
Indistinguishability Obfuscation from SXDH
on 5-Linear Maps and Locality-5 PRGs

Huijia Lin(B)

University of California, Santa Barbara, Santa Barbara, USA
rachel.lin@cs.ucsb.edu

Abstract. Two recent works [Lin, EUROCRYPT 2016, Lin and Vaikun-
tanathan, FOCS 2016] showed how to construct Indistinguishability
Obfuscation (IO) from constant degree multilinear maps. However, the
concrete degrees of multilinear maps used in their constructions exceed
30. In this work, we reduce the degree of multilinear maps needed to 5,
by giving a new construction of IO from asymmetric L-linear maps and
a pseudo-random generator (PRG) with output locality L and polyno-
mial stretch. When plugging in a candidate PRG with locality-5 (e.g.,
[Goldreich, ECCC 2010, Mossel, Shpilka, and Trevisan, FOCS 2013,
O’Donnald and Wither, CCC 2014]), we obtain a construction of IO
from 5-linear maps.

Our construction improves the state-of-the-art at two other fronts:
First, it relies on “classical” multilinear maps, instead of their power-
ful generalization of graded encodings. Second, it comes with a security
reduction to (i) the SXDH assumption on algebraic multilinear maps
[Boneh and Silverberg, Contemporary Mathematics, Rothblum, TCC
2013], (ii) the security of PRG, and (iii) sub-exponential LWE, all with
sub-exponential hardness. The SXDH assumption is weaker and/or sim-
pler than assumptions on multilinear maps underlying previous IO con-
structions. When noisy multilinear maps [Garg et al., EUROCRYPT
2013] are used instead, security is based on a family of more complex
assumptions that hold in the generic model.

1 Introduction

Indistinguishability obfuscation, defined first in the seminal work of Barak
et al. [11], aims to transform programs into “unintelligible” ones while preserving
functionality. IO is an extradinarily powerful object and has been used as a cen-
tral tool for obtaining a plethora of new cryptographic constructions, solutions to
long-standing open problems, and techniques enabling new cryptographic goals.

Unfortunately, so far, the existence of IO remain uncertain. Most known can-
didate IO schemes [5,7,10,17,25,27,30,33,46,49,53] are built from the so-called
graded encoding schemes [26], a framework of complex algebraic structures that,
in essence, enables evaluating polynomial-degree polynomials on secret encoded

H. Lin—Partially supported by NSF grants CNS-1528178, CNS-1514526, CNS-
1652849 (CAREER).

c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part I, LNCS 10401, pp. 599–629, 2017.
DOI: 10.1007/978-3-319-63688-7 20

600 H. Lin

values and revealing whether the output is zero or not. The security of most
IO candidates are either analyzed in the ideal model or based on strong uber
assumptions [49], with only one exception [33]. On the front of instantiating
graded encodings from concrete mathematical objects, the state of affairs is
even more worrisome: Vulnerabilities have been demonstrated in all instantia-
tions proposed so far [21,22,26,31,39]. Of course, this does not mean that the
resulting IO constructions are insecure. In fact, this has motivated the search
for IO constructions that withstand all existing attacks [29].

The state-of-affairs motivates the following natural question.

How much can we narrow the gap between
objects and assumptions that imply IO and well − studied ones,

such as, asymmetric bilinear maps with the SXDH assumption?

Two recent works [41,44] have made significant progress towards answering the
question: Lin [41] showed that to construct IO, we do not need full-fledged
graded encodings that support evaluation of all polynomial-degree polynomi-
als, instead, it suffices to start with graded encodings for only constant-degree
polynomials, called constant-degree graded encodings. Following that, Lin and
Vaikuntanathan [44] further weakened the assumption on constant-degree graded
encodings from a uber assumption in [41] to the so-called joint-SXDH assump-
tion, which is a stronger variant of the classical SXDH assumption. Besides from
multilinear maps, their IO constructions additionally rely on PRGs in NC0 and
sub-exponential LWE.

The trajectory of recent developments points towards the holly grail of
“building IO from bilinear maps”. In this work, we make new strides in this
direction: We give a new construction of IO from asymmetric L-linear maps
and a PRG with output locality L (i.e., every output bit depends on at most
L input bits). When plugging in a candidate PRG with locality-5 in the litera-
ture [34,47,48], we obtain a construction of IO from 5-linear maps. This gets the
degree of multilinear maps needed for IO much closer to the dream version of 2.
In comparison, previous IO constructions [41,44] rely on multilinear maps with
degree at least 30. On the other hand, no PRGs with locality 4 exist [23,47].
Thus, our approach hits a barrier and cannot base IO on multilinear maps with
degree L ≤ 4. This barrier is common to recent IO constructions [41,44] and
suggests that we need new techniques circumventing the lower bound on locality
of PRGs.

In addition to reducing the degree of multilinear maps, our IO construction
improves the state-of-the-art at two other fronts. First, our construction uses
the classical asymmetric multilinear maps introduced in [15,50], which are direct
generalization of bilinear pairing groups to higher degree. Previous constructions
rely on graded encodings, which are enhanced versions of multilinear maps with
more powerful functionalities (such as, supporting complex label structures).
Second, the security of our IO scheme is based on the sub-exponential SXDH
assumption on L-linear maps, the sub-exponential security of PRGs, and sub-
exponential LWE. The SXDH assumption on multilinear maps is much simpler

Indistinguishability Obfuscation from SXDH 601

and/or weaker than the assumption on graded encodings underlying previous
IO constructions, for instance, the joint-SXDH assumption in [44] and the mul-
tilinear subgroup elimination assumption in [33].

1.1 Our Results

We start with defining the SXDH assumption on multilinear maps and then
describe our results.

SXDH on Multilinear Maps. Asymmetric multilinear pairing groups intro-
duced in [15,50] generalize asymmetric bilinear pairing maps to a collection of
source groups G1, · · · , GD, whose elements can be paired to produce elements in
a target group GT via a multilinear map e(ga1

1 , · · · , gaD

D) = ga1···aD

T . The degree
(a.k.a. multilinearity) of the multilinear map is the number of elements that can
be paired together, which equals to the number of source groups D. We say
that the multilinear pairing groups have prime order if all source groups and the
target group have the same prime order, and composite order if all groups have
the same composite order. In this work, we consider constant-degree multilinear
paring groups, and in particular 5-linear pairing groups, with either prime or
composite order. We omit specifying the order of groups below.

The SXDH assumption on asymmetric multilinear pairing groups is a nat-
ural generalization of the standard symmetric external Diffie-Hellman (SXDH)
assumption on asymmetric bilinear pairing groups, introduced first in [50]. In
short, SXDH states that the decisional Diffie-Hellman assumption holds in every
source group: It postulates that the distribution of ga

d , gb
d, g

ab
d in any source group

d should be indistinguishable to that of ga
d , gb

d, g
r
d. Formally, for all d ∈ [D],

{
ga

d , gb
d

$← Gd : {gi}i∈[D], ga
d , gb

d, gab
d

}

≈
{

ga
d , gb

d, gr
d

$← Gd : {gi}i∈[D], ga
d , gb

d, gr
d

}
,

where {gi} is the set of generators in all groups. When D = 2, this gives the
SXDH assumption on bilinear pairing groups.

Multilinear Maps v.s. Graded Encodings. The interface of (asymmetric) multi-
linear pairing groups is much simpler than that of graded encoding schemes
introduced by [26]. First, graded encoding schemes support graded multiplica-
tion over a collection of groups {Gl}: Graded multiplication can pair elements
of two groups Gl1 , Gl2 , indexed by two labels l1, l2, to produce an element in
the group Gl1+l2 , indexed by label l1 + l2

1. In particular, the output element in
Gl1+l2 can be further paired with elements in other groups to produce elements
in group Gl1+l2+l3+··· and so on. In contrast, multilinear map allows only “one-
shot” multiplication, where the output element belongs to the target group GT

1 The operation is according to some well-defined addition operation over the labels;
for example, if labels are integers, + is integer addition, and if labels are sets, + is
set union.

602 H. Lin

that cannot be paired anymore. Second, graded encoding schemes support the
notion of “pairable groups” in the sense that only elements from groups Gl1 , Gl2

that satisfy a “pairable” relation can be paired.2

The support for graded multiplication between pairable groups provides pow-
erful capabilities. In essence, GES allows one to “engineer” the labels of a set of
group elements {gai

li
}, so that, only polynomials of certain specific forms can be

evaluated on values in the exponent. In contrast, the simple interface of multi-
linear maps does not provide such capabilities.

SXDH v.s. Joint-SXDH. Lin and Vaikuntanathan introduced the joint-SXDH
assumption on graded encoding schemes, and showed that IO for P/poly can
be based on sub-exponential joint-SXDH and PRG in NC0. Their joint-SXDH
assumption strengthens the SXDH assumption as follows: It considers the joint
distribution of elements (ga

l , gb
l , g

ab
l)l∈S in a set S of groups. The intuition is that

as long as no pairs of groups Gl1 , Gl2 in the set S are pairable, in the same spirit
as SXDH, the distribution is possibly indistinguishable to the joint distribution of
elements (ga

l , gb
l , g

r
l)l∈S in the same set of groups.3 The joint-SXDH assumption

is more complex and potentially stronger than the SXDH assumption.

Our Main Result: IO from SXDH on L-Linear Maps and Local-L PRG

Theorem 1 (Main Theorem). Let L be any positive integer. Assume the sub-
exponential hardness of LWE with sub-exponential modulus-to-noise ratio. Then,
IO for P/poly is implied by the sub-exponential SXDH assumption on L-linear
pairing groups, and the existence of a sub-exponentially secure locality-L PRG
with polynomial n1+ε-stretch for some ε > 0.

We note that the sub-exponential hardness of SXDH and PRG required by
our theorem is weaker than standard notions of sub-exponential hardness of
decisional problems, in the sense that we only require the distinguishing gap to
be sub-exponentially small against polynomial time adversaries, as opposed to
sub-exponential time adversaries.

Our result establishes a direct and tight connection between the degree
D of multilinear maps needed for constructing IO and the locality L of
PRGs—they are the same D = L—assuming sub-exponential LWE. In compari-
son, the previous state-of-the-art [44] requires the degree of the multilinear map
to be much larger, namely D > 6L. Thus, when plugging-in a PRG of locality-
5, their construction requires at least 30-linear maps, whereas our construction
relies on 5-linear maps.

Step 1: Bootstrapping IO from Locality-L PRG and Degree-L FE.
We follow the same two-step approach in all previous IO constructions: First,
2 For instance, if labels are sets, then two groups are pairable, if their label-sets l1, l2

are disjoint.
3 Note that in both distributions, the same exponents, a, b, r, are used in all groups

in S.

