the last row.

On the j-th encryption query, B sets [c] := A0[hj ] (and thus [rj ] := [hj ]) and
computes the key as

K1 :=
[
(k0 + τk1)

� c
]

+ [hj ] + [κ].

The adversary B can answer decryption queries as usual using k0, as decryption
queries outside L are rejected.

Now if ([B], [h1| . . . |hQenc ]) was a real Uk-MDDH challenge, we have hj =
Bsj for a sj ←R Z

k
p and thus we have rj = Bsj and [hj ] = [B]sj = [B]B

−1
rj .

Note that the distribution of [B]B
−1

is statistically close to the distribution
of v� and therefore B simulates game G4. In case hj was chosen uniformly
at random from Z

k+1
p , the adversary B simulates game G5 instead. In the end

adversary B can thus forward the output of A to its own experiment.
Finally, Lemmas 3, 4 and 5 yield the existence of an adversary B′ such that

T (B′) ≈ T (A) + (Qenc + Qdec) · poly(λ) where poly is a polynomial independent
of T (A), and

|ε4 − ε5| ≤ Advmddh
G,D2k,k,B′(λ) + 2−Ω(λ).

Game G5: In this game, the keys K1 computed by Oenc are uniformly random,
since the value [κ] which shows up in K1 := [(k0 + τk1)�c] + [κ] is uniformly
random for each call to Oenc. The same holds true for the keys K0 which are
chosen at random from K(λ) throughout all games. Therefore, the output of
Oenc is now independent of the bit b chosen in Expccca

KEM,A(λ). This yields

ε5 = 0. ��
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Abstract. In this paper, we focus on the constructions of adaptively
secure identity-based encryption (IBE) from lattices and verifiable ran-
dom function (VRF) with large input spaces. Existing constructions of
these primitives suffer from low efficiency, whereas their counterparts
with weaker guarantees (IBEs with selective security and VRFs with
small input spaces) are reasonably efficient. We try to fill these gaps
by developing new partitioning techniques that can be performed with
compact parameters and proposing new schemes based on the idea.

– We propose new lattice IBEs with poly-logarithmic master public
key sizes, where we count the number of the basic matrices to mea-
sure the size. Our constructions are proven secure under the LWE
assumption with polynomial approximation factors. They achieve
the best asymptotic space efficiency among existing schemes that
depend on the same assumption and achieve the same level of
security.

– We also propose several new VRFs on bilinear groups. In our first
scheme, the size of the proofs is poly-logarithmic in the security
parameter, which is the smallest among all the existing schemes
with similar properties. On the other hand, the verification keys are
long. In our second scheme, the size of the verification keys is poly-
logarithmic, which is the smallest among all the existing schemes.
The size of the proofs is sub-linear, which is larger than our first
scheme, but still smaller than all the previous schemes.

1 Introduction

1.1 Background

In cryptography, we define appropriate security notions for cryptographic prim-
itives, in order to capture real world attacks. For a cryptographic scheme to
be useful, it is desirable that the scheme achieves security notions as realistic as
possible. However, since natural and realistic security notions are hard to achieve
in general, we sometimes are only able to prove ad-hoc and unrealistic security
notions. Even when proving the former is possible, it sometimes comes with the
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cost of longer parameters or stronger assumptions. In this paper, we focus on two
such primitives: identity-based encryption (IBE) and verifiable random function
(VRF).

Identity-Based Encryption. IBE [Sha85] is a generalization of public key
encryption where the public key of a user can be any arbitrary string such as
an e-mail address. The first realizations of IBE are given by [SOK00,BF01] on
groups equipped with bilinear maps. Since then, realizations from bilinear maps
[BB04a,BB04b,Wat05,Gen06,Wat09], from quadratic residues modulo compos-
ite [Coc01,BGH07], and from lattices [GPV08,CHKP10,ABB10a,Boy10] have
been proposed.

Among the existing lattice IBE schemes in the standard model, the most
efficient one is in [ABB10a]. However, the scheme only satisfies selective security,
where an adversary must declare at the start of the game which identity it intends
to target. Although schemes with a much more realistic adaptive security (or
equivalently, full security) are known [CHKP10,ABB10a,Boy10], they are not as
efficient as the aforementioned selectively secure scheme. In particular, all these
schemes require master public keys longer by a factor O(λ) than the selectively
secure one, where λ is the security parameter. This stands in sharp contrast to
pairing-based settings, in which we have adaptively secure IBE schemes [Wat09,
CLL+12,JR13] that are as efficient as selectively secure ones [BB04a], up to a
small constant factor.

There have been several studies that aim at reducing the sizes of the para-
meters in adaptively secure lattice IBEs [Yam16,AFL16,ZCZ16,KY16]. How-
ever, current state of affairs are not satisfactory. These schemes are either based
on stronger assumptions [Yam16,KY16], or require still long public parameters
[Yam16,KY16,AFL16], or only achieves weaker security guarantee [ZCZ16].

Verifiable Random Function. The notion of VRF was introduced by Micali,
Rabin, and Vadhan [MRV99]. A VRF Vsk(·) is a pseudorandom function with
the additional property that it is possible to create a non-interactive and pub-
licly verifiable proof π that a given function value Y was computed correctly as
Y = Vsk(X). Since the introduction of this notion, several realizations have
been proposed [MRV99,Lys02,Dod03,DY05,ACF09]. All these constructions
only allow a polynomially bounded input space, or do not achieve full adaptive
security without complexity leveraging, or are based on an interactive complex-
ity assumption. Following [HJ16], in the sequel, we will say that a VRF has all
the desired properties, if it has an exponential-sized input space and a proof of
full adaptive security under a non-interactive complexity assumption.

The first VRF scheme with all the desired properties was proposed by Hohen-
berger and Waters [HW10]. Later, constructions from weaker assumptions have
been studied [BMR10,ACF14,Jag15,HJ16]. Notably, the scheme in [HJ16] is
secure under the standard decisional linear assumption. On the other hand,
there has not been improvement on the efficiency since [HW10]. Namely, all
existing VRF schemes with all the desired properties require O(λ) group ele-
ments both in the verification keys and proofs. This is much more inefficient
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than the scheme with a polynomial-size input space [DY05], which only requires
O(1) group elements for both.

The Gaps in Efficiency. As we have seen, there is a distinct gap in effi-
ciency between the state of the art schemes and the desired schemes. Namely,
both in lattice IBEs and VRFs, we loose efficiency when we want to achieve
stronger security notions. This loss in efficiency is an artifact of the security
proofs. Most of the schemes use the partitioning technique based on (an ana-
logue of) Waters’ hash [Wat05] or admissible hash functions [BB04b] to achieve
adaptive security. However, these techniques typically require long parameters.
The powerful framework of dual system encryption methodology, which was
introduced by Waters [Wat09], does not seem to be applicable for these settings.
In particular, we do not have lattice analogue of the dual system approach yet.
Furthermore, the uniqueness property required for VRF seems to contradict the
algebraic structure required to apply the dual system approach, as pointed out
in [Jag15,HJ16].

1.2 Our Contributions

In this paper, we try to fill the above gaps by generalizing the partition-
ing technique and proposing new schemes with improved (asymptotic) effi-
ciency. To do so, we first introduce the notion of partitioning functions, which
can be thought of as a generalization of the standard admissible hash func-
tions [BB04b,CHKP10,FHPS13,Jag15]. The notion of partitioning functions
abstracts out the information theoretic properties that are required to perform
the partitioning technique in the security proofs for IBE and VRF. Then, we
propose two new partitioning functions that can be constructed by much more
compact parameters than prior admissible hash functions. Our first construc-
tion is obtained by compressing the expression of the existing admissible hash
functions by introducing a novel encoding technique, whereas the second con-
struction is based on affine functions over a random modulus. We call the first
partitioning function FMAH and the second FAFF, where MAH and AFF stand for
modified admissible hash function and affine function respectively. These func-
tions provide us a framework to perform the security proofs in a more space
efficient manner than previous ones.

One thing to note is that in order to use them to construct IBE and VRF
schemes, we need a certain level of homomorphic capability on the underlying
algebraic structures. In the lattice setting, we can implement the idea by carefully
applying the powerful fully key homomorphic techniques of [BGG+14,GV15].
On the other hand, in the bilinear group setting, this technique may be inap-
plicable since we only have very limited amount of homomorphic capabilities.
Namely, given group elements, which can be seen as encodings of the corre-
sponding discrete logarithms, we can only compute encodings corresponding to
quadratic multi-variate polynomials on them. However, in the special case of
VRF, since the evaluator has full access to the secret key, it can evaluate any
homomorphism on them to compute the function value. Based on this observa-
tion, we can implement the idea in this setting as well.
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Table 1. Comparison of adaptively secure lattice IBE schemes

Schemes |mpk| # of

Z
n×m
q mat.

|ct|, |sk| #

of Z
m
q vec.

LWE param

1/α

Reduction cost Remarks

[CHKP10] O(λ) O(λ) Õ(n1.5) O(εν+1/Qν)b

[ABB10a]+[Boy10] O(λ) O(1) Õ(n5.5) O(ε2/qQ)

[Yam16] O(λ1/μ)a O(1) nω(1) O(εμ+1/kQμ)a

[ZCZ16] O(log Q) O(1) Õ(Q2 · n6.5) O(ε/kQ2) Q-bounded

[AFL16]c O(λ/ log2 λ) O(1) Õ(n6) O(ε2/qQ)

[BL16] O(λ) O(1) superpoly(n) O(λ)

[KY16]d O(λ1/μ)a,d O(1) O(n2.5+2μ)a O((λμ−1εμ/Qμ)μ+1)a Ring-based

Sect. 5.2 + FMAH O(log3 λ) O(1) Õ(n11) O(εν+1/Qν)b

Sect. 5.2 + FAFF
e O(log2 λ) O(1) poly(n) O(ε2/k2Q) Need [BCH86,Bar89]

We compare with adaptively secure IBE schemes under the LWE assumption in the standard model. |mpk|,
|ct|, and |skID| show the size of the master public keys, ciphertexts, and private keys, respectively. For both our

schemes, we set η = log2 λ. To measure the space efficiency, we count the number of basic components. Q and

ε denote the number of key extraction queries and the advantage, respectively. poly(n) (resp. superpoly(n))

represents fixed but large polynomial (super-polynomial) that does not depend Q and ε. To measure the

reduction cost, we show the advantage of the LWE algorithm constructed from the adversary against the

corresponding IBE scheme. To be fair, we calculate the reduction cost by employing the technique of Bellare

and Ristenpart [BR09] for all schemes.
a μ ∈ N is a constant number that can be chosen arbitrary. Since the reduction cost degrades exponentially

as μ grows, we would typically set μ very small (e.g., μ = 2 or 3).
b ν > 1 is the constant satisfying c = 1 − 2−1/ν , where c is the relative distance of the underlying error

correcting code C : {0, 1}k → {0, 1}�. We can take ν as close to 1 as one wants, by choosing c < 1/2

appropriately and make � large enough (See AppendixE.1 of [Gol08]).
c They also propose a variant of the scheme with constant-size master public key assuming the exponentially

secure collision resistant hash function. Since the use of the exponential assumption can be considered as a

certain kind of the complexity leveraging, we do not include the variant in the table.
d The scheme can only be instantiated over the rings Rq = Zq [X]/(Xn + 1). To measure the size of mpk we

count the number of the basic vectors, instead of the basic matrices.
e The key generation and encryption algorithm of the scheme involves the heavy step of computing the

description of the division circuit in NC1 using the result of [BCH86] and converting it into a branching

program by invoking the Barrington’s theorem [Bar89].

New Lattice IBE Schemes. Based on the new partitioning functions, we
propose two new adaptively secure lattice IBE schemes. For the overview and
comparison, we refer to Table 1. Both our schemes achieve the best asymptotic
space efficiency among existing schemes with the same assumption and security
notion. In particular, the number of basic matrices in the master public keys are
only polylogarithmic. Furthermore, the sizes of the ciphertexts and private keys
are optimal, in the sense that they match those of the selectively secure schemes
[ABB10a,Boy10] up to a constant factor.

– In our first scheme, the master public key consists of ω(log2 λ) basic matrices1,
which is the smallest among all the previous schemes. The security of the
scheme can be shown from the LWE assumption with approximation factor
Õ(n11), where n is the dimension of the lattices.

1 In our paper, when we say that the size of a parameters is ω(f(λ)), it means that the
parameter can be set to be any (polynomially bounded) function that grows faster
than f(λ). The parameter can be as small as one wants, as long as it does not violate
the lower-bound given by the ω-notation. In this case, we can choose the number of
the matrices to be Θ(log3 λ) or even Θ(log2 λ · log log log λ) for instance.
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– In our second scheme, the master public key consists of only ω(log λ) basic
matrices, which is even smaller than the one above. The security of the scheme
can be shown from the LWE assumption with approximation factors poly(n),
where poly(n) is some fixed polynomial that is determined by the depth of
the circuit computing a certain function.

We constructed the above schemes in a modular way. We first define the notion
of compatible algorithms for partitioning functions. Then, we propose a generic
construction of an IBE scheme from a partitioning function with its associating
compatible algorithms. We obtain our first scheme by instantiating this frame-
work with FMAH and its compatible algorithms. We obtain our second scheme
by instantiating it with FAFF.

New VRF Schemes. We also obtain the following three new VRF schemes
with all the desired properties. For the overview and comparison, we refer to
Table 2. All our schemes are constructed on bilinear groups and proven secure
under the L-DDH assumption,2 as is the same as most of the previous schemes
[ACF14,BMR10,Jag15]. In the following, to measure the sizes of the proofs and
verification keys, we count the number of group elements. Note that in all exist-
ing VRF schemes with all the desired properties [HW10,ACF14,BMR10,Jag15,
HJ16], the sizes of the verification keys and proofs are O(λ).

– Our first scheme is based on FMAH, and is parametrized by several parameters,
which control the tradeoffs of the efficiency. In certain parameter settings, the
scheme achieves the smallest proof-size among all existing VRF schemes that
satisfy all the desired properties. The size of the proofs is ω(log λ), whereas
the size of the verification keys is ω(λ log λ). The security is proven from the
L-DDH assumption with L = Õ(λ).

– Our second scheme is obtained by setting the parameters appropriately in
our first scheme and modifying it slightly. The scheme achieves the smallest
verification-key-size among all existing schemes with all the desired proper-
ties. The size of the verification keys is ω(log λ), whereas the size of the proofs
is ω(

√
λ log λ). The size of the proofs is larger than our first scheme, but still

smaller than all the previous schemes. The security is proven from the L-DDH
assumption with L = Õ(λ).

– Our third scheme is based on FAFF. The size of the verification keys and the
proofs are ω(log λ) and poly(λ), respectively. The security of the scheme is
proven from the L-DDH assumption with L = poly(λ). Here, poly(λ) is some
fixed polynomial that is determined by the depth of the circuit computing a
certain function.

Note that the main advantage of the third scheme over our first and second
schemes is that the security reduction is tighter.

Finally, we note that even though our lattice IBE schemes achieve the best
asymptotic space efficiency, it might not outperform [ABB10a,Boy10] in practi-
cal parameter settings, due to the large poly-logarithmic factors and the heavy
2 The L-DDH assumption says that given elements g, h, gα, . . . , gαL

in a bilinear
group, e(g, h)1/α is pseudorandom for any PPT adversary.
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Table 2. Comparison of VRF schemes with all the desired properties

Schemes |vk| (# of G) |π| (# of G) Assumption Reduction cost

[ACF14] O(λ) O(λ) O(λ)-DDH O(εν+1/Qν)a

[BMR10] O(λ) O(λ) O(λ)-DDH O(ε/λ)

[HW10] O(λ) O(λ) O(Qλ/ε)-DDHE O(ε2/λQ)

[Jag15] O(λ) O(λ) O(log (Q/ε))-DDH O(εν+1/Qν)a

[HJ16] O(λ) O(λ) DLIN O(εν+1/λQν)a

Sect. 6.1 (�1 = �, �2 = 1, η =

log2 λ).

O(λ log2 λ) O(log2 λ) Õ(λ)-DDH O(εν+1/Qν)a

Sect. 6.2 (�1 = �2 =
√

�, η =

log2 λ)

O(log2 λ) O(
√

λ log2 λ) Õ(λ)-DDH O(εν+1/Qν)a

App.C of the full version O(log2 λ) poly(λ) poly(λ)-DDH O(ε2/λ2Q)

We compare VRF schemes with all the desired properties. |vk| and |π| show the size of the verification keys

and proofs, respectively. To measure |vk| and |π|, we count the number of group elements. Q and ε denote

the number of evaluation queries and the advantage, respectively. poly(λ) represents fixed polynomial that

does not depend Q and ε. To measure the reduction cost, we show the advantage of the algorithm that

solves the problem (which is L-DDH for some L except for [HJ16]) constructed from the adversary against

the corresponding VRF scheme. To be fair, we measure the reduction cost by employing the technique of

Bellare and Ristenpart [BR09] for all schemes.
a ν is the constant satisfying c = 1−2−1/ν , where c is the relative distance of the underlying error correcting

code C : {0, 1}k → {0, 1}�. We can take ν as close to 1 as one wants, by choosing c < 1/2 appropriately and

make � large enough (See AppendixE.1 of [Gol08]).

encryption algorithm. The construction of truly efficient adaptively secure lattice
IBE still remains open.

Comparison with the Dual System Encryption Methodology. The dual
system encryption methodology [Wat09,LW10] is a very powerful tool to prove
the adaptive security of IBE and even advanced cryptographic primitives such
as attribute-based encryption [LOS+10]. However, currently, the technique is
not available in several settings. These include lattice-based cryptography and
the construction of VRF. We notice that relatively high level of homomorphic
capabilities are available in these settings and show that the partitioning tech-
nique can be performed more compactly by exploiting this fact. Our technique
is somewhat limited in the sense that it requires some homomorphic capabili-
ties and may not be available without them. However, in the settings where our
technique does not apply, the dual system encryption methodology may apply.
In this sense, they have mutual complementary relationship.

1.3 Related Works

Related Works on Lattice IBE. Yamada [Yam16] used the fully key homo-
morphic technique of [BGG+14] and asymptotically reduced the size of the mas-
ter public key. However, it required super-polynomial size modulus. The subse-
quent work by Katsumata et al. [KY16] showed that for the ring version of
Yamada’s scheme, it is possible to prove the security for polynomial-size mod-
ulus. The scheme by Apon et al. [AFL16] also proposed a scheme with shorter
master public keys using a different technique. These schemes require larger
number of matrices in the master public keys than ours. The scheme by Zhang
et al. [ZCZ16] achieved shorter master public key size than ours, however at the
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cost of a weaker security guarantee. In particular, their scheme only achieves
Q-bounded security, i.e., that the security of the scheme is not guaranteed any
more if the number of key extraction queries that the adversary makes exceeds
Q, where Q is a parameter that must be determined at the setup phase of the
scheme. This restriction cannot be removed by just making Q super-polynomial,
since the encryption algorithm of the scheme runs in time proportional to Q.
Finally, Boyen and Li [BL16] proposed the first lattice IBE schemes with tight
security reductions, where the schemes require long master public keys.

Related Works on VRF. Very recently, several works showed generic construc-
tions of VRF from simpler cryptographic primitives [GHKW17,Bit17,BGJS17].
These constructions lead to VRF schemes from various assumptions, including
schemes without bilinear maps. However, they cannot be efficiently instantiated
because they require general NIWI and constrained PRF (for admissible hash).
On the other hand, we focus on the efficient constructions of VRF from the spe-
cific number theoretic assumption. While our results are orthogonal to theirs,
our definition of partitioning function is very similar to that of the “partitioning
scheme” in the independent and concurrent work by Bitansky [Bit17].

2 Technical Overview

2.1 A Twist on the Admissible Hash

We first start with the review of the adaptively secure IBE schemes that use the
admissible hash function [BB04b,CHKP10]. The security proofs of these schemes
are based on the partitioning technique, a proof methodology that allows to
secretly partition the identity space into two sets of exponential size, the uncon-
trolled set and the controlled set, so that there is a noticeable probability that
the adversary’s key extraction queries fall in the controlled set and the challenge
identity falls in the uncontrolled set. Whether the identity is controlled or uncon-
trolled is determined by a function FADH that on input a secret randomness K
chosen during the simulation and an identity ID outputs 0 or 1. Here, 0 (resp.
1) indicates that ID is in the uncontrolled set (resp. controlled set). Concretely,
the partitioning is made by the following specific function:

FADH(K, ID) =

{
0, if ∀i ∈ [�] : C(ID)i = Ki ∨ Ki = ⊥
1, otherwise

where C(·) is a public function that maps an identity to a bit string in {0, 1}�

and K is a string in {0, 1,⊥}�. C(ID)i and Ki represent the i-th bit of C(ID) and
the i-th component of K, respectively. In [BB04b,CHKP10], the master public
keys are sufficiently long so that we can embed the secret randomness K into
them in a component-wise manner in the security proof. Since � = Θ(λ), where
λ is the security parameter, this results in large master public keys containing
O(λ) basic components. Due to the similar reasons, all constructions of VRFs
using admissible hash functions [ACF14,BMR10,Jag15,HJ16] also suffer from
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large public parameters. Our first step to address the problem is to observe
that K is very “sparse” in the sense that it conveys only a small amount of
information compared to its length. In the simulation, K is chosen uniformly at
random from {0, 1,⊥}�, with O(log (Q/ε)) components being not ⊥, where Q and
ε are the number of key extraction queries and the advantage of the adversary,
respectively. Since we assume an adversary that makes polynomial number of
key extraction queries and has non-negligible advantage in the security proof,
we have O(log (Q/ε)) = O(log λ). This means that Ki = ⊥ for most i ∈ [�].

K = ⊥ ⊥ 1 ⊥ 0 ⊥ ⊥
1 3 5© 7 9 11 13
2 4 6 8 10© 12 14

T = { 5, 10, }

C(X)= 0 1 1 0 0 1 0

1 3© 5© 7 9 11© 13
2© 4 6 8© 10© 12 14©

S(X) = {2, 3, 5, 8, 10, 11, 14}

Fig. 1. Pictorial explanation of the definition of S and T.

Our key idea is to encode K into a much shorter bit-string. For K ∈ {0, 1,⊥}�,
let us consider a set T ⊆ {1, 2, . . . , 2�} as

T := { 2i − Ki | i ∈ [�], Ki 	= ⊥ }. (1)

See Fig. 1 for the illustrative example. Since an element in {1, 2, . . . , 2�} can be
represented by a bit-string with length log 2� = O(log λ) and T only consists of
O(log λ) components, T can be represented by a bit-string with length O(log2 λ),
which is much shorter than � = Θ(λ).

In the next step, we introduce a modified admissible hash function FMAH as

FMAH(T, ID) =

{
0, ifT ⊆ S(ID)
1, otherwise

where S(ID) = { 2i − C(ID)i | i ∈ [�] } .

Again, see Fig. 1 for the illustrative example. For T defined as above, we have

FADH(K, ID) = FMAH(T, ID).

Namely, FADH and FMAH are essentially the same functions, but they take differ-
ent forms of inputs. The former takes K as the input, whereas the latter takes
T, an encoded form of K, as the input. This fact suggests the possibility of the
partitioning technique based on FMAH, rather than FADH. Namely, we first choose
K ∈ {0, 1,⊥}� as specified, then set T as Eq. (1). The identity space is parti-
tioned into two sets by FMAH(T, ·), which in turn is exactly the same partitioning
made by FADH(K, ·). Since the simulation strategy based on the function FMAH

uses a much shorter secret randomness (i.e. T) than FADH, this opens up the
possibility of constructing a much more compact IBE scheme.
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Even given the above idea, the constructions of our IBE and VRF are not
straightforward. Although the change is only in the encoding of the secret ran-
domness, it might be the case that the construction of the function is incom-
patible with the underlying algebraic structures. In particular, FMAH seems to
require more homomorphic capability than FADH. Indeed, even though we know
how to construct IBE from bilinear maps using FADH [BB04b], we do not know
how to do it for FMAH. In our lattice IBE, we can realize the idea by employ-
ing the fully key homomorphic technique introduced by [BGG+14]. However,
we have to be careful when applying the technique, otherwise we will end up
with a super polynomial LWE as in [Yam16], which is undesirable both from
the security and efficiency perspectives. For our VRF based on bilinear maps,
we employ the fact that we can compute the function value by highly non-linear
operations in the exponent.

2.2 Our First Lattice IBE

Our proposed IBE scheme follows the general framework for constructing a lat-
tice IBE scheme [CHKP10,ABB10a,Yam16,ZCZ16] that associates to each iden-
tity ID the matrix [A‖BID] ∈ Z

n×2m
q . In the template construction, the main part

of the ciphertext for ID contains s�[A‖BID]+x�, where s $← Z
n
q and x is a small

noise term. On the other hand, a private key for ID is a short vector e satisfying
[A‖BID]e = u for a random public vector u.

We compute the matrix BID using the fully key homomorphic technique
of [BGG+14]. Informally they showed that there exist algorithms PubEval and
TrapEval that satisfy

PubEval
(
F, {ARi + yiG}i∈[u]

)
= ARF + F(y) · G

where RF = TrapEval
(
F,A, {Ri, yi}i∈[u]

)
.

Here, F : {0, 1}u → {0, 1} is some function, Ri is a matrix with small coefficients,
and yi is the i-th bit of the bit-string y. Furthermore, RF has small coefficients.

For our construction, we prepare random matrices A,B1, . . . ,Bu in the mas-
ter public key, where u = ω(log2 λ). Then, we set

BID = PubEval( FMAH( · , ID), {Bi}i∈[u] ).

Here, we consider FMAH(·, ID) as a function that takes an binary string repre-
senting T as an input. This is necessary to apply the result of [BGG+14] without
using the super-polynomial modulus. The security of the scheme is reduced to
the LWE assumption, which says that given A ∈ Z

n×m
q and w ∈ Z

m
q , it is hard

to distinguish whether w $← Z
m
q or w� = s�A+x′� for some noise term x′. To

prove security, we set the matrices {Bi} in the master public key as

Bi = ARi + Ti · G
where A is from the problem instance of the LWE, Ri is a random matrix with
small coefficients, and Ti ∈ {0, 1} is the i-th bit of the binary representation of T.
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Due to the leftover hash lemma, the master public key is correctly distributed.
By the properties of PubEval and TrapEval, we have

BID = ARID + FMAH(T, ID) · G
where RID = TrapEval

(
FMAH( · , ID),A, {Ri,Ti}i∈[u]

)
.

Furthermore, by the property of FMAH, we have

FMAH(T, ID(1)) = · · · = FMAH(T, ID(Q)) = 1 ∧ FMAH(T, ID�) = 0 (2)

with noticeable probability, where ID� is the challenge identity, and
ID(1), . . . , ID(Q) are identities for which the adversary has made key extrac-
tion queries. If this condition holds, the simulation will be successful. The key
extraction queries for ID ∈ {ID(1), . . . , ID(Q)} can be handled by using RID as a
G-trapdoor [MP12] for the matrix [A‖BID] = [A‖ARID + G]. The generation
of the challenge ciphertext is also possible by computing

w�[I‖RID� ] =
(
s�A + x′�

)
· [I‖RID� ] = s�[A‖BID� ] + x′�[I‖RID� ].︸ ︷︷ ︸

noise term

A subtle point here is that the noise term above is not correctly distributed.
However, this problem can be resolved by the technique in [KY16].

Finally, we remark that our actual construction is different from the above in
two points. First, we do not use the (general) fully key homomorphic algorithm of
[BGG+14] to compute BID and RID. If we use the algorithm in a naive way, the
coefficients of RID will become super-polynomial, which somewhat nullifies the
merit of having smaller number of matrices. Instead, we show a direct algorithm
to compute BID and RID using the technique of [GV15], such that the coefficients
of RID are polynomially bounded. The second difference is that we add a matrix
B0 to the master public key and use the matrix [A‖B0 +BID] in the encryption
and the key generation, instead of [A‖BID]. This change is introduced because
of a subtle technical reason to make the security proof easier.

2.3 Our First VRF

Our VRF is constructed on bilinear maps and obtained by incorporating our
technique with the previous inversion-based VRF schemes [DY05,BMR10]. In
the scheme, we set the function as

Vsk(X) = e(g, h)1/θX , (3)

where the value θX = Z
∗
p is deterministically computed by the input X. Let

us ignore the problem of how we add the verifiability to the scheme for the
time being and start with the overview of the security proof for the scheme
as a (plain) PRF. The security will be proven under the L-DDH assumption,
which says that given (h, ĝ, ĝα, . . . ĝαL

, Ψ), it is infeasible to distinguish whether
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Ψ
$← GT or Ψ = e(ĝ, h)1/α. As before, we sample T and partition the input space

into two sets by FMAH. By the property and definition of FMAH, we have

T 	⊆ S(X(1)) ∧ · · · ∧ T 	⊆ S(X(Q)) ∧ T ⊆ S(X�)

with noticeable probability, where X� is the challenge input and X(1), . . . , X(Q)

are the inputs for which the adversary has made evaluation queries. Our strategy
to prove the security is to embed the problem instance and T into the parameters
of the scheme so that we have

θX = PX(α) and g = ĝQ(α).

Here, PX(Z) is a polynomial in Zp[Z] that depends on X and Q(Z) ∈ Zp[Z]
is some fixed polynomial. We want PX(Z) and Q(Z) to satisfy the following
property: There exist ξX ∈ Z

∗
p and RX(Z) ∈ Zp[Z] such that

Q(Z)
PX(Z)

=

⎧⎨
⎩

ξX

Z
+ RX(Z) if T ⊆ S(X)

RX(Z) if T 	⊆ S(X)
. (4)

If the above holds, the simulation will be successful. To answer the evaluation
query on input X ∈ {X(1), . . . , X(Q)}, we compute e(ĝRX(α), h). This is a valid
answer, since we have T 	⊆ S(X) and thus

e(ĝRX(α), h) = e(ĝQ(α)/PX(α), h) = e(g1/PX(α), h) = e(g, h)1/θX .

To answer the challenge query, we compute Ψ ξX� · e
(
ĝRX� (α), h

)
. If Ψ

$← GT , it
is a random element in GT , as desired. On the other hand, if Ψ = e(ĝ, h)1/α, we
have

Ψ ξX� · e
(
ĝRX� (α), h

)
= e

(
ĝQ(α)/PX� (α), h

)
= e

(
g1/PX� (α), h

)
= e(g, h)1/θX�

which is the correct value. Now we have to find the polynomials with the desired
property (namely, Eq. (4)). Let us take PX(Z) to be the following form:3

PX(Z) =
∏

i∈[η],j∈[�]

(Z − ti + sj) where T = {t1, . . . , tη}, S(X) = {s1, . . . , s�}.

In some sense, PX(Z) checks (ti
?= sj) in a brute-force manner. We can see

that PX(Z) can be divided by Z exactly |T∩S(X)| times. Furthermore, we have
|T∩ S(X)| = |T| = η ⇔ T ⊆ S(X). This motivates us to define Q(Z) as follows:

Q(Z) = Zη−1 ·
∏
a�=0

(Z + a), (5)

where the product is taken for sufficiently many a 	= 0, so that the latter part of
Q(Z) can be divided by any factor of PX(Z) except for Z. It is easy to see that
3 For simplicity, we use a polynomial that is slightly different from the actual proof.
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Q(Z) can be divided by Z exactly η − 1 times. These imply that Q(Z) can be
divided by PX(Z), if and only if the multiplicity of Z in PX(Z) is at most η − 1.
This fact allows us to prove Eq. (4).

Finally, we go back and see how our actual construction works. We set the
verification key as vk = (g, h, {Wi = gwi}i∈[η]) and choose θX as

θX =
∏

(i,j)∈[η]×[�]

(wi + sj)︸ ︷︷ ︸
:=θi,j

=
∏
i∈[η]

⎛
⎝∏

j∈[�]

(wi + sj)

⎞
⎠

︸ ︷︷ ︸
φi

(6)

and set the function value as Vsk(X) = e(g, h)1/θX . The form of θX reflects the
“brute-force structure” that has appeared in PX(Z). To generate a proof for
the function value, we take the “step ladder approach” [Lys02,ACF09,HW10].
Namely, we publish values of the form g1/θ1,1 , g1/θ1,1θ1,2 , . . . , g1/θ1,1···θη,� = g1/θX .
The correctness of the function value can be verified by the pairing compu-
tations using these terms. While this scheme achieves very short verification
key, the proofs for the function values are very long. We can make the proofs
much shorter by a simple trick. We introduce additional helper components
{gwj

i }(i,j)∈[η]×[�] to the verification key. Instead of publishing the proof above,
we publish g1/φ1 , g1/φ1φ2 , . . . , g1/φ1···φη = g1/θX as a proof. Thanks to the helper
components, we can verify whether the function value is correct using the proof.

2.4 Other Constructions

Partitioning with Yet Another Function. We propose another function
FAFF, which is also useful to perform the partitioning technique. The main advan-
tage of the function over FMAH is that it achieves even shorter secret randomness
K of length ω(log λ). Here, we begin by reviewing FWAT, a slight variant of the
celebrated Waters’ hash [Wat05], and then gradually modify it to our FAFF. Let
the identity space of IBE (or input space of VRF) be {0, 1}k. The function FWAT

is defined as

FWAT(K = ({αi}i∈[k], β), ID) =

{
0, if (

∑
i∈[k] αiIDi) + β = 0

1, otherwise

where αi, β ∈ Z, ID ∈ {0, 1}k

Here, IDi is the i-th bit of ID. In order for the function to be useful, we should
choose the random secret K so that

Pr
K

[
FWAT(K, ID(1)) = 1 ∧ · · · ∧ FWAT(K, ID(Q)) = 1 ∧ FWAT(K, ID�) = 0

]
is noticeable. By a standard analysis, one can show that it suffices to satisfy the
following two requirements:
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(A) PrK [FWAT(K, ID�) = 0] is noticeable.
(B) PrK [FWAT(K, ID(i)) = 0 | FWAT(K, ID�) = 0] is sufficiently small for all

i ∈ [Q].

In order to satisfy the requirements, one way to choose is α1, . . . , αk
$← [1, 4Q]

and β
$← [−4kQ, 0]. As for requirement (A), we have

Pr
K

[FWAT(K, ID�) = 0] = Pr
α,β

⎡
⎣β = −

∑
i∈[k]

αiID
�
i

⎤
⎦ =

1
4kQ + 1

where the second equality follows from −4kQ ≤ ∑
i∈[k] αiID

�
i ≤ 0. We can

see that the probability is noticeable as desired. The main observation here
is that since the value of each αi is polynomially bounded and ID�

i ∈ {0, 1},
the total sum is also confined within the polynomially bounded range and thus
can be guessed with noticeable probability. Requirement (B) can be proven by
exploiting a certain kind of pairwise independence of FWAT(K, ·).

The problem of the above function is that it requires long secret randomness
K, whose length is linear in k. As the first attempt to shorten this, we could
consider a modified function F′

WAT defined as

F′
WAT(K = (α, β), ID) =

{
0, if αID + β = 0
1, otherwise

where α, β ∈ Z, ID ∈ [2k − 1]

where we interpret ID ∈ {0, 1}k as an integer in [2k − 1] by the natural bijec-
tion. While it is easy to satisfy requirement (B), we no longer know how to
satisfy requirement (A) at the same time. Even if the size of α is polynomially
bounded, α · ID can be very large, and we can not guess the value better than
with exponentially small probability.

To resolve the problem, we further modify the function and obtain our final
function FAFF defined as follows:

FAFF(K = (α, β, ρ), ID) =

{
0, if αID + β ≡ 0 mod ρ

1, otherwise

where α, β, ρ ∈ Z, ID ∈ [2k − 1].

Here, we choose ρ to be a random polynomial-size prime. Now, we can satisfy
requirement (A), since we only have to guess (α · ID mod ρ), for which there
are only a polynomial number of candidates. However, making the size of ρ
polynomial causes a subtle problem regarding requirement (B). Let us consider
the case where an adversary makes queries such that ID� = ID(1) + ρ. In such
a case, we have FAFF(K, ID�) = FAFF(K, ID(1)) and the simulation fails with
probability 1, no matter how we choose α and β. Such queries can be made
with noticeable probability, since ρ is polynomial-size and the adversary can
guess the value with noticeable probability. However a small subtlety is that the
probability does not need to be negligible in order to satisfy requirement (B).
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Due to this observation, by choosing ρ randomly from a large enough domain
(concretely, from [kQ2/ε, 4kQ2/ε]), we can make the probability of such queries
being made sufficiently small, hence satisfying requirement (A) and (B).

New IBE and VRF Based on the Function. Based on the function FAFF,
we propose a lattice based IBE scheme and a VRF scheme on bilinear groups.
To construct a lattice based IBE scheme, we follow the same template as the
case of FMAH and set BID = PubEval(FAFF(· , ID), {Bi}i∈[u]). Again, if we use the
fully key homomorphic algorithm of [BGG+14] naively, the scheme will require
super polynomial modulus q. To avoid this, to compute BID, we first compute a
description of a log-depth circuit corresponding to FAFF. Such a circuit exists by
the classical result of Beam, Cook, and Hoover [BCH86], who showed that the
computation of division can be performed in NC1, since division implies modulo
ρ arithmetic. Then, we convert the log-depth circuit into a branching program
using the Barrington’s theorem [Bar89]. Finally, we use the key homomorphic
algorithm for branching programs in [GV15]. Note that similar approach was
also taken in [BL16] to homomorphically evaluate a PRF. To construct a VRF
based on bilinear groups, we again take advantage of the fact that FAFF can be
computed by a log-depth circuit. This fact is necessary for our VRF to be proven
secure under a polynomial-size assumption, since our security proof requires 2d-
DDH assumption, where d is the depth of the circuit.

3 Preliminaries

Due to the space limitation, we omit most of the proofs for the lemmas presented
in the paper. They can be found in the full version [Yam17].

Notation. We denote by [a] a set {1, 2, . . . , a} for any integer a ∈ N. For a set
S, |S| denotes its size. We treat a vector as a column vector. If A1 is an n × m
and A2 is an n × m′ matrix, then [A1‖A2] denotes the n × (m + m′) matrix
formed by concatenating A1 and A2. We use similar notation for vectors. For a
vector u ∈ Z

n, ‖u‖ and ‖u‖∞ denote its �2 and �∞ norm respectively. Similarly,
for a matrix R, ‖R‖∞ denotes its infinity norm. ‖R‖2 is the operator norm of
R. Namely, ‖R‖2 := sup‖x‖=1 ‖Rx‖. For a function f(·) : N → R≥0, we say that
the function is negligible when for every polynomial g(·) and all sufficiently large
λ we have f(λ) < |1/g(λ)|. We say that the function is noticeable when there
exists a polynomial g(·) such that we have f(λ) ≥ |1/g(λ)| for all λ.

3.1 Cryptographic Primitives

IBE and VRF. We use the standard syntax of IBE [BF01] and VRF with large
input spaces [HW10]. We require standard notion of the correctness for both. For
VRF, we also require unique provability. As for the security, we require adaptive
anonymity for IBE and pseudorandomness for VRF. We refer to the full version
for the formal definitions. These security notions are defined by games between
the challenger and the adversary. In the games, we use two random variables coin
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and ĉoin in {0, 1} for defining the security. coin refers to the random value chosen
by the challenger and ĉoin refers to the guess for coin output by the adversary.
We have the following general statement concerning coin and ĉoin.

Lemma 1 (Lemma8 in [KY16], See also Lemma 28 in [ABB10a]). Let
us consider an IBE (resp. VRF) scheme and an adversary A that breaks the
adaptively-anonymous security (resp. pseudorandomness) with advantage ε. Let
the identity space (resp. input space) be X and consider a map γ that maps
a sequence of elements in X to a value in [0, 1]. We consider the following
experiment. We first execute the security game for A. Let X� be the chal-
lenge identity (resp. challenge input) and X1, . . . , XQ be the identities (resp.
inputs) for which key extraction queries (resp. evaluation queries) were made.
We denote X = (X�,X1, . . . , XQ). At the end of the game, we set coin′ ∈ {0, 1}
as coin′ = ĉoin with probability γ(X) and coin′ $← {0, 1} with probability 1−γ(X).
Then, the following holds.∣∣∣∣Pr[coin′ = coin] − 1

2

∣∣∣∣ ≥ γmin · ε − γmax − γmin

2

where γmin and γmax are the maximum and the minimum of γ(X) taken over all
possible X, respectively.

Though the lemma was proven only for IBE in [KY16], the same proof works
also for VRF.

3.2 Preliminaries on Lattices and Bilinear Maps

For an integer m > 0, let DZm,σ be the discrete Gaussian distribution over Z
m

with parameter σ > 0.

Learning with Errors (LWE) Assumption. We define the learning with
errors (LWE) problem, which was introduced by Regev [Reg05].

Definition 1 (LWE). For an integers n = n(λ), m = m(n), a prime integer
q = q(n) > 2, a real number α ∈ (0, 1), and a PPT algorithm A, an advantage
for the learning with errors problem dLWEn,m,q,α of A is defined as follows:

Adv
dLWEn,m,q,α

A =
∣∣Pr

[A(A, s�A + x�) → 1
]− Pr

[A(A,w� + x�) → 1
]∣∣

where A $← Z
n×m
q , s $← Z

n
q , x $← DZm,αq, w $← Z

m
q . We say that dLWEn,m,q,α

assumption holds if AdvdLWEn,m,q,α

A is negligible for all PPT A.

Regev [Reg05] (see also [GKV10]) showed that solving dLWEn,m,q,α for αq >
2
√

2n is (quantumly) as hard as approximating the SIVP and GapSVP problems
to within Õ(n/α) factors in the �2 norm, in the worst case. In the subsequent
works, (partial) dequantumization of the Regev’s reduction were achieved [Pei09,
BLP+13].
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Gadget Matrix. Let m > n�log q�. There is a fixed full-rank matrix G ∈ Z
n×m
q

such that there exists a deterministic polynomial-time algorithm G−1 which
takes the input U ∈ Z

n×m
q and outputs V = G−1(U) such that V ∈ {0, 1}m×m

and GV = U.

Trapdoors. Here, we follow the presentation of [BV16]. Let n,m, q ∈ N and
consider a matrix A ∈ Z

n×m
q . For all V ∈ Z

n×m′
q , we let A−1

σ (V) be a dis-
tribution that is a Gaussian (DZm,σ)m′

conditioned on A · A−1
σ (V) = V. A

σ-trapdoor for A is a procedure that can sample from the distribution A−1
σ (V)

in time poly(n,m,m′, log q), for any V. We slightly overload notation and denote
a σ-trapdoor for A by A−1

σ . The following properties had been established in a
long sequence of works [GPV08,ABB10a,CHKP10,ABB10b,MP12,BLP+13].

Lemma 2 (Properties of Trapdoors). Lattice trapdoors exhibit the following
properties.

1. Given A−1
σ , one can obtain A−1

σ′ for any σ′ ≥ σ.
2. Given A−1

σ , one can obtain [A‖B]−1
σ and [B‖A]−1

σ for any B.
3. For all A ∈ Z

n×m
q and R ∈ Z

m×m, with m ≥ n�log q�, one can obtain
[AR + G‖A]−1

σ for σ = m · ‖R‖∞ · ω(
√

log m).
4. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1

σ0
)

where A ∈ Z
n×m
q for some m = O(n log q) and is 2−n-close to uniform, where

σ0 = ω(
√

n log q log m).
5. For A−1

σ and u ∈ Z
n
q , it follows Pr[ ‖A−1

σ (u)‖ >
√

mσ ] = negl(n).

Certified Bilinear Group Generators. We define certified bilinear group
generators following [HJ16]. We require that there is an efficient bilinear group
generator algorithm GrpGen that on input 1λ and outputs a description Π of
bilinear groups G,GT with prime order p and a map e : G × G → GT . We also
require that GrpGen is certified, in the sense that there is an efficient algorithm
GrpVfy that on input a (possibly incorrectly generated) description of the bilinear
groups and outputs whether the description is valid or not. Furthermore, we
require that each group element has unique encoding, which can be efficiently
recognized. For the precise definitions, we refer to [HJ16] and the full version.

L-Diffie-Hellman Assumptions

Definition 2 (L-Diffie-Hellman Assumptions). For a PPT algorithm A,
an advantage for the decisional L-Diffie Hellman problem L-DDH of A with
respect to GrpGen is defined as follows:

AdvL-DDH
A = |Pr[A(Π, ĝ, h, ĝα, ĝα2

, . . . ĝαL

, Ψ0) → 1]

−Pr[A(Π, ĝ, h, ĝα, ĝα2
, . . . ĝαL

, Ψ1) → 1]|

where Π
$← GrpGen(1λ), α

$← Z
∗
p, ĝ, h

$← G, Ψ0 = e(ĝ, h)1/α, and Ψ1
$← GT . We

say that L-DDH assumption holds if AdvL-DDH
A is negligible for all PPT A.
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4 Partitioning Functions

In this section, we introduce the notion of partitioning functions. The notion
abstracts out the information theoretic properties that are useful in the security
proofs based on the partitioning techniques. Then, we proceed to recap the spe-
cific partitioning function that was given by [Jag15]. Then, we propose two new
constructions of partitioning functions. The first one is obtained by introduc-
ing a simple but novel twist to the construction by [Jag15]. The second one is
based on the affine-functions on random modulus. In the later sections, we will
construct new lattice IBEs and VRFs based on these partitioning functions.

4.1 Definition

In the security proofs based on the partitioning technique [BB04b,Wat05], the
simulations are successful only with noticeable probabilities. As observed by
Waters [Wat05], this causes a subtle problem when considering the reduction
to the decisional assumptions (such as the L-DDH). He resolved the problem
by introducing the artificial abort step, where the simulator intentionally aborts
with certain probability even when the simulation is successful. Later, Bellare
and Ristenpart [BR09] showed that by requiring reasonable upper bound on the
probability that the simulation is successful in addition to the lower bound, this
step can be removed. In the subsequent work, Jager [Jag15] incorporated the
idea of [BR09] into the notion of the admissible hash function [BB04b,CHKP10,
FHPS13] to define balanced admissible hash function. The notion is a useful tool
to perform the security proofs based on the partitioning technique. In addition,
it is compatible with the decisional assumptions in the sense that it does not
require the artificial abort step. Here, we define the notion of the partitioning
function by slightly generalizing the balanced admissible hash function [Jag15].

Definition 3. Let F = {Fλ : Kλ × Xλ → {0, 1}} be an ensemble of func-
tion families. We say that F is a partitioning function, if there exists an effi-
cient algorithm PrtSmp(1λ, Q, ε), which takes as input polynomially bounded
Q = Q(λ) ∈ N and noticeable ε = ε(λ) ∈ (0, 1/2] and outputs K such that:

1. There exists λ0 ∈ N such that

Pr
[
K ∈ Kλ : K

$← PrtSmp
(
1λ, Q(λ), ε(λ)

)]
= 1

for all λ > λ0. Here, λ0 may depend on functions Q(λ) and ε(λ).
2. For λ > λ0, there exists γmax(λ) and γmin(λ) that depend on Q(λ) and ε(λ)

such that for all X(1), . . . , X(Q),X� ∈ Xλ with X� 	∈ {X(1), . . . , X(Q)},
γmax(λ) ≥ γ(X(1), . . . , X(Q)) ≥ γmin(λ) (7)

holds where

γ(X(1), . . . , X(Q)) = Pr
[(

F(K,X(j)) = 1 ∀j ∈ [Q]
)

∧ F(K,X�) = 0
]
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and the function τ(λ) defined as

τ(λ) := γmin(λ) · ε(λ) − γmax(λ) − γmin(λ)
2

(8)

is noticeable. We note that the probability above is taken over the choice of
K

$← PrtSmp(1λ, Q(λ), ε(λ)).

We call K the partitioning key and τ(λ) the quality of the partitioning function.

In the following, we often drop the subscript λ and denote F, K, and X for
the sake of simplicity. We remark that the term τ(λ) above, which may seem
very specific, is inherited from [Jag15]. As explained in [Jag15], such a term
appears typically in security analyses that follows the approach of Bellare and
Ristenpart [BR09] (See also Lemma 1). Looking ahead, the quantity τ(λ) will
directly affect the reduction cost of our IBEs and VRFs. The length of (the
binary representation of) the partitioning key K will affect the efficiency of the
resulting schemes. Therefore, we want the partitioning function F for the largest
possible τ(λ) and the shortest possible partitioning key.

There are two main differences from the definition of [Jag15]. Firstly, we con-
sider any function F, whereas they only considered a specific function (namely,
FADH in Sect. 4.2). Secondly, we explicitly add the condition regarding the domain
correctness of the output of PrtSmp (the first condition), which was implicit in
[Jag15].

Comparison with Programmable Hash Functions. Our notion of the par-
titioning function is similar to the programmable hash function [HK08,ZCZ16].
The main difference is that whereas the notion of the programmable hash func-
tion is defined on specific algebraic structures such as (bilinear) groups [HK08]
and lattices [ZCZ16], our definition is irrelevant to them. Since the security
proofs of our IBEs and VRFs have the same information theoretic structure in
common, we choose to decouple them from the underlying algebraic structures.

4.2 Construction from Admissible Hash Function

Here, we recap the result of Jager [Jag15] who constructed a specific partitioning
function that he calls balanced admissible hash function. The result will be
used in the next subsection to construct our first partitioning function. Let
k(λ) = Θ(λ) and �(λ) = Θ(λ) be integers and let {Ck : {0, 1}k → {0, 1}�}k∈N be
a family of error correcting codes with minimal distance �c for a constant c ∈
(0, 1/2). Explicit constructions of such codes are given in [SS96,Zém01,Gol08]
for instance. Let us define

KADH = {0, 1,⊥}� and XADH = {0, 1}k.

We define FADH as

FADH(K,X) =

{
0, if ∀i ∈ [�] : C(X)i = Ki ∨ Ki = ⊥
1, otherwise
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where C(X)i and Ki are the i-th significant bit of C(X) and K, respectively.
Jager [Jag15] showed the following theorem.

Theorem 1 (Adapted from Theorem 1 in [Jag15]). There exists an efficient
algorithm AdmSmp(1λ, Q, ε), which takes as input Q ∈ N and ε ∈ (0, 1/2] and
outputs K with exactly η′ components not equal to ⊥, where

η′ :=
⌊

log(2Q + Q/ε)
− log (1 − c)

⌋
,

such that Eqs. (7) and (8) hold with respect to F := FADH, PrtSmp := AdmSmp,
and τ(λ) = 2−η′−1 · ε. In particular, FADH is a partitioning function.

4.3 Our Construction Based on Modified Admissible Hash Function

Here, we propose our first construction of the partitioning function FMAH, which
is obtained by modifying FADH in the previous subsection. The advantage of
FMAH is that it achieves much shorter partitioning keys compared with FADH. In
particular, the length is ω(log2 λ) in FMAH, whereas Θ(λ) in FADH. We will use
the same notation as in Sect. 4.2. Let us introduce an integer η(λ) = ω(log λ).
η(λ) can be set arbitrarily as long as it grows faster than log λ. (See footnote in
Sect. 1.) For our construction, we set

KMAH = {T ⊆ [2�] | |T| < η} and XMAH = {0, 1}k.

We define FMAH as

FMAH(T,X) =

{
0, ifT ⊆ S(X)
1, otherwise

where S(X) = { 2i − C(X)i | i ∈ [�] } .

In the above, C(X)i is the i-th bit of C(X) ∈ {0, 1}�. See Fig. 1 in Sect. 2.1 for
an illustrative example of S.

Lemma 3. The function FMAH defined above is a partitioning function.

Proof. To prove the lemma, we define PrtSmpMAH as follows. It uses the algo-
rithm AdmSmp from the previous subsection as a subroutine.

PrtSmpMAH(1λ, Q, ε) : It runs AdmSmp(1λ, Q, ε) → K and sets

T = {2i − Ki | i ∈ [�], Ki 	= ⊥} ⊆ [2�],

where Ki is the i-th bit of K. It finally outputs T.

See Fig. 1 in Sect. 2.1 for an illustrative example of T. We first show that
PrtSmpMAH satisfies the first property of Definition 3. By Theorem 1, |T| = η′ =
�log (2Q + Q/ε)/ log (1 − c)�. To show T ∈ KMAH for all sufficiently large λ, it
suffices to show η′(λ) < η(λ) for all sufficiently large λ. This follows since

η′(λ) =
⌊

log(2Q + Q/ε)
− log (1 − c)

⌋
= O (log(poly(λ))) = O(log λ) and η(λ) = ω(log λ)
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when Q(λ) is polynomially bounded and ε is noticeable for constant c. We next
prove the second property. This follows from Theorem 1 and by the following
observation:

FADH(K,X) = 0 ⇔ C(X)i = Ki ∀i ∈ [�] such that Ki 	= ⊥
⇔ T ⊆ S(X)
⇔ FMAH(T,X) = 0.

This completes the proof of Lemma 3.

4.4 Our Construction Based on Affine Functions

Here, we propose our second construction of the partitioning function FAFF.
Compared to FMAH, the function achieves an even shorter length of ω(log λ) for
the partitioning keys. Let k(λ) = Θ(λ) and η(λ) = ω(log λ) be integers. For our
construction, we set

KAFF = {0, 1}3η, XAFF = {0, 1}k

FAFF(K,X) is defined as

FAFF(K = (α, β, ρ), X) =

{
0, if ρ 	= 0 ∧ αX + β ≡ 0 mod ρ

1, otherwise
,

where α, β, ρ ∈ {0, 1}η. Here, we slightly abuse the notation and identify a
bit-string in {0, 1}η with an integer in [0, 2η − 1] by its binary representation.
Similarly, a bit-string in {0, 1}k is identified with an integer in [0, 2k − 1].

Theorem 2. FAFF defined above is a partitioning function.

5 Our IBE Schemes

In this section, we give a generic construction of an adaptively secure lattice
based IBE from a partitioning function. Our generic construction requires the
underlying partitioning function to be compatible (in some sense) with the struc-
ture of lattices. In the following, we first formalize the requirement by giving the
definition of compatibility. Then, we show that FMAH and FAFF are compatible
in this sense. Finally, we show the generic construction of IBE.

5.1 Compatible Algorithms for Partitioning Functions

The following definition gives a sufficient condition for partitioning functions to
be useful for constructing adaptively secure IBE schemes.

Definition 4. We say that the deterministic algorithms (Encode,PubEval,
TrapEval) are δ-compatible with a function family {F : K × X → {0, 1}} if they
are efficient and satisfy the following properties:
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– Encode(K ∈ K) → κ ∈ {0, 1}u

– PubEval
(
X ∈ X , {Bi ∈ Z

n×m
q }i∈[u]

) → BX ∈ Z
n×m
q

– TrapEval
(
K ∈ K, X ∈ X , A ∈ Z

n×m
q , {Ri ∈ Z

m×m}i∈[u]

) → RX ∈ Z
m×m

We require that the following holds:

PubEval
(
X, {ARi + κiG}i∈[u]

)
= ARX + F(K,X) · G

where κi ∈ {0, 1} is the i-th bit of κ = Encode(K) ∈ {0, 1}u. Furthermore, if
Ri ∈ {−1, 0, 1}m×m for all i ∈ [u], we have ‖RX‖∞ ≤ δ.

It is possible to obtain compatible algorithms for any partitioning functions,
including ours, by directly leveraging the fully key homomorphic algorithm in
[BGG+14]. However, if we apply the algorithm naively, it will end up with super-
polynomial δ, which is undesirable. By carefully applying the idea from [GV15],
we can provide δ-compatible algorithms for FMAH and FAFF with polynomial δ.
In particular, we have following lemmas.

Lemma 4. For u = η ·�log (2� + 1)�, there are m3u(�+1)-compatible algorithms
for FMAH.

Lemma 5. For u = 3η, there are poly(n)-compatible algorithm for FAFF, where
poly(n) denotes some fixed polynomial in n.

5.2 Construction

Here, we construct an IBE scheme based on a partitioning function F : K×X →
{0, 1} with associating δ-compatible algorithms (Encode,PubEval,TrapEval). We
assume X = ID = {0, 1}k, where ID is the identity space of the scheme. If
a collision resistant hash CRH : {0, 1}∗ → {0, 1}k is available, we can use any
bit-string as an identity. For simplicity, we let the message space of the scheme
be {0, 1}. For the multi-bit variant, we refer to Sect. 5.3. Our scheme can be
instantiated with FMAH and FAFF, which would lead to schemes with efficiency
and security trade-offs. We compare the resulting schemes with existing schemes
in Sect. 7. (See also Table 1 in Sect. 1.)

Setup(1λ) : On input 1λ, it sets the parameters n, m, q, σ, α, and α′ as specified
later in this section, where q is a prime number. Then, it picks random matri-
ces B0,Bi

$← Z
n×m
q for i ∈ [u] and a vector u $← Z

n
q . It also picks (A,A−1

σ0
) $←

TrapGen(1n, 1m, q) such that A ∈ Z
n×m
q and σ0 = ω(

√
n log q log m). It finally

outputs

mpk =
(

A, B0, {Bi}i∈[u], u
)

and msk = A−1
σ0

.

KeyGen(mpk,msk, ID) : Given an identity ID, it first computes

PubEval
(
ID, {Bi}i∈[u]

) → BID ∈ Z
n×m
q .
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It then computes [A‖B0 + BID]−1
σ from A−1

σ0
and samples

e $← [A‖B0 + BID]−1
σ (u).

Then, it returns skID = e ∈ Z
2m. Note that we have [A‖B0 + BID] · e = u

mod q.

Encrypt(mpk, ID,M) : To encrypt a message M ∈ {0, 1} for an identity ID, it first
computes PubEval(ID, {Bi}i∈[u]) → BID. It then picks s $← Z

n
q , x0

$← DZ,αq,
x1,x2

$← DZm,α′q and computes

c0 = s�u + x0 + M · �q/2�, c�
1 = s� [A‖B0 + BID] + [x�

1 ‖x�
2 ].

Finally, it returns the ciphertext ct = (c0, c1) ∈ Zq × Z
2m
q .

Decrypt(mpk, skID, ct) : To decrypt a ciphertext ct = (c0, c1) using a private key
skID := e, it first computes

w = c0 − c�
1 · e ∈ Zq.

Then it returns 1 if |w − �q/2�| < �q/4� and 0 otherwise.

We claim that the correctness and security of the scheme can be proven under
the following parameter selection. We refer full version to the justification.

m = O(n log q), q = n7/2 · δ2 · ω(log7/2 n), σ = m · δ · ω(
√

log m)

αq = 3
√

n, α′q = 5
√

n · m · δ.

Here, the parameter δ is determined by the compatible algorithms corresponding
to F. The following theorem addresses the security of the scheme.

Theorem 3. If F : K × X → {0, 1} is a partitioning function and (Encode,
PubEval,TrapEval) are the corresponding δ-compatible algorithms, our scheme
achieves adaptively-anonymous security assuming dLWEn,m+1,q,α.

5.3 Multi-bit Variant

Here, we explain how to extend our scheme to be a multi-bit variant with-
out increasing much the size of the master public keys and ciphertexts follow-
ing [PVW08,ABB10a,Yam16]. (However, it comes with longer private keys.) To
modify the scheme so that it can deal with the message space of length �M , we
replace u ∈ Z

n
q in mpk with U ∈ Z

n×�M
q . The component c0 in the ciphertext is

replaced with c�
0 = s�U+x�

0 +M�q/2�, where x0
$← DZ�M ,αq and M ∈ {0, 1}�M

is the message to be encrypted. The private key is replaced to be E ∈ Z
m×�M ,

where E is chosen as E $← [A‖B0 + BID]−1
σ (U). We can prove security for

the multi-bit variant from dLWEn,m+�M ,q,α by naturally extending the proof of
Theorem 3. We note that the same parameters as in Sect. 5.2 will also work
for the multi-bit variant. By this change, the sizes of the master public keys,
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ciphertexts, and private keys become Õ(n2u + n�M ), Õ(n + �M ), and Õ(n�M )
from Õ(n2u), Õ(n), and Õ(n), respectively. The sizes of the master public keys
and ciphertexts will be asymptotically the same as long as �M = Õ(n). To
deal with longer messages, we employ a KEM-DEM approach as suggested in
[Yam16]. Namely, we encrypt a random ephemeral key of sufficient length and
then encrypt the message by using the ephemeral key.

6 Our VRF Scheme Based on FMAH

6.1 Construction

Here, we construct a verifiable random function scheme based on the partitioning
function FMAH. We let the input and output space of the scheme be X = {0, 1}k

and Y = GT , respectively. Let η := η(λ), � := �(λ), C : {0, 1}k → {0, 1}�, and
S be as in Sect. 4.3. We also introduce �1 := �1(λ) and �2 = �2(λ) such that
� = �1�2. These parameters will control the trade-offs between sizes of proofs
and verification keys. A typical choice would be (�1, �2) = (O(

√
�), O(

√
�)) or

(�1, �2) = (O(�), O(1)).

Gen(1λ) : On input 1λ, it chooses a group description Π
$← GrpGen(1λ). It

chooses random generators g, h
$← G

∗ and w1, . . . , wη
$← Zp. It then out-

puts

vk =
(

Π, g, h,
{

Wi,j1 := gw
j1
i

}
(i,j1)∈[η]×[�1]

)
and sk =

({wi}i∈[η]

)
.

Eval(sk,X) : Given X ∈ {0, 1}k, it first computes S(X) = {s1, . . . , s�} ⊂ [2�],

θ =
∏

(i,j)∈[η]×[�]

(wi + sj), and θi,j2 =
∏

(i′,j′)∈Ωi,j2

(wi′ + sj′) (9)

for (i, j2) ∈ [η] × [�2], where

Ωi,j2 = {(i′, j′) ∈ [η] × [�] | (i′ ∈ [i − 1]) ∨ (i′ = i ∧ j′ ∈ [j2�1])} .

We note that θ = θη,�2 . If θ ≡ 0 mod p, it outputs Y = 1GT
and π = ({πi,j2 =

1G}(i,j2)∈[η]×[�2])
4. Otherwise, it outputs

Y = e(g, h)1/θ and π =
({

πi,j2 = g1/θi,j2

}
(i,j2)∈[η]×[�2]

)
.

Verify(vk,X, Y, π) : It first checks the validity of vk by the following steps. It
outputs 0 if any of the following does not hold:

4 The event occurs with only negligible probability. This choice of the output is arbi-
trary and can be replaced with any fixed group elements.
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1. vk is of the form (Π, g, h, {Wi,j1}(i,j1)∈[η]×[�1]).
2. GrpVfy(Π) → 1, g, h ∈ G

∗, and Wi,j1 ∈ G for all (i, j1) ∈ [η] × [�1].
3. e (Wi,1,Wi,j1−1) = e (g,Wi,j1) for all (i, j1) ∈ [η] × [2, �1].

It then checks the validity of Y and π. To do this, it computes Φi,j2 ∈ G for
(i, j2) ∈ [η] × [�2] as

Φi,j2 := gϕj2,0 ·
∏

j1∈[�1]

W
ϕj2,j1
i,j1

, (10)

where {ϕj2,j1 ∈ Zp}(j2,j1)∈[�2]×[0,�1] are the coefficients of the following poly-
nomial: ∏

j′∈[(j2−1)�1+1,j2�1]

(Z + sj′) = ϕj2,0 +
∑

j1∈[�1]

ϕj2,j1Z
j1 ∈ Zp[Z].

It outputs 0 if any of the following does not hold:
4. X ∈ {0, 1}k, Y ∈ GT , π is of the form π = ({πi,j2 ∈ G}(i,j2)∈[η]×[�2]).
5. If there exists (i, j2) ∈ [η] × [�2] such that Φi,j2 = 1G, we have Y = 1GT

and πi,j2 = 1G for all (i, j2) ∈ [η] × [�2].
6. If Φi,j2 	= 1G for all (i, j2) ∈ [η] × [�2], the following equation holds for all

(i, j2) ∈ [η] × [�2]:

e (πi,j2 , Φi,j2) = e(πi,j2−1, g) (11)

where we define πi,0 := πi−1,�2 for i ≥ 2 and π1,0 := g.
7. e(πη,�2 , h) = Y holds.

If all the above conditions hold, it outputs 1.

The correctness and unique provability of the scheme can be proven by a
standard argument. The following theorem addresses the pseudorandomness of
the scheme.

Theorem 4. Our scheme satisfies pseudorandomness assuming L-DDH with
L = (4� + 1)η + �1.

Proof. Let A be a PPT adversary that breaks pseudorandomness of the scheme.
In addition, let ε = ε(λ) and Q = Q(λ) be its advantage and the upper bound
on the number of evaluation queries, respectively. By assumption, Q(λ) is poly-
nomially bounded and there exists a noticeable function ε0(λ) such that ε(λ) ≥
ε0(λ) holds for infinitely many λ. By the property of the partitioning function
(Definition 3, Item 1), we have that

|T| < η where T
$← PrtSmpMAH(1λ, Q, ε0)

holds with probability 1 for all sufficiently large λ. Therefore, in the following, we
assume that this condition always holds. We show the security of the scheme via
the following sequence of games. In each game, a value coin′ ∈ {0, 1} is defined.
While it is set coin′ = ĉoin in the first game, these values might be different in
the later games. In the following, we define Ei be the event that coin′ = coin.



Asymptotically Compact Adaptively Secure Lattice IBEs 185

Game0 : This is the real security game. Recall that since the range of the function
is Y = GT , in the challenge phase, Y �

1
$← GT is returned to A if coin = 1. At

the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger
sets coin′ = ĉoin. By definition, we have∣∣∣∣Pr[E0] − 1

2

∣∣∣∣ =
∣∣∣∣Pr[coin′ = coin] − 1

2

∣∣∣∣ =
∣∣∣∣Pr[ĉoin = coin] − 1

2

∣∣∣∣ = ε.

Game1 : In this game, we change Game0 so that the challenger performs the
following additional step at the end of the game. First, the challenger runs
PrtSmpMAH(1λ, Q, ε0) → T ⊆ [2�] and checks whether the following condition
holds:

T 	⊆ S(X(1)) ∧ · · · ∧ T 	⊆ S(X(Q)) ∧ T ⊆ S(X�) (12)

where X� is chosen by A at the challenge phase, and X(1), . . . , X(Q) are
inputs to the VRF for which A has queried the evaluation of the function.
If it does not hold, the challenger ignores the output ĉoin of A, and sets
coin′ $← {0, 1}. In this case, we say that the challenger aborts. If condition
(12) holds, the challenger sets coin′ = ĉoin. By Lemmas 1 and 3 (See also
Definition 3, Item 2),∣∣∣∣Pr[E1] − 1

2

∣∣∣∣ ≥ γminε − γmax − γmin

2
≥ γminε0 − γmax − γmin

2
= τ

holds for infinitely many λ and a noticeable function τ = τ(λ). Here, γmin,
γmax, and τ are specified by ε0, Q, and the underlying partitioning function
FMAH.

Game2 : In this game, we change the way wi are chosen. At the beginning of
the game, the challenger picks T

$← PrtSmpMAH(1λ, Q, ε0) and parses it as
T = {t1, . . . , tη′} ⊂ [2�]. Recall that by our assumption, we have η′ < η. It
then sets ti := 0 for i ∈ [η′ + 1, η]. It then samples α

$← Z
∗
p, and w̃i

$← Z
∗
p for

i ∈ [η]. Then, wi are defined as

wi = w̃i · α − ti for i ∈ [η].

The rest of the game is the same as in Game1. The statistical distance of
the distributions of {wi}i∈[η] in Game1 and Game2 is at most η/p, which is
negligible. Therefore, we have |Pr[E1] − Pr[E2]| = negl(λ).

Before describing the next game, for any Ω ⊆ [η] × [�], T ⊂ [2�] with |T| =
η′ < η, and X ∈ {0, 1}k, we define polynomials PX,Ω(Z),Q(Z) ∈ Zp[Z] as

PX,Ω(Z) =
∏

(i,j)∈Ω

(w̃iZ − ti + sj)

and Q(Z) = Zη′−1 ·
∏

(i,j)∈[η]×[−2�,2�]\{0}
(w̃iZ + j) ,
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where {sj}j∈[�] = S(X) and {ti}i∈[η] are defined as in Game2 (namely, T =
{ti}i∈[η′] and ti = 0 for i > η′). In the special case of Ω = [η] × [�], we denote
PX(Z) := PX,[η]×[�](Z). We state the following lemma, which plays an important
roll in our security proof.

Lemma 6. There exist ξX ∈ Z
∗
p and RX(Z) ∈ Zp[Z] such that

Q(Z)
PX(Z)

=

⎧⎨
⎩

ξX

Z
+ RX(Z) if T ⊆ S(X)

RX(Z) if T 	⊆ S(X)
.

From the above lemma, we can see that for any Ω ⊆ [η] × [�], it holds that

PX,Ω(Z) | Q(Z) if T 	⊆ S(X),

because PX,Ω(Z) | PX(Z).

Game3 Recall that in the previous game, the challenger aborts at the end of the
game, if condition (12) is not satisfied. In this game, we change the game so
that the challenger aborts as soon as the abort condition becomes true. Since
this is only a conceptual change, we have Pr[E2] = Pr[E3].

Game4 In this game, we change the way g is sampled. Namely, Game4 challenger
first picks α and w̃i as specified in Game2. It further picks ĝ

$← G
∗. Then, it

computes (coefficients of) Q(Z) and sets

g := ĝQ(α), Wi,j1 = gw
j1
i = ĝQ(α)·(w̃iα−ti)

j1 for (i, j1) ∈ [η] × [�1].

It aborts and outputs a random bit if g = 1G ⇔ Q(α) ≡ 0 mod p. It can
be seen that the distribution of g and Wi,j1 is unchanged, unless Q(α) ≡ 0
mod p. Since Q(Z) is a non-zero polynomial with degree (4η� + η′ − 1) and α
is chosen uniformly at random from Z

∗
p, it follows from the Schwartz-Zippel

lemma that this happens with probability at most (4η� + η′ − 1)/(p − 1) =
negl(λ). We therefore have |Pr[E3] − Pr[E4]| = negl(λ).

Game5 In this game, we change the way the evaluation queries are answered.
By the change introduced in Game4, we assume Q(α) 	≡ 0 mod p in the
following. When A makes a query for an input X, the challenger first checks
whether T ⊆ S(X) and aborts if so (as specified in Game3). Otherwise, it
computes RX,Ωi,j2

(Z) ∈ Zp[Z] such that Q(Z) = PX,Ωi,j2
(Z) · RX,Ωi,j2

(Z) for
(i, j2) ∈ [η] × [�2]. Note that such polynomials exist by Lemma 6. Then, it
returns

Y = e
(
ĝ
RX,Ωη,�2

(α)
, h
)

, π =
({

πi,j2 = ĝ
RX,Ωi,j2

(α)
}
(i,j2)∈[η]×[�2]

)

to A. We claim that this is only a conceptual change. To see this, we first
observe that

PX,Ωi,j2
(α) =

∏
(i′,j′)∈Ωi,j2

(w̃i′α − ti′ + sj′)
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=
∏

(i′,j′)∈Ωi,j2

(wi′ + sj′) = θi,j2 . (13)

We have θi,j2 	≡ 0 mod p, since otherwise we have Q(α) ≡ PX,Ωi,j2
(α) ·

RX,Ωi,j2
(α) ≡ θi,j2 · RX,Ωi,j2

(α) ≡ 0 mod p, which is a contradiction. Thus,
we have

ĝ
RX,Ωi,j2

(α) = ĝ
Q(α)/PX,Ωi,j2

(α) = g
1/PX,Ωi,j2

(α) = g1/θi,j2 .

This indicates that the simulation by the challenger is perfect. Since the view
of A is unchanged, we have Pr[E4] = Pr[E5].

Game6 : In this game, we change the way the challenge value Y �
0 = Eval(sk,X�)

is created when coin = 0. If coin = 0, to generate Y �
0 , it first computes

ξX� ∈ Z
∗
p and RX�(Z) ∈ Zp[Z] such that Q(Z)/PX�(Z) = ξX�/Z + RX�(Z).

Note that such ξX� and RX�(Z) exist by Lemma 6 whenever T ⊆ S(X�). It
then sets

Y �
0 =

(
e (ĝ, h)1/α

)ξX�

· e
(
ĝRX� (α), h

)
and returns it to A. We claim that this is only a conceptual change. This can
be seen by observing that

e
(
ĝ1/α, h

)ξX�

· e
(
ĝRX� (α), h

)
= e

(
ĝξX� /α+RX� (α), h

)
= e

(
ĝQ(α)/PX� (α), h

)
= e (g, h)1/PX� (α)

and PX�(α) = θη,�2 , where the latter follows from Eq. (13). Since the view of
A is unchanged, we therefore conclude that Pr[E5] = Pr[E6].

Game7 In this game, we change the challenge value to be a random element in
GT regardless of whether coin = 0 or coin = 1. Namely, Game7 challenger sets
Y �
0

$← GT . In this game, the value coin is independent from the view of A.
Therefore, Pr[E7] = 1/2.
We claim that |Pr[E6] − Pr[E7]| is negligible assuming L-DDH with L =
(4�+1)η+�1. To show this, we construct an adversary B against the problem
using A, which is described as follows.
B is given the problem instance (Π, ĝ, h, {ĝαi}i∈[L], Ψ) of L-DDH where Ψ =
e(ĝ, h)1/α or Ψ

$← GT . At any point in the game, B aborts and sets coin′ $←
{0, 1} if condition (12) is not satisfied. It first sets g and Wi,j1 as in Game4 and
returns vk = (Π, g, h, {Wi,j1}(i,j1)∈[η]×[�1]) to A. These terms can be efficiently
computable from the problem instance because logĝ g and logĝ Wi,j1 can be
written as polynomials in α with degree at most η′ −1+4η�+ �1 < L and the
coefficients of the polynomials can be efficiently computable. When A makes
an evaluation query on input X, it computes (Y, π) as in Game5 and returns
it to A. Again, these terms can be efficiently computable from the problem
instance, because the degree of RX,Ωi,j2

(α) is at most L and coefficients of
them can be efficiently computable. When A makes the challenge query on
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input X�, B first picks coin
$← {0, 1} and returns Y � $← G if coin = 1.

Otherwise, it returns

Y � = Ψ ξX� · e
(
ĝRX� (α), h

)
to A. Note that ĝRX� (α) can be efficiently computed from the problem instance
because the degree of RX�(Z) is at most L. At the end of the game, coin′ is
defined. Finally, B outputs 1 if coin′ = coin and 0 otherwise.
It can easily be seen that the view of A corresponds to that of Game6 if
Ψ = e(ĝ, h)1/α and Game7 if Ψ

$← GT . It is clear that the advantage of B is
|Pr[E6] − Pr[E7]|. Assuming L-DDH, we have |Pr[E6] − Pr[E7]| = negl(λ).

Analysis. From the above, we have∣∣∣∣Pr[E7] − 1
2

∣∣∣∣ =

∣∣∣∣∣Pr[E1] − 1
2

+
6∑

i=1

Pr[Ei+1] − Pr[Ei]

∣∣∣∣∣
≥
∣∣∣∣Pr[E1] − 1

2

∣∣∣∣−
6∑

i=1

|Pr[Ei+1] − Pr[Ei]| ≥ τ(λ) − negl(λ).

for infinitely many λ. Since Pr[E7] = 1/2, this implies τ(λ) ≤ negl(λ) for infinitely
many λ, which is a contradiction. This completes the proof of Theorem4.

6.2 A Variant with Short Verification Keys

Here, we introduce a variant of our scheme in Sect. 6.1. In the variant, we remove
{Wi,j1 = gw

j1
i }(i,j1)∈[η]×[2,�1] from vk. Instead, we add these components to π.

We do not change the verification algorithm and other parts of the scheme. It is
straightforward to see that the correctness and pseudorandomness of the scheme
can still be proven. To prove the unique provability, we observe that the only
possible strategy to break is to include invalid {Wi,j1}(i,j1)∈[η]×[2,�1] in the proof.
This is because if these values are correct, the unique provability of the original
scheme immediately implies that of the modified scheme. However, this strategy
does not work since the invalid values will be detected at Step 3 of the verification
algorithm using {Wi,1 = gwi}i∈[η] in vk. The advantage of the variant is that the
size of vk is small. In particular, vk only consists of η + 2 group elements in this
variant, whereas η�1 +2 group elements were required in the scheme in Sect. 6.1.
Of course, this change increases the size of the proofs π. The number of group
elements will become η(�1 + �2 − 1) from η�2 by this modification. To minimize
the size of the proofs we choose �1 = �2 =

√
�.

7 Comparisons

Here, we compare our proposed schemes with previous schemes.

New Lattice IBE Schemes. In Sect. 5.2, we showed how to construct an IBE
scheme from a partitioning function with associating compatible algorithms. We
have two ways of instantiating the scheme.
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– By using the partitioning function FMAH in Sect. 4.3 and the correspond-
ing compatible algorithms, where the latter is given by Lemma4, we obtain
our first IBE scheme. The master public key of the scheme only consists of
ω(log2 λ) matrices.

– By using the partitioning function FAFF in Sect. 4.4 and the corresponding
compatible algorithms, where the latter is given by Lemma 5, we obtain our
second IBE scheme. The master public key of the scheme is even shorter: It
only consists of ω(log λ) matrices.

Both our schemes achieve the best asymptotic space efficiency (namely, the
sizes of the master public keys, ciphertexts, and private keys) among existing
IBE schemes that are adaptively secure against unbounded collusion without sub-
exponential security assumptions. In Table 1 in Sect. 1, we compare our schemes
with previous schemes. Note that the scheme by Zhang et al. [ZCZ16] achieves
shorter master public key size than ours, but only achieves Q-bounded security.
This restriction cannot be removed by just making Q super-polynomial, since
the encryption algorithm of the scheme runs in time proportional to Q.

Finally, we note that there are two drawbacks that are common in our
schemes. The first drawback is that the encryption algorithm is heavy. Our
first scheme requires Õ(λ) times of matrix multiplications for the encryption
algorithm. Our second scheme requires even heavier computation. It first com-
putes the description of the “division in NC1 circuit” [BCH86] and then invokes
Barrington’s theorem [Bar89] to convert it into a branching program. The sec-
ond drawback is that we have to rely on the LWE assumption with large (but
polynomial) approximation factors to prove the security.

New VRF Schemes. Following [HJ16], we say that a VRF scheme has “all the
desired properties” if it has exponential-sized input space and a proof of adaptive
security under a non-interactive complexity assumption. Here, we compare our
schemes proposed in this paper with previous schemes that satisfy all the desired
properties.

– In Sect. 6.1, we proposed new VRF scheme based on FMAH. The scheme is
parametrized by the parameters �1 and �2. By setting �1 = � and �2 = 1,
we obtain a new VRF scheme with very short proofs. They only consist of
ω(log λ) group elements.

– In Sect. 6.2, we proposed a variant of the above scheme. The verification keys
consist of ω(log λ) group elements and proofs consist of ω(

√
λ log λ) group

elements.
– In the full version (Appendix C), we proposed a new VRF scheme based

on FAFF. The verification key of the scheme only consists of ω(log λ) group
elements. However, the proof size of the scheme is large.

We refer to Table 2 in Sect. 1 for the overview. From the table, it can be seen
that all previous VRF schemes that satisfy all the desired properties [ACF14,
BMR10,HW10,Jag15,HJ16] require O(λ) group elements for both of verification
keys and proofs. Our first scheme above significantly improves the size of proofs.
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Our second scheme improves both of the sizes of the verification keys and proofs.
Compared to our second scheme, only advantage of our third scheme is that the
reduction cost is better. Still, we think that our third scheme is also of interest
because the construction is quite different from previous schemes.
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1 Université de Limoges,
XLIM-DMI, 123, Av. Albert Thomas, 87060 Limoges Cedex, France

gaborit@unilim.fr
2 Inria de Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France

Abstract. Code-based cryptography has a long history, almost as long
as the history of public-key encryption (PKE). While we can construct
almost all primitives from codes such as PKE, signature, group signature
etc., it is a long standing open problem to construct an identity-based
encryption from codes. We solve this problem by relying on codes with
rank metric.

The concept of identity-based encryption (IBE), introduced by Shamir
in 1984, allows the use of users’ identifier information such as email as
public key for encryption. There are two problems that makes the design
of IBE extremely hard: the requirement that the public key can be an
arbitrary string and the possibility to extract decryption keys from the
public keys. In fact, it took nearly twenty years for the problem of design-
ing an efficient method to implement an IBE to be solved. The known
methods of designing IBE are based on different tools: from elliptic curve
pairings by Sakai, Ohgishi and Kasahara and by Boneh and Franklin in
2000 and 2001 respectively; from the quadratic residue problem by Cocks
in 2001; and finally from the Learning-with-Error problem by Gentry,
Peikert, and Vaikuntanathan in 2008.

Among all candidates for post-quantum cryptography, there only exist
thus lattice-based IBE. In this paper, we propose a new method, based
on the hardness of learning problems with rank metric, to design the
first code-based IBE scheme. In order to overcome the two above prob-
lems in designing an IBE scheme, we first construct a rank-based PKE,
called RankPKE, where the public key space is dense and thus can be
obtained from a hash of any identity. We then extract a decryption key
from any public key by constructing an trapdoor function which relies
on RankSign - a signature scheme from PQCrypto 2014.

In order to prove the security of our schemes, we introduced a new
problem for rank metric: the Rank Support Learning problem (RSL). A
high technical contribution of the paper is devoted to study in details
the hardness of the RSL problem.
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1 Introduction

1.1 Code-Based Cryptography

Code-based cryptography has a long history, which began by the McEliece cryp-
tosystem in 1978, followed by the Niederreiter scheme in 1986 [39]. The difficult
problem involved in these cryptosystems is the Syndrome Decoding problem,
which consists in recovering from a random matrix H and from a syndrome
s = HeT , the small (Hamming) weight error vector e associated to s. The
idea of these encryption schemes is to consider as public key a masking of a
decodable code. Although this masking could be broken for some special fami-
lies of codes like Reed-Solomon codes or Reed-Muller codes, the original family
of binary Goppa codes proposed by McEliece in 1978 is still today considered
as secure, and the indistinguishability of Goppa codes from random codes for
standard encryption parameters remains unbroken. Few years later Alekhnovich
proposed in 2003 [2] a cryptosystem relying on random instances of codes but
with larger size of encrypted messages. Code-based cryptosystems had still very
large public keys, but from the year 2005 [23], inspired by the NTRU approach,
structured matrices, and in particular quasi-cyclic matrices, where also consid-
ered for public keys leading to cryptosystems with only a small hidden structure
like for instance the MDPC cryptosystem of 2013 [38].

However, when signature schemes were already known for a long time in
number theory based cryptography, finding a signature scheme (not based on
the Fiat-Shamir heuristic) had been an open problem for quite some time, until
the CFS scheme of Courtois, Finiasz and Sendrier in 2001 [16], the scheme is
an hash-and-sign signature which computes a signature as a small (Hamming)
weight vector associated to a random syndrome. Although this latter scheme
has some advantages, like a short signature size, the small weight vector has a
logarithmic weight in the length of the code, which implies a super polynomial
complexity and very large public keys, which makes it difficult to use it for
advanced encryption schemes like for instance identity-based encryption.

Beside systems based on the Hamming metric, cryptosystems relying on a
different metric, the rank metric, were introduced in 1991 by Gabidulin et al. [22].
This system, which is an analogue of the McEliece cryptosystem but with a dif-
ferent metric was based on Gabidulin codes, which are analogue codes to Reed-
Solomon codes for rank metric. These codes having a very strong structure, they
were difficult to mask (as their Hamming counterpart the Reed-Solomon codes),
and in practice all cryptosystems based on these codes were broken. Meanwhile
the rank metric approach had a strong advantage over the Hamming approach,
the fact that the generic decoding problems are inherently more difficult than for
Hamming metric. In some sense the general decoding problems for rank metric
are to Hamming metric, what is the discrete logarithm problem over the group
of an elliptic curve rather than on the ring Z/pZ. Again, following the approach
of NTRU and the (Hamming) MDPC cryptosystem, an analogue cryptosystem,
was proposed in 2013 for rank metric: the Low Rank Parity Check (LRPC)
cryptosystem [25], as its cousins the MDPC and the NTRU cryptosystems,
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this system benefits from a poor structure which also seems (as for MDPC and
NTRU) to limit the attacks to general attacks on the rank syndrome decoding
problem.

In 2014, a new signature scheme, the RankSign scheme, based on LRPC codes
was introduced by Gaborit et al. at PQCrypto 2014, [28]. This signature scheme
is also a hash-and-sign signature scheme which inverts a random syndrome, but
at the difference of the CFS scheme, the weight of the returned signature is linear
in the length of the code, which implies smaller size of public key. Moreover beside
its poor structure, inherited from the LRPC structure, the system comes with
a security proof on information leaking from signatures. Thus we are eventually
able to use this hash-and-sign signature scheme as a brick for the first IBE
scheme based on coding theory.

1.2 Identity Based Encryption

The notion of identity-based encryption (IBE) was introduced by Shamir [43].
This gives an alternative to the standard notion of public-key encryption. In an
IBE scheme, the public key associated with a user can be an arbitrary iden-
tity string, such as his e-mail address, and others can send encrypted messages
to a user using this arbitrary identity without having to rely on a public-key
infrastructure.

The main technical difference between a public key encryption (PKE) and
IBE is the way the public and private keys are bound and the way of verifying
those keys. In a PKE scheme, verification is achieved through the use of a cer-
tificate which relies on a public-key infrastructure. In an IBE, there is no need
of verification of the public key but the private key is managed by a Trusted
Authority (TA).

Difficulty in designing an IBE. There are two main difficulties in designing an
IBE in comparison with a PKE

1. In a PKE, one often generates a public key from a secret key and normally,
well-formed public keys are exponentially sparse. In an IBE scheme, any iden-
tity should be mapped to a public key and there is no known technique to
randomly generate a point in an exponentially sparse space. Regev’s public
key encryption is an example [41]. In order to circumvent this problem, Gen-
try et. al. proposed a “dual” of a public-key cryptosystem, in which public
keys are first generated in a primal space such that they are dense: every
point in the primal space corresponds to a public-key and thus via a random
oracle, one can map any identity to a valid public key.

2. For some PKE, the public keys are dense and one can thus map any identity
to a well-formed public key. However, the difficulty is to extract the corre-
sponding secret key from the public key. ElGamal’s public key encryption
[18] is an example because from a public key y in a cyclic group generated
by g, there is no trapdoor for the discrete log problem that allows to find
the corresponding secret key x such that gx = y. In order to circumvent this
problem, bilinear maps have been used [10].
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Beside the technical difficulties in the design, achieving security in IBE is much
more complicated than in PKE. The main difference is that in IBE, except the
challenge identity that the adversary aims to attack, any other identities can
be corrupted. Therefore the simulator has to be able to generate secret keys
for all identities but the challenge identity. Under the above difficulties in the
design and in proving the security, it took nearly twenty years for finding efficient
methods to implement IBE.

There are currently three classes of IBE schemes: from elliptic curve pairings
introduced by Sakai, Ohgishi and Kasahara [42] and by Boneh and Franklin in
[10]; from the quadratic residue problem by Cocks in 2001 [15]; and from hard
problems on lattice by Gentry, Peikert, and Vaikuntanathan [31]. These pioneer
works inspired then many other ideas to improve the efficiency or to strengthen
the security, in particular to avoid the use of the random oracle. We can name
some very interesting schemes in the standard model: pairing-based schemes
[8,9,12,30,46,47] and lattice-based scheme [1,11,13]. It is still not known how
to devise an IBE scheme from quadratic residue problem without random oracles.
We explain below a new method to achieve the first IBE scheme in the coding
theory, with the help of rank metric codes and in the random oracle model.

Achieving IBE in Euclidean Metric. Let us first recall the technique in lattice
that helps to construct IBE schemes. One of the major breakthroughs in lattice
cryptography was the work of Gentry, Peikert, and Vaikuntanathan [31], that
showed how to use a short trapdoor basis to generate short lattice vectors without
revealing the trapdoor. This was used to give the first lattice-based construction
of a secure identity-based encryption scheme.

Let us start with Regev’s scheme [41]. Associated to a matrix A ∈ Z
n×m
q , one

generates the public key as p = sA+e for s ∈ Z
n
q and a short vector e . The set

of possible public keys are points near a lattice point and are thus exponentially
sparse. Gentry, Peikert, and Vaikuntanathan introduced a dual version of the
Regev’s scheme in exchanging the role of public key and of secret key in defining
the public key as u

def= AeT mod q for short e ∈ Z
m. The public keys are now

dense, any identity could be mapped via a random oracle to a point in Z
n
q which

will then be used as the corresponding public key. The key property is, with a
carefully designed trapdoor T , from a random public key u ∈ Z

n
q , the preimage

e of the function fA(e) := Ae mod q can be sampled in a space of well-defined
short vectors used as the secret keys.

Achieving IBE in Rank Metric: Our technique. It seems very hard to give a rank
metric analogue version of the above lattice technique. The main reason is due
to the difficulty of obtaining a robust analysis of such a presampling function.
However, we can overcome this difficulty in another way which perfectly fits the
rank metric. We still keep the public key as p = sA + e for e of low rank (say
at most r) in F

n
qm , and for A and s drawn uniformly at random in F

(n−k)×n
qm

and F
n−k
qm respectively, where Fqm is the finite field over qm elements. The main

feature of the rank metric which will be used in what follows is that we can
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choose the bound r to be above the Gilbert Varshamov (RGV) bound for rank
codes and this gives us two ingredients to design an IBE:

– with r carefully chosen above the RGV bound, we can still invert the function
f(s, e) = sA + e . This relies on the RankSign system with a trapdoor to
compute the pre-image of the function f [28].

– with overwhelming probability, any point p has a preimage (s, e) such that
f(s, e) = p. We can thus map an arbitrary identity to a valid public key p,
by using a random oracle as in the case of the GPV scheme.

Rank Metric vs. Hamming and Euclidean Metric. Rank metric and Hamming
metric are very different metrics. This difference reflects for instance in the size
of balls: when the number of elements of a ball of radius r in the Hamming metric
for {0, 1}n is bounded above by 2n, for rank metric the number of elements is
exponential but with a quadratic exponent depending on r. In practice, it means
that even if it is possible to construct a trapdoor function for the Hamming
distance such as the CFS signature scheme [16], the dimension of the dual code
used there has to be sublinear in its length, whereas for rank metric it is possible
to obtain such a trapdoor function for constant rate codes. This latter property
makes it very difficult to use such a trapdoor function for the Hamming distance
in order to build an IBE scheme whereas it is tractable for the rank metric.

Moreover one strong advantage of rank metric is the potential size of public
keys. If one considers the general syndrome decoding problem HxT = s (for
the hardest case), because of the complexity of the best known attacks for rank
metric (see [27]), and for λ a security parameter, the size of H is in O(

λ
3
2
)

for
rank metric when it is in O(

λ2
)

for Hamming and Euclidean metrics.

1.3 Hardness of Problems in Rank Metric

The computational complexity of decoding Fqm-linear codes for rank metric has
been an open question for almost 25 years since the first paper on rank based
cryptography in 1991 [22]. Recently a probabilistic reduction to decoding in
Hamming distance was given in [29]. On a practical complexity point of view
the complexity of practical attacks grows very fast with the size of parameters,
and there is a structural reason for this: for Hamming distance a key notion
in the attacks is counting the number of words of length n and support size t,
which corresponds to the notion of Newton binomial coefficient

(
n
t

)
, whose value

is exponential and upper bounded by 2n. In the case of rank metric, counting the
number of possible supports of size r for a rank code of length n over Fqm corre-
sponds to counting the number of subspaces of dimension r in Fqm : the Gaussian
binomial coefficient of size roughly qr(m−r), whose value is also exponential but
with a quadratic term in the exponent.

1.4 Our Contribution

The contributions of this paper are two-fold:
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On the cryptographic aspect: we design new cryptographic primitives based
on the rank metric. The final objective is to design an IBE scheme, but on the
way, we also introduce a new PKE scheme which perfectly fits a transforma-
tion from PKE to IBE. This shows a potential versatility of the use of rank
metric in cryptography: it gives a credible alternative to Euclidean metric in
the perspective of post-quantum cryptography and it has some advantages
compared to Hamming metric as it is still a open question to construct an
IBE scheme based on the Hamming metric. We emphasize that the design
of an IBE scheme often opens the way to reach more advanced primitives
such as Broadcast Encryption, Attribute-based Encryption and Functional
Encryption.

On the algorithmic aspect: the security of the new constructions that we
introduce relies on the hardness of three algorithmic problems. Two of them
are well known problems, namely the Rank Syndrome Decoding Problem and
the Augmented Low Rank Parity Check Code problem. However the last one
is new and we call it the Rank Support Learning problem. A large part of
the paper is devoted to study the hardness of the Rank Support Learning
problem and more specifically

– we prove the equivalence between the Rank Support Learning problem and
Rank Decoding with parity-check matrices defined over a subfield;

– we show that this problem can also be tackled by finding low weight-
codewords in a certain code;

– we show that this problem can be viewed as the rank metric analogue of a
rather old problem in the Hamming metric for which the best known algo-
rithms are exponential;

– based on this analogy we give an algorithm of exponential complexity to
handle this problem over the rank metric.

2 Background on Rank Metric and Cryptography

2.1 Notation

In the whole article, q denotes a power of a prime p. The finite field with q
elements is denoted by Fq and more generally for any positive integer m the
finite field with qm elements is denoted by Fqm . We will frequently view Fqm as
an m-dimensional vector space over Fq.

We use bold lowercase and capital letters to denote vectors and matrices
respectively. We will view vectors here either as column or row vectors. It will
be clear from the context whether it is a column or a row vector. For two matri-

ces A,B of compatible dimensions, we let (A|B) and
(
A
B

)
respectively denote

the horizontal and vertical concatenations of A and B .
If S is a finite set, x

$← S denotes that x is chosen uniformly at random
among S. If D is a distribution, x ← D denotes that x is chosen at random
according to D.
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We also use the standard O()
, Ω() and Θ() notation and also the “soft-O”

notation Õ( )
, where f(x) = Õ(

g(x)
)

means that f(x) = O(
g(x) log(g(x))k

)
for

some k.

2.2 Definitions

In the whole article, the space F
n
qm will be endowed with the following metric

Definition 1 (Rank metric over F
n
qm). Let x = (x1, . . . , xn) ∈ F

n
qm and con-

sider an arbitrary basis (β1, . . . , βm) ∈ F
m
qm of Fqm viewed as an m-dimensional

vector space over Fq. We decompose each entry xj in this basis xj =
∑m

i=1 mijβi.
The m × n matrix associated to x is given by M(x) = (mij)1≤i≤m

1≤j≤n
. The rank

weight ‖x‖ of x is defined as

‖x‖ def
= RankM(x).

The associated distance rd(x,y) between elements x and y in F
n
qm is defined by

rd(x,y) = ‖x − y‖.
Remark 1. It is readily seen that this distance does not depend on the basis that
is chosen. We refer to [37] for more details on the rank distance.

A rank code C of length n and dimension k over the field Fqm is a subspace
of dimension k of F

n
qm embedded with the rank metric. The minimum rank

distance of the code C is the minimum rank of non-zero vectors of the code.
One also considers the usual inner product which allows to define the notion
of dual code. An important notion which differs from the Hamming distance,
is the notion of support. Let x = (x1, x2, · · · , xn) ∈ F

n
qm be a vector of rank

weight r. We denote by E
def= 〈x1, x2, · · · , xn〉Fq

the Fq-linear subspace of Fqm

generated by linear combinations over Fq of x1, x2, · · · , xn. The vector space E
is called the support of x and is denoted by Supp(x ). In the following, C is a
rank metric code of length n and dimension k over Fqm . The matrix G denotes
a k × n generator matrix of C and H is one of its parity check matrix.

Bounds for Rank Metric Codes. The classical bounds for the Hamming
metric have straightforward rank metric analogues, since two of them are of
interest for the paper we recall them below.

Definition 2 (Rank Gilbert-Varshamov bound (RGV)). The number of
elements S(n,m, q, t) of a sphere of radius t in F

n
qm , is equal to the number of

m × n q-ary matrices of rank t. For t = 0 S0 = 1, for t ≥ 1 we have (see [37]):

S(n,m, q, t) =
t−1∏

j=0

(qn − qj)(qm − qj)
qt − qj

.
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From this we deduce the volume B(n,m, q, t) of a ball of radius t in F
n
qm to be:

B(n,m, q, t) =
t∑

i=0

S(n,m, q, i).

In the linear case the Rank Gilbert-Varshamov bound RGV (n, k,m, q) for an
[n, k] linear code over Fqm is then defined as the smallest integer t such that
B(n,m, q, t) ≥ qm(n−k).

The Gilbert-Varshamov bound for a rank code C with parity-check matrix
H , corresponds to the smallest rank weight r for which, for any syndrome s,
there exists on average a word e of rank weight r such that He = s. To give an
idea of the behavior of this bound, it can be shown that, asymptotically in the

case m = n [37]: RGV (n,k,m,q)
n ∼ 1 −

√
k
n .

Singleton Bound. The classical Singleton bound for a linear [n, k] rank code of
minimum rank r over Fqm works in the same way as for linear codes (by finding
an information set) and reads r ≤ n− k +1: in the case when n > m this bound
can be rewritten as r ≤ 1 + 
 (n−k)m

n � [37].

2.3 Decoding Rank Codes

We will be interested in codes for the rank metric which can be efficiently
decoded. At the difference of Hamming metric, there do not exist many fam-
ilies which admit an efficient decoding for large rank weight error (ideally we
would like to go up to the RGV bound).

Deterministic Decoding of Rank Codes. Essentially there is only one family
of rank codes which can be decoded in a deterministic way: the Gabidulin codes
[21]. These codes are an analogue of the Reed-Solomon codes where polynomials
are replaced by q-polynomials and benefit from the same decoding properties
(cf [21] for more properties on these codes). A Gabidulin code of length n and
dimension k over Fqm with k ≤ n ≤ m can decode up to n−k

2 errors in a
deterministic way.

Probabilistic Decoding of Rank Codes. Besides the deterministic decoding
of Gabidulin codes, which does not reach the RGV bound and hence is not
optimal, it is possible to decode up to the RGV bound a simple family of codes.
In this subsection we present the construction which allows with a probabilistic
decoding algorithm to attain the RGV bound. These codes are adapted from
codes in the subspace metric (a metric very close from the rank metric) which
can be found in [44].
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Definition 3 (Simple codes). A code C is said to be (n, k, t)-simple (or just
simple when t, k n are clear from the context), when it has a parity-check matrix
H of the form

H =

⎛

⎝ In−k

∣
∣
∣
∣
∣
∣

0t

R

⎞

⎠

where In−k the (n − k) × (n − k) identity matrix, 0t is the zero matrix of size
t × k and R is a matrix over Fqm of size k × (n − k − t). It is called a random
simple code if R is chosen uniformly at random among matrices of this size.

Proposition 1. Let C be a random (n, k, t)-simple code with t <
m+n−

√
(m−n)2+4km

2 and w an integer. If w � t then C can decode an error
of weight w with probability of failure pf ∼ 1

qt−w+1 when q → ∞.

The proof of this proposition is given in the full version of this paper [26].
The success of decoding depends essentially on the probability 1 − pf to recover
the space E from the t first coordinates of s, this probability can be made as
small as needed by decoding less than t errors or by increasing q.

In term of complexity of decoding, one has just a system to invert in (n− t)w

unknowns in Fq. Notice that the bound m+n−
√

(m−n)2+4km

2 corresponds asymp-
totically to the Rank Gilbert-Varshamov bound. Thus a simple code can asymp-
totically decodes up to the Rank Gilbert-Varshamov bound with probability
1 − O(

1
q

)
.

In the special case m = n and w = t ≈ n

(
1 −

√
k
n

)
(the Rank Gilbert-

Varshamov bound), the system has O(
n2

)
unknowns, so the decoding complexity

is bounded by O(
n6

)
operations in Fq. This decoding algorithm is better than

the Gabidulin code decoder in term of correction capability since it corrects

up to n

(
1 −

√
k
n

)
errors when Gabidulin codes can not decode more than n−k

2

errors.

2.4 Difficult Problem for Rank-Based Cryptography

Rank-based cryptography generally relies on the hardness of syndrome decoding
for the rank metric. It is defined as the well known syndrome decoding problem
but here the Hamming metric is replaced by the rank metric.

Definition 4 (Rank (Metric) Syndrome Decoding Problem (RSD)). Let
H be a full-rank (n − k) × n matrix over Fqm with k ≤ n, s ∈ F

n−k
qm and w an

integer. The problem is to find x ∈ F
n
qm such that rank(x) = w and Hx = s. We

denote this problem as the RSDq,m,n,k,w problem.

The RSD problem has recently been proven hard in [29] on probabilistic
reduction. This problem has an equivalent dual version. Let H be a parity-
check matrix of a code C and G be a generator matrix. Then the RSD problem
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is equivalent to find m ∈ F
k
qm and x ∈ F

n
qm such that mG + x = y with

Rankx = r and y some preimage of s by H . We can now give the decisional
version of this problem:

Definition 5 (Decisional Rank Syndrome Decoding Problem (DRSD)).
Let G be a full-rank k × n matrix over Fqm , m ∈ F

k
qm and x ∈ F

n
qm of weight r.

Can we distinguish the pair (G,mG + x) from (G,y) with y
$← F

n
qm?

The same problem in the Hamming metric Decisional Syndrome Decoding
problem (DSD), viewed as an LPN problem with a fixed number of samples
(which is equivalent to the syndrome decoding problem), is proven hard in [3]
with a reduction to the syndrome decoding problem for the Hamming metric.
We can use the same technique as in [24,29] to prove that DRSD is hard in
the worst case. The general idea is that a distinguisher DR with non negligible
advantage for DRSD problem can be used to construct another distinguisher D
for DSD with a non negligible advantage.

2.5 Complexity of the Rank Decoding Problem

As explained earlier in the introduction the complexity of practical attacks grows
very fast with the size of parameters, there exist two types of generic attacks on
the problem:

Combinatorial attacks: these attacks are usually the best ones for small values
of q (typically q = 2) and when n and k are not too small; when q increases,
the combinatorial aspect makes them less efficient. The best attacks gener-
alize the basic information set decoding approach in a rank metric context.
Interestingly enough, the more recent improvements based on birthday para-
dox do not seem to generalize in rank metric because of the different notion
of support.
In practice, when m � n, the best combinatorial attacks have complexity
O(

(n − k)3m3q(r−1)� (k+1)m
n �) [27].

Algebraic attacks: the particular nature of rank metric makes it a natural
field for algebraic attacks and solving by Groebner basis, since these attacks
are largely independent of the value of q and in some cases may also be
largely independent on m. These attacks are usually the most efficient ones
when q increases. There exist different types of algebraic modeling which
can then be solved with Groebner basis techniques [19,20,27,36]. Algebraic
attacks usually consider algebraic systems on the base field Fq, it implies
that the number of unknowns is quadratic in the length of the code. Since
the general complexity of Groebner basis attacks is exponential in the number
of unknowns, it induces for cryptographic parameters, general attacks with a
quadratic exponent in the length of the code, as for combinatorial attacks.
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3 A New Public Key Encryption

3.1 Public-Key Encryption

Let us briefly remind that a public-key encryption scheme S is defined by three
algorithms: the key generation algorithm KeyGen which, on input the security
parameter, produces a pair of matching public and private keys (pk , sk); the
encryption algorithm Encpk (m; r) which outputs a ciphertext c corresponding to
the plaintext m ∈ M, using random coins r ∈ R; and the decryption algorithm
Decsk (c) which outputs the plaintext m associated to the ciphertext c.

It is now well-admitted to require semantic security (a.k.a. polynomial secu-
rity or indistinguishability of encryptions [32], denoted IND): if the attacker has
some a priori information about the plaintext, it should not learn more with the
view of the ciphertext. More formally, this security notion requires the compu-
tational indistinguishability between two messages, chosen by the adversary, one
of which has been encrypted. The issue is to find which one has been actually
encrypted with a probability significantly better than one half. More precisely,
we define the advantage AdvindS (A), where the adversary A is seen as a 2-stage
Turing machine (A1,A2) by

AdvindS (A) def= 2 × Pr

[
(pk , sk) ← KeyGen, (m0,m1, s) ← A1(pk),
b

R← {0, 1}, c = Encpk (mb) : A2(m0,m1, s, c) = b

]

− 1.

This advantage should ideally be a negligible function of the security parameter.

3.2 Description of the Cryptosystem RankPKE

First, we need to define what we call a homogeneous matrix which will be used
in encryption.

Definition 6 (Homogeneous Matrix). A matrix M = (mij)1≤i≤a
1≤j≤b

∈ F
a×b
qm

is homogeneous of weight d if all its coefficients belong to the same Fq-vector
subspace of dimension d, that is to say

dimFq
〈mij〉 = d

We now introduce a public-key encryption, called RankPKE. Let A be drawn
uniformly at random in F

(n−k)×n
qm . We need it to be of full rank. This happens

with overwhelming probability (i.e. 1 − O(
q−m(k+1)

)
). Let Wr be the set of all

the words of rank r and of length n, i.e. Wr = {x ∈ F
n
qm : ‖x‖ = r}. The system

RankPKE works as follows:

– RankPKE.KeyGen:
• generate A

$← F
(n−k)×n
qm

• generate s
$← F

n−k
qm and e

$← Wr

• compute p = sA + e
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• define G ∈ F
k′×n′
qm a generator matrix of a public code C which can decode

(efficiently) errors of weight up to wr, where w is defined just below.
• define sk = s and pk = (A,p,G)

– RankPKE.Enc((A,p,G),m):
Let m ∈ F

k′
qm be the message we want to encrypt. We generate a random

homogeneous matrix U ∈ F
n×n′
qm of weight w. Then we can compute the

ciphertext (C ,x ) of m as :
⎛

⎜
⎜
⎝

A

p

⎞

⎟
⎟
⎠U +

⎛

⎜
⎜
⎝

0

mG

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

C

x

⎞

⎟
⎟
⎠

– RankPKE.Dec(s, (C ,x )):
• use the secret key s to compute:

( s | − 1)

⎛

⎜
⎜
⎝

C

x

⎞

⎟
⎟
⎠= sC − x = sAU − pU − mG

= sAU − (sA + e)U − mG = −eU − mG

• since U is homogeneous, we have ‖eU ‖ � wr. Therefore, by using the
decoding algorithm of C, we recover m .

The expansion rate of this cryptosystem is n−k+1
R where R = k′

n′ is the rate
of C.

3.3 Security

Definition 7 (Rank Support Learning (RSL)). Let A be a random full-rank
matrix of size (n − k) × n over Fqm and V be a subspace of Fqm of dimension

w. Let O be an oracle which gives samples of the form (A,Au), where u
$← V n.

The RSLq,m,n,k,w problem is to recover V given only access to the oracle.
We say that the problem is (N, t, ε)-hard if for every probabilistic algorithm

A running in time t, we have

Prob[A(A,AU) = V ] � ε, U
$← V n×N

When we want to stress the fact that we care about the problem where we are
allowed to make exactly N calls to the oracle, we denote this the RSLq,m,n,k,w,N

problem. The pair (A,AU) is referred to as an instance of the RSLq,m,n,k,w,N

problem.
The corresponding decisional problem, namely DRSL, is to distinguish

(A,AU) from (A,Y) where Y
$← F

(n−k)×N
qm .
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Proposition 2. The RSLq,m,n,k,w,N is as hard as the RSDq,m,n,k,w problem.

Proof. Let A be a full-rank (n − k) × n matrix over Fqm and x ∈ F
n−k
qm of rank

w. Let s = Ax . (A, s) is an instance of the RSDq,m,n,k,w problem.
Let S be a matrix obtained by the concatenation of N times the vector s.

(A,S) is an instance of the RSLq,m,n,k,w,N problem.
If we are able to solve any instances of the RSLq,m,n,k,w,N problem, then we

can recover the support of x and solve the instance (A, s).
We can use this technique to solve any instances of the RSDq,m,n,k,w problem,

which proves that the RSLq,m,n,k,w,N is as hard as the RSDq,m,n,k,w problem in
the worst case.

Security of the DRSL and DRSD Problems. We have already seen in the
previous section that the DRSD problem is hard. As for other problems in cryp-
tography (like DDH [7,17]), the best known attacks on the DRSLq,m,n,k,w,N

problem consist in solving the same instance of the RSLq,m,n,k,w,N problem, so
we make the assumption that the DRSLq,m,n,k,w,N problem is difficult.

Theorem 1. Under the assumption that DRSL is hard, the scheme RankPKE is
semantically secure.

Proof. We proceed by a sequence of games.

Game G0: This is the real IND-CPA attack game. The RankPKE.KeyGen is run
and then, a 2-stage poly-time adversary A = (A1,A2) is fed with the public
key pk = (A,p,G ′). Then, A1 outputs a pair of messages (m0,m1). Next a
challenge ciphertext is produced by flipping a coin b and producing a ciphertext
c� := (C�,x �) of m� = mb.

This ciphertext c� comes from a random homogeneous matrix U ∈ F
n×n′
qm of

weight w and then c� = RankPKE.Enc((A,p,G ′),mb). On input c�, A2 outputs
bit b′. We denote by S0 the event b′ = b and use the same notation Sn in any
game Gn below.

Advind-cpaRankPKE(A) =| 2Pr[S0] − 1 |

Game G1: In this game, we replace p = sA + e in RankPKE.KeyGen by p
$←

F
n
qm . Under the hardness of the DRSD problem, the two games G1 and G0 are

indistinguishable:
| Pr[S1] − Pr[S0] | ≤ εdrsd,

where εdrsd is the bound on the successful probability of the attacks against the
problem DRSD.

Game G2: In this game, we replace (C�,x �) in G1 by (C� $← F
(n−k)×n′
qm , x� $←

F
n′
qm).

As x � is perfectly random, x � − m�G is also perfectly random. In other

words, this game replaces
(
A
p

)
U =

(
C�

x � − m�G

)
by a perfectly random
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matrix. Therefore, the indistinguishability of the two games G2 and G1 follows

from the hardness of the DRSL problem, applying it to the matrix A′ =
(
A
p

)

which is perfectly random because A and p are both perfectly random. Thus

| Pr[S2] − Pr[S1] | ≤ εdrsl,

where εdrsl is the bound on the successful probability of the attacks against the
DRSL problem.

Advantage Zero. In this last game, as the ciphertext challenge (C�,x �) is
perfectly random, b is perfectly hidden to any adversary A.

| Pr[S2] | =
1
2

4 On the Difficulty of the Rank Support Learning
Problem

The purpose of this section is to give some evidence towards the difficulty of the
support learning problem RSLq,m,n,k,w,N by

– explaining that it is the rank metric analogue of a problem in Hamming metric
(the so called support learning problem) which has already been useful to
devise signature schemes and for which after almost twenty years of existence
only algorithms of exponential complexity are known;

– explaining that it is a problem which is provably hard for N = 1 and that it
becomes easy only for very large values of N ;

– giving an algorithm which is the analogue in the rank metric of the best
known algorithm for the support learning problem which is of exponential
complexity. This complexity is basically smaller by a multiplicative factor
which is only of order q−βN (for some β < 1) than the complexity of solving
the rank syndrome decoding problem RSDq,m,n,k,w;

– relating this problem to finding a codeword of rank weight w in a code where
there are qN codewords of this weight. It is reasonable to conjecture that the
complexity of finding such a codeword gets reduced by a multiplicative factor
which is at most qN compared to the complexity of finding a codeword of
rank weight w in a random code of the same length and dimension which has
a single codeword of this weight;

– showing that this problem can also rephrased in terms of decoding a random
code but defined over a larger alphabet (FqmN instead of Fqm).

4.1 A Related Problem: The Support Learning Problem

The rank support learning problem can be viewed as the rank metric analogue
of the support learning problem which can be expressed as follows.
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Problem 1 (Support Learning). Let A be a random full-rank matrix of size
(n−k)×n over Fq and I be a subset of {1, . . . , n} of size w. Let V be the subspace
of Fn

q of vectors with support I, that is the set of vectors u = (ui)1≤i≤n ∈ F
n
q

such that ui = 0 when i /∈ I. Let O be an oracle which gives samples of the form
(A,Au), where u

$← V . The support learning problem is to recover I given only
access to the oracle.

We say that the problem is (N, t, ε)-hard if for every probabilistic algorithm
A running in time t, we have

Prob[A(A,AU ) = V ] � ε, U
$← V N

When we want to stress the fact that we care about the problem where we are
allowed to make exactly N calls to the oracle, we denote this the SLq,n,k,w,N

problem. The pair (A,AU ) is referred to as an instance of the SLq,n,k,w,N

problem.

When N = 1 this is just the usual decoding problem of a random linear code
with parity check matrix A. In this case, the problem is known to be NP-complete
[5]. When N is greater than 1, this can be viewed as a decoding problem where we
are given N syndromes of N errors which have a support included in the same set
I. This support learning problem with N > 1 has already been considered before
in [34]. Its presumed hardness for moderate values of N was used there to devise
a signature scheme [34], the so called KKS-scheme. Mounting a key attack in
this case (that is for the Hamming metric) without knowing any signature that
has been computed for this key really amounts to solve this support learning
problem even it was not stated exactly like this in the article. However, when we
have signatures originating from this scheme, the problem is of a different nature.
Indeed, it was found out in [14] that signatures leak information. The authors
showed there that if we know M signatures, then we are given A, AU but also
M vectors in F

n
q , v1, . . . , vM whose support is included in I. The knowledge of

those auxiliary v i’s help a great deal to recover I : it suffices to compute the
union of their support which is very likely to reveal the whole set I. When the
v i’s are random vectors in F

n
q of support included in I it is clearly enough to

have a logarithmic number of them (in the size of the support I) to recover I.
However this does not undermine the security of the support learning problem
and just shows that the KKS-signature scheme is at best a one-time signature
scheme.

Some progress on the support learning problem itself was achieved almost
fifteen years later in [40]. Roughly speaking the idea there is to consider a code
that has qN codewords of weight at most w which correspond to all possible linear
combinations of the u i’s and to use generic decoding algorithms of linear codes
(which can also be used as low-weight codewords search algorithms) to recover
one of those linear combinations. The process can then be iterated to reveal the
whole support I. The fact that there are qN codewords of weight ≤ w that are
potential solutions for the low weight codeword search algorithm implies that we
may expect to gain a factor of order qN in the complexity of the algorithm when
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compared to finding a codeword of weight w in a random linear code which has
a single codeword of weight w. Actually the gain is less than this in practice.
This seems to be due to the fact that we have highly correlated codewords (their
support is for instance included in I). However, still there is some exponential
speedup when compared to the single codeword case. This allowed to break all
the parameters proposed in [34,35] but also those of [4] which actually relied
on the same problem. However, as has been acknowledged in [40], this does not
give a polynomial time algorithm for the support learning problem, it just gives
an exponential speedup when compared to solving a decoding problem with an
error of weight w. The parameters of the KKS scheme can easily be chosen in
order to thwart this attack.

4.2 Both Problems Reduce to Linear Algebra When N is Large
Enough

As explained before when N = 1 the support learning problem is NP-complete.
The rank support learning problem is also hard in this case since it is equivalent
to decoding in the rank metric an Fqm -linear code for which there is a randomized
reduction to the NP -complete decoding problem in the Hamming metric [29].
It is also clear that both problems become easy when N is large enough and for
the same reason : they basically amount to compute a basis of a linear space.

In the Hamming metric, this corresponds to the case when N = w. Indeed in
this case, notice that the dimension of the subspace V is w. When the u i’s are
generated randomly with support included in I they have a constant probability
K(q) (which is increasing with q and bigger than 0.288 in the binary case) to
generate the space AV . Once we know this space, the problem becomes easy.
Indeed let e1, . . . , en be the canonical generators of Fn

q (i.e. e i has only one non-
zero entry which is its i-th entry that is equal to 1). We recover I by checking
for all positions i in {1, . . . , n} whether Aei belongs to AV or not. If it is the
case, then i belongs to I, if this is not the case, i does not belong to I.

There is a similar algorithm for the rank support learning problem. This
should not come as a surprise since supports of code positions for the Hamming
metric really correspond to subspaces of Fqm for the rank metric metric as has
been put forward in [27] (see also [33] for more details about this). The difference
being however that we need much bigger values of N to mount a similar attack to
the Hamming metric case. Indeed what really counts here is the space that can
be generated by the Au i’s where the u i’s are the columns of U . It is nothing
but the space AV n. Let us denote this space by W . This space is not Fqm-
linear, however it is Fq-linear and it is of dimension nw viewed as an Fq-linear
subspace of F

n
qm . When N = nw we can mount a similar attack, namely we

compute the space generated by linear combinations over Fq of Au1, . . . ,Aunw.
They generate W with constant probability K(q). When we look all Fq-linear
subspaces V ′ of Fqm of dimension 1 (there are less than qm of them) and check
whether the subspace W ′ of dimension n given by AV ′n is included in W = AV n

or not. By taking the sum of the spaces for which this is the case we recover V .
Actually the complexity of this algorithm can be improved by using in a more
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clever way the knowledge of W , but this is beyond the scope of this article and
this algorithm is just here to explain the deep similarities between both cases
and to convey some intuition about when the rank support learning problem
becomes easy.

This discussion raises the issue whether there is an algorithm “interpolating”
standard decoding algorithms when N = 1 and linear algebra when N = w in
the Hamming metric case and N = nw in the rank metric case. This is in essence
what has been achieved in [40] for the Hamming metric and what we will do now
here for the rank metric.

4.3 Solving the Subspace Problem with Information-Set Decoding

There are two ingredients in the algorithm for solving the support learning prob-
lem in [40]. The first one is to set up an equivalent problem which amounts to
find a codeword of weight ≤ w in a code which has qN codewords of this weight.
The second one is to use standard information set decoding techniques to solve
this task and to show that it behaves better than in the case where there is up
to a multiplicative constant a single codeword of this weight in the code. We are
going to follow the same route here for the rank metric.

We begin by introducing the following Fq-linear code

C def= {x ∈ F
n
qm : Ax ∈ WU}

where WU is the Fq-linear subspace of Fn−k
qm generated by linear combinations

of the form
∑

i αiAu i where αi belongs to Fq and the u i’s are the N column
vectors forming the matrix U . This code has the following properties.

Lemma 1. Let C′ def
= {∑

i αiui : αi ∈ Fq}. We have

1. dimFq
C ≤ km + N

2. C′ ⊂ C
3. all the elements of C′ are of rank weight ≤ w.

[27] gives several algorithms for decoding Fqm-linear codes for the rank met-
ric. The first one can be generalized in a straightforward way to codes which are
just Fq-linear as explained in more detail in [33]. This article also explains how
this algorithm can be used in a straightforward way to search for low rank code-
words in such a code. Here our task is to look for codewords of rank ≤ w which
are very likely to lie in C′ which would reveal a linear combination c =

∑
i αiu i.

This reveals in general V when c is of rank weight w simply by computing the
vector space over Fq generated by the entries of c. When the rank of c is smaller
this yields a subspace of V and we will discuss later on how we finish the attack.

Let us concentrate now on analyzing how the first decoding algorithm of [27]
behaves when we use it to find codewords of C of rank ≤ w. For this, we have
to recall how the support attack of [27] works.

We assume that we want to find a codeword of weight w in an Fq-linear code
which is a Fq-subspace of Fqm of dimension K. For the purpose of this algorithm,
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a codeword c = (c1, . . . , cn) ∈ F
n
qm is also viewed as a matrix (cij)1≤i≤m

1≤j≤n
over Fq

by writing the ci’s in a arbitrary Fq basis (β1, . . . , βm) ∈ F
m
qm of Fqm viewed as

vector space over Fq: ci =
∑m

j=1 cijβj . There are nm−K linear equations which
specify the code that are satisfied by the cij ’s of the form

∑

1≤i,j≤m

hs
ijcij = 0 (1)

for s = 1, . . . , mn − K. Algorithm 1 explains how a codeword of weight ≤ w
is produced by the approach of [27]. The point of choosing r like this in this
algorithm, i.e.

r
def= m −

⌈
K

n

⌉
(2)

is that r is the smallest integer for which the linear system (3) has more equations
than unknowns (and we therefore expect that it has generally only the all-zero
solution).

Theorem 2. Assume that w ≤ min
(⌊

K
n

⌋
,
⌊

N
n

⌋
+ 1

)
and that

w+
K
n �

2 ≥ ⌊
N
n

⌋
.

Let

e− =
(

w −
⌊

N

n

⌋) (⌊
K

n

⌋
−

⌊
N

n

⌋)

e+ =
(

w −
⌊

N

n

⌋
− 1

) (⌊
K

n

⌋
−

⌊
N

n

⌋
− 1

)
+ n

(⌊
N

n

⌋
+ 1

)
− N

Algorithm 1 outputs an element of C′ with complexity Õ(
qmin(e−,e+)

)
. We give

the complete proof of this theorem in the the full version of this paper [26].

Remark 2. 1. When N and K = km + N are multiple of n, say N = δn

and K = αRn + δ (with α
def= m

n , R = k
n ) the complexity above simpli-

fies to Õ(
qαRn(w−δ)

)
. In other words the complexity gets reduced by a factor

qαRδn = qαRN when compared to finding a codeword of weight w in a random
Fq-linear code of the same dimension and length.

2. This approach is really suited to the case m ≤ n. When m > n we obtain
better complexities by working on the transposed code (see [33] for more
details about this approach).
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Algorithm 1. algorithm that outputs a codeword of weight ≤ w.
r ← m − �K

n
�

loop
W ← random Fq-subspace of dimension r of Fqm

Compute a basis f 1 = (f1
i )1≤i≤m, . . . , f r = (fr

i )1≤i≤m of W
Make the assumption that the entries cj of c can be written in the
f 1, . . . , f r basis as

cj =
r∑

l=1

xljf
l

Rewrite the linear equations (1) by writing cij =
∑r

l=1 xljf
l
i

to obtain mn − K equations of the form

∑

1≤i,j≤m

hs
ij

r∑

l=1

xljf
l
i = 0 (3)

Define (xij)1≤i≤r
1≤j≤n

by cij =
∑r

l=1 xljf
l
i

Solve this system (in the xij ’s)
if this system has a non zero solution then

if (
∑r

l=1 xljf
l)1≤j≤n has rank weight ≤ w then

return (
∑r

l=1 xljf
l)1≤j≤n

end if
end if

end loop

4.4 Link Between Rank Support Learning and Decoding over the
Rank Metric

We have exploited here that for solving the rank support learning problem, it
can be rephrased in terms of finding a codeword of low rank weight in a code
that has many codewords of such low rank weight (namely the code C that has
been introduced in this section). C is not a random code however, it is formed
by a random subcode, namely the code C0 = {x ∈ F

n
qm : Ax = 0} plus some

non random part, namely C′ which contains precisely the low rank codeword we
are after. In other words C decomposes as

C = C0 ⊕ C′

where C0 is a truly random code and C′ is a subcode of C that contains the
codewords of C of low-rank. C is therefore not really a random code.

There is a way however to rephrase the rank support learning problem as a
problem of decoding a random code. The trick is to change the alphabet of the
code. We define the code CN as

CN = {x ∈ FqmN : Ax = 0}.

In other words, CN is a code defined over the extension field FqmN but with a
random parity-check matrix with entries defined over Fqm .
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There are several ways to equip F
n
qmN with a rank metric. One of them

consists in writing the entries ci of a codeword c = (c1, . . . , cn) ∈ F
n
qmN of CN

as column vectors (cij)1≤j≤mN ∈ F
mN
q by expressing the entry ci in a Fq basis

of FqmN (β1, . . . , βmN ), i.e. ci =
∑

1≤j≤mN cijβj and replacing each entry by
the corresponding vector to obtain an mN × n matrix. The rank of this matrix
would then define the rank weight of a codeword. However, since FqmN is an
extension field of Fqm there are also other ways to define a rank metric. We will
choose the following one here. First we decompose each entry ci in an Fqm -basis
(γ1, . . . , γN ) of FqmN :

ci =
N∑

j=1

α(i−1)N+jγj

where the αi’s belong to Fqm . The rank weight of (c1, . . . , cn) is then defined as
the rank weight of the vector (αi)1≤i≤nN ∈ F

nN
qm where the rank weight of the

last vector is defined as we have done up to here, namely by replacing each entry
αi by a column vector (αij)1≤j≤m obtained by taking the coordinates of αi in
some Fq-basis of Fqm . In other words, the rank weight of (c1, . . . , cn) is defined
as the rank of the associated m × nN matrix.

Let us now introduce the rank decoding problem with random parity check
matrices defined over a smaller field.

Definition 8 (Rank Decoding with parity-check matrices defined over
a subfield (RDPCSF)). Let A be a random full-rank matrix of size (n −
k) × n over Fqm and e ∈ F

n
qmN be a random word of rank weight w. The

RDPCSFq,m,n,k,w,N problem is to recover e from the knowledge of A ∈ F
(n−k)×n
qm

and Ae ∈ F
n−k
qmN .

It turns out that the support learning problem and the rank decoding problem
with parity-check matrices defined over a smaller field are equivalent

Theorem 3. The problems RSLq,m,n,w,N and RDPCSFq,m,n,w,N are equivalent :
any randomized algorithm solving one of this problem with probability ≥ ε in time
t can be turned into an algorithm for the other problem solving it with probability
≥ ε in time t+P (q,m, n,w,N), where P is a polynomial function of its entries.

Proof. Let us consider an instance (A,AU ) of the RSLq,m,n,w,N problem.
Denote the j-th column of U by uj . Define now e ∈ F

n
qmN by e =

∑N
j=1 γjuj ,

where (γ1, . . . , γN ) is some Fqm -basis of FqmN . From the definition of the rank
weight we have chosen over F

n
qmN , it is clear that the rank weight of e is

less than or equal to w. The pair (A,
∑N

j=1 γjAuj) is then an instance of the
RDPCSFq,m,n,w,N problem. It is now straightforward to check that we transform
in this way a uniformly distributed instance of the RSLq,m,n,w,N problem into a
uniformly distributed instance of the RDPCSFq,m,n,w,N problem. The aforemen-
tioned claim on the equivalence of the two problems follows immediately from
this and the fact that when we know the space generated by the entries of the
uj ’s, we just have to solve a linear system to recover a solution of the decoding
problem (this accounts for the additive polynomial overhead in the complexity).
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Note that this reduction of the rank support learning problem to the problem
of decoding a linear code over an extension field FqmN defined from a random
parity-check matrix defined over the base field Fqm works also for the Hamming
metric : the support learning problem SLq,n,w,N also reduces to decoding a linear
code over an extension field FqmN defined from a random parity-check matrix
defined over the base field Fqm but this time for the Hamming metric over Fn

qmN .
All these considerations point towards the same direction, namely that when N
is not too large, the rank support learning problem should be a hard problem.
It is for instance tempting to conjecture that this problem can not be solved qN

faster than decoding errors of rank weight w for an [n, k] random linear code
over Fqm . A similar conjecture could be made for the support learning problem.

5 Identity Based Encryption

Identity-based encryption schemes. An identity-based encryption (IBE)
scheme is a tuple of algorithms IBE = (Setup,KeyDer,Enc,Dec) providing the
following functionality. The trusted authority runs Setup to generate a mas-
ter key pair (mpk,msk). It publishes the master public key mpk and keeps
the master secret key msk private. When a user with identity ID wishes to
become part of the system, the trusted authority generates a user decryption
key dID

$← KeyDer(msk, ID), and sends this key over a secure and authenti-
cated channel to the user. To send an encrypted message m to the user with
identity ID , the sender computes the ciphertext C $← Enc(mpk, ID ,m), which
can be decrypted by the user as m ← Dec(dID ,C ). We refer to [10] for details
on the security definitions for IBE schemes.

Security. We define the security of IBE schemes through a game with an adver-
sary. In the first phase, the adversary is run on input of the master public key of
a freshly generated key pair (mpk,msk) $← Setup. In a chosen-plaintext attack
(IND − CPA), the adversary is given access to a key derivation oracle O that
on input an identity ID ∈ {0, 1}∗ returns dID

$← KeyDer(msk, ID). At the end
of the first phase, the adversary outputs two equal-length challenge messages
m0,m1 ∈ {0, 1}∗ and a challenge identity ID ∈ {0, 1}�. The adversary is given
a challenge ciphertext C $← Enc(mpk , ID ,mb) for a randomly chosen bit b, and
is given access to the same oracle O as during the first phase of the attack. The
second phase ends when the adversary outputs a bit b′. The adversary is said
to win the IND − CPA game if b′ = b and if it never queried the key derivation
oracle for the keys of any identity that matches the target identity.

Definition 9. An IBE scheme is IND − CPA-secure if any poly-time adversary
A = (A1,A2) making at most a polynomial number of queries to the key deriva-
tion oracle, only has a negligible advantage in the IND − CPA game described
above, i.e., the following advantage is negligible:

2 × Pr

[
(mpk,msk) $← Setup, (ID ,m0,m1, s) ← AO

1 (mpk),
b

$← {0, 1}, c = Enc(mpk , ID , (mb)) : AO
2 (m0,m1, s, c) = b

]

− 1.
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5.1 Trapdoor Functions from RankSign

We now adapt the RankSign system to construct a trapdoor function, which is
sufficient to convert our PKE to an IBE. Associated to a matrix A ∈ F

(n−k)×n
qm ,

we define the function fA as follows:

fA : Fn−k
qm × F

n
qm → F

n
qm

(s, e) �→ sA + e

The matrix A will be generated with a trapdoor T such that fA is a trapdoor
function: from a random p ∈ F

n
qm , with the trapdoor T , one can sample (s, e) =

f−1
A (p) such that e is indistinguishable from a random element in Wr, the set of

all the words of rank r and of length n, as defined in RankPKE. These properties
will be sufficient for us to construct an IBE and reduce its security to the security
of RankPKE. We now describe how we can get such a trapdoor function by relying
on the RankSign system [28].

RankSign. RankSign is a signature scheme based on the rank metric. Like
other signature schemes based on coding theory [16], RankSign needs a family
of codes with an efficient decoding algorithm. It takes on input a random word
of the syndrome space (obtained from the hash of the file we want to sign) and
outputs a word of small weight with the given syndrome. This is an instance
of the RSD problem, with the difference that the matrix H has a trapdoor
which makes the problem easy. The public key is a description of the code which
hides its structure and the secret key, on the contrary, reveals the structure of
the code, which allows the signer to solve the RSD problem. RankSign does
not compute a codeword of weight below the Gilbert-Varshamov bound, but
instead a codeword of weight r between the Gilbert-Varshamov bound and the
Singleton bound. The idea is to use a family of the augmented Low Rank Parity
Check codes (denoted LRPC+), and an adapted decoding algorithm (called the
General Errors/Erasures Decoding algorithm) to produce such a codeword from
any syndrome. The decoding algorithm is probabilistic and the parameters of
the code have to be chosen precisely in order to have a probability of success very
close to 1. We refer to [28] for a complete description of the decoding algorithm
and the signature algorithm.

Definition 10 (Augmented Low Rank Parity Check Codes). Let H be
an F

(n−k)×n
qm homogeneous matrix of full-rank and of weight d and R ∈ F

(n−k)×t
qm

be a random matrix. Let P ∈ GLn−k(Fqm) and Q ∈ GLn+t(Fq) be two invertible
matrices (remark that the coefficients of Q belong to the base field). Let H′ =
P(R|H)Q be the parity-check matrix of a code C of type [n+t, t+k]. By definition,
such a code is an LRPC+ code. If t = 0, C is an LRPC code.

The public key of RankSign is the matrix H ′, the secret key is the structured
matrix (R|H ) and the trapdoor is the pair of matrices (P ,Q).

We can now describe the trapdoor function f−1
A . Let p ∈ F

n+t
qm and H ′ the

public key of an instance of RankSign. We choose A as a generator matrix of
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a code with parity-check matrix H ′, i.e. as a full-rank matrix over Fqm of size
(k + t) × (n + t) which is such that H ′AT = 0. First, we compute H ′p and
then we apply RankSign with trapdoor T to this syndrome to obtain a vector
e of weight r such that H ′pT = H ′eT . Finally, we solve the linear system
sA = p − e of unknown s and the secret key associated to p is set to be s.
The security of the RankSign system is based on the assumption that H ′ is
computationally indistinguishable from a random matrix.

Definition 11 (LRPC+ problem [28]). Given an augmented LRPC code, dis-
tinguish it from a random code with the same parameters.

The hardness of this problem is studied in [28]. Currently the best attacks
consist in recovering the structure of the LRPC by looking for small-weight
words in the code, and the best algorithms for that are generic algorithms whose
complexity is exponential [33].

Proposition 3. Let H′ be a public RankSign matrix and A be a generator
matrix of the associated code. The two following distributions are computation-
ally indistinguishable:

Let D0 the distribution (p, s, e) where p
$← F

n+t
qm , e ∈ Wr is sampled from

RingSign Algorithm such that H′eT = H′pT and s is the solution of the linear
system xA = p − e of unknown x.

Let D1 be the distribution (p′, s′, e′) with s′ $← F
k+t
qm , e′ $← Wr and p′ =

s′A + e′.
Precisely, the maximum advantage ε of the adversaries to distinguish D0 et

D1 is bounded by: ε ≤ 2
q + εdrsd

Proof. Let D2 be the distribution (s, e) where s
$← F

n−k
qm and e is a signature

of s by RankSign with the public key H ′ (i.e., ‖e‖ = r and H ′eT = s). Let D3

be the distribution (H ′e ′T , e ′T ) with e ′ $← Wr.
According to the proof of Theorem 2 of [28], a sample (H ′e ′T , e ′T ) ← D3

is distributed exactly as D2 except if (H ′e ′T , e ′T ) is not T -decodable and the
probability that the latter occurs is less than 2

q . Therefore an adversary can not
distinguish D2 from D3 with an advantage larger than 2

q .
Now, we can prove the proposition. First, let us examine the distribution

D0. Since H ′ is a linear map and p
$← F

n+t
qm , s = H ′pT is uniformly distributed

among F
n−k
qm . This implies (σ, e) ← D2. Moreover, p−e is uniformly distributed

among the words of the code generated by A, hence s
$← F

k+t
qm .

According to the indistinguishability of D2 and D3, the distribution of e ′ and
e are computationally indistinguishable. s ′ and s are both uniformly distributed.
Finally, based on the assumption that the DRSD problem is hard, p ′ and p are
indistinguishable.

Summing up these two steps, the advantage of an adversary to distinguish
D0 from D1 is bounded by 2

q + εdrsd. ��
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5.2 Scheme

Our IBE system uses a random oracle H which maps the identity into the public
keys space F

n+t
qm of our encryption scheme.

– IBE.Setup
• choose the parameters (n,m, k, d, t) of the scheme according to RankSign.

The secret master key is the triplet of matrices P , (R|H ) and Q such
that H is a parity-check matrix of an [n, k] LRPC code of weight d over

Fqm , R
$← F

(n−k)×t
qm , P

$← GLn−k(Fqm) and Q
$← GLn+t(Fq). Let A

be a full rank (k + t) × (n + t) matrix over Fqm such H ′AT = 0 with
H ′ = P(R|H )Q and the trapdoor T is (P ,Q).

• define G ∈ F
k′×n′
qm to be a generator matrix of a public code C′ which can

decode (efficiently) errors of weight up to wr as in RankPKE.KeyGen.
• return mpk = (A,G) and msk = T

– IBE.KeyDer(A,T , id) :
• compute p = H(id)
• compute (s, e) = f−1

A (p) by using the trapdoor T
• store (id, s) and return s

– IBE.Enc(id,m) :
• compute p = H(id)
• return c = RankPKE.Enc((A,p,G),m)

– IBE.Dec(s, c) : return RankPKE.Dec(s, c).

5.3 Security

We now state the security of the IBE system.

Theorem 4. Under the assumption that the LRPC+ problem is hard and the
RankPKE is secure, the IBE system described above is IND − CPA-secure in the
random oracle model:1

εibe ≤ 2qH

q
+ εlrpc+ + qH(εdrsd + εpke)

where εlrpc+ , εpke, εibe are respectively the bound on the advantage of the attacks
against the LRPC+ problem, the RankPKE system and the IBE system, and qH is
the maximum number of distinct hash queries to H that an adversary can make.

1 As in the lattice-based IBE scheme of Gentry, Peikert, and Vaikuntanathan [31], we
lose a factor qH in the reduction from PKE to IBE. Moreover, because of the lack of
a statistical indistinguishability in the preimage sampling as in [31], we also lose an
additional cost of 2qH

q
+ qHεdrsd which require us to use a large q. Fortunately, the

efficiency of our scheme is O(log q
)
.



218 P. Gaborit et al.

Proof. We proceed by a sequence of games.

Game G0: This is the real IND-CPA attack game. The IBE.Setup is run and
then, a 2-stage poly-time adversary A = (A1,A2) is fed with the public key
mpk = (A,G). A1 can ask queries to H and key queries. Then, A1 outputs a
challenge identity id�, which is different from the key queries A1 already asked,
and a pair of messages (m0,m1). Next a challenge ciphertext is produced by
flipping a coin b and producing a ciphertext c� = IBE.Enc(id�,mb).

On input c�, A2 can continue to ask queries to H and key queries which are
different from id�, and finally outputs bit b′. We denote by S0 the event b′ = b
and use the same notation Sn in any game Gn below.

Advind-cpaIBE (A) =| 2Pr[S0] − 1 |
We assume without loss of generality that, for any identity id that A wants

to corrupt, A already queried H on id. In particular, we can assume that A will
query the challenge identity id� to H.

As this is the real attack game, for a key query on an identity id, the
IBE.KeyDer(A,T , id) is run and the secret key is given to A. We recall this
algorithm:

– compute p = H(id)
– compute (s, e) = f−1

A (p) by using the trapdoor T :
• compute H ′p and then we apply RankSign with trapdoor T to this

syndrome to obtain a vector e of weight r such that H ′p = H ′e .
• solve the linear system sA = p − e of unknown s and the secret key

associated to p is set to be s.
– store (id, s) and return s.

Game G1: In this game, we modify the answers to the key queries so that it does
not require the trapdoor T anymore. In order to make the answers coherent, we
also need to simulate the queries to the hash queries to H. We maintain a list
ListH , initially set to empty, to store the tuples (id,p, s) where p is the value
that we respond to the H query on id, and s is the secret key which corresponds
to the public key p we generate. The simulation is given in the following way:

– Hash queries: on A’s jth distinct query idj to H:
• randomly choose a vector ej of weight r
• randomly choose sj

• define pj = H(id) = sjA + ej

• add the tuple (idj ,pj , sj) to ListH and return pj to A.
– Secret key queries: when A asks for a secret key for the identity id, we retrieve

the tuple (id,p, s) from the ListH and return s to A.

Now, looking back at the Proposition 3, we remark that the set of qH samples
(pj , sj , ej) in the previous game come from the distribution DqH

0 and the set of
qH samples (pj , sj , ej) in this game come from the distribution DqH

1 . We thus
have:
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| Pr[S1] − Pr[S0] | ≤ 2qH

q
+ qHεdrsd

Game G2: As the objective is to reduce the security of the IBE to the security
of RankPKE, in this game, we define the matrix A to be a random matrix as
in the RankPKE. Because the simulation in the previous game does not use the
trapdoor T , we can keep the simulation for hash queries and key queries exactly
unchanged. By the assumption that the LRPC+ problem is hard, this game is
indistinguishable from the previous game:

| Pr[S2] − Pr[S1] | ≤ εlrpc+

Game G3: We can now reduce the security of the IBE in the previous game to
the security of RankPKE. We are given the public key p� of RankPKE and try to
break the semantic security of RankPKE. Intuitively, we proceed as follows. We
will try to embed the given public key p� of RankPKE to H(id�). The IBE for
id� becomes thus a RankPKE with the same distribution of public keys. We can
then use the given challenge ciphertext of RankPKE as the challenge ciphertext
to A and whenever A can break IBE, we can break RankPKE. The difficulty in
this strategy is that we should correctly guess the challenge identity id�. In a
selective game where A has to announce id� at the beginning of the game, we
know this identity. However, in the adaptive game that we consider, we need
make a guess on the challenge identity among all the identities queried to H.
This explains why we lose a factor qH in the advantage to attack RankPKE.

Now, formally, on input a random matrix A and a public key p� for the
RankPKE, we choose an index i among 1, . . . qH uniformly at random and change
the answer for the ith query to H and for the challenge as follows:

– Hash queries: on A’s jth distinct query idj to H: if j = i, then add the tuple
(idj ,p

�,⊥) to ListH and return p� to A. Otherwise for j �= i, do the same as
in the previous game.

– Secret key queries: when A asks for a secret key for the identity id, retrieve
the tuple (id,p, s) from the ListH . If s �=⊥, return s to A, otherwise output
a random bit and abort.

– Challenge ciphertext: when A submits a challenge identity id�, different
from all its secret key queries, and two messages m0,m1, if id� = idi, i.e.,
(id�,p�, ⊥) /∈ ListH , then output a random bit and abort. Otherwise, we
also submits the messages m0,m1 to the challenger and receive a challenge
ciphertext c�. We return then c� to A.

When A terminates and returns a bit b, we also outputs b. We now analyze the
advantage to break RankPKE:

– We do not abort if we made a good guess, i.e, id� = idi. As i is perfectly
hidden from A, the probability that we do not abort is 1

qH
.
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– Conditioned on not aborting, the view we provides to A is exactly the same as
in the previous game. We get thus the same advantage in attacking RankPKE
as A’s advantage in attacking IBE

We finally have:

| 2Pr[S3] − 1 |≤ qHεpke

6 Parameters

In this section, we explain how to construct a set of parameters and give an
analysis of the best known attacks against the IBE scheme.

6.1 General Parameters for RankSign and RankEnc

First, we have to carefully choose the parameters of the algorithm RankSign
[28] used for the presampling phase. In the case where only RankPKE is used,
the constraints are much weaker. Remember that RankSign is a probabilistic
signature algorithm and the probability of returning a valid signature depends
on the choice of the parameters. These parameters are:

– q,m : the cardinality of the base field and the degree of the extension field.
– n : the length of the hidden LRPC code used to sign.
– t : the number of random columns added to the LRPC to hide it.
– k, d : the dimension of the LRPC code and the weight of the LRPC code.
– r : the weight of the signature.

The conditions these parameters must verify are [28]

n = d(n − k), (r − t)(m − r) + (n − k)(rd − m) = 0, r = t +
n − k

d

Let us explain the choice of our parameters. First we need to fix d for two
reasons:

– if we look at the three conditions, they are homogeneous if d is constant.
Thus, we can make other set of parameters from one set by multiply all the
parameters (except for d) by a constant.

– d is the weight of the LRPC+ code used for the public master key. It is
very important to choose d not too small to ensure the security of the public
master key.

Once d is fixed, we can easily test all the valid parameters and choose the
most interesting ones, whether we need to optimize the security or the key size.

Then we need to choose the parameters of RankPKE. We need a code which
can correct wr errors, where w is the weight of the matrix U . We use (n′, k′, t′)-
simple codes because because they can asymptotically decode up to dGV errors.
In all cases, we have chosen n′ = m for simplicity, even if this is not a necessary
condition.

Let us describe the size of the keys and of the messages, as well as the
computation time of our cryptosystem:
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– public master key A is a (k + t) × (n + t) matrix over Fqm : (k + t)(n −
k)m �log2 q� bits (under systematic form).

– public key pid is an element of Fn+t
qm : (n + t)m �log2 q� bits.

– secrete key sid is an element of Fn−k
qm : (n − k)m �log2 q� bits.

– plaintext m is an element of Fk′
qm : k′m �log2 q� bits.

– ciphertext is a (k + t + 1) × n′ matrix over Fqm : (k + t + 1)n′m �log2 q� bits.
– to generate the secret key, we need to invert a syndrome with RankSign which

takes (n − k)(n + t) multiplications in Fqm [28].
– encryption consists in a multiplication of two matrices of respective sizes

(k + t + 1) × (n + t) and (n + t) × n′, which takes (k + t + 1)(n + t)n′

multiplications in Fqm .
– decryption consists in a multiplication matrix-vector and the decoding of an

error of weight wr with a (n′, k′, t′)-simple code, which takes (k + t + 1)n′

multiplications in Fqm and O(
((n′ − t′)wr)3

)
operations in Fq.

A multiplication in Fqm costs Õ(
m log q

)
operations in F2 [45].

6.2 Practical Evaluation of the Security

In order to analyze the security of the IBE, we recall the result of the Theorem 4:
εibe ≤ 2qH

q + εlrpc+ + qH(εdrsd + εpke). We want εibe � 2−λ, where λ is the security
parameter. Since the first term only depends on q and on the number of queries,
we need q > qH2λ+1. We stress that the size of the data and the computation
time are linear in the logarithm of q. In consequence, it is not a problem to
have q exponential in the security parameter. Moreover, since all combinatorial
attacks are polynomial in q, they are utterly inefficient to break the IBE.

The second type of attacks are the algebraic attacks. An adversary can either
attack the public master key A by solving an instance of LRPC+ problem, a
public key p of an user by solving an instance of DRSD or a ciphertext by
solving an instance of RSL. By using the results in [6], we can estimate the
complexity of the attacks and adapt the parameters in consequence.

We give an example of a set of parameters in the following table. We take
the standard values λ = 128 for the security parameter and qH = 260.

n n − k m q d t r dGV dSing Public
master key
Size
(Bytes)

n′ k′ t′ w Probability
of failure

100 20 96 2192 5 12 16 11 20 4,239,360 96 9 66 4 2−576

The decoding algorithm for the simple codes is probabilistic, that is why there is
a probability pf that the decoding fails. However, pf ≈ 1

qt′−wr+1 , since we have
a very large q in this example, pf is negligible. These parameters are large but
still tractable, for a first code-based IBE scheme in post-quantum cryptography.
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Abstract. In this paper, we study the security of NFSR-based cryp-
tosystems from the algebraic degree point of view. We first present a
general framework of iterative estimation of algebraic degree for NFSR-
based cryptosystems, by exploiting a new technique, called numeric map-
ping . Then based on this general framework we propose a concrete and
efficient algorithm to find an upper bound on the algebraic degree for
Trivium-like ciphers. Our algorithm has linear time complexity and needs
a negligible amount of memory. As illustrations, we apply it to Trivium,
Kreyvium and TriviA-SC, and reveal various upper bounds on the
algebraic degree of these ciphers by setting different input variables. By
this algorithm, we can make use of a cube with any size in cube testers,
which is generally believed to be infeasible for an NFSR-based cryptosys-
tem before. Due to the high efficiency of our algorithm, we can exhaust a
large set of the cubes with large size. As such, we obtain the best known
distinguishing attacks on reduced Trivium and TriviA-SC as well as
the first cryptanalysis of Kreyvium. Our experiments on Trivium show
that our algorithm is not only efficient in computation but also accu-
rate in estimation of attacked rounds. The best cubes we have found for
Kreyvium and TriviA-SC are both of size larger than 60. To the best
of our knowledge, our tool is the first formalized and systematic one for
finding an upper bound on the algebraic degree of an NFSR-based cryp-
tosystem, and this is the first time that a cube of size beyond practical
computations can be used in cryptanalysis of an NFSR-based cryptosys-
tem. It is also potentially useful in the future applications to key recovery
attacks and more cryptographic primitives.

Keywords: Nonlinear feedback shift register · Stream cipher · Distin-
guishing attack · Cube tester · Trivium · Kreyvium · TriviA-SC

1 Introduction

A nonlinear feedback shift register (NFSR) is a common component in mod-
ern cryptographic primitives, especially in radio-frequency identification devices
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(RFID) and wireless sensor networks applications. NFSRs are known to be more
resistant to cryptanalytic attacks than linear feedback shift registers (LFSRs).
Built on NFSRs are many well known lightweight cryptographic algorithms,
including the stream ciphers Trivium [8,10] and Grain [1,27,28] that have been
selected in the final eSTREAM portfolio of hardware-oriented stream ciphers,
the authenticated cipher ACORN [44] that has been selected as one of the
third-round candidates in the CAESAR competition, the block cipher family
KATAN/KTANTAN [9], and the hash function Quark [4,5]. Among them,
Trivium has attracted the most attention for its simplicity and performance,
while it shows remarkable resistance to cryptanalysis. Inspired by the design of
Trivium, a number of various cryptographic algorithms have been successively
developed, for instance the block cipher family KATAN/KTANTAN, the authen-
ticated cipher ACORN and the stream ciphers Kreyvium [11] and TriviA-
SC [13].

Most cryptographic primitives, including NFSR-based cryptosystems, can be
described by tweakable Boolean functions, which contain both secret variables
(e.g., key bits) and public variables (e.g., plaintext bits or IV bits). The algebraic
degree of these Boolean functions plays an important role in the security of the
corresponding primitives. In fact, a cryptographic primitive with low algebraic
degree is vulnerable to many known attacks, such as higher order differential
attacks [30,32,35], algebraic attacks [15–18], cube attacks [19–22], and integral
attacks [31].

For NFSR-based cryptosystems, cube attacks and higher order differential
attacks are the most powerful cryptanalytic tools among the known attacks. The
best known key recovery attacks faster than an exhaustive search on Trivium
are cube attacks on its variant when the initialization is reduced to 799 rounds
out of 1152 [21,26], and the best known distinguishing attacks on Trivium
are reduced to 839 rounds derived by cube testers [3,33]. Note that here are
not included the possible key recovery attacks with unknown probability, such
as [41], or the attacks for a small percentage of weak keys, such as [29]. The
weaknesses in the cipher Grain-128 against cube testers [2,39] partially leads to
the design of Grain-128a [1]. Actually, the full Grain-128 was broken in theory
by dynamic cube attacks [19,22]. All of these attacks exploit low-degree relations
of the tweakable Boolean functions formed by the cryptosystems, that is, low-
degree relations between the IV bits and keystream bits.

It is difficult to compute the exact value of the algebraic degree for modern
cryptographic primitives. After the development of cryptanalysis in the past
three decades, several theoretical tools have been developed to estimate the
upper bound on the algebraic degree of iterated permutations, and concurrently
exploited to attack iterated ciphers [6,7,12,40].

Yet for NFSR, there are few tools for estimating its algebraic degree, besides
symbolic computation and statistical analysis. The known techniques highly
depends on computational capabilities, and the cryptanalytic results are lim-
ited by existing computational resources. For instance, thus far the cubes with
size larger than 54 have never been utilized in cryptanalysis of an NFSR-based
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cryptosystem, in either cube attacks or cube testers. To gain better attacks, the
cryptanalysts have to utilize extremely the computational resources, e.g., using
dedicated reconfigurable hardware [19]. This usually requires high financial cost
or high energy consumption. While dynamic cube attacks [19,22] can reach much
higher attack complexity, they are still limited by the size of the cubes.

1.1 Our Contributions

In this paper, we devote our attention to evaluating the algebraic degree of
NFSR-based cryptosystems. For the conquest of the existing limitation as men-
tioned above, we exploit a new technique, called numeric mapping , to iteratively
estimate the upper bound on the algebraic degree of the internal states of an
NFSR. Based on this new tool, we develop an algorithm for estimating the alge-
braic degree of NFSR-based cryptosystems.

As an illustration, we refine and apply our algorithm to Trivium-like ciphers,
including Trivium, Kreyvium and TriviA-SC. Trivium uses an 80-bit key
and an 80-bit IV, while Kreyvium and TriviA-SC both use a 128-bit key
and a 128-bit IV. These three ciphers all have 1152 rounds of initialization. Our
refined algorithm gives an upper bound on the algebraic degree of a Trivium-like
cipher over a given set of input variables with any size, e.g., all the key and IV
bits, all or part of the IV bits. It has linear time complexity in the number of
initialization rounds, and needs a negligible amount of memory. In other words,
it is almost as fast as the cipher (up to at most a factor of some constant).
Further, by this algorithm we perform several experiments on round-reduced
Trivium, Kreyvium and TriviA-SC, and obtain various upper bounds on
the algebraic degree by setting different input variables. As a result, we confirm
that the maximum numbers of initialization rounds of Trivium, Kreyvium and
TriviA-SC such that the generated keystream bit does not achieve maximum
algebraic degree are at least 907, 982 and 1121 (out of the full 1152 rounds)
respectively when taking all the key and IV bits as input variables; these numbers
of rounds turn out to be 793, 862 and 987 while taking all the IV bits as input
variables.

We further apply our algorithm to take advantage of the cubes with large
size in cube testers, which is considered to be impossible for an NFSR-based
cryptosystem in the literatures. In the experiments, we set the key bits as sym-
bolic constants, i.e., the algebraic degree of any key bit is considered to be 0
on the cube variables. This is consistent with a distinguisher in the setting of
unknown key. Since our algorithm is very fast, we can exhaust all the cubes
of size 37 ≤ n ≤ 40 that contain no adjacent indexes for Trivium in a dozen
minutes on a common PC. The total amount of such cubes is about 225. Before
this paper, it needs around c262 cipher operations to test all those cubes, and
the confidence of the test depends on c; while our algorithm is deterministic.
We then find a cube of size 37 over which the algebraic degree of the keystream
bit of 837-round Trivium is strictly less than 37. We also verify this result by
performing experiments on 100 random keys. The minimum number of rounds
that the sum over this cube, called superpoly in cube attacks and cube testers,
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is not zero-constant is detected to be 839 in our experiments, which implies that
our algorithm is not only efficient in computation but also accurate in estimation
of attacked rounds. Our experiments show that this cube can also be used to
distinguish 842-round Trivium. All the cubes of size 61 ≤ n ≤ 64 that con-
tain no adjacent indexes for Kreyvium and TriviA-SC are exhausted in a few
hours. The total amount of such cubes is about 230. By the conventional meth-
ods, it needs around c291 cipher operations. The best cube we have found for
Kreyvium is of size 61, which can be used to distinguish 872-round Kreyvium.
The best cubes we have found for TriviA-SC and its successor are respectively
of size 63 and size 61, for distinguishing 1035 rounds and 1047 rounds respec-
tively. To the best of our knowledge, this is the first time1 that a cube of size
larger than 60 can be used in the attack on an NFSR-based cryptosystem.

As such, we obtain the best distinguishing attacks for the stream ciphers
Trivium and TriviA-SC so far and the first outside cryptanalysis of
Kreyvium. Our results are summarized in Table 1 with the comparisons of the
previous attacks. Note here that this table does not include the distinguishers
worse than an exhaustive search or for a small percentage of weak keys. We
detail the discussions of related work in the following.

Table 1. Distinguishing attacks on Trivium, Kreyvium and TriviA-SC

Cipher #Rounds Complexity Ref.

Trivium 790 230 [3]

798 225 [29]

806 244 [39]

829 253 [38]

830 239 [43]

839 237 [33]

842 239 Sect. 4

Kreyvium 872 261 Sect. 4

TriviA-SC (v1) 930 236 [38]

1035 263 Sect. 4

TriviA-SC (v2) 950 236 [38]

1047 261 Sect. 5

Simplified TriviA-SC 1152 2120 [45]

1152 263 Sect. 4

1 In parallel and independently with our work, large cubes have also been exploited
by Todo et al. [41] in the attacks on NFSR-based cryptosystems, such as Trivium,
Grain-128a and ACORN.
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1.2 Related Work

Upper Bound on Algebraic Degree. At EUROCRYPT 2002, Canteaut and
Videau [12] developed a theory to find an upper bound on the algebraic degree of
a composite function using the Walsh spectrum, and applied it to higher order
differential cryptanalysis on Feistel block ciphers and especially on a general-
ization of MISTY1. This theory was further improved by Boura et al. [6,7] in
recent years with applications to cryptanalysis of several block ciphers and hash
functions, including Rijndael-256 and Keccak. These theories of estimating
algebraic degree are suitable for iterated ciphers. Similarly, our work is started
by an upper bound on the algebraic degree of a composite function, but without
using the Walsh spectrum and based on a simple fact.

More recently, at EUROCRYPT 2015, Todo [40] discovered a new tool for
searching upper bound on the algebraic degree of SPN and Feistel ciphers by
introducing the division property with applications to integral cryptanalysis of
various iterated cryptographic primitives. The bit-based division property pro-
posed by Todo and Morii in [42] is more relevant to our work. In parallel with
our work, this tool has been exploited by Todo et al. [41] for estimating the
algebraic degree of NFSR-based cryptosystems, including Trivium, Grain-128a
and ACORN, and applied to cube attacks on these ciphers. Nevertheless, our
idea is still essentially different with that of division property. In some ways, the
tool based on division property is limited by the number of rounds and the size
of input variables, due to its high time complexity. The bound found by division
property is possibly more precise, while our tool is much faster and has no such
limitations.

Attacks on Trivium-Like Ciphers. It is worth noticing that all but
the attacks of [45] listed in Table 1 are cube tester, which is a variant of
higher order differential attacks and was first introduced by Aumasson et al.
in [3]. Cube testers are useful not only in distinguishing attacks but also in
key recovery attacks, e.g., dynamic cube attacks [19,22] and cube-attack-like
cryptanalysis [20].

