
Generic Transformations of Predicate
Encodings: Constructions and Applications

Miguel Ambrona1,2(B), Gilles Barthe1, and Benedikt Schmidt3

1 IMDEA Software Institute, Madrid, Spain
{miguel.ambrona,gilles.barthe}@imdea.org

2 Universidad Politécnica de Madrid, Madrid, Spain
3 Google, Mountain View, USA

beschmidt@google.com

Abstract. Predicate encodings (Wee, TCC 2014; Chen, Gay, Wee,
EUROCRYPT 2015), are symmetric primitives that can be used for
building predicate encryption schemes. We give an algebraic character-
ization of the notion of privacy from predicate encodings, and explore
several of its consequences. Specifically, we propose more efficient predi-
cate encodings for boolean formulae and arithmetic span programs, and
generic optimizations of predicate encodings. We define new construc-
tions to build boolean combination of predicate encodings. We formalize
the relationship between predicate encodings and pair encodings (Attra-
padung, EUROCRYPT 2014), another primitive that can be transformed
generically into predicate encryption schemes, and compare our construc-
tions for boolean combinations of pair encodings with existing similar
constructions from pair encodings. Finally, we demonstrate that our
results carry to tag-based encodings (Kim, Susilo, Guo, and Au, SCN
2016).

1 Introduction

Predicate Encryption (PE) [13,25] is a form of public-key encryption that sup-
ports fine-grained access control for encrypted data. In predicate encryption,
everyone can create ciphertexts while keys can only be created by the master
key owner. Predicate encryption schemes use predicates to model (potentially
complex) access control policies, and attributes are attached to both ciphertexts
and secret keys. A predicate encryption scheme for a predicate P guarantees
that decryption of a ciphertext ctx with a secret key sky is allowed if and only
if the attribute x associated to the ciphertext ct and the attribute y associ-
ated to the secret key sk verify the predicate P, i.e. P(x, y) = 1. Predicate
encryption schemes exist for several useful predicates, such as Zero Inner Prod-
uct Encryption (ZIPE), where attributes are vectors x and y and the predicate
P(x,y) is defined as x�y = 0. Predicate encryption subsumes several previously
defined notions of public-key encryption. For example, Identity-Based Encryp-
tion (IBE) [34] can be obtained by defining P(x, y) as x = y and Attribute-Based
Encryption (ABE) [33] can be obtained similarly. More concretely, for Key-Policy
c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part I, LNCS 10401, pp. 36–66, 2017.
DOI: 10.1007/978-3-319-63688-7 2

Generic Transformations of Predicate Encodings 37

ABE (KP-ABE), the attribute x is a boolean vector, the attribute y is a boolean
function, and the predicate P(x, y) is defined as y(x) = 1. For Ciphertext-Policy
ABE (CP-ABE), the roles of the attributes x and y are swapped.

Modular Approaches for PE. In 2014, two independent works by Wee [37] and
Attrapadung [6] proposed generic and unifying frameworks for obtaining effi-
cient fully secure PE schemes for a large class of predicates. Both works use
the dual system methodology introduced by Lewko and Waters [27,36] and
define a compiler that takes as input a relatively simple symmetric primitive
and produces a fully secure PE construction. Wee introduced so-called predicate
encodings, an information-theoretic primitive inspired from linear secret sharing.
Attrapadung introduced so-called pair encodings and provided computational
and information-theoretic security notions. These approaches greatly simplify
the construction and analysis of predicate encryption schemes and share several
advantages. First, they provide a good trade-off between expressivity and per-
formance, while the security relies on standard and well studied assumptions.
Second, they unify existing constructions into a single framework, i.e., previ-
ous PE constructions can be seen as instantiations of these new compilers with
certain encodings. Third, building PE schemes by analyzing and building these
simpler encodings is much easier than building PE schemes directly. Compared
to full security for PE, the encodings must verify much weaker security require-
ments. The power of pair and predicate encodings is evidenced by the discovery
of new constructions and efficiency improvements over existing ones. However,
both approaches were designed over composite order bilinear groups. In Chen et
al. [15] and Attrapadung [7] respectively extended the predicate encoding and
pair encoding compiler to the prime order setting. Next, Agrawal and Chase
[1] improved on Attrapadung’s work by relaxing the security requirement on
pair encodings and thus, capturing new constructions. In addition, their work
also brings both generic approaches closer together, because like in [15], the new
compiler relies (in a black-box way) on Dual System Groups (DSG) [16,17].
Additionally Kim et al. [22] recently introduced a new generic framework for
modular design of predicate encryption that improves on the performance of
existing compilers. Their core primitive, tag-based encodings, is very similar to
predicate encodings.

1.1 Our Contributions

We pursue the study of predicate encodings and establish several general results
and new constructions that broaden their scope and improve their efficiency. We
also compare predicate encodings to pair and tag-based encodings.

Predicate Encodings. We show that the information-theoretic definition of α-
privacy used in [15,37] is equivalent to an algebraic statement (furthermore
independent of α) about the existence of solutions for a linear system of equa-
tions. Leveraging this result, we prove a representation theorem for predicate

38 M. Ambrona et al.

encodings: every triple of encoding functions implicitly defines a unique pred-
icate for which it is a valid predicate encoding. Conversely, every predicate P
that admits a predicate encoding is logically equivalent to the implicit predicate
induced by its encoding functions. Moreover, our algebraic definition of privacy
simplifies all subsequent results in the paper.

First, we define a generic optimization of predicate encodings that often leads
to efficiency improvements and reduce the number of required group elements
in keys and ciphertexts. We prove the soundness of the transformations and
validate their benefits experimentally on examples from [15,37]; we successfully
apply these simplifications to reduce the size of keys and ciphertexts by up to
50% and to reduce the number of group operations needed in some of the existing
encodings.

Second, we define generic methods for combining predicate encodings. We
provide encoding transformations for the disjunction, conjunction and negation
of predicates, and for the dual predicate.

Tag-Based Encodings. We show that our results on predicate encodings general-
ize to tag-based encodings. In particular, we give a purely algebraic characteri-
zation of the hiding property of tag-based encodings. Moreover, we demonstrate
that the hiding property can be strengthened without any loss of generality, by
requiring equality rather than statistical closeness of distributions.

Comparison of Encodings. We compare the expressivity of the three core prim-
itives (predicate encodings, pair encodings and tag-based encodings) correspond-
ing to the three different modular frameworks. We provide an embedding that
produces an information-theoretical pair encoding from every predicate encod-
ing. Then, we use this encoding to compare our constructions to build boolean
combination of predicate encodings with similar constructions for pair encodings
that were introduced by [6].

In addition, we provide a transformation1 from tag-based encodings into
predicate encodings.

New Constructions. We develop several new constructions of predicate encodings
and predicate encryption:

• Combining predicates. We show how to combine our results to build Dual-
Policy Attribute-Based Encryption (DP-ABE) [9,10] in the frameworks of
predicate encodings and tag-based encodings (Sect. 6.1). Additionally, we con-
sider the idea of combining arbitrary encodings with a broadcast encryption
encoding to achieve direct revocation of keys. The former encoding takes care
of revocation, while the latter encodes the desired access structure.

• Improved predicate encodings. We provide new instances of predicate
encodings that improve on best known predicate encodings proposed in [15]
and have additional properties (Sect. 6.2).

1 This transformation has side conditions, thus it is not universal, but all existing
tag-based encodings (except one) satisfy these side conditions.

Generic Transformations of Predicate Encodings 39

• Extra features. Finally, we show how to construct a weakly attribute-hiding
predicate encoding for boolean formulas and how to enhance any predicate
encoding with support for delegation (Sect. 6.3).

Implementation and Evaluation. We implement a general library for predicate
encryption with support for the predicate encoding and pair encoding frame-
works. Our library uses the Relic-Toolkit [5] for pairings with a 256-bits Barreto-
Naehrig Curve [11]. We use our library for validating our constructions; exper-
imental results are presented in the relevant sections. All the experiments were
executed on a 8-core machine with 2.40 GHz Intel Core i7-3630QM CPU and
8 GB of RAM. Our scalability experiments show that predicate encodings can
be used for real applications. The code is publicly available and open source2.

1.2 Prior Work

Predicate encodings have been introduced in [37] and we use a refined version
that is defined in [15] as our starting point. Both variants use an information-
theoretic definition of the hiding while we show that there is an equivalent alge-
braic definition. Another related work is [20], initiating a systematic study of the
communication complexity of the so-called conditional secret disclosure primi-
tive, which is closely related to predicate encodings.

Other works also optimize existing predicate encryption schemes, for example
many works focus on going from composite order constructions to the more effi-
cient prime order ones [7,15,26]. In [15] they also propose performance improve-
ments on dual system groups. We believe our optimizations via predicate encod-
ings complement other possible enhancements of predicate encryption.

Boolean combinations of predicates have also been considered in the setting
of pair encodings. Attrapadung [9,10] proposes generic transformations for con-
junction and for the dual predicate, but neither for negation nor disjunction.
We propose new transformations for conjunction and dual in the framework of
predicate encodings and we also deal with negation and disjunction.

The main advantage of DP-ABE is the possibility of considering policies over
objective attributes (associated to data) and policies over subjective attributes
(associated to user credentials) at the same time. DP-ABE has been consid-
ered by Attrapadung in the pair encoding framework [9,10]. To the best of our
knowledge, we are the first to provide DP-ABE in the predicate encoding and
tag-based encoding frameworks.