Indistinguishability Obfuscation from SXDH 603

construct IO for P/poly from some simpler primitives—call this the bootstrapping
step—and then instantiate the primitives needed, using graded encodings or
multilinear maps. In the literature, previous bootstrapping theorems have shown
that general purpose IO can be built from one of the following: (i) IO for NC1 [27],
or (ii) sub-exponentially secure FE for NC1 [2,3,13,14], or (iii) sub-exponentially
secure IO for constant degree computations and PRG in NC0 [41], or (iv) sub-
exponentially secure FE for NC0 and PRG in NC0 [44].4

In this work, we strengthen the bootstrapping theorem of [44], and show
how to build IO from PRGs with locality-L and FE for computing degree L
polynomials in some ring R (which eventually corresponds to the exponent space
of multilinear maps used for instantiating the FE).

Theorem 2 (Bootstrapping Theorem). Let L be any positive integer.
Assume the sub-exponential hardness of LWE with sub-exponential modulus-to-
noise ratio. IO for P/poly is implied by the existence of sub-exponentially secure
(collusion resistant) secret-key FE schemes for computing degree-L polynomials
in some ring R with linear efficiency, and a sub-exponentially secure locality-L
PRG with n1+ε-stretch for some ε > 0.

(In the case that the FE schemes are public-key, the assumption of sub-
exponential LWE is not needed.)

Above, the linear efficiency of FE schemes means that encryption time is linear
in the input length N(λ), that is, TimeFE.Enc = N(λ)poly(λ). In fact, we only
need the FE scheme to achieve the weaker functionality of revealing whether
the output of a degree-L polynomial is zero in R. Below, we refer to such FE
schemes as degree-L FE in R with linear efficiency.

In comparison, with locality-L PRG, the bootstrapping theorem in [44] needs
to start with FE for computing polynomials with higher degree 3L + 2. We here
reduce the degree of FE to exactly L, by proposing a new pre-processing idea:
At a very high-level, we let the encryptor pre-process the input to be encrypted
to perform part of the degree-(3L+2) computations, and encrypt the processed
values, so that later, the decryptor only need to perform a degree-L computation,
and hence degree-L FE suffices. An overview of our bootstrapping step is given
in Sect. 2.1.

Step 2: Degree Preserving Construction of FE. Next, we construct degree-
L FE based on the SXDH assumption on L-linear maps.

Theorem 3. Let D be any positive integer and R any ring. Assuming SXDH
on D-linear maps over ring R, there exist secret key FE schemes for degree-D
polynomials in R, with linear efficiency.

This new FE scheme is our main technical contribution. Previous constructions
of FE for NC1 either relies on IO for NC1 or high degree multilinear maps [27,28],

4 Some bootstrapping theorems additionally assume LWE [27,41] or the existence of
public key encryption [13]).

604 H. Lin

whose degree is polynomial in the circuit-size of the computations. In [44], Lin
and Vaikuntanathan constructed FE for NC0 from constant-degree graded encod-
ings. Their construction, however, is not degree-preserving: To compute NC0

functions that can be evaluated in degree D, they require degree 2D graded
encodings. Our FE construction is the first one that supports degree-D compu-
tations using only degree-D multilinear maps.

It turns out that removing a factor of 2 in the degree requires completely
new techniques for constructing FE. The reason is that the factor of 2 increase
in degree allows the FE construction in [44] to evaluate instead of a degree-D
computation directly, an arithmetic randomized encodings of the computation.
The benefit is that they can rely on the security of randomized encoding to
argue the security of FE. In our case, since the degree is exactly D, we cannot
afford to “embed” any cryptographic primitives in the FE construction, and must
come up with ways of encoding inputs and intermediate computation values
using multilinear maps that directly guarantee security. For this reason, our
construction share similar flavor with constructions of inner product encryptions
based on bilinear maps. See Sects. 2.2 and 2.3 for an overview of our degree-
preserving FE construction.

Additional Contributions. Along the way of designing our degree-preserving
FE construction, we also construct the following primitives that are of indepen-
dent interests.

Simple Function Hiding IPE Schemes from SXDH on Bilinear Maps. Without
using the heavy hammers of multilinear maps or IO, the state-of-the-art col-
lusion resistant FE schemes can only compute inner products, they are called
Inner Product Encryption (IPE). In the literature, Abdalla et al. (ABDP) [1]
came up with a public key IPE scheme based on one of a variety of assumptions,
such as, DDH, Paillier, and LWE.

Bishop et al. [12] (BJK) constructed the first secret-key IPE scheme based
on the SXDH assumption over asymmetric bilinear pairing groups. Their scheme
achieves a stronger security notion, called weak function-hiding, and is improved
by [24] to achieve full function hiding. Lin and Vaikuntanathan [44] further
showed that any weakly function hiding IPE scheme can be generically trans-
formed into a function hiding IPE scheme. Here, (weak) function hiding requires
the FE scheme to hide both inputs and functions (revealing only outputs), and
is much harder to achieve than standard security that hides only inputs.

While the ABDP public-key IPE scheme is simple, the secret-key (weak)
function hiding IPE schemes [12,24] are much more complex. In this work, we
give a simple construction of weak function hiding IPE from SXDH on bilinear
maps, which can then be transformed to function hiding IPE using [44]. Our
IPE scheme is built from the ABDP public-key IPE scheme in a modular way,
and inherits its efficiency and simplicity: Ciphertexts and secret keys of length-N
vectors consists of (N + 2) group elements, and the construction and security
proof of our scheme fits within 2 pages (reducing to the security of the ABDP
IPE scheme). In addition, the new scheme satisfies certain special properties

Indistinguishability Obfuscation from SXDH 605

that are important for our construction of degree-L FE schemes, which are not
satisfied by previous IPE schemes [12,24]. See Sect. 2.5 for an overview of our
simple function hiding IPE.

High-Degree IPE. We also generalize IPE to the notion of high-degree IPE, or
HIPE for short. They are multi-input FE schemes [35] for computing, so called,
degree-D inner product defined as

〈
x1, · · · ,xD

〉
= Σi∈[N]x

1
i x

2
i · · · xD

i .

We construct HIPE for degree-D inner products from degree-D multilinear maps,
which is then used to build degree-D FE schemes. We believe that this notion
is interesting on its own and may have other applications. See Sect. 2.3 for an
overview of HIPE.

Algebraic v.s. Noisy Multilinear Maps. Our results and proofs are
described w.r.t. algebraic multilinear maps. However, finding algebraic multi-
linear maps with degree above 2 is still a major open problem. Can our IO
and FE schemes be instantiated with known noisy multilinear map candidates
[21,22,26,31,39]? The answer is nuanced: The constructions can be instantiated
as-is with noisy multilinear maps and correctness holds, but the security proof
fails, for (1) the SXDH assumption does not hold on known candidates, and
(2) the current security reduction relies on the homomorphic scalar multiplica-
tion functionality, which is not supported by known candidates. (The latter is
shared with all previous reductions that base security on a laconic and instance-
independent assumption [33,44].) Nevertheless, the security proof of the degree-L
FE scheme (the only component that relies on multilinear maps) can be adapted
into a proof in the degree-5 ideal multilinear map model without homomorphic
scalar multiplication. Security in the ideal model does not imply security against
known cryptanalytic attacks [6,16,18–20,26,32,46]. It is unclear whether these
instantiations are secure against them—we have no concrete attacks nor formal
arguments that validate their security against known attacks, such as, a security
proof in the weak multilinear map model [29]. See Sect. 2.6 for a more detailed
discussion.

1.2 Concurrent and Independent Work

In a concurrent work, Ananth and Sahai [4] (AS) showed a similar result. Both
works convey the same high-level message that “IO can be constructed from
5-linear maps and locality-5 PRG, assuming sub-exponential LWE”. But, the
concrete theorem statements differ. First, while our construction relies on the
classical 5-linear maps, the AS construction uses degree-5 set-based graded encod-
ings, which, as discussed above, is more powerful. Second, a main contribution
of this paper is basing security of IO on the SXDH assumption, which is laconic
and instance dependent. In comparison, the AS construction is proven secure
based on two assumptions on graded encodings that are tailored to their con-
struction and justified in the ideal model, and the security of their FE scheme

606 H. Lin

follows immediately from the assumptions. In terms of techniques, both works
follow the paradigm of IO construction in [44]. The two works propose different
notions of FE for low-degree polynomials, and use completely different methods
to construct them.

1.3 Subsequent Works

Given that locality 4 PRGs do not exist [47], the approach (in this and recent
works [4,44]) of using local PRGs to reduce the degree of multilinear maps used
in IO constructions hits a barrier at degree 5. In a subsequent work, Lin and
Tessaro [43] overcame this barrier and further reduced the degree of multilinear
maps needed to 3. More specifically, they showed that assuming sub-exponential
LWE, IO can be based on the SXDH assumption on L-linear maps and PRGs
with a new notion of block-wise locality L. Roughly speaking, a PRG has block-
wise locality L if every output bit depends on at most L input blocks, each
containing up to log λ bits. Their result crucially relies on our IO construction,
with the modification of replacing locality L PRGs with block-wise locality L
PRGs in the first bootstrapping step (the rest of the construction, such as,
the low-degree FE scheme, is kept the same). They further initiated the study of
block-wise local PRGs based on Goldreich’s local functions and their (in)security.
In particular, they showed that the security of candidates with block-wise locality
L ≥ 3 is backed by similar validation as candidates with (conventional) locality
5. Soon after their work, two exciting cryptanalytic works [9,45] showed that,
unfortunately, (polynomial-stretch) PRGs with block-wise locality 2 do not exist.

Summarizing the new state-of-the-art: Assuming sub-exponential LWE, there
is a construction of IO from trilinear maps and PRGs with block-wise locality
3—we are one degree away from the dream statement of “building IO from
bilinear maps”.

Organization. Next, we proceed to give an overview of our FE and IO con-
structions and their security proofs. Due to the lack of space, we leave the formal
description of constructions and proofs to the full version [42]. In Sect. 2.6, we
discuss in more detail issues related to instantiating our schemes with noisy
multilinear maps.

2 Overview

In this work, scalars are written in normal font, such as a, b, and vectors are
written in boldface, such as v,w.

2.1 Bootstrapping

Our bootstrapping theorem follows the same two step approach as [41,44]. To
construct IO for P/poly,

Indistinguishability Obfuscation from SXDH 607

Step 1. First, construct sub-exponentially secure single-key FE schemes CFE
for NC1 that are weakly compact, meaning that encryption time scales poly-
nomially in the security parameter λ and the input length N , but also scales
sublinearly in the maximal size S of the circuits for which secret keys are
generated. More precisely, a FE scheme is said to be (1 − ε)-weakly-compact
if its encryption time is poly(λ,N)S1−ε.