Before the work of Aumasson et al., Trivium (designed by Cannière and Pre-
neel [8,10] in 2006) had already attracted a lot of similar cryptanalysis, especially
for chosen IV statistical attacks, e.g., [23,24,37]. After the effort of cryptanalysts
in the past ten years, the cryptanalysis of Trivium seems to be approaching a
bottleneck, if not the summit. Several cube distinguishers under different statis-
tical models reach around 830 rounds, e.g., [33,38,43]. Though our distinguisher
for Trivium does not improve the previous ones much, our technique for find-
ing cubes is novel and gives a new and global view on cube cryptanalysis of
Trivium.

In addition, Knellwolf et al. [29] showed distinguishers on 868-round and 961-
round Trivium respectively for 231 and 226 weak keys both with complexity of
225. The key recovery attacks are also well studied for Trivium. In [21], Dinur
and Shamir described a practical full key recovery on Trivium reduced to 767
rounds, using cube attacks. Afterwards, Fouque and Vannet [26] improved the
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cube attacks on Trivium, and provided a practical full key recovery after 784
rounds and a full key recovery after 799 rounds with complexity of 262. Recently,
Todo et al. [41] proposed a possible key recovery after 832 rounds, in which one
bit information of the key can be retrieved with unknown probability in around
277. Besides, Maximov and Biryukov [34] presented a state recovery attack on
the full cipher with time complexity around c283.5, where c is the complexity of
solving a system of linear equations with 192 variables.

TriviA-SC [13] is a stream cipher designed by Chakraborti et al. at CHES
2015 for using in the authenticated encryption scheme TriviA, which was selected
as a second-round candidate in the CAESAR competition but was not retained
for the third round. Its successor, TriviA-SC (v2) [14], retains the same design
and only differs in flipping all but three bits of the constants loaded to the initial
internal state. Sarkar et al. [38] showed cube distinguishers with complexity
of 236 on both versions of TriviA-SC reduced to 930 rounds and 950 rounds
respectively. We improve these distinguishers to 1035 rounds and 1047 rounds
respectively. The work of [45] by Xu et al. shows a linear distinguisher with
complexity of 2120 for the full 1152 rounds of a simplified variant of TriviA-SC
in which the unique nonlinear term of the output function is removed. As shown
in Table 1, we cut down their complexity from 2120 to 263 for this simplified
TriviA-SC.

Kreyvium is a variant of Trivium with 128-bit security, designed by
Canteaut et al. at FSE 2016 for efficient homomorphic-ciphertext compression
[11]. As far as we know, this paper proposes the first cryptanalysis of Kreyvium.

1.3 Organization

The rest of this paper is structured as follows. In Sect. 2, the basic definitions and
notations are provided. Section 3 shows the general framework of our algorithm
for estimating algebraic degree of NFSR-based cryptosystems. We propose in
Sect. 4 a concrete algorithm for finding an upper bound on the algebraic degree
of Trivium-like ciphers with applications to Trivium, Kreyvium and TriviA-
SC, while Sect. 5 further presents an improved algorithm with applications to
TriviA-SC. Section 6 concludes the paper.

2 Preliminaries

Boolean Functions and Algebraic Degree. Let F2 denote the binary field
and F

n
2 the n-dimensional vector space over F2. An n-variable Boolean function

is a mapping from F
n
2 into F2. Denote by Bn the set of all n-variable Boolean

functions. An n-variable Boolean function f can be uniquely represented as a
multivariate polynomial over F2,

f(x1, x2, · · · , xn) =
⊕

c=(c1,··· ,cn)∈Fn
2

ac

n∏

i=1

xci
i , ac ∈ F2,



Degree Evaluation of NFSR-Based Cryptosystems 233

called the algebraic normal form (ANF). The algebraic degree of f , denoted
by deg(f), is defined as max{wt(c) | ac �= 0}, where wt(c) is the Hamming
weight of c. Let gi (1 ≤ i ≤ m) be Boolean functions on n variables. We denote
deg(G) = (deg(g1),deg(g2), · · · ,deg(gm)), for G = (g1, g2, · · · , gm).

Cube Testers. Given a Boolean function f and a term tI containing variables
from an index subset I that are multiplied together, the function can be written
as the sum of terms which are supersets of I and terms that miss at least one
variable from I,

f(x1, x2, · · · , xn) = fS(I) · tI ⊕ q(x1, x2, · · · , xn),

where fS(I) is called the superpoly of I in f . The basic idea of cube testers is
that the symbolic sum of all the derived polynomials obtained from the function
f by assigning all the possible values to the subset of variables in the term tI is
exactly fS(I). Cube testers work by evaluating superpolys of carefully selected
terms tI which are products of public variables (e.g., IV bits), and trying to
distinguish them from a random function. Especially, the superpoly fS(I) is
equal to a zero constant, if the algebraic degree of f in the variables from I is
less than the size of I. In this paper, we mainly focus on this case. For more
details of cube testers, we refer to [3].

Nonlinear Feedback Shift Registers. Nonlinear feedback shift registers
(NFSRs) are the basic components of cryptographic primitives, especially of
stream ciphers. Each time the system is clocked, the internal state is shifted
right, and the new left bit is computed from the previous state by a nonlinear
function f . The feedback bit is computed as

st+1 = f(st, · · · , st−n+1),

where f can be any function in n variables. According to implementation pur-
poses, the most useful case is the binary case, in which each cell contains a bit,
and f is a Boolean function. In this paper, we focus on this binary case. For
more details of NFSRs, we refer to [25].

3 An Iterative Method for Estimating Algebraic Degree
of NFSR-Based Cryptosystems

Compared with other types of cryptographic primitives, such as Feistel and
SPN ciphers, an NFSR-Based Cryptosystem usually updates less bits each round
and needs more rounds to ensure its security, and its algebraic degree is more
irregular. Maybe due to this reason, besides experimental analysis there are few
theoretical tools to estimate algebraic degree of NFSR-Based cryptosystems.

We will show in this section a general idea for iteratively estimating algebraic
degree of NFSR-based cryptosystems. We first present a basic fact on the degree
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of a composite function, and then exploit it to estimate degrees of the internal
states and outputs of NFSR-based cryptosystems.

Let f(x1, x2, · · · , xm) =
⊕

c=(c1,··· ,cm)∈Fm
2

ac

∏m
i=1 xci

i be a Boolean function
on m variables. We define the following mapping, called numeric mapping and
denoted by DEG,

DEG : Bm × Z
m → Z,

(f,D) �→ max
ac �=0

{
m∑

i=1

cidi},

where D = (d1, d2, · · · , dm) and ac’s are coefficients of algebraic normal form of
f as defined previously.

Let g1, g2, · · · , gm be Boolean functions on n variables, G = (g1, g2, · · · , gm)
and deg(G) = (deg(g1),deg(g2), · · · ,deg(gm)). The numeric degree of the com-
posite function h = f ◦ G is defined as DEG(f,deg(G)), denoted by DEG(h) for
short. We call DEG(f,D) a super numeric degree of h if di ≥ deg(gi) for all
1 ≤ i ≤ m, where D = (d1, d2, · · · , dm). We can check that the algebraic degree
of h is always less than or equal to the numeric degree of h, i.e.,

deg(h) = deg(f(g1, g2, · · · , gm)) ≤ DEG(h) = max
ac �=0

{
m∑

i=1

ci deg(gi)}.

Proposition 1. The algebraic degree of a composite function is less than or
equal to its numeric degree.

An NFSR-based cryptosystem usually consists of an update function g and an
output function f . The internal state is updated by the update function g, while
the output bit is generated by the output function f after an initialization of a
sufficient number of rounds. To make the implementation efficient, the update
function and output function usually have extremely sparse terms, e.g., Trivium
[8,10] and Grain [1,27,28]. Even though these functions are simple, there are few
tools to exactly compute their algebraic degrees after updating the internal state
by a sufficient number of rounds. A straightforward way to achieve this is to
calculate the algebraic normal form, but it easily becomes out of memory as the
number of rounds increases. A more efficient method is to test the coefficients
of the algebraic normal form by statistical analysis, but it highly depends on
the computational power and is limited by computational time. To overcome
these limitations of computational resources, we exploit the numeric mapping to
estimate the algebraic degree.

Corollary 2. Denote by s(t) the internal state of an NFSR-based cryptosys-
tem at t-th round, and let g and f be the update function and output function
respectively. Then the algebraic degrees of the updated bit and output bit are
respectively less than or equal to their numeric degrees, i.e., DEG(g,deg(s(t)))
and DEG(f,deg(s(t))).
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Example 1. Let xt = xt−2xt−7 + xt−4xt−5 + xt−8 be the update function of an
NFSR with size 8. For t = 16, we have

x16 = x14x9 + x12x11 + x8.

We can iteratively compute

x9 = x2x7 + x4x5 + x1,

x11 = x2x4x7 + x1x4 + x4x5 + x6x7 + x3,

x12 = x3x5x8 + x2x5 + x5x6 + x7x8 + x4,

x14 = x2x3x7x8 + x2x5x6x7 + x3x4x5x8 + x3x5x7x8

+ x1x3x8 + x1x5x6 + x2x4x5 + x2x5x7 + x4x5x6

+ x5x6x7 + x1x2 + x2x7 + x4x7 + x7x8 + x6.

Then by numeric mapping, we have

DEG(x16) = max{deg(x14) + deg(x9),deg(x12) + deg(x11),deg(x8)}
= max{4 + 2, 3 + 3, 1}
= 6.

We can verify that deg(x16) = 6 by calculating the algebraic normal form of x16.
As a matter of fact, we can also check that DEG(xt) = deg(xt) for all t < 16.
This fact implies that we can get an accurate estimation of the algebraic degree
of x16 by iteratively using numeric mapping starting at the beginning, without
computations of the algebraic normal forms of internal bits.

The case that the numeric degree equals the algebraic degree usually hap-
pens when the intermediate variables appearing in the same nonlinear terms are
independent. This scenario is reasonable for an ideal cryptosystem. For a con-
crete cipher, the numeric degree might be equal or close to the algebraic degree
if we eliminate or reduce the dependent relationship between the intermediate
variables.

Algorithm 1. Estimation of Degree of NFSR-Based Cryptosystems
Require: Given the ANFs of the internal state s(0), the ANFs of the update
function G and output function f , and the set of variables X.

1: Set D(0) and E(0) to deg(s(0), X);
2: For t from 1 to N do:
3: Compute D(t) = DegEst(G, E(t−1));
4: Set E(t) to (D(0), D(1), · · · , D(t));
5: Return DegEst(f, E(N)).

The algebraic degrees of output bits and the internal states can be
estimated iteratively for NFSR-based cryptosystems. We describe this esti-
mation in Algorithm 1. In the algorithm, s(0) = (s(0)1 , s

(0)
2 , · · · , s

(0)
n )
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denotes the internal state at time 0 with size n, and deg(s(0),X) =
(deg(s(0)1 ,X),deg(s(0)2 ,X), · · · ,deg(s(0)n ,X)), where the notation deg(s(0)i ,X)
denotes the algebraic degree of s

(0)
i with X as variables. Especially, deg(0,X) =

−∞, and deg(c,X) = 0 for any nonzero c containing no variable in X. The
update function G is written as vectorial Boolean functions from F

n
2 to F

n
2 , where

a few bits of input are updated and the rest of the bits are shifted. DegEst is a
procedure for estimating algebraic degree. The output of this algorithm gives an
upper bound on algebraic degree of the output of a given NFSR-based cryptosys-
tem when setting DegEst(·, E(t)) to DEG(·,D(t)). This is based on the fact that
deg(g(s(t))) ≤ DEG(g,deg(s(t))) ≤ DEG(g, DEG(s(t))) according to Corollary 2.

Now we have given a general framework of iterative estimation of algebraic
degree of NFSR-Based Cryptosystems. To reach a sharper upper bound, we use
a more delicate DegEst rather than DEG in Algorithm 1. We will show later the
applications to Trivium-like ciphers, and the experimental results show that our
estimated degree is very close to the real value of algebraic degree.

4 Applications to Trivium-Like Ciphers

In this section, we first briefly describe a generic view of a Trivium-like cipher
to capture various cryptographic algorithms such as Trivium, TriviA-SC and
Kreyvium. Then, based on our observations on the update functions of this
kind of ciphers, we formalize and develop a linear-time algorithm for finding an
upper bound on the algebraic degree of a Trivium-like cipher. Finally, we apply
our algorithm to analyze the security of the ciphers Trivium, TriviA-SC and
Kreyvium.

4.1 A Brief Description of Trivium-Like Ciphers

Let A, B and C be three registers with sizes of nA, nB and nC , denoted by At,
Bt and Ct their corresponding states at clock t,

At = (xt, xt−1, · · · , xt−nA+1), (1)
Bt = (yt, yt−1, · · · , yt−nB+1), (2)
Ct = (zt, zt−1, · · · , zt−nC+1), (3)

and respectively updated by the following three quadratic functions,

xt = zt−rC
· zt−rC+1 + �A(s(t−1)), (4)

yt = xt−rA
· xt−rA+1 + �B(s(t−1)), (5)

zt = yt−rB
· yt−rB+1 + �C(s(t−1)), (6)

where 1 ≤ rλ < nλ for λ ∈ {A,B,C} and �A, �B and �C are linear functions. We
denote At[i] = xi, Bt[i] = yi and Ct[i] = zi, and define g

(t)
A = zt−rC

· zt−rC+1,
g
(t)
B = xt−rA

·xt−rA+1 and g
(t)
C = yt−rB

· yt−rB+1. The internal state, denoted by
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s(t) at clock t, consists of the three registers A,B,C, that is, s(t) = (At, Bt, Ct).
Let f be the output function. After an initialization of N rounds, in which the
internal state is updated for N times, the cipher generates a keystream bit by
f(s(t)) for each t ≥ N .

Trivium and TriviA-SC exactly fall into this kind of ciphers. As men-
tioned earlier, TriviA-SC and its successor TriviA-SC (v2) only differ in the
constants loaded to the initial internal state. Hereinafter, TriviA-SC means its
both versions, if not specified. Kreyvium is a variant of Trivium with 128-bit
security. Compared with Trivium, Kreyvium uses two extra registers (K∗, V ∗)
without updating but shifting, i.e., s(t) = (At, Bt, Ct,K

∗, V ∗), and add a single
bit of (K∗, V ∗) to each of �A and �B , where K∗ and V ∗ only involve the key
bits and IV bits respectively. We can easily adapt our techniques to Kreyvium
from Trivium. Trivium uses an 80-bit key and an 80-bit IV, while Kreyvium
and TriviA-SC both use a 128-bit key and a 128-bit IV. All these ciphers have
1152 rounds. For more details of the specifications of these ciphers, we refer to
[10,11,13,14].

4.2 The Algorithm for Estimation of Degree of Trivium-Like
Ciphers

We present here an algorithm for giving an upper bound on the algebraic degree
of the output of f after N rounds for a Trivium-like cipher, as depicted in
Algorithm 2. We first initialize the degree of the initial internal state, denoted by
D(0), then iteratively compute D(t) for t = 1, 2, · · · , N , and finally apply numeric
mapping to calculate an estimated degree for the first bit of the keystream. In
Algorithm 2, we also use three sequences, denoted by dA, dB and dC , to record
the estimated degrees of the three registers A,B,C. In each step of a Trivium-
like cipher, three bits are updated as (4), (5) and (6). Accordingly, we compute
estimated degrees for these three bits in each step t, denoted by d

(t)
A , d

(t)
B and d

(t)
C .

Then update D(t) from D(t−1). For estimating the algebraic degrees of xt, yt, zt,
we exploit two procedures DegMul and DEG for dealing with their “quadratic”
and “linear” parts separately. An instance of DegMul is described in Algorithm 3.
The other two cases are similar, and the full procedure of DegMul is given in
Algorithm 5 in Appendix. Algorithm 3 is used to compute an upper bound on
the algebraic degree of g

(t)
A = zt−rC

· zt−rC+1, and its correctness is shown in
Lemma 4. We will demonstrate that for all t with 1 ≤ t ≤ N the estimated
degrees d

(t)
A , d

(t)
B , d

(t)
C for xt, yt, zt are greater than or equal to their correspond-

ing algebraic degrees, and therefore the output DEG(f,D(N)) of Algorithm 2
is a super numeric degree of the first bit of the keystream. In other words,
Algorithm 2 gives an upper bound on algebraic degree of the N -round output
bit of a Trivium-like cipher.

Theorem 3. Algorithm 2 outputs a super numeric degree of the first keystream
bit of an N -round Trivium-like cipher with X as variables.

As mentioned previously, to prove Theorem 3, it is sufficient to show the
following lemma.
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Algorithm 2. Estimation of Degree of Trivium-Like Ciphers
Require: Given the ANFs of the initial internal state (A0, B0, C0), and the set
of variables X.
1: For λ in {A, B, C} do:
2: For t from 1 − nλ to 0 do:
3: d

(t)
λ ← deg(λ0[t], X), where A0[t] = xt, B0[t] = yt, C0[t] = zt;

4: D(0) ← (d
(1−nA)
A , · · · , d

(0)
A , d

(1−nB)
B , · · · , d

(0)
B , d

(1−nC)
C , · · · , d

(0)
C );

5: For t from 1 to N do:
6: For λ in {A, B, C} do:

7: d
(t)
λ ← max{DegMul(g(t)

λ ), DEG(�λ, D(t−1))};

8: D(t) ← (d
(t−nA+1)
A , · · · , d

(t)
A , d

(t−nB+1)
B , · · · , d

(t)
B , d

(t−nC+1)
C , · · · , d

(t)
C );

9: Return DEG(f, D(N)).

Algorithm 3. DegMul(g(t)λ ) for λ = A

1: t1 ← t − rC ;
2: If t1 ≤ 0 then:

Return d
(t1)
C + d

(t1+1)
C .

3: t2 ← t1 − rB ;
4: d1 ← min{d

(t2)
B + d

(t1+1)
C , d

(t2+2)
B + d

(t1)
C , d

(t2)
B + d

(t2+1)
B + d

(t2+2)
B };

5: d2 ← DEG(�C , D(t1)) + d
(t1)
C ;

6: d3 ← DEG(�C , D(t1−1)) + d
(t1+1)
C ;

7: d ← max{d1, d2, d3};
8: Return d.

Lemma 4. In Algorithm 2, we have d
(t)
A ≥ deg(xt,X), d

(t)
B ≥ deg(yt,X) and

d
(t)
C ≥ deg(zt,X) for t ≤ N .

Proof. It is trivial for t ≤ 0. Next we simply write deg(·,X) as deg(·). By Eqs. (4),
(5) and (6), it is sufficient to prove for 1 ≤ t ≤ N that

d
(t)
A ≥ max{deg(zt−rC

· zt−rC+1),deg(�A(s(t−1)))}, (7)

d
(t)
B ≥ max{deg(xt−rA

· xt−rA+1),deg(�B(s(t−1)))}, (8)

and
d
(t)
C ≥ max{deg(yt−rB

· yt−rB+1),deg(�C(s(t−1)))}. (9)

We prove them by induction. Here we provide only the details of the proof for
the first inequality due to the similarity. It is clear that (7) is true for 1 ≤ t ≤ rC .
Assume that (7), (8) and (9) are true for all i ≤ t − 1. Now we prove that (7) is
true for t with rC < t ≤ N .

From Algorithm 2, we have d
(t)
A ≥ DEG(�A,D(t−1)) ≥ deg(�A(s(t−1))). Next

we prove d
(t)
A ≥ deg(zt−rC

· zt−rC+1). By (6), we obtain that for t − rC ≥ 1,

zt−rC
= yt−rC−rB

· yt−rC−rB+1 + �C(s(t−rC−1)),

zt−rC+1 = yt−rC−rB+1 · yt−rC−rB+2 + �C(s(t−rC)),
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and thus

zt−rC
· zt−rC+1

=(yt−rC−rB
· yt−rC−rB+1 + �C(s(t−rC−1))) · zt−rC+1

=yt−rC−rB
· yt−rC−rB+1 · zt−rC+1 + �C(s(t−rC−1)) · zt−rC+1

=yt−rC−rB
· yt−rC−rB+1 · (yt−rC−rB+1 · yt−rC−rB+2 + �C(s(t−rC)))

+ �C(s(t−rC−1)) · zt−rC+1

=yt−rC−rB
· yt−rC−rB+1 · yt−rC−rB+2 + yt−rC−rB

· yt−rC−rB+1 · �C(s(t−rC))

+ �C(s(t−rC−1)) · zt−rC+1.

Denote by Y1, Y2 and Y3 respectively the three summands in the above equality.
By the previous assumption, we have

d
(t−rC)
C ≥ deg(yt−rC−rB

· yt−rC−rB+1),

d
(t−rC+1)
C ≥ deg(yt−rC−rB+1 · yt−rC−rB+2),

and thus

deg(Y1) ≤ min{deg(yt−rC−rB
) + deg(yt−rC−rB+1 · yt−rC−rB+2),

deg(yt−rC−rB+2) + deg(yt−rC−rB
· yt−rC−rB+1),

deg(yt−rC−rB
) + deg(yt−rC−rB+1) + deg(yt−rC−rB+2)}

≤ min{deg(yt−rC−rB
) + d

(t−rC+1)
C ,

deg(yt−rC−rB+2) + d
(t−rC)
C ,

deg(yt−rC−rB
) + deg(yt−rC−rB+1) + deg(yt−rC−rB+2)}

≤ min{d
(t−rC−rB)
B + d

(t−rC+1)
C ,

d
(t−rC−rB+2)
B + d

(t−rC)
C ,

d
(t−rC−rB)
B + d

(t−rC−rB+1)
B + d

(t−rC−rB+2)
B } = d1.

From the assumption we also have

deg(Y2) ≤ DEG(�C ,D(t−rC)) + d
(t−rC)
C = d2,

deg(Y3) ≤ DEG(�C ,D(t−rC−1)) + d
(t−rC+1)
C = d3.

Since deg(zt−rC
· zt−rC+1) ≤ max{deg(Y1),deg(Y2),deg(Y3)} ≤ max{d1, d2, d3},

by Algorithms 2 and 3 we know deg(zt−rC
· zt−rC+1) ≤ d

(t)
A . 
�

Complexity of the Algorithm. The size of the ANF of �λ is constant and thus
DEG(�λ) and DegMul(g(t)λ ) can be calculated in constant time, for λ ∈ {A,B,C}.
Therefore Algorithm 2 has time complexity of O(N). It requires a memory of
O(N).
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4.3 Experimental Results

In this section, we implement the algorithm on Trivium, Kreyvium and
TriviA-SC, and reveal various upper bounds on the algebraic degrees of these
ciphers. For Kreyvium, we use a modified D(t) in the algorithm which includes
the degrees of the two extra registers (key and IV).

When Will the Key and IV Be Sufficiently Mixed? We take all the key
and IV bits as input variables X, and do experiments on Trivium, Kreyvium
and TriviA-SC using Algorithm 2. We list the results in Table 2. As shown in the
table, Trivium does not achieve the maximum degree 160 after an initialization
of 907 rounds, while Kreyvium and TriviA-SC do not achieve the maximum
degree 256 after 982 rounds and 1108 rounds respectively. Though it is not an
attack, this implies that Trivium behaves best among the three ciphers while
TriviA-SC has a small margin towards this test of maximum algebraic degree.

Table 2. Lower bound on the maximum number of rounds of not achieving maxi-
mum degree for Trivium, Kreyvium and TriviA-SC with all the key and IV bits as
variables (X = (key, IV ))

Cipher Trivium Kreyvium TriviA-SC

#Key+#IV 160 256 256

#Rounds 907 982 1108

When Will the IV Be Sufficiently Mixed? Taking a subset of the IV
as input variables and the key as parameter, the algorithm gives a chosen IV
distinguisher on the cipher. Such kind of distinguishers, including cube testers,
have been widely investigated on stream ciphers, e.g., [3,23,24,37].

We first apply the algorithm to Trivium, Kreyvium and TriviA-SC with
all the IV bits as input variables, i.e., X = IV . In our experiments, the key is
taken as parameter, that is, deg(ki,X) = 0 for any bit ki of the key. This is con-
sistent with a distinguisher in the setting of unknown key. Our experiments show
that Trivium does not achieve the maximum degree 80 after an initialization
of 793 rounds, while Kreyvium and TriviA-SC do not achieve the maximum
degree 128 after 862 rounds and 987 rounds respectively. We summarize our
results in Table 3.

We next consider an exhaustive search on the sets of input variables X which
have size of around half length of the IV and contain no adjacent indexes. This
is not the first time to make use of a cube that contain no adjacent indexes.
Actually, the results of Aumasson et al. [3] and Liu et al. [33] have shown
that we can profit from such kind of cubes in cube testers due to the non-
linear structure of the update functions of Trivium. In our experiments, we
set the key as parameter, and set the non-variable IV bits to be zeros. Using



Degree Evaluation of NFSR-Based Cryptosystems 241

Table 3. Lower bound on the maximum number of rounds of NOT achieving maxi-
mum degree for Trivium, Kreyvium and TriviA-SC with all the IV bits as variables
(X = IV )

Cipher Trivium Kreyvium TriviA-SC

#IV 80 128 128

#Rounds 793 862 987

Algorithm 2, we can exhaust all the cubes of size 37 ≤ n ≤ 40 for Triv-
ium, which contain no adjacent indexes, in a dozen minutes on a common PC.
The amount of such cubes is

∑40
n=37

(
81−n

n

) ≈ 225. Before this paper, it needs
c
∑40

n=37 2n
(
81−n

n

) ≈ c262 cipher operations to test all those cubes, and the con-
fidence of the test depends on c. All the cubes containing no adjacent indexes of
size 61 ≤ n ≤ 64 for Kreyvium and TriviA-SC are exhausted in a few hours.
The amount of such cubes is

∑64
n=61

(
129−n

n

) ≈ 230. By the existing methods, it
needs c

∑64
n=61 2n

(
129−n

n

) ≈ c291 cipher operations to test all those cubes. The
results are summarized in Table 4. The corresponding cubes are listed in Table 7
in Appendix.

As shown in Table 4, the output of 837-round Trivium has degree strictly
less than 37 over a subset of IV bits with size 37, and thus the outputs of
837-round Trivium over this cube always sum to 0. Since 237 is practical, we
verify this by carrying out a test for random 100 keys. The minimum number
of rounds such that the sum over this cube, i.e., the superpoly of the cube, is
not zero-constant is detected to be 839, which means the output of 839-round
Trivium achieves the maximum degree 37 over this subset of IV bits. This shows
that our lower bound on the number of attacked rounds is very sharp, and our
estimation of degree is, in some ways, very close to its real value. The test also
implies a distinguisher for 842-round Trivium with time complexity of around
239, since we detect a bias of 0.46 from the 842-round output bit. We summarize

Table 4. Cube testers on round-reduced Trivium, Kreyvium and TriviA-SC with
around half of the IV bits as variables

Cipher Trivium Kreyvium TriviA-SC
(v1)

TriviA-SC
(v2)

Simplified
TriviA-SC

Size of cube 37 61 63 62 63

#Rounds 837 872 1035 1046 1152

Table 5. Superpoly of round-reduced Trivium over a cube of size 37

#Rounds 837 838 839 840 841 842

rate(superpoly=1) 0 0 0.09 0.07 0.29 0.27
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in Table 5 the results of the test, where the rate that the superpoly of this cube
equals non-zero is given for starting from 837 rounds to 842 rounds.

As shown in Table 4, the output of 872-round Kreyvium has algebraic degree
strictly less than 61 over a subset of IV bits with size 61, which implies a distin-
guisher on this reduced version of Kreyvium with complexity of 261.

Our experiments also show that the output of 1035-round TriviA-SC (v1)
and 1046-round TriviA-SC (v2) do not achieve maximum algebraic degree on
a subset of IV bits with size 63 and size 62 respectively, which implies that we
can distinguish them from random functions in 263 and 262 respectively. In fact,
these two cubes are found much earlier before the completion of our experiments.
The former is found in a second, and the latter in three minutes. By using the
cube of size 63, we can also obtain a distinguisher with complexity of 263 on the
full rounds of a simplified variant of TriviA-SC (for both versions), in which
the unique nonlinear term of the output function is removed.

We have also tried to search for the cubes of large size under other strategies.
We exhaust all the cubes with size close to the length of the IV. Besides, we use
our algorithm together with the greedy algorithm, as done in [39], to search for
the best cubes of any size. Nevertheless, no better results are found.

To further evaluate the accuracy of our algorithm, we perform more experi-
ments specially on Trivium. We compute the exact value of the algebraic degree
of the output bit of reduced Trivium from 66 rounds to 426 rounds, as well as
estimate the degree by our algorithm. Our experiments show that

– our estimated bound is equal to its real value for most of cases (greater than
70%), and even for the other cases their gap is only one, when taking all the
key and IV bits or all the IV bits as input variables.

– our estimated bound is always equal to its real value, when taking the best
cube of size 37 as input variables.

They are strong evidence of high accuracy of our algorithm. We depict in
Fig. 1 our full estimation of the upper bound on the algebraic degree of reduced
Trivium for the mentioned three cases. From this figure, we can see that the
algebraic degree on the IV bits is almost the same as that on all the key and
IV bits, and it increases much faster than that of the best cube. The former is
possible due to that the key and IV bits are loaded into different registers of
Trivium, and the latter due to that two adjacent variable bits accelerate the
growth of the algebraic degree.

Remarks. The algorithm is possibly improved by further refining the estimation
of the degree of yi ·yi+1 ·yi+2. However, probably because in most of cases yi ·yi+1 ·
yi+2 is not dominant on the algebraic degree of zi+rB

· zi+rB+1, no improvement
is found by this way in our experiments. Another possible improvement is to
store the estimated degree of yi · yi+1 and replace some d

(i+rB)
C with it in the

procedure DegMul. Again, it gives no better result, at least in our experiments,
probably due to that the algebraic degree of zi+rB

is usually equal to that of
yi · yi+1. Even though these methods show no advantages in our experiments,
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Fig. 1. Upper bound on the algebraic degree of reduced Trivium

they may be useful in some cases. In the following, for an instance, we will show
an improved algorithm by computing the exact degrees of the internal states of
the first rounds, together with the second method.

5 Improved Estimation of Degree of Trivium-Like
Ciphers

In this section, we present an improved algorithm for estimating algebraic degree
of the output of f after N rounds for a Trivium-like cipher, as described in
Algorithm 4.

It is similar to Algorithm 2. In the improved algorithm, we compute the exact
algebraic degrees of the internal states for the first N0 rounds, where the degrees
of g

(t)
A , g

(t)
B and g

(t)
C are also recorded, and use a modified DegMul∗ to replace

DegMul, as depicted in Algorithm 6 in Appendix. The rest of this algorithm
is the same as Algorithm 2. The output of Algorithm 4 also gives an upper
bound on algebraic degree of an N -round Trivium-like cipher with X as input
variables. The replacing DegMul with DegMul∗ does not give the improvement
but guarantees the validity of the algorithm. The proof is similar to that of
Algorithm 2 and thus omitted in this paper.

It is hard to assess the complexity of Algorithm 4, which depends on N0 and
the complexities of the ANFs of the internal states (At, Bt, Ct) with t ≤ N0. It
becomes much slower than Algorithm 2, as N0 increases.

We apply the algorithm to Trivium, Kreyvium and TriviA-SC. It slightly
improves the results in Sect. 4 for TriviA-SC, as shown in Table 6, while this is
not the case for Trivium and Kreyvium. For both versions of TriviA-SC in
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Algorithm 4. Improved Estimation of Degree of Trivium-Like Ciphers
Require: Given the ANFs of all internal states (At, Bt, Ct) with t ≤ N0, and
the set of variables X.
1: For λ in {A, B, C} do:
2: For t from 1 − nλ to 0 do:
3: d

(t)
λ ← deg(λ0[t], X);

4: D(0) ← (d
(1−nA)
A , · · · , d

(0)
A , d

(1−nB)
B , · · · , d

(0)
B , d

(1−nC)
C , · · · , d

(0)
C );

5: For t from 1 to N0 do:
6: For λ in {A, B, C} do:

7: dm
(t)
λ ← deg(g

(t)
λ , X);

8: d
(t)
λ ← deg(λt[t], X);

9: D(t) ← (d
(t−nA+1)
A , · · · , d

(t)
A , d

(t−nB+1)
B , · · · , d

(t)
B , d

(t−nC+1)
C , · · · , d

(t)
C );

10: For t from N0 + 1 to N do:
11: For λ in {A, B, C} do:

12: dm
(t)
λ ← DegMul∗(g(t)

λ );

13: d
(t)
λ ← max{dm

(t)
λ , DEG(�λ, D(t−1))};

14: D(t) ← (d
(t−nA+1)
A , · · · , d

(t)
A , d

(t−nB+1)
B , · · · , d

(t)
B , d

(t−nC+1)
C , · · · , d

(t)
C );

15: Return DEG(f, D(N)).

the case X = (key, IV ), the number of rounds such that the output has degree
less than 256 is improved from 1108 to 1121, by taking N0 = 340. For TriviA-
SC (v2) with X being a subset of IV with size of 61, the number of rounds is
improved from 1032 to 1047, by taking N0 = 440. This cube is listed in Table 7
in Appendix.

Table 6. Lower bounds on the number of rounds of NOT achieving maximum degree
for TriviA-SC

Cipher TriviA-SC TriviA-SC (v2)

X (key, IV ) Subset of IV

#X 256 61

#Rounds (Algorithm 2) 1108 1032

#Rounds (Algorithm 4) 1121 1047

6 Conclusions

In this paper, we have shown a general framework of algebraic degree evaluation
for NFSR-based cryptosystems. It is based on a new tool, named numeric map-
ping. We have also detailed the technique for efficiently finding an upper bound
on the algebraic degree of Trivium-like ciphers. As illustrations, we applied it
to Trivium, Kreyvium and TriviA-SC, and gained the best distinguishing
attacks for all these ciphers, by an exhaustive search on a subset of the cubes
that have size of around half length of the IV. To the best of our knowledge, our
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tool is the first theoretical one for finding an upper bound on the algebraic degree
of an NFSR-based cryptosystem, and this is the first time that a cube of size
beyond practical computations can be used in cryptanalysis of an NFSR-based
cryptosystem. Note that cube testers are useful not only in distinguishing attacks
but also in key recovery attacks. We believe that this tool is useful in both crypt-
analysis and design of NFSR-based cryptosystems. In the future, it is worthy of
working on its applications to key recovery attacks and to more cryptographic
primitives. It is also worth a further generalization to other cryptosystems that
are not built on NFSR.
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A The Full Procedures of DegMul and DegMul∗

Algorithms 5 and 6 respectively describe the full procedures of DegMul(g(t)λ ) and
DegMul∗(g(t)λ ) for λ ∈ {A,B,C}, where ρ(A) = C, ρ(C) = B, ρ(B) = A.

Algorithm 5. DegMul(g(t)λ ) for λ ∈ {A,B,C}
1: t1 ← t − rρ(λ);
2: If t1 ≤ 0 then:

Return d
(t1)
ρ(λ) + d

(t1+1)

ρ(λ) .
3: t2 ← t1 − rρ2(λ);

4: d1 ← min{d
(t2)

ρ2(λ)
+ d

(t1+1)

ρ(λ) , d
(t2+2)

ρ2(λ)
+ d

(t1)
ρ(λ), d

(t2)

ρ2(λ)
+ d

(t2+1)

ρ2(λ)
+ d

(t2+2)

ρ2(λ)
};

5: d2 ← DEG(�ρ(λ), D
(t1)) + d

(t1)
ρ(λ);

6: d3 ← DEG(�ρ(λ), D
(t1−1)) + d

(t1+1)

ρ(λ) ;

7: d ← max{d1, d2, d3};
8: Return d.

Algorithm 6. DegMul∗(g(t)λ ) for λ ∈ {A,B,C}
1: t1 ← t − rρ(λ);
2: If t1 ≤ 0 then:

Return d
(t1)
ρ(λ) + d

(t1+1)

ρ(λ) .
3: t2 ← t1 − rρ2(λ);

4: d1 ← min{d
(t2)

ρ2(λ)
+ dm

(t1+1)

ρ(λ) , d
(t2+2)

ρ2(λ)
+ dm

(t1)
ρ(λ), d

(t2)

ρ2(λ)
+ d

(t2+1)

ρ2(λ)
+ d

(t2+2)

ρ2(λ)
};

5: d2 ← DEG(�ρ(λ), D
(t1)) + dm

(t1)
ρ(λ);

6: d3 ← DEG(�ρ(λ), D
(t1−1)) + d

(t1+1)

ρ(λ) ;

7: d ← max{d1, d2, d3};
8: Return d.
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B The Best Cube Testers

Table 7. The cubes in cube testers on round-reduced Trivium, Kreyvium and
TriviA-SC with around half of the IV bits as variables

Cipher Cube size Cube

Trivium 37 {0, 2, 4, 6, 8, 10, 12, 15, 17, 19, 21, 23, 25, 27, 30, 32, 34,
36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57, 60, 62, 64, 66, 68,
70, 72, 75, 79}

Kreyvium 61 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 29, 31, 33,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 57, 59, 61, 63, 65, 67,
69, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100,
102, 104, 107, 109, 111, 113, 115, 117, 119, 122, 124, 126}

TriviA-SC 61 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
66, 68, 70, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99,
101, 103, 105, 107, 109, 111, 113, 115, 121, 123, 125, 127}

62 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
66, 68, 70, 72, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99,
101, 103, 105, 107, 109, 111, 113, 115, 117, 121, 123, 125,
127}

63 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
66, 68, 70, 72, 74, 76, 78, 81, 83, 85, 87, 89, 91, 93, 95, 97,
99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 121, 123,
125, 127}
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Abstract. The cube attack is a powerful cryptanalytic technique and is
especially powerful against stream ciphers. Since we need to analyze the
complicated structure of a stream cipher in the cube attack, the cube
attack basically analyzes it by regarding it as a blackbox. Therefore,
the cube attack is an experimental attack, and we cannot evaluate the
security when the size of cube exceeds an experimental range, e.g., 40. In
this paper, we propose cube attacks on non-blackbox polynomials. Our
attacks are developed by using the division property, which is recently
applied to various block ciphers. The clear advantage is that we can
exploit large cube sizes because it never regards the cipher as a blackbox.
We apply the new cube attack to Trivium, Grain128a, and ACORN. As
a result, the secret keys of 832-round Trivium, 183-round Grain128a,
and 704-round ACORN are recovered. These attacks are the current
best key-recovery attack against these ciphers.

Keywords: Cube attack · Stream cipher · Division property · Higher-
order differential cryptanalysis · MILP · Trivium · Grain128a · ACORN

1 Introduction

Cube attack is one of general cryptanalytic techniques against symmetric-key
cryptosystems proposed by Dinur and Shamir [11]. Especially, the cube attack
has been successfully applied to various stream ciphers [4,10,12,14,25]. Let x
and v be secret and public variables of stream ciphers, respectively, and let
f(x , v) be the first bit of key stream. Some bits in v are active, where they take
all possible combinations of values. The set of these values is denoted as a cube,
and the sum of f(x , v) over all values of the cube is evaluated. Then, this sum is
also represented as a polynomial whose inputs are x and v , and the polynomial
is denoted as a superpoly of the cube. The superpoly is more simplified than the
original f(x , v), and secret variables x are recovered by analyzing this simplified
polynomial. Unfortunately, it is really difficult to analyze the structure of the
superpoly. Therefore, the target stream cipher f(x , v) is normally regarded as a
c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part III, LNCS 10403, pp. 250–279, 2017.
DOI: 10.1007/978-3-319-63697-9 9
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blackbox polynomial in the cube attack, and this blackbox polynomial is exper-
imentally evaluated. In the original paper of the cube attack [11], the authors
introduced a linearity test to reveal the structure of the superpoly. If the linear-
ity test always passes, the Algebraic Normal Form (ANF) of the superpoly is
recovered by assuming that the superpoly is linear. Moreover, a quadraticity test
was introduced in [24], and the ANF of the superpoly is similarly recovered. The
quadraticity test was also used in the current best key-recovery attack against
Trivium [14]. Note that they are experimental cryptanalysis, and it is possible
that cube attacks do not actually work. For example, if the superpoly is highly
unbalanced function for specific variables, we cannot ignore the probability that
the linearity and quadraticity tests fail.

The difference between the cube attack and higher-order differential attack
has been often discussed. The higher-order differential attack was proposed by
Lai [20]. Assuming the algebraic degree of f is at most d, Lai showed that the
algebraic degree of the ith order difference is at most d − i. Then, Knudsen
showed the effectiveness of the higher-order differential attack on toy block
ciphers [18]. Nowadays, many advanced techniques similar to the higher-order
differential attack have been developed to analyze block ciphers, e.g., integral
attack [8,19,22].

The cube attack can in some way be seen as a type of higher-order differential
attacks because it also evaluates the behavior of higher-order difference. However,
the most major difference between the cube attack and common higher-order dif-
ferential attack is whether or not secret variables are directly recovered from the
characteristic, and understanding this difference is very important to consider
key-recovery attacks against stream ciphers. When a block cipher is analyzed,
attackers first evaluate the algebraic degree of the reduced-round block cipher
and construct a higher-order differential characteristic, where the (d+1)th order
difference is always 0 if the degree is at most d. Then, the key recovery is inde-
pendently appended after the higher-order differential characteristic. Namely,
attackers guess round keys used in last several rounds and compute the (d+1)th
order difference of ciphertexts of the reduced-round block cipher. If the correct
round key is guessed, the (d + 1)th order difference is always 0. In other words,
if the (d + 1)th order difference is not 0, guessed round keys are incorrect.

Note that we cannot use this strategy for the key-recovery attack against
many stream ciphers because the secret key is generally used during the ini-
tialization phase and is not involved when generating a keystream, i.e. even if
there is a distinguisher in the keystream, it cannot be directly utilized for key
recovery attacks by appending key recovery rounds in the key generation phase,
unlike key recovery attacks of block ciphers. To execute the key-recovery attack
of stream ciphers, we have to recover the secret key by using only key streams
that attackers can observe. Therefore, more advanced and complicated analyses
are required than the simple degree estimation of the common higher-order dif-
ferential attack or square, saturation, and integral characteristics. In the context
of the cube attack, we have to analyze the ANF of the superpoly. It is unlikely to
well analyze because symmetric-key cryptosystems are complicated. Therefore,
stream ciphers have been experimentally analyzed in the cube attack.
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Another important related work to understand this paper is the division
property, which is a new method to construct higher-order differential (integral)
characteristics [31]. The division property is the generalization of the integral
property [19] that can also exploit the algebraic degree at the same time, and
it allows us to evaluate more accurate higher-order differential characteristics.
Moreover, the bit-based division property was introduced in [32], and three prop-
agation rules for basic operations, and, xor, and copy are shown. While arbitrary
block ciphers are evaluated by using the bit-based division property, it requires
much time and memory complexity [32]. Therefore, the application is first limited
to block ciphers with small block length, like Simon32 or Simeck32. In [34], Xiang
et al. showed how to model the propagation of the bit-based division property
by using the mixed integer linear programming (MILP). Moreover, they showed
that MILP solvers can efficiently evaluate the propagation. To demonstrate the
effectiveness, accurate propagations of the bit-based division property for six
lightweight block ciphers including Simon128 were shown.

Our Contribution. The most important step in a cube attack is the super-
poly recovery. If the superpoly is more efficiently recovered than the brute-force
search, it brings some vulnerability of symmetric-key ciphers. Superpolys are
experimentally recovered in the conventional cube attack. The advantage of such
approach is that we do not need to analyze the structure of f in detail. On the
other hand, there are significant drawbacks in the experimental analysis.

– The size of a cube is limited to the experimental range because we have to
compute the sum of f over a cube. It may be possible that we try a cube
whose size is at most 40 in current computers, but it requires incredible effort
in the aspect to both money and time. Therefore, it is practically infeasible
to execute the cube attack when the cube size exceeds 40.

– The prediction of the true security of target stream ciphers is an important
motivation of cryptanalyses. Since the evaluation is limited to the experimen-
tal range, it is difficult to predict the impact of the cube attack under future
high-performance computers.

– Since the stream cipher is regarded as a blackbox, the feedback to designers
is limited.

To overcome these drawbacks, we propose the cube attack on non-blackbox
polynomials.

Our analysis is based on the propagation of the (bit-based) division property,
and as far as we know, it is the first application of the division property to stream
ciphers. Since the division property is a tool to find higher-order differential
characteristics, the trivial application is only useful to find zero-sum integral
distinguishers, where the sum of the first bit of the key stream over the cube is
always 0 for any secret key. As mentioned earlier, it is nontrivial to recover the
secret key of stream ciphers by using zero-sum integral distinguisher. Therefore,
we propose a novel application of the division property to recover the secret
key. Our technique uses the division property to analyze the ANF of f(x , v)
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by evaluating propagations from multiple input division property according to
a cube. Finally, we can evaluate secret variables that are not involved to the
superpoly of the cube. This allows us to compute the upper bound of the time
complexity for the superpoly recovery. Note that the superpoly recovery directly
brings some vulnerability of symmetric-key ciphers, and we discuss this issue in
Sect. 4.

Let I be a set of cube indices. After the evaluation of the division property,
we get a set of indices J , where xj (j ∈ J) is involved to the superpoly. Then,
the variation of the sum over the cube is at most 2|J| for each constant part
of public variables, where |J | denotes the size of J . All sums are evaluated by
guessing |J |-bit secret variables, and the time complexity to recover the ANF
of the superpoly is 2|I|+|J| encryptions. Finally, we query the encryption oracle
and get the sum over the cube. Then, we can get one polynomial about secret
variables, and the secret variable is recovered from the polynomial.

Table 1. Summary of results. The time complexity in this table shows the time com-
plexity to recover the superpoly of a cube.

Applications # rounds Cube size Complexity Key recovery Reference

Trivium 799 32a Practical � [14]

832 72 277 � Sect. 5.1

Grain128a 177 33 Practical [21]

183 92 2108 Speculative Sect. 5.2

ACORN 503 5b Practicalb � [25]

704 64 2122 � Sect. 5.3
a18 cubes whose size is from 32 to 37 are used, where the most efficient cube
is shown to recover one bit of the secret key.
bThe attack against 477 rounds is mainly described for the practical attack
in [25]. However, when the goal is the superpoly recovery and to recover one
bit of the secret key, 503 rounds are attacked.

Table 1 shows the summary of applications. We applied our new cube
attack to Trivium [6], Grain128a [3], and ACORN [33]. Trivium is part of the
eSTREAM portfolio [1], and it is one of the most analyzed stream ciphers. The
initialization is 1152 rounds. The secret key of Trivium with 767 initializa-
tion rounds was recovered in the proposal paper of the cube attack [11]. Then,
an improved cube attack was proposed in [14], and the secret key of Trivium
with 799 initialization rounds is recovered. This is the current best key-recovery
attack against Trivium. Our new cube attack recovers the secret key of Trivium
with 832 initialization rounds. Grain128a is a member of Grain family of stream
ciphers and is standardized by ISO/IEC 29167-13 [16]. The initialization is 256
rounds. The conditional differential cryptanalysis was applied to Grain128a, and
a distinguishing attack against Grain128a with 177 initialization rounds was
shown under the single-key setting [21]. On the other hand, the key-recovery
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attack is not known. Our new cube attack recovers the secret key of Grain128a
with 183 initialization rounds. Unfortunately, when we applied our technique to
practical cube attack, i.e., the cube size is small, we could not find balanced
superpoly. In such case, the size of recovered bit of information is smaller than
1 bit. Since we cannot say that balanced superpoly is efficiently found in the
large cube size, the feasibility of the key recovery is speculative. However, 183
rounds are at least vulnerable because the superpoly recovery is more efficient
than the brute-force search. ACORN is an authenticated encryption and one of
the 3rd round candidates in CAESAR competition [2]. The structure is based on
non-linear feedback shift register (NLFSR) like Trivium and Grain. Before the
output of key streams, the secret key and initialization vector (iv) are sequen-
tially XORed with the NLFSR, and then associated data is sequentially XORed.
In the nonce-respecting setting, we cannot select cube bits from the associated
data. Therefore, the initialization is regarded as 2048 rounds when there is no
associated data. The cube attack was applied in [25], and the secret key of
ACORN with 503 initialization is recovered. Our new cube attack recovers the
secret key of ACORN with 704 initialization rounds.

2 Preliminaries

2.1 Mixed Integer Linear Programming

The deployment of the mixed integer linear programming (MILP) to crypt-
analysis was shown by Mouha et al. in [23]. Then, the MILP has been applied
to search for differential [28,29], linear [28], impossible differential [7,26], zero-
correlation linear [7], and integral characteristics with division property [34]. The
use of MILP for the integral characteristic with division property is expanded in
this paper.

The MILP problem is an optimization or feasibility program where vari-
ables are restricted to integers. We create an MILP model M, which consists of
variables M.var, constraints M.con, and an objective function M.obj. As an
example, let us consider the following optimization program.

Example 1.

M.var ← x, y, z as binary.
M.con ← x + 2y + 3z ≤ 4
M.con ← x + y ≥ 1
M.obj ← maximize x + y + 2z

The answer of the model M is 3, where (x, y, z) = (1, 0, 1).

MILP solver can solve such optimization problem, and it returns infeasible if
there is no feasible solution. Moreover, if there is no objective function, the
MILP solver only evaluates whether this model is feasible or not.

We used Gurobi optimization as the solver in our experiments [15].
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2.2 Cube Attack

The cube attack is a key-recovery attack proposed by Dinur and Shamir in
2009 [11] and is the extension of the higher-order differential cryptanalysis [20].

Let x = (x1, x2, . . . , xn) and v = (v1, v2, . . . , vm) be n secret variables and
m public variables, respectively. Then, the symmetric-key cryptosystem is rep-
resented as f(x , v), where f denotes a polynomial and the size of input and
output is n + m bits and 1 bit, respectively. In the case of stream ciphers, x is
the secret key, v is the initialization vector (iv), and f(x , v) is the first bit of the
key stream. The core idea of the cube attack is to simplify the polynomial by
computing the higher-order differential of f(x , v) and to recover secret variables
from the simplified polynomial.

For a set of indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n}, which is referred as
cube indices and denote by tI the monomial as tI = vi1 · · · vi|I| . Then, we can
decompose f(x , v) as

f(x , v) = tI · p(x , v) + q(x , v),

where p(x , v) is independent of {vi1 , vi2 , . . . , vi|I|} and the effective number of
input variables of p is n + m − |I| bits. Moreover, q(x , v) misses at least one
variable from {vi1 , vi2 , . . . , vi|I|}.

Let CI , which is referred as a cube (defined by I), be a set of 2|I| values where
variables in {vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values, and
all remaining variables are fixed to some arbitrary values. Then the sum of f
over all values of the cube CI is

⊕

CI

f(x , v) =
⊕

CI

tI · p(x , v) +
⊕

CI

q(x , v)

= p(x , v).

The first term is reduced to p(x , v) because tI becomes 1 for only one case
in CI . The second term is always canceled out because q(x , v) misses at least
one variable from {vi1 , vi2 , . . . , vi|I|}. Then, p(x , v) is called the superpoly of the
cube CI .

Blackbox Analysis. If the cube is appropriately chosen such that the superpoly
is enough simplified to recover secret variables, the cube attack succeeds. How-
ever, f(x , v) in real symmetric-key cryptosystems is too complicated. Therefore,
the cube attack regards f as a blackbox polynomial.

In the preprocessing phase, attackers first try out various cubes, change values
of public and secret variables, and analyze the feature of the superpoly. The goal
of this phase is to reveal the structure of p(x , v). Especially, the original cube
attack searches for linear superpoly p(x ,0 ) by the summation over the chosen
cube. If the superpoly is linear,

p(x ⊕ x ′,0 ) = p(x ,0 ) ⊕ p(x ′,0 ) ⊕ p(0 ,0 )
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always holds for arbitrary x and x ′. By repeating this linearity test enough,
attackers can know that the superpoly is linear with high probability, and the
Algebraic Normal Form (ANF) of the superpoly is recovered by assuming its
linearity.

In the online phase, attackers query to an encryption oracle by controlling
only public variables and recover secret variables. Attackers evaluate the sum of
f(x , v) over all values of the cube CI . Since the sum is right hand side of the
superpoly, the part of secret variables is recovered. Please refer to [4,11] to well
understand the principle of the cube attack.

2.3 Higher-Order Differential Cryptanalysis and Division Property

Underlying mathematical background of the cube attack is the same as that of
the higher-order differential attack. Unlike the cube attack, the common higher-
order differential attack never regards the block cipher as a blackbox polynomial.
Attackers analyze the structure of a block cipher and construct higher-order
differential characteristics, where attackers prepare the set of chosen plaintexts
such that the sum of corresponding ciphertexts of reduced-round block cipher
is 0. After the proposal of the higher-order differential attack, many advanced
techniques similar to the higher-order differential attack have been developed
to analyze block ciphers, e.g., square attack [8], saturation attack [22], multi-set
attack [5], and integral attack [19].

Division Property. At 2015, the division property, which is an improved
technique to find higher-order differential (integral) characteristics for iterated
ciphers, was proposed in [31]. Then, the bit-based variant was introduced in [32],
and it is defined as follows1.

Definition 1 ((Bit-Based) Division Property). Let X be a multiset whose
elements take a value of Fn

2 . Let K be a set whose elements take an n-dimensional
bit vector. When the multiset X has the division property D1n

K
, it fulfils the fol-

lowing conditions:

⊕

x∈X

xu =

{
unknown if there exist k ∈ K s.t. u � k,

0 otherwise,

where u � k if ui ≥ ki for all i, and xu =
∏n

i=1 xui
i .

We first evaluate the division property of the set of chosen plaintexts and then
evaluate the division property of the set of corresponding ciphertexts by evalu-
ating the propagation for every round function.

Some propagation rules for the division property are proven in [31,32].
Attackers determine indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n} and prepare

1 Two kinds of bit-based division property are proposed in [32]. In this paper, we only
focus on the conventional bit-based division property.
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2|I| chosen plaintexts where variables indexed by I are taking all possible combi-
nations of values. The division property of such chosen plaintexts is D1n

k , where
ki = 1 if i ∈ I and ki = 0 otherwise. Then, the propagation of the division
property from D1n

k is evaluated as

{k} def= K0 → K1 → K2 → · · · → Kr,

where DKi
is the division property after i-round propagation. If the division

property Kr does not have an unit vector e i whose only ith element is 1, the ith
bit of r-round ciphertexts is balanced.

Propagation of Division Property with MILP. Evaluating the propagation
of the division property is not easy because the size of Ki extremely increases.
At ASIACRYPT 2016, Xiang et al. showed that the propagation is efficiently
evaluated by using MILP [34]. First, they introduced the division trail as follows.

Definition 2 (Division Trail). Let us consider the propagation of the division
property {k} def= K0 → K1 → K2 → · · · → Kr. Moreover, for any vector k∗

i+1 ∈
Ki+1, there must exist a vector k∗

i ∈ Ki such that k∗
i can propagate to k∗

i+1 by
the propagation rule of the division property. Furthermore, for (k0, k1, . . . , kr) ∈
(K0 × K1 × · · · × Kr) if ki can propagate to ki+1 for all i ∈ {0, 1, . . . , r − 1}, we
call (k0 → k1 → · · · → kr) an r-round division trail.

Let Ek be the target r-round iterated cipher. Then, if there are division trails
k0

Ek−−→ k r = e i, attackers cannot know whether the ith bit of r-round cipher-
texts is balanced or not. On the other hand, if we can prove that there is no
division trail k0

Ek−−→ e i, the ith bit of r-round ciphertexts is always balanced.
Therefore, we have to evaluate all possible division trails to verify whether each
bit of ciphertexts is balanced or not. In [30–32], all possible division trails are
evaluated by using a breadth-first search. Unfortunately, such a search requires
enormous memory and time complexity. Therefore, it is practically infeasible to
apply this method to iterated ciphers whose block length is not small.

MILP can efficiently solve this problem. We generate an MILP model that
covers all division trails, and the solver evaluates the feasibility whether there
are division trails from the input division property to the output one or not.
If the solver guarantees that there is no division trail, higher-order differential
(integral) characteristics are found.

Let copy, xor, and and be three fundamental operations, where 1 bit is copied
into m bits in copy, the xor of m bits is computed in xor, and the and of m
bits is computed in and. Note that MILP models for copy, xor, and and are
sufficient to represent any circuit.

Proposition 1 (MILP Model for COPY). Let a
COPY−−−−→ (b1, b2, . . . , bm) be

a division trail of COPY. The following inequalities are sufficient to describe the
propagation of the division property for copy.
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{
M.var ← a, b1, b2, . . . , bm as binary.

M.con ← a = b1 + b2 + · · · + bm

Proposition 2 (MILP Model for XOR). Let (a1, a2, . . . , am) XOR−−−→ b be
a division trail of XOR. The following inequalities are sufficient to describe the
propagation of the division property for xor.

{
M.var ← a1, a2, . . . , am, b as binary.

M.con ← a1 + a2 + · · · + am = b

Proposition 3 (MILP Model for AND). Let (a1, a2, . . . , am) AND−−−→ b be
a division trail of AND. The following inequalities are sufficient to describe the
propagation of the division property for and.

{
M.var ← a1, a2, . . . , am, b as binary.

M.con ← b ≥ ai for all i ∈ {1, 2, . . . ,m}

To accept multiple inputs and outputs, three propositions are generalized
from the original ones shown in [34]. Moreover, Propositions 1 and 2 are also
introduced in [27]. Note that Proposition 3 includes redundant propagations of
the division property, but they do not affect obtained characteristics.

3 How to Analyze Non-Blackbox Polynomials

The cube attack basically regards f(x , v) as a blackbox polynomial and ana-
lyzes it experimentally because real f(x , v) are too complicated to analyze the
structure in detail. Such experimental analysis is often advantageous but has
significant drawbacks, e.g., the size of cube is limited to the experimental range.

In this section, we propose a new technique to analyze the polynomial, where
our technique never regards the polynomial as a blackbox and can analyze the
structure in detail. Accurately, we propose a new application of the division
property that enables us to analyze the Algebraic Normal Form (ANF) coeffi-
cients of f . Secret variables that are not involved in the superpoly of a cube CI

are efficiently identified by using our new method. As a result, we can estimate
the time complexity that the ANF of the superpoly of a cube CI is recovered.

3.1 What Is Guaranteed by Division Property

We first revisit the definition of the division property and consider what the
division property can do for stream ciphers.
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Zero-Sum Integral Distinguisher. The trivial application is to find zero-
sum integral distinguishers. Let us consider f(x , v) as a stream cipher, where x
and v denote the secret and public variables, respectively, and f is designed by
using iterative structure. For a cube CI where the variables in {vi1 , vi2 , . . . , vi|I|}
are taking all possible combinations of values, the propagation of the division
property enables us to evaluate whether or not the sum of f(x , v) over all values
of the cube CI is balanced. Therefore, if the goal of attackers is to find zero-sum
integral distinguishers, we can trivially use the division property.

Analysis of ANF Coefficients. Even if we can find a zero-sum integral dis-
tinguisher on stream ciphers, it is nontrivial to recover secret variables unlike
block ciphers. Therefore, new techniques are required for the extension to the
key-recovery attack.

We propose a novel application of the division property, where the division
property is not used to find zero-sum integral distinguishers but used to analyze
the ANF coefficients of f . Since our goal is to analyze the ANF coefficients, we
do not need to distinguish public variables from secret ones. For the simplicity of
notation, we consider f(x ) instead of f(x , v), and the ANF of f(x ) is represented
as follows.

f(x ) =
⊕

u∈Fn
2

af
u · xu ,

where af
u ∈ F2 denotes the ANF coefficients. Then, the following Lemma is

derived.

Lemma 1. Let f(x) be a polynomial from F
n
2 to F2 and af

u ∈ F2 (u ∈ F
n
2 ) be the

ANF coefficients. Let k be an n-dimensional bit vector. Then, assuming there is
no division trail such that k

f−→ 1, af
u is always 0 for u � k.

Proof. According to k , we first decompose f(x ) into

f(x ) =
⊕

u∈Fn
2 |u�k

af
u · xu ⊕

⊕

u∈Fn
2 |u ��k

af
u · xu ,

= xk ·
⊕

u∈Fn
2 |u�k

af
u · xu⊕k ⊕

⊕

u∈Fn
2 |u ��k

af
u · xu .

Assume that there is no division trail such that k
f−→ 1. Then, no division trail

guarantees that the sum of f(x ) over all values of the cube CI is always balanced
independent of xi (i ∈ {1, 2, . . . , n} − I). Namely,

⊕

CI

f(x ) =
⊕

CI

⎛

⎝xk ·
⊕

u∈Fn
2 |u�k

af
u · xu⊕k

⎞

⎠

=
⊕

u∈Fn
2 |u�k

af
u · xu⊕k = 0
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holds independent of xi (i ∈ {1, 2, . . . , n} − I). It holds only if af
u is always 0 for

all u such that u � k . 
�
Lemma 1 is very important observation for our attack.

3.2 Superpoly Recovery

The most important part of a cube attack is to recover the superpoly, and we
simply call it the superpoly recovery in this paper. Since public variables v are
known and chosen for attackers, the ANF of pv (x ) = p(v ,x ) is evaluated, and the
goal is to recover pv (x ) whose v is fixed. Once the superpoly pv (x ) is recovered,
attackers query the cube to an encryption oracle and compute the sum of f(x , v)
over the cube. Then, attackers can get one polynomial about secret variables,
and the secret variables are recovered from the polynomial.

The size of secret variables recovered from one superpoly depends on the
structure of the superpoly pv (x ). If a balanced superpoly is used, one bit of
information in involved secret variables is always recovered. If an unbalanced
superpoly is used, the size of recovered secret variables is less than 1 bit but
some information of secret variables is leaked to attackers. Moreover, it is possi-
ble to recover more bits of information in secret variables by exploiting multiple
cubes. As an extreme case, if the superpoly is constant function, no secret vari-
able is recovered, but it trivially implies constant-sum integral distinguishers.
Therefore, the superpoly recovery directly brings vulnerability of symmetric-
key cryptosystems, and some information of secret variables is always recovered
unless the superpoly is constant function.

Previous Method to Recover Superpoly. The previous cube attack experi-
mentally recovered the superpoly of a cube whose size is feasible for current com-
puter. Therefore, not every superpoly can be evaluated. Linearity and quadratic-
ity tests are repeated, and the superpoly is regarded as the linear or quadratic
polynomial if these tests are sufficiently passes. Then, assuming the superpoly
is linear or quadratic, the superpoly is recovered.

Analyze ANF Coefficients of Superpoly by Division Property. Lemma 1
implies that the division property can be used as a tool to analyze ANF coeffi-
cients of the superpoly. The following proposition is shown from Lemma1 and
is useful to evaluate the upper bound of the complexity to recover the ANF of
the superpoly.

Proposition 4. Let f(x, v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{1, 2, . . . ,m}, let CI be a set of 2|I| values where the variables in
{vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values. Let kI be an
m-dimensional bit vector such that vkI = tI = vi1vi2 · · · vi|I| , i.e. ki = 1 if i ∈ I

and ki = 0 otherwise. Assuming there is no division trail such that (ej , kI)
f−→ 1,

xj is not involved in the superpoly of the cube CI .
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Algorithm 1. Evaluate secret variables by MILP
1: procedure attackFramework(MILP model M, cube indices I)
2: Let x be n MILP variables of M corresponding to secret variables.
3: Let v be m MILP variables of M corresponding to public variables.
4: M.con ← vi = 1 for all i ∈ I
5: M.con ← vi = 0 for all i ∈ ({1, 2, . . . , n} − I)
6: M.con ←∑m

i=1 xi = 1
7: do
8: solve MILP model M
9: if M is feasible then

10: pick index j ∈ {1, 2, . . . , n} s.t. xj = 1
11: J = J ∪ {j}
12: M.con ← xj = 0
13: end if
14: while M is feasible
15: return J
16: end procedure

Proof. The ANF of f(x , v) is represented as follows.

f(x , v) =
⊕

u∈F
n+m
2

af
u · (x‖v)u ,

where af
u ∈ F2 denotes the ANF coefficients. The polynomial f(x , v) is decom-

posed into

f(x , v) =
⊕

u∈F
n+m
2 |u�(0‖kI )

afu · (x‖v)u ⊕
⊕

u∈F
n+m
2 |u ��(0‖kI )

afu · (x‖v)u

= tI ·
⊕

u∈F
n+m
2 |u�(0‖kI )

afu · (x‖v)u⊕(0‖kI ) ⊕
⊕

u∈F
n+m
2 |u ��(0‖kI )

afu · (x‖v)(0‖u)

= tI · p(x , v) ⊕ q(x , v).

Therefore, the superpoly p(x , v) is represented as

p(x , v) =
⊕

u∈F
n+m
2 |u�(0‖kI)

af
u · (x‖v)u⊕(0‖kI).

If there is no division trail (ej‖k I)
f−→ 1, af

u = 0 for u � (ej‖k I) because of
Lemma 1. Therefore,

p(x , v) =
⊕

u∈F
n+m
2 |u�(0‖kI),uj=0

af
u · (x‖v)u⊕(0‖kI).

This superpoly is independent of xj because uj is always 0 and (xj)0 = 1. 
�
We can evaluate which secret variables are involved to the superpoly of a

given cube, and Algorithm1 shows the algorithm supported by MILP. The input
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M is an MILP model, where the target stream cipher is represented by the
context of the division property. How to construct M for each specific stream
cipher is shown in each application in Sect. 5. First, we pick MILP variables x
and v from M, where x and v correspond to MILP variables for secret and
public variables, respectively. As an example, in Algorithm2 for Trivium, let
x = (s01, s

0
2, . . . , s

0
80) and v = (s093, s

0
94, . . . , s

0
172). Then, to represent the input

division property, elements of v indexed by I are constrained by 1, and the
others are constrained by 0. Since at least one element in secret variables is
additionally constrained to 1 in our cube attack, the sum of x is constrained to
1. Next, we solve this MILP model by using the solver. If M is infeasible, there
is no involved secret variables in superpoly and

⊕
CI

f(x , v) = p(x , v) is always
constant. If M is feasible, we can get a satisfying division trail and pick an index
j ∈ {1, 2, . . . , n} such that xj = 1 in the division trail. Then, xj is involved to
the superpoly and the index j is stored to a set J . Once we detect that xj is
involved, we additionally constrain xj = 0. By repeating this procedure, we can
get the set J whose elements are an index of secret variables involved to the
superpoly.

After the analysis of the superpoly by using Algorithm1, we know that only
xj (j ∈ J) are involved to the superpoly of the cube CI . Attackers choose a value
in constant part of iv and prepare the cube CI by flipping bits in I. They then
recover the superpoly by trying out all possible combinations of secret variables
{xj1 , xj2 , . . . , xj|J|}. The time complexity to recover the superpoly is 2|I|+|J|.
Therefore, if |I| + |J | is smaller than the security bit level, we can efficiently
recover the superpoly.

4 Toward Key Recovery

The time complexity to recover the superpoly is estimated in Sect. 3. As
described in Sect. 3, the superpoly recovery directly brings vulnerability of
stream ciphers. On the other hand, if our goal is to recover secret variables,
we have to find a preferable superpoly that is close to balancedness for secret
variables. Under the condition that we already get the cube index I and index of
involved secret variables J by using Algorithm 1, our attack strategy to recover
secret variables consists of three phases: offline phase, online phase, and brute-
force search phase.

1. Offline phase. The goal of this phase is to find a preferable superpoly.
Attackers choose a value in the constant part of iv, and prepare a cube by
flipping bits in I. They then compute

⊕
CI

f(x , v) = pv (x ) in local, where
all possible combinations of secret variables {xj1 , xj2 , . . . , xj|J|} are tried out,
and the superpoly is recovered. Finally, we search for the preferable superpoly
by changing the constant part of iv.

2. Online phase. The goal of this phase is to recover the part of secret variables
by using the preferable superpoly. After the balanced superpoly is given,
attackers query the cube CI to encryption oracle and get one bit pv (x ).
Then, we get one polynomial about involved secret variables, and the half
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of values in involved secret variables is discarded because the superpoly is
balanced.

3. Brute-force search phase. Attackers guess the remaining secret variables
to recover the entire value in secret variables.

We cannot know whether the superpoly is balanced or not unless it is actually
recovered, and the actual superpoly recovery requires 2|I|+|J| time complexity.
Therefore, if |I| + |J | exceeds the experimental range, it is practically infeasible
to search for preferable superpolys. As a consequence, we introduce the following
two assumptions about collecting preferable superpolys.

Assumption 1 (Strong Assumption). For a cube CI , there are many values
in the constant part of iv whose corresponding superpoly is balanced.

Assumption 2 (Weak Assumption). For a cube CI , there are many val-
ues in the constant part of iv whose corresponding superpoly is not a constant
function.

Assumption 2 is weaker than Assumption 1 because the superpoly satisfying
Assumption 1 always holds Assumption 2. As long as Assumption 2 holds, the
size of recovered secret variables is less than 1 bit but some secret information is
at least leaked to attackers. If Assumption 1 holds and such superpoly is used in
the online phase, values in involved secret variables are divided in exactly half,
i.e., pv (x ) is 0 for 2|J|−1 values and is 1 for the others. Therefore, we can recover
one bit of information in secret variables.

4.1 Evaluating Time Complexity

Assuming that Assumption 1 holds, we show the time complexity to recover the
entire secret key. Then, the time complexity of the offline phase is estimated as
k×2|I|+|J|, where k denotes the required number of trials for finding a preferable
superpoly. Note that we can expect that such superpoly can be reasonably found
with high probability without trying out all possible values in involved secret
variables. We evaluate a part of values in involved secret variables at random and
check whether pv (x ) is almost balanced or not. If the output is highly biased for
x , the superpoly pv is not preferable and changes to other values in the constant
part of iv. The complexity of this method is O(2|I|). Once we find an almost
preferable superpoly, we entirely try out 2|J| values in secret variables.

Even if the preferable superpoly is used, the size of recovered secret informa-
tion is at most 1 bit. Therefore, when only one cube is used, the time complexity
of the brute-force search phase is 2κ−1, where κ denotes the security bit level.
Therefore, the total time complexity is

k × 2|I|+|J| + 2|I| + 2κ−1, (1)

From Eq. (1), when |I| + |J | = κ − 1, the total time complexity is greater than
2κ because k is at least 1. Therefore, such cube is not applied to the key-
recovery attack. Moreover, when |I| + |J | = κ − 2, this attack is valid only
if the best case (k = 1), where a preferable superpoly is found in the first trial.
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If only one cube is exploited, the dominant time complexity is always that
for the brute-force search phase. When � cubes are found in the evaluation phase
and all found cubes are exploited, the total time complexity is reduced to

� ×
(
k × 2|I|+|J| + 2|I|

)
+ 2κ−�.

However, this paper only focuses on the case that only one cube is exploited for
the simplicity. Note that the detection of one cube brings at least cryptographic
vulnerability.

5 Applications

We apply our general attack method to three NLFSE-based ciphers. The first
target is Trivium [6], which is one of eSTREAM portfolio [1] and one of the most
analyzed stream ciphers. Another target is Grain128a [3], which is standardized
by ISO/IEC 29167-13 [16]. The final application is ACORN [33], which is one of
the 3rd round CAESAR candidates [2], and its design is based on stream ciphers.

5.1 Application to Trivium

Specification. Trivium is an NLFSR-based stream cipher, and the internal
state is represented by 288-bit state (s1, s2, . . . , s288). Figure 1 shows the state
update function of Trivium. The 80-bit key is loaded to the first register, and
the 80-bit IV is loaded to the second register. The other state bits are set to 0

zi

Fig. 1. Structure of Trivium
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except the least three bits in the third register. Namely, the initial state bits are
represented as

(s1, s2, . . . , s93) = (K1,K2, . . . ,K80, 0, . . . , 0),
(s94, s95, . . . , s177) = (IV1, IV2, . . . , IV80, 0, . . . , 0),

(s178, s279, . . . , s288) = (0, 0, . . . , 0, 1, 1, 1).

The pseudo code of the update function is given as follows.

t1 ← s66 ⊕ s93

t2 ← s162 ⊕ s177

t3 ← s243 ⊕ s288

z ← t1 ⊕ t2 ⊕ t3

t1 ← t1 ⊕ s91 · s92 ⊕ s171

t2 ← t2 ⊕ s175 · s176 ⊕ s264

t3 ← t3 ⊕ s286 · s287 ⊕ s69

(s1, s2, . . . , s93) ← (t3, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)
(s178, s279, . . . , s288) ← (t2, s178, . . . , s287)

Here z denotes the 1-bit key stream. First, in the key initialization, the state
is updated 4 × 288 = 1152 times without producing an output. After the key
initialization, one bit key stream is produced by every update function.

MILP Model. TriviumEval in Algorithm 2 generates MILP model M as the
input of Algorithm 1, and the model M can evaluate all division trails for Triv-
ium whose initialization rounds are reduced to R. TriviumCore in Algorithm 2
generates MILP variables and constraints for each update function of register.
Since one TriviumCore creates 10 MILP variables and 7 constraints, one update
function creates 30 MILP variables and 21 constraints. Therefore, generated
MILP model M consists of 288 + 30R MILP variables and 21R + 282 + 1 MILP
constraints. Note that constraints by the input division property are operated
by Algorithm 1.

Experimental Verification. We implemented the MILP model M for the
propagation of the division property on Trivium and evaluated involved secret
variables by using Algorithm1, where Gurobi optimizer [15] was used as the
solver of MILP. Before the theoretical evaluation, we verify our attack and
implementation by using small cube as I = {1, 11, 21, 31, 41, 51, 61, 71}. Table 2
summarizes involved secret variables from 576 to 594 rounds.

Example 2 (Verification of Our Attack against 590-round Trivium). We actu-
ally execute the offline phase against 590-round Trivium, and only K60 is
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Algorithm 2. MILP model of division property for Trivium

1: procedure TriviumCore(M, x , i1, i2, i3, i4, i5)
2: M.var ← yi1 , yi2 , yi3 , yi4 , yi5 , z1, z2, z3, z4, a as binary
3: M.con ← yij = xij − zj for all j ∈ {1, 2, 3, 4}
4: M.con ← a ≥ z3
5: M.con ← a ≥ z4
6: M.con ← yi5 = xi5 + a + z1 + z2
7: for all i ∈ {1, 2, . . . , 288} w/o i1, i2, i3, i4, i5 do
8: yi = xi

9: end for
10: return (M, y)
11: end procedure
1: procedure TriviumEval(round R)
2: Prepare empty MILP Model M
3: M.var ← s0i for i ∈ {1, 2, . . . , 288}
4: for r = 1 to R do
5: (M, x ) = TriviumCore(M, sr−1, 66, 171, 91, 92, 93)
6: (M, y) = TriviumCore(M, x , 162, 264, 175, 176, 177)
7: (M, z ) = TriviumCore(M, y , 243, 69, 286, 287, 288)
8: sr = z ≫ 1
9: end for

10: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
11: M.con ← sri = 0
12: end for
13: M.con ← (sr66 + sr93 + sr162 + sr177 + sr243 + sr288) = 1
14: return M
15: end procedure

involved to the superpoly. We randomly chose 100 superpolys by changing the
constant part of iv and evaluated the sum of the cube. As a result, the sum is
always 0 independent of K60 in 42 superpolys, where 0x00CA6124DE5F12043D62
is its example of the constant part of iv. Moreover, the sum corresponds to the
value of K60 in 22 superpolys, where 0x2F0881B93B251C7079F2 is its example.
Then, the ANF of the superpoly is represented as

pv (x ) = x60.

Finally, the sum corresponds to the value of K60 ⊕ 1 in 36 superpolys, where
0x5745A1944411D1374828 is its example. Then, the ANF of the superpoly is
represented as

pv (x ) = x60 ⊕ 1.

Balanced superpolys are preferable, and we found 22+36 = 58 such superpolys.
Therefore, the required number of trials for finding preferable superpolys is about
k = 2.

Example 3 (Verification of Our Attack against 591-round Trivium). We exe-
cute the offline phase against 591-round Trivium, and K23,K24,K25,K66,K67
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Table 2. Involved secret variables in the superpoly of the cube C{1,11,21,31,41,51,61,71}.

# rounds Involved secret variables J Size of J

576 48, 73, 74, 75 4

577 40, 65, 66, 67 4

583 48, 50, 62, 63, 66, 73, 74, 75, 76, 77 10

584 48, 50, 60, 61, 66, 67, 73, 74, 75, 76, 77 11

586 20, 30, 40, 45, 46, 47, 55, 56, 57, 58, 61, 65, 66, 67 14

587 30, 55, 56, 57, 58 5

590 60 1

591 23, 24, 25, 66, 67 5

592 · · · 25

593 · · · 57

594 · · · 47

are involved to the superpoly. Similarly to the attack against 590 rounds, we
randomly chose 100 superpolys by changing the constant part of iv and evalu-
ated the sum of the given cube. As a result, the sum is always 0 independent
of 5 involved secret variables in 64 superpolys, where 0x39305FDD295BDACD2FBE
is its example of the constant part of iv. There are 11 superpolys such that the
sum is 1 only when

K23‖K24‖K25‖K66‖K67 ∈ {00, 05, 08, 0D, 10, 15, 19, 1C}
as the hexadecimal notation, where 0x03CC37748E34C601ADF5 is its example of
the constant part of iv. Then, the ANF of the superpoly is represented as

pv (x ) = (x66 ⊕ 1)(x23x24 ⊕ x25 ⊕ x67 ⊕ 1).

There are 9 superpolys such that the sum is 1 when

K23‖K24‖K25‖K66‖K67 ∈ {02, 07, 0A, 0F, 12, 17, 1B, 1E}
as the hexadecimal notation, where 0x78126459CB2384E6CCCE is its example of
the constant part of iv. Then, the ANF of the superpoly is represented as

pv (x ) = x66(x23x24 ⊕ x25 ⊕ x67 ⊕ 1).

Moreover, there are 16 superpolys such that the sum is 1 when the value of
K23‖K24‖K25‖K66‖K67 belongs to

{00, 02, 05, 07, 08, 0A, 0D, 0F, 10, 12, 15, 17, 19, 1B, 1C, 1E}
as the hexadecimal notation, where 0x644BD671BE0C9241481A is its example of
the constant part of iv. Then, the ANF of the superpoly is represented as

pv (x ) = x23x24 ⊕ x25 ⊕ x67 ⊕ 1,
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Table 3. Summary of theoretical cube attacks on Trivium. The time complexity in
this table shows the time complexity to recover the superpoly.

#rounds |I| Involved secret variables J Time complexity

800 44 8, 33, 34, 35, 48, 59, 60, 61, 64, 73, 74, 75 244+12 = 256

802 46 32, 34, 57, 58, 59, 60, 61, 62 246+8 = 254

805 49 14, 39, 40, 41, 42, 44, 46, 58, 67,...,73 249+15 = 264

806 51 42, 67, 68, 69 251+4 = 255

808 52 26, 28, 40, 51, 52, 53, 54, 55, 58, 65, 66, 67 252+12 = 264

809 53 24, 26, 36, 38, 40, 49,...,56, 58, 61,...,67, 77,...,80 253+25 = 278

814 54 32, 34, 57, 58, 59, 60, 61 254+7 = 261

816 55 6, 31, 32, 33, 48, 50, 52, 57,...,60, 62, 73,...,79 255+19 = 274

818 58 34, 59, 60, 61 258+4 = 262

819 61 15, 17, 40, 41, 42, 43, 44, 58 261+8 = 269

820 62 15, 26, 40, 41, 42, 51, 52, 53 262+8 = 270

822 64 42, 67, 68, 69 264+4 = 268

825 65 52, 54, 66, 77, 78, 79, 80 265+7 = 272

829 66 23, 25, 26, 27, 36, 42, 56, 67, 68, 69 266+10 = 276

830 69 1, 37, 42, 56, 67, 68, 69 269+7 = 276

831 71 49, 74, 75, 76 271+4 = 275

832 72 34, 58, 59, 60, 61 272+5 = 277

For any size of cube |I|, the odd index 1, 3, . . . , 79 and even index 2, 4, . . . , 2(|I| − 40)
is chosen as cube indices.

and this superpoly is balanced. Note that x66 is not involve to this superpoly.
Balanced superpolys are preferable, and we found 16 such superpolys. Therefore,
the required number of trials for finding preferable superpolys is about k = 6.

Theoretical Results. As experimental verification shows, Assumption 1 holds
for Trivium in small example. Therefore, we can expect that theoretically recov-
ered superpolys also fulfill Assumption 1.

Cube indices are chosen as the following in our experiments: the odd index
1, 3, . . . , 2|I| − 1 is chosen, and the even index 2, 4, . . . , 2(|I| − 40) is additionally
chosen. Then, we exhaustively evaluated involved secret variables, and Table 3
summarizes the result in our theoretical cube attack. Table 3 shows indices of
involved secret variables and the time complexity for the superpoly recovery
against Trivium with at least 800 initialization rounds. Since the previous best
key-recovery attack is 799 rounds, all results at least improve the current best
key-recovery attack. Under the condition that the time complexity for the super-
poly recovery is less than 279, the largest number of initialization rounds that
we can attack is 832 rounds. Compared with previous best key-recovery attack,
it updates 832 − 799 = 33 rounds.

We do not have plausible evidence that our choice of cube indices is appro-
priate, and the choice is still difficult because we need to try out

(
80
|I|

)
cubes when

we want to evaluate all cubes whose size is |I|. How to choose appropriate cubes
is left as an open question.
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5.2 Application to Grain128a

Specification. Grain128a is one of Grain family of NLFSR-based stream
ciphers, and the internal state is represented by two 128-bit states,
(b0, b1, . . . , b127) and (s0, s1, . . . , s127). The 128-bit key is loaded to the first reg-
ister b, and the 96-bit IV is loaded to the second register s. The other state bits
are set to 1 except the least one bit in the second register. Namely, the initial
state bits are represented as

(b0, b1, . . . , b127) = (K1,K2, . . . ,K128),
(s0, s1, . . . , s127) = (IV1, IV2, . . . , IV96, 1, . . . , 1, 0).

The pseudo code of the update function in the initialization is given as follows.

g ← b0 + b26 + b56 + b91 + b96

+ b3b67 + b11b13 + b17b18 + b27b59 + b40b48 + b61b65 + b68b84

+ b88b92b93b95 + b22b24b25 + b70b78b82. (2)

f ← s0 + s7 + s38 + s70 + s81 + s96 (3)
h ← b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94 (4)

z ← h + s93 +
∑

j∈A

bj (5)

(b0, b1, . . . , b127) ← (b1, . . . , b127, g + s0 + z)
(s0, s1, . . . , s127) ← (s1, . . . , s127, f + z)

Here, A = {2, 15, 36, 45, 64, 73, 89}. First, in the key initialization, the state is
updated 256 times without producing an output. After the key initialization, the
update function is tweaked such that z is not fed to the state, and z is used as
a key stream. Figure 2 shows the state update function of Grain128a.

zi

s0 s127b0 b127
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27 7 1
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h

g f

Fig. 2. Structure of Grain128a
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Algorithm 3. MILP model for the initialization of Grain128a
1: procedure Grain128aEval(round R)
2: Prepare empty MILP Model M
3: M.var ← b0i for i ∈ {0, 1, . . . , 127} as binary
4: M.var ← s0i for i ∈ {0, 1, . . . , 127} as binary
5: for r = 1 to R do
6: (M, b ′, s ′, z) = funcZ(M, br−1, sr−1)
7: M.var ← zg, zf as binary
8: M.con ← z = zg + zf
9: (M, b ′′, g) = funcG(M, b ′)

10: (M, s ′′, f) = funcF(M, s ′)
11: for i = 0 to 126 do
12: bri = b′′

i+1

13: sri = s′′
i+1

14: end for
15: M.var ← br127, s

r
127 as binary

16: M.con ← b′′
0 = 0

17: M.con ← br127 = g + s′′
0 + zg

18: M.con ← sr127 = f + zf
19: end for
20: (M, b ′, s ′, z) = funcZ(M, bR, sR)
21: for all i ∈ {0, 1, . . . , 127} do
22: M.con ← b′

i = 0
23: M.con ← s′

i = 0
24: end for
25: M.con ← z = 1
26: return M
27: end procedure

MILP Model. Grain128aEval in Algorithm 3 generates MILP model M as
the input of Algorithm1, and the model M can evaluate all division trails for
Grain128a whose initialization rounds are reduced to R. funcZ generates MILP
variables and constraints for Eqs. (4) and (5), and it consists of 45 MILP variables
and 32 MILP constraints. funcG generates MILP variables and constraints for
Eq. (2), and it consists of 70 MILP variables and 55 MILP constraints. funcF
generates MILP variables and constraints for Eq. (3), and it consists of 13 MILP
variables and 7 MILP constraints. As a result, the MILP model for every round
consists of 45+70+13+4 = 132 MILP variables and 32+55+7+4 = 98 MILP
constraints. Therefore, generated MILP model M consists of 256 + 45 + 132R
MILP variables and 98R+32+256+1 MILP constraints. Note that constraints
by the input division property are operated by Algorithm1.

Experimental Verification. We implemented the MILP model M for the
propagation of the division property on Grain128a and evaluated involved secret
variables by using Algorithm 1. To verify our attack and implementation, the
offline phase is executed by using small cube as I = {1, 2, . . . , 9}.
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Example 4 (Verification of Our Attack against 106-round Grain128a). The cube
C{1,2,3,...,9} brings the superpoly that involves only seven secret variables, (K46,
K53, K85, K119, K122, K126, and K127), and this result comes out of Algorithm 1.
In our experiments, the Hamming weight of all superpolys pv (x ) is only 4. Specif-
ically, in arbitrary iv satisfying IV76 = 0, pv (x ) is 1 only when the involved secret
variables are represented as

(K46,K53,K85,K119,K122,K126,K127) =(∗, 1, 0, 1, 1, 1, 1) or
(∗, 0, 1, 1, 1, 1, 1),

where ∗ is any bit. Moreover, in arbitrary iv satisfying IV76 = 1, pv (x ) is 1 only
when the involved secret variables are represented as

(K46,K53,K85,K119,K122,K126,K127) =(∗, 1, 0, 1, 0, 1, 1) or
(∗, 0, 1, 1, 0, 1, 1).

Namely, the superpoly is represented as

pv (x ) = (x53 ⊕ x85) · x119 · (x122 ⊕ v76) · x126 · x127.

This superpoly is independent of x46. Moreover, it is not balanced, and the
Hamming weight of pv (x ) is 2 for six involved input bits. Therefore, the recovered
bit of information in secret variables is represented as

∣∣∣∣log2

(
2 × 2

26 + (62 × 62
26 )

26

)∣∣∣∣ ≈ 0.09.

Double bit of information can be recovered by flipping the bit IV76, but the
recovered information is still smaller than 1.

Theoretical Results. We cannot find superpolys satisfying Assumption 1 in
our experiments using small cube. On the other hand, Assumption 2 holds.
Therefore, we can expect that theoretically recovered superpolys also fulfill
Assumption 2, and it leaks at least some information in secret variables which is
smaller than 1 bit. Moreover, by collecting these superpolys, we can expect that
multiple bits of information in secret variables are recovered.

Table 4 shows indices of involved secret variables and the time complexity for
the superpoly recovery against Grain128a. Since the previous best attack is 177

Table 4. Summary of theoretical cube attacks on Grain128a. The time complexity in
this table shows the time complexity to recover the superpoly.

#rounds |I| Involved secret variables J Time complexity

182 88a 36, 40, 51, 52, 53, 54, 55, 56, 61, 62, 69, 79, 81, 82, 121, 122, 126, 127 288+18 = 2106

183 92b 48, 49, 50, 51, 52, 54, 55, 61, 63, 83, 84, 90, 93, 95, 120, 128 292+16 = 2108

aFollowing set of indices I = {1, ..., 40, 42, 44, . . . , 51, 53, ..., 87, 89, 91, 93, 95} is used as the cube.
bFollowing set of indices I = {1, ..., 51, 53, ..., 91, 93, 95} is used as the cube.
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rounds in the single-key setting, all results at least improve the current best key-
recovery attack. Under the condition that the time complexity for the superpoly
recovery is less than 2127, the largest number of initialization rounds that we
can attack is 183 rounds. Compared with previous best distinguishing attack, it
updates 183 − 177 = 6 rounds. Moreover it allows for some key recovery.

5.3 Application to ACORN

Specification. ACORN is an authenticated encryption and one of the 3rd round
candidates in CAESAR competition. The structure is based on NLFSR, and the
internal state is represented by 293-bit state (S0, S1, . . . , S292). There are two
component functions, ks = KSG128(S) and f = FBK128(S), in the update
function, and each is defined as

ks = S12 ⊕ S154 ⊕ maj(S235, S61, S193) ⊕ ch(S230, S111, S66),

f = S0 ⊕ S̃107 ⊕ maj(S244, S23, S160) ⊕ (ca ∧ S196) ⊕ (cb ∧ ks),

where ks is used as the key stream, and maj and ch are defined as

maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z),
ch(x, y, z) = (x ∧ y) ⊕ ((x ⊕ 1) ∧ z).

Then, the update function is given as follows.

S289 ← S289 ⊕ S235 ⊕ S230

S230 ← S230 ⊕ S196 ⊕ S193

S193 ← S193 ⊕ S160 ⊕ S154

S154 ← S154 ⊕ S111 ⊕ S107

S107 ← S107 ⊕ S66 ⊕ S61

S61 ← S61 ⊕ S23 ⊕ S0

ks = KSG128(S)
f = FBK128(S, ca, cb)
(S0, S1, . . . , S291, S292) ← (S1, s2, . . . , S292, f ⊕ m)

The 293-bit state is first initialized to 0. Second, 128-bit secret key is sequentially
loaded to the NLFSR via m. Third, 128-bit initialization vector is sequentially
loaded to the NLFSR via m. Fourth, 128-bit secret key is sequentially loaded
to the NLFSR via m twelve times. The constant bits ca and cb are always 1 in
the initial 1792 rounds. The associated data is always loaded before the output
of the key stream, but we do not care about this process in this paper because
the number of rounds that we can attack is smaller than 1792 rounds. Figure 3
shows the structure of ACORN. Please refer to [33] in detail.



Cube Attacks on Non-Blackbox Polynomials Based on Division Property 273

0 23 60 61 66 106 107 111 153 154 160 192 193 196 229 230 235 288 289 292

f

m

Fig. 3. Structure of ACORN

MILP Model. ACORNEval in Algorithm 4 generates MILP model M as the
input of Algorithm1, and the model M can evaluate all division trails for
ACORN whose initialization rounds are reduced to R. xorFB generates MILP
variables and constraints for feed-back function with XOR. ksg128 and fbk128
generates MILP variables and constraints for KSG128 and FBK128, respec-
tively.

If there are zero constant bit in input of KSG128 and FBK128, the propa-
gation of the division property for two functions ksg128 and fbk128 is limited.
For example, when maj(x, y, z) is computed under the condition y = z = 0, this
function is represented as

maj(x, 0, 0) = 0,

and the division property of x never propagates to the output of maj. Such
limitations of the propagation only happens in the first several rounds because
the state S is initialized to 0. To control this behavior, there is the current
number of rounds as the input of ksg128 and fbk128. Note that constraints by
the input division property are operated by Algorithm1.

Experimental Verification. We implemented the MILP model M for the
propagation of the division property on ACORN and evaluated involved secret
variables by using Algorithm1. We searched the small cube such that |I| + |J |
is practically feasible, and the following small cube

C{1,2,3,4,5,8,20,125,126,127,128}

is used to verify our attack and implementation.

Example 5 (Verification of Our Attack against 517-round ACORN). The cube
C{1,2,3,4,5,8,20,125,126,127,128} brings the superpoly that involves only nine secret
variables, (K6, K8, K10, K11, K12, K15, K16, K45, and K49), and this result
comes out of Algorithm 1. We try out 100 randomly chosen constant part of iv.
As a result, all superpolys pv (x ) are balanced independent of the value of the
constant part of iv. Specifically, pv (x ) corresponds to the sum of involved secret
variables. Namely, the superpoly is represented as

pv (x ) = x6 ⊕ x8 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x15 ⊕ x16 ⊕ x45 ⊕ x49.
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Algorithm 4. MILP model for the initialization of ACORN
1: procedure ACORNEval(round R)
2: Prepare empty MILP Model M
3: M.var ← Ki for i ∈ {1, 2, . . . , 128} as binary
4: M.var ← IVi for i ∈ {1, 2, . . . , 128} as binary
5: M.var ← S0

i for i ∈ {0, 1, . . . , 292} as binary
6: for r = 1 to R do
7: (M,T ) = xorFB(M,Sr−1, 289, 235, 230)
8: (M,U ) = xorFB(M,T , 230, 196, 193)
9: (M,V ) = xorFB(M,U , 193, 160, 154)

10: (M,W ) = xorFB(M,V , 154, 111, 107)
11: (M,X ) = xorFB(M,W , 107, 66, 61)
12: (M,Y ) = xorFB(M,X , 61, 23, 0)
13: (M,Z , ks) = ksg128(M,Y , r)
14: (M,A, f) = fbk128(M,Z , r)
15: for i = 0 to 291 do
16: Sr

i = Ai+1

17: end for
18: M.var ← Sr

292 as binary
19: if 128 < r ≤ 256 then
20: M.con ← Sr

292 = f ⊕ IVr−128

21: else
22: M.var ← TKr as binary
23: M.con ← Sr

292 = f ⊕ TKr

24: end if
25: end for
26: for i = 0 to 127 do
27: M.con ← Ki =

∑
j TKi+128×j

28: end for
29: (M,T ) = xorFB(M,SR, 289, 235, 230)
30: (M,U ) = xorFB(M,T , 230, 196, 193)
31: (M,V ) = xorFB(M,U , 193, 160, 154)
32: (M,W ) = xorFB(M,V , 154, 111, 107)
33: (M,X ) = xorFB(M,W , 107, 66, 61)
34: (M,Y ) = xorFB(M,X , 61, 23, 0)
35: (M,Z , ks) = ksg128(M,Y )
36: for i = 0 to 292 do
37: M.con ← Zi = 0
38: end for
39: M.con ← ks = 1
40: return M
41: end procedure

Theoretical Results. As experimental verification shows, Assumption 1 holds
for ACORN in small example. Therefore, we can expect that theoretically recov-
ered superpolys also fulfill Assumption 1.

Table 5 shows indices of involved secret variables and the time complexity
for the superpoly recovery against ACORN. Since the previous best attack is
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Table 5. Summary of theoretical cube attacks on ACORN. The time complexity in
this table shows the time complexity to recover the superpoly.

#rounds |I| Involved secret variables J Time complexity

647 35a 1, 2, 3, 5, 6, 7, 8, 9, 10, 11,
12, 13, 15, 16, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 31, 32, 33, 35,
40, 45, 49, 52, 55, 57, 60, 61, 62, 65,
66, 94, 99

235+43 = 278

649 35a 1, 2,...,39, 41,...,49, 52,...,69,
78, 86, 96, 97, 98, 100, 101, 102

235+74 = 2109

704 64b 1,...,12, 14,...21, 23,...,38, 40,...44,
48, 49, 50, 54, 58, 60, 63, 64, 65, 68,
69, 71, 74, 75, 97, 102, 108

264+58 = 2122

aFollowing set of indices I = {1, 2, . . . , 16, 22, 29, 31, 113, 114, . . . , 128} is
used as the cube.
bFollowing set of indices I = {1, 2, . . . , 32, 97, 98, . . . , 128} is used as the
cube.

503 rounds, all results at least improve the current best key-recovery attack.
As far as we searched various cubes, the largest number of initialization rounds
that we can attack is 704 rounds, where the cube size is 64 and the number of
involved secret variables is 58. Compared with previous best key-recovery attack,
it updates 704 − 503 = 201 rounds.

6 Discussions

6.1 Validity of Assumptions 1 and 2

Whether the two assumptions hold depends on the structure of analyzed ciphers.
In the three applications shown in this paper, we could easily find balanced
superpoly for Trivium and ACORN by actually evaluating the offline phase
using small cube. Therefore, we can expect that Assumption 1 holds in theoretical
recovered superpolys for these two ciphers. On the other hand, we could not find
balanced superpolys for Grain128a. This implies that Assumption 1 does not
hold in theoretical recovered superpolys for Grain128a. However, since we could
easily find non-constant superpolys, we can expect that Assumption 2 holds.

Note that Assumption 1 is introduced to estimate the time complexity to
recover the entire secret key, and some information of secret variables is leaked
to attackers even if only Assumption 2 holds. Moreover, even if both assumptions
do not hold, the recovered superpoly is useful for distinguishing attacks. There-
fore, if the superpoly recovery is more efficient than the brute-force attack, it
immediately brings some vulnerability of symmetric-key cryptosystems. There-
fore, the time complexity for the superpoly recovery discussed in this paper is
very important.
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Conventional cube attacks also have similar assumption because they exper-
imentally verify whether the superpoly is linear, quadratic, or not. For example,
in [11], the authors judged that the superpoly is linear if the superpoly passes at
least 100 linearity tests. Moreover, Fouque and Vannet also introduced heuristic
linearity and quadraticity tests in [14], where the superpoly is judged as linear
and quadratic if it passes constant-order linearity and quadraticity tests, respec-
tively. These constant-order tests may fail if there are terms of the superpoly
that are highly biased. For example, assuming that the superpoly is represented
as K1 + f(K2,K3,K4, ...,K32) where f is unbalanced, the test used in previous
cube attacks may judge the superpoly as K1 in error. Namely, the conventional
cube attack also assumes that the superpoly is balanced for each involved secret
variables, and it fails to recover secret variables if this assumption is incorrect.

6.2 Multiple-Bits Recovery only from One Cube

There is a possibility that we can recover multiple bits from given cube by
changing a value in constant part of iv. Indeed, Example 3 recovers more than one
bit of information in secret variables by using an v = 0x03CC37748E34C601ADF5
or v = 0x78126459CB2384E6CCCE together with v = 0x644BD671BE0C9241481A.
Moreover, two bits of information in secret variables are recovered if we find two
independent balanced superpolys. On the other hand, the superpoly must be
enough simplified for the key recovery. While we may be able to recover multiple
bits only from one cube by changing values of the constant part of iv when the
number of involved secret variables is high, we cannot claim that there are many
independent balanced superpolys when the number of involved secret variables
is small. Therefore, we do not claim that multiple bits are recovered from one
cube by changing values of the constant part of iv.

6.3 Comparison with Previous Techniques

There is previous work that exploits non-randomness in high degree monomial
structure in the ANF for the key recovery of stream ciphers: In [13], it is examined
if every key bit in the parametrized expression of a coefficient of some high degree
monomial in iv bits does occur, or more generally, how much influence each key
bit does have on the value of the coefficient. If a coefficient depends on less than
all key bits, this fact is exploited to filter those keys which do not satisfy the
imposed value for the coefficient. As opposed to the present work, this method
is mostly statistical in nature, whereas division property is fully algebraic.

Secondly, in [17], conditions are identified on the internal state to obtain a
deterministic differential characteristic for some large number of rounds. Depend-
ing on whether these conditions involve public variables only, or also key vari-
ables, distinguishing and partial key-recovery attacks are derived. The technique
is extended to (conditional) higher order differentials and enables to distinguish
reduced round versions of some stream ciphers, and to recover parts of the key.
Again, this method is quite different from the methods of this paper, and is not
purely algebraic.
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A third more recent approach is dynamic cube attack [12]. In contrast to
standard cube attack that finds the key by solving a system of (linear) equations
in the key bits, dynamic cube attack recovers the secret key by exploiting distin-
guishers obtained from cube testers. Dynamic cube attacks aim at creating lower
degree representations of the given cipher. This method has been successfully
applied to break the stream cipher Grain-128 [9]. All the previous methods share
the restriction that they are experimental rather than theoretical, i.e., they are
dependent on computing with cubes as large as practically feasible.

7 Conclusion

This paper revisited the cube attack proposed by Dinur and Shamir at Eurocrypt
2009. The conventional cube attack regards a target symmetric-key cryptosystem
as a blackbox polynomial and analyzes the polynomial experimentally. There-
fore, it is practically infeasible to evaluate the security when the size of cube
exceeds the experimental size. In this paper, we proposed the cube attack on
non-blackbox polynomials, and it leads the cube attack exploiting large num-
ber of cube size. Our method was developed by the division property, and as
far as we know, this is the first application of the division property to stream
ciphers. The trivial application brings only zero-sum integral distinguishers, and
it is non-trivial to recover the secret key of stream ciphers by using the dis-
tinguisher. The novel application of the division property was proposed, where
it is used to analyze the Algebraic Normal Form coefficients of polynomials.
As a result, we can estimate the time complexity for the superpoly recovery.
Then, the superpoly recovery immediately brings the vulnerability. We applied
the new technique to Trivium, Grain128a, and ACORN, and the superpoly of
832-round Trivium, 183-round Grain128a, and 704-round ACORN are more
efficiently recovered than the brute-force search. For Trivium and ACORN, we
can expect that the recovered superpoly is useful for the key recovery attack,
and they bring the current best key-recovery attacks. On the other hand, for
Grain128a, we cannot expect that the recovered superpoly is balanced, and then
the recovered bit of information may be significantly small. Therefore, the feasi-
bility of the key recovery is speculative, but 183 rounds are at least vulnerable.
We expect that our new tool becomes a new generic tool to measure the security
of stream ciphers.
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Abstract. We introduce a new variant MP-LWE of the Learning With
Errors problem (LWE) making use of the Middle Product between
polynomials modulo an integer q. We exhibit a reduction from the
Polynomial-LWE problem (PLWE) parametrized by a polynomial f , to
MP-LWE which is defined independently of any such f . The reduction
only requires f to be monic with constant coefficient coprime with q.
It incurs a noise growth proportional to the so-called expansion factor
of f . We also describe a public-key encryption scheme with quasi-optimal
asymptotic efficiency (the bit-sizes of the keys and the run-times of all
involved algorithms are quasi-linear in the security parameter), which
is secure against chosen plaintext attacks under the MP-LWE hardness
assumption. The scheme is hence secure under the assumption that PLWE
is hard for at least one polynomial f of degree n among a family of f ’s
which is exponential in n.

Keywords: LWE · PLWE · Public-key encryption

1 Introduction

Lattice-based cryptography relies in great parts on the assumed hardness of
two well-studied and closely related problems: the Small Integer Solution prob-
lem (SIS) introduced in [Ajt96] and the Learning With Errors problem (LWE)
introduced in [Reg09]. They lead to numerous cryptographic constructions, are
conjectured exponentially hard to solve even for quantum algorithms, and enjoy
reductions from standard worst-case lattice problems such as finding a short
non-zero vector in a lattice (ApproxSVP). However, the resulting cryptographic
constructions suffer from large keys and/or rather inefficient algorithms. This
is because the problems themselves involve large-dimensional random matrices
over a ring Zq (for some q ≥ 2).

To obtain more efficient SIS-based primitives, Lyubashevsky and Miccian-
cio [LM06], and Peikert and Rosen [PR06] introduced the Polynomial SIS

c© International Association for Cryptologic Research 2017
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problem (PSIS), inspired from [Mic07,HPS98].1 PSIS(f) can be described in
terms of elements of Zq[x]/f for an integer q ≥ 2 and a polynomial f that
parametrizes the problem. Equivalently, it may be described as SIS where the
uniform matrix is replaced by a structured matrix (the precise structure depends
on f). PSIS allows the design of fast digital signatures, among other applications
(see [Lyu09], for example).

This approach was extended to LWE by Stehlé et al. [SSTX09], who intro-
duced and studied the (search version of) Polynomial-LWE problem (PLWE).2

Lyubashevsky et al. [LPR13] introduced the Ring-LWE problem, which involves
number fields rather than polynomials, and proposed a reduction from its search
to decision versions, in the case of cyclotomic polynomials. Power-of-2 cyclo-
tomic polynomials (for which PLWE and Ring-LWE match) have been exploited
to design fast encryption schemes, among others (see [ADPS16], for example).
Cryptographic schemes based on PLWE/Ring-LWE most often enjoy keys of ˜O(λ)
bit-sizes and algorithms with ˜O(λ) runtime, where λ refers to the security para-
meter (i.e., all known attacks run in time ≥ 2λ) and the ˜O(·) notation hides
poly-logarithmic factors.

Switching from unstructured SIS and LWE to their polynomial counter-
parts PSIS and PLWE has undeniable efficiency advantages. However, the secu-
rity guarantees are severely degraded. PSIS and PLWE also enjoy reductions
from worst-case lattice problems such as ApproxSVP, but these lattice prob-
lems, e.g., ApproxSVP(f), are restricted to lattices that correspond to ideals
of Z[x]/f , where f is the polynomial that parametrizes PSIS and PLWE: under
some conditions on f , there exists a reduction from ApproxSVP(f) with small
approximation factor, to PSIS(f) and PLWE(f) (see [LM06,PR06,SSTX09]). It is
entirely possible that PSIS(f)/PLWE(f) could be easy to solve for some poly-
nomials f , and hard for others.3 For instance, if f has a linear factor over
the integers, then it is well-known that PSIS(f)/PLWE(f) are computationally
easy (we note that the reductions from ApproxSVP(f) require f to be irre-
ducible). Finding weak f ’s for PLWE has been investigated in a sequence of
recent works [EHL14,ELOS15,CLS15,HCS16], although it was later established
that the weaknesses of the studied instantiations lied in the choice of the noise
distribution rather than in the choice of f [CIV16b,CIV16a,Pei16]. In another

1 The problem was called Ideal-SIS in [LM06], Cyclotomic-SIS in [PR06], and is now
commonly referred to as Ring-SIS. We prefer to call it PSIS as it is not defined in
terms of number fields but polynomial rings (as opposed to Ring-LWE), similarly
to the Polynomial-LWE problem (PLWE) we consider in this work. It is possible to
define a SIS variant of Ring-LWE, i.e., involving number fields: in the common case
of power-of-2 cyclotomics, PSIS and Ring-SIS match (as do PLWE and Ring-LWE). In
this work, we are interested in larger classes of polynomials, making the distinction
important.

2 It was originally called Ideal-LWE, by analogy to Ideal-SIS.
3 We note that the stability of the polynomial rings under multiplication by x can be

exploited to accelerate some known lattice algorithms by small polynomial factors,
but we are interested here in more drastic weaknesses.
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sequence of works, Cramer et al. [CDPR16,CDW17] showed that ApproxSVP(f)

is easier for f a cyclotomic polynomial of prime-power conductor than for general
lattices. More concretely, the authors of [CDW17] give a quantum polynomial-
time algorithm for ApproxSVP(f) with approximation factor 2 ˜O(

√
n), where n is

the degree of f . As a comparison, for such approximation factors and arbitrary
lattices, the best known algorithms run in time 2 ˜O(

√
n) (see [Sch87]). Finally,

we note that the choice of non-cyclotomic polynomials in [BCLvV16] was moti-
vated by such weaknesses. Even though the results in [CDPR16,CDW17] impact
ApproxSVP(f), it may be argued that it could have implications for PLWE(f) as
well, possibly even for lower approximation factors. On the other hand, it could
be that similar weaknesses exist for ApproxSVP(f) considered in [BCLvV16],
although none is known at the moment. This lack of understanding of which f ’s
correspond to hard PLWE(f) problems motivates research into problems that are
provably as hard as PLWE(f) for the hardest f in a large class of polynomials,
while preserving the computational efficiency advantages of PLWE. Our results
are motivated by and make progress in this direction.

Recently, Lyubashevsky [Lyu16] introduced a variant R<n-SIS of SIS that
is not parametrized by a polynomial f and which enjoys the following desirable
properties. First, an efficient algorithm for R<n-SIS with degree bound n leads
to an efficient algorithm for PSIS(f) for all f ’s in a family of polynomials of size
exponential in n. Second, there exists a signature scheme which is secure under
the assumption that R<n-SIS is hard, involves keys of bit-size ˜O(λ) = ˜O(n)
and whose algorithms run in time ˜O(λ). In this sense, R<n-SIS can serve as an
alternative cryptographic foundation that hedges against the risk that PSIS(f)

is easy to solve for some f (as long as it stays hard for some f in the family).

Our contributions. Our main contribution is the introduction of an LWE coun-
terpart to Lyubashevsky’s R<n-SIS problem. Let n, q ≥ 2. We let Z<n

q [x] denote
the set of polynomials with coefficients in Zq and degree < n. For a ∈ Z

<n
q [x]

and s ∈ Z
<2n−1
q [x], we let a �n s = �(a · s mod x2n)/xn� ∈ Z

<n
q [x] denote the

polynomial obtained by multiplying a and s and keeping only the middle third
of coefficients. Middle-Product LWE (MP-LWE), with parameters n, q ≥ 2 and
α ∈ (0, 1), consists in distinguishing arbitrarily many samples (ai, bi) uniform
in Z

<n
q [x] × (R/qZ)<n[x], from the same number of samples (ai, bi) with ai uni-

form in Z
<n
q [x] and bi = ai �n

s+ei, where each coefficient of ei is sampled from
the Gaussian distribution of standard deviation α · q, and s is uniformly chosen
in Z

<2n−1
q [x].

We give a reduction from (decision) PLWE(f) to (decision) MP-LWE of para-
meter n, for every monic f of degree n whose constant coefficient is coprime
with q. The noise parameter amplifies linearly with the so-called Expansion Fac-
tor of f , introduced in [LM06]. The noise parameter in MP-LWE can for example
be set to handle all monic polynomials f = xn + g with constant coefficient
coprime with q, deg g ≤ n/2 and ‖g‖ ≤ nc for an arbitrary c > 0. For any c, this
set of f ’s has exponential size in n. We note that similar restrictions involving
the expansion factor appeared before in [LM06,SSTX09].
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Finally, we describe a public-key encryption scheme that is IND-CPA secure
under the MP-LWE hardness assumption, involves keys of bit-size ˜O(λ) and
whose algorithms run in time ˜O(λ). The scheme is adapted from Regev’s [Reg09].
Its correctness proof involves an associativity property of the middle product.
To establish its security, we prove that a related hash function family involving
middle products is universal, and apply a generalized version of the leftover hash
lemma. The standard leftover hash lemma does not seem to suffice for our needs,
as the first part of the ciphertext is not statistically close to uniform, contrarily
to Regev’s encryption scheme.

Open problems. Our reduction is from the decision version of PLWE(f) to the
decision version of MP-LWE. (It can be adapted to the search counterparts, but
it is unclear how to use the hardness of search MP-LWE for cryptographic pur-
poses). Unfortunately, the hardness of decision PLWE(f) is currently supported
by the presumed hardness of ApproxSVP(f) for very few polynomials f . Such
reductions for larger classes of polynomials f would strengthen our confidence
in the hardness of MP-LWE. A first strategy towards this goal would be to design
a reduction from search PLWE(f) to decision PLWE(f) for larger classes of f ’s
than currently handled (the reduction from [LPR13] requires f to be cyclo-
tomic). This reduction could then be combined with the one from ApproxSVP(f)

to PLWE(f) from [SSTX09], which only requires f to be irreducible with bounded
expansion factor. A second strategy would be to reduce decision Ring-LWE(f) to
decision PLWE(f) and rely on the new reduction from ApproxSVP restricted to
ideals of the number field Kf to decision Ring-LWE(f) from [PRSD17]. Indeed,
this new reduction is not restricted to cyclotomic polynomials.

We show the cryptographic relevance of MP-LWE by adapting Regev’s
encryption scheme to the middle-product algebraic setting. Adapting the dual-
Regev scheme from [GPV08] does not seem straightforward. Indeed, it appears
that we would need a leftover hash lemma for polynomials over Zq[x] that are not
folded modulo some polynomial f . The difficulty is that the constant coefficients
of the polynomials are now “isolated”, in the sense that the constant coefficient
of a polynomial combination of polynomials only involves the constant coeffi-
cients of these polynomials. Hopefully, solving this difficulty would also enable
the construction of a trapdoor for MP-LWE, similar to those that exist for LWE
and SIS (see [MP12] and references therein). Independently, showing that the
MP-LWE secret could be sampled from a small-norm distribution, as achieved
for LWE in [ACPS09], may allow for a more efficient ElGamal-type encryption,
similar to the one described in [LPR13].

Notations. We use the notation U(X) for the uniform distribution over the
set X. If D1 and D2 are two distributions over the same countable domain, we
let Δ(D1,D2) denote their statistical distance. We let ‖b‖ and ‖b‖∞ denote
the Euclidean and infinity norm of any vector b over the reals, respectively.
Similarly, if b is a polynomial over the reals, we let ‖b‖ denote the Euclidean
norm of its coefficient vector. For a matrix M we let Mi,j denote its element
in the i-th row and j-th column. We let ‖M‖ denote the largest singular value
of M.
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2 Background

In this section, we provide the background definitions and results that are nec-
essary to present our contributions.

2.1 Probabilities

We will use the following variant of the leftover hash lemma. We recall that a
(finite) family H of hash functions h : X → Y is universal if Prh←↩U(H)[h(x1) =
h(x2)] = 1/|Y |, for all x1 
= x2 ∈ X.

Lemma 2.1. Let X,Y,Z denote finite sets. Let H be a universal family of hash
functions h : X → Y . Let f : X → Z be arbitrary. Then for any random variable
T taking values in X, we have:

Δ
(

(h, h(T ), f(T )) , (h,U(Y ), f(T ))
) ≤ 1

2
·
√

γ(T ) · |Y | · |Z|,

where γ(T ) = maxt∈X Pr[T = t].

In the problems we will study, the so-called noise distributions will be
Gaussian.

Definition 2.1. We define the Gaussian function on R
n of covariance matrix

Σ as ρΣ(x) := exp(−π · xT Σ−1x) for every vector x ∈ R
n. The probability dis-

tribution whose density is proportional to ρΣ is called the Gaussian distribution
and is denoted DΣ. When Σ = s2 · Idn, we write ρs and Ds instead of ρΣ and
DΣ, respectively.

2.2 Polynomials and Structured Matrices

Let R be a ring. For k > 0, we let R<k[x] denote the set of polynomials in R[x]
of degree < k. Given a polynomial a = a0 + a1x + · · · + ak−1x

k−1 ∈ R<k[x]
and some j < k, we use the following notations: a = (a0, . . . , ak−1)T ∈ Rk and
a = (ak−1, . . . , a0)T ∈ Rk. The latter notation is extended to the corresponding
polynomial.

Definition 2.2. Let f be a polynomial of degree m. For any d > 0 and any
a ∈ R[x], we let Rotdf (a) denote the matrix in Rd×m whose i-th row is given by
the coefficients of the polynomial (xi−1 · a) mod f , for any i = 1, . . . , d. We will
use the notation Rotf (a) instead of Rotmf (a).

Note that if a′ = a mod f , then Rotdf (a) = Rotdf (a′) for any d. Note also
that Rotf (a · b) = Rotf (a) · Rotf (b) for any a, b ∈ R[x].

Definition 2.3. Let f be a polynomial of degree m. We define Mf as the (Han-
kel) matrix in Rm×m such that for any 1 ≤ i, j ≤ m, the coefficient (Mf )i,j is
the constant coefficient of xi+j−2 mod f .
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Matrix Mf helps rewriting multiplication on the left by matrix Rotf (a) as a
multiplication on the right by a.

Lemma 2.4. For any a ∈ R<m[x], we have Rotf (a) · (1, 0, . . . , 0)T = Mf · a.

Proof. First, the i-th coordinate of the left hand side is the constant coefficient
of xi−1 · a mod f . Second, the i-th entry of the right hand side is

((a0x
i−1 mod f) mod x) + · · · + ((am−1x

m+i−2 mod f) mod x),

which can be re-written as xi−1(a0 + · · · + am−1x
m−1 mod f) mod x = (xi−1 ·

a mod f) mod x. The latter is the constant coefficient of xi−1 · a mod f . ��
Definition 2.5. For any d, k > 0 and a ∈ R<k[x], we let Toepd,k(a) denote the
matrix in Rd×(k+d−1) whose i-th row, for i = 1, . . . , d, is given by the coefficients
of xi−1 · a.

The following property will be useful in proving our main result.

Lemma 2.6. For any d, k > 0 and any a ∈ R<k[x], we have Rotdf (a) =
Toepd,k(a) · Rotk+d−1

f (1).

Proof. It is sufficient to prove that the rows of Rotdf (a) and Toepd,k(a) ·
Rotk+d−1

f (1) are equal. We just note that the i-th row of Rotk+d−1
f (1) is

xi−1 mod f , for i = 1, . . . , k + d and these will fill the gap in the definitions
of Rotdf (a) and Toepd,k(a). ��

We now recall the definition of the expansion factor [LM06].

Definition 2.7. Let f ∈ Z[x] of degree m. Then the expansion factor of f is
defined as EF(f) = max(‖g mod f‖∞/‖g‖∞ : g ∈ Z

<2m−1[x] \ {0}).

We remark that there are numerous polynomials with bounded expansion
factor. One class of such polynomials [LM06] is the family of all f = xm + h, for
h =

∑

i≤m/2 hix
i and ‖h‖∞ ∈ poly(m): we then have EF(f) ∈ poly(m).

Lemma 2.8. For f ∈ Z[x], we have ‖Mf‖ ≤ deg(f) · EF(f).

Proof. By definitions of Mf and EF(f), we have that |(Mf )i,j | ≤ EF(f), for
1 ≤ i, j ≤ m. Therefore, the largest singular value of Mf is bounded from above
by m · EF(f). ��

2.3 The Polynomial Learning with Errors Problem (PLWE)

We first define the distribution the PLWE problem is based on. For the rest of
this paper, we will use the notation Rq := R/qZ.

Definition 2.9 (P distribution). Let q ≥ 2, m > 0, f a polynomial of degree
m, χ a distribution over R[x]/f . Given s ∈ Zq[x]/f , we define the distribution
P
(f)
q,χ(s) over Zq[x]/f × Rq[x]/f obtained by sampling a ←↩ U(Zq[x]/f), e ←↩ χ

and returning (a, b = a · s + e).
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Definition 2.10 (PLWE). Let q ≥ 2, m > 0, f a polynomial of degree m, χ

a distribution over R[x]/f . The (decision) PLWE(f)
q,χ consists in distinguishing

between arbitrarily many samples from P
(f)
q,χ(s) and the same number of sam-

ples from U(Zq[x]/f × Rq[x]/f), with non-negligible probability over the choices
of s ←↩ U(Zq[x]/f).

One can also define a search variant of PLWE(f)
q,χ, which would consist in

computing s ∈ Zq[x]/f from arbitrarily many samples from P
(f)
q,χ(s).

3 The Middle-Product Learning with Errors Problem

We first recall the definition of the middle product of two polynomials and some
of its properties.

3.1 The Middle-Product

Let R be a ring. Assume we multiply two polynomials a and b of degrees < da

and < db, respectively. Assume that da+db−1 = d+2k for some integers d and k.
Then the middle-product of size d of a and b is obtained by multiplying a and b,
deleting the (left) coefficients of 1, x, . . . , xk−1, deleting the (right) coefficients
of xk+d, xk+d+1, . . . , xd+2k−1, and dividing what remains (the middle) by xk.

Definition 3.1. Let da, db, d, k be integers such that da + db − 1 = d + 2k. The
middle-product �

d
: R<da [x] × R<db [x] → R<d[x] is the map:

(a, b) �→ a �
d

b =
⌊

(a · b) mod xk+d

xk

⌋

.

We use the same notation �
d

for every da, db such that da + db − 1 − d is non-
negative and even.

The middle-product of polynomials is used in computer algebra to accelerate
computations in polynomial rings (see, e.g., [Sho99,HQZ04]). As it is part of
the output of polynomial multiplication, it can be computed with a number of
ring additions and multiplications that is quasi-linear number in da + db. Faster
algorithms exist [HQZ04].

The (reversed) coefficient vector of the middle-product of two polynomials is
in fact equal to the product of the Toeplitz matrix associated to one polynomial
by the (reversed) coefficient vector of the second polynomial.

Lemma 3.2. Let d, k > 0. Let r ∈ R<k+1[x] and a ∈ R<k+d[x] and b = r�
d
a.

Then b = Toepd,k+1(r) · a. In other words, we have b = Toepd,k+1(r) · a.

Proof. We first note that Toepd,2k+d(r ·a) = Toepd,k+1(r)·Toepk+d,k+d(a). Thus,
by definition of the middle-product, we have that the coefficients of b appear in
the first row of Toep(r · a), namely bi = Toepd,2k+d(r · a)1,k+i+1 for i < d. But



290 M. Roşca et al.

since Toep(r · a) is constant along its diagonals, we also have that b appear
(in reversed order) in the (k + d)-th column of Toepd,2k+d(r · a), namely bi =
Toepd,2k+d(r · a)d−i,k+d for i < d. Therefore, vector b is the (k + d)-th column
of Toepd,2k+d(r ·a), which is equal to Toepd,k+1(r) ·a′, where a′ is the (k + d)-th
column of Toepk+d,k+d(a). Since Toepk+d,k+d(a) is constant along its diagonals,
its first row is equal to its reversed (k + d)-th column, so a′ = a, as required. ��

The middle-product is an additive homomorphism when either of its inputs
is fixed. As a consequence of the associativity of matrix multiplication and
Lemma 3.2, the middle-product satisfies the following associativity property.

Lemma 3.3. Let d, k, n > 0. For all r ∈ R<k+1[x], a ∈ R<n[x], s ∈
R<n+d+k−1[x], we have r �

d
(a �

d+k
s) = (r · a) �

d
s.

Proof. Note first that the degree bounds match. Now, by Lemma 3.2, the vector
associated to the reverse of r �

d
(a �

d+k
s) is Toepd,k+1(r) · (Toepd+k,n(a) · s).

Similarly, the vector associated to the reverse of (r · a) �
d

s is Toepd,k+n(r ·
a) · s. The result follows from observing that Toepd,k+1(r) · Toepd+k,n(a) =
Toepd,k+n(r · a). ��

3.2 Middle-Product Learning with Errors

Before stating MP-LWE, we first introduce a distribution its definition relies on.

Definition 3.4 (MP distribution). Let n, d > 0, q ≥ 2, and χ a distribution
over R

<d[x]. For s ∈ Z
<n+d−1
q [x], we define the distribution MPq,n,d,χ(s) over

Z
<n
q [x] × R

<d
q [x] as the one obtained by: sampling a ←↩ U(Z<n

q [x]), e ←↩ χ and
returning (a, b = a �

d
s + e).

Definition 3.5 (MP-LWE). Let n, d > 0, q ≥ 2, and a distribution χ
over R

<d[x]. The (decision) MP-LWEn,d,q,χ consists in distinguishing between
arbitrarily many samples from MPq,n,d,χ(s) and the same number of sam-
ples from U(Z<n

q [x] × R
<d
q [x]), with non-negligible probability over the choices

of s ←↩ U(Z<n+d−1
q [x]).

It is possible to define a search variant of MP-LWEq,n,d,χ, which would consist
in computing s ∈ Z

<n+d−1
q [x] from arbitrarily many samples from MPq,n,d,χ(s).

Note that MP-LWEq,n,d,χ can also be viewed as a variant of LWE, in which
the samples are correlated. Thanks to Lemma 3.2, it can indeed be restated as
follows. Given many samples (Toepd,n(ai),bi) ∈ Z

d×(n+d−1)
q × R

d
q for uniformly

chosen ai ∈ Z
<n
q [x], decide if the vectors bi are uniformly sampled in R

d
q or are

of the form bi = Toepd,n(ai) · s + ei for some common s ←↩ U(Z<n+d−1
q [x]) and

ei ←↩ χ.
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3.3 Hardness of MP-LWE

The following reduction from PLWE to MP-LWE is our main result.

Theorem 3.6. Let n, d > 0, q ≥ 2, and α ∈ (0, 1). For S > 0, we let F(S, d, n)
denote the set of polynomials f ∈ Z[x] that are monic, have constant coef-
ficient coprime with q, have degree m in [d, n] and that satisfy EF(f) < S.
Then there exists a ppt reduction from PLWE

(f)
q,Dα·q for any f ∈ F(S, d, n)

to MP-LWEq,n,d,Dα′·q with α′ = αdS.

Proof. We first reduce PLWE(f) to a variant of MP-LWE whose only dependence
on f lies in the noise distribution (see Lemma 3.7 below). Then we remove
the latter dependence, by adding a compensating Gaussian distribution (see
Lemma 3.8 below). The bound on the magnitude of matrix Mf from Lemma 2.8
for χ = Dα·q implies that

‖Σ0‖ = αq‖J · Md
f‖ = αq‖Md

f‖ ≤ αqdEF(f) < αqdS.

Hence, taking α′q = αqdS completes the proof. ��
Lemma 3.7. Let n, d > 0, q ≥ 2, and χ a distribution over R

<d[x]. Then
there exists a ppt reduction from PLWE(f)

q,χ for any monic f ∈ Z[x] with constant
coefficient coprime with q and degree m ∈ [d, n], to MP-LWEq,n,d,J·Md

f ·χ. Here,

matrix Md
f is the one obtained by keeping only the first d rows of Mf , and J ∈

Z
d×d is the one with 1’s on the anti-diagonal and 0’s everywhere else.

Proof. We describe below an efficient randomized mapping φ that takes as input
a pair (ai, bi) ∈ Zq[x]/f×Rq[x]/f and maps it to a pair (a′

i, b
′
i) ∈ Z

<n
q [x]×R

<d
q [x],

such that φ maps U(Zq[x]/f × Rq[x]/f) to U(Z<n
q [x] × R

<d
q [x]) and P

(f)
q,χ(s) to

MPq,n,d,χ′(s′), for some s′ that depends on s and some χ′ that depends on χ
and f .

The reduction is then as follows:

• Sample t ←↩ U(Z<n+d−1
q [x]).

• Each time the MP-LWE oracle requests a new sample, ask for a fresh PLWE
sample (ai, bi), compute (a′

i, b
′
i) = φ(ai, bi) and give (a′

i, b
′
i) + (0, a′

i �
d

t) to
the MP-LWE oracle.

• When MP-LWE terminates, return its output.

Assuming φ satisfies the specifications above, the reduction maps uniform sam-
ples to uniform samples, and P

(f)
q,χ(s) samples for a uniform s that is common to

all samples to MPq,n,d,J·Md
f ·χ(s′ + t) samples for a uniform s′ + t that is common

to all samples.
We now describe φ. Let (ai, bi) ∈ Zq[x]/f ×Rq[x]/f be an input pair. Let m

denote the degree of f . We sample ri ←↩ U(Z<n−m
q [x]) and set φ(ai, bi) = (a′

i, b
′
i)

with:
a′

i = ai + f · ri ∈ Z
<n
q [x] , b′

i = Md
f · bi ∈ R

<d
q [x].
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As ai and ri are uniformly distributed in Z
<m
q [x] and Z

<n−m
q [x] respec-

tively, the polynomial a′
i is uniformly distributed in Z

<n
q [x] (we refer to [Lyu16,

Lemma 2.10] for a fully detailed proof). Here, we use the assumption that f is
monic.

Further, if bi is uniformly distributed, then so is its coefficient vector bi, and
so is Md

f ·bi. Indeed, as the constant coefficient is coprime with q, matrix Mf is
invertible modulo q (reordering its columns makes it triangular, with diagonal
coefficients all equal to the constant coefficient of f).

Now, assume that bi = ai · s + ei, for some s ∈ Zq[x]/f and ei ←↩ χ. Thanks
to Subsect. 2.2, we know that Rotf (bi) = Rotf (ai) · Rotf (s) + Rotf (ei), and, by
taking the first columns and d first rows, we have

Md
f · bi = Rotdf (ai) · Mf · s + Md

f · ei

= Rotdf (a′
i) · Mf · s + Md

f · ei

= Toepd,n(a′
i) · Rotd+n−1

f (1) · Mf · s + Md
f · ei

= Toepd,n(a′
i) · s′ + Md

f · ei,

where s′ = Rotd+n−1
f (1) · Mf · s. Since b′

i = Md
f · bi = Toep(a′

i) · s′ + Md
f · ei,

we get that e′
i = Md

f · ei, which makes the distribution in MP-LWE equals to the
claimed J · Md

f · χ. This completes the proof. ��
We now remove the dependence in f of the noise distribution.

Lemma 3.8. Let n, d > 0, q ≥ 2. Let σ′ > 0. Let Σ0 ∈ R
d×d be symmetric

definite positive matrix with ‖Σ0‖ < σ′. Then there exists a ppt reduction from
MP-LWEq,n,d,DΣ0

to MP-LWEq,n,d,Dσ′·Idd
, where Idd denotes the d-dimensional

identity matrix.

Proof. The reduction is as follows. We first note that, there exists a positive
definite matrix Σ′, such that Σ0 + Σ′ = σ′ · Idd. The positive definiteness is
guaranteed by fact that ‖Σ0‖ < σ′. Then, for any MP-LWEq,n,d,DΣ0

input sam-
ple (ai, bi), we sample e′

i ←↩ DΣ′ and compute (a′
i, b

′
i) = (ai, bi + e′

i).
Observe that the reduction maps uniform samples to uniform samples, and

MPq,n,d,DΣ0
(s) samples to MPq,n,d,Dσ′·Idd

(s) samples. This completes the proof. ��

4 Public-Key Encryption from MP-LWE

We now describe a public key encryption scheme that is IND-CPA secure, under
the MP-LWE hardness assumption. The scheme is an adaptation of Regev’s
from [Reg09]. It relies on parameters q, n, d, t ≥ 2, and a noise rate α ∈ (0, 1).
We let χ = �Dαq� denote the distribution over Z

<d+k[x] where each coefficient
is sampled from Dα·q and then rounded to nearest integer. The plaintext space
is {0, 1}<d[x], while the ciphertext space is Z

<k+n
q [x] × Z

<d
q [x].
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KeyGen(1λ). Sample s ←↩ U(Z<n+d+k−1
q [x]). For every i ≤ t, sample ai ←↩

U(Z<n
q [x]), ei ←↩ χ and compute bi = ai �

d+k
s + 2 · ei ∈ Z

<d+k
q [x]. Return

the secret key sk := s and the public key pk := (ai, bi)i≤t.

Encrypt(pk = (ai, bi)i≤t, μ). For i ≤ t, sample ri ←↩ U({0, 1}<k+1[x]), and return
c = (c1, c2) with:

c1 =
∑

i≤t

ri · ai , c2 = μ +
∑

i≤t

ri �
d

bi.

Decrypt(sk = s, c). Return the plaintext μ′ = (c2 − c1 �
d

s mod q) mod 2.

Example parameters are n ≥ λ, k = d = n/2, q = Θ(n5/2+c
√

log n),
t = Θ(log n) and α = Θ(1/n

√
log n), for c > 0 arbitrary. For these parame-

ters, the scheme is correct (by Lemma 4.1) and secure under MP-LWEq,n,n,Dαq

(by Lemma 4.3). These parameters allow to rely on the assumed hardness
of PLWE

(f)
q,Dβ·q via Theorem 3.6, for β = Ω(

√
n/q) (hence preventing attacks

à la [AG11]) and for any f monic of degree n, with constant coefficient coprime
with q and expansion factor ≤ nc. Finally, note that the scheme encrypts and
decrypts n plain text bits in time ˜O(n), and the key pair has bit-length ˜O(n).

Correctness follows from Lemma 3.3 and the proof of correctness of Regev’s
encryption scheme.

Lemma 4.1 (Correctness). Assume that α < 1/(16
√

λtk) and q ≥ 16t(k+1).
With probability ≥ 1 − d · 2−Ω(λ) over the randomness of (sk, pk) ←↩ KeyGen, for
all plain text μ and with probability 1 over the randomness of Encrypt, we have
Decrypt(sk,Encrypt(pk, μ)) = μ.

Proof. Assume that (c1, c2) is an encryption of μ under pk. Then we have, mod-
ulo q:

c2 − c1 �
d

s = μ +
∑

i≤t

ri �
d

bi − (
∑

i≤t

ri · ai) �
d

s

= μ +
∑

i≤t

(

ri �
d

(ai �
d+k

s + 2 · ei) − (ri · ai) �
d

s
)

= μ + 2
∑

i≤t

ri �
d

ei,

where the last equality follows from Lemma 3.3. If ‖μ+2·∑i≤t ri�d
ei‖∞ < q/2,

then centered reduction modulo q of c2 − c1 �
d

s gives us μ + 2 · ∑

i≤t ri �
d

ei

(over the integers). Reducing modulo 2 then provides μ.
Now, each coefficient of

∑

i≤t ri �
d

ei can be viewed as an inner prod-
uct between a binary vector of dimension t(k + 1) and a vector sampled
from �Dαq�t(k+1). Each coefficient individually has magnitude ≤ αq

√

λt(k + 1)+
t(k + 1) with probability ≥ 1 − 2−Ω(λ), because of the Gaussian tail bound and
the triangle inequality. By the union bound and triangular inequality, we obtain
that ‖μ + 2 · ∑

i≤t ri �
d

ei‖∞ < 2αq
√

tλ(k + 1) + 2t(k + 1) + 1 with probabil-
ity ≥ 1 − d · 2−Ω(λ). ��
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The security proof is adapted from that of Regev’s encryption scheme
from [Reg09], with a subtlety in the application of the leftover hash lemma.
In Regev’s scheme, if the public key is replaced by uniformly random elements,
then the leftover hash lemma guarantees that the joint distribution of the pub-
lic key and the encryption of an arbitrary plain text is within exponentially
small statistical distance from uniform. This property does not hold in our case:
indeed, if a1, . . . , at all have constant coefficient equal to 0 (this event occurs
with a probability 1/qt, which is not exponentially small for our parameters),
then so does

∑

i riai. However, we can show that the second component c2 of
the ciphertext is statistically close to uniform, given the view of the first com-
ponent c1. This suffices, as the plain text is embedded in the second ciphertext
component.

We first prove that the hash function family coming into play in the security
proof is universal.

Lemma 4.2. Let q, k, d ≥ 2. For (bi)i ∈ (Z<d+k
q [x])t, we let h(bi)i

denote the
map that sends (ri)i≤t ∈ ({0, 1}<k+1[x])t to

∑

i≤t ri �
d

bi ∈ Z
<d
q [x]. Then the

hash function family (h(bi)i
)(bi)i

is universal.

Proof. Our aim is to show that for r1, . . . , rt not all 0, we have

Pr
(bi)i,(b′

i)i

[
∑

i≤t

ri �
d

bi =
∑

i≤t

ri �
d

b′
i

]

= q−d.

W.l.o.g. we may assume that r1 
= 0. By linearity, it suffices to prove that for
all y ∈ Z

<d
q [x],

Pr
b1

[

r1 �
d

b1 = y
]

= q−d.

Let j be minimal such that the coefficient in xj of r1 is non-zero (i.e., equal to 1
as r1 is binary). Then the equation r1�

d
b1 = y restricted to entries j+1 to j+d

is a triangular linear system in the coefficients of b1 with diagonal coefficients
equal to 1. The map b1 �→ r1 �

d
b1 restricted to these coefficients of b1 is hence

a bijection. This gives the equality above. ��
Lemma 4.3 (Security). Assume that t ≥ (2·λ+(k+d+n)·log q)/(k+1). Then
the scheme above is IND-CPA secure, under the MP-LWEq,n,d+k,Dαq

hardness
assumption.

Proof. The IND-CPA security experiment is as follows. The challenger C samples
a bit b ←↩ {0, 1} and (sk, pk) ←↩ KeyGen(1λ); it gives pk to adversary A who sends
back two plaintexts μ0 
= μ1; the challenger computes c ←↩ Encrypt(pk, μb) and
sends it to A, who outputs a bit b′. The scheme is secure if no ppt adversary A
outputs b′ = b more probability that is non-negligibly away from 1/2.

Now, consider the variant of the experiment above, in which C does not run
(sk, pk) ←↩ KeyGen(1λ) but instead samples pk = (ai, bi)i uniformly. Under the
MP-LWE hardness assumption, the probabilities that A outputs b′ = b in both
experiments are negligibly close. The reduction from MP-LWE to distinguishing
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the first and second experiments consists in rounding the real samples given by
an MP-LWE oracle to the nearest integer modulo q, mapping MP-LWE with real
noise to MP-LWE with rounded real noise (and uniform MP-LWE over the reals
modulo q to a uniform MP-LWE over the integers modulo q).

We consider a third experiment, in which C also samples pk = (ai, bi)i,
and additionally does not compute c ←↩ Encrypt(pk, μb) before sending it
to A, but instead computes c = (c1, c2) as follows. For i ≤ t, it samples
ri ←↩ U({0, 1}<k+1[x]), u ←↩ U(Z<d

q [x]), and sets:

c1 =
∑

i≤t

ri · ai , c2 = u.

Note that in this game, the view of A is independent of b, and hence the proba-
bility that it outputs b′ = b is exactly 1/2. We argue below that the distributions
of ((ai, bi)i, c1, c2) in this new experiment and the latter one are within expo-
nentially small statistical distance. The combination of these two facts provides
the result.

It remains to prove that

Δ
(

((ai, bi)i,
∑

i≤t

ri · ai,
∑

i≤t

ri �
d

bi) , ((ai, bi)i,
∑

i≤t

ri · ai, u)
)

≤ 2−λ,

where the ai’s, bi’s, ri’s and u are uniformly sampled in Z
<n
q [x], Z

<d+k
q [x],

U({0, 1}<k+1[x]) and Z
<d
q [x], respectively. By Lemma 4.2, the hash function

family h(bi)i
is universal. Further, the quantity

∑

i≤t ri · ai belongs to Z
<k+n
q ,

of cardinality qk+n. Hence, by the Generalized Leftover Hash Lemma (see
Lemma 2.1), the statistical distance above is bounded from above by (2−(k+1)·t ·
qk+d+n)1/2/2. ��
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All-But-Many Lossy Trapdoor Functions
from Lattices and Applications

Xavier Boyen∗ and Qinyi Li(B)
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Abstract. “All-but-many lossy trapdoor functions” (ABM-LTF) are a
powerful cryptographic primitive studied by Hofheinz (Eurocrypt 2012).
ABM-LTFs are parametrised with tags: a lossy tag makes the function
lossy; an injective tag makes the function injective, and invertible with
a trapdoor. Existing ABM-LTFs rely on non-standard assumptions.

Our first result is an ABM-LTF construction from lattices, based on
the learning-with-errors (LWE) problem. Unlike the previous schemes
which behaved as “encrypted signatures”, the core of our construction
is an “encrypted, homomorphic-evaluation-friendly, weak pseudorandom
function”. The weak pseudorandom function outputs matrices, where the
lossy tags are preimages of the zero matrix, and the injective tags are
preimages of random full-rank matrices.

Our second result is a public-key system tightly secure against “selec-
tive opening” attacks, where an attacker gets many challenges and can
ask to see the random bits of any of them. Following the steps of
Hemenway et al. (Asiacrypt 2011) and Hofheinz (Eurocrypt 2012), our
ABM-LTF gives the first lattice-based, compact public-key encryption
(PKE) scheme that has indistinguishability against adaptive chosen-
ciphertext and selective opening attacks (IND-SO-CCA2), with tight
security, and whose public-key size and security reduction are indepen-
dent of the number of decryption queries and ciphertext challenges.

Meanwhile, this result provides an alternative solution to the prob-
lem of building pairing-free IND-CCA2 PKE schemes with tight secu-
rity in the multi-challenge setting, which was firstly answered by Gay
et al. (Eurocrypt 2016). Additionally, our ABM-LTF answers the open
question of constructing (non-necessarily lossy) all-but-many trapdoor
functions from lattices, first asked by Alperin-Sheriff and Peikert (PKC
2012).

1 Introduction

All-but-many lossy trapdoor functions (ABM-LTF) are a useful cryptographic
primitive formalised by Hofheinz [29]. ABM-LTFs generalise lossy trapdoor func-
tions (LTFs) [39], all-but-one lossy trapdoor functions (ABO-LTFs) [39], and all-
but-N lossy trapdoor functions (ABN-LTFs) [27]. ABM-LTF have shown their
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usefulness in constructing public-key encryption schemes with strong security
properties including selective opening security, e.g., [29], key-dependent message
security, e.g., [30] and key leakage resilience, e.g., [40].

An ABM-LTF is a function described by public evaluation parameters and
parametrised by a tag from some set. The tag set consists of two disjoint super-
polynomially large subsets: the set of injective tags and the set of lossy tags. An
injective tag makes the function injective and, hence, invertible with trapdoors. A
lossy tag makes the function lossy meaning that the function looses information
of its inputs and, therefore, can not be inverted in the information-theoretical
sense (except negligible probability). Note that there could exist a spurious set
of invalid tags, that make the function injective yet disable its trapdoor invert-
ibility: in our construction we need to avoid this possibility. An ABM-LTF is
equipped with two trapdoors: one is the inversion trapdoor which allows one to
correctly invert the function in case of the tag is injective; the other is a lossy
tags generation trapdoor which allows security reduction to generate lossy tags.

ABM-LTFs have two main security properties. The first one, “lossy-tag indis-
tinguishability”, guarantees that a lossy tag is computationally indistinguishable
from a random tag, even given access to the lossy tag generation oracle. The sec-
ond one, “evasiveness”, prevents efficient adversaries from generating lossy tags
(notice that this implies that a random tag is an injective tag w.h.p.). Theses two
security properties make ABM-LTFs particularly useful for handling adaptive
attacks in the multi-challenge setting, in which adversaries are able to obtain
multiple challenge targets (e.g., challenge ciphertext). For instance, evasiveness
forces that all adaptive queries be made with injective tags, enabling inversion
trapdoors in security reductions. Indistinguishability allows security reductions
to use multiple lossy tags for creating multiple challenges embedding the same
computational problem, without tipping off adversaries.

Constructions of ABM-LTFs. Not very surprisingly, with such powerful prop-
erties, ABM-LTFs have more complicated constructions than its simpler coun-
terparts, say plain LTFs. So far, essentially two types of constructions of ABM-
LTFs exist. The first type is based on Paillier/Damgard-Jurik encryption [19,37]
together with some non-standard assumptions, and first instantiated by Hofheinz
[29] and latter improved by Fujisaki [23]. The second type, based on subgroup
indistinguishable problems over composite-order bilinear groups, was design by
Hofheinz [29]. Though relying on different assumptions and algebraic structures,
the two types of constructions share the same flavour at a conceptual level.
Both of them can be seen as “encrypted signature” schemes in which a lossy tag
corresponds to a valid (but disguised) signature. Existential unforgeability of sig-
natures guarantees the evasiveness. Tag indistinguishability is provided by the
semantic security of Paillier/Damgard-Jurik encryption or hardness of subgroup
decisional problems. Roughly, the two types of construction utilise either additive
homomorphism of Paillier/Damgard-Jurik ciphertexts, or group exponentiation
operations, to conduct the lossy trapdoor function evaluations. Apart from the
elegance of existing constructions, one of their disadvantages is their need for
non-standard assumptions. Thus, a first motivation for our present work is to
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solve the open problem of finding different constructions of ABM-LTFs under
reasonable assumptions, first posed by Hofheinz [29].

All-but-Many Trapdoor Function. Without regard to lossines, a notion similar
to ABM-LTF is that of all-but-many trapdoor function (ABM-TF). An ABM-
TF’s inversion trapdoor can be concealed among super-polynomially many tags.
Candidate constructions from assumptions related to factoring or discrete log-
arithm have already been proposed [23,29]. On the other hand, while there
exist many constructions and applications of lattice-based all-but-one trapdoor
functions [1,4,35] and all-but-N trapdoor functions for N bounded a priori [5],
lattice-based ABM-TFs appears to be harder to construct. Therefore, a second
motivation for this work is to solve the open problem stated in [5], namely to
construct lattice-based ABM-TFs (and, a fortiori, ABM-LTFs).

IND-SO-CCA2 Public-Key Encryption. A direct application of ABM-LTFs,
shown in [29], is to construct compact public-key encryption schemes that have
ciphertext indistinguishability against adaptively chosen-ciphertext attacks and
selective opening attacks (IND-SO-CCA2).1

In selective opening attacks (SOA), an adversary gets a collection of some
arbitrary N challenge ciphertexts (cti = Encrypt(pk,mi; ri))i∈[N ] that encrypt
mi with randomness ri under public key pk, where {mi}i∈[N ] satisfy some joint
distribution dist chosen by the adversary. The adversary may choose some sub-
set I ⊂ [N ] and ask that the corresponding ciphertexts cti be “opened” to
get (mi, ri). The adversary must try to extract information on the messages
in the unopened ciphertexts (cti)i∈[N ]\I . IND-SO-CCA2 security ensures that
no adversary can distinguish the unopened messages from new messages which
are freshly and efficiently sampled according to dist conditioned on the opened
messages. One drawback of this definition of IND-SO-CCA2 is that it requires
that the joint message distributions be efficiently re-sampleable conditionally on
opened messages. Unfortunately, it is not difficult to come up with examples of
efficiently sampleable joint distributions whose conditionals as above would not
be efficiently sampleable.

A stronger version of indistinguishability-based security definition (some-
times called Full IND-SO-CCA2, see Definition 2 of [31]) does not have the
requirement of efficient conditional resampling. This appears preferable, but
problems remain. First, such stronger definition neither has any known instanti-
ation nor is implied by any known realisable definition, suggesting that it could
be too strong to achieve. Second, the existence of efficiently sampleable joint dis-
tributions with inefficient conditionals could be exploited by an adversary to use
the challenger as a hard-problem oracle, rather than the other way around. Nev-
ertheless, it has been shown by Hofheinz and Rupp [31] that even the first version
of IND-SO-CCA2 is stronger than traditional IND-CCA2 security. Therefore it
is well motivated to find efficient constructions that are IND-SO-CCA2 secure.
1 “Compact” here means that the size of public keys is independent of the number of

challenge ciphertexts adversary asks for. ABN-LTFs results in IND-SO-CCA2 PKE
schemes but the size of public keys is at least linear in N .
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For completeness, we mention that stronger and/or more natural definitions
than IND-SO-CCA2 are possible, especially in a simulation-based real/ideal
framework. We mention the SIM-SO-CCA2 definition (see [8,11] for details)
and several PKE schemes that meet it (see, e.g., [22,23,27,29,32]). Nevertheless,
SIM-SO-CCA2 secure PKE schemes from lattice assumptions remain unknown.

1.1 Our Contribution

In this paper, we address Hofheinz’s [29] open problem of building tightly secure
ABM-LTFs under reasonable assumptions. We propose a new ABM-LTF from
widely accepted lattice assumptions: specifically, all the security properties of
our ABM-LTF can be tightly and ultimately reduced to the computational hard-
ness of Learning with Errors (LWE). Our ABM-LTF also provides a solution to
Alperin-Sheriff and Peikert’s [5] open problem of constructing ABM-TFs from
lattices.

Moreover, by following the pathway given in [27,29,42], our ABM-LTF fur-
ther leads to the first IND-SO-CCA2 public-key cryptosystem from lattices with
a tight security reduction. In turn, such a scheme provides an alternative solution
to the question of building tightly secure PKE (without bilinear maps) in the
multi-challenge setting, recently and very differently answered by Gay et al. [24].
Being high-dimensional-lattice-based, all of our constructions are conjectured to
be quantum-safe.

Our Approach. At a high level, instead of building ABM-LTFs as “encrypted
signatures” which is the approach of [29], our ABM-LTF builds an “encrypted
homomorphic-evaluation-friendly pseudorandom function” whose outputs are
(encrypted) matrices whose rank controls the function’s lossiness.

Our starting point is the lattice-based (and lossy) trapdoor function from
[10], given by g(s, e) = st · [A|AR + HG] + et mod q, where the matrix R has
low-norm, and G is the now famous “gadget” matrix (a public matrix with a
public trapdoor TG such that G · TG = 0 with very low norm).

The trapdoor function g() traces back to the two-sided lattice trapdoor frame-
work from [1,13] and the efficient strong lattice trapdoor generators from [35]. It
was showed by Bellare et al. [10] that if A is built from LWE samples (to consist
of a truly random matrix on its top and a pseudorandom matrix on its bottom),
then for certain parameters, the function is injective and invertible if H has full
column-rank, and is lossy if H = 0. The indistinguishability property of all-but-
many trapdoors requires that there must be unbounded many tags that can be
mapped to H = 0 and this mapping should be oblivious to “outside” evaluators.
Boyen and Li [14] recently showed such a way in another context by embedding
a pseudorandom function (PRF) into the above trapdoor function to compute
H, i.e., H = PRF(K, tag) · I, where PRF(K, tag) ∈ {0, 1} and I is the identity
matrix (in this case H is square). However, their method only allows two values
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for H.2 This makes a random tag lossy with probability half, for hitting H = 0,
thereby violating the evasiveness property (i.e., lossy tags should be hard to find
without trapdoor).

Our first idea is to parallelly apply multiple PRFs and expand their pseudo-
random outputs from bit strings to matrices, through universal hash functions.
Particularly, we set tags with form tag = (D, μ). D is a matrix, which allows us
to add additional control on generating H. μ is the input for PRFs. Then we set
H = ZD +

∑
PRF(Ki, μ) · Hi mod q for randomly sampled, encrypted matrices

Hi, and full-rank matrix Z. Firstly, the subset-sum operation
∑

PRF(Ki, μ) ·Hi

and ZD can be easily performed by existing evaluation techniques with small
adjustments on the dimensions of gadget matrices as we will show. Secondly, for
any “outside” evaluator, as the outputs of PRFs are unpredictable, the output
of the subset-sum formula, and, hence, H will be pseudorandom. For one who
knows the keys of PRFs and the matrix Z, a lossy tag can be generated by ran-
domly selecting μ and solving D for the equation 0 = ZD +

∑
PRF(Ki, μ) · Hi

(mod q). Now the problem we have is that the adversary can reuse μ from a
prior lossy tag (D, μ) it was given, to create a new tag (D̄, μ) where D̄ = D+D′

for non-full-rank D′. This special tag — we call it an “invalid tag” — could
disable the gadget trapdoors while still making the function injective. To solve
this problem, we use a chameleon hash function to tie D and μ together (say
μ is the output of the chameleon hash on input D and some fresh randomness)
to enforce the one-time use of μ. For generating lossy tags in the simulation,
we can pick random μ, solve for D and use the trapdoor of the chameleon hash
function to find randomness under which μ chameleon-hashes to D.

As a consequence of using a chameleon hash function, the inputs to the PRFs
(i.e., μ) will be random for all randomly generated tags in the real schemes and
all responses from the lossy tag generation oracle to queries in the security reduc-
tions. Moreover, the collision-resistant property of the chameleon hash function
essentially forces all adversarially generated PRF inputs (i.e., μ) to be differ-
ent. This fact drives us towards relaxing the PRFs into so-called “weak PRFs”
[3], which only guarantee pseudorandomness for random inputs. The advantages
of using weak PRFs is that weak PRFs admit potentially much simpler, more
efficient constructions from weaker assumptions, with shallower circuit imple-
mentations than normal PRFs. The remaining problem of using a weak PRF
(WPRF for short) instead of a usual PRF is that, in the evasiveness security
game, the adversary is allowed adaptively to come up with lossy tag guesses
in which μ may not be random, and receive binary answers of “lossy/invalid”
or “injective”. Such answers may leak damaging information to the adversary,

2 The binary restriction on H in [14] comes from the fact that the fully homomorphic
evaluation techniques from [12,16,26] usually supports operations on two bits or two
small scalars. It would be very useful to find a way to do such evaluation over two
vectors or matrices. We note that Hiromasa et al. [28] showed how to do homomor-
phic evaluation on matrices for GSW-FHE scheme [26]. But it is not clear how to
apply such technique to the gadget-based trapdoors.
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since the WPRF indistinguishability from random may not apply on non-random
inputs μ.

We resolve this last problem by pre-processing μ with a (very basic) universal
hash, essentially XOR-ing μ with a secret constant. This keeps the WPRF input
random for all the challenger-generated μi, and further randomises one of the
adversarially generated μ to make it jointly random with the random μi. This
restores WPRF indistinguishability for one adversarial queries, which in turns
all but guarantees (with probability overwhelmingly close to 1) that the response
to the adversary’s guess will be “injective”. Because the response was a foregone
conclusion, it is devoid of information, and could have been answered without
looking at μ. This allows us to consider the second adversarial query without
regard for the first one (which we answered without even looking at it). Repeating
the previous argument, this second adversarial query μ together with the random
μi induce a set of jointly random WPRF inputs after universal hashing, and
thus the adversary will also expect an ”injective” answer with all but negligible
probability on this second query, as for the first query. The conclusion carries
inductively for any polynomially bounded number of queries.

For our purpose of constructing ABM-LTF and PKE schemes without relying
on any of the “pre-quantum” assumptions of existing schemes, WPRFs can be
instantiated directly from the Learning-With-Rounding assumption [7]. Such
WPRFs can be implemented as Boolean NAND circuits in the NC1 circuit
class, which allows us to use smaller modulus in our construction (or nearly
equivalently, larger relative LWE noise). The addition of a universal hash (or a
simple XOR) at the input of the WPRF barely makes the circuit more complex.

Finally, we also mention that we need that random tags (and even adversari-
ally chosen tags) make the column-rank of H full, with overwhelming probability,
as required for evasiveness of ABM-LTFs. Since we are able to use a polynomial
rather than sub-exponential modulus (in the security parameter), a randomly
sampled square matrix H will not overwhelmingly likely be full-rank. We resolve
this by adding extra columns to H, making it “wider”, and to such end we also
adjust the dimension of the gadget matrices. (We note that if the WPRF, which
we can view as a black-box, is instantiated from LWR problem, it would use
another modulus which unfortunately is slightly super-polynomial [7].)

A Parallel and Independent Work. In concurrent and independent work,
Libert et al. [34] propose an ABM-LTF and a SIM-SO-CCA2 secure PKE scheme
using rather similar techniques. Both papers give ABM-LTF constructions based
on embedding key-homomorphic PRF evaluation into the lattice-based LTF of
Bellare et al. [9], and give applications to PKE with selective-opening security.

The first notabale difference is that our ABM-LTF uses the weaker notion
of weak PRF in the homomorphic evaluation. Unlike the stronger usual PRFs,
weak PRFs need not to be pseudo-random on all inputs; only on random ones.
They have more efficient constructions from weaker assumptions, along with
tighter reductions. Using weak PRFs gives us shallower circuit implementations,
which cause milder noise growth in the key-homomorphic evaluations. In turn,
this lessens our LWE assumptions for the construction of ABM-LTF.
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The second important difference is that the PKE scheme in [34] does achieve
SIM-SO-CCA2 security, compared to ours which has IND-SO-CCA2 security. It
is the first lattice-based PKE scheme that enjoys such strong notion of selective-
opening security. At a high level, they first build an IND-SO-CCA2-secure PKE
scheme from their ABM-LTF, then give an efficient mechanism to “explain” any
lossy ciphertext as an encryption of an arbitrary message to get SIM-SO-CCA2.

A natural question, given the complementary strengths of our respective
papers, would be to combine them and achieve the best of both worlds.

1.2 Other Related Works

Lossy trapdoor functions (LTFs) were proposed by Peikert and Waters [39].
They admit instantiations from standard assumptions, e.g., DDH, DCR and
LWE. They also have enormous applications, e.g., in the construction of IND-
CCA2 public-key schemes, the first lattice trapdoor function, lossy encryption
[8]. All-but-N LTFs (ABN-LTFs) were firstly proposed by Hemenway et al. [27]
as a means to construct PKE secure against chosen-ciphertext and selective
opening attacks. In contrast to ABM-LTFs in which unbounded many lossy
tags are provided, an ABN-LTF contains exact N lossy tags. ABN-LTFs suffer
from a drawback that N has to be fixed when generating the public parameters,
making the size of public parameters grow at least linearly in N . Last, we mention
that lossiness arguments have been used in a LWE context for establishing the
hardness of the LWE problem with uniform rather than Gaussian noise [21,36].

2 Preliminaries

Notation. ‘PPT’ abbreviates “probabilistic polynomial-time”. If S is a set, we
denote by a

$←− S the uniform sampling of a random element of S. For a positive
integer n, we denote by [n] the set of positive integers no greater than n. We use
bold lowercase letters (e.g. a) to denote vectors and bold capital letters (e.g. A)
to denote matrices. For a positive integer q ≥ 2, let Zq be the ring of integers
modulo q. We denote the group of n × m matrices in Zq by Z

n×m
q . Vectors

are treated as column vectors. The transpose of a vector a (resp. a matrix A) is
denoted by at (resp. At). For A ∈ Z

n×m
q and B ∈ Z

n×m′

q , let [A|B] ∈ Z
n×(m+m′)
q

be the concatenation of A and B. We write ‖x‖ for the Euclidean norm of a
vector x. The Euclidean norm of a matrix R = {r1, . . . , rm} is denoted by ‖R‖ =
maxi ‖ri‖. The spectral norm of R is denoted by s1(R) = supx∈Rm+1 ‖R·x‖. The
inner product of two vectors x and y is written 〈x,y〉. For a security parameter
λ, a function negl(λ) is negligible in λ if it is smaller than all polynomial fractions
for a sufficiently large λ. The logarithm function log2(·) is abbreviated as log(·).