Revocation is a desirable property for PE and ABE schemes that has also
been considered by many works in the literature. Revocation allows to invalidate
a user’s secret key in such a way that it becomes useless, even if its associated
attribute satisfies the policy associated to the ciphertext. Some attempts [32]
propose indirect revocation that requires that the master secret owner period-
ically updates secret keys for non-revoked users. Other attempts achieve direct
revocation [8,23,30,31], but either rely on strong assumptions or provide only

2 Source code at https://github.com/miguel-ambrona/abe-relic.

https://github.com/miguel-ambrona/abe-relic

40 M. Ambrona et al.

selectively security. Our construction not only allows to achieve revocation in a
fully secure framework, but it allows to add revocation to arbitrary predicate
encodings.

Policy hiding is another property of PE, and ABE in particular, that has
been broadly studied. In this context, policies associated to ciphertexts are not
attached to them and therefore, unauthorized users will only learn the fact that
their key does not satisfy the policy, but nothing else. Policy Hiding has been
considered in several works [13,25]. The security of our construction improves
on earlier works, thanks to the compiler from [15]. Our observation extends the
expressivity of attribute-hiding predicate encryption for ZIPE proposed in [15]
to support policy-hiding for boolean formulas.

In [15], the authors introduce the notion of spatial encryption predicate
encodings. We generalize this notion and introduce a transformation that makes
delegation possible for every predicate encoding.

Several works evaluate the suitability of ABE for different applications. For
example, ABE has been used and benchmarked to enforce privacy of Electronic
Medical Records (EMR) [3], in a system where healthcare organizations export
EMRs to external storage locations. Other examples are Sieve [35] or Stream-
force [18], systems that provide enforced access control for user data and stream
data in untrusted clouds. In contrast to these works, we are the first to evaluate
predicate encryption and ABE based on modern modular approaches such as
the predicate encoding and pair encoding frameworks. The resulting schemes
also satisfy a stronger security notion (full vs. selective security) compared to
the previously mentioned evaluations. We focus on synthetic case studies, while
other works analyze more realistic settings and integration of ABE into bigger
systems. Combining our methods with these more practical case studies is a very
interesting direction for future work.

1.3 Comparison with Agrawal and Chase (EUROCRYPT 2017)

Concurrently and independently, Agrawal and Chase [2] introduce a new secu-
rity notion, which they call symbolic property, for pair encodings. They adapt
previous generic frameworks [1,7] to define a compiler that takes pair encodings
satisfying the symbolic property and produces fully secure predicate encryp-
tion schemes under the q-ratio assumption—a new assumption that is implied
by some q-type assumptions proposed in [6,29]. Moreover, they introduce the
notion of tivially broken pair encoding and show that any not trivially broken
pair encoding must satisfy their symbolic property. Their definitions of sym-
bolic property and trivially broken for pair encodings are closely related to our
algebraic characterization of privacy of predicate encodings. However, the two
results are incomparable: although pair encodings are more general than predi-
cate encodings (see Sect. 5.1 for a more detailed comparison), their results rely
of q-type assumption, whereas our results build on previous frameworks that rely
on weaker assumptions (Matrix-DH or k-LIN).

Generic Transformations of Predicate Encodings 41

2 Background

In this section, we first introduce some mathematical notation and then define
predicate encodings, tag-based encodings and pair encodings the three primitives
used in the three different modular frameworks for predicate encryption.

2.1 Notation

For finite sets S, we use x
$← S to denote that x is uniformly sampled from S.

We define [n] as the range {1, . . . , n} for an arbitrary n ∈ N. For a predicate
P : X ×Y → {0, 1}, we use (x, y) ∈ P as a shorthand for P(x, y) = 1. We use the
same conventions for matrix-representations of linear maps on finite-dimensional
spaces. We define vectors v ∈ F

n as column matrices and denote the transpose
of a matrix A by A�. We use diag(v) to denote the diagonal matrix with main
diagonal v. We denote the identity matrix of dimension n by In, a zero vector
of length n by 0n and a zero matrix of m rows and n columns by 0m,n. Let
S be a set of indices and A be a matrix. AS denotes the matrix formed from
the set of columns of A with indices is in S. We define the colspan of a matrix
M ∈ F

m×n as the set of all possible linear combinations columns of M . That
is col

span 〈M〉 = {Mv : v ∈ F
n} ⊆ F

m. We analogously define the rowspan of a
matrix. We consider prime order bilinear groups G = (G1,G2,Gt, e : G1 ×G2 →
Gt) and use g1, g2, gt to denote their respective generators. The map e satisfies
e(ga

1 , gb
2) = gab

t for every a, b ∈ N. A bilinear group is said to be symmetric if
G1 = G2, otherwise it is called asymmetric. We abuse of notation and write gv

to denote (gv1 , . . . , gvn) for a group element g and a vector v ∈ Z
n
p .

2.2 Predicate Encodings

Predicate encodings are information-theoretic primitives that can be used for
building predicate encryption schemes [37]. We adopt the definition from [15],
but prefer to use matrix notation.

Definition 1 (Predicate encoding). Let P : X ×Y → {0, 1} be a binary pred-
icate over finite sets X and Y. Given a prime p ∈ N, and s, r, w ∈ N, a (s, r, w)-
predicate encoding for P consists of five deterministic algorithms (sE, rE, kE,
sD, rD): the sender encoding algorithm sE maps x ∈ X into a matrix sEx ∈ Z

s×w
p ,

the receiver encoding algorithm rE maps y ∈ Y into a matrix rEy ∈ Z
r×w
p , the key

encoding algorithm kE maps y ∈ Y into a vector kEy ∈ Z
r
p, while the sender and

receiver decoding algorithms, respectively sD and rD, map a pair (x, y) ∈ X × Y
into vectors sDx,y ∈ Z

s
p and rDx,y ∈ Z

r
p respectively. We require that the following

properties are satisfied:

reconstructability: for all (x, y) ∈ P, sD�
x,ysEx = rD�

x,yrEy and rD�
x,ykEy = 1;

α-privacy: for all (x, y) /∈ P, α ∈ Zp,

w
$← Z

w
p ; return (sExw, rEyw + α · kEy) ≡ w

$← Z
w
p ; return (sExw, rEyw)

where ≡ denotes equality of distributions.

42 M. Ambrona et al.

Reconstructability allows to recover α from (x, y, sExw, rEyw+α·kEy) if (x, y) ∈
P. Privacy ensures that α is perfectly hidden for such tuples if (x, y) /∈ P.

Example 1 (IBE predicate encoding). Let X = Y = Zp and let s = r = 1, w = 2.
We define the encoding functions as follows:

sEx =
(
x 1

)
sDx,y =

(
1
)

rEy =
(
y 1

)
rDx,y =

(
1
)

kEy =
(
1
)

The above is a predicate encoding for identity-based encryption, i.e., for the
predicate P(x, y) = 1 iff x = y. Note that

(
x 1

)
=

(
y 1

)
when x = y, so

reconstructability is satisfied. On the other hand, α-privacy follows from the
fact that if x 	= y, x · w1 + w2 and y · w1 + w2 are pair-wise independent. �

Predicate Encryption from Predicate Encodings. We try to provide some intu-
ition on how predicate encodings are compiled to predicate encryption schemes
by the compiler from [15]. We consider a simplified compiler (see explanations
below). The master keys, ciphertexts and secret keys have the following form:

msk = gα
2 ctx = (gs

1, g
s·sExw
1 , e(g1, g2)αs · m)

mpk = (g1, gw1 , g2, g
w
2 , e(g1, g2)α) sky = (gr

2, g
α·kEy+r·rEyw
2)

The encrypted message m ∈ Gt is blinded by a random factor e(g1, g2)αs. The so-
called reconstruction property of predicate encodings ensures that this blinding
factor can be recovered for a pair (ctx,sky) if P(x, y) = 1. More concretely, for all
pairs (x, y) such that P(x, y) = 1, because multiplying by matrices sDx,y,rDx,y is
a linear operation, it is possible operate in the exponent and compute

g
s·sD�

x,ysExw

1 and g
rD�

x,y(α·kEy+r·rEyw)

2 ,

obtaining gsβ
1 and gα+rβ

2 for β = sD�
x,ysExw = rD�

x,yrEyw (note that knowing
the value of β is not necessary). Now, it is simple to recover e(g1, g2)αs from
e(gs

1, g
α+rβ
2) and e(gsβ

1 , gr
2). Security is ensured by the α-privacy property of

the encoding together with decisional assumptions about dual system groups.
Intuitively, the α-privacy property states that given certain values derived from
the output of the encoding functions for random input, α remains information-
theoretic hidden.

Note that the following is a simplification of their compiler, where we avoid
DSG for simplicity. The real scheme produced by their compiler would have twice
as many group elements (under SXDH) or three times as many (under DLIN).

2.3 Tag-Based Encodings

Tag-based encodings is a new primitive defined in a very recent work [22] that
defines a new generic framework (using prime order groups) for modular design
of predicate encryption.

Generic Transformations of Predicate Encodings 43

Definition 2 (Tag-based encoding). Let P : X × Y → {0, 1} be a binary
predicate over finite sets X and Y. Given a prime p ∈ N, and c, k, h ∈ N, a
(c, k, h)-tag-based encoding encoding for P consists of two deterministic algo-
rithms (cE, kE): the ciphertext encoding algorithm cE maps x ∈ X into a matrix
cEx ∈ Z

c×h
p and the key encoding algorithm kE maps y ∈ Y into a matrix

kEy ∈ Z
k×h
p . We require that the following properties are satisfied:

reconstructability: for all (x, y) ∈ P, there exists an efficient algorithm that
on input (x, y) computes vectors mc ∈ Z

c
p, mk ∈ Z

k
p such that

m�
c cEx = m�

k kEy 	= 0�
h

h-hiding: for all (x, y) /∈ P,

h
$← Z

h
p ; return (cExh, kEyh) ≈s h,h′ $← Z

h
p ; return (cExh, kEyh

′)

where ≈s denotes negligible statistical distance between distributions.