Step 2. If the FE schemes obtained from Step 1 are public-key schemes, invoke
the result of [2,14] that any public-key (single-key) weakly-compact FE
schemes (for any ε > 0) imply IO for P/poly.
Otherwise, if the FE schemes obtained are secret-key schemes, then invoke
the recent result of [13] that any secret-key weakly-compact FE schemes also
imply IO for P/poly, assuming additionally sub-exponential LWE.

The challenging task is constructing (public-key or secret-key) weakly-compact
FE schemes for NC1 from simpler primitives. In [44] (LV), they constructed
such schemes from (public key or secret key respectively) collusion resistant FE
schemes for NC0 with linear efficiency, assuming the existence of a polynomial-
stretch PRG in NC0. We observe that in their construction, if the PRG has
locality L, the NC0-FE scheme is used to compute polynomials with low degree
3L + 2. In this work, we show that the degree of the FE schemes (i.e., the
degree of the polynomials supported) can be reduced to L. Below, we start with
reviewing the LV construction of weakly-compact FE for NC1, and then modify
their construction to reduce the degree of the underlying FE scheme. (In the
exposition below, we do not differentiate public-key vs secret-key schemes, since
they are handled in the same way.)

The LV Weakly-Compact FE for NC1. To construct weakly-compact FE
schemes for NC1 from FE schemes for NC0, LV uses Randomized Encodings
(RE) [8,37] to represent every NC1 function f(x), as a simpler NC0 randomized
function f̂(x; r). Then, to enable computing f(x), it suffices to publish a secret
key for f̂ ∈ NC0, and a ciphertext of (x, r), which can be done using the NC0-FE
scheme. But, the resulting ciphertext is not compact, since the randomness r for
computing the randomized encoding is at least of length S(λ)poly(λ), where S(λ)
is the size of the circuit computing f . The key idea of LV is using a polynomial-
stretch PRG PRG : {0, 1}n → {0, 1}n1+α

in NC0 to generate pseudo-randomness
for RE, that is, computing instead g(x, s) = f̂(x;PRG(s)). Now the input of the
function becomes (x, s), whose length is sublinear in S(λ) thanks to the fact that
the PRG has polynomial stretch. Since the NC0-FE scheme has linear efficiency,
the ciphertext size is also sublinear in S(λ). In addition, the function g can still
be computed in NC0.

Observe that if g can be computed by a degree-D polynomial in some ring
R, then one can instantiate the LV construction with degree-D FE schemes in
R. The question is how large is the degree D? Plug in the randomized encoding
scheme by Applebaum et al. [8], whose encodings f̂(x; r) are computable in NC0

4

and has degree 1 in x and degree 3 in r. Then, the degree of g is determined

608 H. Lin

by the degree DPRG of the PRG (i.e., the minimal degree of polynomials that
computes PRG in R), namely, D = 3DPRG + 1. As the degree of PRG is upper
bounded by its locality DPRG ≤ L, the degree of g is bounded by 3L+1. For the
security proof to work out, the actual functions used in the LV construction are
more complicated and has degree 3L + 2. For simplicity of this overview, it is
convenient to ignore this issue, as it does not affect understanding the main ideas.

A formal description of the LV weakly-compact FE scheme CFEN,D,S for
NC1 circuits with input-length N = N(λ), depth D = D(λ), and size S = S(λ)
can be found in Fig. 1; it relies on the following tools:

– A (collusion resistant) FE scheme for degree-(3D + 2) polynomials {FE =
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)} in some ring R with linear efficiency.

– A pseudorandom generator PRG with n1+α-stretch for any α > 0 that is
computable in degree D in ring R.

– A weak PRF F in NC1.
– A specific randomized encoding scheme, which is the composition of Yao’s

garbling scheme [51,52] and the AIK randomized encoding scheme in NC0 [8].
Denote by Ĉx = Yao(C,x; r) Yao’s garbling algorithm that compiles a circuit
C and an input x into a garbled circuit Ĉx, and by Π = AIK(f,x ; r) the
AIK encoding algorithm.

We refer the reader to [44] for the correctness and security of the scheme, and
to our full version [42] for the analysis of compactness and degree.

Relying on Degree-L FE. To reduce the degree of polynomials computed using
the low-degree FE, our key idea is pre-processing the input (x, s), so that, part
of the computation of the function g is already done at encryption time. To illus-
trate the idea, recall that g is linear in x. Thus, if one pre-computes x ⊗ s (where
x ⊗ s is the tensor product of x and s), then g can be computed with one degree
less. More specifically, there exists another function g′ that takes input (x, s,x ⊗
s) and computes g(x, s) in degree 3L, by replacing every monomial of form
xisi1si2 · · · with (xisi1) si2 · · · , where xisi1 is taken directly from x ⊗ s. There-
fore, we can modify the LV construction to encrypt (x, s,x ⊗ s), whose length
is still sublinear in S(λ), and generate keys for functions g′ that have degree 3L.

The more tricky part is how to further reduce the degree of g in s. The naive
method of pre-computing s⊗ s at encryption time would not work, since it would
make encryption time exceed S(λ), losing compactness. To avoid this, consider
a simple case where the NC1 function f to be computed is decomposable, in the
sense that it has I = S(λ)/poly(λ) output bits, and every output bit i ∈ [I]
can be computed by a function fi of fixed polynomial size poly(λ). (In fact, it
is w.l.o.g. to assume this, since every function f can be turned into one that is
decomposable using Yao’s garbled circuits.) Then, the AIK randomized encoding
of f consists of {f̂i(x, r[i])}i∈[I], where the random tape r[i] for every encoding
has a fixed polynomial length Q = poly(λ), since |fi| = poly(λ).

In LV, all the random tapes {r[i]} are generated by evaluating a PRG on a
single seed r = PRG(s). We first modify how these random tapes are generated.

Indistinguishability Obfuscation from SXDH 609

Parse s as Q equally-long seeds, s1, · · · sQ, and use sq to generate the qth bit in
all the random tapes, that is,

∀ q ∈ [Q], i ∈ [I], r[i]q = PRG(sq)|i = PRGi({sq,γ}γ∈Γ(i)) ,

where PRGi is the function that computes the ith output bit of the PRG, which
depends on at most L seed bits with indexes γ ∈ Γ(i). PRG(sq) is a length-I

Single-key Compact FE Scheme CFE by [44]

Setup: CFE.Setup(1λ) samples (mpk,msk)
$← FE.Setup(1λ).

Key Generation: CFE.KeyGen(msk, f) does the following:

– Sample CT
$← {0, 1}�, where � = �(λ) is set below.

– Define function g as follows: On input x of length N , a weak PRF key k of
length poly(λ), two PRG seeds s, s′ each of length �1/(1+α) and a bit b,

g(x,k, s, s′, b) does the following:
• Let hi(x,k) denote the function that computes the ith bit in Yao’s garbling

of (f,x) using pseudo-randomness generated by a weak PRF

∀i ∈ [I], hi(x,k) := Yaoi(f,x ; r = {rj = F(k, j)}) ,

where I is the length of Yao’s garbling of (f,x). (Note that h ∈ NC1 since
Yao’s garbling algorithm and the weak PRF are both computable in NC1.)

• If b = 0, for every i ∈ [I], compute the AIK encoding Π[i] of computation
(hi, (x,k))), using pseudo-randomness generated by a PRG

∀ i ∈ [I], Π[i] = AIK(hi, (x,k) ; r[i]) , where r[i] = PRG[i](s)

where PRG[i](s) denotes the ith portion in the output of PRG, and each
portion has equal length poly(λ).
Output Π = {Π[i]}i.

• If b = 1, output Π = CT ⊕ PRG(s′).
For every l ∈ [� = |Π|], let Pl denote the degree-(3D + 2) polynomial in R
that computes the lth output bit of g. (See the full version [42] for a proof that
every output bit of g can indeed be computed by a degree-(3D+2) polynomial
in R.)

– For every l ∈ [�], generate a secret key SKl
$← FE.KeyGen(msk, Pl) for Pl.

Output SK = {SKl}l∈[�].

Encryption: CFE.Enc(mpk,x) samples k
$← {0, 1}poly(λ), s, s′ $← {0, 1}�1/(1+α)

,
and generates

CT
$← FE.Enc(mpk, (x,k, s, s′, 0))

Decryption: CFE.Dec(SK,CT) computes Π = {FE.Dec(SKl,CT)}l∈[�], parses
Π = {Π[i]}i∈I , and decodes every Π[i] using the AIK decoding algorithm to
obtain a garbled circuit, which is further decoded to obtain the output f(x).

Fig. 1. Single-key compact FE CFE by [44]

610 H. Lin

string, and hence the length |sq| of each seed sq is sublinear in S(λ). Since each
encoding f̂i has degree 3 in its random tape r[i], consider an arbitrary degree 3
monomial r[i]q1r[i]q2r[i]q2 .

r[i]q1r[i]q2r[i]q2 = PRGi({sq1,γ}γ∈Γ(i)) PRGi({sq2,γ}γ∈Γ(i)) PRGi({sq3,γ}γ∈Γ(i))

=
∑

Monomials
X,Y,Z in PRGi

⎛

⎝
X(sq1,γ1 , · · · , sq1,γL)

× Y (sq2,γ1 , · · · , sq2,γL)
× Z(sq3,γ1 , · · · , sq3,γL)

⎞

⎠ ,

where Γ(i) = {γ1, · · · , γL}. Now, suppose that for every index γ ∈ [|sq|] in all
seeds, the encryptor pre-compute all the degree ≤ 3 monomials over the γth bits
in all Q seeds; denote this set as

M3(s, γ) =
{

degree ≤ 3 monomials over {sq,γ}q∈[Q]

}
.

Note that given M3(s, γ) for every γ ∈ Γ(i), the above monomial r[i]q1r[i]q2r[i]q2
can be computed in just degree L. Therefore, given M3(s, γ) for every γ ∈
[|sq|], the function g can be computed in degree L (with additionally the above-
mentioned trick for reducing the degree in x). More precisely, there exists a
degree-L polynomial g′′ that, on input x, {M3(s, γ)}γ , and their tensor product,
computes g(x, s).

Finally, we need to make sure that the total number of such degree ≤ 3
monomials is sublinear in S(λ), so that, encryption remains weakly-compact.
Note that, for each γ ∈ [|sq|], the number of degree ≤ 3 monomials over the γth

bits in these Q seeds is bounded by (Q + 1)3 = poly(λ). Moreover, the length of
each seed |sq| is still sublinear in S(λ). Thus, the total number of monomials to
be pre-computed is sublinear in S(λ).

A formal description of our weakly-compact FE scheme can be found in Fig. 2.
Important difference from the LV scheme is highlighted with red underline.