We will be using the following lemma which is directly implied by the
Theorem 1.1 of [17]

Lemma 1. Let an integer n ≥ 2, and a prime q ≥ 2. A randomly sampled
Z

n×2n
q -matrx H will have n linearly independent columns, i.e., rank n, with all

but negligible probability in n.
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Proof. By the Theorem 1.1 of [17] the probability that H has rank n is

n∏

i=1

(1 − 1
qn+i

) ≥ (1 − 1
qn+1

)n ≥ 1 − n · q−(n+1) ≥ 1 − negl(n)

as required. 	


2.1 Randomness Extractor

Let X and Y be two random variables over some finite set S. The statistical
distance between X and Y , denoted as Δ(X,Y ), is defined as

Δ(X,Y ) =
1
2

∑

s∈S

|Pr[X = s] − Pr[Y = s]| .

Let Xλ and Yλ be ensembles of random variables indexed by the security para-
meter λ. X and Y are statistically close if Δ(Xλ, Yλ) = negl(λ).

The min-entropy of a random variable X over a set S is defined as

H∞(X) = − log(max
s∈S

Pr[X = s]).

The average min-entropy of a random variable X given Y is defined as

H̃∞(X|Y ) = − log
(
Ey←Y

[
2−H∞(X|Y =y)

])

Lemma 2 ([38], Lemma 2.1). If Y takes at most 2r possible values and X is
any random variable, then

H̃∞(X|Y ) ≥ H∞(X) − r.

Definition 1 (Universal Hash Functions). A family of functions UH =
{UHk : X → Y} is called a family of universal hash functions with index (key)
k, if for all x, x′ ∈ X , with x �= x′, we have Pr[UHk(x) = UHk(x′)] ≤ 1

|X | over
the random choice of UHk.

Lemma 3 ([38], Lemma 2.2). Let X, Y be random variables such that X ∈
{0, 1}n and H̃∞(X|Y ) ≥ k. Let UH be a family of universal hash functions from

{0, 1}n to {0, 1}� where � ≤ k − 2 log(1/ε). It holds that for UHk
$←− UH and

r
$←− {0, 1}�, Δ ((UHk,UHk(X), Y ), (UHk, r, Y )) ≤ ε.

Corollary 1. Let q > 2, ε > 0. Let UH = {UHh : {0, 1}� → Zq} be a fam-
ily of hash functions where � ≥ log(q/(ε2)), y = UHh(x) =

∑�
i=1 hixi mod q

for x = x1 . . . x� ∈ {0, 1}�, h = h1 . . . h�
$←− Z

�
q. Let r

$←− Zq, we have
Δ((UHh,UHh(x)), (UHh, r)) ≤ ε.

Proof. It is easy to see that for different inputs x and x′, and h $←− Z
�
q, UHh(x) =

UHh(x′) happens with probability 1/q. So UH is a family of universal hash
function. Applying Lemma 3 concludes the proof. 	
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2.2 Discrete Gaussians

Let m ∈ Z>0 be a positive integer. Let an integer lattice Λ ⊂ Z
m. For any

real vector c ∈ R
m and positive parameter σ ∈ R>0, let the Gaussian function

ρσ,c(x) = exp
(
−π‖x − c‖2/σ2

)
on R

m with centre c and parameter σ. Define
the discrete Gaussian distribution over Λ with centre c and parameter σ as
DΛ,σ = ρσ,c(y)/ρσ(Λ) for ∀y ∈ Λ, where ρσ(Λ) =

∑
x∈Λ ρσ,c(x). For notational

convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ.

Lemma 4 ([9], Lemma 5.1). Let h > 0, w > 0 be integers and σ > 0 be
Gaussian parameter. For R ← Dh×w

Z,σ , we have s1(R) ≤ σ · O(
√

h +
√

w) with
all but probability 2−Ω(h+w).

Lemma 5 ([9], Lemma 5.2). For prime q and integer b ≥ 2, let m̄ ≥ n logb q+
ω(log n). With overwhelming probability over the uniformly random choice of
A ∈ Z

n×m̄
q , the following holds: for r ← Dm̄

Z,b·ω(
√

log n)
, the distribution of Ar is

statistically close to the uniform distribution over Z
n
q .

2.3 Gadget Matrices

We define two gadget matrices with different dimensions than the canonical
gadget matrix given by Micciancio and Peikert [35]. Let an integer n ≥ 2, a
primt q ≥ 2, a radix b ≥ 2, and let w = logb q. Let G∗ be the primitive matrix
defined as G∗ = In ⊗ [1, b, b2, . . . , bw−1] ∈ Z

n×nw
q . We define the gadget matrices

G =
[
G∗| 0

]
∈ Z

n×2nw
q

and

Ĝ = I2n ⊗ [1, b, b2, . . . , bw−1] =
[
G 0
0 G

]

∈ Z
2n×2nw
q .

Those gadget matrices have useful properties as stated below.

Lemma 6 ([12], Lemma 2.1). There is a deterministic algorithm, denoted
G−1(·) : Z

n×m
q → Z

m×m, that takes any matrix A ∈ Z
n×m
q as input, and

outputs the preimage G−1(A) of A such that G · G−1(A) = A (mod q) and
s1

(
G−1(A)

)
≤ (b − 1)m.

There is a deterministic algorithm, denoted Ĝ−1(·) : Z2n×m
q → Z

m×m, that
takes any matrix A ∈ Z

2n×m
q as input, and outputs the preimage Ĝ−1(A) of A

such that Ĝ · Ĝ−1(A) = A (mod q) and s1(Ĝ−1(A)) ≤ (b − 1)m.

Lemma 7 ([35], Theorem 3). Let A ∈ Z
n×m̄
q , R ∈ Z

m̄×2nw. Let H ∈ Z
n×2nw
q

with rank n. Let Ĝ ∈ Z
2n×2nw
q be the gadget matrix. For yt = gF(x) =

xt

[
Im

F

]

= xt
1 + xt

2 · F mod q where F = [A|AR + HĜ], there is a PPT

algorithm Invert(F,R,H,y) that outputs x with overwhelming probability if
‖x1‖ ≤ q/Θ(b · s1(R)).
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2.4 Homomorphic Evaluation Algorithms

In our construction we use the homomorphic evaluation algorithms developed in
[12,16,26]. The next lemma follows directly from Claim 3.4.2, the Lemma 3.6,
and Theorem 3.5 of [16]. It has been used in [14].

Lemma 8. Let C : {0, 1}� → {0, 1} be a NAND Boolean circuit in class
NC1, i.e. C has depth d = η log � for some constant η. Let {Ai = ARi +
xiG ∈ Z

n×2nw
q }i∈[�] be � matrices correspond to the � input wires of C where

A $←− Z
n×m̄
q , Ri ← Dm̄×2nw

Z,b·ω(
√

log n)
, xi ∈ {0, 1} and G ∈ Z

n×2nw
q is the gad-

get matrix. There is an efficient deterministic algorithm EvalBV that takes as
input C and {Ai}i∈[�] and outputs a matrix AC = ARC + C(x1, . . . , x�)G =
EvalBV(C,A1, . . . ,A�) where RC ∈ Z

m̄×2nw can be computed deterministically
from {Ri}i∈[�] and {x1}i∈[�], and C(x1, . . . , x�) is the output of C on the argu-
ments x1, . . . , x�. EvalBV runs in time poly(4d, �, n, log q).

Let 2nw ≤ m̄. So s1 (Rmax) = max {s1 (Ri)}i∈[�] ≤ b · O(
√

m̄) by Lemma 4.
the spectral norm of RC can be bounded, with overwhelming probability, by
s1 (RC) ≤ O(4d · m̄3/2) = O(�2η · m̄3/2).

We also explicitly use the following two evaluation formulas. Let C = AR +
xG and Ĉ = AR̂ + HĜ where A ∈ Z

n×m̄
q , R, R̂ ∈ Z

m̄×2nw has low norm,
x ∈ {0, 1}, H ∈ Z

n×2n, and G ∈ Z
n×2nw
q , Ĝ ∈ Z

2n×2nw
q be gadget matrices. We

can multiplicatively evaluate C and Ĉ with respect to the “message” product
xH by computing

Ĉ′ = C · G−1(Ĉ) (mod q)

= AR · G−1(Ĉ) + x(AR̂) + xHĜ (mod q)

= AR̂′ + xHĜ (mod q)

Let Ĉ1 = AR̂1 + ZĜ and Ĉ2 = MĜ3 where A ∈ Z
n×m̄
q , R̂1, R̂2 ∈ Z

m̄×2nw

have low norm, Z ∈ Z
n×2n
q , M ∈ Z

2n×2n
q , and Ĝ is the gadget matrix. We

compute the “encryption” of ZM ∈ Z
n×2n
q by computing:

Ĉ = Ĉ1 · Ĝ−1(Ĉ2) (mod q)

= A
(
R̂1 · Ĝ−1(Ĉ2)

)
+ (ZM)Ĝ (mod q)

= AR̂ + (ZM)Ĝ (mod q)

2.5 Computational Assumptions

We use the classic variant of learning-with-errors (LWE) problem where the
secret components have the same distribution as the noise components. Such
variant is known as the normal-form LWE problem and is no easier than the
3 In our construction, Z will be hidden and M will be publicly samplable.
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LWE problem with uniform secret, up to a small difference in the number of
available samples (see e.g., [6]). Additionally, we consider the LWE problem in
which the secret is a matrix in Z

n×h rather than single vector in Z
n. By a

standard hybrid argument, such problem, as shown in Lemma 6.2 of [39], can be
reduced to the LWE problem with a single vector secret, while loosing a factor
h of security. We point out that in our constructions h is independent of the
number of adversarial queries.

Definition 2. Let n, q, h be positive integers. Let χ be be a distribution over
Zq. Let S ← χn×h be a secret matrix. Define two oracles:

– OS: samples a $←− Z
n
q , e ← χh; returns (a,Sta + et mod q).

– O$: samples a $←− Z
n
q , b $←− Z

h
q ; returns (a,b).

The normal form of the LWEn,h,q,χ problem with matrix secret asks for distin-
guishing between OS and O$. The advantage of a distinguishing algorithm A in
the security parameter λ is defined as

Adv
LWEn,h,q,χ

NF,A (λ) =
∣
∣Pr[AOS(1λ) = 1] − Pr[AO$(1λ) = 1]

∣
∣

We also implicity make the short integer solution (SIS) assumption [2,25] for
invoking the lattice-based chameleon hash function by Cash et al. [18], which is
viewed as a black box in our constructions. Since the SIS assumption is quan-
titatively much weaker than the LWE assumption we use, and is implied by it,
our constructions are ultimately based on LWE assumption.

3 Definitions

3.1 Weak Pseudorandom Functions

Weak pseudorandom functions (weak PRFs) [3] are keyed functions that have
pseudorandom outputs on random inputs. They hav many applications in pro-
tocol design, e.g., [20,33], improving efficiency when a full PRF is not needed.

Let λ be a security parameter, t = t(λ), and � = �(λ). An efficiently com-
putable, deterministic (one-bit-output) function family F : {0, 1}t × {0, 1}� →
{0, 1} is called weak PRF if it satisfies the following: For every Q = poly(λ), the
ensemble X = {(xi, FK(xi)}i∈[Q] is computationally indistinguishable from the
ensemble Y = {(xi, R(xi))}i∈[Q], where K is random in {0, 1}t, xi is random in
{0, 1}�, and R : {0, 1}� → {0, 1} is a random function.

Weak PRFs, which turn out to be much weaker that normal PRFs, admit
simple and efficient constructions from various assumptions. To base our ABM-
LTF purely on lattice assumptions, we can use a weak PRF from [7]

FK(·) = �p

q
〈s, ·〉� mod p where 2 ≤ p � q
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For binary output, p = 2. The key K = s is a randomly chosen vector in Z
n
q .

FK(·) has input space Z
n
q . The security of FK(·) is based on the hardness of

learning with rounding (LWR), a deterministic variation on LWE, defined in [7].
Let q > p ≥ 2. For a vector s ∈ Z

n
q , the LWR distribution Ls over Zn

q ×Zp is
obtained by randomly choosing a form Z

n
q , and outputting (a, �p

q 〈s,a〉� mod p).
The LWRn,p,q problem asks for distinguishing between any desired number of
independent samples from Ls, and the same number of samples from uniform
distribution over Z

n
q × Zp. It has been shown that the hardness of the decision

LWR problem can be based on the decision LWE problem for certain parameters.
Notice that FK(·) with p = 2 is exactly an instance of the decision-LWRn,2,q

problem, and it is a weak pseudorandom function if the LWRn,2,q problem is
hard. It has been shown that for q/2 ≥ (αq) · nω(1), the LWRn,2,q problem is no
easier than the LWEn,q,DZ,αq problem where α ≤ n−ω(1).4 We note that FK here
is essentially the same decryption circuit as in many lattice-based encryption
schemes (e.g., [15,16,26]) and belongs to a very shallow NC1 circuit class.

3.2 Chameleon Hash Functions

A chameleon hash function CH = (CH.Gen, CH.Eval, CH.Equiv) has three PPT
algorithms. The key generation algorithm CH.Gen takes as input a security para-
meter λ, outputs a hash key and trapdoor pair (Hk,Td). The randomised hash-
ing algorithm takes as input a message X, random coins r ∈ RCH, and outputs
Y = CH.Eval(Hk,X;R). The equivocation algorithm takes as input a trapdoor
Td, an arbitrary valid hash value y and an arbitrary message x, and outputs a
valid randomness R ∈ RCH such that Y = CH.Eval(Hk,X;R).

A chameleon hash function has output uniformity which guarantees the dis-
tribution of hashes is independent of the messages. Particularly, for all Hk,
two messages X,X ′, the distributions {R

$←− RCH : CH.Eval(Hk,X;R)}
and {R

$←− RCH : CH.Eval(Hk,X ′;R)} are identical. A chameleon hash
function is collision-resistant. That is, for all PPT adversary A, for random
(Hk,Td) ← CH.Gen(1λ), the advantage

AdvcollCH,A(λ) =

⎡

⎣
((X,R), (X ′, R′)) ← A(1λ,Hk)

(X,R) �= (X ′, R′),
CH.Eval(Hk,X;R) = CH.Eval(Hk,X ′;R′)

⎤

⎦

must be negligible in λ.
As in the definition of chameleon hash function from [29], the message space

is assumed to be {0, 1}∗. This is not a big issue since we can always apply
a collision-resistant hash function on the input to get a chameleon-hash input
with fixed size. We additionally require the chameleon hash function used in

4 Unfortunately, this proof indicates that if such LWR-based weak PRFs are used in
our construction, we need to make a slightly stronger LWE assumption with super-
polynomial modulus q. However, such LWE assumption remains weaker than widely
used LWE assumptions with sub-exponential moduli q, e.g., [12].
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our ABM-LTF construction to have the following property in order to achieve
selective opening security:

Definition 3. Let CH = (CH.Gen,CH.Eval,CH.Equiv) be a secure chameleon
hash function. We say CH has equivocation indistinguishability if, for ran-
dom (Hk,Td) ← CH.Gen(1λ), given a fixed message X ∈ XCH, the following two
distributions of tuple (X,R, Y ) are statistically indistinguishable:

{X ∈ XCH, R
$←− RCH, Y ← CH.Eval(Hk,X;R)) ∈ YCH}

and
{X ∈ XCH, Y

$←− YCH, R ← CH.Equiv(Td, Y,X) ∈ RCH}
Cash et al. [18] constructed a chameleon hash function from the short inte-

ger solutions (SIS) assumption [2]. Such construction has equivocation indistin-
guishability and output uniformity which follow directly from the properties of
preimage-sampleable functions given by Gentry et al. [25].

3.3 Lossy Trapdoor Functions

A lossy trapdoor function with domain D consists of three PPT algorithms:

– LTF.Gen(1λ,mode): a key generation algorithm that takes as input a security
parameter and a mode parameter mode = {inj, loss}, then behaves as follows:
– LTF.Gen(1λ, inj) outputs (LTF.ek, LTF.ik) where LTF.ek is a injective eval-

uation key and LTF.ik is an inversion trapdoor.
– LTF.Gen(1λ, loss) outputs (LTF.ek,⊥) where LTF.ek is a lossy evaluation

key.
– LTF.Eval(LTF.ek,X): an evaluation function that evaluates the function on

input X ∈ D using evaluation key LTF.ek.
– LTF.Inv(LTF.ik, Y ): an inversion function that takes as input a value Y , and

uses the inversion key LTF.ik to find a value X.

A lossy trapdoor function has the following properties.

Invertibility. For all (LTF.ek, LTF.ik) ← LTF.Gen(1λ, inj), X ∈ D, and Y =
LTF.Eval(LTF.ek,X), we have

Pr [X = LTF.Inv(LTF.ik, Y )] = 1 − negl(λ)

Lossiness. We say that the lossy trapdoor function is �-lossy if for all LTF.ek =
LTF.Gen(1λ, loss), the image set of LTF.Eval(LTF.ek,D) has size at most
|D|/2�.

Indistinguishability. The first outputs of LTF.Gen(1λ, inj) and
LTF.Gen(1λ, loss) are computationally indistinguishable. That is, for all PPT
adversary A, the advantage AdvindLTF,A(λ), given by

∣
∣Pr

[
A(1λ, LTF.ek) = 1

]
− Pr

[
A(1λ, LTF.ek′) = 1

]∣
∣

is negligible in λ, where (LTF.ek, LTF.ik) ← LTF.Gen(1λ, inj) and
(LTF.ek′,⊥) ← LTF.Gen(1λ, loss).
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3.4 All-But-Many Lossy Trapdoor Functions

Our definition mainly follows the original definition given by Hofheinz [29], and
maintains the same tagging mechanism. That is, a tag tag is divided into two
parts: the primary part tp and the auxiliary part ta. The auxiliary part is usually
just a random string. For any ta, given a lossy tag generation trapdoor, one can
compute tp to make tag = (tp, ta) a lossy tag. As in [29], the auxiliary part helps
us to embed auxiliary information (e.g., a one-time signature verification key).

One difference between our definition (and construction) and that of
Hofheinz, is that we divide a tag set into three disjoint subsets: (1) a lossy
tag set, (2) an injective tag set and (3) an invalid tag set. This is because in
our lattice-based construction, some tags can simultaneously make the function
injective and disable the inversion trapdoor. We will need to make sure that
those tags are generally hard to find (except when knowing a trapdoor).

We now define ABM-LTFs. An all-but-many lossy trapdoor function with
domain D consists of four PPT algorithms:

– ABM.Gen(1λ): a key generation algorithm. It takes as input a security para-
meter, and outputs an evaluation key ABM.ek, an inversion key ABM.ik, and
a lossy tag generation key ABM.tk. The evaluation key ABM.ek defines the
tag space T = tp × {0, 1}∗ consisting of three disjoint sets: injective tags Tinj,
lossy tags Tloss, and invalid tags Tinvalid. All tags have form tag = (tp, ta) where
tp is the primary part of the tag, and ta ∈ {0, 1}∗ is the auxiliary part of the
tag.

– ABM.Eval(ABM.ek, tag,X): an evaluation algorithm. It takes as input
ABM.ek, a tag tag ∈ T , and X ∈ D. It produces Y =
ABM.Eval(ABM.ek, tag,X).

– ABM.Inv(ABM.ik, tag, Y ): an inversion algorithm. It takes as input ABM.ik,
a injective tag tag ∈ Tinj and Y , where Y = ABM.Eval(ABM.ek, tag,X). It
outputs X = ABM.Inv(ABM.ik, tag, Y ).

– ABM.LTag(ABM.tk): a lossy tag generation algorithm. It uses ABM.tk to gen-
erate a lossy tag tag ∈ Tloss.

We require the following properties of ABM-LTFs.

Invertibility. The invertibility property consists of two sub-properties. Firstly,
it requires that randomly sampled tags be injective tags with all but negligible
probability, i.e.,

Pr
[
tag ∈ Tinj | tag $←− T

]
≥ 1 − negl(λ)

for some negligible function negl(λ) in the security parameter λ. Secondly, it
requires that for all injective tags, the ABM-LTF be invertible with all bat neg-
ligible probability. That is, for all (ABM.ek,ABM.ik,ABM.tk) ← ABM.Gen(1λ),
tag ∈ Tinj, X ∈ D, and Y = ABM.Eval(ABM.ek, tag,X) we have

Pr [ABM.Inv(ABM.ik, tag, Y ) = X] = 1 − negl(λ)
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Lossiness. An ABM-LTF is �-lossy if for all (ABM.ek,ABM.ik,ABM.tk) ←
ABM.Gen(1λ), and all tag ∈ Tloss, the image set ABM.Eval(ABM.ek, tag,D) has
size ≤ |D|/2�.

Indistinguishability. The indistinguishability property requires that even mul-
tiple lossy tags be indistinguishable from random tags. That is, for all PPT
adversary A’s, the advantage AdvindABM-LTF,A(λ) given by

∣
∣
∣Pr

[
AABM.LTag(ABM.tk,·)(1λ,ABM.ek) = 1

]
− Pr

[
AOT (·)(1λ,ABM.ek) = 1

]∣
∣
∣

is negligible in λ, where (ABM.ek,ABM.ik,ABM.tk) ← ABM.Gen(1λ), the call
ABM.LTag(ABM.tk, ·) returns a lossy tag, and OT (·) returns a random tag in T .

Evasiveness. Evasiveness asks that lossy and invalid tags be computationally
hard to find, even given multiple lossy tags. That is, for all PPT adversary A,
for (ABM.ek,ABM.ik,ABM.tk) ← ABM.Gen(1λ), A has negligible advantage

AdvevaABM-LTF,A(λ) = Pr
[
AABM.LTag(ABM.tk,·),O(·)(1λ,ABM.ek) = tag ∈ Tloss ∪ Tinvalid

]

where the oracle O(·) takes as input a tag tag output from A and returns answers
“lossy/invalid” and “injective” indicating the type of tag.

4 All-But-Many Lossy Trapdoor Function from LWE

We now present our main construction, which borrows and combines various
ideas from many different sources, primarily [7,10,14,29]; we also credit an
anonymous source for suggesting the marriage of weak PRFs with chameleon
hashing.

4.1 Basic LTF from [10]

We recall the lattice-based LTF proposed by Bellare et al. [10], which is the basis
of our ABM-LTF construction.

Let c > 1 and b ≥ 2 be two constants. Let n1 ≥ 2 be an integer, q ≥ 2 be a
large enough prime. Let n = cn1 and w = logb q. Let m̄ be any integer such that
m̄ > n logb q+ω(log n), and m = m̄+2nw = Θ(n logb q). Let β and γ be integers
such that 1 < γ < β < q. Define Iβ = {0, 1, · · · , β−1} and Iγ = {0, 1, · · · , γ−1}.
Let Ĝ ∈ Z

2n×2nw
q be the gadget matrix.

– LTF.Gen(1λ, loss) The lossy function generation algorithm dose the following:
1. Sample A′ ∈ Z

n1×m̄
q , E1 ← χm̄×(n−n1), E2 ← χn1×(n−n1).

2. Compute A =
[

A′

Et
1 + Et

2A
′

]

∈ Z
n×m̄
q .

3. Sample R ← Dm̄×2nw
Z,b·ω(

√
log n)

.

4. Set LTF.ek: F = [A|AR] ∈ Z
n×(m̄+2nw)
q .
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– LTF.Gen(1λ, inj) The injective trapdoor function generation algorithm does
the following:
1. Sample A′ ∈ Z

n1×m̄
q , E1 ← χm̄×(n−n1), E2 ← χn1×(n−n1).

2. Compute A =
[

A′

Et
1 + Et

2A
′

]

∈ Z
n×m̄
q .

3. Sample R ← Dm̄×2nw
Z,b·ω(

√
log n)

and H ∈ Z
n×2n
q with rank n.

4. Set LTF.ek = F = [A|AR + HĜ] ∈ Z
n×(m̄+2nw)
q and LTF.ik = (R,H, Ĝ)

– LTF.Eval(LTF.ek,x) For x ∈ Im+n1
β × In−n1

γ , the evaluation algorithm returns

yt = gF(x) = xt

[
Im

F

]

mod q

– LTF.Inv(LTF.ik,y) Given y, the inversion algorithm outputs x =
Invert(F,R,H,y).

The invertibility of the basic lossy trapdoor function directly relies on
Lemma 7. The lossiness and the indistinguishability of the function gF(·) relies
on the following two lemmas.

Lemma 9 (Lemma 5.4, [9]). Let F = [A|AR] ∈ Z
n×m
q be as generated by

LTF.Gen(1λ, loss) under the conditions γc−1 ≥ 2Ω(m/n1) and β ≥ γ · s1(Ẽ) where

Ẽt = [Et
1|Et

1 · R|Et
2]. The function gF(x) = xt

[
Im

F

]

mod q, where x ∈ Im+n1
β ×

In−n1
γ , is an Ω(m)-lossy function.

Lemma 10 (Lemma 5.7, [9]). For any PPT adversary A against the indistin-
guishability of above LTF with advantage AdvindLTF,A(λ), there exists an adversary
B against LWEn1,q,χ such that

AdvindLTF,A(λ) ≤ 2 · AdvLWEn1,n−n1,q,χ

NF,B + negl(λ)

for some negligible probability negl(λ).

4.2 Our Construction of ABM-LTF

Let n1 ≥ 2, m̄ ≥ 2 be integers, q ≥ 2 be a prime. Let n = cn1, w = logb q
for constants c and b. Set m = m̄ + 2nw. Let β and γ be integers such that
1 < γ < β < q. Define Iβ = {0, 1, · · · , β − 1} and Iγ = {0, 1, · · · , γ − 1}.
Let CH = (CH.Gen,CH.Eval,CH.Equiv) be a secure chameleon hash function
with equivocation indistinguishability. Let UH = {UHs : {0, 1}�′ → {0, 1}�} for
s ∈ {0, 1}t′

.

– ABM.Gen(1λ, d) The key generation algorithm does the following steps:
1. Choose A′ $←− Z

n1×m̄
q , E2

$←− χn1×(n−n1), E1 ← χm̄×(n−n1) and set

A =
[

A′

Et
2A

′ + Et
1

]

∈ Z
n×m̄
q
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2. Select a weak PRF WPRF : {0, 1}t × {0, 1}� → {0, 1}. Select K $←−
{0, 1}h×t. We denote by ki ∈ {0, 1}t the i-th row of K, to serve as
an independent key for WPRF. We denote by ki,j ∈ {0, 1} the j-th

bit of ki. Select a universal hash function UHs
$←− UH with hidden

key s = s1 . . . st′ ∈ {0, 1}t′
. Express the function WPRF(·,UH·(·)) as a

Boolean circuit CWPRF with gate fan-in 2 and depth d.
3. Sample a set of low-norm matrices {Rki,j

}i∈[h],j∈[t], {Rsi
}i∈[t′] from the

distribution Dm̄×2nw
Z,b·ω(

√
log n)

. Compute Cki,j
= ARki,j

+ ki,jG and Csi
=

ARsi
+ siG.5

4. Sample a set of low-norm matrices {RHi
}i∈[h] for RHi

← Dm̄×2nw
Z,b·ω(

√
log n)

.

Sample a set of random rank-n matrices {Hi}i∈[h] for Hi
$←− Z

n×2n
q .

Compute ĈHi
= ARHi

+ HiĜ ∈ Z
n×2nw
q for i ∈ [h].6

5. Select Z ← Dm̄×2nw
Z,b·ω(

√
log n)

, and compute ĈZ = ARZ + ZĜ.

6. Run CH.Gen(1λ) to generate a chameleon hash key Hk and a trapdoor Td.
Assume this chameleon hash function has message space XCH = {0, 1}∗,
randomness space RCH and output space {0, 1}�′

.
7. Set the public evaluation key

ABM.ek =
(
WPRF, CWPRF,A, {Cki,j

}i∈[h],j∈[t],

{Csi
}i∈[t′], {ĈHi

}i∈[h], ĈZ,Hk

)

the private inversion key

ABM.ik =
(

WPRF, CWPRF,K, s, {Rki,j
}i∈[h],j∈[t],

{Rsi
}i∈[t′], {Hi}i∈[h], {RHi

}i∈[h],Z,RZ

)

and the lossy tag generation key

ABM.tk =
(
WPRF, CWPRF,K, s, {Hi}i∈[h],Z,Td

)

– Tags. A tag has form tag = (tp, ta). The primary tag part tp = (D, R) ∈
Z

2n×2n
q × RCH and the auxiliary tag part ta ∈ {0, 1}∗. Set the tag space as

T = Z
2n×2n
q × RCH × {0, 1}∗. With a tag tag = ((D, R), ta), we can compute

μ = CH.Eval(Hk, (D, ta);R) ∈ {0, 1}�′
. Let

H = ZD −
h∑

i=1

WPRF(ki,UHs(μ)) · Hi (mod q)

We define

tag ∈

⎧
⎨

⎩

Tinj if H has rank n;
Tloss if H = 0;

Tinvalid if H has rank �= 0 and �= n.

5 G is the gadget matrix with dimensions n-by-2nw.
6 Ĝ is the gadget matrix with dimensions 2n-by-2nw.
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– ABM.Eval(ABM.ek, tag,x) For input x ∈ Im+n1
β × In−n1

γ , the algorithm does:
1. Let tag = (tp, ta) = ((D, R), ta) ∈ T , compute μ = CH.Eval ((D, ta);R) ∈

{0, 1}�′
.

2. Let μi ∈ {0, 1} be the i-th bit of μ. Compute

C̃i = EvalBV(CWPRF,Cki,1 , . . . ,Cki,t
,Cs1 , . . . ,Cst′ , μ1G, . . . , μ�′G)

= AR̃i + WPRF(ki,UHs(μ))G (mod q)

for some low-norm R̃i ∈ Z
m̄×2nw and i ∈ [h] .

3. Compute C̄ = ĈZĜ−1(DĜ) = A(RZĜ−1(DĜ)) + (ZD)Ĝ = AR̄ +
(ZD)G, where R̄ ∈ Z

m̄×2nw is of low norm.
4. Set

F = [A|C̄] − [0|
∑h

i=1
C̃i · G−1(ĈHi

)] mod q

= [A|AR + (ZD −
∑h

i=1
(WPRF(ki,UHs(μ)) · Hi)Ĝ] mod q

= [A|AR + HĜ] mod q

for the unknown low-norm Z
m̄×2nw-matrix

R = R̄ −
∑h

i=1

(
R̃i · G−1(ĈHi

) + WPRF(ki,UHs(μ)) · RHi

)
(1)

Notice that here R is unknown to the the function evaluator, and, how-
ever, is known to the inversion algorithm ABM.Inv which has the knowl-
edge of ABM.ik.

5. Compute the output of the function yt = gF(x) = xt

[
Im̄+2nw

F

]

mod q.

– ABM.Inv(ABM.ik, tag,y) The inversion algorithm takes as input an inversion
key ABM.ik, an injective tag tag ∈ Tinj and an image y. It does the following:
1. Let tag = ((D, R), ta), compute μ = CH.Eval(Hk, (D, ta);R) ∈ {0, 1}�′

.
2. Compute F = [A|AR + HĜ] as the algorithm ABM.Eval.
3. Use the knowledge of ABM.ik to compute the low-norm R by the formula

1 and compute H = ZD −
∑h

i=1 WPRF(ki,UHs(μ)) · Hi (mod q). Notice
H has rank n.

4. Call the algorithm Invert(F,R,H,y) to get x.
– ABM.LTag(ABM.tk) The lossy tag generation algorithm takes as input the

lossy tag generation key ABM.tk. It does the following:
1. Randomly select a tag tag′ = ((D′, R′), t′

a) ∈ T and compute μ =
CH.Eval(Hk, (D′, t′

a);R
′).

2. Solve for D ∈ Z
2n×2n
q such that ZD =

∑h
i=1(WPRF(ki,UHs(μ)) · Hi)

(mod q).
3. Randomly select ta ∈ {0, 1}∗.
4. Compute R = CH.Equiv(Td, ((D′, t′

a), R
′),D) and output tag =

((D, R), ta).
It is easy to check that the algorithm indeed outputs a lossy tag.
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4.3 Correctness

We show in the following theorems that our ABM-LTFs are invertible with
injective tags and lossy with lossy tags.

Theorem 1. For our construction, randomly sampled tags are injective tags
with all but negligible probability. In addition, for any injective tag tag ∈ Tinj, the
function gF(·) is invertible with overwhelming probability, where F = [A|AR +
HĜ] ∈ Z

n×m
q was computed via ABM.Eval with tag.

Proof. Let tag = ((D, R), tp) be a randomly sampled tag; that is, D $←− Z
2n×2n
q ,

R
$←− RCH and tp

$←− {0, 1}∗. We have ZD mod q is uniformly random over
Z

n×2n
q , thus, so is H. By Lemma 1, H has rank n except negligible probability.

Hence, tag = ((D, R), tp) is an injective tag.
Since ‖x‖ ≤ β · √

m, we can bound β (with large enough q) to ensure that
‖x‖ ≤ q/Θ(b · s1(R)). We then apply Lemma 7 to conclude the proof. 	


Theorem 2. With our parameter restrictions (see also parameter selection in
Sect. 4.4), for any lossy tag tag ∈ Tloss, the function gF(·) is Ω(m)-lossy, where
F = [A|AR] ∈ Z

n×m
q computed via ABM.Eval using tag, and m = Θ(n logb q).

Proof. This proof borrows from the proof of Lemma 9 which follows directly
from the proof of Lemma 5.4 of [9].

By the construction of F ∈ Z
n×m
q we have

gF(x) = xt

[
Im

F

]

mod q = (xt

⎡

⎢
⎢
⎣

Im̄

I2nw

In1

Et
1 Et

1 · R Et
2

⎤

⎥
⎥
⎦)

⎡

⎣
Im̄

I2nw

A′ A′R

⎤

⎦ mod q

= (xt

[
Im+n1

Ẽt

]

)
[
Im

F′

]

mod q

It suffices to bound the number of possible values of xt

[
Im+n1

Ẽt

]

∈ Z
n1+m.

By the triangle inequality, we have
∥
∥
∥
∥x

t

[
Im+n1

Ẽt

]∥
∥
∥
∥ ≤ β

√
n1 + m + s1(Ẽ) · γ

√
n − n1 ≤

√
n1 + m · (β + γ · s1(Ẽ))

Define Nd(r) to be the number of integer points in a d-dimensional Euclidean ball
of radius r. For r ≥

√
d, from the volume of the ball and Stirling’s approximation,

we have Nd(r) = O(r/
√

d)d. So the number of possible values of xt

[
Im+n1

Ẽt

]

is

O(β + γ · s1(Ẽ))n1+m.
By the structure of F, γ ≥ 2Ω(m/n1) and γ ≤ q1/C , the base-2 logarithm of

the domain of the function gF(·) is

(n1 + m) log β + n1 log γc−1 ≥ (n1 + m) log β + Ω(m)
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Since β ≥ γ · s1(Ẽ), the base-2 logarithm of the range of the function gF(·) is at
most

(n1 + m) log O(β + γ · s1(Ẽ)) = (n1 + m) log β + O(m)

By choosing a sufficiently large constant in the Ω notation, we have log |D| −
log |R| = Ω(m). We conclude that the function gF(·) is Ω(m)-lossy. 	


Setting β and γ. The restrictions on β and γ originate from two lemmas.
Firstly, for invertibility (Lemma 7), we need ‖x‖ ≤ β

√
m < q/Θ(b · s1(R)).

Secondly, for lossiness (Lemma 9), we need γc−1 ≥ 2Ω(m/n1) where m =
Θ(n logb q) = Θ(cn1 logb q), and γ · s1(Ẽ) ≤ β; hence γ ≥ qΘ(1/ log b)·c/(c−1).

For any desired constant C > 1, we can set up constants c > 1 and b ≥ 2 so
that γ ≤ q1/C . This gives

q1/C · s1(Ẽ) ≤ β ≤ q/Θ(b · s1(R) ·
√

m) (2)

Therefore, it is sufficient to take q large enough such that

q1−1/C ≥ Ω
(
s1(R) · s1(Ẽ) ·

√
m

)
(3)

4.4 Parameter Selections

An instance of parameter selection that meets all requirements of correctness
and security properties is given here.

Firstly, to enable the statistical argument for security, i.e., Lemma 5 and 3,
we set m̄ > n logb q + ω(log n), and for any ε > 0, set h = poly(λ) such that
log(q/(ε2)) ≤ h.

We set the constant C = 6 for Eq. (2), which we can do by picking a suitable
constant c and logarithm radix b.

Instantiating WPRF by the weak PRF from [7], which has fan-in-2 Boolean
circuit implementation in class NC1, and a universal hash function from
Corollary 1, we can get the fan-in-2 Boolean circuit CWPRF in class NC1, i.e.,
CWPRF has input length �′ + t′ + t = poly(λ), and depth η log(�′ + t′ + t) =
η log(poly(λ)), for some constant η > 0.

We now bound the norm of R ∈ Z
m̄×2nw per the formula 1. Firstly we have

s1

(∑h
i=1 R̃i · G−1(ĈHi

) + WPRF(ki,UHs(μ)) · RHi

)

≤ O
(
h · 4d · m̄3/2

)
· ((b − 1) · 2nw) (Lemma 8 and 6)

≤ O
(
h · 4d · m̄3/2 · m̄

)
((b − 1) · 2nw ≤ O(m̄))

≤ O
(
h · 4d · m̄2

)

and

s1(R̄) ≤ 3 · b · ω(
√

log n) · O(
√

m̄) · (b − 1) · 2nw

≤ Õ(m̄3/2)
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So we have

s1(R) ≤ s1

(
h∑

i=1

R̃i · G−1(ĈHi
) + WPRF(ki,UHs(μ))) · RHi

)

+ s1(R̄)

≤ O
(
h · 4d · m̄2

)
+ Õ(m̄3/2)

= Õ(h · 4d · n2
1) (4)

We now choose the LWE noise distribution χ = DZ,2
√

n1 for accommodating
the average-case to worst-case hardness reduction from classical lattice problems,
e.g. SIVP, given by [41]. We bound s1(Ẽ) where Ẽt = [Et

1|Et
1 · R|Et

2] according
to Lemma 9.

s1(Ẽ) ≤ s1(E)(1 + s1(R))

≤ 2
√

n1 · (
√

m̄ + n1 +
√

n − n1)(1 + s1(R)) (by Lemma 4)

= Õ(h · 4d · n3
1)

We now set q through Eq. (3) as

q = Θ
(
(s1(R) · s1(Ẽ) ·

√
m)C/(C−1)

)

= Θ̃
(
(h · 4d · n3

1 · h · 4d · n2
1 · n0.5

1 )C/(C−1)
)

= Θ̃
(
h2.4 · 24.8d · n6.6

1

)

Lastly we fix γ = Õ
(
(h2 · 24d · n5.5

1 )1/(C−1)
)

= Õ
(
h0.4 · 20.8d · n1.1

1

)
≤ q1/C .

To fix β we have γ · s1(Ẽ) = Õ
(
h1.4 · 22.8 · n4.1

1

)
and q/Θ(b · s1(R)

√
m) =

Õ
(
h2.4 · 22.8d · n4.1

1

)
, so to satisfy Eq. (2), we set

γ · s1(Ẽ) ≤ β = Θ̃
(
h2.4 · 24.8d · n6.6

1

)
≤ q/Θ(b · s1(R)

√
m)

Summing up, an example of parameter selection per the foregoing, is:

d = O (log(poly(λ)) ; q = Θ̃
(
h2.4 · 24.8d · n6.6

1

)
; m = Θ(n1 logb q)

β = Θ̃
(
h2.4 · 24.8d · n6.6

1

)
; γ = Õ

(
h0.4 · 20.8d · n1.1

1

)

4.5 Security Proofs

Theorem 3 (Indistinguishability). For any PPT adversary A against indis-
tinguishablity of the above ABM-LTF with advantage AdvindABM,A(λ), there exist
two adversaries A1, A2 and a negligibly small error negl(λ) such that

AdvindABM,A(λ) ≤ Adv
LWEn1,n−n1,q,χ

NF,A1
(λ) + h · AdvWPRF

A2
(λ) + negl(λ) + ε
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Proof. We proceed with the proof using a game sequence. Let Si be the event
that A outputs 1 in the game Game i. In Game 1, all algorithms work exactly
the same as the real scheme. A interacts with ABM.LTag(ABM.tk, ·) which out-
puts lossy tags. So we have

Pr[S1] = Pr
[
AABM.LTag(ABM.tk,·)(1λ,ABM.ek) = 1

]

In Game 2, we change the way of generating public matrix A. Particularly,
we sample A from Z

n×m̄
q uniformly at random. Because A does not affect the

output distribution of ABM.LTag, by the LWE assumption, this change is not
noticeable to A, lest it give an LWE distinguisher. So we have

|Pr[S2] − Pr[S1]| ≤ Adv
LWEn1,n−n1,q,χ

NF,A1
(λ)

for a suitable LWEn1,q,χ adversary A1.
In Game 3, the public evaluation key of the ABM-LTF is set as

ABM.ek =
(
WPRF, CWPRF,A, {Cki,j

}i∈[h],j∈[t], {Csi
}i∈[t′], {ĈHi

}i∈[h], ĈZ,Hk
)

where {Cki,j
}i∈[h],j∈[t], {Csi

}i∈[t′], {ĈHi
}i∈[h], and ĈZ are chosen uniformly

random from Z
n×2nw
q . Accordingly, the low-norm secret matrices in ABM.ik,

which include {Rki,j
}i∈[h],j∈[t], {Rsi

}i∈[t′], {RHi
}i∈[h], and RZ are no longer

needed. It is easy to see that this change does not affect the (output distribution
of) algorithm ABM.LTag. Moreover, by Lemma 5, ABM.ek in Game 3 has a
distribution that is statistically close to the distribution of ABM.ek in Game 2.
So for some negligibly small statistical error negl(λ), we have

|Pr[S3] − Pr[S2]| ≤ negl(λ)

In Game 4, we change the algorithm ABM.LTag. Specifically, in step 2 of
ABM.LTag, we compute ri(UHs(μ)) with random functions ri : {0, 1}� → {0, 1}
instead of WPRF(ki,UHs(μ)) for i ∈ [h]. (Note this does not affect ABM.Eval
which still uses CWPRF.) As μ is uniformly random, for a PPT adversary A2

against WPRF, a straightforward hybrid argument shows that

|Pr[S4] − Pr[S3]| ≤ h · AdvWPRF
A2

(λ)

In Game 5, we randomly sample a matrix S $←− Z
n×2n
q instead of com-

puting S =
∑h

i=1 ri(UHs(μ))Hi mod q as in Game 4. By Corollary 1 with
h ≥ log(q/(ε2)), the statistical distance between the distribution of the random
variable

∑h
i=1 ri(UHs(μ)) · Hi mod q and the uniform distribution over Zn×2n

q is
less than ε. Hence, we have

|Pr[S5] − Pr[S4]| ≤ ε

On the other hand, in Game 5, H = ZD − S mod q with random S. Thus
the pair (D, R) is independent of H. Therefore all tags generated in Game 5
are random tags. So we have

Pr[S5] = Pr
[
AOT (·)(1λ,ABM.ek) = 1

]
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Summing up, we find that adversary A’s advantage AdvindABM-LTF,A(λ) is
∣
∣
∣Pr

[
AABM.LTag(ABM.tk,·)(1λ,ABM.ek) = 1

]
− Pr

[
AOT (·)(1λ,ABM.ek) = 1

]∣
∣
∣

≤ Adv
LWEn1,n−n1,q,χ

NF,A1
(λ) + h · AdvWPRF

A2
(λ) + negl(λ) + ε (5)

which completes the proof. 	


Theorem 4 (Evasiveness). For any PPT adversary A against the evasiveness
of the above ABM-LTF with advantage AdvevaABM-LTF,A(λ), there exist A1, A2, A3

and a negligible function negl(λ) such that

AdvevaABM-LTF,A(λ) ≤ Adv
LWEn1,n−n1,q,χ

NF,A1
(λ) + h · AdvWPRF

A2 (λ) + AdvcollCH,A3(λ) + ε + negl(λ)

Proof. We prove the theorem using a game sequence. Let Si be the event that
A outputs a lossy or invalid tag in Game i. We further consider two types of
(lossy or invalid) tag output by A. We say that a tag tag = ((D∗, R∗), t∗

a) has
Type I if μ∗, which is equal to CH.Eval(Hk, (D∗, t∗

a);R
∗), is also the chameleon

hash output of some previously generated tag. A tag tag = ((D∗, R∗), t∗
a) has

Type II if μ∗ = CH.Eval(Hk, (D∗, t∗
a);R

∗) is not the chameleon hash output
of any previously generated tag. W.l.o.g., we assume that the adversary gets
N = poly(λ) lossy tags {tagi}i∈[N ] = {(Di, Ri), tai}i∈[N ] generated by the lossy
tag generation oracle. Then the adversary adaptively comes up with N ′ = poly(λ)
tags {tag∗

i }i∈[N ′] = {(D∗
i , R

∗
i ), ta

∗
i }i∈[N ′] and gets answers “lossy/invalid” or

“injective” from the oracle O indicating whether theses tags are lossy/invalid or
injective.

In Game 1, A interacts with ABM.LTag(ABM.tk, ·) which works exactly as
in the real system. By hypothesis, we have

AdvevaABM-LTF,A(λ) = Pr[S1]

In Game 2, we sample the public matrix A randomly from Z
n×m̄
q . This does

not affect the output distribution of ABM.LTag. By the LWE assumption, the
change is not noticeable to A; if it is, there is an LWE distinguisher. So we have

|Pr[S2] − Pr[S1]| ≤ Adv
LWEn1,n−n1,q,χ

NF,A1
(λ)

for a suitable LWE adversary A1.
In Game 3, the public evaluation ABM-LTFs is set as

ABM.ek =
(
WPRF, CWPRF,A, {Cki,j

}i∈[h],j∈[t], {Csi
}i∈[t′], {ĈHi

}i∈[h], ĈZ,Hk
)

where {Cki,j
}i∈[h],j∈[t], {Csi

}i∈[t′], {ĈHi
}i∈[h], and ĈZ are chosen uniformly

random from Z
n×2nw
q . Accordingly, the low-norm secret matrices in ABM.ik,

including {Rki,j
}i∈[h],j∈[t], {Rsi

}i∈[t′], {RHi
}i∈[h], RZ, are not needed anymore.

It is easy to see that this change does not affect the (output distribution of)
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algorithm ABM.LTag. Moreover, by Lemma 5, ABM.ek in Game 3 has a distri-
bution that is statistically close to the distribution of ABM.ek in Game 2. So
for some negligibly small statistical error negl1(λ), we have

|Pr[S3] − Pr[S2]| ≤ negl1(λ)

In Game 4, we make the following changes. In step 2 of ABM.LTag, for
any μ, instead of computing S =

∑h
i=1 WPRF(ki,UHs(μ))Hi mod q, we sample

S $←− Z
n×2n
q . For all queries {tag∗

i }i∈[N ′] to O, we return the answer “injective”.
We prove by induction that distinguishing between this game and the previ-

ous one implies a distinguisher for the WPRF. Notice that since the μi for all
the issued lossy tags are random according to ABM.LTag, their images UHs(μi)
are also random.

For the base step, suppose N ′ = 1 (the case N ′ = 0 is vacuous). In Game 3, O
answers honestly by computing H = ZD −

∑h
i=1 WPRF(ki,UHs(μ∗

1))Hi mod q.
Since UHs(μ∗

1) is random and jointly random with all independently sampled
UHs(μi), by Corollary 1 and the security of WPRF, the Game-3 distribution
{
∑h

j=1 WPRF(Kj ,UHs(μi))Hij}i∈[N ] ∪{
∑h

j=1 WPRF(Kj ,UHs(μ∗
1))Hj} and the

Game-4 distribution {Si
$←− Z

n×2n
q }i∈[N ] ∪ {S $←− Z

n×2n
q } are computationally

distinguishable with probability at most h ·AdvWPRF
A2

(λ)+ ε for a suitable WPRF
adversary A2. Moreover, since for μ∗

1 from tag∗
1 in Game 4 the matrix S is

random, so is H, the adversary always gets the answer “injective” except with
negligible probability ε. This shows that |Pr[S4] − Pr[S3]| ≤ h · AdvWPRF

A2
(λ) +

ε + N ′ · ε when N ′ = 1.
For the inductive step, assume that the above holds for k = N ′ − 1 ≥ 1.

Accordingly, inGame 4, for tags {tag∗
i }i∈[k], we simply answer “injective” without

even looking at the query μ∗
i ; we look at the N ′-th query tag tag∗

k+1. In Game 3,
we honestly derived the same “injective” answers for the first k guesses, and the
last answer is computed as H = ZD −

∑h
i=1 WPRF(ki,UHs(μ∗

k+1))Hi mod q.
Since WPRF in Game 4 is only evaluated on {UHs(μi)}i∈[N ] ∪ {UHs(μ∗

k+1)}
which by construction is jointly uniformly random, and since in Game 3 by
inductive hypothesis the answers were all “injective”, the inductive hypothesis
continues to hold, and we have |Pr[S4] − Pr[S3]| ≤ h ·AdvWPRF

A2
(λ) + ε + k · ε + ε.

Therefore we have for all N ′ = poly(λ), and taking N ′ · ε = negl2(λ),

|Pr[S4] − Pr[S3]| ≤ h · AdvWPRF
A2

(λ) + ε + negl2(λ)

Notice that {tagi}i∈[N ] generated in Game 4 are distributed as random tags.
In Game 5, the trapdoor Td of the chameleon hash function is not available.

All primary tags are generated randomly, i.e., (D, R) $←− Z
2n×2n
q × RCH. Hence,

Pr[S5] = Pr[S4]

Moreover, for any fresh μ that was not derived from previous queries, S ∈ Z
n×2n
q

will be chosen randomly and independently. In other words, there does not
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exist an adversary that outputs Type II tags with more than some negligi-
ble probability negl2(λ). So we have Pr[S5,I] ≤ negl3(λ). Any Type I out-
put breaches the collision-resistance of the chameleon hash function, therefore
Pr[S5,I] ≤ AdvcollCH,A3

(λ) for some adversary A3. Since Pr[S5] ≤ Pr[S5,I]+Pr[S5,II],
we obtain

Pr[S5] ≤ negl3(λ) + AdvcollCH,A3
(λ)

To sum up, letting negl(λ) = negl1(λ) + negl2(λ) + negl3(λ) + ε, we have

AdvevaABM-LTF,A(λ) ≤ Adv
LWEn1,n−n1,q,χ

NF,A1
(λ) + h · AdvWPRF

A2
(λ) (6)

+ AdvcollCH,A3
(λ) + negl(λ)

This concludes the proof. 	


5 IND-SO-CCA2 Secure PKE from Lattices

Using the constructions from [27,29] as a guide, we build the first LWE-based
IND-SO-CCA2-secure public-key encryption scheme with our LWE-based ABM-
LTF. In our construction, we take the advantage of the chameleon hash function
embedded in our ABM-LTF. Our apprach also draws the idea from [42] in which
transformations from tag-based PKE schemes to IND-CCA2 PKE schemes are
proposed with the help of chameleon hashing.

5.1 Definition of IND-SO-CCA2 Security

A public-key encryption scheme Π consists of three PPT algorithms: KeyGen,
Encrypt and Decrypt. KeyGen(1λ) takes as input a security parameter λ, outputs
a public key pk and a private key sk. We define the message space Mλ, random-
ness space Rλ and the ciphertext space Cλ in the obvious way. Encrypt(pk,m; r)

encrypts a message m ∈ Mλ using pk and randomness r
$←− Rλ, and outputs

a ciphertext ct. Decrypt(sk, ct) recovers the message m from ct using sk. The
correctness of a PKE scheme requires that for all m ∈ Mλ, valid randomness
r ∈ Rλ, and (pk, sk) ← KeyGen(1λ),

Pr [m = Decrypt (sk,Encrypt(pk,m; r))] ≥ 1 − negl(λ)

for some negligible function negl(λ).

Selective Opening Security. Suppose that a vector of messages, coming from
some joint distribution dist, has been encrypted into a vector of ciphertexts, and
sent out. A “selective opening” attack allows an adversary to choose a subset
of these ciphertexts and have them “opened”, revealing their messages and the
random coins used during encryption.

The opened messages, random coins, and distribution dist might help the
adversary to learn information about the remaining messages, in the unopend
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ciphertexts. Selective opening security means that the content of the unopend
ciphertexts remains secure in that scenario.

There are a few different ways of formalising selective opening security. As
in [29], we are considering the indistinguishability-based definition of security
against chosen-ciphertext attacks (referred to as IND-SO-CCA2) with respect
to joint message distributions that are efficiently re-sampleable.

Definition 4. (Efficient Resampling). Let N = N(λ) > 0, let Mλ be the
message space, and let dist be a joint distribution over MN

λ . We say that dist
is efficiently re-samplable if there is a PPT algorithm ReSamp such that for any
I ⊂ [N ] and any partial vector (m′(i))i∈I ∈ M|I|

λ , ReSamp samples from the
distribution dist, conditioned on m(i) = m′(i) for all i ∈ I.

The IND-SO-CCA2 security essentially requires that no efficient adversary
can distinguish the unopened messages from fresh messages drawn from the same
joint distribution conditioned on the opened messages.

Definition 5. (IND-SO-CCA2 Security). A public-key encryption scheme
Π = (KeyGen,Encrypt,Decrypt) has IND-SO-CCA2 security iff for every poly-
nomial N = N(λ), and every PPT adversary A, we have that

Advind-so-ccaΠ,A (λ) =
∣
∣
∣Pr

[
Expind-so-cca-bΠ,A (λ) = 1

]
− 1/2

∣
∣
∣

is negligible, where the experiment Expind-so-cca-bΠ,A (λ) is defined in Fig. 1.
The adversary A is required to output the resampling algorithm ReSamp as

per Fig. 1, and never to submit any challenge ciphertext ct(i) to the decryption
oracle Decrypt(sk, ·).

Experiment Expind-so-cca-bΠ,A (λ)

1. b
$←− {0, 1}

2. (pk, sk) ← KeyGen(1λ)
3. (dist,ReSamp) ← ADecrypt(sk,·)(pk)
4. m0 = (m(i))i∈[N ] ← dist

5. r = (r(i))i∈[N ] ← (Mλ)N

6. c =
(
ct(i)

)
i∈[N ]

=
(
Encrypt(pk,m(i); r(i))

)
i∈[N ]

7. I ← ADecrypt(sk,·)(pk, c)
8. m1 = ReSamp(dist,mI)

9. b′ ← ADecrypt(sk,·)
(
mb, {m(i), r(i)}i∈I

)

10. Return 1 if b′ = b, and 0 otherwise

Fig. 1. Security experiment of IND-SO-CCA2 security
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5.2 Construction of IND-SO-CCA2 PKE

Let λ be the security parameter and κ = ω(log λ). Let ABM-LTF =
(ABM.Gen, ABM.Eval, ABM.Inv) be an l-lossy ABM-LTF with domain D =
Im+n1
β × In−n1

γ as constructed before. Assume X = In1
β × In−n1

γ . Let LTF =
(LTF.Gen, LTF.Eval, LTF.Inv) be an l′-lossy LTF with domain D. Without loss of
generality, we assume l ≥ l′. Let UH be a family of universal hash functions from
D× Im

β → {0, 1}τ with τ ≤ (l + l′ − log |X| − 2λ) − 2 log(1/ε) for some negligible
ε = negl(λ)7. Let B = Θ(b · s1(R)) as in Lemma 7. The message space is {0, 1}τ .
The PKE scheme Π = (KeyGen,Encrypt,Decrypt) is as follows.

– KeyGen(1λ) The key generation algorithm does:
1. Run (ABM.ek,ABM.ik,ABM.tk) ← ABM.Gen(1λ).
2. Run (LTF.ek, LTF.ik) ← LTF.Gen(1λ, inj).
3. Set the public key pk = (LTF.ek,ABM.ek) and private key sk =

(LTF.ik,ABM.ik).
– Encrypt(pk,m; r) To encrypt m ∈ {0, 1}τ , the encryption algorithm does:

1. Randomly select e1, e2
$←− Im

β , x $←− In1
β × In−n1

γ ; Set xt
1 = [et

1|xt], xt
2 =

[et
2|xt] ∈ D.

2. Randomly select a universal hash function UHk
$←− UH.8

3. Compute y1 = LTF.Eval(LTF.ek,x1) and ρ = UHk(x, e1, e2) ⊕ m.
4. Set tag = (tp, ta) for randomly sampled tp = (D, R) and ta =

(UHk, ρ,x2), then compute μ = CH.Eval(Hk, (D, ta,y1);R).
5. Use μ as the input of the step 2 of the algorithm ABM.Eval, and compute

the output of ABM-LTF: y2 = ABM.Eval(ABM.ek, tag,x2).
6. Set the ciphertext ct = (y1,y2, tp,UHk, ρ, μ).

Note the randomness of this encryption r = tag where all elements in tag are
public except x2.

– Decrypt(sk, ct) The decryption algorithm does:
1. Parse the ciphertext as ct = (y1,y2, tp,UHk, ρ, μ).
2. Run LTF.Inv(LTF.ik,y1) to get xt

1 = [et
1|xt]; Reject if ‖e1‖ > B.

3. Let F be the matrix derived at the step 2 of ABM.Inv. Compute et
2 =

yt
2 − xtF; Reject if ‖e2‖ > B; Otherwise, go to the next step.

4. Compute μ′ = CH.Eval(Hk, (D, ta,y1);R) where ta = (UHk, ρ,x2); if μ′ �=
μ, reject; Otherwise go to the next step.

5. Output the message m = ρ ⊕ UHk(x, e1, e2).

The correctness of decryption algorithm can be easily checked.

7 We can satisfy this condition with large enough l, l′ from the LTF and our ABM-LTF.
8 Note the family of universal hash functions is used for masking the message and not

the one used in the construction of ABM-LTF.
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5.3 Security Proof

Theorem 5. Suppose that the ABM-LTF specified above is secure. Then the
PKE scheme Π = (KeyGen,Encrypt,Decrypt) is IND-SO-CCA2 secure. In par-
ticular, for every PPT adversary A against Π with advantage Advind-so-ccaΠ,A (λ),
there exist PPT adversaries B1, B2 and B3 such that Advind-so-ccaΠ,A (λ)

≤ AdvcollCH,B1
(λ) + AdvindABM-LTF,B2

(λ) + AdvevaABM-LTF,B3
(λ) + AdvindLTF,B4

(λ) + negl(λ)

for the same chameleon hash function CH used in the construction of ABM-LTF,
where AdvcollCH,B1

(λ) is the advantage of B1 against CH that is used in ABM-LTF.

Proof. Recall that in the IND-SO-CCA2 security game (Fig. 1), we have N chal-
lenge ciphertexts. We denote the i-th challenge ciphertext by

ct(i) = (y(i)
1 ,y(i)

2 , t(i)
p ,UHk(i) , ρ(i), μ(i))

where t(i)
p = (D(i), R(i)). Also recall ta = (UHk, ρ,x2) for some xt

2 = [et
2|xt].

And x2 is applied to ABM.Eval with tag = (tp, ta, μ) to generate y2.
We prove the theorem through a game sequence. Let Si be the event that A

outputs 1 in Game i. The first game Game 1 is the same as the experiment
Expind-so-cca-bΠ,A (λ). By definition we have

|Pr[S1] − 1/2| = Advind-so-ccaΠ,A (λ).

In Game 2, we reject all the decryption queries in which the component μ has
already appeared in one of the challenge ciphertexts. If the adversary makes a
decryption query on ciphertext ct = (y1,y2, tp = (D, R),UHk, ρ, μ(i)) where μ(i)

is from some ct(i) = (y1
(i),y(i)

2 , t(i)
p ,UHk(i) , ρ(i), μ(i)), we argue that such query

will be rejected unless the collision resistant property of the chameleon hash
function is broken. Notice that R is the randomness, y2 is the only ciphertext
component that is not a part of the message of the chameleon hash function. Let
ta = (UHk, ρ,x2) and t(i)

a = (UHk(i) , ρ(i),x(i)
2 ). There are three cases:

– If y2 = y(i)
2 and(tp,UH, ρ) = (t(i)

p ,UHk(i) , ρ(i)): In this case the query is
exactly the i-th challenge ciphertext which is invalid.

– If y2 = y(i)
2 and (tp,UH, ρ) �= (t(i)

p ,UHk(i) , ρ(i)): The decryption algorithm
will output x2 in the step 3 (when the ciphertext passes through all test
up to step 3) and recompute μ′. We would have μ �= μ, thus reject the query,
unless CH.Eval(Hk, (D, ta,y1);R) = CH.Eval(Hk, (D(i), t(i)

a ,y(i)
1 );R(i)), which

corresponds to a collision to the chameleon hash function.
– If y2 �= y(i)

2 : Recall that μ = μ(i) is derived from an injective tag. If the query
makes decryption algorithm output x2 at step 3, we must have x2 �= x(i)

2

and, thus, ta �= t(i)
a . Then the query will be reject at step 4 unless an explicit

collision, ((D, ta,y1);R) and (D(i), t(i)
a ,y(i)

1 );R(i)), happens to the chameleon
hash function.
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So Game 2 and Game 1 behave the same unless the collision resistancy of the
chameleon hashing is broken. Thus we have

|Pr[S2] − Pr[S1]| ≤ AdvcollCH,B1
(λ)

for some suitable adversary B1.
In Game 3, lossy tags are generated using ABM.LTag for all challenge cipher-

texts, i.e., ct(i) for i ∈ [N ]. Notice that here we allow the decryption queries made
with lossy tags in which μ �= μ(i). (Of course it is computationally hard to come
up with such queries by the evasiveness of ABM-LTF, which we have not used
yet.) This is because the decryption algorithm in Game 3 does not use ABM-
LTF to invert to get x. Instead, x is recovered by LTF from y1 and then e2

can be uniquely recovered from x and y2. By tag indistinguishability of the
ABM-LTF,

|Pr[S3] − Pr[S2]| ≤ AdvindABM-LTF,B2
(λ)

for some suitable adversary B2.
Recall that in Game 3, we use LTF to invert y1 to get xt

1 = [et
1|xt] and

use y2 and x to recover e2 and, thus x2. In Game 4, we directly use ABM.ik
to invert y2 and get x2. By our correctness of LTF and ABM-LTF, this gives
the same result unless μ in the decryption query is from one of the challenge
ciphertexts, or the queries are made with lossy or invalid tags. The first case
is already excluded in Game 3. The latter case would not happen under the
evasiveness of ABM-LTF. So we have

|Pr[S4] − Pr[S3]| ≤ AdvevaABM-LTF,B3
(λ)

for some suitable adversary B3.
In Game 5, we generate a lossy evaluation key for LTF. We have

|Pr[S5] − Pr[S4]| ≤ AdvindLTF,B4
(λ)

for some suitable adversary B4.
In Game 6, we produce the ρ component in each challenge ciphertext by

randomly sampling a string r
$←− {0, 1}τ and setting ρ = r ⊕ m. As in Game 5,

the y2 components are computed from ABM-LTF with lossy tags on x2 ∈ D for
all challenge ciphertexts. Let |E2| and |X| be the number of possible values of
e2 and x respectively9. Recall xt

1 = [et
1|xt] and xt

2 = [et
2|xt]. By the parameter

selection and Lemma 2, we have

H̃∞(x1,x2|y1,y2, μ) = H̃∞(x, e1, e2|y1,y2, μ)

≥ H∞(x, e1, e2) − (log |D| − l) − (log |D| − l′) − 2λ

≥ log |D| + log |E2| − (log |D| − l) − (log |X| + log |E2| − l′) − 2λ

= l + l′ − log |X| − 2λ

9 Recall that x, e1, e2 are chosen uniformly at random from certain intervals.
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Consequently, by the hypothesis that τ ≤ (l − 2λ) − 2 log(1/ε) and Lemma 3,

Δ ((y1,y2, μ,UHk,UHk(x)), (y1,y2, μ,UHk,Uτ )) ≤ ε = negl(λ)

where Uτ stands for the uniform distribution over {0, 1}τ . So we get

|Pr[S6] − Pr[S5]| ≤ negl(λ)

In Game 6, as all challenge messages are masked by an one-time pad, A gets
no information about them. The original message vector m0 and the condition-
ally resampled message vector m1 come from the same distribution, thus

Pr[S6] = 1/2

Summing up, we obtain that Advind-so-ccaΠ,A (λ)

≤ AdvcollCH,B1
(λ) + AdvindABM-LTF,B2

(λ) + AdvevaABM-LTF,B3
(λ) + AdvindLTF,B4

(λ) + negl(λ)

which completes the proof. 	


5.4 Tightly Secure IND-CCA2 PKE

The above PKE scheme is also a tightly secure PKE scheme with respect to the
multi-ciphertext IND-CCA2 definition adopted by Gay et al. [24] (Definition
6). One can easily modify the IND-SO-CCA2 security proofs into a tight secu-
rity proof with respect to the IND-CCA2 definition, where the security loss is
independent of the number of decryption queries and the number of encryption
queries.

Particularly, such a reduction is able to answer all the decryption queries and
construct all challenge ciphertexts with lossy tags simultaneously, making the
challenge ciphertexts information-theoretically unrecoverable. This IND-CCA2
secure PKE scheme we just outlined is thus the first tightly secure PKE scheme in
the multi-ciphertext IND-CCA2 security model based on the LWE assumptions
(or more generally without using quantumly broken assumptions).

Definition 6 (Multi-ciphertext IND-CCA2 security). A PKE scheme
Π = (KeyGen,Encrypt, dec) is IND-CCA2 secure in the multi-ciphertext setting
if for every PPT adversary A, we have A’s advantage

Advind-cc2aΠ,A (λ) =
∣
∣
∣Pr

[
Expind-cca2Π,A (λ) = 1

]
− 1/2

∣
∣
∣

is negligible in λ where the experiment Expind-cca2Π,A (λ) is defined in Fig. 2.
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Experiment Expind-cca2Π,A (λ)

1. L ← ∅
2. (pk, sk) ← KeyGen((1λ)

3. b
$←− {0, 1}

4. b′ ← AOenc(·,·),Odec(·)(pk)
5. return 1 if b′ = b, 0 otherwise

Oenc(m0,m1)

1. If |m0| �= |m1| return ⊥
2. r

$←− RΠ

3. ct ← Encrypt(pk,mb; r)
4. L ← L ∪ ct

Odec(ct)

1. If ct ∈ L,
return ⊥

2. return
Decrypt(sk, ct)

Fig. 2. Security experiment of IND-CCA2 security

6 Conclusion

In this paper, we have proposed the first All-But-Many Lossy Trapdoor Function
based on lattice assumptions. ABM-LTFs are a very powerful primitive with
potentially many applications in the construction of multi-challenge or multi-
user cryptosystems. Our result answers the two open questions of constructing,
from lattices, ABM-TF (originally posed by Alperin-Sheriff and Peikert [5]) and
ABM-LTF (posed by Hofheinz [29]).

In addition, we have constructed an IND-SO-CCA2-secure PKE scheme from
lattices by taking our ABM-LTF along the path of [27,29]. Our PKE scheme
enjoys a tight security reduction, in the sense that the reduction is independent of
all adversarial queries, including decryption, opening, and challenge ciphertexts.
This gives the first tightly IND-CCA2 secure PKE scheme from LWE, and an
alternative solution, lattice-based, to the problem of constructing tightly secure
CCA PKE without bilinear or multilinear parings [24].

Acknowledgement. We thank Benôıt Libert and Damien Stehlé and the anonymous
reviewers for useful comments.
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Abstract. Selective opening (SO) security refers to adversaries that
receive a number of ciphertexts and, after having corrupted a subset
of the senders (thus obtaining the plaintexts and the senders’ ran-
dom coins), aim at breaking the security of remaining ciphertexts.
So far, very few public-key encryption schemes are known to pro-
vide simulation-based selective opening (SIM-SO-CCA2) security under
chosen-ciphertext attacks and most of them encrypt messages bit-wise.
The only exceptions to date rely on all-but-many lossy trapdoor functions
(as introduced by Hofheinz; Eurocrypt’12) and the Composite Residu-
osity assumption. In this paper, we describe the first all-but-many lossy
trapdoor function with security relying on the presumed hardness of the
Learning-With-Errors problem (LWE) with standard parameters. Our
construction exploits homomorphic computations on lattice trapdoors
for lossy LWE matrices. By carefully embedding a lattice trapdoor in
lossy public keys, we are able to prove SIM-SO-CCA2 security under the
LWE assumption. As a result of independent interest, we describe a vari-
ant of our scheme whose multi-challenge CCA2 security tightly relates
to the hardness of LWE and the security of a pseudo-random function.

Keywords: LWE · Lossy trapdoor functions · Chosen-ciphertext secu-
rity · Selective-opening security · Tight security reductions

1 Introduction

Lossy Trapdoor Functions. As introduced by Peikert and Waters [66], lossy
tradpoor functions (LTFs) are function families where injective functions – which
can be inverted using a trapdoor – are indistinguishable from lossy functions,
where the image is much smaller than the domain. The last decade, they received
continuous attention (see, e.g., [3,37,46,49,71,72]) and found many amazing
applications in cryptography. These include black-box realizations of cryptosys-
tems with chosen-ciphertext (IND-CCA2) security [66], deterministic public-key
c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part III, LNCS 10403, pp. 332–364, 2017.
DOI: 10.1007/978-3-319-63697-9 12
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encryption in the standard model [19,26,68] and encryption schemes retaining
some security in the absence of reliable randomness [8,10]. As another prominent
application, they enabled the design [11,16] of encryption schemes secure against
selective-opening (SO) adversaries, thereby providing an elegant solution to a 10
year-old problem raised by Dwork et al. [35].

When it comes to constructing CCA2-secure [67] encryption schemes, LTFs
are often combined with all-but-one trapdoor functions (ABO-LTFs) [66], which
enable a variant of the two-key simulation paradigm [63] in the security proof.
In ABO-LTF families, each function takes as arguments an input x and a tag
t in such a way that the function fabo(t, ·) is injective for any t, except a spe-
cial tag t∗ for which fabo(t∗, ·) behaves as a lossy function. In the security proof
of [66], the lossy tag t∗ is used to compute the challenge ciphertext, whereas
decryption queries are handled by inverting fabo(t, ·) for all injective tags t �= t�.
One limitation of ABO-LTFs is the uniqueness of the lossy tag t� which must be
determined at key generation time. As such, ABO-LTFs are in fact insufficient to
prove security in attack models that inherently involve multiple challenge cipher-
texts: examples include the key-dependent message [17] and selective opening
[11] settings, where multi-challenge security does not reduce to single-challenge
security via the usual hybrid argument [7].

To overcome the aforementioned shortcoming, Hofheinz [49] introduced all-
but-many lossy trapdoor functions (ABM-LTFs) which extend ABO-LTFs by
allowing the security proof to dynamically create arbitrarily many lossy tags
using a trapdoor. Each tag t = (tc, ta) is comprised of an auxiliary component ta
and a core component tc so that, by generating tc as a suitable function of ta, the
reduction is able to assign a lossy (but random-looking) tag to each challenge
ciphertext while making sure that the adversary will be unable to create lossy
tags by itself in decryption queries. Using carefully designed ABM-LTFs and
variants thereof [50], Hofheinz gave several constructions [49,50] of public-key
encryption schemes in scenarios involving multiple challenge ciphertexts.

Selective Opening Security. In the context of public-key encryption, selec-
tive opening (SO) attacks take place in a scenario involving a receiver and N
senders. Those encrypt possibly correlated messages (Msg1, . . . ,MsgN ) under
the receiver’s public key PK and, upon receiving the ciphertexts (C1, . . . ,CN ),
the adversary decides to corrupt a subset of the senders. Namely, by choosing
I ⊂ [N ], it obtains the messages {Msgi}i∈I as well as the random coins {ri}i∈I

for which Ci = Encrypt(PK,Msgi, ri). Then, the adversary aims at breaking
the security of unopened ciphertexts {Ci}i∈[N ]\I . It is tempting to believe that
standard notions like semantic security carry over to such adversaries due to
the independence of random coins {ri}i∈[N ]. However, this is not true in general
[29] as even the strong standard notion of IND-CCA security [67] was shown
[9,55] not to guarantee anything under selective openings. Proving SO security
turns out to be a challenging task for two main reasons. The first one is that the
adversary must also obtain the random coins {ri}i∈I of opened ciphertexts (and
not only the underlying plaintexts) as reliably erasing them can be very difficult
in practice. Note that having the reduction guess the set I of corrupted senders
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beforehand is not an option since it is only possible with negligible probabil-
ity 1/

(
N

N/2

)
. The second difficulty arises from the potential correlation between

{Msgi}i∈I and {Msgi}i∈[N ]\I , which hinders the use of standard proof techniques
and already makes selective opening security non-trivial to formalize.

Towards properly defining SO security, the indistinguishability-based (IND-
SO) approach [11,16] demands that unopened plaintexts {Msgi}i∈[N ]\I be indis-
tinguishable from independently resampled ones {Msg′

i}i∈[N ]\I conditionally on
the adversary’s view. However, such definitions are not fully satisfactory. Indeed,
since {Msgi}i∈[N ] may be correlated, the resampling of {Msg′

i}i∈[N ]\I must be
conditioned on {Msgi}i∈I to make the adversary’s task non-trivial. This implies
that, in the security game, the challenger can only be efficient for message dis-
tributions that admit efficient conditional resampling, which is a much stronger
restriction than efficient samplability. Indeed, many natural message distribu-
tions (e.g., where some messages are hard-to-invert functions of other messages)
do not support efficient conditional resampling.

Bellare et al. [11,16] defined a stronger, simulation-based (SIM-SO) flavor of
selective opening security. This notion mandates that, whatever the adversary
outputs after having seen {Ci}i∈[N ] and {(Msgi, ri)}i∈I can be efficiently simu-
lated from {Msgi}i∈I , without seeing the ciphertexts nor the public key. Unlike
its indistinguishability-based counterpart, SIM-SO security does not imply any
restriction on the message distributions. While clearly preferable, it turns out
to be significantly harder to achieve. Indeed, Böhl et al. [18] gave an example of
IND-SO-secure scheme that fails to achieve SIM-SO security.

On the positive side, simulation-based chosen-plaintext (SIM-SO-CPA) secu-
rity was proved attainable under standard number theoretic assumptions like
Quadratic Residuosity [16], Composite Residuosity [45] or the Decision Diffie-
Hellman assumption [16,54]. In the chosen-ciphertext (SIM-SO-CCA) scenario,
additionally handling decryption queries makes the problem considerably harder:
indeed, very few constructions achieve this security property and most of them
[36,56,57,59] proceed by encrypting messages in a bit-by-bit manner. The only
exceptions [38,49] to date rely on all-but-many lossy trapdoor functions and
Paillier’s Composite Residuosity assumption [64].

In this paper, we provide SIM-SO-CCA-secure realizations that encrypt many
bits at once under lattice assumptions. Our constructions proceed by homomor-
phically evaluating a low-depth pseudorandom function (PRF) using the fully
homomorphic encryption (FHE) scheme of Gentry, Sahai and Waters [41].

1.1 Our Results

Our contribution is three-fold. We first provide an all-but-many lossy trapdoor
function based on the Learning-With-Errors (LWE) assumption [69]. We tightly
relate the security of our ABM-LTF to that of the underlying PRF and the
hardness of the LWE problem.

As a second result, we use our ABM-LTF to pave the way towards public-
key encryption schemes with tight (or, more precisely, almost tight in the ter-
minology of [31]) chosen-ciphertext security in the multi-challenge setting [7].
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By “tight CCA security”, as in [39,51–53,58], we mean that the multiplica-
tive gap between the adversary’s advantage and the hardness assumption only
depends on the security parameter and not on the number of challenge cipher-
texts. The strength of the underlying LWE assumption depends on the specific
PRF used to instantiate our scheme. So far, known tightly secure lattice-based
PRFs rely on rather strong LWE assumptions with exponential modulus and
inverse error rate [5], or only handle polynomially-bounded adversaries [34] (and
hence do not fully exploit the conjectured exponential hardness of LWE). How-
ever, any future realization of low-depth PRF with tight security under standard
LWE assumptions (i.e., with polynomial approximation factor) could be plugged
into our scheme so as to obtain tight CCA security under the same assumption.
Especially, if we had such a tightly secure PRF with an evaluation circuit in NC1,
our scheme would be instantiable with a polynomial-size modulus by translating
the evaluation circuit into a branching program via Barrington’s theorem [6] and
exploiting the asymmetric noise growth of the GSW FHE as in [27,44].

As a third and main result, we modify our construction so as to prove it secure
against selective opening chosen-ciphertext attacks in the indistinguishability-
based (i.e., IND-SO-CCA2) sense. By instantiating our system with a carefully
chosen universal hash function, we finally upgrade it from IND-SO-CCA2 to
SIM-SO-CCA2 security. For this purpose, we prove that the upgraded scheme
is a lossy encryption scheme with efficient opening. As defined by Bellare et al.
[11,16], a lossy encryption scheme is one where normal public keys are indistin-
guishable from lossy keys, for which ciphertexts statistically hide the plaintext.
It was shown in [11,16] that any lossy cryptosystem is in fact IND-SO-CPA-
secure. Moreover, if a lossy ciphertext C can be efficiently opened to any desired
plaintext Msg (i.e., by finding plausible random coins r that explain C as an
encryption of Msg) using the secret key, the scheme also provides SIM-SO-CPA
security. We show that our IND-SO-CCA-secure construction satisfies this prop-
erty when we embed a lattice trapdoor [40,60] in lossy secret keys.

This provides us with the first multi-bit LWE-based public-key cryptosys-
tem with SIM-SO-CCA security. So far, the only known method [59] to attain
the same security notion under quantum-resistant assumptions was to apply a
generic construction where each bit of plaintext requires a full key encapsula-
tion (KEM) using a CCA2-secure KEM. In terms of ciphertext size, our system
avoids this overhead and can be instantiated with a polynomial-size modulus as
long as the underlying PRF can be evaluated in NC1. For example, the Banerjee-
Peikert PRF [4] – which relies on a much weaker LWE assumption than [5] as
it only requires on a slightly superpolynomial modulus – satisfies this condition
when the input of the PRF is hardwired into the circuit.

As a result of independent interest, we show in the full version of the paper
that lattice trapdoors can also be used to reach SIM-SO-CPA security in lossy
encryption schemes built upon lossy trapdoor functions based on DDH-like
assumptions. This shows that techniques from lattice-based cryptography can
also come in handy to obtain simulation-based security from conventional num-
ber theoretic assumptions.
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1.2 Our Techniques

Our ABM-LTF construction relies on the observation – previously used in [3,
12] – that the LWE function fLWE : Z

n
q × Z

m → Z
m
q : (x, e) → A · x + e is

lossy. Indeed, under the LWE assumption, the random matrix A ∈ Z
m×n
q can

be replaced by a matrix of the form A = B · C + F, for a random B ∈ Z
m×�
q

such that � < n and a small-norm F ∈ Z
m×n, without the adversary noticing.

However, we depart from [3,12] in several ways.
First, in lossy mode, we sample C uniformly in Z

�×n
q (rather than as a small-

norm matrix as in [12]) because, in order to achieve SIM-SO security, we need to
generate C with a trapdoor. Our application to SIM-SO security also requires to
sample (x, e) from discrete Gaussian distributions, rather than uniformly over
an interval as in [12]. Second, we assume that the noise e ∈ Z

m is part of the
input instead of using the Rounding technique1 [5] as in the lossy function of
Alwen et al. [3]. The reason is that, in our ABM-LTF, we apply the LWE-based
function (x, e) → At · x + e for tag-dependent matrices At and, if we were
to use the rounding technique, the lower parts of matrices At would have to
be statistically independent for different tags. Since we cannot guarantee this
independence, we consider the noise term e to be part of the input. In this case,
we can prove that, for any lossy tag, the vector x retains at least Ω(n log n) bits
of min-entropy conditionally on At · x + e and this holds even if {At}t are not
statistically independent for distinct lossy tags t.

One difficulty is that our ABM-LTF only loses less than half of its input bits
for lossy tags, which prevents it from being correlation-secure in the sense of [70].
For this reason, our encryption schemes cannot proceed exactly as in [49,66] by
simultaneously outputting an ABM-LTF evaluation fABM(x, e) = At ·x+ e and
a lossy function evaluation fLTF(x, e) = A · x + e as this would leak (x, e).
Fortunately, we can still build CCA2-secure systems by evaluating fLTF(·) and
fABM(·) for the same x and distinct noise vectors e0, e. In this case, we can prove
that the two functions are jointly lossy: conditionally on (fLTF(x, e0), fABM(x, e)),
the input x retains Ω(n log n) bits of entropy, which allows us to blind the
message as Msg + h(x) using a universal hash function h.

Our ABM-LTF extends the all-but-one trapdoor function of Alwen et al. [3]
by homomorphically evaluating a pseudorandom function. Letting Ā ∈ Z

m×n
q

be a lossy matrix and G ∈ Z
m×n
q denote the gadget matrix of Micciancio and

Peikert [60], the evaluation key of our ABM-LTF contains Gentry-Sahai-Waters
(GSW) encryptions Bi = Ri ·Ā+K[i] ·G ∈ Z

m×n
q of the bits K[i] of a PRF seed

K ∈ {0, 1}λ, where Ri ∈ {−1, 1}m×m. Given a tag t = (tc, ta), the evaluation
algorithm computes a GSW encryption Bt = Rt · Ā + ht · G ∈ Z

m×n
q of the

Hamming distance ht between tc and PRF(K, ta) before using At = [Ā� | B�
t ]�

to evaluate fABM(x, e) = At · x + e. In a lossy tag t = (PRF(K, ta), ta), we
have ht = 0, so that the matrix At = [Ā� | (Rt · Ā)�]� induces a lossy function
fABM(t, ·). At the same time, any injective tag t = (tc, ta) satisfies tc �= PRF(K, ta)

1 The function of [3] maps x to fLWR(x) = �(p/q) ·A ·x�, for some prime moduli p < q.
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and thus ht �= 0, which allows inverting fABM(x, e) = At · x + e using the public
trapdoor [60] of the matrix G.

The pseudorandomness of the PRF ensures that: (i) Lossy tags are indistin-
guishable from random tags; (ii) They are computationally hard to find without
the seed K. In order to prove both statements, we resort to the LWE assumption
as the matrix Ā is not statistically uniform over Z

m×n
q .

Our tightly CCA2-secure public-key cryptosystem uses ciphertexts of the
form (fLTF(x, e0), fABM(x, e),Msg+ h(x)), where ta is the verification key of the
one-time signature. Instantiating this scheme with a polynomial-size modulus
requires a tightly secure PRF which is computable in NC1 when the input of
the circuit is the key (rather than the input of the PRF).2 To overcome this
problem and as a result of independent interest, we provide a tighter proof for
the key-homomorphic PRF of Boneh et al. [21] (where the concrete security loss
is made independent of the number of evaluation queries), which gives us tight
CCA2-security under a strong LWE assumption.

In our IND-SO-CCA2 system, an additional difficulty arises since we can-
not use one-time signatures to bind ciphertext components altogether. One
alternative is to rely on the hybrid encryption paradigm as in [24] by setting
ta = fLTF(x, e0) and encrypting Msg using a CCA-secure secret-key encryption
scheme keyed by h(x). In a direct adaptation of this technique, the chosen-
ciphertext adversary can modify fABM(x, e) by re-randomizing the underlying e.
Our solution to this problem is to apply the encrypt-then-MAC approach and
incorporate fABM(x, e) into the inputs of the MAC so as to prevent the adversary
from randomizing e. Using the lossiness of fABM(·) and fLTF(·), we can indeed
prove that the hybrid construction provides IND-SO-CCA2 security.

In order to obtain SIM-SO-CCA2 security, we have to show that lossy cipher-
texts can be equivocated in the same way as a chameleon hash function. Indeed,
the result of [11,16] implies that any lossy encryption scheme with this prop-
erty is simulation-secure and the result carries over to the chosen-ciphertext
setting. We show that ciphertexts can be trapdoor-opened if we instantiate the
scheme using a particular universal hash function h : Z

n → Z
L
q which maps

x ∈ Z
n to h(x) = HUH · x ∈ Z

L
q , for a random matrix HUH ∈ Z

L×n
q . In order

to generate the evaluation keys ek′ and ek of fLTF and fABM, we use random
matrices BLTF ∈ Z

2m×�
q , CLTF ∈ Z

�×n
q , BABM ∈ Z

m×�
q , CABM ∈ Z

�×n
q as well

as small-norm FLTF ∈ Z
2m×n, FABM ∈ Z

m×n so as to set up lossy matrices
ALTF = BLTF ·CLTF +FLTF and AABM = BABM · CABM +FABM. The key idea is to
run the trapdoor generation algorithm of [60] to generate a statistically uniform
C = [C�

LTF | C�
ABM | H�

UH]� ∈ Z
(2�+L)×n
q together with a trapdoor allowing

to sample short integer vectors in any coset of the lattice Λ⊥(C). By choosing
the target vector t ∈ Z

2�+L
q as a function of the desired message Msg1, the ini-

tial message Msg0 and the initial random coins (x, e0, e), we can find a short
x′ ∈ Z

n such that C ·x′ = t mod q and subsequently define (e′
0, e

′) ∈ Z
2m ×Z

m

2 Note that the same holds for the construction of [22], in which the PRF from [5]
should be replaced by another one which is in NC1 as a function the key (e.g., the
one from [21]).
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so that they explain the lossy ciphertext as an encryption of Msg1 using the
coins (x′, e′

0, e
′). Moreover, we prove that these have the suitable distribution

conditionally on the lossy ciphertext and the target message Msg1.

1.3 Related Work

While selective opening security was first considered by Dwork et al. [35], the
feasibility of SOA-secure public-key encryption remained open until the work
of Bellare, Hofheinz and Yilek [11,16]. They showed that IND-SO security can
be generically achieved from any lossy trapdoor function and, more efficiently,
under the DDH assumption. They also achieved SIM-SO-CPA security under the
Quadratic Residuosity and DDH assumptions, but at the expense of encrypt-
ing messages bitwise. In particular, they proved the SIM-SO security of the
Goldwasser-Micali system [42] and their result was extended to Paillier [45].
Hofheinz, Jager and Rupp recently described space-efficient schemes under DDH-
like assumption. Meanwhile, the notion of SIM-SO-CPA security was realized in
the identity-based setting by Bellare, Waters and Yilek [15]. Recently, Hoang
et al. [48] investigated the feasibility of SO security using imperfect randomness.

Selective opening security was considered for chosen-ciphertext adversaries in
several works [36,49,56,57,59]. Except constructions [38,49] based on (variants
of) the Composite Residuosity assumption, all of them process messages in a bit-
wise fashion, incurring an expansion factor Ω(λ). In the random oracle model
[13], much more efficient solutions are possible. In particular, Heuer et al. [47]
gave evidence that several practical schemes like RSA-OAEP [14] are actually
secure in the SIM-SO-CCA sense.

The exact security of public-key encryption in the multi-challenge, multi-user
setting was first taken into account by Bellare, Boldyreva and Micali [7] who
proved that Cramer-Shoup [32] was tightly secure in the number of users, but
not w.r.t. the number Q of challenge ciphertexts. Using ABM-LTFs, Hofheinz
managed to obtain tight multi-challenge security [49] (i.e., without a security loss
Ω(Q) between the advantages of the adversary and the reduction) at the expense
of non-standard, variable-size assumptions. Under simple DDH-like assumptions,
Hofheinz and Jager [53] gave the first feasibility results in groups with a bilinear
map. More efficient tight multi-challenge realizations were given in [39,51,52,58]
but, for the time being, the only solutions that do not rely on bilinear maps
are those of [39,52]. In particular, constructions from lattice assumptions have
remained lacking so far. By instantiating our scheme with a suitable PRF [5],
we take the first step in this direction (albeit under a strong LWE assumption
with an exponential approximation factor). Paradoxically, while we can tightly
reduce the security of the underlying PRF to the multi-challenge security of our
scheme, we do not know how to prove tight multi-user security.

A common feature between our security proofs and those of [39,51,52,58]
is that they (implicitly) rely on the technique of the Naor-Reingold PRF [62].
However, while they gradually introduce random values in semi-functional spaces
(which do not appear in our setting), we exploit a different degree of freedom
enabled by lattices, which is the homomorphic evaluation of low-depth PRFs.
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The GSW FHE scheme [41] inspired homomorphic manipulations [20] of
Micciancio-Peikert trapdoors [60], which proved useful in the design of attribute-
based encryption (ABE) for circuits [20,28] and fully homomorphic signa-
tures [43]. In particular, the homomorphic evaluation of PRF circuits was con-
sidered by Brakerski and Vaikuntanathan [28] to construct an unbounded ABE
system. Boyen and Li [22] used similar ideas to build tightly secure IBE and
signatures from lattice assumptions. Our constructions depart from [22] in that
PRFs are also used in the schemes, and not only in the security proofs. Another
difference is that [22,28] only need PRFs with binary outputs, whereas our ABM-
LTFs require a PRF with an exponentially-large range in order to prevent the
adversary from predicting its output with noticeable probability.

We finally remark that merely applying the Canetti-Halevi-Katz para-
digm [30] to the Boyen-Li IBE [22] does not imply tight CCA2 security in the
multi-challenge setting since the proof of [22] is only tight for one identity: in a
game with Q challenge ciphertexts, the best known reduction would still lose a
factor Q via the standard hybrid argument.

Concurrent Work. In a concurrent and independent paper, Boyen and Li [23]
proposed an LWE-based all-but-many lossy trapdoor function. While their con-
struction relies on a similar idea of homomorphically evaluating a PRF over
GSW ciphertexts, it differs from our ABM-LTF in several aspects. First, their
evaluation keys contain GSW-encrypted matrices while our scheme encrypts
scalars. As a result, their security proofs have to deal with invalid tags (which
are neither lossy nor efficiently invertible with a trapdoor) that do not appear
in our construction. Secondly, while their ABM-LTF loses more information on
its input than ours, it does not seem to enable simulation-based security. The
reason is that their use of small-norm LWE secrets (which allows for a greater
lossiness) makes it hard to embed a lattice trapdoor in lossy keys. As a result,
their IND-SO-CCA2 system does not readily extend to provide SIM-SO-CCA2
security. An advantage of their scheme is that it requires only a weak PRF rather
than a strong PRF. This is a real benefit as weak PRFs are much easier to design
with a low-depth evaluation circuit.

2 Background

For any q ≥ 2, we let Zq denote the ring of integers with addition and multi-
plication modulo q. We always set q as a prime integer. If x is a vector over R,
then ‖x‖ denotes its Euclidean norm. If M is a matrix over R, then ‖M‖ denotes
its induced norm. We let σn(M) denote the least singular value of M, where n
is the rank of M. For a finite set S, we let U(S) denote the uniform distribution
over S. If X is a random variable over a countable domain, the min-entropy of X
is defined as H∞(X) = minx(− log2 Pr[X = x]). If X and Y are distributions
over the same domain, then Δ(X,Y ) denotes their statistical distance.

2.1 Randomness Extraction

We first recall the Leftover Hash Lemma, as it was stated in [1].
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Lemma 1 ([1]). Let H = {h : X → Y }h∈H be a family of universal hash
functions, for countable sets X,Y . For any random variable T taking values in
X, we have Δ

(
(h, h(T )), (h,U(Y ))

)
≤ 1

2 ·
√

2−H∞(T ) · |Y |. More generally, let
(Ti)i≤k be independent random variables with values in X, for some k > 0. We
have Δ

(
(h, (h(Ti))i≤k), (h, (U(Y ))(i))i≤k))

)
≤ k

2 ·
√

2−H∞(T ) · |Y |.

A consequence of Lemma 1 was used by Agrawal et al. [1] to re-randomize
matrices over Zq by multiplying them with small-norm matrices.

Lemma 2 ([1]). Let us assume that m > 2n · log q, for some prime q > 2. For
any k ∈ poly(n), if A ←↩ U(Zm×n

q ), B ←↩ U(Zk×n
q ), R ←↩ U({−1, 1}k×m), the

distributions (A,R · A) and (A,B) are within 2−Ω(n) statistical distance.

2.2 Reminders on Lattices

Let Σ ∈ R
n×n be a symmetric definite positive matrix, and c ∈ R

n. We define
the Gaussian function on R

n by ρΣ,c(x) = exp(−π(x − c)�Σ−1(x − c)) and if
Σ = σ2 · In and c = 0 we denote it by ρσ. For an n-dimensional lattice Λ, we
define ηε(Λ) as the smallest r > 0 such that ρ1/r(Λ̂ \ 0) ≤ ε with Λ̂ denoting
the dual of Λ, for any ε ∈ (0, 1). In particular, we have η2−n(Zn) ≤ O(

√
n). We

denote by λ∞
1 (Λ) the infinity norm of the shortest non-zero vector of Λ.

For a matrix A ∈ Z
m×n
q , we define Λ⊥(A) = {x ∈ Z

m : x� · A = 0 mod q}
and Λ(A) = A · Zn + qZm.

Lemma 3 (Adapted from [40, Lemma 5.3]). Let m ≥ 2n and q ≥ 2 prime.
With probability ≥ 1−2−Ω(n), we have η2−n(Λ⊥(A)) ≤ η2−m(Λ⊥(A)) ≤ O(

√
m)·

qn/m and λ∞
1 (Λ(A)) ≥ q1−n/m/4.

Let Λ be a full-rank n-dimensional lattice, Σ ∈ R
n×n be a symmetric definite

positive matrix, and x′, c ∈ R
n. We define the discrete Gaussian distribution of

support Λ + x′ and parameters Σ and c by DΛ+x′,Σ,c(x) ∼ ρΣ,c(x), for every
x ∈ Λ + x′. For a subset S ⊆ Λ + x′, we denote by DS

Λ+x′,Σ,c the distribution
obtained by restricting the distribution DΛ+x′,Σ,c to the support S. For x ∈ S,
we have DS

Λ+x′,Σ,c(x) = DΛ+x′,Σ,c(x)/pa, where pa(S) = DΛ+x′,Σ,c(S). Assum-
ing that 1/pa(S) = nO(1), membership in S is efficiently testable and DΛ+x′,Σ,c

is efficiently samplable, the distribution DS
Λ+x′,Σ,c can be efficiently sampled

from using rejection sampling.
We will use the following standard results on lattice Gaussians.

Lemma 4 (Adapted from [25, Lemma 2.3]). There exists a ppt algorithm
that, given a basis (bi)i≤n of a full-rank lattice Λ, x′, c ∈ R

n and Σ ∈ R
n×n

symmetric definite positive such that Ω(
√

log n) · maxi ‖Σ−1/2 · bi‖ ≤ 1, returns
a sample from DΛ+x′,Σ,c.

Lemma 5 (Adapted from [61, Lemma 4.4]). For any n-dimensional lattice Λ,
x′, c ∈ R

n and symmetric positive definite Σ ∈ R
n×n satisfying σn(

√
Σ) ≥

η2−n(Λ), we have Prx←↩DΛ+x′,Σ,c
[‖x − c‖ ≥ √

n · ‖
√

Σ‖] ≤ 2−n+2.
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Lemma 6 (Adapted from [61, Lemma 4.4]). For any n-dimensional lattice Λ,
x′, c ∈ R

n and symmetric positive definite Σ ∈ R
n×n satisfying σn(

√
Σ) ≥

η2−n(Λ), we have ρΣ,c(Λ + x′) ∈ [1 − 2−n, 1 + 2−n] · det(Λ)/det(Σ)1/2
.

We will also use the following result on the singular values of discrete
Gaussian random matrices.

Lemma 7 ([2, Lemma 8]). Assume that m ≥ 2n. Let F ∈ Z
m×n with each entry

sampled from DZ,σ, for some σ ≥ Ω(
√

n). Then with probability ≥ 1 − 2−Ω(n),
we have ‖F‖ ≤ O(

√
mσ) and σn(F) ≥ Ω(

√
mσ).

2.3 The Learning with Errors Problem

We recall the Learning With Errors problem [69]. Note that we make the number
of samples m explicit in our definition.

Definition 1. Let λ ∈ N be a security parameter and let integers n = n(λ),
m = m(λ), q = q(λ). Let χ = χ(λ) be an efficiently samplable distribution
over Zq. The LWEn,m,q,χ assumption posits that the following distance is a neg-
ligible function for any ppt algorithm A:

AdvA,LWE
�,m,q,χ(λ) :=

∣
∣ Pr[A(1λ,A,u) = 1 | A ←↩ U(Zn×m

q ),u ←↩ U(Zm
q )]

− Pr[A(1λ,A,A · s + e) = 1 | A ←↩ U(Zm×n
q ), s ←↩ U(Zn

q ), e ←↩ χm]
∣
∣.

A typical choice for χ is the integer Gaussian distribution DZ,α·q for some para-
meter α ∈ (

√
n/q, 1). In particular, in this case, there exist reductions from

standard lattice problems to LWE (see [25,69]).
In [60], Micciancio and Peikert described a trapdoor mechanism for LWE.

Their technique uses a “gadget” matrix G ∈ Z
m×n
q for which anyone can publicly

sample short vectors x ∈ Z
m such that x�G = 0. As in [60], we call R ∈ Z

m×m

a G-trapdoor for a matrix A ∈ Z
2m×n
q if [R | Im] ·A = G ·H for some invertible

matrix H ∈ Z
n×n
q which is referred to as the trapdoor tag. If H = 0, then R is

called a “punctured” trapdoor for A.

Lemma 8 ([60, Sect. 5]). Assume that m ≥ 2n log q. There exists a ppt algo-
rithm GenTrap that takes as inputs matrices Ā ∈ Z

m×n
q , H ∈ Z

n×n
q and outputs

matrices R ∈ {−1, 1}m×m and

A =
[

Ā
−RĀ + GH

]
∈ Z

2m×n
q

such that if H ∈ Z
n×n
q is invertible, then R is a G-trapdoor for A with tag H;

and if H = 0, then R is a punctured trapdoor.
Further, in case of a G-trapdoor, one can efficiently compute from A,R

and H a basis (bi)i≤2m of Λ⊥(A) such that maxi ‖bi‖ ≤ O(m3/2).

Micciancio and Peikert also showed that a G-trapdoor for A ∈ Z
2m×n
q can be

used to invert the LWE function (s,e) → A · s + e, for any s ∈ Z
n
q and any

sufficiently short e ∈ Z
2m.
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Lemma 9 ([60, Theorem 5.4]). There exists a deterministic polynomial time
algorithm Invert that takes as inputs matrices R ∈ Z

m×m, A ∈ Z
2m×n
q , H ∈

Z
n×n
q such that R is a G-trapdoor for A with invertible tag H, and a vector

A · s + e with s ∈ Z
n
q and ‖e‖ ≤ q/(10 · ‖R‖), and outputs s and e.

As showed in [20,41], homomorphic computations can be performed on G-
trapdoors with respect to trapdoor tags Hi corresponding to scalars. As observed
in [27], when the circuit belongs to NC1, it is advantageous to convert the cir-
cuit into a branching program, using Barrington’s theorem. This is interesting
to allow for a polynomial modulus q but imposes a circuit depth restriction (so
that the evaluation algorithms are guaranteed to run in polynomial-time).

Lemma 10 (Adapted from [20,41]). Let C : {0, 1}κ → {0, 1} be a NAND
Boolean circuit of depth d. Let Bi = Ri · Ā + xi · G ∈ Z

m×n
q with Ā ∈ Z

m×n
q ,

Ri ∈ {−1, 1}m×m and xi ∈ {0, 1}, for i ≤ κ.

• There exist deterministic algorithms EvalpubCCT and EvalprivCCT with running times
poly(|C|, κ,m, n, log q), that satisfy:

EvalpubCCT(C, (Bi)i) = EvalprivCCT(C, (Ri)i) · Ā + C(x1, . . . , xκ) · G,

and ‖EvalprivCCT(C, (Ri)i)‖ ≤ mO(d).

• There exist deterministic algorithms EvalpubBP and EvalprivBP with running times
poly(4d, κ,m, n, log q), that satisfy:

EvalpubBP (C, (Bi)i) = EvalprivBP (C, (Ri)i) · Ā + C(x1, . . . , xκ) · G,

and ‖EvalprivBP (C, (Ri)i)‖ ≤ 4d · O(m3/2).

Note that we impose that the Evalpub and Evalpriv algorithms are deterministic,
although probabilistic variants are considered in the literature. This is important
in our case, as it will be used in the function evaluation algorithm of our all-but-
many lossy trapdoor function family LTF function evaluation.

2.4 Lossy Trapdoor Functions

We consider a variant of the notion of Lossy Trapdoor Functions (LTF) intro-
duced by [66], for which the function input may be sampled from a distribution
that differs from the uniform distribution. In our constructions, for lossiness
security, we actually allow the function evaluation algorithm to sample from a
larger domain DomE

λ than the domain DomD
λ on which the inversion algorithm

guaranteed to succeed. A sample over DomE
λ has an overwhelming probability

to land in DomD
λ with respect to the sampling distribution.

Definition 2. For an integer l(λ) > 0, a family of l-lossy trapdoor functions
LTF with security parameter λ, evaluation sampling domain DomE

λ , efficiently
samplable distribution DDomE

λ
on DomE

λ , inversion domain DomD
λ ⊆ DomE

λ and
range Rngλ is a tuple (IGen, LGen,Eval, Invert) of ppt algorithms with the follow-
ing functionalities:
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Injective key generation. LTF.IGen(1λ) outputs an evaluation key ek for an
injective function together with an inversion key ik.

Lossy key generation. LTF.LGen(1λ) outputs an evaluation key ek for a lossy
function. In this case, there is no inversion key and we define ik = ⊥.

Evaluation. LTF.Eval(ek,X) takes as inputs the evaluation key ek and a func-
tion input X ∈ DomE

λ . It outputs an image Y = fek(X).
Inversion. LTF.Invert(ik, Y ) inputs the inversion key ik �= ⊥ and a Y ∈ Rngλ.

It outputs the unique X = f−1
ik (Y ) such that Y = fek(X) (if it exists).

In addition, LTF has to meet the following requirements:

Inversion Correctness. For an injective key pair (ek, ik) ← LTF.IGen(1λ),
we have, except with negligible probability over (ek, ik), that for all inputs
X ∈ DomD

λ , X = f−1
ik (fek(X)).

Eval Sampling Correctness. For X sampled from DDomE
λ
, we have X ∈

DomD
λ except with negligible probability.

l-Lossiness. For (ek,⊥) ←↩ LTF.LGen(1λ) and X ←↩ DDomE
λ
, we have that

H∞(X | ek = ek, fek(X) = y) ≥ l, for all (ek, y) except a set of negligi-
ble probability.

Indistinguishability. The distribution of lossy functions is computationally
indistinguishable from that of injective functions, namely:

AdvA,LTF(λ) :=
∣
∣ Pr[A(1λ, ek) = 1 | (ek, ik) ←↩ LTF.IGen(1λ)]

− Pr[A(1λ, ek) = 1 | (ek,⊥) ←↩ LTF.LGen(1λ)]
∣
∣

is a negligible function for any ppt algorithm A.

2.5 All-But-Many Lossy Trapdoor Functions

We consider a variant of the definition of All-But-Many Lossy Trapdoor Func-
tions (ABM-LTF) from [49], in which the distribution over the function domain
may not be the uniform one.

Definition 3. For an integer l(λ) > 0, a family of all-but-many l- lossy trapdoor
functions ABM with security parameter λ, evaluation sampling domain DomE

λ ,
efficiently samplable distribution DDomE

λ
on DomE

λ , inversion domain DomD
λ ⊆

DomE
λ , and range Rngλ consists of the following ppt algorithms:

Keygeneration. ABM.Gen(1λ) outputs an evaluation key ek, an inversion key
ik and a tag key tk. The evaluation key ek defines a set T = Tc×Ta containing
the disjoint sets of lossy tags Tloss and injective tags Tinj. Each tag t = (tc, ta)
is described by a core part tc ∈ Tc and an auxiliary part ta ∈ Ta.

Evaluation. ABM.Eval(ek, t,X) takes as inputs an evaluation key ek, a tag
t ∈ T and a function input X ∈ DomE

λ . It outputs an image Y = fek,t(X).
Inversion. ABM.Invert(ik, t, Y ) takes as inputs an inversion key ik, a tag t ∈ T

and a Y ∈ Rngλ. It outputs the unique X = f−1
ik,t(Y ) such that Y = fek,t(X).
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Lossy tag generation. ABM.LTag(tk, ta) takes as input an auxiliary part ta ∈
Ta and outputs a core part tc such that t = (tc, ta) forms a lossy tag.

In addition, ABM has to meet the following requirements:

Inversion Correctness. For (ek, ik, tk) produced by ABM.Gen(1λ), we have,
except with negligible probability over (ek, ik, tk), that for all injective tags
t ∈ Tinj and all inputs X ∈ DomD

λ , that X = f−1
ik,t(fek,t(X)).

Eval Sampling Correctness. For X sampled from DDomE
λ
, we have X ∈

DomD
λ except with negligible probability.

Lossiness. For (ek, ik, tk) ←↩ ABM.Gen(1λ), any ta ∈ Ta, tc ←↩
ABM.LTag(tk, ta) and X ←↩ DDomE

λ
, we have that H∞(X | ek =

ek, fek,(tc,ta)(X) = y) ≥ l, for all (ek, y) except a set of negligible probabil-
ity.

Indistinguishability. Multiple lossy tags are computationally indistinguishable
from random tags, namely:

AdvA,ind
Q (λ) :=

∣
∣ Pr[A(1λ, ek)ABM.LTag(tk,·) = 1] − Pr[A(1λ, ek)OTc (·) = 1]

∣
∣

is negligible for any ppt algorithm A, where (ek, ik, tk) ←↩ ABM.Gen(1λ) and
OTc

(·) is an oracle that assigns a random core tag tc ←↩ U(Tc) to each auxil-
iary tag ta ∈ Ta (rather than a core tag that makes t = (tc, ta) lossy). Here Q
denotes the number of oracle queries made by A.

Evasiveness. Non-injective tags are computationally hard to find, even with
access to an oracle outputting multiple lossy tags, namely:

AdvA,eva
Q1,Q2

(λ) := Pr[A(1λ, ek)ABM.LTag(tk,·),ABM.IsLossy(tk,·) ∈ T \Tinj]

is negligible for legitimate adversary A, where (ek, ik, tk) ←↩ ABM.Gen(1λ)
and A is given access to the following oracles:
– ABM.LTag(tk, ·) which acts exactly as the lossy tag generation algorithm.
– ABM.IsLossy(tk, ·) that takes as input a tag t = (tc, ta) and outputs 1 if

t ∈ T \Tinj and otherwise outputs 0.
We denote by Q1 and Q2 the number of queries to these two oracles. By
“legitimate adversary”, we mean that A is ppt and never outputs a tag t =
(tc, ta) such that tc was obtained by invoking the ABM.LTag oracle on ta.

As pointed out in [49], the evasiveness property mirrors the notion of strong
unforgeability for signature schemes. Indeed, the adversary is considered suc-
cessful even if it outputs a (tc, ta) such that ta was submitted to ABM.LTag(tk, ·)
as long as the response t′a of the latter was such that t′a �= ta.

In order to simplify the tight proof of our public-key encryption scheme, we
slightly modified the original definition of evasiveness in [49] by introducing a
lossiness-testing oracle ABM.IsLossy(tk, ·). When it comes to proving tight CCA
security, it will save the reduction from having to guess which decryption query
contradicts the evasiveness property of the underlying ABM-LTF.
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2.6 Selective-Opening Chosen-Ciphertext Security

A public-key encryption scheme consists of a tuple of ppt algorithms (Par-Gen,
Keygen,Encrypt,Decrypt), where Par-Gen takes as input a security parameter 1λ

and generates common public parameters Γ , Keygen takes in Γ and outputs a
key pair (SK,PK), while Encrypt and Decrypt proceed in the usual way.

As a first step, we will consider encryption schemes that provide SO security
in the sense of an indistinguishability-based definition (or IND-SOA security).
This notion is captured by a game where the adversary obtains N(λ) ciphertexts,
opens an arbitrary subset of these (meaning that it obtains both the plaintexts
and the encryption coins) and asks that remaining ciphertexts be indistinguish-
able from messages that are independently re-sampled conditionally on opened
ones. In the IND-SO-CCA2 scenario, this should remain true even if the adver-
sary has a decryption oracle. A formal definition is recalled in the full paper.

A stronger notion is that of simulation-based security, which demands that
an efficient simulator be able to perform about as well as the adversary without
seeing neither the ciphertexts nor the public key. Formally, two experiments are
required to have indistinguishable output distributions.

In the real experiment, the challenger samples Msg = (Msg1, . . . ,MsgN ) ←
M from the joint message distribution and picks random coins r1, . . . , rN ← R
to compute ciphertexts {Ci ← Encrypt(PK,Msgi, ri)}i∈[N ] which are given to
the adversary A. The latter responds by choosing a subset I ⊂ [N ] and gets
back {(Msgi, ri)}i∈I . The adversary A outputs a string outA and the output of
the experiment is a predicate R(M,Msg, outA).

In the ideal experiment, the challenger samples Msg = (Msg1, . . . ,MsgN ) ←
M from the joint message distribution. Without seeing any encryptions, the sim-
ulator chooses a subset I and some state information st. After having seen the
messages {Msgi}i∈I and the state information but without seeing any random-
ness, the simulator outputs a string outS . The outcome of the ideal experiment is
the predicate R(M,Msg, outS). As in [36,54], we allow the adversary to choose
the message distribution M. While this distribution should be efficiently sam-
plable, it is not required to support efficient conditional re-sampling.

Definition 4 ([36,54]). A PKE scheme (Par-Gen,Keygen,Encrypt,Decrypt)
provides simulation-based selective opening (SIM-SO-CPA) security if, for
any ppt function R and any ppt adversary A = (A0,A1,A2) in the real experi-
ment Expcpa-so-real(λ), there is an efficient simulator S = (S0, S1, S2) in the ideal
experiment Expso-ideal(λ) s.t. |Pr[Expcpa-so-real(λ) = 1] − Pr[Expso-ideal(λ) = 1]|
is negligible, where the two experiments are defined as follows:
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Expcpa-so-real(λ): Expso-ideal(λ):

Γ ← Par-Gen(1λ); Γ ← Par-Gen(1λ);
(PK, SK) ← Keygen(Γ ) (M, st0) ← S0(Γ )
(M, st0) ← A0(PK, Γ ) Msg = (Msg1, . . . ,MsgN ) ← M
Msg = (Msg1, . . . ,MsgN ) ← M (I, st1) ← S1(st0, 1

|Msgi|)
r1, . . . , rn ← R outS ← S2

(
st1, {Msgi}i∈I

)

Ci ← Encrypt(PK,Msgi, ri) ∀i ∈ [N ], Output R(M,Msg, outS)
(I, st1) ← A1

(
st0,C1, . . . ,CN

)

outA ← A2

(
st1, (Msgi, ri)i∈I

)

Output R(M,Msg, outA)

As usual, the adversarially-chosen message distribution M is efficiently sam-
plable and encoded as a polynomial-size circuit.

The notion of simulation-based chosen-ciphertext (SIM-SO-CCA) security is
defined analogously. The only difference is in the real experiment Expcca-so-real,
which is obtained from Expcpa-so-real by granting the adversary access to a decryp-
tion oracle at all stages. Of course, the adversary is disallowed to query the
decryption of any ciphertext in the set {Ci}i∈[N ] of challenge ciphertexts.

It is known [11] that SIM-SO-CPA security can be achieved from lossy encryp-
tion schemes [16] when there exists an efficient Opener algorithm which, using
the lossy secret key, can explain a lossy ciphertext C as an encryption of any
given plaintext. As observed in [16,54], this Opener algorithm can use the initial
coins used in the generation of C for this purpose. This property (for which a
formal definition is recalled in the full version of the paper) is called efficient
weak opening.

3 An All-But-Many Lossy Trapdoor Function from LWE

As a warm-up, we first describe a variant of the lossy trapdoor function suggested
by Bellare et al. [12, Sect. 5.2] that is better suited to our needs. We then extend
this LWE-based LTF into an ABM-LTF in Sect. 3.2.

3.1 An LWE-Based Lossy Trapdoor Function

All algorithms use a prime modulus q > 2, integers n ∈ poly(λ), m ≥ 2n log q
and � > 0, an LWE noise distribution χ, and parameters σx, σe, γx, γe > 0.
The function evaluation sampling domain DomE

λ = DomE
x ×DomE

e where DomE
x

(resp. DomE
e ) is the set of x (resp. e) in Z

n (resp. Z2m) with ‖x‖ ≤ γx · √n · σx

(resp. ‖e‖ ≤ γe

√
2m ·σe). Its inversion domain is DomD

λ = DomD
x ×DomD

e , where
DomD

x (resp. DomD
e ) is the set of x (resp. e) in Z

n (resp. Z2m) with ‖x‖ ≤ √
n·σx

(resp. ‖e‖ ≤
√

2m · σe) and its range is Rngλ = Z
2m
q . The function inputs are

sampled from the distribution DDomE
λ

= D
DomE

x

Zn,σx
× D

DomE
e

Z2m,σe
.

Injective key generation. LTF.IGen(1λ) samples Ā ←↩ U(Zm×n
q ) and runs

(A,R) ←↩ GenTrap(Ā, In) to obtain A ∈ Z
2m×n
q together with a G-trapdoor

R ∈ {−1, 1}m×m. It outputs ek := A and ik := R.
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Lossy key generation. LTF.LGen(1λ) generates A ∈ Z
2m×n
q as a matrix of the

form A = B · C + F with B ←↩ U(Z2m×�
q ), C ←↩ U(Z�×n

q ) and F ←↩ χ2m×n.
It outputs ek := A and ik :=⊥.

Evaluation. LTF.Eval(ek, (x, e)) takes as input a domain element (x, e) ∈ DomE
λ

and maps it to y = A · x + e ∈ Z
2m
q .

Inversion. LTF.Invert(ik,y) inputs a vector y ∈ Z
2m
q , uses the G-trapdoor

ik = R of A to find the unique (x, e) ∈ DomD
λ such that y = A · x + e.

This is done by applying the LWE inversion algorithm from Lemma 9.

Note that the construction differs from the lossy function of [12] in two ways.
First, in [12], the considered distribution over the function domain is uniform over
a parallelepiped. We instead consider a discrete Gaussian distribution. Second,
in [12], the matrix C is chosen as a small-norm integer matrix sampled from the
LWE noise distribution. We instead sample it uniformly. Both modifications are
motivated by our application to SO-CCA security. Indeed, in the security proof,
we will generate C along with a lattice trapdoor (using GenTrap), which we will
use to simulate the function domain distribution conditioned on an image value.

We first study the conditional distribution of the pair (x, e) given its image
under a lossy function. This will be used to quantify the lossiness of the LTF.

Lemma 11. Let C ∈ Z
�×n
q and F ∈ Z

2m×n. Sample (x, e) ←↩ DDomx

Zn,σx
×DDome

Z2m,σe

and define (u, f) = (C · x,F · x + e) ∈ Z
n
q × Z

2m. Note that e is fully deter-
mined by x,u and f . Further, the conditional distribution of x given (u, f) is
D

SF,u,f

Λ⊥(C�)+x′,
√

Σ,c
, with support

SF,u,f =
{
x̄ ∈ Λ⊥(C�) + x′ : x̄ ∈ Domx, f − F · x̄ ∈ Dome

}
,

where x′ is any solution to C · x′ = u and:

Σ = σ2
x · σ2

e · (σ2
x · F� · F + σ2

e · In)−1, c = σ2
x · (σ2

xF
� · F + σ2

e · In)−1 · F� · f .

Proof. We first remark that the support of x|(u, f) is SF,u,f , since the set of
solutions x̄ ∈ Z

n to u = C · x ∈ Z
�
q is Λ⊥(C�) + x′ and each such x̄ has a

non-zero conditional probability if and only if the corresponding ē = f − F · x is
in Dome. Now, for x̄ ∈ Z

n in the support SF,u,f , we have

Pr[x = x̄|(u, f)] ∼ DZn,σx
(x̄) · DZ2m,σe

(f − F · x̄)

∼ exp
(

−π

(
‖x̄‖2
σ2

x

+
‖f − F · x̄‖2

σ2
e

))

∼ exp
(
−π

(
(x̄ − c)� · Σ−1 · (x̄ − c)

))
.

The last equality follows from expanding the norms and collecting terms. ��

We now formally state for which parameters we can prove that the scheme
above is an LTF. The second part of the theorem will be useful for our SO-CCA
encryption application.
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Theorem 1. Let χ = D
Z,β/(2

√
λ) for some β > 0. Let us assume that � ≥ λ,

n = Ω(� log q) and m ≥ 2n log q, γx ≥ 3
√

m/n and γe ≥ 3. Assume further
that σx ≥ Ω(n), σe ≥ Ω(

√
mn · β · σx) and σe ≤ O(q/m3/2). Then, under

the LWE�,2m,q,χ hardness assumption, the above construction is an l-lossy LTF
with l ≥ n log σx − 2 − � log q > Ω(n log n). Further, any ppt indistinguishability
adversary A implies an LWE distinguisher D with comparable running time such
that

AdvA,LTF(λ) ≤ n · AdvD,LWE
�,2m,q,χ(λ).

Moreover, there exists a ppt sampling algorithm, that given (B,C,F) gen-
erated by LTF.LGen(1λ), a trapdoor basis (bi)i≤n for Λ⊥(C�) such that
maxi ‖bi‖ ≤ σxσe/(Ω(log n) ·

√
2mnβ2σ2

x + σ2
e) and a function output y =

LTF.Eval(ek, (x, e)) for an input (x, e) ←↩ D
DomE

x

Zn,σx
× D

DomE
e

Z2m,σe
, outputs, with prob-

ability ≥ 1 − 2−Ω(λ) over ek and (x, e), an independent sample (x̄, ē) from the
conditional distribution of (x, e) conditioned on y = LTF.Eval(ek, (x, e)).

Proof. First, the construction is correct. Indeed, by Lemmas 4 and 5, if σx ≥
Ω(

√
m) and σe ≥ Ω(

√
m), the distribution DZn,σx

× DZ2m,σe
is efficiently sam-

plable, and a sample from it belongs to DomE
λ with probability ≥ 1 − 2−Ω(λ),

so DDomE
λ

is efficiently samplable. For inversion correctness, we consider (x, e) ∈
DomD

λ , and set y = A · x + e. By Lemma 9, we can recover (x, e) from y using
the G-trapdoor R of A if ‖e‖ ≤ q/(10 · ‖R‖). The fact that ‖R‖ ≤ m and the
parameter choices guarantee this.

The lossy and injective modes are computationally indistinguishable under
the LWE�,2m,q,χ assumption. A standard hybrid argument over the columns of
A ∈ Z

2m×n
q provides the inequality between the respective success advantages.

We now focus on the lossiness property. Note that Lemma 11 describes the
conditional distribution of (x, e) conditioned on (C · x,F · x + e). We claim
that, except with probability ≤ 2−Ω(λ) over ek generated by LTF.LGen(1λ),
this is also the distribution of (x, e) conditioned on LTF.Eval(ek, (x, e)). Indeed,
LTF.Eval(ek, (x, e)) = B·C·x+F·x+e ∈ Z

2m
q uniquely determines u = C·x ∈ Z

�
q

and f = F · x + e ∈ Dome if ‖f‖∞ < λ∞
1 (Λ(B))/2 for all (x, e) ∈ DomE . The

latter condition is satisfied except with probability ≤ 2−Ω(λ) over the choice
of ek. This is because ‖f‖∞ ≤

√
2m · β

√
nσx +

√
2mσx ≤ 2

√
2m · σe < q/8

except with probability 2−Ω(λ) over the choice of F, and λ∞
1 (Λ(B))/2 ≥ q/4

with probability ≤ 2−Ω(λ) over the choice of B, by Lemma 3.
We now show that the conditional distribution D

SF,u,f

Λ⊥(C�)+x′,
√

Σ,c
given by

Lemma 11 for x conditioned on LTF.Eval(ek, (x, e)) has min-entropy at least l
and is efficiently samplable. For every x̄ ∈ SF,u,f , we have

D
SF,u,f

Λ⊥(C�)+x′,
√

Σ,c
(x̄) =

1
pa

DΛ⊥(C�)+x′,
√

Σ,c(x̄), pa = DΛ⊥(C�)+x′,
√

Σ,c(SF,u,f ).

For min-entropy, we observe that, by Lemma 6, the point with highest prob-
ability in DΛ⊥(C�)+x′,

√
Σ,c has probability ≤ 2 det(Λ⊥(C�)/

√
det(Σ) . We can
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apply Lemma 6 because σn(
√

Σ) ≥ η2−n(Λ⊥(C�)) with overwhelming proba-
bility. Indeed, thanks to assumption on χ, we have ‖F� · F‖ ≤ 2mnβ2 with
probability ≥ 1 − 2−Ω(λ). When this inequality holds, we have

σn(
√

Σ) ≥ σxσe/
√

2mnβ2σ2
x + σ2

e .

Further, by Lemma 3, we have η2−n(Λ⊥(C�)) ≤ O(
√

nq�/n) with probability ≥
1 − 2−Ω(�). Hence the assumption of Lemma 6 holds, thanks to our parameter
choices. Overall, we obtain that the scheme is l-lossy for

l ≥ log
√

det(Σ) − log det(Λ⊥(C�)) − 1 − log(1/pa).

By calculations similar to those above, we have that
√

detΣ ≤ σn
x . Further,

matrix C has rank � with probability ≥ 1 − 2−Ω(�), and, when this is the case,
we have det(Λ⊥(C�)) = q�. We obtain l ≥ n log σx − 1 − � log q − log(1/pa).

To complete the lossiness proof, we show that pa ≥ 1 − 2−Ω(λ) so that
log(1/pa) ≤ 1, except with probability ≤ 2−Ω(λ) over (F,C,x,e). For this, we
have by a union bound that pa ≥ 1 − (px + pe), where px is the probability that
a sample x̄ from DΛ⊥(C�)+x′,

√
Σ,c lands outside DomE

x (i.e., ‖x̄‖ > γx ·√n ·σx),
and pe is the probability that a sample x̄ from DΛ⊥(C�)+x′,

√
Σ,c is such that

f − F · x̄ lands outside DomE
e (i.e., ‖f − F · x̄‖ > γe ·

√
2m · σe).

In order to bound px, we observe that it is at most

p′
x = Pr

x̄←↩D
Λ⊥(C�)+x′,

√
Σ,c

[‖x̄ − c‖ > ‖
√

Σ‖ ·
√

n]

if γx ·√n ·σx ≥ ‖c‖+‖
√

Σ‖·√n. Now, using that ‖F‖ ≤
√

2mn ·β, ‖x‖ ≤ √
n ·σx

and ‖e‖ ≤
√

2m·σe except with probability 2−Ω(λ), by Lemma 5, we get with the
same probability that ‖c‖ ≤ (σx/σe)2 ·

√
2mnβ · (

√
2mn ·β ·σx ·√n+σe ·

√
2m).

Furthermore, using ‖
√

Σ‖ ≤ σx/σe, we have that the condition γx · √
n · σx ≥

‖c‖+‖
√

Σ‖·√n is satisfied by our choice of parameters. Also, as shown above, we
have σn(

√
Σ) ≥ η2−n(Λ⊥(C�)) with overwhelming probability, so that we can

apply Lemma 5 to conclude that px ≤ p′
x ≤ 2−n+2 with probability ≥ 1−2−Ω(λ).

To bound pe, we follow a similar computation as for px. Namely, we first
observe that, if x̄ is sampled from DΛ⊥(C�)+x′,

√
Σ,c, then ē = f − F · x̄ is

distributed as D
F·Λ⊥(C�)+f−F·x′,

√
FΣF�,f−F·c. Therefore, the probability pe is

at most the probability p′
e that a sample ē from D

F·Λ⊥(C�)+f−F·x′,
√

FΣF�,f−F·c
satisfies ‖ē − (f − F · c)‖ > ‖

√
FΣF�‖ ·

√
2m, assuming that the condition

γe ·
√

2m · σe ≥ ‖f − F · c‖ + ‖
√

FΣF�‖ ·
√

2m, (1)

is satisfied. Now, using ‖f − F · c‖ ≤ ‖f‖ + ‖F‖ · ‖c‖ and the above bounds on
‖F‖, ‖f‖ and ‖c‖ and our choice of parameters, we have that condition (1) is
satisfied with overwhelming probability. To apply Lemma 5 to bound p′

e, we also
need to show that σn(

√
FΣF�) ≥ η2−n(F · Λ⊥(C�)). Now, note that

σn(
√

FΣF�) = σx · σe/
√

σ2
x + σ2

e/σn(F)2.
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By Lemma 7, we have σn(F) ≥ Ω(
√

m · β) with overwhelming probability. We
conclude that σn(

√
FΣF�) ≥ Ω(σx · √

m · β). On the other hand, we have
η2−n(F · Λ⊥(C�)) ≤ ‖F‖ · η2−n(Λ⊥(C�)) = O(‖F‖ · √

n) ≤ O(β · √
m · n)

with overwhelming probability, also by Lemma 7. For this reason, the condition
σn(

√
FΣF�) ≥ η2−n(F · Λ⊥(C�)) holds with with the same probability thanks

to our choice of parameters. We can thus apply Lemma 5 to conclude that
pe ≤ p′

e ≤ 2−n+2 with overwhelming probability.
Overall, we have that pa ≥ 1 − (px + pe) ≥ 1 − 2−Ω(λ) which completes the

proof of lossiness. This also immediately implies that the conditional distribution
D

SF,u,f

Λ⊥(C�)+x′,
√

Σ,c
is efficiently samplable by rejection sampling, given an efficient

sampler for DΛ⊥(C�)+x′,
√

Σ,c. The latter sampler can be implemented with a ppt

algorithm by Lemma 4 and the fact that maxi ‖bi‖ < σn(Σ) with overwhelming
probability by the bound on σn(

√
Σ). ��

3.2 An All-But-Many Lossy Trapdoor Function from LWE

Parameters and domains are defined as in Sect. 3.1.

Key generation. ABM.Gen(1λ) conducts the following steps.
1. For parameters n, �,m, γ, χ, generate Ā ∈ Z

m×n
q as Ā = B · C + F with

B ←↩ U(Zm×�
q ), C ←↩ U(Z�×n

q ) and F ←↩ χm×n.
2. Choose a PRF family PRF : {0, 1}λ ×{0, 1}k → {0, 1}λ with input length

k = k(λ) and key length λ. Choose a seed K ←↩ U({0, 1}λ) for PRF.
3. Sample matrices R1, . . . ,Rλ ←↩ U({−1, 1}m×m) and compute

Bi = Ri · Ā + K[i] · G ∈ Z
m×n
q ∀i ≤ λ.

4. Output the evaluation key ek, the inversion key ik and the lossy tag
generation key tk, which consist of

ek :=
(
Ā, (Bi)i≤λ

)
, ik :=

(
(Ri)i≤λ,K

)
, tk := K. (2)

A tag t = (tc, ta) ∈ {0, 1}λ×{0, 1}k will be injective whenever tc �= PRF(K, ta).

Lossy tag generation. ABM.LTag(tk, ta) takes as input an auxiliary tag com-
ponent ta ∈ {0, 1}k and uses tk = K to compute and outputtc = PRF(K, ta).

Evaluation. ABM.Eval(ek, t, (x, e)) takes in the function input (x, e) ∈ DomE
λ ,

the tag t = (tc, ta) ∈ {0, 1}λ × {0, 1}k and proceeds as follows.
1. For each j ≤ λ, let CPRF,j(ta) : {0, 1}λ → {0, 1} be the NAND Boolean

circuit, where ta ∈ {0, 1}k is hard-wired, which evaluates the j-th bit
of PRF(K̃, ta) ∈ {0, 1}λ for any K̃ ∈ {0, 1}λ. Run the public evaluation
algorithm of Lemma 10 to obtain3 BPRF,j ← Evalpub(CPRF,j(ta), (Bi)i≤λ).

3 One may use either EvalpubCCT or EvalpubBP , but the choice must be consistent with the
Evalpriv variant used in function inversion.
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2. Define the matrix

At =
[

Ā∑
j≤λ

(
(−1)tc[j] · BPRF,j + tc[j] · G

)
]

∈ Z
2m×n
q ,

and compute the output y = At · x + e ∈ Z
2m
q .

Inversion. ABM.Invert(ik, t,y) inputs the inversion key ik :=
(
(Ri)i≤λ,K

)
, the

tag t = (tc, ta) ∈ {0, 1}λ × {0, 1}k and y ∈ Rngλ, and proceeds as follows.

1. Return ⊥ if tc = PRF(K, ta).
2. Otherwise, for each j ≤ λ, run the private evaluation algorithm from

Lemma 10 to obtain RPRF,j ← Evalpriv(CPRF,j(ta), (Ri)i≤λ) and compute
the (small-norm) matrix Rt =

∑
j≤λ(−1)tc[j] · RPRF,j ∈ Z

m×m.
3. Let ht denote the Hamming distance between tc and PRF(K, ta). Use the

G-trapdoor Rt of At with tag ht to find the unique (x, e) ∈ DomD
λ such

that y = At ·x+e. This is done by applying the LWE inversion algorithm
of Lemma 9.

All algorithms involved run in polynomial-time, if one uses EvalpubCCT and
EvalprivCCT from Lemma 10. If the circuits CPRF,j(ta) (having the PRF key as input,
and the PRF input hardwired) have logarithmic depth d ≤ O(log λ), then it
is preferable to use EvalpubBP and EvalprivBP instead. Indeed, under this small-depth
assumption, these algorithms still run in polynomial-time, and have the advan-
tage of leading to smaller Rt’s. This eventually allows one to set q as a polynomial
function of λ. In the rest of this section, we choose these variants of Evalpub and
Evalpriv. The results can be readily adapted to the other option.

Theorem 2. Let χ = D
Z,β/(2

√
λ) for some β > 0. Assume that PRF has

depth d = O(log λ) when the circuit input is the key and the PRF input is
hard-coded in the circuit. Assume that � ≥ λ, n = Ω(� log q) and m ≥ 2n log q,
γx ≥ 3

√
m/n and γe ≥ 3. Assume also that σx ≥ Ω(n), σe ≥ Ω(4d·m2·β·√n·σx)

and σe ≤ O(q/(λ ·4d ·m2)). Then, under the PRF security and LWE�,2m,q,χ hard-
ness assumptions, the above function is an l-lossy ABM LTF with l = Ω(n log n).

The theorem follows from the lemmas below.

Lemma 12 (Correctness). Let us assume that and q/σe ≥ λ · 4d · O(m2).
Assume that PRF has logarithmic depth O(log λ) when the circuit input is the key
and the PRF input is hard-coded in the circuit. Then, for any triple (ek, ik, tk)
produced by ABM.Gen(1λ), for any tag t = (tc, ta) ∈ {0, 1}λ × {0, 1}k satisfying
tc �= PRF(K, ta) and for any input (x, e) ∈ DomD

λ , the inversion correctness
condition (x, e) = ABM.Invert(ik, t,ABM.Eval(ek, t, (x, e))) is satisfied.

Proof. By Lemma 10, we have ‖Rt‖ ≤ λ · 4d · O(m3/2) and

At =
[

Ā
Rt · Ā + ht · G

]
mod q,
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where ht is the Hamming distance between tc and PRF(K, ta) ∈ {0, 1}λ. As q > λ
is prime, integer ht is invertible modulo q, and Rt is a G-trapdoor with tag ht

for At. Thanks to our parameters, we have ‖e‖ ≤ q/(10 · ‖Rt‖) and hence
algorithm Invert from Lemma 9 recovers (x, e). ��

Our ABM-LTF provides evasiveness unless the PRF family is not unpre-
dictable, which would contradict its pseudorandomness. In order to meaningfully
rely on the pseudorandomness of PRF, the proof of Lemma 13 also appeals to the
LWE assumption so as to first move to a game where the lossy matrix Ā ∈ Z

m×n
q

is traded for a random matrix. Since the matrices Bi = Ri · Ā+K[i] ·G depend
the bits of the seed K, moving to a uniform matrix Ā is necessary to make sure
that the evaluation key ek is statistically independent of K.

Lemma 13 (Evasiveness). Assume that m ≥ 2n log q. Any ppt evasiveness
adversary A making Q1 and Q2 queries to ABM.LTag and ABM.IsLossy, respec-
tively, implies an LWE distinguisher D1 and a PRF distinguisher D2 such that

AdvA,eva
Q1,Q2

(λ) ≤ n · AdvD1,LWE
�,m,q,χ (λ) + AdvD2,PRF

Q1+Q2
(λ) +

Q2 + 1
2λ

.

(The proof is deferred to the full version of the paper.)

The pseudo-randomness of core tag components also guarantees that lossy
tags are computationally indistinguishable from uniformly random tags. The
proof of Lemma 14 also relies on the LWE assumption since the evaluation key
ek only hides the PRF seed K in the computational sense. It follows the same
strategy as the proof of Lemma 13 and given in the full version of the paper.

Lemma 14 (Indistinguishability). Assume that m > 2n log q. Then ppt
indistinguishability adversary A implies either either an LWE distinguisher D1

or a PRF distinguisher D2 such that:

AdvA,ind
Q (λ) ≤ 2n · AdvD1,LWE

�,m,q,χ (λ) + AdvD2,PRF
Q (λ) +

1
2λ−1

,

where Q denotes the number of (genuine or uniform) lossy tag generation
queries.

The proof of lossiness is essentially identical to that of the LTF (Theorem 1).

Lemma 15 (Lossiness). Let χ = D
Z,β/(2

√
λ) for some β > 0. Assume that the

depth d of PRF is in O(log λ), when the circuit input is the key and the PRF
input is hardwired in the circuit. Let us assume that � ≥ λ and n = Ω(� log q).
Assume also that σe ≥ Ω(4d ·m2 ·β ·σx ·√n). Then, for any lossy tag t = (tc, ta),
the above ABM-LTF is l-lossy with l = Ω(n log n).

Proof. We rely on the fact that, for any lossy tag t = (tc, ta) (i.e., for which
tc = PRF(K, ta)), we have

At =
[

Ā
Rt · Ā

]
=

[
B

Rt · B

]
· C +

[
F

Rt · F

]
, (3)
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where B ←↩ U(Zm×�
q ), C ←↩ U(Z�×n

q ), F ←↩ χm×n and Rt is as in the ABM.Invert
description.

As a consequence, by the same argument as in the proof of Theorem 1, the
distribution of the input (x, e) conditioned on ABM.Eval(ek, t, (x, e)) is the same
as the distribution of (x, e) conditioned on (C ·x,F ·x+e). From this point, the
proof is identical to that of Theorem 1, with Fnew = [F� | (Rt · F)�]� playing
the role of F in the original proof. The two properties of Fnew used in the proof
are ‖Fnew‖ ≤ (1+‖Rt‖) ·‖F‖ ≤ O(4d ·m3/2) ·‖F‖, using Lemma 10, which leads
to a larger σe by the factor O(4d · m3/2). The other property is a lower bound
on σn(Fnew) and since the latter is ≥ σn(F), no parameters are affected. ��

In [3, Sect. 7], Alwen et al. used the a rounding technique [5] to build an
all-but-one trapdoor function. While our construction bears resemblance with
theirs, our proof of lossiness is very different. In [3, Theorem 7.3], they consider
a matrix of the form (3) and crucially rely on the statistical independence of the
rows of [B� | (R0 · B)�]�, for some R0 ∈ {−1, 1}m×m, conditionally on R0 · F.
Here, we cannot guarantee that matrices Rt · B be statistically independent for
different tags t, and hence it does not seem possible to directly use the rounding
technique from [3]. Fortunately, the proof of Lemma 15 does not require the rows
of the matrix [B� | (Rt ·B)�]� to be statistically independent and neither does
it rely on the independence of Rt · B for different tags t.

3.3 Joint Use of Lossy and All-But-Many Functions

We remark that our LTF and ABM-LTF are not lossy enough to be correlation-
secure in the sense of Rosen and Segev [70]: indeed, the result of [70, Theo-
rem 3.3] requires lossy functions that lose at least half of their input. In partic-
ular, we cannot reveal y0 = A · x + e and y = At · x + e for the same input
(x, e) as this would expose y − y0 = (A − At) · x, which would leak (x, e).
However, we can safely reveal y0 = LTF.Eval(ek′, (x, e0)) = A · x + e0 and
y = ABM.Eval(ek, t, (x, e)) = At ·x+ e for distinct Gaussian terms e0, e ∈ Z

2m.
Indeed, conditionally on LTF.Eval(ek′, (x, e0)) and ABM.Eval(ek, t, (x, e)),

the distribution of x retains l bits of min-entropy, where l = Ω(n · log n). As
in the proof of Theorem 1, this follows by observing that the residual distrib-
ution on x is a discrete Gaussian (by Lemma 15) whose covariance matrix is
above the smoothing parameter of the support.

Lemma 16. The LTF of Sect. 3.1 and the above ABM-LTF are jointly lossy
when they share the first part x of their inputs.

Let χ = D
Z,β/(2

√
λ) for some β > 0. Assume that the depth d of PRF is

in O(log λ), when the circuit input is the key and the PRF input is hardwired
in the circuit. Let us assume that � ≥ λ and n = Ω(� log q). Assume also that
σe ≥ Ω(4d ·m2 ·β ·√n·σx). Then, except with probability ≤ 2−Ω(λ) over the choice
of ek′ ←↩ LTF.LGen(1λ), ek ←↩ ABM.Gen(1λ), x ←↩ Domx, and e0, e ←↩ Dome,
we have, for any lossy tag t:
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H∞
(
x | LTF.Eval(ek′, (x, e0)), ABM.Eval(ek, t, (x, e))

)

≥ n · log σx − 2 − � log q > Ω(n · log n).

Proof. The result follows by generalizing the proofs of Theorem 1 and Lemma 15
in a straightforward manner. Indeed, if ALTF = BLTF ·CLTF +FLTF ∈ Z

2m×n
q and

Ā = BABM · CABM + FABM ∈ Z
m×n
q are the lossy matrices of both functions, the

information revealed by LTF.Eval(ek′, (x, e0)) and ABM.Eval(ek, t, (x, e)) is
⎡

⎣
BLTF 02m×�

0m×� BABM

0m×� Rt · BABM

⎤

⎦ ·
[
CLTF

CABM

]
· x +

⎡

⎣
FLTF

FABM

Rt · FABM

⎤

⎦ · x +
[
e0
e

]
.

It is thus entirely determined by the vectors [C�
LTF | C�

ABM]� · x ∈ Z
2�
q and

[F�
LTF | F�

ABM | (Rt · FABM)�]� · x + [e�
0 | e�

1 ]� ∈ Z
4m and we obtain the result

by repeating the arguments in the proof of Theorem 1 and Lemma 15. ��

4 Selective Opening Chosen-Ciphertext Security

We now combine our ABM-LTF and the LWE-based LTF of Sect. 3 to build
an IND-SO-CCA2-secure public-key encryption scheme from the LWE assump-
tion. The scheme can be seen as instantiating a variant of the Peikert-Waters
methodology [66], as generalized by Hofheinz [49, Sect. 6.3] to the case of multi-
ple lossy tags. In [49], ciphertexts consists of (flossy(x), fABM(t, x),Msg ⊕ h(x)),
where flossy(x) (resp. fABM(t, x)) is a lossy (resp. all-but-many) function of the
input x; t is the tag of the ciphertext; and h(x) is a universal hash of x.

Nevertheless, our scheme is not a generic instantiation of this paradigm as we
cannot use exactly the same input x in the two functions flossy(·) and fABM(t, ·).
As we mentioned earlier, we cannot give out function outputs y0 = A · x + e
and y = At · x + e for the same input (x, e). For this reason, our lossy and
ABM functions have to use distinct noise terms (e0, e) in the two evaluations
y0 = A · x + e0 and y = At · x + e. The decryption algorithm can proceed
by inverting (x, e0) ← f−1

lossy(y0) as before. However, instead of simply testing if
y = fABM(t, (x, e0)) by evaluating fABM(t, .) in the forward direction as in [49,66],
the receiver has to test whether y−At ·x is a small-norm vector, analogously to
[65, Sect. 4.4]. For this reason, the message Msg is hidden by the universal hash
of x only, which is sufficient in our security proof. Moreover, our extension to
SIM-SO-CCA2 security requires h(·) to operate on x alone.

Unlike [66], we cannot use one-time signatures to bind ciphertext components
in a non-malleable manner. Indeed, at each corruption query, the challenger
would have to reveal the one-time secret keys of the challenge ciphertexts, which
would allow the adversary to make decryption queries for lossy tags.

Instead, we can proceed analogously to Boyen et al. [24] and define the
auxiliary tags to be the output y0 = ΠLTF.Eval(ek′, (x, e0)) of the lossy func-
tion while resorting to the hybrid encryption paradigm and authenticate the
message-carrying part c0 = Msg + h(x) of the ciphertext via the encrypt-then-
MAC approach. One difficulty is that, since y0 = ΠLTF.Eval(ek′, (x, e0)) and
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y = ΠABM.Eval(ek, t, (x, e)) involve distinct small-norm vectors e0, e, we must
find a different way to prevent the adversary from tampering with e in one of
the challenge ciphertexts (indeed, y is no longer authenticated by a one-time sig-
nature). Our solution to this problem is to include y = ΠABM.Eval(ek, t, (x, e))
in the input of the MAC, which simultaneously authenticates y and c0. For
simplicity, we assume MACs with the uniqueness property but the proof can be
adapted to rely on any strongly unforgeable MAC.

As mentioned in [49, Sect. 6], the application to IND-SO-CCA2 security
requires the core tag space Tc of ABM-LTFs to be efficiently samplable and
explainable. As defined in [49, Definition 6.2], “explainability” (a.k.a. “invert-
ible samplability” [33]) means that any core tag tc can be explained by the
challenger as having been uniformly chosen “without ulterior motive” when the
adversary opens a given ciphertext. Our ABM-LTF clearly satisfies this property
since core tags tc are just random λ-bit strings.

4.1 Description

Par-Gen(1λ): Selects public parameters consisting of:
– A modulus q > 2, integers �, �0, �1, n ∈ poly(λ), m = �cn · log q�, for some

constant c > 0, and parameters β, σx, σe > 0.
– The specification MAC = (KG,Sig,Ver) of a unique MAC with message

space MsgSpmac := Z
2m
q × Z

�0
q and key space Kmac := Z

�1
q .

– A family UH of universal hash functions h : [−σx
√

n, σx
√

n]n → Z
�0+�1
q

that range over MsgSp := Z
�0
q .

The public parameters Γ = {�, �0, �1, n,m, q, β, σx, σe,MAC} define the plain-
text space MsgSp := Z

�0
q and will be shared by the LWE-based LTF of Sect. 3.1

and our ABM-LTF of Sect. 3.2.

Keygen(Γ ): Let ΠLTF = (IGen, LGen,Eval, Invert) be an instance of the LTF of
Sect. 3.1 and let ΠABM = (Gen,Eval, Invert, LTag) be an instance of the ABM-
LTF of Sect. 3.2. We assume ΠLTF and ΠABM both operate over the domain
DomD

λ := {(x, e) ∈ Z
n × Z

2m | ‖x‖ ≤ σx
√

n, ‖e‖ ≤ σe

√
2m}. The public key

is generated via the following steps.

1. Generate a pair (ek′, ik′) ← ΠLTF.IGen(1λ) for an injective function of
the lossy trapdoor function family ΠLTF.

2. Generate (ek, ik, tk) ← ΠABM.Gen(1λ) as an ABM-LTF key pair. We
assume that the space of auxiliary tags is Ta = Z

m
q

3. Choose a random member h ← UH of the universal hash family.
Output (PK,SK) where PK =

(
ek′, ek, h

)
and SK = ik′.

Encrypt(PK,Msg): To encrypt Msg ∈ Z
�0
q , choose x ←↩ DZn,σx

, e0 ←↩ DZ2m,σe
,

e ←↩ DZ2m,σe
and do the following.

1. Compute y0 = ΠLTF.Eval(ek′, (x, e0)) = A · x + e0 ∈ Z
2m
q .

2. Define ta = y0 and choose a random tc ←↩ U(Tc). Then, let t = (tc, ta)
and compute y = ΠABM.Eval(ek, t, (x, e)) = At · x + e ∈ Z

2m
q .

3. Compute (ksym,kmac) = h(x) ∈ Z
�0
q × Z

�1
q .
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4. Set c0 = Msg + ksym ∈ Z
�0
q and c1 = MAC.Sig(kmac, (y, c0)).

Output the ciphertext C = (tc, c0, c1,y0,y).

Decrypt(SK,C): To decrypt C = (tc, c0, c1,y0,y) using SK = ik′,
1. Compute (x, e0) ← ΠLTF.Invert(ik′,y0). Return ⊥ if y0 is not in the

range4 of ΠLTF.Eval(ek′, ·) or if (x, e0) �∈ DomD
λ .

2. Define the tag t = (tc,y0). If ‖y − At · x‖ > σe

√
2m, return ⊥.

3. Compute (ksym,kmac) = h(x) ∈ Z
�0
q × Z

�1
q .

4. If MAC.Ver(kmac, (y, c0), c1) = 0, return ⊥. Otherwise, return the plain-
text Msg = c0 − ksym ∈ Z

�0
q .

In order to instantiate the scheme with a polynomial-size modulus q, we need
a PRF with an evaluation circuit in NC1, which translates into a polynomial-
length branching program. By applying Lemma 10 and exploiting the asymmet-
ric noise growth of the GSW FHE as in [27], we can indeed keep q small.

For this purpose, the Banerjee-Peikert PRF [4] is a suitable candidate. While
its evaluation circuit is in NC2 in general, we can still homomorphically evaluate
input-dependent circuits CPRF,j(·) over the encrypted key K using an NC1 cir-
cuit. For public moduli p, q and matrices A0,A1 ∈ Z

n×n�log q
q , their PRF maps

an input x ∈ {0, 1}k to �(p/q) · (k� ·Ax mod q)�, where k ∈ Z
n
q is the secret key

and the input-dependent matrix Ax is publicly computable from A0,A1. This
allows hard-coding Ax into an NC1 circuit to be evaluated over the “encrypted”
bits of k in order to obtain “encryptions” of the bits of �(p/q) ·k� ·Ax�. Indeed,
matrix-vector products and rounding can both be computed in TC0 ⊆ NC1,
which allows using a polynomial-size q by applying Lemma 10. The resulting
instantiation relies on the same LWE assumption as the Banerjee-Peikert PRF
[4], where the modulus-to-noise ratio is only slightly super-polynomial.

4.2 Indistinguishability-Based (IND-SO-CCA2) Security

We first prove that the scheme provides IND-SO-CCA2 security. While we can
tightly relate the IND-SO-CCA security of the scheme to the pseudorandomness
of the underlying PRF, the reduction from the unforgeability of the MAC loses
a factor proportional to the number of challenges.

Theorem 3. The scheme provides IND-SO-CCA2 security assuming that: (i)
ΠLTF is a LTF; (ii) ΠABM is an ABM-LTF; (iii) PRF is a pseudorandom function
family; (iv) MAC provides sUF-OT-CMA security. In our instantiation, for any
adversary A, there exists an LWE�,m,q,χ distinguisher D1, a PRF adversary D2

and a MAC forger B with comparable running time and such that

AdvIND-SO-CCA2
A (λ) ≤ 4n · AdvD1,lwe

�,m,q,χ(λ) + 2 · AdvD2,prf
N+QD

(λ)

+
QD + 2 + N · (QD + 1)

2λ−2
+ N · Advmac,QD

B (λ),

4 Note that y0 may be far from the image of A in an invalid ciphertext but the
inversion algorithm can detect this using ik′.
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where N is the number of challenge ciphertexts and QD is the number of decryp-
tion queries made by the adversary. (The proof is given in the full paper.)

In the full version of this paper, we describe a variant of the scheme which, while
not secure under selective openings, can be proved tightly CCA2-secure in the
multi-challenge setting as long as the PRF is itself tightly secure. In order to
enable instantiations with a polynomial-size modulus q, we give a tighter security
proof for the PRF of [21] in the full version of the paper.

4.3 Achieving Simulation-Based (SIM-SO-CCA2) Security

We show that our scheme can be instantiated so as to achieve the stronger
notion of SIM-SO-CCA2 security. To this end, we show that it is in fact a
lossy encryption scheme with weak efficient opening. We first detail the lossy
key generation algorithm (which can be used in the final game in the proof of
IND-SO-CCA2 security) and the Opener algorithm.

In order for Opener to run efficiently, we instantiate our scheme with a uni-
versal hash family UH, where each function h : [−σx

√
n, σx

√
n]n → Z

�0+�1
q is

keyed by a public matrix HUH ∈ Z
(�0+�1)×n
q , which is included in the public key

PKloss and allows evaluating

hHUH(x) =
[
ksym

kmac

]
= HUH · x mod q

before computing c0 = Msg + ksym ∈ Z
�0
q and c1 = MAC.Sig(ksym, (y, c0)).

We also require Par-Gen to output public parameters �, �0, n satisfying the
constraint n > 2 ·(2�+�0+�1) · log q, where �0 is the message length, �1 is the key
length of the MAC and � is the dimension of the underlying LWE assumption.

Keygen(Γ, loss): Given public parameters Γ = {�, �0, �1, n,m, q, β, σx, σe} con-
taining integers �, �0, n,m such that n > 2 · (2� + �0 + �1) · �log q� and
m > 2(n + �) · log q, conduct the following steps.
1. Choose a random matrix C0 ←↩ U

(
Z

n̄×�̄
q

)
, where �̄ = (2� + �0 + �1) and

n̄ = n−�̄·�log q� which is used to run the (C,Rsim) ← GenTrap(C0, I�̄, σx)
algorithm of Lemma 8 to produce a statistically uniform C ∈ Z

�̄×n
q with

a a small-norm Rsim ∈ Z
�̄·�log q×n̄ forming a Gsim-trapdoor,

where Gsim ∈ Z
�̄·�log q×�̄
q is the gadget matrix of [60]. Parse C ∈ Z

�̄×n
q

as

C =

⎡

⎣
CLTF

CABM

HUH

⎤

⎦ ∈ Z
�̄×n
q , (4)

where CLTF,CABM ∈ Z
�×n
q and HUH ∈ Z

(�0+�1)×n
q .
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2. Sample matrices BLTF ←↩ U(Z2m×�
q ), BABM ←↩ U(Zm×�

q ), FLTF ←↩ χ2m×n,
FABM ←↩ χm×n in order to define ALTF = BLTF · CLTF + FLTF ∈ Z

2m×n
q

and AABM = BABM · CABM + FABM ∈ Z
m×n
q , which are statistically close

to outputs of Lossy(1n, 1m, 1�, q, χ) as CLTF and CABM are statistically
uniform over Z

�×n
q .

3. Define ek′ = ALTF ∈ Z
2m×n
q to be the evaluation key of ΠLTF. Then,

run Steps 2-4 of the key generation algorithm of ΠABM while setting
Ā = AABM ∈ Z

m×n
q at Step 1. The resulting keys (ek, ik, tk) consist of

ek :=
(
AABM, {Bi}λ

i=1

)
, ik :=

(
{Ri}λ

i=1,K
)
, tk := K

and are statistically close to the output distribution (2) of ΠABM.Gen.
Return PKloss = (ek′, ek,HUH) and

SKloss =
(
Rsim,C0,BLTF,BABM,FLTF,FABM, ik

)
. (5)

Opener(Γ, PKloss, SKloss,Msg0, (x, e0, e1),Msg1): Parse SKloss as in (5) and con-
duct the following steps.
1. Compute tLTF,x = CLTF · x ∈ Z

�
q, tABM,x = CABM · x ∈ Z

�
q and

[
ksym,x

kmac,x

]
= HUH · x ∈ Z

�0+�1
q .

Then, set tMsg,x = (Msg0 − Msg1) + ksym,x ∈ Z
�0
q and define

tx =
[

t�
LTF,x | t�

ABM,x | t�
Msg,x | kmac,x�

]�
∈ Z

�̄
q.

2. Using the trapdoor Rsim ∈ Z
�̄·�log q×n̄, sample a small-norm vector x′ ←↩

D
SF,tx,f

Λ⊥(C)+z,
√

Σ,c
so as to have a short integer vector x′ ∈ Z

n satisfying

C · x′ = tx mod q, using an arbitrary solution z ∈ Z
n of C · z = tx ∈ Z

�̄
q,

where Σ and c are defined based on Lemma 11, for

F :=

⎡
⎣

FLTF

FABM

Rt · FABM

⎤
⎦ ∈ Z

4m×n, e :=
[
e0
e

]
∈ Z

4m, f := F · x+ e ∈ Z
4m. (6)

3. Output (x′, e′
0, e

′) where
⎧
⎨

⎩

e′
0 = FLTF · (x − x′) + e0 ∈ Z

2m

e′ =
[

FABM

Rt · FABM

]
· (x − x′) + e ∈ Z

2m (7)

We observe that algorithm Opener is efficient. In particular, at Step 2, it can
compute the matrix Σ and the vector c of Lemma 11 by first reconstructing the
matrix F ∈ Z

4m×n of (6) and the vector f = F · x + e ∈ Z
4m, which requires

to deterministically re-compute the integer matrix Rt obtained at Step 2 of
ABM.Invert(ik, t, .) using ik = ((Ri)i≤λ,K).
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We easily check that, for any vector x′ sampled at Step 2, the corresponding
[
ksym,x′

kmac,x′

]
= HUH · x′ ∈ Z

�0+�1
q

satisfy kmac,x′
= kmac,x0 and ksym,x′

= (Msg0 − Msg1) + ksym,x mod q.
As a consequence, if C = (tc, c0, c1,y0,y) is the ciphertext obtained by run-

ning Encrypt(PKloss,Msg0, (x, e0, e)), this ciphertext contains

c0 = Msg0 + ksym,x mod q, c1 = MAC.Sig(kmac,x, (y, c0)),

which coincide with c0 = Msg1 + ksym,x′
and c1 = MAC.Sig(kmac,x′

, (y, c0)).
Moreover, we also have CLTF · x = CLTF · x′ and CABM · x = CABM · x′.

The following theorem formally states the correctness of the Opener algo-
rithm.

Theorem 4. For any key pair (PKloss, SKloss) in the support of Keygen(Γ, loss),
algorithm Opener outputs (x′, e′

0, e
′) with the correct distribution conditionally

on Encrypt(PKloss,,Msg0, (x, e0, e)) = Encrypt(PKloss,,Msg1, (x′, e′
0, e

′)).

Proof. For any lossy tag t = (tc, ta), the matrix At used by ΠABM.Eval(ek, t, .)
is of the form

At =
[

AABM

Rt · AABM

]
=

[
BABM

Rt · BABM

]
· CABM +

[
FABM

Rt · FABM

]
, (8)

where Rt ∈ Z
m×m is the integer matrix obtained in ABM.Invert(ik, t, .). At the

same time, ek′ consists of a matrix of the form ALTF = BLTF · CLTF + FLTF.
We now claim that, due to the way to sample x′ and e′

0 and e′ at Steps 2
and 3 of Opener, the distribution of y′

0 and y′, with
{

y′
0 = ALTF · x′ + e′

0 ∈ Z
2m

y′ = At · x′ + e′ ∈ Z
2m (9)

is the same as that of the real encryptions explained in the beginning of this
Section. By replacing ALTF,At and e′

0 and e′ we get:

y′
0 = (BLTF · CLTF + FLTF) · x′ + (FLTF · (x − x′) + e0)

= BLTF · CLTF · x′ + FLTF · x + e0
= BLTF · CLTF · x + FLTF · x + e0
= ALTF · x + e0 ∈ Z

m
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and

y′ =
([

BABM

Rt · BABM

]
· CABM +

[
FABM

Rt · FABM

])
· x′

+
([

FABM

Rt · FABM

]
· (x − x′) + e

)
(10)

=
[

BABM

Rt · BABM

]
· CABM · x′ +

[
FABM

Rt · FABM

]
· x + e

=
[

BABM

Rt · BABM

]
· CABM · x +

[
FABM

Rt · FABM

]
· x + e

= At · x + e ∈ Z
2m

It remains to show that (x′, e′
0, e

′) have the correct distribution. By applying
Lemma 11 to the matrix C of (4) with u = tx, the conditional distribution of
x′ given (tx,F · x + e) is statistically close to D

SF,tx,f

Λ⊥(C)+z,
√

Σ,c
, where z is an

arbitrary solution of C · z = tx. It is also efficiently samplable, by Theorem 1.
This provides the claimed result. ��

In the full version of the paper, we show that lattice trapdoors can also be
used to obtain SIM-SO-CPA security from LTFs based on DDH-like assumptions.
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Abstract. For a linear function f , a vector x with small coefficients,
and a vector y = f(x), we would like to be able to give a zero-knowledge
proof for the knowledge of an x′ with small coefficients that satisfies
f(x′) = y. This is a common scenario in lattice-based cryptography, and
there is currently no satisfactory solution for this problem. All known
protocols are built via the repetition of a basic protocol that only has
constant (1/2 or 2/3) soundness error. This implies that the communi-
cation complexity of the final protocol will be at least a factor of k larger
than that of the basic one, where k is the security parameter.