The compiler proposed in [22] uses similar ideas to the one for predicate
encodings. However, it does not rely on dual system groups and can be instan-
tiated with symmetric bilinear maps. The message is blinded and ciphertexts
and keys contain a set of group elements that are enough to recover the blinding
factor only when the predicate is true. This compiler has the advantage that
some elements of ciphertexts and keys are Zp values and not group elements,
which reduces the storage size.

2.4 Pair Encodings

Attrapadung [6,7] proposes an independent modular framework for predicate
encryption, based on a primitive called pair encoding. For our purposes, it suffices
to consider a more restrictive, information-theoretic, notion of pair encodings.

Definition 3 (Information-theoretic pair encoding). Let P : X × Y →
{0, 1} be a binary predicate over finite sets X and Y. Given a prime p ∈ N, and
c, k, l,m, n ∈ N, let h = (h1, . . . , hn), s = (s0, s1, . . . , sl) and r = (α, r1, . . . , rm)
be sets of variables. An information-theoretic (c, k, n)-pair encoding scheme for
P consists of three deterministic algorithms (Enc1,Enc2,Pair): the ciphertext
encoding algorithm Enc1 maps a value x ∈ X into a list of polynomials cx ∈
Zp[s,h]c, the key encoding algorithm Enc2 maps a value y ∈ Y into a list
of polynomials ky ∈ Zp[r,h]k and the decoding algorithm Pair maps a pair
(x, y) ∈ X ×Y into a matrix Ex,y ∈ Z

c×k
p . We require that the following properties

are satisfied:

polynomial constraints:
• For every x ∈ X and every f ∈ Enc1(x), f = f(s,h) only contains mono-

mials of the form si or sihj, i ∈ [0, l], j ∈ [n].

44 M. Ambrona et al.

• For every y ∈ Y and every f ∈ Enc2(y), f = f(r,h) only contains mono-
mials of the form α, ri or rihj, i ∈ [m], j ∈ [n].

reconstructability: for all (x, y) ∈ P and all cx ← Enc1(x), ky ← Enc2(y),
Ex,y ← Pair(x, y), the following polynomial equality holds c�

x Ex,yky = αs0.
perfect security: for all (x, y) /∈ P and all cx ← Enc1(x), ky ← Enc2(y),

h
$← Z

n
p ; r $← (Z∗

p)
m; s $← Z

l+1
p ; return (cx(s,h), ky(0, r,h)) ≡

h
$← Z

n
p ; r $← (Z∗

p)
m; s $← Z

l+1
p ;α $← Zp; return (cx(s,h), ky(α, r,h))

where ≡ denotes equality of distributions.

The compiler from pair encodings follows similar ideas to the other compilers.
The message is blinded by a random factor and ciphertexts and keys contain all
the information necessary to recover this blinded factor, only when the predicate
holds. The compiler from pair encodings requires to compute a polynomial num-
ber of pairings during decryption, unlike the compilers for predicate encodings
and tag-based encodings that need3 6 and 8 pairings respectively.

3 Predicate Encodings: Properties and Consequences

In this section, we present a purely algebraic (and independent of α) characteri-
zation of the α-privacy property. It simplifies both the analysis and the construc-
tion of predicate encodings. In particular, we use our characterization to define
and prove a new optimization of predicate encodings, i.e., a transformation that
makes the encoding functions smaller while preserving the predicate. Addition-
ally, we unify the reconstructability and privacy properties and show that they
are mutually exclusive and complementary, i.e., for every (x, y) ∈ X × Y, one
and only one of the two conditions holds. This unified treatment facilitates the
construction and study of predicate encodings.

3.1 Algebraic Properties of Predicate Encodings

The following theorem captures two essential properties of predicate encodings:
first, privacy admits a purely algebraic characterization (furthermore indepen-
dent of α) given in terms of existence of solutions of a linear system of equations.
Second, reconstructability and privacy, when viewed as properties of a single pair
(x, y), negate each other; i.e. a pair (x, y) always satisfies exactly one of the two
properties.

Theorem 1 (Algebraic characterization of privacy). Let p ∈ N be a
prime, let s, r, w ∈ N and let S ∈ Z

s×w
p , R ∈ Z

r×w
p , k ∈ Z

r
p. The following

are equivalent:
3 Decryption in the framework of predicate encodings needs 4 pairings under SXDH

assumption or 6 under DLIN, in the framework of tag-based encodings decryption
requires 8 pairings and the assumption is DLIN.

Generic Transformations of Predicate Encodings 45

• α-privacy For every α ∈ Zp,

w
$← Z

w
p ; return (Sw, Rw + α · k) ≡ w

$← Z
w
p ; return (Sw, Rw)

• (algebraic) privacy There exists w ∈ Z
w
p such that Sw = 0s and Rw = k

• non-reconstructability For every s ∈ Z
s
p and r ∈ Z

r
p, either s�S 	= r�R

or r�k 	= 1.

Proof. We first prove that α-privacy is equivalent to algebraic privacy. Note that
the fact that ∀α ∈ Zp,

w
$← Z

w
p ; return (Sw, Rw + α · k) ≡ w

$← Z
w
p ; return (Sw, Rw)

is equivalent to the existence of a bijection ρα such that for all w ∈ Z
w
p , Sw =

S · ρα(w) ∧ Rw + α · k = R · ρα(w). By linearity, it can be rewritten as

S(ρα(w) − w) = 0s ∧ α · k = R(ρα(w) − w)

Now, the existence of such a bijection is equivalent to the existence of a solution
for the following (parametric in α) linear system on w: Sw = 0s ∧ Rw = α ·k.
To see this, note that if ρα is such a bijection, ρα(w0) − w0 is a solution of the
system for every w0 ∈ Z

w
p . On the other hand, if w∗ is a solution of the system,

the bijection ρα(w) = w+w∗ satisfies the required identities. To conclude, note
that the above system has a solution iff the following (independent of α) does:

Sw = 0s ∧ Rw = k

Next, we prove the equivalence between algebraic privacy and non-
reconstructability. We use the following helping lemma from [12, Claim 2]: for
every field F, let A ∈ F

m×n and b ∈ F
n be matrices with coefficients in F, the

following two statements are equivalent:

• for every a ∈ F
m, b� 	= a�A;

• there exists z ∈ F
n such that z�b = 1 and Az = 0m.

Assume that algebraic privacy does not hold, i.e., for every w ∈ Z
w
p , either

Sw 	= 0s or Rw 	= k. Equivalently, for every w ∈ Z
w
p

(
0s

k

)
	=

(−S
R

)
w

which is equivalent (by our helping lemma) to the existence of (z1,z2) ∈ Z
s
p×Z

r
p

such that
(
z�
1 z�

2

)
(
0s

k

)
= 1 ∧ (

z�
1 z�

2

)
(−S

R

)
= 0�

w

That is, there exists z1 ∈ Z
s
p, z2 ∈ Z

r
p such that z�

1 S = z�
2 R ∧ z�

2 k = 1, which
is exactly reconstructability. The proof follows from the fact all the steps are
equivalences.
�

46 M. Ambrona et al.

Our next result is a representation theorem. It is based on the notion of partial
encoding; informally, a partial encoding consists of the first three algorithms of
a predicate encoding; it is not attached to any specific predicate, nor is required
to satisfy any property.

Definition 4 (Partial encoding). Let X and Y be finite sets. Let p ∈ N be a
prime and s, r, w ∈ N. A (s, r, w)-partial encoding is given by three deterministic
algorithms (sE, rE, kE): sE maps x ∈ X into a matrix sEx ∈ Z

s×w
p , and rE, kE

map y ∈ Y into a matrix rEy ∈ Z
r×w
p and a vector kEy ∈ Z

r
p respectively.

The representation theorem shows that there exists an embedding from partial
encodings to predicate encodings, and that every predicate encoding lies the
image of the embedding.

Theorem 2 (Representation theorem). Let X and Y be finite sets. Let
p ∈ N be a prime and s, r, w ∈ N. Every (s, r, w)-partial encoding (sE, rE, kE)
for X and Y induces a predicate encoding (sE, rE, kE, sD, rD) for the following
predicate (henceforth coined implicit predicate):

Pred(x, y) � ∀w ∈ Z
w
p , sExw 	= 0s ∨ rEyw 	= kEy

Moreover, if (sE, rE, kE, sD, rD) is a predicate encoding for P, then for every
(x, y) ∈ X × Y, P(x, y) ⇔ Pred(x, y).

Example 2 (Implicit predicate of IBE predicate encoding). If we consider the
following partial encoding functions corresponding to the encoding presented in
Example 1:

sEx =
(
x 1

)
rEy =

(
y 1

)
kEy =

(
1
)

our Theorem 2 guarantees that it is a valid predicate encoding for the implicit
predicate:

Pred(x, y) = 1 iff ∀(w1, w2) ∈ Z
2
p, x · w1 + w2 	= 0 ∨ y · w1 + w2 	= 1

A simple analysis shows that the above predicate is equivalent to x = y. �

A consequence of Theorem 2 is that a predicate P over X and Y can be instan-
tiated by a (s, r, w)-predicate encoding iff there exist X -indexed and Y-indexed
matrices Sx ∈ Z

s×w
p and Ry ∈ Z

r×w
p and Y-indexed vectors ky ∈ Z

r
p such that:

P(x, y) = 1 iff
(
0s

ky

)
/∈ col
span

〈
Sx

Ry

〉

That is helpful to analyze the expressivity of predicate encodings of certain size.

Example 3. Let X and Y be finite sets, let n ∈ N, we will characterize all the
predicates that can be achieved from a (1, 1, n)-partial encoding, say (sE, rE, kE).