2.2 Quadratic Secret-Key FE

Before proceeding to constructing degree-D FE schemes from SXDH on degree-D
MMaps, we describe a self-contained construction of FE for quadratic polyno-
mials from SXDH on bilinear maps. The degree-D scheme is a generalization of
the quadratic scheme.

We start with reviewing the tool, Inner Product Encryption (IPE), for con-
structing quadratic FE. A (public key or secret key) IPE scheme allows to encode
vectors y and x in a ring R, in a function key iSK(y) and ciphertext iCT(x)
respectively, and decryption evaluates the inner product 〈y,x〉. In this work
(like in [44]), we use specific IPEs that compute the inner product in the expo-
nent, which, in particular, allows the decryptor to test whether the inner product
is zero, or whether it falls into any polynomial-sized range.5

5 Such IPEs should be contrasted with functional encryption for testing the orthogo-
nality of two vectors (see, e.g., [38,40] and many others), which reveals only whether
the inner product is zero and nothing else. In particular, they do not compute the
inner product in the exponent in a way that allows for further computation, which
is needed for our quadratic FE construction.

Indistinguishability Obfuscation from SXDH 611

Our Single-key Compact FE Scheme CFE

Setup: CFE.Setup(1λ) samples (mpk,msk)
$← FE.Setup(1λ).

Key Generation: CFE.KeyGen(msk, f) does the following:

– Sample CT
$← {0, 1}�, where � = �(λ) is set below.

– Define function g defined as follows: On input x of length N , a weak PRF key
k of length poly(λ), PRG seeds s and s′ of length I1/(1+α) × Q and �1/1+α

respectively, and a bit b,

g(x,k, s, s′, b) does the following:
• Let hi(x,k) denote the function that computes the ith bit in Yao’s garbling

of (f,x),

∀i ∈ [I], hi(x,k) := Yaoi(f,x ; r = {rj = F(k, j)}) ,

where I is the length of Yao’s garbling of (f,x).

• If b = 0, parse s into Q strings, s = s1|| · · · ||sQ, of equal length I1/(1+α),
and compute

∀ i ∈ [I], Π[i] = AIK(hi, (x,k) ; r[i]) ,

where Q = |r[i]| and ∀ q ∈ [Q] , r[i]q = PRGi(sq)

Output Π = {Π[i]}i.

• If b = 1, output Π = CT ⊕ PRG(s′).
For every l ∈ [� = |Π|], let Pl denote the degree-(3D + 2) polynomial in Rλ

that computes the lth output bit of g. Moreover, define

P ′
l ((1||x||k||b) ⊗ (1||S), (b(x||k)) ⊗ S, (1||b) ⊗ (1||s′))

:= The degree L polynomial that computes Pl(x,k, s, s′, b) in Figure 1

where L is the locality of PRG and
S = {(1||s�,γ) ⊗ (1||s�,γ) ⊗ (1||s�,γ)}γ∈[I1/(1+α)].

– For every l ∈ [�], generate a secret key SKl
$← FE.KeyGen(msk, P ′

l) for P ′
l .

Output SK = {SKl}l∈[�].

Encryption: CFE.Enc(mpk,x) samples k
$← {0, 1}poly(λ), s

$← {0, 1}I1/(1+α)×Q,

and s′ $← {0, 1}�1/(1+α)
, and generates

CT
$← FE.Enc(mpk, (1||x||k||0) ⊗ (1||S), (0(x||k)) ⊗ S, (1||0) ⊗ (1||s′))

Decryption: CFE.Dec(SK,CT) computes Π = {FE.Dec(SKl,CT)}l∈[�], parse Π =
{Π[i]}i∈I , and decodes every Π[i] using the AIK decoding algorithm to obtain a
garbled circuit, which is further decoded to obtain the output f(x).

Fig. 2. Single-key compact FE CFE from locality-L PRG and degree-L FE

612 H. Lin

Given IPE schemes, it is trivial to implement FE for quadratic polynomials,
or quadratic FE schemes for short: Simply write a quadratic function f as a
linear function over quadratic monomials f(x) = Σi,jci,jxixj = 〈c,x ⊗ x〉. Then,
generate an IPE secret key iSK(c), and an IPE ciphertext iSK(x⊗x), from which
the function output can be computed. However, such a scheme has encryption
time quadratic in the input length N = |x|. The key challenge is improving the
encryption time to be linear in the input length under standard assumptions
(e.g. bilinear maps).

In this work, we do so based on SXDH on bilinear maps, where the exponent
space R of the bilinear map is the ring in which quadratic polynomials are
evaluated. At a high-level, our key idea is “compressing” the encryption time of
the above trivial quadratic FE schemes from quadratic to linear, by publishing
some “compressed information” of linear size at encryption time, which can
be expanded to an IPE ciphertext of x ⊗ x at decryption time. To make this
idea work, we will use, as our basis, the public key IPE scheme by Abdalla
et al. (ABDP) [1] based on the DDH assumption; we briefly review their scheme.

The ABDP Public Key IPE Scheme. The ABDP scheme IPE resembles the El
Gamal encryption and is quite simple. Let G be a cyclic group of order p with
generator g, in which DDH holds. A master secret key of the ABDP scheme
is a random vector s = s1, · · · , sN

$← Z
N
p , and its corresponding public key is

iMPK = gs1 , · · · gsN . A ciphertext encrypting a vector x = x1, · · · , xN looks like
iCT = g−r, grs1+x1 , · · · , grsN+xN , where r is the random scalar “shared” for
encrypting every coordinate. It is easy to see that it follows from DDH that this
encryption is semantically secure.

To turn the above scheme into an IPE, observe that given a vector y ∈ Z
N
p ,

and in addition the inner product 〈y, s〉 in the clear, one can homomorphically
compute inner product in the exponent to obtain g−r〈y,s〉gr〈s,y〉+〈x,y〉 = g〈x,y〉,
which reveals whether the inner product 〈x,y〉 is zero or not. Therefore, the
ABDP scheme sets the secret key to be iSK = 〈s,y〉 ||y.

In this work, we will use the bracket notation [x]l = gx
l to represent elements

in group Gl, and omit l when there is no need to specify the group. Under this
notation, the ABDP scheme can be written as,

iMSK = s $← Zp, iMPK = [s], iCT = [−r || (r s + x)] iSK = 〈s,y〉 ||y

where au denotes coordinate-wise multiplication with a scalar a and u+v denotes
coordinate-wise addition between two vectors. We will also refer to [x]l as an
encoding of x in group Gl.

Compress an ABDP Ciphertext iCT(x ⊗ x). The first difficulty with “compress-
ing” a ciphertext iCT = iCT(x ⊗ x) = [−r || (r s + x ⊗ x)] is that it contains
information of the master secret key s of quadratic length, which is truely ran-
dom and cannot be “compressed”.

Our idea is replacing the truly random secret key s with the tensor product
of two length-N vectors s1 ⊗ s2, so that, the new ciphertext depends only on
information, namely (r, s1, s2,x), of linear size. The reason that we use the tensor

Indistinguishability Obfuscation from SXDH 613

product s1 ⊗ s2 as the secret key is that under DDH, encodings
[
s1 ⊗ s2

]
is

indistinguishable to encodings of N2 truely random elements, and hence there
is hope that s1 ⊗ s2 is “as good as” a truly random master secret key. As we
will see later, this hope is true, however through complicated security proof.

Now, it is information theoretically possible to compress iCT(x ⊗ x). How-
ever, simply publishing (r, s1, s2,x) would blatantly violate security. We need
a way to securely and succinctly encode them so that only the ciphertext iCT
is revealed. Classical cryptographic tools for hiding computation like garbled
circuits or randomized encodings do not help here, since the output length is
quadratic, and garbled circuits or randomized encodings have at least quadratic
size too. Instead, we leverage the special structure of iCT: Each of the last N2

encodings of iCT encodes an element that is the inner product of two length-2
vectors,

iCT[0] = [−r],
(
iCT[i, j] =

[〈
xi||s1

i , xj ||rs2
j

〉])
i∈[N],j∈[N]

Here, for convenience, we use 0 and {(i, j)} to index different encodings in iCT.
Suppose that we have a (secret key) IPE scheme cIPE that is function hiding

(defined shortly) from bilinear maps, and has certain canonical form: In partic-
ular, its ciphertexts and secret keys encodes the input and function vectors in
different source groups G1, G2 of the bilinear map, and decryption simply uses
pairing to produce an encoding of the output inner product in the target group
G3. (Unfortunately, off-the-shelf function hiding IPEs [12,24,44] do not have the
canonical form and we discuss how to construct such a scheme later.)

Then, we can use a canonical function hiding IPE, to generate the last N2

encodings {iCT[i, j]}: Publish N ciphertext {cCTi} where each cCTi encrypts
vector (xi||s1

i), and N secret keys {cSKj} where each cSKj encrypts vector
(xj ||rs2

j). To obtain the (i, j)th encoding, one can simply decrypt the ith cipher-
text using the jth secret key, which produces

iCT[i, j] =
[〈

xi||s1
i , xj ||rs2

j

〉]
= cIPE.Dec(cSKj , cCTi)

In order to hide r, xj ’s, and s1
j , s

2
j ’s, it is necessary that the IPE scheme is

function hiding, which guarantees that secret keys and ciphertexts for two sets of
vectors {ui,vi} and {u′

i,v
′
i} are indistinguishable if they produce identical inner

products 〈ui,vj〉 = 〈u′
i,v

′
j〉. The hope is that function hiding is also sufficient, as,

intuitively, it ensures that only the set of possible outputs {iCT[i, j]} is revealed,
and all other information of (r,x, s1, s2) is hidden. (This intuition is not precise,
as the IPE scheme is not simulation-secure, but is a good starting point.)

In summary, we now have the first version of our quadratic FE schemes.

Version 1 of Our Secret Key Quadratic FE scheme qFE
– Setup: A master secret key msk consists of two random vectors s1, s2

of length N .
– Key Generation: A secret key SK(c) of a function fc(x) = 〈c,x ⊗ x〉
consists of

SK(c) =
(〈

s1 ⊗ s2, c
〉
, c

)
.

614 H. Lin

– Encryption: Sample a random scalar r
$← Zp. A ciphertext CT(x) of

input vector x contains

CT(x) =
(
[−r],

{
cCTi(χ1

i), cSKi(χ2
i)
}

i∈[N]

)

where χd
i =

{
xi||s1

i if d = 1
xi||rs2

i if d = 2
(1)

and {cSKj , cCTi} are generated using a freshly sampled master secret key
cMSK of a canonical function hiding IPE cIPE.
– Decryption: For every (i, j) ∈ [N]2, decrypt cCTi using cSKj to obtain

cIPE.Dec(cSKj , cCTi) =
[〈

χ1
i ,χ

2
j

〉]
=
[
rs1

i s
2
j + xixj

]
= iCT[i, j]. (2)

Homomorphically compute Λ1 =
〈
s1 ⊗ s2, c

〉
[−r] =

[−r
〈
s1 ⊗ s2, c

〉]
,

and Λ2 = 〈{iCT[i, j]}, c〉. Homomorphically add Λ1 + Λ2 to produce an
encoding of the output [fc(x)].