One can do better if one considers simultaneously proving the knowl-
edge of many instances of the above linear equation. The protocol that
has the smallest amortized communication complexity while achieving
close-to-optimal slack (i.e. the ratio between the coefficients in the secret
and those that can be extracted from the proof) is due to Cramer et al.
(Eurocrypt ’17) which builds on an earlier work of Baum et al. (Crypto
’16). The main downside of this protocol is that the amortization only
kicks in when the number of equations is rather large – 4k2. This means
that for k = 128, it is only truly optimal when one has more than 216

equations to prove. The aforementioned work of Cramer et al. also shows
how to achieve a protocol requiring o(k2) samples, but it is only applica-
ble for much larger values of k and the number of required samples ends
up being larger than 216.

The main result of our work is reducing the concrete minimal number
of equations required for the amortization, while keeping the communi-
cation complexity almost unchanged. The cost of this is an increase in
the running time of the zero-knowledge proof. More specifically, we show
that one can decrease the required number of equations by a factor of
Ω(log2 α) at the cost of increasing the running time by a factor of Ω(α).
For example, increasing the running time by a factor of 8 allows us to
decrease the required number of samples from 69000 to 4500 – a factor
of 15. As a side benefit, the slack of our protocol decreases by a factor
of log α as well.

We also show that in the case that f is a function over the polynomial
ring Z[X]/(Xd + 1) and we would like to give a proof of knowledge of
an x′ with small coefficients such that f(x′) = 2y, then the number of
samples needed for amortization is even lower. Without any trade-offs
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in the running time, our algorithm requires around 2000 samples, and
for the same factor 8 increase in the running time, the requirement goes
down to 850.

1 Introduction

Every lattice-based cryptographic construction relies on the fact that when given
a matrix A and a vector y over some ring R (such as Zq or Zq[X]/(Xd +1) with
the usual addition and multiplication operations), it is hard to recover a vector
x with small coefficients such that

Ax = y. (1)

In many instances, one would also like to construct a zero-knowledge protocol
where the prover, who knows x, is able to convince a verifier (who only has A
and y) that he possesses this knowledge.

There are several known approaches for constructing such protocols. The
first method is to adapt the classic Stern protocol [Ste93], which was used for
a similar code-based problem, to working over larger rings [KTX08,LNSW13].
The main issue with this protocol is that each round has soundness error 2/3
and therefore needs to be repeated 192 times (to achieve 128 bits of security).
For most practical applications, this technique is therefore unsuitable.

A second approach is to use the “Fiat-Shamir with Aborts” idea of Lyuba-
shevsky [Lyu08,Lyu09,Lyu12] whose original application was to digital signa-
tures. If one uses a ring R that contains a lot of elements with small coefficients
(e.g. R = Zq[X]/(Xd + 1)), then one can prove the knowledge of a short x′ and
c ∈ R such that Ax′ = cy. This is not exactly equivalent to proving (1), but it
suffices for the purposes of digital signatures, commitments [BKLP15], and to
some applications of verifiable encryption [LN17].

The most natural and useful scenario, however, is proving the knowledge of
some s′ that exactly satisfies (1). One could directly apply the “Fiat-Shamir
with Aborts” technique with 0/1 challenges, but this leads to protocols with
soundness error 1/2, which is essentially as inefficient as those using the Stern
technique. When working over the ring R = Zq[X]/(Xd + 1), it was shown that
one can decrease the soundness error to 1/(2d + 1) [BCK+14] and prove the
knowledge of an x′ such that Ax′ = 2y. The main observation in that paper
was that rather than using challenges from the set 0/1, one could use them from
the set {0,Xi} for 0 ≤ i < 2d. Even though this latter proof does not exactly
prove (1), the fact that one can prove the knowledge for a constant multiple of y
(rather than some arbitrary, unknown c) makes this type of proof suitable for a
variety of applications. But still, the soundness error of 1/(2d+1) would require
the proof to be repeated around a dozen times for typical values of d = 1024.

Amortized Proofs. A very interesting line of work, which built upon ideas from
[CD09], considered the amortized complexity of the [Lyu08,Lyu09] protocol. In
[DPSZ12], it was shown that one could prove the knowledge of a linear (in the
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security parameter) number of equations with essentially optimal communication
per equation. The main downside was that, for a security parameter k, while the
prover may have known xi with small coefficients that satisfied Axi = yi, he
would only be able to prove knowledge of x′

i whose coefficients were on the order
of 2Ω(k) larger. In practice, this slack is quite bad as it would require setting all
the parameters to be very large so as to make the proofs non-vacuous (i.e. so
that there isn’t an efficient algorithm that can simply compute such x′ from A
and y).

More recently, using different and novel ideas, Baum et al. [BDLN16] showed
how to reduce the slack to super-polynomial in the security parameter, and the
most recent work of Cramer et al. [CDXY17] reduced this slack to being only
a factor k larger than what one would get by running the basic protocol from
[Lyu08,Lyu09] with 0/1 challenges. The main downside of this latter algorithm
is that it requires doing at least 4k2 proofs at the same time. So for k = 128,
this implies that one needs to have at least 216 equations that one wishes to
prove simultaneously. When wanting to prove fewer than that, one could include
some “dummy” values, but this will have the effect of increasing the per-proof
communication complexity and running time. The main open direction in this
line of work is therefore to reduce the necessary number of equations while
keeping the slack and communication to be as low as in [CDXY17]. This is the
main result of the current paper.

1.1 Prior Work

High-level overview of [BDLN16,CDXY17]. We will use the notation from
[CDXY17]. The setup is that the prover has a linear function f and ordered pairs
(y1,x1), . . . , (yn,xn) such that f(xi) = yi (in (1), the function f is defined by
the matrix A). He wishes to prove the knowledge of x′

i with small coefficients
such that f(x′

i) = yi. The algorithm from [CDXY17] works in two stages. In
the first stage, it runs the “imperfect prover” from [BDLN16] which proves the
knowledge of all-but-k x′

i. The main issue is that after the first stage, we do not
know which k secrets the extractor cannot extract.

In the second stage, the prover creates 4k2 additive combinations of yi, for
which the pre-image is the corresponding additive combination of the xi due
to the linearity of the function f .1 The main result of the paper is showing a
strategy for producing these combinations such that for any set S of xi of size k,
each xi from S appears in at least k+1 combinations without any other xi from
S. One can then run the imperfect proof on the 4k2 linear combinations and
again get the guarantee that all but k secrets can be extracted. Each element in
S therefore appears in some extracted combination in which all other elements
were already extracted in the first stage. And due to the linearity of f , we can
now extract the sole element from the set S appearing in the combination.

1 To be more precise, the number of combinations is p2, with p the first prime greater
than 2k + 1.
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An asymptotically more efficient construction is also given in [CDXY17].
This construction uses two different additive combinations of the yi, the first
one is a relaxed version in which for any set S of xi of size k, all but k − 5k0.75

of the xi from S appears in at least k + 1 combinations without any other xi

from S. By running the imperfect proof on these sums all but 5k0.75 secrets can
now be extracted. The second additive combination is identical to the one of the
previous proof but is now used on sets of size 5k0.75, ensuring that after another
execution of the imperfect proof all secrets can be extracted. This improved
version requires at least 4(5k0.75)2 = 100k1.5 = O(k1.5) secrets. However it is
clear that this construction only makes sense if k > 5k0.75, i.e. k > 625. So while
this construction is more efficient asymptotically we only consider the previous
one which is better for all reasonable security parameters.

More concrete description of the “imperfect proof” from [BDLN16].
The original protocol from [BDLN16] is a Σ-protocol that can be seen as a very
particular type of parallel composition of the protocol from [Lyu08]. The basic
protocol from [Lyu08] for proving the knowledge of x′ such that f(x′) = y is
as follows: The prover starts by choosing a mask g from some distribution and
sends h = f(g). The verifier then chooses a random bit c ∈ {0, 1} as a challenge
and sends it to the prover. The prover computes cx+g and performs a rejection
sampling step, i.e. he aborts with a probability that depends on the value of
cx+ g (this is necessary for zero-knowledge). If it passes, then the prover sends
cx + g to the verifier. The verifier checks that f(cx + g) = cy + h.

The idea in [BDLN16] for giving “imperfect proofs” for n equations was
to choose T = 2κn masking parameters gj (for some small constant κ) and
send hj = f(gj) to the verifier. The verifier then sends a T -bit challenge string
c1, . . . , cT , and the prover sends the gj for which cj = 0. For every 1 ≤ i ≤ n, the
prover also tries to send xi +gj for the first non-used gj (a gj is considered used
if it was revealed in the clear or was previously tried to be used for masking
another xi′ with i′ < i – there should initially be approximately κn unused
gj). If the rejection sampling step passes, then the prover indeed sends the
xi +gj . Otherwise, he tries to send xi +gj′ where gj′ is the next unused g. The
verifier checks that all the revealed gj satisfy f(gj) = hj , and then checks that
yi + hj = f(xi + gj) for all i. It is then shown that if a prover succeeds with
probability 2−k+1, then an extractor can extract n − k vectors x′

i that satisfy
f(x′

i) = yi. Thus the protocol is a proof of knowledge of all-but-k pre-images.

1.2 Our Results

Our main result builds upon the works of [BDLN16,CDXY17] and allows us
to reduce the required minimum number of proofs at the expense of a higher
running time. Most importantly, the communication complexity per equation
does not increase too much. As an example, if we increase the running-time
by a factor of 8, we can decrease the required number of equations from 69000
to around 4500 (see Table 1). We also construct a protocol for proving knowl-
edge of si with small coefficients over the ring R = Zq[X]/(Xd + 1) such that
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Asi = 2ti. This protocol gets an even better trade-off between running time and
the minimum number of samples. For the same factor of 8 increase in running
time, we only now need to have 841 equations.

The importance of these trade-offs becomes even more substantial in the
quantum setting. If we model a hash function with k bits of output as a random
oracle, it is commonly assumed that while finding a preimage takes classical
time 2k, by using Grover’s algorithm one only needs time 2k/2 on a quantum
computer. In most practical uses the Fiat-Shamir transform [FS86] is used to
make the zero-knowledge protocol non interactive by replacing the verifier by a
random oracle. This entails that to achieve 128 bits of security one would use a
security parameter k= 256, in turn forcing amortization to be done on at least
4k2 = 218 equations. When using our construction we obtain the same factor
4 between the number of equations needed to achieve 128 bits of classical and
quantum security (see Table 1).

Table 1. Trade-offs between the running time and the minimum number of samples for
either 128 bits of classical or quantum security. We are considering proofs for (Ring)-
LWE instances of dimension 1024 where the secrets and errors have coefficients drawn
from {−1, 0, 1}.

[CDXY17] 0/1 challenges xi challenges

variable parameter α 2 16 64 256 2 16 64 256

Minimum equations n
(128 bit classical security)

69169 4489 2209 1369 2209 841 529 361

Communication/equation
(kB) (128 bit classical
security)

8.8 9.2 9.7 10.3 8.2 8.9 9.5 10.1

Minimum equations n
(128 bit quantum security)

249001 16129 7921 4489 7921 2209 1681 1369

Communication/equation
(kB) (128 bit quantum
security)

9.1 9.5 10.0 10.6 8.4 9.1 9.7 10.3

Time/equation (OWF
evaluation)

16 128 512 2048 16 128 512 2048

Figure 1 shows a graph that illustrates how increasing the running time by
a factor α reduces the minimum number of required equations. The implication
is that for larger values of α, the added reduction in the minimum number of
equations is not worth the increase in the running time. For practical purposes,
the best trade-offs are achieved for small α’s. Figure 2 illustrates the small effect
that increasing α has on the communication complexity of the protocol. Even
increasing α by 220, which is not advisable as we just mentioned, would result
in the communication complexity growing by less than a factor of 2.
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Fig. 1. The minimum number of samples required for amortization as a function of
log α. The squares represent our first protocol (with 0/1 challenges) and the triangles
represent the second (with challenges of the form Xi) when working over the ring
Z[X]/(Xd + 1) for d = 1024.

Techniques. We achieve this improvement by modifying the first stage of the
protocol – that is, the “imperfect proof” from [BDLN16]. Improving this protocol
to make it a proof of knowledge of all-but-τ pre-images for some τ < k, allows
us to only do the amortized second stage of [CDXY17] with only 4τ2 < 4k2

equations. A way to reduce τ is for the prover to produce a larger number of
hj in the first step of the Σ-protocol and then for the verifier to demand that
the prover reveal the pre-images of a larger fraction of the hj . The protocol of
[BDLN16] can be thought of as a cut-and-choose protocol, thus more reveals
intuitively implies a higher probability of the correctness of the non-revealed
parts. If we introduce a parameter α, then the prover produces T = ακn elements
hj in the first part, sends them to the verifier, and receives a challenge c1, . . . , cT

where a 1 − 1/α fraction of the cj are 0. The prover reveals the pre-images of
the corresponding hj and then uses the non-revealed gj (of which there are κn)
to send xi + gj in the same manner as in [BDLN16] described in Sect. 1.1. We
prove that this results in a protocol that proves the knowledge of all-but-τ pre-
images for τ = k/ log α. Therefore, now only 4(k/ log α)2 equations are needed
for amortization to kick in.

One issue that still needs to be resolved is the communication complexity.
Naively, it seems that one would need to send T = ακn elements hj which
would increase the communication complexity by a factor α. We instead give
an approach in which the communication is only logarithmically dependent on
α – furthermore it will only be small additive factors that have a dependence
on log α. Rather than sending h1, . . . , hT , the prover can instead send a hash
h = H(h1, . . . , hT ) where H is a collision-resistant hash function. This does not
completely solve the problem because at some point the prover will need to send
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Fig. 2. Proof sizes as a function of log α. We are considering proofs for the same types
of instances as in Table 1. The squares represent our first protocol (with 0/1 challenges)
and the triangles represent the second (with Xi challenges) when working over the ring
Z[X]/(Xd + 1) for d = 1024.

the hj so that the verifier can check the validity of h. But here we use the fact
that all except κn of the hj will have their pre-images simply revealed. Our
strategy is therefore as follows: we create the gj from 256-bit seeds sj which are
leaves on a tree generated by a pseudorandom function. That is, from the root of
the tree, one can generate the entire tree. When required to reveal pre-images of
a set of hj , the prover does not need to send the gj (or their seeds) individually.
He can instead send roots of sub-trees which only include the seeds that will be
revealed. We prove that with this strategy, rather than sending ακn seeds, one
only needs to send a maximum of κn log α many elements from the tree (which
are themselves 256 bits each).

Putting everything together, we show that at the expense of increasing the
running time by a factor of α, one can reduce the minimum number of samples
required for amortization by a factor of log2 α. Our second contribution is show-
ing that when working over the ring Z[X]/(Xd + 1), proving the knowledge of
xi such that f(xi) = 2yi has an even better trade-off between running-time and
the minimum number of samples. In particular, we show that at the expense
of an α-fold increase in running time, one can reduce the minimum number of

vectors by a factor of
(

log α+log 2d
1+1/ log α

)2

.
To obtain such an improvement we adapt the proof of [BCK+14] to the frame-

work of [BDLN16]. Though merging the two protocols is rather straightforward,
the knowledge extractors of both of these schemes don’t combine as nicely. The
knowledge extractor of [BDLN16] first recovers a set of all but k of the masking
parameters gj and then simply extracts xi from xi +gj . This method falls apart
when used with the protocol of [BCK+14] as the latter scheme uses rewinding
to obtain two equations Xax + g and Xbx + g and recovers a pre-image from
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their difference. The same rewinding is still possible in our scheme but will yield
two equations of the form Xaxi + gj and Xbxi + gj′ and extraction will be
only possible if j = j′, which cannot be guaranteed. We resolve this issue by
conditioning our extractor on the fact that j = j′ which results in a slightly
sub-optimal number of extracted preimages: n − k·(1+1/ log α)

log α+log 2d instead of simply
n− k

log α+log 2d . It is not clear to us whether this small loss is necessary or simply
an artifact of our proof.

1.3 Paper Organization

In Sect. 2, we introduce the notation and definitions that we will be using
throughout the paper. In Sect. 3 we present a modification of the “imperfect
proof” protocol of [BDLN16], which is a proof of knowledge of all-but-τ pre-
images for τ = k/ log α. This protocol only serves as intuition, and we do not
formally prove its correctness or security because the communication complexity
(i.e. the proof size) grows linearly in α. In Sect. 4, we show how to reduce the
communication complexity of the interactive protocol from Sect. 3 and prove its
correctness, zero-knowledge, and soundness. We only show honest-verifier zero-
knowledge because this is enough to convert the protocol to a non-interactive one
using the Fiat-Shamir transform, which is the manner in which one would use
these schemes in practice. Analyzing the size of the communication is delayed
until in Sect. 6 because this analysis also applies to the protocol in Sect. 5. In
Sect. 5, we show that if the proof is done over the ring Z[X]/(Xd + 1), then the
number of required equations can be made even smaller if one wants to prove
f(x′) = 2y.

2 Preliminaries

2.1 Notation

We will write vectors such as b or B in bold face. We refer to the ith position
of a vector b as b [i]. Define [r] = {1, . . . , r}. The Euclidean norm of a vector,

b ∈ Z
r is ‖b‖ =

√∑
i∈[r] b [i]2. For a set S, we write s

$← S to denote that s

was drawn uniformly at random from S. For a distribution D, we write s ← D
to denote that s is drawn from D.

2.2 Homomorphic OWF

In this section we follow the framework of [BDLN16] in defining homomorphic
one-way functions over integer vectors (which includes polynomial rings) as well
as amortized zero-knowledge proofs of preimage for these functions. Let λ ∈ N

be a security parameter, G be an Abelian group, β, r ∈ N, f : Zr → G be a
function and A be any algorithm. Consider the following game:
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InvertA,f,β(λ):

1. Choose x ∈ Z
r, ‖x‖ ≤ β and compute y = f(x).

2. On input (1λ, y) the algorithm A computes an x′.
3. Output 1 iff f(x′) = y, ‖x′‖ ≤ β, and 0 otherwise.

Definition 2.1 (Homomorphic OWF over Integer Vectors (ivOWF)).
A function f : Z

r → G is called a homomorphic one-way function over the
integers if the following conditions hold:

– There exist a polynomial time algorithm evalf such that evalf (x) = f(x) for
all x ∈ Z

r.
– for all x,x′ ∈ Z

r it holds that f(x) + f(x′) = f(x + x′).
– for every PPT algorithm A there exists a negligible function negl(λ) such

that:
Pr [InvertA,f,β(λ) = 1] ≤ negl(λ).

2.3 Rejection Sampling and the Normal Distribution

For a protocol to be zero-knowledge, the output of the prover needs to be inde-
pendent of his secret. In certain situations achieving this independence requires
rejection sampling. While [BDLN16] used rejection sampling in the infinity norm
(as in [Lyu08,Lyu09]) we use the euclidean norm and thus rejection sampling
over the �2 norm using normal distributions (as in [Lyu12]), which allows for
tighter parameters. But all our techniques easily work for the �∞ norm as well.

Definition 2.2 (Continuous Normal Distribution). The continuous Nor-
mal distribution over R

r centered at v with standard deviation σ is defined by

the probability density function ρr
v,σ(x) =

(
1√

2πσ2

)r

e− ‖x−v‖2

2σ2 .

Definition 2.3 (Discrete Normal Distribution). The discrete Normal dis-
tribution over Z

r centered at v with standard deviation σ is defined by the prob-
ability mass function Dr

v,σ(x) = ρr
v,σ(x)/ρr

v,σ(Zr).

Lemma 2.4 (Tail-Cut Bound [Ban93]). Pr [‖z‖ ≥ 2σ
√

r; z ← Dr
σ] < 2−r.

Theorem 2.5 (Rejection sampling [Lyu12] Theorem4.6). Let V be a sub-
set of Zr with elements of norm less than T , let h be a distribution over V. Let
σ = 11T , for v, z ∈ Z

r let Rej(v, z) be the algorithm that outputs 1 with proba-
bility min

(Dr
σ(z)/(3Dr

v,σ(z)), 1
)

and 0 otherwise. Then we have:

(v, z | Rej(v, z) = 1) ∼s (v, z′)

where v ← h, z ← Dr
v,σ, and z′ ← Dr

σ, i.e. the distribution of z conditioned on
Rej(v, z) = 1 is exactly a discrete Normal distribution centered on 0. Moreover
the probability, taken over the choice of v ← h and z ← Dr

v,σ that Rej outputs
1 is exponentially close to 1/3:

∣∣∣∣ Pr
v←h,z←Dr

v,σ

[Rej(v, z) = 1] − 1
3

∣∣∣∣ ≤ 2−100
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2.4 Zero-Knowledge Proofs of Knowledge

We will consider amortized proofs of knowledge for preimages of an ivOWF.
Formally, given an ivOWF f the relation we want to give a zero-knowledge
proof of knowledge for is:

RKSP(n, f, β) =
{

(Y,X) ∈ (G × Z
r)n

∣∣∣∣Y = (y1, . . . , yn) ∧ X = (x1, . . . ,xn)

∧ [yi = f(xi) ∧ ‖xi‖ ≤ β]i∈[n]

}

We define a second binary relation R′, such that R ⊂ R′, which characterizes
the soundness slack of the protocol, i.e. while the input to the protocol is a pair
(Y,X) ∈ R the knowledge extractor can only extract values in R′. Typically the
relation R′ is identical to R except for the fact that the components of X are
bounded in norm by a constant β′ > β. We will however see in Sect. 5 a ZKPOK
for a different relation R′.

Definition 2.6 (Zero-Knowledge Proof of Knowledge). Let PZK be a two-
party protocol, let R,R′ be binary relations such that R ⊆ R′, let k be a statistical
security parameter. PZK is a zero-knowledge proof of knowledge if the following
properties hold:

Correctness: If P,V are honest and run PZK on an instance of R, then the
protocol terminates with probability greater than 1 − 2O(k).

Computational Honest-Verifier Zero-Knowledge: There exists an expected
PPT simulator S such that for any (a, b) ∈ R, and for any PPT algorithm A. A
has advantage negl(k) in distinguishing between the two following distributions:

– V iewV [P(a, b) ↔ V(a)] the view of V consisting in the transcript of the pro-
tocol as well as the random coins of V.

– S(a).

Soundness: For any pair (a, b) ∈ R, for any deterministic prover P̂ that suc-
ceeds with probability p > 2−k one can extract b′ such that (a, b′) ∈ R′ in expected
time poly(s, k) · 1/p, where s is the size of the input to the protocol.

2.5 Imperfect Proof of Knowledge and a Compiler

In [BDLN16], the authors introduce the concept of an imperfect proof of knowl-
edge. An imperfect proof of knowledge is a protocol that proves knowledge of
pre-images in the relation RKSP, however the knowledge extractor is not required
to be able to extract all the pre-images.

Definition 2.7 (Imperfect Proof of knowledge). Let PIProof be a two-party
protocol, let f be an ivOWF, let RKSP(n, f, β) and RKSP(n, f, β′) be two binary
relations on f , k be the security parameter. The protocol PIProof is an imperfect
proof of knowledge with imperfection τ(k) if the following properties hold:
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Correctness: PIProof is correct as in Definition 2.6.

Computational Honest-Verifier Zero-Knowledge: PIProof is honest veri-
fier zero-knowledge as in Definition 2.6.

Impefect Soundness: For any pair (Y = (y1, . . . , yn),X = (x1, . . . ,xn)) ∈
RKSP(n, f, β), for any deterministic prover P̂ that succeeds with probability p >
2−k one can extract at least n−τ(k) values x′

i such that f(x′
i) = yi and ‖x′

i‖ ≤ β′

in expected time poly(s, k) · 1/p, where s is the size of the input to the protocol.

[BDLN16] introduced a ZKPOK that uses an imperfect proof as a building block.
The construction was later improved in [CDXY17] allowing for very efficient
proofs that only require two executions of the imperfect proof system, while only
introducing an additional soundness slack of k. The protocol, however, requires
the amortization to be done on at least 4k2 secrets, which can be impractical. We
give a somewhat refined statement of this construction as the proof of [CDXY17]
can be straightforwardly adapted to using the imperfection τ(k) instead of k.

Theorem 2.8 (Compiler [CDXY17] Theorem2). Let f be an ivOWF, let
k be a statistical security parameter, let RKSP(n, f, β) and RKSP(n, f, β′) be
two binary relations on f . Let PIProof be an imperfect proof with imperfection
τ(k). If n ≥ 4τ(k)2 + O(log k) then there exists an efficient construction for a
zero-knowledge proof of knowledge PCProof with soundness slack τ(k)β′.

In this paper, we give constructions that can reduce the imperfection τ(k) of
the imperfect proof to values less than k, thus allowing for more efficient zero-
knowledge protocols in cases where the number of available equations is less
than τ(k).

3 Warmup Construction

We present a first construction that achieves imperfection τ(k) = k/log(α) + 1
for any parameter α, but has proof size that grows linearly in α. This first
construction is similar to the one of [BDLN16]. Their protocol works in two
phases: first the prover samples masking parameters gj , j ∈ [T ] and a cut-and-
choose protocol reveals each one with probability one half. After this step, the
verifier is convinced that with probability 1 − 2−k all but k of them are well
formed. In the second phase the masking parameters that were not revealed are
used to hide the secrets of the prover. We modify the first phase of this protocol
so that the prover reveals each masking parameter with probability 1−1/α. For
α ≥ 2, this reduces the percentage of gj on which the prover can cheat and, in
turn, reduces the imperfection of the proof. However, the number of masking
parameters necessary for the second phase is on the order of n, meaning that,
since the prover will reveal a fraction 1−1/α of them, the protocol then requires
T = Θ(αn) masking parameters.

We describe this protocol in Fig. 3. We do not give a formal proof that it is
an imperfect proof of knowledge with imperfection k/ log α + 1 as the protocol
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Fig. 3. Warm-up construction. For α ≥ 2, we fix T = 5αn and χ the bernouilli distribu-
tion of parameter 1/α. Resulting in an imperfect proof of knowledge with imperfection
k/ log α + 1 and communication that grows linearly with α

presented in the next section is a strict improvement upon this one. While this
first protocol achieves better imperfection than the one of [BDLN16], it has a
major downside in that the communication cost grows linearly with α, since
we need T ≥ αn. This voids any improvement over the previous protocol. To
remedy this problem we will modify this protocol as follows:

– Rather than sending the hash of every ai in the first round the prover will only
send h = H(h1, . . . , hT ), thus making the first flow of the protocol constant
size.

– In his second move, the prover sends gj , j ∈ O. This is an issue because
|O| � (α − 1)4n, but also because the gi can be rather large. We solve these
problems by sending a set of seeds from which a PRG will be used to derive
the gi. This way only 256 bits need to be sent for each seed. Most crucially,
by using a tree data-structure, we show that the prover only needs to send
4n log α seeds in his second move.
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4 Amortized Proof for f(xi) = yi with Fewer Equations

In this section we describe our first concrete imperfect proof of knowledge and
prove that it has imperfection τ(k) = k/ log α + 1. We show that the proof is
only slightly dependent on α in Sect. 6.

We will need the following two functions, which can both be efficiently imple-
mented using an extendable output function (e.g. SHAKE128 [BDPA16]):

– PRF: {0, 1}256 → {0, 1}512 a size doubling pseudo-random function
– PRG: {0, 1}256 → {0, 1}∗ a pseudo-random generator

For a randomized algorithm h and a seed s ∈ {0, 1}256 we will write h [PRG(s)]
to denote an execution of h using as randomness the bits output by PRG(s).

We first describe the tree structure that we will use. From now on we will only
consider T = 2t a power of two, which simplifies the description of the protocols
and does not affect efficiency – all the results we obtain can be adapted to
general T. A tree Γ is a binary tree with nodes labeled in {0, 1}∗ (the root will
have the label ∅, its left child will have label 0, its right child will have label
1, etc.). We consider complete binary trees of depth t, which implies that the
leaves will be labeled in {0, 1}t. We map the range [T ] to the labels of the leaves
through the mapping where the image of t ∈ [T ] is the leaf labeled by the binary
decomposition of t−1. Each node will have two extra attributes, one will be the
seed associated to the node (which can be bottom for the verifier since he will
not know all the seeds), the other will be a bit indicating whether the associated
seed must be sent to the verifier in the first flow.

The purpose of this seed tree is twofold. We will use the leaves as seeds for
the PRG when generating the gj , j ∈ [T ]. This way sending the seeds to the
verifier in the first flow will be sufficient as he can then reconstruct the gj , j ∈ O
using the PRG. More importantly, rather than directly sending the leaves of
the seed tree, it will be more efficient to send the smallest set of nodes needed
to recover the leaves for indices that lie in O. We define the tree structure as
follows:

Tree T:

– Label ⊂ {0, 1}∗

– Left ∈ Tree ∪ ⊥
– Right ∈ Tree ∪ ⊥
– Leaf ∈ {0, 1}
– Sel ∈ {0, 1}
– Seed ∈ {0, 1}256 ∪ ⊥
For j ∈ {0, 1}∗ we denote by Γ [j] the node with label j. We will describe four
algorithms: the first to initialize the tree will be performed by both parties, the
second to initialize the seeds will only be used by the prover, the third to compute
the indexes of the seeds that will be sent in the first flow of the protocol will be
used by both parties, and the fourth to recover the seeds needed to compute the
gj , j ∈ O will only be used by the verifier.
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Fig. 4. Our first construction: For α ≥ 2, we fix T = 5αn and χ the bernouilli distrib-
ution of parameter 1/α. We obtain an imperfect proof of knowledge with imperfection

k
log α

+ 1. The communication complexity only has a small dependence on log α.
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Algorithm 1. Initialize(Γ, l, d)
Require: A tree Γ , a label l ⊂ {0, 1}t, a depth d
1: Γ.Label := l
2: Γ.Sel := 0
3: Γ.Seed :=⊥
4: if d = 0 then
5: Self.Leaf := 1
6: Self.Left :=⊥
7: Self.Right :=⊥
8: else
9: Self.Leaf := 0

10: Initialise(Γ.Left, (l, 0), d − 1)
11: Initialise(Γ.Right, (l, 1), d − 1)
12: end if

The second algorithm Initialize will use a seed fixed by the prover and
compute the seed associated with the children of each node as the first and
second half of PRF applied on the seed of the parent node.

Algorithm 2. SeedTree(Γ, v)
Require: A tree Γ , v ∈ {0, 1}256

1: Γ.Seed := v
2: if Γ.Leaf = 0 then
3: (v1, v2) := PRF(v)
4: SeedTree(Γ.left, v1)
5: SeedTree(Γ.right, v2)
6: end if

The Prefix algorithm will compute the prefix of a set of nodes and set their
attribute Sel to 1. A node n will be in the prefix of a set O if all the leaves that
descend from n are in O and none of the ancestors of n are in the prefix of O.
The algorithm ensues directly from this definition.

The Reconstruct algorithm will use a tree in which the prefix S of O has
been computed as well as a set of seeds sj , j ∈ S and will reconstruct the seeds
sj , j ∈ O by using SeedTree for each node in S.

We give in Fig. 5 an example of a seed tree as well as a set O and its prefix.
We describe our improved protocol in Fig. 4.

Theorem 4.1. Let f be an ivOWF, k be a statistical security parameter, H a
collision resistant hash function, r ≥ 128 be an integer, χ the bernouilli dis-
tribution of parameter 1/α (i.e. P [χ = 0] = 1 − P [χ = 1] = 1 − 1/α). Let
T = 5αn, σ = 11β, B = 2σ

√
r. The protocol PIProof given in Fig. 4 is an

imperfect proof of knowledge for inputs in RKSP(n, f, β), with soundness extrac-
tor in RKSP(n, f, 2B) and imperfection k

log α + 1.
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Algorithm 3. Prefix(Γ,O)
Require: A tree Γ , a set of indices O ⊂ [T ]
1: if Γ.Leaf = 1 ∧ Γ.label ∈ O then
2: Γ.Sel := 1
3: return 1
4: else if Γ.Leaf = 0 ∧ Prefix(Γ.Left, O) = 1 ∧ Prefix(Γ.Right, O) = 1 then
5: Γ.Sel := 1
6: Γ.Left.Sel := 0
7: Γ.Right.Sel := 0
8: return 1
9: end if

10: return 0

Algorithm 4. Reconstruct(Γ, S,O)
Require: A tree Γ , a list of seeds S = [sj ], a set O ⊂ [T ]. We assume that Prefix(Γ, O)

was applied.
1: if Γ.Sel = 1 then
2: SeedTree(Γ, S[0])
3: S := S[1 :]
4: else
5: Reconstruct(Γ.Left, S)
6: Reconstruct(Γ.Right, S)
7: end if

Proof. We prove correctness in Lemma 4.2, honest-verifier zero-knowledge in
Lemma 4.3, and soundness in Lemma 4.4.

We first prove correctness.

Lemma 4.2 (Correctness). With parameters set as in Theorem4.1, the pro-
tocol PIProof described in Fig. 4 completes with probability greater than 1−2−100.

Proof. By the homomorphic property of f and by construction of Initialize,
SeedTree, Prefix, and Reconstruct all the checked equalities hold. We fist
consider the probability that P aborts. P will abort if he runs out of samples
during the rejection sampling. For each gj , j ∈ [T ] the probability that gj will
not be revealed is 1/α, and by Theorem2.5 the probability that the rejection
sampling will succeed is 1/3, in which case the vector obtained will be of norm
less than B with overwhelming probability (2.4). We can model the probability
that each gj will not be revealed and will pass both checks of the rejection step
by a Bernoulli variable Xj s.t Pr [Xj = 1] = 1/(3α) − 2−O(n). P will abort if∑

j∈[T ] Xj < n. Using the Chernoff bound we obtain:
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s

s0

s00

s000 s001

s01

s010 s011

s1

s10

s100 s101

s11

s110 s111

Fig. 5. Seed tree for t = 3, and O = {1, 2, 3, 5, 6, 7, 8}, the nodes needed to reconstruct
(sj)j∈O are those in prefix(O) = {00, 010, 1}.

Pr

⎡
⎣ ∑

j∈[T ]

Xj < n

⎤
⎦ ≤ exp

(
− (T − 3αn)2

3αT
+ 2−O(n)

)

= exp
(

−4n

15
+ 2−O(n)

)
,

which is negligible asymptotically (and in practice less than 2−100 whenever we
amortize over n ≥ 260 secrets.)

We now consider the probability that V aborts. V will abort if there exists
either j ∈ O such that ‖gj‖ > B or i ∈ [n] such that ‖zi‖ > B. Since the gj

and the zi are drawn independently from the distribution Dr
σ by using a union

bound we have that the probability that the norm of one of them exceeds B is
less than (T + n)2−r. ��
We now show that this protocol is honest-verifier zero-knowledge.

Lemma 4.3 (HVZK). With parameters set as in Theorem4.1, the protocol
PIProof described in Fig. 4 is computationally honest-verifier zero-knowledge.

Proof. The honest-verifier zero-knowledge proof is very close to that of [BDLN16],
but we still include it here for completeness as there are slight differences. Consider
the following algorithm SIProof :

– On input (Y = (y1, . . . , yn), β) sample s
$← {0, 1}256 and (sj)j⊂{0,1}t using

SeedTree.
– Sample c ← χT , compute the sets O and C.
– Set Φ′ = ∅, for j ∈ C sample zj ← Dr

σ and do the following:
• Sample b

$← {0, 1, 2}
• If b = 0 ∧ ‖zj‖ ≤ B then Φ′ = Φ′ ∪ j

– For j ∈ O set hj = H(f(Dr
σ [PRG(sj)])).

– If |Φ′| < n then for j ∈ C set hj
$← {0, 1}256, h = H(h1, . . . , hT ), output

(h, c, (sj)j∈prefix(O), (hj)j∈C) and abort.
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– If |Φ′| ≥ n set Φ to be the first n elements of Φ′ and for i ∈ [n] rename zΦ[i]

as zi. For j ∈ C\Φ set hj
$← {0, 1}256.

– For i ∈ [n] set aΦ[i] = f(zi) − yi, hΦ[i] = H(aΦ[i]).
– Set h = H(h1, . . . , hT ), output

(h, c, (sj)j∈prefix(O), (hj)j∈C , Φ, (zΦ[i])i∈[n]).

We first consider the abort probability of the simulator: S will abort if |Φ′| < n.
For each j ∈ [T ] the simulator adds a zj to Φ′ iff c [j] = 1 ∧ b = 0 ∧ ‖zj‖ ≤ B,
the probability of this event is 1/(3α) − 2−O(n), thus the probability of abort
will be exponentially close to the one of PIProof . Regardless of whether the
simulator aborts or not, all the checks performed by the verifier will accept: h
is set to be h = H(h1, . . . , hT ), and when S does not abort he sets hΦ[i] so that
H(f(zi)−yi) = hΦ[i]. The sets O and C are defined in the same way as in PIProof

and the sj , j ∈ prefix(O) are also sampled according to the protocol. Note that
in PIProof for j ∈ C\Φ the hj are distributed uniformly since H is modeled as a
random oracle and no preimages of the hj are given (note that for some leaves of
the tree the verifier knows half of the output of PRF on the parent node, even
conditioning on this knowledge the second half of the output is uniform as PRF
is modeled as a random oracle). It remains to analyze the distribution of zi for
i ∈ [n]. We have by Theorem 2.5 that the distribution of zi, i ∈ [n] in PIProof

is that of a discrete gaussian centered in 0 with standard deviation σ and thus
identical to the distribution of zi in S. ��
We finally show the soundness of the protocol, i.e. that one can extract all but
τ(k) = k/ log α + 1 preimages from a prover that succeeds with probability
greater than 2−k.

Lemma 4.4 (Soundness). With parameters set as per Theorem4.1, the pro-
tocol PIProof has imperfection τ(k) = k/ log α + 1 and slack 2B.

Proof. The soundness proof is similar to the one of [BDLN16] as the use of the
hashes and seed trees does not affect it significantly. We will however give a
detailed proof, first to address the differences with the proof of [BDLN16], and
second because the soundness proof of the protocol described in Sect. 5 will build
upon this first proof.

Let k′ = k/ log α + 1, let P̂ be a deterministic prover that makes an honest
verifier accept with probability p > 2−k. We will construct an extractor E that
extracts n − k′ values x′

i, i ∈ I ⊂ [n] such that f(x′
i) = yi and ‖x′

i‖ ≤ 2B. E will
run in expected time poly(s, k) · 1/p where s is the size of the input to PIProof .

We first give a high-level overview of the proof. Remark that by collision
resistance of H we can consider g1, . . . ,gT as being fixed by the value of h. E
will begin by running P̂ on random challenges, and thus random sets O ⊂ [T ].
Each time P̂ is successful E will be able to extract gj for j in O (since the
prover is effectively revealing gj , j ∈ O in his first message after the challenge).
E will repeat this step until he has extracted all but k′ vectors gj , we will
prove that this takes expected time O(1/p). Once this is done E can run P̂ until
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he succeeds and obtain vectors zi, i ∈ [n] such that, by collision resistance of H,
f(zi) = yi +f(gΦ[i]). If E has previously extracted gΦ[i] he can compute zi −gΦ[i]

which is a preimage of yi. Since E knows all but k′ vectors gj , E will be able to
obtain preimages for all but k′ secrets yi.

Formally: E starts P̂ who outputs h and runs the protocol on random chal-
lenges until he outputs (sj)j∈prefix(O) and (hj)j∈C , from this E can recover
hashes (hj)j∈[T ] such that H(h1, . . . , hT ) = h, fix h := h and hj := hj . Set
A := ∅ and run T instances of P̂ in parallel, which we denote P̂1, . . . , P̂T . Do
the following until |A| ≥ T − k′:

– For each P̂j sample a random challenge cj ← χT subject to cj [j] = 0 and
run P̂j on challenge cj .

– For each instance P̂j that does not abort, reconstruct sj from the prover’s
response and set gj = Dr

σ [PRG(sj)]. Verify the proof output by P̂j and set
A = A ∪ gj . Note that if the proof is valid then the verifier can reconstruct
h1, . . . , hT s.t

H(h1, . . . , hT ) = h = H(h1, . . . , hT )

since H is collision resistant we have in particular that hj = hj which implies
H(f(gj)) = hj . We also have ‖gj‖ ≤ B.

Observe that if this algorithm terminates we obtain a set A of at least T − k′

preimages of the hj by the function H ◦ f . We will now show that this extractor
finishes in expected polynomial time. This proof is very similar to the one of
[BDLN16] but we choose to present it anyway as it will be reused in the next
section.

Let pj be the probability that P̂j outputs a good gj (i.e. such that H(f(gj)) =
hj ∧ ‖gj‖ ≤ B). We say that pj is bad if pj < p/k′ and good otherwise. Let Xj

be the event that P̂j eventually outputs a good gj , where Xj = 1 if the event
happens and Xj = 0 otherwise. If pj is good then after l iterations:

Pr [Xj = 0] ≤ (1 − p/k′)l ≤ e−lp/k′

so after at most l = k · k′/p iterations we can expect that gj was extracted
except with probability negligible in k. This can be generalized to the success
of all P̂j (where pj is good) by a union bound, and the probability of failing is
still negligible because T is polynomial in k. The resulting extractor thus runs
in time O(Tk2/p log α) provided there are less than k′ bad pj .

Assume there are k′ bad pj which, for simplicity, are p1, . . . , pk′ . In the pro-
tocol the challenge is taken according to the distribution χT . The success prob-
ability of P̂ can be conditioned on the value of c [1] as

p = Pr
[ P̂ succeeds c [1] = 0

] · Pr [c [1] = 0]

+ Pr
[ P̂ succeeds c [1] = 1

] · Pr [c [1] = 1]

= p1

(
1 − 1

α

)
+

1
α

Pr
[ P̂ succeeds c [1] = 1

]
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Conditioning additionally on c [2] yields

p ≤ p1

(
1 − 1

α

)
+

1
α

((
1 − 1

α

)
αp2 +

1
α

Pr
[ P̂ succeeds c [1] = 1 ∧ c [2] = 1

])

=
(

1 − 1
α

)
(p1 + p2) +

1
α2

Pr
[ P̂ succeeds c [1] = 1 ∧ c [2] = 1

]

The reason the inequality holds is as follows: the probability that a random
challenge s.t c [2] will yield a preimage of h2 is p2. Now conditioning on c [1] = 1,
which occurs with probability 1/α, will increase that probability from p2 to at
most αp2.

Repeating the above argument generalizes to

p≤
(

1 − 1
α

)
(p1 + p2 + . . . + pk′)

+
1

αk′ Pr
[ P̂ succeeds c [1] = 1 ∧ . . . ∧ c [k′] = 1

]

<

(
1 − 1

α

)
p +

1
αk′

This entails that

p <
1

αk′−1
= α−k/logα = 2−k

From this we conclude that there are less than k’ bad pj , and thus that E has
extracted a set A of size at least T − k′ of elements gj s.t

H(f(gj)) = hj ∧ ‖gj‖ ≤ B.

We will now show how to use this set A to extract n − k′ secrets x′
i.

E runs P̂ on random challenges until it succeeds. Call this successful instance
P̃, this takes expected time 1/p. From the output of P̃, E obtains a set Φ̃ as
well as (z̃i)i∈[n] s.t H(f(z̃i) − yi) = h

˜Φ[i] (by collision resistance of H and by

the fact that H(h̃1, . . . , h̃T ) = h) and ‖z̃i‖ ≤ B. For each i ∈ [n] if there exists
g
˜Φ[i] ∈ A, then we have H(f(z̃i)−yi) = H(f(g

˜Φ[i])), setting x′
i = z̃i −g

˜Φ[i] gives

f(x′
i) = yi and ‖x′

i‖ ≤ 2B. Since |A| ≥ T − k′ there are at most k′ of the Φ̃ [i]
that are not in this set and E can extract n − k′ preimages x′

i. ��
Using this imperfect proof with the compiler of Theorem2.8 results in a
proof of knowledge with soundness slack 4k

√
rβ/ log α, communication over-

head O(1) (we will discuss this in further details in Sect. 6) and amortization

over 4
(

k
log α + 1

)2

secrets. e.g. for α = 210 one can create amortized proofs for
as few as 853 secrets with a security parameter k = 128, while the construction
of [CDXY17] needs to amortize over at least 67103 secrets for the same security.
However this protocol is not strictly better in the sense that the computation



Amortization with Fewer Equations for Proving Knowledge of Small Secrets 385

cost, which is essentially the number of evaluations of the function f , increases
multiplicatively in α for both the prover and the verifier, making this protocol
impractical for very large α. In the next section we describe a new variant of
the scheme inspired by the work of [BCK+14] that reduces the soundness errror
τ(k) without necessarily increasing the computational cost of the protocol.

5 Proving f(xi) = 2yi with Even Fewer Equations

In this section we use an idea from the zero-knowledge proof of [BCK+14] to
improve the imperfection of our previous scheme. In [BCK+14] the authors
prove knowledge of preimages for an ivOWF over a polynomial ring of dimension
d, they take advantage of this structure by replacing the binary challenge of
the classic 3-round ZKPOK with a challenge in

{
0,±1,±X, . . . ,±Xd−1

}
this

improves the soundness error of the protocol from 1/2 to 1/(2d + 1). We adapt
this technique to further improve the imperfection of our imperfect proof. The
knowledge extractor becomes however substantially more complicated.

Let R be the polynomial ring Z[X]/〈Xd + 1〉. For (a1, . . . , al) ∈ Rl and for
b ∈ R let � be the following product � : R×Rl → Rl such that b � (a1, . . . , al) =
(ba1, . . . , bal).

In this section we will consider ivOWFs f : Z
r � Rl → R such that for

b ∈ R and a ∈ Rl we have f(b � a) = bf(a). This type of one-way function is
often used in ideal-lattice constructions.

Lemma 5.1 ([BCK+14] Lemma3.2). Let d be a power of 2, let a, b ∈{±1, . . . ,±Xd−1
}
. Then 2(a − b)−1 mod Xd + 1 only has coefficients in

{−1, 0, 1}. In particular
∥∥2(a − b)−1

∥∥ ≤ √
d.

We now prove that the construction of Fig. 6 is an imperfect proof of knowl-
edge.

Theorem 5.2. Let f : Rl → R be an ivOWF, r = ld ≥ 128 be an integer, let
f ′ = 2f , let k be a statistical security parameter, H a collision resistant hash func-
tion, χ a distribution over

{
0,±1,±X, . . . ,±Xd−1

}
with Pr [χ = 0] = 1 − 1/α

and ∀c ∈ {±1, . . . ,±Xd−1
}
, Pr [χ = c] = 1/(2dα). Let T = 5αn, σ = 11β,

B = 2
√

rσ. The protocol PIProof given in Fig. 6 is an imperfect proof of knowl-
edge for inputs in RKSP(f, n, β), with soundness extractor in RKSP(f ′, n,

√
dB)

and imperfection k(1+1/ log α)
log α+log 2d + 1.

Proof. The proofs for the correctness and zero-knowledge of the protocol are
identical to the proofs in the previous section. On the other hand the soundness
proof is more involved.

Soundness: Let k′ = k(1+1/ log α)
log α+log 2d + 1, let P̂ be a deterministic prover that

makes an honest verifier accept with probability p > 2−k. We will construct an
extractor E that extracts n − k′ values x′

i, i ∈ I ⊂ [n] such that f(x′
i) = 2yi and

‖x′
i‖ ≤ √

dB. E will run in time poly(s, k) · 1/p1+2/ log α where s is the size of the
input to PIProof .
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Fig. 6. Our second construction: an imperfect proof of knowledge for f(xi) = 2yi with

imperfection k(1+1/ log α)
log α+log 2d

+ 1
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We first give a high level overview of the soundness proof. E starts by running
the extractor from Lemma 4.4 to obtain all but k/ log α+1 vectors gj as well as
all but k/ log α + 1 preimages xi. Next we would like to have E run P̂ until he
is successful twice and obtain two outputs:

– z1, . . . , zn such that f(zi) = c[Φ[i]] · yi + gΦ[i]

– z′
1, . . . , z

′
n such that f(z′

i) = c′[Φ′[i]] · yi + gΦ′[i]

Now if for a given i ∈ [n] we have both:

Φ[i] = Φ′[i] (2)

c[Φ[i]] �= c′[Φ[i]] (3)

Then E can extract (zi − z′
i) · 2 (c[Φ[i]] − c[Φ′[i]])−1 which is a preimage of 2yi.

We would thus like to show that there are at least n−k′ indices i ∈ [n] for which
both of these equations are true with non negligible probability. However proving
such a thing is difficult as the probabilities that (2) is true for each i ∈ [n] are
not independent. We instead show a somewhat stronger statement: we prove
that there exists a function g, going from the set of indices i for which xi was
not extracted to the set of indices j for which gj was not extracted, such that
if P̂ succeeds on a random challenge then with good probability Φ[i] = g(i) for
all indices i for which xi was not extracted. Intuitively we simply show that one
mapping Φ from the unextracted xi to the unextracted gj has to occur more often
than the others, which we call g. Since there are not too many such mappings
(less than 2k/ log α) we can restrict our extractor to only consider the outputs
of P̂ where he uses Φ = g. Now E can run P̂ until he outputs two valid proofs,
for which we are guaranteed that for all relevant i ∈ [n], Φ[i] = Φ′[i] = g(i). To
conclude we show that there exist at least n − k′ indices i for which the success
probability of P̂ is still high even when conditioned on c[Φ[i]] �= c′[Φ[i]]. Doing
so we obtain n − k′ indices i ∈ [n] for which both (2) and (3) are true, and E
can extract all but n − k′ preimages.

Formally: We first use the same extractor as in the proof of Lemma 4.4. Though
this scheme is different, the same extractor applies with the only difference being
that the equation verified by the extracted x′

i will be of the form f(x′
i) = bXayi

for some b ∈ {−1, 1} , a ∈ [d]. Which directly gives f(−bXd−ax′
i) = yi, since this

new pre-image has the same norm we can rename it and obtain the same result.
We thus obtain the following:

– h the hash sent by P̂ on his first flow.
– h1, . . . , hT such that H(h1, . . . , hT ) = h.
– A set A of at least T − k/ log α − 1 vectors g′

j such that H(f(g′
j)) = hj .

We define Ψ ⊂ [T ] to be the indices of the hj for which a preimage was not
extracted.

– A set S of at least n− k/ log α − 1 vectors x′
i such that f(x′

i) = yi. We define
Υ ⊂ [n] to be the indices of the yi for which a preimage was not extracted.

By construction of this extractor we have |Υ | ≤ |Ψ | ≤ k/ log α + 1.
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Observe that, on a successful run of P̂, the set Φ is a strictly increasing
mapping from [n] to [T ] (this is explicitly checked by the verifier). In the previous
protocol this was used to show zero-knowledge, as reusing randomness could leak
information, but this is now crucial for soundness. We also note that since Φ is
a function from [n] to [T ] we have either:

(A) Φ(Υ ) ⊂ Ψ
(B) Or ∃i ∈ Υ s.t. Φ[i] /∈ Ψ

If on a run P̂ is successful and (B) occurs then there exist i, j ∈ [n] × [T ] such
that H(f(zi) − c [j] yi) = hj and j = Φ[i] /∈ Ψ . As we have already extracted g′

j

with H(f(g′
j)) = hj = hj we obtain that x′

i = c [j]−1 (zi − g′
j) is a preimage of

yi. We can thus redefine the set Υ to be Υ := Υ\i. Suppose that on a successful
run of P̂, (B) occurs with probability greater than 1/2. The extractor can then
run P̂ O(2/p) times, successfully extract a new preimage of the yi and reduce
the size of Υ by 1. After repeating this procedure O(k) times we have either that
|Υ | < k′, in which case the extractor is done, or that (B) occurs with probability
strictly lower than 1/2 on a successful run. For the rest of the proof we assume
the latter. Since either (A) or (B) occurs on a successful run this implies that
(A) happens with probability strictly greater than 1/2.

On any run where (A) occurs, Φ induces a strictly increasing mapping from
Υ to Ψ , let G be the set of all such mappings, we have

|G| =
(|Ψ |

|Υ |
)

≤ 2|Ψ | ≤ 2k/ log α+1.

The extractor runs |G| parallel instances of P̂ denoted as P̂g, g ∈ G, and does
the following until |S| ≥ n − k′.

– Run instance P̂g with fresh randomness until it succeeds, (A) occurs and
Φ(Ψ) = g(Ψ). Denote the challenge used as c̃g and the output of the prover
as z̃g

i , i ∈ [n].
– Run |Υ | parallel instances of P̂g denoted as P̂g

i , i ∈ Υ , do the following:
• For each P̂g

i sample a random challenge cg
i ← χT subject to cg

i [i] �= c̃g [i]
and run P̂g

i on challenge cg
i .

• For each instance P̂g
i that does not abort. If (A) occurs and Φ(Ψ) = g(Ψ),

then the vector zi output by the prover verifies:

H(f(zi) − cg
i [g(i)] yi) = hi.

From the previous step we had z̃g
i such that

H(f(z̃g
i ) − c̃g [g(i)] yi) = hi.

The extractor sets

x′
i = (zg

i − z̃g
i ) · 2 (cg

i [g(i)] − c̃g [g(i)])−1

Note that f(x′
i) = 2yi and by Lemma 5.1 ‖x′

i‖ ≤ √
dB.
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We now prove that this extractor terminates in expected time poly(s,k)
p1+2/ log α . Since

|G| ≤ 2/p1/ log α it is sufficient to show that there exists g in G such that P̂g runs
in time poly(s, k) ·1/p1+1/ log α. On any run where (A) occurs, Φ(Υ ) is a function
in G, this implies that

Pr
[
P̂ succeeds ∧ (A)

]
=

∑
g∈G

Pr
[
P̂ succeeds ∧ (A) ∧ Φ(Υ ) = g

]

and thus

∃γ ∈ G s.t. Pr
[
P̂ succeeds ∧ (A) ∧ Φ(Υ ) = γ

]
≥

Pr
[
P̂ succeeds ∧ (A)

]

|G|

≥ p1+1/ log α

2

We will use the shorthand P̂ ∧ γ for the event P̂ succeeds ∧ (A) ∧ Φ(Υ ) = γ. Let
pi be the probability that P̂γ

i succeeds, i.e.

pi = Pr
[ P̂ ∧ γ c [γ(i)] �= c̃γ [γ(i)]

]
,

we say that pi is bad if pi <
Pr[P̂∧γ]

k′ and good otherwise. If there are less than
k′ bad pi then the extractor terminates in expected time

poly(s, k) · |G|
Pr

[
P̂ ∧ γ

] = poly(s, k) · 2k(1+2/ log α)

(c.f. the proof of Lemma 4.4). Assume that there are k′ bad pi which, for sim-
plicity, are p1, . . . , pk′ . Then the event P̂ ∧ γ can be conditioned on the value of
c[γ(1)] as

Pr
[
P̂ ∧ γ

]
= Pr

[ P̂ ∧ γ c [γ(1)] �= c̃γ [γ(1)]
] · Pr [c [γ(1)] �= c̃γ [γ(1)]]

+ Pr
[ P̂ ∧ γ c [γ(1)] = c̃γ [γ(1)]

] · Pr [c [γ(1)] = c̃γ [γ(1)]]

=
2dα − 1

2dα
p1 +

1
2dα

Pr
[ P̂ ∧ γ c [γ(1)] = c̃γ [γ(1)]

]

Conditioning on c [γ(2)] , . . . , c [γ(k′)] we have

Pr
[
P̂ ∧ γ

]
≤ 2dα − 1

2dα
(p1 + . . . + pk′)

+
1

(2dα)k′ Pr
[ P̂ ∧ γ c [γ(1)] = c̃γ [γ(1)] , . . . , c [γ(k′)] = c̃γ [γ(k′)]

]

<
2dα − 1

2dα
Pr

[
P̂ ∧ γ

]
+

1
(2dα)k′

≤ 1
(2dα)k′−1

< 2−k(1+1/ log α)−1



390 R. del Pino and V. Lyubashevsky

which contradicts the fact that Pr
[
P̂ ∧ γ

]
≥ p1+1/ log α

2 .
From this we conclude that there are less than k′ bad pi, and thus that the

extractor has extracted a set S of n − k′ vectors x′
i such that ‖x′

i‖ ≤ √
dB and

f(x′
i) = 2yi in time poly(s, k) · 2k(1+2/ log α). ��

6 Proof Size

In this section we will go more in-depth in the trade-offs offered by the schemes
described in Sects. 4 and 5. We first give the expected value as well as an upper
bound on the size of the prefix S of the set O as the second flow of the prover
will consist in sending |S| seeds (and |C| hashes).

Lemma 6.1. Let T = 2t, let c ← χT ∈ CT (the set C from which the values
of c are taken does not matter, all that matters is the probability with which 0
is sampled) with χ such that Pr [χ = 0] = 1 − 1/α, let O = {j ∈ [T ] , c [j] = 0},
and let S(c) = prefix(O) be as defined in Sect. 4. Then:

– With overwhelming probability we can bound the size of S(c) by

|S(c)| ≤
⌊

1.4T

α
log

α

1.4

⌋

Proof. Consider the binary tree Γ which leaves are numbered according to [T ],
we will say that a leaf j ∈ [T ] is selected if c [j] = 0. First observe that we can
split Γ into two trees ΓL and ΓR of size T/2, ΓL being the binary tree associated
to the first T/2 values cL of c and ΓR the tree associated to the last T/2 vales
cR of c. The prefix S(c) of Γ will be the union of the prefixes S(cL) and S(cR),
except if all the leaves of Γ are selected, in which case its prefix will be its root.
i.e. ∀c �= (0, . . . , 0), S = S(cL)∪S(cR), which implies |S(c)| = |S(cL)|+ |S(cR)|.

We first use the Chernoff bound to obtain a lower bound on the size of O.
Let C = [T ] \O, we have:

Pr [|C| > 1.4T/α] ≤ e− T
15α = e− n

3

since for all practical parameters we will have n ≥ 250, we can assume that
|C| ≤ 1.4T/α. We consider the worst case for the size of S for a given |C| = a,
i.e. we define

W (T, a) = max
#0(c)=T−a

(|S(c)|) .

We will prove that ∀a ∈ [T ] ,W (T, a) ≤ a log (T/a). Remark that for all T ,
W (T, 0) = 1. Since for all c ∈ CT we have

|S(c)| ≤ |S(cL)| + |S(cR)| ,

we get
W (T, a) ≤ max

b
(W (T/2, b) + W (T/2, a − b))



Amortization with Fewer Equations for Proving Knowledge of Small Secrets 391

where max(0, a − T/2) ≤ b ≤ min(a, T/2). We prove that

∀a ∈ [T ] ,W (T, a) ≤ a log (T/a)

by induction over T = 2t:

– For T = 1, W (1, 1) = 1
– For 2T : Assume that for all 1 ≤ b ≤ T , W (T, b) ≤ b log (T/b) (and W (T, 0) =

1). Fix a ∈ [2T ]. Let f(b) = W (T, b) + W (T, a − b), then

W (2T, a) ≤ max
b

(f(b))

for max(0, a − T/2) ≤ b ≤ min(a, T/2).
• For b = a or b = 0,

f(b) = W (T, a) + W (T, 0) ≤ a log(T/a) + 1 ≤ a log(2T/a)

• For b �= a and b �= 0,

f(b) ≤ a log(T/a) + (a − b) log(T/(a − b)).

Simple analysis shows that this function reaches its maximum for b = a/2,
and thus f(b) ≤ a log(2T/a)

We conclude by using the fact that W (T, a) is an integer. Finally, with high
probability

|S(c)| ≤ W (T, 1.4T/α) ≤
⌊

1.4T

α
log

α

1.4

⌋

��
We will show that the size of the protocol given in Fig. 4 can be made nearly inde-
pendent of the parameter α by cleverly encoding each flow. We will consider the
four flows of the protocol each on its own (though it is clear that the proof really
is a three-move protocol since the last two flows can be sent simultaneously).

First Flow: The prover sends h ∈ {0, 1}256 to the verifier, this is clearly inde-
pendent of α.

Flow size = 256 bits

Second Flow: The verifier sends c ∈ {0, 1}T to the prover, this takes 5αn bits
since T = 5αn. However the verifier can compute the sets O and C = [T ] \O
before sending c (rather than doing it afterwards) and equivalently send the set
C. We have |C| ≤ 7n and since the indices of C are in [T ] they can be encoded in
log(5αn) bits. The second flow only depends on α logarithmically.

Flow size ≤ 7n log(5αn) bits

Third Flow: The prover sends (sj)j∈S and (hj)j∈C to the verifier. From
Lemma 6.1 we have that |S| ≤ 7n log(α/1.4) and similarly |C| ≤ 7n, since the
seeds and hash all are in {0, 1}256 this flow depends logarithmically on α.

Flow size ≤ 7n log
(

2α

1.4

)
· 256 bits
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Fourth Flow (i.e. second part of the Third Flow): The prover sends Φ
and (zi)i∈[n] to the verifier. Since Φ ∈ [T ]n sending it naively would require
n log(5αn) bits, however all the elements of Φ correspond to non-zero indices of
c, i.e. they are in C. Φ can thus be encoded using n log(|C|) ≤ n log(7n) bits.
The coefficients of the zi come form Dσ by a tail cutting argument they can be
represented in log(11σ) = log(112β) bits each and there are nr of them. The
fourth flow is independent of α.

Flow size ≤ n log(7n) + nr log(112β) bits

The proof in Fig. 6 only differs in size from this proof on the second flow, where
the challenge c is in

{
0,±1,±X, . . . ,±Xd−1

}T . But similarly to the encoding
we use for the first protocol, the verifier can simply send the set C as well as a
vector of dimension |C| containing the challenges in

{±1,±X, . . . ,±Xd−1
}
. The

size of the second flow now becomes 7n log(5αn) + 7n log(2d). The total size of
the proof is finally upper bounded by:

256 + n

(
7 log(5αn) + 1792 log

(
2α

1.4

)
+ log(7n) + 7 log(2d) + r log(112β)

)
bits

where the boxed term only exists in the protocol from Fig. 6. Note that this
size only has a very slight dependence on α. In fact the largest summand will
be the one corresponding to the zi up to α ∼ 230, for which the computation
requirements of the proof will already be the bottleneck. The complete proof
consists in two iterations of the imperfect proof, one with parameter β and the
second with parameter τ(k)β, the size of the complete proof is thus:

512 + n

(
14 log(5αn) + 3584 log

(
2α

1.4

)

+ 2 log(7n) + 14 log(2d) + r log(τ(k)114β2)
)

bits

And if we consider the average case rather than the worst case we can assume
that |S| ≤ 5n log α and |C| = 5n. Which gives the expected proof size:

512 + n

(
10 log(5αn) + 2560 log (2α)

+ 2 log(5n) + 10 log(2d) + r log(τ(k)114β2)
)

bits

We compare in Table 2 our scheme with the one of [CDXY17] for the (Ring)-
LWE one-way function with dimension d = 1024 (so r = 2048), and binary
secrets (so β =

√
r). For a fair comparison we consider the protocol of [CDXY17]

in the euclidean norm and with our improvements (only one hash in the first
flow and seeds instead of gj in the third flow). The communication cost per
secret and the slack are rather similar in all three protocols. The main difference
being that our protocols allows for amortization over very few secrets but at
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Table 2. Comparison between [CDXY17] and our protocols for the R-LWE ivOWF
with binary secrets. Masking parameters are revealed with probability 1−1/α, k is the
security parameter, τ(k) the imperfection of the protocol, and n the number of secrets.
The communication is per secret and the run-time is in number of evaluations of the
ivOWF per secret per player.

[CDXY17] Protocol I Protocol II

α 2 16 64 256 2 16 64 256

k 128 128 128 128 128 128 128 128

τ(k) 129 33 23 17 23 12 10 9

n 69169 4489 2209 1369 2209 841 529 361

T 6.9 · 106 3.6 · 105 7.1 · 105 1.8 · 106 2.2 · 104 6.7 · 104 1.7 · 105 4.6 · 105
Slack 2.6 · 105 6.7 · 104 4.7 · 104 3.7 · 104 1.5 · 106 9.2 · 105 7.2 · 105 6.1 · 105
Proof size 8.8 kB 9.2 kB 9.7 kB 10.3 kB 8.2 kB 8.9 kB 9.5 kB 10.1 kB

Run-time 16 128 512 2048 16 128 512 2048

a larger computation cost. In Fig. 1 we plot the number n of secrets we can
amortize over as a function of log α. It is apparent that increasing log α past
a certain threshold yields very little advantage while drastically increasing the
computation cost (which grows linearly in α). It is also clear that our second
protocol gives better amortization than the first one, though this only proves
the knowledge of short pre-images of 2y.
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icant overhead both in terms of arithmetic complexity and randomness
complexity. In this paper, we deal with this issue for circuits processing
multiplication over finite fields. Our contributions are manifold. Extend-
ing the work of Beläıd, Benhamouda, Passelègue, Prouff, Thillard, and
Vergnaud at Eurocrypt 2016, we introduce an algebraic characterization
of the privacy for multiplication in any finite field and we propose a
novel algebraic characterization for non-interference (a stronger security
notion in this setting). Then, we present two generic constructions of
multiplication circuits in finite fields that achieve non-interference in the
probing model. Denoting by d the number of probes used by the adver-
sary, the first proposal reduces the number of bilinear multiplications
(i.e., of general multiplications of two non-constant values in the finite
field) to only 2d + 1 whereas the state-of-the-art was O(d2). The second
proposal reduces the randomness complexity to d random elements in
the underlying finite field, hence improving the O(d log d) randomness
complexity achieved by Beläıd et al. in their paper. This construction is
almost optimal since we also prove that d/2 is a lower bound. Eventu-
ally, we show that both algebraic constructions can always be instanti-
ated in large enough finite fields. Furthermore, for the important cases
d ∈ {2, 3}, we illustrate that they perform well in practice by presenting
explicit realizations for finite fields of practical interest.
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1 Introduction

While most symmetric cryptographic algorithms are now assumed to be secure
against classical black-box attacks (e.g., when the attacker gets the knowledge
of some inputs and/or outputs), their implementation can still be vulnerable to
side-channel attacks. These attacks, revealed by Kocher in the 1990s [19], make
additional use of the physical leakage of the underlying device (e.g., tempera-
ture, power consumption, execution time, . . . ) during the algorithm execution
to recover the secret key.

These side-channel attacks are actually very powerful both against hardware
and software implementations. In practice, keys from a classical block cipher
can be recovered in a few minutes on many devices. Therefore, there is a huge
need in efficient and secure countermeasures. Among the many ones proposed by
the community, masking (a.k.a. splitting or sharing) [9,16] is probably the most
widely deployed. The main idea is to split each sensitive data, which depends
both on the secret key and on known variables (e.g., inputs or outputs) into d+1
shares. The first d shares are generated uniformly at random and the last one
is computed so that the combination of the d + 1 shares with some group law
∗ is equal to the initial value. With this technique, the attacker actually needs
the whole set of d + 1 shares to learn any information on the initial value. Since
each share’s observation comes with noise, the higher the order d is, the more
complex the attack is [9,21].

In order to evaluate the security of masking schemes, the cryptographic com-
munity has made important efforts to define leakage models which properly
reflect the reality of embedded devices. In 2003 [18], Ishai, Sahai, and Wagner
introduced the d-probing model in which the attacker can get access to the exact
values of at most d intermediate variables of its choice in the targeted imple-
mentation. While in practice, the attacker has access to the noisy values of all
the manipulated variables, this model may still make sense, since recovering the
exact value of d variables from their noisy observations is exponentially hard in
the order d. Furthermore, it is widely used for its convenience to realize security
proofs. Ten years later [21], Prouff, and Rivain extended a model initially intro-
duced by Chari et al. [9], referred to as the noisy leakage model. This time, the
model fits the reality of embedded devices since the attacker is assumed to get
the noisy observations of all the intermediate variables of the implementation.
However, because it requires the manipulation of noisy data (i.e., real values),
this model is not convenient to make security proofs. Fortunately, Duc, Dziem-
bowski, and Faust [13] exhibited a reduction from the noisy leakage model to the
d-probing model, later improved in practice by Duc, Faust, and Standaert [14].
In other words, they proved that if an implementation is secure in the d-probing
model, then it is also secure in the realistic noisy leakage model for specific num-
ber of shares, level of noise and circuit sizes. This sequence of works makes the
d-probing model both realistic and convenient to make security proofs of mask-
ing schemes. An implementation secure in the d-probing model is said to satisfy
the d-privacy property or equivalently to be d-private [18].
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1.1 Our Problem

For the large majority of symmetric cryptographic algorithms which manipulate
Boolean values, we naturally protect their implementation using Boolean mask-
ing for which ∗ = ⊕. Each sensitive data is thus split into d + 1 shares whose
Boolean addition returns the initial value.1

In this context, the protection of linear functions is trivial since they just
need to be applied independently to each share. However, the protection of non-
linear functions is more complicated since the shares cannot be manipulated
independently from each other. Concretely, additional randomness is required to
randomize the computations which manipulate several shares of the same data.
In particular, it is not trivial to evaluate the best way to build such counter-
measures while minimizing the quantity of additional randomness as well as the
number of operations.

The first proposal to perform a d-private multiplication over the finite field
F2 was made by Ishai, Sahai, and Wagner in their seminal paper [18] (further
referred to as ISW multiplication). They achieved d-privacy with d(d + 1)/2
additional random bits and (d + 1)2 products over F2. Their multiplication then
became the cornerstone of a sequence of works to build more complex d-private
implementations [3,10,13,14,24]. Their proposal was described to securely com-
pute a d-private multiplication over F2, but it can actually be transposed to
secure a multiplication over any finite field Fq (e.g. [15,24]) (in which case it
requires d(d+1)/2 random field elements and (d + 1)2 products over Fq). Secure
implementation of multiplications over larger finite fields Fq (in particular for
finite fields of characteristic 2), is of utmost practical interest to evaluate an
S-box expressed as a polynomial over a such a finite field. For instance, it has
been shown in [24] and [12] respectively that the implementation of the AES
S-box (resp. the DES S-boxes) may be done with 4 (resp. 3) multiplications over
F28 (resp. F26), instead of several dozens of multiplications over F2. However,
with the order d growing up in practice for security reasons, this multiplication
remains quite expensive. In particular, it consumes a large amount of random-
ness, which is generated by a physical source followed by a deterministic random
bit generator, and it also requires a large number of multiplications, which are
more expensive than linear operations.

That is why the community started to investigate more efficient d-private
multiplications. Beläıd et al. [4] proposed a new d-private multiplication over
the finite field F2 with twice as less randomness while preserving the number
of multiplications. They also proved that any d-private multiplication over F2

requires at least d random bits and they proved a O(d log d) quasi-linear (non-
constructive) upper bound for this randomness complexity. Most of their results
can be readily generalized to d-private multiplication over any finite field F2n

1 An alternative is to apply so-called threshold implementations [20]. In [23], Reparaz
et al. have shown that the latter implementations can be built from circuits that
are made secure in the probing model. Thus, any improvement of the complexity of
arithmetic circuits secure in the probing model may lead to complexity improvement
for higher-order threshold implementations.
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of characteristic 2 (except for the lower bound which holds only in F2). While
their multiplication is d-private, it offers less security than the ISW one since
it does not compose necessarily securely with other private circuits (see below
for formal security definitions). It still can be used in symmetric algorithms to
improve their performances: for instance, in the S-box of the block cipher AES
defined over F28 , three of the four multiplications can be replaced by theirs.
Nevertheless, the proposal remains expensive and there is still a huge need in
more efficient d-private multiplications.

1.2 Related Work

Other methods of encoding have been proposed in the literature. The inner prod-
uct masking, proposed by Balasch et al. [2] encodes, over any finite field Fq, the
secret as a pair of vectors (L,R) such that the secret equals the inner product
of L and R. In [1], this construction was enhanced by fixing a public value for
L, hence allowing to achieve d-privacy using d + 1 shares. The subsequent ran-
domness and computation complexities for the multiplication are however still
quadratic in d. Another approach, proposed by Prouff, and Roche [22] uses poly-
nomial masking. Based on Shamir’s secret sharing scheme, the secret is viewed
as the constant coefficient of a certain polynomial, whose values when evaluated
at some public points (αi)i≤d constitute the shares.2. Though the complexity
for the multiplication of the original proposal is cubic in d, Coron, Prouff, and
Roche [11] achieved a complexity in O(d2log4d) for fields of characteristic 2. The
recent work [17], which aims at achieving higher-order security in the presence
of so-called glitches, is based on ISW multiplication and therefore requires O(d2)
random values and field multiplications. It may moreover be noticed that this
work directly benefits from the improvement proposed in [4] and in this paper.

1.3 Our Contributions

In this work, we aim to go further in the research of efficient d-private multipli-
cations over finite fields Fq (where q is some prime power). Given two sharings
a = (a0, . . . , ad) ∈ F

d+1
q and b = (b0, . . . , bd) ∈ F

d+1
q , we aim to exhibit an

output sharing c = (c0, . . . , cd) ∈ F
d+1
q such that

d∑

i=0

ci =

(
d∑

i=0

ai

)
·
(

d∑

i=0

bi

)

where the sum and product denote Fq operations. The computation of this shar-
ing c should achieve the d-privacy (and actually will achieve a stronger security

2 It may be remarked that the inner product masking with fixed public values for L
is very close to polynomial masking, where R plays a similar role as the tuple of
polynomial evaluations and where L plays a similar role as the reconstruction vector
(deduced from the public values (αi)i≤d).
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notion) with the use of a minimal number of random Fq elements and a minimal
number of products in Fq.

Extending the work of Beläıd et al. [4], we first present an algebraic char-
acterization for privacy in the d-probing model for multiplication in any finite
field. Contrary to the work done in [4] in which the authors limited themselves
to multiplications based on the sum of shares’ products, in this paper, we extend
the possibilities by authorizing products of sums of shares.

As mentioned above, the scheme proposed by Beläıd et al. offers less security
than the original ISW proposal since it does not compose necessarily securely
with other private circuits. It is thus necessary to consider new security properties
which strengthen the d-privacy. The introduction of such properties was made by
Barthe, Beläıd, Dupressoir, Fouque, Grégoire, Strub, and Zucchini in [3], under
the name of non-interference, tight non-interference, and strong non-interference
(see Sect. 2 for formal definitions and for a comparison of these notions).

We then propose a novel algebraic characterization for non-interference in
the d-probing model for multiplication in any finite field (and actually for any
bivariate function over a finite field, as long as intermediate values are linear in
the randomness and linear or bilinear in the inputs).

Theorem 3.5 (informal). A multiplication algorithm is non-interfering in the
d-probing model if and only if there does not exist a set of � ≤ d intermedi-
ate results {p1, . . . , p�} and a Fq-linear combination of {p1, . . . , p�} that can be
written as

aᵀ · M · b + aᵀ · μ + νᵀ · b + τ,

where M ∈ F
(d+1)×(d+1)
q , μ,ν ∈ F

d+1
q , and τ ∈ Fq, and all the rows of the matrix

(
M |μ) ∈ F

(d+1)×(d+2)
q or the matrix

(
Mᵀ|ν) ∈ F

(d+1)×(d+2)
q are non-zero.

We then present two generic algebraic constructions of multiplication circuits
in finite fields (based on this characterization) that achieve non-interference in
the d-probing model. Both constructions are explicit and improve the complexity
of previous proposals and their security is ensured as soon as some matrices
satisfy some precise linear algebraic condition.

The first proposal (Algorithm 4) aims at reducing the number of bilinear
multiplications (i.e., of general multiplications of two non-constant values in the
finite field). The scheme requires only 2d + 1 bilinear multiplications whereas
all previous proposals need O(d2) such multiplications (at the cost of increasing
the number of linear multiplications, i.e. multiplications by some constant). This
leads to an important efficiency improvement in practice since bilinear multipli-
cations over Fq cannot be tabulated for q � 26 (such a tabulation indeed requires
log2(q)q2 bits of ROM memory which is quickly too high for constrained devices),
while multiplications by a constant can often be tabulated as long as q � 210

(such a tabulation indeed requires log2(q)q bits of ROM memory). When the
processing cannot be tabulated, it must be computed on-the-fly, which implies
a non-negligible timing penalty: for instance a multiplication over F28 based
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on log-alog tables3 would take around 40 CPU cycles on a classical AVR 8-bit
architecture, while a direct lookup table access only takes 2 cycles (see [6] for
more details about the different time/memory trade-offs for the multiplication
processing). Additionally, our new scheme (Algorithm4) achieves the strong non-
interference security notion (Theorem 4.3) and composes therefore securely with
other private circuits.

The goal of the second construction (Algorithm 5) is to reduce the random-
ness complexity; it needs only d random elements in the underlying finite field
(improving the non-constructive upper bound O(d log d) proven in [4]). This con-
stitutes an important improvement both from a theoretical and practical point
of views since the generation of random values on a constrained device may be
very time-consuming. Our second proposal achieves the non-interference security
notion (which is stronger than the privacy notion achieved in [4]).

We show (using the probabilistic method) that both algebraic constructions
can always be instantiated in large enough finite fields (Theorems 4.5 and 5.4).
The second construction is almost optimal (for randomness complexity) since
from our algebraic characterization, we can deduce the following lower bound on
the randomness complexity:

Proposition 5.6 (informal). A non-interfering multiplication algorithm in the
d-probing model uses more than �(d − 1)/2� random elements in Fq.

With our upper-bound, this proposition shows that the randomness com-
plexity is therefore in Θ(d). These asymptotic results provide strong theoretical
insights on the complexity of private multiplication. However, we also show that
our constructions perform well in practice. In particular, for the important cases
d ∈ {2, 3}, that are used in real-world implementations, we present explicit real-
izations of our constructions for finite fields of practical interest (and in particular
for F28 used by the AES).

In terms of performance, we also compared the efficiency of our proposed
constructions with the state of the art [4], for the practical masking orders d ∈
{2, 3} and the finite field F28 . The simulations have been done on a classical AVR
8-bit architecture; for different timing complexities of randomness generation4

and of field multiplication, we measured the number of CPU cycles necessary to
run the algorithms.

For d = 2 and a field multiplication taking 45 CPU cycles,5 the proposal of [4]
is more efficient, as soon as the generation of a random byte takes more than 7
cycles. In the event where this generation is shorter, our Algorithm 4 (Sect. 4.1)

3 More precisely, the non-zero field elements to multiplied are first represented as
powers of a primitive element α such that z = x × y becomes αc = αa+b with
(x, y, z) = (αa, αb, αc). The mappings x → αa, y → αb and αc → z have been
tabulated for efficiency reasons. The particular case x = 0 or y = 0 has been treated
with care to not introduce timing dependency.

4 For comparison/testing purpose, we did not call the device random generator but,
instead, simulated the generation by a software code.

5 This timing corresponds to a code written in assembly and involving log-alog look-up
tables.
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is better. Algorithm 5 (Sect. 5.1) is, in this case, always worse than the state of
the art proposal, but it still outperforms Algorithm4 as soon as the generation
of random takes more than 12 cycles.

When the masking order is d = 3, Algorithm 4 is better when the random
generation takes less than 16 cycles. Then, the algorithm of [4] is better when
this number is lower than 60. Finally, Algorithm5 outperforms both other con-
structions when the generation takes more than 60 cycles.

Similarly, we ran several simulations studying the impact of the complexity
of the multiplication on our constructions. By fixing at 20 the number of cycles
for the random generation, we observed that Algorithm4 outperforms state of
the art algorithms when the multiplication takes more than 6 cycles (resp. 93
cycles) for d = 2 (resp. d = 3). A comparison of the complexities of state of the
art algorithms and our new proposals can be found in Table 1.

Table 1. Complexities of ISW, EC16, our new d-private compression gadget for mul-
tiplication and our specific gadgets at several orders

Complexities ISW EC16 [4]/small cases Algorithm4 Algorithm5

Second-order masking (d = 2)

Sums 12 12 / 10 38 12

Linear products 0 0 / 0 8 6

Products 9 9 / 9 5 9

Random scalars 3 3 / 2 9 2

Third-order masking (d = 3)

Sums 24 22 / 20 84 24

Linear products 0 0 / 0 18 12

Products 16 16 / 16 7 16

Random scalars 6 5 / 4 21 3

Fourth-order masking (d = 4)

Sums 40 38 / 30 148 40

Linear products 0 0 / 0 32 20

Products 25 25 / 25 9 25

Random scalars 10 8 / 5 38 4

dth-order masking

Sums 2d(d+ 1)

{
d(7d+ 10)/4 (d even)

(7d+ 1)(d+ 1)/4 (d odd)
9d2 + d 2d(d+ 1)

Linear products 0 0 2d2 d(d+ 1)

Products (d+ 1)2 (d+ 1)2 2d+ 1 (d+ 1)2

Random scalars d(d+ 1)/2

{
d2/4 + d (d even)

(d2 − 1)/4 + d (d odd)
2d2 +

d(d−1)
2

d
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2 Preliminaries

This section defines notation and basic notions that we use in this paper.

2.1 Notation

For a finite set S, we denote by |S| its cardinality, and by s
$← S the operation

of picking up an element s of S uniformly at random. We denote by Fq the finite
field with q elements. Vectors are denoted by lower case bold font letters, and
matrices are denoted by bold font letters. All vectors are column vectors unless
otherwise specified. The image of the linear map associated to a matrix M is
denoted by im(M). For a vector x, we denote by xi its i-th coordinate and by
hw(x) its Hamming weight (i.e., the number of its coordinates that are different
from 0). When double indexing will be needed, we shall denote by xi,j the j-th
coordinate of the vector xi. For vectors x1, . . . ,xt in F

n
q , we denote 〈x1, . . . ,xt〉

the vector space generated by the set {x1, . . . ,xt}.
The probability density function associated to a discrete random variable X

defined over S (e.g., Fq) is the function which maps x ∈ S to Pr [X = x ]. It is
denoted by {X} or by {X}r if there is a need to specify the randomness source r
over which the distribution is considered.

Throughout the rest of this paper, when not specified, we consider the ele-
ments to belong to the finite field Fq for some prime power q. Some of our results
require q to be larger than some lower bound that is then specified in the corre-
sponding statements. We denote by r ← $ the fact of sampling a fresh uniform
element from Fq and assigning it to r.

2.2 Arithmetic Circuits and Privacy

An arithmetic circuit C is a directed acyclic graph whose vertices are input gates,
output gates, addition gates, multiplication gates, or constant-scalar gates (over
Fq) and whose edges are wires carrying the inputs/outputs of the operations
performed by the vertices. A constant-scalar gate is parameterized by a scalar γ ∈
Fq, has fan-in 0, and outputs γ. A randomized circuit is a circuit augmented with
random-scalar gates. A random-scalar gate is a gate with fan-in 0 that produces
a random scalar in Fq and sends it along its output wire; the scalar is selected
uniformly and independently of everything else afresh for each invocation of the
circuit.

For a circuit C, we denote by (y1, y2, . . . ) ← C(x1, x2, . . . ) the operation of
running C on inputs (x1, x2, . . . ) and letting (y1, y2, . . . ) denote the outputs.
Moreover, if C is randomized, we denote by (y1, y2, . . . )

$← C(x1, x2, . . . ) the
operation of running C on inputs (x1, x2, . . . ) and with uniform fresh random-
ness. When we will need to specify this randomness we shall use the notation
(y1, y2, . . . ) ← C(x1, x2, . . . ; r). Eventually, for any subset P of wires in C, we
denote by CP (x1, x2, . . . ; r) (or CP (x1, x2, . . . ) if the randomness is not specified)
the list of values on the wires in P .
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We hereafter give a formal definition of the notion of gadget used in prior
works (e.g., [15]).

Definition 2.1 (gadget). Let n,m be two positive integers and f be a function
from F

n
q to F

m
q . Let u, v be two positive integers. A (u, v)-gadget for f is an

arithmetic (randomized) circuit C such that for every tuple (x1,x2, . . . ,xn)ᵀ ∈
(Fu

q )n and every randomness r, (y1,y2, . . . ,ym)ᵀ ← C(x1,x2, . . . ,xn; r) satisfies

⎛

⎝
v∑

j=1

y1,j ,
v∑

j=1

y2,j , . . . ,
v∑

j=1

ym,j

⎞

⎠
ᵀ

= f

⎛

⎝
u∑

j=1

x1,j ,
u∑

j=1

x2,j , . . . ,
u∑

j=1

xn,j

⎞

⎠ .

We usually define xi =
∑u

j=1 xi,j and yi =
∑v

j=i yi,j . The element xi,j (resp.
yi,j) is called the j-th share of xi (resp. yi).

Let us now define the notion of privacy for a gadget.

Definition 2.2 (d-private gadget). Let n be a positive integer and let f be a
function defined over F

n
q . Let u and v be two positive integers. A (u, v)-gadget C

for f is d-private if and only if for any set P of d wires in C, the distribution
{CP (x1,x2, . . . ,xn; r) | ∀i ∈ {1, . . . , n},

∑u
j=1 xi,j = xi}x1,x2,··· ,xn,r

is the same

for every (x1, x2, . . . , xn)ᵀ ∈ F
n
q .

Remark 2.3. In Definition 2.2, we recall that xi denotes the i-th input of f , while
xi represents a sharing of xi.

Remark 2.4. When there is no ambiguity, and for simplicity, the mention of the
privacy order d will sometimes be omitted.

From now on, and to clarify the link with the probing attack model introduced
in [18], the wires in a set P used to attack an implementation are referred as the
probes and the corresponding values in CP (. . . ; r) as the intermediate results.
To simplify the descriptions, a probe p is sometimes used to directly denote the
corresponding intermediate result. When the inputs w and the circuit C are clear
from the context, the distribution {CP (x1, . . . ,xn; r)}r is simplified to {(p)p∈P }.

2.3 Compositional Security Notions

A (u,w)-gadget for the function f ◦ f ′ can be obviously built by composing a
(v, w)-gadget of f and a (u, v)-gadget of f ′. However, the composition C ◦ C ′ of
two d-private gadgets C and C ′ is not necessarily itself d-private. For the latter
to hold, gadget C ′ must satisfy a property which strengthens the privacy. The
introduction of such a property has been made by Barthe et al. in [3]. Before
recalling their definitions, we first need to introduce the notion of t-simulatability.

Definition 2.5 (t-simulatability). Let u and v be two positive integers. Let
C be a (u, v)-gadget for a function defined over F

n
q . For some positive inte-

gers � and t, a set P = {p1, . . . , p�} of � probes on C is t-simulatable, if
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there exist n sets I1, I2, ..., In of at most t indices in {1, . . . , u} and a
randomized function sim defined from (Ft

q)
n to F

�
q such that for any fixed

tuple (x1,x2, . . . ,xn) ∈ (Fu
q )n, the distributions {p1, . . . , p�} (which implicitly

depends on (x1,x2, . . . ,xn), and the random values used by the gadget) and
{sim((x1,i)i∈I1 , (x2,i)i∈I2 , . . . , (xn,i)i∈In)} are identical.

Remark 2.6. The notation sim((x1,i)i∈I1 , (x2,i)i∈I2 , . . . , (xn,i)i∈In) will be sim-
plified to sim(xI1 ,xI2 , . . . ,xIn). Moreover, depending on the context, we will
sometimes call a t-simulatable set of probes, a set of probes which can be sim-
ulated with at most t shares of each of the n inputs of the gadget (which is an
equivalent definition).

We now provide the notions of security that we will be using throughout the
rest of the paper.

Definition 2.7 (d-non-interference). A (u, v)-gadget C for a function f
defined over F

n
q is d-non-interfering (or d-NI) if and only if every set of at most

d probes can be simulated with at most d shares of each of its n inputs.

Definition 2.8 (d-tight non-interference)[3]. A gadget C is d-tight non-
interfering (or d-TNI) if and only if every set of t ≤ d probes can be simulated
with at most t shares of each input.

Definition 2.9 (d-strong non-interference). A (u, v)-gadget C for a func-
tion f defined over F

n
q is d-strong non-interfering (or d-SNI) if and only if for

every set P1 of d1 probes on internal wires (i.e., no output wires nor output
shares) and every set P2 of d2 probes on output shares such that d1 +d2 ≤ d, the
set P1 ∪ P2 of probes can be simulated by only d1 shares of each of its n inputs.

The d-SNI property is stronger than the d-NI property, which is itself stronger
than the d-privacy property. The relations between all these notions are discussed
in more details below.

2.4 Relations Between Compositional Security Notions

We recall that, from [3], if C is d-SNI (see Definition 2.9), then it is d-NI (see
Definition 2.7); and if it is d-NI, then it is d-private. But a d-private gadget is not
necessarily d-NI (see the counterexample given in [4, Appendix B]), and a d-NI
gadget is not necessarily d-SNI (see for instance gadgets implementing SecMult
in [24] or Algorithm 3 in [4]). Furthermore, in [4, Proposition 7.4], it is proven
that d-NI and d-TNI are equivalent. These relations are depicted in Fig. 1.

From [3], the composition of a d-TNI (or d-NI) gadget with a d-SNI6 is d-
SNI, while the composition of d-TNI gadgets is not necessarily d-NI. This implies
that d-SNI gadgets can be directly composed while maintaining the d-privacy
property, whereas a d-SNI refreshing gadget (which randomizes the shares of
its inputs using fresh random values) must sometimes be involved before the
composition of d-NI gadgets.
6 The inputs of the final gadget correspond to the inputs of the d-TNI one, while the

outputs of the final gadget correspond to the outputs of the d-SNI one.
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Fig. 1. Relations between privacy, NI, TNI, and SNI (normal arrows are implications, strike

out arrows are separations)

2.5 Case of Study

In this paper, we focus on the construction of efficient d-NI or d-SNI multiplica-
tion gadgets over Fq for any order d.

Definition 2.10 (multiplication gadget). A multiplication (u, v)-gadget is
a (u, v)-gadget C for the function f : (a, b) ∈ F

2
q �→ a · b ∈ Fq.

Remark 2.11. When the sharing orders u and v will be clear from the context,
the term (u, v) will be omitted.

In the sequel, the two inputs of a multiplication (u, v)-gadget C are denoted
by a and b. Their respective sharings are thus denoted by a = (a0, . . . , au−1)

ᵀ ∈
F

u
q and b = (b0, . . . , bu−1)

ᵀ ∈ F
u
q . The output is denoted by c and its sharing

is denoted by c = (c0, . . . , cv−1)
ᵀ ∈ F

v
q . We also denote by r = (r1, . . . , rR)ᵀ ∈

F
R
q the vector of the random scalars that are involved in the gadget C. Thus,

any intermediate result, a.k.a. probe, in the evaluation of C is a function of
a0, . . . , au−1, b0, . . . , bu−1, r1, . . . , rR.

3 Algebraic Characterizations

This section aims at introducing algebraic characterizations for the privacy and
the non-interference properties of a multiplication (d + 1, v)-gadget (for some
positive integers d and v) over Fq.

3.1 Bilinear Probes and Matrix Notation

For our algebraic characterizations, we focus on specific probes we call
bilinear probes.

Definition 3.1. Let C be a (d + 1, v)-gadget for a function f : F
2
q → Fq. A

bilinear probe p is a probe on C (and thus an expression of a0, . . . , ad, b0, . . . , bd,
r1, . . . , rR), which is an affine functions of aibj, ai, bj and rk (for 0 ≤ i, j ≤ d
and 1 ≤ k ≤ R). In other words, a bilinear probe p can be written as:

aᵀ · Mp · b + aᵀ · μp + νᵀ
p · b + σᵀ

p · r + τp,

where Mp ∈ F
(d+1)×(d+1)
q , μp ∈ F

d+1
q , νp ∈ F

d+1
q , σp ∈ F

R
q , and τp ∈ Fq.

In the following sections we shall say that an expression f(x1, . . . , xn, r) func-
tionally depends on the variable r if there exists a1, . . . , an such that the function
r �→ f(a1, . . . , an, r) is not constant.
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3.2 Algebraic Characterization for Privacy

We start by a simple extension of the algebraic characterization in [4] to any field
Fq and to any function f : F

2
q → Fq instead of just the multiplication function

f(a, b) = a · b (however, please note that our characterization consider only
bilinear probes). We consider the following condition:

Condition 3.1. Let C be a (d + 1, v)-gadget for a two-input function f : F
2
q →

Fq. A set of bilinear probes P = {p1, . . . , p�} on C satisfies Condition 3.1 if and
only if there exists a vector λ ∈ F

�
q such that the expression

∑�
i=1 λipi can be

written as
�∑

i=1

λipi = aᵀ · M · b + aᵀ · μ + νᵀ · b + τ ,

where M ∈ F
(d+1)×(d+1)
q , μ ∈ F

d+1
q , ν ∈ F

d+1
q , and τ ∈ Fq, and such that the

all-one vector ud+1 = (1, . . . , 1)ᵀ ∈ F
d+1
q is in the affine space μ + im(M) or

ν + im(Mᵀ), where im(M) is the column space of M .

We point out that, using notation of the above condition, for any set of bilinear
probes P = {p1, . . . , p�} on C and any λ ∈ F

�
q, the expression

∑�
i=1 λipi can be

written as

�∑

i=1

λipi = aᵀ · Mλ · b + aᵀ · μλ + νᵀ
λ · b + σᵀ

λ · r + τλ , (1)

where Mλ ∈ F
(d+1)×(d+1)
q , μλ ∈ F

d+1
q , νλ ∈ F

d+1
q , σλ ∈ F

R
q , and τλ ∈ Fq.

Condition 3.1 is therefore equivalent to asking that there exists λ ∈ F
�
q such

that:
σλ = 0 and ud+1 ∈ (μλ + im(Mλ)) ∪ (νλ + im(Mᵀ

λ)).

Theorem 3.2. Let C be a (d+1, v)-gadget for a two-input function f : F
2
q → Fq.

Let P be a set of bilinear probes on C. Then P satisfies Condition 3.1 if and only
if there exist a(0), b(0), a(1), b(1) ∈ Fq, such that:

{(p)p∈P | (a, b) = (a(0), b(0))} �= {(p)p∈P | (a, b) = (a(1), b(1))}.

That is, the distribution {(p)p∈P } does depend on the value of (a, b).

The proof essentially uses the same ideas as the proof of Theorem A.1 of [4]
and is detailed in the full version.

Remark 3.3. We do not restrict the size of the set P . Furthermore, the proof
does not rely on the correctness property of C.

Corollary 3.4. Let C be a (d + 1, v)-gadget for a two-input function f : F
2
q →

Fq. We suppose that any possible probe on C is bilinear. Then, C is d-private
if and only if there does not exist any set P of d probes on C satisfying
Condition 3.1.
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Proof. The proof is straightforward from Theorem3.2. ��
When q = 2 and when f(a, b) = a · b, this corollary is actually equivalent to
Theorem A.1 of [5]. Contrary to this former theorem, we only need to consider
set of exactly d probes, as Condition 3.1 allows for discarding some probes (by
choosing λi = 0). Furthermore, the gadget C has at least 2d + 2 ≥ d possible
probes: a0, . . . , ad, b0, . . . , bd. Thus, any set � < d probes can be completed into
a set of d probes.

3.3 Algebraic Characterization for Non-Interference

In this subsection, we introduce a novel algebraic characterization for Non-
Interference (NI). We consider the following condition:

Condition 3.2. Let C be a (d + 1, v)-gadget for a two-input function f : F
2
q →

Fq. A set of bilinear probes P = {p1, . . . , p�} on C satisfies Condition 3.2 if and
only if there exists λ ∈ F

�
q such that the expression

∑�
i=1 λipi can be written as

�∑

i=1

λipi = aᵀ · M · b + aᵀ · μ + νᵀ · b + τ,

where M ∈ F
(d+1)×(d+1)
q , μ ∈ F

d+1
q , ν ∈ F

d+1
q , and τ ∈ Fq, and such that all

the rows of the matrix
(
M μ

) ∈ F
(d+1)×(d+2)
q (which is the concatenation of

the matrix M and the column vector μ) are non-zero or all the columns of the

matrix
(

M
νᵀ

)
∈ F

(d+2)×(d+1)
q are non-zero.

We recall that, using notation of the above condition, for any set of bilinear
probes P = {p1, . . . , p�} on C and any λ ∈ F

�
q, the expression

∑�
i=1 λipi can be

written as in Eq. 1. Therefore, Condition 3.2 is equivalent to asking that there
exists λ ∈ F

�
q such that

∑�
i=1 λipi is functionally independent from any rk

(0 ≤ k ≤ R) and functionally depends on every ai (0 ≤ i ≤ d) or on every
bj (0 ≤ j ≤ d). This condition is therefore quite natural.

Theorem 3.5. Let C be a (d+1, v)-gadget for a two-input function f : F
2
q → Fq.

Let P be a set of bilinear probes on C. Then if P satisfies Condition 3.2, P is
not d-simulatable. Furthermore, if P is not d-simulatable and q > d + 1, then P
satisfies Condition 3.2.

We point out that the first part of the theorem does not require q > d + 1. As
the second part is used for constructions while the first part is used for lower
bounds, the restriction q > d + 1 is never an issue in our paper.

Proof. Let us start by proving the first direction, the second being more complex.



410 S. Beläıd et al.

Direction 1: Left to right. By contrapositive, let us assume that there exists
a set P = {p1, . . . , p�} of probes that satisfies Condition 3.2: that is, there exists
λ ∈ F

�
q such that the sum

∑�
i=1 λipi can be written as:

s =
�∑

i=1

λipi = aᵀ · M · b + aᵀ · μ + νᵀ · b,

and, without loss of generality, such that all the rows of the matrix M ′ =(
M μ

) ∈ F
(d+1)×(d+2)
q are non-zero, meaning that s does functionally depend

on every ai but does not functionally depend on any ri.
Then, assume that the set P can be simulated with at most d values of

the ai’s, e.g., using only a1, . . . , ad, and let us further assume that the sim-
ulator has access to all the bi’s. That is, there exists a randomized function
sim that takes as inputs (a1, . . . , ad) and (b0, . . . , bd) such that the distribution
sim(a1, . . . , ad, b0, . . . , bd) is exactly the same as the distribution P .

Since s functionally depends on a0, there exist specific values a1, . . . , ad,
b0, . . . , bd such that the function:

f(a1,...,ad,b1,...,bd) : a0 �→ aᵀ · M · b + aᵀ · μ + νᵀ · b,

is not constant, by definition of s functionally depending on a0.
Therefore, since sim(a1, . . . , ad, b0, . . . , bd) does not depend on a0, it is impos-

sible that it perfectly simulates the distribution P . This implies that one cannot
simulate such a set of probes with at most d shares of each input and concludes
the proof of this first direction.

Direction 2: Right to left. Let us now consider a set P = {p1, . . . , p�} of
bilinear probes that cannot be simulated with at most d shares of each input.
Probes in P being bilinear, any linear combination of these probes can be written
as

sλ =
�∑

i=1

λipi = aᵀ · Mλ · b + aᵀ · μλ + νᵀ
λ · b + σᵀ

λ · r,

by definition. We want to show that, since P cannot be simulated with at most
d shares of each input, there exists a particular λ such that σλ = 0 and all the

rows of
(
Mλ μλ

)
are non-zero or all the columns of

(
Mλ

νᵀ
λ

)
are non-zero.

Let us once again consider the matrix S ∈ F
�×R
q whose coefficients si,j are

defined as si,j = α if and only if pi can be written as αrj + zi where zi does not
functionally depend on rj . That is, if we write pi = aᵀ · Mpi

· b + aᵀ · μi + νᵀ
i ·

b + sᵀ
pi

· r, the i-th row of S is sᵀ
pi

. We can permute the columns of S and the
rows of r such that a row reduction on the matrix S yields a matrix of the form:

S′ =
(
0t,t 0t,�−t

It S′′

)
.

Again, it is clear that since the distribution {p1, . . . , p�} cannot be simulated
with at most d shares of each input, we have t > 0. Indeed, otherwise we can
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simply simulate all probes by uniformly random values (and thus do not even
need shares of the input). Let N be the invertible matrix in F

�×�
q such that

N · S = S′. We write (p′
1, . . . , p

′
�)

ᵀ = N · p. Then, the distribution {p′
1, . . . , p

′
�}

also cannot be simulated with at most d shares of each input. In addition, for
t < i ≤ �, p′

i does functionally depend on ri and no other p′
j does functionally

depend on rj (due to the shape of S′). Therefore, it is immediate that these
probes can be simulated by setting them to uniformly random values, and thus
the distribution {p′

1, . . . , p
′
t} also cannot be simulated with at most d shares of

each input.
We remark that (p′

1, . . . , p
′
t) does not functionally depend on any random bit,

due to the shape of S′. Therefore, for each 1 ≤ i ≤ t, we can write:

p′
i = aᵀ · M ′

i · b + aᵀ · μ′
i + ν′ᵀ

i · b,

for some matrices M ′
i ∈ F

(d+1)×(d+1)
q and vectors μ′

i,ν
′
i ∈ F

d+1
q . Clearly, up to

switching to roles of a and b, this implies that for any ai, i ∈ {0, . . . , d}, there
exists j ∈ {1, . . . , t} such that p′

j functionally depends on ai, otherwise one can
simulate all the p′

i’s with at most d shares of a, and then one can simulate
P = {p1, . . . , p�} as well.

We then just need to show that there exist λ ∈ F
t
q such that

∑t
i=1 λi · p′

i

satisfies Condition 3.2. This is actually immediate as soon as q > d + 1: for i =
0, . . . , d the set Hi = {λ ∈ F

t
q | ∑t

i=1 λip
′
i does not functionally depends on ai}

is a hyperplane, and thus we just need to prove that there exists λ ∈ F
t
q \∪d

i=0Hi,
which is true as soon as q > d + 1. This concludes the proof of Theorem3.5. ��
Remark 3.6. As for Theorem 3.2, we do not restrict the size of the set P in
Theorem 3.5. Furthermore, the proof does not rely on the correctness property
of C.

Corollary 3.7. Let C be a (d + 1, v)-gadget for a two-input function f : F
2
q →

Fq. We suppose that any possible probe on C is bilinear. If q > d + 1 and there
does not exist any set P of d probes on C satisfying Condition 3.2, then C is
d-NI. Furthermore, if C is d-NI, then there does not exist any set P of d probes
on C satisfying Condition 3.2.

Proof. The proof is straightforward from Theorem 3.5. ��

4 Construction with a Linear Number of Bilinear
Multiplications

Let us now show our generic d-SNI construction with a linear number of bilinear
multiplications (i.e., multiplications by a value which is not constant), in the
order d. The construction is in two steps. We first construct a d-NI multiplication
(d+1, 2d+1)-gadget. In other words, our first construction outputs 2d+1 shares
instead of d + 1. We then show how to compress these 2d + 1 shares into d + 1
shares to get a d-SNI multiplication (d + 1, d + 1)-gadget, using the gadget



412 S. Beläıd et al.

SharingCompress from the Appendix C.1 of [8], that we recall and prove to be
d-SNI (while it was only implicitly proved d-NI in [8]).

We start by presenting the generic construction and its security proof. The
first part of our construction uses a matrix γ ∈ F

d×d
q satisfying some conditions.

That is why we then show that such a matrix exists for any d when q is large
enough (but we only prove that q being exponential in d log d is sufficient) using
the probabilistic method. We conclude by explicitly constructing matrices γ for
small values of d.

4.1 Construction

Construction with 2d+1 output shares. Let γ = (γi,j)1≤i,j≤d ∈ F
d×d
q be a

constant matrix and let δ ∈ F
d×d
q be the matrix defined by δi,j = 1 − γj,i.

The main idea of our construction with 2d + 1 output shares is to remark
that:

a · b =

(
a0 +

d∑

i=1

(ri + ai)

)
·
(

b0 +
d∑

i=1

(si + bi)

)

−
d∑

i=1

ri ·
⎛

⎝b0 +
d∑

j=1

(δi,jsj + bj)

⎞

⎠ −
d∑

i=1

si ·
⎛

⎝a0 +
d∑

j=1

(γi,jrj + aj)

⎞

⎠

if a =
∑d

i=0 ai and b =
∑d

j=0 bj . On the right-hand side of the above equation
there are only 2d + 1 bilinear multiplications.

We can then construct a multiplication (d + 1, 2d + 1)-gadget which out-
puts the following 2d + 1 shares (the computation is performed with the usual
priorities: parenthesis first, then products, then from left to right):

• c0 =
(
a0 +

∑d
i=1(ri + ai)

)
·
(
b0 +

∑d
i=1(si + bi)

)
;

• ci = −ri ·
(
b0 +

∑d
j=1(δi,jsj + bj)

)
, for i = 1, . . . , d;

• ci+d = −si ·
(
a0 +

∑d
j=1(γi,jrj + aj)

)
, for i = 1, . . . , d.

The corresponding gadget is given in Algorithm1 and is clearly correct.
However, the latter gadget has two issues. First, it outputs 2d + 1 shares

instead of d + 1. Second, it is obviously not secure for every matrix γ. For
example, if γ is a matrix of zeros or the identity matrix, the gadget is clearly
not d-private, let alone d-NI or d-SNI. Actually, it is not even clear that there
exists a matrix γ for which the gadget is private. Let us now deal with these two
issues.

From 2d + 1 output shares to d + 1. For the first issue, we use the gadget
SharingCompress from the Appendix C.1 of [8] to compress the shares c0, . . . , c2d

into d + 1 shares. We recall this gadget in Algorithm 2.
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Algorithm 1. ExtendedMult
Require: a = (a0, . . . , ad), b = (b0, . . . , bd)
Ensure: c = (c0, . . . , c2d) such that

∑2d
i=0 ci = (

∑d
i=0 ai) · (

∑d
i=0 bi)

x ← a0; y ← b0
for i = 1 to d do

ci ← b0
ci+d ← a0

for j = 1 to d do
sj ← $
rj ← $
t ← δi,jsj + bj

ci ← ci + t
y ← y + (sj + bj)
t ← γi,jrj + aj

ci+d ← ci+d + t
x ← x + (rj + aj)

ci ← −ri · ci

ci+d ← −si · ci+d

c0 ← x · y
return (c0, c1, . . . c2d)

Proposition 4.1. The gadget SharingCompress[k : �] depicted in Algorithm2
is (� − 1)-SNI.

This proof is given in the full version. From this proposition, we deduce that the
instance SharingCompress[2d + 1 : d + 1] that we need is d-SNI.

Finally, the full gadget with a linear number of bilinear multiplications is
depicted in Algorithm 4. It essentially calls Algorithm 3 which handles the special
case where the number of input shares is twice the number of output shares.

As we are composing the gadget SharingCompress with our multiplication
gadget above, we need to prove that the former gadget satisfies a security prop-
erty which behaves well with composition. In [8], only privacy is proven which
does not behave well with composition. That is why we prove instead the fol-
lowing proposition in the full version.

Conditions on γ and δ. As mentioned before, the construction is completely
insecure for some matrices γ, such as the matrix of zeros. Let us now exhibit
necessary conditions for the scheme to be d-NI.

The probes involving only the ai’s and the ri’s7 are of the following forms:

• ai, ri, ri + ai, γj,iri, γj,iri + ai, (for 0 ≤ i ≤ d and 1 ≤ j ≤ d)
• a0 +

∑k
i=1(ri + ai) (for 1 ≤ k ≤ d),

• a0 +
∑k

i=1(γj,iri + ai) (for 1 ≤ j ≤ d and 1 ≤ k ≤ d).

7 By probes involving only the ai’s and the ri’s, we mean probes that do not func-
tionally depend on any bi nor any si.
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Algorithm 2. SharingCompress[k : �] from [8, Appendix C.1]
Require: k-sharing (xi)1≤i≤k

Ensure: �-sharing (yi)1≤i≤� such that
∑�

i=1 yi =
∑k

i=1 xi

K ← ��k/��
for j = k + 1 to K do

xj ← 0

for j = 1 to � do
yj ← xj

for j = 1 to K−�
�

do
(y1, . . . , y�) ← SharingCompress[2� : �](y1, . . . y�, xj�+1, . . . , xj�+�)

return (y1, . . . , y�)

Algorithm 3. SharingCompress[2d : d] from [8, Appendix C.1]
Require: 2d-sharing (xi)1≤i≤2d

Ensure: d-sharing (yi)1≤i≤d such that
∑d

i=1 yi =
∑2d

i=1 xi

for i = 1 to d do
for j = i + 1 to d do

ri,j ← $

for i = 1 to d do
vi ← 0

for i = 1 to d do
for j = 1 to i − 1 do

vi ← vi − rj,i

for j = i + 1 to d do
vi ← vi + ri,j

for i = 1 to d do
yi ← xi + vi

yi ← yi + xi+d

return (y1, . . . yd)

Algorithm 4. Construction with a Linear Number of Bilinear Multiplications
Require: a = (a0, . . . , ad), b = (b0, . . . , bd)
Ensure: c′ = (c′

0, . . . , c
′
d) such that

∑d
i=0 c′

i = (
∑d

i=0 ai) · (
∑d

i=0 bi)
(c0, . . . c2d) ← ExtendedMult(a, b)
(c′

0, . . . c
′
d) ← SharingCompress[2d + 1 : d + 1](c0, . . . c2d)

return (c′
0, c

′
1, . . . c

′
d)

Thanks to Theorem 3.5, a necessary condition for d-NI is that there is no linear
combination of at most d of these expressions, which do not functionally depend
on any ri but which does depend on all the ai’s.

The probes involving only the bi’s and the si’s are similar except that ai,
ri, and γj,i are replaced by bi, si, δj,i respectively. A similar necessary condition
can be deduced from Theorem 3.5.

Formally, let us introduce a first necessary condition on the matrix γ.
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Condition 4.1. Let � = (2d + 4) · d + 1. Let Id ∈ F
d×d
q be the identity matrix,

0m×n ∈ F
m×n
q be a matrix of zeros (when n = 1, 0m×n is also written 0m),

1m×n ∈ F
m×n
q be a matrix of ones, Dγ,j ∈ F

d×d
q be the diagonal matrix such

that Dγ,j,i,i = γj,i, T d ∈ F
d×d
q be the upper-triangular matrix with just ones, and

T γ,j ∈ F
d×d
q be the upper-triangular matrix for which Tγ,j,i,k = γj,i for i ≤ k.

In other words, we have:

Id =

⎛

⎜⎜⎜⎝

1 0 · · · 0
0 1 0
...

. . .
...

0 · · · 0 1

⎞

⎟⎟⎟⎠ Dγ,j =

⎛

⎜⎜⎜⎝

γj,1 0 · · · 0
0 γj,2 0
...

. . .
...

0 · · · 0 γj,d

⎞

⎟⎟⎟⎠

T d =

⎛

⎜⎜⎜⎝

1 1 · · · 1
0 1 1
...

. . .
...

0 · · · 0 1

⎞

⎟⎟⎟⎠ T γ,j =

⎛

⎜⎜⎜⎝

γj,1 γj,1 · · · γj,1

0 γj,2 γj,2

...
. . .

...
0 · · · 0 γj,d

⎞

⎟⎟⎟⎠

We define the following matrices:

L =

(
1 01×d 01×d 01×d 01×d · · · 01×d 11×d 11×d · · · 11×d

0d Id 0d×d Id Id · · · Id T d T d · · · T d

)

M =
(

0d 0d×d Id Id Dγ,1 · · · Dγ,d T d T γ,1 · · · T γ,d

)

Condition 4.1 is satisfied for a matrix γ if for any vector v ∈ F
�
q of Hamming

weight hw(v) ≤ d such that L·v contains no coefficient equal to 0 then M ·v �= 0d.

Let us explain how this condition was constructed. The rows of L correspond
to a0, . . . , ad. The rows of M correspond to r1, . . . , rd. Any linear combination
of the probes involving only the ai’s and the ri’s can be written as

(a0, . . . , ad) · L · v + (r1, . . . , rd) · M · v.

Hence the above condition.

Remark 4.2. If all the vectors v ∈ F
�
q of Hamming weight hw(v) ≤ d were

considered, this condition would be equivalent to saying that the linear code
of parity-check matrix M has minimum distance at least d. However, as we
only consider vectors v such that additionally L · v contains no coefficient equal
to 0, this simple relation to codes is not true. We remark however that if the
linear code of parity-check matrix M has minimum distance at least d, then the
condition would be satisfied. Unfortunately for us, this code clearly has minimum
distance 1, as it contains the vector (1, 0, . . . , 0)ᵀ ∈ F

�
q. That is why we cannot

naively use classical coding theory results to prove the existence of a matrix γ
satisfying Condition 4.1.

We remark that the same necessary condition should hold for the matrix δ
by symmetry between ai, ri,γ and bi, si, δ. Therefore, the formal condition we
are considering is the following.
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Condition 4.2. Condition 4.2 holds (for a matrix γ ∈ F
d×d
q ) if Condition 4.1 is

satisfied for both γ and δ, where δ ∈ F
d×d
q is the matrix defined by δi,j = 1−γj,i.

4.2 Security Analysis

We have shown that Condition 4.2 is necessary for our gadget (Algorithm 4) to
be d-NI. The next theorem shows it is also sufficient for it to be d-SNI.

Theorem 4.3. If γ ∈ F
d×d
q satisfies Condition 4.2 and if q > d + 1, then Algo-

rithm4 is d-SNI.

To prove this theorem, we use the following lemma.

Lemma 4.4. Let P be a set of t probes in Algorithm1 such that t ≤ d. Then,
there exists a set Q1 of at most t probes involving only the ai’s and the ri’s and
a set Q2 of at most t probes involving only the bi’s and the si’s, such that the
set P can be simulated by the probes in Q1 ∪ Q2.

Proof (Lemma 4.4). We list hereafter all the possible probes in Algorithm 1. We
gather them by sets for the needs of the proof.

Set 1: ai, ri, ri + ai, γj,iri, γj,iri + ai, (for 0 ≤ i ≤ d and 1 ≤ j ≤ d);
Set 2: a0 +

∑k
i=1(ri + ai) (for 1 ≤ k ≤ d);

Set 3: a0 +
∑k

i=1(γj,iri + ai) (for 1 ≤ j ≤ d and 1 ≤ k ≤ d);
Set 4: bi, si, si + bi, δj,isi, δj,isi + bi, (for 0 ≤ i ≤ d and 1 ≤ j ≤ d);
Set 5: b0 +

∑k
i=1(si + bi) (for 1 ≤ k ≤ d);

Set 6: b0 +
∑k

i=1(δj,isi + bi) (for 1 ≤ j ≤ d and 1 ≤ k ≤ d);

Set 7: −ri ·
(
b0 +

∑d
j=1(δi,jsj + bj)

)
(for 1 ≤ i ≤ d);

Set 8: −si ·
(
a0 +

∑d
j=1(γi,jrj + aj)

)
(for 1 ≤ i ≤ d);

Set 9: (a0 +
∑d

i=1(ri + ai)) · (b0 +
∑d

i=1(si + bi)).

Let us now consider a set P of t probes among the listed ones. We initialize two
sets Q1 and Q2 to the empty set and show how to fill them with at most t probes
involving only the ai’s and the ri’s for Q1 and at most t probes involving only
the bi’s and the si’s for Q2 in such a way that P can be perfectly simulated by
probes of Q1 ∪ Q2.

For all the probes of P which belong to Sets 1 to 3, then we add them
directly to Q1 since they only depend on ai’s, ri’s and constants. Similarly, for
all the probes of P which belong to Sets 4 to 6, then we add them directly to
Q2 since they only depend on bi’s, si’s and constants. For P ’s probes belonging
to Set 7, we add probe −ri to Q1 and b0 +

∑d
j=1(δi,jsi + bj) to Q2. For P ’s

probes belonging to Set 8, we add probe −si to Q2 and a0 +
∑d

j=1(γi,jri + aj)

to Q1. Finally, for probes of P from Set 9, we add a0 +
∑d

i=1(ri + ai) to Q1

and b0 +
∑d

i=1(si + bi) to Q2. Since for each probe of P , at most one probe was
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added to Q1 and at most one probe was added to Q2, it is clear that after all
the t probes of P are processed, Q1 and Q2 contain at most t probes each.

Let us now prove that all the probes of P can be perfectly simulated by the
probes of Q1 ∪ Q2. For probes of P belonging to six first sets, the exact same
values were added to Q1 (for the three first sets) or Q2 (for Set 4 to 6) thus
the simulation is trivial. For probes of P in Set 7, −ri was added to Q1 and
b0 +

∑d
j=1(δi,jsi + bj) to Q2. The multiplication of these two probes perfectly

simulate the initial probe of P . The same conclusions can be made for probes of
P in Sets 8 and 9 since each time probes were added to Q1 and Q2 so that their
product corresponds to the initial probe of P . ��
Proof (Theorem 4.3). From Lemma 4.4, any set P of t ≤ d probes in Algorithm 1
can be perfectly simulated by probes of two sets Q1 and Q2 of cardinal at most
t and containing probes involving only the ai’s and the ri’s for Q1 and probes
involving only the bi’s and the si’s for Q2.

From Condition 4.2, any combination of the t probes of Q1 either depend on
strictly less than t ai’s or it is functionally dependent on at least one ri. Thanks
to Theorem 3.5 and the fact that q > d + 1, the t probes of Q1 can be perfectly
simulated using at most t shares ai. The same statement can be made for the
probes of Q2. Therefore, from Lemma 4.4, any set of t ≤ d probes on Algorithm 1
can be perfectly simulated by at most t shares ai and t shares bi, which proves
that Algorithm 1 is d-TNI.

Since from Proposition 4.1, SharingCompress[2d + 1 : d + 1] is d-SNI, from
the composition theorems established in [3], Algorithm 4 is d-SNI. ��

4.3 Probabilistic Construction

In order to prove the existence of a matrix γ which satisfies Condition 4.1 for q
large enough (but only exponential in d log d), we state Theorem 4.5 that makes
use of the non-constructive “probabilistic method.” More precisely, we prove that
if one chooses γ uniformly at random in F

d×d
q , the probability that the matrix

γ satisfies Condition 4.2 is more than zero, when q is large enough. The proof
of Theorem 4.5 uses probability but the existence of a matrix γ which satisfies
Condition 4.2 (for q large enough) is guaranteed without any possible error.

Theorem 4.5. For any d ≥ 1, for any prime power q, if γ is chosen uniformly
in F

d×d
q , then

Pr[γ satisfies Condition 4.2] ≥ 1 − 2 · (12d)d · d · q−1.

In particular, for any d ≥ 1, there exists an integer Q = O(d)d+1, such that for
any prime power q ≥ Q, there exists a matrix γ ∈ F

d×d
q satisfying Condition 4.2.

As when γ is uniformly random, so is δ, Theorem 4.5 immediately follows
from the following proposition and the union bound.
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Proposition 4.6. For any d ≥ 1, for any prime power q, if γ is chosen uni-
formly in F

d×d
q , then

Pr[γ satisfies Condition 4.1] ≥ 1 − (12d)d · d · q−1.

In particular, for any d ≥ 1, there exists an integer Q = O(d)d+1, such that for
any prime power q ≥ Q, there exists a matrix γ ∈ F

d×d
q satisfying Condition 4.1.

The proof of this proposition is very technical and is provided in the full version.

Remark 4.7. Note that the constants in the previous proof are not the best
possible and can be improved. In the following, we present explicit constructions
for small values of d.

4.4 Small Cases

We show here the instantiation for d = 2. The case for d = 3 is similar and is
provided in details in the full version.

Let d = 2. Let us now explicitly instantiate our construction for any non-
prime field Fq where q = pk, k ≥ 2. Let ξ be any element in Fq \ Fp. A possible
instantiation is:

γ =
(

ξ ξ + 1
ξ + 1 ξ

)
, δ =

(−ξ + 1 −ξ
−ξ −ξ + 1

)
.

The computed shares are hence:

• c0 = (a0 + (r1 + a1) + (r2 + a2)) · (b0 + (s1 + b1) + (s2 + b2))
• c1 = −r1 · (b0 + ((−ξ + 1)s1 + b1) + (−ξs2 + b2))
• c2 = −r2 · (b0 + (−ξs1 + b1) + ((−ξ + 1)s2 + b2))
• c3 = −s1 · (a0 + (ξr1 + a1) + ((ξ + 1)r2 + a2))
• c4 = −s2 · (a0 + ((ξ + 1)r1 + a1) + (ξr2 + a2))

Let us now prove that this scheme satisfies Condition 4.2. Let us consider the
matrices L and M as defined in Condition 4.1:

L =

( 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1
0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1

)

M =

(
0 0 0 1 0 1 0 ξ 0 ξ + 1 0 1 1 ξ ξ ξ + 1 ξ + 1
0 0 0 0 1 0 1 0 ξ + 1 0 ξ 0 1 0 ξ + 1 0 ξ

)

We will prove that, for any vector v such that hw(v) ≤ 2, it holds that if
M · v = 02, then L · v has a 0 coefficient.

Let us start by the case hw(v) = 1. If M ·v = 02, the only non-zero coefficient
of v clearly must be in one of the first 1 + d = 3 coordinates. Denote by i
the index of this coefficient. Since i ≤ 3, from the definition of L, we have
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L · v = I3 · (v1, v2, v3)
ᵀ, and thus its i-th coefficient is equal to the non-zero

coefficient of v but the two other coefficients of L·v are equal to 0. This concludes
this case.

Let us tackle the case hw(v) = 2. Note that L · v hence corresponds to a
linear combination of exactly two columns of L. By construction of L, all first
columns (until the occurrence of T d) are of Hamming weight 1. Consequently,
for L · v to have only non-zero coefficients, at least one of the 3 · d = 6 last
coordinates of v must be non-zero. The corresponding columns of L have two
possible values : (1, 1, 0)� or (1, 1, 1)�. Let us consider the cases where one
coordinate of v corresponding to a column (1, 1, 0)� is set. The corresponding
column in M is of the form (α, 0)�, where α can be 1, ξ, ξ + 1. In order for
L · v to have only non-zero coefficients, the other non-zero coordinate of v must
correspond to a column of L where the last coefficient is non-zero. However,
for all of these columns, the corresponding column of M is always of the form
(λ, β), with β �= 0, in which case M · v �= 02. It just remains to consider the
case where one non-zero coordinate of v corresponds to a column (1, 1, 1)� of L.
The corresponding columns in M can be (1, 1)�, (ξ, ξ + 1)�, or (ξ + 1, ξ)�. Note
that for no other column in L one can retrieve a corresponding column in M
whose coefficients are both non-zero. Consequently, both non-zero coordinates
of v must correspond to columns (1, 1, 1)� of L. Since no two vectors among
(1, 1), (ξ, ξ +1), and (ξ +1, ξ) are proportional, then we always have M ·v �= 02.

The exact same reasoning can be held for δ, since no two vectors among
(1, 1), (−ξ + 1,−ξ), (−ξ,−ξ + 1) are proportional.

5 Construction with Linear Randomness Complexity

In this section, we describe a construction that only requires a linear randomness
complexity. That is, our (d + 1, d + 1)-gadget only uses d random scalars. In
particular, our construction breaks the linear bound of d+1 random scalars (for
order d ≥ 3) proven in [4]. There is no contradiction since this lower bound is
proven only in F2. Our construction is described below and once again makes
use of a matrix of scalars that needs to satisfy certain properties, as explained
later in this section.

5.1 Construction

Construction. Let γ = (γi,j)0≤i≤d
1≤j≤d

∈ F
(d+1)×d
q be a constant matrix (with d+1

rows instead of d for the previous construction).
Following the previous gadget with the objective of minimizing the random-

ness complexity, we can construct a multiplication (d + 1, d + 1)-gadget which
outputs the shares (c0, . . . , cd) defined as follows:

ci = a0bi +
d∑

j=1

(γi,jrj + ajbi) ,
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Algorithm 5. New Construction with Linear Randomness
Require: a = (a0, . . . , ad), b = (b0, . . . , bd)
Ensure: c = (c0, . . . , cd) such that

∑d
i=0 ci = (

∑d
i=0 ai) · (

∑d
i=0 bi)

for i = 1 to d do
ci ← a0bi

for j = 1 to d do
rj ← $
for i = 0 to d do

ci ← ci + (γi,jrj + ajbi)
return (c0, . . . , cd)

for 0 ≤ i ≤ d. The gadget is formally depicted in Algorithm 5 and is correct
under the condition that for any 0 ≤ j ≤ d,

d∑

i=0

γi,j = 0.

We remark that if this construction is secure, it breaks the randomness com-
plexity lower bound of d+1 random bits proven in [4] when q = 2. Furthermore,
it is the first construction with a linear number of random scalars (in d). Previ-
ously, the construction with the best randomness complexity used a quasi-linear
number of random scalars [4].

However, as for our construction in Sect. 4.1, the construction is clearly not
secure for every matrix γ. For example, if γ is a matrix of zeros, the gadget is
clearly not private, let alone NI or SNI. Actually, it is not even clear that there
exists a matrix γ for which the gadget is private. We prove in the following that
this is indeed the case if the finite field is large enough and we provide explicit
choices of the matrix γ for small orders d ∈ {2, 3} over small finite fields.

Condition on γ. Similarly to Sect. 4.1, the following condition is necessary for
the above construction to be d-NI.

Condition 5.1. Let � = (2d + 4) · d + 1. Let Id ∈ F
d×d
q be the identity matrix,

0m×n ∈ F
m×n
q be a matrix of zeros (when n = 1, 0m×n is also written 0m),

1m×n ∈ F
m×n
q be a matrix of ones, Dγ,j ∈ F

d×d
q be the diagonal matrix such

that Dγ,j,i,i = γj,i, T d ∈ F
d×d
q be the upper-triangular matrix with just ones,

T γ,j ∈ F
d×d
q be the upper-triangular matrix for which Tγ,j,i,k = γj,i for i ≤ k.

Let ω0, . . . , ωd be (d + 1) indeterminates and we consider the field of rational
fractions Fq(ω0, . . . , ωd). In other words, we have:
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Id =

⎛

⎜⎜⎜⎝

1 0 · · · 0
0 1 0
...

. . .
...

0 · · · 0 1

⎞

⎟⎟⎟⎠ Dγ,j =

⎛

⎜⎜⎜⎝

γj,1 0 · · · 0
0 γj,2 0
...

. . .
...

0 · · · 0 γj,d

⎞

⎟⎟⎟⎠

T d =

⎛

⎜⎜⎜⎝

1 1 · · · 1
0 1 1
...

. . .
...

0 · · · 0 1

⎞

⎟⎟⎟⎠ T γ,j =

⎛

⎜⎜⎜⎝

γj,1 γj,1 · · · γj,1

0 γj,2 γj,2

...
. . .

...
0 · · · 0 γj,d

⎞

⎟⎟⎟⎠

We define the following matrices:

L′ =

(
1 01×d 01×d 01×d 01×d · · · 01×d ω011×d ω111×d · · · ωd11×d

0d Id 0d×d ω0Id ω1Id · · · ωdId ω0T d ω1T d · · · ωdT d

)

M ′ =
(

0d 0d×d Id Dγ,0 Dγ,1 · · · Dγ,d T γ,0 T γ,1 · · · T γ,d

)

where L′ ∈ Fq(ω0, . . . , ωd)
(d+1)×� and M ′ ∈ F

d×�
q .

Condition 5.1 is satisfied for a matrix γ if for any vector v ∈ F
�
q of Hamming

weight hw(v) ≤ d such that L′ ·v contains no coefficient equal to 0 then M ′ ·v �=
0d.

5.2 Security Analysis

Lemma 5.1. Each probe contains at most one share bi of b.

Proof. A probe can only target the partial expression of an output or an entire
output. In this construction, each output ci is built with a single share bi of b.
Therefore, a probe can contain at most one such share. ��
Corollary 5.2. Any set of at most d probes contains at most d shares of b.

Proposition 5.3. The above construction with d random scalars is d-NI, if γ
satisfies Condition 5.1.

Proof. From Condition 5.1, any combination of at most d probes in our construc-
tion is either functionally dependent on at most d shares ai or on at least one
random scalar. Furthermore, using in addition Corollary 5.2, any combination
of at most d probes is functionally dependent on at most d shares bi. Therefore,
thanks to Theorem 3.5 and the fact that q > d + 1, the construction is d-NI. ��

5.3 Probabilistic Construction

As in the previous section, in order to prove the existence of a matrix γ which
satisfies Condition 4.2 for q large enough (but only exponential in d log d), we
state Theorem 5.4 that makes also use of the non-constructive “probabilistic
method.” Its proof is detailed in the full version.



422 S. Beläıd et al.

Theorem 5.4. For any d ≥ 1, for any prime power q, if γ is chosen uniformly
in γ ∈ F

(d+1)×d
q under the condition that

∑d
i=0 γi,j = 0 for 0 ≤ i ≤ d, then

Pr[γ satisfies Condition 4.2] ≥ 1 − d(d + 1) · (12d)d · q−1

In particular, for any d ≥ 1, there exists an integer Q = O(d)d+2, such that for
any prime power q ≥ Q, there exists a matrix γ ∈ F

d×d
q satisfying Condition 5.1.

5.4 Small Cases

We show here the instantiation for d ∈ {2, 3}.

d = 2. Let d equal 2. Let us now explicitly instantiate our construction for any
non-prime field Fq where q = pk, k ≥ 2. Let ξ be any element in Fq \ Fp. A
possible instantiation is:

γ =

⎛

⎝
1 ξ
ξ 1

−ξ − 1 −ξ − 1

⎞

⎠ .

The computed shares are hence:
• c0 = a0b0 + (1 · r1 + a1b0) + (ξ · r2 + a2b0)
• c1 = a0b1 + (ξ · r1 + a1b1) + (1 · r2 + a2b1)
• c2 = a0b2 + ((−ξ − 1) · r1 + a1b2) + (−ξ − 1) · r2 + a2b2)

Let us now prove that this scheme satisfies Condition 5.1. The reasoning is
similar to the proof in Sect. 4.4.

In order for M ′ ·v to be null, and for L′ ·v to be of full Hamming weight, we
observe that the two non-zero coefficients of v must correspond to two columns
of full Hamming weight of M ′. However, no two vectors in (1, ξ), (ξ, 1), (−ξ − 1,
−ξ − 1) are proportional. This ensures that Condition 5.1 is satisfied for γ.

d = 3. Let d equal 3. Let us now explicitly instantiate our construction for any
non-prime field Fq where q = 2k, k ≥ 4. Let ξ be any element in Fq \ Fp. A
possible instantiation is:

γ =

⎛

⎜⎜⎝

1 ξ ξ + 1
1 ξ2 + 1 ξ
1 ξ + 1 ξ2 + ξ + 1
1 ξ2 + ξ + 1 ξ + 1

⎞

⎟⎟⎠ .

The computed shares are hence:
• c0 = a0b0 + (1 · r1 + a1b0) + (ξ · r2 + a2b0) + ((ξ + 1) · r3 + a3b0)
• c1 = a0b1 + (1 · r1 + a1b1) + ((ξ2 + 1) · r2 + a2b1) + (ξ · r3 + a3b1)
• c2 = a0b2 + (1 · r1 + a1b2) + ((ξ + 1) · r2 + a2b2) + ((ξ2 + ξ + 1ξ) · r3 + a3b2)
• c3 = a0b3 + (1 · r1 + a1b3) + ((ξ2 + ξ + 1) · r2 + a2b3) + ((ξ + 1) · r3 + a3b3)

Let us now prove that this scheme satisfies Condition 5.1. The reasoning is
similar to the proof in Sect. 4.4. We check the non-proportionality of the relevant
vectors (1, ξ, ξ + 1), (1, ξ2 + 1, ξ), (1, ξ + 1, ξ2 + ξ + 1), (1, ξ2 + ξ + 1, ξ + 1), and
finish by computing all left determinants using a computer algebra system. It
follows that this construction satisfies Condition 5.1.
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5.5 Lower Bound

Let us now show a lower bound on the randomness complexity of d-NI multipli-
cation gadgets satisfying the following condition.

Condition 5.2. A multiplication gadget satisfies Condition 5.2 if the output
shares are affine functions (over Fq) of the products aibj and of the input shares
ai and bj (coefficients of the affine functions may depend on the random scalars).
In other words, each output share ci can be written as (possibly after expansion
and simplification):

ci = aᵀ · Mi(r) · b + aᵀ · μi(r) + νᵀ
i (r) · b + τi(r) ,

where Mi(r) ∈ F
(d+1)×(d+1)
q , μi(r) ∈ F

d+1
q , νi(r) ∈ F

d+1
q , and τi(r) ∈ Fq are

arbitrary functions of the vector r ∈ F
R
q of random scalars.

This condition is very weak. In particular, it does not restrict output shares
to be bilinear and do not restrict internal values of the circuit at all. All the d-
NI multiplication gadgets we know [4,10,18,24] including the ours in Sects. 4.1
and 5.1 satisfy this condition. We first need the following lemma.

Lemma 5.5. Let U ∈ F
(d+1)×(d+1)
q be the matrix of ones. Let M ,M ′ be two

matrices in F
(d+1)×(d+1)
q such that M + M ′ = U . Then all the columns or all

the rows of M , or all the columns or all the rows of M ′ are non-zero.

Proof. Let us prove the lemma by contraposition. We suppose that both M and
M ′ have a column of zeros and a row of zeros. Let us suppose that the i-th
row of M is a zero row and the j-th column of M ′ is a zero column. Then
Mi,j = M ′

i,j = 0 �= 1 = Ui,j and M + M ′ �= U . ��
We can now state our lower bound.

Proposition 5.6. Let C be a d-NI multiplication gadget satisfying
Condition 5.2. Then C uses more than �(d − 1)/2� random scalars (i.e., R ≥
d/2).

A d-NI multiplication gadget satisfying Condition 5.2 thus requires a linear
number of random scalars in d. We recall our construction in Sect. 5.1 uses d
random scalars, which is linear in d.

Proof. Let us suppose that C uses only R ≤ �(d − 1)/2� random scalars. Let
k = �d/2�. Let us construct a set of probes which cannot be simulated by at
most d shares of each input a and b. As C satisfies Condition 5.2, we can write:

c0 + · · · + ck = aᵀ · M(r) · b + aᵀ · μ(r) + νᵀ(r) · b + τ(r) ,

ck+1 + · · · + cd = aᵀ · M ′(r) · b + aᵀ · μ′(r) + ν′ᵀ(r) · b + τ ′(r) ,

where M(r),M ′(r) ∈ F
(d+1)×(d+1)
q , μ(r),μ(r) ∈ F

d+1
q , ν(r),ν(r) ∈ F

d+1
q , and

τ(r), τ ′(r) ∈ Fq are arbitrary functions of the vector r ∈ F
R
q of random scalars.
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Let U ∈ F
(d+1)×(d+1)
q be the matrix of ones. As

∑d
i=0 ci = ab = aᵀ · U · b by

correctnesss of C, we have M(r) + M ′(r) = U . In particular, when r = 0 (for
example), Lemma 5.5 ensures that c0 + · · · + ck or ck+1 + · · · + cd functionally
depends on every ai (0 ≤ i ≤ d) or on every bj (0 ≤ j ≤ d). Therefore, one of the
following set of probes cannot be simulated by at most d shares of each input a
and b:

{r1, . . . , rR, c0, . . . , ck} and {r1, . . . , rR, ck+1, . . . , cd}.

We conclude by remarking that R + (k + 1) ≤ �(d − 1)/2� + �d/2� + 1 ≤ d,
as either d − 1 or d is odd and so either �(d − 1)/2� ≤ (d − 1)/2 − 1 or
�d/2� ≤ d/2 − 1. ��
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Abstract. Various sources have revealed that cryptographic standards
and components have been subverted to undermine the security of users,
reigniting research on means to achieve security in presence of such sub-
verted components. In this paper we consider direct anonymous attesta-
tion (DAA) in this respect. This standardized protocol allows a computer
with the help of an embedded TPM chip to remotely attest that it is in
a healthy state. Guaranteeing that different attestations by the same
computer cannot be linked was an explicit and important design goal of
the standard in order to protect the privacy of the user of the computer.
Surprisingly, none of the standardized or otherwise proposed DAA pro-
tocols achieves privacy when the TPM is subverted, but they all rely
on the honesty of the TPM. As the TPM is a piece of hardware, it is
hardly possible to tell whether or not a given TPM follows the specified
protocol. In this paper we study this setting and provide a new protocol
that achieves privacy also in presence of subverted TPMs.

1 Introduction

Direct anonymous attestation (DAA) is a cryptographic protocol for a platform
consisting of a host and a TPM chip (Trusted Platform Module). The TPM
serves as a trust anchor of the platform and anonymously attests either to the
host’s current state or some other message chosen by the host. Thus, DAA can
be used to convince a communication partner that the platform has not been
compromised, i.e., modified by malware. The main design goal of DAA is that
such attestations are anonymous, i.e., while a verifier can check that the signature
stems from a legitimate platform, it does not learn the identity of the platform,
or even recognize that multiple attestations stem from the same platform.

DAA was introduced by Brickell, Camenisch, and Chen [15] for the Trusted
Computing Group and was standardized in the TPM 1.2 specification in
2004 [59]. Their paper inspired a large body of work on DAA schemes
[9,16–18,23,25,36–38,40], including more efficient schemes using bilinear pair-
ings as well as different security definitions and proofs. One result of these works
is the recent TPM 2.0 specification [50,60] that includes support for multiple
pairing-based DAA schemes, two of which are standardized by ISO [49]. Over
500 million TPMs have been sold, making DAA probably the most complex
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cryptographic scheme that is widely implemented. Recently, the protocol has
gotten renewed attention for authentication: An extension of DAA called EPID
is used in Intel SGX [41], the most recent development in the area of trusted com-
puting. Further, the FIDO alliance, an industry consortium designing standards
for strong user authentication, is in the process of standardizing a specification
using DAA to attest that authentication keys are securely stored [21].

The first version of the TPM specification and attestation protocol had
received strong criticism from privacy groups and data protection authorities
as it imposed linkability and full identification of all attestations. As a conse-
quence, guaranteeing the privacy of the platform, i.e., ensuring that an attesta-
tion does not carry any identifier, became an important design criteria for such
hardware-based attestation. Indeed, various privacy groups and data protection
authorities had been consulted in the design process of DAA.

Trusting Hardware for Privacy? Surprisingly, despite the strong concerns of
having to trust a piece of hardware when TPMs and hardware-based attestation
were introduced, the problem of privacy-preserving attestation in the presence of
fraudulent hardware has not been fully solved yet. The issue is that the original
DAA protocol as well as all other DAA protocols crucially rely on the honesty
of the entire platform, i.e., host and TPM, for guaranteeing privacy. Clearly,
assuming that the host is honest is unavoidable for privacy, as it communicates
directly with the outside world and can output any identifying information it
wants. However, further requiring that the TPM behaves fully honest and aims to
preserve the host’s privacy is an unnecessarily strong assumption and contradicts
the initial design goal of not having to trust the TPM.

Even worse, it is impossible to verify this strong assumption as the TPM is
a chip that comes with pre-installed software, to which the user only has black-
box access. While black-box access might allow one to partly verify the TPM’s
functional correctness, it is impossible to validate its privacy guarantees. A com-
promised TPM manufacturer can ship TPMs that provide seemingly correct out-
puts, but that are formed in a way that allows dedicated entities (knowing some
trapdoor) to trace the user, for instance by encoding an identifier in a nonce that
is hashed as part of the attestation signature. It could further encode its secret
key in attestations, allowing a fraudulent manufacturer to frame an honest host
by signing a statement on behalf of the platform. We stress that such attacks are
possible on all current DAA schemes, meaning that, by compromising a TPM
manufacturer, all TPMs it produces can be used as mass surveillance devices.
The revelations of subverted cryptographic standards [5,56] and tampered hard-
ware [46] indicate that such attack scenarios are very realistic.

In contrast to the TPM, the host software can be verified by the user, e.g.,
being compiled from open source, and will likely run on hardware that is not
under the control of the TPM manufacturer. Thus, while the honesty of the host
is vital for the platform’s privacy and there are means to verify or enforce such
honesty, requiring the TPM to be honest is neither necessary nor verifiable.
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1.1 Our Contribution

In this paper we address this problem of anonymous attestation without having
to trust a piece of hardware, a problem which has been open for more than a
decade. We further exhibit a new DAA protocol that provides privacy even if
the TPM is subverted. More precisely, our contributions are twofold: we first
show how to model subverted parties within the Universal Composability (UC)
model and then propose a protocol that is secure against subverted TPMs.

Modeling Subversion Attacks in UC. We modify the UC-functionality of DAA
recently proposed by Camenisch, Drijvers, and Lehmann [25] to model the pre-
served privacy guarantees in the case where the TPM is corrupt and the host
remains honest. Modeling corruption in the sense of subverted parties is not
straightforward: if the TPM was simply controlled by the adversary, then, using
the standard UC corruption model, only very limited privacy can be achieved.
The TPM has to see and approve every message it signs but, when corrupted,
all these messages are given to the adversary as well. In fact, the adversary will
learn which particular TPM is asked to sign which message. That is, the adver-
sary can later recognize a certain TPM attestation via its message, even if the
signatures are anonymous.

Modeling corruption of TPMs like this gives the adversary much more power
than in reality: even if a TPM is subverted and runs malicious algorithms, it
is still embedded into a host who controls all communication with the outside
world. Thus, the adversary cannot communicate directly with the TPM, but only
via the (honest) host. To model such subversions more accurately, we introduce
isolated corruptions in UC. When a TPM is corrupted like this, we allow the
ideal-world adversary (simulator) to specify a piece of code that the isolated, yet
subverted TPM will run. Other than that, the adversary has no control over the
isolated corrupted party, i.e., it cannot directly interact with the isolated TPM
and cannot see its state. Thus, the adversary will also not automatically learn
anymore which TPM signed which message.

A New DAA Protocol with Optimal Privacy. We further discuss why the existing
DAA protocols do not offer privacy when the TPM is corrupt and propose a
new DAA protocol which we prove to achieve our strong security definition.
In contrast to most existing schemes, we construct our protocol from generic
building blocks which yields a more modular design. A core building block are
split signatures which allow two entities – in our case the TPM and host –
each holding a secret key share to jointly generate signatures. Using such split
keys and signatures is a crucial difference compared with all existing schemes,
where only the TPM contributed to the attestation key which inherently limits
the possible privacy guarantees. We also redesign the overall protocol such that
the main part of the attestation, namely proving knowledge of a membership
credential on the attestation key, can be done by the host instead of the TPM.

By shifting more responsibility and computations to the host, we do not
only increase privacy, but also achieve stronger notions of non-frameability and
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unforgeability than all previous DAA schemes. Interestingly, this design change
also improves the efficiency of the TPM, which is usually the bottleneck in a
DAA scheme. In fact, we propose a pairing-based instantiation of our generic
protocol which, compared to prior DAA schemes, has the most efficient TPM
signing operation. This comes for the price of higher computational costs for the
host and verifier. However, we estimate signing and verification times of under
40 ms, which is sufficiently fast for most practical applications.

1.2 Related Work

The idea of combining a piece of tamper-resistant hardware with a user-
controlled device was first suggested by Chaum [33] and applied to the context
of e-cash by Chaum and Pedersen [34], which got later refined by Cramer and
Pedersen [42] and Brands [14]. A user-controlled wallet is required to work with
a piece of hardware, the observer, to be able to withdraw and spend e-cash.
The wallet ensures the user’s privacy while the observer prevents a user from
double-spending his e-cash. Later, Brands in 2000 [13] considered the more gen-
eral case of user-bound credentials where the user’s secret key is protected by a
smart card. Brands proposes to let the user’s host add randomness to the smart
card contribution as a protection against subliminal channels. All these works
use a blind signature scheme to issue credentials to the observers and hence such
credentials can only be used a single time.

Young and Yung further study the protection against subverted crypto-
graphic algorithms with their work on kleptography [62,63] in the late 1990s.
Recently, caused by the revelations of subverted cryptographic standards [5,56]
and tampered hardware [46] as a form of mass-surveillance, this problem has
again gained substantial attention.

Subversion-Resilient Cryptography. Bellare et al. [7] provided a formalization of
algorithm-substitution attacks and considered the challenge of securely encrypt-
ing a message with an encryption algorithm that might be compromised. Here,
the corruption is limited to attacks where the subverted party’s behavior is indis-
tinguishable from that of a correct implementation, which models the goal of the
adversary to remain undetected. This notion of algorithm-substitution attacks
was later applied to signature schemes, with the goal of preserving unforgeability
in the presence of a subverted signing algorithm [4].

However, these works on subversion-resilient cryptography crucially rely on
honestly generated keys and aim to prevent key or information leakage when the
algorithms using these keys get compromised.

Recently, Russell et al. [57,58] extended this line of work by studying how
security can be preserved when all algorithms, including the key generation can
be subverted. The authors also propose immunization strategies for a number of
primitives such as one-way permutations and signature schemes. The approach
of replacing a correct implementation with an indistinguishable yet corrupt one
is similar to the approach in our work, and like Russell et al. we allow the



Anonymous Attestation with Subverted TPMs 431

subversion of all algorithms, and aim for security (or rather privacy) when the
TPM behaves maliciously already when generating the keys.

The DAA protocol studied in this work is more challenging to protect against
subversion attacks though, as the signatures produced by the TPM must not only
be unforgeable and free of a subliminal channel which could leak the signing
key, but also be anonymous and unlinkable, i.e., signatures must not leak any
information about the signer even when the key is generated by the adversary.
Clearly, allowing the TPM to run subverted keys requires another trusted entity
on the user’s side in order to hope for any privacy-protecting operations. The
DAA setting naturally satisfies this requirement as it considers a platform to
consist of two individual entities: the TPM and the host, where all of TPM’s
communication with the outside world is run via the host.

Reverse Firewalls. This two-party setting is similar to the concept of reverse fire-
walls recently introduced by Mironov and Stephens-Davidowitz [53]. A reverse
firewall sits in between a user’s machine and the outside world and guarantees
security of a joint cryptographic operation even if the user’s machine has been
compromised. Moreover, the firewall-enhanced scheme should maintain the orig-
inal functionality and security, meaning the part run on the user’s computer
must be fully functional and secure on its own without the firewall. Thus, the
presence of a reverse firewall can enhance security if the machine is corrupt but
is not the source of security itself. This concept has been proven very powerful
and manages to circumvent the negative results of resilience against subversion-
attacks [39,43].

The DAA setting we consider in this paper is not as symmetric as a reverse
firewall though. While both parties contribute to the unforgeability of attesta-
tions, the privacy properties are only achievable if the host is honest. In fact,
there is no privacy towards the host, as the host is fully aware of the identity
of the embedded TPM. The requirement of privacy-protecting and unlinkable
attestation only applies to the final output produced by the host.

Divertible Protocols and Local Adversaries. A long series of related work explores
divertible and mediated protocols [3,11,20,54], where a special party called the
mediator controls the communication and removes hidden information in mes-
sages by rerandomizing them. The host in our protocol resembles the mediator,
as it adds randomness to every contribution to the signature from the TPM.
However, in our case the host is a normal protocol participant, whereas the
mediator’s sole purpose is to control the communication.

Alwen et al. [2] and Canetti and Vald [32] consider local adversaries to model
isolated corruptions in the context of multi-party protocols. These works thor-
oughly formalize the setting of multi-party computations where several parties
can be corrupted, but are controlled by different and non-colluding adversaries.
In contrast, the focus of this work is to limit the communication channel that
the adversary has to the corrupted party itself. We leverage the flexibility of the
UC model to define such isolated corruptions.
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Generic MPC. Multi-party computation (MPC) was introduced by Yao [61]
and allows a set of parties to securely compute any function on private inputs.
Although MPC between the host and TPM could solve our problem, a negative
result by Katz and Ostrovsky [52] shows that this would require at least five
rounds of communication, whereas our tailored solution is much more efficient.
Further, none of the existing MPC models considers the type of subverted cor-
ruptions that is crucial to our work, i.e., one first would have to extend the
existing models and schemes to capture such isolated TPM corruption. This
holds in particular for the works that model tamper-proof hardware [48,51], as
therein the hardware is assumed to be “perfect” and unsubvertable.

TPM2.0 Interfaces and Subliminal Channels. Camenisch et al. [22] recently stud-
ied the DAA-related interfaces that are provided by hardware modules following
the current TPM2.0 specification, and propose a revision to obtain better secu-
rity and privacy guarantees from such hardware. The current APIs do not allow
to prove the unforgeability of the TPM’s parts in the DAA protocols, and pro-
vide a static Diffie-Hellman oracle. Fixes to these problems have been proposed,
but they create new issues: they enable a fraudulent TPM to encode informa-
tion into an attestation signature, which could be used to break anonymity or to
leak the secret key. This creates a subliminal channel already on the hardware
level, which would annihilate any privacy guarantees against malicious TPMs
that are achieved on the protocol level. Camenisch et al. address this problem
and present a revised set of interfaces that allow for provable security and do
not introduce a subliminal channel. Further, two new DAA protocols are pre-
sented that can be build from these revised APIs and guarantee privacy even
when the hardware is subverted, which is termed strong privacy and builds upon
our isolated corruption model. In contrast to our work, the protocols in [22] do
not provide privacy against malicious TPMs in the standard corruption model,
and the privacy guarantees in the isolated model are slightly weaker than in
our optimal privacy definition. We give a brief comparison of strong and opti-
mal privacy in Sect. 2.3 and refer to [22] for a detailed discussion. The protocols
proposed in [22] are realizable with only minor modifications to the TPM speci-
fication, though, whereas our protocol with optimal privacy would require more
significant changes.

2 A Security Model for DAA with Optimal Privacy

This section presents our security definition for anonymous attestation with opti-
mal privacy. First, we informally describe how DAA works and what the desired
security and (optimal) privacy properties are. Then we present our formal defi-
nition in Sect. 2.1, and describe how it improves upon existing work in Sect. 2.2.
Finally, in Sect. 2.3, we elaborate on the inherent limitations the UC framework
imposes on privacy in the presence of fully corrupted parties and introduce the
concept of isolated corruptions, which allow one to overcome this limitations yet
capture the power of subverted TPMs.
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High-Level Functional and Security Properties. In a DAA scheme, we have four
kinds of entities: a number of TPMs, a number of hosts, an issuer, and a number
of verifiers. A TPM and a host together form a platform which performs the join
protocol with the issuer who decides if the platform is allowed to become a mem-
ber. Once being a member, the TPM and host together can sign messages with
respect to basenames bsn, where the basename steers the platform’s anonymity.
If a platform signs with a fresh basename, the signature must be anonymous and
unlinkable to any previous signatures. That is, any verifier can check that the
signature stems from a legitimate platform via a deterministic verify algorithm,
but the signature does not leak any information about the identity of the signer.
However, signatures the platform makes with the same basename can be linked
to each other via a (deterministic) link algorithm.

For security, one requires unforgeability: when the issuer is honest, the
adversary can only sign in the name of corrupt platforms. More precisely, if n
platforms are corrupt, the adversary can forge at most n unlinkable signatures
for one basename. By corrupt platform we mean that both the host and TPM
are corrupt, and thus a platform is called honest if at least one of the TPM or
host is honest. This is in fact stronger than the unforgeability notion covered in
all previous definitions which only rely on the honesty of the TPM.

Non-frameability captures the property that no adversary can create sig-
natures on a message m w.r.t. basename bsn that links to a signature created by
a platform with an honest host, when this platform never signed m w.r.t. bsn.

Finally, we require anonymity for attestations. An adversary that is
given two signatures, w.r.t. two different basenames cannot determine whether
both signatures stem from the same platform. All previous works considered
anonymity only for fully honest platforms, i.e., consisting of an honest TPM and
honest host, whereas our goal is to guarantee anonymity even if the TPM is cor-
rupt. Note that anonymity can only hold if the host is honest, though, as it has
full control over its output and can, e.g., always choose to append its identity
to a signature. Thus, the best one can hope for is preserved anonymity when
the TPM is corrupt but the host is honest, which is the setting that this work
addresses.

Universal Composability. Our security definition has the form of an ideal func-
tionality Fpdaa in the Universal Composability (UC) framework [31]. Informally,
a protocol Π securely realizes an ideal functionality F if the real world is as
secure as the ideal world. As F performs the task at hand in an ideal fashion,
i.e., F is secure by construction, there are no meaningful attacks on the ideal
world, so there are no meaningful attacks on the real world. More precisely, Π
securely realizes F if for every adversary A, there exists a simulator S such that
no environment E can distinguish the real world (with Π and A) from the ideal
world (with F and S).
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2.1 Ideal Functionality Fpdaa

We now formally define our ideal DAA-with-optimal-privacy functionality Fpdaa,
which is based on F l

daa by Camenisch et al. [25]. The crucial difference between
the two functionalities is the resilience against corrupt TPMs: F l

daa guarantees
anonymity, non-frameability and unforgeability only when both the TPM and
the host are honest. Our modified version Fpdaa guarantees all properties as
long as the host is honest, i.e., even when the TPM is corrupt. We explain
these differences in detail in Sect. 2.2. We start by describing the interfaces and
guaranteed security properties in an informal manner, and present the detailed
definition of Fpdaa in Fig. 1.

Setup. The SETUP interface on input sid = (I, sid′) initiates a new session for
the issuer I and expects the adversary to provide algorithms (ukgen, sig, ver, link,
identify) that will be used inside the functionality. ukgen creates a new key gsk
and a tracing trapdoor τ that allows Fpdaa to trace signatures generated with
gsk . sig, ver, and link are used by Fpdaa to create, verify, and link signatures,
respectively. Finally, identify allows to verify whether a signature belongs to
a certain tracing trapdoor. This allows Fpdaa to perform multiple consistency
checks and enforce the desired non-frameability and unforgeability properties.

Note that the ver and link algorithms assist the functionality only for sig-
natures that are not generated by Fpdaa itself. For signatures generated by the
functionality, Fpdaa will enforce correct verification and linkage using its internal
records. While ukgen and sig are probabilistic algorithms, the other ones are
required to be deterministic. The link algorithm also has to be symmetric, i.e.,
for all inputs it must hold that link(σ,m, σ′,m′, bsn) ↔ link(σ′,m′, σ,m, bsn).

Join. A host Hj can request to join with a TPM Mi using the JOIN interface.
If both the TPM and the issuer approve the join request, the functionality stores
an internal membership record for Mi,Hj in Members indicating that from now
on that platform is allowed to create attestations.

If the host is corrupt, the adversary must provide Fpdaa with a tracing trap-
door τ . This value is stored along in the membership record and allows the
functionality to check via the identify function whether signatures were cre-
ated by this platform. Fpdaa uses these checks to ensure non-frameability and
unforgeability whenever it creates or verifies signatures. To ensure that the
adversary cannot provide bad trapdoors that would break the completeness or
non-frameability properties, Fpdaa checks the legitimacy of τ via the “macro”
function CheckTtdCorrupt. This function checks that for all previously generated
or verified signatures for which Fpdaa has already seen another matching tracing
trapdoor τ ′ �= τ , the new trapdoor τ is not identified as a matching key as well.
The detailed definition is given in the full version of this paper [24].

Sign. After joining, a host Hj can request a signature on a message m with
respect to basename bsn using the SIGN interface. The signature will only be
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid , Mi) from host Hj .
– Create a join session record 〈jsid , Mi, Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid , Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid , Mi, Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid , Mi, Hj) to A, wait for input (JOINPROCEED, sid , jsid) from A.
– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid , Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid , Mi, Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥. (strong non-frameability)
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi, Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign

5. Sign Request. On input (SIGN, sid , ssid , Mi, m, bsn) from Hj .
– If Hj is honest and no entry 〈Mi, Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid , Mi, Hj , m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid , m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid , Mi, Hj , m, bsn, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi, Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key: (strong privacy)
• Retrieve (gsk , τ) from 〈Mi, Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ←

ukgen(), check CheckTtdHonest(τ) = 1, and store 〈Mi, Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk , m, bsn), check ver(σ, m, bsn) = 1.
• Check identify(σ, m, bsn, τ) = 1 and that there is no (M′, H′) �= (Mi, Hj) with tracing trapdoor τ ′

registered in Members or DomainKeys with identify(σ, m, bsn, τ ′) = 1.
– Store 〈σ, m, bsn, Mi, Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

7. Verify. On input (VERIFY, sid , m, bsn, σ, RL) from some party V.
– Retrieve all tuples (τi, Mi, Hj) from 〈Mi, Hj , τi〉 ∈ Members and 〈Mi, Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ, m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no pair (τi, Mi, Hj) was found.
• Mi or Hj is honest but no entry 〈∗, m, bsn, Mi, Hj〉 ∈ Signed exists. (strong unforgeability)
• There is a τ ′ ∈ RL where identify(σ, m, bsn, τ ′) = 1 and no pair (τi, Mi, Hj) for an honest Hj was

found.
– If f �= 0, set f ← ver(σ, m, bsn).
– Add 〈σ, m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

8. Link. On input (LINK, sid , σ, m, σ′, m′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ, m, bsn) or (σ′, m′, bsn) is not valid (verified via the verify

interface with RL = ∅).
– For each τi in Members and DomainKeys compute bi ← identify(σ, m, bsn, τi) and b′

i ←
identify(σ′, m′, bsn, τi) and do the following:

• Set f ← 0 if bi �= b′
i for some i.