Generic Transformations of Predicate Encodings 47

Note that for every pair (x, y), sEx and rEy are vectors of length n, while kEy is
a single element. Say,

sEx = (f1(x), . . . , fn(x)) rEy = (g1(y), . . . , gn(y)) kEy = h(y)

for certain functions fi : X → Zp, gi, h : Y → Zp for every i ∈ [n]. Theorem 2
guarantees that the above is a valid predicate encoding for the predicate

P(x, y) = 1 iff h(y) 	= 0 ∧ (∃β ∈ Zp :
∧

i∈[n]

fi(x) = βgi(y)
)

It can be shown that the predicate P((x1, x2), y) = 1 iff (x1 = y) ∨ (x2 = y)
cannot be captured by (1, 1, n)-predicate encodings, while on the contrary, the
predicate P((x1, x2), y) = 1 iff (x1 = y) ∧ (x2 = y) could be instantiated. �

3.2 Optimizing Predicate Encodings

In this section, we show that the efficiency of predicate encodings can be
improved by pre- and post-processing. Specifically, we show that an (s, r, w)-
encoding (sE, rE, kE, sD, rD) for a predicate P can be transformed into a
(s′, r′, w′)-encoding (sE′, rE′, kE′, sD′, rD′) for the same predicate, by applying
a linear transformation to the matrices induced by sE, rE, kE.

More precisely, if we define sE′
x = AsEx, rE′

y = BrEy and kE′
y = BkEy

for two matrices A and B, the privacy of the encoding will be preserved, but
reconstructability may be destroyed. On the contrary, when we consider the
partial encoding sE′

x = sExC, rE′
y = rEyC and kE′

y = kEy for a matrix C,
reconstructability is automatically guaranteed, but privacy could not hold (for
the same predicate). Intuitively, this occurs because reconstructability depends
on the rowspan of the matrices sEx, rEy, while privacy depends on their colspan.
Our following theorem imposes conditions on these matrices A, B and C so that
the resulting predicate encoding is equivalent to the original one.

Theorem 3. Let X and Y be finite sets. Let p ∈ N be a prime, s, r, w, s′,
r′, w′ ∈ N, and let (sE, rE, kE, sD, rD) be a (s, r, w)-predicate encoding for P :
X × Y → {0, 1}. Let A be a function that maps every element x ∈ X into a
matrix Ax ∈ Z

s′×s
p , B be a function that maps y ∈ Y into a matrix By ∈ Z

r′×r
p

and let C ∈ Z
w×w′
p be a matrix. There exists a (s′, r′, w′)-partial encoding

(sE′, rE′, kE′, sD′, rD′) for P, where

sE′
x = AxsExC rE′

y = ByrEyC kE′
y = BykEy

provided the following conditions hold:

• For all (x, y) ∈ P, sD�
x,y ∈ row

span 〈Ax〉 and rD�
x,y ∈ row

span 〈By〉;
• For all (x, y) /∈ P, there exists w ∈ col

span 〈C〉 s.t. sExw = 0s and rEyw = kEy.

48 M. Ambrona et al.

This transformation is useful to make predicate encodings simpler and more
efficient in different manners. For instance, it can be used to make the matrices
corresponding to encoding and decoding functions become sparser. That is, if
we consider A and B as functions that apply matrix Gaussian elimination4 to
the matrices associated to sE and rE, kE, many entries from these matrices will
be zero. Hence, fewer group operations will be performed during encryption and
key generation, improving the performance. Moreover, the transformation can
be used to reduce the size of mpk, ctx and sky. If w′ < w, the number of elements
in mpk will decrease. This will also improve the performance of encryption and
key generation (both depend directly on mpk). Additionally, if s′ < s or r′ < r,
the number of elements in ctx and sky will also decrease respectively.

Note that a simplification from the right (multiplying by C) changes the
structure of the encoding and may open the possibility of left-simplifications
that were not available before and vice versa. Example 4 illustrates this idea.
We optimize a predicate encoding that corresponds to the result of applying
our negation transformation (from next section, Theorem6) to the predicate
encoding from Example 1.

Example 4. Let X = Y = Zp and consider the (2, 3, 4)-predicate encoding
(sE, rE, kE, sD, rD) for P(x, y) = 1 iff x 	= y, defined as

sEx =
(

x −1 0 0
1 0 −1 0

)
rEy =

⎛

⎝
0 1 0 y
0 0 1 1
0 0 0 1

⎞

⎠ kEy =

⎛

⎝
0
0
1

⎞

⎠

sD�
x,y =

(−1
x−y

x
x−y

)
rD�

x,y =
(1

x−y
−x
x−y 1

)

Note that for every pair (x, y) /∈ P, i.e. x = y, the single solution of the system
sExw = 02 ∧ rEyw = kEy is w� =

(−1 −y −1 1
)
, thus the matrix

C =
(−1 0 −1 1

0 1 0 0

)�

satisfies the conditions of Theorem 3. Therefore, the (2, 3, 2)-partial encoding
(sE′, rE′, kE′), where

sE′
x = sExC =

(−x −1
0 0

)
rE′

y = rEyC =

⎛

⎝
y 1
0 0
1 0

⎞

⎠ kE′
y = kEy =

⎛

⎝
0
0
1

⎞

⎠

induces a predicate encoding for the same predicate. The previous simplification,
opens the possibility of applying again the theorem, with matrices Ax and By,
obtaining a (1, 2, 2)-predicate encoding for P(x, y) = 1 iff x 	= y. Concretely,

4 Note that if matrices Ax, By or C are invertible, they always satisfy their respective
requirements.

Generic Transformations of Predicate Encodings 49

Ax =
(−1 0

)
sE′′

x =
(
x 1

)
rE′′

y =
(

y 1
1 0

)
rE′′

y =
(

0
1

)

By =
(

1 0 0
0 0 1

)
sD′′�

x,y =
(1

x−y

)
rD′′�

x,y =
(1

x−y 1
)

�
The above simplifications can be successfully applied to actual predicate

encodings proposed in [15]. In Sect. 6.2 we propose improved predicate encodings
for monotonic boolean formulas and arithmetic span programs.

3.3 Combining Predicates

Using the new characterization of predicate encodings from the previous section,
we define transformations to combine predicate encodings into new predicate
encodings for more complex predicates. In particular, we define predicate encod-
ing transformations for disjunction, conjunction, negation and the dual predi-
cate. These combinations are useful to create new schemes that inherit different
properties from the more basic building blocks. In Sect. 6, we propose several
constructions that rely on these transformations.

Disjunction. We present a method to build a predicate encoding for the dis-
junction of P1 and P2 from predicate encodings for P1 and P2. Observe that
the predicate encryption scheme obtained from the resulting predicate encoding
is more efficient than the predicate encryption scheme obtained by compiling
the predicate encodings of P1 and P2 separately, and then applying a generic
transformation that builds predicate encryption schemes for a disjunction from
predicate encryption schemes of its disjuncts.

Theorem 4 (Disjunction of predicate encodings). For every (s1, r1, w1)-
predicate encoding (sE1, rE1, kE1, sD1, rD1) for P1 : X1 × Y1 → {0, 1} and every
(s2, r2, w2)-predicate encoding (sE2, rE2, kE2, sD2, rD2) for P2 : X2 ×Y2 → {0, 1},
there exists a (s1 + s2, r1 + r2, w1 +w2)-predicate encoding (sE, rE, kE, sD, rD) for
the predicate P : (X1,X2) × (Y1,Y2) → {0, 1} such that:

P((x1, x2), (y1, y2)) ⇔ P1(x1, y1) ∨ P2(x2, y2)

Concretely,

sE(x1,x2) =
(

sE1
x1

0s1,w2

0s2,w1 sE2
x2

)
rE(y1,y2) =

(
rE1

y1
0r1,w2

0r2,w1 rE2
y2

)
kE(y1,y2) =

(
kE1

y1

kE2
y2

)

sD�
(x1,x2),(y1,y2) = if P1(x1, y1) then

(
sD1�

x1,y1
0�

s2

)
else

(
0�

s1
sD2�

x2,y2

)

rD�
(x1,x2),(y1,y2) = if P1(x1, y1) then

(
rD1�

x1,y1
0�

r2

)
else

(
0�

r1
rD2�

x2,y2

)

Note that it is possible to obtain sharing between attributes, e.g., if X1 = X2

and the sender uses only the subset {(x, x) | x ∈ X1} of X1 × X2, the predicate
becomes P(x, (y1, y2)) = 1 iff P1(x, y1) ∨ P2(x, y2).

50 M. Ambrona et al.

Conjunction. In contrast to disjunction, the naive solution that just concate-
nates secret keys fails. Given keys for attribute pairs (y1, y2) and (y′

1, y
′
2), it would

be possible to recombine the components and obtain a key for (y1, y′
2) leading to

collusion attacks. Our predicate encoding transformation deals with this problem
by “tying” the two components together with additional randomness.

Theorem 5 (Conjunction of predicate encodings). For every (s1, r1, w1)-
predicate encoding (sE1, rE1, kE1, sD1, rD1) for P1 : X1 × Y1 → {0, 1} and every
(s2, r2, w2)-predicate encoding (sE2, rE2, kE2, sD2, rD2) for P2 : X2 ×Y2 → {0, 1},
there exists a (s1+s2, r1+r2, w1+w2+1)-predicate encoding (sE, rE, kE, sD, rD)
for the predicate P : (X1,X2) × (Y1,Y2) → {0, 1} such that:

P((x1, x2), (y1, y2)) ⇔ P1(x1, y1) ∧ P2(x2, y2)

Concretely,

sE(x1,x2) =
(

sE1
x1

0s1,w2 0s1

0s2,w1 sE2
x2

0s2

)
sD(x1,x2),(y1,y2) =

1
2

(
sD1

x1,y1

sD2
x2,y2

)

rE(y1,y2) =
(

rE1
y1

0r1,w2 kE1
y1

0r2,w1 rE2
y2

−kE2
y2

)
rD(x1,x2),(y1,y2) =

1
2

(
rD1

x1,y1

rD2
x2,y2

)

kE(y1,y2) =
(
kE1

y1

kE2
y2

)

Note that it is possible to combine Theorems 4 and 5 to create a predicate
encoding for P1 �� P2, where the placeholder ��∈ {∨,∧} can be part of keys or
ciphertexts.

