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Preface

The 37th International Cryptology Conference (Crypto 2017) was held at the
University of California, Santa Barbara, USA, during August 20–24, 2017, sponsored
by the International Association for Cryptologic Research.

There were 311 submissions to Crypto 2017, a substantial increase from previous
years. The Program Committee, aided by nearly 350 external reviewers, selected
72 papers to appear in the program. We are indebted to all the reviewers for their service.
Their reviews and discussions, if printed out, would consume about a thousand pages.

Two papers—“Identity-Based Encryption from the Diffie-Hellman Assumption,” by
Nico Döttling and Sanjam Garg, and “The first Collision for Full SHA-1,” by Marc
Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov—were
honored as best papers. A third paper—“Watermarking Cryptographic Functionalities
from Standard Lattice Assumptions,” by Sam Kim and David J. Wu—was honored as
best paper authored exclusively by young researchers.

Crypto was the venue for the 2017 IACR Distinguished Lecture, delivered by Shafi
Goldwasser. Crypto also shared an invited speaker, Cédric Fournet, with the 30th IEEE
Computer Security Foundations Symposium (CSF 2017), which was held jointly with
Crypto.

We are grateful to Steven Myers, the Crypto general chair; to Shai Halevi, author
of the IACR Web Submission and Review system; to Alfred Hofmann, Anna Kramer,
and their colleagues at Springer; to Sally Vito of UCSB Conference Services; and, of
course, everyone who submitted a paper to Crypto and everyone who attended the
conference.

August 2017 Jonathan Katz
Hovav Shacham
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Stronger Security for Reusable Garbled Circuits,
General Definitions and Attacks

Shweta Agrawal(B)

IIT Madras, Chennai, India
shweta@iitm.ac.in

Abstract. We construct a functional encryption scheme for circuits
which simultaneously achieves and improves upon the security of the
current best known, and incomparable, constructions from standard
assumptions: reusable garbled circuits by Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich (STOC 2013) [GKP+13] and predi-
cate encryption for circuits by Gorbunov, Vaikuntanathan and Wee
(CRYPTO 2015) [GVW15]. Our scheme is secure based on the learn-
ing with errors (LWE) assumption. Our construction implies:

1. A new construction for reusable garbled circuits that achieves
stronger security than the only known prior construction [GKP+13].

2. A new construction for bounded collusion functional encryption with
substantial efficiency benefits: our public parameters and ciphertext
size incur an additive growth of O(Q2), where Q is the number of
permissible queries (We note that due to a lower bound [AGVW13],
the ciphertext size must necessarily grow with Q). Additionally, the
ciphertext of our scheme is succinct, in that it does not depend
on the size of the circuit. By contrast, the prior best construction
[GKP+13,GVW12] incurred a multiplicative blowup of O(Q4) in
both the public parameters and ciphertext size. However, our scheme
is secure in a weaker game than [GVW12].

Additionally, we show that existing LWE based predicate encryption
schemes [AFV11,GVW15] are completely insecure against a general func-
tional encryption adversary (i.e. in the “strong attribute hiding” game).
We demonstrate three different attacks, the strongest of which is applica-
ble even to the inner product predicate encryption scheme [AFV11]. Our
attacks are practical and allow the attacker to completely recover x from
its encryption Enc(x) within a polynomial number of queries. This illus-
trates that the barrier between predicate and functional encryption is not
just a limitation of proof techniques. We believe these attacks shed signif-
icant light on the barriers to achieving full fledged functional encryption
from LWE, even for simple functionalities such as inner product zero
testing [KSW08,AFV11].

Along the way, we develop a new proof technique that permits the sim-
ulator to program public parameters based on keys that will be requested
in the future. This technique may be of independent interest.

c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part I, LNCS 10401, pp. 3–35, 2017.
DOI: 10.1007/978-3-319-63688-7 1



4 S. Agrawal

1 Introduction

The last decade has witnessed important progress in the field of computing
on encrypted data. Several sophisticated generalizations of encryption, such as
Identity Based Encryption [BF01,Coc01,GPV08], Attribute Based Encryption
[GPSW06,BSW07,GGH+13c,GVW13], Predicate Encryption [KSW08,AFV11,
GVW15], Fully Homomorphic Encryption [Gen09,BV11,GSW13,BV14], Prop-
erty Preserving Encryption [PR12] have burst onto the scene, significantly
advancing the capabilities of modern cryptography.

These generalizations aim to provide the capability of computing “blind-
folded” – namely, given an encryption of some data a, an untrusted party should
be able to perform computations on Enc(a) so that the resultant ciphertext
may be decrypted meaningfully. The notion of fully homomorphic encryption
permits arbitrary computation on encrypted data, but restricts decryption to be
all-or-nothing, namely, the holder of the secret key may decrypt the resultant
ciphertext to learn the result of the computation, but the same key also decrypts
the original ciphertext revealing a. For applications that require restricted access
to results of the computation, the notion of functional encryption (FE) is more
suitable. In functional encryption, a secret key is associated with a function,
typically represented as a circuit C, denoted by SKC and a ciphertext with
some input a from the domain of C, denoted by CTa. Given SKC and CTa,
the user may run the decryption procedure to learn the value C(a). Security of
the system guarantees that nothing beyond C(a) can be learned from CTa and
SKC . Functional encryption was formalized by Boneh et al. [BSW11] to unify and
extend the notions of Identity Based Encryption, Attribute Based Encryption
and Predicate Encryption, which had already appeared in the literature.