• Set f ← 1 if bi = b′
i = 1 for some i.

– If f is not defined yet, set f ← link(σ, m, σ′, m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 1. Our ideal functionality Fpdaa for DAA with optimal privacy.
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created when the TPM Mi explicitly agrees to signing m w.r.t. bsn and a join
record for Mi,Hj in Members exists (if the issuer is honest).

When a platform wants to sign message m w.r.t. a fresh basename bsn, Fpdaa

generates a new key gsk (and tracing trapdoor τ) via ukgen and then signs
m with that key. The functionality also stores the fresh key (gsk , τ) together
with bsn in DomainKeys, and reuses the same key when the platform wishes to
sign repeatedly under the same basename. Using fresh keys for every signature
naturally enforces the desired privacy guarantees: the signature algorithm does
not receive any identifying information as input, and thus the created signatures
are guaranteed to be anonymous (or pseudonymous in case bsn is reused).

Our functionality enforces this privacy property whenever the host is honest.
Note, however, that Fpdaa does not behave differently when the host is corrupt,
as in this case its output does not matter due to way corruptions are handled
in UC. That is, Fpdaa always outputs anonymous signatures to the host, but if
the host is corrupt, the signature is given to the adversary, who can choose to
discard it and output anything else instead.

To guarantee non-frameability and completeness, our functionality further
checks that every freshly generated key, tracing trapdoor and signature does not
falsely match with any existing signature or key. More precisely, Fpdaa first uses
the CheckTtdHonest macro to verify whether the new key does not match to any
existing signature. (The detailed definition of CheckTtdHonest is given in the
full version of this paper [24].) Likewise, before outputting σ, the functionality
checks that no one else already has a key which would match this newly generated
signature.

Finally, for ensuring unforgeability, the signed message, basename, and plat-
form are stored in Signed which will be used when verifying signatures.

Verify. Signatures can be verified by any party using the VERIFY interface.
Fpdaa uses its internal Signed, Members, and DomainKeys records to enforce
unforgeability and non-frameability. It uses the tracing trapdoors τ stored in
Members and DomainKeys to find out which platform created this signature. If
no match is found and the issuer is honest, the signature is a forgery and rejected
by Fpdaa. If the signature to be verified matches the tracing trapdoor of some
platform with an honest TPM or host, but the signing records do not show that
they signed this message w.r.t. the basename, Fpdaa again considers this to be
a forgery and rejects. If the records do not reveal any issues with the signature,
Fpdaa uses the ver algorithm to obtain the final result.

The verify interface also supports verifier-local revocation. The verifier can
input a revocation list RL containing tracing trapdoors, and signatures matching
any of those trapdoors are no longer accepted.

Link. Using the LINK interface, any party can check whether two signatures
(σ, σ′) on messages (m,m′) respectively, generated with the same basename bsn
originate from the same platform or not. Fpdaa again uses the tracing trapdoors
τ stored in Members and DomainKeys to check which platforms created the two
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signatures. If they are the same, Fpdaa outputs that they are linked. If it finds a
platform that signed one, but not the other, it outputs that they are unlinked,
which prevents framing of platforms with an honest host.

The full definition of Fpdaa is given in Fig. 1. Note that when Fpdaa runs one
of the algorithms sig, ver, identify, link, and ukgen, it does so without maintaining
state. This means all user keys have the same distribution, signatures are equally
distributed for the same input, and ver, identify, and link invocations only depend
on the current input, not on previous inputs.

2.2 Comparison with F l
daa

Our functionality Fpdaa is a strengthened version of F l
daa [25], as it requires fewer

trust assumptions on the TPM for anonymity, non-frameability and unforgeabil-
ity. It also includes a syntactical change which allows for more efficient construc-
tions, as we discuss at the end of this section.

Optimal Privacy. The most important difference is that F l
daa guarantees ano-

nymity only when both the TPM and the host are honest, whereas our modified
version Fpdaa guarantees anonymity as long as the host is honest, i.e., even when
the TPM is corrupt. As discussed, the honesty of the host is strictly necessary,
as privacy is impossible to guarantee otherwise.

In the ideal functionality F l
daa proposed by Camenisch et al. [25] the signa-

tures are created in the SIGNPROCEED step in two different ways, depending on
whether the TPM is honest or not. For the case of a corrupt TPM, the signature
is provided by the adversary, which reflects that the adversary can recognize and
link the signatures and F l

daa does not guarantee any privacy. If the TPM (and
the host) is honest, F l

daa creates anonymous signatures inside the functionality
using the signing algorithm sig and ukgen. As signatures are generated with fresh
keys for every new basename, the functionality enforces the desired unlinkability
and anonymity.

In our functionality Fpdaa, we also apply that approach of internally and
anonymously creating signatures to the case where the TPM is corrupt, instead
of relying on a signature input by the adversary. Thus, Fpdaa guarantees the
same strong privacy for both settings of a corrupt and honest TPM. In fact,
for the sake of simplicity we let Fpdaa even generate the signatures for corrupt
hosts within the functionality now (whereas F l

daa used adversarially provided
ones). However, as Fpdaa outputs that signature to the host Hi, who will be the
adversary if Hi is corrupt, the behaviour of Fpdaa with respect to privacy does
not matter in that case: the adversary can simply ignore the output. We present
a summary of the privacy properties guaranteed by F l

daa and Fpdaa in Table 1.
Another difference between both functionalities is that in Fpdaa we assume a

direct communication channel between the host and TPM, which is necessary to
achieve the desired privacy properties (see Sect. 2.3). Note that in the real-world,
such a direct channel is naturally enforced by the physical proximity of the host
and TPM forming the platform, i.e., if both are honest, an adversary can neither
alter nor read their internal communication, or even notice that communication
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Table 1. Overview of privacy guarantees by F l
daa [25], Fpdaa+ [22] and Fpdaa (this work).

Corruption setting F l
daa Fpdaa+ Fpdaa

Honest host, honest TPM + + +

Honest host, isolated corrupt TPM - (+) + Optimal privacy

Honest host, fully corrupt TPM - - (+) Conditional privacy

Corrupt host - - - Impossible

is happening. Consequently, our functionality gets a bit simpler compared to
F l

daa as we omit in JOIN and SIGN all dedicated interfaces and outputs that
informed the simulator about communication between Hj and Mi and waited
for a proceed input by the simulator to complete their communication.

Stronger Non-frameability and Unforgeability. While the focus of this work is
strengthening the privacy properties in the presence of a subverted TPM, we also
lift the trust assumption for non-frameability and unforgeability. Whereas F l

daa

and all other prior security models [15,17] guarantee non-frameability only if the
entire platform is honest, our modified definition Fpdaa enforces that property as
long as the host is honest. Our stronger version of non-frameability is enforced
by modifying the JOINPROCEED interface such that it allows the adversary
to provide a tracing trapdoor τ (which steers the non-frameability checks by
Fpdaa) only when the host is corrupt, as it set τ ← ⊥ whenever the host is
honest. This replaces the original condition of discarding the adversarial τ when
both, the host and TPM are honest. Note that similar to anonymity, requiring
an honest host is strictly necessary for non-frameability too, as we can never
control the signatures that a corrupt host outputs. In particular, a corrupt host
with an honest TPM could additionally run a corrupt TPM and “frame itself”
by outputting signatures from the corrupt TPM.

In terms of unforgeability, all previous definitions including F l
daa solely rely

on the honesty of the TPM (and issuer of course). In Fpdaa we provide a stronger
version and guarantee that attestations cannot be forged unless the entire plat-
form is corrupted, i.e., here we ensure unforgeability if at least one of two entities,
TPM or host, is honest. This change is reflected in our functionality Fpdaa as
follows: In the SIGNPROCEED interface we store the host identity as part of
the signature record 〈σ,m, bsn,Mi,Hj〉 ∈ Signed when signatures are created.
Further, the VERIFY interface now requires the existence of such record when-
ever the signature to be verified belongs to an honest host or honest TPM. In
F l

daa only 〈σ,m, bsn,Mi〉 was stored and required when the TPM was honest.
For unforgeability, relaxing the condition on the honesty of the TPM is not as
crucial as for privacy and non-frameability. Thus, if only the standard unforge-
ability notion is sufficient, one can easily derive a functionality with optimal
privacy but standard unforgeability by reverting the changes we just described.



Anonymous Attestation with Subverted TPMs 439

Dedicated Tracing Key. Our functionality also includes some syntactical changes.
F l

daa uses keys gsk for two purposes: to create signatures for honest platforms (via
sig), and to trace signatures (via identify) when enforcing non-frameability and
unforgeability. A key gsk can be provided by the adversary when a JOIN request
is completed for a corrupt host, or is generated internally via ukgen whenever an
anonymous signature is created. In Fpdaa we split this into two dedicated values:
gsk which is used to sign, and τ to trace signatures. Consequently, the identify
algorithm now takes τ instead of gsk as input. The adversary has to provide τ in
the JOIN interface, as its input is only used to ensure that a corrupt host cannot
impersonate or frame another honest platform. The internally created keys are
used for both, signing and tracing, and hence we modify ukgen to output a tuple
(gsk , τ) instead of gsk only.

The idea behind that change is to allow for more efficient schemes, as the
tracing key τ is usually a value that needs to be extracted by the simulator in the
security proof. In the scheme we propose, it is sufficient that τ is the public key
of the platform whereas gsk is its secret key. Using only a single gsk would have
required the join protocol to include an extractable encryption of the platform’s
secret key, which would not only be less efficient but also a questionable protocol
design. Clearly, our approach is more general than in F l

daa, one can simply set
τ = gsk to derive the same definition as F l

daa.

2.3 Modeling Subverted Parties in the UC Framework

As just discussed, our functionality Fpdaa guarantees that signatures created with
an honest host are unlinkable and do not leak any information about the signing
platform, even if the TPM is corrupt. However, the adversary still learns the
message and basename when the TPM is corrupt, due to the way UC models
corruptions. We discuss how this standard corruption model inherently limits the
achievable privacy level, and then present our approach of isolated corruptions
which allow one to overcome this limitation yet capture the power of subverted
TPMs. While we discuss the modeling of isolated corruptions in the context of
our DAA functionality, we consider the general concept to be of independent
interest as it is applicable to any other scenario where such subversion attacks
can occur.

Conditional Privacy Under Full TPM Corruption. According to the UC
corruption model, the adversary gains full control over a corrupted party, i.e., it
receives all inputs to that party and can choose its responses. For the case of a
corrupt TPM this means that the adversary sees the message m and basename
bsn whenever the honest host wants to create a signature. In fact, the adversary
will learn which particular TPM Mi is asked to sign m w.r.t. bsn. Thus, even
though the signature σ on m w.r.t. bsn is then created by Fpdaa and does not leak
any information about the identity of the signing platform, the adversary might
still be able to recognize the platform’s identity via the signed values. That is, if
a message m or basename bsn is unique, i.e., only a single (and corrupt) TPM



440 J. Camenisch et al.

has ever signed m w.r.t. bsn, then, when later seeing a signature on m w.r.t.
bsn, the adversary can derive which platform had created the signature.

A tempting idea for better privacy would be to change the functionality
such that the TPM does not receive the message and basename when asked
to approve an attestation via the SIGNPROCEED message. As a result, this
information will not be passed to the adversary if the TPM is corrupt. However,
that would completely undermine the purpose of the TPM that is supposed to
serve as a trust anchor: verifiers accept a DAA attestation because they know
a trusted TPM has approved them. Therefore, it is essential that the TPM sees
and acknowledges the messages it signs.

Thus, in the presence of a fully corrupt TPM, the amount of privacy that
can be achieved depends which messages and basenames are being signed – the
more unique they are, the less privacy Fpdaa guarantees.

Optimal Privacy Under Isolated TPM Corruption. The aforementioned
leakage of all messages and basenames that are signed by a corrupt TPM is
enforced by the UC corruption model. Modeling corruption of TPMs like this
gives the adversary much more power than in reality: even if a TPM is subverted
and runs malicious algorithms, it is still embedded into a host who controls all
communication with the outside world. Thus, the adversary cannot communicate
directly with the TPM, but only via the (honest) host.

To model such subversions more accurately and study the privacy achievable
in the presence of subverted TPMs, we define a relaxed level of corruption that
we call isolated corruption. When the adversary corrupts a TPM in this manner,
it can specify code for the TPM but cannot directly communicate with the TPM.

We formally define such isolated corruptions via the body-shell paradigm
used to model UC corruptions [31]. Recall that the body of a party defines its
behavior, whereas the shell models the communication with that party. Thus,
for our isolated corruptions, the adversary gets control over the body but not the
shell. Interestingly, this is exactly the inverse of honest-but-curious corruptions in
UC, where the adversary controls the shell and thus sees all inputs and outputs,
but cannot change the body, i.e., the parties behavior remains honest.

In our case, an adversary performing an isolated corruption can provide a
body, which models the tampered algorithms that an isolated corrupt TPM
may use. The shell remains honest though and handles inputs, and subroutine
outputs, and only forwards the ones that are allowed to the body. In the real
world, the shell would only allow communication with the host in which the
TPM is embedded. In the ideal world, the shell allows inputs to and outputs
from the functionality, and blocks anything else.

Figures 2 and 3 depict the different levels of corruption in the real world
and ideal world, respectively. In the ideal word, an isolated corruption of a
TPM replaces the dummy TPM that forwards inputs and outputs between the
environment and the ideal functionality with an isolated simulator comprising
of the adversarial body and honest shell.
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Fig. 2. Modeling of corruption in the real world. Left: an honest TPM applies the
protocol ΠM, and communicates with the host running ΠH. Middle: a corrupt TPM
sends any input the adversary instructs it to, and forwards any messages received to
the adversary. Right: an isolated corrupt TPM is controlled by an isolated adversary
AM, who can communicate with the host, but not with any other entities.
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Fig. 3. Modeling of corruption in the ideal world. Left: an honest TPM is a dummy
party dM that forwards inputs and outputs between the environment E and the func-
tionality Fpdaa. Middle: a corrupt TPM sends any input the adversary instructs it to,
and forwards any subroutine output to the adversary. Right: an isolated corrupt TPM
is controlled by an isolated simulator SM, who may send inputs and receive outputs
from Fpdaa, but not communicate with any other entities.

When designing a UC functionality, then all communication between a host
and the “embedded” party that can get corrupted in such isolated manner must
be modeled as direct channel (see e.g., the SIGN related interfaces in Fpdaa).
Otherwise the simulator/adversary will be aware of the communication between
both parties and can delay or block messages, which would contradict the con-
cept of an isolated corruption where the adversary has no direct channel to the
embedded party. Note that the perfect channel of course only holds if the host
entity is honest, if it is corrupt (in the standard sense), the adversary can see
and control all communication via the host anyway.

With such isolated adversaries we specify much stronger privacy. The adver-
sary no longer automatically learns which isolated corrupt TPM signed which
combination of messages and basenames, and the signatures created by Fpdaa

are guaranteed to be unlinkable. Of course the message m and basename bsn
must not leak information about the identity of the platform. In certain appli-
cations, the platform would sign data generated or partially controlled by other
functions contained in a TPM. This is out of scope of the attestation scheme,
but the higher level scheme using Fpdaa should ensure that this does not happen,
by, e.g., letting the host randomize or sanitize the message.
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Comparison with Strong Privacy (Fpdaa+). Recently, Camenisch et al. [22] pro-
posed a variant Fpdaa+ of our functionality that, when considering only isolated
TPM corruptions, provides an intermediate level of anonymity, termed strong
privacy (the + in Fpdaa+ refers to the addition of attributes and signature-based
revocation). In Fpdaa+ all signatures are generated internally by the functionally,
just as in optimal privacy. The difference is that in strong privacy these signa-
tures are revealed to the TPM which can then base its behavior on the signature
value. Thus, while the actual signature shown to the TPM is still guaranteed to
be anonymous, the TPM can influence the final distribution of the signatures
by blocking certain values. In the isolated corruption model, where the corrupt
TPM cannot communicate the learned signatures to the adversary, Fpdaa+ pro-
vides an interesting relaxation of optimal privacy which allows for significantly
simpler constructions as shown in [22].

3 Insufficiency of Existing DAA Schemes

Our functionality Fpdaa requires all signatures on a message m with a fresh base-
name bsn to have the same distribution, even when the TPM is corrupt. None
of the existing DAA schemes can be used to realize Fpdaa when the TPM is cor-
rupted (either fully or isolated). The reason is inherent to the common protocol
design that underlies all DAA schemes so far, i.e., there is no simple patch that
would allow upgrading the existing solutions to achieve optimal privacy.

In a nutshell, in all existing DAA schemes, the TPM chooses a secret key
gsk for which it blindly receives a membership credential of a trusted issuer.
To create a signature on message m with basename bsn, the platform creates a
signature proof of knowledge signing message m and proving knowledge of gsk
and the membership credential.

In the original RSA-based DAA scheme [15], and the more recent qSDH-based
schemes [18,19,23,40], the proof of knowledge of the membership credential is
created jointly by the TPM and host. After jointly computing the commitment
values of the proof, the host computes the hash over these values and sends
the hash c to the TPM. To prevent leaking information about its key, the TPM
must ensure that the challenge is a hash of fresh values. In all the aforementioned
schemes this is done by letting the TPM choose a fresh nonce n and computing
the final hash as c′ ← H(n, c). An adversarial TPM can embed information in n
instead of taking it uniformly at random, clearly altering the distribution of the
proof and thus violating the desired privacy guarantees.

At a first glance, deriving the hash for the proof in a more robust manner
might seem a viable solution to prevent such leakage. For instance, setting the
nonce as n ← nt ⊕ nh, with nt being the TPM’s and nh the host’s contribution,
and letting the TPM commit to nt before receiving nh. While this indeed removes
the leakage via the nonce, it still reveals the hash value c′ ← H(n, c) to the TPM
with the hash becoming part of the completed signature. Thus, the TPM can
base its behavior on the hash value and, e.g., only sign messages for hashes that
start with a 0-bit. When considering only isolated corruptions for the TPM,
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the impact of such leakage is limited though as argued by Camenisch et al. [22]
and formalized in their notion of strong privacy. In fact, Camenisch et al. show
that by using such jointly generated nonces, and also letting the host contribute
to the platform’s secret key, the existing DAA schemes can be modified to achieve
strong privacy in the isolated corruption model. However, it clearly does not
result in signatures that are equally distributed as required by our functionality,
and thus the approach is not sufficient to obtain optimal privacy.

The same argument applies to the LRSW-based DAA schemes [9,25,38],
where the proof of a membership credential is done solely by the TPM, and thus
can leak information via the Fiat-Shamir hash output again. The general problem
is that the signature proofs of knowledge are not randomizable. If the TPM
would create a randomizable proof of knowledge, e.g., a Groth-Sahai proof [47],
the host could randomize the proof to remove any hidden information, but this
would yield a highly inefficient signing protocol for the TPM.

4 Building Blocks

In this section we introduce the building blocks for our DAA scheme. In addition
to standard components such as additively homomorphic encryption and zero-
knowledge proofs, we introduce two non-standard types of signature schemes.
One signature scheme we require is for the issuer to blindly sign the public key
of the TPM and host. The second signature scheme is needed for the TPM and
host to jointly create signed attestations, which we term split signatures.

The approach of constructing a DAA scheme from modular building blocks
rather than basing it on a concrete instantiation was also used by Bernhard et
al. [9,10]. As they considered a simplified setting, called pre-DAA, where the host
and platform have a joint corruption state, and we aim for much stronger privacy,
their “linkable indistinguishable tag” is not sufficient for our construction. We
replace this with our split signatures.

As our protocol requires “compatible” building blocks, i.e., the different
schemes have to work in the same group, we assume the availability of pub-
lic system parameters spar ←$ SParGen(τ) generated for security parameter τ .
We give spar as dedicated input to the individual key generation algorithms
instead of the security parameter τ . For the sake of simplicity, we omit the sys-
tem parameters as dedicated input to all other algorithms and assume that they
are given as implicit input.

4.1 Proof Protocols

Let NIZK{(w) : s(w)}(ctxt) denote a generic non-interactive zero-knowledge
proof that is bound to a certain context ctxt and proves knowledge of a witness
w such that statement s(w) is true. Sometimes we need witnesses to be online-
extractable, which we denote by underlining them: NIZK{(w1, w2) : s(w1, w2)}
allows for online extraction of w1.
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All the NIZK we give have efficient concrete instantiations for the instan-
tiations we propose for our other building blocks. We will follow the notation
introduced by Camenisch and Stadler [29] and formally defined by Camenisch,
Kiayias, and Yung [26] for these protocols. For instance, PK{(a) : y = ga}
denotes a “zero-knowledge Proof of Knowledge of integer a such that y = ga

holds.” SPK{. . .}(m) denotes a signature proof of knowledge on m, that is a
non-interactive transformation of a proof with the Fiat-Shamir heuristic [45].

4.2 Homomorphic Encryption Schemes

We require an encryption scheme (EncKGen,Enc,Dec) that is semantically secure
and that has a cyclic group G = 〈g〉 of order q as message space. It consists of
a key generation algorithm (epk , esk) ←$ EncKGen(spar), where spar defines
the group G, an encryption algorithm C ←$ Enc(epk ,m), with m ∈ G, and a
decryption algorithm m ← Dec(esk , C).

We further require that the encryption scheme has an appropriate homo-
morphic property, namely that there is an efficient operation 
 on ciphertexts
such that, if C1 ∈ Enc(epk ,m1) and C2 ∈ Enc(epk ,m2), then C1 
 C2 ∈
Enc(epk ,m1 ·m2). We will also use exponents to denote the repeated application
of 
, e.g., C2 to denote C 
 C.

ElGamal Encryption. We use the ElGamal encryption scheme [44], which is
homomorphic and chosen plaintext secure. The semantic security is sufficient for
our construction, as the parties always prove to each other that they formed the
ciphertexts correctly. Let spar define a group G = 〈g〉 of order q such that the
DDH problem is hard w.r.t. τ , i.e., q is a τ -bit prime.

EncKGen(spar): Pick x ←$
Zq, compute y ← gx, and output esk ← x, epk ← y.

Enc(epk ,m): To encrypt a message m ∈ G under epk = y, pick r ←$
Zq and

output the ciphertext (C1, C2) ← (yr, grm).
Dec(esk , C): On input the secret key esk = x and a ciphertext C = (C1, C2) ∈

G
2, output m′ ← C2 · C

−1/x
1 .

4.3 Signature Schemes for Encrypted Messages

We need a signature scheme that supports the signing of encrypted messages
and must allow for (efficient) proofs proving that an encrypted value is correctly
signed and proving knowledge of a signature that signs an encrypted value. Dual-
mode signatures [27] satisfy these properties, as therein signatures on plaintext as
well as on encrypted messages can be obtained. As we do not require signatures
on plaintexts, though, we can use a simplified version.

A signature scheme for encrypted messages consists of the algorithms
(SigKGen,EncSign,DecSign,Vf) and also uses an encryption scheme (EncKGen,
Enc,Dec) that is compatible with the message space of the signature scheme. In
particular, the algorithms working with encrypted messages or signatures also
get the keys (epk , esk) ←$ EncKGen(spar) of the encryption scheme as input.
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SigKGen(spar): On input the system parameters, this algorithm outputs a public
verification key spk and secret signing key ssk .

EncSign(ssk , epk , C): On input signing key ssk , a public encryption key epk , and
ciphertext C = Enc(epk ,m), outputs an “encrypted” signature σ of C.

DecSign(esk , spk , σ): On input an “encrypted” signature σ, secret decryption
key esk and public verification key spk , outputs a standard signature σ.

Vf(spk , σ,m): On input a public verification key spk , signature σ and message
m, outputs 1 if the signature is valid and 0 otherwise.

In terms of security, we require completeness and unforgeability as defined
in [27], but omit the oracle for signatures on plaintext messages in the unforge-
ability experiment. Clearly, any secure dual-mode signature is also unforgeable
according to our notion. The simplified security model is given in the full version
of this paper [24].

AGOT+ Signature Scheme. To instantiate the building block of signatures for
encrypted messages we will use the AGOT+ scheme of [27], which was shown
to be a secure instantiation of a dual-mode signature, hence is also secure in our
simplified setting. Again, as we do not require signatures on plaintext messages
we omit the standard signing algorithm. The AGOT+ scheme is based on the
structure-preserving signature scheme by Abe et al. [1], which is proven to be
unforgeable in the generic group model.

The AGOT+ scheme assumes the availability of system parameters (q,G1,
G2,GT , e, g1, g2, x), where G1,G2,GT are groups of prime order q generated by
g1, g2, and e(g1, g2) respectively, e is a non-degenerate bilinear map e : G1×G2 →
GT , and x is an additional random group element in G1.

SigKGen(spar): Draw v ←$
Zq, compute y ← gv

2 , and return spk = y, ssk = v.
EncSign(ssk , epk ,M): On input a proper encryption M = Enc(epk ,m) of a mes-

sage m ∈ G1 under epk , and secret key ssk = v, choose a random u ←$
Z

∗
q ,

and output the (partially) encrypted signature σ̄ = (r, S, T, w):

r ← gu
2 , S ← (Mv 
 Enc(epk , x))1/u, T ← (Sv 
 Enc(epk , g1))

1/u, w ← g
1/u
1 .

DecSign(esk , spk , σ): Parse σ = (r, S, T, w), compute s ← Dec(esk , S), t ←
Dec(esk , T ) and output σ = (r, s, t, w).

Vf(spk , σ,m): Parse σ = (r, s, t, w′) and spk = y and output 1 iff m, s, t ∈ G1,
r ∈ G2, e(s, r) = e(m, y) · e(x, g2), and e(t, r) = e(s, y) · e(g1, g2).

Note that for notational simplicity, we consider w part of the signature, i.e.,
σ = (r, s, t, w), altough signature verification will ignore w. As pointed out by
Abe et al., a signature σ = (r, s, t) can be randomized using the randomization
token w to obtain a signature σ′ = (r′, s′, t′) by picking a random u′ ←$

Z
∗
q and

computing r′ ← ru′
, s′ ← s1/u′

, t′ ← (tw(u′−1))1/u′2
.

For our construction, we also require the host to prove that it knows an
encrypted signature on an encrypted message. In Sect. 6 we describe how such a
proof can be done.
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4.4 Split Signatures

The second signature scheme we require must allow two different parties, each
holding a share of the secret key, to jointly create signatures. Our DAA protocol
performs the joined public key generation and the signing operation in a strict
sequential order. That is, the first party creates his part of the key, and the second
party receiving the ‘pre-public key’ generates a second key share and completes
the joined public key. Similarly, to sign a message the first signer creates a ‘pre-
signature’ and the second signer completes the signature. We model the new
signature scheme for that particular sequential setting rather than aiming for
a more generic building block in the spirit of threshold or multi-signatures, as
the existence of a strict two-party order allows for substantially more efficient
constructions.

We term this new building block split signatures partially following the nota-
tion by Bellare and Sandhu [8] who formalized different two-party settings for
RSA-based signatures where the signing key is split between a client and server.
Therein, the case “MSC” where the first signature contribution is produced by
an external server and then completed by the client comes closest to out setting.

Formally, we define a split signature scheme as a tuple of the algorithms
SSIG = (PreKeyGen,CompleteKeyGen,VerKey,PreSign,CompleteSign,Vf):

PreKeyGen(spar): On input the system parameters, this algorithm outputs the
pre-public key ppk and the first share of the secret signing key ssk1.

CompleteKeyGen(ppk): On input the pre-public key, this algorithm outputs a
public verification key spk and the second secret signing key ssk2.

VerKey(ppk , spk , ssk2): On input the pre-public key ppk , the full public key spk ,
and a secret key share ssk2, this algorithm outputs 1 iff the pre-public key
combined with secret key part ssk2 leads to full public key spk .

PreSign(ssk1,m): On input a secret signing key share ssk1, and message m, this
algorithm outputs a pre-signature σ′.

CompleteSign(ppk , ssk2,m, σ′): On input the pre-public key ppk , the second
signing key share ssk2, message m, and pre-signature σ′, this algorithm out-
puts the completed signature σ.

Vf(spk , σ,m): On input the public key spk , signature σ, and message m, this
algorithm outputs a bit b indicating whether the signature is valid or not.

We require a number of security properties from our split signatures. The first
one is unforgeability which must hold if at least one of the two signers is honest.
This is captured in two security experiments: type-1 unforgeability allows the
first signer to be corrupt, and type-2 unforgeability considers a corrupt second
signer. Our definitions are similar to the ones by Bellare and Sandhu, with the
difference that we do not assume a trusted dealer creating both secret key shares.
Instead, we let the adversary output the key share of the party he controls.
For type-2 unforgeability we must ensure, though, that the adversary indeed
integrates the honestly generated pre-key ppk when producing the completed
public key spk , which we verify via VerKey. Formally, unforgeability for split
signatures is defined as follows.
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Experiment ExpUnforgeability-1A (τ):
spar ←$ SParGen(1τ )
(ppk , state) ← A(spar)
(spk , ssk2) ← CompleteKeyGen(ppk)
L ← ∅
(m∗, σ∗) ← AOCompleteSign(ppk,ssk2,·,·)

(state, spk)

where OCompleteSign on input (mi, σ
′
i):

set L ← L ∪ mi

return σi ← CompleteSign(ppk , ssk2, mi, σ
′
i)

return 1 if Vf(spk , σ∗, m∗) = 1 and m∗ /∈ L

Experiment ExpUnforgeability-2A (τ):
spar ←$ SParGen(1τ )
(ppk , ssk1) ← PreKeyGen(spar)
L ← ∅
(m∗, σ∗, spk , ssk2) ← AOPreSign(ssk1,·)

(spar , ppk)

where OPreSign on input mi:
set L ← L ∪ mi

return σ′
i ← PreSign(ssk1, mi)

return 1 if Vf(spk , σ∗, m∗) = 1, and m∗ /∈ L
and VerKey(ppk , spk , ssk2) = 1

Fig. 4. Unforgeability-1 (1st signer is corrupt) and unforgeability-2 (2nd signer is cor-
rupt) experiments.

Definition 1 (Type-1/2 Unforgeability of SSIG). A split signature
scheme is type-1/2 unforgeable if for any efficient algorithm A the probability
that the experiments given in Fig. 4 return 1 is negligible (as a function of τ).

Further, we need a property that we call key-hiding, which ensures that sig-
natures do not leak any information about the public key for which they are
generated. This is needed in the DAA scheme to get unlinkability even in the
presence of a corrupt TPM that contributes to the signatures and knows part of
the secret key, yet should not be able to recognize “his” signatures afterwards.
Our key-hiding notion is somewhat similar in spirit to key-privacy for encryption
schemes as defined by Bellare et al. [6], which requires that a ciphertext should
not leak anything about the public key under which it is encrypted.

Formally, this is captured by giving the adversary a challenge signature for
a chosen message either under the real or a random public key. Clearly, the
property can only hold as long as the real public key spk is not known to the
adversary, as otherwise he can simply verify the challenge signature. As we want
the property to hold even when the first party is corrupt, the adversary can
choose the first part of the secret key and also contribute to the challenge signa-
ture. The adversary is also given oracle access to OCompleteSign again, but is not
allowed to query the message used in the challenge query, as he could win triv-
ially otherwise (by the requirement of signature-uniqueness defined below and
the determinism of CompleteSign). The formal experiment for our key-hiding
property is given below. The oracle OCompleteSign is defined analogously as in
type-1 unforgeability.

Definition 2 (Key-hiding property of SSIG). We say a split signature
scheme is key-hiding if for any efficient algorithm A the probability that the
experiment given in Fig. 5 returns 1 is negligible (as a function of τ).

Finally, we need correctness, i.e., honestly generated signatures verify cor-
rectly, and two uniqueness properties for our split signatures. The first is key-
uniqueness, which states that every signature is only valid under one public key.
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Experiment ExpKey-Hiding
A (τ):

spar ←$ SParGen(1τ )
(ppk , state) ←$ A(spar)
(spk , ssk2) ←$ CompleteKeyGen(ppk)
L ← ∅
(m, σ′, state ′) ←$ AOCompleteSign(ppk,ssk2,·,·)

(state)
b ←$ {0, 1}
if b = 0 (signature under spk):

σ ← CompleteSign(ppk , ssk2, m, σ′)
if b = 1 (signature under random key):

(ppk∗, ssk∗
1) ←$ PreKeyGen(spar)

(spk∗, ssk∗
2) ←$ CompleteKeyGen(ppk∗)

σ′ ←$ PreSign(ssk∗
1, m)

σ ← CompleteSign(ppk∗, ssk∗
2, m, σ′)

b′ ← AOCompleteSign(ppk,ssk2,·,·)
(state ′, σ)

return 1 if b = b′, m �∈ L, and Vf(spk , σ, m) = 1

Fig. 5. Key-hiding experiment for split signatures.

Second, we require signature-uniqueness, which guarantees that one can com-
pute only a single valid signature on a certain message under a certain public
key. These properties are formally defined in the full version of this paper [24].

Instantiation of split signatures (split-BLS). To instantiate split signatures, we
use a modified BLS signature [12]. Let H be a hash function {0, 1} → G

∗
1 and

the public system parameters be the description of a bilinear map, i.e., spar =
(G1,G2,GT , g1, g2, e, q).

PreKeyGen(spar): Take ssk1 ←$
Z

∗
q , set ppk ← gssk1

2 , and output (ppk , ssk1).
CompleteKeyGen(spar , ppk): Check ppk ∈ G2 and ppk �= 1G2 . Take ssk2 ←$

Z
∗
q

and compute spk ← ppk ssk2 . Output (spk , ssk2).
VerKey(spar , ppk , spk , ssk2): Output 1 iff ppk �= 1G2 and spk = ppk ssk2 .
PreSign(spar , ssk1,m): Output σ′ ← H(m)ssk1 .
CompleteSign(spar , ppk , ssk2,m, σ′): If e(σ′, g2) = e(H(m), ppk), output σ ←

σ′ssk2 , otherwise ⊥.
Vf(spar , spk , σ,m): Output 1 iff σ �= 1G1 and e(σ, g2) = e(H(m), spk).

The proof of the following theorem is given in the full version of this
paper [24].

Theorem 1. The split-BLS signature scheme is a secure split signature
scheme, satisfying correctness, unforgeability-1, unforgeability-2, key-hiding,
key-uniqueness, and signature-uniqueness, under the computational co-Diffie-
Hellman assumption and the DDH assumption in G1, in the random oracle
model.
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5 Construction

This section describes our DAA protocol achieving optimal privacy. On a very
high level, the protocol follows the core idea of existing DAA protocols: The
platform, consisting of the TPM and a host, first generates a secret key gsk that
gets blindly certified by a trusted issuer. Subsequently, the platform can use the
key gsk to sign attestations and basenames and then prove that it has a valid
credential on the signing key, certifying the trusted origin of the attestation.

This high-level procedure is the main similarity to existing schemes though,
as we significantly change the role of the host to satisfy our notion of optimal
privacy. First, we no longer rely on a single secret key gsk that is fully controlled
by the TPM. Instead, both the TPM and host generate secret shares, tsk and
hsk respectively, that lead to a joint public key gpk . For privacy reasons, we
cannot reveal this public key to the issuer in the join protocol, as any exposure
of the joint public key would allow to trace any subsequent signed attestations
of the platform. Thus, we let the issuer sign only an encryption of the public
key, using the signature scheme for encrypted messages. When creating this
membership credential cred the issuer is assured that the blindly signed key is
formed correctly and the credential is strictly bound to that unknown key.

After having completed the JOIN protocol, the host and TPM can together
sign a message m with respect to a basename bsn. Both parties use their indi-
vidual key shares and create a split signature on the message and basename
(denoted as tag), which shows that the platform intended to sign this message
and basename, and a split signature on only the basename (denoted as nym),
which is used as a pseudonym. Recall that attestations from one platform with
the same basename should be linkable. By the uniqueness of split signatures,
nym will be constant for one platform and basename and allow for such linka-
bility. Because split signatures are key-hiding, we can reveal tag and nym while
preserving the unlinkability of signatures with different basenames.

When signing, the host proves knowledge of a credential that signs gpk . Note
that the host can create the full proof of knowledge because the membership
credential signs a joint public key. In existing DAA schemes, the membership
credential signs a TPM secret, and therefore the TPM must always be involved to
prove knowledge of the credential, which prevents optimal privacy as we argued
in Sect. 3.

5.1 Our DAA Protocol with Optimal Privacy Πpdaa

We now present our generic DAA protocol with optimal privacy Πpdaa in detail.
Let SSIG = (PreKeyGen,CompleteKeyGen,VerKey,PreSign,CompleteSign,Vf)
denote a secure split signature scheme, as defined in Sect. 4.4, and let ESIG =
(SigKGen,EncSign,DecSign,Vf) denote a secure signature scheme for encrypted
messages, as defined in Sect. 4.3. In addition, we use a CPA secure encryption
scheme ENC = (EncKGen,Enc,Dec). We require all these algorithms to be com-
patible, meaning they work with the same system parameters.
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We further assume that functionalities (Fcrs,Fca,Fauth∗) are available to all
parties. The certificate authority functionality Fca allows the issuer to register
his public key, and we assume that parties call Fca to retrieve the public key
whenever needed. As the issuer key (ipk , πipk ) also contains a proof of well-
formedness, we also assume that each party retrieving the key will verify πipk .

The common reference string functionality Fcrs provides all parties with the
system parameters spar generated via SParGen(1τ ). All the algorithms of the
building blocks take spar as an input, which we omit – except for the key gen-
eration algorithms – for ease of presentation.

For the communication between the TPM and issuer (via the host) in the join
protocol, we use the semi-authenticated channel Fauth∗ introduced by Camenisch
et al. [25]. This functionality abstracts the different options on how to realize the
authenticated channel between the TPM and issuer that is established via an
unauthenticated host. We assume the host and TPM can communicate directly,
meaning that they have an authenticated and perfectly secure channel. This
models the physical proximity of the host and TPM forming the platform: if the
host is honest an adversary can neither alter nor read their internal communi-
cation, or even notice that communication is happening.

To make the protocol more readable, we omit the explicit calls to the sub-
functionalities with sub-session IDs and simply say e.g., issuer I registers its
public key with Fca. For definitions of the standard functionalities Fcrs and Fca

we refer to [30,31].

1. Issuer Setup. In the setup phase, the issuer I creates a key pair of the
signature scheme for encrypted messages and registers the public key with Fca.

(a) I upon input (SETUP, sid) generates his key pair:
– Check that sid = (I, sid ′) for some sid ′.
– Get (ipk , isk) ←$ ESIG.SigKGen(spar) and prove knowledge of the secret

key via πipk ← NIZK{(isk) : (ipk , isk) ∈ ESIG.SigKGen(spar)}(sid).
– Initiate LJOINED ← ∅.
– Register the public key (ipk , πipk ) at Fca, and store (isk ,LJOINED).
– Output (SETUPDONE, sid).

Join Protocol. The join protocol runs between the issuer I and a platform,
consisting of a TPM Mi and a host Hj . The platform authenticates to the
issuer and, if the issuer allows the platform to join, obtains a credential cred
that subsequently enables the platform to create signatures. The credential is
a signature on the encrypted joint public key gpk to which the host and TPM
each hold a secret key share. To show the issuer that a TPM has contributed
to the joint key, the TPM reveals an authenticated version of his (public) key
contribution to the issuer and the host proves that it correctly incorporated
that share in gpk . A unique sub-session identifier jsid distinguishes several join
sessions that might run in parallel.
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2. Join Request. The join request is initiated by the host.

(a) Host Hj , on input (JOIN, sid , jsid ,Mi) parses sid = (I, sid ′) and sends
(sid , jsid) to Mi. 1

(b) TPM Mi, upon receiving (sid , jsid) from a party Hj , outputs
(JOIN, sid , jsid).

3. M-Join Proceed. The join session proceeds when the TPM receives an
explicit input telling him to proceed with the join session jsid .

(a) TPM Mi, on input (JOIN, sid , jsid) creates a key share for the split signature
and sends it authenticated to the issuer (via the host):
– Run (tpk , tsk) ←$ SSIG.PreKeyGen(spar).
– Send tpk over Fauth∗ to I via Hj , and store the key (sid ,Hj , tsk).

(b) When Hj notices Mi sending tpk over Fauth∗ to the issuer, it generates its
key share for the split signature and appends an encryption of the jointly
produced gpk to the message sent towards the issuer.
– Complete the split signature key as (gpk , hsk) ←$ SSIG.
CompleteKeyGen(tpk).

– Create an ephemeral encryption key pair (epk , esk) ←$ EncKGen(spar).
– Encrypt gpk under epk as C ←$ Enc(epk , gpk).
– Prove that C is an encryption of a public key gpk that is correctly derived

from the TPM public key share tpk :

πJOIN,H ← NIZK{(gpk , hsk) : C ∈ Enc(epk , gpk)

∧ SSIG.VerKey(tpk , gpk , hsk) = 1}(sid , jsid).

– Append (Hj , epk , C, πJOIN,H) to the message Mi is sending to I over
Fauth∗ and store (sid , jsid ,Mi, esk , hsk , gpk).

(c) I, upon receiving tpk authenticated by Mi and (Hj , epk , C, πJOIN,H) in the
unauthenticated part, verifies that the request is legitimate:
– Verify πJOIN,H w.r.t. the authenticated tpk and check that Mi /∈ LJOINED.
– Store (sid , jsid ,Hj ,Mi, epk , C) and output (JOINPROCEED, sid ,

jsid ,Mi).

4. I-Join Proceed. The join session is completed when the issuer receives an
explicit input telling him to proceed with join session jsid .

(a) I upon input (JOINPROCEED, sid , jsid) signs the encrypted public key C
using the signature scheme for encrypted messages:
– Retrieve (sid , jsid ,Hj ,Mi, epk , C) and set LJOINED ← LJOINED ∪ Mi.
– Sign C as cred ′ ←$ ESIG.EncSign(isk , epk , C) and prove that it did so

correctly. (This proof is required to allow verification in the security proof:
ENC is only CPA-secure and thus we cannot decrypt cred ′.)

πJOIN,I ← NIZK{isk : cred ′ ∈ ESIG.EncSign(isk , epk , C)
∧ (ipk , isk) ∈ ESIG.SigKGen(spar)}(sid , jsid).

1 Recall that we use direct communication between a TPM and host, i.e., this message
is authenticated and unnoticed by the adversary.
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– Send (sid , jsid , cred ′, πJOIN,I) to Hj (via the network).
(b) Host Hj , upon receiving (sid , jsid , cred ′, πJOIN,I) decrypts and stores the

membership credential:
– Retrieve the session record (sid , jsid ,Mi, esk , hsk , gpk).
– Verify proof πJOIN,I w.r.t. ipk , cred ′, C and decrypt the credential as

cred ← ESIG.DecSign(esk , cred ′).
– Store the completed key record (sid , hsk , tpk , gpk , cred ,Mi) and output

(JOINED, sid , jsid).

Sign Protocol. The sign protocol runs between a TPM Mi and a host Hj .
After joining, together they can sign a message m w.r.t. a basename bsn using the
split signature. Sub-session identifier ssid distinguishes multiple sign sessions.

5. Sign Request. The signature request is initiated by the host.

(a) Hj upon input (SIGN, sid , ssid ,Mi,m, bsn) prepares the signature process:
– Check that it joined with Mi (i.e., a completed key record for Mi exists).
– Create signature record (sid , ssid ,Mi,m, bsn).
– Send (sid , ssid ,m, bsn) to Mi.

(b) Mi, upon receiving (sid , ssid ,m, bsn) from Hj , stores (sid , ssid ,Hj ,m, bsn)
and outputs (SIGNPROCEED, sid , ssid ,m, bsn).

6. Sign Proceed. The signature is completed when Mi gets permission to
proceed for ssid .

(a) Mi on input (SIGNPROCEED, sid , ssid) creates the first part of the split
signature on m w.r.t. bsn:
– Retrieve the signature request (sid , ssid ,Hj ,m, bsn) and key

(sid ,Hj , tsk).
– Set tag ′ ←$ SSIG.PreSign(tsk , (0,m, bsn)) and nym′ ←$ SSIG.PreSign(tsk ,

(1, bsn)).
– Send (sid , ssid , tag ′,nym′) to Hj .

(b) Hj upon receiving (sid , ssid , tag ′,nym′) from Mi completes the signature:
– Retrieve the signature request (sid , ssid ,Mi,m, bsn) and key (sid , hsk ,

tpk , gpk , cred ,Mi).
– Compute tag ← SSIG.CompleteSign(hsk , tpk , (0,m, bsn), tag ′).
– Compute nym ← SSIG.CompleteSign(hsk , tpk , (1, bsn),nym′).
– Prove that tag and nym are valid split signatures under public key gpk

and that it owns a valid issuer credential cred on gpk , without revealing
gpk or cred .

πSIGN ← NIZK{(gpk , cred) : ESIG.Vf(ipk , cred , gpk) = 1
∧ SSIG.Vf(gpk , tag , (0,m, bsn)) = 1 ∧ SSIG.Vf(gpk ,nym, (1, bsn)) = 1}

– Set σ ← (tag ,nym, πSIGN) and output (SIGNATURE, sid , ssid , σ).
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Verify and Link. Any party can use the following verify and link algorithms
to determine the validity of a signature and whether two signatures for the same
basename were created by the same platform.

7. Verify. The verify algorithm allows one to check whether a signature σ on
message m w.r.t. basename bsn and private key revocation list RL is valid.

(a) V upon input (VERIFY, sid ,m, bsn, σ, RL) verifies the signature:
– Parse σ as (tag ,nym, πSIGN).
– Verify πSIGN with respect to m, bsn, tag , and nym.
– For every gpk i ∈ RL, check that SSIG.Vf(gpk i,nym, (1, bsn)) �= 1.
– If all tests pass, set f ← 1, otherwise f ← 0.
– Output (VERIFIED, sid , f).

8. Link. The link algorithm allows one to check whether two signatures σ
and σ′, on messages m and m′ respectively, that were generated for the same
basename bsn were created by the same platform.

(a) V upon input (LINK, sid , σ,m, σ′,m′, bsn) verifies the signatures and com-
pares the pseudonyms contained in σ, σ′:
– Check that both signatures σ and σ′ are valid with respect to (m, bsn) and

(m′, bsn) respectively, using the Verify algorithm with RL ← ∅. Output
⊥ if they are not both valid.

– Parse the signatures as (tag ,nym, πSIGN) and (tag ′,nym′, π′
SIGN).

– If nym = nym′, set f ← 1, otherwise f ← 0.
– Output (LINK, sid , f).

5.2 Security

We now prove that that our generic protocol is a secure DAA scheme with
optimal privacy under isolated TPM corruptions (and also achieves conditional
privacy under full TPM corruption) as defined in Sect. 2.

Theorem 2. Our protocol Πpdaa described in Sect. 5, securely realizes Fpdaa

defined in Sect. 2, in the (Fauth∗,Fca,Fcrs)-hybrid model, provided that

– SSIG is a secure split signature scheme (as defined in Sect. 4.4),
– ESIG is a secure signature scheme for encrypted messages,
– ENC is a CPA-secure encryption scheme, and
– NIZK is a zero-knowledge, simulation-sound and online-extractable (for the

underlined values) proof system.

To prove Theorem 2, we have to show that there exists a simulator S as
a function of A such that no environment can distinguish Πpdaa and A from
Fpdaa and S. We let the adversary perform both isolated corruptions and full
corruptions on TPMs, showing that this proof both gives optimal privacy with
respect to adversaries that only perform isolated corruptions on TPMs, and
conditional privacy otherwise. The full proof is given in the full version of this
paper [24], we present a proof sketch below.



454 J. Camenisch et al.

Proof Sketch

Setup. For the setup, the simulator has to provide the functionality the required
algorithms (sig, ver, link, identify, ukgen), where sig, ver, link, and ukgen simply
reflect the corresponding real-world algorithms. Thereby the signing algorithm
also includes the issuer’s secret key. When the issuer is corrupt, S can learn the
issuer secret key by extracting from the proof πipk . When the issuer is honest,
it is simulated by S in the real-world and thus S knows the secret key.

The algorithm identify(σ,m, bsn, τ) that is used by Fpdaa to internally
ensure consistency and non-frameability is defined as follows: parse σ as
(tag ,nym, πSIGN) and output SSIG.Vf(τ,nym, (1, bsn)). Recall that τ is a trac-
ing trapdoor that is either provided by the simulator (when the host is corrupt)
or generated internally by Fpdaa whenever a new gpk is generated.

Join. The join-related interfaces of Fpdaa notify S about any triggered join
request by a platform consisting of host Hj and TPM Mi such that S can
simulate the real-world protocol accordingly. If the host is corrupt, the simula-
tor also has to provide the functionality with the tracing trapdoor τ . For our
scheme the joint key gpk of the split signature serves that purpose. For privacy
reasons the key is never revealed, but the host proves knowledge and correctness
of the key in πJOIN,H. Thus, if the host is corrupt, the simulator extracts gpk
from this proof and gives it Fpdaa.

Sign. For platforms with an honest host, Fpdaa creates anonymous signatures
using the sig algorithm S defined in the setup phase. Thereby, Fpdaa enforces
unlinkability by generating and using fresh platform keys via ukgen whenever a
platform requests a signature for a new basename. For signature requests where a
platform repeatedly uses the same basename, Fpdaa re-uses the corresponding key
accordingly. We now briefly argue that no environment can notice this difference.
Recall that signatures consist of signatures tag and nym, and a proof πSIGN, with
the latter proving knowledge of the platform’s key gpk and credential cred , such
that tag and nym are valid under gpk which is in turn certified by cred . Thus,
for every new basename, the credential cred is now based on different keys gpk .
However, as we never reveal these values but only prove knowledge of them in
πSIGN, this change is indistinguishable to the environment.

The signature tag and pseudonym nym, that are split signatures on the mes-
sage and basename, are revealed in plain though. For repeated attestations under
the same basename, Fpdaa consistently re-uses the same key, whereas the use of a
fresh basename will now lead to the disclosure of split signatures under different
keys. The key-hiding property of split signatures guarantees that this change is
unnoticeable, even when the TPM is corrupt and controls part of the key. Note
that the key-hiding property requires that the adversary does not know the joint
public key gpk , which we satisfy as gpk is never revealed in our scheme; the host
only proves knowledge of the key in πJOIN,H and πSIGN.



Anonymous Attestation with Subverted TPMs 455

Verify. For the verification of DAA signatures Fpdaa uses the provided ver
algorithm but also performs additional checks that enforce the desired non-
frameability and unforgeability properties. We show that these additional checks
will fail with negligible probability only, and therefore do not noticeably change
the verification outcome.

First, Fpdaa uses the identify algorithm and the tracing trapdoors τi to check
that there is only a unique signer that matches to the signature that is to be
verified. Recall that we instantiated the identify algorithm with the verification
algorithm of the split signature scheme SSIG and τ = gpk are the (hidden) joint
platform keys. By the key-uniqueness property of SSIG the check will fail with
negligible probability only.

Second, Fpdaa rejects the signature when no matching tracing trapdoor was
found and the issuer is honest. For platforms with an honest hosts, theses trap-
doors are created internally by the functionality whenever a signature is gener-
ated, and Fpdaa immediately checks that the signature matches to the trapdoor
(via the identify algorithm). For platforms where the host is corrupt, our simula-
tor S ensures that a tracing trapdoor is stored in Fpdaa as soon as the platform
has joined (and received a credential). If a signature does not match any of the
existing tracing trapdoors, it must be under a gpk = τ that was neither cre-
ated by Fpdaa nor signed by the honest issuer in the real-world. The proof πSIGN

that is part of every signature σ proves knowledge of a valid issuer credential on
gpk . Thus, by the unforgeability of the signature scheme for encrypted messages
ESIG, such invalid signatures can occur only with negligible probability.

Third, if Fpdaa recognizes a signature on message m w.r.t. basename bsn that
matches the tracing trapdoor of a platform with an honest TPM or honest host,
but that platform has never signed m w.r.t. bsn, it rejects the signature. This
can be reduced to unforgeability-1 (if the host is honest) or unforgeability-2 (if
the TPM is honest) of the split signature scheme SSIG.

The fourth check that Fpdaa makes corresponds to the revocation check in
the real-world verify algorithm, i.e., it does not impose any additional check.

Link. Similar as for verification, Fpdaa is not relying solely on the provided link
algorithm but performs some extra checks when testing for the linkage between
two signatures σ and σ′. It again uses identify and the internally stored tracing
trapdoor to derive the final linking output. If there is one tracing trapdoor
matching one signature but not the other, it outputs that they are not linked. If
there is one tracing trapdoor matching both signatures, it enforces the output
that they are linked. Only if no matching tracing trapdoor is found, Fpdaa derives
the output via link algorithm.

We now show that the two checks and decisions imposed by Fpdaa are
consistent with the real-world linking algorithm. In the real world, signatures
σ = (tag ,nym, πSIGN) and σ′ = (tag ′,nym′, π′

SIGN) w.r.t basename bsn are linked
iff nym = nym′. Tracing trapdoors are instantiated by the split signature scheme
public keys gpk , and identify verifies nym under the key gpk . If one key matches
one signature but not the other, then by the fact that the verification algorithm
of the split signatures is deterministic, we must have nym �= nym′, showing that
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the real world algorithm also outputs unlinked. If one key matches both signa-
tures, we have nym = nym′ by the signature-uniqueness of split signatures, so
the real-world algorithm also outputs linked. ��

6 Concrete Instantiation and Efficiency

In this section we describe on a high level how to efficiently instantiate the generic
building blocks to instantiate our generic DAA scheme presented in Sect. 5. The
details are presented in the full version of this paper [24].

The split signature scheme is instantiated with the split-BLS signatures (as
described in Sect. 4.4), the signatures for encrypted messages with the AGOT+
signature scheme (as described in Sect. 4.3) and the encryption scheme with
ElGamal, both working in G2. All the zero-knowledge proofs are instantiated
with non-interactive Schnorr-type proofs about discrete logarithms, and wit-
nesses that have to be online extractable are encrypted using ElGamal for group
elements and Camenisch-Shoup encryption [28] for exponents. Note that the lat-
ter is only used by the issuer to prove that its key is correctly formed, i.e., every
participant will only work with Camenisch-Shoup ciphertexts once.

Security. When using the concrete instantiations as presented above we can
derive the following corollary from Theorem 2 and the required security assump-
tions of the deployed building blocks. We have opted for a highly efficient instan-
tiation of our scheme, which comes for the price of stronger assumptions such
as the generic group (for AGOT+ signatures) and random oracle model (for
split-BLS signatures and Fiat-Shamir NIZKs). We would like to stress that our
generic scheme based on abstract building blocks, presented in Sect. 5, does not
require either of the models, and one can use less efficient instantiations to avoid
these assumptions.

Corollary 1. Our protocol Πpdaa described in Sect. 5 and instantiated as
described above, securely realizes Fpdaa in the (Fauth∗,Fca,Fcrs)-hybrid model
under the following assumptions:

Instantiation Assumption

SSIG split-BLS co-DHP* [35] and DDH in G1, RO model

ESIG AGOT+ generic group model (security of AGOT)

ENC ElGamal DDH in G2

NIZK Fiat-Shamir, ElGamal,
Camenisch-Shoup

DDH in G2, DCR [55], RO model
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Efficiency. We now give an overview of the efficiency of our protocol when
instantiated as described above. Our analysis focuses on signing and verification,
which will be used the most and thus have the biggest impact on the performance
of the scheme. The detailed efficiency analysis is presented in the full version of
this paper [24].

When signing, the TPM only performs 2 exponentiations in G1, making
it the DAA scheme with the most efficient TPM signing operation to date,
according to the efficiency overview by Camenisch et al. [23]. The host performs
3 exponentiations in G1, 6 exponentiations in G2, and 10 pairings. Verification
requires 4 exponentiations in GT and 8 pairings.

We measured the speed of the Apache Milagro Cryptographic Library
(AMCL)2 and found that exponentiations in G1, G2, and GT require 0.6 ms,
1.0 ms, and 1.4 ms respectively. A pairing costs 1.6 ms. Using these numbers, we
estimate a signing time of 23.8 ms for the host, and a verification time of 18.4 ms,
showing that also for the host our protocol is efficient enough to be used in prac-
tice. Table 2 gives an overview of the efficiency of our concrete instantiation.

Table 2. Efficiency of our concrete DAA scheme.

M sign H sign Verify

Operations 2G1 3G1, 6G2, 10P 4GT , 8P

Est. time 23.8 ms 18.4 ms
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Abstract. Hedged PKE schemes are designed to provide useful security
when the per-message randomness fails to be uniform, say, due to faulty
implementations or adversarial actions. A simple and elegant theoretical
approach to building such schemes works like this: Synthesize fresh ran-
dom bits by hashing all of the encryption inputs, and use the resulting
hash output as randomness for an underlying PKE scheme.

In practice, implementing this simple construction is surprisingly dif-
ficult, as the high- and mid-level APIs presented by the most commonly
used crypto libraries (e.g. OpenSSL and forks thereof) do not permit
one to specify the per-encryption randomness. Thus application devel-
opers are forced to piece together low-level functionalities and attend to
any associated, security-critical algorithmic choices. Other approaches to
hedged PKE present similar problems in practice.

We reconsider the matter of building hedged PKE schemes, and the
security notions they aim to achieve. We lift the current best-possible
security notion for hedged PKE (IND-CDA) from the CPA setting to
the CCA setting, and then show how to achieve it using primitives that
are readily available from high-level APIs. We also propose a new secu-
rity notion, MM-CCA, which generalizes traditional IND-CCA to admit
imperfect randomness. Like IND-CCA, and unlike IND-CDA, our notion
gives the adversary the public key. We show that MM-CCA is achieved
by RSA-OAEP in the random-oracle model; this is significant in prac-
tice because RSA-OAEP is directly available from high-level APIs across
all libraries we surveyed. We sort out relationships among the various
notions, and also develop new results for existing hedged PKE construc-
tions.

Keywords: Hedged public-key encryption · Cryptographic APIs

1 Introduction

The security of many cryptographic primitives relies on access to reliable, high-
quality randomness. However, generating good randomness is a complex process
that often fails, due to use of ill-designed random number generators (RNGs),
software bugs, or malicious subversion [18,20,21,26,30,31]. Such failures have
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led to serious breaches of security in deployed cryptographic schemes [12,18,27,
35]. Recent high-profile examples include security vulnerabilities in a significant
fraction of TLS and SSH servers caused by problems with RNGs as exposed
by Heninger et al. [27] and the vulnerabilities with Juniper NetScreen-branded
firewalls that use Dual EC RNG designed by NSA to have a backdoor, as studied
by Checkoway et al. in [18].

Theorists have begun to address the practical issue of weak randomness.
Of particular interest has been the case of public-key encryption (PKE), since
there are no shared secrets upon which to bootstrap security. In their seminal
work [5], Bellare et al. introduce the notion of hedged public-key encryption.
Informally, hedged encryption guarantees traditional semantic security when the
per-message randomness is perfect, and retains best-possible security guarantees
when not, assuming there is sufficient min-entropy in the joint distribution over
the plaintext messages and the per-message randomness. Such security is called
hedged security.

A particularly simple and elegant approach to building hedged PKE is what
Bellare et al. refer to as Encrypt-with-Hash (EwH)1. Loosely, to encrypt a mes-
sage M (and potentially some auxiliary input I) using public key pk and ran-
domness r, one computes a string r̃ by hashing (pk,M, I, r), and then returns
a ciphertext E(pk,M ; r̃). In the random oracle model (ROM) [8], any entropy
contained among the hash inputs is harvested to synthesize new randomness r̃
that can be treated as uniform. Intuitively, unless the attacker manages to guess
(pk,M, I, r), or r̃ directly, this EwH scheme remains hedged-secure if the under-
lying scheme E is IND-CPA.

Other works on hedged PKE and related efforts to deal with imperfect
per-message randomness have followed this approach [11,32,34,38]. It has also
been used to construct deterministic encryption [4,13,34]. In fact, this trick of
synthesizing randomness for encryption dates back (at least) to Fujisaki and
Okamoto [24], who used this as part of a transform to turn CPA-secure encryp-
tion into CCA-secure encryption.

EwH in practice. Say that a developer is aware of the security breaches caused
by bad randomness, and wants to implement EwH using the best-known and
most widely-deployed cryptographic library, OpenSSL. To protect application
developers from having to understand and properly handle lower-level algorith-
mic details, OpenSSL encourages the use of high-level “envelope” API calls. For
public-key encryption, the interface is

int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out,

size_t *outlen, const unsigned char *in, size_t inlen)

where ctx points to the so-called encryption context, which acts as state across
calls. Among other things, it contains the public key and a descriptor of the
particular PKE scheme to be used: Textbook RSA, PKCS #1 v1.5 RSA encryp-
tion (RFC 2313), and a variant of RSA-OAEP [9] specified in PKCS #1 v2.2
1 To be precise, [5] refers to their constructions as REwH, and those are extensions of

the EwH scheme from [4]. We use the name EwH for simplicity.
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(RFC 8017). The plaintext input is pointed to by in, and out points to where
the ciphertext output should be written. Notice: Nowhere is one able to specify
the randomness to be used. The mid-level function calls that are wrapped by
EVP PKEY encrypt also do not expose the randomness to the caller. One could
try to manipulate the source of randomness, RAND bytes, used by the higher-
level calls. Indeed, OpenSSL provides an interface for adding entropy into the
state of the underlying (P)RNG; doing so, however, presents several technical
challenges, which we discuss at length in Sect. 2. Hence, to implement EwH in
OpenSSL, the developer is forced to cobble together low-level functionalities,
which implies needing to attend to security-critical details, such as parameters,
padding schemes, or how the randomness is generated. The same is true for the
two most popular forks of OpenSSL (BoringSSL and LibreSSL) and several other
common libraries. We give a survey of crypto libraries in Sect. 2.

Encrypt-with-Hash is not the only approach to building hedged PKE (or
deterministic PKE, etc.), and we will discuss some others shortly. But the punch-
line there will be the same: Developers face similar hurdles when they attempt
to instantiate those constructions with modern crypto libraries.

To summarize, while hedged PKE has received significant theoretical study,
the gap between theory and practice remains large. Existing theoretical con-
structions offer little to developers who respect the guidance of widely deployed
crypto libraries to use high-level APIs.

Reconsidering hedged PKE. We reconsider the matter of constructing PKE
schemes that maintain useful security guarantees when forced to use imperfect
randomness. There are two important questions that guide us:

– What simple and efficient schemes can we implement via high-level APIs
exported by standard crypto libraries?

– What security notions can we hope to achieve with these schemes?

To the latter question, we take as our starting point the IND-CDA notion
of [5], which we rename as MMR-CPA. In the MMR-CPA experiment, the adver-
sary may query an encryption oracle with sources M, each of these outputting
a triple (M0,M1, r), consisting of a pair of vectors of messages and a vector of
randomness to be used for encryption (hence MMR). The oracle, which contains
the public key pk and a secret challenge bit b, returns a vector of component-
wise encryption of M b, each under the corresponding component randomness
from r. The adversary’s goal is to guess the value of b. Crucially, the adver-
sary is not provided with the public key pk until after all encryption queries are
made; otherwise, pk-dependent M can be crafted that would make MMR-CPA
unachievable, even when M is a high min-entropy source [5]. Also implicit is that
the public key was generated using uniform coins, and that only the per-message
randomness is under suspicion.

Achieving MMR-CCA. As a small definitional contribution, we extend MMR
to the CCA setting, and both the CPA and CCA notions are formalized for PKE
with associated data (AD). Associated data was originally called “labels” in the
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PKE literature [1,17,19,37]. But AD seems to be more often used among prac-
titioners, so we adopt it. (This also aligns better with the language of symmetric
encryption.)

The MMR attack effectively assumes the adversary can arbitrarily and adap-
tively re-corrupt the randomness source used by the libraries when producing
ciphertexts. In many settings, where the per-message randomness source is pro-
vided by the operating system (or even hardware), this equates to re-corrupting
the OS (or hardware) at will with each encryption. The strength of this attack
model makes RSA-OAEP, for example, unable to achieve MMR-CPA (let alone
-CCA) security.2 This is unfortunate, as RSA-OAEP is the only provably-secure
scheme implemented by EVP PKEY encrypt, and it is available across virtually
all libraries. In fact, there are currently no positive results for RSA-OAEP in
the presence of imperfect randomness.

That said, we give the first MMR-CCA secure PKE scheme. It is a hybrid-
encryption construction that uses a trapdoor function, a hash function (modeled
as a random oracle), and a symmetric-key authenticated encryption scheme.
Each of these components can be called with most crypto libraries, includ-
ing OpenSSL, via high-level APIs. We prove that the scheme is MMR-CCA in
the ROM assuming the standard assumptions on security of the base schemes.
Despite the simplicity of the scheme, the security proof is quite involved. See
Sect. 6.2 for details.

The MM notions. The MMR notions define security in the hedged PKE
setting with imperfect randomness, yet no common crypto library explicitly
exposes a single primitive that achieves it. We define a new pair of notions,
MM-{CPA,CCA}, which are identical to their MMR counterparts but with two
important exceptions. First, the adversary is provided the public key as initial
input. Second, the per-message randomness source R may be corrupted once,
prior to any encryptions. This models scenarios in which the OS code base, a
standards document, or a hardware RNG may have been modified (maliciously
or otherwise) to produce faulty randomness prior to widespread distribution.
And, while it is good practice to be cautious, we are unaware of any practi-
cal scenarios or documented attacks in which the randomness source may be
continuously re-corrupted to depend on previously observed ciphertexts and the
messages about to be encrypted, as is allowed in the MMR attack setting.

We show that RSA-OAEP is MM-CCA secure (in the ROM) whenever R has
min-entropy sufficient to stop attacks that would break any PKE scheme in the
MM setting. Not only does this give the first positive result for RSA-OAEP in
the presence of imperfect randomness, but it also gives developers an immediate
option across virtually all libraries.

Because MM adversaries are given the public key, MM security against adap-
tive attackers follows “for free” (via a standard hybrid argument) from MM secu-
rity against non-adaptive attackers. On the other hand, in general one converts

2 Consider the plaintext-recovery attack by Brown [15] on RSA-OAEP with public
exponent e = 3. The attack exploits low entropy coins and is effective even if mes-
sages have high min-entropy.
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Construction Assumptions Achieves

F -EME-OAEP F is POWF MM+IND-CCA

HE[F, AEAD] F is OWF, AEAD is IND-CPA+AUTH MMR+IND-CCA

PtD[F -DOAEP] F is OWF MM+IND-CCA

RtD[Πr, F -DOAEP] Πr is IND-CPA, F is OWF MM+IND-CPA

Fig. 1. A summary of our constructions and the security they achieve.

non-adaptive MMR security into adaptive MMR security only with the addition
of an extra key-anonymity property (ANON); Bellare et al. [5] show this in the
CPA setting, and we give an analogous result in the CCA setting (Theorem1).

Relating the notions. We view MM-{CPA,CCA} as a direct generaliza-
tion of IND-{CPA,CCA}. In the latter, the randomness source is perfect, and
the adversary queries (effectively) a source whose support contains exactly one
pair (M0,M1), i.e., a source with zero min-entropy. We work out relation-
ships among the MM, MMR and IND notions. Among them, we show that
IND-CCA �=⇒ MM-CCA in general, which makes our positive result for RSA-
OAEP non-trivial.

Perhaps unintuitively, we show that the MMR notions are not stronger secu-
rity notions than the MM notions. They are incomparable: in the MMR setting,
the adversary is allowed to re-corrupt the randomness source but does not have
the public key; in the MM setting, the adversary has the public key, but may
only use it to produce message sources, and may not re-corrupt the randomness
source.

Hedging beyond EwH. Not all previous proposals for hedged encryption
require direct manipulation of the randomness used by some underlying PKE
scheme. For example, Bellare et al. [5] propose doing Ed(pkd, Er(pkr,M ; r)),
which first encrypts the message M using a randomized PKE scheme Er, and then
re-encrypts the resulting ciphertext using a deterministic scheme. They call this
the Randomized-then-Deterministic (RtD) composition. (Note that this means
two public-keys are needed, potentially requiring the issuing of new certificates,
among other deployment issues.) They also propose a construction called Pad-
then-Deterministic (PtD), where E(pkd,M) is defined by sampling randomness r
and then returning Ed(pkd,M ‖ r). In both cases, to provide security against
weak randomness, it is necessary (although not sufficient) that the deterministic
scheme is PRIV-secure in the sense of [4].

Here, too, we run into problems in practice. Standard crypto libraries do not
offer function calls that directly implement any PRIV-secure deterministic PKE
schemes. Several such schemes are known in the literature [4,5,13,34], but imple-
menting these would require piecing together calls to low-level functionalities,
precisely what modern APIs attempt to avoid.

One potential exception is RSA-DOAEP [4], a three-round Feistel construc-
tion followed by a single call to RSA. This is the most amenable scheme to being
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implemented from high-level calls—OpenSSL exposes EVP calls for hashing, and
the EVP PKEY encrypt function admits raw RSA as one of its options.

We show that RtD, where the deterministic scheme is DOAEP, is both MM-
CPA and IND-CPA secure. Better yet, we are able to show, under appropriate
conditions, that PtD with DOAEP is MM+IND-CCA secure.

Open questions. Our work leaves open some interesting questions. For one,
is MM-CCA achievable in the standard model? In particular, from reasonable
assumptions and via primitives that are available in crypto libraries (without
making very low-level calls)? Asking a bit less, is MM-CPA achievable with the
same restrictions? By composing two of the theorems we give, any scheme that
is (non-adaptive) MMR-CCA and ANON-CCA in the standard model would
be MM-CCA, too. But this only shifts the focus to the question of how to
build schemes that achieve these two properties, and within the constraints we
mentioned.

In an analogous result, we show that a scheme that is (non-adaptive) MMR-
CPA and ANON-CPA in the standard model is MM-CPA. Prior work does
give schemes that are non-adaptive MMR-CPA and ANON-CPA (e.g., the RtD
and PtD schemes from [5]), but none that can be realized from typical high-
level APIs. So from our perspective, achieving MM-CPA in the standard model
remains open in practice.

A call to action. A theoretician’s viewpoint on this work might be to suggest
that libraries should be modified to keep up with the nice primitives that our
community provides. In practice, this viewpoint is unhelpful. The design of good
APIs, like the design of good cryptography, is hard work. A recent study by Acar
et al. [2] reveals that modern APIs make even simple tasks difficult to implement,
which has been shown time and time again to result in security vulnerabilities
in real systems. Yet, the question of what is the “right” level of exposure to the
user is a complex trade-off between usability and flexibility. APIs have very long
lifetimes because, once adopted, changing them potentially implies altering all of
the applications upon which they are built. Our thesis is that raising awareness
of real APIs in our research community will better serve cryptographic practice,
and will uncover interesting new theory challenges (like those we explore) as
well.

Related work. Raghunathan et al. [34] extend the security notion for deter-
ministic encryption to the setting where the adversary is given the public key.
They also consider chosen-ciphertext attacks and argue that their extension can
be applied to hedged encryption. So that their notion is achievable, the adversary
is restricted to choosing sources for its queries from a finite set (whose size is
bounded by a parameter of the experiment) of sources that do not depend on the
public key. We note a similar restriction in the MM-CCA setting; the random-
ness source may not depend on the public key, since otherwise the source could
be crafted to leak information about the plaintext. Their definition is incompa-
rable to our MM-CCA notion, and it is not clear what practical threat model
it captures. Moreover, their definition deems RSA-OAEP insecure, while our
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MM-CCA definition permits for useful security analysis of the most deployed
PKE scheme, in case of imperfect randomness.

Paterson et al. [32] give notions of security under related-randomness attacks
(RRA). Here, too, the adversary is provided with the public key. The RRA
notions generalize the reset attack (RA) notions due to Yilek [38] by allowing
the adversary to specify certain functions to be applied to fresh uniform random-
ness, or to previously sampled uniform randomness, and have the result used to
encrypt chosen plaintexts. These functions must be output-unpredictable, loosely
meaning that they cannot allow the attacker to guess the randomness that will
be used for encryption, and collision-resistant, meaning that the queried func-
tions, if applied to the same uniform random string, should not produce the
same output. If either of these conditions is violated, there is an attack that
makes RRA security impossible for any scheme. This is similar to our require-
ment in the MM notions that the encryption randomness have min-entropy that
is ω(log k), where k is the security parameter. Again, their definition is incom-
parable to our MM-CCA notion, and unlike our definition, does not allow to
consider randomness sources with arbitrary high-min-entropy distributions. We
note that again, RRA security is not achievable by randomness-recovering PKE
schemes, such as RSA-OAEP.

Bellare and Tackmann [11] give notions of hedged security in the presence
of nonces. They consider a setting where a sender uses a uniform seed and a
nonce, and security is guaranteed if either the seed is secret and the nonces are
non-repeating, or the seed is compromised and the nonces are unpredictable.
Brzuska et al. and Bellare and Hoang [7,16] show that assuming the existence of
indistinguishability obfuscation (iO), the random oracle in the EwH construction
is uninstantiable. Finally, Hoang et al. [28] study public-key encryption security
against selective-opening attacks in the presence of randomness failures.

2 Crypto Libraries

In this section we provide a brief survey of real-world libraries: In particular,
the extent to which their APIs for PKE expose the per-message encryption
randomness.

We begin with OpenSSL, the most widely-used library for encryption on
the Web. As discussed in the introduction, OpenSSL encourages the use of
“envelopes”, which are designed to abstract the details of the algorithm used.
We have noted that the high-level call EVP PKEY encrypt does not allow the pro-
grammer to specify the source of entropy. This call is a wrapper for RSA-based
encryption, internally invoked by calling RSA public encrypt. This function has
the interface

int RSA_public_encrypt(int flen, unsigned char *from,

unsigned char *to, RSA *pk, int padding)

It allows one to specify one of three padding schemes (via padding), which is
passed down from the ctx input of EVP PKEY encrypt. So we see that here, too,
there is no explicit place to insert external randomness.
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This design pattern is maintained by BoringSSL and LibreSSL, the two most
popular forks of the OpenSSL codebase. It is also adopted by a number of other
libraries, including the popular open source libraries libgcrypt and PyCrypto, as
well as the commercial library cryptlib.

The *SSL API style reflects the opinion that APIs should not allow appli-
cation developers to touch the coins, as doing so invites errors that can fatally
impact security. Indeed, at Real World Cryptography 2017, Google security-team
developers said interfaces should “Never ask users to provide critical input (e.g.,
randomness, etc.)”[22].

Hedging via providing the coins source. Of course, there are APIs that
surface access to the coins directly. For example, in Go’s native crypto library
the function call for RSA-OAEP has the signature

func EncryptOAEP(hash hash.Hash, random io.Reader,

pub *PublicKey, msg []byte, label []byte)

The randomness source is the second parameter of this routine. One can hedge
RSA-OAEP by implementing the io.Reader interface. Other examples of APIs
that expose the coins are Botan, Crypto++, wolfSSL, and SCAPI.

Falling (somewhat confusingly) in the middle is the popular Java library
known as Bouncy Castle. Java provides a built-in interface for various security-
related functionalities. The programmer can control which library implements
these functionalities by specifying a security provider, e.g., Bouncy Castle.
Bouncy Castle’s own API does not surface coins. On the other hand, the native
Java API does. For instance, one initializes a structure for ElGamal encryp-
tion [23] as follows. Let pubKey be an ElGamal public key:

Cipher cipher = Cipher.getInstance("ElGamal/None/NoPadding", "BC");

cipher.init(Cipher.ENCRYPT_MODE, pubKey, new SecureRandom());

The string "BC" means the security provider is Bouncy Castle. So one could
instantiate EwH (over ElGamal) here by providing their own implementation of
SecureRandom.

Hedging via reseeding the coins source. Although OpenSSL does not
explicitly surface the coins, it exposes an interface for manipulating the coins
used to provide randomness for higher-level calls. Coins are sampled in OpenSSL
via the interface RAND bytes(unsigned char *buf, int num), which writes
the next num bytes output by the source to buf. By default, the output is a
stream of bytes generated by a PRNG seeded with entropy gathered by the sys-
tem, e.g., by reading from /dev/urandom. When the PRNG is called, it generates
the requested bytes and updates its internal state by applying a cryptographic
hash function. (The hash function may be specified by the programmer.) Alter-
natively, a hardware-based RNG can be used. For our purposes, there are two
relevant ways to manipulate the state:

– RAND seed(const void *buf, int num): Resets the state using the first num
bytes of buf as a seed.
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– RAND add(const void *buf, int num, double entropy): “Mixes” the
first num bytes of buf into the state. entropy is an estimate of the num-
ber of full bytes of entropy of the input.

A search of the source code3 reveals that the implementation of the padding
scheme calls RAND bytes. To hedge RSA-OAEP using this interface, one might
do as follows:

RAND_add((const void *)in, in_len, in_entropy);

ctxt_len = RSA_public_encrypt(msg_len, msg, ctxt, pk,

RSA_PKCS1_OAEP_PADDING);

where in entropy is an estimate of the bytes of entropy of the string in, which
encodes pk, and msg. There are a number of technical details to attend to here.
First, estimating the entropy of in is non-trivial. (The OpenSSL documentation
refers the reader to RFC 1750 for estimation methodologies.4) Second, the doc-
umentation does not specify how the state is updated, except that if entropy
is equal to num, then this call is equivalent to resetting the state via RAND seed,
effectively evicting the initial entropy provided by the system. Third, if a hard-
ware RNG is used to instantiate RAND bytes, then calling RAND add fails silently,
meaning the call has no effect on the randomness. Alternatively, one might first
call RAND bytes(rand, rand len), then reset the state via RAND seed on input
of a buffer containing pk, msg, and rand. Again, if a hardware RNG is used, then
calling RAND seed has no effect.

Apart from these practical considerations, we note a subtle theoretical issue
with hedging OpenSSL in this manner. At first glance, it would appear that
if one is careful with the technical details, then these interfaces could be used
to implement EwH. However, since the PRNG is stateful, the coins used to
encrypt a message necessarily depend on the inputs of all prior encryptions. It is
not clear that the proof security for EwH holds for this instantiation, since the
message-coins source is assumed to be stateless [5, Theorem 6.1].

To summarize, if a developer chooses to (or must) use a library whose APIs
do not expose the encryption randomness, e.g., any of the widely-deployed *SSL
libraries, they are forced to work with low-level functionalities and attend to
security-critical details about parameters, padding, the implementation of the
(P)RNG, etc. If they are free to work with, say, the Go native library, then they
can implement EwH by extending the functionality of the exposed randomness
source.

3 Preliminaries

Notation. If n is an integer we write [n] for the set {1, 2, . . . , n}. If i and j are
integers such that i ≤ j, we let [i..j] denote the set {i, i + 1, . . . , j}. (If i > j,
then let [i..j] = ∅.) The implicit, unambiguous encoding of one or more objects

3 See https://github.com/openssl/openssl/blob/OpenSSL 1 0 2-stable/crypto.
4 See https://wiki.openssl.org/index.php/Manual:RAND add(3).

https://github.com/openssl/openssl/blob/OpenSSL_1_0_2-stable/crypto
https://wiki.openssl.org/index.php/Manual:RAND_add(3)
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as a bit string is written as 〈X,Y, . . .〉. We write vectors in boldface, e.g., X. We
let Xi and X[i] denote the i-th element of X. We say that X,Y are length-
equivalent if |X| = |Y | = m and, for all i ∈ [m], |Xi| = |Y i|. We let Λ denote
the empty vector. All algorithms, unless noted otherwise, are randomized. An
adversary is a randomized algorithm. The runtime of adversary A (at security
parameter k) is denoted timeA(k).

Games. We adopt the game-playing framework of Bellare and Rogaway [10].
The notation Exp(A, k) denotes the execution of game Exp with adversary A
at security parameter k. Let Exp(A, k) ⇒ x be the random variable denoting
the event that game Exp outputs x when played by A at security parameter k.
If the outcome of the game is either true or false, then we write Exp(A, k) as
short hand for Exp(A, k) ⇒ true.

3.1 Public-Key Encryption with Associated Data

A public-key encryption scheme with associated data PKEAD is a triple of algo-
rithms (Kgen,Enc,Dec) with associated data space AD ⊆ {0, 1}∗ and randomness
length ρ(·). The key-generation algorithm Kgen takes 1k as input, and outputs a
pair of strings (pk, sk), the public key and secret key respectively. The encryption
algorithm takes as input the public key pk, associated data H ∈ AD, message
M ∈ {0, 1}∗, and coins r ∈ {0, 1}ρ(k) and outputs a ciphertext C ∈ {0, 1}∗ or
the distinguished symbol ⊥, indicating that encryption failed. When the value
of the coins used is not important, we write Enc(pk,H,M) or EncH

pk(M) as short
hand for r ←$ {0, 1}ρ(k);Enc(pk,H,M ; r). Otherwise, we write Enc(pk,H,M ; r)
or EncH

pk(M ; r). The decryption algorithm takes the secret key sk, associated data
H ∈ AD, and a ciphertext C ∈ {0, 1}∗ and outputs a message M ∈ {0, 1}∗ or ⊥,
indicating failure to decrypt. Just as for encryption, we write M ← Dec(sk,H,C)
or M ← DecH

sk(C).
It will be convenient to define vector-valued encryption. To that end, let

v ∈ N, M ∈ ({0, 1}∗)v, and H ∈ ADv. Then the notation C ←$ Enc(pk,H ,M)
means to compute Ci ←$ Enc(pk,Hi,M i) for every i ∈ [v], and to assemble
C = (C1, . . . ,Cv) as the return value.

In this work, we consider schemes for which the following holds: If for every
k ∈ N, (pk, sk) ∈ [Kgen(1k)], H ∈ AD, and M ∈ {0, 1}∗, there exists an r′ ∈
{0, 1}ρ(k) such that EncH

pk(M ; r′) �= ⊥, then for every r ∈ {0, 1}ρ(k), it holds
that EncH

pk(M ; r) �= ⊥. Such a scheme is correct if for every k ∈ N, (pk, sk) ∈
[Kgen(1k)], H ∈ AD, M ∈ {0, 1}∗ and r ∈ {0, 1}ρ(k), we have C �= ⊥ =⇒
DecH

sk(C) = M , where C = EncH
pk(M ; r). As this condition makes clear, proper

operation is demanded when both encryption and decryption are in possession
of H. We note H may be the empty string, recovering more traditional public-key
encryption.

3.2 Sources

In our security definitions, we will rely on the notion of a source, so we start
with generalizing this notion as described in [5]. Let β and γ be non-negative
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integers, k be a positive integer, and μ, v, ρ0, . . . , ργ−1 : N → N be functions. We
define a (μ, v, ρ0, ρ1, . . . , ργ−1)-mβrγ-source M as an algorithm that on input 1k

returns a tuple (M0,M1, . . . ,Mβ−1, r) with the following properties: one, for
every b ∈ [0..β − 1], vector M b is over strings; two, vector r is over γ-tuples of
strings; three, each of the vectors has v(k) elements; four, for every i ∈ [v(k)]
and c ∈ [0..γ − 1], string rc has length ρc(k) where (r0, . . . , rγ−1) = r[i]; five, for
every b, b′ ∈ [0..β − 1], vectors M b and M b′ are length-equivalent; and six, for
every k ∈ N, b ∈ [0..β − 1], i ∈ [v(k)], and (M, r) ∈ {0, 1}|Mb[i]| × ({0, 1}ρ0(k) ×
· · · × {0, 1}ργ−1(k)) it holds that

Pr
[
(M0, . . . ,Mβ−1, r) ←$ M(1k) : (M b[i], r[i]) = (M, r)

] ≤ 2−μ(k).

We say that such a source has output length v(·) and min-entropy μ(·). When
stating the parameters is not important, we refer to the source as an mβrγ-source.
In this paper we will consider mr-, mmr-, mm-, and r-sources.

We define the equality pattern of v(k)-vectors M and r as the bit-valued
matrix EM ,r defined by EM ,r[i, j] = 1 ⇐⇒ (M [i], r[i]) = (M [j], r[j]) for every
i, j ∈ [v(k)]. A (μ, v, ρ0, . . . , ργ−1)-mβrγ-source is distinct if for every k ∈ N and
b ∈ [0..β − 1], it holds that Pr[(M0, . . . ,Mβ−1, r) ←$ M(1k) : EMb,r = Iv(k)] =
1, where Iv(k) denotes the v(k) × v(k) identity matrix. Security against chosen
distribution attacks will be defined with respect to adversaries that specify dis-
tinct sources. We remark that it is possible to relax this requirement somewhat
[5, Sect. 4.3], but we will not belabor this point.

4 Security Notions

Let PKEAD = (Kgen,Enc,Dec) be a PKEAD scheme with associated data
space AD and randomness length ρ(·). (We will refer to PKEAD throughout this
section.) In this section we define three notions of privacy. The first, IND-CCA,
is standard (IND-CCA2 in the taxonomy of [6]), except that it considers asso-
ciated data. In this notion, the source of coins for encryption is fixed and uni-
form. The second, MMR-CCA is a lifting of the MMR-CPA notion from [5]
(where it is called IND-CDA) to the CCA setting with associated data. In this
notion, the adversary is free to re-corrupt the source of coins on each encryp-
tion. The third, MM-CCA, is entirely new. In this notion, the coins source is
corrupted once prior to the keys being chosen and any encryption are made.
We now discuss the notions (presented in Fig. 2) in more detail. For each
attack and setting (ATK,STG) ∈ {IND,MMR,MM} × {CPA,CCA} we define
Advatk-stg

PKEAD (A, k) = 2 · Pr
[
Expatk-stg

PKEAD (A, k)
]

− 1.

4.1 IND Security

The standard notion of indistinguishability under chosen-ciphertext attacks is
generalized to incorporate associated data in Fig. 2. We say that PKEAD is
IND-CCA secure if for every PT (“polynomial-time”) adversary A, the function
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Fig. 2. Security notions for public-key encryption with associated data.

Advind-cca
PKEAD (A, ·) is negligible. The corresponding notion in the chosen-plaintext

attack setting is obtained by denying the adversary access to the decryption
oracle. Let Expind-cpa

PKEAD (A, k) denote this experiment. We say that PKEAD is
IND-CPA secure if for every PT adversary A, the function Advind-cpa

PKEAD (A, ·) is
negligible.

4.2 MMR Security

We adapt the definition of security against chosen-distribution attacks (IND-
CDA) from [5] to deal with associated data and chosen-ciphertext attacks.

Consider the MMR-CCA experiment defined in Fig. 2 associated to PKEAD,
adversary A, and security parameter k. The output of the LR oracle is well-
defined if for every k ∈ N and some μ, v : N → N, it holds that M is a
(μ, v, ρ)-mmr-source, and H ∈ ADv(k). Fix functions μ, v : N → N where
μ(k) ∈ ω(log k). We call A a (μ, v, ρ)-mmr-adversary if its queries are well-
defined and its LR queries consist of distinct (μ, v, ρ)-mmr-sources. We say that
PKEAD is MMR-CCA secure with respect to distinct (μ, v, ρ)-mmr-sources if for
every polynomial-time (μ, v, ρ)-mmr-adversary A, the function Advmmr-cca

PKEAD (A, ·)
is negligible.

The corresponding notion in the chosen-plaintext attack setting is obtained
by denying A access to Dec. Let Expmmr-cpa

PKEAD (A, k) denote this experiment and
let MMR-CPA security be defined analogously to MMR-CCA.
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Remarks about MMR. Notice that the adversary is not given the public
key until after it is done seeing the challenge ciphertexts. It has previously been
observed (in [5], building on [4]) that otherwise, the adversary may craft an mmr-
source, which depends on the public key, and completely leaks the challenge bit
with one query. Therefore, giving the adversary the public key would render the
notion unachievable.

Min-entropy requirements. Just as in prior work [4,5], we require that the
joint message-coins distribution have high min-entropy. In the MMR setting,
this means the sources queried by the adversary have min-entropy μ = μ(k) ∈
ω(log k). This is sufficient to thwart trial-encryption attacks by which the adver-
sary, given the public key, exhaustively encrypts message-coins pairs until a
ciphertext matches the output of its LR oracle.

4.3 ANON Security

Bellare et al. [5] studied how key anonymity is important for achieving adaptivity
against MMR attacks. Unlike with the standard IND-CPA or -CCA notions, non-
adaptive MMR (MMR1) security does not imply adaptive security. This is due
to the fact that the adversary is not given the public key when it makes the
queries to see the challenge ciphertexts. They observed that in the CPA setting,
a property called key anonymity suffices to gain adaptivity. We extend their
notion to the CCA setting; refer to the game defined in Fig. 3.

Fig. 3. Key anonymity of public-key encryption as formalized by [5], lifted to the
CCA setting.

The game begins by choosing two key pairs (pk0, sk0) and (pk1, sk1) and a
challenge bit d. The adversary is executed with the security parameter as input
and with access to three oracles as defined in the figure. The outcome of the game
is true if and only if the adversary’s output is equal to d. The output of the LR
and Enc oracles is well-defined when H ∈ ADv(k) and M is an (μ, v, ρ)-mr-
source for some μ, v : N → N. Following the lead of [3], we provide a decryption
oracle for both the primary and alternate secret key. On input (b,H,C) where
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b ∈ {0, 1}, H ∈ AD, and C ∈ {0, 1}∗, oracle Dec decrypts (H,C) under skb and
returns the result as long as (H,C) was never output by LR.

Fix functions μ, v : N → N such that μ(k) ∈ ω(log k). We define a (μ, v, ρ)-mr-
adversary as one whose oracle queries consist of well-defined inputs and distinct
(μ, v, ρ)-mr-sources. We say that PKEAD is ANON-CCA secure with respect
to distinct (μ, v, ρ)-mr-sources if the function Advanon-cca

PKEAD (A, ·) is negligible for
every PT (μ, v, ρ)-mr-adversary A. As usual, we capture ANON-CPA security
by denying the adversary access to the Dec oracle. This is equivalent to the
ANON notion of [5], which in turn lifts [3] to the hedged setting.

Non-adaptive to adaptive MMR via ANON. Intuitively, key anonymity
captures the adversary’s ability to discern information about the public key
given adaptively-chosen encryptions under the public key and, in our setting,
decryptions under the corresponding secret key. This property suffices for the
following result, lifting [5, Theorem 5.2] to the CCA setting.

Theorem 1 (MMR1+ANON-CCA =⇒ MMR-CCA). Let μ, v, ρ : N →
N be functions where μ(k) ∈ ω(log k). Let A be a (μ, v, ρ)-mmr-adversary who
makes q queries to its LR oracle. There exists a (μ, v, ρ)-mmr-adversary B, who
makes one query to its LR oracle, and a (μ, v, ρ)-mr-adversary D such that

Advmmr-cca
PKEAD (A, k) ≤ q · Advmmr-cca

PKEAD (B, k) + 2q · Advanon-cca
PKEAD (D, k) .

where D and B have the same runtime as A. Moreover, adversary D makes as
many decryption queries as A, q − 1 encryption queries, and one query to LR,
and adversary B makes as many decryption queries as A and one query to LR.

The proof is a simple extension of [5, Theorem 5.2] that takes the decryption
oracle into account; we refer the reader to the full version of this paper for the
details [14]. The intuition is that leakage of the public key in the ciphertext is
tolerable in the non-adaptive setting since the adversary may obtain the public
key after making its LR query. In the adaptive setting, this leakage could lead to
attacks based on key-dependent message-coins distributions in subsequent LR
queries.

Remark. We note that the converse is not true: MMR-CPA does not imply
ANON-CPA. Suppose we modify an MMR-CPA secure PKEAD scheme by
appending the hash of the public key to the end of the ciphertext. Modeling the
hash function as a random oracle, this construction remains MMR-CPA secure.
However, it is clearly not ANON-CPA. Since the adversary is given the primary
and alternate key in response to its LR query, it can easily check (with one
random oracle query) which key was used to encrypt.

4.4 MM Security

Next, we consider the practical setting in which the coins are non-adaptively
corrupted. Consider the MM-CCA experiment defined in Fig. 2 associated
to PKEAD, adversary A, randomness source R, and security parameter k.
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The output of the LR oracle is well-defined if for every k ∈ N and some
μ1, μ2, v : N → N, it holds that M is a (μ1, v)-mm-source, H ∈ ADv(k), and R is
a (μ2, v, ρ)-r-source. Fix functions μ1, μ2, v : N → N where μ2(k) ∈ ω(log k). We
call A a (μ1, v)-mm-adversary if its queries are well-defined and its LR queries
consist of distinct (μ1, v)-mm-sources. We say that PKEAD is MM-CCA secure
with respect to distinct (μ1, v)-mm-sources and (μ2, v, ρ)-r-sources if for every
PT (μ1, v)-mm-adversary A and for every PT (μ2, v, ρ)-r-source R, the function
Advmm-cca

PKEAD,R (A, ·) is negligible. Again, we let Expmm-cpa
PKEAD,R (A, k) be the experiment

associated to PKEAD, A, k, and randomness source R, which is identical to
Expmm-cca

PKEAD,R (A, k), but the adversary has no Dec oracle. MM-CPA security is
defined analogously to MM-CCA security.

Non-adaptive to Adaptive MM “for free”. Unlike in the MMR attack
setting, in the MM-CCA game, the adversary is given the public key. This is
achievable because the coin source may not be adaptively corrupted to depend
upon it. It follows that one does get adaptivity “for free” in this setting, via a
standard hybrid argument.

Theorem 2 (MM1-CCA =⇒ MM-CCA). Let μ1, μ2, v : N → N be func-
tions where μ2(k) ∈ ω(log k). Let R be a (μ2, v, ρ)-r-source and A be a (μ1, v)-
mm-adversary who makes q queries to its LR oracle. There exists a (μ1, v)-mm-
adversary B who makes one query to its LR oracle such that

Advmm-cca
PKEAD,R (A, k) ≤ q · Advmm-cca

PKEAD,R (B, k) ,

and B has the same runtime as A, making as many decryption queries.

Min-entropy requirements. As in the MMR setting, achieving MM secu-
rity demands restrictions upon the sources. Minimally, we will need to require
that μ1(k)+μ2(k) ∈ ω(log k), where μ1(·) is the min-entropy of the mm-sources
specified by the adversary and μ2(·) is the min-entropy of the r-source parame-
terizing the experiment. In fact, we need a bit more. As an illustration, suppose
that μ1(k) ∈ ω(log k) and μ2(k) = 0. This means that the randomness source
always outputs the same sequence of coins. This allows the adversary to mount
the key-dependent distribution attack identified by [5] when the adversary is
given the public key. (Indeed, this kind of attack is effective whenever the ran-
domness source has low min-entropy. Therefore, it is crucial in the MM setting
that the entropy of the randomness source μ2 be of order ω(log k).

5 Relations Among the Notions

We summarize the min-entropy requirements of each notion as follows: IND
requires uniform random coins, MMR requires that the joint distribution on
messages and coins have high min-entropy, and MM requires that the coins
have high min-entropy. MMR tolerates bad randomness, but only if the mes-
sage has high entropy. On the other hand, MM fails if the randomness is low
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Result Shown By

MMR-CPA (resp. MM-CPA) �=⇒ ANON-CPA: CE1

ANON-CPA �=⇒ MMR-CPA (resp. MM-CPA): CE2

MM-CPA �=⇒ MMR-CPA: CE3

IND-CPA �=⇒ MM-CPA (resp. MMR-CPA): CE4

MMR1+ANON-CCA =⇒ MMR-CCA Theorem 1

MM1-CCA =⇒ MM-CCA Theorem 2

MMR1+ANON-CCA =⇒ MM1-CCA Theorem 3

MM-CCA =⇒ IND-CCA where μ1(k) ∈ O(log k) Theorem 4

Fig. 4. Summary of relations. Top: separations using CE1: EncH
pk(M ; r) =

EH
pk(M ; r) ‖H(pk), where E is {MM,MMR}-CPA and H a random oracle; CE2:

EncH
pk(M ; r) = M ; CE3: EME-OAEP (see Sect. 6.1); CE4: EncH

pk(M ; r ‖ b) =
EH
pk(M ; r) ‖ (b ⊕ M [1]), where E is IND-CPA. We note that the corresponding CCA

separations are implied by the CPA separations. Bottom: implications, where we note
that the corresponding CPA implications are implied by the CCA implications.

min-entropy. Thus, the MM setting captures systems that are pretty good at
gathering entropy, but not perfect. This is a realistic scenario, as evidenced by
the analysis of the entropy-gathering mechanisms in the Linux kernel in [27].
Catastrophic failures, on the other hand, such as the infamous OpenSSL bug in
the Debian distribution, which resulted in the PRNG seed having only 15 bits
of entropy on many systems [31], or the “boot-time entropy hole” described in
[27], are out of scope. With these distinctions in mind, we study the relationships
between IND, MMR, and MM attack settings. Our results are summarized in
Fig. 4.

Relationship between MMR and MM attacks. Intuitively, the
MMR attack captures a stronger setting, since the adversary can adaptively
corrupt the coins. The notions are incomparable, however, since the adversary
has the public key in the MM attack setting. Nevertheless, we are able to show
that a scheme that is both MMR- and ANON-CCA secure is MM-CCA secure.

Theorem 3 (MMR1+ANON-CCA =⇒ MM1-CCA). Let PKEAD be
an encryption scheme with randomness length ρ(·). Let μ1, μ2, v : N → N be
functions, where μ2(k) ∈ ω(log k). Let R be a (μ2, v, ρ)-r-source and A be a
(μ1, v)-mm-adversary who makes one query to its LR oracle. There exist a
(μ1 + μ2, v, ρ)-mmr-adversary B who makes one query to its LR oracle and
a (μ1 + μ2, v, ρ)-mr adversary D such that

Advmm-cca
PKEAD,R (A, k) ≤ Advmm-cca

PKEAD (B, k) + 4 · Advanon-cca
PKEAD (D, k),

where and B and D have the same runtime as A. Each makes as many decryption
queries as A and one query to its LR oracle.

Roughly speaking, our argument is that if the scheme is key anonymous, then the
public key provides the adversary with negligible advantage in the MM-CCA set-
ting. Therefore, we can give the adversary a public key different from the one
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used to answer its queries with it being none the wiser. The full proof can be
found in the full version of this paper [14].

Finally, we exhibit a scheme that is MM-CPA, but not MMR-CPA in
Sect. 6.1, thus concluding that MMR+ANON-CCA is a properly stronger notion
than MM-CCA.

Relationship between MM and IND attacks. Let Π = (K, E ,D) be an
encryption scheme. Define PKEAD as (K,Enc,Dec) where EncH

pk(M ; r ‖ b) =
EH
pk(M ; r) ‖ (b ⊕ M [1]) and DecH

sk(C ‖ z) = DH
sk(C). (Note that if Π has ran-

domness length ρ(·), then PKEAD has randomness length ρ(k) + 1 for all k.)
Then PKEAD is IND-CPA secure as long as Π is. But PKEAD is not MM-CPA
secure, since bit b might be fixed by the randomness source. It follows that IND-
CPA security does not imply MM-CPA security in general. (A similar argument
holds for MMR-CPA.) But what about the converse?

Recall that our notions are parameterized by the min-entropy and output
length of the source(s). We may also consider finer-grained notions of security.
Let Πmmr-cca

μ,v denote the set of PKE schemes MMR-CCA secure with respect
to distinct (μ, v, ρ)-mmr-sources, where ρ(·) is the randomness length of the
scheme. Similarly, let Πmm-cca

μ1,μ2,v denote the set of PKE schemes MM-CCA secure
with respect to distinct (μ1, v)-mm-sources and (μ2, v, ρ)-r-sources. Finally, let
Πind-cca denote the set of IND-CCA secure schemes. First, we observe that if
ϕ,ψ, v : N → N are functions and ϕ(k) ∈ O(ψ(k)), then Πmmr-cca

ϕ,v ⊆ Πmmr-cca
ψ,v .

This means that if a scheme is secure with respect to the lowest min-
entropy requirement (of order ω(log k)), then it is also secure with respect
to sources with more entropy. Analogously, we have that Πmm-cca

ϕ1,ϕ2,v ⊆ Πmm-cca
ψ1,ψ2,v

where ϕ1, ϕ2, ψ1, ψ2, v : N → N are functions such that ϕ1(k) ∈ O(ψ1(k)) and
ϕ2(k) ∈ O(ψ2(k)).

As a special case, we have that Πmm-cca
0,ϕ,1 ⊆ ind-cca for every ϕ(k) ∈ ω(log k).

More generally, we can show that for certain classes of functions μ1, μ2, v : N →
N, it holds that Πmm-cca

μ1,μ2,v ⊆ Πind-cca. First, we observe the following:

Lemma 1. Let PKEAD be an encryption scheme with randomness length ρ(·).
Let μ1, v : N → N be functions. Let A be an adversary who makes one query to
its LR oracle, and U be the (ρ, v, ρ)-r-source defined by: r ←$ ({0, 1}ρ(k))v(k);
return r. There exists a (μ1, v)-mm-adversary B who makes one query to
its LR oracle such that Advind-cca

PKEAD (A, k) ≤ v(k)2μ1(k) ·Advmm-cca
PKEAD,U (B, k), where

timeB(k) = timeA(k) + O(v(k)2μ1(k)).

Proof. Fix k ∈ N and let μ1 = μ1(k), ρ = ρ(k), and v = v(k). Assume that A’s
query to its LR oracle is (H,M0,M1) where H ∈ AD and M0 and M1 are distinct,
equal-length strings. This is without loss of generality, since otherwise LR would
reject. Let n = |M0| = |M1|. We construct adversary B from A. On input (1k, pk)
and with oracles LR and Dec, adversary B executes b′ ←$ ALR′,Dec(1k, pk) and
returns b′, where LR′ is defined below.

Let M be the following mm-source: on input 1k, first construct a set S ⊆
({0, 1}n)2 such that: (1) |S| = v2μ1 ; (2) (M0,M1) ∈ S; and (3) for every distinct
(X0,X1) and (Y0, Y1) in S, it holds that X0 �= Y0 and X1 �= Y1. Next, for
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each i ∈ [v], sample a pair (X,Y ) uniformly and without replacement from S,
and let M0[i] = X and M1[i] = Y . Finally, output (M0,M1). Sampling each
(M0[i],M1[i]) without replacement means M is distinct. Since |S| = v2μ1 , for
each X ∈ {0, 1}n, b ∈ {0, 1}, and i ∈ [v], it holds that

Pr
[
(M0,M1) ←$ M(1k) : M b[i] = X

] ≤ 1 − v2μ1 − 1
v2μ1

· v2μ1 − 2
v2μ1 − 1

· · ·

=
v

v2μ1
=

1
2μ1

.

It follows that M is a distinct (μ1, v)-mm-source. Returning now to answer-
ing A’s LR queries: on input (H,M0,M1), oracle LR′ first lets H[i] = H for each
i ∈ [v]. It then executes C ←$ LR(H,M), samples j ←$ [v], and returns C[j]
to A.

Adversary B’s simulation of A’s LR query (and subsequent Dec queries) is
perfect as long as M0[j] = M0 and M1[j] = M1. Let good denote this event.
This occurs with probability 1/v2μ1 . Then

Pr
[
Expmm-cca

PKEAD,U (B, k)
]

= Pr
[
Expmm-cca

PKEAD,U (B, k) | good ]
Pr[ good ]

+ Pr
[
Expmm-cca

PKEAD,U (B, k) | good ]
Pr

[
good

]

≥ 1
v2μ1

· Pr
[
Expind-cca

PKEAD (A, k)
]

,

which yields the bound. To complete the proof, we need only to comment on the
runtime of B. Constructing the set S requires time O(v2μ1). Since this dominates
the time to simulate A’s LR query, it follows that the runtime B is timeA(k) +
O(v2μ1). ��
This yields, almost immediately, the following corollary:

Theorem 4. Let μ1, μ2, v : N → N be functions such that μ1(k) ∈ O(log k),
μ2(k) ∈ ω(log k), and v(k) is polynomial in k. Then Πmm-cca

μ1,μ2,v ⊆ Πind-cca.

Proof. Let PKEAD ∈ Πmm-cca
μ1,μ2,v have randomness length ρ(·). By definition, we

have that PKEAD ∈ Πmm-cca
μ1,ρ,v . By Lemma 1, for every PT adversary A, there is

a PT (μ1, v)-mm-adversary B such that

Advind-cca
PKEAD (A, k) ≤ v(k)2μ1(k) · Advmm-cca

PKEAD,U (B, k).

Hence, PKEAD ∈ Πind-cca. ��

6 Constructions

In this section we present several constructions of hedged PKEAD schemes. To
begin, we give a result showing that EME-OAEP (the version of RSA-OAEP
that is implemented in OpenSSL) is not MMR-CPA, but is provably MM-CCA
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in the ROM, under a standard assumption on RSA. This gives the first positive
result for RSA-OAEP in the presence of imperfect randomness, and is callable
via the high-level APIs exposed by all major libraries.

To achieve MMR+IND-CCA, we give a hybrid-encryption PKEAD scheme.
This, too, can be realized by high-level API calls in modern libraries, using RSA
as the trapdoor function, and available hash function and symmetric authenti-
cated encryption functionalities.

We then revisit the generic compositions RtD and PtD from Bellare et al. [5].
We show that if the deterministic scheme is instantiated specifically by RSA-
DOAEP [4], which can be done via high-level API calls to hash functions and
RSA, then PtD achieves MM+IND-CCA, and RtD achieves MM+IND-CPA. We
also suggest specific conditions under which RtD would be MMR+IND-CCA,
extending prior work [5].

Trapdoor permutations. Some of our constructions make use of trapdoor
permutations, so we recall this primitive and its security here. Let k ∈ N. A
trapdoor permutation generator is a probabilistic algorithm F with associated
input length5 n(·) that on input 1k outputs the encoding of a pair of func-
tions f, f−1 : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}n(k), it holds that
f−1(f(x)) = x. We say that F is OWF secure if for every PT adversary A, the
quantity

Advowf
F (A, k) = Pr

[
(f, f−1) ←$ F (1k);x ←$ {0, 1}n(k) : A(1k, f, f(x)) ⇒ x

]

is a negligible function of k.
We will also use the stronger security notion of partial-domain one-wayness

formalized by Fujisaki et al. [25], which asserts that it is difficult to partially
invert a value in the range of the trapdoor permutation. Let F be a trapdoor
permutation generator with input length n(·) and let m(·) be a function such
that m(k) ≤ n(k) for every k ∈ N. We say that F is m-POWF secure if for every
PT adversary A, the following function is negligible in k:

Advpowf
F,m (A, k) = Pr

[
(f, f−1) ←$ F (1k);x ←$ {0, 1}n(k) :

A(1k, f, f(x)) ⇒ x[1..m(k)]
]
.

6.1 EME-OAEP

We first look at RSA-OAEP [9], the only provably-secure PKE scheme available
in OpenSSL, and indeed most libraries.6 It is known to be IND-CCA secure
assuming that the underlying trapdoor permutation is POWF secure, or under
the RSA assumption [25,36].

5 For example, the input length might be the number of modulus bits in RSA.
6 Some implement ElGamal or hybrid encryption schemes as well.
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Kgen(1k)

(f, f−1) ←$ F (1k)
return (〈f〉, 〈f−1〉)

Enc
H
pk(M)

〈f〉 ← pk; PM ← pad(M)
if PM = ⊥ then return ⊥
X0 ← PM ‖H1(H)
Y0 ←$ {0, 1}ρ

X1 ← X0 ⊕ G(Y0)
Y1 ← Y0 ⊕ H2(X1)
P ← X1 ‖ Y1 ‖ [0 ]
return f(P )

Dec
H
sk(C)

〈f−1〉 ← sk; P ← f−1(C)
if |P | �= n then return ⊥
X1 ‖ Y1 ‖ [z] ← P # |Y1| = ρ
Y0 ← Y1 ⊕ H2(X1)
X0 ← X1 ⊕ G(Y0)
PM ‖ T ← X0 # |T | = τ
if H1(H) �= T then return ⊥
return unpad(PM)

Fig. 5. Specification of F -EME-OAEP encryption (RFC 8017) where F is a trapdoor
permutation generator with input length n(·). Let τ(·) and ρ(·) be functions where
for every k ∈ N, it holds that ρ(k) + τ(k) + 16 ≤ n(k). Fix k ∈ N and let n = n(k),
τ = τ(k), ρ = ρ(k), and m = n − ρ − 8. The syntax [i] denotes integer i, where
0 ≤ i ≤ 255, encoded as a byte. Let H1 : {0, 1}∗ → {0, 1}τ , G : {0, 1}∗ → {0, 1}m,
and H2 : {0, 1}∗ → {0, 1}ρ be functions. Define pad : {0, 1}∗ → {0, 1}m−τ ∪ {⊥} by
pad(M) = M ‖ [1 ] ‖ [0 ] · · · [0 ] if |M | is less than or equal to m− τ −8 and is a multiple
of 8, and pad(M) = ⊥ otherwise. Define its inverse unpad : {0, 1}m−τ → {0, 1}∗ ∪ {⊥}
in the natural way.

We specify the EME-OAEP variant standardized in PKCS #1 version 2.2
(RFC 8017). Let F be a trapdoor permutation generator. Refer to the encryption
scheme F -EME-OAEP specified in Fig. 5. This scheme resembles standard OAEP
except that a hash of the associated data (called a label in RFC 8017) is appended
to the message.7 Instead of checking for a string of zero-bytes, the decrypting
party checks that the hash of the associated data matches. In addition, a zero-
byte is appended to the pad before applying the trapdoor.8

F -EME-OAEP is not MMR-CPA. This scheme is not MMR-CPA secure, due to
an attack by Brown [15] on RSA-OAEP with exponent e = 3. The attack exploits
low entropy coins. An adversary who knows (or is able to guess) the coins can
recover the entire plaintext, meaning the attack is effective even if the message
has high min-entropy. Since this attack does not exploit the tag used to check
if the ciphertext is valid during decryption, it is equally effective in breaking
RSA-EME-OAEP.

F -eme-oaep is MM-CCA. We prove the scheme does achieve our new notion.
The standard cites the result of [25] to establish the IND-CCA security of this
scheme, but this result makes no formal claim for the security of the associated
data. Moreover, no security guarantee is known in case randomness is not per-
fect. We extend their analysis to account for associated data and imperfect ran-
domness and prove, in the random oracle model, that F -EME-OAEP is MM-CCA
secure with respect to high min-entropy coins sources, assuming that F is POWF

7 Interestingly, no API we surveyed exposes AD as a parameter, although the standard
supports AD.

8 The zero-byte is intended to ensure that the message is in Z
∗
N in the case of RSA.
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secure. By [25, Lemma 4.2], instantiating the trapdoor with RSA is secure assum-
ing only that RSA is OWF secure.

Theorem 5 (F -EME-OAEP is MM-CCA). Let F be a length n(·) trapdoor
permutation generator. Let μ1, μ2, v, τ, ρ : N → N be functions where μ2(k) ∈
ω(log k) and ρ(k)+τ(k)+16 ≤ n(k) for every k ∈ N. Let m(k) = n(k)−ρ(k)−8.
Let PKEAD=F -EME-OAEP as defined in Fig. 5, where H1, H2, and G are modeled
as random oracles. Let A be a (μ1, v)-mm-adversary who makes qe queries to LR,
qd queries to Dec, and q1, q2, and qG queries to H1, H2, and G respectively. Let R
be a (μ2, v, ρ)-r-source. There exists an adversary B such that

Advmm-cca
PKEAD,R (A, k) ≤ 512qeq2v(k) · Advpowf

F,m (B, k)+

qe(q1 + qd)2

2τ(k)−1
+

qe(qG + qd)2

2ρ(k)−1
+

qev(k)(qG + qd)
2μ2(k)−1

,

where timeB(k) = timeA(k) + O(qdq1qGq2).

The proof appears in the full version [14]. Note that the security bound does
not depend on the min-entropy of the message source, but only on the min-
entropy of the randomness source. This is undesirable from a concrete security
standpoint, since any entropy in the messages is thrown away. In Sect. 6.3, we
show that adding an additional Feistel round is sufficient to establish a concrete
security bound that depends on the message entropy. Note that the loss of 28 in
the bound is the result of fixing the most significant byte as [0].

In real-world terms, this result suggests that it is safe to use RSA-EME-OAEP

barring catastrophic failure of the (P)RNG. If the adversary is able to guess the
coins used, then there is an attack [15], and so the Dual EC DRBG attack [18],
for example, completely breaks the security of RSA-EME-OAEP. Even cases where
the coins still have some entropy [31] we consider insecure in an asymptotic sense,
since an adversary can guess the coins with non-negligible probability.

MMR does not imply MM security. Since F -EME-OAEP is not MMR-CPA,
we conclude that MMR-CPA does not imply MM-CPA in general.

6.2 Hybrid Encryption Construction

Next, we present a novel scheme that is MMR-CCA in the random oracle model,
and at the same time can be implemented using most high-level APIs, including
OpenSSL. The scheme is a hybrid construction combining a trapdoor permuta-
tion, an authenticated encryption scheme with authenticated data (AEAD, now
a standard notion in crypto libraries), and hash functions modeled as random
oracles. We recall the notion of AEAD and then proceed to define the PKEAD
scheme.

Authenticated Encryption with Associated Data (AEAD). An AEAD
scheme consists of three algorithms AEAD = (Kgen,Enc,Dec). The randomized
key generation algorithm Kgen samples a key K from a finite, non-empty set K
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Kgen(1k):

(f, f−1) ←$ F (1k)
R ←$ {0, 1}r

return (f ‖ R, f−1)

Encpk(M, H)

X ←$ {0, 1}ρ(k)

KP ← H1(〈f ‖ R, H, M, X〉)
C1 ← f(KP )
K ← H2(〈f ‖ R, H, KP 〉)
H̃ ← 〈H, C1〉
N ← extract(H̃)
C2 ← AEAD.Enc(K, N, H̃, M)
return C1 ‖ C2

Decsk(H, C1 ‖ C2)

KP ← f−1(C1)
K ← H2(〈f ‖ R, H, KP 〉)
H̃ ← 〈H, C1〉
N ← extract(H̃)
M ← AEAD.Dec(K, N, H̃, C2)
return M

Fig. 6. Hybrid encryption construction HE[F,AEAD] with randomness length ρ(·)
and additional parameters n, λ, kP ∈ N. Let F be a length n(·) trapdoor permuta-
tion generator, such that n(k) ≥ kP for sufficiently large k, and let AEAD be an
AEAD scheme with key space {0, 1}λ, nonce space {0, 1}n, and associated-data space
{0, 1}∗. Let H1 : {0, 1}∗ → {0, 1}kP and H2 : {0, 1}∗ → {0, 1}λ be functions. Let
extract : {0, 1}∗ → {0, 1}n be a function that on input H̃ returns the n-bit nonce.

called the key space. The deterministic encryption algorithm Enc : K×N ×AD×
{0, 1}∗ → {0, 1}∗ ∪ {⊥} takes as input a key K, a nonce N ∈ N , associated
data H ∈ AD, and a message M ∈ {0, 1}∗, and it returns a ciphertext C ∈
{0, 1}∗ or the distinguished symbol ⊥. We sometimes write C ← Enc

H,N
K (M) as

a shorthand for C ← Enc(K,N,H,M). The deterministic decryption algorithm
Dec : K × N × AD × {0, 1}∗ → {0, 1}∗ ∪ {⊥} takes as input a key K, a nonce
N ∈ N , associated data H ∈ AD, and ciphertext C ∈ {0, 1}∗, and outputs either
the plaintext M or ⊥. We sometimes write M ← Dec

H,N
K (C) as shorthand for

M ← Dec(K,N,H,C). For correctness, it is required that for all K ∈ K, H ∈ AD,
N ∈ N and M ∈ {0, 1}∗, we have Enc

H,N
K (M) �= ⊥ =⇒ Dec

H,N
K (EncH,N

K (M)) =
M.

Message privacy. To define message privacy, let A be an adversary and con-
sider the experiment Expind-cpa

AEAD (A). The experiment first generates the key
K ←$ Kgen and samples a bit b ←$ {0, 1}. The adversary has access to the encryp-
tion oracle Enc(K, ·, ·,LR(·, ·, b)), where LR(·, ·, b) on inputs M0,M1 ∈ {0, 1}∗

with |M0| = |M1| returns Mb. We say that A is nonce-respecting if it never
repeats N in its oracle queries. (Hereafter, we assume the IND-CPA attacker
is nonce-respecting.) Finally, adversary A outputs a bit b′. The outcome of the
game is the predicate (b = b′). We define A’s advantage as Advind-cpa

AEAD (A) =
2 · Pr[Expind-cpa

AEAD (A)] − 1.

Authenticity. To define message authenticity, let A be an adversary and con-
sider the experiment Expauth

AEAD (A). It first generates a key K ←$ Kgen, then pro-
vides A access to oracle Enc(K, ·, ·, ·). (Note that the AUTH adversary need not
be nonce-respecting.) The adversary can also query a special decryption oracle
on triples (N,H,C). This oracle returns 1 if Dec

H,IV
K (C) �= ⊥, and 0 otherwise.

The game outputs true if and only if the special decryption oracle returns 1 on
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some query (N,H,C) and A never queried (N,H,M) for some M ∈ {0, 1}∗ and
got C in response. Let Advauth

AEAD (A) = Pr[Expauth
AEAD (A)].

Hybrid PKEAD from a TDP and AEAD. We propose a PKEAD scheme
that uses a trapdoor permutation and an AEAD symmetric encryption scheme.
Its algorithms can be implemented using the library calls to RSA function with
no padding and to any AEAD scheme such as AES-GCM. The scheme is defined
in Fig. 6. The functions H1 and H2 are realized using cryptographic hash func-
tions, but are modeled as random oracles in the analysis. We assume that there
is an efficient function extract that on input associated data H̃ returns the n-bit
nonce for AEAD scheme. The goal of extract is to make sure that the outputs
do not repeat. If H contains a counter, or some other non-repeating string, then
that could be used as an extracted nonce. Alternatively, C1 or its part could
be used as a nonce. (In the analysis we take into account that the asymmetric
parts of ciphertexts do not repeat with overwhelming probability.) We leave the
particular instantiation of extract to the applications.

HE[F,AEAD] is MMR+IND-CCA. The following theorem establishes MMR- and
IND-CCA security of our hybrid construction.

Theorem 6. Let F be a trapdoor permutation generator, AEAD be an AEAD
scheme, and PKEAD = HE[F,AEAD] as defined in Fig. 6, where H1 and H2 are
modeled as random oracles.

– (MMR-CCA) Let μ, v : N → N be functions such that μ(k) ∈ ω(log k). Let
A be a (μ, v, ρ)-mmr-adversary attacking PKEAD and making q queries to
its LR oracle, qd queries to its Dec oracle, and qH1 and qH2 queries to H1 and
H2 respectively. Then there exist adversary B attacking F and adversaries C
and D attacking AEAD, such that

Advmmr-cca
PKEAD (A, k) ≤ qH1 + qd

2r−1
+

(qH1 + q2v(k))
2μ(k)−1

+
qd + q2v2(k)

2kP −1

+2v(k)q ·
(
Advowf

F (B, k) + Advind-cpa
AEAD (C, k) + Advauth

AEAD (D, k)
)

.

– (IND-CCA) Let A be an adversary attacking PKEAD and making q queries to
its LR oracle, qd queries to its Dec oracle, and qH1 and qH2 queries to H1 and
H2. Then there exist an adversary B attacking F and adversaries C and D
attacking AEAD, such that

Advind-cca
PKEAD (A, k) ≤ qH1

2ρ(k)−1
+

qd

2kP −1

+2v(k)q ·
(
Advowf

F (B, k) + Advind-cpa
AEAD (C, k) + Advauth

AEAD (D, k)
)

.

In both cases, we have that timeB(k), timeC(k), timeD(k) ≈ timeA(k), C makes at
most v(k)q queries to its encryption oracle, and D makes v(k)q queries to its
encryption oracle, and qd queries to its decryption oracle.
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The proof is in the full version of this paper [14]. Here we sketch the more chal-
lenging proof of MMR-CCA security. We consider a sequence of games that starts
with the MMR-CCA experiment and ends with the one where random messages
are encrypted with the AEAD.Enc under random keys, which are independent
from the asymmetric ciphertexts. The view of the adversary in the last game is
independent of the challenge bit. As we move between games, we consider a series
of “bad” events. The first bad event happens if the H1 oracle is queried on the
values colliding with those output by the mmr-source during encryption compu-
tation. We can bound such an event by relying on the entropy of the mmr-source,
if the collision occurs after the public key is revealed, or using the fact that the
adversary does not know the public key and cannot guess its randomizer value if
the collision happens before the public key is revealed. If this “bad” event never
happens, then Kp values used to compute the asymmetric parts of the challenge
ciphertexts can be chosen at random. Another bad event is set when a H2 oracle
query is made so it contains the Kp that was used as input to f during encryp-
tion. If this does not happen, we can use random symmetric keys for AEAD.Enc.
If this bad event does happen, we can construct the OWF adversary for trapdoor
permutation generator F . Once we are in a game where random symmetric keys
are used, we can use the IND-CPA security of AEAD. Here we have to make
sure that the IND-CPA adversary is nonce-respecting. This follows from the fact
that the asymmetric parts of the challenge ciphertexts, from which nonces are
derived, do not repeat with overwhelming probability.

Care is needed to ensure that the adversary does not get information about
the public key from the decryption queries and that the adversaries we con-
struct can answer the decryption oracle queries. If the adversary makes a valid
decryption oracle query, so that the asymmetric part is the same as that of some
challenge ciphertext, then we can construct an adversary breaking authenticity
of the AEAD scheme. If the asymmetric part of the ciphertext in the decryption
oracle query is new, i.e., it is different from those of all challenge ciphertexts, and
no corresponding H2 query was made, the ciphertext can be rejected, as it can
be valid only with negligible probability. Before the public key is revealed, such a
hash query can only be made by the adversary with negligible probability. If the
public key has been revealed, than such a ciphertext can be decrypted without
the knowledge of the secret key.

6.3 Generic Constructions

We describe two black-box constructions of [5], which compose generic random-
ized and deterministic encryption schemes. Appealing to the security proper-
ties of their constituents, these constructions are shown to be MMR+IND-CPA
secure in the standard model. We consider lifting these results to the CCA set-
ting, and consider security against MM attacks. First, we specify deterministic
encryption and briefly describe its associated security notions. It will be conve-
nient formulate the syntax without associated data.

Deterministic encryption. A deterministic PKE scheme Π is a triple of
algorithms (K, E ,D). On input 1k, algorithm K probabilistically outputs a key
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pair (pk, sk). Encryption deterministically maps the public key pk and a string M
to an element of {0, 1}∗ ∪ {⊥}. Decryption deterministically maps the secret
key sk and a string C to an element of {0, 1}∗ ∪ {⊥}. The scheme is correct if
for every k ∈ N, (pk, sk) ∈ [K(1k)], and M ∈ {0, 1}∗, it holds that Epk(M) �=
⊥ implies Dsk(Epk(M)) = M . It will be helpful to assume that deterministic
schemes are defined on all strings of a particular length. We say Π has input
length n(·) if encryption is defined for all strings of length n(k) and all k.

We consider both MMR-CPA and -CCA security of deterministic schemes
against (μ, v, 0)-mmr adversaries for functions μ, v : N → N, where μ(k) ∈
ω(log k). In order to instantiate a deterministic scheme in the game, we allow
encryption to take coins as input, but these are simply ignored. Similarly, we
allow encryption and decryption to take associated data as input, but this is
ignored. Note that it does not make sense to consider MM-CPA or -CCA secu-
rity of deterministic schemes, since we cannot defend against key-dependent
distribution attacks in this setting. Security of deterministic encryption was first
formalized by [4]. Their CPA notion, PRIV, is equivalent to MMR1-CPA secu-
rity. However, their CCA notion, PRIV-CCA, is not equivalent to MMR1-CCA.
In our notion, the message source specified by the adversary is allowed to depend
on prior decryption queries, whereas in the PRIV-CCA game, the adversary
makes decryption queries only after it gets its challenge.

Block-sources. Recall the notion of an mβrγ-source given in Sect. 4. In the
standard model, we consider security with respect to mβrγ-block-sources, where
the outputs have high conditional min-entropy. Intuitively, this means that, from
the adversary’s perspective, each output of a block-source has high min-entropy
even having seen the prior elements of the vector. (See [5] for a precise definition.)

Lossy and all-but-one trapdoor functions. LTDFs were first described
by Peikert and Waters [33]. Informally, an LTDF generator F is a probabilis-
tic algorithm that on input 1k and b ∈ {0, 1} outputs a pair of strings (s, t)
such that s encodes a function f . If b = 1, then function f is injective, and t
encodes a function f−1 giving its inverse; otherwise, the image of f is signifi-
cantly smaller than the injective mode (i.e., b = 1). The generator is secure if
no reasonable adversary, given s, can distinguish injective mode from the lossy
mode (i.e., b = 0). We call F universal-inducing if the lossy mode is a uni-
versal hash function. Motivated by the goal of instantiating IND-CCA secure
probabilistic encryption, [33] introduce ABO (“all-but-one”) TDFs as a richer
abstraction. Instead of having an injective and lossy mode, an ABO TDF has
a set of modes, one of which is lossy. Here, security demands that every pair
of modes are computationally indistinguishable. Both primitives have been con-
structed from a number of hardness assumptions: For example, the Φ-hiding
assumption for RSA [29] and LWE (“learning with errors”) for lattices [33]. A
universal LTDF is given by Boldyreva, Fehr, and O’Neill [13] based on the DDH
assumption.

Pad-then-Deterministic. The transformation of a deterministic encryption
scheme into a probabilistic one via a randomized padding scheme is defined in the
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PtD[Πd].Kgen(1k)

(pk, sk) ←$ Kd(1k)
return (pk, sk)

PtD[Πd].EncHpk(M)

if |H| �= k0 then return ⊥
r ←$ {0, 1}ρ

PM ← padn−k0(〈M, r〉)
return Ed(pk, H ‖PM)

PtD[Πd].Dec
H
sk(C)

H ′ ‖PM ← Dd(sk, C) # |H ′| = k0

if H ′ �= H then return ⊥
〈M, r〉 ← unpadn−k0(PM)
return M

RtD[Πr, Πd].Kgen(1k)

(pkr, skr) ←$ Kr(1
k)

(pkd, skd) ←$ Kd(1k)
return (〈pkr, pkd〉, 〈skr, skd〉)

RtD[Πr, Πd].EncHpk(M)

〈pkr, pkd〉 ← pk
C′ ←$ Er(pkr, H, M)
return Ed(pkd, padn(C′))

RtD[Πr, Πd].Dec
H
sk(C)

〈skr, skd〉 ← sk
X ← Dd(skd, C)
C′ ← unpadn(X)
return Dr(skr, H, C′)

F -DOAEP.K(1k)

(f, f−1) ←$ F (1k)
return (〈f〉, 〈f−1〉)

F -DOAEP.Epk(X)

if |X| �= n then return ⊥
〈f〉 ← pk
X� ← X[1..k0]
Xr ← X[k0 + 1..|X|]
S0 ← H1(pk ‖ Xr) ⊕ X�

T0 ← G(pk ‖ S0) ⊕ Xr

S1 ← H2(pk ‖ T0) ⊕ S0

Y� ‖ Yr ← S1 ‖ T0 # |Yr| = k1

return Y� ‖ f(Yr)

F -DOAEP.Dsk(Y )

if |Y | < n − k1 then return ⊥
〈f−1〉 ← sk
Y� ← Y [1..a]
Yr ← f−1(Y [a + 1..|Y |])
S1 ‖ T0 ← Y� ‖ Yri # |S1| = k0

S0 ← H2(pk ‖ T0) ⊕ S1

Xr ← G(pk ‖ S0) ⊕ T0

X� ← H1(pk ‖ Xr) ⊕ S0

return X� ‖ Xr

Fig. 7. Generic constructions. Let k0, k1, n, ρ : N → N be such that k0(k)+ρ(k) ≤ n(k)
for all k. Let Πd = (Kd, Ed, Dd) be a deterministic scheme with input length n(·)
and let Πr = (Kr, Er, Dr) be a randomized encryption scheme. Let F be a trapdoor
permutation generator with input length k1(·). Let pad� : {0, 1}∗ → {0, 1}� ∪ {⊥} be
an invertible encoding scheme with unpad� : {0, 1}∗ → {0, 1}∗ ∪ {⊥} as its inverse. Fix
k ∈ N and let k0 = k0(k), k1 = k1(k), n = n(k), ρ = ρ(k), and a = max{0, n − k1}.
If Y is a string and a ≤ 0, then let Y [1..a] = ε. Let H1,H2 : {0, 1}∗ → {0, 1}k0 and
G : {0, 1}∗ → {0, 1}n−k0 be functions.

top panel of Fig. 7. This is the same as the construction proposed by [5], except
we account for associated data. the message space of PtD[Π] is determined by Π.
The associated data is restricted to bit strings of the length k0(·). We first review
the results known for PtD in the standard model, then consider its extension to
the MMR- and MM-CCA settings.

Let Π be a deterministic scheme and PtD[Π] be as defined in Fig. 7. Bellare
et al. [5, Theorem 6.3] prove this construction is MMR-CPA if Π is MMR-CPA,
and IND-CPA if Π is a u-LTDF. 9 By Theorem 1, any scheme that is both
MMR1- and ANON-CPA secure is also MMR-CPA secure. If Π is a u-LTDF,
then it is MMR1-CPA secure for block-sources [13, Theorem 5.1], and ANON-
CPA secure for block-sources [5, Theorem 5.3]. Thus, the scheme PtD[Π] is MMR-
hedged secure (for block-sources) against chosen-distribution attacks as long

9 Note that a family of trapdoor permutations is syntactically the same as a deter-
ministic encryption scheme.
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as Π is a u-LTDF. Note that universal-inducing property is not essential; see [5,
Sect. 6.2] for details.

Unfortunately, this property of the base scheme does not suffice for security in
the CCA setting. Nevertheless, a similar construction gets us a step in the right
direction. Peikert and Waters [33] suggest the composition of an LTDF generator,
an ABO TDF generator, and a strongly unforgeable one-time signature scheme to
achieve IND-CCA. Boldyreva, Fehr, and O’Neill [13] give a similar construction
(with the signature scheme replaced by a target-collision resistant hash function)
that achieves PRIV-CCA for block-sources.

As pointed out above, this result does not lift generically to MMR1-CCA. Of
course, it is possible that one or both of these constructions satisfy our stronger
notion, but this requires a fresh proof.10 It remains open to instantiate MMR-
CCA in the standard model, but prior work suggests that LTDFs and ABO
LTDFs are a promising approach.

PtD[F -DOAEP] is MM+IND-CCA. Security against MM attacks is achievable
with a scheme that is both MMR1- and ANON-CCA via Theorem 3. Here
we show that, under certain restrictions, instantiating the base scheme with
F -DOAEP is MM-CCA assuming only that F is OWF secure.

Theorem 7 (PtD[F -DOAEP] is MM+IND-CCA). Let PKEAD be defined by
PtD[F -DOAEP] with parameters n, k0, k1, ρ : N → N in Fig. 7, where functions
H1, H2, and G are modeled as random oracles. Suppose that n(k) ≥ k0(k)+k1(k)
for all k. There exists an adversary B such that the following conditions hold:

– (MM-CCA) Let μ1, μ2, v : N → N be functions where μ2(k) ∈ ω(log k). Let A
be a (μ1, v)-mm-adversary and R be a (μ2, v, ρ)-r-source. Suppose that A
makes exactly qe queries to its LR oracle, qd queries to its Dec oracle, and
q1, q2, and qG to oracles H1, H2, and G respectively. Then

Advmm-cca
PKEAD,R (A, k) ≤ 2qev(k) · Advowf

F (B, k) +
5qev(k)(q1 + qd)
2μ1(k)+μ2(k)−1

+
3qev(k)(qG + qd) + v(k)(q2 + qd) + 2qd

2k0(k)−1
+

qe(q1 + qd)2

2ρ(k)−1
.

– (IND-CCA) Let A be an adversary, which makes qe queries to its LR oracle,
qd queries to its Dec oracle, and q1, q2, and qG to oracles H1, H2, and G
respectively. Then

Advind-cca
PKEAD,R(A, k) ≤ 2qe · Advowf

F (B, k)

+
6qeqd + 3qeqG + qeq2

2k0(k)−1
+

6qe(q1 + qd)2

2ρ(k)−1
.

In each case, we have timeB(k) = timeA(k) + O(qdq1qGq2).

10 In another direction, [34] consider novel notions of LTDFs for their adaptive CCA
setting.
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Let us explain this claim a bit. (The proof is in the full version [14].) First, we only
consider the case where n ≥ k0 +k1. The designers of F -DOAEP give two bounds
for its PRIV security [4, Theorem 5.2]: one for inputs of length less than k0 + k1

and another for inputs of length greater than k0 +k1. The distinction arises from
the fact that, in the former case, A’s random oracle queries consist of strings
less than k1 bits in length. The problem is that B is looking for the preimage
under f of its input y, which is a k1-bit string. The solution is a lemma that
relates the OWF advantage of B to the advantage of another inverter adversary
whose task is to return a substring of the preimage rather than the whole string
[4, Lemma A.1]. (This is closely related to the POWF notion of [25].) We focus
on the n ≥ k0 + k1 case for simplicity.

Second, restricting the associated data space to strings of length k0 ensures
that the entropy contained in the message and the random padding is encoded
by the right side of the input. This restriction is not strictly necessary to achieve
security, but it allows us to appeal directly to the OWF security of the trap-
door permutation in the analysis. It is worth noting that the associated data is
encrypted along with the message and randomizer, and that this is undesirable
if the associated data is a long string. In practice, the associated data might
actually be a hash of the associated data, but we emphasize that security is
achieved only for the hash and not the associated data itself.

Remark. In Sect. 6.1, we showed that F -EME-OAEP, a variant of F -OAEP, is
secure against MM attacks, but that its concrete security depends only on the
entropy in the coins. Here we see that adding an additional Feistel round yields
improved concrete security against MM attacks, since we are able to prove a
bound for F -DOAEP that does take the message entropy into account. This
would be the case even without restricting the messages and associated data as
we have.

Randomized-then-Deterministic. The composition of a randomized and a
deterministic encryption scheme suggested by Bellare et al. is defined in Fig. 7.
The idea is to first encrypt the message and associated data using a randomized
scheme, then encrypt the result using a deterministic scheme. Security appeals to
the randomized scheme when the coins are uniform and appeals to the determin-
istic scheme when the message-coins are only high min-entropy. The RtD[Πr,Πd]
composition has message space determined by both Πr and Πd; the associated
data is the same as for Πr.

RtD[Πr,Πd] is MMR+IND-CCA. Let PKEAD = RtD[Πr,Πd]. It is clearly IND-
CPA if Πr is IND-CPA. Bellare et al. show that PKEAD, under certain conditions,
is MMR-CPA if Πd is MMR-CPA [5, theorem 6.2]. Their argument easily extends
to the CCA setting, as shown below. In order to prove this composition works, it
is necessary that the output of the randomized scheme Πr has as much entropy
as its inputs. The following property, formalized by [5], suffices for entropy-
preserving encryption.
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Injective encryption. A PKEAD scheme PKEAD with associated data space
AD and randomness length ρ(·) is said to be injective if for every k ∈ N, (pk, sk) ∈
[PKEAD.Kgen(1k)], H ∈ AD, and (M, r), (M ′, r′) ∈ {0, 1}∗×{0, 1}ρ(k), if (M, r) �=
(M ′, r′), then PKEAD.EncH

pk(M ; r) �= PKEAD.EncH
pk(M

′ ; r′). This gives us two
useful properties: one, if the equality pattern of M and r is distinct, then so is
the equality pattern of EncH

pk(M ; r); two, if 〈M, r〉 has min-entropy μ(·), then
C = EncH

pk(M ; r) has min-entropy μ(·). Many schemes possess this property,
including ElGamal [23] and OAEP [9].

Theorem 8 (RtD[Πr,Πd] is MMR+IND-CCA). Let Πr be an injective and
randomized PKEAD scheme with associated data space AD and randomness
length ρ(·), let Πd be a deterministic PKE scheme, and let PKEAD = RtD[Πr,Πd]
as defined in Fig. 7.

– (MMR-CCA) Let μ, v : N → N be functions where μ(k) ∈ ω(log k). Let A be
a (μ, v, ρ)-mmr adversary. There exists a (μ, v, 0)-mmr adversary B such that
for every k, it holds that Advmmr-cca

PKEAD (A, k) = Advmmr-cca
Πd

(B, k), where B has
the same runtime as A.

– (IND-CCA) Let A be an adversary. There exists an adversary B such that
for every k, it holds that Advind-cca

PKEAD (A, k) = Advind-cca
Πr

(B, k), where B has
the same runtime as A.

The proof is by a simple extension of [5, Theorem 6.2]; The details appear in
the full version of this paper [14]. This result gives us a simple way to securely
realize MMR+IND-CCA encryption, but we need to show how to instantiate the
deterministic scheme Πd. The same result we have for PtD applies here; if Πd

is a u-LTDF, then RtD[Πr,Πd,] is MMR-CPA for block-sources. Again, securely
instantiating MMR-CCA in the standard model remains open.

RtD[Πr, F -DOAEP] is MM+IND-CPA. As before, we consider security against
MM attacks when the deterministic scheme is F -DOAEP. MMR-CCA security is
out of reach for this particular composition, as evidenced by an attack against
the PRIV-CCA-security of RSA-DOAEP pointed out by [4]. (Their attack can be
carried out in the MM-CCA game.) Nonetheless, we show the following:

Theorem 9 (RtD[Πr, F -DOAEP] is MMR+IND-CPA). Let F be a trapdoor
permutation generator with randomness length k1(·). Let F -DOAEP be the deter-
ministic scheme defined in Fig. 7 with parameters k0, k1, n : N → N. Let Π
be an injective PKEAD scheme with associated data space AD and randomness
length ρ(·). Let PKEAD = RtD[Π, F -DOAEP] as defined in Fig. 7, where H1, H2,
and G are random oracles.

– (MM-CPA) Let μ1, μ2, v : N → N be functions where μ2(k) ∈ ω(log k). Let A
be a (μ1, v)-mm-adversary and R be a (μ2, v, ρ)-r-source. Suppose that A
makes qe queries to its LR oracle and q1, q2, and qG to oracles H1, H2,
and G respectively. Suppose that n(k) < k0(k) + k1(k) for all k. Then there
exists an adversary B such that
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Advmm-cpa
PKEAD,R (A, k) ≤ qev(k)qG ·

√
δ2(k) + Advowf

F (B, k)

+ qeδ1(k) +
4qev(k) · q1qG

2μ1(k)+μ2(k)
+

4qev(k)(qG + q2)
2k0(k)

,

where δc(k) = 2ck1(k)−2c(n(k)−k0(k))+5 and timeB(k) = timeA(k)+O(log v(k)+
q2 log q2 + k1(k)3). Suppose that n(k) ≥ k0(k) + k1(k) for all k. Then there
exists an adversary B such that

Advmm-cpa
PKEAD,R (A, k) ≤ qev(k) · Advowf

F (B, k)

+
4qev(k) · q1qG

2μ1(k)+μ2(k)
+

4qev(k)(qG + q2)
2k0(k)

and timeB(k) = timeA(k) + O(log v(k) + q2 log q2).
– (IND-CPA) Let A be an IND-CPA adversary. There exists an IND-CPA

adversary B such that Advind-cpa
PKEAD (A, k) = Advind-cpa

Π (B, k) and B has the
same run time as A.

The first part of the claim follows from an argument built upon the proof that
RSA-DOAEP is PRIV secure [4, Theorem 5.2]. Our results differ from theirs in
the following way. In the PRIV experiment, the adversary is given the public key
only after it submits its LR query. This means that the public key has entropy
from the perspective of the adversary at this point in the game. This fact is
used to bound the advantage A gets from its random oracle queries before it
queries LR. This is why the inputs to the RO in the DOAEP construction are
prepended with the public key (See Fig. 7). Because the adversary is given the
public key in our setting, we must find another way to bound this advantage.
Once we have done this, however, we can use their argument directly to obtain
the claim. We refer the reader to the full version of this paper for the proof [14].
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Abstract. Proving tight bounds on information-theoretic indistin-
guishability is a central problem in symmetric cryptography. This paper
introduces a new method for information-theoretic indistinguishability
proofs, called “the chi-squared method”. At its core, the method requires
upper-bounds on the so-called χ2 divergence (due to Neyman and Pear-
son) between the output distributions of two systems being queries. The
method morally resembles, yet also considerably simplifies, a previous
approach proposed by Bellare and Impagliazzo (ePrint, 1999), while at
the same time increasing its expressiveness and delivering tighter bounds.

We showcase the chi-squared method on some examples. In particular:
(1) We prove an optimal bound of q/2n for the XOR of two permutations,
and our proof considerably simplifies previous approaches using the H-
coefficient method, (2) we provide improved bounds for the recently pro-
posed encrypted Davies-Meyer PRF construction by Cogliati and Seurin
(CRYPTO ’16), and (3) we give a tighter bound for the Swap-or-not
cipher by Hoang, Morris, and Rogaway (CRYPTO ’12).

Keywords: Symmetric cryptography · Information-theoretic indistin-
guishability · Provable security

1 Introduction

Information-theoretic indistinguishability proofs are fundamental tools in cryp-
tography, and take a particularly prominent role in symmetric cryptography. In
this context, it is imperative to derive bounds which are as precise as possible – a
tighter bound yields a better understanding of the actual security of the system
at hand, and avoids potential inefficiency provoked by the choice of unnecessarily
large parameters, such as the key- and block-lengths, and the number of rounds.

This paper falls within a line of works investigating generic techniques to
obtain best-possible information-theoretic bounds. We investigate a new app-
roach to indistinguishability proofs – which we refer to as the chi-squared method
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– which will help us tighten (and simplify) proofs for certain examples where
proofs so-far have evaded more classical methods, such as the H-coefficient
method.

Specifically, we apply our methodology to the analyses of three, a priori seem-
ingly unrelated, constructions – the XOR of permutations (initially studied by
Hall, Wagner, Kelsey, and Schneier [12]), the Encrypted Davies-Meyer construc-
tion by Cogliati and Seurin [10], and the Swap-or-not construction by Hoang,
Morris, and Rogaway [13]. Previously, no connections between these problems
have been observed, but we give significantly improved bounds as an application
of our framework.

Information-theoretic indistinguishability. Many cryptographic secu-
rity proofs require showing, for a distinguisher A with access to one of two
systems, S0 and S1,1 an upper bound on

AdvdistS0,S1
(A) = Pr[A(S0) = 1] − Pr[A(S1) = 1] ,

where A(Sb) denotes the probability that A outputs 1 when interacting with Sb.
While it is customary to only target the case where A is computationally

bounded, in many cases, the actual proofs themselves are concerned with the
information-theoretic case where the advantage is maximized over all distin-
guishers, only bounded by their number q of queries, but with no further restric-
tions on their time complexities. A first example in this domain is the analysis
of Feistel networks in the seminal work of Luby and Rackoff [16], whose main
step is a proof that the Feistel construction with truly random round func-
tions is information-theoretically indistinguishable from a random permutation.
(This was first pointed out explicitly by Maurer [18].) Another class of inher-
ently information-theoretic analyses – dating back to the analysis of the Even-
Mansour [11] block cipher – studies constructions in ideal models (such as the
ideal-cipher or random-permutation models), where adversaries are also only
bounded in their query-complexity.

In this context, the perhaps most widely-used proof technique is that of
bounding the probability of a certain failing condition, where S0 and S1 behave
identically, in some well-defined sense, as long as the condition is not violated.
This approach was abstracted e.g. in Maurer’s random systems [19] and Bellare-
Rogaway game playing [4] frameworks. Unfortunately, such methods are fairly
crude, and often fall short of providing tight bounds, especially for so-called
beyond-birthday security.2

More sophisticated approaches [5,23,25] directly bound the statistical dis-
tance ‖pS1,A(·) − pS0,A(·)‖, where pS1,A and pS0,A are the respective probability
distributions of the answers obtained by A, which is assumed to be determinis-
tic. This is an upper bound on AdvdistS0,S1

(A). In particular, Patarin’s H-coefficient
1 For now, it suffices to understand such systems informally as interactive objects, or

“oracles.”.
2 A not-so-widely known fact is that Maurer, Renner, and Pietrzak [20] show that this

method is actually optimal, the caveat being however that describing the suitable
tight condition may be infeasible, and the result is merely existential.
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method [25] has recently re-gained substantial popularity, mostly thanks to Chen
and Steinberger’s exposition [6]. The technique was further refined by Hoang and
Tessaro [14], who provided a “smoothed” version of the H-coefficient method,
called the “expectation method.”

A different avenue. Techniques such as the H-coefficient method heavily
exploit computing the probabilities pS1,A(Z) and pS0,A(Z) that a full sequence
of q outputs Z = (Z1, . . . , Zq) occur. Often, these probabilities are easy to
compute and compare under the condition that the sequence of outputs belongs
to a set of good transcripts. One case where such methods however do not yield
a good bound is where we are only given local information, e.g., the distance
between pS1,A(· | Zi−1) and pS0,A(· | Zi−1) for all sequences Zi−1 and all i ≥ 1,
where Zi−1 is the sequence of the first i − 1 outputs. Here, the näıve approach
is to use a so-called hybrid argument, and bound the distance as

‖pS1,A(·) − pS0,A(·)‖ ≤
q∑

i=1

E
[
‖pS0,A(· | Xi−1) − pS1,A(· | Xi−1)‖

]
, (1)

where Xi−1 is the vector of answers to A’s first i − 1 queries, according to
pS0,A(·). (Symmetrically, they can be all sampled according to pS1,A(·).) If all
summands are upper bounded by ε, we obtain a bound of qε. This is rarely
tight, and often sub-optimal. A different avenue was explored by Bellare and
Impagliazzo (BI) [2], in an unpublished note. They consider the sequence of
random variables U1, . . . , Uq, where

Ui =
pS1,A(Xi|Xi−1)
pS0,A(Xi|Xi−1)

,

and Xi−1 and Xi are sampled from A’s interaction with S0. Roughly, they show
that if |Ui − 1| is sufficiently concentrated, say |Ui − 1| ≤ ε for all i, except with
probability δ, then the bound becomes

‖pS1,A(·) − pS0,A(·)‖ ≤ O(
√

q · ελ) + e−λ2/2 + δ .

Unfortunately, the BI method is rather complex to use – it requires a careful
balancing act in order to assess the trade-off between ε and δ, and the additional
slackness due to the λ term is also problematic and appear to be an artifact of
the proof technique.3 To the best of our knowledge, the BI method was never
used elsewhere.

Our method: The Chi-squared Method. In this work, we consider a dif-
ferent version of the above method. In particular, we revisit the setting of (1),
and change our metric to measure distance between μ(·) = pS0,A(· | Zi−1) and

3 Indeed, it is known [29] that in many cases, if X and Y have statistical distance ε,
then if one takes vectors (X1, . . . , Xq) and (Y1, . . . , Yq) of q independent copies of X
and Y , respectively, the statistical distance increases as

√
qε, this seemingly showing

that the BI bound is far from tight.
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ν(·) = pS1,A(· | Zi−1). Instead of statistical distance, we will use the so-called
χ2-divergence, as proposed by Neyman and Pearson,4

χ2(μ, ν) =
∑

x

(μ(x) − ν(x))2

ν(x)
.

where the sum is over all x such that ν(x) > 0, and we assume that if μ(x) > 0,
then ν(x) > 0, too. In particular, let χ2(Zi−1) = χ2(μ; ν) as above, then, we
show that

‖pS1,A(·) − pS0,A(·)‖ ≤
√√√√1

2

q∑

i=1

E [χ2(Xi−1))] ,

where for all i = 1, . . . , q, Xi−1 is sampled according to pS1,A(·). We refer
to the method of obtaining a bound by upper bounding the q expectations
E

[
χ2(Xi−1))

]
as the chi-squared method. A crucial property that will make

calculations manageable and elegant is that the distribution of Xi−1 and the
distribution in the denominator of the χ2-divergence are with respect to differ-
ent systems. In many case, we will be able to show that E

[
χ2(Xi−1))

]
is much

smaller than the statistical distance ε – even quadratically, i.e., O(ε2) – and thus
the method gives a very good bound of the order O(

√
qε).

In contrast to the proof behind BI’s method, which relies on somewhat heavy
machinery, such as Azuma’s inequality, the proof behind the chi-squared method
is fairly simple, and relies on Pinsker’s and Jensen’s inequalities. In fact, we are
not claiming that relations between the statistical distance and χ2-divergence are
novel, but we believe this methodology to be new in the context of cryptography
indistinguishability proofs for interactive systems. Our method, as we discuss
below in the body of the paper, can also be seen as a generalization of a technique
by Chung and Vadhan [8], used in a different context.

We will apply our method to three different problems, improving (or simpli-
fying) existing bounds.

Application: XOR of random permutations. A potential drawback of
block ciphers is that their permutation structure makes them unsuitable to be
used as good pseudorandom functions, as they become distinguishable from a
truly random function when reaching q ≈ 2n/2 queries, where n is the block
length. For this reason, Hall, Wagner, Kelsey, and Schneier [12] initiated the
study of constructions of good pseudorandom functions from block ciphers
with security beyond the so-called Birthday barrier, i.e., above 2n/2. A par-
ticularly simple construction they proposed – which we refer to as the XOR
construction – transforms a permutation π : {0, 1}n → {0, 1}n into a function
f : {0, 1}n−1 → {0, 1}n by computing f(x) = π(0‖x)⊕π(1‖x), where π is meant
to be instantiated by a block cipher which is a good pseudorandom permutation,
but is treated as a random permutation in the core argument of the proof, which
we focus on.
4 This is in fact Neyman’s version—the divergence is not symmetric, and Pearson’s

version swaps the order of μ and ν.
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Lucks [17] proved this construction be secure up to roughly q = 22n/3,
whereas Bellare and Impagliazzo [2] gave a better bound of O(n)q/2n, but also
only provided a proof sketch. Patarin [24] gave an improved bound of O(q/2n),
but the proof was quite complex. This bound was further improved to q/2n in
an unpublished manuscript [26]. Patarin’s tight proof is very involved, using an
approach he refers to as “mirror theory”,5 with some claims remaining open or
unproved. (Also, as a related problem, Cogliati, Lampe, and Patarin [9] gave
weaker bounds for the case of the sum of at least three permutations.) The XOR
construction is particularly helpful as a tool for beyond-birthday security, and
has been used for example within Iwata’s CENC mode of operation [15].

Here, as an application of the chi-squared method, we give a fairly simple
proof giving us a bound of (1.5q + 3

√
q)/2n. One can argue that the improve-

ment is small (and in fact, if the bound in [26] is indeed correct, ours is slightly
worse). However, we believe the analysis of the XOR construction to be funda-
mental, and it has evaded simple proofs for nearly two decades. While Patarin’s
proof deals with precise bounds on number of permutations satisfying a given
input-output relationship, our approach is simpler in that it does not require
a fine-grained understanding of the underlying distribution, but only requires
computing certain expectations.

A related version of the construction is the one computing f ′(x) = π1(x) ⊕
π2(x) for two independent permutations π1, π2. We also analyze this variant in
Appendix A, giving a bound of q1.5/21.5n, and in the body focus on the “single-
key” variant which is somewhat harder to analyze and more efficient.

Application: The EDM construction. As another application of the chi-
squared method, we study the encrypted Davies-Meyer (EDM) construction
recently introduced by Cogliati and Seurin [10]. The construction depends on two
random permutations π and π′, and on input x outputs the value π′(π(x) ⊕ x).
Again, the goal is to show that this is a good PRF, with security beyond the
birthday barrier. In [10], a security bound showing security up to q = 22n/3

queries was shown. Using the chi-squared method, we show that security up to
q = 23n/4 is achieved. We note that in concurrent work to ours, Mennink and
Neves [21] prove that EDM security approaches 2n. Their bound uses Patarin’s
mirror theory, and has a different purpose than ours – we aim for a simpler-to-
use framework, and the question of whether our approach yields better bounds
remains open for future work.

The EDM construction is the underlying structure of a nonce-based misuse-
resistant MAC that CS proposed. CS proved that the MAC construction also
achieves 2n/3-bit of security and conjecture that it actually has n-bit security.
While our chi-squared technique seems to be able to handle the MAC construc-
tion as well, the combinatorics (also in CS’s work) will be very complex, and
thus we leave this analysis for future work.

5 In essence, what mirror theory accounts to is reducing the problem of applying the
H-coefficient method to a combinatorial problem counting solutions of a system of
linear equations with contraints on their (discrete) solutions.
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Application: Swap-or not. As our final application, we consider the swap-
or-not block cipher, introduce by Hoang, Morris, and Rogaway [13]. Swap-or-
not is a block cipher that supports an arbitrary abelian group G with size N
as its domain, and, for sufficiently many rounds r = Ω(log(N)), is meant to
with stand up to q < N/c queries, for a small constant c ≥ 2. This makes it
particularly suitable as cipher for format-preserving encryption (FPE) [3], both
because of its flexibility to support multiple domain formats, as well as for its
high security making it suitable to smaller domains. Subsequent work [22,30]
focused on boosting its security to q = N , at the cost of higher (worst-case)
round complexity. The Swap-or-not example is particularly interesting object to
analyze, as it uses a very different structure than more usual Feistel-like designs.
The original proof in [13] uses a fairly ad-hoc analysis, which however as an
intermediate step ends up upper bounding exactly the quantity E

[
χ2(Xi−1)

]
.

As a result of this, we end up saving a factor
√

N on final advantage bound.
For example, for N = 264, q = 260, and r rounds, the original analysis gives

a CCA-security advantage 290−0.415r vs one of approximately 262−0.415r for our
new analysis. Thus, if we are interested in achieving security 2−64, we would
need r ≥ 371 rounds according to the old analysis, whereas our analysis shows
that 293 rounds are sufficient.

A perspective and further related works. We conclude by stressing
that with respect to our current state of knowledge, there does not seem to be
a universal method to obtain tight bounds on information-theoretic indistin-
guishability, and ultimately the best method depends on the problem at hand.
This situation is not different than what encountered in statistics, where prov-
ing bounds on the variational distance require different tools depending on the
context.

We are certainly not the first to observe the importance of using different
metrics as a tool in cryptographic security proofs and reductions. For exam-
ple, in symmetric cryptography, Steinberger [31] used the Hellinger distance to
sharpen bounds on key-alternating ciphers. The H-coefficient technique itself can
be seen as bounding a different distance metric between distributions. Further,
cryptographic applications have often relied on using the KL-divergence, e.g., in
parallel repetition theorems [7,28], and Renyi divergences, e.g., in lattice-based
cryptography [1].

2 Preliminaries

Notation. Let n be a positive integer. We use [n] to denote the set {1, . . . , n}.
For a finite set S, we let x ←$ S denote the uniform sampling from S and
assigning the value to x. Let |x| denote the length of the string x, and for
1 ≤ i < j ≤ |x|, let x[i, j] denote the substring from the ith bit to the jth
bit (inclusive) of x. If A is an algorithm, we let y ← A(x1, . . . ; r) denote run-
ning A with randomness r on inputs x1, . . . and assigning the output to y.
We let y ←$ A(x1, . . .) be the resulting of picking r at random and letting
y ← A(x1, . . . ; r).
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PRF security. Let F : K × {0, 1}m → {0, 1}n be a family of functions. Let
Func(m,n) be the set of all functions g : {0, 1}m → {0, 1}n. For an adversary A,
define

AdvprfF (A) = Pr[K ←$ K;AFK(·) ⇒ 1] − Pr[f ←$ Func(m,n);Af(·) ⇒ 1]

as the PRF advantage of A attacking F .

Distance measures. Let μ and ν be two distributions on a finite event space
Ω. The statistical distance between μ and ν is defined as

‖μ − ν‖ =
∑

x∈Ω

max{0, μ(x) − ν(x)}.