Negation. To obtain a functionally complete set of boolean predicate encoding
transformers, we now define a transformation for negation. Our transformation
unifies negated predicates like Non-zero Inner Product Encryption (NIPE) and
Zero Inner Product Encryption (ZIPE). In Sect. 6.2 we use this transformation to
build optimized predicate encodings. The technique works for predicate encod-
ings where the negation transformation yields a predicate encoding that can be
further simplified (using our method from Sect. 3.2).

Theorem 6 (Negation of predicate encodings). For every (s, r, w)-
predicate encoding (sE, rE, kE, sD, rD) for P : X × Y → {0, 1} there exists a
(w,w + 1, s + w + r)-predicate encoding (sE′, rE′, kE′, sD′, rD′) for the predicate
P′ : X × Y → {0, 1} such that P′(x, y) ⇔ ¬P(x, y). Concretely,

sE′
x =

(
sE�

x −Iw 0w,r

)
rE′

y =
(
0w,s Iw rE�

y

0�
s 0�

w kE�
y

)
kE′

y =
(
0w

1

)

sD′
x,y = wx,y rD′

x,y =
(−wx,y

1

)

Generic Transformations of Predicate Encodings 51

where for a pair (x, y) ∈ X × Y such that P(x, y) = 0, wx,y is defined as the
witness for algebraic privacy, i.e., a vector such that

sExwx,y = 0s ∧ rEywx,y = kEy

Note that such a vector always exists when P(x, y) = 0. Moreover, sD and rD do
not need to be defined when P′(x, y) is not 1, that is, when P(x, y) is not 0.

A similar construction has been considered in a posterior work [4] to this
work. Specifically, they show how to transform a conditional disclosure of secrets
(CDS) for f into a CDS for f̄ (the complement of f).

Dual. In the literature, the notions of KP-ABE and CP-ABE are considered sep-
arately. In fact, many works are only valid for one of the two versions of Attribute
Based Encryption. Our transformation unifies the notion of KP-ABE and CP-
ABE in the framework of predicate encodings. In this context they should not be
considered separately, because our transformation provides a Ciphertext-Policy
predicate encoding from any Key-Policy predicate encoding and vice versa.

Theorem 7 (Dual predicate encoding). For every (s, r, w)-predicate encod-
ing (sE, rE, kE, sD, rD) for P : X × Y → {0, 1} there exists a (r, s + 1, w + 1)-
predicate encoding (sE′, rE′, kE′, sD′, rD′) for the predicate P′ : Y × X → {0, 1}
such that P′(y, x) ⇔ P(x, y). Concretely,

sE′
y =

(
rEy kEy

)
rE′

x =
(
sEx 0s

0�
w 1

)
kE′

x =
(
0s

1

)

sD′
y,x = rDx,y rD′

y,x =
(
sDx,y

1

)

4 Tag-Based Encodings

We show that our techniques for predicate encodings can be extended to the
framework of tag-based encodings. In particular, we show a similar result to our
Theorem 1, which establishes that h-hiding and reconstructability are mutually
exclusive and complementary.

Theorem 8. Let p ∈ N be a prime, let k, c, h ∈ N and let C ∈ Z
c×h
p , K ∈ Z

k×h
p .

The following are equivalent:

• h-hiding: h $← Z
h
p ; return (Ch, Kh) ≡ h,h′ $← Z

h
p ; return (Ch, Kh′)

• non-reconstructability For every mc ∈ Z
c
p and very mk ∈ Z

k
p, either

m�
c C 	= m�

k K or m�
c C = 0�

h .

where ≡ denotes equality of distributions.

52 M. Ambrona et al.

A consequence of Theorem 8 is that every valid tag-based encoding is per-
fectly hiding, or equivalently, there cannot exist a tag-based encoding where the
two distributions from h-hiding are negligibly close but not identical.

Thanks to the above theorem, it is possible to define disjunction and con-
junction transformations for tag-based encodings along the lines of predicate
encodings. We were not able to design a negation transformation for tag-based
encodings and leave it for future work. On the other hand, the dual transfor-
mation is straightforward in this framework, as mentioned in [22], because the
encoding primitives are completely symmetric.

Expressivity of Tag-Based Encodings vs Predicate Encodings. We propose a
transformation that produces valid predicate encodings from valid tag-based
encodings for the same predicate.

Theorem 9. Given a (c, 1, h)-tag-based encoding (cE, kE) for P : X × Y →
{0, 1}, the (c, 1, h)-partial predicate encoding (sE′, rE′, kE′) defined as sE′

x = cEx,
rE′

y = kEy, kE′
y =

(
1
)
, induces a predicate encoding for P.

Note that because of the symmetry of tag-based encodings, Theorem 9 can
be also applied to (1, k, h)-tag-based encodings. All the tag-based encodings
proposed in [22] (except one) have either c = 1 or k = 1, so the above theorem
can be applied to them.

5 Pair Encodings

In this section we provide an embedding that transforms every predicate encod-
ing into an information-theoretic pair encoding. Consequently, we can see pred-
icate encodings as a subclass of pair encodings. This opens the possibility of
reusing the conjunction and dual transformation proposed by Attrapadung [9,10]
for pair encodings, to create combinations of predicate encodings via our embed-
ding. We show that this alternative method is fundamentally different from our
direct conjunction and dual transformations on predicate encodings, where our
combinations produce more efficient encodings.

5.1 Embedding Predicate Encodings into Pair Encodings

In this section we provide an embedding that produces a valid information-
theoretic pair encoding from every valid predicate encoding (see Definitions 1
and 3 for predicate encodings and pair encodings respectively).

Definition 5 (Embedding to Pair Encodings). Given a (s, r, w)-predicate
encoding pe = (sE, rE, kE, sD, rD), we define the embedding Emb(pe) = (Enc1pe,
Enc2pe,Pairpe) as follows:

• Enc1pe(x) = (c0, c), where c0(s0,h) = s0, c(s0,h) = s0 · sExh
• Enc2pe(y) = (k0,k), where k0(α, r1,h) = r1, k(α, r1,h) = α · kEy + r1 · rEyh

Generic Transformations of Predicate Encodings 53

• Pairpe(x, y) =
(

0 rD�
x,y

−sDx,y 0s,r

)

All variables s = (s0) and r = (r1) appear in the clear in the Enc1 and Enc2 poly-
nomials respectively. This simplifies the pair encoding’s information-theoretical
security notion into one equivalent to the privacy of the predicate encoding (see
proof of Theorem10).

Theorem 10 (Correctness of the embedding). If pe = (sE, rE, kE, sD, rD)
is a valid (s, r, w)-predicate encoding for P, then Emb(pe) is a valid information
theoretic (s + 1, r + 1, w)-pair encoding for P.

Our embedding shows that every predicate encoding can be transformed into
a perfectly secure pair encoding. In fact, after applying the compiler from [1] to
the embedding of a predicate encoding, we get the same predicate encryption
scheme that the one provided by the compiler from [15].

We conclude that predicate encodings can be transformed into a very special
class of pair encodings: encodings that allow decryption with 2 pairings and
have only one element of randomness in both, ciphertexts and secret keys (what
makes them very efficient).

5.2 Comparison Between Encoding Transformations

Attrapadung proposed generic transformations of pair encodings [9,10]. In par-
ticular, he proposed the conjunction and dual transformations. In this section
we compare these transformations with the ones proposed in this work. For this,
we compare the conjunction of two pair encodings, (embedded from predicate
encodings) with the embedding of the conjunction of a (s1, r1, w1)-predicate
encoding pe1 = (sD1, rE1, kE1, sD1, rD1) and a (s2, r2, w2)-predicate encoding
pe2 = (sD2, rE2, kE2, sD2, rD2), i.e.,

Emb(pe1 ∧pred pe2) vs Emb(pe1) ∧pair Emb(pe2)

where ∧pred and ∧pair are the conjunction of predicate encodings and pair encod-
ings respectively. Note that ∧pred corresponds to the transformation from our
Theorem 5. On the other hand, for ∧pair we use the conjunction proposed in [10].