Next, we move to describing ideas for the security proof. As we develop the proof
ideas, we will need to make several modifications to the above scheme.

Selective IND-Security of Our Quadratic FE Scheme. We want to show
that ciphertexts of qFE of one set of inputs {ui} is indistinguishable from that
of another {vi}, as long as all the secret keys published are associated with
functions {fcj

} that do not separate these inputs, that is, fcj
(ui) = fcj

(vi) for
all i, j. For simplicity of this overview, we restrict our attention to the simpler
case where only a single ciphertext and many secret keys are published. The
security proof for the general case with many ciphertexts follows from a hybrid
argument where the encrypted vectors are switched one by one from ui to vi,
and the indistinguishability of each step is proven using the same ideas to the
single-ciphertext case.

Naturally, we want to reduce the security of qFE the security of the ABDP
IPE scheme IPE and the function hiding of cIPE. Our intuition is that given
a ciphertext CT(x) for x = u or v, the security of cIPE ensures that the N
ciphertexts and secret keys {cCTi}, {cSKj} contained in ciphertext CT(x) reveals
only the output encodings {iCT[i, j]} and nothing else. Then, the security of the
ABDP scheme ensures that the derived ciphertext iCT encrypting either u ⊗ u
or v ⊗ v is indistinguishable, at the presence of secret keys for vectors {cj}
that do not separate them. This intuition would go through if the two building
blocks cIPE and IPE provide very strong security guarantees: Naturally, cIPE
has simulation security, so that, its ciphertexts and secret keys {cCTi}, {cSKj}
can be simulated from the set of output encodings {iCT[i, j]}, and second, the
ABDP scheme is secure even when the master secret keys are generated as a
tensor product s1 ⊗ s2 as opposed to be truely random. Unfortunately, our
building blocks do not provide such strong security guarantees, which leads to
the following challenges.

Indistinguishability Obfuscation from SXDH 615

– Challenge 1—Relying only on indistinguishability-based function hiding of
cIPE. The simulation security of cIPE essentially allows one to easily reduce
the security of qFE to that of IPE. With only indistinguishability-based secu-
rity of cIPE, the reduction to security of IPE becomes significantly harder.
Typically, one build a black-box security reduction that receives from its chal-
lenger IPE secret keys and a ciphertext, in this case {SKj}, iCT, and embeds
them in the view of the adversary attacking the qFE scheme. However, the
ciphertext CT of qFE has only linear size, but iCT has quadratic size—there
is not enough space for embedding.6

To resolve this problem, our idea is to embed iCT in “piecemeal”. Observe that
the ABDP scheme encrypts its input vector element by element using different
master secret key elements, and a shared random scalar. Thus, we can flexi-
bly view its ciphertext iCT either as a single ciphertext, or as a list of many
ciphertexts encrypting a list of vectors of shorter length. In particular, we will
“cut” the ciphertext into N pieces, each of length N and indexed by i ∈ [N].

iCT = [r],
{
iCT[i, �] = {[rs1

i s
2
j + xixj

]}j∈[N]

}
i∈[N]

.

Since the ith ciphertext-piece can be viewed as an IPE ciphertext of vector
xix, generated with master secret key s1

i s
2 and shared random scalar r. Our

idea is gradually switching the values of xix from uiu to viv piece by piece in
N steps. In each step, we first apply the function hiding of cIPE to move to a
hybrid distribution where the challenge-piece iCT[i, �] is directly hardwired in
the qFE ciphertext; since |iCT[i, �]| = N , there is enough space for it. Then,
we rely on the indistinguishability-security of IPE to argue that switching
the plaintext-piece underlying iCT[i, �] from uiu to viv is indistinguishable.

– Challenge 2—Relying on the security of the ABDP scheme under correlated
randomness. Arguing the indistinguishability of switching the vectors under-
lying each ciphertext-piece iCT[i, �] from uiu to viv turns out to be tricky.
First, An acute reader might have already noticed the problem that changing
pieces in the tensor product would affect the function output, which is notice-
able. For example, after switching the first plaintext piece to viv, the function
output changes to 〈cj ,u ⊗ u〉 �= 〈cj , v1v||u≥1 ⊗ u〉. To resolve this problem,
we modify the scheme to build in an offset value Δj in every secret key SKj

to ensure that the function output remains the same throughout all steps.
Second, the challenge ciphertext-piece is generated with master secret key
s1

i s
2, which is not truly random, since the vector s2 is used for generating

the master secret keys s1
ks

2 of other ciphertext-pieces for k �= i. We overcome
this by relying on the SXDH assumption to argue that encodings of s1

i s
2,

given encodings of s1
i and s2, are indistinguishable to encodings of random

elements, and hence as good as a truly random master secret key. Similar
idea was used in [44].

6 Non-black-box security reduction may get around this difficulty, but is unclear how
one can design a non-black-box reduction here.

616 H. Lin

Next, we discuss in more detail how to overcome these two challenges.

Overcoming Challenge 1—Embed ABDP IPE ciphertext in piecemeal.
Our goal is switching piece by piece the tensor product underlying the derived
IPE ciphertext from u ⊗ u to v ⊗ v, which corresponds to changing the
encrypted input from u to v. To do so, we build a sequence of 2N hybrids
{Hb

ρ}ρ∈[N],b∈{0,1} satisfying the following desiderata:

1. In Hb
ρ, the ρth ciphertext-piece iCT[ρ, �] is embedded in the qFE ciphertext

CT,
2. The derived IPE ciphertext iCT encrypts the following “hybrid” vectors.

In H0
ρ , v1v|| · · · ||vρ−1v|| uρu ||uρ+1u|| · · · ||uNu

In H1
ρ , v1v|| · · · ||vρ−1v|| vρv ||uρ+1u|| · · · ||uNu

To build such hybrids, we need to modify our qFE scheme to build in more
“redundant space” in its ciphertext.

Version 2 of Our Secret Key Quadratic FE scheme qFE
– Encryption: A ciphertext CT(x) consists of

CT(x) =
(
[−r],

{
cCTi(X1

i)
}

i∈[N]
,
{
cSKj(X2

j)
}

j∈[N]

)
,

where Xd
i = (χd

i ||0, 0) (3)

where {cCTi} and {cSKj} encode vectors χd
i like before, but now padded

with 3 zeros.

We refer to the first 4 elements in X’s as the first slot, which holds two vectors
of length 2, and the last element as the second slot. In the honest executions,
these vectors {Xd

i } are set to either (μd||0, 0) if u is encrypted, or (νd||0, 0) if
v is encrypted, with μ and ν defined as χ in Eq. 1 but replacing xi with ui or
vi respectively.

Set the Vector X’s in Hybrid Hb
ρ. Hybrid Hb

ρ uses the following set of vectors
X’s, which leverages the “space” of the additional zeros to satisfy the above
desiderata.

X1
i =

⎛
⎜⎝

⎧
⎪⎨
⎪⎩

0 || ν1
i if i < ρ

μ1
i || 0 if i > ρ

0 || 0 if i = ρ

,

⎧
⎪⎨
⎪⎩

0 if i < ρ

0 if i > ρ

1 if i = ρ

⎞
⎟⎠

X2
j =

(
μ2

j ||ν2
j ,

{〈
μ1

ρ,μ
2
j

〉
in H0

ρ〈
ν1

ρ ,ν2
j

〉
in H1

ρ

)

Let us first see how the challenge ciphertext-piece iCT[ρ, �] is hardwired. Observe
that the last slots of X2

j ’s contain exactly the values encoded in iCT[ρ, �]: In
H0

ρ , they are set to {〈μ1
ρ,μ

2
j

〉
= rs1

ρs
2
j + uρuj}j∈[N] (see Eq. 2), corresponding

Indistinguishability Obfuscation from SXDH 617

to encrypting uρu, while in H1
ρ , they are set to {〈ν1

ρ ,ν2
j

〉
= rs1

ρs
2
j + vρvj}j ,

encrypting vρv. By the fact that cIPE encodes its function vectors, X2
j ’s here,

in a bilinear source group,
[
X2

j

]
is effectively embedded in cSKj ’s and hence so

is iCT[ρ, �]. Next, we check that the IPE ciphertext derived by decrypting every
pair (cCTi, cSKj) indeed encrypts the right hybrid vector.

cIPE.Dec(cSKj , cCTi) =
[〈
X1

i ,X
2
j

〉]

=

⎡
⎢⎣

⎧
⎪⎨
⎪⎩

〈
0 || ν1

i || 0, μ2
j || ν2

j || �
〉

=
〈
ν1

i , ν2
j

〉
if i < ρ〈

μ1
i || 0 || 0, μ2

j || ν2
j || �

〉
=
〈
μ1

i , μ2
j

〉
if i > ρ〈

0 || 0 || 1, μ2
j || ν2

j || �
〉

= � if i = ρ

⎤
⎥⎦

In the case i = ρ, iCT[ρ, �] encodes exactly the values hardwired in the last
slot, which as argued above encrypts uρu in H0

ρ and vρv in H1
ρ as desired. In

the case i < ρ, the derived ciphertext-piece iCT[i, �] encodes values {〈ν1
i ,ν2

j

〉}j ,
corresponding to encrypting viv; and similarly, when i > ρ, the ciphertext-piece
iCT[i, �] encrypts uiu as desired. Therefore, all desiderata above are satisfied.

Now, to show the security of qFE, it suffices to argue that every pair of
neighboring hybrids is indistinguishable. Note that the only difference between
different hybrids lies in the values of the X vectors encoded in the ciphertexts
and secret keys of cIPE. Observe first that in hybrids H1

ρ and H0
ρ+1, every

pair of vectors (X1
i ,X

2
j) produce the same inner products, and hence the indis-

tinguishability of H1
ρ and H0

ρ+1 follows immediately from the function hiding
property of cIPE. This is, however, not the case in hybrids H0

ρ and H1
ρ , where

for the special index ρ, the challenge ciphertext-piece change from encrypting
uρu to vρv. Next, we show how to reduce the indistinguishability of H0

ρ and H1
ρ

to the security of the ABDP IPE scheme, which turns out to be quite tricky.