The Kullback-Leibler (KL) divergence between μ and ν is defined as

ΔKL(μ, ν) =
∑

x∈Ω

μ(x) ln
(μ(x)

ν(x)

)
.

Note that for ΔKL to be well-defined, we need ν to have full support, i.e. Ω. The
well-known Pinsker’s inequality relates the previous two notions.

Lemma 1 (Pinsker’s inequality). Let μ and ν be two distributions on a finite
event space Ω such that ν has full support. Then

(‖μ − ν‖)2 ≤ 1
2
ΔKL(μ, ν).

Another well-known fact for KL-divergence is that it decomposes nicely for prod-
uct distributions. The chi-squared divergence between μ and ν is defined as

χ2(μ, ν) =
∑

x∈Ω

(μ(x) − ν(x))2

ν(x)
.

Note that for χ2(μ, ν) to be well-defined, again ν needs to have full support. We
remark that χ2(μ, ν) is related to the notion of collision probability. To justify
this remark, let Ω be some finite set and let M = |Ω|. Let ν be the uniform
distribution over Ω and μ be any distribution over Ω. Let X1,X2 be two i.i.d.
samples from μ. Then

χ2(μ, ν) =
∑

x∈Ω

M · (μ(x) − 1/M)2

= M · Pr[X1 = X2] − 1.

The following lemma relates the chi-squared divergence and the KL-divergence.

Lemma 2. Let Ω be a finite set, and let μ and ν be two distribution on Ω such
that ν has full support. Then

ΔKL(μ, ν) ≤ χ2(μ, ν).
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Proof. Since function ln(x) is concave, by using Jensen’s inequality,

∑

x∈Ω

μ(x) ln
(μ(x)

ν(x)

)
≤ ln

(∑

x∈Ω

(μ(x))2

ν(x)

)
. (2)

Next,

∑

x∈Ω

(μ(x) − ν(x))2

ν(x)
=

∑

x∈Ω

(μ(x))2

ν(x)
−

∑

x∈Ω

(2μ(x)− ν(x)) =
∑

x∈Ω

(μ(x))2

ν(x)
−1. (3)

Finally, using the inequality that et − 1 ≥ t for any real number t, we have

∑

x∈Ω

(μ(x))2

ν(x)
− 1 ≥ ln

(∑

x∈Ω

(μ(x))2

ν(x)

)
. (4)

From Eqs. (2)–(4), we obtain the claimed result.

3 The Chi-Squared Method

In this section, we describe the chi-squared method, which simplifies previous
results by Bellare and Impagliazzo (BI), and Chung and Vadhan (CV) [2,8].

Notational setup. Let A be an adversary that tries to distinguish two stateless
systems S1 and S0. Since we allow A to be computationally unbounded, with-
out loss of generality, assume that A is deterministic. Assume further that the
adversary always makes exactly q queries. Since the adversary is deterministic,
for any i ≤ q−1, the answers for the first i queries completely determine the first
i+1 queries. For a system S ∈ {S1,S0} and strings z1, . . . , zi, let pS,A(z1, . . . , zi)
denote the probability that when the adversary A interacts with system S, the
answers for the first i queries that it receives is z1, . . . , zi. If pS,A(z1, . . . , zi) > 0,
let pS,A(zi+1 | z1, . . . , zi) denote the conditional probability that the answer
for the (i + 1)-th query when the adversary interacts with system S is zi+1,
given that the answers for the first i queries are z1, . . . , zi respectively. For each
Z = (z1, . . . , zq), let Zi = (z1, . . . , zi), and for S ∈ {S1,S0}, let pS,A(· | Zi)
denote pS,A(· | z1, . . . , zi). We let Z0 be the empty vector, and pS,A(· | Z0) is
understood as pS,A(·).

The technique. We first give a brief intuition regarding our technique. On
the high level, the chi-squared method relates the statistical distance of a prod-
uct distribution to the expected chi-squared divergence of the components, via
Kullback-Leibler divergence. The advantage of this approach is that the term
that depends on the number of components, say q, is “under the square-root”,
because of Pinsker’s inequality. The details follow.
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For each i ≤ q and each vector Zi−1 = (z1, . . . , zi−1), define (with sligh abuse
of notation)

χ2(Zi−1) = χ2(pS1,A(· | Zi−1), pS0,A(· | Zi−1))

=
∑

zi

(
pS1,A(zi | Zi−1) − pS0,A(zi | Zi−1)

)2

pS0,A(zi | Zi−1)
,

where the sum is taken over all zi in the support of the distribution pS0,A(· |
Zi−1). We require that if pS1,A(Zi) > 0, then so is pS0,A(Zi). Thus, χ2(Zi−1)
is well-defined. Typically, in applications, S0 is the “ideal” system, and this
technical constraint is always met.

The following lemma bounds the distinguishing advantage of A.

Lemma 3. Suppose whenever pS1,A(Zi) > 0 then pS0,A(Zi) > 0. Then,

‖pS1,A(·) − pS0,A(·)‖ ≤
(1

2

q∑

i=1

E[χ2(Xi−1)]
)1/2

,

where the expectation is taken over vectors Xi−1 of the i − 1 first answers
sampled according to the interaction with S1.

Discussion. To illustrate the power of the chi-squared method, suppose that
∣∣∣
pS1,A(zi | Zi−1)
pS0,A(zi | Zi−1)

− 1
∣∣∣ ≤ ε

for every i and every Zi. If one uses the H-coefficient technique, the first step is
to give a lower bound for the ratio pS1,A(Z)/pS0,A(Z), which is

q∏

i=1

pS1,A(zi | Zi−1)
pS0,A(zi | Zi−1)

≥ (1 − ε)q ≥ 1 − εq.

Thus the distinguishing advantage is at most the statistical distance between
pS0,A(·) and pS1,A(·), which is

∑

Z

max{0, pS0,A(Z) − pS1,A(Z)} ≤
∑

Z

εq · pS0,A(Z) ≤ εq.

In contrast, from Lemma 3, the distinguishing advantage is at most ε
√

q/2,
because

χ2(Zi−1) =
∑

zi

pS0,A(zi | Zi−1)
(pS1,A(zi | Zi−1)
pS0,A(zi | Zi−1)

− 1
)2

≤
∑

zi

pS0,A(zi | Zi−1) · ε2 = ε2.

This is why the chi-square method can substantially improve the security bound
in many settings, as we’ll demonstrate in subsequent sections.
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Proof (of Lemma 3). Recall that the adversary’s distinguishing advantage is at
most the statistical distance between pS0,A(·) and pS1,A(·). On the other hand,
from Pinsker’s inequality,

2
(

‖ pS1,A(·) − pS0,A(·)‖
)2

≤
∑

Z

pS1,A(Z) ln
(pS1,A(Z)
pS0,A(Z)

)

=
∑

Z=(z1,...,zq)

pS1,A(Z) ln
( q∏

i=1

pS1,A(zi | Zi−1)
pS0,A(zi | Zi−1)

)

=
∑

Z=(z1,...,zq)

q∑

i=1

pS1,A(Z) ln
(pS1,A(zi | Zi−1)
pS0,A(zi | Zi−1)

)

=
q∑

i=1

∑

Zi=(z1,...,zi)

pS1,A(Zi−1) · pS1,A(zi | Zi−1) · ln
(pS1,A(zi | Zi−1)
pS0,A(zi | Zi−1)

)
(5)

Fix i ≤ q and Zi−1. Let μ and ν be the distributions pS1,A(· | Zi−1) and
pS0,A(· | Zi−1) respectively. Let S be the support of ν, and recall that the
support of μ is a subset of S. Notice that from Lemma 2, we have

∑

x∈S

μ(x) ln
(μ(x)

ν(x)

)
≤

∑

x∈S

(μ(x) − ν(x))2

ν(x)
. (6)

From Eqs. (5) and (6),

2
(
‖pS0,A(·) − pS1,A(·)‖

)2

≤
q∑

i=1

∑

Zi=(z1,...,zi)

pS1,A(Zi−1)

(
pS1,A(zi | Zi−1) − pS0,A(zi | Zi−1)

)2

pS0,A(zi | Zi−1)

=
q∑

i=1

∑

Zi=(z1,...,zi)

pS1,A(Zi−1) · χ2(Zi−1) =
q∑

i=1

E[χ2(Xi−1)].

This concludes the proof. �
Comparison with CV’s framework. Underneath CV’s work is, in essence,
a specialized treatment of our framework for the case that the ideal system S0

implements an ideal random function. Thus their method can be used to justify
the security of the xor of two permutations (Sect. 4) and Encrypted Davies-
Meyer PRF (Sect. 5), but it does not work for the Swap-or-Not shuffle (Sect. 6).
CV however do not realize these potential applications, and focus only on the
Generalized Leftover Hash Lemma (GLHL) of block sources. To the best of our
knowledge, CV’s method is never used for any other application, perhaps because
it is written in a specific language for the context of GLHL.

Comparison with BI’s framework. Compared to BI’s framework, ours is
better in both usability and tightness.
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– In BI’s method, the bound is a formula of two user-provided parameters.
Consequently, to use BI’s method, one has to fine-tune the parameters to
optimize the bound. Moreover, since BI’s method requires strong concentra-
tion bounds, in applications such as the xor of two permutations, one has
to make non-trivial use of martingales and Azuma’s inequality.6 In contrast,
under the chi-squared method, in Sect. 4, when we handle the xor of two
permutations, we only compute an expectation and there’s no need to use
advanced probabilistic tools.

– Due to BI’s requirement of strong concentration bounds, in some settings
the results that BI’s method obtains can be sub-optimal. The looseness in
BI’s method varies greatly among different settings. For example, in the xor
of two permutations, BI’s bound is about nq/2n, whereas ours is just q/2n.
For Encrypted Davies-Meyer PRF, BI’s method only gives 2n

3 -bit security,
which is on par with the result of Cogliati and Seurin via the H-Coefficient
technique, but our method yields 3n

4 -bit security. Finally, for the Swap-or-Not
shuffle, BI’s framework doesn’t mesh with the analysis in [13], whereas our
method can easily make use of the analysis in [13] to improve their result.

4 The XOR Construction

In this section, we consider the so called xor-construction, which was initially
proposed in [12], and which is used to obtain, efficiently, a good pseudorandom
function from a block cipher. Here, in particular, we consider a version which
only involved one permutation (at the price of a slightly smaller domain). We
analyze a two-permutation version in Appendix A.

Setup and main theorem. Let Perm(n) be the set of permutations π :
{0, 1}n → {0, 1}n. Define XOR[n] : Perm(n) × {0, 1}n−1 → {0, 1}n to be the
construction that takes a permutation π ∈ Perm(n) as a key, and on input x it
returns π(x ‖ 0) ⊕ π(x ‖ 1). Theorem 1 below gives the PRF security of XOR[n].

Theorem 1. Fix an integer n ≥ 8. For any adversary A that makes q ≤ 2n−5

queries we have

AdvprfXOR[n](A) ≤ 1.5q + 3
√

q

2n
.

Discussion. Before we proceed into the proof, we have a few remarks. First,
the bound in Theorem1 is tight, since in the real system (the one imple-
menting XOR[n]), no answer can be 0n. Hence if one simply looks for a 0n-
answer among q queries, one can distinguish the two systems with advantage
6 This fact was not explicit. Indeed, BI provided only a proof sketch, claiming a bound

O(n)q1.5/21.5n for the xor of two permutations, and their proof relies on the Chernoff
bound. However, in their application, the resulting Bernoulli random variables are
dependent, and thus a correct proof would need to use Azuma’s inequality. We made
non-trivial attempts to fix their proof using Azuma inequality, but could only recover
a bound around 20nq/2n.
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1 − (1 − 1/2n)q ≈ q/2n. Next, if we blindly use the chi-squared method, with S1

being the real system, and S0 the ideal one (the one implementing a uniformly
random function), then the bound is weak, around

√
q/2n. The reason is that,

for each i ≤ q and Zi−1 = (z1, . . . , zi−1) that the real system can produce for
its first i − 1 answers,

χ2(Zi−1) ≥
(
pS1(0

n | Zi−1) − pS0(0
n | Zi−1)

)2

pS0(0n | Zi−1)
=

1
2n

.

Hence when we sample Xi−1 according to the interaction with S1, it holds that
E[χ2(Xi−1)] ≥ 1/2n, and consequently we end up with an inferior bound

√
q/2n.

To avoid this issue, the system S0 in our proof is instead a “normalized” version
of the ideal system. It only outputs uniformly random answers in {0, 1}n\{0n}.
This normalization introduces a term q/2n in the bound, but the important point
is that this term won’t be under the square-root. We will use the chi-squared
method with S1 being the real system, and S0 being the normalized ideal system.

Proof (Theorem 1). Let S1 be the real system, and let S2 be the ideal system.
To obtain a good advantage, as explained above, we’ll first “normalize” S2 to
obtain another system S0. Let S0 be the system that implements an ideal ran-
dom function mapping {0, 1}n−1 to {0, 1}n\{0n}. Let Γgood = ({0, 1}n\{0n})q,
and Γbad = ({0, 1}n)q\Γgood. Recall that Advxor(A,n) is at most the statistical
distance between pS1,A and pS2,A. From triangle inequality,

‖pS1,A(·) − pS2,A(·)‖ ≤ ‖pS1,A(·) − pS0,A(·)‖ + ‖pS0,A(·) − pS2,A(·)‖.

Let T be the random variable for the q answers in S2. Then

‖pS0,A(·) − pS2,A(·)‖ =
∑

Z

max{0, pS2,A(Z) − pS0,A(Z)}

=
∑

Z∈Γbad

pS2,A(Z) = Pr[T ∈ Γbad]

where the second equality is due to the fact that pS2,A(Z) > pS0,A(Z) if and only
if Z ∈ Γbad, and pS0,A(Z) = 0 for every Z ∈ Γbad. Note that Pr[T ∈ Γbad] is the
probability that among q answers in S2 (the system implementing a uniformly
random function), there is at least a 0n-answer, which happens with probability
at most q/2n.

What is left is to bound ‖pS0,A(·) − pS1,A(·)‖. We shall use the chi-squared
method. Let X = (X1, . . . , Xq) be the random variable for the q answers in S1,
and let Xi = (X1, . . . , Xi) for every i ≤ q. Fix i ≤ q and fix x ∈ {0, 1}n\{0n}.
Let Yi,x be the following random variable. If Xi−1 takes values (z1, . . . , zi−1)
then Yi,x takes the value pS1,A(x | z1, . . . , zi−1). Recall that

χ2(Xi−1) =
∑

x∈{0,1}n\{0n}

(Yi,x − 1/(2n − 1))2

1/(2n − 1)

≤
∑

x∈{0,1}n\{0n}
2n · (Yi,x − 1/(2n − 1))2. (7)
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We now expand Yi,x into a more expressive and convenient formula to work with.
Let π ∈ Perm(n) be the secret key of XOR[n]. Let m1, . . . , mi be the first i queries
of the adversary. Let V1 = π(m1 ‖ 0), V2 = π(m1 ‖ 1), . . . , V2i−3 = π(mi−1 ‖ 0),
and V2i−2 = π(mi−1 ‖ 1). Regardless of how the adversary chooses its queries,
marginally, these V1, . . . , V2i−2 are simply random variables sampled uniformly
without replacement from {0, 1}n. Let S = {V1, . . . , V2i−2}. Let Di,x be the
number of pairs (u, u⊕x) such that both u and u⊕x belongs to S. Note that S
and Di,x are both random variables, and in fact functions of the random variables
V1, . . . , V2i−2. If π(mi ‖ 0) ⊕ π(mi ‖ 1) = x, there are exactly 2n − 4(i − 1) + Di,x

choices for the pair (π(mi ‖ 0), π(mi ‖ 1)):

– First, π(mi‖0) must take value in {0, 1}n\(S∪S∗), where S∗ = {u⊕x | u ∈ S}.
There are exactly 2n−|S∪S∗| = 2n−|S|−|S∗|+|S∩S∗| = 2n−4(i−1)+Di,x

choices for π(mi ‖ 0).
– Once π(mi ‖ 0) is fixed, the value of π(mi ‖ 1) is determined.

Hence

Yi,x =
2n − 4(i − 1) + Di,x

(2n − 2i + 1)(2n − 2i)
,

and thus

|Yi,x − 1/(2n − 1)| =
|(2n − 1)Di,x − 4(i − 1)2 + 2(2n − i)|

(2n − 2i + 1)(2n − 2i)(2n − 1)
.

Note that

|(2n − 1)Di,x − 4(i − 1)2 + 2(2n − i)|
2n − 1

=
∣∣∣Di,x − 4(i − 1)2

2n − 1
+ 2 − 2(i − 1)

2n − 1

∣∣∣

=
∣∣∣Di,x − 4(i − 1)2

2n
+ 2 − 2(i − 1)

2n − 1
− 4(i − 1)2

2n(2n − 1)

∣∣∣

≤
∣∣∣Di,x − 4(i − 1)2

2n

∣∣∣ + 2 − 2(i − 1)
2n − 1

− 4(i − 1)2

2n(2n − 1)

≤
∣∣∣Di,x − 4(i − 1)2

2n

∣∣∣ + 2,

where the first inequality is due to the facts that (i) |a + b| ≤ |a| + |b| for
any numbers a and b, and (ii) 2 − 2(i−1)

2n−1 − 4(i−1)2

2n(2n−1) > 0, which is in turn
due to the hypothesis that i ≤ q ≤ 2n−5, and n ≥ 8. Dividing both sides by
(2n − 2i + 1)(2n − 2i) we have
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|Yi,x − 1/(2n − 1)| ≤ |Di,x − 4(i − 1)2/2n| + 2
(2n − 2i + 1)(2n − 2i)

≤ |Di,x − 4(i − 1)2/2n| + 2
7
8 · 22n

=
8
7 · |Di,x − 4(i − 1)2/2n| + 16

7

22n

≤
8
7 · |Di,x − 4(i − 1)2/2n| + 3

22n
,

where the second inequality is also due to the hypothesis that i ≤ q ≤ 2n−5, and
n ≥ 8. Using the fact that (a + b)2 ≤ 2(a2 + b2) for every real numbers a and b,

(Yi,x − 1/(2n − 1))2 ≤
128
49 (Di,x − 4(i − 1)2/2n)2 + 18

24n

≤ 3(Di,x − 4(i − 1)2/2n)2 + 18
24n

.

From Eq. (7),

E[χ2(X i−1)] ≤
∑

x∈{0,1}n\{0n}
2n · E

[
(Yi,x − 1/(2n − 1))2

]

≤
∑

x∈{0,1}n\{0n}

18

23n
+

3

23n
E
[(

Di,x − 4(i − 1)2

2n

)2]
.

In the last formula, it is helpful to think of each Di,x as a function of
V1, . . . , V2n−2, and the expectation is taken over the choices of V1, . . . , V2n−2

sampled uniformly without replacement from {0, 1}n. We will show that for any
x ∈ {0, 1}n\{0n},

E
[(

Di,x − 4(i − 1)2

2n

)2]
≤ 4(i − 1)2

2n
, (8)

and thus

E[χ2(Xi−1)] ≤
∑

x∈{0,1}n\{0n}

( 18
23n

+
12(i − 1)2

24n

)
≤ 18

22n
+

12(i − 1)2

23n
.

Summing up, from Lemma 3,

(‖pS0,A(·) − pS1,A(·)‖)2 ≤ 1
2

q∑

i=1

E[χ2(Xi−1)]

≤ 1
2

q∑

i=1

18
22n

+
12(i − 1)2

23n

≤ 1
2

(18q

22n
+

4q3

23n

)
≤ 9q + 0.25q2

22n
,

where the last inequality is due to the hypothesis that q ≤ 2n−5.
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We now justify Eq. (8). Fix x ∈ {0, 1}n\{0n}. For each 1 ≤ j ≤ 2i − 2,
let Bj be the Bernoulli random variable such that Bj = 1 if and only if Vj ∈
{V1 ⊕ x, . . . , Vj−1 ⊕ x}. Then Di,x = 2(B1 + · · · B2i−2): if Vj = Vk ⊕ x for some
k < j, then these account for two pairs (u, v) such that v = u ⊕ x, whereas
Bk = 0 and Bj = 1. Let Sk = B1 + · · · + Bk, and Lk = Sk − k2/2n+1. We will
prove by induction that for any k ≤ 2i − 2,

E
[
(Lk)2

]
≤ 2k2

2n+1
, and

E
[
Lk

]
≥ −k

2n+1
.

This subsumes Eq. (8) as the special case for k = 2i − 2. The base case k = 1 is
vacuous, since B1 = 0. Suppose this holds for k − 1; we’ll prove that it holds for
k as well. Given B1, . . . , Bk−1, the conditional probability that Bk = 1 is exactly

p =
k − 1 − 2Sk−1

2n − (k − 1)

because it is equally likely for Vk to take any value in {0, 1}n\P , where P =
{V1, . . . , Vk−1} and 2Sk−1 is the number of elements u ∈ P such that u ⊕ x is
also in P . Moreover,

k − 1 − 2Sk−1

2n − (k − 1)
=

k − 1 − 2(Lk−1 + (k − 1)2/2n+1)
2n − (k − 1)

=
k − 1
2n

− 2Lk−1

2n − (k − 1)
.

Hence p = k−1
2n − 2Lk−1

2n−(k−1) , and thus

E[Lk] = E[Lk−1 + Bk − (2k − 1)/2n+1] = E[Lk−1 + p − (2k − 1)/2n+1]

= E
[(

1 − 2
2n − (k − 1)

)
Lk−1 − 1

2n+1

]

=
(
1 − 2

2n − (k − 1)

)
E[Lk−1] − 1

2n+1

≥
(
1 − 2

2n − (k − 1)

) (1 − k)
2n+1

− 1
2n+1

≥ −k

2n+1
,

where the second last inequality is due to the induction hypothesis. On the other
hand,

E[(Lk)2] = E
[(

Lk−1 + Bk − (2k − 1)/2n+1
)2]

= E
[
p
(
Lk−1 + 1 − (2k − 1)/2n+1

)2

+ (1 − p)
(
Lk−1 − (2k − 1)/2n+1

)2]
.(9)
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By substituting p = k−1
2n − 2Lk−1

2n−(k−1) and using some simple algebraic manipula-
tions,

p
(
Lk−1 + 1 − (2k − 1)/2n+1

)2

+ (1 − p)
(
Lk−1 − (2k − 1)/2n+1

)2

=
(
1 − 4

2n − k − 1

)
(Lk−1)2−

( 1
2n

+
2

2n − (k − 1)

)
Lk−1+

(2k − 1)2

22n+2
+

(2k − 1)
2n+1

≤ (Lk−1)2 −
( 1

2n
+

2
2n − (k − 1)

)
Lk−1 +

3(2k − 1)
2n+2

, (10)

where the last inequality is due to the fact that k ≤ 2q ≤ 2n−4. Taking expecta-
tion of both sides of Eq. (10), and using the induction hypothesis yield

E
[(

Lk

)2]
≤ 2(k − 1)2

2n+1
+

( 1
2n

+
2

2n − (k − 1)

)k − 1
2n+1

+
3(2k − 1)

2n+2
≤ 2k2

2n+1
,

where the last inequality is again due to the fact that k ≤ 2q ≤ 2n−4. This
concludes the proof. �

5 The Encrypted Davies-Meyer Construction

In this section we consider the PRF construction EDM that Cogliati and Seurin
(CS) recently propose [10]. They show that EDM achieves 2n

3 -bit security and
conjecture that it actually achieves n-bit security. Here we’ll give a 3n

4 -bit security
proof for EDM. We begin by describing the EDM construction.

Setup and results. The construction EDM[n] : (Perm(n))2 × {0, 1}n →
{0, 1}n takes two secret permutations π, π′ ∈ Perm(n) as its key, and outputs
π′(π(x) ⊕ x) on input x. Theorem 2 below shows that AdvprfEDM[n](A) ≤ 7q2

23n/2 ,

namely 3n
4 -bit security, whereas CS’s result shows that AdvprfEDM[n](A) ≤ 5q3/2

2n .
We note that a concurrent work by Mennink and Neves (MN) [21] shows that

AdvprfEDM[n](A) ≤ q
2n + ( q

t+1)
2nt for any integer t ≥ 1 and any q ≤ 2n/67t. While

MN’s bound is quite better than ours, their work relies on Patarin’s “mirror
theory” [26]. Here, our goal is to give a much simpler proof and we leave it as
an open question of whether our bound can be tightened without resorting to
mirror theory. A graphical comparison of the three bounds is shown in Fig. 1.

Theorem 2. Let n ≥ 16 be an integer. Then for any adversary A that makes
at most q queries,

AdvprfEDM[n](A) ≤ 7q2

21.5n
.

Proof. Without loss of generality, assume that q ≤ 2n−4; otherwise the claimed
bound is moot. Assume that the adversary is deterministic and never repeats a
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Fig. 1. Comparison among CS’s bound (left), ours (middle), and MN’s
(right) for n = 128. The x-axis gives the log (base 2) of q, and the y-axis gives
the security bounds. For MN’s bound, we use t = 9 as suggested by MN.

past query. For convenience of analysis, instead of working directly with the real
system (the one implementing EDM), we will “normalize” it to ensure that it
has nice behaviors even if the past answers are bad.

Specifically, let S0 be the ideal system (the one implementing a uniform random
function), and S2 be the real system. We will construct a system S1 that is the
“normalized” version of S2 as follows. The system S1 keeps a secret boolean bad
that is initially set to false. Initially, it implements S2, but if among the past
queries, there are 4 answers that are the same, then it sets bad to true. Once bad
is set, S1 instead implements S0. We now show that the advantage AdvprfEDM(A)
can be bounded via the statistical distance between pS0,A(·) and pS1,A(·), and
then bound the latter via the chi-squared method. First, recall that AdvprfEDM(A)
is at most

‖pS0,A(·) − pS2,A(·)‖ ≤ ‖pS0,A(·) − pS1,A(·)‖ + ‖pS1,A(·) − pS2,A(·)‖. (11)

Let X and X ′ be the random variables for the q-answers on S0 and S1 respec-
tively. Let Γbad be the subset of ({0, 1}n)q such that for any Z ∈ Γbad, there
are 4 components of Z that are the same. Then pS1,A(Z) = pS2,A(Z) for every
Z ∈ ({0, 1}n)q\Γbad, and thus

‖pS1,A(·) − pS2,A(·)‖ =
∑

Z∈({0,1}n)q

max{0, pS1,A(Z) − pS2,A(Z)}

=
∑

Z∈Γbad

max{0, pS1,A(Z) − pS2,A(Z)}

≤
∑

Z∈Γbad

pS1,A(Z) = Pr[X ′ ∈ Γbad].
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On the other hand, note that Pr[X ′ ∈ Γbad] − Pr[X ∈ Γbad] can’t exceed the
statistical distance between X ′ and X, which is ‖pS0,A(·) − pS1,A(·)‖. Hence

‖pS1,A(·) − pS2,A(·)‖ ≤ Pr[X ′ ∈ Γbad]
≤ Pr[X ∈ Γbad] + ‖pS0,A(·) − pS1,A(·)‖. (12)

From Eqs. (11) and (12),

‖pS0,A(·) − pS2,A(·)‖ ≤ 2‖pS0,A(·) − pS1,A(·)‖ + Pr[X ∈ Γbad]

≤ 2‖pS0,A(·) − pS1,A(·)‖ +
q4

23n

≤ 2‖pS0,A(·) − pS1,A(·)‖ +
q2

21.5n
.

Hence what’s left is to bound ‖pS0,A(·) − pS1,A(·)‖. Fix i ≤ q and Zi−1 =
(z1, . . . , zi−1) ∈ ({0, 1}n)i−1. Recall that

χ2(Zi−1) =
∑

zi∈{0,1}n

(pS1,A(zi | Zi−1) − 1/2n)2

1/2n
.

We claim that if zi ∈ {z1, . . . , zi−1} then

1
2n

− 4i

22n
≤ pS1,A(zi | Zi−1) ≤ 1

2n
+

2i

22n
, (13)

and if zi �∈ {z1, . . . , zi−1}
1
2n

− 2i2

23n
≤ pS1,A(zi | Zi−1) ≤ 1

2n
+

5i2

23n
. (14)

Consequently,

χ2(Zi−1) ≤ (i − 1)
16i2

23n
+ (2n − i + 1)

25i4

25n
≤ 18i3

23n
.

Hence from Lemma 3, if one samples vectors Xi−1 according to interaction with
system S1,

(‖pS0,A(·) − pS1,A(·)‖)2 ≤ 1
2

q∑

i=1

E[χ2(Xi−1)] ≤ 1
2

q∑

i=1

18i3

23n
≤ 9q4

23n
.

We now justify the two claims above, namely Eqs. (13) and (14). Note that if
there are 4 components of Zi−1 that are the same, then the claims are obviously
true, as pS1,A(zi | Zi−1) = 1/2n. Suppose that there are no 4 components
of Zi−1 that are the same. Let (m1, . . . , mi) be the queries that are uniquely
determined from Zi−1. Let vj = π(mj) ⊕ mj for every j ≤ i.

We first justify Eq. (13), namely zi ∈ {z1, . . . , zi−1}. First consider the upper
bound. Let S be the subset of {1, . . . , i − 1} such that zi = zj , for every j ∈ S.
Then 0 < |S| ≤ 3. Let � be an arbitrary element of S. Note that S1 outputs zi
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on query mi if and only if π(mi) = v� ⊕mi. For each fixed choice of v1, . . . , vi−1,
the conditional probability that π(mi) = v� ⊕ mi, given π(mj) = vj ⊕ mj for
every j ≤ i − 1, is either 0 or 1/(2n − i). Hence

pS1,A(zi | Zi−1) ≤ 1
2n − i

≤ 1
2n

+
2i

22n
,

where the last inequality is due to the hypothesis that i ≤ q ≤ 2n−4. Next,
consider the lower bound in Eq. (13). For each fixed choice of vj , with j ∈
{1, . . . , i − 1}\S, there are at least 2n − 4i choices for v�, out of at most 2n

possible choices, such that v� ⊕mk �= vj ⊕mj , for every j ∈ {1, . . . , i− 1}\S and
every k ∈ S ∪ {i}. For each such tuple (v1, . . . , vi−1), the conditional probability
that π(mi) = v� ⊕ mi, given π(mj) = vj ⊕ mj for every j ≤ i − 1, is exactly
1/(2n − i). Hence

pS1,A(zi | Zi−1) ≥ 2n − 4i

2n(2n − i)
≥ 1

2n
− 4i

22n
,

where the last inequality is due to the hypothesis that i ≤ q ≤ 2n−4.

We now justify Eq. (14), namely zi �∈ {z1, . . . , zi−1}. First consider the
lower bound. Let r be the number of elements in {z1, . . . , zi−1}, and thus
r ≤ i − 1. The system S1 will give an answer not in {z1, . . . , zi−1} if and only
if vi �∈ {v1, . . . , vi−1}. Note that for each x, x′ ∈ {0, 1}n\{z1, . . . , zi−1}, we have
pS1,A(x | Zi−1) = pS1,A(x′ | Zi−1), since as long as vi �∈ {v1, . . . , vi−1}, π′(vi) is
equally likely to take any value in {0, 1}n\{z1, . . . , zi−1}. Hence

pS1,A(zi | Zi−1) =
1

2n − r

(
1 −

∑

x∈{z1,...,zi−1}
pS1,A(x | Zi−1)

)

≥ 1
2n − r

(
1 −

∑

x∈{z1,...,zi−1}

1
2n

(1 + 2i/2n)
)

≥ 1
2n − r

(
1 − r

2n
(1 + 2i/2n)

)

≥ 1
2n

− 2ri

22n(2n − r)
≥ 1

2n
− 2i2

23n
.

For the upper bound of Eq. (14),

pS1,A(zi | Zi−1) =
1

2n − r

(
1 −

∑

x∈{z1,...,zi−1}
pS1,A(x | Zi−1)

)

≤ 1
2n − r

(
1 −

∑

x∈{z1,...,zi−1}

1
2n

(1 − 4i/2n)
)

≤ 1
2n − r

(
1 − r

2n
(1 − 4i/2n)

)

≤ 1
2n

+
4ri

22n(2n − r)
≤ 1

2n
+

5i2

23n
.

This concludes the proof. �
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6 The Swap-or-Not Construction

As a final application of our framework, we prove a tighter bound on the security
of the swap-or-not construction by Hoang, Morris, and Rogaway [13] using the
chi-squared method. We start by reviewing the construction, before turning to
its analysis.

The swap-or-not construction. Let r ≥ 1 be a round parameter. Let G

be a finite abelian group, for which we use additive notation to denote the
associated operation. Then, the swap-or-not construction SNr uses r functions
f1, . . . , fr : G → {0, 1} (to be chosen independently and uniformly at random in
the proof), and additionally uses r rounds keys K = (K1, . . . , Kr) ∈ G. Then,
on input X ∈ G, it computes states X0,X1, . . . , Xr ∈ G, where X0 = X, and
for i ∈ {1, . . . , r}, let Vi = max{Xi−1,Ki − Xi−1},7

Xi =
{

Xi−1 if fi(Vi) = 0 ,
Ki − Xi−1 else. . (15)

Finally, it outputs Xr. The corresponding inversion operation occurs by taking
these steps backwards. We denote the resulting construction as SNr[G].

Security notions. For a block cipher E : K × M → M and an adversary A,
the CCA advantage AdvccaE (A) of A against E is defined as

Pr[K ←$ K;AEK(·),E−1
K (·) ⇒ 1] − Pr[π ←$ Perm(M);Aπ(·),π−1(·) ⇒ 1],

where Perm(M) is the set of all permutations on M. We emphasize that here M
is an arbitrary set. If the adversary only queries its first oracle, and makes only
non-adaptive queries, then we write AdvncpaE (A) instead. We write AdvccaE (q) and
AdvncpaE (q) to denote the CCA and NCPA advantage of the best adversaries of
q queries against E, respectively.

If we have two block ciphers F and G on the same message space that are
just NCPA-secure, one can have a CCA-secure block cipher E by composing
E = F ◦G−1, meaning that EK,K′(x) = G−1

K′ (FK(x)). The following well-known
theorem by Maurer, Pietrzak, and Renner [20] bounds the CCA security of E
based on the NCPA security of F and G.

Lemma 4 ([20]). Let F and G be block ciphers on the same message space,
and let E = F ◦ G−1. Then for any q,

AdvccaE (q) ≤ AdvncpaF (q) + AdvncpaG (q). �

7 Here, max is with respect to some encoding. The key point is that Ki−(Ki−X) = X,
so this will reach a unique representative for this pair of elements of G.
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We note that Lemma 4 only holds in the information-theoretic setting where
one consider the best possible, computationally unbounded adversaries. Pietrzak
shows that this lemma does not hold in the computational setting [27].

NCPA security of Swap-or-Not. Following the route in the analysis of [13],
we’ll first consider the NCPA security of Swap-or-Not, and then use Lemma4 to
amplify it to CCA security.

Lemma 5. For any adversary A that makes at most q queries and an abelian
group G of N elements,

AdvncpaSNr[G](A) ≤ N√
r + 1

(N + q

2N

)(r+1)/2

.

Proof. We assume without loss of generality that A is deterministic, and doesn’t
make redundant queries. The adversary A interacts with the construction SNr[G]
with r secret and randomly chosen functions f1, . . . , fr : G → {0, 1}, and r keys
K = (K1, . . . , Kr). We denote by S1 the system resulting from SNr[G] and by
S0 the system resulting from interacting with the random permutation π. We
will bound

AdvncpaSNr [G](A) ≤ ‖pS1,A(·) − pS0,A(·)‖.

For each i ∈ {0, 1, . . . , q}, we define Xi to be the vector of outputs from the first
i queries of A to S1. Let mi = N − i + 1. We will use the following lemma from
[13] to bound E[χ2(Xi−1)].

Lemma 6 ([13]). For any NCPA adversary A making q queries and for any
i ≤ q,

E
( ∑

x∈G\{x1,...,xi−1}
(pS1,A(x | Xi−1) − 1/mi)2

)
≤

(
N + i

2N

)r

,

where the expectation is taken over a vector Xi−1 = (x1, . . . , xi−1) sampled
according to interaction with S1. �

Fix some Zi−1 = (z1, . . . , zi−1) such that pS0(Zi−1) > 0. Notice that the i-th
output of S0, given that the first i−1 outputs are Zi−1, is uniformly distributed
over G\{z1, . . . , zi−1}. In other words, for any x ∈ G\{z1, . . . , zi−1}.

pS0,A(x | Zi−1) = 1/mi.

Hence, from Lemma 6,

E[χ2(Xi−1)] = E
( ∑

x∈G\{x1,...,xi−1}
mi · (pS1,A(x | Xi−1) − 1/mi)2

)

≤ mi

(
N + i

2N

)r

≤ N

(
N + i

2N

)r

. (16)
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Using Lemma 3, we obtain,

(‖pS0,A(·) − pS1,A(·)‖)2 ≤ 1
2

·
q∑

i=1

E[χ2(Xi−1)]

≤ 1
2

q∑

i=1

N

(
N + i

2N

)r

≤ N2

∫ q/2N

0

(1
2

+ x
)r

dx ≤ N2

r + 1

(
N + q

2N

)r+1

.

CCA security of Swap-or-Not. Note that the inverse of SNr[G] is also
another SNr[G] (but the round functions and round-keys are bottom up). Hence
from Lemmas 4 and 5, we conclude that

Theorem 3. For any q, r ∈ N and any abelian group G of N elements,

AdvccaSN2r[G](q) ≤ 2N√
r + 1

(N + q

2N

)(r+1)/2

.

�
Note that in Theorem 3, the number of rounds in the Swap-or-Not shuffle is 2r.
The original bound in [13] is

AdvccaSN2r[G](q) ≤ 4N3/2

r + 2

(
N + q

2N

)r/2+1

.

Typically one uses r = Θ(log(N)), and thus our result improves the original
analysis by a factor of Θ(

√
N/ log(N)). We note that our result is probably not

tight, meaning that it might be possible to improve the security of Swap-or-Not
further.
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A Another Variant of the Xor of Two Permutations

Let Perm(n) be the set of permutations π : {0, 1}n → {0, 1}n. In Sect. 4 we show
that XOR[n] is a goof PRF. In this section, we consider the related construction
XOR2[n] : (Perm(n))2 × {0, 1}n → {0, 1}n that takes π, π′ ∈ Perm(n) as its key,
and outputs π(x) ⊕ π′(x) on input x. Theorem 4 below gives a bound on the
PRF security of XOR2[n].
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Theorem 4. Fix an integer n ≥ 4. For any adversary A that makes q ≤ 2n−4

queries we have

AdvprfXOR2[n](A) ≤ q1.5

21.5n
.

Proof. Let S1 be the real system, and let S0 be the ideal system. We shall use
the chi-squared method. Let X = (X1, . . . , Xq) be the random variable for the
q answers in S1, and let Xi = (X1, . . . , Xi) for every i ≤ q. Fix i ≤ q and fix
x ∈ {0, 1}n. Let Yi,x be the following random variable. If Xi−1 takes values
(z1, . . . , zi−1) then Yi,x takes the value pS1,A(x | z1, . . . , zi−1). Recall that

χ2(Xi−1) =
∑

x∈{0,1}n

(Yi,x − 1/2n)2

1/2n

=
∑

x∈{0,1}n

2n · (Yi,x − 1/2n)2. (17)

We now expand Yi,x into a more expressive and convenient formula to work
with. Let π and π′ be the secret permutations of XOR2[n]. Let m1, . . . , mi be
the first i queries of the adversary. Let Vk = π(mk) and Uk = π′(mk) for every
k ≤ i. Regardless of how the adversary chooses its queries, V1, V2, . . . are simply
random variables sampled uniformly without replacement from {0, 1}n. Likewise,
U1, U2, . . . are sampled uniformly without replacement from {0, 1}n independent
of V1, V2, . . .. Let S = {V1, . . . , Vi−1} and S′ = {U1, . . . , Ui−1}. Let Di,x be the
number of strings u such that u ∈ S and u ⊕ x ∈ S′. If π(mi) ⊕ π′(mi) = x,
there are exactly 2n − 2(i − 1) + Di,x choices for the pair (π(mi), π′(mi)):

– First, π(mi) must take value in {0, 1}n\(S∪S∗), where S∗ = {u⊕x | u ∈ S′}.
There are exactly 2n−|S∪S∗| = 2n−|S|−|S∗|+|S∩S∗| = 2n−2(i−1)+Di,x

choices for π(mi).
– Once π(mi) is fixed, the value of π′(mi) is determined.

Hence

Yi,x =
2n − 2(i − 1) + Di,x

(2n − i + 1)2
,

and thus

(Yi,x − 1/2n)2 =
(Di,x − (i − 1)2/2n)2

(2n − 2i + 1)4
≤ 2(Di,x − (i − 1)2/2n)2

24n
,

where the last inequality is due to the fact that i ≤ q ≤ 2n−4. From Eq. (17),

E[χ2(Xi−1)] ≤
∑

x∈{0,1}n

2n · E
[
(Yi,x − 1/2n)2

]

≤ 2
23n

∑

x∈{0,1}n

E
[(

Di,x − (i − 1)2

2n

)2]
.
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We will show that for any x ∈ {0, 1}n,

E
[(

Di,x − (i − 1)2

2n

)2]
≤ (i − 1)2

2n
, (18)

and thus

E[χ2(Xi−1)] ≤ 2(i − 1)2

23n
.

Summing up, from Lemma 3,

(‖pS0,A(·) − pS1,A(·)‖)2 ≤ 1
2

q∑

i=1

E[χ2(Xi−1)]

≤
q∑

i=1

(i − 1)2

23n
≤ q3

23n
.

We now justify (18). Fix x ∈ {0, 1}n. For each j ≤ i − 1, let Bj be the Bernoulli
random variable such that Bj = 1 if and only if Vj ⊕ x ∈ S′. Then Di,x =
B1+· · ·+Bi−1. Moreover, for each j ≤ i−1, we have E[Bj ] = (i−1)/2n, because
marginally, Vj is uniformly distributed in {0, 1}n independent of U1, . . . , Ui−1.
Then

E[Di,x] =
i−1∑

j=1

E[Bj ] =
(i − 1)2

2n
.

Note that

E
[(

Di,x − (i − 1)2

2n

)2]
= Var(Di,x) = E[(Di,x)2] − (E[Di,x])2

= E[(Di,x)2] − (i − 1)4

22n
. (19)

On the other hand,

(Di,x)2 =
(i−1∑

j=1

Bj

)2

= (B2
1 + · · · + B2

i−1) + 2
∑

1≤j<k≤i−1

BjBk

= (B1 + · · · + Bi−1) + 2
∑

1≤j<k≤i−1

BjBk,

where the last equality is due to the fact that R2 = R for any Bernoulli random
variable R. Taking expectation of both sides gives us

E[(Di,x)2] =
(i − 1)2

2n
+ 2

∑

1≤j<k≤i−1

E[BjBk].
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We claim that for any 1 ≤ j < k ≤ i, we have

E[BjBk] =
(i − 1)(i − 2)
2n(2n − 1)

(20)

and thus

E[(Di,x)2] =
(i − 1)2

2n
+

(i − 1)2(i − 2)2

2n(2n − 1)
.

Combing this with (19) we have

E
[(

Di,x − (i − 1)2

2n

)2]
=

(i − 1)2

2n
+

(i − 1)2(i − 2)2

2n(2n − 1)
− (i − 1)4

22n

≤ (i − 1)2

2n
.

What remains is to justify (20). Note that given S′ and Vj , we have Vk ⊕ x ∈ S′

with condition probability (i − 2)/(2n − 1) if Vj ⊕ x ∈ S′, and with conditional
probability (i − 1)/(2n − 1) otherwise. That is, given Bj , the random variable
Bk takes value 1 with conditional probability (i − 1 − Bj)/(2n − 1). Hence

E[BjBk] = E
[
Bj

(i − 1 − Bj)
2n − 1

]
=

(i − 1) · E[Bj ]
2n − 1

− E[B2
j ]

2n − 1

=
(i − 1) · E[Bj ]

2n − 1
− E[Bj ]

2n − 1
=

(i − 2)(i − 1)
2n(2n − 1)

.

This completes the proof. �
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Abstract. We prove that the 5-round iterated Even-Mansour (IEM)
construction with a non-idealized key-schedule (such as the trivial key-
schedule, where all round keys are equal) is indifferentiable from an ideal
cipher. In a separate result, we also prove that five rounds are necessary
by describing an attack against the corresponding 4-round construction.
This closes the gap regarding the exact number of rounds for which the
IEM construction with a non-idealized key-schedule is indifferentiable
from an ideal cipher, which was previously only known to lie between four
and twelve. Moreover, the security bound we achieve is comparable to
(in fact, slightly better than) the previously established 12-round bound.

Keywords: Key-alternating cipher · Iterated Even-Mansour construc-
tion · Indifferentiability

1 Introduction

Background. A large number of block ciphers are so-called key-alternating
ciphers. Such block ciphers alternatively apply two types of transformations to
the current state: the addition (usually bitwise) of a secret key and the applica-
tion of a public permutation. In more detail, an r-round key-alternating cipher
with message space {0, 1}n is a transformation of the form

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · · P2(k1 ⊕ P1(k0 ⊕ x)) · · · )), (1)

where (k0, . . . , kr) are n-bit round keys (usually derived from a master key k of
size close to n), where P1, . . . , Pr are fixed, key-independent permutations and
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where x and y are the plaintext and ciphertext, respectively. In particular, vir-
tually all1 SPNs (Substitution-Permutation Networks) have this form, including,
e.g., the AES family.

A recent trend has been to analyze this class of block ciphers in the so-called
Random Permutation Model (RPM), which models the permutations P1, . . . , Pr

as oracles that the adversary can only query (from both sides) in a black-box
way, each behaving as a perfectly random permutation. This approach allows to
assert the nonexistence of generic attacks, i.e., attacks not exploiting the partic-
ular structure of “concrete” permutations endowed with short descriptions. This
approach dates back to Even and Mansour [25] who studied the case r = 1. For
this reason, construction (1), once seen as a way to define a block cipher from
an arbitrary tuple of permutations P = (P1, . . . , Pr), is often called the iterated
Even-Mansour (IEM) construction. The general case of r ≥ 2 rounds was only
considered more than 20 years later in a series of papers [11–13,31,37,45], primar-
ily focusing on the standard security notion for block ciphers, namely pseudo-
randomness, which requires that no computationally bounded adversary with
(usually two-sided) black-box access to a permutation can distinguish whether
it is interacting with the block cipher under a random key or a perfectly ran-
dom permutation. Pseudorandomness of the IEM construction with independent
round keys is by now well understood, the security bound increasing beyond the
“birthday bound” (the original bound proved for the 1-round Even-Mansour
construction [24,25]) as the number of rounds increases [13,31].

The Ideal Cipher Model. Although pseudorandomness has been the primary
security requirement for a block cipher, in some cases this property is not enough
to establish the security of higher-level cryptosystems using the block cipher. For
example, the security of some real-world authenticated encryption protocols such
as 3GPP confidentiality and integrity protocols f8 and f9 [33] rely on the stronger
block cipher security notion of indistinguishability under related-key attacks [3,7].
Problems also arise in the context of block-cipher based hash functions [36,42]
where the adversary can control both the message and the key of the block
cipher, and hence can exploit “known-key” or “chosen-key” attacks [8,35] in
order to break the collision- or preimage-resistance of the hash function.

Hence, cryptographers have come to view a good block cipher as something
close to an ideal cipher (IC), i.e., a family of 2κ uniformly random and inde-
pendent permutations, where κ is the key-length of the block cipher. Perhaps
not surprisingly, this view turned out to be very fruitful for proving the secu-
rity of constructions based on a block cipher when the PRP assumption is not
enough [4,6,10,22,28,34,41,46], an approach often called the ideal cipher model
(ICM). This ultimately remains a heuristic approach, as one can construct (arti-
ficial) schemes that are secure in the ICM but insecure for any concrete instan-
tiation of the block cipher, similarly to the random oracle model [5,9,27]. On

1 Some SPNs do not adhere to the key-alternating abstraction because they introduce
the key at the permutation stage as well—e.g., by using keyed S-boxes.
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the other hand, a proof in the ideal cipher model is typically considered a good
indication of security from the point of view of practice.

Indifferentiability. While an IC remains unachievable in the standard model
for reasons stated above (and which boil down to basic considerations on the
amount of entropy in the system), it remains an interesting problem to “build”
ICs (secure in some provable sense) from other ideal primitives. This is precisely
the approach taken by the indifferentiability framework, introduced by Maurer
et al. [40] and popularized by Coron et al. [17]. Indifferentiability is a simulation-
based framework that helps assess whether a construction of a target primitive A
(e.g., a block cipher) from a lower-level ideal primitive B (e.g., for the IEM con-
struction, a small number of random permutations P1, . . . , Pr) is “structurally
close” to the ideal version of A (e.g., an IC). Indifferentiability comes equipped
with a composition theorem [40] which implies that a large class of protocols
(see [21,43] for restrictions) are provably secure in the ideal-B model if and only
if they are provably secure in the ideal-A model.

We note that indifferentiability does not presuppose the presence of a private
key; indeed, a number of indifferentiability proofs concern the construction of a
keyless primitive (such as a hash function, compression function or permutation)
from a lower-level primitive [1,17,32]. In the case of a block cipher, thus, the key
is “just another input” to the construction.

Previous Results. Two papers have previously explored the indifferentiability
of the IEM construction from an ideal cipher, modeling the underlying permu-
tations as random permutations. Andreeva et al. [1] showed that the 5-round
IEM construction with an idealized key-schedule (i.e., the function(s) mapping
the master key onto the round key(s) are modeled as random oracles) is indif-
ferentiable from an IC. Lampe and Seurin [38] showed that the 12-round IEM
construction with the trivial key-schedule, i.e., in which all round keys are equal,
is also indifferentiable from an IC. Moreover, both papers included impossibility
results for the indifferentiability of the 3-round IEM construction with a triv-
ial key-schedule, showing that at least four rounds must be necessary in that
context. In both settings, the question of the exact number of rounds needed to
make the IEM construction indifferentiable from an ideal cipher remained open.

Our Results. We improve both the positive and negative results for the indif-
ferentiability of the IEM construction with the trivial (and more generally, non-
idealized) key-schedule. Specifically, we show an attack on the 4-round IEM
construction, and prove that the 5-round IEM construction is indifferentiable
from an IC, in both cases for the trivial key-schedule.2 Hence, our work resolves
the question of the exact number of rounds needed for the IEM construction
with a non-idealized key-schedule to achieve indifferentiability from an IC.

2 Actually we consider a slight variant of the trivial key-schedule where the first and
last round keys are omitted, but both our negative and positive results are straight-
forward to extend to the “standard” trivial key-schedule. See Sect. 2 for a discussion.
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Our 4-round impossibility result improves on the afore-mentioned 3-round
impossibility results [1,38]. It can be seen as an extension of the attack
against the 3-round IEM with the trivial key-schedule [38]. However, unlike this
3-round attack, our 4-round attack does not merely consist in finding a tuple of
key/plaintext/ciphertext triples for the construction satisfying a so-called “eva-
sive” relation (i.e., a relation which is hard to find with only black-box access
to an ideal cipher, e.g., a triple (k, x, y) such that x ⊕ y = 0). Instead, it relies
on relations on the “internal” variables of the construction (which makes the
attack harder to analyze rigorously). We note that a simple “evasive-relation-
finding” attack against four rounds had previously been excluded by Cogliati
and Seurin [14] (in technical terms, they proved that the 4-round IEM construc-
tion is sequentially-indifferentiable from an IC, see the remark after Theorem 1
in Sect. 3) so the extra complexity of our 4-round attack is in a sense inevitable.

Our 5-round feasibility result can be seen as improving both the 5-round
result for the IEM construction with idealized key-schedules [1] (albeit see the
fine-grained metrics below) and on the 12-round feasibility result for the IEM
construction with the trivial key-schedule [38]. Our simulator runs in time O(q5),
makes O(q5) IC queries, and achieves security 241 ·q12/2n, where q is the number
of distinguisher queries. By comparison, these metrics are respectively

O(q3), O(q2), 234 · q10/2n

for the 5-round simulator of Andreeva et al. [1] with idealized key-schedule, and

O(q4), O(q4), 291 · q12/2n

for the 12-round simulator of Lampe and Seurin [38]. Hence, as far as the security
bound is concerned at least, we achieve a slight improvement over the previous
(most directly comparable) work.

A Glimpse at the Simulator. Our 5-round simulator follows the traditional
“chain detection/completion” paradigm, pioneered by Coron et al. [16,18,32]
for proving indifferentiability of the Feistel construction, which has since been
used for the IEM construction as well [1,38]. However, it is, in a sense, con-
ceptually simpler and more “systematic” than previous simulators for the IEM
construction (something we pay for by a more complex “termination” proof).
In a nutshell, our new 5-round simulator detects and completes any path of
length 3, where a path is a sequence of adjacent permutation queries “chained”
by the same key (and which might “wrap around” the ideal cipher). In contrast,
the 12-round simulator of [38] used a much more parsimonious chain detection
strategy (inherited from [16,18,32,44]) which allowed a much simpler termina-
tion argument.

Once a tentative simulator has been determined, the indifferentiability proof
usually entails two technical challenges: on the one hand, proving that the simula-
tor works hard enough to ensure that it will never be trapped in an inconsistency,
and on the other hand, proving that it does not work in more than polynomial
time. Finding the right balance between these two requirements is at the heart
of the design of a suitable simulator.
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The proof that our new 5-round simulator remains consistent with the IC
roughly follows the same ideas as in previous indifferentiability proofs. In short,
since the simulator completes all paths of length 3, at the moment the distin-
guisher makes a permutation query, only incomplete paths of length at most two
can exist. Hence any incomplete path has three “free” adjacent positions, two
of which (the ones on the edge) will be sampled at random, while the middle
one will be adapted to match the IC. The most delicate part consists in prov-
ing that no path of length 3 can appear “unexpectedly” and remain unnoticed
by the simulator (which will therefore not complete it), except with negligible
probability.

The more innovative part of our proof lies in the “termination argument”,
i.e., in proving that the simulator is efficient and that the recursive chain
detection/completion process does not “chain react” beyond a fixed polynomial
bound. As in many previous termination arguments [16,18,23,32,44], we first
observe that certain types of paths (namely those that wrap around the IC) are
only ever detected and completed if the distinguisher made the corresponding IC
query. Hence, assuming the distinguisher makes at most q queries, at most q such
paths will be triggered and completed. In virtually all previous indifferentiability
proofs, this fact easily allows to upper bound the size of permutation histories
for all other “detect zones” used by the simulator, and hence to upper bound
the total number of paths that will ever be detected and completed. (Indeed, all
of the indifferentiability results in the afore-mentioned list actually have quite
simple termination arguments!) But in the case of our 5-round simulator, this
observation only allows us to upper bound the size of the middle permutation P3,
which by itself is not sufficient to upper bound the number of other detected
paths. To push the argument further, we make some additional observations—
essentially, that every triggered path that is not a “wraparound” path associated
to some distinguisher query is uniquely (i.e., injectively) associated to one of:
(i) a pair of P3 and P1 entries, where the P1 entry was directly queried by the
distinguisher, or (ii) symmetrically, a pair of P3 and P5 entries, where the P5

entry was directly queried by the distinguisher, or (iii) a pair of P3 entries. (In
some sense, the crucial “trick” that allows to fall back on (iii) in all other cases
is the observation that every query that is left over from a previous query cycle
and that is not the direct result of a distinguisher query is in a completed path,
and this completed path contains a query at P3.) This suffices, because the dis-
tinguisher makes only q queries and because of the afore-mentioned bound on
the size of P3. In order to show that the association described above is truly
injective, a structural property of P2 and P4 is needed, namely that the table
maintaining answers of the simulator for P2 (resp. P4) never contains 4 distinct
input/output pairs (x(i), y(i)), such that

⊕
1≤i≤4(x

(i) ⊕ y(i)) = 0. Since some
queries are “adapted” to fit the IC, proving this part ends up being a source of
some tedium as well.

Related Work. Several papers have studied security properties of the
IEM construction that are stronger than pseudorandomness yet weaker than
indifferentiability, such as resistance to related-key [14,26], known-key [2,15],
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or chosen-key attacks [14,29]. A recent preprint shows that the 3-round IEM con-
struction with a (non-invertible) idealized key-schedule is indifferentiable from
an IC [30]. This complements our work by settling the problem analogous to ours
in the case of idealized key-schedules. In both cases, the main open question is
whether the concrete indifferentiability bounds (which are typically poor) can
be improved.

Organization. Preliminary definitions are given in Sect. 2. The attack against
the 4-round IEM construction is given in Sect. 3. Our 5-round simulator is
described in Sect. 4, while the indifferentiability proof is in Sect. 5.

2 Preliminaries

Throughout the paper, n will denote the block length of permutations P1, . . . , Pr

of the IEM construction and will play the role of security parameter for asymp-
totic statements. Given a finite non-empty set S, we write s ←$ S to mean that
an element is drawn uniformly at random from S and assigned to s.

A distinguisher is an oracle algorithm D with oracle access to a finite list of
oracles (O1,O2, . . .) and that outputs a single bit b, which we denote DO1,O2,... =
b or D[O1,O2, . . .] = b.

A block cipher with key space {0, 1}κ and message space {0, 1}n is a mapping
E : {0, 1}κ × {0, 1}n → {0, 1}n such that for any key k ∈ {0, 1}κ, x �→ E(k, x) is
a permutation. An ideal cipher with block length n and key length κ is a block
cipher drawn uniformly at random from the set of all block ciphers with block
length n and key length κ.

The IEM Construction. Fix integers n, r ≥ 1. Let f = (f0, . . . , fr) be a
(r + 1)-tuple of functions from {0, 1}n to {0, 1}n. The r-round iterated Even-
Mansour construction EM[n, r, f ] specifies, from any r-tuple P = (P1, . . . , Pr)
of permutations of {0, 1}n, a block cipher with n-bit keys and n-bit messages,
simply denoted EMP in all the following (parameters [n, r, f ] will always be clear
from the context), which maps a plaintext x ∈ {0, 1}n and a key k ∈ {0, 1}n to
the ciphertext defined by

EMP(k, x) = fr(k) ⊕ Pr(fr−1(k) ⊕ Pr−1(· · · P2(f1(k) ⊕ P1(f0(k) ⊕ x)) · · · )).

We say that the key-schedule is trivial when all fi’s are the identity.
Note that the first and last key additions do not play any role for indiffer-

entiability where the key is just a “public” input to the construction, much like
the plaintext/ciphertext. What provides security are the random permutations,
that remain secret for inputs that have not been queried by the attacker. So, we
will focus on a slight variant of the trivial key-schedule where f0 = fr = 0 (see
Fig. 1), but our results carry over to the trivial key-schedule (and more generally
to any non-idealized key-schedule where the fi’s are permutations on {0, 1}n).

Indifferentiability. We recall the standard definition of indifferentiability for
the IEM construction.
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Fig. 1. The 5-round iterated Even-Mansour construction with independent permuta-
tions and identical round keys. The first and last round key additions are omitted since
they do not play any role for the indifferentiability property.

Definition 1. The construction EMP with access to an r -tuple P =
(P1, . . . , Pr) of random permutations is (tS , qS , ε)-indifferentiable from an ideal
cipher IC if there exists a simulator S = S(q) such that S runs in total time tS
and makes at most qS queries to IC, and such that

∣
∣ Pr[DEMP,P = 1] − Pr[DIC,SIC

= 1]
∣
∣ ≤ ε

for every (information-theoretic) distinguisher D making at most q queries
in total.

We say that the r-round IEM construction is indifferentiable from an ideal
cipher if for any q polynomial in n, it is (tS , qS , ε)-indifferentiable from an ideal
cipher with tS , qS polynomial in n and ε negligible in n.

Remark 1. Definition 1 allows the simulator S to depend on the number of
queries q. In fact, our simulator (cf. Figs. 4 and 5) does not depend on q, but
is efficient only with high probability. In the full version of the paper [19], we
discuss an optimized implementation of our simulator that, among others, uses
knowledge of q to abort whenever its runtime exceeds the limit of a “good”
execution, thus ensuring that it is efficient with probability 1.

3 Attack Against 4-Round Simulators

We describe an attack against the 4-round IEM construction, improving pre-
vious attacks against 3 rounds [1,38]. Consider the distinguisher D whose
pseudocode is given in Fig. 2 (see also Fig. 3 for an illustration of the attack).
This distinguisher can query the permutations/simulator through the interface
Query(i, δ, z), and the EM construction/ideal cipher through interfaces Enc(k, x)
and Dec(k, y).

We prove that D has advantage close to 1/2 against any simulator making
a polynomial number of queries to the IC. More formally, we have the following
result, whose proof can be found in the full version of the paper [19]:

Theorem 1. Let S be any simulator making at most σ IC queries when interact-
ing with D. Then the advantage of D in distinguishing (EMP,P) and (IC,SIC)
is at least

1
2

− 4σ

2n
− 7

2n
.
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Fig. 2. Pseudocode of the attack against the 4-round IEM construction.

Fig. 3. Illustration of the attack against the 4-round IEM construction. The circled
dots correspond to queries made by the distinguisher to the permutations/simulator.

As an additional remark, say that a distinguisher is sequential [14,39] if it first
queries only its right interface (random permutations/simulator), and then only
its left interface (IEM construction/ideal cipher), but not its right interface
anymore. Many “natural” attacks against indifferentiability are sequential (in
particular, the attack against 5-round Feistel of [18] and the attack against 3-
round IEM of [38]), running in two phases: first, the distinguisher looks for
input/output pairs satisfying some relation which is hard to satisfy for an ideal
cipher (a so-called “evasive” relation) by querying the right interface; then, it
checks consistency of these input/output pairs by querying the left interface
(since the relation is hard to satisfy for an ideal cipher, any polynomially-
bounded simulator will fail to consistently simulate the inner permutations in
the ideal world). We note that the attack described in this section is not sequen-
tial. This does not come as a surprise since Cogliati and Seurin [14] showed
that the 4-round IEM construction is sequentially indifferentiable from an IC,
i.e., indifferentiable from an IC by any sequential distinguisher. Hence, our new
attack yields a natural separation between (full) indifferentiability and sequential
indifferentiability.



532 Y. Dai et al.

4 The 5-Round Simulator

We start with a high-level overview of how the simulator S works, deferring
the formal description in pseudocode to Sect. 4.1. For each i ∈ {1, . . . , 5}, the
simulator maintains a pair of tables Pi and P−1

i with 2n entries containing
either an n-bit value or a special symbol ⊥, allowing the simulator to keep track
of values that have already been assigned internally for the i-th permutation.
Initially, these tables are empty, meaning that Pi(x) = P−1

i (y) = ⊥ for all
x, y ∈ {0, 1}n. The simulator sets Pi(x) ← y, P−1

i (y) ← x to indicate that the
i-th permutation maps x to y. The simulator never overwrites entries in Pi or
P−1

i , and always keeps these two tables consistent, so that Pi always encodes a
“partial permutation” of {0, 1}n. We sometimes write x ∈ Pi (resp. y ∈ P−1

i ) to
mean that Pi(x) 
= ⊥ (resp. P−1

i (y) 
= ⊥).
The simulator offers a single public interface Query(i, δ, z) allowing the dis-

tinguisher to request the value Pi(z) when δ = + or P−1
i (z) when δ = − for

z ∈ {0, 1}n. Upon reception of a query (i, δ, z), the simulator checks whether
P δ

i (z) has already been defined, and returns the corresponding value if this is
the case. Otherwise, it marks the query (i, δ, z) as “pending” and starts a “chain
detection/completion” mechanism, called a permutation query cycle in the fol-
lowing, in order to maintain consistency between its answers and the IC as we
now explain. (We stress that some of the wording introduced here is informal
and that all notions will be made rigorous in the next sections.)

We say that a triple (i, xi, yi) is table-defined if Pi(xi) = yi and P−1
i (yi) = xi

(that is, the simulator internally decided that xi is mapped to yi by permutation
Pi). Let us informally call a tuple of j − i + 1 ≥ 2 table-defined permutation
queries at adjacent positions ((i, xi, yi), . . . , (j, xj , yj)) (indices taken mod 5) such
that xi+1 = yi ⊕ k if i 
= 5 and xi+1 = IC−1(k, yi) if i = 5 a “k-path of length
j + i − 1” (hence, paths might “wrap around” the IC).

The very simple idea at the heart of the simulator is that, before answering
any query of the distinguisher to some simulated permutation, it ensures that
any path of length three (or more) has been preemptively extended to a “com-
plete” path of length five ((1, x1, y1), . . . , (5, x5, y5)) compatible with the ideal
cipher (i.e., such that IC(k, x1) = y5). For this, assume that at the moment the
distinguisher makes a permutation query (i, δ, z) which is not table-defined yet
(otherwise the simulator just returns the existing answer), any path of length
three is complete. This means that any existing incomplete path has length at
most two. These length-2 paths will be called (table-defined3) 2chains in the
main body of the proof, and will play a central role. For ease of the discussion
to come, let us call the pair of adjacent positions (i, i + 1) of the table-defined
queries constituting a 2chain the type of the 2chain. (Note that as any path, a
2chain can “wrap around”, i.e., consists of two table-defined queries (5, x5, y5)
and (1, x1, y1) such that IC(k, x1) = y5, so that possible types are (1, 2), (2, 3),
(3, 4), (4, 5), and (5, 1).) Let us also call the direct input to permutation Pi+2

3 While the difference between a table-defined and table-undefined 2chain will be
important in the formal proof, we ignore this subtlety for the moment.
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and the inverse input to permutation Pi−1 when extending the 2chain in the
natural way the right endpoint and left endpoint of the 2chain, respectively.4

The “pending” permutation query (i, δ, z) asked by the distinguisher might
create new incomplete paths of length 3 (once answered by the simulator) when
combined with adjacent 2chains, that is, 2chains at position (i − 2, i − 1) for a
direct query (i,+, xi) or 2chains at position (i + 1, i + 2) for an inverse query
(i,−, yi). Hence, just after having marked the initial query of the distinguisher
as “pending”, the simulator immediately detects all 2chains that will form a
length-3 path with this pending query, and marks these 2chains as “triggered”.
Following the high-level principle of completing any length-3 path, any triggered
2chain should (by the end of the query cycle) be extended to a complete path.

To ease the discussion, let us slightly change the notation and assume that
the query that initiates the query cycle is either a forward query (i + 2,+, xi+2)
or an inverse query (i − 1,−, yi−1). In both cases, adjacent 2chains that might
be triggered are of type (i, i + 1). For each such 2chain, the simulator computes
the endpoint opposite the initial query, and marks it “pending” as well. Thus
if the initiating query was (i + 2,+, xi+2), new pending queries of the form
(i−1,−, ·) are (possibly) created, while if the initiating query was (i−1,−, yi−1),
new pending queries of the form (i + 2,+, ·) are (possibly) created. For each of
these new pending queries, the simulator recursively detects whether they form
a length-3 path with other (i, i+1)-2chains, marks these 2chains as “triggered”,
and so on. Hence, if the initiating query of the distinguisher was of the form
(i+2,+, ·) or (i−1,−, ·), all “pending” queries will be of the form (i+2,+, ·) or
(i−1,−, ·), and all triggered 2chains will be of type (i, i+1). For this reason, we
say that such a query cycle is of “type (i, i + 1)”. Note that while this recursive
process is taking place, the simulator does not assign any new values to the
partial permutations P1, . . . , P5—indeed, each pending query remains defined
only “at one end” during this phase.

Once all 2chains that must eventually be completed have been detected as
described above, the simulator starts the completion process. First, it randomly
samples the missing endpoints of all “pending” queries. (Thus, a pending query
of the form (i+2,+, xi+2) will see a value of yi+2 sampled; a pending query of the
form (i−1,−, yi−1) will see a value of xi−1 sampled. The fact that each pending
query really does have a missing endpoint to be sampled is argued in the proof.)
Secondly, for each triggered 2chain, the simulator adapts the corresponding path
by computing the corresponding input xi+3 and output yi+3 at position i + 3
and “forcing” Pi+3(xi+3) = yi+3. If an overwrite attempt occurs when trying to
assign a value for some permutation, the simulator aborts. This completes the
high-level description of the simulator’s behavior. The important characteristics
of an (i, i + 1)-query cycle are summarized in Table 1.

4 Again, there is a slight subtlety for the left endpoint of a (1, 2)-2chain and the right
endpoint of a (4, 5)-2chain since this involves the ideal cipher, but we ignore it here.
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Table 1. The five types of (i, i + 1)-query cycles of the simulator.

Type (i, i + 1) Initiating query type (i − 1,−) and (i + 2,+) Adapt at i + 3

(1,2) (5,−) and (3,+) 4

(2,3) (1,−) and (4,+) 5

(3,4) (2,−) and (5,+) 1

(4,5) (3,−) and (1,+) 2

(5,1) (4,−) and (2,+) 3

4.1 Pseudocode of the Simulator and Game Transitions

We now give the full pseudocode for the simulator, and by the same occasion
describe the intermediate worlds that will be used in the indifferentiability proof.
The distinguisher D has access to the public interface Query(i, δ, z), which in
the ideal world is answered by the simulator, and to the ideal cipher/IEM con-
struction interface, that we formally capture with two interfaces Enc(k, x) and
Dec(k, y) for encryption and decryption respectively. We will refer to queries to
any of these two interfaces as cipher queries, by opposition to permutation queries
made to interface Query(·, ·, ·). In the ideal world, cipher queries are answered by
an ideal cipher IC. We make the randomness of IC explicit through two random
tapes ic, ic−1 : {0, 1}n × {0, 1}n → {0, 1}n such that for any k ∈ {0, 1}n, ic(k, ·)
is a uniformly random permutation and ic−1(k, ·) is its inverse. Hence, in the
ideal world, a query Enc(k, x), resp. Dec(k, y), is simply answered with ic(k, x),
resp. ic−1(k, y). The randomness used by the simulator for lazily sampling per-
mutations P1, . . . , P5 when needed is also made explicit in the pseudocode
through uniformly random permutations tapes p = (p1, p−1

1 , . . . , p5, p
−1
5 ) where

pi : {0, 1}n → {0, 1}n is a uniformly random permutation and p−1
i is its inverse.

Hence, randomness in game G1 is fully captured by ic and p.
Since we will use two intermediate games, the real world will be denoted G4.

In this world, queries to Query(·, ·, ·) are simply answered with the correspond-
ing value stored in the random permutation tapes p, while queries to Enc or
Dec are answered by the IEM construction based on random permutations p.
Randomness in G4 is fully captured by p.

Intermediate Games. The indifferentiability proof relies on two intermediate
games G2 and G3. In game G2, following an approach of [32], the Check procedure
used by the simulator (see Line 30 of Fig. 4) to detect new external chains is
modified such that it does not make explicit queries to the ideal cipher; instead,
it first checks to see if the entry exists in table T recording cipher queries and if
not, returns false. In game G3, the ideal cipher is replaced with the 5-round IEM
construction that uses the same random permutation tapes p as the simulator
(and hence both the distinguisher and the simulator interact with the 5-round
IEM construction instead of the IC).
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Summing up, randomness is fully captured by ic and p in games G1 and G2,
and by p in games G3 and G4 (since the ideal cipher is replaced by the IEM
construction EMp when transitioning from G2 to G3).

Notes about the Pseudocode. The pseudocode for the public (i.e., accessible
by the distinguisher) procedures Query, Enc, and Dec is given in Fig. 4, together
with helper procedures that capture the changes from games G1 to G4. The
pseudocode for procedures that are internal to the simulator is given in Fig. 5.
Lines commented with “\\Gi” apply only to game Gi. In the pseudocode and
more generally throughout this paper, the result of arithmetic on indices in
{1, 2, 3, 4, 5} is automatically wrapped into that range (e.g., i + 1 = 1 if i = 5).
For any table or tape T and δ ∈ {+,−}, we let T δ be T if δ = + and be T −1 if
δ = −. Given a list L, L ←↩ x means that x is appended to L. If the simulator
aborts (Line 86), we assume it returns a special symbol ⊥ to the distinguisher.

Tables T and T−1 are used to record the cipher queries that have been issued
(by the distinguisher or the simulator). Note that tables Pi and P−1

i are modified
only by procedure Assign. The table entries are never overwritten, due to the
check at Line 86.

5 Proof of Indifferentiability

5.1 Main Result and Proof Overview

Our main result is the following theorem which uses the simulator described in
Sect. 4. We present an overview of the proof following the theorem statement.

Theorem 2. The 5-round iterated Even-Mansour construction EMP with ran-
dom permutations P = (P1, . . . , P5) is (tS , qS , ε)-indifferentiable from an ideal
cipher with tS = O(q5), qS = O(q5) and ε = 2 × 1012q12/2n.

Moreover, the bounds hold even if the distinguisher is allowed to make q
permutation queries in each position (i.e., it can call Query(i, ∗, ∗) q times for
each i ∈ {1, 2, 3, 4, 5}) and make q cipher queries (i.e., Enc and Dec can be called
q times in total).

Proof Structure. Our proof uses a sequence of games G1, G2, G3 and G4 as
described in Sect. 4.1, with G1 being the simulated world and G4 being the real
world.

Throughout the proof we will fix an arbitrary information-theoretic distin-
guisher D that can make a total of 6q queries: at most q cipher queries and
at most q queries to Query(i, ·, ·) for each i ∈ {1, . . . , 5}, as stipulated in
Theorem 2. (Giving the distinguisher q queries at each position gives it more
power while not significantly affecting the proof or the bounds, and the distin-
guisher’s extra power actually leads to better bounds at the final stages of the
proof [20].5) We can assume without loss of generality that D is deterministic,
5 In the randomness mapping, we will need to convert an arbitrary distinguisher to

one that “completes all paths”. If the distinguisher is only allowed q arbitrary queries
in total, the number of queries will balloon up to 6q; but if D is given extra power
as described here, the reduction only increases q to 2q.
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Fig. 4. Public procedures Query, Enc, and Dec for games G1-G4, and helper procedures
EM, EM−1, and Check. This set of procedures captures all changes from game G1 to
G4, namely: from game G1 to G2 only procedure Check is modified; from game G2 to
G3, the only change is in procedures Enc and Dec where the ideal cipher is replaced
by the IEM construction; and from game G3 to G4, only procedure Query is modified
to return directly the value read in random permutation tables p.

as any distinguisher can be derandomized using the “optimal” random tape and
achieve at least the same advantage.

Without loss of generality, we assume that D outputs 1 with higher probabil-
ity in the simulated world G1 than in the real world G4. We define the advantage
of D in distinguishing between Gi and Gj by

ΔD(Gi,Gj) := Pr
Gi

[DQuery,Enc,Dec = 1] − Pr
Gj

[DQuery,Enc,Dec = 1].

Our primary goal is to upper bound ΔD(G1,G4) (in Theorem 20), while the
secondary goals of upper bounding the simulator’s query complexity and running
time will be obtained as corollaries along the way.
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Fig. 5. Private procedures used by the simulator.
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Our proof starts with discussions about the game G2, which is in some sense
the “anchor point” of the first two game transitions. As usual, there are bad
events that might cause the simulator to fail. We will prove that bad events
are unlikely, and show properties of good executions in which bad events do
not occur. The proof of efficiency of the simulator (in good executions of G2)
is the most interesting part of this paper; the technical content is in Sect. 5.4,
and a separate high-level overview of the argument is also included immediately
below (see “Termination Argument”). During the proof of efficiency we also
obtain upper bounds on the sizes of the tables and on the number of calls to
each procedure, which will be a crucial component for the transition to G4 (see
below).

For the G1-G2 transition (found in the full version [19]), note that the only
difference between the two games is in Check. If the simulator is efficient, the
probability that the two executions diverge in a call to Check is negligible. There-
fore, if an execution of G2 is good, it is identical to the G1-execution with the
same random tapes except with negligible probability. In particular, this implies
that an execution of G1 is efficient with high probability.

For the G2-G3 transition, we use a standard randomness mapping argument.
We will map the randomness of good executions of G2 to the randomness of
non-aborting executions of G3, so that the G3-executions with the mapped ran-
domness are identical to the G2-executions with the preimage randomness. We
will show that if the randomness of a G3-execution has a preimage, then the
answers of the permutation queries output by the simulator must be compati-
ble with the random permutation tapes. Thus the G3-execution is identical to
the G4-execution with the same random tapes, where the permutation queries
are answered by the corresponding entries of the random tapes. This enables
a transition directly from G2 to G4 using the randomness mapping, which is a
small novelty of our proof. The details of this transition can be found in the full
version [19].

Termination Argument. Since the termination argument—i.e., the fact that
our simulator does not run amok with excessive path completions, except with
negligible probability—is one of the more novel aspects of our proof, we provide
a separate high-level overview of this argument here.

To start with, observe that at the moment when an (i, i+1)-path is triggered,
3 queries on the path are either already in existence or already scheduled for
future existence regardless of this event: the queries at position i and i + 1 are
already defined, while the pending query that triggers the path was already
scheduled to become defined even before the path was triggered; hence, each
triggered path only “accounts” for 2 new queries, positioned either at i+2, i+3
or at i − 1, i − 2 (= i + 3), depending on the position of the pending query.

A second observation is that...
– (1, 2)-2chains triggered by pending queries of the form (5,−, ·), and
– (4, 5)-2chains triggered by pending queries of the form (1,+, ·), and
– (5, 1)-2chains triggered by either pending queries of the form (2,+, ·) or

(4,−, ·)
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...all involve a cipher query (equivalently, a call to Check, in G2) to check the
trigger condition, and one can argue that this query must have been made by
the distinguisher itself. (Because when the simulator makes a query to Enc/Dec
that is not for the purpose of detecting paths, it is for the purpose of completing
a path.) Hence, because the distinguisher only has q cipher queries, only q such
path completions should occur in total. Moreover, these three types of path
completions are exactly those that “account” for a new (previously unscheduled)
query to be created at P3. Hence, and because the only source of new queries are
path completions and queries coming directly from the distinguisher, the size of
P3 never grows more than q + q = 2q, with high probability.

Of the remaining types of 2chain completions (i.e., those that do not involve
the presence of a previously made “wraparound” cipher query), those that con-
tribute a new entry to P2 are the following:

– (3, 4)-2chains triggered by pending queries of the form (5,+, ·)
– (4, 5)-2chains triggered by pending queries of the form (3,−, ·)

We can observe that either type of chain completion involves values y3, x4, y4,
x5 that are well-defined at the time the chain is detected. We will analyze both
types of path completion simultaneously, but dividing into two cases according
to whether (a) the distinguisher ever made the query Query(5,+, x5), or else
received the value x5 as an answer to a query of the form Query(5,−, y5), or
(b) the query P5(x5) is being defined/is already defined as the result of a path
completion. (Crucially, (a) and (b) are the only two options for x5.)

For (a), at most q such values of x5 can ever exist, since the distinguisher
makes at most q queries to Query(5, ·, ·); moreover, there are at most 2q possi-
bilities for y3, as already noted; and we have the relation

y3 ⊕ x5 = x4 ⊕ y4 (2)

from the fact that y3, x4, y4 and x5 lie on a common path. One can show that,
with high probability,

x4 ⊕ y4 
= x′
4 ⊕ y′

4

for all x4, y4, x′
4, y′

4 such that P4(x4) = y4, P4(x′
4) = y′

4 and such that x4 
= x′
4.

6

Hence, with high probability (2) has at most a unique solution x4, y4 for each
y3, x5, and scenario (a) accounts for at most 2q2 path completions (one for each
possible left-hand side of (2)) of either type above.

For (b), there must exist a separate (table-defined) 2chain (3, x′
3, y

′
3),

(4, x′
4, y

′
4) whose right endpoint is x5. (This is the case if x5 is part of a previ-

ously completed path, and is also the case if (5,+, x5) became a pending query
during the current query cycle without being the initiating query.) The relation

y′
3 ⊕ x′

4 ⊕ y′
4 = y3 ⊕ x4 ⊕ y4

6 Probabilistically speaking, this trivially holds if P4 is a random partial permutation
defined at only polynomially many points, though our proof is made more compli-
cated by the fact that P4 also contains “adapted” queries.
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(both sides are equal to x5) implies

y3 ⊕ y′
3 = x4 ⊕ y4 ⊕ x′

4 ⊕ y′
4 (3)

and, similarly to (a), one can show that (with high probability)

x4 ⊕ y4 ⊕ x′
4 ⊕ y′

4 
= X4 ⊕ Y4 ⊕ X ′
4 ⊕ Y ′

4

for all table-defined queries (4, x4, y4), . . . , (4,X ′
4, Y

′
4) with {(x4, y4), (x′

4, y
′
4)} 
=

{(X4, Y4), (X ′
4, Y

′
4)}. Thus, we have (modulo the ordering of (x4, y4) and

(x′
4, y

′
4)

7) at most one solution to the RHS of (3) for each LHS; hence, sce-
nario (b) accounts for at most 4q2 path completions8 of either type above, with
high probability.

Combining these bounds, we find that P2 never grows to size more than
2q + 2q2 + 4q2 = 6q2 + 2q with high probability, where the term of 2q accounts
for (the sum of) direct distinguisher queries to Query(2, ·, ·) and “wraparound”
path completions involving a distinguisher cipher query. Symmetrically, one can
show that P4 also has size at most 6q2 + 2q, with high probability.

One can now easily conclude the termination argument; e.g., the number of
(2, 3)- or (3, 4)-2chains that trigger path completions is each at most 2q·(6q2+2q)
(the product of the maximum size of P3 with the maximum size of P2/P4); or,
e.g., the number of (1, 2)-2chains triggered by a pending query (3,+, ·) is at most
2q · (6q2 + 2q) (the product of the maximum size of P3 with the maximum size
of P2), and so forth.

5.2 Executions of G2: Definitions and Basic Properties

We start by introducing some notation and establishing properties of executions
of G2. Then, we define a set of bad events that may occur in G2. An execution
of G2 is good if none of these bad events occur. We will prove that in good
executions of G2, the simulator does not abort and runs in polynomial time.

Queries and 2chains. The central notion for reasoning about the simulator is
the notion of 2chain, that we develop below.

Definition 2. A permutation query is a triple (i, δ, z) where 1 ≤ i ≤ 5, δ ∈
{+,−} and z ∈ {0, 1}n. We call i the position of the query, δ the direction of
the query, and the pair (i, δ) the type of the query.

Definition 3. A cipher query is a triple (δ, k, z) where δ ∈ {+,−} and k, z ∈
{0, 1}n. We call δ the direction and k the key of the cipher query.

7 As argued within the proof, this ordering issue does not actually introduce an extra
factor of two into the bounds.

8 Or more exactly, to at most 2q(2q − 1) path completions, which leads to slightly
better bounds used in the proof.
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Definition 4. A permutation query (i, δ, z) is table-defined if P δ
i (z) 
= ⊥, and

table-undefined otherwise. Similarly, a cipher query (δ, k, z) is table-defined if
T δ(k, z) 
= ⊥, and table-undefined otherwise.

For permutation queries, we may omit i and δ when clear from the context and
simply say that xi, resp. yi, is table-(un)defined to mean that (i,+, xi), resp.
(i,−, yi), is table-(un)defined.

Note that if (i,+, xi) is table-defined and Pi(xi) = yi, then necessarily
(i,−, yi) is also table-defined and P−1

i (yi) = xi. Indeed, tables Pi and P−1
i are

only modified in procedure Assign, where existing entries are never overwritten
due to the check at Line 86. Thus the two tables always encode a partial per-
mutation and its inverse, i.e., Pi(xi) = yi if and only if P−1

i (yi) = xi. In fact, we
will often say that a triple (i, xi, yi) is table-defined as a shorthand to mean that
both (i,+, xi) and (i,−, yi) are table-defined with Pi(xi) = yi, P−1

i (yi) = xi.
Similarly, if a cipher query (+, k, x) is table-defined and T (k, x) = y, then

necessarily (−, k, y) is table-defined and T−1(k, y) = x. Indeed, these tables are
only modified by calls to Enc/Dec, and always according to the IC tape ic, hence
these two tables always encode a partial cipher and its inverse, i.e., T (k, x) = y
if and only if T−1(k, y) = x. Similarly, we will say that a triple (k, x, y) is table-
defined as a shorthand to mean that both (+, k, x) and (−, k, y) are table-defined
with T (k, x) = y, T−1(k, y) = x.

Definition 5 (2chain). An inner 2chain is a tuple (i, i+1, yi, xi+1, k) such that
i ∈ {1, 2, 3, 4}, yi, xi+1 ∈ {0, 1}n, and k = yi ⊕ xi+1. A (5,1)-2chain is a tuple
(5, 1, y5, x1, k) such that y5, x1, k ∈ {0, 1}n. An (i, i + 1)-2chain refers either to
an inner or a (5, 1)-2chain, and is generically denoted (i, i + 1, yi, xi+1, k). We
call (i, i + 1) the type of the 2chain.

Remark 2. Note that for a 2chain of type (i, i + 1) with i ∈ {1, 2, 3, 4}, given yi

and xi+1, there is a unique key k such that (i, i+1, yi, xi+1, k) is a 2chain (hence
k is “redundant” in the notation), while for a 2chain of type (5, 1), the key might
be arbitrary. This convention allows to have a unified notation independently of
the type of the 2chain. See also Remark 3 below.

Definition 6. An inner 2chain (i, i + 1, yi, xi+1, k) is table-defined if both
(i,−, yi) and (i + 1,+, xi+1) are table-defined permutation queries, and table-
undefined otherwise. A (5,1)-2chain (5, 1, y5, x1, k) is table-defined if both
(5,−, y5) and (1,+, x1) are table-defined permutation queries and if T (k, x1) =
y5, and table-undefined otherwise.

Remark 3. Our definitions above ensure that whether a tuple (i, i+1, yi, xi+1, k)
is a 2chain or not is independent of the state of tables Pi/P−1

i and T/T−1. Only
the fact that a 2chain is table-defined or not depends on these tables.

Definition 7 (endpoints). Let C = (i, i + 1, yi, xi+1, k) be a table-defined
2chain. The right endpoint of C, denoted r(C) is defined as

r(C) = Pi+1(xi+1) ⊕ k if i ∈ {1, 2, 3, 5}
= T−1(k, P5(x5)) if i = 4 and (−, k, P5(x5)) is table-defined
= ⊥ if i = 4 and (−, k, P5(x5)) is table-undefined.
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The left endpoint of C, denoted �(C) is defined as

�(C) = P−1
i (yi) ⊕ k if i ∈ {2, 3, 4, 5}

= T (k, P−1
1 (y1)) if i = 1 and (+, k, P−1

1 (y1)) is table-defined
= ⊥ if i = 1 and (+, k, P−1

1 (y1)) is table-undefined.

We say that an endpoint is dummy when it is equal to ⊥, and non-dummy
otherwise. Hence, only the right endpoint of a 2chain of type (4, 5) or the left
endpoint of a 2chain of type (1, 2) can be dummy.

We sometimes identify the right and left (non-dummy) endpoints r(C),
�(C) of an (i, i + 1)-2chain C with the corresponding permutation queries
(i + 2,+, r(C)) and (i − 1,−, �(C)). In particular, if we say that r(C) or �(C)
is “table-defined” this implicitly means that the endpoint in question is non-
dummy and that the corresponding permutation query is table-defined. More
importantly—and more subtly!—when we say that one of the endpoints of C
is “table-undefined” we also implicitly mean that it is non-dummy. (Hence, an
endpoint is in exactly one of these three possible states: dummy, table-undefined,
table-defined.)

Definition 8. A complete path (with key k) is a 5-tuple of table-defined per-
mutation queries ((1, x1, y1), . . . , (5, x5, y5)) such that

yi ⊕ xi+1 = k for i = 1, 2, 3, 4 and T (k, x1) = y5. (4)

The five table-defined queries (i, xi, yi) and the five table-defined 2chains (i, i +
1, yi, xi+1, k), i ∈ {1, . . . , 5}, are said to belong to the (complete) path.

A 2chain C is also said to be complete if it belongs to some complete path.
Note that such a 2chain is table-defined; also, its endpoints r(C), �(C) are (non-
dummy and) table-defined.

Lemma 3. In any execution of G2, any 2chain belongs to at most one complete
path.

Proof. This follows from the fact that, by definition, a 2chain stipulates a value
of k, and from the fact that the tables Pi/P−1

i as well as T (k, ·)/T−1(k, ·) encode
partial permutations. �

Query Cycles. When the distinguisher makes a permutations query (i, δ, z)
that is already table-defined, the simulator returns the answer immediately. The
definition below introduces some vocabulary related to the simulator’s behavior
when the distinguisher makes a permutation query that is table-undefined.

Definition 9 (query cycle). A query cycle is the period of execution between
when the distinguisher issues a permutation query (i0, δ0, z0) which is table-
undefined and when the answer to this query is returned by the simulator. We
call (i0, δ0, z0) the initiating query of the query cycle.
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A query cycle is called an (i, i + 1)-query cycle if the initiating query is of
type (i − 1,−) or (i + 2,+) (see Lemma 4(a) and Table 1).

The portion of the query cycle consisting of calls to FindNewPaths at Line 36
is called the detection phase of the query cycle; the portion of the query cycle
consisting of calls to ReadTape at Line 37 and to AdaptPath at Line 38 is called
the completion phase of the query cycle.

Definition 10 (cipher query cycle). A cipher query cycle is the period of execu-
tion between when the distinguisher issues a table-undefined cipher query (δ, k, z)
and when the answer to this query is returned. We call (δ, k, z) the initiating
query of the cipher query cycle.

Remark 4. Note that a “query cycle” as defined above is a “permutation query
cycle” in the informal description in Sect. 4, and cipher query cycles are not a
special case of query cycles. Both query cycles and cipher query cycles require
the initiating query to be table-undefined, since otherwise the answer already
exists in the tables and is directly returned.

Definition 11 (pending queries, triggered 2chains). During a query cycle, we
say that a permutation query (i, δ, z) is pending (or that z is pending when i
and δ are clear from the context) if it is appended to list Pending at Line 35, 58,
or 76. We say that a 2chain C = (i, i + 1, yi, xi+1, k) is triggered if the simulator
appends C to the list Triggered at Line 55 or 73.

We present a few lemmas below that give some basic properties of query cycles
and will help understand the simulator’s behavior.

Lemma 4. During an (i, i + 1)-query cycle whose initiating query was
(i0, δ0, z0), the following properties always hold:

(a) Only 2chains of type (i, i + 1) are triggered.
(b) Only permutations queries of type (i − 1,−), (i + 2,+) become pending.
(c) Any 2chain that is triggered was table-defined at the beginning of the query

cycle.
(d) At the end of the detection phase, any pending query is either the initiating

query, or the endpoint of a triggered 2chain.
(e) If a 2chain C is triggered during the query cycle, and the simulator does not

abort, then C is complete at the end of the query cycle.

Proof. The proof of (a) and (b) proceeds by inspection of the pseudocode: note
that calls to FindNewPaths(i − 1,−, ·) can only add 2chains of type (i, i + 1) to
Triggered and permutations queries of type (i+2,+) to Pending, whereas calls to
FindNewPaths(i+2,+, ·) can only add 2chains of type (i, i+1) to Triggered and
permutations queries of type (i− 1,−) to Pending. Hence, if the initiating query
is of type (i−1,−) or (i+2,+), only 2chains of type (i, i+1) will ever be added
to Triggered, and only permutation queries of type (i−1,−) or (i+2,+) will ever
be added to Pending. The proof of (c) also follows easily from inspection of the
pseudocode. The sole subtlety is to note that for a (5, 1)-query cycle (where calls



544 Y. Dai et al.

to FindNewPaths are of the form (2,+, ·) and (4,−, ·)), for a (5, 1)-2chain to be
triggered one must obviously have x1 ∈ P1 and y5 ∈ P−1

5 , but also T (k, x1) = y5
since otherwise the call to Check(k, x1, y5) would return false. The proof of (d)
is also immediate, since for a permutation query to be added to Pending, it
must be either the initiating query, or computed at Line 56 or Line 74 as the
endpoint of a triggered 2chain. Finally, the proof of (e) follows from the fact
that, assuming the simulator does not abort, all values computed during the call
to AdaptPath(C) form a complete path to which C belongs.

Lemma 5. In any execution of G2, the following properties hold:

(a) During a (1, 2)-query cycle, tables T/T−1 are only modified during the detec-
tion phase by calls to Enc(·, ·) resulting from calls to Prev(1, ·, ·) at Line 56.

(b) During a (2, 3)-query cycle, tables T/T−1 are only modified during the
completion phase by calls to Enc(·, ·) resulting from calls to Prev(1, ·, ·) at
Line 83.

(c) During a (3, 4)-query cycle, tables T/T−1 are only modified during the
completion phase by calls to Dec(·, ·) resulting from calls to Next(5, ·, ·) at
Line 81.

(d) During a (4, 5)-query cycle, tables T/T−1 are only modified during the detec-
tion phase by calls to Dec(·, ·) resulting from calls to Next(5, ·, ·) at Line 74.

(e) During a (5, 1)-query cycle, tables T/T−1 are not modified.

Proof. This follows by inspection of the pseudocode. The only non-trivial point
concerns (1, 2)-, resp. (4, 5)-query cycles, since Prev(1, ·, ·), resp. Next(5, ·, ·) are
also called during the completion phase, but they are always called with argu-
ments (x1, k), resp. (y5, k) that were previously used during the detection phase,
so that this cannot modify the tables T/T−1. �

5.3 Bad Events

In order to define certain bad events that may happen during an execution of
G2, we introduce the following definitions.

Definition 12 (H, K and E). Consider a permutation query (i0, δ0, z0) or a
cipher query (δ0, k0, z0) made by the distinguisher. The following sets are defined
with respect to the state of tables when the query occurs. We define the “history”
H as the multiset consisting of the following elements (each n-bit string may
appear and be counted multiple times):

– for each table-defined permutation query (i, xi, yi), H contains corresponding
elements xi, yi and xi ⊕ yi.

– for each table-defined cipher query (k, x1, y5), H contains corresponding ele-
ments k, x1 and y5.

We define K as the multiset of all keys of 2chains triggered in the current query
cycle, and E as the multiset of non-dummy endpoints of all table-defined 2chain
plus the value z0 (the query issued by the distinguisher).
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Remark 5. When referring to sets H, K and E with respect to a query cycle, we
mean with respect to its initiating permutation query (and the state of tables at
the beginning of the query cycle). These sets are time-dependent, but they don’t
change during a query cycle (in particular, the set of triggered 2chains do not
depend on the queries that become table-defined during the query cycle). Also
note that K only concerns 2chains triggered in the query cycle, while E concerns
all 2chains that are table-defined at the beginning of the query cycle.

Definition 13 (P, P∗, A and C). Given a query cycle, let P be the multiset of
random values read by ReadTape on tapes (p1, p−1

1 , . . . , p5, p
−1
5 ) in the current

query cycle, and P∗ be the multiset of xi ⊕ pi(xi) and yi ⊕ p−1
i (yi) for each

random value pi(xi) or p−1
i (yi) read from the tapes in the current query cycle.

Let A be the multiset of the values of xi ⊕yi for each adapted query (i, xi, yi)
with i ∈ {2, 4}. Note that A is non-empty only for (4, 5)- and (1, 2)-query cycles.

Given a query cycle or a cipher query cycle, we denote C the multiset of
random values read by Enc and Dec on tapes ic or ic−1.9

We define the operations ∩, ∪ and ⊕ of two multisets S1,S2 in the natural
way: For each element e that appears s1 and s2 times (s1, s2 ≥ 0) in S1 and S2

respectively, S1 ∩S2 contains min{s1, s2} copies of e and S1 ∪S2 contains s1 +s2
copies of e. To define S1 ⊕ S2, we start from an empty multiset; for each pair of
e1 ∈ S1 and e2 ∈ S2 that appear s1 and s2 times respectively (s1, s2 ≥ 1), add
s1 · s2 copies of e1 ⊕ e2 to the multiset.

Definition 14. Let H⊕i be the multiset of values equal to the exclusive-or of
exactly i distinct elements in H, and let H⊕0 := {0}. The multisets K⊕i, E⊕i,
P⊕i, P∗⊕i, A⊕i and C⊕i are defined similarly.10

We are now ready to define the afore-mentioned “bad events” on executions of
G2.

Definition 15. BadPerm is the event that at least one of the following occurs
in a query cycle:

– P⊕i ∩ H⊕j 
= ∅ for i ≥ 1 and i + j ≤ 4;
– P∗⊕i ∩ H⊕j 
= ∅ for i ≥ 1 and i + j ≤ 4;
– P ∩ E 
= ∅, P ∩ (E ⊕ K) 
= ∅, P ∩ (K ⊕ H) 
= ∅, P ∩ (K ⊕ H⊕2) 
= ∅;
– P⊕2 ∩ K⊕2 
= ∅ or P⊕2 ∩ (H ⊕ K) 
= ∅;
– P∗ ∩ (H ⊕ E) 
= ∅.

Definition 16. BadAdapt is the event that in a (1, 2)- or (4, 5)-query cycle,
A⊕i ∩ H⊕j 
= ∅ for i ≥ 1 and i + j ≤ 4.

Definition 17. BadIC is the event that in a query cycle or in a cipher query
cycle, either C ∩ (H ∪ E) 
= ∅ or C contains two equal entries.
9 For a query cycle, these Enc/Dec queries are made by the simulator, while for a

cipher query cycle, a single call to Enc or Dec is made by the distinguisher.
10 Since H, K, E , P, P∗, A and C are multisets, two distinct elements may be equal.

Because of the distinctness requirement, we have H⊕2 �= H ⊕ H, etc.
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Note that P⊕i, P∗⊕i, A⊕i and C⊕i are random sets built from values read from
tapes (p1, p−1

1 , . . . , p5, p
−1
5 ) and ic/ic−1 during the query cycle, while H⊕i, K⊕i

and E⊕i are fixed and determined by the states of the tables at the beginning of
the query cycle.

Definition 18 (Good Executions). An execution of G2 is said to be good if
none of BadPerm, BadAdapt and BadIC occurs in the execution.

The main result of this section is to prove that the simulator does not abort
in good executions of G2. Due to space constraints, however, the proof of the
following lemma is relegated to the full version [19].

Lemma 6. The simulator does not abort in a good execution of G2.

5.4 Efficiency of the Simulator

We analyze the running time of the simulator in a good execution of G2. A large
part of this analysis consists of upper bounding the size of tables T, T−1, Pi, P

−1
i .

Since |T | = |T−1| and |Pi| = |P−1
i | we state the results only for T and Pi.

Note that during a query cycle, any triggered 2chain C can be associated with
the query that became pending just before C was triggered and, reciprocally, any
pending query (i, δ, z), except the initiating query, can be associated with the
2chain C that was triggered just before (i, δ, z) became pending. We make these
observations formal through the following definitions.

Definition 19. During a query cycle, we say that a 2chain C is triggered by
query (i, δ, z) if it is added to Triggered during a call to FindNewPaths(i, δ, z).
We say C is an (i, δ)-triggered 2chain if it is triggered by a query of type (i, δ).

By Lemma 4(b), a triggered (i, i + 1)-2chain is either (i − 1,−)- or (i + 2,+)-
triggered. For brevity, we group 4 special types of triggered 2chains under a
common name.

Definition 20. A (triggered) wrapping 2chain is either

– a (4, 5)-2chain that was (1,+)-triggered,
– a (1, 2)-2chain that was (5,−)-triggered,
– a (5, 1)-2chain that was either (2,+)- or (4,−)-triggered.

Note that wrapping 2chains are exactly those for which the simulator makes a
call to procedure Check to decide whether to trigger the 2chain or not.

Definition 21. Consider a query cycle with initiating query (i0, δ0, z0) and a
permutation query (i, δ, z) 
= (i0, δ0, z0) which becomes pending. We call the
(unique) 2chain that was triggered just before (i, δ, z) became pending the 2chain
associated with (i, δ, z).
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Note that uniqueness of the 2chain associated with a non-initiating pending
query follows easily from the checks at Lines 57 and 75.

The proof of the following lemma can be found in the full version [19]. The
proof relies on the fact that, in a good execution, an (i, i + 1)-2chain that is
complete at the beginning of a query cycle cannot be triggered again in that
cycle.

Lemma 7. Consider a good execution of G2, and assume that a complete path
exists at the end of the execution. Then at most one of the five 2chains belonging
to the complete path has been triggered during the execution.

Lemma 8. For i ∈ {1, . . . , 5}, the number of table-defined permutation queries
(i, xi, yi) during an execution of G2 can never exceed the sum of the number of

– distinguisher’s calls to Query(i, ·, ·),
– (i + 1, i + 2)-2chains that were (i + 3,+)-triggered,
– (i − 2, i − 1)-2chains that were (i − 3,−)-triggered,
– (i + 2, i + 3)-2chains that were either (i + 1,−)- or (i + 4,+)-triggered.

Proof. Entries are added to Pi/P−1
i either by a call to ReadTape during an

(i + 1, i + 2)- or an (i − 2, i − 1)-query cycle or by a call to AdaptPath during an
(i + 2, i + 3)-query cycle (see Table 1).

We first consider entries that were added by a call to ReadTape during an
(i + 1, i + 2)- or an (i − 2, i − 1)-query cycle. The number of such table-defined
queries cannot exceed the sum of the total number Ni,+ of queries of type (i,+)
that became pending during an (i − 2, i − 1)-query cycle and the total number
Ni,− of queries of type (i,−) that became pending during an (i + 1, i + 2)-
query cycle. Ni,+ cannot exceed the sum of the total number of initiating and
non-initiating pending queries of type (i,+) over all (i − 2, i − 1)-query cycles.
The total number of initiating queries of type (i,+) is at most the number of
distinguisher’s calls to Query(i,+, ·), while the total number of non-initiating
pending queries of type (i,+) over all (i − 2, i − 1)-query cycles cannot exceed
the total number of (i−3,−)-triggered 2chains (as a non-initiating pending query
of type (i,+) cannot be associated with an (i,+)-triggered (i− 2, i− 1)-2chain).
Similarly, Ni,− cannot exceed the sum of the total number of distinguisher’s
call to Query(i,−, ·) and the total number of (i − 3,−)-triggered (i + 1, i + 2)-
2chains. All in all, we see that the total number of triples (i, xi, yi) that became
table-defined because of a call to ReadTape cannot exceed the sum of

– the number of distinguisher’s calls to Query(i, ·, ·),
– the number of (i + 1, i + 2)-2chains that were (i + 3,+)-triggered,
– the number of (i − 2, i − 1)-2chains that were (i − 3,−)-triggered.

Consider now a triple (i, xi, yi) which became table-defined during a call to
AdaptPath in an (i + 2, i + 3)-query cycle. The total number of such triples
cannot exceed the total number of (i + 2, i + 3)-2chains that are triggered over
all (i + 2, i + 3)-query cycles (irrespective of whether they are (i + 1,−)- or
(i + 4,+)-triggered). The result follows. �
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The following lemma contains the standard “bootstrapping” argument intro-
duced in [18]. The proof of the lemma can be found in the full version [19].

Lemma 9. In a good execution of G2, at most q wrapping 2chains are triggered
in total.

Lemma 10. In a good execution of G2, one always has |P3| ≤ 2q.

Proof. By Lemma 8, the number of table-defined permutation queries (3, x3, y3)
(and hence the size of P3) cannot exceed the sum of

– the number of distinguisher’s calls to Query(3, ·, ·),
– the number of (4, 5)-2chains that were (1,+)-triggered,
– the number of (1, 2)-2chains that were (5,−)-triggered,
– the number of (5, 1)-2chains that were either (2,+)- or (4,−)-triggered.

The number of entries of the first type is at most q by the assumption that the
distinguisher makes at most q oracle queries to each permutation. Further note
that any 2chain mentioned for the 3 other types are wrapping 2chains. Hence,
by Lemma 9, there are at most q such entries in total, so that |P3| ≤ 2q. �

Before proceeding further, we state the following properties of good executions
which will be used in the proof of Lemma13. These properties are proven in the
full version [19].

Lemma 11. In a good execution of G2, for i ∈ {2, 4}, there do not exist two
distinct table-defined queries (i, xi, yi) and (i, x′

i, y
′
i) such that xi ⊕ yi = x′

i ⊕ y′
i.

Lemma 12. In a good execution of G2, for i ∈ {2, 4} there never exist
four distinct table-defined queries (i, x(j)

i , y
(j)
i ) with j = 1, 2, 3, 4 such that

∑4
j=1(x

(j)
i ⊕ y

(j)
i ) = 0.

Lemma 13. In a good execution of G2, the sum of the total numbers of (3,−)-
and (5,+)-triggered 2chains, resp. of (1,−)- and (3,+)-triggered 2chains, is at
most 6q2 − 2q.

Proof. Let C be a 2chain which is either (3,−)- or (5,+)-triggered during the
execution. (The case of (1,−)- or (3,+)-triggered 2chains is similar by symme-
try.) By Lemma 4(e), C belongs to a complete path ((1, x1, y1), . . . , (5, x5, y5))
at the end of the execution (since the simulator does not abort), and C =
(3, 4, y3, x4, k) if it was (5,+)-triggered, whereas C = (4, 5, y4, x5, k) if it was
(3,−)-triggered.

Note that when C was triggered, (5,+, x5) was necessarily table-defined or
pending. If C = (4, 5, y4, x5, k) was (3,−)-triggered, (5,+, x5) must be table-
defined. If C = (3, 4, y3, x4, k) was (5,+)-triggered, then it was necessarily during
the call to FindNewPaths(5,+, x5) which implies that x5 was pending.

We now distinguish two cases depending on how (5,+, x5) became table-
defined or pending. Assume first that this was because of a distinguisher’s call
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to Query(5, ·, ·). There are at most q such calls, hence there are at most q possibil-
ities for x5. There are at most 2q possibilities for y3 by Lemma 10. Moreover, for
each possible pair (y3, x5), there is at most one possibility for the table-defined
query (4, x4, y4) since otherwise this would contradict Lemma 11 (note that one
must have x4 ⊕ y4 = y3 ⊕ x5). Hence there are at most 2q2 possibilities in that
case.

Assume now that (5,+, x5) was a non-initiating pending query in the same
query cycle in which C was triggered, or became table-defined during a previous
query cycle than the one where C was triggered and for which (5,+, x5) was
neither the initiating query nor became table-defined during the ReadTape call
for the initiating query. In all cases there exists a table-defined (3, 4)-2chain C ′ =
(3, 4, y′

3, x
′
4, k

′) distinct from (3, 4, y3, x4, k) such that x5 = r(C ′) = y′
4 ⊕x′

4 ⊕ y′
3.

Since we also have x5 = y4 ⊕ x4 ⊕ y3, we obtain x4 ⊕ y4 ⊕ x′
4 ⊕ y′

4 = y3 ⊕ y′
3.

If y3 = y′
3, by Lemma 11 we have x4 = x′

4 and C ′ = (3, 4, y3, x4, k) = C,
contradicting our assumption. On the other hand, for a fixed (orderless) pair of
y3 
= y′

3, the (orderless) pair of (4, x4, y4) and (4, x′
4, y

′
4) is unique by Lemmas 11

and 12 (otherwise, one of the lemmas must be violated by the two pairs). There
are at most

(
2q
2

)
= q(2q − 1) choices of y3 and y′

3; for each pair there is at most
one (orderless) pair of (4, x4, y4) and (4, x′

4, y
′
4), so there are 2 ways to combine

the queries to form two 2chains. Moreover, C ′ must either have been completed
during a previous query cycle than the one where C is triggered, or must have
been triggered before C in the same query cycle and have made x5 pending
(in which case C was triggered by (5,+, x5)). Thus each way to combine y3,
y′
3, (4, x4, y4) and (4, x′

4, y
′
4) to form two 2chains corresponds to at most one

(3,+)- or (5,−)-triggered 2chain, so at most 4q2 −2q such 2chains are triggered.
Combining both cases, the number of (3,−)- or (5,+)-triggered 2chains is at
most 6q2 − 2q.

Lemma 14. In a good execution of G2, |P2| ≤ 6q2 and |P4| ≤ 6q2.

Proof. By Lemma 8, the number of table-defined queries (2, x2, y2) (and hence
the size of P2) cannot exceed the sum of

– the number of distinguisher’s calls to Query(2, ·, ·),
– the number of (3, 4)-2chains that were (5,+)-triggered,
– the number of (5, 1)-2chains that were (4,−)-triggered,
– the number of (4, 5)-2chains that were either (3,−)- or (1,+)-triggered.

There are at most q entries of the first type by the assumption that the distin-
guisher makes at most q oracle queries. Any 2chain mentioned for the other cases
are either wrapping, (3,−)-triggered, or (5,+)-triggered 2chains. By Lemmas 9
and 13, there are at most q + 6q2 − 2q entries of the three other types in total.
Thus, we have |P2| ≤ q + q + 6q2 − 2q = 6q2. Symmetrically, |P4| ≤ 6q2. �

Lemma 15. In a good execution of G2, at most 12q3 2chains are triggered
in total.
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Proof. Since the simulator doesn’t abort in good executions by Lemma6, any
triggered 2chain belongs to a complete path at the end of the execution. By
Lemma 7, at most one of the five 2chains belonging to a complete path is trig-
gered in a good execution. Hence, there is a bijective mapping from the set of
triggered 2chains to the set of complete paths existing at the end of the execution.
Consider all (3, 4)-2chains which are table-defined at the end of the execution.
Each such 2chain belongs to at most one complete path by Lemma 3. Hence,
the number of complete paths at the end of the execution cannot exceed the
number of table-defined (3, 4)-2chains, which by Lemmas 10 and 14 is at most
2q · 6q2 = 12q3. �

Lemma 16. In a good execution of G2, we have |T | ≤ 12q3 + q.

Proof. Recall that the table T is used to maintain the cipher queries that have
been issued. In G2, no new cipher query is issued in Check called in procedure
Trigger. So the simulator issues a table-undefined cipher query only if the path
containing the cipher query has been triggered. The number of triggered paths
is at most 12q3, while the distinguisher issues at most q cipher queries. Thus the
number of table-defined cipher queries is at most 12q3 + q. �

Lemma 17. In a good execution of G2, |P1| ≤ 12q3 + q and |P5| ≤ 12q3 + q.

Proof. By Lemma 8, the number of table-defined queries (1, x1, y1) (and hence
the size of P1) cannot exceed the sum of the number of distinguisher’s call to
Query(1, ·, ·), which is at most q, and the total number of triggered 2chains, which
is at most 12q3 by Lemma 15. Therefore, the size of |P1| is at most 12q3 + q. The
same reasoning applies to |P5|. �

The proof of the following lemma can be found in the full version. It follows in
a straightforward manner from the previous lemmas and by inspection of the
pseudocode.

Lemma 18. In good executions of G2, the simulator runs in time O(q8) and
uses O(q3) space.

Due to space limitations, we present the proofs of the remaining theorems in
the full version [19].

5.5 Probability of Good Executions

Theorem 19. An execution of G2 is good with probability at least

1 − 4.2 × 108q12/2n.

5.6 Indistinguishability of G1 and G4

Theorem 20. Any distinguisher with q queries cannot distinguish G1 from G4

with advantage more than 2 × 1012q12/2n.
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6 Final Thoughts: 4 and 6 Rounds

We conclude the paper with some more remarks on 4- and 6-round simulators,
as a means of providing some extra intuition on our work. The 6-round simulator
outlined below is also interesting for reasons of its own, as it achieves significantly
better security and efficiency than what we achieve in this paper at 5 rounds.

A Failed 4-Round Simulator. Naturally, any simulator for 4-round iterated
Even-Mansour with a non-idealized key schedule can only fail (at least, as long
as the distinguisher is allowed to be non-sequential) given the attack presented in
Sect. 3. Nonetheless, it can be interesting to review where the indifferentiability
proof breaks down if we attempt a straightforward “collapsation” of our 5-round
simulator to 4 rounds.

Recall that our 5-round simulator completes chains of length 3. E.g., a for-
ward query P3(x3) will cause a chain to be completed for each previously estab-
lished pair of queries P1(x1) = y1, P2(x2) = y2 such that y1 ⊕ x2 = y2 ⊕ x3,
and in the course of completing such a chain a new query P−1

5 (y5) will be made
and the chain will be adapted at P4. As the P−1

5 -query may trigger several fresh
chain completions of its own, the process recurses, “bouncing back” between
chains triggered by P3(·)- and P−1

5 (·)-queries. Finally, as described, the 5-round
simulator actually waits for the recursive process of chain detections to stop
before adapting all detected chains at P4, with each detected chain ultimately
being adapted at “its own” P4-query.

Similarly, one can imagine a 4-round simulator that attempts to complete all
paths of length 3 in the same recursive fashion, but that adapts paths slightly
differently: because of the missing round, a path is not adapted by “plugging val-
ues in at both ends” of a table Pi, but rather by sampling two adjacent values yi,
xi+1 non-independently such that yi⊕xi+1 = k where k is the key for the path in
question. In a nutshell, the problem with this approach is that because endpoints
are shared between paths, simultaneous systems of equations can arise that have
no solutions. (In turn, the existence of such unsolvable systems can be traced
back to configurations in which “cycles of paths” arise. Such a counterexample
can be reconstructed, e.g., from the attack of Sect. 3.)

A 6-Round Simulator. At the opposite, our 5-round simulator enjoys a rather
straightforward adaption to 6 rounds. The 6-round version holds some interest
because it has a (theoretically) simpler analysis as well as improved efficiency
and security.

The basic idea for the 6-round simulator is to detect paths of length 3 as well,
but due to the extra round some leeway is afforded, and not all paths need be
detected.11 Specifically, the 6-round simulator detects paths at positions 2–3–4,
3–4–5, 6–1–2 and 5–6–1. We shall refer to these position groups as detect zones.
For example, a forward query P5(x5) for which there exist two previous queries

11 Indeed, detecting all paths of length 3 would also be problematic for the termination
argument, given the larger number of rounds.
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P3(x3) = y3 and P4(x4) = y4 such that y3⊕x4 = y4⊕x5 would trigger a path by
virtue of the 3–4–5 detect zone. We refer to 2–3–4 and 3–4–5 as the middle detect
zones and to 6–1–2 and 5–6–1 as the outer detect zones. One can observe that
four distinct detect zones exist, each of which has two “trigger points”. (E.g.,
the 2–3–4 detect zone is triggered by queries P4(·) and P−1

2 (·).) Structurally this
makes the 6-round simulator very similar to the 8-round Feistel simulator of [20]
(which was indeed an early source of inspiration for this work).

One can then observe that path completions triggered by either of the middle
detect zones do not add queries to positions 3 and 4, while each path triggered
by an outer detect zone will require a separate distinguisher query to set up.
By a standard termination argument due to Seurin [44], this caps the number of
paths completed by the simulator to O(q2) (the product of the size of P3 and P4),
an improvement over the O(q3) bound from our 5-round simulator. Further, a
refined analysis of bad events (some of which can be omitted for the 6-round
simulator) pushes security all the way to O(q6/2n), a substantial improvement
over previous indifferentiability bounds. However, further details are deferred to
the full version of this paper.
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8. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 14

9. Black, J.: The ideal-cipher model, revisited: an uninstantiable blockcipher-based
hash function. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 328–340.
Springer, Heidelberg (2006). doi:10.1007/11799313 21

10. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 21

11. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.,
Tischhauser, E.: Key-alternating ciphers in a provable setting: encryption using
a small number of public permutations - (Extended abstract). In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 5

12. Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing the two-
round Even-Mansour cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 39–56. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 3. Full version: http://eprint.iacr.org/2014/443

13. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 19. Full version:
http://eprint.iacr.org/2013/222

14. Cogliati, B., Seurin, Y.: On the provable security of the iterated Even-
Mansour cipher against related-key and chosen-key attacks. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 584–613.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 23. Full version:
http://eprint.iacr.org/2015/069

15. Cogliati, B., Seurin, Y.: Strengthening the known-key security notion for block
ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 494–513. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-52993-5 25

16. Coron, J., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How to
build an ideal cipher: the indifferentiability of the Feistel construction. J. Cryptol.
29(1), 61–114 (2016)

17. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). doi:10.1007/11535218 26

18. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1–20. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 1

19. Dai, Y., Seurin, Y., Steinberger, J.P., Thiruvengadam, A.: Five rounds are suf-
ficient and necessary for the indifferentiability of iterated Even-Mansour. IACR
Cryptology ePrint Archive, Report 2017/042 (2017). http://eprint.iacr.org/2017/
042

http://dx.doi.org/10.1007/11761679_25
http://eprint.iacr.org/2004/331
http://dx.doi.org/10.1007/978-3-642-03356-8_14
http://dx.doi.org/10.1007/11799313_21
http://dx.doi.org/10.1007/3-540-45708-9_21
http://dx.doi.org/10.1007/978-3-642-29011-4_5
http://dx.doi.org/10.1007/978-3-662-44371-2_3
http://dx.doi.org/10.1007/978-3-662-44371-2_3
http://eprint.iacr.org/2014/443
http://dx.doi.org/10.1007/978-3-642-55220-5_19
http://eprint.iacr.org/2013/222
http://dx.doi.org/10.1007/978-3-662-46800-5_23
http://eprint.iacr.org/2015/069
http://dx.doi.org/10.1007/978-3-662-52993-5_25
http://dx.doi.org/10.1007/11535218_26
http://dx.doi.org/10.1007/978-3-540-85174-5_1
http://eprint.iacr.org/2017/042
http://eprint.iacr.org/2017/042


554 Y. Dai et al.

20. Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–
120. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 4. Full version:
http://eprint.iacr.org/2015/1069
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Abstract. At CRYPTO 2016, Cogliati and Seurin introduced the
Encrypted Davies-Meyer construction, p2(p1(x)⊕x) for two n-bit permu-
tations p1, p2, and proved security up to 22n/3. We present an improved
security analysis up to 2n/(67n). Additionally, we introduce the dual of
the Encrypted Davies-Meyer construction, p2(p1(x)) ⊕ p1(x), and prove
even tighter security for this construction: 2n/67. We finally demonstrate
that the analysis neatly generalizes to prove almost optimal security of
the Encrypted Wegman-Carter with Davies-Meyer MAC construction.
Central to our analysis is a modernization of Patarin’s mirror theorem
and an exposition of how it relates to fundamental cryptographic prob-
lems.

Keywords: PRP-to-PRF · Encrypted Davies-Meyer · Encrypted
Davies-Meyer dual · EWCDM · Optimal security

1 Introduction

Many cryptographic primitives rest on the assumption that their building blocks
behave as perfectly random functions. This is the case for, among many others,
encryption modes [4], authenticators [5,9], or random permutations [28]. Yet, for
all their utility, very few pseudorandom functions are actually available to prac-
titioners. Instead, the leading cryptographic building block is the pseudorandom
permutation, also known as the block cipher. It is therefore common practice to
employ block ciphers as stand-ins for pseudorandom functions.

To a first approximation, this solves the problem. The PRP-PRF switch [6,
8,13,21,24] tells us that a PRF can be safely replaced by a PRP up to approx-
imately 2n/2 queries. With large blocks this is often acceptable, but for light-
weight block ciphers, whose number has grown tremendously in recent years
(e.g., [1,2,11,12,18,20,22,27,46,51]), this 2n/2 birthday bound severely limits
the application range. For example, Bhargavan and Leurent [10] recently pre-
sented practical collision attacks on TLS if a 64-bit cipher is used.
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In order to save these ciphers from obsolescence, various PRP-to-PRF con-
structions have been presented that achieve security beyond the 2n/2 security
bound. We can categorize these into truncation-based solutions and xor-based
solutions.1 Here and throughout, we simply talk about permutations to refer to
block ciphers instantiated with a secret key, unless explicitly stated otherwise.

Truncation. Hall et al. [21] suggested simple truncation. Bellare and Impagli-
azzo [3] and Gilboa and Gueron [19] proved that truncating an n-bit permutation
by m < n bits has security up to approximately 2

m+n
2 queries. This result was,

as a matter of fact, already derived around 20 years earlier by Stam [47], be it
in a non-cryptographic context.

Xor of Permutations. The xor (or more generally, sum) of two permutations,

XoPp1,p2(x) = p1(x) ⊕ p2(x) , (1)

where p1, p2 are two permutations, was initially mentioned by Bellare et al. [7]
as a “natural” PRP-to-PRF method, and was later analyzed by Lucks [29] and
Bellare and Impagliazzo [3]. Patarin achieved 2n/67 security [39,40,42]. The
results are natively inherited by the construction that consists of the xor of
three or more independent permutations [16,30].

The xor of permutations evidently requires independence between p1 and
p2. If only a single permutation is to be used, one can simulate this indepen-
dence through domain separation, as suggested by Lucks [29] and Bellare and
Impagliazzo [3]:

XoP′p(x) = p(0‖x) ⊕ p(1‖x) . (2)

Patarin [40] proved that this single permutation construction achieves a similar
level of security as XoP.

A New Contender. At CRYPTO 2016, Cogliati and Seurin [17] introduced
the Encrypted Davies-Meyer (EDM) construction (see Fig. 1a):

EDMp1,p2(x) = p2(p1(x) ⊕ x) , (3)

where p1, p2 are two permutations. Cogliati and Seurin proved that EDMp1,p2

behaves like a random function up to complexity 22n/3, and actually conjectured
that 2n is possible.

EDMp1,p2 shows structural differences with the xor of permutations, and
these differences allowed Cogliati and Seurin to devise the misuse-resistant MAC
1 Another notable approach is data-dependent rekeying by Bellare et al. [7]: given a

block cipher Ek, data-dependent rekeying computes EEk(x)(x). However, this app-

roach only achieves approximately 2n/2 security, and it inherently requires rekeying
of the block cipher which could be a costly operation in practice.
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function Encrypted Wegman-Carter with Davies-Meyer (EWCDM), defined as
follows:

EWCDMh,p1,p2(ν,m) = p2(p1(ν) ⊕ ν ⊕ h(m)) , (4)

where h is an almost xor universal hash function, p1, p2 are two permutations,
and where ν denotes the nonce and m the message, which may be arbitrarily
large. Cogliati and Seurin proved that EWCDMh,p1,p2 achieves security up to
22n/3 in the nonce-respecting setting, and 2n/2 security in the nonce-misusing
setting. They likewise conjectured optimal 2n security in the nonce-respecting
setting.

1.1 Our Contribution

We improve the security of EDMp1,p2 as well as EWCDMh,p1,p2 from 22n/3, as
derived by Cogliati and Seurin [17], to 2n/(67n). Furthermore, we introduce the
dual of EDM, the Encrypted Davies-Meyer Dual (EDMD) construction:

EDMDp1,p2(x) = p2(p1(x)) ⊕ p1(x) . (5)

The dual is depicted in Fig. 1b, and as can be seen from a simple comparison
with EDMp1,p2 of Fig. 1a, the constructions are very much related, and equally
expensive. We show that the EDMD construction achieves security up to 2n/67
queries.

x p1 p2 y

h(m)

(a)

x p1 p2 y

(b)

Fig. 1. Encrypted Davies-Meyer (a) and its dual (b). The dashed line represents the
necessary addition to yield EWCDM.

Mirror Theory. The backbone of our security analysis is Patarin’s mirror the-
ory [31,36,40,43], a very powerful but rather unknown technique. We refurbish
and modernize it in Sect. 3 in order to be able to neatly apply it in our analyses.

At a basic level, the idea of Patarin’s mirror theory is to consider q ≥ 1
equations in r ≥ q unknowns, and to determine a lower bound on the number
of possible solutions to the unknowns. Some conditions naturally apply: the q
equations are of the form Pa ⊕ Pb = λ,2 where Pa and Pb are two unknowns,
and the solution to the unknowns should not contain collisions.
2 Generalizations to multiple unknowns are possible [40,43], but are irrelevant for our

work.
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Consider the following example system of equations:

Pa ⊕ Pb = λ1 , Pb ⊕ Pc = λ2 , Pd ⊕ Pe = λ3 . (6)

We have 2n choices for Pa, after which Pb is determined by λ1 and Pc by λ2.
Next, we have 2n − 3 options for Pd (as Pd should not collide with Pa, Pb, and
Pc), after which Pe is determined by λ3. This naive counting gives 2n(2n − 3)
solutions to the system of equations, but it disregards two potential problems:
(i) the choice may result in a collision in the unknowns and (ii) the system of
equations may be inconsistent in the first place. Problem (i) may occur in a
straightforward way if, for instance, λ1 = 0, as in this case the first equation
states that Pa = Pb. It could also happen in a more delicate setting, for example
if Pb = Pe (even though Pd does not collide with Pa). To understand problem
(ii), consider the system of equations of (6) appended with equation Pa⊕Pc = λ4.
From the first two equations of (6) and the appended equation we can conclude
that the system is inconsistent if λ1 ⊕ λ2 ⊕ λ4 �= 0.

If problem (i) or (ii) occurs, the system of equations naturally has no solution.
Disregarding these two problems, the fundamental mirror theorem states that if
the number of q equations is “small enough,” then the number of solutions to the
r unknowns is at least (2n)r

2nq , where (2n)r is the falling factorial. What it means for
q to be “small enough” depends on the system of equations under investigation.
We refer to Theorem 2 for the details. We will in fact use a generalization of this
theorem, where the solution to the unknowns may contain some collisions (see
Theorem 3).

The bound itself is merely a combinatorial lower bound whose relevance is not
that clear at first sight. Its strength lies in the fact that it can be nicely employed
within the H-coefficient technique by Patarin [15,33,37], and in particular, it
forms a crucial part in proving the (almost) optimal security of EDM, EWCDM,
and EDMD.

Patarin’s mirror theorem (or variants thereof) has been used already to
analyze the security of Feistel constructions and the xor of permutations by
Patarin [34–36,38–42,45], Cogliati et al. [16], and Volte et al. [48,49]. Iwata
et al. [26] recently pointed out that a result from Patarin’s mirror theorem
implies almost optimal security of CENC [25].

Security of EDM. By looking at EDMp1,p2 from a different angle, we can
prove 2n/(67n) security for the case of independent permutations p1, p2 (Sect. 4).
In more detail, we regard EDMp1,p2 as a sum of permutations in the middle,
where an evaluation y = EDMp1,p2(x) corresponds to a xor of permutations as
p1(x) ⊕ p−1

2 (y) = x. After this we only need to overcome a few technicalities in
order to apply the mirror theorem.

Security of EWCDM. Our analysis of EDMp1,p2 , namely the restructuring of
the data flows, generalizes to EWCDMh,p1,p2 almost verbatim. In more detail, we
prove in Sect. 5 that, in the nonce-respecting setting, EWCDMh,p1,p2 achieves



560 B. Mennink and S. Neves

close to optimal 2n/(67n) PRF security. The analysis straightforwardly general-
izes to MAC security. Security in the nonce-misusing setting cannot exceed the
birthday bound as derived in [17].

Security of EDMD. Similar techniques allow us to prove optimal security of
EDMD based on independent permutations. However, in Sect. 6 we observe that
its security reduces quite elegantly to the xor of two independent permutations,
XoPp1,p2 of (1). Therefore, EDMD based on independent permutations achieves
2n/67 security.

Towards a Single Permutation. Our results on EDMp1,p2 and
EWCDMh,p1,p2 satisfactorily resolve the conjecture put forward by Cogliati and
Seurin [17] up to a logarithmic factor, and our construction EDMDp1,p2 even
achieves better security than EDMp1,p2 . Cogliati and Seurin furthermore conjec-
tured that optimal security is already achieved in the identical permutation case,
i.e., where p1 = p2. We support this conjecture, and think that it also holds for
the dual, but it appears unlikely that the techniques used in this work can be
employed to prove optimal security of EDMp or EDMDp, let alone EWCDMh,p.
In Sect. 7 we give informal justification for this claim, and discuss further possi-
bilities to investigate EDMp and EDMDp.

A Dual of EWCDM? An earlier version of this article suggested, as a side
result, the dual construction

EWCDMDh,p1,p2(ν,m) = p2(p1(ν) ⊕ h(m)) ⊕ p1(ν) ⊕ h(m) , (7)

with a claimed security of 2n/(67n). However, Nandi [32] pointed out that
EWCDMDh,p1,p2 can be seen as a cascade of two non-injective functions, there-
with having twice as many collisions as expected, and can be distinguished
from random in about 2n/2 queries. Closer inspection of the security proof
revealed a very subtle issue in the application of the mirror theory, namely that
it cannot readily handle systems of equations with a conditional existence of
(in-)equalities, e.g., where two unknowns must be equal if two other unknowns
satisfy a certain condition.3 Broadly speaking, the problem is similar to (but
more subtle than) issues encountered when analyzing a single permutation vari-
ant EDMp, EDMDp, or EWCDMh,p (cf. Sect. 7). As such, we consider it to
be a non-trivial exercise to derive a dual of EWCDMh,p that provably achieves
security beyond the birthday bound. We remark that EWCDMDh,p1,p2 may still
achieve MAC security beyond the birthday bound, however, we have not con-
sidered MAC security in this work as it is beyond the scope of the article.

3 The issue does not appear for EDMp1,p2 or EWCDMh,p1,p2 . It even does not appear
for EDMDp1,p2 as the inputs to the second permutation are always distinct.
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2 Preliminaries

For a natural number n, {0, 1}n denotes the set of all n-bit strings, and we denote
by {0, 1}∗ the set of bit strings of arbitrary length. func(n) denotes the set of
all functions on {0, 1}n, and perm(n) the set of all permutations. We denote by
func(n + ∗, n) the set of all functions with domain {0, 1}n × {0, 1}∗ and range
{0, 1}n. For a natural number m ≥ n, we write (m)n = m(m− 1) · · · (m−n+1)
as the falling factorial. For a set X , x

$←− X denotes uniformly random sampling
of x from X .

2.1 Universal Hash Functions

For two non-empty sets X ,Y, a family of hash functions H = {h : X → Y} is
said to be ε-AXU (almost xor universal) if for any distinct x, x′ ∈ X and y ∈ Y,
we have

Pr
[
h

$←− H : h(x) ⊕ h(x′) = y
]

≤ ε .

2.2 Distinguishers

A distinguisher D is a computationally unbounded adversary that is given adap-
tive access to an oracle O and outputs a bit 0/1. For two oracles O and P with
identical interface, we denote the distinguishing advantage of D by

ΔD(O ; P) = Pr
[
DO ⇒ 1

]
− Pr

[
DP ⇒ 1

]
. (8)

Throughout this work, we only consider computationally unbounded distinguish-
ers whose complexities are solely measured by the number of queries to the oracle.
Without loss of generality, it suffices to only focus on deterministic distinguish-
ers, as for any probabilistic distinguisher there exists a deterministic one with
at least the same success probability, and we will assume so henceforth.

2.3 H-Coefficient Technique

Central to our analysis will be the H-coefficient technique by Patarin [33,37], and
as a matter of fact, the mirror theory of Sect. 3 will be a useful tool within this
technique. We will follow the renewed description of Chen and Steinberger [15].

Consider two oracles O and P, and an information-theoretic deterministic
distinguisher D with query complexity q that tries to distinguish both oracles:
ΔD(O ; P) of (8). The communication that D has with its oracle is recorded in
a transcript τ . Denote by XO the probability distribution of transcripts when
D is interacting with O, and similarly by XP the distribution of transcripts for
interaction with P. Say that a transcript is “attainable” if Pr [XP = τ ] > 0 and
denote by T the set of all attainable transcripts.

The H-coefficient technique states the following:
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Theorem 1 (H-coefficient technique). Let δ, ε ∈ [0, 1]. Consider a partition
T = Tbad ∪ Tgood of the set of attainable transcripts such that

1. Pr [XP ∈ Tbad] ≤ δ,

2. for all τ ∈ Tgood,
Pr [XO = τ ]
Pr [XP = τ ]

≥ 1 − ε.

Then, the distinguishing advantage satisfies ΔD(O ; P) ≤ δ + ε.

Proof. A proof of the technique is given among others in [14,15], and we repeat
it briefly. As we consider a deterministic distinguisher D, its advantage is equal
to the statistical distance between the distributions of views XO and XP :

ΔD(O ; P) =
1
2

∑
τ∈T

∣∣Pr [XO = τ ] − Pr [XP = τ ]
∣∣

=
∑

τ∈T :Pr[XP=τ ]>Pr[XO=τ ]

(
Pr [XP = τ ] − Pr [XO = τ ]

)

=
∑

τ∈T :Pr[XP=τ ]>Pr[XO=τ ]

Pr [XP = τ ]
(

1 − Pr [XO = τ ]
Pr [XP = τ ]

)
.

Making a distinction between bad and good views, we find:

ΔD(O ; P) ≤
∑

τ∈Tbad

Pr [XP = τ ] +
∑

τ∈Tgood

Pr [XP = τ ] ε ≤ δ + ε ,

which completes the proof. �

The basic idea of the technique is that a large number of transcripts are
almost equally likely in both worlds, and the odd ones appear only with negligible
probability δ. Note that the partitioning of T into bad and good transcripts is
directly reflected in the terms δ and ε in the bound: if Tgood is too large, ε will
become large, whereas if Tbad is too large, δ will become large.

For a given transcript τ = {(x1, y1), . . . , (xq, yq)} consisting of q input/output
tuples, we say that an oracle O extends τ , denoted O � τ , if

O(xi) = yi

for i = 1, . . . , q.

2.4 Pseudorandom Function Security

Let F p1,p2 ∈ func(n) be a fixed-input-length function that internally uses two
permutations p1, p2 ∈ perm(n). We denote the PRF security of F as a random
function by

Advprf
F p1,p2 (D) = ΔD(F p1,p2 ; f) (9)
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where the probabilities are taken over the drawing of p1, p2
$←− perm(n) and

f
$←− func(n).
The model generalizes to the security of variable-input-length functions as

follows. Let Fh,p1,p2 ∈ func(n + ∗, n) be a variable-input-length function that
internally uses two permutations p1, p2 ∈ perm(n) and a universal hash function
h from some hash function family H. We denote the PRF security of F as a
random function by

Advprf
F h,p1,p2

(D) = ΔD(Fh,p1,p2 ; f) (10)

where the probabilities are taken over the drawing of h
$←− H, p1, p2

$←− perm(n),
and f

$←− func(n+ ∗, n). For variable-input-length functions, we will impose that
D is nonce-respecting, i.e., it never makes two queries to its oracle with the same
first component.

Remark 1. We focus on PRF security in the information-theoretic setting,
where the underlying primitives are secret permutations uniformly randomly
drawn from perm(n). Our results straightforwardly generalize to the complexity-
theoretic setting, where the permutations are instantiated as Ek1 , Ek2 for secret
keys k1, k2. The bounds of this work carry over with an additional loss of
2Advprp

E (q), where Advprp
E (q) denotes the maximum advantage of distinguish-

ing Ek for secret k from a uniformly random permutation in q queries. Note
that in our analyses, the distinguisher can only induce forward evaluations of
the underlying primitive. Therefore, the block cipher only needs to be prp secure,
and not necessarily sprp secure.

3 Mirror Theory

We revisit an important result from Patarin’s mirror theory [36,40] in our con-
text of pseudorandom function security. For the sake of presentation and inter-
operability with the results in the remainder of this paper, we use different
parametrization and naming of definitions.

3.1 System of Equations

Let q ≥ 1 and r ≥ 1. Let P = {P1, . . . , Pr} be r unknowns, and consider a
system of q equations

E = {Pa1 ⊕ Pb1 = λ1, · · · , Paq
⊕ Pbq

= λq} (11)

where ai, bi for i = 1, . . . , q are mapped to {1, . . . , r} using some surjective index
mapping

ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r} .

Note that for a given system of equations, the index mapping is unique up to a
reordering of the unknowns. There is a one-to-one correspondence between E on
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the one hand and (ϕ, λ1, . . . , λq) on the other hand, and below definitions are
mostly formalized based on the latter description (but it is convenient to think
about them with respect to E). For a subset I ⊆ {1, . . . , q} we define by MI the
multiset

MI =
⋃
i∈I

{ϕ(ai), ϕ(bi)} .

We give three definitions with respect to the system of equations E .

Definition 1 (circle-freeness). The system of equations E is circle-free if
there is no I ⊆ {1, . . . , q} such that the multiset MI has even multiplicity ele-
ments only.

Definition 2 (block-maximality). Let {1, . . . , r} = R1∪· · ·∪Rs be a partition
of the r indices into s minimal “blocks” such that for all i ∈ {1, . . . , q} there exists
an 
 ∈ {1, . . . , s} such that {ϕ(ai), ϕ(bi)} ⊆ R�. The system of equations E is
ξ-block-maximal for ξ ≥ 2 if there is no 
 ∈ {1, . . . , s} such that |R�| > ξ.

Definition 3 (non-degeneracy). The system of equations E is non-
degenerate if there is no I ⊆ {1, . . . , q} such that the multiset MI has exactly
two odd multiplicity elements and such that

⊕
i∈I λi = 0.

Informally, circle-freeness means that there is no linear combination of one or
more equations in E that is independent of the unknowns, block-maximality
means that the unknowns can be partitioned into blocks of a certain maximum
size such that there is no linear combination of two or more equations in E that
relates two unknowns Pa, Pb from different blocks Ri,Rj , and non-degeneracy
means that there is no linear combination of one or more equations that implies
Pa = Pb for some Pa, Pb ∈ P.

3.2 Main Result

The main theorem of Patarin’s mirror theory, simply dubbed “mirror theorem”,
is the following. It corresponds to “Theorem Pi⊕Pj for any ξmax” of Patarin [40,
Theorem 6].

Theorem 2 (mirror theorem). Let ξ ≥ 2. Let E be a system of equations
over the unknowns P that is (i) circle-free, (ii) ξ-block-maximal, and (iii) non-
degenerate. Then, as long as (ξ − 1)2 · r ≤ 2n/67, the number of solutions for P
such that Pa �= Pb for all distinct a, b ∈ {1, . . . , r} is at least

(2n)r

2nq
.

The quantity measured in above theorem (the number of solutions...) is called
hr in [40]. Hr is subsequently defined as 2nqhr. The parameter H has slightly
different meanings in [39,41,42], namely the number of oracles whose outputs
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could solve the system of equations. In the end, these definitions yielded the
naming of the H-coefficient technique of Theorem 1. For the mirror theorem, we
have opted to stick to the convention of [40] as its definition is pure in the sense
that it is independent of the actual oracles in use.

In Appendix A, we give a proof sketch of Theorem 2, referring to [40] for
the details. In the proof sketch, it becomes apparent that the side condition
(ξ − 1)2 · r ≤ 2n/67 can be improved (even up to 2n/16) quite easily. Patarin
first derived the side condition symbolically and only then derived the specific
constants. Knowing the constants in advance, we reverted the reasoning. How-
ever, to remain consistent with the theorem statement of [40], we deliberately
opted to leave the 67 in; the improvement is nevertheless only constant. The term
(ξ − 1)2 is present to cover worst-case systems of equations; it can be improved
to (ξ − 1) in certain cases [44]. Fortunately, in most cases ξ is a small number
and the loss is relatively insignificant.

3.3 Extension to Relaxed Inequality Conditions

We consider a generalization to the case where the condition that Pa �= Pb

whenever a �= b is released to some degree. More detailed, let {1, . . . , r} =
R1 ∪ · · · ∪ Rt be any partition of the r indices. We will require that Pa �= Pb

whenever a, b ∈ Rj for some j ∈ {1, . . . , t}. Definition 3 generalizes the obvious
way in order to comply with this condition:

Definition 4 (relaxed non-degeneracy). The system of equations E is
relaxed non-degenerate with respect to partition {1, . . . , r} = R1 ∪ · · · ∪ Rt if
there is no I ⊆ {1, . . . , q} such that the multiset MI has exactly two odd multi-
plicity elements from a single set Rj (j ∈ {1, . . . , t}) and such that

⊕
i∈I λi = 0.

Note that a relaxed non-degenerate system of equations may induce equations
of the form Pa = Pb where a, b are from distinct index sets; such an equation
does not make the system degenerate. The extension of Theorem 2 to relaxed
inequality conditions is the following, which corresponds to [40, Theorem 7].

Theorem 3 (relaxed mirror theorem). Let ξ ≥ 2. Let {1, . . . , r} = R1 ∪
· · ·∪Rt be any partition of the r indices. Let E be a system of equations over the
unknowns P that is (i) circle-free, (ii) ξ-block-maximal, and (iii) relaxed non-
degenerate with respect to partition {1, . . . , r} = R1 ∪ · · · ∪ Rt. Then, as long as
(ξ − 1)2 · maxj |Rj | ≤ 2n/67, the number of solutions for P such that Pa �= Pb

for all distinct a, b ∈ {1, . . . , r} is at least

NonEq(R1, . . . ,Rt; E)
2nq

,

where NonEq(R1, . . . ,Rt; E) denotes the number of solutions to P that satisfy
Pa �= Pb for all a, b ∈ Rj (j = 1, . . . , t) as well as the inequalities imposed by E
(but the equalities themselves released).
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The quantity NonEq(R1, . . . ,Rt; E) sounds rather technical, but for most sys-
tems it is fairly obvious to determine. If Pa ⊕ Pb = λ �= 0 is an equation in E ,
then this equation imposes Pa �= Pb; if in addition a, b are in distinct index sets,
then this inequality Pa �= Pb imposes an extra inequality over the ones suggested
by R1, . . . ,Rt. An obvious lower bound is

NonEq(R1, . . . ,Rt; E) ≥ (2n)|R1|(2n − (ξ − 1))|R2| · · · (2n − (ξ − 1))|Rt| ,

as every unknown is in exactly one block, and this block imposes at most ξ − 1
additional inequalities on the unknowns. Better lower bounds can be derived for
specific systems of equations. The relaxed theorem is equivalent to the original
Theorem 2 if t = 1 and R1 = {1, . . . , r}.

3.4 Example

The strength of the mirror theorem becomes visible by considering the sum
of permutations, XoPp1,p2 of (1) and XoP′p of (2). As a stepping stone to the
analyses of EDM, EWCDM, and EDMD in the remainder of the paper, we prove
that XoPp1,p2 is a secure PRF as long as q ≤ 2n/67. The proof is almost directly
taken from [40] and is an immediate application of Theorem 3. Its single-key
variant XoP′p can be proved similarly from Theorem 2, provided 2q ≤ 2n/67.

Proposition 1. For any distinguisher D with query complexity at most q ≤
2n/67, we have

Advprf
XoPp1,p2 (D) ≤ q/2n . (12)

Proof. Let p1, p2
$←− perm(n) and f

$←− func(n). Consider any fixed determin-
istic distinguisher D that has access to either O = XoPp1,p2 (real world) or
P = f (ideal world). It makes q construction queries recorded in a transcript
τ = {(x1, y1), . . . , (xq, yq)}. Without loss of generality, we assume that xi �= xj

whenever i �= j.
In the real world, each tuple (xi, yi) ∈ τ corresponds to an evaluation of

the function XoPp1,p2 and thus to evaluations xi �→ p1(xi) and xi �→ p2(xi),
such that p1(xi) ⊕ p2(xi) = yi. Writing P2i−1 := p1(xi) and P2i := p2(xi), the
transcript τ defines q equations on the unknowns:

P1 ⊕ P2 = y1 ,

P3 ⊕ P4 = y2 ,

...
P2q−1 ⊕ P2q = yq .

(13)

As xi �= xj whenever i �= j, and additionally we use two independent permuta-
tions, all unknowns are formally distinct. In line with Sect. 3.1, denote the system
of q equations of (13) by E , and let P = {P1, . . . , P2q} be the 2q unknowns. We
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can divide the indices {1, . . . , 2q} into two index sets: R1 = {1, 3, . . . , 2q − 1}
are the indices corresponding to oracle p1 and R2 = {2, 4, . . . , 2q} the indices
corresponding to oracle p2.

Patarin’s H-coefficient technique of Theorem 1 states that Advprf
XoPp1,p2 (D) ≤

ε, where ε is such that for any transcript τ (we do not consider bad transcripts),

Pr [XXoPp1,p2 = τ ]
Pr [Xf = τ ]

≥ 1 − ε . (14)

For the computation of Pr [XXoPp1,p2 = τ ] and Pr [Xf = τ ], it suffices to com-
pute the probability, over the drawing of the oracles, that a good transcript is
obtained. For the real world XoPp1,p2 , the transcript τ defines a system of equa-
tions E which is circle-free, has q blocks of size 2 (so it is 2-block-maximal), and it
is relaxed non-degenerate with respect to partition {1, . . . , r} = R1∪R2. We can
subsequently apply Theorem 3 for ξ = 2, and obtain that, provided q ≤ 2n/67,
the number of solutions for the output values P is at least NonEq(R1,R2;E)

2nq . To
lower bound NonEq(R1,R2; E), note that we have (2n)q possible choices for
P1, P3, . . . , P2q−1, at least 2n − 1 choices for P2 (if y1 �= 0 then P2 should be
unequal to P1), at least 2n − 2 choices for P4 (it should be unequal to P2, and
if y2 �= 0, it should moreover be unequal to P3), etc., and we obtain

NonEq(R1,R2; E) ≥ (2n)q(2n − 1)q .

We have (2n − q)! possible choices for the remaining output values of p1, and
similarly of p2. Thus,

Pr [XXoPp1,p2 = τ ] =
|{p1, p2 ∈ perm(n) | XoPp1,p2 � τ}|

|perm(n)|2

≥
(2n)q(2

n−1)q

2nq · ((2n − q)!)2

(2n!)2
=

1
2nq

(
1 − q

2n

)
. (15)

For the ideal world f , we similarly obtain

Pr [Xf = τ ] =
|{f ∈ func(n) | f � τ}|

|func(n)| =
1

2nq
. (16)

We thus obtain for the ratio of (14):

Pr [XXoPp1,p2 = τ ]
Pr [Xf = τ ]

≥ 1 − q

2n
.

We have obtained ε = q
2n , provided q ≤ 2n/67. �

4 Security of EDMp1,p2

Consider EDM of (3) for the case of independent permutations p1, p2. We will
prove that this construction achieves close to optimal security.



568 B. Mennink and S. Neves

Theorem 4. Let ξ ≥ 1 be any threshold. For any distinguisher D with query
complexity at most q ≤ 2n/(67ξ2), we have

Advprf
EDMp1,p2 (D) ≤ q

2n
+

(
q

ξ+1

)

2nξ
. (17)

The proof will be given in the remainder of this section. It relies on the mir-
ror theorem, although this application is not straightforward. Most importantly,
rather than considering EDMp1,p2 , we consider EDMp1,p−1

2 . As p1, p2 are mutu-
ally independent, these two constructions are provably equally secure, but it
is more convenient to reason about the latter one: we can view an evaluation
y = EDMp1,p−1

2 (x) as the xor of two permutations in the middle of the function,
p1(x) ⊕ p2(y) = x. Therefore, q evaluations of EDMp1,p−1

2 can be translated to a
system of q equations on the outputs of p1, p2 of the form (11). Some technical-
ities persist, such as the fact that y may be identical for different evaluations of
the construction, and make it impossible to apply the mirror theorem directly.

The ξ functions as a threshold: as long as the largest block is of size at most
ξ +1, this means that the result of Patarin applies provided that q ≤ 2n/(67ξ2).
The probability that there is a block of size > ξ +1 is at most

(
q

ξ+1

)
/2nξ. Taking

ξ = 1 gives condition q ≤ 2n/67 but the bound is capped by q2/2n. The optimal
choice of ξ is when q = 2n/(67ξ2) still yields a reasonable bound, i.e., when
(67ξ2)ξ+1(ξ + 1)! ≥ 2n. For n = 128 this is the case for ξ ≥ 9. For n = 256 this
is the case for ξ ≥ 15.

For general n, we can observe that the above definitely holds if (67ξ2)ξ = 2n

(a better but more complicated bound can be obtained using Stirling’s approx-
imation). Solving this for ξ results in

(
67ξ2

)ξ
= 2n

(√
67ξ

)ξ

= 2n/2

(√
67ξ

)√
67ξ

= 2
√
67n/2

√
67ξ = e

W
(
ln
(
2

√
67n/2

))

ln
(
2

√
67n/2

)

ln ln
(
2

√
67n/2

) ≤
√

67ξ ≤
ln

(
2

√
67n/2

)
√

ln ln
(
2

√
67n/2

) ,

where the last inequality comes from the approximation lnx − ln lnx ≤ W (x) ≤
ln x − 1

2 ln lnx on the Lambert W function [23]. Coupled with Theorem 4, this
guarantees security as long as q ≤ 2n

(67n/
√
ln 67n)

.
As suggested by Patarin [40, Generalization 2], it may be possible to eschew

the condition ξ2 ·q ≤ 2n/67 in favor of ξ2average ·q ≤ 2n/67, where ξaverage denotes
the average block size. For EDMp1,p2 , the probability of a given block being
of size ξ + 1 is significantly lower than of it being of size ξ; thus, the number
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of blocks with 2 variables is expected to dominate, and contribute the largest
amount of solutions of the mirror system.

The proof of Theorem 4 consists of five steps: in Sect. 4.1 we describe how
transcripts are generated, in Sect. 4.2 we discuss attainable index mappings, in
Sect. 4.3 we give a definition of bad transcripts, in Sect. 4.4 we derive an upper
bound on the probability of a bad transcript in the ideal world, and in Sect. 4.5
a lower bound on the ratio for good transcripts. Theorem 4 immediately follows
from the H-coefficient technique of Theorem 1.

4.1 General Setting and Transcripts

Let p1, p2
$←− perm(n) and f

$←− func(n). Consider any fixed deterministic
distinguisher D that has access to either O = EDMp1,p−1

2 (real world) or
P = f (ideal world). It makes q construction queries recorded in a transcript
τ = {(x1, y1), . . . , (xq, yq)}. Without loss of generality, we assume that xi �= xj

whenever i �= j.

4.2 Attainable Index Mappings

In the real world, each tuple (xi, yi) ∈ τ corresponds to an evaluation of the
function EDMp1,p−1

2 and thus to a one call to p1 and one to p2: xi �→ p1(xi) and
yi �→ p2(yi), such that p1(xi) ⊕ p2(yi) = xi. Indeed, p1 and p2 xor to xi in the
middle of the function EDMp1,p−1

2 . Writing Pai
:= p1(xi) and Pbi

:= p2(yi), the
transcript τ defines q equations on the unknowns:

Pa1 ⊕ Pb1 = x1 ,

Pa2 ⊕ Pb2 = x2 ,

...
Paq

⊕ Pbq
= xq .

(18)

In line with Sect. 3.1, denote the system of q equations of (18) by E , let P =
{P1, . . . , Pr} be the r unknowns, for r ∈ {q, . . . , 2q}, and let

ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

be the unique index mapping corresponding to the system of Eq. (18). Denote
R1 = {ϕ(a1), . . . , ϕ(aq)} and R2 = {ϕ(b1), . . . , ϕ(bq)}.

There is a relation between the index mapping and the permutations p1, p2,
and different permutations could entail a different index mapping. Nevertheless,
as xi �= xj whenever i �= j, and additionally we consider independent per-
mutations, any possible index mapping in the real world satisfies the following
property.

Claim. ϕ(ai) �= ϕ(aj) if and only if i �= j, and ϕ(bi) �= ϕ(bj) if and only if
yi �= yj . Furthermore, ϕ(ai) �= ϕ(bj) for any i, j.



570 B. Mennink and S. Neves

Stated differently, ϕ should satisfy the input-output pattern induced by τ , and
for any ϕ that does not satisfy this constraint, Pr [ϕ | τ ] = 0. This particularly
means that, if τ is given, there is a unique index mapping ϕτ (up to a reordering
of the unknowns) that could have yielded the transcript. This index mapping
has a range of size q + q′, where q′ = |{y1, . . . , yq}| ≤ q denotes the number of
distinct range values in τ .

4.3 Bad Transcripts

In the real world, ϕ only exposes collisions of the form ϕ(bi) = ϕ(bj), or equiva-
lently yi = yj , for some i, j. As a matter of fact, multi-collisions in the range val-
ues in τ correspond to blocks in the mirror theory. Therefore, we say that a tran-
script τ is bad if there exist ξ+1 distinct equation indices i1, . . . , iξ+1 ∈ {1, . . . , q}
such that yi1 = · · · = yiξ+1 , where ξ is the threshold given in the theory state-
ment.

4.4 Probability of Bad Transcripts (δ)

In accordance with Theorem 1, it suffices to analyze the probability of a bad
transcript in the ideal world. We have:

Pr [Xf ∈ Tbad] = Pr
[
∃i1, . . . , iξ+1 ∈ {1, . . . , q} : yi1 = · · · = yiξ+1

]
≤

(
q

ξ+1

)

2nξ
,

where we recall that in the ideal world the randomness in the transcript τ is in

the values y1, . . . , yq
$←− {0, 1}n. We have obtained δ = ( q

ξ+1)
2nξ .

4.5 Ratio for Good Transcripts (ε)

Recall from Sect. 4.2 that for a given transcript τ , there is a unique index map-
ping ϕτ that could have resulted in the transcript. Pivotal to our proof is the
following lemma.

Lemma 1. Consider good transcript τ , and denote by E the system of q equa-
tions corresponding to (ϕτ , x1, . . . , xq). This system of equations is (i) circle-free,
(ii) (ξ + 1)-block-maximal, and (iii) relaxed non-degenerate with respect to par-
tition {1, . . . , r} = R1 ∪ R2.

Proof. The proof relies on the fact that ϕτ (ai) �= ϕτ (aj) whenever i �= j, and
additionally that ϕτ (ai) �= ϕτ (bj) for any i, j. Particularly, for any I ⊆ {1, . . . , q}
the corresponding multiset MI has at least |I| odd multiplicity elements, and
there exists (i) no circle (Definition 1).

(ii) Suppose that E is not (ξ + 1)-block-maximal (Definition 2). Then, there
exists a minimal subset R ⊆ {1, . . . , r} of size ≥ ξ + 2 such that for any i ∈
{1, . . . , q} we either have {ϕτ (ai), ϕτ (bi)} ⊆ R or {ϕτ (ai), ϕτ (bi)} ∩ R = ∅.
Let I ⊆ {1, . . . , q} be the subset such that {ϕτ (ai), ϕτ (bi)} ⊆ R for all i ∈ I.
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Due to our definition of ϕτ , there must be an ordering I = {i1, . . . , iξ+1} such
that ϕτ (bi1) = · · · = ϕτ (biξ+1), or equivalently, yi1 = · · · = yiξ+1 , therewith
contradicting that τ is good and does not contain a (ξ + 1)-fold collision.

(iii) Suppose that the system of equations is relaxed degenerate (Definition 4).
Then, there exists a minimal subset I ⊆ {1, . . . , q} such that the multiset MI

has exactly two odd multiplicity elements corresponding to the same oracle and
such that

⊕
i∈I xi = 0. If |I| = 1, then MI has two elements from different

oracles. If |I| = 2, then
⊕

i∈I xi �= 0 as the xi are all distinct. Finally, if |I| ≥ 3
then MI has at least 3 odd multiplicity elements. �

For the computation of Pr
[
X

EDMp1,p
−1
2

= τ
]

and Pr [Xf = τ ], it suffices to
compute the probability, over the drawing of the oracles, that a good transcript
is obtained. Starting with the real world EDMp1,p−1

2 , for the transcript τ , there is
a unique index mapping ϕτ . It concerns q input-output tuples of p1 and q′ input-
output tuples of p2, where |rng(ϕτ )| = q + q′. Due to Lemma 1, we can apply
Theorem 3 and obtain that, provided ξ2 · q ≤ 2n/67, the number of solutions
to these q + q′ unknowns is at least NonEq(R1,R2;E)

2nq . We have (2n − q)! possible
choices for the remaining output values of p1, and (2n − q′)! for p2. Thus,

Pr

[
X

EDM
p1,p

−1
2

= τ

]
= Pr

[
p1, p2

$←− perm(n) : EDMp1,p−1
2 � τ

]

≥
NonEq(R1,R2;E)

2nq · (2n − q)!(2n − q′)!
(2n!)2

=
NonEq(R1, R2; E)
2nq(2n)q(2n)q′

.

To lower bound NonEq(R1,R2; E), note that we have (2n)q′ possible choices
for {Pj | j ∈ R2}, and subsequently at least (2n − 1)q possible choices for
{Pj | j ∈ R1}, as every index in R1 is in a block with exactly one unknown from
R2. Thus,

Pr
[
X

EDMp1,p
−1
2

= τ
]

≥ (2n − 1)q(2n)q′

2nq(2n)q(2n)q′
=

1
2nq

(
1 − q

2n

)
. (19)

For the ideal world, we obtain

Pr [Xf = τ ] = Pr
[
f

$←− func(n) : f � τ
]

=
1

2nq
. (20)

We obtain for the ratio:

Pr
[
X

EDMp1,p
−1
2

= τ
]

Pr [Xf = τ ]
≥

1
2nq

(
1 − q

2n

)
1

2nq

= 1 − q

2n
.

We have obtained ε = q
2n , provided ξ2 · q ≤ 2n/67.