Emb(pe1 ∧pred pe2) =

⎧
⎨

⎩

Enc1((x1, x2)) = (c0, c1, c2)
Enc2((y1, y2)) = (k0,k1,k2)
Pair((x1, x2), (y1, y2)) = E(x1,x2),(y1,y2)

where h = (h0,h1,h2) and

c0(s0,h) = s0
c1(s0,h) = s0 · sE1

x1
h1

c2(s0,h) = s0 · sE2
x2
h2

k0(α, r1,h) = r1
k1(α, r1,h) = (α + h0) · kE1

y1
+ r1 · rE1

y1
h1

k2(α, r1,h) = (α − h0) · kE2
y2

+ r1 · rE2
y2
h2

54 M. Ambrona et al.

E(x1,x2),(y1,y2) =
1
2

⎛

⎝
0 rD1�

x1,y1
rD2�

x2,y2

−sD1
x1,y1

0s1,r1 0s1,r2

−sD2
x2,y2

0s2,r1 0s2,r2

⎞

⎠

Emb(pe1) ∧pair Emb(pe2) =

⎧
⎨

⎩

Enc1((x1, x2)) = (c0, c1, c2)
Enc2((y1, y2)) = (k0,k1, k2,k3)
Pair((x1, x2), (y1, y2)) = E(x1,x2),(y1,y2)

where h = (h1,h2) and

c0(s0,h) = s0
c1(s0,h) = s0 · sE1

x1
h1

c2(s0,h) = s0 · sE2
x2
h2

k0(α, (r1, r2, r3),h) = r1
k1(α, (r1, r2, r3),h) = r3 · kE1

y1
+ r1 · rE1

y1
h1

k2(α, (r1, r2, r3),h) = r2
k3(α, (r1, r2, r3),h) = (α − r3) · kE2

y2
+ r2 · rE2

y2
h2

E(x1,x2),(y1,y2) =

⎛

⎝
0 rD1�

x1,y1
0 rD2�

x2,y2

−sD1
x1,y1

0s1,r1 0s1 0s1,r2

0s2 0s2,r1 −sD2
x2,y2

0s2,r2

⎞

⎠

The resulting pair encodings are different. The first one (result of our conjunc-
tion) does not introduce new random variables and does not increase the number
of pairings for decryption. On the other hand, the second conjunction adds new
random variables to key generation and increases the number of pairings needed
during decryption. This overhead will be amplified if nested conjunctions are
used. We include a detailed comparison between the dual transformations in the
full version of this paper.

6 Constructions

We provide new instances of predicate encodings to achieve predicate encryption
schemes with new properties or better performance.

6.1 Combining Predicates

Dual-Policy ABE. Dual-Policy Attribute Based Encryption [9,10] has already
been considered in the pair encodings framework. It combines KP-ABE and CP-
ABE into a single construction that simultaneously allows two access control
mechanisms. The main advantage is the possibility of considering policies over
objective attributes (associated to data) and policies over subjective attributes
(associated to user credentials) at the same time.

Our combinations of predicate encodings allow us to create predicate encryp-
tion constructions for Dual-Policy ABE in the framework of pair encodings and
tag-based encodings. In particular, given an arbitrary predicate encoding for
P : X × Y → {0, 1}, applying Theorems 7 and 5 we get an encoding for DP-
ABE, i.e., for the predicate P� : (X × Y) × (Y × X) → {0, 1} defined as

P�((x, y), (y′, x′)) = 1 iff P(x, y) ∧ P(y′, x′)

Generic Transformations of Predicate Encodings 55

Revocation. Another application of our combinations is predicate encryption
with revocation, by combining a boolean formula predicate encoding with a broad-
cast encryption predicate encoding. The former is used to encode the actual policy
of the scheme, while the latter takes care of revocation.

Fig. 1. Scalability of the PE for revocation

Broadcast encryption has
been considered in the literature
to approach revocation [19,23,
30]. In broadcast encryption, a
broadcasting authority encrypts
a message in such a way that
only authorized users will be
able to decrypt it. This can
be expressed with the predicate
P(x, i) = 1 if and only if xi =
1, where x ∈ X = {0, 1}n

and i ∈ Y = [n]. A draw-
back is that the number of users
in the system, n, is polynomial
size. Figure 1 shows the perfor-
mance of predicate encryption
built from a predicate encoding
that combines boolean formulas with broadcast encryption. The system supports
thousands of users in reasonable time.

6.2 Improved Predicate Encodings

In this section we propose new predicate encodings that are more efficient than
some of the encodings proposed previously in [15]. Our encodings are built by
applying Theorem6 to obtain negated encodings and observing that, in some
cases, Theorem 3 can be applied to simplify the negated version into a more effi-
cient encoding than the original one. The predicate associated to this new encod-
ing is negated, but if inputs are also negated, the predicate will be equivalent.
Figure 2 illustrates this idea. On the left, there is a boolean formula CP-ABE for
4 attributes {a, b, c, d}. On the right side, secret keys and policies are modified so
that the negated version is equivalent. The attribute universe is formed by the
negated attributes, secret keys are formed by all negated attributes do not appear
in the original key as normal attributes, policies are negated and expressed in
NNF (Negation Normal Form).

Boolean Formulas. In [15], the authors propose two predicate encoding (KP
and CP versions) for monotonic boolean formulas. The predicate they consider
is a particular case of a Linear Secret Sharing scheme [24]. Let X = {0, 1}n,Y =
Z

n×k
p for some n, k ∈ N,

P(x,M) = 1 iff
(
1 0 k−1. . . 0

) ∈ row
span 〈Mx〉

56 M. Ambrona et al.

P P̄

attributes = {a, b, c, d} attributes = {ā, b̄, c̄, d̄}
x = (a ∧ c) ∨ d x = (ā ∨ c̄) ∧ d̄

y = {a, c} y = {b̄, d̄}
P(x, y) = 1 iff x(y) P̄(x, y) = 1 iff ¬x(y)

P(x,M) = 1 iff 1 0 k−1. . . 0
) ∈ row

span 〈Mx〉

Fig. 2. Equivalent encodings of a policy using P (CP-ABE) on the left and P̄ (negated
CP-ABE) on the right.

where Mx denotes the matrix M filtered by x, i.e., Mx includes the i-th row of
M iff xi = 1.

It has been shown [28] that for every5 monotonic boolean formula f with
attributes from X there exists a matrix M ∈ Y such that for every x ∈ X ,
f(x) ⇔ P(x,M). The key-policy predicate encoding from [15] is the following,

sEx =
(
diag(x) 0n,k−1

)
rEM =

(
In M{2,...,k}

)
kEM =

(
M{1}

)

where M{1} denotes the first column of matrix M , M{2,...,k} represents the rest
of the matrix. We do not include explicit decryption functions sD and rD, but
they can be computed efficiently by Gaussian elimination.

In the above encoding, the number of elements in secret keys and ciphertexts
is always maximal, it equals the number of (possibly duplicated) attributes, even
for small policies. Furthermore, the maximum number of and-gates in a policy
must be fixed a priori (because it is related the number of columns in the matrix).

We propose the following improved predicate encoding for (negated) key-
policy monotonic boolean formulas, which is an equivalent predicate if instanti-
ated with negated inputs. Let X = {0, 1}n and Y = Z

n×k
p ,

sEx = In − diag(x) rEM = M� kEM =
(
1 0 k−1. . . 0

)�

In our encoding, the number of columns has been reduced up to half 6. Fur-
thermore, the size of secret keys is proportional to the complexity of policies. In
particular, it is equal to the number of and-gates in the policy (or equivalently,
the number of or-gates in the non-negated version). Note that our improvement
also works in the ciphertext-policy case.

In Fig. 3 we present a comparison between our improved encoding for key-
policy monotonic boolean formulas and the original one. To this end, we generate
random boolean formulas for different sizes, starting from a random set of leaf
5 Where every attribute appears at most once and the number of and-gates is

lower than k (one could overcome the one-use restriction by considering duplicated
attributes).

6 Being half when the bound on the number of and-gates is maximal.

Generic Transformations of Predicate Encodings 57

Fig. 3. Improved predicate encoding for boolean formulas vs original encoding

nodes and combining them with boolean operators ∨ and ∧. Our tables report
on the average time for each algorithm. Our encoding needs 50% less time than
the original algorithms for setup, encryption and key generation. For decryption
the performance is similar. All the analyzed schemes were instantiated with the
same compiler, therefore all achieve the same level of security (under SXDH
assumption). In terms of secret key size, our encoding is smaller in general (in
the worst case, when all the gates in the policy are or-gates, key sizes are equal).

Arithmetic Span Programs. Chen et al. proposed in [15] a predicate encoding
for Arithmetic Span Programs (ASP). That is, an encoding for the predicate P
defined as follows. Let X = Z

n
p , Y = Z

n×k
p × Z

n×k
p , for some n, k ∈ N; for every

x ∈ X and every (Y,Z) ∈ Y,

P(x, (Y,Z)) = 1 iff
(
1 0 k−1. . . 0

) ∈ row
span 〈diag(x)Y + Z〉

In [21], Ishai and Wee show how to relate Arithmetic Span Programs com-
putations of polynomial functions over a finite field F, i.e., functions f : Fn → F

that only use addition and multiplication over the field. Therefore, the above
predicate can be seen as f(x) = 0, where f is the polynomial function induced
by (Y,Z). Let X = Z

n
p , Y = Z

n×k
p × Z

n×k
p , the original predicate encoding for

arithmetic span programs proposed in [15] is the following:

58 M. Ambrona et al.

Fig. 4. Improved predicate encoding for ASP vs original encoding

sEx =
(
diag(x) In 0n,k−1

)
rE(Y,Z)=

(
In 0n,n Y{2,...,l}
0n,n In Z{2,...,l}

)
kE(Y,Z) =

(
Y{1}
Z{1}

)

We present a more efficient encoding for (negated7) arithmetic span programs:

sEx =
(
diag(x) −In

)
rE(Y,Z) =

(
Z� Y �)

kE(Y,Z) =
(
1 0 k−1. . . 0

)�

Figure 4 shows the performance of our new encoding for KP-ABE for Arith-
metic Span Programs compared to the original encoding from [15]. As we
expected, our encoding needs 66% of the time required for the original encoding
for setup, encryption and key generation. Additionally, secret key size is halved
with our encoding.

6.3 Extra Features

In this section we consider new theoretical results that can be proved thanks
to our algebraic characterization of α-privacy and can be used to produce new
predicate encodings enhanced with extra properties.

7 In [21] there is a modification of their algorithm that produces matrices (Y, Z) such
that the predicate associated is f(x) �= 0 (the double negation will cancel out).