Overcoming Challenge 2: Indistinguishability of H0
ρ and H1

ρ from IPE
security. The goal is relying on the security of IPE to argue that the embedded
challenge ciphertext-pieces in H0

ρ and H1
ρ are indistinguishable, and hence so are

the hybrids. But, we immediately encounter a problem: The function outputs
obtained when decrypting the derived ciphertext iCT using secret keys SKj ’s are
different in H0

ρ and H1
ρ , namely

〈
v1v|| · · · ||vρ−1v|| uρu ||uρ+1u|| · · · ||uNu, , cj

〉

�= 〈
v1v|| · · · ||vρ−1v|| vρv ||uρ+1u|| · · · ||uNu , cj

〉
.

This means the hybrids are clearly distinguishable. To fix this, we modify our
qFE scheme to build in an offset value Δ in its secret keys, which will be added
to the decryption output. In the honest execution, the offsets are set to zero,
whereas in hybrid Hb

ρ, they are set to Δb
j(ρ) in each secret key SKj , so that, the

above inner products when added with Δ0
j (ρ) in the left hand side and Δ1

j (ρ) in
the right hand side become equal. Clearly, whether the offset values Δ are used
(set to non-zero) at all and their values must be hidden, we do so by encoding
it using cIPE, as described below.

618 H. Lin

Version 3 of Our Secret Key Quadratic FE schemes qFE
– Setup: A master secret key msk = (s1, s2, cMSK′) contains additionally
a master secret key cMSK′ of cIPE.
– Key Generation: In the secret key SK(c), the inner product〈
s1 ⊗ s2, c

〉
is now encoded, together with an offset value Δ, using cMSK′

of cIPE:

SK(c) =
(
cSK′ (〈s1 ⊗ s2, c

〉 ||Δ = 0
)
, c

)
.

– Encryption: In the ciphertext CT(x), the random scalar r is now
encrypted, with an additional 0, using cMSK′ of cIPE:

CT(x) =
(
cCT′(−r||0),

{
cCTi(X2

j)
}

i∈[N]
,
{
cSKj(X2

j)
}

j∈[N]

)
.

– Decryption: Decryption proceeds as before, except that now encod-
ing Λ1 is obtained by decrypting cCT′ using cSK′, which yields[−r

〈
s1 ⊗ s2, c

〉
+ Δ

]
as desired.

With the new offset value in secret key, we can now fix our hybrids so that the
function outputs always stay the same.

Set the offsets in hybrid Hb
ρ. In hybrid Hb

ρ, not only that the vectors X’s are set
differently as above, the cIPE ciphertext cCT′ in ciphertext CT encrypts (0||1)
instead of (−r||0) and the corresponding cIPE secret key cSK′

j in SKj encodes
vector (

〈
s1 ⊗ s2, c

〉 || r
〈
s1 ⊗ s2, c

〉
+ Δb

j(ρ)), instead of (
〈
s1 ⊗ s2, c

〉 ||0). At
decryption time, the offset Δb

j(ρ) is added to the inner product between cj and
hybrid vector underlying iCT. Setting Δb

j(ρ) appropriately ensures that

〈
v1v|| · · · ||vρ−1v|| uρu ||uρ+1u|| · · · ||uNu, , cj

〉
+ Δ0

j (ρ)

=
〈
v1v|| · · · ||vρ−1v|| vρv ||uρ+1u|| · · · ||uNu , cj

〉
+ Δ1

j (ρ) = fc(u) .

Now H0
ρ and H1

ρ have the same function outputs. But, to formally reduce
their indistinguishability to the security of IPE, we need a way to incorpo-
rate the offsets Δ’s into the challenge IPE ciphertexts. We do so by viewing
Δj ’s as extension of the plaintext. More specifically, we implicitly switch from
encrypting U = uρu||Δ0

1(ρ)|| · · · ||Δ0
L(ρ) to V = vρv||Δ1

1(ρ)|| · · · ||Δ1
L(ρ) using

master secret key S = s1
ρs

2||t1|| · · · ||tL, at the presence of secret keys for vectors
Yj = {cj [ρ, �]||ej}j , where L is the total number of keys, tj ’s are implicitly sam-
pled secret key elements, and ej is the unit vector of length L with a single one at
index j. Observe that from such ciphertexts and secret keys, one can extract the
challenge ciphertext-piece iCT[ρ, �] encrypting uρu or vρv, and obtain an encod-
ing of −r

〈
s1 ⊗ s2, c

〉
+Δb

j(ρ) embedded in each secret key cSK′
j—these are the

only parts that hybrids H0
ρ and H1

ρ differ at. Given that 〈U,Yj〉 = 〈V,Yj〉 for
every j, we are almost done: Apply the security of IPE to argue that H0

ρ and
H1

ρ are indistinguishable, except that we must overcome one last hurdle—the
master secret key for encrypting uiu or viv is not truely random.

Indistinguishability Obfuscation from SXDH 619

Pseudorandomness from SXDH. The master secret key of the challenge
ciphertext-piece is s1

ρs
2. It is not truely random since s2 is also used for gen-

erating the master secret keys of other ciphertext-pieces. But, observe that both
the challenge ciphertext-piece and s2 are embedded in secret keys {cSKj}, and
hence encoded in the same bilinear map source group. Furthermore, thanks to
the fact that in Hb

ρ, the ρth ciphertext cCTρ encrypts the vector (0||0, 1), the
key element s1

ρ does not appear in the other source group. Therefore, we can
apply the SXDH assumption to argue that encodings of s1

ρs
2 is indistinguishable

to that of a truly random vector w—in other words, the master secret key s1
ρs

2

is pseudorandom, inside encodings. Therefore, the security of IPE applies, and
we conclude that hybrid H0

ρ and H1
ρ are indistinguishable.

2.3 Degree-D Secret-Key FE

Generalizing from quadratic FE to degree-D secret key FE, the natural idea is
again starting from the trivial IPE-based construction that encrypts all degree-
D monomials, denoted as x≤D = ⊗d∈[D]x, and compressing the ND-size cipher-
text into linear size. Naturally, instead of compressing a ciphertext generated
using a truly random master secret key, we will use a structured master secret
key s≤D = ⊗d∈[D]si. Thus the IPE ciphertext to be compressed looks like:

iCT[0] = [−r], iCT[I1, · · · , Id] =
[
rs1

I1 · · · sD
ID

+ xI1 · · · xID

]

The challenge is how to generate the ND encodings iCT[I] from just linear-sized
information?

Key Tool: High-Degree IPE. We generalize IPE to the notion of high-degree IPE,
or HIPE for short. More precisely, a degree-D HIPE is a multi-input functional
encryption scheme for degree-D inner product defined as follows,

〈
x1, · · · ,xD

〉
= Σi∈[N]x

1
i x

2
i · · · xD

i

Introduced by [35], a multi-input functional encryption allows one to encrypt
inputs at different coordinates, and generate secret keys associated with multi-
input functions, so that, decryption computes the output of the function eval-
uated on inputs encrypted at different coordinates. In the context of HIPE, a
degree-D HIPE encryption scheme hIPE allows one to generate a ciphertext
hCTd(xd) encrypting an input vector xd at a coordinate d ∈ [D − 1], and a
secret key hSK(xD) at coordinate D, so that, decryption reveals whether the
degree-D inner product

〈
x1 · · ·xD

〉
is zero or not. Under this generalization,

standard IPE is a special case of HIPE for degree D = 2.
In terms of security, the notion of function hiding also generalizes naturally,

HIPE is function hiding, if ciphertexts and keys {hCT1
i , · · · , hCTD−1

i , hSKi}i∈[L]

encoding two sets of vectors {u1
i , · · · ,uD−1

i ,uD
i }i∈[L] and {v1

i , · · · ,vD−1
i ,vD

i }i∈[L]

are indistinguishable, whenever all degree-D inner products that can be computed
from them are identical, that is,

∀I ∈ [L]D,
〈
u1

I1 , · · ·uD
ID

〉
=
〈
v1

I1 , · · ·vD
ID

〉

620 H. Lin

In this work, we give a construction of function hiding degree-D HIPE scheme
from the SXDH assumption on degree-D multilinear maps. Our construction
starts from a canonical function hiding IPE scheme (for D = 2), and inductively
build degree-(D +1) HIPE scheme, by composing a degree-D HIPE scheme and
a special-purpose function hiding IPE scheme. Our HIPE schemes have canoni-
cal form (similar to the canonical form for standard IPE): Ciphertexts (or secret
keys) at coordinate d (or D) consist of encodings in the dth (or Dth respec-
tively) MMap source group, and decryption uses degree-D pairing to produce
an encoding of the degree-D inner product. That is,

hIPE.Dec(hSK(xD), hCT1(x1), · · · , hCTD(xD−1)) =
[〈
x1, · · · ,xD

〉]

From Degree-D HIPE to Degree-D FE. HIPE works perfectly for our goal of
compressing the ciphertext iCT. Generalizing qFE, our degree-D FE scheme
dFE generates ciphertexts as follows:

CT(x) =

(
cCT′(−r||0),

{
cCT1

i (X
1
i), · · · , cCTD−1

i (XD−1
i), cSKi(X

D
i)
}

i∈[N]

)

where Xd
i = χd

i ||0 and χd
i =

{
xi||sd

i if d < D

xi||rsD
i if d = D

.

From such a ciphertext, a decryptor can “expand” out a size-ND IPE cipher-
text iCT by decrypting every combination of HIPE ciphertexts and secret keys.
Namely, for every I ∈ [N]D,

hIPE.Dec(cCT1
I1 , · · · , cCTD−1

ID−1
, cSKID

) =
[〈
X1

I1 , · · · ,XD
ID

〉]

=

⎡
⎣r

∏
d∈[D]

sd
Id

+
∏

d∈[D]

xId

⎤
⎦ = iCT[I]

where iCT[I] encrypts the Ith degree-D monomial
∏

d∈[D] xId
, using the Ith key

element
∏

d∈[D] s
d
Id

.
To show security of dFE, we, again, switch the degree-D monomials

encrypted in the IPE ciphertext iCT in piecemeal. In each step, we can still
only embed a size-N ciphertext-piece; naturally we embed iCT[ρ, �] for a prefix
ρ ∈ [N]D−1 of length D − 1. Thus, the ND encrypted monomials are changed
piece by piece in ND−1 steps, where in the ρth step, all monomials with index I
smaller than ρ (i.e., I≤D−1 < ρ) have already been switched to

∏
d∈[D] vId

, mono-
mials with index I larger than ρ (i.e., I≤D−1 > ρ) remain to be

∏
d∈[D] uId

, and
monomials with index I that agrees with ρ (i.e., I≤D−1 = ρ) are being switched
from

∏
d∈[D] uId

in H0
ρ to

∏
d∈[D] vId

in H1
ρ .