5 Security of EWCDMh,p1,p2

We prove that EWCDM of (4) for the case independent permutations p1, p2
achieves close to optimal PRF security in the nonce-respecting setting. We
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remark that Cogliati and Seurin proved PRF security of EWCDMh,p1,p2 up to
about 22n/3 queries (cf., [17, Theorem 3] for qv = 0). In a similar vein as the
analysis of Cogliati and Seurin [17] on EWCDMh,p1,p2 , our analysis straightfor-
wardly generalizes to the analysis for unforgeability or for the nonce-misusing
setting.

Theorem 5. Let ξ ≥ 1 be any threshold. For any distinguisher D with query
complexity at most q ≤ 2n/(67ξ2), we have

Advprf
EWCDMh,p1,p2

(D) ≤ q

2n
+

(
q
2

)
ε

2n
+

(
q

ξ+1

)

2nξ
, (21)

where h is an ε-AXU hash function.

The proof follows the same strategy as the one of EDMp1,p2 , i.e., replacing p2 by
p−1
2 for readability and noting that t = EWCDMh,p1,p−1

2 (ν,m) corresponds to
the xor of two permutations as p1(ν) ⊕ p2(t) = ν ⊕ h(m). An additional hurdle
has to be overcome, namely cases where ν ⊕ h(m) = ν′ ⊕ h(m′): if this happens,
and additionally we have t = t′, the system of equations cannot be solved. (In
retrospect, one can view the proof of EDMp1,p2 as a special case of the new
proof by keeping m constant.) As before, ξ functions as a threshold and the
computations of Sect. 4 likewise apply.

5.1 General Setting and Transcripts

Let h
$←− H be an ε-AXU hash function, p1, p2

$←− perm(n), and f
$←− func(n+∗, n).

Consider any fixed deterministic distinguisher D that has access to either O =
EWCDMh,p1,p−1

2 (real world) or P = f (ideal world). It makes q construction
queries recorded in a transcript τcq = {(ν1,m1, t1), . . . , (νq,mq, tq)}, where the
q nonces νi are mutually different.

We will reveal after D’s interaction with its oracle, but before its final deci-
sion, a universal hash function h. In the real world, h is the hash function that is
actually used. In the ideal world, h will be drawn uniformly at random from the
ε-AXU universal hash function family H. The extended transcript is denoted

τ = (τcq, h) .

5.2 Attainable Index Mappings

In the real world, each tuple (νi,mi, ti) ∈ τcq corresponds to an evaluation of
the function EWCDMh,p1,p−1

2 and thus evaluations νi �→ p1(νi) and ti �→ p2(ti),
such that p1(νi) ⊕ p2(ti) = νi ⊕ h(mi) (note the fundamental difference with
respect to the analysis of EDMp1,p−1

2 of Sect. 4, namely the addition of h(mi)).
Writing Pai

:= p1(νi) and Pbi
:= p2(ti), the transcript τcq defines q equations
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on the unknowns:

Pa1 ⊕ Pb1 = ν1 ⊕ h(m1) ,

Pa2 ⊕ Pb2 = ν2 ⊕ h(m2) ,

...
Paq

⊕ Pbq
= νq ⊕ h(mq) .

(22)

(The system of equations differs from that of (18) as the unknowns should now
sum to νi ⊕ h(mi).) In line with Sect. 3.1, denote the system of q equations of
(22) by E , let P = {P1, . . . , Pr} be the r unknowns, for r ∈ {q, . . . , 2q}, and let

ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

be the unique index mapping corresponding to the system of Eq. (22). Denote
R1 = {ϕ(a1), . . . , ϕ(aq)} and R2 = {ϕ(b1), . . . , ϕ(bq)}.

From the fact that νi �= νj whenever i �= j, and additionally that we consider
two independent permutations, we can derive the exact same property of ϕ as
in Sect. 4.2, with ν replacing x and t replacing y.

Claim. ϕ(ai) �= ϕ(aj) if and only if i �= j, and ϕ(bi) �= ϕ(bj) if and only if ti �= tj .
Furthermore, ϕ(ai) �= ϕ(bj) for any i, j.

As before, for a given transcript τcq, there is a unique index mapping ϕτ that
could have yielded the transcript. It has a range of size q + q′, where q′ =
|{t1, . . . , tq}| ≤ q denotes the number of distinct range values in τcq.

5.3 Bad Transcripts

Unlike for the analysis of EDMp1,p−1
2 , it is insufficient to just require that there is

no (ξ +1)-fold collision, we must also take degeneracy of the system of equations
into account. Indeed, if for two queries (νi,mi, ti), (νj ,mj , tj), we have that ti =
tj (or, equivalently, ϕ(bi) = ϕ(bj)) and νi ⊕ h(mi) = νj ⊕ h(mj), the system
of equations would imply that we need ϕ(ai) = ϕ(aj), which is impossible by
design.

Formally, we say that a transcript τ = (τcq, h) is bad if

– there exist ξ + 1 distinct equation indices i1, . . . , iξ+1 ∈ {1, . . . , q} such that
ti1 = · · · = tiξ+1 , where ξ is the threshold given in the theory statement, or

– there exist two distinct equation indices i, j ∈ {1, . . . , q} such that ti = tj and
νi ⊕ h(mi) = νj ⊕ h(mj).

5.4 Probability of Bad Transcripts (δ)

As in Sect. 4.4, it suffices to analyze the probability of a bad transcript in the
ideal world, and we have:

Pr [Xf ∈ Tbad] ≤ Pr
[
∃i1, . . . , iξ+1 ∈ {1, . . . , q} : ti1 = · · · = tiξ+1

]

+ Pr [∃i, j ∈ {1, . . . , q} : ti = tj ∧ νi ⊕ h(mi) = νj ⊕ h(mj)] ,

(23)
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where we recall that in the ideal world the randomness in the transcript τ is
in the values t1, . . . , tq

$←− {0, 1}n and in the uniform drawing h
$←− H. The first

probability of (23) is identical to the one analyzed in Sect. 4.4 and upper bounded
by

(
q

ξ+1

)
/2nξ. For the second probability of (23), there are

(
q
2

)
possible indices,

the first equation is satisfied with probability 1/2n (due to the drawing of the
ti), and the second equation is satisfied with probability ε (as h is an ε-AXU
hash function). Thus, the second probability is upper bounded by

(
q
2

)
ε/2n.

We thus obtain from (23):

Pr [Xf ∈ Tbad] ≤
(
q
2

)
ε

2n
+

(
q

ξ+1

)

2nξ
=: δ .

5.5 Ratio for Good Transcripts (ε)

Recall from Sect. 5.2 that for a given transcript τcq, there is a unique index map-
ping ϕτ that could have resulted in the transcript. We can derive the following
result.

Lemma 2. Consider good transcript τ = (τcq, h) and denote by E the system
of q equations corresponding to (ϕτ , ν1 ⊕ h(m1), . . . , νq ⊕ h(mq)). This system
of equations is (i) circle-free, (ii) (ξ + 1)-block-maximal, and (iii) relaxed non-
degenerate with respect to partition {1, . . . , r} = R1 ∪ R2.

Proof. The proof is a generalization of the one of Lemma 1. Nothing changes for
circle-freeness and (ξ + 1)-block-maximality.

Suppose that the system of equations is relaxed degenerate (Definition 4).
Then, there exists a minimal subset I ⊆ {1, . . . , q} such that the multiset MI

has exactly two odd multiplicity elements corresponding to the same oracle and
such that

⊕
i∈I νi ⊕ h(mi) = 0. As in Lemma 1, this implies that |I| = 2, say

I = {i, j}, for which ϕτ (bi) = ϕτ (bj) and νi ⊕ h(mi) = νj ⊕ h(mj), therewith
contradicting that τ is good. �

The remaining analysis is almost identical to the one for EDMp1,p−1
2 in Sect. 4.5,

the sole exception being that both probabilities have an additional factor 1/|H|,
and henceforth omitted.

6 Security of EDMDp1,p2

Consider EDMDp1,p2 of (5) for the case of independent permutations p1, p2.
We will prove that this construction achieves optimal PRF security without a
logarithmic loss.

Theorem 6. For any distinguisher D with query complexity at most q ≤ 2n/67,
we have

Advprf
EDMDp1,p2 (D) ≤ q/2n . (24)
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The proof can be performed along the same lines of that of EDMp1,p2 , with
the difference that for EDMDp1,p2 no collisions among the evaluations of the
permutations occur. However, the exact same security bound can be derived
fairly elegantly from Proposition 1.

Proof. Let p1, p2, p3
$←− perm(n) and f

$←− func(n). Write EDMDp1,p2 = p2 ◦ p1 ⊕
p1. By a simple hybrid argument we obtain:

Δ(p2 ◦ p1 ⊕ p1 ; f) ≤ Δ(p2 ◦ p1 ⊕ p1 ; p3 ⊕ p1) + Δ(p3 ⊕ p1 ; f) .

The former distance equals 0 (reveal p1 to the distinguisher prior to the exper-
iment, and it effectively has to distinguish p2 from p3). The latter distance is
bounded by q/2n provided that q ≤ 2n/67, cf., Proposition 1. �

7 Towards a Single Permutation

Given our results on EDMp1,p2 of Theorem 4 and EDMDp1,p2 of Theorem 6, one
may expect that similar techniques apply to the case where p1 = p2. However, it
seems unlikely, if not impossible, to apply the mirror theory to these construc-
tions. The reason is that the mirror theory works particularly well if only the
input values of the functions are determined, and not the output values.

For example, for EDMp1,p2 , an evaluation y = EDMp1,p2(x) corresponds to
evaluations p1(x) and p2(p1(x) ⊕ x), where y = p2(p1(x) ⊕ x). Thus, the query-
response tuple (x, y) reveals one input value to p1 and one output value of p2.
By, without loss of generality, replacing p2 by its inverse we nicely obtained a
system where only input values of the permutations are fixed. Now, consider
EDMp: a single evaluation y = EDMp(x) reveals an input value x to p as well
as an output value y of p, and there seems to be no way to properly employ the
mirror theorem in this case. The trick to view EDMp,p−1

does not work as the
construction is not equally secure as EDMp = EDMp,p. (In fact, EDMp,p−1

is
trivially insecure as it maps 0 to 0.)

For the single permutation variant of EDMD, the problem appears at a dif-
ferent surface: the chaining. In more detail, an evaluation y = EDMDp(x) cor-
responds to two evaluations of p: p(x) and p(p(x)), where y = p(x) ⊕ p(p(x)).
Suppose we have a different evaluation y′ = EDMDp(x′) such that, accidentally,
p(p(x)) = p(x′). This implies that the permutation p necessarily satisfies the
following constraints:

p(x) = x′ , p(p(x)) = p(x′) = y ⊕ x′ , p(p(x′)) = y′ ⊕ y ⊕ x′ .

In other words, a collision between two evaluations of p imposes conditions on
the input-output pattern of p, and the mirror theorem does not allow to handle
this case nicely. (Technically, the collision in this example forms a block of size
3 in the terminology of Definition 2, but the amount of freedom we have in
fixing the unknowns in the block is not 2n (as for normal systems of equations
of Sect. 3), but at most 1).
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We are not aware of any potential attack on EDMp or EDMDp that may
exploit these properties. In fact, we believe that the conjecture posed by Cogliati
and Seurin [17] holds for EDMp, and that also EDMDp achieves optimal security.
It is interesting to note that

EDMp ◦ p = p ◦ EDMDp ,

and any attack on EDMp performed by, for instance, chaining multiple evalua-
tions of EDMp would have its equivalent attack for EDMDp.
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A Proof Sketch of Theorem 2

Proof (sketch). Patarin’s proof of Theorem 2 is very technical, and we only sketch
its idea here. We refer to [36,40,41] for the technical details.

First consider the case of ξ = 2, i.e., r = 2q and every unknown appears in
exactly one equation. Without loss of generality (by reshuffling the unknowns),
the system of equations reads

E = {P1 ⊕ P2 = λ1, · · · , P2q−1 ⊕ P2q = λq} . (25)

For u ∈ {1, . . . , q}, denote by Eu the first u equations of E and by h2u the number
of solutions to Eu. Our target is to prove that h2q ≥ (2n)2q

2nq , and we will prove
this by induction on u. Clearly, for u = 1, h2 = 2n.

Suppose we have h2u solutions for the first u equations. Then, h2u+2 counts
the number of solutions to {P1, . . . , P2u+2} such that

– {P1, . . . , P2u} is a valid solution to the first u equations Eu;
– P2u+1 ⊕ P2u+2 = λu+1;
– P2u+1 /∈ {P1, . . . , P2u} =: V1;
– P2u+1 /∈ {P1 ⊕ λu+1, . . . , P2u ⊕ λu+1} =: V2.

Thus, for a given set of solutions to Eu, we have 2n − |V1 ∪ V2| solutions for
{P2u+1, P2u+2}. As |V1 ∪ V2| = |V1| + |V2| − |V1 ∩ V2| = 4u − |V1 ∩ V2|, we obtain

h2u+2 =
∑

{P1,...,P2u} solving Eu

2n − |V1 ∪ V2|

=
∑

{P1,...,P2u} solving Eu

2n − 4u + |V1 ∩ V2|

= (2n − 4u)h2u +
∑

{P1,...,P2u} solving Eu

|V1 ∩ V2| . (26)
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Obviously, |V1 ∩ V2| ≥ 0, but this gives only a poor estimation of h2q, namely

h2q ≥ (2n − 4(q − 1))h2q−2 ≥ · · · ≥
(

q−1∏
u=1

2n − 4u

)
h2 ≥

q−1∏
u=0

2n − 4u ,

for which

h2q2nq

(2n)2q
≥

q−1∏
u=0

(2n − 4u)2n

(2n − 2u)(2n − 2u − 1)

=
q−1∏
u=0

1 − −2n + 4u2 + 2u

(2n − 2u)(2n − 2u − 1)

≥
q−1∏
u=0

1 − 4u2

(2n − 2q)2
= 1 − O

(
q3

22n

)
.

Instead, we would prefer to have a lower bound on |V1 ∩ V2| that can be used to
undo the 4u2-term. If we could, hypothetically, prove that |V1 ∩ V2| ≥ 4u2/2n,
the derivation would depart from (26) as

h2q2nq

(2n)2q
≥

q−1∏
u=0

(2n − 4u + 4u2

2n )2n

(2n − 2u)(2n − 2u − 1)

=
q−1∏
u=0

1 − −2n + 2u

(2n − 2u)(2n − 2u − 1)
≥ 1 .

Unfortunately, for some solutions {P1, . . . , P2u} satisfying Eu, the number |V1 ∩
V2| may be well below this bound, while for others it may be much higher.
Patarin proved that, in fact, a slightly worse bounding already does the job.

Rewrite the crucial quantity of (26) as

∑
{P1,...,P2u} solving Eu

|V1 ∩ V2| =
∑

1≤i,j≤2u

∣∣∣
{

solutions to Eu ∪ {Pi ⊕ Pj = λu+1}
}∣∣∣

︸ ︷︷ ︸
=:h′

2u(i,j)

.

(27)

Denote by Iu+1 the set of indices whose value λl equals λu+1, and by Ju+1 the
set of pairs of indices whose value λl ⊕ λl′ equals λu+1:

Iu+1 = {l ∈ {1, . . . , u} | λl = λu+1} ,

Ju+1 = {(l, l′) ∈ {1, . . . , u}2 | λl ⊕ λl′ = λu+1} .

The value h′
2u(i, j) may attain different values depending on (i, j):

– If i, j ∈ {2l − 1, 2l} for some l ∈ {1, . . . , u}, the two unknowns come from the
same equation in Eu:
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• If i = j, then h′
2u(i, j) = 0, as the appended equation forms a contradic-

tion on its own;
• If i �= j and l ∈ Iu+1, then h′

2u(i, j) = h2u, as the appended equation is
identical to the l-th equation in Eu, and is redundant;

• If i �= j and l /∈ Iu+1, then h′
2u(i, j) = 0, as the appended equation forms

a contradiction with the l-th equation: λl = Pi ⊕ Pj = λu+1;
– If i ∈ {2l − 1, 2l} and j /∈ {2l − 1, 2l} for some l ∈ Iu+1, then h′

2u(i, j) = 0,
as the appended equation forms a contradiction with the l-th equation. For
example, if i = 2l − 1, then the two equations imply that P2l ⊕ Pj = 0;

– If j ∈ {2l − 1, 2l} and i /∈ {2l − 1, 2l} for some l ∈ Iu+1, we have h′
2u(i, j) = 0

by symmetry;
– If i ∈ {2l−1, 2l} and j ∈ {2l′−1, 2l′} for some (l, l′) ∈ Ju+1, then h′

2u(i, j) = 0,
as the l-th, l′-th, and appended equation form a contradiction. For example,
if i = 2l − 1 and j = 2l′ − 1, then the three equations imply that P2l = P2l′ ;

– If neither of the above applies, we are in the hard case. Denote by Mu+1 the
set of indices covered by this case:

Mu+1 =
{

(i, j) ∈ {1, . . . , 2u}2
}∖

{
(2l − 1, 2l − 1), (2l − 1, 2l), (2l, 2l − 1), (2l, 2l)

∣∣∣ l ∈ {1, . . . , u}
}

∪
{

(2l − 1, ∗), (2l, ∗), (∗, 2l − 1), (∗, 2l)
∣∣∣ l ∈ Iu+1

}
∪

{
(2l − 1, 2l′ − 1), (2l − 1, 2l′), (2l, 2l′ − 1), (2l, 2l′)

∣∣∣ (l, l′) ∈ Ju+1

}
.

Effectively, we have obtained from (26) and (27) that

h2u+2 = (2n − 4u)h2u +
∑

1≤i,j≤2u

h′
2u(i, j)

= (2n − 4u)h2u + 2|Iu+1|h2u +
∑

(i,j)∈Mu+1

h′
2u(i, j) . (28)

Patarin proves the following two claims.

Claim (Patarin [40, Theorem 10]). |Mu+1| ≥ 4u2 − 8u − 12|Iu+1|u.
Claim (Patarin [40, Theorem 18]). For any (i, j) ∈ Mu+1, provided 2u ≤ 2n/32,4

h′
2u(i, j) ≥ h2u

2n

(
1 − 124u

22n
− 104|Iu+2|u

22n

)
.

The former claim relies on the observation that, without loss of generality, the
equations are ordered in such a way that λu+1 is the most-frequent value so far.
The second claim captures the technical heart of the result. From (28) and above
two claims, we derive

h2u+2

h2u
≥ 2n − 4u + 2|Iu+1| + 4u2 − 8u − 12|Iu+1|u

2n

(
1 − 124u

22n
− 104|Iu+2|u

22n

)

≥ 2n − 4u + 2|Iu+1| + 4u2 − 8u − 12|Iu+1|u
2n

− 4u2

2n

(
124u
22n

+
104|Iu+2|u

22n

)
,

4 Closer inspection of the proof reveals that 2u ≤ 2n/16 suffices.
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and subsequently,

h2u+2

h2u
· 2n

(2n − 2u)(2n − 2u − 1)

≥
22n − 4u2n + 2|Iu+1|2n + 4u2 − 8u − 12|Iu+1|u − 4u2

(
124u
22n + 104|Iu+2|u

22n

)

(2n − 2u)(2n − 2u − 1)

= 1 +

(
2n − 10u − 496u3

22n

)
+ |Iu+1|

(
2 · 2n − 12u − 416u3

22n

)

(2n − 2u)(2n − 2u − 1)

�
≥ 1 +

2n − 10u − 496u3

22n

(2n − 2u)(2n − 2u − 1)
��
≥ 1 ,

where
�
≥ holds for 2u ≤ 2n/5 and

��
≥ under the condition that 2u ≤ 2n/7.5 Note

that the bounding is done on 2u rather than u: we are currently still looking
at the case of ξ = 2, and every block has 2 unknowns. The condition states an
upper bound on the number of unknowns.

The bound h2u+2/h2u ≥ 1 holds for any u = 2, . . . , q − 1. As, in addition,
h2 = 2n, we derive

h2q ≥ (2n − 2q + 1)(2n − 2q + 2)
2n

h2q−2 ≥ · · · ≥ (2n − 2)2q−2

2n(q−1)
h2 ≥ (2n)2q

2nq
,

as long as 2(q − 1) ≤ 2n/32. This completes the proof.

The induction step in the proof is performed over the number of equations, and
every step implicitly goes per two: two new unknowns are fixed and they should
not hit any of the previously fixed unknowns. If we generalize this to systems of
equations with larger values of ξ and where the blocks may be of different sizes,
the induction would go over the number of blocks, and the size of every step
corresponds to the number of unknowns in that block. This also results in more
constraints per induction step.

For example, consider a system of equations E , consisting of q′ blocks. For
u ∈ {1, . . . , q′} denote by Eu all equations that correspond to the first u blocks.
If the first u blocks in total cover v(u) unknowns, the value hv(u) is similarly
defined as the number of solutions to Eu. Suppose we have fixed the first v(u)
unknowns over the first u blocks, and consider a new block of ξ unknowns: the
target is to determine hv(u+1) = hv(u)+ξ from hv(u). Denote v := v(u) for brevity.
As Pv+1, . . . , Pv+ξ are in the same block, all values are fixed through the Eu+1

once Pv+1 is fixed: say that the system fixes Pv+i = Pv+1 ⊕ λ′
i for some λ′

i, for
i = 2, . . . , ξ. (In the specific case of ξ = 2 treated before, v = 2u and λ′

2 = λu+1.)
5 We remark that Patarin derived upper bound 2n/67: he stated the claim on h′

2u(i, j)
for unknown constants, subsequently derived the side condition, and only then
derived the constants (and hence the 67). Knowing the constants in retrospect allows
us to obtain a better bounding. In the end, the side condition in the theorem state-
ment is the most dominant one (the one of the second claim).
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The value hv+ξ counts the number of solutions {P1, . . . , Pv, Pv+1, . . . , Pv+ξ} such
that

– {P1, . . . , Pv} is a valid solution to the first u blocks Eu;
– {Pv+1, . . . , Pv+ξ} satisfy the (u + 1)-th block Eu+1\Eu;
– Pv+1 /∈ {P1, . . . , Pv} =: V1;
– Pv+1 /∈ {P1 ⊕ λ′

2, . . . , Pv ⊕ λ′
2} =: V2;

– . . .;
– Pv+1 /∈ {P1 ⊕ λ′

ξ, . . . , Pv ⊕ λ′
ξ} =: Vξ.

Note that the values {Pv+1, . . . , Pv+ξ} are distinct by hypothesis on the system
of equations, or stated differently, λ′

i �= λ′
j �= 0 for any i �= j. Now, in this

generalized case, for a given set of solutions to Eu, we have 2n − |V1 ∪ · · · ∪ Vξ|
solutions for {Pv+1, . . . , Pv+ξ}. By the inclusion-exclusion principle,

|V1 ∪ · · · ∪ Vξ| =
ξ∑

i=1

|Vi| −
ξ∑

j=2

(−1)j
∑

i1<···<ij

|Vi1 ∩ · · · ∩ Vij
|

= ξ · v −
ξ∑

j=2

(−1)j
∑

i1<···<ij

|Vi1 ∩ · · · ∩ Vij
| ,

from which

hv+ξ =
∑

{P1,...,Pv} solving Eu

2n − |V1 ∪ · · · ∪ Vξ|

=
∑

{P1,...,Pv} solving Eu

2n − ξ · v +
ξ∑

j=2

(−1)j
∑

i1<···<ij

|Vi1 ∩ · · · ∩ Vij
|

= (2n − ξ · v)hv +
∑

{P1,...,Pv} solving Eu

ξ∑
j=2

(−1)j
∑

i1<···<ij

|Vi1 ∩ · · · ∩ Vij
| .

(29)

Instead of the quantity of (27), it now requires to lower bound

∑
{P1,...,Pv} solving Eu

ξ∑
j=2

(−1)j
∑

i1<···<ij

|Vi1 ∩ · · · ∩ Vij
| ,

which is beyond the scope of the sketch of the proof. What is important to note
is the term ξ · v in (29), which demonstrates an additional loss compared to the
4u in (26) for the case where all blocks are of size ξ = 2 unknowns. This loss,
among others, eventually constitutes a stronger side condition. �
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Abstract. Secure channel protocols protect data transmission over a
network from being overheard or tampered with. In the common abstrac-
tion, cryptographic models for channels involve a single key for ensuring
the central security notions of confidentiality and integrity. The cur-
rently developed next version of the Transport Layer Security proto-
col, TLS 1.3, however introduces a key updating mechanism in order to
deploy a sequence of multiple, possibly independent encryption keys in
its channel sub-protocol. This design aims at achieving forward security,
protecting prior communication after long-term key corruption, as well
as security of individual channel phases even if the key in other phases is
leaked (a property we denote as phase-key insulation). Neither of these
security aspects has been treated formally in the context of cryptographic
channels so far, leading to a current lack of techniques to evaluate such
channel designs cryptographically.

We approach this gap by introducing the first formal model of multi-
key channels, where sender and receiver can update their shared secret
key during the lifetime of the channel without interrupting the com-
munication. We present modular, game-based notions for confidential-
ity and integrity, integrating forward security and phase-key insula-
tion as two advanced security aspects. As we show, our framework of
notions on the lower end of its hierarchy naturally connects to the exist-
ing notions of stateful encryption established for single-key channels.
Like for classical channels, it further allows for generically composing
chosen-ciphertext confidentiality from chosen-plaintext confidentiality
and ciphertext integrity. We instantiate the strongest security notions
in our model with a construction based on authenticated encryption
with associated data and a pseudorandom function. Being comparatively
close, our construction additionally enables us to discuss the TLS 1.3
record protocol design.

1 Introduction

Secure channel protocols are at the heart of today’s communication infrastruc-
ture, protecting data in transit in countless connections each day. Major exam-
ples include the Transport Layer Security (TLS) protocol [22] securing the Web,
the Secure Shell (SSH) protocol [48] enabling secure remote logins, and the Inter-
net Protocol Security (IPsec) protocol [34] protecting, e.g., tunneled network-
to-network connections.

c© International Association for Cryptologic Research 2017
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1.1 Secure Cryptographic Channels

In the cryptographic realm, the established game-based abstraction of secure
channels is that of stateful encryption, introduced by Bellare, Kohno, and
Namprempre [9]. Stateful encryption first of all inherits the classical secu-
rity requirements of (non-stateful) encryption: confidentiality and integrity.
Confidentiality of encryption, first formalized by Goldwasser and Micali [31],
intuitively demands that the content of transmitted messages remains secret.
Integrity, in parts concurrently introduced by Katz and Yung [33], Bellare and
Rogaway [11], and Bellare and Namprempre [10], in contrast ensures that an
adversary cannot forge ciphertexts that, on decryption, lead to (meaningful)
messages. In order to provide secure communication through a sequence of mes-
sages, stateful encryption schemes go beyond these standard requirements and
moreover protect against reordering, dropping, and replays of messages trans-
mitted in a channel. On a constructive level, channels to this extend incorpo-
rate authenticated encryption with associated data (AEAD) schemes [44] as an
essential cryptographic building block, integrated with message-order and error
handling.

Starting from and partially building upon the work by Bellare, Kohno, and
Namprempre, various extensions and adaptations of (game-based) channel mod-
els have been proposed. For example, Kohno, Palacio, and Black [35] define a
hierarchy of channels with varying resilience against replays, reordering, or mes-
sage dropping. In order to capture potential padding of messages before encryp-
tion, Paterson, Ristenpart, and Shrimpton [42] introduce the notion of length-
hiding authenticated encryption. Motivated by practical attacks due to implicit
information leakage through different error messages or different timings of an
error message, e.g., caused by either a MAC or a decryption failure, Boldyreva
et al. [17] discuss decryption algorithms that distinguish more than a single error
message. They also study the effects of multiple error messages on the generic
relation between confidentiality and integrity established earlier by Bellare and
Namprempre [10]. In order to capture fragmented delivery of ciphertexts as it
arises in real-world attacks on secure channels (cf. [3]), Boldyreva et al. [16] and
Albrecht et al. [2] consider stateful encryption with ciphertext fragmentation.
Going one step further, Fischlin et al. [29] additionally study plaintext fragmen-
tation to capture scenarios where channels are required to process a stream of
data. Finally, protocols in practice usually establish a bi-directional communi-
cation channel, a setting whose security was recently studied by Marson and
Poettering [39].

1.2 Multi-key Channels

In all cryptographic models of secure channels established so far, security orig-
inates from a single, symmetric key shared between the two endpoints of the
channel. The upcoming version of the TLS protocol, TLS 1.3 [43], whose spec-
ification is currently being developed, however deviates from this paradigm
and instead deploys a sequential series of multiple keys. The TLS 1.3 channel
(the so-called record protocol) as usual begins with deriving an initial key for
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encryption and decryption of messages. As a novel component, both parties
are further able to trigger key updates, leading to a key switch according to
a pre-defined schedule while maintaining channel’s operation. One particular
motivation for this approach is that long-lived TLS connections may exhaust
the cryptographic limits of some algorithms on how much data can be safely
encrypted under a single key (cf. [43, Sect. 5.5], [38]).

A more general, major reason for refreshing the key used in a secure chan-
nel and specifically TLS 1.3 is forward security, a notion primarily known from
and well-established in the context of key exchange protocols [19,23,32]. When
using the same key throughout the lifetime of a channel, an attacker that learns
this key (e.g., through cryptanalysis or even temporary break-in into the sys-
tem) immediately compromises the confidentiality of previous and the integrity
of future communication. In contrast, forward security demands that even if
key material is leaked at some point, previous communication remains secure.
Forward-secure symmetric encryption in the non-stateful setting is considered
understood and in particular can be built from forward-secure pseudorandom bit
generator [13] or, more generally, through re-keying [1]. In the context of secure
channels, a formal treatment of forward security is however lacking so far.

Beyond forward security, a second security property arises for secure channels
(in particular in the design of TLS 1.3) which we refer to as phase-key insulation.
While forward security targets a full compromise (and prior security), phase-key
insulation is concerned with the temporary compromise of a channel in the form
of leaking the key used in a certain time period (phase), but not in others.
Such temporary compromise might, e.g., result from differing strengths of key
material used to derive some of the phase keys (as is the case for keys established
in the TLS 1.3 key exchange [27,28,37]) or from storing the currently active key
in less secure memory for efficiency reasons. A secure channel with phase-key
insulation should then uphold confidentiality and integrity in uncompromised
phases, even if the key of prior or later phases is revealed. Moreover, security
should be retained even if the attacker learned a phase’s key while that phase
was still active.

As we will see, phase-key insulation orthogonally complements the notion
of forward security, which is only concerned with a posteriori leakage of keys.
Requiring it furthermore introduces new pitfalls in the design of secure chan-
nels. For example, the initial draft design of the TLS 1.3 record protocol with
key updates enabled truncation attacks in non-compromised phases that would
go unnoticed during the further execution of the protocol, as Fournet and the
miTLS [40] team discovered [30]. We hence consider it being crucial to establish
a formal understanding of channels using multiple keys, which is lacking at this
point, in order to allow thorough analyses of proposed protocols and means for
evaluating their provable security guarantees.

1.3 Our Contributions

In this work we initiate the study of channels that employ a sequence of multiple
keys. To this end, we introduce a formalization of such multi-key channels and set
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up an according framework of game-based security notions. We then analyze the
relations between our security notions as well as connections to the established
notions for stateful encryption and finally provide a generic construction of a
provably secure multi-key channel.

Following the game-based tradition in modeling channels, our formalism
builds upon and extends that of Bellare, Kohno, and Namprempre [9] and
Bellare and Yee [13]. More specifically, our notion of multi-key channels aug-
ments that of regular stateful encryption in three aspects. Obviously, we first of
all consider a sequence of keys to be used for encryption and decryption. Sec-
ondly, switches between these keys are initiated through a specific key-update
algorithm which makes the channel proceed from one phase to the next. Lastly,
we separate two hierarchies of keys by additionally considering a level of master
secret keys which, also evolving over time, are used to derive the channel key for
each phase. As we will discuss, this carefully crafted syntax and key hierarchy
in particular allows us to quite closely model the key schedule of the TLS 1.3
record protocol draft [43].

We then define security of multi-key channels via a a framework of notions.
Beyond capturing the classical requirements of confidentiality and integrity, our
notions modularly integrate the advanced security properties of forward secu-
rity and phase-key insulation arising in the context of multi-key channels. The
core technical challenge here is to appropriately capture the desired security
properties while excluding trivial attacks in the stateful multi-key setting. We
furthermore modularize the adversary’s capability to proceed a channel to a next
phase through key updates. Thereby, our framework elegantly also captures the
single-key variants of our security notions, i.e., the cases where a multi-key chan-
nel only operates in a single phase.

Our single-key security notions enable us to provide a formal link to the estab-
lished stateful-encryption notions for regular channels. We show that analogous
notions in both models are essentially equivalent (modulo the differences in syn-
tax) by providing natural, generic transforms between each pair of corresponding
confidentiality and integrity notions. Furthermore, we establish separations that
give rise to a hierarchy of our security notions and in particular establish for-
ward security and phase-key insulation as independent security properties. To
complete the picture of relations, we also translate the classical composition
result for symmetric encryption by Bellare and Namprempre [10] to the setting
of multi-key channels, showing that chosen-plaintext confidentiality combined
with ciphertext integrity implies the stronger chosen-ciphertext notion of confi-
dentiality.

Finally, we instantiate our model by providing a construction of a multi-
key channel from a nonce-based authenticated encryption with associated data
(AEAD) scheme and a pseudorandom function. To ensure both forward security
and phase-key insulation, we match suitable techniques established for forward-
secure key generation and for ensuring causal integrity. Leveraging our composi-
tion theorem, we then prove that our construction meets our strongest confiden-
tiality and integrity notions for multi-key channels. Coming back to the initial
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motivation from real-world protocol design, we compare our construction with
the draft design of the TLS 1.3 record protocol.

1.4 Related Work

Beyond the preceding works on secure channels discussed earlier, there has been
substantial work on mostly the handshake but also the record protocol of the
TLS 1.3 drafts; see Paterson and van der Merwe [41] for an overview. Badertscher
et al. [4] analyze an early draft of the TLS 1.3 record protocol without key
updates in the constructive cryptography setting. Bellare and Tackmann [12]
analyze the multi-user security of the AES-GCM as authenticated-encryption
building block of TLS 1.3. Bhargavan et al. [14,15] provide verified implemen-
tations of the TLS 1.3 record protocol.

Our notion of phase-key insulation is similar in spirit to, and hence bor-
rows its name from, the notion of key insulation introduced in the public-key
setting [24,25] and also transferred to (non-stateful) symmetric encryption [26].
Beyond treating (phase-)key insulation in the different context of secure chan-
nels, our notion permits more fine-grained corruption of keys. It thereby enables
studying the interaction of forward secrecy and phase-key insulation in a single,
modular framework.

2 Multi-key Channels

We begin with defining the syntax and correctness of multi-key channels, focusing
on their functionality in this section; we will treat their security in Sect. 3. In
Fig. 1 we exemplify the operations of a multi-key channel and already hint at
their expected security.

Like a regular, single-key channel (abstractly modeled as stateful encryp-
tion [9]), a multi-key channel is used by a sender to transform a sequence of
messages m1,m2, . . . ∈ {0, 1}∗ into a corresponding sequence of ciphertexts c1,
c2, . . . ∈ {0, 1}∗ using a sending algorithm Send.1 The receiver then sequentially
uses a corresponding Recv algorithm on each transmitted ciphertext to recover
the sent message sequence.

In addition to regular channels, both sender and receiver can decide to update
their keys used for sending and receiving, thereby switching to the next phase
of the multi-key channel. In our model, we consider a two-level hierarchy for key
derivation. On the first level, the complete multi-key channel is bootstrapped
from a single, initial master secret key generated upon initialization of the chan-
nel. Master secret keys are furthermore evolved when switching to the next phase,
following a deterministic key schedule to derive the master secret key mskt+1 for
phase t+1 from the master secret key mskt of the previous phase. On the second

1 In order to make explicit that a secure multi-key channel might only provide integrity
but no confidentiality, we choose to make use of the more general terms “sending”
and “receiving” instead of “encryption” and “decryption”.
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Fig. 1. Illustration of the behavior of a multi-key channel (cf. Definition 1). The begin-
ning of a new phase t is indicated by the derivation of a phase key Kt from the corre-
sponding master secret key mskt. The phase key Kt is then used to send and receive
in-order messages resp. ciphertexts via algorithms Send and Recv in this phase. In this
example, the phase key K1 of phase 1 is revealed and the master secret key msk3 is
corrupted. The affected phases 1 resp. 3 and following are marked in hatched-pattern
red (with lines towards top right for the effects of the revealed K1 and toward bottom
right for the effects of the corrupted msk3). For security (cf. Sect. 3), a forward-secure
and phase-key–insulated multi-key channel is demanded to provide security in the non-
affected phases 0 and 2, marked by non-hatched green areas. (Color figure online)

level, the actual phase key Kt used in the channel for sending and receiving mes-
sages in a phase t is derived (again deterministically) from that phase’s master
secret key mskt.

Although Fig. 1 depicts only a single key schedule with the phase keys for-
warded to both the Send and Recv algorithms of that phase, in a real execution
of the channel, the key updates and derivations are invoked independently on
the sending and receiving side. For correct functionality, the key updates need
to be aligned in order to process sent and received ciphertexts under matching
keys on both sides. In practice, key updates may be either delivered alongside
of the messages transmitted in a channel (and hence potentially authenticated)
or in an out-of-band manner, e.g., via a separate control channel, and with their
position in the channel’s ciphertext sequence not being explicitly authenticated.2

In our abstraction of multi-key channels, we do not rely on the authenticity of
the key-update signaling (in particular, we will later allow adversaries to tamper

2 In the context of TLS 1.3, for example, both variants have been discussed. The
current draft design [43] specifies that key update notifications are transmitted (and
authenticated) within the data channel.
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with the timing of key updates) but leave it up to the channel to ensure their
correct position with respect to the transmitted ciphertexts.

We now define the syntax and correctness of multi-key channels capturing
the given intuition.

Definition 1 (Syntax of multi-key channels). A multi-key channel Ch =
(Init,Send,Recv,Update) with associated sending and receiving state space SS

resp. SR, master secret key space MSK, phase key space K, error space E with
E ∩{0, 1}∗ = ∅, and maximum number maxmsg ∈ N∪{∞} of messages supported
per phase consists of four efficient algorithms defined as follows.

– Init(1λ) $−→ (msk0,K0, stS,0, stR,0). This probabilistic algorithm is composed of
three algorithms:

• MasterKeyGen(1λ) $−→ msk0. On input security parameter 1λ, this proba-
bilistic algorithm outputs an initial master secret key msk0 ∈ MSK.

• KeyDerive(msk) → K. On input a master secret key msk, this deterministic
algorithm outputs a phase key K ∈ K. The initial phase key is derived
as K0 ← KeyDerive(msk0).

• StateGen(1λ) → (stS,0, stR,0). On input 1λ, this deterministic algorithm
outputs initial sending and receiving states stS,0 ∈ SS resp. stR,0 ∈ SR.

– Send(stS,t,Kt,m) $−→ (st′S,t, c). On input of a sending state stS,t ∈ SS, a
key Kt ∈ K, and a message m ∈ {0, 1}∗, this (possibly) probabilistic algo-
rithm outputs an updated state st′S,t ∈ SS and a ciphertext (or error sym-
bol) c ∈ {0, 1}∗ ∪ E.

– Recv(stR,t,Kt, c) → (st′R,t,m). On input of a receiving state stR,t ∈ SR, a
key Kt ∈ K, and a ciphertext c ∈ {0, 1}∗, this deterministic algorithm outputs
an updated state st′R,t ∈ SR and a message (or error symbol) m ∈ {0, 1}∗ ∪E.

– Update(mskt, stS,t/stR,t) → (mskt+1,Kt+1, stS,t+1/stR,t+1). This determinis-
tic algorithm is composed of the following two algorithms:

• MasterKeyUp(mskt) → mskt+1. On input of a master secret key mskt ∈
MSK, this deterministic algorithm outputs a master secret key mskt+1 ∈
MSK for the next phase.

• StateUp(stS,t/stR,t) → stS,t+1/stR,t+1. On input of a sending or receiving
state stS,t ∈ SS resp. stR,t ∈ SR, this deterministic algorithm derives the
next phase’s state stS,t+1 ∈ SS, resp. stR,t+1 ∈ SR.

It further employs the (same) deterministic algorithm KeyDerive as given for
Init to derive an updated phase key Kt+1 ∈ K as Kt+1 ← KeyDerive(mskt+1).

We call a channel with a deterministic Send algorithm a deterministic multi-
key channel.

Shorthand notation. Given a sending state stS ∈ SS , a phase key K ∈ K,
an integer � ≥ 0, and a vector of messages m = (m1, . . . ,m�) ∈ ({0, 1}∗)�,
let (st′S , c) $←− Send(stS ,K,m) be shorthand for the sequential execution (st1S ,

c1)
$←− Send(st0S ,K,m1), . . . , (st�S , c�)

$←− Send(st�−1
S ,K,m�) with c = (c1, . . . , c�),

st0S = stS , and st′S = st�S . For � = 0 we define c to be the empty vector and the
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final state st�S = st′S to be the initial state stS . We use an analogous notation for
the Recv algorithm.

Correctness of multi-key channels intuitively guarantees that if at the receiver
side the keys are updated only after having received all messages sent in the
previous phase, then the received messages are equal to those sent in the entire
communication.

Definition 2 (Correctness of multi-key channels). Let t ∈ N and (msk0,

K0, stS,0, stR,0)
$←− Init(1λ). Let m0, . . . ,mt ∈ {0, 1}∗∗ be t+1 vectors of messages

of lengths |mi| ≤ maxmsg (for i ∈ {0, . . . , t}). Let c0, . . . , ct ∈ {0, 1}∗∗ be the
corresponding ciphertext vectors output by Send given that Update is invoked
between each sending of two subsequent message sequences, i.e., such that for
k = 0, . . . , t, (st′S,k, ck) $←− Send(stS,k,Kk,mk) and for k = 0, . . . , t − 1, (mskk+1,
Kk+1, stS,k+1) ← Update(mskk, st′S,k).

Now let m′
0, . . . ,m

′
t ∈ {0, 1}∗∗ be the results of receiving these ciphertexts

with likewise interleaved Update invocations on the receiver’s side, i.e., for
k = 0, . . . , t, let (st′R,k,m′

k) ← Recv(stR,k,Kk, ck) and for k = 0, . . . , t − 1,
let (mskk+1,Kk+1, stR,k+1) ← Update(mskk, st′R,k).

We say that a multi-key channel Ch is correct if for any choice of t, m0,
. . . , mt, and all choices of the randomness in the channel algorithm it holds that
m0 = m′

0, . . . , mt = m′
t.

2.1 Syntax Rationale

The syntax of a cryptographic component defines its design space and also drives
the security properties it may achieve. Before we continue with defining security
for multi-key channels, let us pause to provide some rationale for our choices in
the given syntax.

Probabilistic vs. deterministic Send. At first glance, the modeling of secure chan-
nels in form of stateful encryption [9] may appear as merely a stateful variant of
authenticated encryption. For authenticated encryption (optionally with associ-
ated data), the established notion is a deterministic one [44], where encryption
instead of fresh randomness takes a (unique) nonce. One major motivation for
this approach is that (good) randomness may be hard to obtain in practice, e.g.,
due to design flaws or implementation bugs in random number generators, or
limited system entropy available. Ideally, one hence bootstraps an encryption
scheme from a (short) random key and then only relies on a unique nonce (e.g.,
a counter) for message encryption.3

The same argument in principle applies to secure channels, yielding the ques-
tion whether the Send algorithm should be fixed as deterministic. As we will
see next, our security model allows us to seamlessly capture the desired secu-
rity properties for channels with probabilistic and deterministic Send at the
same time. We hence decided to stay in line with previous formalizations of

3 See the work originating from [46] on (nonce-misuse) resistance to non-unique nonces.
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channels (including [9,16,29,42]) and use the more generic syntax with (possi-
bly) probabilistic Send. Nevertheless, we deem a deterministic multi-key channel
to be the more desirable variant in practice. Indeed, the generic construction we
provide in Sect. 4 is deterministic.

Inputs to key updates. We define updates of master secret and phase keys (via
MasterKeyUp and KeyDerive) to be deterministically derived from the initial
master secret key msk0. They are hence necessarily equivalent (in each phase)
on the sender and receiver side.

A design alternative would be to also include the current state in the deriva-
tion, enabling keys to be influenced by, e.g., the message history. We however
decided to focus on deterministic updates from msk0, for mainly two reasons
(besides significantly reducing the security model’s complexity). First, this app-
roach captures the concept of separating key derivation from message sending, in
particular if master secrets are kept in more secure memory. Second, the syntax
is compliant with both theoretical concepts for forward-secret encryption [13]
as well as the practical key schedule employed in TLS 1.3 [43]. Note that, still,
channels can for example take the message history into account within the Send
and Recv algorithms.

3 Security Notions for Multi-key Channels

Classically, two security properties are expected from a secure channel. Con-
fidentiality aims at protecting the content of transported messages from being
read by eavesdroppers or active adversaries on the network. In contrast, integrity
ensures that messages are received unmodified and in correct order, i.e., without
messages being reordered or intermediate messages being dropped. We take up
these notions in the context of multi-key channels and extend them to capture
two more advanced security aspects arising in this scenario which we denote as
forward security and phase-key insulation.

Forward security, as established also in other settings, is concerned with the
effects of leaking a channel’s master secret key on prior communication. The
notion aims at situations where all key material of a communication partner
becomes known to an attacker, e.g., through a break-in into a system or exfiltra-
tion of secrets. Following common terminology, we demand that a forward-secure
multi-key channel upholds both confidentiality and integrity for messages sent
in phases before corruption of a master secret key took place, even if one end-
point of the channel is still processing data in these phases when the corruption
happens. Naturally, as the deterministic key schedule implies that the current
and any future phase’s key can be derived from a master secret key, we however
cannot expect confidentiality or integrity for messages sent from the point of
corruption on.

Phase-key insulation in contrast captures the selective leakage of some phases’
keys while the master secret key remains uncompromised. Such leakage may be
due to cryptanalysis of some of these keys, partial misuse of the key material, or
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temporary compromise. In particular, it reflects that the master secret key of a
channel may be stored in more secure memory (e.g., trusted hardware) while the
current phase key potentially resides in lesser secured memory for performance
reasons. From a phase-key–insulated multi-key channel we demand, on a high
level, that confidentiality and integrity in a certain phase is not endangered by
the leakage of keys in prior or later phases.

3.1 Confidentiality

The established way of modeling confidentiality for channels is by demanding
that the encryptions of two (left and right) sequences of messages are indis-
tinguishable [9,31]. Formally, an adversary sequentially inputs pairs of mes-
sages m0, m1 of its choice to a sending oracle OSend and is given the encryption cb

of always either the first or the second message depending on an initially fixed,
random challenge bit b

$←− {0, 1}. The adversary’s task is to finally determine b.
Hence, the corresponding security notion is established under the name of indis-
tinguishability under chosen-plaintext attacks (IND-CPA). In the stronger set-
ting of chosen-ciphertext attacks (IND-CCA), the adversary is additionally given
a receiving oracle ORecv with the limitation that it may not query it on challenge
ciphertexts, in a way to be defined later.

In the multi-key setting however, the advanced security aspects of forward
security and particularly phase-key insulation render it impossible to use a single
challenge bit throughout all phases. An adversary that adaptively learns keys for
some phases is immediately able to learn whether the left or the right messages
were encrypted in these phases. If this would be a fixed choice for all phases,
the adversary could also tell which messages were encrypted in all other phases.
In our formalization of multi-key confidentiality we hence deploy a separate
challenge bit bi for each phase i, chosen independently at random. This allows
us to capture the expected insulation of phases against compromises in other
phases and, ultimately, later corruption.

We define confidentiality in a modular notion s-IND-kATK through the exper-
iment Expts-IND-kATK

Ch,A given in Fig. 2. The experiment is parameterized with s, k,
and ATK.

– The parameter s specifies the advanced security aspects captured in the
notion and can be either empty or take one of the values ki, fs, or fski.
As expected, fs indicates that the notion ensures forward security and ki
denotes that the notion demands phase-key insulation; for fski both proper-
ties are integrated. Forward security is modeled through allowing the adver-
sary to corrupt the master secret key at some point through a corruption
oracle OCorrupt. When ensuring phase-key insulation, the adversary is given
a reveal oracle OReveal which allows it to selectively learn the keys of some
phases.

– Via the parameter k, we capture both single-key (sk) and multi-key (mk)
security notions in a single experiment. To model the single-key setting,
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Fig. 2. Security experiment for confidentiality (sIND-kATK) of a multi-key channel Ch.
An adversary A has only access to an oracle [OX]c if the condition c is satisfied.

we simply drop the adversary’s capability to proceed to a next phase via
an OUpdate oracle, essentially restricting it to a single phase (and hence key).

– Finally, the parameter ATK distinguishes between chosen-plaintext (ATK =
CPA) and chosen-ciphertext (ATK = CCA) attacks. While the adversary
always has access to a left-or-right encryption oracle OLoR, the receiving ora-
cle ORecv is only available for notions with CCA attacks.
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The adversary finally has to output a phase t and a bit guess b and wins if the
challenge bit used in phase t by the left-or-right oracle OLoR is equal to b and
the targeted challenge phase t is neither revealed nor affected by corruption (i.e.,
t < tcorr , where tcorr is the corrupted phase, initialized to infinity).

In order to prevent trivial attacks, we have to restrict the output of adver-
sarial queries to the receiving oracle ORecv in the setting of chosen-ciphertext
attacks. Obviously, if ORecv outputs the message decrypted on input the unmod-
ified challenge ciphertext sequence, the challenge bit used in OLoR would be
immediately distinguishable. Still, as the Recv algorithm is stateful, we must
allow the adversary to first make this algorithm proceed to a certain, potentially
vulnerable state, before mounting its attack. For this purpose, we follow Bellare
et al. [9] in suppressing the output of the Recv algorithm as long as the adver-
sary’s inputs to ORecv are in sync with the challenge ciphertext sequence output
by OLoR. As soon as synchronization is lost though, ORecv returns the output of
the receiving algorithm Recv to the adversary.

Defining what it means to be in sync now becomes the crucial task in defin-
ing CCA security: we want to make the security notion as strong as possible
without allowing trivial attacks. Intuitively, ORecv stays in sync (denoted by a
flag sync = 1) and decryptions are suppressed as long as the adversary forwards
ciphertexts to ORecv that are obtained from OLoR in the same phase. So far,
this is essentially a transcription of the stateful encryption definition of CCA
security (IND-sfCCA [9]) to the multi-key setting with multiple phases. When
targeting forward security and phase-key insulation, we however also need to
consider how to define synchronization in phases where the adversary knows the
key. Obviously, in such phases we cannot demand that a channel can strictly
distinguish adversarial encryptions from the honest ciphertext sequence gener-
ated in OLoR as the adversary may simply replicate the latter’s behavior. We
accordingly do not consider synchronization to become lost in revealed phases.
Still, we demand that a secure channel notices modifications later in uncom-
promised phases. Moreover, it should even detect truncations at the end of an
uncompromised phase if the next phase’s key is revealed, latest when the chan-
nel recovers from temporary compromise and enters the next, uncompromised
phase.4 We hence, additionally to the regular stateful encryption setting, define
synchronization to be lost if the receiver proceeds from an uncompromised phase
to the next phase without having received all sent ciphertexts, or if the sender
issues a ciphertext in a phase when the receiver already proceeded to the next
phase.

In the following we describe the functionality and purpose of the oracles in
the multi-key confidentiality experiment in Fig. 2 in detail.

– The OLoR oracle can be queried with a pair of messages (m0,m1) of equal
length. It responds with the output of Send on message mbtS

, where btS is
the challenge bit for the current sending phase tS .

4 Recall that we consider key updates to be unauthenticated, possibly transmitted
out-of-band.
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If the receiver already proceeded to a later phase, the sent message cannot be
received correctly anymore. As long as the key of the sender’s phase is unre-
vealed, we hence declare synchronization to be lost (setting sync ← 0). The
restriction to uncompromised phases is necessary to prevent trivial attacks
where the adversary leverages the phase key to, e.g., make the receiver process
more messages than sent earlier to cover up the mismatch.

– The ORecv oracle can only be queried if ATK = CCA. On input a cipher-
text c, ORecv computes the corresponding messages obtained under Recv. In
case the receiving oracle is ahead in phase, has received more messages than
sent, or c deviates from the corresponding sent ciphertext, synchronization is
lost (again, to ignore trivial forgeries, as long the receiver’s current phase is
unrevealed). Finally, if still in sync, ORecv suppresses the message output and
returns an according flag � to the adversary A. Otherwise it provides A with
the obtained message m.

– The OUpdate oracle is only available if k = mk. Using the oracle, the adver-
sary can separately make both the sender or receiver proceed to the next
phase, updating their master secret, phase key, and state. If the sender side
is updated, a new challenge bit for the new phase is chosen at random. More-
over, the experiment goes out of sync if the receiver side is updated too soon,
i.e., without having received all sent ciphertexts, and the receiver’s phase is
not revealed.

– The OReveal oracle can be used by the adversary to obtain the key of any
phase t (along with this phase’s initial sender resp. receiver state) and is
accessible if s ∈ {ki, fski}. Phase t is then added to a set of revealed phases Rev .

– The OCorrupt oracle is provided if s ∈ {fs, fski}. Upon the first call, the adver-
sary obtains for a chosen role role the current phase’s master secret key and
initial state. This phase is then recorded as the phase of corruption tcorr for
later comparison. If a corruption has already taken place (i.e., tcorr < +∞),
the adversary can obtain the other role’s initial state in the corrupted phase
via a further OCorrupt call. For simplicity, we assume the state to be empty in
phases not yet entered. Observe that it suffices to consider a single point in
time for corruption, as later master keys are deterministically derived from
the corrupted one.

Definition 3 (s-IND-kATK Security). Let Ch = (Init,Send,Recv,Update) be
a multi-key channel and experiment Expts-IND-kATK

Ch,A (1λ) for an adversary A be
defined as in Fig. 2.

The security experiment is parameterized in three directions: s, k, and ATK.
The parameter s indicates the advanced security aspects and can take one of
the values ki (phase-key–insulated), fs (forward-secure), fski (forward-secure and
phase-key–insulated), or the empty string5 (plain / neither forward-secure nor
phase-key–insulated). The parameter k integrates both single-key (sk) and multi-
key (mk) security notions in a single experiment. Finally, the parameter ATK

5 For legibility, we also drop the leading dash in a notion s-IND-kATK if s is the empty
string and simply write IND-kATK in this case.
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distinguishes between chosen-plaintext (ATK = CPA) and chosen-ciphertext
(ATK = CCA) security.

Within the experiment the adversary A always has access to a left-or-right
sending oracle OLoR. Moreover, A has access to a receiving oracle ORecv if ATK =
CCA, an update oracle OUpdate if k = mk, a key-reveal oracle OReveal if s ∈
{ki, fski}, and finally a corruption oracle OCorrupt if s ∈ {fs, fski}.

We say that the channel Ch provides indistinguishability under multi-
key (resp. single-key) chosen-plaintext (resp. chosen-ciphertext) attacks
(s-IND-kCPA resp. s-IND-kCCA for k = mk resp. k = sk), potentially with
forward security (if s ∈ {fs, fski}) and/or phase-key insulation (if s ∈ {ki, fski})
if for all PPT adversaries A the following advantage function is negligible in the
security parameter:

Advs-IND-kATK
Ch,A (λ) := Pr

[
Expts-IND-kATK

Ch,A (1λ) = 1
]

− 1
2
.

Our generic confidentiality notion in Definition 3 captures as its weak-
est variant indistinguishability under single-key chosen-plaintext attacks
(IND-skCPA) and as its strongest variant indistinguishability under multi-
key chosen-ciphertext attacks with forward security and phase-key insulation
(fski-IND-mkCCA). We discuss the relations among these notions in more detail
in Sect. 3.4.

3.2 Integrity

Integrity is traditionally defined in two flavors: integrity of plaintexts
(INT-PTXT) and integrity of ciphertexts (INT-CTXT) [10], with according
stateful-encryption analogs INT-sfPTXT [18] and INT-sfCTXT [9]. Integrity of
plaintexts intuitively ensures that no adversary is able to make the receiver out-
put a valid message that differs from the previously sent (sequence of) messages.
The stronger notion of ciphertext integrity ensures that no adversary can make
the receiver output any valid, even recurring message by inputting a forged or
modified ciphertext.

Similarly to confidentiality, we define a modular multi-key integrity notion
s-INT-kATK, given through the experiment Expts-INT-kATK

Ch,A in Fig. 3. Again, the
notion is parameterized to integrate forward security and phase-key insulation
(via s), the single- and multi-key setting (via k), as well as the two attack
targets, ATK = PTXT and ATK = CTXT. An adversary A against the experi-
ment Expts-INT-kATK

Ch,A has access to a sending oracle OSend (in contrast to confi-
dentiality without left-or-right functionality), one of two receiving oracles OATK

Recv

depending on ATK, and—depending on the advanced security properties and
key setting captured—oracles OUpdate (without setting a new challenge bit), and
OReveal and OCorrupt, identical to those for confidentiality. In the integrity experi-
ment, the adversary does not provide a particular challenge output, but instead
needs to trigger a winning flag win to be set within the experiment run.

Beyond the sending oracle OSend only taking and encrypting a single message,
the major difference to the confidentiality setting lies in the definition of the OATK

Recv
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Fig. 3. Security experiment for integrity (sINT-kATK) of a multi-key channel Ch. An
adversary A has only access to an oracle [OX]c if the condition c is satisfied.
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oracle, which in particular comprises the winning condition check. Depending on
the attack target, the adversary has access to either the OPTXT

Recv or the OCTXT
Recv

variant of the receiving oracle. Both oracles first of all obtain a ciphertext c
and provide the adversary A with the decrypted message m output by Recv on
that ciphertext. Beyond this, they differ in assessing whether A has succeeded
in breaking plaintext resp. ciphertext integrity (in which case they set win ← 1):

– The OPTXT
Recv oracle declares the adversary successful if the received message m

differs from the corresponding sent message in this phase and position, given
that the current receiving phase is neither revealed nor corrupted.

– The OCTXT
Recv in contrast for winning requires that, on input an out-of-sync

ciphertext in a phase neither revealed nor corrupted, Recv outputs a valid
message m, i.e., m /∈ E is not an error message.
In the same way as for confidentiality, synchronization is considered to be
lost on an ORecv oracle call if the receiving oracle, in a non-revealed phase, is
ahead of the sending oracle in phase or message count, or if c deviates from
the corresponding sent message. Furthermore, synchronization may be lost
by non-aligned key updates on both sides of the channel, captured in OSend

and OUpdate as in the confidentiality experiment (cf. Fig. 2).

Definition 4 (s-INT-kATK Security). Let Ch = (Init,Send,Recv,Update) be
a multi-key channel and experiment Expts-INT-kATK

Ch,A (1λ) for an adversary A be
defined as in Fig. 3. The security experiment is parameterized via s, k, and ATK.
Parameters s and k are as for confidentiality in Definition 3. The parameter ATK
distinguishes between plaintext integrity (ATK = PTXT) and ciphertext integrity
(ATK = CTXT).

Within the experiment the adversary A has always access to a sending oracle
OSend and a receiving oracle OATK

Recv (the latter differs depending on ATK). More-
over, A has access to an update oracle OUpdate if k = mk, a key-reveal oracle
OReveal if s ∈ {ki, fski}, and finally a corruption oracle OCorrupt if s ∈ {fs, fski}.

We say that Ch provides multi-key (resp. single-key) integrity of plaintexts
(resp. ciphertexts) (s-INT-kPTXT resp. s-INT-kCTXT for k = mk resp. k = sk),
potentially with forward security (if s ∈ {fs, fski}) and/or phase-key insulation
(if s ∈ {ki, fski}) if for all PPT adversaries A the following advantage function
is negligible in the security parameter:

Advs-INT-kATK
Ch,A (λ) := Pr

[
Expts-INT-kATK

Ch,A (1λ) = 1
]
.

Remark 1. Note that the advanced properties of forward security and phase-key
insulation are only reasonable to consider in the multi-key setting (k = mk).
Indeed, for the single-key setting (k = sk), the plain, fs, ki, and fski flavors of
each notion collapse to being equivalent. For this, observe that an adversary in
the single-key setting, lacking access to the OUpdate oracle, is restricted to the
initial phase tS = tR = 0. At the same time, in order to win in this phase
(by outputting a confidentiality guess resp. breaking integrity), it must neither
reveal nor corrupt either of the parties. Hence, it effectively cannot make use of
the OReveal and OCorrupt queries, rendering both non-effective. Consequently, we
can focus on only the plain version of our single-key security notions.
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3.3 Modeling Rationale

As for the definition of syntax, there are choices to make when defining security
for multi-key channels. Before further studying the relations among the confi-
dentiality and integrity notions just set up, let us hence provide some rationale
for aspects of our security model.

LoR vs. IND$. In our confidentiality experiment, the adversary is challenged
to (be unable to) distinguish encryptions of left-or-right (LoR) messages. In the
stateless authenticated-encryption setting particularly for AEAD schemes [44],
the established notion for defining confidentiality instead is the stronger indis-
tinguishability from random strings (IND$) [45].6

It might seem natural to adopt the strong IND$ confidentiality for channels
from its common building block AEAD. On second thought, however, this notion
turns out to be inappropriate for secure channels. While AEAD is an invaluable
building block, a channel is a higher-layer object in a more complex setting, aim-
ing not only at confidentiality and integrity, but also at replay and reordering
protection [9,35] as well as further aspects such as data processing [16,29]. For
this purpose, channel protocols regularly include header information like length
or content type fields within the output ciphertexts, rendering them clearly dis-
tinguishable from random strings. In our security definition, we hence stick to
the left-or-right indistinguishability notion rightfully established through previ-
ous channel models including [9,16,29,42].

Multiple challenge bits. As pointed out earlier, using a single challenge bit across
all phases in the confidentiality experiment is infeasible: an adaptive Reveal query
for some phase would in this case also disclose the challenge phase’s (same) bit.
We hence deploy multiple, independent challenge bits for each phase.

Alternative options would be to employ a single challenge bit in one phase and
provide regular (non–LoR) encryption oracles for all other phases, or to have the
adversary choose whether to compromise a phase at its beginning. We however
deem these approaches not only more complex, but most importantly less adap-
tive, as they prevent the adversary from retrospectively choosing (non-)challenge
phases.

3.4 Relations Between Multi- and Single-Key Notions

The modularity of our notions for multi-key confidentiality and integrity, para-
meterized by forward security and phase-key insulation, leads to a set of notions
of varying strength. In the following, we establish that forward security and
phase-key insulation are orthogonal properties; expectedly both adding to the
strength of a security notion. Furthermore, we show that without forward

6 A third variant, real-or-random (RoR) indistinguishability is equivalent to LoR indis-
tinguishability [8]. See also Barwell et al. [5] for an (historical) overview of the secu-
rity notions established for authenticated encryption.
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security and phase-key insulation the single-key security notions of our frame-
work are essentially equivalent to the respective established stateful encryption
notions: we give generic, pure syntactical transforms to translate secure single-
key schemes between the two realms. Figure 4 illustrates the relations we estab-
lish.

Trivial Implications. First of all, let us observe the trivial implications
between the security notions of our framework, indicated by solid arrows in
Fig. 4. Those implications arise by restricting the access to one (or multiple)
oracles in the security experiments: a notion with access to a certain oracle
immediately implies an otherwise identical notion without this oracle access. For
instance, a fski-IND-mkCPA-secure channel is also ki-IND-mkCPA-secure, since if
no adversary can distinguish left-or-right ciphertexts when being able to corrupt

Fig. 4. Illustration of the relations between different flavors of confidentiality and
integrity in our multi-key and single-key settings as well as for stateful encryption [9].
The variables I and ATK are placeholders for confidentiality notions (I = IND with
ATK = CPA/CCA) and integrity notions (I = INT with ATK = PTXT/CTXT).
Rounded rectangles indicate multi-key (solid-line, green), single-key (dashed-line, blue),
or stateful-encryption notions (dotted-line, purple); regular (orange) rectangles indicate
building blocks. Solid arrows indicate trivial implications. Dashed, stroke-out arrows
indicate separations and dotted arrows generic transforms we establish, both provided
in Sect. 3.4. The dash-dotted arrow indicates the generic construction we provide in
Sect. 4. Labels refer to the respective construction, with brackets [X]c restricting a
relation to condition c.
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the master secret key, then doing so does not become easier when corruption is
not a possibility.

Separations. We discuss the separations between notions possibly providing
forward security and phase-key insulation starting from a multi-key channel that
provides both properties at the example of indistinguishability under chosen-
plaintext attacks. The cases of integrity and indistinguishability under chosen-
ciphertext attacks are analogous. More precisely, let Chfski := (Initfski,Sendfski,
Recvfski,Updatefski) be a multi-key channel which provides fski-IND-mkCPA secu-
rity. Recall that master secret and phase keys are computed using two determin-
istic sub-algorithms MasterKeyUpfski and KeyDerivefski, respectively.

Now we construct a new channel Chfs which differs from Chfski only in its
key derivation algorithm, which we replace by the identity function, i.e., we
define KeyDerivefs(mski) := mski for all phases i ∈ N. As MasterKeyUp remains
unmodified, Chfs inherits the forward security of Chfski. Furthermore, observe that
a revealed phase key (equal to the master secret key Ki = mski) can be iteratively
used to compute the next master secret keys mski+1 = MasterKeyUpfs(mski) and
therefore also the next phase keys Ki+1 = KeyDerivefs(mski+1). As a result, Chfs
has dependent phase keys and hence only provides fs-IND-mkCPA security, but
not fski-IND-mkCPA security, separating the two notions.

Next we build a channel Chki from Chfski which has a master secret key
space MSKki = MSK∗

fski and updates its master secret keys using a func-
tion MasterKeyUpki(mski) := (mski,MasterKeyUpfski(mski[i])), where msk0 =
(MasterKeyGenfski(1λ)). In other words, Chki keeps a copy of all master secret keys
generated so far in the current master secret key, and uses the last entry to derive
the next master secret key. The phase keys are then derived from the last mas-
ter secret key entry, i.e., we define KeyDeriveki(mski) := KeyDerivefski(mski[i]).
While Chki provides the phase-key insulation of Chfski, forward security is lost.
On corruption in any phase, all previous master secret keys are leaked, allow-
ing an adversary to derive any previous phase key. Therefore Chki only provides
ki-IND-mkCPA security, but not fski-IND-mkCPA security.

Combining the two modifications above leads to a channel Chplain which only
satisfies plain IND-mkCPA security, but neither ki-IND-mkCPA nor fs-IND-mkCPA
security.

Finally, we consider the separation between the single-key notions and their
corresponding multi-key notions, both without forward security and phase-key
insulation. Again, we only discuss the notions IND-skCPA and IND-mkCPA as an
example; the other cases follow identically. We build from an IND-skCPA secure
single-key channel Chsk a multi-key channel Chmk-0 which uses the single-key
channel’s key for the initial phase both as master secret and phase key. As the
master secret key for the second and all following phases it then uses the zero-
string, i.e., MasterKeyUpmk(mski) := 0λ. Clearly the security is not preserved by
Chmk-0 in any phase other than the initial one, in which it behaves exactly like
Chsk. Hence, Chmk-0 is IND-skCPA-secure, but not IND-mkCPA-secure.
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Generic Transforms Between Stateful Encryption and Multi-key
Channels. To complete the picture, we finally study the relations between
the established notions for secure channels, stateful authenticated encryption,
and our notion of multi-key channels.

For this purpose, let us first briefly recall the notation for stateful encryp-
tion schemes as introduced by Bellare, Kohno, and Namprempre [9]. A state-
ful encryption scheme sfEnc = (KGen,Enc,Dec) consists of the following three
efficient algorithms. The randomized key generation algorithm KGen(1λ) $−→
(K, stE, stD) outputs a key K ∈ K and initial encryption and decryption
states stE, stD. The randomized, stateful encryption algorithm Enc(stE,K,m) $−→
(stE′, c) takes state, key, and a message m and outputs an updated state and
ciphertext c. The deterministic, stateful decryption algorithm Dec(stD,K, c) $−→
(stD′,m) conversely maps state, key, and a ciphertext to an updated state and
either a message or special error symbol ⊥.

Clearly, stateful encryption does not aim at achieving the advanced secu-
rity properties we consider in this work, forward security and phase-key insu-
lation. In the comparison, we hence focus on the plain confidentiality and
integrity notions, i.e., IND-kATK and INT-kATK (for both k ∈ {mk, sk} and vari-
ants ATK ∈ {CPA,CCA} resp. ATK ∈ {PTXT,CTXT}) in our framework as well
as the stateful-encryption notions IND-sfCPA resp. IND-sfCCA and INT-sfPTXT
resp. INT-sfCTXT.

The relations we establish are twofold. First, our single-key security notions
which allow an adversary to access a multi-key channel only in its initial phase are
indeed equivalent in strength to the corresponding stateful-encryption notions,
beyond syntactical differences. For this, consider the following natural and
generic transforms for constructing a multi-key channel Chsf from any stateful
encryption scheme sfEnc and, conversely, a stateful encryption scheme sfEncsk
from any multi-key channel with single-entry error space E = {⊥}.

– Chsf(Initsf ,Sendsf ,Recvsf ,Updatesf).
For initialization, derive (K, stE, stD) $←− KGen(1λ) and set msk0 = K0 = K,
stS,0 = stE, and stR,0 = stD. For sending and receiving, use Enc and Dec as
direct replacements. Finally, the Update algorithm does nothing; i.e., StateUp,
MasterKeyUp, and KeyDerive are defined to be the identity function.

– sfEncsk(KGensk,Encsk,Decsk).
For key generation, derive (msk0,K0, stS,0, stR,0)

$←− Init(1λ) and set K =
msk0, stE = stS,0, and stD = stR,0. Encryption and decryption is directly
replaced by Send resp. Recv.

Careful inspection of the single-key (k = sk) notions in our framework and
those defined for stateful encryption [9,18]7 readily establishes that each two

7 As a technical side-remark, we here consider a slight variant of stateful integrity
where the adversary in the decryption oracle is given the decrypted message instead
of only a bit telling whether decryption resulted in an error or not.
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corresponding notions (i.e., I-skATK and I-sfATK for same I and ATK) are pre-
served by the generic transforms given above. That is, if the underlying stateful
encryption scheme sfEnc achieves, e.g., IND-sfCCA security then the transformed
multi-key channel Chsf satisfies the corresponding IND-skCCA notion.

Finally, and perhaps surprisingly at first glance, our generic transform Chsf of
a stateful encryption scheme into a multi-key channel also achieves (plain) multi-
key IND-mkCPA security. The reason for this is that the degenerated Update algo-
rithm does not alter the key which hence also makes the OSend oracle not alter its
behavior across different phases. On the other hand, the message resp. ciphertext
vectors M resp. C in the ORecv oracle can be easily set out-of-sync by invoking
Update at different positions in the ciphertext sequence on the sender and receiver
side. As a result, an adversary can make challenge ciphertexts to be considered
as valid forgery in a “different” phase (in the multi-key integrity game) or force
challenge messages to be output by ORecv (in the IND-mkCCA game). Hence,
Chsf achieves neither IND-mkCCA nor INT-mkPTXT or INT-mkCTXT security.

3.5 Generic Composition

We round up the discussion of our framework of multi-key security notions by lift-
ing the classical composition theorem by Bellare and Namprempre [10] for sym-
metric encryption, namely that IND-CPA and INT-CTXT security imply IND-CCA
security, to the setting of multi-key channels. As noted by Boldyreva et al. [17],
this result is not directly applicable in settings where the decryption algorithm
may output multiple, distinguishable errors, an observation that also applies to
our setting. Boldyreva et al. re-establish composition in the multiple-error set-
ting by requiring that with overwhelming probability an adversary is only able
to produce a single error (a notion they call error invariance). Here, we instead
make use of the more versatile approach introduced as error predictability in
the context of stream-based channels by Fischlin et al. [29]. Error predictabil-
ity roughly requires that there exists an efficient predictor algorithm Pred that,
given the ciphertexts sent and received so far, can with overwhelming probability
predict the error message caused by receiving a certain next ciphertext (if that
ciphertext produces at all an error).

In comparison, error predictability is a milder assumption than error invari-
ance [17] as it allows for channels outputting multiple distinguishable and non-
negligible errors. For stateless authenticated encryption, Barwell et al. [5] con-
sidered the alternative notion of error simulatability in which error leakage is
simulated under an independent key. Their notion seems incomparable to error
predictability in the stateful setting, where the history of ciphertexts needs to
be taken into account and it is less clear how to define an independent receiver’s
internal state.

We translate the notion of error predictability to the multi-key setting, para-
meterized as s-kERR-PRE with forward security and phase-key insulation, and
in a single- and multi-key variant. This enables us to show the following com-
position result: for any advanced security property s ∈ {ε, fs, ki, fski} and key
setting k ∈ {sk,mk}, if a multi-key channel provides the according notion of
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Fig. 5. Security experiment for error predictability (s-kERR-PRE) with respect to error
predictor Pred of a multi-key channel Ch. An adversary A has only access to an oracle
[OX]c if the condition c is satisfied.

ciphertext integrity (s-INT-kCTXT), chosen-plaintext confidentiality
(s-IND-kCPA), and error predictability (s-kERR-PRE), then it also provides
chosen-ciphertext confidentiality (s-IND-kCCA).

We formalize the parameterized, multi-key version of error predictability,
s-kERR-PRE, in Definition 5 below through the experiment Expts-kERR-PRECh,A in
Fig. 5. An adversary wins against this experiment if it can ever cause the Recv
algorithm to output an error message that differs from the output of the pre-
dictor algorithm. Meanwhile, when forward security or phase-key insulation is
demanded, the adversary is even allowed to corrupt the master secret key resp.
reveal phase keys at will.

Definition 5 (Error predictability of multi-key channels (s-kERR-PRE)).
Let Ch = (Init,Send,Recv,Update) be a multi-key channel with error space E,
advanced security aspects s ∈ {ε, fs, ki, fski} and key setting k ∈ {sk,mk}. We say
that Ch provides error predictability (s-kERR-PRE) with respect to an efficient
probabilistic algorithm Pred : {0, 1}∗∗ × {0, 1}∗∗ × {0, 1}∗ $−→ E, called the error
predictor, if, for every PPT adversary A playing in the experiment s-kERR-PRE
defined in Fig. 5 against channel Ch, the following advantage function is
negligible:

Advs-kERR-PRE
Ch,Pred,A (λ) := Pr

[
Expts-kERR-PRECh,Pred,A (1λ) = 1

]
.
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We are now ready to state our generic composition theorem for the setting
of multi-key channels. The proof of the multi-key composition theorem follows
along the lines of the classical result [10] adapted to the stateful setting and
making use of the error predictor in the simulation of multiple errors in the
receiving oracle as in [17,29]. Due to space limitations, we provide the proof in
the full version of this work.

Theorem 1 (s-INT-kCTXT ∧ s-IND-kCPA ∧ s-kERR-PRE =⇒ s-IND-kCCA).
Let Ch = (Init,Send,Recv,Update) be a correct multi-key channel with error
space E. If Ch provides indistinguishability under chosen-plaintext attacks,
integrity of ciphertexts, and error predictability (wrt. some predictor Pred) with
advanced security aspects s ∈ {ε, fs, ki, fski} for a key setting k ∈ {sk,mk}, then
it also provides indistinguishability under chosen-ciphertext attacks for s and k.
Formally, for every efficient s-IND-kCCA adversary A there exist an efficient
s-INT-kCTXT adversary B1, s-kERR-PRE adversary B2, and s-IND-kCPA adver-
sary B3 such that

Advs-IND-kCCA
Ch,A ≤ Advs-INT-kCTXT

Ch,B1
+ Advs-kERR-PRE

Ch,Pred,B2
+ Advs-IND-kCPA

Ch,B3
.

4 AEAD-Based Construction of a Multi-key Channel

In this section we generically construct a (deterministic) multi-key chan-
nel ChAEAD from on a nonce-based AEAD scheme AEAD and a pseudoran-
dom function f . We then prove that our construction provides the strongest
security notions for both confidentiality and integrity in our model, namely
indistinguishability under multi-key chosen-ciphertext attacks and multi-key
integrity of ciphertexts, both with forward security and phase-key insulation
(fski-IND-mkCCA and fski-INT-mkCTXT).

Our generic construction ChAEAD = (Init,Send,Recv,Update) is defined via
the algorithms given in Fig. 6. It uses a nonce-based AEAD scheme AEAD =
(Enc,Dec) with key space K = {0, 1}λ, message and ciphertext space {0, 1}∗,
nonce space {0, 1}n, associated data space {0, 1}∗, and an error symbol ⊥. Fur-
thermore, it employs a pseudorandom function f : {0, 1}λ×{0, 1} → {0, 1}λ. The
deterministic AEAD encryption algorithm maps a key K ∈ {0, 1}λ (which we
write in subscript), a nonce N ∈ {0, 1}n, an associated data value ad ∈ {0, 1}∗,
and a message m ∈ {0, 1}∗ to a ciphertext c ∈ {0, 1}∗. The deterministic decryp-
tion algorithm conversely maps a key, nonce, associated data value, and cipher-
text to either a message or the error symbol ⊥.

Our construction supports a maximum number of maxmsg = 2n messages per
phase, where n is the AEAD nonce length. The master-secret-key and phase-key
space in our construction are equal to the AEAD and PRF key space, MSK =
K = {0, 1}λ. The error space {⊥,⊥′} consists of the error symbol ⊥ of the
AEAD scheme and a second symbol ⊥′ indicating exceedance of maxmsg. The
sending and receiving state space is SS = SR = N × N

∗ × {0, 1}, encoding a
message sequence number, a list of the message counts in all previous phases,
and a failure flag indicating a previously occurred error.
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Fig. 6. Our generic construction of a deterministic multi-key channel ChAEAD.

On a high level, ChAEAD derives master secret and phase keys via the (domain-
separated) PRF f , an established technique ensuring forward security and sep-
aration of the keys derived; see, e.g., [13]. For encryption, it ensures reorder
protection via a sequence number used as nonce. It further authenticates the
number of messages seen in previous phases via the associated data field, bor-
rowing established concepts from distributed computing to ensure causality.8 In
detail, our construction operates as follows.

– The Init algorithm uses StateGen to initialize the sending and receiving states
as tuples containing a message sequence number seqno = 0, a list of the

8 Note that, for a more efficient construction, one can get similar authenticity guaran-
tees by storing a chained hash value of the number of messages received in previous
phases using a collision-resistant hash function. For the sake of simplicity we omit
this hash-chain optimization here and focus on demonstrating the feasibility of our
security notions.
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number of messages sent in all previous phases prevnos = (), and a failure
flag fail = 0. Via MasterKeyGen, the Init algorithm then samples an initial
master secret key msk0

$←− {0, 1}λ uniformly at random. Finally it derives the
initial phase key K0 ← f(msk0, 1) via KeyDerive as the output of the PRF f
keyed with the initial master secret key and on input 1.

– The Send algorithm immediately outputs an error ⊥′ in case the maximum
number maxmsg = 2n of messages has been reached in this or a prior call
(indicated by fail = 1). Otherwise, it increases the message sequence num-
ber in its state by one. It then invokes the deterministic AEAD encryption
algorithm on the message m to obtain the ciphertext c. Here, the sequence
number is used as the nonce N = seqno and the previous phases’ message
count as the associated data ad = prevnos. The output of Send is the new
state and the ciphertext c.

– The Recv algorithm immediately outputs an error ⊥ in case the failure flag has
been set (fail = 1) in an earlier invocation, indicating that a previous AEAD
decryption algorithm has failed. Otherwise it increases the message sequence
number contained in the receiving state by one. It then uses the nonce N =
seqno and associated data prevnos in the AEAD decryption algorithm on the
ciphertext c to obtain m. In case the decryption fails and m = ⊥, the failure
flag is set to 1. The output of Recv is the new state and the message (or
error) m.

– The Update algorithm uses StateUp to reset the new message sequence num-
ber to 0, and appends the previous message sequence number to the list of
previous phases’ message counts, i.e., prevnos ← (prevnos, seqno). Then it
invokes MasterKeyUp to derive a new master secret key as the output of f
keyed with the previous master secret key and on input 0. Finally, it uses
KeyDerive to compute a new phase key from the new master secret key.

Correctness. Correctness of our ChAEAD construction follows immediately from
correctness of the underlying AEAD scheme. In particular, observe that both
receiver and sender compute their master secret and phase keys via the same,
deterministic key schedule. Moreover, whenever both sides process the same
number—not exceeding maxmsg—of messages per phase (as is a precondition in
the correctness definition), they will also use the same associated data values
for encryption and decryption, thus rendering the receiver to derive the correct
messages as required.

Remark 2. At first glance, it might seem counter-intuitive that the sequence
number in our ChAEAD construction is reset to 0 at the start of a new phase.
Would it not be more natural to have the sequence number running over all
phases in order to ensure at the start of a phase that all messages of the previous
phase were received, and to prevent reordering of messages across phases?

As surfaced by Fournet and the miTLS [40] team in the discussion around
TLS 1.3 [30], this approach would however enable truncation attacks if the leak-
age of phase keys is considered in the security definition, as we do for phase-key
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insulation.9 If sequence numbers are continued, an adversary holding the key
of some phase t can truncate a prefix of the messages (with sequence numbers
i, . . . , i+j) in phase t+1 by providing the receiver with j+1 self-generated mes-
sages at the end of t. Dropping the first j+1 messages in phase t+1, the receiver’s
sequence number matches again the one of the sender (for message i+ j + 1), so
the truncation would go unnoticed. Resetting the sequence numbers to 0 when
switching phases prevents this attack, though additional care needs to be taken
to prevent suffix truncation at the end of a phase. In our construction, we ensure
the latter through authenticating the number of messages sent in all previous
phases. We note that this mechanism would even allow to not reset the sequence
number, but we decided to keep the reset in order to stay closer to the channel
design of TLS 1.3 (cf. the discussion in Sect. 4.2).

4.1 Security Analysis

We now show that our generic ChAEAD construction achieves the strongest multi-
key security notions for confidentiality and integrity, namely forward-secure
and phase-key–insulated indistinguishability under multi-key chosen-ciphertext
attacks (fski-IND-mkCCA) and integrity of ciphertexts (fski-INT-mkCTXT). For
proving the former notion we proceed via first showing the corresponding CPA
confidentiality variant as well as that our construction provides error predictabil-
ity (for multiple keys and with forward security and phase-key insulation), and
then leverage our generic composition theorem (Theorem 1). Our results hold
under the assumption that the underlying nonce-based AEAD scheme AEAD
provides confidentiality in the sense of IND-CPA security and integrity in terms
of AUTH security as defined by Rogaway [44]10, as well as that the employed
pseudorandom function f meets the standard notion of PRF security.

We begin with stating the multi-key chosen-plaintext confidentiality with
forward security and phase-key insulation. The according proof, provided in the
full version, proceeds in three steps. First, we guess the challenge phase t the
adversary will select, introducing a loss of nt. Second, we gradually replace all
master secret keys up to mskt+1 and phase keys up to Kt with independent ran-
dom values, bounding the advantage difference by nt times the PRF security of f
via a hybrid argument. In the last step, we show that the remaining advantage
can be bounded by reducing the challenge phase’s operations to the IND-CPA
security of the employed AEAD scheme.

Theorem 2 (ChAEAD is fski-IND-mkCPA-secure). The ChAEAD construction
from Fig. 6 provides forward-secure and phase-key–insulated indistinguishabil-
ity under multi-key chosen-plaintext attacks (fski-IND-mkCPA) if the employed

9 In our framework, the weakest integrity property broken through this attack is phase-
key–insulated integrity of plaintexts (ki-INT-mkPTXT).

10 While Rogaway defines confidentiality via the stronger IND$-CPA notion, it suffices
for our result that AEAD provides regular indistinguishability of encryptions.
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authenticated encryption with associated data scheme AEAD provides indistin-
guishability under chosen-plaintext attacks (IND-CPA) and the employed pseudo-
random function f is PRF-secure.

Formally, for every efficient fski-IND-mkCPA adversary A against ChAEAD
there exists efficient algorithms B1 and B2 such that

Advfski-IND-mkCPA
ChAEAD,A (λ) ≤ nt ·

(
nt · AdvPRFf,B1

(λ) + AdvIND-CPA
AEAD,B2

(λ)
)

,

where nt = max(tS , tR) + 1 is the maximum number of phases active in the
fski-IND-mkCPA experiment.

We now turn to the multi-key integrity of ciphertexts with forward security
and phase-key insulation of ChAEAD. In the proof, the first two steps follow closely
the proof of fski-IND-mkCPA security. For the last step, a careful case analysis
of the situations where synchronization is lost in the integrity experiment and
how this is reflected in the ChAEAD construction establishes the reduction to the
underlying AEAD scheme’s authenticity. We provide the proof of integrity for
our ChAEAD construction in the full version.

Theorem 3 (ChAEAD is fski-INT-mkCTXT-secure). The ChAEAD construction
from Fig. 6 provides forward-secure and phase-key–insulated multi-key integrity
of ciphertexts (fski-INT-mkCTXT) if the employed authenticated encryption with
associated data scheme AEAD provides authenticity (AUTH) and the employed
pseudorandom function f is PRF-secure.

Formally, for every efficient fski-INT-mkCTXT adversary A against ChAEAD
there exists efficient algorithms B1 and B2 such that

Advfski-INT-mkCTXT
ChAEAD,A (λ) ≤ nt ·

(
nt · AdvPRFf,B1

(λ) + AdvAUTHAEAD,B2
(λ)

)
,

where nt = max(tS , tR) + 1 is the maximum number of phases active in the
fski-INT-mkCTXT experiment.

Finally, in the full version, we show that our ChAEAD provides multi-
key error predictability with forward security and phase-key insulation
(fski-mkERR-PRE). We can then conclude from Theorem 1 that it also achieves
strong fski-IND-mkCCA confidentiality.

4.2 Comparison to the TLS 1.3 Record Protocol

Our notion of multi-key channels is particularly inspired by the ongoing develop-
ments of the upcoming Transport Layer Security (TLS) protocol version 1.3 [43].
It is hence insightful to compare our generic construction with the design of the
TLS 1.3 record protocol (cf. [43, Sect. 5]).

First of all note that, in contrast to previous TLS versions, TLS 1.3 man-
dates the use of AEAD schemes as encryption and authentication mechanisms
for the record protocol. It follows the basic secure-channel design principle to
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include a sequence number for protecting against reordering attacks; as in our
construction. Both in TLS 1.3 and our construction, the sequence number enters
the AEAD’s nonce field and is reset to 0 at the start of each new phase. Also
identically to our construction, the TLS 1.3 record protocol keys are derived via
a deterministic key schedule in which, starting from an initial master secret key
(denoted client/server traffic secret 0 in TLS 1.3) the current phase’s key
as well as the next phase’s master secret key are derived via independent applica-
tions of a pseudorandom function (TLS 1.3 uses HMAC [7,36] for this purpose).
Beyond enabling key switches to allow secure encryption of large amounts of
data, the TLS 1.3 design in particular names forward security (combined with
insulation of phase keys) as a security goal [43, Appendix E.2]. In this sense,
our generic ChAEAD construction is comparatively close to the internal channel
design of the TLS 1.3 record protocol in both techniques and security goals.

Still, there are some notable differences between the two designs, both in
technical details as well as in the practically achieved security and its underlying
assumptions. On the technical side, the TLS 1.3 record protocol additionally
includes a content-type field in ciphertexts to enable multiplexing of messages
from multiple sources. Furthermore, TLS 1.3 does not explicitly authenticate
the numbers of seen ciphertexts in previous phases (as our construction does via
the prevnos field), but instead relies on the authenticated transmission of key
update messages. To be precise, key update messages are encoded as a specific
control (“post-handshake”) message and sent within the data channel. Thereby
associated with a sequence number, they serve as an authenticated “end-of-phase
indicator” that allows the record protocol to infer in unrevealed phases that all
messages in a phase have been correctly received when the key update message
arrives.

In contrast, our model does not rely on the authenticity of key updates
but captures more generic settings where key update notifications may be send
out-of-band and without being authenticated. Our construction hence cannot
rely on key updates as indicators that a phase was gracefully completed, but
instead needs to leverage the next uncompromised phase to detect truncations
in an earlier phase. Nevertheless, our generic ChAEAD scheme serves as proof-of-
concept construction that strong confidentiality and integrity can be achieved in
the multi-key setting with forward security and phase-key insulation even with
unauthenticated, out-of-band key updates.

5 Conclusions and Future Work

In this work we initiate the study of multi-key channels, providing a game-based
formalization, a framework of security notions and their relations, as well as a
provably secure construction based on authenticated encryption with associated
data and a pseudorandom function. Motivated by the channel design of the
upcoming version 1.3 of the Transport Layer Security (TLS) protocol involving
key updates and thus multiple keys, our work casts a formal light on the design
criteria for multi-key channels and their achievable security guarantees.
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Being a first step towards the understanding of, in particular, real-world
designs of multi-key channels, our work also gives rise to further research ques-
tions. A natural next step is to analyze the exact security guarantees achieved
by the multi-key TLS 1.3 record protocol. In this context, a question of indepen-
dent interest lies in analyzing the trade-offs between relying on authenticated
key updates versus not authenticating them, both with respect to the security
properties achievable as well as potential functional and efficiency impacts. In
a different direction, Fischlin et al. [29] observed that TLS and other channels
deviate on the API level from the classical cryptographic abstraction of chan-
nels by providing a streaming interface rather than an atomic-message interface.
Hence, their notion of stream-based channels is a natural candidate to blend
with our multi-key notions in order to investigate the interplay of discrete key
updates with a non-discrete stream of message data. Finally, it would be inter-
esting to extend the notion of multi-key channels to capture more complex, non-
deterministic key schedules, e.g., those employed in secure messaging protocols
like Signal [47] aiming at extended security properties [6,20,21].
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Abstract. We aim to understand, formalize and provably achieve the
goals underlying the core key-ratcheting technique of Borisov, Goldberg
and Brewer, extensions of which are now used in secure messaging sys-
tems. We give syntax and security definitions for ratcheted encryption
and key-exchange. We give a proven-secure protocol for ratcheted key
exchange. We then show how to generically obtain ratcheted encryption
from ratcheted key-exchange and standard encryption.

1 Introduction

The classical view of cryptography was that the endpoints (Alice and Bob) are
secure and the adversary is on the communication channel. The prevalence of
malware and system vulnerabilities however makes endpoint compromise a seri-
ous and immediate threat. In their highly influential OTR (Off the Record)
communication system, Borisov, Goldberg and Brewer (BGB) [10] attempt to
mitigate the damage from endpoint compromise by regularly updating (ratch-
eting) the encryption key. (They do not call it ratcheting, this term originating
later with Langley [19].) Ratcheting was then used by Open Whisper Systems in
their Signal protocol [22], which in turn is used by WhatsApp and other secure
messaging systems.

This widespread usage —WhatsApp alone reports handling 42 billion text
messages per day— motivates an understanding and analysis of ratcheting: what
is it aiming to accomplish, and does it succeed? The answer to this question
does not seem clear. Indeed, in their SOK (Systemization of Knowledge) paper
on secure messaging, UDBFPGS [25] survey many of the systems that existed at
the time and attempt to classify them in terms of security, noting that security
claims about ratcheting in different places include “forward-secrecy,” “backward-
secrecy,” “self-healing” and “future secrecy,” and concluding that “The terms
are controversial and vague in the literature” [25, Section 2.D].

In this paper, we aim to formalize the goals that ratcheting appears to be tar-
geting. We give definitions for ratcheted encryption and ratcheted key-exchange.
We then give protocols (based on ones in use but not identical to them) to
provably achieve the goals.
c© International Association for Cryptologic Research 2017
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Our work aims to be selective rather than comprehensive. Our intent is to for-
malize and understand the simplest form of ratcheting that captures the essence
of the goal, which is single, one-sided ratcheting. This (as we will see) is already
complex enough. Extended forms of ratcheting are left as future work.

Ratcheting. The setting we consider is that sender Alice and receiver Bob hold
keys Ks = (k, . . .) and Kr = (k, . . .), respectively, k representing a shared sym-
metric key and the ellipses indicating there may be more key information that
may be party dependent. In practice, these keys are the result of a session-key
exchange protocol that is authenticated either via the parties’ certificates (TLS)
or out-of-band (secure messaging), but ratcheting is about how these keys are
used and updated, not about how they are obtained, and so we will not be con-
cerned with the distribution method, instead viewing the initial keys as created
and distributed by a trusted process.

In TLS, all data is secured under the shared key k with an authenticated
encryption scheme. Under ratcheting, the key is constantly changing. As per
BGB [10] it works roughly like this:

B → A: gb1 ; A → B: ga1 , E(k1,M1) ; B → A: gb2 , E(k2,M2) ; . . . (1)

Here ai and bi are random exponents picked by A and B respectively; k1 =
H(k, gb1a1), k2 = H(k1, ga1b2), . . .; H is a hash function; E is an encryption
function taking key and message to return a ciphertext; and g is the generator
of an underlying group. Each party deletes its exponents and keys once they are
no longer needed for encryption or decryption.

Contributions. This paper aims to lift ratcheting from a technique to a cryp-
tographic primitive, with a precise syntax and formally-defined security goals.
Once this is done, we specify and prove secure some protocols that are closely
related to the in-use ones.

If ratcheting is to be a primitive, a syntax is the first requirement. As
employed, the ratcheting technique is used within a larger protocol, and one
has to ask what it might mean in isolation. To allow a modular treatment, we
decouple the creation of keys from their use, defining two primitives, ratcheted
key exchange and ratcheted encryption. For each, we give a syntax. While ratch-
eting in apps is typically per message, our model is general and flexible, allowing
the sender to ratchet the key at any time and encrypt as many messages as it
likes under a given key before ratcheting again.

Next we give formal, game-based definitions of security for both ratcheted
key exchange and ratcheted encryption. At the highest level, the requirement
is that compromise (exposure in our model) revealing a party’s current key
and state should have only a local and temporary effect on security: a small
hiccup, not compromising prior communications and after whose passage both
privacy and integrity are somehow restored. This covers forward security (prior
keys or communications remain secure) and backward security (future keys and
communications remain secure). Amongst the issues in formalizing this is that
following exposure there is some (necessary) time lag before security is regained,
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and that privacy and integrity are related. For ratcheted key exchange, un-
exposed keys are required to be indistinguishable from random in the spirit of [5]
—rather than merely, say, hard to recover— to allow them to be later securely
used. For ratcheted encryption, the requirement is in the spirit of nonce-based
authenticated encryption [23], so that authenticity in particular is provided.

The definitions are chosen to allow a modular approach to constructions.
We exemplify by showing how to build ratcheted encryption generically from
ratcheted key-exchange and multi-user-secure nonce-based encryption [8]. This
allows us to focus on ratcheted key exchange.

We give a protocol for ratcheted key exchange that is based on DH key
exchanges. The core technique is the same as in [10] and the in-use protocols,
but there are small but important differences, including MAC-based authenti-
cation of the key-update values and the way keys are derived. We prove that
our protocol meets our definition of ratcheted key exchange under the SCDH
(Strong Computational Diffie-Hellman) assumption [1] in the random oracle
model (ROM) [4]. The proof is obtained in two steps. The first is a standard-
model reduction to an assumption we call ODHE (Oracle Diffie-Hellman with
Exposures). The second is a validation of ODHE under SCDH in the ROM.

Model and syntax. Our syntax specifies a scheme RKE for ratcheted key exchange
via three algorithms: initial key generation RKE.IKg, sender key generation
RKE.SKg and receiver key generation RKE.RKg. See Fig. 3 for an illustration.
The parties maintain output keys (representing the keys they are producing for
an overlying application like ratcheted encryption) and session keys (local state
for their internal use). At any time, the sender A can run RKE.SKg on its cur-
rent keys to get update information upd that it sends to the receiver, as well
as updated keys for itself. The receiver B correspondingly will run RKE.RKg on
received update information and its current keys to get updated keys, transmit-
ting nothing. RKE.IKg provides initial keys for the parties, what we called Ks

and Kr above, that in particular contain an initial output key k (the same for
both parties) and initial session keys. A ratcheted encryption scheme RE main-
tains the same three key-generation algorithms, now denoted RE.IKg, RE.SKg
and RE.RKg, and adds an encryption algorithm RE.Enc for the sender —in the
nonce-based vein [23], taking a key, nonce, message and header to determinis-
tically return a ciphertext— and a corresponding decryption algorithm RE.Dec
for the receiver. The key for encryption and decryption is what ratcheted key
exchange referred to as the output key.

Besides a natural correctness requirement, we have a robustness requirement:
if the receiver receives an update that it rejects, it maintains its state and will
still accept a subsequent correct update. This prevents a denial-of-service attack
in which a single incorrect update sent to the receiver results in all future com-
munications being rejected.

Security. In the spirit of BR [5] we give the adversary complete control of com-
munication. Our definition of security for ratcheted key exchange in Sect. 4.2
is via a game KIND. After (trusted) initial key-generation, the game gives the
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adversary oracles to invoke either sender or receiver key generation and also
to expose sender keys (both output and session). Roughly the requirement is
that un-exposed keys be indistinguishable from random. The delicate issue is
that this is true only under some conditions. Thus, exposure in one session will
compromise the next session. Also, a post-expose active attack on the receiver
(in which the adversary supplies the update information) can result in contin-
ued violation of integrity. Our game makes the necessary restrictions to capture
these and other situations. For ratcheted encryption, the game RAE we give in
Sect. 5 captures ratcheted authenticated encryption with nonce-based security.
The additional oracles for the adversary are encryption and decryption. The
requirement is that, for un-exposed and properly restricted keys, the adversary
cannot distinguish whether its encryption and decryption oracles are real, or
return random ciphertexts and ⊥ respectively.

Schemes. Our ratcheted key exchange scheme in Sect. 4.3 is simple and efficient
and uses the same basic DH technique as ratcheting in OTR [10] or WhatsApp,
but analysis is quite involved. The sender’s initial key includes gb where b is
part of the receiver’s initial key, these quantities remaining static. Sender key
generation algorithm RKE.SKg picks a random a and sends the update upd
consisting of ga together with a mac under the prior session key that is crucial
to security. The output and next session key are derived via a hash function
applied to gab. Theorem 1 establishes that the scheme meets our stringent notion
of security for ratcheted key exchange. The proof uses a game sequence that
includes a hybrid argument to reduce the security of the ratcheted key exchange
to our ODHE (Oracle Diffie-Hellman with Exposures) assumption. The latter is
an extension of the ODH assumption of [1] and, like the latter, can be validated
in the ROM under the SCDH assumption of [1] (which in turn is a variant of the
Gap-DH assumption of [21]). We show this in [7]. Ultimately, this yields a proof
of security for our ratcheted key exchange protocol under the SCDH assumption
in the ROM.

Our construction of a ratcheted encryption scheme in Sect. 5 is a generic com-
bination of any ratcheted key exchange scheme (meeting our definition of secu-
rity) and any nonce-based authenticated encryption scheme. Theorem2 estab-
lishes that the scheme meets our notion of security for ratcheted encryption. The
analysis is facilitated by assuming multi-user security for the base nonce-based
encryption scheme as defined in [8], but a hybrid argument reduces this to the
standard single-user security defined in [23]. Encryption schemes meeting this
notion are readily available.

Setting and discussion. There are many variants of ratcheting. What we treat
is one-sided ratcheting. This means one party (Alice) is a sender and the other
(Bob) a receiver, rather than both playing both roles. In our model, compromises
(exposures) are allowed only on the sender, not on the receiver. In particular
the receiver has a static secret key whose compromise will immediately violate
privacy of our schemes, regardless of updates. From the application perspective,
our model and schemes are suitable for settings where the sender (for example a
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smartphone) is vulnerable to compromise but the receiver (for example a server
with hardware-protected storage) can keep keys safely. In two-sided ratcheting,
both the sender and the receiver may be compromised. Another dimension is
single (what we treat) versus double ratcheting. In the latter, keys are also
locally ratcheted via a forward-secure pseudorandom generator [9]. Conceptually,
we decided to focus on the single, one-sided case to keep definitions (already
quite complex) as simple as possible while capturing the essence of the goal and
method. But we note that what Signal implements, and what is thus actually
used, is double, two-sided ratcheting. Treating this does not seem like a simple
extension of what we do and is left as future work.

Secure Internet communication protocols (both TLS and messaging) start
with a session-key exchange that provides session keys, Ks for the sender and
Kr for the receiver. These are our initial keys, the starting points for ratcheting.
These keys are not to be confused with higher-level, long-lived signing or other
keys that are certified either explicitly (TLS) or out-of-band (messaging) and
used for authentication in the session-key exchange.

Messaging sessions tend to be longer lived than typical TLS sessions, with
conversations that are on-going for months. This is part of why messaging
security seeks, via ratcheting, fine-grained forward and backward security. Still,
exactly what threat ratcheting prevents in practice needs careful consideration.
If the threat is malware on a communicant’s phone that can directly exfiltrate
text of conversations, ratcheting will not help. Ratcheting will be of more help
when users delete old messages, when the malware is exfiltrating keys rather than
text, and when its presence on the phone is limited through software security.

Related work. In concurrent and independent work, Cohn-Gordon, Cremers,
Dowling, Garratt and Stebila (CCDGS) [11] give a formal analysis of the Signal
protocol. The protocol they analyze includes ratcheting steps but stops at key
distribution: unlike us, they do not consider, define or achieve ratcheted encryp-
tion. They treat Signal as a multi-stage session-key exchange protocol [18] in the
tradition of authenticated session-key exchange [3,5], with multiple parties and
sessions. We instead consider ratcheted key exchange as a two-party protocol
based on a trusted initial key distribution. This isolates ratcheted key exchange
from the session key exchange used to produce the initial keys and allows a more
modular treatment. They prove security (like us, in the ROM) under the Gap-
DH [21] assumption while we prove it under the weaker SCDH [1] assumption.
Ultimately their work and ours have somewhat different goals. Theirs is to ana-
lyze the particular Signal protocol. Ours is to isolate the core ratcheting method
(as one of the more novel elements of the protocol) and formalize primitives
reflecting its goals in the simplest possible way.

Cohn-Gordon, Cremers and Garratt (CCG) [12] study and compare differ-
ent kinds of post-compromise security in contexts including authenticated key
exchange. They mention ratcheting as a technique for maintaining security in
the face of compromise.

Key-insulated cryptography [13–15] also targets forward and backward secu-
rity but in a model where there is a trusted helper and an assumed-secure channel
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from helper to user that is employed to update keys. Implementing the secure
channel is problematic due to the exposures [2]. Ratcheting in contrast works in
a model where all communication is under adversary control.

2 Preliminaries

Notation and conventions. Let N = {0, 1, 2, . . .} be the set of non-negative inte-
gers. Let ε denote the empty string. If x ∈ {0, 1}∗ is a string then |x| denotes its
length, x[i] denotes its i-th bit, and x[i..j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. If
mem is a table, we use mem[p] to denote the element of the table that is indexed
by p. By x ‖ y we denote a uniquely decodable concatenation of strings x and y
(if lengths of x and y are fixed then x ‖ y can be implemented using standard
string concatenation). If X is a finite set, we let x ←$ X denote picking an ele-
ment of X uniformly at random and assigning it to x. We use a special symbol
⊥ to denote an empty table position, and we also return it as an error code
indicating an invalid input; we assume that adversaries never pass ⊥ as input to
their oracles.

Algorithms may be randomized unless otherwise indicated. Running time is
worst case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A
with random coins r on inputs x1, . . . and assigning the output to y. We let
y ←$ A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r).
We let [A(x1, . . .)] denote the set of all possible outputs of A when invoked with
inputs x1, . . .. Adversaries are algorithms.

We use the code based game playing framework of [6]. (See Fig. 2 for an
example.) We let Pr[G] denote the probability that game G returns true. In
code, uninitialized integers are assumed to be initialized to 0, Booleans to false,
strings to the empty string, sets to the empty set, and tables are initially empty.

Function families. A family of functions F specifies a deterministic algorithm F.Ev.
Associated to F is a key length F.kl ∈ N, an input set F.In, and an output length
F.ol. Evaluation algorithm F.Ev takes fk ∈ {0, 1}F.kl and an input x ∈ F.In to
return an output y ∈ {0, 1}F.ol.

Strong unforgeability under chosen message attack. Consider game SUFCMA of
Fig. 1, associated to a function family F and an adversary F . In order to win
the game, adversary F has to produce a valid tag σforge for any message mforge,
satisfying the following requirement. The requirement is that F did not previ-
ously receive σforge as a result of calling its Tag oracle with mforge as input.
The advantage of F in breaking the SUFCMA security of F is defined as
Advsufcma

F,F = Pr[SUFCMAF
F ]. If no adversaries can achieve a high advantage in

breaking the SUFCMA security of F while using only bounded resources, we
refer to F as a MAC algorithm and we refer to its key fk as a MAC key.

Symmetric encryption schemes. A symmetric encryption scheme SE specifies
deterministic algorithms SE.Enc and SE.Dec. Associated to SE is a key length
SE.kl ∈ N, a nonce space SE.NS, and a ciphertext length function SE.cl : N → N.
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Game SUFCMAF
F

fk ←$ {0, 1}F.kl

win ← false

FTag,Verify

Return win

Tag(m)

σ ← F.Ev(fk, m)

S ← S ∪ {(m, σ)}
Return σ

Verify(m, σ)

σ′ ← F.Ev(fk, m)

If (σ = σ′) and ((m, σ) �∈ S) then

win ← true

Return (σ = σ′)

Game MAEN
SE

b ← {0, 1} ; v ← 0

b′ ←$ NNew,Enc,Dec ; Return (b′ = b)

New

v ← v + 1 ; sk[v] ←$ {0, 1}SE.kl

Enc(i, n, m, h)

If not (1 ≤ i ≤ v) then return ⊥
If (i, n) ∈ U then return ⊥
c1 ← SE.Enc(sk[i], n, m, h) ; c0 ←$ {0, 1}SE.cl(|m|)

U ← U ∪ {(i, n)} ; S ← S ∪ {(i, n, cb, h)}
Return cb

Dec(i, n, c, h)

If not (1 ≤ i ≤ v) then return ⊥
If (i, n, c, h) ∈ S then return ⊥
m ← SE.Dec(sk[i], n, c, h)

If b = 1 then return m else return ⊥

Fig. 1. Games defining strong unforgeability of function family F under chosen message
attack, and multi-user authenticated encryption security of SE.

Encryption algorithm SE.Enc takes sk ∈ {0, 1}SE.kl, a nonce n ∈ SE.NS, a
message m ∈ {0, 1}∗ and a header h ∈ {0, 1}∗ to return a ciphertext c ∈
{0, 1}SE.cl(|m|). Decryption algorithm SE.Dec takes sk, n, c, h to return message
m ∈ {0, 1}∗∪{⊥}, where ⊥ denotes incorrect decryption. Decryption correctness
requires that SE.Dec(sk, n,SE.Enc(sk, n,m, h), h) = m for all sk ∈ {0, 1}SE.kl, all
n ∈ SE.NS, all m ∈ {0, 1}∗, and all h ∈ {0, 1}∗. Nonce-based symmetric encryp-
tion was introduced in [24], whereas [23] also considers it in the setting with
associated data. In this work we consider only nonce-based symmetric encryp-
tion schemes with associated data; we omit repeating these qualifiers throughout
the text, instead referring simply to “symmetric encryption schemes”.

Multi-user authenticated encryption. Consider game MAE of Fig. 1, associated to
a symmetric encryption scheme SE and an adversary N . It extends the definition
of authenticated encryption with associated data for nonce-based schemes [23] to
the multi-user setting, first formalized in [8]. The adversary is given access to
oracles New,Enc and Dec. It can increase the number of users by calling oracle
New, which generates a new (secret) user key. For any of the user keys, the
adversary can request encryptions of plaintext messages by calling oracle Enc
and decryptions of ciphertexts by calling oracle Dec. In the real world (when
b = 1), oracles Enc and Dec provide correct encryptions and decryptions. In the
random world (when b = 0), oracle Enc returns uniformly random ciphertexts
and oracle Dec returns the incorrect decryption symbol ⊥. The goal of the
adversary is to distinguish between these two cases. In order to avoid trivial
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attacks, N is not allowed to call Dec with ciphertexts that were returned by
Enc. Likewise, we allow N to call Enc only once for every unique user-nonce
pair (i, n). This can be strengthened to allow queries with repeated (i, n) and
instead not allow queries with repeated (i, n,m, h), but the stronger requirement
is satisfied by fewer schemes. The advantage of N in breaking the MAE security
of SE is defined as Advmae

SE,N = 2Pr[MAEN
SE] − 1.

3 Oracle Diffie-Hellman with Exposures

The Oracle Diffie-Hellman (ODH) assumption [1] in a cyclic group requires that
it is hard to distinguish between a random string and a hash function H applied
to gxy, even given gx, gy and an access to an oracle that returns H(Xy) for
arbitrary X (excluding X = gx). We extend this assumption for multiple queries,
based on a fixed gy and arbitrarily many gx[0], gx[1], . . .. For each index v we allow
either to expose x[v], or to get a challenge value; the challenge value is either a
random string, or H applied to gx[v]·y. We also extend the hash function oracle
to take a broader class of inputs.

Oracle Diffie-Hellman with Exposures assumption. Let G be a cyclic group of order
p ∈ N, and let G

∗ denote the set of its generators. Let H be a function family
such that H.In = {0, 1}∗. Consider game ODHE of Fig. 2 associated to G,H
and an adversary O, where O is required to call oracle Up at least once prior

Game ODHEO
G,H

b ←$ {0, 1} ; hk ←$ {0, 1}H.kl ; g ←$ G
∗ ; y ←$ Zp ; v ← −1

b′ ←$ OUp,Ch,Exp,Hash(hk, g, gy) ; Return (b′ = b)

Up

op ← ε ; v ← v + 1 ; x[v] ←$ Zp ; Return gx[v]

Ch(s)

If (op = “exp”) or ((v, s, gx[v]) ∈ Shash) then return ⊥
op ← “ch” ; Sch ← Sch ∪ {(v, s, gx[v])} ; e ← gx[v]·y

If mem[v, s, e] =⊥ then mem[v, s, e] ←$ {0, 1}H.ol

r1 ← H.Ev(hk, v ‖ s ‖ e) ; r0 ← mem[v, s, e] ; Return rb

Exp

If op = “ch” then return ⊥
op ← “exp” ; Return x[v]

Hash(i, s, X)

If (i, s, X) ∈ Sch then return ⊥
If i = v then Shash ← Shash ∪ {(i, s, X)}
Return H.Ev(hk, i ‖ s ‖ Xy)

Fig. 2. Game defining Oracle Diffie-Hellman with Exposures assumption for G,H.
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to making any oracle queries to Ch and Exp. The game starts by sampling a
function key hk, a group generator g and a secret exponent y. The adversary
is given hk, g, gy and it has access to oracles Up, Ch, Exp, Hash. Oracle Up
generates a new challenge exponent x[v] and returns gx[v], where v is an integer
counter that denotes the number of the current challenge exponent (indexed
from 0) and is incremented by 1 at the start of every call to oracle Up. Oracle
Hash takes an arbitrary integer i, an arbitrary string s and a group element
X to return H.Ev(hk, i ‖ s ‖ Xy). For each counter value v, the adversary can
choose to either call oracle Exp to get the value of x[v] or call oracle Ch with
input s to get a challenge value that is generated as follows. In the real world
(when b = 1) oracle Ch returns H.Ev(hk, v ‖ s ‖ gx[v]·y) and in the random world
(when b = 0) it returns a uniformly random element from {0, 1}H.ol. The goal
of the adversary is to distinguish between these two cases. Oracle Ch can be
called multiple times per challenge exponent, and it returns consistent outputs
regardless of the challenge bit’s value. The advantage of O in breaking the ODHE
security of G,H is defined as AdvodheG,H,O = 2Pr[ODHEO

G,H] − 1.
In order to avoid trivial attacks, O is not allowed to query oracle Hash on

input (i, s,X) if X = gx[i] and if oracle Ch was already called with input s when
the counter value was v = i. Note that adversary is allowed to win the game if
it happens to guess a future challenge exponent x and query it to oracle Hash
ahead of time; the corresponding triple (i, s,X) will not be added to the set of
inputs Shash that are not allowed to be made to oracle Ch. Finally, recall that
the string concatenation operator ‖ is defined to produce uniquely decodable
strings, which helps to avoid trivial string padding attacks.

Plausibility of the ODHE assumption. We do not know of any group G and func-
tion family H that can be shown to achieve ODHE in the standard model. The
original ODH assumption of [1] was justified by a reduction in the random oracle
model to the Strong Computational Diffie-Hellman (SCDH) assumption. The lat-
ter was defined in [1] and is a weaker version of the Gap Diffie-Hellman assump-
tion from [21]. In [7] we give a definition for the SCDH assumption and prove
that it also implies the ODHE assumption in the random oracle model.

We provide this result as a corollary of two lemmas. The lemmas use the
Strong Computational Diffie-Hellman with Exposures (SCDHE) assumption as
an intermediate step, where SCDHE is a novel assumption that extends SCDH
to allow multiple challenge queries, and to allow exposures. To formalize our
result, we define the Oracle Diffie-Hellman with Exposures in ROM (ODHER)
assumption that is equivalent to the ODHE assumption in the random oracle
model.

The first lemma establishes that SCDHE implies ODHE in the random oracle
model, by a reduction from ODHER to SCDHE. The proof of this lemma emu-
lates the ODH to SCDH reduction of [1]. In their reduction, the SCDH adversary
simulates the random oracle and the hash oracle for the ODH adversary; it uses
its own decisional-DH oracle to check whether the ODH adversary feeds gxy for
the challenge values of x and y, and to maintain consistency between simulated
oracle outputs. This consistency maintenance is the main source of complexity in
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our reduction because —in addition to the oracles mentioned above— we must
also ensure that the simulated challenge oracle is consistent.

The second lemma is a standard model reduction from SCDHE to SCDH.
This reduction is a standard “guess the index” reduction in which our SCDH
adversary guesses which query the SCDHE adversary will attack. The SCDH
adversary replaces the answer to this query with the challenge values it was given
and replaces all other oracle queries with challenges that it has generated itself.
As usual, this results in a multiplicative loss of security, so the final theorem
(combining both lemmas) has a bound of the form AdvodherG,H,O ≤ qUp · AdvscdhG,S ,
where S is the SCDH adversary and qUp is the number of Up queries made by
ODHER adversary O.

Because of the multiplicative loss of security caused by the second lemma we
also examine the possibility of using Diffie-Hellman self-reducibility techniques to
obtain a tighter bound on the reduction from SCDHE to SCDH. The possibility
of exposures in SCDHE makes this much more difficult than one might immedi-
ately realize. We present a reduction that succeeds despite these difficulties, by
using significantly more complicated methods than in our first example of this
deduction. Specifically we build an SCDH adversary that makes guesses about
the future behavior of the SCDHE adversary it was given, and “rewinds” this
adversary whenever its guess was incorrect. Thus we ultimately obtain the much
tighter bound of AdvodherG,H,O ≤ AdvscdhG,Su

+qUp ·2−u. Here Su is the SCDH adversary
that is defined for any parameter u ∈ N that bounds its worst case running time,
and qUp is the number of Up queries made by ODHER adversary O.

4 Ratcheted Key Exchange

Ratcheted key exchange allows users to agree on shared secret keys while pro-
viding very strong security guarantees. In this work we consider a setting that
encompasses two parties, and we assume that only one of them sends key agree-
ment messages. We call this party a sender, and the other party a receiver. This
model enables us to make the first steps towards capturing the schemes that
are used in the real world messaging applications. Future work could extend our
model to allow both parties to send key agreement messages, and to consider
the group chat setting where multiple users engage in shared conversations.

4.1 Definition of Ratcheted Key Exchange

Consider Fig. 3 for an overview of algorithms that constitute a racheted key
exchange scheme RKE, and the interaction between them. The algorithms are
RKE.IKg, RKE.SKg and RKE.RKg. We will first provide an informal description of
their functionality, and then formalize their syntax and correctness requirements.

Initial key generation algorithm RKE.IKg generates and distributes the fol-
lowing keys: k, stks, stkr , seks, sekr . Output key k is the initial shared secret key
that can be used by both parties for any purpose such as running a symmetric
encryption scheme. Static keys stks and stkr are long-term keys that will not get
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Fig. 3. The interaction between ratcheted key exchange algorithms.

updated over time. It is assumed that stks is known to all parties, whereas stkr

contains potentially secret information and will be known only by the receiver.
Session keys seks and sekr contain secret information that is required for future
key exchanges, such as MAC keys (to ensure the authenticity of key exchange)
and temporary secrets (that could be used for the generation of the next out-
put keys). As a result of running RKE.IKg, the sender gets stks, seks, ks and the
receiver gets stks, stkr , sekr , kr , where ks = kr = k. We use “s” and “r” as sub-
scripts for output keys and session keys, to indicate that the particular key is
owned by the sender or by the receiver, respectively. Note that normally both
parties will have the same output key (i.e. ks = kr), but this might not be true
if an attacker succeeds to tamper with the protocol.

Next we define sender’s and receiver’s key generation algorithms RKE.SKg
and RKE.RKg. These algorithms model the key ratcheting process that generates
new session keys and output keys while deleting the corresponding old keys.

Sender’s key generation algorithm RKE.SKg is run whenever the sender wants
to produce a new shared secret key. It takes the sender’s static key stks and the
sender’s session key seks. It returns an updated sender’s session key seks, a new
output key ks, and update information upd. The update information is used by
the receiver to generate the same output key.

Receiver’s key generation algorithm RKE.RKg takes sender’s static key stks,
receiver’s static key stkr , receiver’s session key sekr , update information upd
(received from the sender) and the current shared output key kr . It returns
receiver’s session key sekr , output key kr , and a Boolean flag acc indicating
whether the new keys were generated succesfully. Setting acc = false will gen-
erally mean that the received update information was rejected; our correctness
definition will require that in such case the receiver’s output key kr and the
receiver’s session key sekr should remain unchanged. This requirement is the
reason why RKE.RKg takes the old value of kr as one of its inputs.
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Ratcheted key exchange schemes. A ratcheted key exchange scheme RKE specifies
algorithms RKE.IKg, RKE.SKg and RKE.RKg. Associated to RKE is an output
key length RKE.kl ∈ N and sender’s key generation randomness space RKE.RS.
Initial key generation algorithm RKE.IKg returns k, seks, (stks, stkr , sekr), where
k ∈ {0, 1}RKE.kl is an output key, seks is a sender’s session key, and stks, stkr , sekr

are sender’s static key, receiver’s static key and receiver’s session key, respec-
tively. The sender’s and receiver’s output keys are initialized to ks = kr = k.
Sender’s key generation algorithm RKE.SKg takes stks, seks and randomness
r ∈ RKE.RS to return a new sender’s session key seks, a new sender’s out-
put key ks ∈ {0, 1}RKE.kl, and update information upd. Receiver’s key gener-
ation algorithm RKE.RKg takes stks, stkr , sekr ,upd and receiver’s output key
kr ∈ {0, 1}RKE.kl to return a new receiver’s session key sekr , a new receiver’s
output key kr ∈ {0, 1}RKE.kl, and a flag acc ∈ {true, false}.

Correctness of ratcheted key exchange. Consider game RKE-COR of Fig. 4 asso-
ciated to a ratcheted key exchange scheme R and an adversary C, where C is
provided with an access to oracles Up and RatRec.

Oracle Up runs algorithm R.SKg to generate a new sender’s output key ks
along with the corresponding update information upd; it then runs R.RKg with
upd as input to generate a new receiver’s output key kr . It is required that
acc = true and ks = kr at the end of every Up call. This means that if the
receiver uses update information received from the sender (in the correct order),
it is guaranteed to successfully generate the same output keys as the sender.

Game RKE-CORC
R

bad ← false
(k, seks, (stks, stkr , sekr)) ← R.IKg
ks ← k ; kr ← k
CUp,RatRec ; Return (bad = false)

Game RE-CORC
R

bad ← false
(k, seks, (stks, stkr , sekr)) ← R.IKg
ks ← k ; kr ← k
CUp,RatRec,Enc ; Return (bad = false)

Up

r ←$ R.RS ; (seks, ks, upd) ← R.SKg(stks, seks; r)
(sekr , kr , acc) ←$ R.RKg(stks, stkr , sekr , upd, kr)
If not ((acc = true) and (ks = kr)) then bad ← true

RatRec(upd)

(sek′
r , k′

r , acc) ←$ R.RKg(stks, stkr , sekr , upd, kr)
If (acc = false) and not ((k′

r = kr) and (sek′
r = sekr)) then bad ← true

Enc(n, m, h)

c ← R.Enc(ks, n, m, h) ; m′ ← R.Dec(kr , n, c, h) ; If (m′ �= m) then bad ← true

Fig. 4. Game RKE-COR defining correctness of ratcheted key exchange scheme R, and
game RE-COR defining correctness of ratcheted encryption scheme R. Oracles Up and
RatRec are used in both games, whereas oracle Enc is only used in game RE-COR.
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Oracle RatRec takes update information upd of adversary’s choice and
attempts to run R.RKg with upd (and current receiver’s keys) as input. The
correctness requires that if the receiver’s key update fails (meaning acc = false)
then the receiver’s keys kr , sekr remain unchanged. This means that if receiver’s
attempt to generate new keys is not successful (e.g. if the update information is
corrupted in transition), then the receiver’s key generation algorithm should not
corrupt the receiver’s current keys. This is a usability property that requires that
it is possible to recover from failures, meaning that the receiver can later re-run
its key generation algorithm with the correct update information to successfully
produce its next pair of (session and output) keys.

We consider an unbounded adversary and allow it to call its oracles in
any order. The advantage of C breaking the correctness of R is defined as
AdvrkecorR,C = 1−Pr[RKE-CORC

R]. Correctness property requires that AdvrkecorR,C = 0
for all unbounded adversaries C. Note that our definition of the correctness game
with an unbounded adversary is equivalent to a more common correctness def-
inition that would instead explicitly quantify over all randomness choices of all
algorithms. We stress that our correctness definition does not require any secu-
rity properties. In particular, it does not require that the update information is
authenticated because oracle RatRec considers only the case when R.RKg sets
acc = false.

Our definition requires perfect correctness. However, it can be relaxed by
requiring that adversary C can only make a bounded number of calls to its ora-
cles, and further requiring that its advantage of winning the game is negligible.

4.2 Security of Ratcheted Key Exchange

Ratcheted key exchange attempts to provide strong security guarantees even
in the presence of an attacker that can steal the secrets stored by the sender.
Specifically, we consider an active attacker that is able to intercept and mod-
ify any update information sent from the sender to the receiver. The goal is
that the attacker cannot distinguish the produced output keys from random
strings, and cannot make the two parties agree on output keys that do not
match. Furthermore, we desire certain stronger security properties to hold even
if the attacker manages to steal secrets stored by the sender, which we refer to as
forward security and backward security. Forward security requires that such an
attacker cannot distinguish prior keys from random. Backward security requires
that the knowledge of sender’s secrets at the current time period can not be used
to distinguish keys generated (at some near point) in the future from random
strings. Recall that our model is intentionally one-sided; exposure of receiver’s
secrets is not allowed. In particular, compromise of all of the receiver’s secrets
will permanently compromise security.

It is clear that if an attacker steals the secret information of the sender, then
it can create its own update information resulting in the receiver agreeing on
a “secret” key that is known by the attacker. It can be difficult to say what
restrictions should be placed on the keys that the attacker makes the receiver
agree to. Is it a further breach of security if the attacker then later causes the



632 M. Bellare et al.

sender and the receiver to agree on the same secret key? What should happen if
the attacker later forwards update information that was generated by the sender
to the receiver?

In our security model we choose to insist on two straightforward policies in
this scenario. The first is that whenever update information not generated by
the sender is accepted by the receiver, even full knowledge of the key that the
receiver has generated should not leak any information about other correctly
generated keys. The second is that at any fixed point in time, if update infor-
mation generated by the sender is accepted by the receiver then the receiver
should agree with the sender on what the corresponding output key is, and the
adversary should not be able to distinguish the shared output key from random.

Key indistinguishability of ratcheted key exchange schemes. Consider game KIND
on the left side of Fig. 5 associated to a ratcheted key exchange scheme RKE and
an adversary D. The advantage of D in breaking the KIND security of RKE is
defined as AdvkindRKE,D = 2Pr[KINDD

RKE] − 1.
The adversary is given the sender’s static key stks as well as access to oracles

RatSend, RatRec, Exp, ChSend, and ChRec. It can call oracle RatSend to
receive update information upd from the sender, and it can call oracle RatRec
to pass arbitrary update information to the receiver. Oracle Exp returns the
current secrets seks, ks possessed by the sender as well as the random seed r
that was used to create the most recent upd in RatSend. Note that according
to our notation convention from Sect. 2, integer variable r is assumed to be
initialized to 0 at the beginning of the security game; this value will be returned
if adversary calls Exp prior to RatSend.

The challenge oracles ChSend and ChRec provide the adversary with keys
ks and kr in the real world (when b = 1), or with uniformly random bit strings
in the random world (when b = 0). The goal of the adversary is to distinguish
between these two worlds. To disallow trivial attacks the game makes use of
tables op and auth (initialized as empty) as well as a boolean flag restricted
(initialized as false). Specifically, op keeps track of the oracle calls made by the
adversary and is used to ensure that it can not trivially win the game by calling
oracle Exp to get secrets that were used for one of the challenge queries. Table
auth keeps track of the update information upd generated by RatSend so that
we can set the flag restricted whenever the adversary has taken advantage of an
Exp query to send maliciouly generated upd to RatRec. In this case we do
not expect the receiver’s key kr to look random or match the sender’s key ks so
ChRec is “restricted” and will return kr in both the real and random worlds.

Authenticity of key exchange. Our security definition implicitly requires the
authenticity of key exchange. Specifically, assume that an adversary can vio-
late the authenticity in a non-trivial way, meaning without using Exp oracle
to acquire the relevant secrets. This means that the adversary can construct
malicious update information upd∗ that is accepted by the receiver, while not
setting the restricted flag to true. By making the receiver accept upd∗, the adver-
sary achieves the situation when the sender and the receiver produce different
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Game KINDD
RKE

b ←$ {0, 1} ; is ← 0 ; ir ← 0
(k, seks, (stks, stkr , sekr)) ←$ RKE.IKg
ks ← k ; kr ← k
b′ ←$ DRatSend,RatRec,Exp,ChSend,ChRec(stks)
Return (b′ = b)

RatSend

r ←$ RKE.RS
(seks, ks, upd) ← RKE.SKg(stks, seks; r)
auth[is] ← upd ; is ← is + 1
Return upd

RatRec(upd)

z ←$ RKE.RKg(stks, stkr , sekr , upd, kr)
(sekr , kr , acc) ← z
If not acc then return false
If op[ir ] = “exp” then restricted ← true
If upd = auth[ir ] then restricted ← false
ir ← ir + 1 ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is] ← “exp” ; Return (r, seks, ks)

ChSend

If op[is] = “exp” then return ⊥
op[is] ← “ch”

If rkey[is] =⊥ then rkey[is] ←$ {0, 1}RKE.kl

If b = 1 then return ks else return rkey[is]

ChRec

If restricted then return kr

If op[ir ] = “exp” then return ⊥
op[ir ] ← “ch”

If rkey[ir ] =⊥ then rkey[ir ] ←$ {0, 1}RKE.kl

If b = 1 then return kr else return rkey[ir ]

Game RAEA
RE

b ←$ {0, 1} ; is ← 0 ; ir ← 0
(k, seks, (stks, stkr , sekr)) ←$ RE.IKg
ks ← k ; kr ← k
b′ ←$ ARatSend,RatRec,Exp,Enc,Dec(stks)
Return (b′ = b)

RatSend

r ←$ RE.RS
(seks, ks, upd) ← RE.SKg(stks, seks; r)
auth[is] ← upd ; is ← is + 1
Return upd

RatRec(upd)

z ←$ RE.RKg(stks, stkr , sekr , upd, kr)
(sekr , kr , acc) ← z
If not acc then return false
If op[ir ] = “exp” then restricted ← true
If upd = auth[ir ] then restricted ← false
ir ← ir + 1 ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is] ← “exp” ; Return (r, seks, ks)

Enc(n, m, h)

If op[is] = “exp” then return ⊥
op[is] ← “ch”
If (is, n) ∈ U then return ⊥
c1 ← RE.Enc(ks, n, m, h)

c0 ←$ {0, 1}RE.cl(|m|) ; U ← U ∪ {(is, n)}
S ← S ∪ {(is, n, cb, h)}
Return cb

Dec(n, c, h)

If restricted then
Return RE.Dec(kr , n, c, h)

If op[ir ] = “exp” then return ⊥
op[ir ] ← “ch”
If (ir , n, c, h) ∈ S then return ⊥
m ← RE.Dec(kr , n, c, h)
If b = 1 then return m else return ⊥

Fig. 5. Games defining key indistinguishability of ratcheted key exchange scheme RKE,
and authenticated encryption security of ratcheted encryption scheme RE.
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output keys ks 	= kr . Now adversary can call oracles ChSend and ChRec to
get both keys and compare them to win the game. In the real world (b = 1) the
returned keys will be different, whereas in the random world (b = 0) they will
be the same. We formalize this attack in [7].

Allowing recovery from failures. Consider a situation when an attacker steals all
sender’s secrets, and hence has an ability to impersonate the sender. It can drop
all further packets sent by the sender and instead use the exposed secrets to
agree on its own shared secret keys with the receiver. In the security game this
corresponds to the case when the adversary calls Exp and then starts calling
oracle RatRec with maliciously generated update information upd. This sets
the restricted flag to true, making the ChRec oracle always return the real
receiver’s key kr regardless of the value of game’s challenge bit b. The design
decision at this point is – do we want to allow the game to recover from this
state, meaning should the restricted flag be ever set back to false?

Our decision on this matter was determined by the two “policies” discussed
above. As long as the adversary keeps sending maliciously generated update
information upd, the restricted flag will remain true. In this case, the real
receiver’s key kr returned from ChRec should be of no help in distinguish-
ing the real sender’s key ks from random, as desired from the first policy. To
match the second policy, the next time adversary forwards the upd generated by
the sender (i.e. upd = auth[ir ]) to RatRec, if upd is accepted by the receiver
then the restricted flag is set back to false. This makes the output of ChRec
again depend on the challenge bit, thus requiring kr to be equal to ks and indis-
tinguishable from random.

Alternative treatment of restricted flag. Our security definition of KIND can be
strengthened by making it never reset the restricted flag back to false. Instead, the
game could require that if the adversary exposes sender’s secrets and uses them to
agree on its own shared output key with the receiver, then all the communication
between the sender and the receiver should be disrupted. Meaning that any
future attempt to simply forward sender’s update information upd to the receiver
should result in RatRec rejecting it. Otherwise adversary would be defined to
win the game. This can be formalized in a number of ways. Our construction of
ratcheted key exchange from Sect. 4.3 should be secure for a stronger definition
like that, but would likely require stronger assumptions to prove.

4.3 Construction of a Ratcheted Key Exchange Scheme

In this section we construct a ratcheted key exchange scheme, and discuss
some design considerations by presenting a number of attacks that our scheme
manages to evade. In Sect. 4.4 we will deduce a bound on the success of any
adversary attacking the KIND security of our scheme. The idea of our con-
struction is as follows. We let the sender and the receiver perform the Diffie-
Hellman key exchange. The receiver’s static key contains a secret DH exponent
stkr = y and the sender’s static key contains the corresponding public value



Ratcheted Encryption and Key Exchange 635

stks = gy (working in some cyclic group with generator g). In order to generate
a new shared secret key, the sender picks its own secret exponent x and com-
putes the output key (roughly) as ks = H(stkx

s ) = H(gxy), where H is some
hash function. The sender then sends update information containing gx to the
receiver, enabling the latter to compute the same output key. In order to ensure
the security of the key exchange, both parties use a shared MAC key, meaning
the update information also includes a tag of gx.

Note that the used MAC key should be regularly renewed in order to ensure
that the scheme provides backward security against exposures. As a result, the
output of applying the hash function on gxy is also used to derive a new MAC
key. The initial key generation provides both parties with a shared MAC key and
a shared secret key that are sampled uniformly at random. The formal definition
of our key exchange scheme is as follows.

Ratcheted key exchange scheme RATCHET-KE. Let G be a cyclic group of order
p ∈ N, and let G∗ denote the set of its generators. Let F be a function family such
that F.In = G. Let H be a function family such that H.In = {0, 1}∗ and H.ol >
F.kl. We build a ratcheted key exchange scheme RKE = RATCHET-KE[G,F,H]
as defined in Fig. 6, with RKE.kl = H.ol − F.kl and RKE.RS = Zp.

Algorithm RKE.IKg

k ←$ {0, 1}RKE.kl

fk ←$ {0, 1}F.kl

hk ←$ {0, 1}H.kl

g ←$ G
∗ ; y ←$ Zp

stks ← (hk, g, gy) ; stkr ← y
seks ← (0, fk)
sekr ← (0, fk)
z ← (k, seks, (stks, stkr , sekr))
Return z

Algorithm RKE.SKg((hk, g, Y ), (is, fks); r)

x ← r ; X ← gx ; σ ← F.Ev(fks, X)
s ← H.Ev(hk, is ‖ σ ‖ X ‖ Y x) ; ks ← s[1 . . .RKE.kl]
fks ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return ((is + 1, fks), ks, (X, σ))

Algorithm RKE.RKg((hk, g, Y ), y, (ir , fkr), (X, σ), kr)

acc ← (σ = F.Ev(fkr , X))
If not acc then return ((ir , fkr), kr , acc)
s ← H.Ev(hk, ir ‖ σ ‖ X ‖ Xy) ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return ((ir + 1, fkr), kr , acc)

Fig. 6. Ratcheted key exchange scheme RKE = RATCHET-KE[G,F,H].

Design considerations. We will examine some of the design decisions of RKE by
considering several ratcheted key exchange schemes that are weakened versions
of RKE, and corresponding adversaries that are able to successfully attack these
schemes. The first two will omit the use of a MAC and thus be vulnerable
to attacks where the adversary sends its own update information to RatRec
without having called Exp first (though the second will have to make an expose
query afterwards). In the latter two examples we consider variations of RKE that
use fewer inputs to the hash function. Our adversaries against these schemes
thereby justify the choices we made for the input to the hash function. For the
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Adversary D1(stks)

(hk, g, Y ) ← stks

x ←$ Zp ; RatRec(gx)
kr ← ChRec
k′
r ← H.Ev(hk, Y x)

If k′
r = kr then return 1

Else return 0

Adversary D2(stks)

(hk, g, Y ) ← stks

x ←$ Zp ; RatRec(gx)
kr ← ChRec
(r, fks, ks) ← Exp
k ‖ fk ← H.Ev(hk, fks ‖ Y x)
If k = kr then return 1
Else return 0

Adversary D3(stks)

upd0 ← RatSend ; RatRec(upd0) ; ks ← ChSend
upd1 ← RatSend ; RatRec(upd1)
(r, fks, ks) ← Exp ; (X0, σ0) ← upd0

σ ← F.Ev(fks, X0) ; upd2 ← (X0, σ)
RatRec(upd2) ; kr ← ChRec
If ks = kr then return 1 else return 0

Adversary D4(stks)

(r, seks, ks) ← Exp
((i∗s , fk∗

s ), k∗
s , upd∗) ←$ RKE.SKg(stks, seks)

upd0 ← RatSend ; RatRec(upd∗)
upd1 ← RatSend ; (X, σ) ← upd1

σ∗ ← F.Ev(fk∗
s , X) ; upd∗ ← (X, σ∗) ; RatRec(upd∗)

ks ← ChSend ; kr ← ChRec
If ks = kr then return 1 else return 0

Fig. 7. Attacks against insecure variants of RKE = RATCHET-KE[G,F,H].

sake of compactness we omit showing that the constructed KIND adversaries
have access to oracles RatSend,RatRec,Exp,ChSend,ChRec, and we omit
showing that oracle calls return any output whenever this output is not used by
the adversary.

Schemes without a MAC. First let us consider changing RKE to not use its MAC
F and instead simply use an unauthenticated gx as its update information. For
simplicity we will additionally assume that the only input to H is a group element
gxy. Consider adversary D1 shown in Fig. 7. It makes a RatRec query with a
gx of its own choice, then calls oracle ChRec and checks whether the key it
received was real or random by comparing it to H(hk, Y x). Referring to this
weakened scheme as RKE1, it is clear that AdvkindRKE1,D1

= 1 − 2−RKE.kl.
Besides using a MAC, another way to prevent the specific attack given above

would be to put a shared secret key fk into the hash function along with gxy for
every update. Let RKE2 denote a version of RKE that still does not use a MAC
but updates its keys with the hash function via k ‖ fk ← H.Ev(hk, fk ‖ gxy). An
adversary like D1 will not work against RKE2 because computing the new value
of k requires knowing the secret value fk. But there is still a simple attack against
RKE2. Consider adversary D2 shown in Fig. 7. It works in the same way as D1

except it needs to make an expose query to obtain fks before it can compute k
using the hash function. One subtle point to notice is that it is important that D2

calls Exp after its call to RatRec. Otherwise the restricted flag in KIND would
have been set to true and ChRec would always return the real key (instead of
returning a randomly chosen key when the challenge bit in KIND is set to 0).
Having noticed this it is clear that AdvkindRKE2,D2

= 1 − 2−RKE.kl.
In [7] we give an attack against any ratcheted encryption scheme, showing

that if it is possible for an adversary to generate its own upd that the receiver
will accept, than the adversary can use this ability to successfully attack the
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ratcheted encryption scheme. This proves that some sort of authentication is
required for the update information if we want a scheme to be secure.

Authenticating the update information in the Double Ratchet algorithm. The def-
ault version of the Double Ratchet algorithm [16,20] — which is used in the
Signal protocol [22] — does not authenticate the update information. A single,
one-sided version of this algorithm would evolve its keys in a way that is vaguely
similar to the RKE2 scheme discussed above, so it would not meet our security
definition. This does not immediately lead to any real-world attacks, and could
mean that our security definition is stronger than necessary. Furthermore, [16]
describes the header encryption variant of the Double Ratchet algorithm. A sin-
gle, one-sided version of this algorithm provides some form of authentication for
update information and might meet our security definition.

Necessity of inputs to H. In the construction of RATCHET-KE, function H(hk, ·)
takes a string w = i ‖ σi ‖ gxi ‖ gxiy as input. The most straightforward part
of w is gxiy, which provides unpredictability to ensure that the generated keys
are indistinguishable from uniformly random strings. String w also includes the
counter i, and the corresponding update information updi = (gxi , σi). The inclu-
sion of counter i in w ensures that an attacker cannot perform a “key-reuse”
attack to make the receiver generate an output key that was already used before;
we provide an example of such attack below. We also describe a “key-collision”
attack against the KIND security of the scheme that is prevented by including
updi in w. Finally, note that our concatenation operator ‖ is defined to produce
uniquely decodable strings, so the mapping of (i, σi, g

xi , gxiy) into string w is
injective; this helps to avoid attacks that take advantage of malleable encodings.

Key-reuse attack. Game KIND makes sure that if challenge keys are acquired
from the sender and the receiver for the same value of i (i.e. is = ir), then these
keys are consistent even if they are picked randomly. Otherwise it would be
trivial to attack any ratcheted key exchange scheme. However, the game does not
maintain such consistency between different values of i. Let RKE3 denote RKE if
it was changed to use only gxy as input to the hash function. Consider the “key-
reuse” attack D3 shown in Fig. 7 that exploits the above as follows. Adversary
D3 starts by calling RatSend, RatRec and ChSend to get a sender’s challenge
key ks. Note that if the challenge bit is b = 1 in game KIND, then ks equals
to H.Ev(hk, Y x) for some exponent x generated during RatSend. Next, the
adversary calls both RatSend and RatRec to ratchet the key forward, in
order to be able to make Exp queries. It calls Exp to get fks so that it can re-
authenticate the same value of X = gx that was used for the sender’s challenge
query. Then it sends X and its new MAC tag σ to the receiver, which sets the
restricted flag true. The latter means that calling ChRec results in getting the
receiver’s real output key regardless of the challenge bit. If this key is equal to
the previously learned sender’s challenge key then it is highly likely that the
challenge bit b equals 1, otherwise it must be 0. This gives the advantage of
AdvkindRKE3,D3

= 1 − 2−RKE.kl.
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Key-collision attacks. We now describe the final attack idea that does not work
against our construction but would have been possible if the update informa-
tion upd = (gxi , σ) was not included in the hash function. Consider changing
RATCHET-KE[G, F, H] to have H(hk, ·) take inputs of the form w = i ‖ gxiy. Call
this scheme RKE4. This enables the following attack, as defined by the adversary
D4 in Fig. 7. Assume that an attacker compromises the sender’s keys ks and fks

and immediately uses the compromised authenticity to establish new keys k∗
s

and fk∗
s , shared between the attacker and the receiver. Now let upd = (X,σ)

be the next update information produced by the sender. The attacker can con-
struct malicious update information upd∗ = (X,σ∗), where σ∗ = F.Ev(fk∗

s ,X),
and send it to the receiver. The receiver would accept upd∗ and use the out-
put of H.Ev(hk, i ‖ Xy) as new key material, resulting in the same keys as those
generated by the sender. Now the receiver and the sender share an output key,
while the restricted flag is set true, so checking whether the output of the two
challenge oracles is the same yields a good attack.

We will not give the exact advantage of D4. If σ∗ and σ happen to be exactly
the same, then the restricted flag would be set back to false and the attack would
fail because the two keys received from the sender’s and the reciever’s challenge
oracles would be the same regardless of game’s challenge bit. But if σ∗ = σ was
likely to occur then the ratcheted key exchange scheme would be insecure for
other reasons. One could formalize this by building a second adversary against
RKE4 to show that one of the two adversaries must have a high advantage. For
the purpose of this section we simply note that this event is extremely unlikely
to occur for any typical choice of hash function and MAC.

4.4 Security Proof for Our Ratcheted Key Exchange Scheme

In previous section we showed that several variations of our ratcheted key
exchange scheme RKE = RATCHET-KE[G, F, H] are insecure. In this section
we will prove that our scheme is secure. We now present our theorem bound-
ing the advantage of an adversary breaking the KIND-security of RKE to the
SUFCMA-security of F and to the ODHE-security of G,H.

Theorem 1. Let G be a cyclic group of order p ∈ N, and let G
∗ denote

the set of its generators. Let F be a function family such that F.In = G.
Let H be a function family such that H.In = {0, 1}∗ and H.ol > F.kl. Let
RKE = RATCHET-KE[G,F,H]. Let D be an adversary attacking the KIND-
security of RKE that makes qRatSend queries to its RatSend oracle, qRatRec

queries to its RatRec oracle, qExp queries to its Exp oracle, qChSend queries
to its ChSend oracle, and qChRec queries to its ChRec oracle. Then there is
an adversary F attacking the SUFCMA-security of F, and adversaries O1,O2

attacking the ODHE-security of G,H, such that

AdvkindRKE,D ≤ 2·(qRatSend+1) · Advsufcma
F,F + 2·qRatSend ·AdvodheG,H,O1

+ 2·AdvodheG,H,O2
.

Adversary F makes at most qRatSend queries to its Tag oracle and qRatRec

queries to its Verify oracle. Adversary O1 makes at most qRatSend queries to
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its Up oracle, 2 queries to its Ch oracle, qExp queries to its Exp oracle, and
qRatSend + qRatRec − 2 queries to its Hash oracle. Adversary O2 makes at most
qRatSend queries to its Up oracle, qRatSend + qRatRec queries to its Ch oracle,
qExp queries to its Exp oracle, and qRatRec + qExp queries to its Hash oracle.
Each of F , O1, O2 has a running time approximately that of D.

The proof requires careful attention to detail due to subtleties. The most natural
proof method may be to proceed one RatSend query at a time, first replacing
the output of the hash function with random bits (unless an expose happens) and
then using the security of the MAC to argue that the adversary cannot produce
any modified update information that will be accepted by the receiver without
exposing. But there is a subtle flaw with this proof technique. The adversary
may attempt to create a forged upd before it has decided whether to expose. In
this case we need to check the validity of their forgery with a MAC key, before
we know whether it should be random or a valid output of the hash function.

To avoid this problem we first use a hybrid argument to show that no such
forgery is possible before replacing all non-exposed keys with random. We pro-
ceed one RatSend query at a time, showing that we can temporarily replace the
key with random when checking the sort of attempted forgery described above.
This then allows us to use the security of the MAC to assume that the forgery
attempt failed without us having to commit to a key to verify with. We thus are
able to show one step at a time that all such forgery attempts can be assumed
to fail without having to check.

Once this is done, we are never forced to use a key before the adversary has
committed to whether it will perform a relevant exposure of the secret state.
As such we can safely delay our decision of whether or not the key should be
replaced by random values until it is known whether an expose will happen. This
allows us to use the ODHE security of H and G to argue that we can replace all
of the generated keys with randomness, only using H to generate the real keys
at the last moment whenever an expose query is made.

Some explanation has been removed from the proof below due to lack of
space. A more detailed proof is available in the full version of the paper [7].

Proof (Theorem 1). Consider the sequence of games shown in Fig. 8. Lines not
annotated with comments are common to all games. G0,0 is identical to KINDD

RKE

with the code of RKE inserted. Additionally, a flag unchanged has been added.
This flag keeps track of whether the most recent update information was passed
unchanged from the sender to the receiver and thus the keys kr and fkr should
be indistinguishable from random to adversary D. In this case, the adversary
should not be able to create update information upd that is accepted by RatRec
unless it calls Exp or forwards along the upd generated by the sender. We prove
this with a hybrid argument over the games G0,0, . . . ,G0,qRatSend+1. Game G0,j

assumes forgery attempts fail for the first j keys, sets a bad flag if D is successful
at forging against the (j + 1)-th key, and performs normally for all following
keys. Game G∗

0,j is the same except it also acts as if D failed to forge even when
the bad flag is set. Thus, from the perspective of an adversary G∗

0,j is simply
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assumping that forgery attempts fail for the first j+1 keys, making it equivalent
to G0,j+1. Thus for all j ∈ {0, . . . , qRatSend},

Pr[G0,0] = Pr[KINDD
RKE] and Pr[G∗

0,j ] = Pr[G0,j+1].

Furthermore, for all j ∈ {1, . . . , qRatSend}, games G0,j and G∗
0,j are identical

until bad, so the fundamental lemma of game playing [6] gives:

Pr[G0,j ] − Pr[G∗
0,j ] ≤ Pr[badG

∗
0,j ],

where Pr[badQ] denotes the probability of setting the bad flag in game Q.
We cannot directly bound Pr[badG

∗
0,j ] using the security of F because the key

being used for F is chosen as output from H instead of uniformly at random,
consider the relationship between games G∗

0,j and Ij (the latter also shown in
Fig. 8). Game Ij is identical to G∗

0,j , except that in Ij the output of hash function
H is replaced with a uniformly random string whenever i + 1 = j (thus the key
used to check whether bad should be set when i = j is uniformly random).

Note that when j = 0 the games G∗
0,0 and I0 are identical so Pr[badG

∗
0,0 ] =

Pr[badI0 ]. For other values of j we relate the probability that these games set
bad to the advantage of the oracle Diffie-Hellman adversary O1 that is defined
in Fig. 10. Adversary O1 picks j′ at random and then uses its oracles to simulate
G∗

0,j or Ij . Then if the bad flag is set it sets a bit b′ equal to 1. This bit is
ultimately returned by O. Thus the probability that O outputs 1 is exactly the
probability that the bad flag would be set in the game it is simulating.

Let bodhe denote the challenge bit in game ODHEO1
G,H, and let b′ denote the

corresponding guess made by the adversary O1. Let j′ be the value sampled in
the first step of O1. For each choice of j′, adversary O1 perfectly simulates the
view of D in either G∗

0,j′ or Ij′ depending on whether its Ch oracle is returning
real output of the hash function or a random value. If D performs an action
that would prevent bad from being set (such as calling Exp when is = j′) then
O1 no longer perfectly simulates the view of D, but it does not matter for our
analysis because we already know bad (and thus b′) will not be set. So for all
j ∈ {1, . . . , qRatSend}, we have

Pr[badG
∗
0,j ] = Pr[ b′ = 1 | bodhe = 1, j′ = j ],

Pr[badIj ] = Pr[ b′ = 1 | bodhe = 0, j′ = j ].

Combining the above for all values of j (using Pr[badG
∗
0,0 ] = Pr[badGis ]) gives

AdvodheG,H,O1
= Pr[ b′ = 1 | bodhe = 1 ] − Pr[ b′ = 1 | bodhe = 0 ]

=
qRatSend∑

j=1

Pr[j = j′](Pr[badG
∗
0,j ] − Pr[badIj ]) =

qRatSend∑

j=0

Pr[badG
∗
0,j ] − Pr[badIj ]

qRatSend
.

Note that we were able to change the starting index of j for that last summation
because Pr[badG

∗
0,0 ] = Pr[badI0 ], as we noted before.
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Games G0,j ,G
∗
0,j ,Ij

b ←$ {0, 1} ; is ← 0 ; ir ← 0 ; unchanged ← true ; rand ←$ {0, 1}H.ol

ks ←$ {0, 1}RKE.kl ; kr ← ks ; fks ←$ {0, 1}F.kl ; fkr ← fks

hk ←$ {0, 1}H.kl ; g ←$ G
∗ ; y ←$ Zp ; stks ← (hk, g, gy)

b′ ←$ DRatSend,RatRec,Exp,ChSend,ChRec(stks) ; Return (b′ = b)

RatSend

If op[is] = ⊥ then op[is] ← “ch”

x ←$ Zp ; σ ← F.Ev(fks, g
x) ; upd ← (gx, σ)

s ← H.Ev(hk, is ‖ σ ‖ gx ‖ gxy)

If is + 1 = j then s ← rand // Ij
auth[is] ← upd ; is ← is + 1 ; ks ← s[1 . . .RKE.kl]

fks ← s[RKE.kl + 1 . . .RKE.kl + F.kl] ; Return upd

RatRec(upd)

(X, σ) ← upd
If unchanged and (op[ir ] �= “exp”) and (upd �= auth[ir ]) then

If ir < j then return false

If ir = j then

If σ �= F.Ev(fkr , X) then return false

bad ← true

Return false // G∗
0,j ,Ij

If σ �= F.Ev(fkr , X) then return false

If op[ir ] = “exp” then restricted ← true

If upd = auth[ir ] then

unchanged ← true ; restricted ← false

Else

unchanged ← false

s ← H.Ev(hk, ir ‖ σ ‖ X ‖ Xy)

If ir + 1 = j then s ← rand // Ij
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]

fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl] ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is] ← “exp” ; Return (x, (is, fks), ks)

ChSend

If op[is] = “exp” then return ⊥
op[is] ← “ch”

If rkey[is] =⊥ then rkey[is] ←$ {0, 1}RKE.kl

If b = 1 then return ks else return rkey[is]

ChRec

If restricted then return kr

If op[ir ] = “exp” then return ⊥
op[ir ] ← “ch”

If rkey[ir ] =⊥ then rkey[ir ] ←$ {0, 1}RKE.kl

If b = 1 then return kr else return rkey[ir ]

Fig. 8. Games G0,j ,G
∗
0,j , Ij for proof of Theorem 1.
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Games G1–G2

b ←$ {0, 1} ; is ← 0 ; ir ← 0 ; unchanged ← true

ks[0] ←$ {0, 1}RKE.kl ; kr ← ks[0] ; fks[0] ←$ {0, 1}F.kl ; fkr ← fks[0]

hk ←$ {0, 1}H.kl ; g ←$ G
∗ ; y ←$ Zp ; stks ← (hk, g, gy)

b′ ←$ DRatSend,RatRec,Exp,ChSend,ChRec(stks) ; Return (b′ = b)

RatSend

If op[is] = ⊥ then op[is] ← “ch”

x ←$ Zp ; σ ← F.Ev(fks[is], g
x) ; upd ← (gx, σ)

s ← H.Ev(hk, is ‖ σ ‖ gx ‖ gxy G//) 1

s ←$ {0, 1}H.ol // G2

auth[is] ← upd ; is ← is + 1 ; ks[is] ← s[1 . . .RKE.kl]

fks[is] ← s[RKE.kl + 1 . . .RKE.kl + F.kl] ; Return upd

RatRec(upd)

(X, σ) ← upd
If unchanged and (op[ir ] �= “exp”) and (upd �= auth[ir ]) then

Return false

If unchanged then fkr ← fks[ir ]

If (σ �= F.Ev(fkr , X)) then return false

If op[ir ] = “exp” then restricted ← true

If upd = auth[ir ]

unchanged ← true ; restricted ← false ; ir ← ir + 1

Else

unchanged ← false

s ← H.Ev(hk, ir ‖ σ ‖ X ‖ Xy)

ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]

fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl]

Return true

Exp

If op[is] = “ch” then return ⊥
op[is] ← “exp” ; (X, σ) ← auth[is − 1]

s ← H.Ev(hk, (is − 1) ‖ σ ‖ X ‖ Xy) ; ks[is] ← s[1 . . .RKE.kl]

fks[is] ← s[RKE.kl + 1 . . .RKE.kl + F.kl]

Return (x, (is, fks[is]), ks[is])

ChSend

If op[is] = “exp” then return ⊥
op[is] ← “ch”

If rkey[is] =⊥ then rkey[is] ←$ {0, 1}RKE.kl

If b = 1 then return ks[is] else return rkey[is]

ChRec

If restricted then return kr

If op[ir ] = “exp” then return ⊥
op[ir ] ← “ch”

If rkey[ir ] =⊥ then rkey[ir ] ←$ {0, 1}RKE.kl

If unchanged then kr ← ks[ir ]

If b = 1 then return kr else return rkey[ir ]

Fig. 9. Games G1,G2 for proof of Theorem 1.
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Adversary OUp,Ch,Exp,Hash
1 (hk, g, Y )

j′ ←$ {1, . . . , qRatSend} ; b ←$ {0, 1} ; b′ ← 0
is ← 0 ; ir ← 0 ; unchanged ← true
ks ←$ {0, 1}RKE.kl ; kr ← ks

fks ←$ {0, 1}F.kl ; fkr ← fks ; stks ← (hk, g, Y )
DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)
Return b′

RatRecSim(upd)

(X, σ) ← upd
forge ← ((op[ir ] �= “exp”) ∧ (upd �= auth[ir ]))
If unchanged and forge then

If ir < j′ then return false
If ir = j′ then

If σ �= F.Ev(fkr , X) then return false
bad ← true ; b′ ← 1 ; Return false

If σ �= F.Ev(fkr , X) then return false
If op[ir ] = “exp” then restricted ← true
If upd = auth[ir ] then

unchanged ← true ; restricted ← false
Else unchanged ← false
If ir + 1 �= j′ then s ← Hash(ir , σ ‖ X, X)
Else s ← Ch(σ ‖ X)
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return true

ExpSim

If op[is] = “ch” then return ⊥
op[is] ← “exp” ; x ← Exp
Return (x, (is, fks), ks)

RatSendSim

If op[is] = ⊥ then op[is] ← “ch”
X ← Up ; σ ← F.Ev(fks, X)
upd ← (X, σ)
If is + 1 �= j′ then

s ← Hash(is, σ ‖ X, X)
Else

s ← Ch(σ ‖ X)
auth[is] ← upd ; is ← is + 1
ks ← s[1 . . .RKE.kl]
fks ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return upd

ChSendSim

If op[is] = “exp” then return ⊥
op[is] ← “ch”
If rkey[is] =⊥ then

rkey[is] ←$ {0, 1}RKE.kl

If b = 1 then return ks

Else return rkey[is]

ChRecSim

If restricted then return kr

If op[ir ] = “exp” then return ⊥
op[ir ] ← “ch”
If rkey[ir ] =⊥ then

rkey[ir ] ←$ {0, 1}RKE.kl

If b = 1 then return kr

Else return rkey[ir ]

Fig. 10. Adversary O1 for proof of Theorem 1.