Generic Transformations of Predicate Encodings 59

Attribute-Hiding for Boolean Formulas. Chen et al. proposed an exten-
sion of the compiler in [15] to build weakly attribute-hiding predicate encryption
schemes [13,25]. In a weakly attribute-hiding scheme, the ciphertext attribute x
remains secret for unauthorized users, that only learn the fact that their secret
keys are not valid. This additional compiler needs to be instantiated with pred-
icate encodings satisfying additional properties. The following is a definition
from [15].

Definition 6 (Attribute-Hiding Encodings). A (s, r, w)-predicate encod-
ing, (sE, rE, kE, sD, rD) for P : X × Y → {0, 1} is attribute-hiding if it verifies
the additional requirements:

x-oblivious reconstruction: sDx,y and rDx,y are independent of x.
attribute-hiding: for all (x, y) /∈ P,

w
$← Z

w
p ; return (sExw, rEyw) ≡ s

$← Z
s
p; r

$← Z
r
p; return (s, r)

where ≡ denotes equality of distributions.

The following theorem relates the second property with our alternative definition
of predicate encodings:

Theorem 11 (Algebraic characterization of attribute-hiding). Let p ∈
N be a prime, let s, r, w ∈ N and let S ∈ Z

s×w
p , R ∈ Z

r×w
p , k ∈ Z

r
p. The following

are equivalent:

• w
$← Z

w
p ; return (Sw, Rw) ≡ s

$← Z
s
p; r

$← Z
r
p; return (s, r)

• rank
(

S
R

)
= s + r

Note that for every (s, r, w)-predicate encoding (sE, rE, kE, sD, rD) that is
attribute-hiding, there exists an equivalent (s, 1, w)-predicate encoding. This is
because rD is independent from x and thus, we can apply our optimization The-
orem 3 with matrices By = rD�

x,y ∈ Z
1×w
p , Ax = Is, C = Iw. Therefore, the class

of predicates that can be built from attribute-hiding encodings is included in the
class of predicates achieved from (s, 1, w)-predicate encodings.

Further, note that our disjunction and conjunction combinations for predi-
cate encodings (Theorems 4 and 5 respectively) preserve the notion of attribute-
hiding8. Exploiting this fact, we propose a Policy-Hiding ABE scheme for non-
monotonic boolean formulas expressed in DNF (Disjunctive Normal Form). The
inner product can be used to encode conjunctions [25]. More concretely, let
y ∈ {0, 1}n ⊆ Z

n
p . We establish that the i-th attribute ai appears in a secret key

for y iff yi = 1. Let S, S̄ ⊆ {ai}n
i=1 be sets such that S ∩ S̄ = ∅,9

∧

a∈S

a ∧
∧

a∈S̄

ā ⇔9 x�y = |S| where ∀i ∈ [n], xi =

⎧
⎨

⎩

1 if ai ∈ S
−1 if ai ∈ S̄

0 otherwise

8 Conjunction also preserves x-oblivious reconstruction, while disjunction does not.
9 This equivalence holds when |S| < p, but in practice p is a large prime.

60 M. Ambrona et al.

Note that the ZIPE predicate encoding from [15, Appendix A.1] can be
modified into an attribute-hiding encoding for the predicate P((x, γ),y) =
1 iff x�y = γ.

Fig. 5. Example of delegation of keys for monotonic boolean formulas. Since A is a
linear function, it can be computed in the exponent from the given key.

Therefore, with a disjunction of k predicate encodings like the former we can
encode boolean formulas that have at most k disjuncts. Note that the result-
ing encoding is attribute-hiding but it is not x-oblivious. However, without the
knowledge of the policy x, one can guess for the disjunct his secret key satis-
fies (if any). In this way, a valid key will be enough to decrypt after at most k
decryption tries (one for every disjunct).

Delegation. Delegation of keys is a desirable property for every predicate
encryption scheme. Roughly, it allows the owner of a secret key to weaken his
key creating a new one that is less powerful than the original one. This property
can be used to achieve forward secrecy (see [14] for an application to ABE that
supports delegation), where past sessions are protected from the compromise of
future secret keys. More formally, we say that a predicate P : X × Y → {0, 1}
supports delegation if there is a partial ordering � on Y such that for every
x ∈ X , if P(x, y) = 1 and (y � y′), then P(x, y′) = 1.

Generic Transformations of Predicate Encodings 61

Delegation has been considered in [15] as the property of some predicate
encodings. We propose a generic method to convert any predicate encoding into
one supporting delegation.

Theorem 12 (Delegation). For every (s, r, w)-predicate encoding (sE, rE, kE,
sD, rD) for P : X × Y → {0, 1}, for every k ∈ N, (sE′, rE′, kE′, sD′, rD′) defined
below is a valid (s, r + k,w + k)-predicate encoding for P.

sE′
x =

(
sEx 0s,k

)
rE′

y =
(

rEy 0r,k

0k,w Ik

)
kE′

y =
(
kEy

0k

)

sD′
x,y = sDx,y rD′

x,y =
(
rDx,y

0k

)

The additional set of not-null rows in rE′
y can be used to weaken the linear

span of rEy, what directly modifies the predicate. In particular, this method
works really well for monotonic boolean formulas (see Fig. 5 for an example).

Acknowledgements. The work presented here was supported by projects
S2013/ICE-2731 N-GREENS Software-CM, ONR Grants N000141210914 and
N000141512750.

A Proofs from Main Body

Proof (Of Theorem 2). The proof follows from Theorem 1 and the observation
that reconstructability of predicate encodings is equivalent to Pred, while privacy
of predicate encodings is equivalent to ¬Pred.
�
Proof (Of Theorem 3). To see correctness of the new encoding, note that for all
(x, y) ∈ P, since

sD�
x,y ∈ row

span 〈Ax〉 ∧ rD�
x,y ∈ row

span 〈By〉
there exist sD′�

x,y and rD′�
x,y such that

sD�
x,y = sD′�

x,yAx ∧ rD�
x,y = rD′�

x,yBy

Therefore,

sD′�
x,y(AxsExC) = (sD�

x,ysEx)C = (rD�
x,yrEy)C = rD′�

x,y(ByrEyC)

rD′�
x,y(BykEy) = rD�

x,ykEy = 1

To see privacy, note that for every (x, y) /∈ P, there exists w ∈ col
span 〈C〉 such

that sExw = 0s ∧ rEyw = kEy. Therefore, there also exists w′ ∈ Z
w′
p such that

w = Cw′. Note that,

sE′
xw

′ = (AxsExC)w′ = AxsExw = Ax0s = 0s′

rE′
yw

′ = (ByrEyC)w′ = ByrEyw = BykEy = kE′
y

so algebraic privacy is satisfied.
�

62 M. Ambrona et al.

Proof (Of Theorem 4). Reconstructability can be seen by a simple check based
on the reconstructability of the original encodings.
To see privacy, note that P1(x1, y1) ∨ P2(x2, y2) = 0 implies P1(x1, y1) = 0
and P2(x2, y2) = 0 implies. Let w1 and w2 be witnesses of privacy of predicate
encodings 1 and 2 respectively. It is easy to check that w� =

(
w�

1 w�
2

)
is a

witness of privacy of the transformed encoding.
�
Proof (Of Theorem 5). A simple check shows reconstructability. To see pri-
vacy, P1(x1, y1) ∧ P2(x2, y2) = 0 implies P1(x1, y1) = 0 or P2(x2, y2) = 0.
If the first holds, let w1 be a witness of privacy of the first encoding. Then,
w� =

(
2w�

1 0�
w2

−1
)

is a witness of the algebraic privacy of the transformed
encoding. If the second holds, let w2 be a witness of privacy of the second encod-
ing. A valid witness now is w� =

(
0�

w2
2w�

2 1
)
.
�

Proof (Of Theorem 6). It is not difficult to check reconstructability. Privacy holds
because when P(x, y) = 1, we can define w� =

(−sD�
x,y −sD�

x,ysEx rD�
x,y

)

which can be checked to be a witness of the algebraic privacy of the transformed
predicate encoding.
�
Proof (Of Theorem 7). A simple check is enough to verify reconstructability. For
privacy, note that when P′(y, x) = 0, we have P(x, y) = 0. Let w be a witness
of the algebraic privacy of the original encoding. Now, w′� =

(−w� 1
)

is a
witness of the dual predicate encoding.
�
Proof (Of Theorem 8). The proof follows directly from the following lemma
and the observation that (i) is equivalent to h-hiding, while (iii) is non-
reconstructability (take A = C and B = K).
�
Lemma 1. Let A ∈ Z

m×n
p and B ∈ Z

l×n
p be matrices. Let C ∈ Z

(m+l)×n
p be the

concatenation of A and B by rows. The following three statements are equivalent:

(i) ∀a ∈ Z
m
p ,∀b ∈ Z

l
p, Pr

x
$←Zn

p

[Ax = a |Bx = b] = Pr
x

$←Zn
p

[Ax = a]

(ii) rank(C) = rank(A) + rank(B)

(iii) ∀a ∈ Z
m
p ,∀b ∈ Z

l
p, a�A 	= b�B ∨ a�A = 0�

n

Proof (Of the Lemma). Note that (i) holds for every a ∈ Z
m
p , b ∈ Z

l
p such that

Ax = a or Bx = b have no solution. Let a ∈ Z
m
p , b ∈ Z

l
p be such that the

systems Ax = a and Bx = b have individually at least one solution (note that
such a and b always exist). We define the sets ΩA = {x ∈ Z

n
p : Ax = a},

ΩB = {x ∈ Z
n
p : Bx = b}, ΩAB = {x ∈ Z

n
p : Ax = a ∧ Bx = b}. By the

Rouché-Capelli Theorem,

|ΩA| = pn−rank(A) |ΩB | = pn−rank(B) |ΩAB | = pn−rank(C)

Note that (i) can be expressed as |ΩAB |
pn = |ΩA|

pn · |ΩB |
pn which is equivalent to the

equation pn · |ΩAB | = |ΩA| · |ΩB |, and therefore, pn · pn−rank(C) = pn−rank(A) ·
pn−rank(B) if and only if rank(C) = rank(A) + rank(B) which is (ii).