Creating a sequence of hybrids that carry out these steps is more complex
than the case for degree 2. First, we need more space in the ciphertext to make
sure that the right monomials are encrypted for every index I; thus, the vec-
tors X’s are padded to length 2D − 1. Second, it becomes significantly harder

Indistinguishability Obfuscation from SXDH 621

to argue that the key elements (
∏

d∈[D−1] s
d
ρd

)s≤D are pseudorandom, as the
shares sd

i ’s are encoded in different MMap source groups, and unlike the degree
2 case, we cannot eliminate the appearance of all shares {sd

ρd
} since they are also

used for generating the master secret keys of other ciphertext-pieces (whereas
in the degree 2 case, s1

ρ is only used for generating s1
ρs

2). To resolve this, we
apply the SXDH assumption iteratively to gradually replace every partial prod-
uct

∏
d∈[d�] s

d
ρd

with an independent and random element wd
ρ, so that, the mas-

ter secret keys for other ciphertext-pieces are generated using independent w
elements.

2.4 Construction of HIPE

We construct function hiding HIPE schemes by induction in the degree D.

– For the base case of D = 2, function hiding degree-2 HIPE is identical to
function hiding IPE, which we give a new construction discussed shortly in
the next subsection.

– For the induction step, we show that for any D ≥ 2, if there exist a function
hiding degree-D HIPE scheme, denoted as dIPE, from SXDH on degree-
D MMap, then there exist a function-hiding degree-(D + 1) HIPE scheme,
denoted as hIPE, from SXDH on degree-(D+1) MMap. Our induction keeps
the invariant that both dIPE and hIPE have canonical form.

In the induction step, we construct the degree-D + 1 scheme hIPE, by com-
bining the degree-D scheme dIPE, with a special purpose IPE scheme sIPE.
Denote by (hCT1, · · · , hCTD) and hSK the ciphertexts and secret key of hIPE,
(dCT1, · · · , dCTD−1) and dSK that of dIPE, and sCT and sSK that of sIPE.

To achieve functionality, we need to specify how to generate ciphertexts and
secret key for input vectors x1, · · · ,xD and xD+1, so that,

hIPE.Dec(hSK, hCT1, · · · , hCTD) =
[〈
x1, · · · ,xD,xD+1

〉]
.

Observe that a degree-(D + 1) inner product of x1, · · ·xD+1, can be computed
as the inner product between xD+1 and the coordinate-wise product of the first
D vectors

∏
d∈[D] x

d, denoted as x≤D, that is,

y =
〈
x1, · · ·xD+1

〉
=

〈 ∏
d∈[D]

xd,xD+1

〉
=
〈
x≤D,xD+1

〉

Therefore, if the decryptor obtains a pair of sIPE ciphertext and secret key
(sCT, sSK) for (x≤D,xD+1), he/she can decrypt to obtain [y]. To do so, our new
scheme hIPE simply publishes sSK as its secret key,

Secret key of hIPE: hSK = sSK ← sIPE.KeyGen(sMSK,xD+1).

However, it cannot directly publish a ciphertext of x≤D, as x≤D is the product of
D input vectors, but each encryption algorithm hIPE.Encd receives only a single

622 H. Lin

vector xd as input and cannot compute x≤D. The idea is to include in the D
ciphertexts hCT1, · · · , hCTD of hIPE, ciphertexts and secret keys of the degree-
D scheme, so that the decryptor can combine them to generate a ciphertext sCT
of x≤D.

Towards this end, we rely on the first property of sIPE that its ciphertext
sCT consists of many encodings {sCTl}l∈[L]. Suppose that the element encoded
sctl in every encoding sCTl can be expressed as the inner product of D vectors

Condition C: sctl =
〈
χ1

l , · · · χD
l

〉
, and each χd

l depends only on xd,

Then, it suffices to encode these vectors in a tuple (dCT1
l , · · · dCTD−1

l , dSKl)
of ciphertexts and secret key of dIPE using an independently sampled master
secret key dMSKl, from which the decryptor can obtain exactly sCTl. Thus, the
D ciphertexts hCT1, · · · , hCTD of our new scheme hIPE consists of exactly one
such tuple (dCT1

l , · · · dCTD−1
l , dSKl) for every l, namely,

Ciphertext of hIPE:

hCTd =

⎧
⎨
⎩

{
dCTd

l ← dIPE.Enc(dMSKl,χ
d
l)
}

l∈[L]
if d ≤ D

{
dSKl ← dIPE.KeyGen(dMSKl,χ

D
l)
}

l∈[L]
if d = D

.

Given (hCT1, · · · , hCTD) and hSK as specified above, the decryptor proceeds in
two steps:

1. First, decrypt for every l, the tuple (dCT1
l , · · · dCTD−1

l , dSKl) using the
decryption algorithm of dIPE to obtain sCTl; put them together to get a
ciphertext sCT of x≤D.

2. Then, decrypt the obtained ciphertext sCT using the decryption algorithm of
sIPE and secret key hSK = sSK of xD+1 to obtain an encoding of the final
inner product y, as illustrated below.

hCT1 = {dCT1
l }l, · · · , hCTD−1 = {dCTD−1

l }l, hCTD = {dSKl}l︸ ︷︷ ︸
hSK = sSK

Decrypt to sCT︸ ︷︷ ︸
Decrypt to [y]

Setting Condition C – A First Attempt. We now argue that Condition C
above indeed holds. This relies on a second property of the special-purpose IPE
scheme sIPE that the elements {sctl} encoded in its ciphertext sCT, depends
linearly in the encrypted vector x≤D and randomness r of encryption. More
specifically, when the master secret key sMSK is fixed, each element sctl is the
output of a linear function h

(sMSK)
l on input (x≤D, r),

sCT = sIPE.Enc(sMSK, x≤D; r) = {[sctl]}l ,

with sctl = h
(sMSK)
l (x≤D, r) =

〈
c(sMSK)

l , (x≤D||r)
〉

,

Indistinguishability Obfuscation from SXDH 623

where c(sMSK)
l is the coefficient vector of h

(sMSK)
l . Then, since x≤D = x1 · · ·xD, we

can represent sctl as the inner product of D vectors χ1
l , · · · ,χD

l , each depending
on only one input vector xD, as follows:

sctl =
〈
χ1

l ,χ
2
l , · · · χD

l

〉
χd

l =

⎧
⎪⎨
⎪⎩

x1||r if d = 1
xd||1 if 1 < d < D

(xD||1)(c(sMSK)
l) if d = D

.

Therefore, as discussed above, encrypting the vectors {χd
l } in the ciphertexts

of hIPE guarantees that the decryptor can obtain sCT from the ciphertexts,
and decrypting the ciphertext sCT further produces an encoding of the correct
output y.

A Security Issue. The above way of setting the vectors {χd
l }d,l achieves func-

tionality, but, does not guarantee security. A security issue stems from the fact
that the randomness r used for generating the ciphertext sCT is hardcoded
entirely in the input vectors {χ1

l }l encrypted at the first coordinate. Consider a
simple scenario where a single ciphertext of hIPE at the first coordinate, two
ciphertexts at each other coordinate, and a single secret key, are published:

hCT1, hCT2
0, · · · , hCTD

0 , hSK

hCT2
1, · · · , hCTD

1

Since the randomness r is embedded in hCT1, different combinations of cipher-
texts, say hCT1 and hCT2

b2 · · · hCTD
bD

, produce sIPE ciphertexts encrypting
different vectors, x1x2

b2
· · ·xD

bD
, but using the same random coins r. The secu-

rity of sIPE does not hold when attackers can observe ciphertexts with shared
randomness, and in particular, information of the encrypted vector x1x2

b2
· · ·xD

bD

may be revealed. On the other hand, the function hiding property requires that
only the final degree-(D+1) inner products x1x2

b2
· · ·xD

bD
xD+1 are revealed, and

nothing else.

Setting Condition C, Right. To address this security issue, we need to ensure
that ciphertexts sCT produced by different combinations of ciphertexts of hIPE
correspond to (at the very least) distinct randomness. To do so, we embed fresh
randomness rd in ciphertexts at every coordinate by modifying the encrypted
vectors χd

l to the following:

χd
l =

{
xd||rd if d < D

(xD||rD)(c(sMSK)
l) if d = D

Note that the inner products of these vectors correspond to a ciphertext sCT
generated using random coins r≤D =

∏
d∈[D] r

d. That is,

〈χ1, · · · ,χD〉 =
〈
c(sMSK)

l , (x≤D||r≤D)
〉

= h
(sMSK)
l (x≤D, r≤D) = sctl,

sCT = {[sctl]}l = sIPE.Enc(sMSK, x≤D; r≤D).

624 H. Lin

In the simple scenario above, combining hCT1, hCT2
b2 · · · , hCTD

bD
now produces

sCT with randomness r1r2
b2

· · · rD
bD

, which is distinct for each combination.
Having distinct randomness is still not enough for applying the security of

sIPE, which requires independently and uniformly sampled randomness. We
will rely on the SXDH assumption to argue that they are indeed pseudorandom.
The security analysis of the above scheme turns out to be quite complicated,
and in fact for security to hold, the scheme needs to further pad the vectors χd

l

with zeros, serving as redundant space for hardwiring information in different
hybrids in the security proof.

2.5 Simple Function Hiding IPE

As described above, our construction of degree-D FE crucially relies on a canon-
ical function hiding IPE. However, known secret-key IPE schemes [12,24,44] do
not have the canonical form, in particular, their decryption does not produce
an encoding of the output inner product [〈x,y〉], but produce the inner product
masked by a scalar [〈x,y〉 θ] together with [θ], where the scalar θ is determined
by the randomness used in key generation and encryption. In this work, we give
a construction of a canonical function hiding IPE. Our construction is extremely
simple and may be of independent interests. We now summarize the idea of the
construction in one paragraph.

Lin and Vaikuntanathan [44] give a simple transformation from IPE with
weak function hiding to IPE with full function hiding. Our construction starts
from the ABDP public key IPE scheme, whose secret key for a vector y reveals
y and its inner product with the master secret key 〈s,y〉 in the clear. To achieve
weak function hiding, we need to hide y. Our idea is to simply encrypt the
secret key as an input vector using the ABDP scheme itself, with an indepen-
dently sampled master secret key s′ of length N +1, which yields the new secret
key iSK′ = [r′s′ + (〈s,y〉 || y)]. Recall that decryption of the ABDP scheme
simply computes (homomorphically) the inner product between its secret key
and ciphertext. Now that the original secret key is encrypted, we correspond-
ingly encode the original ciphertext in a secret key using s′, which gives the new
ciphertext iCT′ = [〈s′ , (rs + x)〉 || (rs + x)]. Computing the “inner product”
of iCT′ and iSK′ using paring simultaneously decrypts both “layers” of ABDP
encryption, and produce exactly an encoding of the output inner product.