To complete the hybrid argument part of the proof, we bound the probability
that bad gets set true in Ij . Adversary F (shown in Fig. 11) guesses when D will
first create a forgery and uses that to create its own forgery. Thus for j ∈
{0, . . . , qRatSend}, Pr[badIj ] ≤ Pr[ SUFCMAF

F | j′ = j ] which gives Advsufcma
F,F ≥

(1/(qRatRec + 1))
∑qRatRec

j=0 Pr[badIj ].
The above work allows us to transition to game G0,qRatSend+1 as shown in the

following equations. From there we will move to games G1,G2 shown in Fig. 9.
All of the summations below are from j = 0 to j = qRatSend.
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Adversary FTag,Verify

j′ ←$ {0, . . . , qRatSend} ; b ←$ {0, 1}
is ← 0 ; ir ← 0 ; unchanged ← true
rand ←$ {0, 1}H.ol ; ks ←$ {0, 1}RKE.kl ; kr ← ks

fks ←$ {0, 1}F.kl ; fkr ← fks ; hk ←$ {0, 1}H.kl

g ←$ G
∗ ; y ←$ Zp ; stks ← (hk, g, gy)

DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)

RatRecSim(upd)

(X, σ) ← upd
forge ← ((op[ir ] �= “exp”) ∧ (upd �= auth[ir ]))
If unchanged and forge then

If ir < j′ then return false
If ir = j′ then

If not Verify(X, σ) then return false
bad ← true
Return false

If (ir = j′) then
If not Verify(X, σ) then return false

Else
If σ �= F.Ev(fkr , X) then return false

If op[ir ] = “exp” then restricted ← true
If upd = auth[ir ] then

unchanged ← true ; restricted ← false
Else

unchanged ← false
s ← H.Ev(hk, ir ‖ σ ‖ X ‖ Xy)
If ir + 1 = j then s ← rand
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return true

RatSendSim

If op[is] = ⊥ then op[is] ← “ch”
x ←$ Zp

If is = j′ then σ ← Tag(gx)
Else σ ← F.Ev(fks, g

x)
s ← H.Ev(hk, is ‖ σ ‖ gx ‖ gxy)
If is + 1 = j then s ← rand
upd ← (gx, σ) ; auth[is] ← upd
is ← is + 1 ; ks ← s[1 . . .RKE.kl]
fks ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return upd

ExpSim

If op[is] = “ch” then return ⊥
op[is] ← “exp”
Return (x, (is, fks), ks)

ChSendSim

If op[is] = “exp” then return ⊥
op[is] ← “ch”
If rkey[is] =⊥ then

rkey[is] ←$ {0, 1}RKE.kl

If b = 1 then return ks

Else return rkey[is]

ChRecSim

If restricted then return kr

If op[ir ] = “exp” then return ⊥
op[ir ] ← “ch”
If rkey[ir ] =⊥ then

rkey[ir ] ←$ {0, 1}RKE.kl

If b = 1 then return kr

Else return rkey[ir ]

Fig. 11. Adversary F for proof of Theorem 1.

Pr[KINDD
RKE] = Pr[G0,0] = Pr[G1,qRatSend

] +
∑

j Pr[G0,j ] − Pr[G∗
0,j ]

≤ Pr[G1,qRatSend
] +

∑
j Pr[badG

∗
0,j ]

= Pr[G1,qRatSend
] + qRatSend · AdvodheG,H,O1

+
∑

j Pr[badIj ]

≤ qRatSend · AdvodheG,H,O1
+ (qRatSend + 1) · Advsufcma

F,F + Pr[G1,qRatSend
].

Game G1 is identical to G0,qRatSend+1, but has been rewritten to allow
make the final game transition of our proof easier to follow. The complicated,
nested if-condition at the beginning of RatRec has been simplified because
ir < qRatSend + 1 always holds when unchanged is true. Additionally, when
unchanged is true (and thus upd has been directly forwarded between RatSend
and RatRec without being modified) we delay setting kr , fkr until they are
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Adversary OUp,Ch,Exp,Hash
2 (hk, g, Y )

b ←$ {0, 1} ; is ← 0 ; ir ← 0 ; unchanged ← true
ks[0] ←$ {0, 1}RKE.kl ; kr ← ks[0]

fks[0] ←$ {0, 1}F.kl ; fkr ← fks[0] ; hk ←$ {0, 1}H.kl

g ←$ G
∗ ; y ←$ Zp ; stks ← (hk, g, Y )

b′←$DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)
If (b′ = b) then return 1 else return 0

RatSendSim

If op[is] = ⊥ then
op[is] ← “ch”
If is �= 0 then

(X, σ) ← auth[is − 1] ; s ← Ch(σ||X)
SaveKeys(is, s)

X ← Up ; σ ← F.Ev(fks[is], X) ; upd ← (X, σ)
auth[is] ← upd ; is ← is + 1 ; Return upd

RatRecSim(upd)

(X, σ) ← upd
forge ← ((op[ir ] �= “exp”) ∧ (upd �= auth[ir ]))
If unchanged and forge then return false
If unchanged then fkr ← fks[ir ]
If (σ �= F.Ev(fkr , X)) then return false
If op[ir ] = “exp” then restricted ← true
If upd = auth[ir ]

unchanged ← true ; restricted ← false ; ir ← ir + 1
Else

unchanged ← false ; s ← Hash(ir , σ||X, X)
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl]

Return true

SaveKeys(i, s)

ks[i] ← s[1 . . .RKE.kl]
fks[i] ← s[RKE.kl + 1 . . .RKE.kl + F.kl]

ExpSim

If op[is] = “ch” then return ⊥
If (op[is] =⊥) and (is �= 0) then

x ← Exp
(X, σ) ← auth[is − 1]
s ← Hash(is − 1, σ||X, X)
SaveKeys(is, s)

op[is] ← “exp”
Return (x, (is, fks[is]), ks[is])

ChSendSim

If op[is] = “exp” then return ⊥
If (op[is] =⊥) and (is �= 0) then

(X, σ) ← auth[is − 1]
s ← Ch(σ||X)
SaveKeys(is, s)

op[is] ← “ch”
If rkey[is] =⊥ then

rkey[is] ←$ {0, 1}RKE.kl

If b = 1 then return ks[is]
Else return rkey[is]

ChRecSim

If restricted then return kr

If op[ir ] = “exp” then return ⊥
If (op[ir ] =⊥) and (ir �= 0) then

(X, σ) ← auth[ir − 1]
s ← Ch(σ||X)
SaveKeys(ir , s)

op[ir ] ← “ch”
If rkey[ir ] =⊥ then

rkey[ir ] ←$ {0, 1}RKE.kl

If unchanged then kr ← ks[ir ]
If b = 1 then return kr

Else return rkey[ir ]

Fig. 12. Adversary O2 for proof of Theorem 1.

about to be used, at which point they are set to match the appropriate ks, fks

that have been stored in a table. We have Pr[G0,qRatSend+1] = Pr[G1].
Games G1 and G2 differ only in that, in G2, values of k0 and fks are chosen

at random instead of as the output of H (unless Exp is called in which case we
reset them to the correct output of H). We bound the difference between Pr[G1]
and Pr[G2] by the advantage of the Diffie-Hellman adversary O2 that is defined
in Fig. 12. Specifically, we have AdvodheG,H,O2

= Pr[G1] − Pr[G2]. As a result of the
above and our previous sequence of inequalities, we get:
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Pr[KINDD
RKE] ≤ qRatSend · AdvodheG,H,O1

+ (qRatSend + 1) · Advsufcma
F,F + Pr[G1]

= qRatSend · AdvodheG,H,O1
+ (qRatSend + 1) · Advsufcma

F,F + AdvodheG,H,O2
+ Pr[G2].

Finally, Pr[G2] = 1/2 because the view of D is independent of b in G2. This
yields the claimed bound on the advantage of D. The bounds on the number of
oracle queries made by the adversaries are obtained by examining their code. ��

5 Ratcheted Encryption

In this section we define ratcheted encryption schemes, and show how to con-
struct them by composing ratcheted key exchange with symmetric encryption.
This serves as a starting point for discussing ratcheted encryption, and we also
discuss possible extensions.

Ratcheted encryption schemes. Our definition of ratcheted encryption extends the
definition of ratcheted key exchange by adding encryption and decryption algo-
rithms. Ratcheted encryption schemes inherit the key generation algorithms from
ratcheted key exchange schemes, and use the resulting shared keys as symmetric
encryption keys. In line with our definition for ratcheted key exchange, we only
consider one-sided ratcheted encryption, meaning that the sender uses its key
only for encryption, and the receiver uses its key only for decryption.

A ratcheted encryption scheme RE specifies algorithms RE.IKg, RE.SKg,
RE.RKg, RE.Enc and RE.Dec, where RE.Enc and RE.Dec are deterministic. Asso-
ciated to RE is a nonce space RE.NS, sender’s key generation randomness space
RE.RS, and a ciphertext length function RE.cl : N → N. Initial key genera-
tion algorithm RE.IKg returns k, seks, (stks, stkr , sekr), where k is an encryp-
tion key, stks, seks are a sender’s static key and session key, and stkr , sekr are
receiver’s static key and receiver’s session key, respectively. The sender’s and
receiver’s (symmetric) encryption keys are initialized to ks = kr = k. Sender’s
key generation algorithm RE.SKg takes stks, seks and randomness r ∈ RE.RS
to return a new sender’s session key seks, a new sender’s encryption key ks,
and update information upd. Receiver’s key generation algorithm RE.RKg takes
stks, stkr , sekr ,upd and receiver’s encryption key kr to return a new receiver’s
session key sekr , a new receiver’s encryption key kr , and a flag acc ∈ {true, false}.
Encryption algorithm RE.Enc takes ks, a nonce n ∈ RE.NS, a plaintext message
m ∈ {0, 1}∗ and a header h ∈ {0, 1}∗ to return a ciphertext c ∈ {0, 1}RE.cl(|m|).
Decryption algorithm RE.Dec takes kr , n, c, h to return m ∈ {0, 1}∗ ∪ {⊥}.

Correctness of ratcheted encryption. Correctness of ratcheted encryption extends
that of ratcheted key exchange. It requires that messages encrypted using
sender’s key should correctly decrypt using the corresponding receiver’s key.

Consider game RE-COR of Fig. 4 associated to a ratcheted encryption scheme
R and an adversary C, where C is provided with an access to oracles Up,
RatRec and Enc. The advantage of C breaking the correctness of R is defined
as AdvrecorR,C = 1 − Pr[RE-CORC

R]. Correctness property requires that AdvrecorR,C = 0
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for all unbounded adversaries C. Compared to the correctness game for ratch-
eted key exchange, the new element is that adversary C also gets access to an
encryption oracle Enc, which can be queried to test the decryption correctness.

Ratcheted authenticated encryption. Consider game RAE on the right side of
Fig. 5 associated to a ratcheted encryption scheme RE and an adversary A. It
extends the security definition of ratcheted key exchange (as defined in game
KIND on the left side of Fig. 5) by replacing oracles ChSend and ChRec with
oracles Enc and Dec. Oracles RatSend, RatRec and Exp are the same in
both games. Oracles Enc and Dec are defined as follows. In the real world (when
b = 1) oracle Enc encrypts messages under the sender’s key, and oracle Dec
decrypts ciphertexts under the receiver’s key. In the random world (when b = 0)
oracle Enc returns uniformly random strings, and oracle Dec always returns
an incorrect decryption symbol ⊥. The goal of the adversary is to distinguish
between the two cases. The advantage of A in breaking the RAE security of RE
is defined as AdvraeRE,A = 2Pr[RAEA

RE] − 1.
We note that the adversary is only allowed to get a single encryption for each

unique pair of (is, n). This restriction stems from the fact that most known nonce-
based encryption schemes are not resistant to nonce-misuse. Our definition can
be relaxed to only prevent queries where (is, n,m) — or even (is, n,m, h) — are
repeated, but it would increasingly limit the choice of the underlying symmetric
schemes that can be used for this purpose (fewer schemes would satisfy stronger
security definitions of multi-user authenticated encryption).

Revisiting the treatment of the restricted flag. Similar to the definition of KIND,
one could consider strengthening the definition of RAE by never resetting the
restricted flag back to false (as discussed in Sect. 4.2). There would seem to be
a more clear motivation to use the stronger definition in the case of encryp-
tion. Namely, our current security definition allows adversary to comprimse the
sender, use the exposed secrets to communicate with the receiver, and then
restore the initial conversation link between the sender and the receiver. This
represents an ability to stealthily insert arbitrary messages in the middle of
someone’s conversation, without ultimately disrupting the conversation. How-
ever, note that even a stonger definition (one that does not reset the restricted
flag) appears to allow such attack, because the adversary might be able to com-
promise the sender and insert the messages before the next time the key ratch-
eting happens. The success of such attack would depend on how often the keys
are being ratcheted.

Ratcheted encryption scheme RATCHET-ENC. We build a ratcheted encryption
scheme by combining a ratcheted key exchange scheme with a symmetric encryp-
tion scheme. In our composition the output keys of the ratcheted key exchange
scheme are used as encryption keys for the symmetric encryption scheme.

Let RKE be a ratcheted key exchange scheme. Let SE be a symmetric
encryption scheme such that SE.kl = RKE.kl. We build a ratcheted encryption
scheme RE = RATCHET-ENC[RKE,SE] with RE.NS = SE.NS, RE.RS = RKE.RS
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and RE.cl = SE.cl as follows. Let RE.IKg = RKE.IKg, RE.SKg = RKE.SKg,
RE.RKg = RKE.RKg, RE.Enc = SE.Enc, and RE.Dec = SE.Dec. Thus RE is
directly using RKE for key generation and SE for encryption.

Security of ratcheted encryption scheme RATCHET-ENC. The following says that
the RAE security of ratcheted encryption scheme RE = RATCHET-ENC[RKE,SE]
can be reduced to the KIND security of the ratcheted key exchange scheme RKE
and MAE security of the symmetric encryption scheme SE. The proof is in [7].

Theorem 2. Let RKE be a ratcheted key exchange scheme. Let SE be a symmet-
ric encryption scheme such that SE.kl = RKE.kl. Let RE = RATCHET-ENC[RKE,
SE]. Let A be an adversary attacking the RAE-security of RE that makes qRatSend

queries to its RatSend oracle, qRatRec queries to its RatRec oracle, qExp
queries to its Exp oracle, qEnc queries to its Enc oracle, and qDec queries to its
Dec oracle. Then there is an adversary D attacking the KIND-security of RKE
and an adversary N attacking the MAE-security of SE such that

AdvraeRE,A ≤ 2 · AdvkindRKE,D + Advmae
SE,N .

Adversary D makes at most qExp queries to its Exp oracle, qEnc queries to
its ChSend oracle, qDec queries to its ChRec oracle, and the same number
of queries as A to oracles RatSend, RatRec. Adversary N makes at most
max(qRatSend, qRatRec) queries to its New oracle, qEnc queries to its Enc ora-
cle, and qDec queries to its Dec oracle. Each of D, N has a running time
approximately that of A.

Extensions. We defined our encryption schemes to be one-sided in both commu-
nication (meaning that the messages are assumed to be sent only in one direc-
tion, from the sender to the receiver), and in security (only protecting against
the exposure of the sender’s secrets). It would be useful to consider two-sided
communication (but still one-sided security). In our model the sender and the
receiver already share the same key, but one would need to update the security
game to allow using either key for encryption and decryption.

An important goal in studying ratcheted encryption is to model the Double
Ratchet algorithm [16,20] used in multiple real-world messaging applications,
such as in WhatsApp [26] and in the Secret Conversations mode of Facebook Mes-
senger [17]. This work models the asymmetric layer of key ratcheting, whereas the
real-world applications also have a second layer of key ratcheting that happens
in a symmetric setting. In our model, this can be possibly achieved by using the
output keys of ratcheted key exchange to initialize a forward-secure symmetric
encryption scheme. We do not capture this possibility; both the syntax and the
security definitions would need to be significantly extended.
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Abstract. The pseudorandom-function oracle-Diffie–Hellman (PRF-
ODH) assumption has been introduced recently to analyze a variety
of DH-based key exchange protocols, including TLS 1.2 and the TLS
1.3 candidates, as well as the extended access control (EAC) protocol.
Remarkably, the assumption comes in different flavors in these settings
and none of them has been scrutinized comprehensively yet. In this paper
here we therefore present a systematic study of the different PRF-ODH
variants in the literature. In particular, we analyze their strengths rel-
ative to each other, carving out that the variants form a hierarchy. We
further investigate the boundaries between instantiating the assumptions
in the standard model and the random oracle model. While we show that
even the strongest variant is achievable in the random oracle model under
the strong Diffie–Hellman assumption, we provide a negative result show-
ing that it is implausible to instantiate even the weaker variants in the
standard model via algebraic black-box reductions to common crypto-
graphic problems.

1 Introduction

Proposing new cryptographic assumptions is a valid strategy to analyze or design
protocols which escape a formal treatment so far. Yet, the analysis of the pro-
tocol, usually carried out via a reduction to the new assumption, is only the
first step. Only the evaluation of the new assumption completes the analysis and
yields a meaningful security claim.

1.1 The PRF-ODH Assumption

In the context of key exchange protocols, a new assumption, called the pseudo-
random-function oracle-Diffie–Hellman (PRF-ODH) assumption has recently
been put forward by Jager et al. [23] for the analysis of TLS 1.2. It is a variant
of the oracle-Diffie–Hellman assumption introduced by Abdalla et al. [1] in the
context of the encryption scheme DHIES. The PRF-ODH assumption basically
says that the function value PRF(guv, x�) for a DH key guv looks random, even
if given gu and gv and if seeing related values PRF(Su, x) and/or PRF(T v, x) for
chosen values S, T , and x.
c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part III, LNCS 10403, pp. 651–681, 2017.
DOI: 10.1007/978-3-319-63697-9 22
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The PRF-ODH appears to be a natural assumption for any DH-based key
exchange protocol, aiming at security against man-in-the-middle attacks (see
Fig. 1). In DH-based protocols both parties, the client and the server, exchange
values gu, gv and locally compute the session key by applying a key derivation (or
pseudorandom) function to the key guv and usually some parts of the transcript.
The man-in-the-middle adversary can now try to attack the server’s session key
PRF(guv, . . . ) by submitting a modified value S instead of gv to the client, yield-
ing a related key PRF(Su, . . . ) on the client’s side. The PRF-ODH assumption
guarantees now that the server’s key is still fresh.

Fig. 1. Origin of the PRF-ODH assumption: Man-in-the-middle attack on DH-based
key exchange protocol.

Note that simple authentication of transmissions does not provide a rem-
edy against the above problem. The adversary could act under a different, cor-
rupt server identity towards the client, and only re-use the Diffie–Hellman data,
authenticated under the corrupt server’s key. Then the Diffie–Hellman keys in
the executions would still be non-trivially related. This happens especially if keys
are used in multiple sessions. Another problem is that some protocols may derive
keys early, before applying signatures, e.g., such as for handshake encryption as
well as in the post-handshake authentication mechanism in TLS 1.3 [36].

It therefore comes as no surprise that the PRF-ODH assumption has been
used in different protocols for the security analysis, including the analysis of the
TLS 1.2 [13] ephemeral and static Diffie–Hellman handshake modes [8,23,29], the
TLS 1.3 [36] Diffie–Hellman-based and resumption handshake candidates [14–
16] as well as 0-RTT handshake candidates [18], and a 0-RTT extension of the
extended access control (EAC) protocol [10], for the original EAC protocol listed,
for example, in Document 9303 of the International Civil Aviation Organiza-
tion [22]. Notably, these scientific works use different versions of the PRF-ODH
assumption, due to the different usages of the key shares gu, gv. These key
shares can be ephemeral (for a single session), semi-static (for a small number
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of sessions), or static (for multiple sessions). Therefore, the man-in-the middle
adversary may ask to see no related key for either key share, a single related
key, or multiple related keys. For instance, while Jager et al. [23] required only
security against a single query for one of the two key shares, Krawczyk et al. [29]
modify the original PRF-ODH assumption because they require security against
multiple oracle queries against this key share. In [18] an extra query to the other
key share has been added, and [10] require multiple queries to both key shares.

1.2 Evaluating the PRF-ODH Assumptions

Consequently, and to capture all of the above assumptions simultaneously, we
generally speak of the lrPRF-ODH assumption, allowing the adversary no (l, r =
n), a single (l, r = s), or multiple (l, r = m) related key queries, for the “left”
key gu or the “right” key gv. Such queries are handled by oracles ODHu and
ODHv, returning the corresponding pseudorandom function value. This results
in nine variants, for each combination l, r ∈ {n, s,m}. We also discuss some more
fine-grained distinctions, e.g., if the adversary learns both keys gu, gv before
choosing the input x� for the challenge value PRF(guv, x�), or if x� can only
depend on gu.

To evaluate the strengths of the different types of lrPRF-ODH assumptions
one can ask how the variants relate to each other. Another important aspect
is the question whether, and if so, to which (well investigated) Diffie–Hellman
problem it possibly relates to, e.g., the computational Diffie–Hellman (CDH), the
decisional Diffie–Hellman (DDH), the strong Diffie–Hellman (StDH), or the even
more general Gap-Diffie–Hellman (GapDH) problem. While the answer to this
question may rely on the random oracle model, the final issue would be to check
if (any version of) the assumption can be instantiated in the standard model.

Especially the question whether the PRF-ODH assumption (or which variant)
can be instantiated in the standard model is of utmost interest. Some of the
aforementioned works refer to the(ir) PRF-ODH assumption as a standard-model
assumption, since there is no immediate reference to a random oracle. This
would not only apply to the schemes analyzed with respect to the PRF-ODH
assumption, but potentially also to other works where the Gap-DH or related
assumptions in the random oracle have been used for the analysis, yet where
the PRF-ODH assumption is a promising alternative for carrying out a proof.
Examples include the QUIC protocol [17,32] and OPTLS [30] which forms the
base for TLS 1.3.

1.3 Our Results

Figure 2 gives an overview over our results. We explain the details next.

Instantiations. Our first contribution is to discuss instantiation possibilities of
the PRF-ODH variants. We stress that some of these results mainly confirm the
expectation: the nnPRF-ODH assumption where no oracle queries are allowed can
be based upon the decisional Diffie–Hellman assumption DDH, and the one-sided
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snPRF-ODH

mnPRF-ODH
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nsPRF-ODH

nmPRF-ODH

nnPRF-ODH

F1 (7) F1 (7)

F2 (8)

F2 (8)

F2 (8)

F2 (9)

F2 (9)

F2 (9)

F3 (10) F3 (10)
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DDH + PRFG

StDH + prog. ROM StDH + prog. ROM

StDH + prog. ROM

(2)

(3) (3)

(4)

no std-model algebraic
black-box reduction

(15)

Fig. 2. Relations between the different PRF-ODH variants (in solid-line rounded rectan-
gles) from Definition 1 and other assumptions (in dotted-line rounded rectangles). Solid
arrows indicate the trivial implications between PRF-ODH variants, dashed arrows indi-
cate implications we establish. Struck-out, densely dotted arrows indicate separations
in the standard model via the indicated function Fn ∈ F (cf. Definition 5). Struck-
out, sparsely dotted arrows indicated separations in the random-oracle model. The
dashed horizontal line demarcates the boundary below which our impossibility result
for standard-model algebraic black-box reductions from Section 5 holds. Numbers in
parentheses indicate the respective propositions and theorems.

assumptions mnPRF-ODH and nmPRF-ODH where the adversary has (multiple)
access to either oracle ODHu or ODHv can be based on the strong Diffie–Hellman
assumption in the random oracle model. The strong DH assumption (StDH)
demands that the adversary solves the computational problem of computing guv

from gu, gv, but having access to a decisional oracle DDH(gu, ·, ·) checking for
DH tuples. Such checks are necessary to provide consistency when simulating
the random oracle through lazy sampling, i.e., in the case that random values
are only sampled on their first explicit usage. The proofs for mnPRF-ODH and
nmPRF-ODH appear already implicitly in previous work about key exchange,
e.g., [12,17,26,30–32,37], but where the reduction to the StDH problem in the
random oracle model has been carried out by dragging along all the steps of the
key exchange protocols.

Our final instantiation result for the strongest notion mmPRF-ODH holds in
the random oracle model under the strong DH (StDH) assumption. Surprisingly,
the proof is less straightforward than one would expect, since the availability of
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both oracles ODHu and ODHv imposes the need for further consistency checks
between cross-over calls for the two oracles in the simulation. We show that
such consistency checks can indeed be implemented assuming StDH, but causing
a square-root loss in the security reduction to StDH. This loss is due to the fact
that in an intermediate step we go through the square-DH problem SqDH (given
g, gv compute gv2

) to which CDH reduces by making two calls to the square-DH
problem adversary (see, e.g., [24]), effectively squaring the success probability.

The instantiations are shown through the boxes with dotted surrounding
lines in Fig. 2. We also discuss briefly the relationship to related-key security for
pseudorandom functions, where the adversary can ask to see values for trans-
formed keys φ(K). While similar in spirit at first glance, it seems to us that the
notions differ in technical details which makes it hard to relate them.

Relations. The instantiation results give a sort of general method to achieve any
PRF-ODH notion, leaving open the possibility that one notion may be actually
easier to achieve. This is even more relevant in light of the fact that previous
works used different notions. In order to support a better comparison between
the various notions we relate them in terms of strength of the assumption. Some
of these relationships, especially implications, are easy to establish. For exam-
ple, since the adversary in the mmPRF-ODH game can always forgo using its
ODHv oracle, this immediately implies mnPRF-ODH security. All implications
are marked by solid arrows in Fig. 2.

As for separations we are able to rule out a number of implications uncon-
ditionally. By this we mean that we only make the minimal assumption that
a secure instantiation exists, and then build one still satisfying this notion but
not the stronger one. These separations are displayed in Fig. 2 through dotted
arrows.

We are also able to separate further notions conditionally, using random ora-
cles and a plausible number-theoretic assumption. Namely, under these assump-
tions, the notion of snPRF-ODH (with a single call to ODHu) is strictly stronger
than the nmPRF-ODH notion where the adversary can ask the ODHv oracle mul-
tiple times but does not get access to the ODHu oracle. With a similar strategy we
can also separate mnPRF-ODH with multiple ODHu queries from smPRF-ODH,
where the adversary can now make one extra call to ODHu on top of the ODHv

queries.
The conditional separations are not symmetric in the sense that they apply

to the other oracle as well. The reason is that these results exploit that the
adversary receives gu before gv, such that the converse does not simply follow.
Besides these opposite cases there are also some other cases where we could not
provide a separation, e.g., from mmPRF-ODH to msPRF-ODH. We give more
insights within.

Impossibility Result. The third important contribution is our impossibility result.
We show that proving security of even the mild snPRF-ODH or nsPRF-ODH
notions based on general cryptographic problems is hard. Besides the common
assumption that the reduction uses the adversary only as a black box, we also



656 J. Brendel et al.

assume that the reduction is algebraic. This means that whenever the reduction
passes a group element A to the outside, it knows a representation (α1, α2, . . . )
such that A =

∏
gαi

i for the reduction’s input values g1, g2, . . . . This notion
of algebraic reductions has been used in other separation works before, e.g.,
[9,20,35]. Unlike generic reductions, algebraic reductions can take advantage of
the representation of group elements.

In detail, we then show via a meta-reduction technique [9,21,35], that one
cannot prove security of the snPRF-ODH or nsPRF-ODH assumption via algebraic
black-box reductions to a class of cryptographic problems. The problems we rule
out are quite general, saying that the adversary receives some input, can interact
multiple times with a challenger in an arbitrary way, and should then provide
a solution. We remark that we also need to augment this problem by a Diffie–
Hellman problem in order to give a reference point for the algebraicity of the
reduction. Our result also requires that the decisional square-DH problem is
hard, i.e., that g, gv, gv2

is indistinguishable from g, gv, gz for random v, z.1

In a sense, our negative result, displayed by the dashed horizontal line on top
in Fig. 2, is optimal in terms of the relation of PRF-ODH assumptions, as it rules
out exactly the notions “one above” the nnPRF-ODH notion with a standard
model instantiation. We still note that the restrictions on the reduction, and the
additional assumption, may allow to bypass our result. This also means that our
implications and separations between the different notions, established earlier,
are not moot.

Implications for Practical Key Derivation Functions. Since the PRF-ODH
assumptions have been used in connection with applied protocols like TLS,
we finally address the question which security guarantees we get for practical
key derivation functions used in such protocols. We are especially interested in
HMAC [25] on which the key derivation function HKDF [27,28] is based upon. Our
instantiation results in the random oracle so far treat the key derivation function
as a monolithic random oracle, whereas key derivation functions like HMAC have
an iterative structure. At the same time, our impossibility result tells us that
giving a standard-model proof for HMAC, based on say collision-resistance of the
compression function, may be elusive. We thus make the assumption that the
compression function is a random oracle.

We show that HMAC provides the strong notion of mmPRF-ODH security,
assuming StDH and that the compression function is a random oracle. We note
that Coron et al. [11] show that a variant of HMAC is indifferentiable from a
random oracle, and Krawczyk [27] briefly remarks that the result would carry
over to the actual HMAC construction. However, in HKDF the HMAC function is
applied in a special mode in which the key part is hashed first, and it is therefore
unclear if our result for the monolithic random oracle immediately applies. But
based on the techniques used in the instantiation part we can give a direct proof
of the security of (the general mode of) HMAC.

1 While the computational version of the square-DH problem is known to be equivalent
to the CDH problem, it is unclear if the decisional version follows from DDH.
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2 PRF-ODH Definition

Different variants of the new PRF oracle-Diffie–Hellman (PRF-ODH) assumption
have been introduced and used in the literature in the context of key exchange
protocols. In this section we first provide a generic PRF-ODH assumption defi-
nition capturing all different flavors and discuss its relation to previous occur-
rences [10,15,16,18,23,29].

Definition 1 (Generic PRF-ODH assumption). Let G be a cyclic group of
order q with generator g. Let PRF : G × {0, 1}∗ → {0, 1}λ be a pseudorandom
function that takes a key K ∈ G and a label x ∈ {0, 1}∗ as input and outputs a
value y ∈ {0, 1}λ, i.e., y ← PRF(K,x).

We define a generic security notion lrPRF-ODH which is parameterized by
l, r ∈ {n, s,m} indicating how often the adversary is allowed to query a certain
“left” resp. “right” oracle (ODHu resp. ODHv) where n indicates that no query
is allowed, s that a single query is allowed, and m that multiple (polynomially
many) queries are allowed to the respective side. Consider the following security
game GamelrPRF-ODH

PRF,A between a challenger C and a probabilistic polynomial-time
(PPT) adversary A.

1. The challenger C samples u $←− Zq and provides G, g, and gu to the adver-
sary A.

2. If l = m, A can issue arbitrarily many queries to the following oracle ODHu.
ODHu oracle. On a query of the form (S, x), the challenger first checks if

S /∈ G and returns ⊥ if this is the case. Otherwise, it computes y ←
PRF(Su, x) and returns y.

3. Eventually, A issues a challenge query x�. On this query, C samples v $←− Zq

and a bit b $←− {0, 1} uniformly at random. It then computes y�
0 = PRF(guv, x�)

and samples y�
1

$←− {0, 1}λ uniformly random. The challenger returns (gv, y�
b )

to A.
4. Next, A may issue (arbitrarily interleaved) queries to the following ora-

cles ODHu and ODHv (depending on l and r).
ODHu oracle. The adversary A may ask no ( l = n), a single ( l = s), or arbi-

trarily many ( l = m) queries to this oracle. On a query of the form (S, x),
the challenger first checks if S /∈ G or (S, x) = (gv, x�) and returns ⊥ if
this is the case. Otherwise, it computes y ← PRF(Su, x) and returns y.

ODHv oracle. The adversary A may ask no ( r = n), a single ( r = s), or arbi-
trarily many ( r = m) queries to this oracle. On a query of the form (T, x),
the challenger first checks if T /∈ G or (T, x) = (gu, x�) and returns ⊥ if
this is the case. Otherwise, it computes y ← PRF(T v, x) and returns y.

5. At some point, A stops and outputs a guess b′ ∈ {0, 1}.
We say that the adversary wins the lrPRF-ODH game if b′ = b and define the

advantage function

AdvlrPRF-ODH
PRF,A (λ) := 2 ·

(

Pr[b′ = b] − 1
2

)
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and, assuming a sequence of groups in dependency of the security parame-
ter, we say that a pseudorandom function PRF with keys from (Gλ)λ pro-
vides lrPRF-ODH security (for l, r ∈ {n, s,m}) if for any A the advantage
AdvlrPRF-ODH

PRF,A (λ) is negligible in the security parameter λ.
In the following, if clear from the context, we will omit the group G and

sometimes its generator g as explicit inputs to the adversary.

Relations to Previous PRF-ODH Assumptions. The above generic and parameter-
ized lrPRF-ODH definition captures different variants of the PRF-ODH assump-
tion present in the literature. The PRF-ODH formulation put forward by Jager
et al. [23] is captured by ours in case the parameters are set to l = s and r = n
meaning that only the “left” oracle (querying the DH share gu) can be queried
once. Note that Step 2 is only required if l = m, capturing that Jager et al.
first request their challenge before issuing an oracle query. The same variant,
snPRF-ODH, was also used by Dowling et al. [16]. Krawczyk et al. [29] modi-
fied the PRF-ODH formulation of Jager et al. since they require security against
multiple (“left”) oracle queries against the DH key share. Thus, their variant
is captured by ours through setting the parameters to l = m and r = n, and
thus making use of Step 2. Recent works further introduced an additional query
to the other DH key share, due to the fact that the keys are static or semi-
static, respectively. In more detail, Fischlin and Günther [18] require an extra
single (“right”) oracle query while still requesting polynomial many queries to
the “left” oracle. This is captured by our definition through setting the parame-
ters to l = m and r = s. Lastly, Brendel and Fischlin [10] require to query both
key shares multiple times, which our definition captures as well by choosing the
parameters as l = m and r = m.

Design Options. The above generic definition can be refined further, e.g., by
enabling the challenger to provide the value gv to the adversary at the outset
in Step 1. This variant was used in the analysis of earlier TLS 1.3 draft hand-
shakes by Dowling et al. [15]. Such change would be accompanied by giving the
adversary in Step 2 also access to the ODHv oracle in case r = m. Another rea-
sonable change could encompass enabling the adversary in multi-query variants
(i.e., l = m or r = m) to also issue multiple challenge queries in Step 3, for the
same value gv or even freshly chosen values gvi in each call. However, one can
show via a standard hybrid argument that both notions (i.e., single challenge
query and multiple challenge query) are polynomially equivalent.

In this work, we focus on the common structure of previously studied
PRF-ODH notions [10,16,18,23,29] which are captured by our generic defini-
tion above. Additionally, in Sect. 4 we briefly discuss the impact of such changes
regarding the analysis of the relations between the different variants of the
assumption.

3 Instantiating the PRF-ODH Assumption

We next turn to the question how to instantiate the PRF-ODH assumption.
Concretely, we provide instantiations of the two notions that mark both ends
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of the strength spectrum of the PRF-ODH variants. First, we show that the
weakest PRF-ODH variant, nnPRF-ODH, can be instantiated in the standard
model under well-established assumptions, namely the Decisional Diffie–Hellman
(DDH) assumption and (ordinary) PRF security in a group G. Second, we estab-
lish that, in the (programmable) random oracle model, both the strongest one-
sided PRF-ODH variants, mnPRF-ODH and nmPRF-ODH, as well as the most
general mmPRF-ODH assumption can be instantiated from the strong Diffie–
Hellman assumption (StDH). We define all these number-theoretic assumptions
when discussing the security notions. Furthermore, we discuss the relation of the
PRF-ODH notion to that of PRF security under related-key attacks.

3.1 Standard-Model Instantiation of nnPRF-ODH

We begin with instantiating the nnPRF-ODH assumption in the standard model.
For this we speak of a function F : G × {0, 1}∗ → {0, 1}λ to be PRFG-secure if
no efficient adversary which, upon querying x, gets to see either the function
value F(K,x) for a then chosen random key K $←− G, or a random value, can
distinguish the two cases. As in the other games before, the choice of answering
genuinely or randomly is made at random, and we let AdvPRFG

F,A denote the advan-
tage of algorithm A. Here, we normalize again the advantage by subtracting the
guessing probability of 1

2 and multiplying the result by a factor of 2. Note that
the difference to the nnPRF-ODH assumption is that the adversary does not get
to see a pair gu, gv from which the key is generated.

The underlying DDH assumption says that one cannot efficiently distinguish
tuples (g, gu, gv, guv) from tuples (g, gu, gv, gz) for random u, v, z ∈ Zq. More for-
mally, for an adversary B we define AdvDDH

G,B to be the probability of B predicting
a random bit b, when given g, gu, gv, guv for b = 0 and g, gu, gv, gz for b = 1,
with the usual normalization as above. Alternatively, one may define AdvDDH

G,B to
be the advantage in the nnPRF-ODH game for the function F(K,x) = K.

Theorem 2 (DDH+PRFG =⇒ nnPRF-ODH). If a function F : G×{0, 1}∗ →
{0, 1}λ is PRFG-secure and the DDH assumption holds in G, then F is also
nnPRF-ODH-secure. More precisely, for any efficient adversary A against the
nnPRF-ODH security of F, there exist efficient algorithms B1 and B2 such that

AdvnnPRF-ODH
F,A ≤ 2 · AdvDDH

G,B1
+ 2 · AdvPRFG

F,B2
.

We note that the factor 2 is the common loss due to the game-hopping tech-
nique, when switching from indistinguishability for two fixed games to choosing
one of the games at random. The proof appears in the full version of this paper.

3.2 Random-Oracle Instantiation of mnPRF-ODH and nmPRF-ODH

Abdalla et al. [1] proved that the oracle DH assumption ODH is implied
by the strong Diffie–Hellman assumption in the random oracle model. Here,
we show that our strongest one-sided PRF-ODH variants, mnPRF-ODH and
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nmPRF-ODH, can be instantiated under the strong Diffie–Hellman assumption
StDH. The assumption says that, given g, gu, gv and access to a decisional DH
oracle for fixed value gu, i.e., DDH(gu, ·, ·), it is infeasible to compute guv.
Observe that this assumption is implied by the GapDH assumption, where the
adversary can choose the first group element freely, too. Let AdvStDH

G,B denote the
probability of algorithm BDDH(gu,·,·)(g, gu, gv) outputting guv.

Theorem 3. In the random oracle model, StDH implies mnPRF-ODH security
and nmPRF-ODH security of F(K,x) = RO(K,x) for random oracle RO. More
precisely, for any efficient adversary A against the mnPRF-ODH or nmPRF-ODH
security of F, there exists an efficient algorithms B such that

AdvmnPRF-ODH
F,A ≤ AdvStDH

G,B and AdvnmPRF-ODH
F,A ≤ AdvStDH

G,B .

The proof appears in the full version. It follows previous proofs in the context
of key exchange protocols. The crucial aspect here is that one programs the ran-
dom oracle for ODHu queries (S, x) by returning random values. This implicitly
defines the random oracle value for (unknown) key Su and x, but such that one
later needs to check for consistency if the adversary makes a random oracle query
about key K = Su and x and one simulates the answer. This verification can
be performed via the oracle DDH(gu, ·, ·) by checking if DDH(gu, S,K) = 1 for
any previous ODHu query (S, x). Vice versa, one also needs to check for ODHu

queries (S, x) if the random oracle value for (Su, x) has already been set. This
can be done again via the DDH(gu, ·, ·) oracle.

If a consistent simulation is enforced then the only possibility for the adver-
sary to distinguish a real or random challenge y� is to ask the random oracle
about the DH key K = guv at some point. This is again easy to detect by check-
ing if DDH(gu, gv,K) = 1 for any such query K, in which case we solve the StDH
problem.

3.3 Random-Oracle Instantiation of mmPRF-ODH

We next look at the case that the adversary can make queries to both oracles,
ODHu and ODHv. Interestingly, this does not follow straightforwardly from the
StDH assumption as above. The reason is that, there, we have used the DDH-
oracle with fixed element gu to check for consistency of ODHu queries with
random oracle queries. In the most general mmPRF-ODH case, however, we would
also need to check consistency across ODHu and ODHv queries. In particular, a
simulator would need to be able to check for queries (S, x) to ODHu and (T, x)
to ODHv if they result in the same key Su = K = T v, but the simulator is given
only S, T, g, gu, and gv. Such a test cannot be immediately performed with the
DDH(gu, ·, ·) oracle as in the StDH case, and not even with the more liberal
DDH(·, ·, ·) oracle as in the GapDH case.

Suppose that we take the StDH problem and augment it by another oracle
which allows to check for “claws” S, T with Su = T v. Call this the claw-verifying
oracle Claw and the problem the ClawStDH problem. For pairing-friendly groups
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G we get this oracle for free via the bilinear map e as Claw(S, T ) = [e(gu, S) =
e(gv, T )?]. Next, we show that for general groups the claw-verifying oracle can be
implemented in the StDH game, too, but at the cost of a loose security reduction
to StDH.

The idea of representing the oracle Claw is as follows. Suppose that, in addi-
tion to g, gu and gv we would also receive the value gu/v (where we assume here
and in the following that v �= 0, since the case v = 0 is trivial to deal with).
Then we can run the check for claws via the stronger DDH oracle by calling
DDH(gu/v, S, T ), checking that Su/v = T and therefore Su = T v. The ques-
tion remains if the computational problem of computing guv given gu/v (in the
presence of a DDH oracle) becomes significantly easier, and if we can relax the
requirement to a DDH(gu, ·, ·) oracle. Switching to the square DH problem in an
intermediate step, we show that this is not the case, although the intermediate
step causes a loose security relationship.

Assume that we have an algorithm A which (given oracle access to DDH(gu,
·, ·), DDH(gv, ·, ·), and the claw-verifying oracle Claw) on input (g, gu, gv) is able
to compute guv. Then we show that we can use this algorithm to build an
algorithm B for the square-DH problem (given g, gv compute gv2

) relative to a
DDH(gv, ·, ·) oracle. For this, algorithm B for input g, gv picks r $←− Zq and sets
gu = (gv)r. With this choice, gu/v = gr can be easily computed with the knowl-
edge of r, allowing to implement the claw-verifying oracle for free. Similarly, we
have DDH(gu, ·, ·) = DDH(gv, (·)r, ·), giving us the “mirrored” oracle for free.
Algorithm B now runs A on input (g, gu, gv) and answers all oracle requests of
A during the computation with the help of its DDH(gv, ·, ·) oracle. Suppose that
the adversary A eventually outputs K. Then, B returns K1/r which equals gv2

for a correct answer K = guv = grv2
of A.

Next, we show that from a solver for the square-DH problem (with DDH(gv,
·, ·) oracle) we can build a solver for the StDH problem. Going from the square-
DH problem to the CDH problem is already known. Interestingly, though, the
common strategies in the literature [2,19,33] require three calls to the square-
DH solver, basically to compute the square g(u+v)2 = gu2+2uv+v2

and then to
divide out gu2

and gv2
. Fortunately, two calls are sufficient, see for example [24],

yielding a tighter security bound.
So suppose we have a square-DH algorithm (with oracle DDH(gv, ·, ·)) then

we call this algorithm once on g, gu+v and once on g, gr(u−v) for randomizer
r $←− Zq. Since both inputs are random and independent, we get two valid answers
gu2+2uv+v2

and gr2(u2−2uv+v2) with the product of the square-DH algorithm’s
success probability. Note that these two executions at most double the number of
oracle queries to the DDH oracle. Dividing out the exponent r2 from the second
term by raising it to the power 1/r2, and then dividing the two group elements
we obtain g4uv from which we can easily compute guv.

Overall, we can show that solving the problem in presence of the decisional
oracles for gu and gv, and an additional claw-verifying oracle, is implied by the
StDH assumption, albeit with a security loss. More precisely, for any efficient
adversary A against ClawStDH we get an efficient adversary B (making at most
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twice as many calls to its StDH oracle as A) such that

AdvClawStDH
G,A ≤

√
AdvStDH

G,B .

We can now give our security proof for mmPRF-ODH, implying also security of
msPRF-ODH and smPRF-ODH, of course:

Theorem 4. In the random oracle model, ClawStDH (resp. StDH) implies
mmPRF-ODH security of F(K,x) = RO(K,x) for random oracle RO. More pre-
cisely, for any efficient adversary A against the mmPRF-ODH security of F, there
exist efficient algorithms B1,B2 such that

AdvmmPRF-ODH
F,A ≤ AdvClawStDH

G,B1
≤

√
AdvStDH

G,B2

The proof is almost identical to the one for mnPRF-ODH, only that we here
simulate the other oracle ODHv as the oracle ODHu, and for each query to
either of the oracles also check via the help of Claw consistency between ODHu

and ODHv evaluations. This provides a sound simulation of the random oracle.
It follows as before that the adversary A can only distinguish genuine y� from
random ones if it queries the random oracle about guv (in the sound simulation),
in which case B1 finds this value in the list of queries.

3.4 On the Relation Between PRF-ODH and Security Against
Related-Key Attacks

The PRF-ODH assumption demands the output of a PRF to be indistinguishable
from random even when given access to PRF evaluations under a related (group-
element) key, sharing (at least) one exponent of the challenge key. On a high
level, this setting resembles the concept of related-key attack (RKA) security for
pseudorandom functions as introduced by Bellare and Kohno [4]. This raises
the question if the PRF-ODH assumption can be instantiated from RKA-secure
PRFs (or vice versa).

Related-key attack security of a PRF f : K × D → R with respect to a set Φ
of related-key-deriving (RKD) functions is defined as the indistinguishability of
two oracles F(·,K)(·) and G(·,K)(·) for a randomly chosen key K $←− K. The dis-
tinguishing adversary A may query the oracles on inputs (φ, x) ∈ Φ×D on which
the oracles respond as F(φ,K)(x) := f(φ(K), x) and G(φ,K)(x) := g(φ(K), x) for
a function g drawn uniformly at random from the set FF(K,D,R) of all func-
tions K × D → R. Formally, the advantage of A against the RKA-PRF security
of f with respect to set Φ is defined as

AdvRKA-PRF,Φ
f,A := Pr

[
AF(·,K)(·) = 1 | K $←− K

]

− Pr
[
AG(·,K)(·) = 1 | K $←− K, g $←− FF(K,D,R)

]
.

Intuitively, one should now be able to relate RKA-PRF security to PRF-ODH
security by considering two correlated sets of RKD functions corresponding to
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the PRF-ODH oracles ODHu and ODHv with respect to a group G with gener-
ator g and two exponents u, v ∈ Zq:

ΦODHu
:= {φODHu,S | S ∈ G \ {gv}} where φODHu,S(K) := (K1/v)logg(S),

ΦODHv
:= {φODHv,T | T ∈ G \ {gu}} where φODHv,T (K) := (K1/u)logg(T ).

Insurmountable hurdles however seem to remain when trying to relate PRF-
ODH notions and RKA-PRF security (for according sets Φ) via implications. In
the one direction, the adversary in the PRF-ODH setting is provided with the DH
shares gu and gv forming the (challenge) PRF key while such side information
on the key is not given in the RKA-PRF setting. Hence, in a reduction of PRF-
ODH security to some RKA-PRF notion, even for an appropriate RKD function
set a simulation always lacks means to provide the PRF-ODH adversary with
these shares. In the other direction, the RKA-PRF challenge can be issued on
any related key φ(K) for an admissible RKD function φ while the PRF-ODH
challenge is, for the case of the real PRF response, always computed on the
key guv. A reduction would hence need to map the RKA-PRF challenge for an
arbitrary, related key onto the fixed PRF-ODH challenge key.

Though on a high level capturing a relatively similar idea, the relation
between PRF-ODH and RKA-PRF security hence remains an open question.

4 PRF-ODH Relations

In this section we study the relations of different PRF-ODH variants spanned by
our generic Definition 1. The relationships are also illustrated in Fig. 2.

Let us start with observing the trivial implications (indicated by solid arrows
in Fig. 2) which are induced by restricting the adversary’s capabilities in our
definition. That is, by restricting the access to one of the oracles ODHu and
ODHv (from multiple queries to a single query or from a single query to no
query) for a notion from Definition 1, we obtain a trivially weaker variant. The
more interesting question is which of these implications are strict, i.e., for which
of two PRF-ODH variant pairs one notion is strictly stronger than the other.
For a majority of these cases we can give separations which only require the
assumption that the underlying primitive exists at all, for some separations we
rely on the random oracle model (and a plausible number-theoretic assumption).

4.1 Separations in the Standard Model

For our standard model separations we introduce the following family of func-
tions F .

Definition 5 (Separating function family F). Let G : G×{0, 1}∗ → {0, 1}λ.
We define the family of functions F = {Fn}n∈N with Fn : G × {0, 1}∗ → {0, 1}λ

as follows:

Fn(K,x) :=

{
G(K, 1) ⊕ . . . ⊕ G(K,n) if x = 0
G(K,x) otherwise.
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As a warm-up, let us first consider the (in)security of functions Fn ∈ F in
the standard PRF setting. It is easy to see that no function Fn ∈ F can satisfy
the (regular) security notion for pseudorandom functions: for any function Fn,
querying the PRF oracle on x0 = 0, . . . , xn = n yields responses y0, . . . , yn for
which the combined XOR value y = y0⊕ . . .⊕yn, in case the oracle computes the
real function Fn, is always 0 whereas otherwise it is 0 only with probability 2−λ.
However, in a restricted setting where the PRF adversary A is allowed to query
the oracle only a limited number of times (at most n queries for function Fn), we
can indeed establish the following, restricted PRF security for functions Fn ∈ F .

Proposition 6 (F is restricted-PRF-secure). If G is an (ordinary) secure
pseudorandom function, then each Fn ∈ F from Definition 5 is an n-restricted
secure pseudorandom function in the sense that it provides PRF security against
any adversary that is allowed to query the PRF oracle at most n times.

Proof (informal). Fix a function Fn ∈ F . First, we replace G in the definition
of Fn by a truly random function G′. The introduced advantage difference for
adversary A by this step can be bounded by the advantage of an adversary B
against the PRF security of G, simulating the (restricted) PRF game for A using
its own PRF oracle for G.

After this change, the output values of Fn on inputs x > 1 are independent
random values and the output on x = 0 is the XOR of the outputs on x = 1,
. . . , n. In contrast, for a truly random function, the outputs on all inputs (incl.
x = 0) are independent and random. However, any adversary A that is allowed
to query the PRF oracle on at most n inputs cannot distinguish these two cases,
bounding its success probability at this point by 0. 
�

Let us now turn to the more involved PRF-ODH setting. Equipped with the
function family F , we can establish separations between various PRF-ODH vari-
ants, as illustrated in Fig. 2. The key insight for these separations is similar to the
one in the standard PRF setting: an adversary with a limited number of n queries
(including the challenge query in the PRF-ODH setting) cannot distinguish (a
challenge under) Fn from (a challenge under) a truly random function. As subse-
quent propositions establish, this allows us to separate the notion nnPRF-ODH
(with only one challenge query) from snPRF-ODH and nsPRF-ODH (with two
queries, the challenge and one to an ODH oracle) via function F1. Furthermore,
the notions snPRF-ODH and nsPRF-ODH (with two queries) are separated from
mnPRF-ODH, ssPRF-ODH, and nmPRF-ODH (with three or polynomially many
queries) via F2. Finally, we establish that the notion ssPRF-ODH (three queries)
can be separated from mnPRF-ODH and nmPRF-ODH (multiple queries) using
function F3. Note that functions Fn ∈ F cannot provide a separation between
two notions that both allow polynomially many queries (e.g., mnPRF-ODH and
msPRF-ODH). To keep the propositions compact, the given separations consti-
tute the minimal spanning set; recall that if a notion A implies another notion B,
separating a notion C from B also separates C from A.
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We begin with separating nnPRF-ODH from snPRF-ODH and nsPRF-ODH
security.

Proposition 7 (nnPRF-ODH �=⇒ snPRF-ODH, nsPRF-ODH). If G from
Definition 5 is nnPRF-ODH-secure, then F1 ∈ F is nnPRF-ODH-secure, but
neither snPRF-ODH- nor snPRF-ODH-secure. More precisely, for any efficient
adversary A against the nnPRF-ODH security of F1, there exists an efficient
algorithm B such that

AdvnnPRF-ODH
F1,A ≤ AdvnnPRF-ODH

G,B ,

but there exist algorithms A1, A2 with non-negligible advantage AdvsnPRF-ODH
F1,A1

=
AdvnsPRF-ODH

F1,A2
= 1 − 2−λ.

Proof. First, observe the following snPRF-ODH-adversary A1 and nsPRF-ODH-
adversary A2 are successful (except with negligible probability). Both first chal-
lenge F1 on x� = 0 (obtaining as y� either y�

0 = G(guv, 1) or y�
1

$←− {0, 1}λ),
then query (gv, 1) resp. (gu, 1) to their ODHu resp. ODHv oracle, obtaining a
value y = G(guv, 1). They distinguish the challenge by outputting 0 if y� = y
and 1 otherwise and win except if coincidentally y�

1 = y, which happens with
probability 2−λ.

To see that F1 is nnPRF-ODH-secure if G is, consider an algorithm B that
simply relays its obtained value gu to A and the challenge query of A to its
challenger unmodified if x� �= 0, but for x� = 0 asks its challenge query on 1.
Forwarding the response and outputting the same bit b′ as A outputs, B provides
a correct simulation for A and, moreover, wins if A does. 
�

We continue with three further separations:

– snPRF-ODH from mnPRF-ODH, ssPRF-ODH, and nmPRF-ODH;
– nsPRF-ODH from mnPRF-ODH, ssPRF-ODH, and nmPRF-ODH; and
– ssPRF-ODH from mnPRF-ODH and nmPRF-ODH.

Due to space restrictions, we only state the respective propositions and defer the
proofs to the full version. Note that the proofs follow the same underlying idea
as the one of Proposition 7, namely that an adversary being allowed to query a
PRF oracle only n times cannot distinguish Fn from a truly random function
(given the internal function G satisfies pseudorandomness properties we specify).

Proposition 8 (snPRF-ODH �=⇒ mnPRF-ODH, ssPRF-ODH, nmPRF-ODH).
If G from Definition 5 is mnPRF-ODH-secure, then F2 ∈ F is snPRF-ODH-secure,
but neither mnPRF-ODH-, nor ssPRF-ODH-, nor nmPRF-ODH-secure. More pre-
cisely, for any efficient adversary A against the snPRF-ODH security of F2, there
exist efficient algorithms B1, . . . , B4 such that

AdvsnPRF-ODH
F2,A ≤ AdvmnPRF-ODH

G,B1
+ 4 · AdvmnPRF-ODH

G,B2

+ 4 · AdvmnPRF-ODH
G,B3

+ AdvmnPRF-ODH
G,B4

,

but there exist algorithms A1, . . . , A3 with non-negligible
advantage AdvmnPRF-ODH

F2,A1
= AdvssPRF-ODH

F2,A2
= AdvnmPRF-ODH

F2,A3
= 1 − 2−λ.
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Proposition 9 (nsPRF-ODH �=⇒ mnPRF-ODH, ssPRF-ODH, nmPRF-ODH).
If G from Definition 5 is nmPRF-ODH-secure, then F2 ∈ F is nsPRF-ODH-secure,
but neither mnPRF-ODH-, nor ssPRF-ODH-, nor nmPRF-ODH-secure. More pre-
cisely, for any efficient adversary A against the nsPRF-ODH security of F2, there
exist efficient algorithms B1, . . . , B4 such that

AdvnsPRF-ODH
F2,A ≤ AdvnmPRF-ODH

G,B1
+ 4 · AdvnmPRF-ODH

G,B2

+ 4 · AdvnmPRF-ODH
G,B3

+ AdvnmPRF-ODH
G,B4

,

but there exist algorithms A1, . . . , A3 with non-negligible
advantage AdvmnPRF-ODH

F2,A1
= AdvssPRF-ODH

F2,A2
= AdvnmPRF-ODH

F2,A3
= 1 − 2−λ.

Proposition 10 (ssPRF-ODH �=⇒ mnPRF-ODH, nmPRF-ODH). If G from
Definition 5 is msPRF-ODH-secure, then F3 ∈ F is ssPRF-ODH-secure, but nei-
ther mnPRF-ODH- nor nmPRF-ODH-secure. More precisely, for any efficient
adversary A against the ssPRF-ODH security of F3, there exist efficient algo-
rithms B1, . . . , B5 such that

AdvssPRF-ODH
F3,A ≤ AdvmsPRF-ODH

G,B1
+ 3 · AdvmsPRF-ODH

G,B2
+ 3 · AdvmsPRF-ODH

G,B3

+ 3 · AdvmsPRF-ODH
G,B4

+ AdvmsPRF-ODH
G,B5

,

but there exist algorithms A1, A2 with non-negligible advantage AdvmnPRF-ODH
F3,A1

=
AdvnmPRF-ODH

F3,A2
= 1 − 2−λ.

4.2 Separations in the Random Oracle Model

In the following we use the following problem of computing non-trivial v-th roots
in G for implicitly given v. That is, consider an algorithm A which outputs some
group element x ∈ G with x �= 1 (and some state information), then receives gv

for random v $←− Zq, and finally outputs y given gv and the state information,
such that yv = x. Denote by AdviiDH

G,A the probability that A succeeds in this
interactive inversion DH problem.

Note that the problem would be trivial if x = 1 was allowed (in which case
y = 1 would provide a solution), or if x can be chosen after having seen gv

(in which case x = gv and y = g would trivially work). Excluding these trivial
cases, in terms of generic or algebraic hardness the problem is equivalent to the
CDH problem. Namely, assume A “knows” α ∈ Zq such that x = gα. Since
x is chosen before seeing gv the adversary can only compute it as a power of
g and, in addition, x �= 1 implies α �= 0. Therefore, for any valid solution y
the value y1/α would be a v-th root of g, because (y1/α)v = x1/α = g. This
problem of computing g1/v from g, gv, however, is known as the inversion-DH
(iDH) problem; it is equivalent to the CDH problem with a loose reduction [2].

For our separation result we still need a slightly stronger version here where,
in the second phase, the adversary also gets access to a decision oracle which,
on input two group elements A,B ∈ G outputs 1 if and only if Av = B. We
call this the strong interactive-inversion DH problem and denote it by siiDH.
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Note that for example for a pairing-based group such an oracle is given for free,
while computing a v-th root of g (or, equivalently, solving the DH problem may
still be hard).

Proposition 11 (nmPRF-ODH �=⇒ snPRF-ODH). In the random oracle
model, and assuming StDH and siiDH, there exists a function FRO which is
nmPRF-ODH-secure but not snPRF-ODH-secure. More precisely, for any efficient
adversary ARO against the nmPRF-ODH security of FRO, there exist efficient
algorithms B1,B2, such that

AdvnmPRF-ODH
FRO,ARO ≤ AdvStDH

G,B1
+ h · AdvsiiDH

G,B2
+

h

q
+ 2−λ,

for the at most h queries to the random oracle, but there exists an algorithm ARO

with non-negligible advantage AdvsnPRF-ODH
FRO,A ≥ 1 − 2−λ+1.

The idea is to use the following function:

FRO(K, (x, y)) =

{
y if RO(Kx−1, (x, 0λ)) = y and x �= 1
RO(K, (x, y)) else

For this function it is easy for an adversary to check for the challenge value
x� = (gu, 0λ) if the reply y� is real or random, by making an ODHu query about
(gv+1, (gu, y�)). With high probability this will trigger the exceptional case of
FRO for RO(gu(v+1)g−u, gu, 0λ) = y� if and only if y� is the correct function
value. On the other hand, any adversary with oracle access to ODHv only, will
not be able to take advantage of this special evaluation mode for the key guv and
challenge value x� = (x, y), since this would mean that such a query (T, x) to
the ODHv oracle implies that x = (Tg−u)v, i.e., that the adversary can compute
a v-th root of x, which is chosen before learning the value gv. This, however,
would contradict the siiDH assumption. Moreover, the adversary will not ask the
random oracle about the key guv either, or else we get a contradiction to the
StDH assumption (with a loose reduction). But then the challenge value still
looks perfectly random to the adversary. The complete proof following this idea
appears in the full version.

The idea can now be transferred to the case that we still allow one oracle
query to ODHu, basically by “secret sharing” the reply in the exceptional case
among two queries:

Proposition 12 (smPRF-ODH �=⇒ mnPRF-ODH). In the random oracle
model, and assuming StDH and siiDH, there exists a function FRO which is
smPRF-ODH-secure but not mnPRF-ODH-secure. More precisely, for any effi-
cient adversary ARO against the smPRF-ODH security of FRO, there exist effi-
cient algorithms B1,B2, such that

AdvsmPRF-ODH
FRO,ARO ≤

√
AdvStDH

G,B1
+ h · AdvsiiDH

G,B2
+

h

q
+ 2−λ,

for the at most h queries to the random oracle, but there exists an algorithm ARO

with non-negligible advantage AdvmnPRF-ODH
FRO,ARO ≥ 1 − 2−λ+1.
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In fact, in the negative result for mnPRF-ODH the adversary only needs to
ask two queries to the ODHu oracle after receiving the challenge query. Since
the function is still secure for a single ODHu query, this is optimal in this regard.
The proof appears in the full version.

4.3 Discussion

Let us close this section with some remarks about the separations.

Remark 13. Our separating function family (cf. Definition 5) establishes quite a
number of separations, but cannot be used in order to separate the remaining
variants. This is due to the fact that our function family cannot separate between
notions that both allow polynomial many queries as for example nmPRF-ODH
and smPRF-ODH. Thus, we have turned to the random oracle model to estab-
lish further separations. Using this model is alleviated by the result about the
implausibility of instantiating the PRF-ODH assumption in the standard model.

In the random oracle model we have shown that it is crucial if the adversary
has access to the ODHu oracle or not (or how many times). This uses some
asymmetry in the two oracles, namely, that gu is given before the challenge query,
and gv only after. Our separations take advantage of this difference, visualized
via the interactive-inversion DH problem which is only hard if x� is chosen before
receiving gv.

It is currently open if the other notions are separable. Beyond the asymmetry
that gu is already available before the challenge, it is unclear how to “encode”
other distinctive information into the input to the “memoryless” PRF which one
oracle can exploit but the other one cannot.

Remark 14. In case our generic PRF-ODH assumption (cf. Definition 1) would
provide the adversary additionally with the share gv in the initialization phase
(cf. step 1) then Fig. 2 would symmetrically “collapse” along the vertical
axis in the middle. In other words, this would result in equivalences of the
notions snPRF-ODH and nsPRF-ODH, mnPRF-ODH and nmPRF-ODH, as well
as msPRF-ODH and smPRF-ODH. Note that this is not a contradiction to our
separation results among those notions, as they only work if (and exploit that)
gv is not given in advance.

5 On the Impossibility of Instantiating PRF-ODH
in the Standard Model

In this section we show that there is no algebraic black-box reduction R which
reduces the snPRF-ODH assumption (and analogously the nsPRF-ODH assump-
tion) to a class of hard cryptographic problems, called DDH-augmented abstract
problems. With these problems one captures reductions to the DDH problem or
to some general, abstract problem like collision resistance of hash functions.
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5.1 Overview

The idea is to use the meta-reduction technique. Assume that we have an alge-
braic reduction R from the snPRF-ODH assumption which turns any black-box
adversary into a solver for a DDH-augmented problem. Then we in particular
consider an inefficient adversary A∞ which successfully breaks the snPRF-ODH
assumption with constant probability. The reduction, with black-box access to
A∞, must then solve the DDH-augmented problem. For this it can then either
not take any advantage of the infinite power of A∞—in which case we can
already break the DDH-augmented problem—or it tries to elicit some useful
information from A∞. In the latter case we build our meta-reduction by simu-
lating A∞ efficiently. This is accomplished by exploiting the algebraic property
of the reduction and “peeking” at the internals of the reduction’s group element
choices. Our meta-reduction will then solve the decisional square-DH problem,
saying that (g, ga, ga2

) is indistinguishable from (g, ga, gb) from random a, b.
Our impossibility result works for pseudorandom functions PRF, which take

as input arbitrary bit strings and maps them to λ bits. We stick with this
convention here, but remark that our negative result also holds if the input
length is 1 only, and the output length is super-logarithmic in λ. Similarly, we
assume that PRF is a nnPRF-ODH, although it suffices for our negative result
that the function PRF for a random group element (and some fixed input, say
1) is pseudorandom, i.e., that PRF(X, 1) is indistinguishable from random for a
uniformly chosen group element X $←− G (without giving any “Diffie–Hellman
decomposition” of X).

Theorem 15. Assume that there is an efficient algebraic black-box reduction R
from the snPRF-ODH (or nsPRF-ODH) assumption to a DDH-augmented prob-
lem. Then either the DDH-augmented problem is not hard, or the decisional
square-DH problem is not hard.

If one assumes vice versa that both the underlying augmented-DDH problem
and decisional square-DH problem are hard, then this means that there cannot be
a reduction as in the theorem to show security of the nsPRF-ODH or snPRF-ODH
assumption.

5.2 DDH-augmented Cryptographic Problems

DDH-augmented problems are cryptographic problems in which the adversary
either solves a DDH problem or some abstract (and independent) problem in
which it receives some instance inst, can make oracle queries about this instance,
and then generates a potential solution sol. The adversary can decide on the fly
which of the two problems to solve. In terms of our setting here we build a
reduction against such DDH-augmented problems, capturing for example the
case that one aims to show security of the PRF-ODH assumption by assembling
a scheme out of several primitives, including the DDH assumption, and giving
reductions to each of them.
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We next define cryptographic problems in a general way, where it is conve-
nient to use the threshold of 1

2 for decisional games to measure the adversary’s
advantage. We note that we can “lift” common computational games where the
threshold is the constant 0 by outputting 1 if the adversary succeeds or if an
independent coin flip lands on 1. Formally, a cryptographic problem consists
of three probabilistic polynomial-time algorithms P = (P.Gen,P.Ch,P.Vf) such
that for any probabilistic polynomial-time algorithm A we have

AdvProb
P,A (λ) := 2 ·

(

Prob
[

P.Vf(secret, sol) = 1 : (inst, secret) $←− P.Gen(1λ),

sol $←− AP.Ch(secret,·)(1λ, inst)

]

− 1
2

)

is negligible.
A DDH-augmented cryptographic problem PDDH for some group G (or, more

precisely, for some sequence of groups) based on a problem P, consists of the
following algorithms:

– P.GenDDH(1λ) runs (inst, secret) $←− P.Gen(1λ), picks x, y, z $←− Zq and
b $←− {0, 1}, and outputs instDDH = (gx, gy, gxy+bz, inst) and secretDDH =
(b, secret).

– P.ChDDH(secretDDH, ·) runs P.Ch(secret, ·).
– P.VfDDH(secretDDH, solDDH) checks if solDDH = (“DDH”, b′) and, if so, out-

puts 1 if and only if b = b′ for bit b in secretDDH. If solDDH = (“P”, sol) then
the algorithm here outputs P.Vf(secret, sol). In any other case it returns 0.

5.3 Algebraic Reductions for the snPRF-ODH Assumption

Algebraic reductions have been considered in [9] and abstractly defined in [35].
The idea is that the reduction can only perform group operations in the pre-
defined way, e.g., by multiplying given elements. As a consequence, whenever the
reduction on input group elements g1, g2, . . . generates a group element A ∈ G

one can output a representation (α1, α2, . . . ) such that A =
∏

gαi
i . In [35] this is

formalized by assuming the existence of an algorithm which, when receiving the
reduction’s input and random tape, can output the representation in addition
to A.

In order to simplify the presentation here, we simply assume that the reduc-
tion, when forwarding some group element to the adversary, outputs the rep-
resentation itself. The base elements g1, g2, . . . for the representation are those
which the reduction has received so far, as part of the DDH-part of the input or
from the interaction with the adversary. The representation is hidden from the
adversary in the simulation, of course, but our meta-reduction may exploit this
information.

We consider (algebraic) reductions R which use the adversary A in a black-
box way. The reduction may invoke multiple copies of the adversary, possi-
bly rewinding copies. We use the common technique of derandomizing our
(unbounded) adversary in question by assuming that it internally calls a truly
random function on the communication so far, when it needs to generate some
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randomness. Note that the truly random function is an integral part of the adver-
sary, and that we view the adversary being picked randomly from all adversaries
with such an embedded function. Since the reduction is supposed to work for all
successful adversaries, it must also work for such randomly chosen adversaries.

It is now convenient to enumerate the adversary’s instances which the reduc-
tion invokes as Ai for i = 1, 2, . . . . Since our adversary in question is deterministic
we can assume that the reduction “abandons” a copy Ai forever, if it starts the
next copy Ai+1. This is without loss of generality because the reduction can
re-run a fresh copy to the state where it has left the previous instance. This also
means that the reduction can effectively re-set executions with the adversary.

The reduction receives as input a triple (gx, gy, gz) and some instance inst
and should decide if gz = gxy or gz is random, or provide a solution sol to
inst with the help of oracle P.Ch. We stress that the reduction is algebraic with
respect the DDH-part of the DDH-augmented problem. In particular, encasing
a PRF-ODH-like assumption into the general P problem and providing a trivial
reduction to the problem itself is not admissible. The group elements (and their
representations) handed to the adversary in the reduction are determined by the
DDH-part of the input. Finally, we note that we only need that, if R interacts
with an adversary against snPRF-ODH with advantage 1 − 2−λ, then R solves
the DDH-augmented problem with a non-negligible advantage.

5.4 Outline of Steps

Our negative result proceeds in three main steps:

1. We first define an all-powerful adversary A∞ which breaks the snPRF-ODH
assumption by using its infinite power. This adversary will, besides receiving
the challenge at point x� = 0, ask the ODHu oracle to get the value at (S, 1)
for random S = gs, where the random value s is generated via the integral
random function. It then uses its power to compute the Diffie–Hellman key
guv, verifies the answer of oracle ODHu with the help of s, and only if this
one is valid, gives the correct answer concerning the challenge query. In any
other case, the adversary aborts.

2. We then show that the algebraic reduction R, potentially spawning many
black-box copies of our adversary A∞, must answer correctly to the ODHu

query in one copy and use the input values gx, gy, gz non-trivially, or else we
can already break the underlying DDH-augmented problem efficiently.

3. Next we show that, if the reduction answers correctly and non-trivially in
one of the copies, then we can—using the algebraic nature of the reduction—
replace the adversary A∞ by an efficient algorithm, the meta-reduction M,
and either break the decisional square-DH assumption or refute the pseudo-
randomness of PRF for a fresh random group element.

The decisional square-DH assumption says that it is infeasible to distinguish
(g, ga, ga2

) from (g, ga, gb) for random a, b. It implies the DDH assumption, but
is only known to be equivalent to classical DH problem in the computational case
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[2]. More formally, we will use the following variation: (g, ga, ga2
, ga2b, gb, gab) is

indistinguishable from (g, ga, ga2
, ga2b, gb, gc) for random a, b, c.

We briefly argue that the above decision problem follows from the decisional
square-DH assumption. The latter assumption implies that we can replace ga2

and ga2b in these tuples by group elements gd, gdb for random d, using knowledge
of b to compute the other elements. Then, by the DDH assumption, we can
replace gab in such tuples by a random group element gc, using knowledge of d
to compute the other group elements gd, gbd. In the last step we can re-substitute
gd, gdb again by ga2

and ga2b, using knowledge of b and c to create the other group
elements.

5.5 Defining the All-Powerful Adversary

Let us define our adversary A∞ (with an internal random function f : {0, 1}∗ →
Zq) against snPRF-ODH formally:

1. Adversary A∞ receives g, gu as input.
2. It then asks the challenge oracle about x� = 0 to receive y� and gv. We call

this the challenge step.
3. It computes s = f(gu, gv, y�) and S = gs and asks the ODHu oracle about

(S, 1) to get some yt. We call this the test step.
4. It computes Su = (gu)s and, using its unbounded computational power, also

guv.
5. If yt �= PRF(Su, 1) then A∞ aborts.
6. Else, A∞ outputs 0 if and only if y� = PRF(guv, 0), and 1 otherwise.

Note that the probability that A∞ outputs the correct answer in an actual attack
is 1 − 2−λ and thus optimal; the small error of 2−λ is due to the case that the
random y� may accidentally hit the value of the PRF function.

5.6 Reductions Without Help

Ideally we would now first like to conclude that any reduction which does not
provide a correct answer for the test step in any of the copies, never exploits
the adversary’s unlimited power and would thus essentially need to immediately
succeed, without the help of A∞. We can indeed make this argument formal,
simulating A∞ efficiently by using lazy sampling techniques for the generation
of s and always aborting in Step 5 if reaching this point. However, we need
something slightly stronger here.

Assume that the reduction provides some gu in one of the copies for which
it knows the discrete logarithm u, i.e., it is not a non-trivial combination of
the input values gx, gy, gz for unknown logarithms. Then the reduction can of
course answer the adversary’s test query (S, 1) successfully by computing Su

and PRF(Su, 1). Yet, in such executions it can also compute the reply to the
challenge query itself, even if it does not know the discrete logarithm of gv. In
this sense the reduction cannot gain any knowledge about its DDH input, and
we also dismiss such cases as useless.
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Formally, we call the j-th run of one of the adversary’s copies useless if
either the instance aborts in (or before) Step 5, or if the representation of the
adversary’s input gu in this copy in the given group elements g, gx, gy, gz and
the challenge query values S1, S2, . . . , Sj−1 so far, i.e.,

gu = (gx)α(gy)β(gz)γgδ ·
∏

i<j

Sσi
i ,

satisfies xα + yβ + zγ = 0 mod q. Note that the reduction may form gu with
respect to all externally provided group elements, including the Si’s, such that
we also need to account for those elements. We will, however, always set all of
them to Si = gsi for some known si, such that we are only interested in the
question if combination of the DDH input values gx, gy, gz vanishes.

Let uselessj be the event that the j-th instance is useless in the above sense.
For such a useless copy we can efficiently simulate adversary A∞, because it
either aborts early enough, or the algebraic reduction outputs some gu with
its representation from which we can compute the discrete logarithm u = δ +∑

i<j siσi mod q and thus execute the decision and test steps of A∞. Let useless
be the event that all executions of A∞ of the reduction are useless. We next
argue that, if the event useless happens with overwhelming probability, then we
can solve the DDH-augmented problem immediately.

The claim holds as we can emulate the all-powerful adversary A∞ easily, if
the reduction essentially always forgoes to run the adversary till the very end or
uses only trivial values gu. Let (gx, gy, gz, inst) be our input and pass this to the
reduction. We simply emulate all the copies of the adversary efficiently by:

– using lazy sampling to emulate the random function f ,
– for each invocation check at the beginning that (gx)α(gy)β(gz)γ = 1 for the

representation received with the input gu for that instance, in which case we
can use the discrete logarithm u = δ +

∑
i<j siσi mod q to run this copy of

A∞, and
– else always abort after having received y in Step 3.

Denote this way of simulating each copy by adversary Appt (even though, tech-
nically, the copies share state for the lazy sampling technique and should be thus
considered as one big simulated adversary). Then

Prob
[

P.Vf(secret, sol) = 1 :
(inst, secret) $←− P.Gen(1λ),
sol $←− RP.Ch(secret,·),A∞(1λ, inst)

]

≤Prob
[

P.Vf(secret, sol) = 1 :
(inst, secret) $←− P.Gen(1λ),
sol $←− RP.Ch(secret,·),Appt(1λ, inst)

]

+ Prob
[
useless

]

The latter probability for event useless is negligible by assumption. We therefore
get an efficient algorithm RAppt which breaks the DDH-augmented problem with
non-negligible advantage.
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5.7 Our Meta-reduction

We may from now on thus assume that Prob
[
useless

] �≈ 0 is non-negligible. This
implies that the reduction answers at least in one copy of A∞ of the at most
polynomial number q(λ) in the test queries in Step 3 with the correct value yt for
some non-trivial input gu, with non-negligible probability. Our meta-reduction
will try to guess the first execution k where this happens and to “inject” its
input ga, ga2

, ga2b, gb, gc into that execution in a useful way. More precisely, it
will insert these values into gx, gy, gz and Sk such that the expected key K
for evaluating PRF for the test query equals a function of gab if gc = gab, but
is random if gc is random. In the latter case predicting y is infeasible for the
reduction, though, because the PRF is evaluated on a fresh and random key.
This allows to distinguish the two cases.

The meta-reduction’s injection strategy captures two possible choices of the
reduction concerning the equation xα + yβ + zγ �= 0 mod q in the (hopefully
correctly guessed) k-th execution. One is for the case that xα + yβ �= 0 mod q,
the other one is for the case that xα + yβ = 0 mod q and thus zγ �= 0 mod q
according to the assumption xα + yβ + zγ �= 0 mod q. The meta-reduction will
try to predict (via a random bit e) which case will happen and inject the values
differently for the cases. This is necessary since the gz-value, if it is not random,
should contain the DH value of the other two elements.

Our meta-reduction M works as follows:

1. The meta-reduction receives ga, ga2
, ga2b, gb, gc as input and should decide if

gc = gab. If a = 0 then we can decide easily, such that we assume that a �= 0
from now on.

2. The meta-reduction picks an index k $←− {1, 2, . . . , q(λ)} for the polynomial
bound q(λ) of adversarial copies the reduction R runs with A∞. It also picks
x′, y′, z′ $←− Z

∗
q , s1, . . . , sk−1

$←− Zq, e, d $←− {0, 1}, and samples (inst, secret) $←−
P.Gen(1λ).

3. For the first injection strategy, e = 0, it sets

gx = (ga)x′
, gy = (ga)y′

, gz = (ga2
)x′y′

for d = 0 = resp. gz = (ga2
)z′

for d = 1.

For the other injection strategy, e = 1, it sets

gx = (ga)x′
, gy = gy′

, gz = (ga)x′y′
for d = 0 resp. gz = gaz′

for d = 1.

4. It invokes the reduction R on input gx, gy, gz as well as inst.
5. The meta-reduction simulates the interactions of R with P.Ch and A∞ as

follows:
– Each oracle query to P.Ch is answered by running the original algorithm
P.Ch for secret.

– Use lazy sampling to emulate the random function f .
– For each of the first j < k invocations of A∞ check at the beginning that

(gx)αj (gy)βj (gz)γj = 1 for the representation received with the input guj

for that instance, in which case M can use the discrete logarithm uj =
δj +

∑
i<j siσi mod q to efficiently run this copy of A∞, using Sj = gsj

for the test query.
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– Otherwise, if (gx)αj (gy)βj (gz)γj �= 1, for the j-th invocation of an adver-
sarial copy of A∞ for j < k, up to Step 3, efficiently simulate A∞ using
Sj = gsj for the test query, and immediately abort after this step.

6. For the k-th invocation simulate A∞ by using Sk = gb. If M receives a reply
yt from R, do the following. Let guk be the input value of this adversary’s
copy. Since the reduction is algebraic it has also output values αk, βk, γk, δk,
σ1, . . . , σk−1 ∈ Zq such that

guk = (gx)αk(gy)βk(gz)γkgδk ·
∏

i<k

Sσi
i .

Note that all the base elements, up to this point, only depend on g, ga (and
ga2

in case of strategy e = 0) of M’s inputs ga, ga2
, ga2b, gb, gc, because guk

is output before seeing Sk = gb.2

7. If strategy e = 0 is used and we have a(x′αk + y′βk) �= 0 mod q (which
can be checked for a �= 0 by consulting the known values x′, αk, y′, βk), then
the meta-reduction decides as follows. From the value ga2b it can compute
gbzγk = (ga2b)x′y′γk resp. (ga2b)z′γ for both cases d ∈ {0, 1} and can then set

K = (gc)x′αk+y′βkgbzγk(gb)δk+
∑

i<k siσi .

It immediately outputs 0 if yt = PRF(K, 1), else it continues.
8. If strategy e = 1 is used and we have ax′αk + y′βk = 0 mod q (which can

be checked by verifying that (ga)x′αkgy′βk = 1), then the meta-reduction
computes the key as

K =

{
(gc)x′y′γk(gb)δk+

∑
i<k siσi for d = 0 and

(gc)z′γk(gb)δk+
∑

i<k siσi for d = 1

and immediately outputs 0 if yt = PRF(K, 1); else it continues.
9. In any other case, if the reduction aborts prematurely or if the insertion

strategy has been false, i.e., the choice of e does not match the condition on
x′αk + y′βk �= 0 mod q, then output a random bit.

5.8 Analysis

For the analysis assume for the moment that our meta-reduction has actually
chosen the index k of the first correct and non-trivial answer yt, i.e., where
xαk + yβk + zγk �= 0 mod q. Additionally, assume that (xαk + yβk) �= 0 mod q.
Then e = 0 with probability at least 1

2 . This holds since the reduction remains
perfectly oblivious about the choice of e, because all values in the interaction
have the same distributions in both cases for e. Then the actual key for answering
the test query is

(guk)b = (gab)x′αk+y′βk(gbz)γk(gb)δk+
∑

i<k siσi .

2 The same is true for gvk generated in the challenge query before, such that the result
applies to the nsPRF-ODH assumption accordingly.
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This implies that the meta-reduction’s input gc yields the same key K if gc = gab

and hence equality for the PRF value. Yet, it yields a random value if gc is random
(since the exponent x′αk + y′βk does not vanish). In the latter case, since the
value gc is at no point used in the simulation before the reduction outputs yt,
the probability that yt predicts PRF(K, 1) for the fresh random key, is negligible.
This final step in the argument can be formalized straightforwardly.

Assume next that, besides the correct prediction of index k, we have e = 1
and ax′αk + y′βk = 0 mod q. Then, since ax′αk + y′βk + zγk �= 0 mod q, we
must have that zγk �= 0 mod q and therefore also x′y′γk �= 0 mod q for d = 0
resp. z′γk �= 0 mod q for d = 1. The same argument as in the previous case
applies now. Namely, for gc = gab the meta-reduction computes the expected
key, whereas for random gc the contribution to the computed value K is for a non-
zero exponent, such that equality for the PRF value only holds with negligible
probability.

Putting the pieces together, for gc = gab our algorithm correctly outputs
0 if the reduction uses the adversary’s help (with non-negligible probability
Prob

[
useless

]
), if the prediction k is correct (with non-negligible probability

1
q(λ) ), and if the insertion strategy is correct (with probability at least 1

2 ). Let

ε(λ) ≥ 1
2q(λ)

· Prob
[
useless

]

denote the non-negligible probability that the meta-reduction outputs 0 early.
It also outputs 0 with probability 1

2 in any other case, such that the probability
of outputting 0 for gc = gab is at least

ε(λ) +
1
2

· (1 − ε(λ)) ≥ 1
2

+
ε(λ)
2

.

In case that gc is random, our meta-reduction only outputs 0 if the PRF value
matches yt for the random key K, or if the final randomly chosen bit equals 0.
The probability of this happening is only negligibly larger than 1

2 . This conversely
means that the meta-reduction correctly outputs 1 in this case with probability
at least 1

2 − negl(λ) for some negligible function negl(λ).
Overall, the probability of distinguishing the cases is at least

1
2

·
(

1
2

+
ε(λ)
2

)

+
1
2

·
(

1
2

− negl(λ)
)

≥ 1
2

+
ε(λ)
4

− negl(λ)
2

,

which is non-negligibly larger than 1
2 for non-negligible ε(λ).

6 PRF-ODH Security of HMAC

In this section we briefly discuss the PRF-ODH security of HMAC [25], aug-
menting previous results on the PRF security of HMAC [5,11,27]. We show that
HMAC(K,X) as well as its dual-PRF [3] usage HMAC(X,K), as encountered in
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TLS 1.3, are mmPRF-ODH secure, which is our strongest notion of PRF-ODH
security. For a complete treatment see the full version.

Recall that HMAC is usually based on a Merkle-Damg̊ard hash function H,
using a compression function h : {0, 1}c ×{0, 1}b → {0, 1}c. The function HMAC
is then defined as

HMAC(K,X) := H(K ⊕ opad||H(K ⊕ ipad||X)),

for key K ∈ {0, 1}b and label X, HMAC, where opad and ipad are fixed (distinct)
constants in {0, 1}b. In terms of the iterated compression function we have

HMAC(K,X) = h�(IV,K ⊕ opad||h�(IV,K ⊕ ipad||X||padding)||padding).
Keys which are shorter than b bits are padded first, and longer keys K are first
hashed down to H(K) ∈ {0, 1}c and then padded.

In the full version we show the following security property of HMAC, inde-
pendently of whether the key K ∈ G is longer or shorter than the block length b:

Theorem 16. Assume that the underlying compression function h : {0, 1}c ×
{0, 1}b → {0, 1}c of HMAC is a random oracle. Then HMAC is mmPRF-ODH-
secure under the StDH assumption. More precisely, for any efficient adversary A
against the mmPRF-ODH security of HMAC, there exists an efficient algorithm
B such that

AdvmmPRF-ODH
HMAC,A ≤

√
AdvStDH

G,B + (qRO + (qODHu
+ qODHv

) · �ODH + 1)2 · 2−c

where q with the respective index denotes the maximal number of the accord-
ing oracle queries, and �ODH the maximal number of oracle calls to h in each
evaluation of any ODH oracle call.

As mentioned earlier, one specific use case of the PRF-ODH assumption arises
in the setting of TLS 1.3. Here, the HKDF scheme [27,28] is adapted for key
derivation. In particular, the function HKDF.Extract is used to derive an internal
key K ′ as

K ′ ← HKDF.Extract(X,K) := HMAC(X,K),

where an adversarially known value X is used as the HMAC key while the secret
randomness source in the form of a DH shared secret K = guv is used as the
label. At a first glance, this swapping of inputs may seem odd. However, the
specified purpose of HKDF.Extract is to extract uniform randomness from its
second component.

One way to prove that K ′ is indeed a random key (as long as guv is
not revealed to the adversary) is to model HKDF.Extract(X, ·) as a random
oracle. An alternative approach is pursued in [15,16,18] where the authors
prove the statement under the assumption that HKDF.Extract(XTS , IKM ) =
HMAC(XTS , IKM ) is PRF-ODH secure when understood as a PRF keyed with
IKM ∈ G (i.e., when the key is the second input). In this light, it is ben-
eficial to show that HMAC(X,K) remains PRF-ODH secure for key K ∈ G
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and X ∈ {0, 1}�.3 Fortunately, our general treatment of HMAC(K,X) in
Theorem 16 with arbitrarily long keys allows us to conclude the analogous result
for HMAC(X,K) with swapped key and label. This is formally stated in the full
version.

In recent developments initiated by the NIST hash function competition
it has been established that sponge-based constructions can be used to build
cryptographic hash functions. We are confident that the proof of Theorem16 can
be adapted to achieve the same result for HMAC if the underlying cryptographic
hash function H is replaced by a sponge-based construction such as SHA-3 with
the random permutation π modeled as a random oracle.4 This proof can also
be established along the lines of Bertoni et al. [7] who provide results showing
that the sponge construction is indifferentiable from a random oracle when being
used with a random transformation or a random permutation.

7 Conclusion

To the best of our knowledge, this is the first systematic study of the relations
between different variants of the PRF-ODH assumption which is prominently
being used in the realm of analyzing major real-world key exchange protocols.
We provide a generic definition of the PRF-ODH assumption subsuming those
different variants and show separations between most of the variants. Our results
give strong indications that instantiating the PRF-ODH assumption without rely-
ing on the random oracle methodology is a challenging task, even though it can
be formalized in the standard model. In particular, we show that it is implausi-
ble to instantiate the assumption in the standard model via algebraic black-box
reductions to DDH-augmented problems.

Despite our negative result, we emphasize that using the PRF-ODH assump-
tion still provides some advantage over the StDH assumption in the random
oracle model. Namely, it supports a modular approach to proving key exchange
protocols to be secure, shifting the heavy machinery of random-oracle reductions
to StDH in the context of complex key exchange protocols to a much simpler
assumption. As the PRF-ODH naturally appears in such protocols and enables
simpler proofs, it is still worthwhile to use the assumption directly.

Acknowledgments. We thank the anonymous reviewers for valuable comments. This
work has been co-funded by the DFG as part of project S4 within the CRC 1119
CROSSING and as part of project D.2 within the RTG 2050 “Privacy and Trust for
Mobile Users”.

3 Though formally defined for arbitrary length, recall that the minimal recommended
length is c bits.

4 SHA-3 is part of the Keccak sponge function family [6]. It has been standardized in
the FIPS Publication 202 [34], wherein it is explicitly approved for usage in HMAC.
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Abstract. Motivated by typo correction in password authentication, we
investigate cryptographic error-correction of secrets in settings where the
distribution of secrets is a priori (approximately) known. We refer to this
as the distribution-sensitive setting.

We design a new secure sketch called the layer-hiding hash (LHH) that
offers the best security to date. Roughly speaking, we show that LHH
saves an additional log H0(W ) bits of entropy compared to the recent lay-
ered sketch construction due to Fuller, Reyzin, and Smith (FRS). Here
H0(W ) is the size of the support of the distribution W . When supports
are large, as with passwords, our new construction offers a substantial
security improvement.

We provide two new constructions of typo-tolerant password-based
authentication schemes. The first combines a LHH or FRS sketch with
a standard slow-to-compute hash function, and the second avoids secure
sketches entirely, correcting typos instead by checking all nearby pass-
words. Unlike the previous such brute-force-checking construction, due to
Chatterjee et al., our new construction uses a hash function whose run-
time is proportional to the popularity of the password (forcing a longer
hashing time on more popular, lower entropy passwords). We refer to this
as popularity-proportional hashing (PPH). We then introduce a frame-
work for comparing different typo-tolerant authentication approaches.
We show that PPH always offers a better time / security trade-off than
the LHH and FRS constructions, and for certain distributions outper-
forms the Chatterjee et al. construction. Elsewhere, this latter construc-
tion offers the best trade-off. In aggregate our results suggest that the
best known secure sketches are still inferior to simpler brute-force based
approaches.

1 Introduction

In many settings, secrets needed for cryptography are measured in a noisy
fashion. Biometrics such as fingerprints [31,35], keystroke dynamics [23,24],
voice [22], and iris scans [31] are examples — each physical measurement pro-
duces slight variants of one another. A long line of work has built ad hoc solutions
c© International Association for Cryptologic Research 2017
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for various cryptographic settings [17,22–24], while another line of work start-
ing with Dodis, Ostrovsky, Reyzin and Smith [13] explored a general primitive,
called a fuzzy extractor, that can reproducibly derive secret keys given noisy
measurements. The canonical fuzzy extractor construction combines a tradi-
tional key-derivation function (KDF) with a secure sketch, the latter serving as
an error-correction code that additionally leaks a bounded amount of informa-
tion about the secret.

In this work, we explore error correction for noisy secrets in the distribution-
sensitive setting, in which one knows the distribution of secrets while designing
cryptographic mechanisms. We ground our investigations in an important run-
ning case study: typo-tolerant password checking [12,20], and ultimately offer a
number of improvements, both theoretical and practical, on cryptographic error-
tolerance in general and the design of typo-tolerant password hardening systems
in particular.

Typo-Tolerant Password Checking. Recent work by Chatterjee et al. [12]
revealed that users suffer from a high rate of typographical errors (typos), with
even a handful of simple-to-correct typos (such as caps lock or other capital-
ization errors) occurring in 10% of all login attempts at Dropbox. They offered
a usability improvement called “brute-force checking”: enumerate probable cor-
rections of the submitted (incorrect) password, and check each of them using a
previously stored slow-to-compute cryptographic hash of the correct password
(e.g., scrypt [26], argon2 [6], or the PKCS#5 hashes [18,27]). They also show
empirically that this relaxed checking approach does not noticeably degrade
security, assuming careful selection of the typos to correct.

To maintain performance, however, one must limit the runtime of password
checking. One can at most handle approximately b = RT/c errors given a runtime
budget RT and cryptographic hash function that takes time c to compute.1 Given
that c should be slow — in order to prevent brute-force attacks — the size b of
the ball, or set of potential corrections around an incorrect password, must be
fairly small. Extending to larger numbers of errors — for example we would like
to handle the most frequent 64 typos, which would account for approximately
50% of all typos seen in measurement studies — would appear to force c to be
too low to ensure security in the face of attackers that obtain the password hash
and mount dictionary attacks.

An existing alternative approach to brute-force ball search is to store, along
with the password hash, a small bit of information to help in correcting errors.
Because we want to maintain security in the case of compromise of a password
database, we must ensure that this helper information does not unduly speed
up brute-force cracking attacks. We therefore turn to secure sketches [13].

Secure Sketches. Introduced by Dodis, Ostrovsky, Reyzin and Smith [13],
sketches allow correction of errors together with bounds on the information
leaked about the original secret to an attacker. Traditionally, sketch security
is measured by the conditional min-entropy H̃∞(W |s) of the secret W given the

1 This ignores parallelism, but the point remains should one consider it.
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sketch s against unbounded adversaries. Fuller, Reyzin, and Smith (FRS) [15]
show that the best one can hope for when achieving correction error at most δ
is H̃∞(W |s) ≥ Hfuzz

t,∞(W ) − log(1 − δ), where Hfuzz
t,∞(W ) is called the fuzzy min-

entropy of the distribution and captures the worst-case cumulative weight of all
points in a ball.

FRS give a clever construction, called layered hashing, that almost achieves
the optimal result. They prove that

H̃∞(W |s) ≥ Hfuzz
t,∞(W ) − log(1/δ) − log H0(W ) − 1 .

Here H0(W ) is the Hartley entropy, defined to be the logarithm of the size of the
distribution’s support. The FRS construction provides better bounds than any
prior secure sketch construction (and, by the usual construction, the best known
fuzzy extractor [13]). The construction works by splitting possible secrets into
different layers according to their probability in the distribution W , and then
applying a universal hash of a specific length based on a message’s layer. Both the
layer identifier and the resulting hash value are output. Intuitively, the idea is to
tune hash lengths to balance error correction with entropy loss: more probable
points are grouped into layers that have much shorter hash values, with less
probable points grouped into layers with longer hashes.

The layered sketch works only in (what we call) the distribution-sensitive
setting, meaning that the distribution of messages must be known at the time
one designs the sketching algorithm. As another potential limitation, correcting
an error using the sketch takes time linear in the size of the ball around the
point, meaning the construction is only computationally efficient should balls be
efficiently enumerable. That said, both conditions are satisfied in some settings,
including typo-tolerant password checking: password leaks allow accurate char-
acterization of password distributions [7,19,21,33] when constructing sketches,
and as mentioned above, the ball of errors required to cover most observed typos
is small and fast to enumerate.

Our Contributions. In this work, we explore the open question above: How
can we securely correct more errors than Chatterjee et al. in [12]? We offer two
new approaches. The first uses secure sketching, and we give a new scheme,
called the layer-hiding hash (LHH), and prove that it leaks less information
than prior constructions. Perhaps counter-intuitively, LHH does so by actually
lengthening, rather than shortening, the output of the sketch as compared to the
FRS construction. Our second approach is a new distribution-sensitive brute-
force based technique called popularity-proportional hashing (PPH), in which
the time required to hash a password is tuned based on its popularity: The more
probable the password is, the longer the hashing should take.

Finally, we offer a framework for comparing various approaches, and show
that PPH offers a better time / security trade-off than LHH and FRS. For certain
error settings, PPH allows us to correct more errors securely than Chatterjee
et al.’s brute-force checking. Elsewhere their brute-force checking offers a better
trade-off still. In fact, we conjecture that for many distributions no sketch will
beat brute-force based approaches.
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The Layer-Hiding Hash Sketch. Our first contribution is to provide a new
sketch that we call the layer-hiding hash (LHH) sketch. We prove that LHH
enjoys an upper bound of H̃∞(W |s) ≥ Hfuzz

t,∞(W ) − log(1/δ) − 1, yielding a sub-
stantial saving of log H0(W ) bits of entropy over FRS. The LHH starts with the
same general approach as FRS, that of putting passwords into layers based on
their probability. The key insight is that one can, as the name implies, hide the
layer of the password underlying a sketch. To do so, the construction takes the
output of applying a layer-specific strongly universal hash to the password and
pads it to a carefully chosen maximum length with random bits. During recov-
ery, one looks for a matching prefix of the sketch value when applying (differing
length) strongly universal hashes. Hiding the level intuitively avoids leaking addi-
tional information to the adversary, but, counterintuitively, the proof of security
does not require any properties of the hash functions used. Rather, the proof
only uses that the length of hash outputs is bounded plus the fact that (unlike
in the FRS construction) sketches from different layers can collide. The proof of
correctness relies on the strong universality of the underlying hashes.

LHH’s bound improves over FRS (and, consequently, all other known con-
structions) because it removes the log H0(W ) term. The improvement in the
bound can be significant. Assuming W places non-zero probability on all pass-
words from the RockYou password leak [29] already makes log H0(W ) ≥ 3. The
min-entropy (let alone fuzzy min-entropy) of common password distributions is
commonly measured to be only about 7 bits, making a loss of 3 bits significant.
Of course, as pointed out by FRS, the loss due to log(1/δ) — which LHH also
suffers — is likely to be even more problematic since we’d like δ to be small. An
important question left open by our work is whether one can build a sketch that
replaces log(1/δ) with the optimal log(1 − δ).

Sketch-Based Typo-Tolerant Checking. A seemingly attractive way of
building a typo-tolerant password-based authentication scheme is to store a
sketch of the password along with a slow-to-compute hash of the password.
To later authenticate a submitted string, one first checks it with the slow hash
and, if that fails, uses the sketch to error correct, and checks the result with the
slow hash. In terms of security, we are primarily concerned about attackers that
obtain (e.g., by system compromise) the sketch and slow hash value and mount
offline brute-force dictionary attacks. The sketch will leak some information use-
ful to the attacker.

The first challenge that arises in security analysis is that the traditional
sketch security measure, conditional min-entropy H̃∞(W |s), does not provide
good bounds when adversaries can make many guesses. The reason is that it
measures the worst-case probability of guessing the message given the sketch
in a single attempt, and for non-flat distributions the success probability of
subsequent guesses after the first will be much lower. We therefore introduce
a more general conditional q-min-entropy notion, denoted H̃q

∞(W |s). It is the
worst-case aggregate probability of a message being any of q values, conditioned
on the sketch. We revisit secure sketches in this new regime and analyze the
q-min-entropy for the FRS and LHH constructions. These results are actually
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strictly more general since they cover the q = 1 bounds as well, and so in the
body we start with the more general treatment and show the q = 1 results
mentioned above as corollaries.

Popularity-Proportional Hashing. We also offer a new distribution-sensitive
variant of brute-force checking called popularity-proportional hashing. Recall
that brute-force checking uses the same slow hash function for all passwords. In
popularity-proportional hashing, we use knowledge of the distribution of pass-
words to tune the time required to hash each password. The more popular a
password, equivalently the more probable, the longer the hash computation.

In typo-tolerant hashing this has a nice effect for certain distributions: the
ball of possible passwords around a submitted string will consist of a mix of
lower- and higher-probability points, making the aggregate time required to
check all of them lower than in brute-force checking. Timing side-channels can
be avoided by fixing an upper bound on this aggregate time, and setting the
hashing costs of the scheme such that every password can be checked within
this time. The checking algorithm is then implemented to process each password
for this maximum time, and accordingly its run time reveals nothing about the
password being checked. This serves to “smooth” the distribution from the point
of view of a brute-force attacker, who must choose between checking a popular
password versus lower-cost checks of less probable passwords. We shall ultimately
see that PPH offers a better time / security trade-off than sketch-based checking
using both FRS and LHH. We note that the benefits of population-proportional
hashing appear to be specific to the typo-tolerant setting; in exact checking
schemes one would want to hash passwords with the maximum cost allowed by
the runtime of the scheme, regardless of their weight.

Comparing the Approaches. We use the following methodology to compare
the time / security trade-offs of the various approaches to error-tolerant authen-
tication. First, one fixes an error setting, such as choosing a set of 64 frequently
made typos, as well as a runtime budget RT for authentication. Then, one com-
pares the brute-force attack security of various constructions that operate in
time at most RT and correct the specified errors. So for brute-force checking, for
example, one must pick a slow hash function that takes RT/64 time to compute,
and for secure sketches one can use a slow hash of time RT/2 (where for simplic-
ity we ignore the sketch cost, which is in practice negligible relative to RT). For
popularity-proportional hashing one picks hash speeds so that the ball whose
passwords have the highest aggregate probability can be checked in time RT.

With this framework in place, we prove that PPH provides a better
time / security trade-off than both FRS-assisted and LHH-assisted checking.
The proofs require lower-bounding the security of the FRS and LHH construc-
tions in the face of a computationally efficient attacker whose runtime constraint
affords him q slow hash queries (equivalently q guesses at the underlying pass-
word). The attack is simple: enumerate probable passwords, check which match
the sketch, and output the heaviest q that match. It may not be obvious that
this is efficient, we will argue so in the body.
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To analyze the attacker’s success, we use a proof strategy which at a high
level proceeds as follows. We first model the hash underlying the sketch as a
random oracle. This is conservative as it can only make the adversary’s task
harder. We then transform the analysis of the attacker’s success probability to
a type of balls-in-bins analysis that differs slightly based on the construction.
For the FRS case, which is simpler, balls of differing sizes represent passwords
of differing weights, and bins represent individual sketch values within a layer.
The random oracle ‘throws’ the balls into the bins; the compromise of a sketch
and subsequent guessing attack is captured by sampling a bin and allowing the
attacker to choose q balls from it. As such computing a lower bound on the q-
conditional min-entropy is reduced to computing the expected (over the random
oracle coins) aggregate weight of the q heaviest balls across all bins.

Instead of tackling analysis of this expectation directly, we instead form direct
comparison with PPH by showing that with overwhelming probability the set
of points queried by an optimal brute-force adversary running in the same time
against PPH will be included in the set of points that the adversary against
FRS chooses. As such a brute-force attacker against FRS-assisted checking will
always either match or (more often) beat attacks against PPH. We derive a
similar result for LHH-assisted checking via a modified balls-in-bins experiment.

With the improvement of PPH over sketch-assisted checking established, we
next compare PPH and brute-force checking. We quantify precisely the condi-
tions which determine whether PPH or brute-force checking represents the better
trade-off for a given error setting, and show that for certain error settings PPH
allows us to correct many more errors securely than brute-force checking.

While PPH can be shown to improve on sketch-assisted checking for any
distribution, the same is not true for brute-force checking — indeed there
exist settings in which brute-force checking will lead to a dramatic reduction
in security — and in general comparing the brute-force and sketch-assisted
approaches directly appears technically challenging. However by combining the
above results, we show that for certain error settings (including passwords) the
seemingly simplest brute-force checking approach provides the best trade-off
of all — first by invoking the result showing PPH outperforms sketch-assisted
checking, and then by showing that brute-force checking offers an even better
trade-off than PPH. As such for any given error setting, our results can be used
to determine how many errors can be tolerated, and whether PPH or brute-force
checking offers the better approach to typo-tolerance.

Extensions and Open Problems. We frame our results in the context of
typo-tolerant password hashing and (reflecting the majority of in-use password
hashing functions) primarily measure hashing cost in terms of time. We will in
Sect. 7 briefly discuss how our results may be extended to incorporate memory-
hard functions [1–3,6,26] and indicate other cryptographic applications, such
as authenticated encryption and fuzzy extraction, in which they are applicable.
Finally we will discuss the key open problem — can any distribution-sensitive
secure sketch offer a better time / security trade-off than brute-force based
approaches? We conjecture that for a large class of error settings no sketch
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can perform better. We offer some intuition to this end, and highlight it as an
interesting direction for future research.

2 Definitions and Preliminaries

Notation. The set of binary strings of length n is denoted by {0, 1}n. We use
⊥ to represent the null symbol. We write x||y to denote the concatenation of
two binary strings x and y, and [y]j1 to denote the binary string y truncated
to the lowest order j bits. We let [j] denote the set of integers from 1 to j
inclusive, and [j1, j2] the set of integers between j1 and j2 inclusive. The notation

x
$← X denotes sampling an element uniformly at random from the set X , and

we let x
W← X denote sampling an element from the set X according to the

distribution W . All logs are to base 2, and e denotes Euler’s constant. For a
given distribution W where M = supp(W ), we let w1, . . . , w|M| denote the
points in the support of W in order of descending probability, with associated
probabilities p1, . . . , p|M|.

Hash Functions. Here we recall the definitions of universal and strongly uni-
versal hash function families.

Definition 1. A family of hash functions F : S × {0, 1}� → {0, 1}d is said to
be universal if for all w �= w′ ∈ S, it holds that

Pr
[
F(w; sa) = F(w′; sa) : sa

$← {0, 1}�
]

= 2−d .

Definition 2. A family of hash functions F : S × {0, 1}� → {0, 1}d is said to
be strongly universal if for all w �= w′ ∈ S, and y, y′ ∈ {0, 1}d, it holds that

Pr
[
F(w; sa) = y : sa

$← {0, 1}�
]

= 2−d , and

Pr
[
F(w; sa) = y ∧ F(w′; sa) = y′ : sa

$← {0, 1}�
]

≤ 2−2d .

Error Settings and Typos. Let S be a set with associated distance function
dist : S × S → R

≥0. If dist is a metric over S — that is to say that dist is non-
negative, symmetric, and for all x, y, z ∈ S, it holds that dist(x, z) ≤ dist(x, y) +
dist(y, z) — then we say that the pair (S, dist) is a metric space. We can assign
to S a distribution W , and let M denote the set of possible messages, M =
supp(W ). We set an error threshold t, denoting the maximum distance between
points w, w̃ for which will consider w̃ an error of w. Together these components,
(S,W, dist, t) define an error setting.

For an error setting E = (S,W, dist, t), the (closed) ball of size t around
w̃ ∈ S is the set of all points w′ ∈ supp(W ) such that dist(w′, w̃) ≤ t, that is
Bt(w̃) = {w′ ∈ supp(W ) | dist(w′, w̃) ≤ t}. We let βmax denote the size of the
largest ball in the error setting; that is to say βmax = maxw̃ |Bt(w̃)|. In this work,
we shall be especially interested in error settings for which balls are efficiently
enumerable, a property which we formalize below.
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Definition 3. Let E = (S,W, dist, t) be an error setting with maximum ball size
βmax. We say E has efficiently enumerable balls, if there exists an algorithm
Enum which takes as input a point w̃ ∈ S, and outputs a set of points L such
that for all w̃ ∈ S it holds that

Pr
[
L = Bt(w̃) : L $← Enum(w̃)

]
= 1 ,

and Enum runs in time polynomial in βmax.

Entropy. We now discuss several notions of entropy which capture the maximum
success probability of an attacker who attempts to guess a point sampled from a
given distribution. Traditionally these notions only consider the case in which the
adversary gets one guess. However in subsequent work, when we wish to capture
the success rate of an adversary attempting to perform a brute-force attack,
it will be useful to generalize these entropy notions to capture the maximum
success probability of an adversary who may output a vector of q guesses. We
define these notions below generalized to the multi-guess setting; one can easily
extract the familiar definitions by setting q = 1.

Definition 4. Let W and Z be distributions. We define the q-min-entropy of
W , denoted Hq

∞(W ) to be,

Hq
∞(W ) = − log

(
max

w1,...,wq

q∑
i=1

Pr [W = wi ]
)

,

where w1, . . . , wq are distinct elements of S. The conditional q-min-entropy of
W conditioned on Z, denoted H̃q

∞(W |Z), is defined to be,

H̃q
∞(W |Z) = − log

(∑
z

max
w1,...,wq

q∑
i=1

Pr [ W = wi | Z = z ] · Pr [Z = z ]
)

;

and the q-min-entropy of W joint with Z, denoted Hq
∞(W,Z), is defined,

Hq
∞(W,Z) = − log

(
max

w1,...,wq
z1,...,zq

q∑
i=1

Pr [W = wi ∧ Z = zi ]
)

,

where the w1, . . . , wq and z1, . . . , zq are distinct elements of the supports of W
and Z respectively. The Hartley entropy of W , denoted H0(W ), is defined to be,

H0(W ) = log |supp(W )| .

For an example which surfaces the usefulness of extending min-entropy defi-
nitions beyond one guess, consider a pair of distributions W1 and W2, such that
W1 is flat with 2−H∞(W ) = 2−μ and W2 consists of one point of probability 2−μ

and 22μ −2μ points of probability 2−2μ. While H1
∞(W1) = H1

∞(W2) = μ, the two
distributions are clearly very different, and in particular an attacker given some
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q > 1 guesses to predict a value sampled from each of the distributions is going to
have a much easier time with W1. This difference is highlighted when considering
the q-min-entropy, with Hq

∞(W1) = q·2−μ, whereas Hq
∞(W2) = 2−μ+(q−1)·2−2μ.

In the q = 1 case, the conditional min-entropy and Hartley entropy are linked
via the chain rule for conditional min-entropy [13]. It is straightforward to see
that this result extends to the multi-guess setting; for completeness we include
a proof in the full version.

Lemma 1. Let W,Z be distributions. Then

H̃q
∞(W |Z) ≥ Hq

∞(W,Z) − H0(Z) .

Secure Sketches. Let E = (S,W, dist, t) be an error setting. Secure sketches,
introduced by Dodis et al. in [13], allow reconstruction of a message which may
be input with noise, while preserving as much of the min-entropy of the original
message as possible.

In this work we focus on sketches in the distribution-sensitive setting, in
which the distribution of secrets is precisely known at the time of designing the
sketch. While distribution-sensitivity may not always be feasible, in the case of
passwords there is a long line of work on accurately modeling the distribution of
human-chosen passwords. Primarily motivated by password cracking, modeling
techniques such as hidden Markov models (HMM) [11], probabilistic context
free grammars (PCFG) [32,33], or neural networks [21] use the plethora of real
password leaks (e.g., [9]) to learn good estimates of W . See [19] for a detailed
discussion of these approaches. Of course, estimates may be wrong. A discussion
on the effect of transferring our results to a setting in which the distribution is
only approximately known is included in the full version. We recall the formal
definition of secure sketches below.

Definition 5. Let E = (S,W, dist, t) be an error setting. A secure sketch for E
is a pair of algorithms S = (SS,Rec) defined as follows:

– SS is a randomized algorithm which takes as input w ∈ S, and outputs a bit
string s ∈ {0, 1}∗.

– Rec is an algorithm, possibly randomized, which takes as input w̃ ∈ S and
s ∈ {0, 1}∗, and outputs w′ ∈ Bt(w̃) ∪ {⊥}.
We note that we slightly modify the definition of [15] so that Rec on input

w̃ always outputs w′ ∈ Bt(w̃) ∪ {⊥}, as opposed to w′ ∈ S ∪ {⊥}. As we shall
see in the following definition, we only require Rec to return the correct point
if that point lies in Bt(w̃). As such this is mainly a syntactic change, and all
pre-existing sketch constructions discussed in this work already adhere to the
condition. In the following definition, we generalize the security requirement to
the multi-guess setting in the natural way; the usual definition (e.g. [13,15]) is
obtained by setting q = 1.

Definition 6. A sketch S = (SS,Rec) is an ((S,W, dist, t), μ̄q, δ)-secure sketch
if:
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1. (Correctness) For all w, w̃ ∈ S for which dist(w, w̃) ≤ t, it holds that

Pr [w = w′ : w′ ← Rec(w̃,SS(w)) ] ≥ 1 − δ ,

where the probability is taken over the coins used by SS and Rec.

2. (Security) The q-min-entropy of W conditioned on SS(W ) is such that,

H̃q
∞(W |SS(W )) ≥ μ̄q .

Since the help string s is public any party — including the adversary — can
query Rec(·, s) on w̃ ∈ S. In an ideal secure sketch, knowledge of s would offer no
greater advantage than that gained via oracle access to Rec(·, s). In this case, an
adversary challenged to guess the original value w ∈ S is forced to guess some w̃
such that dist(w, w̃) ≤ t. To capture this notion of ideal secure sketch security,
Fuller et al. [15] introduce the notion of fuzzy min-entropy, which we generalize
to the multi-guess setting in the natural way.

Definition 7. Let E = (S,W, dist, t) be an error setting. The q-fuzzy min-
entropy of W is defined to be,

Hq,fuzz
t,∞ (W ) = − log

(
max

w̃1,...,w̃q

∑
w′∈∪q

i=1Bt(w̃i)

Pr [W = w′ ]
)

,

where w̃1, . . . , w̃q are distinct elements of S.

3 New Bounds for FRS Sketches

In this section we describe and analyze two constructions of secure sketches due
to Fuller, Reyzin, and Smith [15]. The FRS sketches have a number of attractive
properties. The first is that these are the only secure sketches (to our knowledge)
that can be utilized with any choice of distance function dist. We would like
this flexibility so that ultimately we can tailor the distance function used to the
context of correcting password typos for which, being non-symmetric, traditional
metrics such as edit distance are not best suited [12].

Even if edit distance were appropriate, we know of no constructions which
provide sufficient security when used with parameters typical to password dis-
tributions. Constructions in [13,14] either embed the edit metric into the Ham-
ming or set distance metrics using a low distortion embedding of Ostrovsky and
Rabani [25], or use a novel c-shingling technique.

As pointed out in [12], when applied to typical password distributions which
have a large alphabet of 96 ASCII characters, then even if we only attempt to
correct edit distance one errors, these constructions incur entropy loss ≈ 91 bits
and ≈ 31 bits respectively. Given that password distributions typically have at
most 8 bits of min-entropy [8], it is clear these constructions are unsuitable for
our purposes.
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Most importantly, the FRS constructions achieve almost optimal security in
the q = 1 case. It was shown in [15] that high fuzzy min-entropy is a necessary
condition for the existence of a good secure sketch or fuzzy extractor for a given
error setting, surfacing a lower bound on the security of such schemes. We recall
the result in the lemma below, which we extend to the multi-guess setting. The
proof is given in the full version.

Lemma 2. Let E = (S,W, dist, t) be an error setting, and let S = (SS,Rec) be
an ((S,W, dist, t), μ̄q, δ), μ̄q, δ)-secure-sketch. Then μ̄q ≤ Hq,fuzz

t,∞ (W )− log(1− δ).

FRS showed that in the distribution-sensitive setting, in which the precise
distribution is known at the time of building the sketch, high fuzzy min-entropy
also implies the existence of a good secure sketch for that distribution. We recall
their constructions, and prove new results about them.

3.1 Secure Sketches for Flat Distributions

FRS describe a secure sketch which is nearly optimal for error settings
E = (S,W, dist, t) such that W is flat, which we recall in Fig. 1. We refer to
this construction as FRS1 = (FRS1-SS,FRS1-Rec).

The construction is built from a universal hash function family with output
length log(βmax) + log(1/δ) bits, where βmax denotes the size of the largest ball

in the error setting. FRS1-SS chooses a salt sa $← {0, 1}�, computes y = F(w; sa),
and outputs s = (y, sa). On input w̃ ∈ S and s, Rec searches in Bt(w̃) for a
point w′ such that F(w′; sa) = y, returning the first match which it finds. The
authors note that the construction is not novel, with universal hash functions
representing a commonly used tool for information reconciliation (e.g., [5,28,30]).
Correctness follows from a straightforward application of Markov’s Inequality. In
the following lemma we extend analysis to cover the q-conditional min-entropy.
The proof is given in the full version.

Lemma 3. Let E = (S,W, dist, t) be an error setting for which W is flat, and
let βmax denote the size of the largest ball. Let FRS1 = (FRS1-SS,FRS1-Rec)
be as described in Fig. 1, and let F : S × {0, 1}� → {0, 1}log(βmax)+log(1/δ)

be a family of universal hash functions where 0 < δ < 1. Then FRS1 is a
((S,W, dist, t), μ̄q, δ), μ̄q, δ)-secure sketch, where

μ̄q ≥ Hfuzz
t,∞(W ) − log(q) − log(1/δ) .

3.2 Layered Hashing for Non-flat Distributions

The above construction may be significantly less secure in settings where the
distribution in question is non-flat. In this case, having high fuzzy min-entropy
does not exclude the possibility that the distribution contains a dense ball con-
sisting of many low probability points. Disambiguating between points in this
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FRS1-SS(w) :

sa
$← {0, 1}�

y ← F(w; sa)
s ← (y, sa)
Ret s

FRS1-Rec(w̃, s) :

(y, sa) ← s

for w′ ∈ Bt(w̃)

if F(w′; sa) = y

Ret w′

Ret ⊥

Fig. 1. Construction of a secure sketch FRS1 = (FRS1-SS,FRS1-Rec) for an error
setting E = (S, W, dist, t) from a universal hash function family F : S × {0, 1}� →
{0, 1}log(βmax)+log (1/δ). Here βmax denotes the size of the largest ball in the error set-
ting.

dense ball forces a hash function with a large range to be used, which leaks more
information to adversaries.

The key idea is to split the support of the distribution into nearly flat layers;
the layer in which a point lies is determined by its probability, and the layers are
defined such that the probabilities of points in any given layer differ by at most
a factor of two. We include the index of the layer in which a point lies as part
of its sketch, and then apply the secure sketch for flat distributions of Lemma3
tuned to the parameters of the appropriate layer. Revealing the layer in which
a point lies degrades security; in an attempt to limit the damage, the number
of layers is restricted so the extra loss amounts to log H0(W ) + 1 bits; for full
details of the proof see [15].

For simplicity of exposition, we assume the existence of an efficient algorithm
L which takes as input a point w ∈ S and outputs the index j ∈ J of the layer in
which it lies. We note that the parameters required to compute the cut-off points
between layers are readily obtained from the password model, so computing the
partitions is straightforward in practice; provided we can efficiently look up the
weights of points in the password model, the algorithm L will be efficient also.
The full construction is given in Fig. 2.

FRS2-SS(w) :

j ← L(w)

if j = λ

s ← (w, ⊥, λ)

else

sa
$← {0, 1}�j

y ← Fj(w; sa)
s ← (y, sa, j)

Ret s

FRS2-Rec(w̃, s) :

(y, sa, j) ← s

If j = λ

Ret y

for w′ ∈ Bt(w̃) ∩ Lj

if Fj(w
′; sa) = y

Ret w′

Ret ⊥

FRS2-Layer(W ) :

λ ← H∞(W ) + �H0(W ) − 1
for j = μ, . . . , λ − 1

Lj ← (2−(j+1), 2−j ]

Lλ ← (0, 2−λ]

Ret {Lj : j ∈ [μ, λ]}

Fig. 2. Secure sketch FRS2 = (FRS2-SS,FRS2-Rec) for an error setting E =
(S, W, dist, t) from a set of universal hash function families Fj : S × {0, 1}�j →
{0, 1}j−Hfuzz

t,∞(W )+log(1/δ)+1 for j ∈ [μ, λ], utilizing layering FRS2-Layer.
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Theorem 1 [15]. Let E = (S,W, dist, t) be an error setting. Let Fj : S ×
{0, 1}�j → {0, 1}j−Hfuzz

t,∞(W )+log(1/δ)+1 be a family of universal hash functions,
where 0 < δ ≤ 1

2 . Consider FRS2 = (FRS2-SS,FRS2-Rec) with layering
FRS2-Layer as defined in Fig. 2. Then FRS2 is a ((S,W, dist, t), μ̄1, δ)-secure
sketch where

μ̄1 = Hfuzz
t,∞(W ) − log H0(W ) − log (1/δ) − 1.

In the following theorem, we provide an analysis for FRS2 in the q-min-
entropy setting. Our analysis also provides a tighter bound in the case that
q = 1. The full proof is given in the full version.

Theorem 2. Let E = (S,W, dist, t) be an error setting, where Hfuzz
t,∞(W ) = μ̃.

Let Fj : S × {0, 1}�j → {0, 1}j−Hfuzz
t,∞(W )+log(1/δ)+1 be a family of universal

hash functions, where 0 < δ ≤ 1
2 . Consider FRS2 = (FRS2-SS,FRS2-Rec) with

layering FRS2-Layer as defined in Fig. 2. Then FRS2 is a ((S,W, dist, t), μ̄q, δ)-
secure sketch for,

2−μ̄q ≤ Pr [W ∈ Lλ ] +
λ−1∑
j=μ

Pr [W ∈ Lj(q · |Rj |) ] .

Here Lj(q′) denotes the set of the min{q′, |Lj |} heaviest points in layer Lj. We
let Rj = range(Fj) and let Lλ = {w ∈ W : Pr [W = w ] < 2−λ} where
λ = H∞(W ) + �H0(W ) − 1.

We note that the additional tightness in the bound is especially beneficial
when considering distributions with many sparsely populated or empty lay-
ers. To give a concrete example of a distribution for which the tightness in
the bound makes a significant difference, consider an error setting for which
W contains 299 points of weight 2−100, and 2199 points of weight 2−200, and
the case that q = 1. Since H0(W ) ≈ 199, the bound of Theorem1 implies that
H̃∞(W |FRS2-SS(W )) ≥ Hfuzz

t,∞(W )−log(1/δ)−8.64. In contrast applying the new
bound of Theorem2 implies that H̃∞(W |FRS2-SS(W )) ≥ Hfuzz

t,∞(W )−log(1/δ)−2,

(since Pr [W ∈ Lj(|Rj |) ] ≤ 2−Hfuzz
t,∞(W )+log(1/δ)+1 for j = 100, 200, and 0 other-

wise). This results in a saving of over 6.6 bits of entropy.

4 A New Construction: Layer Hiding Hash

In this section we present a new construction which yields a substantial increase
in security over FRS2, while enjoying the same degree of correctness. The con-
struction, which we call layer hiding hash and denote LHH = (LHH-SS, LHH-Rec)
is similar to FRS2, but crucially does not explicitly reveal the layer in which a
point lies as part of the sketch.

First we split the distribution into layers as shown in Fig. 3. Note that this
layering is slightly different to that used in FRS2. We now require a family of
strongly universal hash functions, which we use to hash points w ∈ M to a fixed
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length which is a parameter of the scheme, and then truncate this hash to various
lengths depending on the layer in which the point lies (in turn creating a family
of strongly universal hash functions for each layer). The strong universality of the
hash is required for the proof of correctness in which we bound the probability
that the hash of a point w collides with a given string; this represents a recovery
error and the lengths of the truncated hashes are chosen such that the probability
this event occurs is at most δ.

The twist that enables the security savings is that rather than outputting
this truncated hash as is and revealing the layer in which a point lies, we now
view this hash as a prefix. The sketch is then computed by choosing a string at
random from the set of all strings of a given length (a parameter of the scheme)
which share that prefix. This is done efficiently by padding the hash with the
appropriate number of random bits. The effect of this is to nearly flatten the joint
distribution of W and SS(W ) such that for all w ∈ M and s ∈ supp(SS(W )),
it holds that Pr [W = w ∧ SS(W ) = s ] ≤ 2−(γ+�) (where γ indexes the layer of
least probable points, and � denotes the length of the salt) regardless of the layer
in which the point lies. During recovery, the sketch searches in the ball of the
input for a point whose truncated hash matches the prefix of the sketch value,
and outputs the first match it finds. The full construction is shown in Fig. 3.

LHH-SS(w) :

sa
$← {0, 1}�

j ← L(w)

y1 ← [F(w; sa)]
j−μ̃+log( 1

δ
)+1

1

y2
$← {0, 1}γ−j

y ← y1||y2

s ← (y, sa)
Ret s

LHH-Rec(w̃, s) :

(y, sa) ← s

for w′ ∈ Bt(w̃)

j′ ← L(w′)

y′ ← [F(w′; sa)]
j′−μ̃+log( 1

δ
)+1

1

if y′ = [y]
j′−μ̃+log( 1

δ
)+1

1
Ret w′

Ret ⊥

LHH-Layer(W ) :

γ ←
⌊

− log

(
min

w∈W
Pr [ W = w ]

)⌋

for j = μ, . . . , γ

Lj ← (2−(j+1), 2−j ]

Ret {Lj : j ∈ [μ, γ]}

Fig. 3. Construction of secure sketch LHH = (LHH-SS, LHH-Rec) for an error setting
E = (S, W, dist, t) with μ̃ = Hfuzz

t,∞(W ), from a family of strongly universal hash functions

F : S × {0, 1}� → {0, 1}γ−μ̃+log( 1
δ
)+1, utilizing layering LHH-Layer.

In the following theorem we analyze the correctness and security of LHH, and
emphasize the substantial entropy saving in the q = 1 case of log H0(W ) bits in
comparison to FRS2. The proof is given in the full version.

Theorem 3. Let E = (S,W, dist, t) be an error setting. Let F : S × {0, 1}� →
{0, 1}γ−Hfuzz

t,∞(W )+log (1/δ)+1 be a family of strongly universal hash functions where
0 < δ < 1. Let LHH = (LHH-SS, LHH-Rec) be as shown in Fig. 3 with layering
LHH-Layer. Then LHH is a ((S,W, dist, t), μ̄q, δ), μ̄q, δ)-secure sketch, where,

μ̄q = Hq·η
∞ (W ′) .

Here η = 2γ−Hfuzz
t,∞(W )+log(1/δ)+1, and W ′ is the distribution constructed by tak-

ing each point w ∈ M and replacing it with 2(γ−j) points, each of weight
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Pr [W = w ] · 2−(γ−j), where w ∈ Lj. In particular in the case where q = 1,
this gives,

μ̄1 ≥ Hfuzz
t,∞(W ) − log (1/δ) − 1 .

5 Typo-Tolerant Password-Based Key Derivation

In this section we consider the application of secure sketches to typo-tolerant
password-based key-derivation functions (PBKDF). PBKDFs are used in a num-
ber of settings, for example in password-based authentication during login and
password-based encryption. PBKDFs are designed to slow attackers that mount
brute-force attacks, by incorporating a computationally slow and / or memory-
consuming task.

We begin by treating password-based authentication schemes (PBAS). We
discuss how to extend to other PBKDF settings in Sect. 7. Roughly speaking, our
results will apply in any situation in which the PBKDF-derived key is used in
a cryptographically strong authentication setting, including notably password-
based authenticated encryption. We will use an oracle model to capture com-
putational slowness, analogous to prior treatments of PBKDFs in the random
oracle model (ROM) [4,34]. We will denote by H the oracle, and assume it
behaves as a random oracle mapping arbitrary length strings to randomly cho-
sen strings of a fixed length �H . We let H take an additional input c representing
the unit cost of querying H. We formalize such schemes below, following [12].

Definition 8. A PBAS is a pair of algorithms PBAS = (Reg,Chk) defined as
follows:

– RegH is a randomized algorithm which takes as input a password w ∈ M and
returns a string h.

– ChkH is a (possibly randomized) algorithm which takes as input w̃ ∈ S and
string h, and returns either true or false.

Both algorithms have access to oracle H(·; ·, c) : {0, 1}∗ × {0, 1}�sa → {0, 1}�H

where c denotes the unit cost of calling H.

MRA
PBAS,E

w
W← S

h
$← Reg(w)

w′ ←$ AH(h)

Ret (w′ = w)

Fig. 4. Security game for password recovery in an offline brute-force cracking attack
for a PBAS PBAS = (Reg, Chk) and error setting E = (S, W, dist, t).
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The canonical scheme PBAS = (Reg,Chk), used widely in practice, has RegH

choose a random salt sa and output (sa,H(w; sa, c)). Then, ChkH(w̃, (sa, h))
computes h′ = H(w̃; sa, c) and outputs h′ ?=h. The runtime is c, the cost of one
query to H. Typically PBKDF H will be the c-fold iteration H(·; ·, c) = Hc(·; ·)
of some cryptographic hash function H : {0, 1}∗ ×{0, 1}�sa → {0, 1}�H which we
model as a random oracle. We will, in general, ignore the cost of other operations
(e.g., the comparison h = h′) as they will be dominated by c. For example if H
consists of 10,000 iterations of a hash function such as SHA-256 then c would
be the cost of 10,000 computations of SHA-256.

We do not yet consider memory-hardness, and leave a proper treatment of it
to future work (see Sect. 7).

Security Against Cracking Attacks. We will focus primarily on security
against offline cracking attacks. Should an adversary obtain access to the output
of Reg, we want that it should be computationally difficult — in terms of the
number of oracle calls to H — to recover the password w. We formalize this
in game MR shown in Fig. 4, a close relative of existing security notions cap-
turing brute-force attacks against passwords (e.g. [4,16]). For an error setting
E = (S,W, dist, t), we define the advantage of an adversary A against a scheme
PBAS by

Advmr
PBAS,E(A) = Pr

[
MRA

PBAS,E ⇒ true
]

.

The probability is over the coins used in the game and those of the adversary.
We assume that the adversary A has exact knowledge of the error setting E. The
number of queries A may make to oracle H is determined by its run time T and
the cost c of querying H, and for simplicity all other computations are assumed
to be free. For example if H has cost c, then an adversary A running in time T
may make q = T/c queries to H.

5.1 Brute-Force Checkers

To improve the usability of a given PBAS = (Reg,Chk) for some error setting
E = (S,W, dist, t), Chatterjee et al. [12] advocate retaining the original Reg
algorithm but modify the Chk algorithm to a ‘relaxed checker’ that loosens the
requirement that a password be entered exactly. They define the (what we will
call) brute-force error correction scheme PBAS-BF = (Reg,Chk-BF) as follows.

Definition 9. Let PBAS = (Reg,Chk), and let E = (S,W, dist, t) be an error-
setting. Let H(·; ·, cbf) be a random oracle. Then the brute-force error-correction
scheme PBAS-BF = (Reg,Chk-BF) is defined as follows,

– Reg(w) chooses a salt sa at random, and outputs (sa,H(w; sa, cbf)).
– Chk-BF(w̃, (sa, h)) checks whether h = H(w̃; sa, cbf) or h = H(w′; sa, cbf) for

each w′ ∈ Bt(w̃). If it finds a match, it returns true, and otherwise returns
false.
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Since cbf denotes the unit cost of running H, it follows that the runtime
RT of this algorithm is the unit cost of H times the worst case ball size, i.e.,
RT = cbf ·βmax, where βmax = maxw̃|Bt(w̃)|. To avoid potential side-channels,
one may want to always compute H the same number of times, making the run
time always RT.

An adversary A running in time at most T in game MR can make at
most qbf = T/cbf queries to H. It is straightforward to see that A’s opti-
mal strategy is to query the qbf most probable points in W to H, and so
Advmr

PBAS-BF,E(A) ≤ 2−H
qbf∞ (W ). This value is precisely the q-success rate of

Boztas [10], and is a standard measure of the predictability of a password dis-
tribution.

Empirical analysis in [12] finds that when we only attempt to correct a very
small number of errors per password (e.g. balls of size at most four) then the
brute-force checker yields a noticeable increase in usability for a small reduction
in security. However the above security bound highlights a potential limitation
of the brute-force checker; if we wish to correct balls with larger numbers of
points, we either need to accept an impractically long run time, or reduce cbf

to a level which for some error settings may result in significant security loss.
This is an important consideration in the context of password typos where the
large alphabet (of up to 96 ASCII characters depending on the password creation
policy) means that the set of points within edit distance one of a six character
string w̃ ∈ S contains well over 1000 points. This raises the question of whether
secure sketches can be employed to achieve a better time / security trade-off.

5.2 Typo-Tolerant PBAS Using Secure Sketches

The error-correcting properties of secure sketches (see Sect. 2) make them a
natural candidate to build typo-tolerant PBAS schemes. We now describe how
to compose a secure sketch with any existing PBAS scheme to create a typo-
tolerant PBAS. The construction is so simple it is essentially folklore. See also
a discussion by Dodis et al. [13]. Our contribution here is merely to formalize it
so that we can provide a full security analysis in our computational setting.

Definition 10. Let S = (SS,Rec) be an secure-sketch for error setting E =
(S,W, dist, t). Let H(·; ·, css) be a random oracle. Then we define the scheme
PBAS-SS[S] = (Reg-SS,Chk-SS) as follows:

• Reg-SS(w) runs SS(w) to obtain a sketch s. It additionally chooses a salt sa
at random, and outputs (s, sa,H(w; sa, css)).

• Chk-SS(w̃, (s, sa, h)) first runs w′ ←$ Rec(s, w̃). It then checks whether h =
H(w̃; sa, css) or h = H(w′; sa, css). If either matches, it returns true, and
otherwise returns false.

As written the run time of checking is always two calls2 to H with unit cost
css; it follows that RT = 2 ·css. One could short-circuit checking by first checking
2 If S is perfectly correct, it would be sufficient to simply run w′ ← Rec(s, w̃) and

check if h = H(w′; sa, css), reducing the number of calls to H to one.
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w̃ and only computing the secure sketch if authentication fails, however side-
channels would now reveal when a user makes a typo. We would not want to
short-circuit the calculations of H on the sketch outputs, as this could reveal
even more information about w to a side-channel adversary.

An adversary B running in time at most T in game MR can make at
most qss = T/css queries to H. It is clear that B’s optimal strategy on input
(s, sa,H(w; sa, css)) is to query the qss heaviest points when ordered in terms
of Pr [ W = w | SS(W ) = s ] to H(·; sa, css). As such for a given S = (SS,Rec)
and error setting E, the definition of q-conditional min-entropy implies that
Advmr

PBAS-SS[S],E(B) ≤ 2−H̃qss∞ (W |SS(W )).

5.3 Popularity-Proportional Hashing

We now describe a new distribution-sensitive variant of brute-force checking —
popularity-proportional hashing (PPH). We shall see in Sect. 6 that for certain
error settings and cracking attack run times, PPH allows us to correct more
password errors securely than brute-force checking. For all other error settings,
it serves as a useful stepping stone to show that brute-force checking provides a
superior time / security trade-off than sketch-based typo-tolerant PBAS based
on FRS and LHH.

The key idea is to partition the points in the error setting into layers based
upon their probability (as done in LHH), then have the hashing cost vary across
the layers. This is accomplished by having the PBKDF H take as input a different
iteration count for each layer. Formally, for a distribution W with Hfuzz

t,∞(W ) = μ̃,
if a password w is such that Pr [W = w ] ∈ (2−(j+1), 2−j ], then hashing w incurs
a cost of cj

PPH = cPPH · 2μ̃−(j+1), where cPPH is a parameter of the scheme.
By making it more computationally intensive for an attacker to hash popular
passwords, the boost to an attacker’s success probability resulting from querying
a likely password is offset by the greater cost incurred to compute the relevant
PBKDF output. We provide full details of the scheme in Fig. 5. In the following
lemma, we show how to set the parameter cPPH to achieve a desired checking
run time RT.

Lemma 4. Let E = (S,W, dist, t) be an error setting. Let PBAS-PPH be as
shown in Fig. 5 using random oracle H. Then setting cPPH = RT implies that

RT(Chk-PPH, cPPH) ≤ RT ,

where RT(Chk-PPH, cPPH) denotes the maximum run time of Chk-PPH with
cost parameter cPPH on any input w̃ ∈ S.

Proof. Fix any point w̃ ∈ S. Then if W is such that Hfuzz
t,∞(W ) = μ̃, and recalling

that w ∈ Lj implies that Pr [W = w ] > 2−(j+1) it follows that

2−μ̃ ≥ Pr [W ∈ Bt(w̃) ] >

γ∑
j=μ

|Bt(w̃) ∩ Lj |2−(j+1) .
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Reg-PPH(w) :

sa
$← {0, 1}�sa

j ← L(w)

h ← H(w; sa, cj
PPH)

Ret (sa, h)

Chk-PPH(w̃, (sa, h)) :

for w′ ∈ Bt(w̃)

j′ ← L(w′)

if H(w′; sa, cj′
PPH) = y

Ret true
Ret false

PPH-Layer(W ) :

γ ←
⌊

− log

(
min

w∈M
Pr [ W = w ]

)⌋

for j = μ, . . . , γ

Lj ← (2−(j+1), 2−j ]

Ret {Lj : j ∈ [μ, γ]}

Fig. 5. The popularity-proportional hashing PBAS scheme PBAS-PPH =
(Reg-PPH, Chk-PPH), from a PBKDF H such that H(·; ·, cj

PPH) costs cj
PPH = cPPH ·

2μ̃−(j+1) to compute where cPPH is a parameter of the scheme, and Hfuzz
t,∞(W ) = μ̃. The

scheme uses layering PPH-Layer.

Multiplying both sides by cPPH · 2μ̃ and recalling that cPPH = RT and cj
PPH =

cPPH · 2μ̃−(j+1) gives

RT >

γ∑
j=μ

|Bt(w̃) ∩ Lj |cPPH · 2μ̃−(j+1) =
γ∑

j=μ

|Bt(w̃) ∩ Lj |cj
PPH ,

where the right hand side is precisely the run time of Chk-PPH on input w̃.
Since the choice of w̃ was arbitrary, it follows that the run time of Chk-PPH on
any input w̃ ∈ S is at most RT, proving the claim. �

6 Comparing the PBAS Approaches

In the last section we saw three different ways to provide typo-tolerant password-
based authentication. Now we dig deeper into the trade-offs incurred by the
different schemes, in an attempt to determine which provides the best time /
security trade-off. We are most interested in the following question:

When balls are efficiently enumerable, can PBAS-SS ever provide a better
time / security trade-off compared to PBAS-BF/PBAS-PPH?

We will answer this question, in the negative, for the cases of using FRS or LHH.
To do so, we will fix an error setting E with computationally enumerable balls
(Definition 3), fix the time allotted to authentication, and show that for any
error setting the popularity-proportional hashing PBAS PBAS-PPH provably
provides better security than both PBAS-SS[FRS2] or PBAS-SS[LHH]. We will
then discuss the conditions on error settings and attacker run time under which
PBAS-BF offers a better trade-off still.

An incorrect interpretation of our results would be that sketches are use-
less. This would be the wrong takeaway for several reasons. First, our analysis
will only be for specific sketches, not all sketches in general, and so answer-
ing our question in full generality remains an interesting open question (see
Sect. 7). Second, even if the answer to our main question is negative, it only
considers computationally enumerable balls, and many of the error correction
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settings motivating secure sketches have balls too large to be efficiently enu-
merated. Potential examples include high-entropy biometrics such as iris scans
and fingerprints. Another reason is that we only consider settings where one can
check that a correction is in fact correct, which allows the brute-force ball search.
Finally, and most broadly, we do not consider information theoretic security —
the original setting of most sketch constructions.

With these caveats in place, we turn to setting up a framework by which we
can make apples-to-apples comparisons between the different PBAS schemes.

Qualities of Typo-Tolerant PBAS. There are three key axes upon which
we compare efficacy of typo-tolerant PBAS schemes; correctness, security and
run time. Correctness is readily assessed — it is straightforward to see that for
any error setting E and δ-correct sketch S = (SS,Rec), PBAS-SS[S] inherits the
δ-correctness of underlying sketch. On the other hand, the two brute-force cor-
rection schemes, PBAS-BF and PBAS-PPH are perfectly correct. This highlights
a bonus of the brute-force approach — if the correct password lies in the ball
around a typo, these schemes will always recover the correct point.

The comparison between the time / security trade-offs incurred by the differ-
ent approaches is less immediate. For a given PBAS, this trade-off is primarily
dictated by the computational cost c we assign to H (corresponding, in practice,
to picking larger security parameters for the slow hashing scheme). In order to
compare different approaches, we fix a runtime budget RT for checking pass-
words, set each of the schemes’ parameters to achieve maximal security subject
to the run time constraint RT, and compare the security as measured by the
message recovery game of Fig. 4.

6.1 PBAS-BF versus FRS1 for Flat Distributions

As a warm up, we discuss the trade-off between PBAS-BF and PBAS[FRS1] where
FRS1 = (FRS1-SS,FRS1-Rec) (Lemma 3).

Let E = (S,W, dist, t) be an error setting, such that W is flat with H∞(W ) =
μ and maximum ball size βmax. For a given run time budget RT, setting css =
RT/2 and cbf = css · 2

βmax
ensures both schemes have equal run times. Let A be

an adversary in game MR running in time at most T . Letting qss = T/css, it
follows that,

Advmr
PBAS-BF,E(A) =

(
qss · βmax

2

)
2−μ ; and

Advmr
PBAS-SS[FRS1],E(A) ≤

(
qss · βmax

δ

)
2−μ .

The first statement arises since A can query at most T/cbf = qss · βmax
2 points

in time T , each of which contributes weight 2−μ to its success probability. The
latter follows since B can query at most qss = T/css points in time T ; substituting
this into the bound on q-conditional min-entropy given in Lemma3 yields the
claim. Since 0 < δ < 1 (and since δ represents the error probability of the
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sketch, in practice we would like δ to be small), this clearly illustrates that in
terms of existing upper bounds PBAS-BF offers a significantly better time /
security trade-off than PBAS-SS[FRS1]. However, this does not rule out tighter
upper bounds being found. To conclusively show that PBAS-BF offers the best
performance, we would like to reverse the inequality sign in the above statement,
and prove a lower bound on security for PBAS-SS[FRS1] that is larger than the
upper bound on security for PBAS-BF.

Let’s unpick what this means. Let B be the optimal attacker in game
MR against PBAS-SS[FRS1]. We model the universal hash function family
F : S × {0, 1}� → {0, 1}log(βmax)+log(1/δ) utilized by FRS1 as a family of random

oracles H = {h}; rather than including sa
$← {0, 1}� as part of the sketch, we

now give access to the chosen random oracle h
$← {H}. We note that this mod-

eling is conservative, since it can only make the attacker’s job harder. With this
in place, we may lower bound Advmr

PBAS-SS[FRS1],E(A) via a balls-in-bins exper-
iment. We represent each point w ∈ M = supp(W ) by a ball of weight 2−μ,
and associate each of the 2log(βmax)+log(1/δ) = βmax

δ points y ∈ range(H) with

a bin. The choice of oracle h
$← H fixes a ‘throwing’ of the balls into the bins,

and the adversary’s success probability is equal to the expected weight accrued
when they are allowed to choose up to qss balls from each bin where qss = T/css.
The advantage is then calculated by taking the expectation of this total over the
coins of the random oracle.

With this in place, all we must do is show that with overwhelming probability
when we are allowed to choose at most qss balls from each bin, the resulting set
contains at least qss · βmax

2 balls. Intuitively this must be the case. We would expect
each bin to contain δ·|supp(W )|

βmax
balls, and this value must be much larger than qss

or the attack would be trivial. As such to not hit our total, a very high proportion
of the bins must contain a number of balls which has diverged wildly from the
mean. However, formalizing this intuition is non-trivial. A theorem statement to
this end can be easily derived as a special case of those of Theorem 4; we defer
the formal statement and analysis to the full version.

6.2 PPH versus FRS2 and LHH

In this section, we show that PBAS-PPH offers a better time / security trade-
off than PBAS-SS implemented with the FRS and LHH sketch constructions of
Sect. 3.

To facilitate the comparison, we first set the hashing cost parameter cPPH

such that PBAS-PPH achieves the same runtime as PBAS-SS with associated
hashing cost css. With this parameter setting, PBAS-SS has checking run time
RT = 2 · css, so Lemma 4 implies that setting cPPH = 2 · css ensures PBAS-PPH
achieves run time RT also. With this in place, we now upper-bound the success
probability of an optimal attacker against PBAS-PPH with these parameters;
the proof is given in the full version.
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Lemma 5. Let E = (S,W, dist, t) be an error setting, where Hfuzz
t,∞(W ) = μ̃. Let

PBAS-PPH be the population-proportional hashing scheme where random oracle
H has associated cost cPPH = 2·css. Let A be an adversary in game MRA

PBAS-PPH,E

running in time at most T . Then,

Advmr
PBAS-PPH,E(A) ≤ qss · 2−μ̃ .

where qss = T/css.

To give the above term some context, consider the equivalent upper
bounds on success probability for sketch-based schemes PBAS-SS[FRS2], and
PBAS-SS[LHH] (which are derived by substituting the parameters of the error
setting into Theorems 1 and 3 respectively).3 For any adversary B running in
time at most T it holds that,

Advmr
PBAS-SS[FRS2],E(B) ≤ qss · H0(W ) · 2−(μ̃−1)

δ
, and

Advmr
PBAS-SS[LHH],E(B) ≤ qss · 2−(μ̃−1)

δ
.

By comparison with Lemma 5, it is immediately clear that PBAS-PPH enjoys
better security upper bounds than either construction. Of course it could be
that the upper bounds on the sketches can be improved.

We therefore, in the following theorem, lower bound the success probability
of an optimal attack against PBAS-SS[FRS2] and PBAS-SS[LHH] in terms of the
advantage of any adversary against PBAS-PPH. This rules out improving the
upper bounds enough to make the sketch-based schemes better than PBAS-PPH.
We first state the theorem, then discuss its significance.

Theorem 4. Let E = (S,W, dist, t) be an error setting with Hfuzz
t,∞(W ) = μ̃.

Let Π-S = (Π-SS,Π-Rec) be the secure sketch for the same error setting where
Π ∈ {FRS2, LHH}, achieving 1 − δ correctness for some 0 < δ < 1. We model
the (strongly) universal hash functions used by the sketch as random oracles. Let
PBAS-SS[Π-S] be the sketch-assisted PBAS built from Π-S, using random oracle
H with associated cost css. Let PBAS-PPH be the popularity-proportional hashing
PBAS for this error setting, with random oracle H′ with associated cost cPPH

set such that RT(Chk-SS, css) ≥ RT(Chk-PPH, cPPH). Then for any adversary
A against PBAS-PPH running in time at most T , there exists an adversary B
against PBAS-SS[Π-S] such that

Advmr
PBAS-PPH,E(A) ≤ Advmr

PBAS-SS[Π-S],E(B) +
(

e · δ

2

)qss

and, moreover, B runs in time T and so can make at most qss = T/css queries.
3 Since they are stated in terms of μ̃, we use the (looser) upper bounds here for ease

of comparison. It is straightforward to derive similar statements showing the tighter
bound are poorer too; see the proof of Theorem 4.
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We have stated the theorem in the form of a reduction to highlight that
PBAS-PPH provides at least as good a time / security trade-off as the seemingly
more sophisticated sketch-based scheme. Given that qss will be large (this is
the number of hash computations an attacker can make), then, provided that
δ < 2/e ≈ 0.736 the second term in the bound is infinitesimally far from zero.
Since δ represents the error rate of the sketch, in practice any useable sketch will
require δ much smaller than .736.

The proof of the theorem proceeds by specifying a concrete adversary B
against PBAS-SS[Π-SS] for Π ∈ {FRS2, LHH}, where the underlying (strongly)
universal hash function family is modeled as a family of random oracles H = {h}.
It works as one would expect: the adversary is given some sketch s and access
to the oracle h used in the computation of the sketch. The attack queries the qss

heaviest points in the preimage set

Xs = {w ∈ supp(W ) : Pr
[
W = w ∧ Π-SSh(W ) = s

]
> 0}

to the PBKDF H, where qss = T/css. This is the optimal attack.
We note that B need not compute the entire preimage set before submitting

his guesses to the oracle H — rather his most efficient strategy is to compute
the hashes of candidate points under h in descending order of weight, looking
for points which lie in the preimage set. Intuitively this will be efficient because,
assuming the sketch behaves uniformly, we would expect to find preimage set
points at fairly regular intervals. For example, if (for simplicity) the sketch was
simply h(w) = y, then the expected run time for B to find qss matches (over the
coins of h) is qss · |y| computations of h.

The proof then must show a lower bound on the success of B. This analysis
turns out to be quite tricky, involving a nuanced balls-in-bins argument. We
make things easier by targeting only a rather loose lower bound that suffices
to show the desired relationship with PBAS-PPH. We believe that better lower
bounds can be found. Better lower bounds would signify an even bigger gap
between the security of PBAS-PPH and PBAS-SS, making PBAS-PPH look even
better in comparison.

We note that while the above result shows that PBAS-PPH always offers a
better time / security trade-off than sketch-based schemes using FRS or LHH,
the same cannot be shown to hold for PBAS-BF. For example, consider an error
setting such that W consists of 249 points of weight 2−50 and 299 points of
weight 2−100, for which all balls contain a single point, except for one large ball
containing 220 of the lower weight points. As such Hfuzz

t,∞(W ) = 50, and so by
Theorems 2 and 3 it is easy to see that the security of the sketch-based schemes
will degrade linearly and gracefully as T grows. On the other hand, the huge
ball of 220 points means that for matching run-times we must set cbf = 2−19 · css
— so low that security for PBAS-BF (at least initially; see Sect. 6.3) degrades
dramatically compared to PBAS-SS.

This counterexample may be contrived, but for more realistic distributions
there remains a technical challenge in comparing PBAS-BF and PBAS-SS for
FRS and LHH directly. The fact that the latter schemes are parameterized by
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μ̃ = Hfuzz
t,∞(W ) means that the natural derived security bounds are in terms of

μ̃ also, whereas for PBAS-BF, security is dictated by the sum of the weights of
the points at the head of the distribution. Therefore any balls-in-bins analysis
of the form described above involves a complicated comparison between two
somewhat orthogonal terms. To overcome this, we can use PPH (whose success
probability is also a function of μ̃) as a bridge, first invoking Theorem4 to show
that PBAS-PPH offers a better time / security trade-off than the sketch-based
PBAS and then assessing, using results in Sect. 6.3, whether PBAS-BF offers a
better trade-off still.

6.3 Brute-Force Checking versus PPH

In the following theorem, we quantify precisely the conditions on an error set-
ting E under which PBAS-PPH represents a better time / security trade-off than
PBAS-BF. We fix a run time RT for the checking algorithms of both schemes,
and set the associated hashing cost cbf and hashing cost parameter cPPH in a
way that ensures both schemes work within this run time. We then consider the
success probabilities of optimal adversaries attacking the schemes, both running
in some time T .

The following theorem formally captures our comparison of the two schemes.
Roughly speaking, the result indicates that there exists a crossover point: for T
smaller than this point, PBAS-PPH provides better security than PBAS-BF, and
for T larger than this point, the inverse is true. The crossover point is dictated
by the error setting. As we discuss in more detail below, the crossover point for
typical error distributions seen with human-chosen passwords is actually pretty
small, meaning that PBAS-BF would appear to dominate for distributions of
practical interest. Whether PBAS-PPH can be improved is an open question.

Theorem 5. Let E = (S,W, dist, t) be an error setting, where Hfuzz
t,∞(W ) = μ̃

and the largest ball is of size βmax. Let PBAS-BF = (Reg,Chk-BF) be the brute-
force PBAS for this error setting, using oracle H with associated cost cbf and
run time budget RT. Let PBAS-PPH = (Reg-PPH,Chk-PPH) be the popularity-
proportional hashing PBAS for this error setting using an oracle H′ with associ-
ated cost parameter cPPH set such that RT(Chk-BF, cbf) ≥ RT(Chk-PPH, cPPH).
Let A and B be optimal attackers in games MRA

PBAS-PPH,E and MRB
PBAS-BF,E

respectively running in time T . Let qbf = T/cbf = T · βmax/RT. Then if T
is such that

T ≤
(

2−H
qbf∞ (W ) · 2(μ̃−1)

)
· RT ,

it holds that Advmr
PBAS-PPH,E(A) ≤ Advmr

PBAS-BF,E(B). For all error settings such
that,

T ≥
(

2−H
qbf∞ (W ) · 2μ̃ + 1

)
· RT ,

it holds that Advmr
PBAS-BF,E(B) ≤ Advmr

PBAS-PPH,E(A).
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The proof works by upper and lower bounding the success probability of an
optimal attacker against PPH, and comparing this to the success probability of
an optimal attacker against the brute-force checker. The proof is given in the
full version.

At a high level, the first bound in the theorem shows that PBAS-PPH favors
error settings for which the weight of points decreases slowly (relative to the
attack run time) as we move down through the distribution starting from the
heaviest point. In such error settings PBAS-PPH allows us to securely correct
larger balls — and accordingly more errors — than brute-force checking, pro-
vided balls are constructed such that the fuzzy min-entropy is high. This latter
requirement is not much of a restriction, since a well designed error setting will
seek to maximize the utility for a given level of security by defining balls to have
many points but low aggregate mass. For most such error settings, while there
will be a point after which PBAS-BF offers the better time / security trade-off,
this will be for an attack run time too large to be of concern. This class of
distributions includes those described in Sect. 6.2 for which brute-force checking
degrades security dramatically.

On the other hand, the second bound shows that if the weight of points
decreases quickly as we move down through the distribution, then PBAS-BF
offers the better time / security trade-off. Intuitively this is because, as the
weight of points decreases, the gap between the (higher) hashing cost under PPH
decreases until it is, in fact, lower than the hashing cost used with PBAS-BF. As
such the crossover point after which brute-force checking offers the better trade-
off falls within the attack run times of concern. Since password distributions are
typically very ‘top-heavy’, with the weights of points decreasing rapidly to leave
a long tail, they fall into the class for which brute-force checking offers the better
time / security trade-off.

The theorem gives both upper and lower bounds on T , with a small gap
between them, meaning the crossover point is not precisely pinned down. This
is due to a small amount of slack in upper and lower bounding the success
probability of an optimal attacker against PBAS-PPH for general error settings.
For specific error settings, one can sharpen the analysis.

7 Conclusion

In this work we investigated error correction for cryptographic secrets in the
known-distribution setting. Using typo-tolerant password checking as a guiding
case study, we provided several improvements on both theory and practice. On
the theory side, we introduced a new information-theoretic security goal for
secure sketches that better matches the needs of applications that may allow
an attacker to make multiple guesses about the secret. While for high-entropy
settings the distinction is moot, for passwords it is critical. We then provided
analysis of the best known schemes in this setting, due to Fuller et al. [15].

Our first main contribution was the design and analysis of a new secure sketch
construction, the layer-hiding hash (LHH). We proved that it provides better
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security than prior schemes. We then introduced a new distribution-sensitive
brute-force based technique called property-proportional hashing (PPH) that,
unlike the prior brute-force checking approach of Chatterjee et al. [12], varies
the run time of the hash function according to the popularity of the password
being hashed.

We gave a framework for comparing different approaches to typo-tolerant
authentication, and used it to show that PPH outperforms sketch-based solutions
to typo-tolerance, even when using the layer-hiding hash sketch. We determine
the conditions under which PPH improves on the brute-force checking approach
of Chatterjee et al. [12], along with the conditions under which their simpler
brute-force checking offers a better trade-off. Put all together, our results indicate
that brute-force based approaches perform better than the best known secure
sketches. We now finish with a few important points and open questions.

Complexity Beyond Time. Most in-use slow hashes only target extending the
time required for a single hash computation. Increasingly, however, practition-
ers are transitioning to slow hashing that targets memory-hardness [1–3,6,26],
meaning that computing a hash requires that the space-time complexity (the
product of memory and time utilized) is lower bounded. Our constructions work
with memory-hard hash functions as well, though our comparisons of differ-
ent approaches currently only considers time complexity. Future work may also
consider parallel computation models, which could be useful when a password
checking system can use multiple cores to simultaneously check multiple possible
corrections.

Additional Applications. While we motivated and used as a running example
the setting of password-based authentication, our constructions are generic. They
hold for any distribution-sensitive setting in which one has efficiently enumerable
balls (the same general setting considered by FRS). The FRS, LHH, and PPH
approaches will not work for error settings with large balls, such as attempting
to correct large Hamming or edit distances. In these contexts, existing secure
sketch constructions [13,14] seem to be the only solution. We note that their
entropy loss is significantly worse than the FRS or LHH constructions, and so
they would not seem useful for passwords.

We have focused on authentication, but our results and comparisons are
applicable to any cryptographic application in which noisy secrets are used to
derive a key for which one can efficiently test correctness. This includes at least
all authentication primitives, such as message authentication codes and authen-
ticated encryption. Similarly, our new sketch constructions can also be used to
build a fuzzy extractor using the construction from [13], which inherits the secu-
rity improvement over the fuzzy extractor from FRS.

Secure Sketches in the Multi-guess Setting. In the previous section,
we proved that PBAS-SS never offers a better time / security trade-off than
PBAS-PPH/PBAS-BF when implemented with the FRS sketches, and the new
— and nearly optimal, in the single-guess setting — LHH sketch. The key open
question is whether any distribution-sensitive secure sketch can perform better
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in this context. The challenge is to design a sketch which preserves much of the
min-entropy of the underlying distribution in the face of an attacker who can
make q guesses for varying and large values of q. This is an important require-
ment in many practical settings, yet has been overlooked in existing literature.

Intuitively, the correctness requirement means that the sketch must include
sufficient information to disambiguate between points in the heaviest ball(s).
As such any efficiently-computable sketch — (we disregard those which, for
example, solve an NP-hard problem to create an optimal arrangement of points
into sketch preimage sets) — is likely to leak more information than is strictly
necessary for correctness in less heavy balls. This additional leakage can then
be exploited by an attacker. More generally we would expect that the larger
q is, the wider the gap between the security of a sketch S = (SS,Rec) for
that error setting H̃q

∞(W |SS(W )), and the theoretical best case security bound
Hq,fuzz

t,∞ (W ) − log(1 − δ).
We conjecture that for a significant class of error-settings — especially those

such as passwords, which inherently contain large balls — no efficient distribution
sensitive secure sketch can offer a better time / security trade-off than brute-
force based approaches. Indeed it seems likely that any intuition leading to an
improvement in secure sketch performance over LHH may also be utilized to
create a brute-force approach which improves on PBAS-PPH (similar to the way
in which the same layered approach is used by both LHH and PPH, with better
performance in the latter). Refining and improving upon the brute-force based
approaches described here is an interesting open problem.
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