Generic Transformations of Predicate Encodings 63

Now, note that rank(C) = rank(A) + rank(B) if and only if there is not
a non-zero linear combination of rows of A that can be expressed as a linear
combination of rows of B, which is equivalent to statement (iii).
�
Proof (Of Theorem 9). According to our Theorem 2, the partial encoding (sE′,
rE′, kE′) induces a predicate encoding for the predicate Pred(x, y) = 1 iff ∃s ∈
Z

c
p, r ∈ Z

1
p s.t. s�sE′

x = r · rE′
y and r · kE′

y = 1, or equivalently, ∃s ∈
Z

c
p s.t. s�cEx = kEy, which is equivalent to the reconstructability of the tag-

based encoding (cE, kE). According to Theorem 8 it is also equivalent to the
predicate P.
�
Proof (Of Theorem 10). Verifying correctness of the pair encoding is a simple
check. For perfect security we need to check that, when (x, y) /∈ P, the following
two distributions are identical:

α, s0
$← Zp; r1

$← Z
∗
p; h

$← Z
w
p ; return (s0, s0 · sExh, r1, r1 · rEyh) ≡

s0
$← Zp; r1

$← Z
∗
p; h

$← Z
w
p ; return (s0, s0 · sExh, r1, r1 · rEyh + α · kEy)

Since both distributions provide s0 and r1 in the clear, the above checking is
equivalent to the following:

h
$← Z

w
p ; return (sExh, rEyh) ≡

α
$← Zp; r1

$← Z
∗
p; h

$← Z
w
p ; return (sExh, rEyh + α/r1 · kEy)

but those distributions are identical due to the α-privacy of the predicate
encoding10.
�
Proof (Of Theorem 11). Given (s, r) ∈ Z

s
p × Z

r
p, we define Ωs,r = {w ∈ Z

w
p :

Sw = s ∧ Rw = r}. The condition on the second bullet holds iff w − s − r ≥ 0
and the cardinality of Ωs,r is pw−s−r. Additionally, |Ωs,r| is independent from r
and s iff the two distributions from the first bullet are identical.
�
Proof (Of Theorem 12). Correctness can be easily checked. For privacy, let
(x, y) /∈ P and let w ∈ Z

w
p be such that sExw = 0s and rEyw = kEy. Note

that w′� =
(
w� 0�

k

)
is a witness of privacy for (sE′, rE′, kE′, sD′, rD′).
�

References

1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 259–288. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 10

10 Note that α
$← Zp, r1

$← Z
∗
p and therefore, α/r1 distributes uniformly over Zp, so

we can apply the α-privacy property from the predicate encoding.

http://dx.doi.org/10.1007/978-3-662-49099-0_10

64 M. Ambrona et al.

2. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. Cryptology ePrint Archive, Report 2017/233 (2017). EURO-
CRYPT (2017)

3. Akinyele, J.A., Lehmann, C.U., Green, M.D., Pagano, M.W., Peterson, Z.N.J.,
Rubin, A.D.: Self-protecting electronic medical records using attribute-based
encryption. Cryptology ePrint Archive, Report 2010/565 (2010). http://eprint.
iacr.org/2010/565

4. Applebaum, B., Arkis, B., Raykov, P., Vasudevan, P.N.: Conditional disclosure
of secrets: amplification, closure, amortization, lower-bounds, and separations. In:
Electronic Colloquium on Computational Complexity (ECCC), vol. 24, p. 38 (2017)

5. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography.
https://github.com/relic-toolkit/relic

6. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 31

7. Attrapadung, N.: Dual system encryption framework in prime-order groups. Cryp-
tology ePrint Archive, Report 2015/390 (2015). http://eprint.iacr.org/2015/390

8. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03298-1 16

9. Attrapadung, N., Imai, H.: Dual-policy attribute based encryption. In: Abdalla,
M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol.
5536, pp. 168–185. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01957-9 11

10. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. Cryptology
ePrint Archive, Report 2015/157 (2015). http://eprint.iacr.org/2015/157

11. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order.
Cryptology ePrint Archive, Report 2005/133 (2005). http://eprint.iacr.org/2005/
133

12. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20901-7 2

13. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

14. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
J. Cryptol. 20(3), 265–294 (2007)

15. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46803-6 20

16. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 25

17. Chen, J., Wee, H.: Dual system groups and its applications – compact hibe and
more. Cryptology ePrint Archive, Report 2014/265 (2014). http://eprint.iacr.org/
2014/265

18. Dinh, T.T.A., Datta, A.: Streamforce: outsourcing access control enforcement for
stream data to the clouds. In: Fourth ACM Conference on Data and Application
Security and Privacy, CODASPY 2014, San Antonio, TX, USA, 03–05 March 2014,
pp. 13–24 (2014)

http://eprint.iacr.org/2010/565
http://eprint.iacr.org/2010/565
https://github.com/relic-toolkit/relic
http://dx.doi.org/10.1007/978-3-642-55220-5_31
http://eprint.iacr.org/2015/390
http://dx.doi.org/10.1007/978-3-642-03298-1_16
http://dx.doi.org/10.1007/978-3-642-01957-9_11
http://eprint.iacr.org/2015/157
http://eprint.iacr.org/2005/133
http://eprint.iacr.org/2005/133
http://dx.doi.org/10.1007/978-3-642-20901-7_2
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/978-3-642-40084-1_25
http://eprint.iacr.org/2014/265
http://eprint.iacr.org/2014/265

Generic Transformations of Predicate Encodings 65

19. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient
fully collusion-resilient traitor tracing and revocation schemes. In: Al-Shaer, E.,
Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 10, pp. 121–130. ACM Press,
October 2010

20. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional disclo-
sure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 24

21. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43948-7 54

22. Guo, F., Kim, J., Susilo, W., Au, M.H.: A tag based encoding: an efficient encoding
for predicate encoding in prime order groups. Cryptology ePrint Archive, Report
2016/655 (2016). http://eprint.iacr.org/2016/655

23. Junod, P., Karlov, A.: An efficient public-key attribute-based broadcast encryption
scheme allowing arbitrary access policies. In: Proceedings of the Tenth Annual
ACM Workshop on Digital Rights Management, DRM 2010, pp. 13–24. ACM,
New York (2010)

24. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the 8th
IEEE Structure in Complexity Theory, pp. 102–111. IEEE Computer Society Press
(1993)

25. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

26. Lewko, A.B.: Tools for simulating features of composite order bilinear groups in
the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 20

27. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 455–479. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 27

28. Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-20465-4 31

29. Lewko, A.B., Waters, B.: New proof methods for attribute-based encryption:
achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32009-5 12

30. Liu, Z., Wong, D.S.: Practical ciphertext-policy attribute-based encryption: traitor
tracing, revocation, and large universe. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 127–146. Springer,
Cham (2015). doi:10.1007/978-3-319-28166-7 7

31. Lubicz, D., Sirvent, T.: Attribute-based broadcast encryption scheme made effi-
cient. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 325–342.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-68164-9 22

32. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 13

http://dx.doi.org/10.1007/978-3-662-48000-7_24
http://dx.doi.org/10.1007/978-3-662-48000-7_24
http://dx.doi.org/10.1007/978-3-662-43948-7_54
http://eprint.iacr.org/2016/655
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-642-29011-4_20
http://dx.doi.org/10.1007/978-3-642-29011-4_20
http://dx.doi.org/10.1007/978-3-642-11799-2_27
http://dx.doi.org/10.1007/978-3-642-20465-4_31
http://dx.doi.org/10.1007/978-3-642-32009-5_12
http://dx.doi.org/10.1007/978-3-319-28166-7_7
http://dx.doi.org/10.1007/978-3-540-68164-9_22
http://dx.doi.org/10.1007/978-3-642-32009-5_13
http://dx.doi.org/10.1007/978-3-642-32009-5_13

66 M. Ambrona et al.

33. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

34. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). doi:10.1007/3-540-39568-7 5

35. Wang, F., Mickens, J., Zeldovich, N., Vaikuntanathan, V.: Sieve: cryptographically
enforced access control for user data in untrusted clouds. In: 13th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 16), pp. 611–626,
Santa Clara, CA. USENIX Association, March 2016

36. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 36

37. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 26

http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/3-540-39568-7_5
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-54242-8_26
http://dx.doi.org/10.1007/978-3-642-54242-8_26

	Generic Transformations of Predicate Encodings: Constructions and Applications
	1 Introduction
	1.1 Our Contributions
	1.2 Prior Work
	1.3 Comparison with Agrawal and Chase (EUROCRYPT 2017)

	2 Background
	2.1 Notation
	2.2 Predicate Encodings
	2.3 Tag-Based Encodings
	2.4 Pair Encodings

	3 Predicate Encodings: Properties and Consequences
	3.1 Algebraic Properties of Predicate Encodings
	3.2 Optimizing Predicate Encodings
	3.3 Combining Predicates

	4 Tag-Based Encodings
	5 Pair Encodings
	5.1 Embedding Predicate Encodings into Pair Encodings
	5.2 Comparison Between Encoding Transformations

	6 Constructions
	6.1 Combining Predicates
	6.2 Improved Predicate Encodings
	6.3 Extra Features

	A Proofs from Main Body
	References