We have described ideas underlying our FE and IO constructions; due to
the lack of space, we refer the reader to the full version [42] for their formal
description and proofs. With a better view of the constructions and security
proofs, next, we revisit the topic of instantiating our schemes with known noisy
multilinear map candidates in more detail.

2.6 On Instantiation with Noisy Multilinear Maps

As mentioned in the introduction when replacing algebraic multilinear maps with
noisy ones [21,22,26,31,39], the constructions work as-is, but not the security

Indistinguishability Obfuscation from SXDH 625

proofs. Nevertheless, the security proof can be modified into an ideal model
proof, or a proof based on a family of more complex assumptions.

The FE Security Proof Fails. The only component in our IO construction that
relies on MMaps is the low-degree FE scheme. When using known noisy MMap
candidates, its security proofs fail for two reasons:

1. The SXDH assumption does not hold on known noisy MMap candidates.
Roughly speaking, a noisy multilinear map scheme can encode a ring element
a and a label l with some noise. Let L be a set of labels that correspond to the
set of source groups in algebraic MMaps. Translating the SXDH assumption
to the noisy setting would require for every label l ∈ L, the distribution of
randomly sampled encodings of a, b, ab with label l to be indistinguishable to
that of a, b, r, for random ring elements a, b, r, even when low-level encodings
of 1 with each label l ∈ L is published. Unfortunately, given these encodings
of 1, known noisy MMap candidates can be completely broken.

2. The security reduction uses the homomorphic scalar multiplication function-
ality of algebraic MMaps, which is not support by current candidates.

The reason that encodings of 1 is needed in the assumption and homomorphic
scalar multiplication is needed for the reduction is as follows. The security of
the FE scheme is based on the SXDH assumption, via a security reduction that
turns FE attackers to SXDH distinguishers. To do so, given a challenge sampled
according to (one of the two distributions specified in) the SXDH assumption,
our reduction internally simulates the view of the attacker in the FE security
game, and appropriately embeds the challenge into the view. Since the challenge
is “laconic”—containing only a constant number of encodings. To concoct the
attacker’s view, the reduction needs to (i) generate new encodings and (ii) ran-
domize some encodings in the challenge for embedding. It does so using encodings
of 1 in the challenge and homomorphic scalar multiplication. It seems (to us)
that any reduction to a laconic and/or instance-independent assumption (i.e.,
one that is independent of the scheme and the attacker) necessarily needs the
capabilities of generating and randomizing encodings. This is indeed the case
for previous such reductions [33,44] and they also require homomorphic scalar
multiplication. Designing a reduction that does not rely on homomorphic scalar
multiplication, or rely only on homomorphic scalar multiplication with small
scalars is an interesting open question.

Security Proofs to Non-laconic Assumptions, and in Ideal MMap Model. Above
problems can be eliminated if we give up on having a security reduction to a
laconic and instance-independent assumption. In particular, our security proof
presents a sequence of hybrids that gradually “morph” from one honest execu-
tion of the FE scheme to another (where the attacker receives secret keys and
ciphertexts of different functions and inputs as specified in the security defin-
ition of FE). Each pair of neighboring hybrids defines an indistinguishability
assumption that simply states that the attacker’s views in these two hybrids
are indistinguishable, and the security of FE can be based on such a family of
non-laconic and instance-dependent assumptions, without using encodings of 1

626 H. Lin

and homomorphic scalar multiplication. Such a security proof is non-trivial since
the assumptions only require indistinguishability of distributions that are almost
identical modulo the difference induced by switching a single DDH tuple to a
random tuple. Moreover, since these assumptions hold in the ideal model, such
a proof also gives a proof in degree-5 ideal multilinear map model.

Instantiating the Construction with Noisy Multilinear Maps. We can instantiate
our FE scheme with noisy MMaps and correctness holds. The above-discussed
issues w.r.t. the security proof do not appear when instantiating the construction.
This is because the secret keys and ciphertexts of our FE scheme do not contain
any low-level encodings of 0 or 1, in fact, they contain only encodings of large
randomized elements, and its algorithms do not rely on homomorphic scalar
multiplication. We note, however, decryption may generate top-level encodings
of 0 or 1 for correctness. It is unclear (to us) whether these instantiations are
secure against known cryptanalytic attacks. We do not know whether known
attacks can be adapted to break their security, nor have formal arguments that
validate their security against known attacks. Obtaining a concrete attack or
give some formal proof, such as, a security proof in the weak MMap model [29],
are interesting open problems.

Acknowledgements. The author thanks Benny Applebaum, Nir Bitansky, Stefano
Tessaro, and Vinod Vaikuntanathan for many helpful and insightful discussions.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 33

2. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 15

3. Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: indistinguisha-
bility obfuscation from non-compact functional encryption. IACR Cryptology
ePrint Archive, vol. 2015, p. 730 (2015)

4. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer, Cham
(2017). doi:10.1007/978-3-319-56620-7 6

5. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: ACM CCS 2014, Scottsdale, AZ, USA, pp. 646–658, 3–7
November 2014

6. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH 2013. In: ICALP 2017. LNCS. Springer,
Heidelberg (2017)

7. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 21

http://dx.doi.org/10.1007/978-3-662-46447-2_33
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-319-56620-7_6
http://dx.doi.org/10.1007/978-3-662-46497-7_21

Indistinguishability Obfuscation from SXDH 627

8. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in nc0. In: FOCS, pp.
166–175 (2004)

9. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree
pseudorandom generators (or: sum-of-squares meets program obfuscation). Cryp-
tology ePrint Archive, Report 2017/312 (2017). http://eprint.iacr.org/2017/312

10. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 13

11. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

12. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 20

13. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53644-5 15

14. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, 17–20 October 2015, Berkeley, CA, USA, pp. 171–190 (2015)

15. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temp. Math. 324, 71–90 (2002)

16. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. Cryptology ePrint Archive, Report 2014/930 (2014). http://eprint.
iacr.org/2014/930

17. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 1

18. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 278–307. Springer, Cham (2017). doi:10.1007/978-3-319-56617-7 10

19. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multi-
linear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 1

20. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 12

21. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 26

22. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 13

23. Cryan, M., Miltersen, P.B.: On pseudorandom generators in NC0. In: Sgall, J.,
Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 272–284. Springer,
Heidelberg (2001). doi:10.1007/3-540-44683-4 24

http://eprint.iacr.org/2017/312
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-662-48797-6_20
http://dx.doi.org/10.1007/978-3-662-53644-5_15
http://dx.doi.org/10.1007/978-3-662-53644-5_15
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2014/930
http://dx.doi.org/10.1007/978-3-642-54242-8_1
http://dx.doi.org/10.1007/978-3-319-56617-7_10
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-662-47989-6_13
http://dx.doi.org/10.1007/3-540-44683-4_24

628 H. Lin

24. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49384-7 7

25. Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfuscation from
low noise multilinear maps. Cryptology ePrint Archive, Report 2016/599 (2016).
http://eprint.iacr.org/2016/599

26. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

27. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29
October 2013, Berkeley, CA, USA, pp. 40–49 (2013)

28. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
480–511. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 18

29. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53644-5 10

30. Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulnerabilities of
multilinear maps. IACR Cryptology ePrint Archive, vol. 2016, p. 390 (2016)

31. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 20

32. Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes: cryptan-
alyzing multilinear maps without encodings of zero. Cryptology ePrint Archive,
Report 2014/929 (2014). http://eprint.iacr.org/2014/929

33. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: Guruswami [36], pp.
151–170 (2015)

34. Goldreich, O.: Candidate one-way functions based on expander graphs. In: Elec-
tronic Colloquium on Computational Complexity (ECCC), vol. 7, no. 90 (2000)

35. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 32

36. Guruswami, V. (ed.) IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, 17–20 October 2015. IEEE Computer Society, Berkeley (2015)

37. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). doi:10.1007/3-540-45465-9 22

38. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

39. Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear
maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 14

http://dx.doi.org/10.1007/978-3-662-49384-7_7
http://eprint.iacr.org/2016/599
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-662-49099-0_18
http://dx.doi.org/10.1007/978-3-662-53644-5_10
http://dx.doi.org/10.1007/978-3-662-53644-5_10
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://eprint.iacr.org/2014/929
http://dx.doi.org/10.1007/978-3-642-55220-5_32
http://dx.doi.org/10.1007/3-540-45465-9_22
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-642-55220-5_14
http://dx.doi.org/10.1007/978-3-642-55220-5_14

Indistinguishability Obfuscation from SXDH 629

40. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

41. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 2

42. Lin, H.: Indistinguishability obfuscation from DDH on 5-linear maps and locality-
5 PRGs. Cryptology ePrint Archive, Report 2016/1096 (2016). http://eprint.iacr.
org/2016/1096

43. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: CRYPTO 2017 (2017, to appear)

44. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, New Brunswick, NJ,
USA, 9–11 October 2016

45. Lombardi, A., Vaikuntanathan, V.: On the non-existence of blockwise 2-local PRGs
with applications to indistinguishability obfuscation. Cryptology ePrint Archive,
Report 2017/301 (2017). http://eprint.iacr.org/2017/301

46. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. IACR Cryptology ePrint
Archive, vol. 2016, p. 147 (2016)

47. Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In: 44th
Symposium on Foundations of Computer Science (FOCS 2003), 11–14 October
2003, Cambridge, MA, USA, Proceedings, pp. 136–145 (2003)

48. O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal polyno-
mial stretch. In: IEEE 29th Conference on Computational Complexity, CCC 2014,
Vancouver, BC, Canada, 11–13 June 2014, pp. 1–12 (2014)

49. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 28

50. Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36594-2 32

51. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, 3–5 November 1982, Chicago,
Illinois, USA, pp. 160–164 (1982)

52. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

53. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 15

http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/978-3-662-49890-3_2
http://eprint.iacr.org/2016/1096
http://eprint.iacr.org/2016/1096
http://eprint.iacr.org/2017/301
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://dx.doi.org/10.1007/978-3-642-36594-2_32
http://dx.doi.org/10.1007/978-3-642-36594-2_32
http://dx.doi.org/10.1007/978-3-662-46803-6_15

	Indistinguishability Obfuscation from SXDH on 5-Linear Maps and Locality-5 PRGs
	1 Introduction
	1.1 Our Results
	1.2 Concurrent and Independent Work
	1.3 Subsequent Works

	2 Overview
	2.1 Bootstrapping
	2.2 Quadratic Secret-Key FE
	2.3 Degree-D Secret-Key FE
	2.4 Construction of HIPE
	2.5 Simple Function Hiding IPE
	2.6 On Instantiation with Noisy Multilinear Maps

	References