There has been considerable progress in the last several years towards con-
structing FE for advanced functionalities [BF01,Coc01,BW06,BW07,GPV08,
CHKP10,ABB10,GPSW06,BSW07,KSW08,LOS+10,AFV11,Wat12,GVW13,
GGH+13c,GGH+13b,GVW15]. For the most powerful notion of “full-fledged”
functional encryption, that allows the evaluation of arbitrary efficiently-
computable functions and is secure against general adversaries, the only known
constructions rely on multilinear maps [GGHZ14] or indistinguishability obfus-
cation (iO) [GGH+13b]. However, all known candidate multi-linear map con-
structions [GGH13a,CLT13,GGH15] as well as some candidates of iO have been
recently broken [CHL+15,CGH+15,HJ15,CJL,CFL+16,MSZ16].

From standard assumptions, the best known constructions do support general
functionalities, but achieve restricted notions of security. Currently, the state-of-
the-art comprises two incomparable constructions:

– The reusable garbled circuits construction of Goldwasser et al. [GTKP+13],
which supports all polynomial sized Boolean circuits but restricts the attacker
to only obtain a single secret key, for any circuit C of her choice. This construc-
tion can be compiled with the bounded collusion FE construction of [GVW12]
to obtain a scheme which supports q queries, for any a-priori bounded q, and
with a ciphertext size that grows by a multiplicative factor of O(q4). Note
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that the ciphertext size here does not depend on the size of the circuit C, and
is thus succinct.

– The recent predicate encryption (PE) for circuits construction of Gorbunov
et al. [GVW15], which also supports all polynomial sized Boolean circuits but
restricts the attacker to only acquire keys for circuits Ci such that Ci(a) = 0,
when a is the vector of challenge attributes. He may not request any keys Cj

such that Cj(a) = 1. We will refer to the former as 0-keys and the latter as
1-keys. This restricted game of security is often referred to as weak attribute
hiding in the literature.

Both constructions natively achieve the restricted selective notion of security,
which forces the attacker to output the challenge in the very first step of the
game, before seeing the public parameters.

Note that both constructions provide the functionality demanded by func-
tional encryption, but fall short in security. Covering the distance from the
restricted security definitions acheived by these constructions to full fledged func-
tional encryption is a much sought-after goal, and one that must contend with
several thorny technical issues. The former construction relies on the use of gar-
bled circuits for decryption, which restricts the number of supported keys to
1, or, using the additional machinery of [GVW12], to some a-priori bounded q.
The use of garbled circuits is central to this construction, and surmounting the
bounded key limitation appears to require entirely new techniques. On the other
hand, the second construction does support an unbounded number of queries,
but restricts them to belong to the 0-set. It is unclear how to support even a sin-
gle 1-query in this case, due to various technical hurdles that arise from the proof
techniques (more on this below). Whether these techniques may be extended to
support the full-fledged security game of functional encryption is an important
open question, and the one we study in this work.

1.1 Our Contributions

In this work, we provide a new construction for functional encryption which
simultaneously achieves and improves upon the security of the current best
known, and incomparable, constructions from standard assumptions [GKP+13,
GVW15]. Our scheme is secure based on the learning with errors (LWE) assump-
tion. Our construction implies:

1. A new construction for reusable garbled circuits that achieves stronger secu-
rity than the only prior construction by Goldwasser et al. (STOC 2013)
[GKP+13]. In our construction, the attacker may additionally request an
unbounded number of 0 keys in addition to the single arbitrary key allowed
by the standard definition of reusable garbled circuits. Additionally, our con-
struction achieves semi-adaptive security as against selective [GKP+13].

2. A new construction for bounded collusion functional encryption where the
adversary is restricted to making an a-priori fixed number of queries. The
ciphertext of our scheme is succinct, in that it does not depend on the size
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of the circuit. Our public parameters and ciphertext size incur an additive
growth of O(Q2), where Q is the number of permissible queries. By con-
trast, the prior best construction [GKP+13,GVW12] incurred a multiplica-
tive blowup of O(Q4) in both the public parameters and ciphertext size.
However, our construction is secure in a weaker game than best known
[GKP+13,GVW12].

Additionally, we show that existing LWE based predicate encryption schemes
[AFV11,GVW15] are completely insecure against a general functional encryp-
tion adversary (i.e. in the “strong attribute hiding” game). We demonstrate three
different attacks, the strongest of which is applicable even to the inner product
predicate encryption scheme [AFV11]. Our attacks are practical and allow the
attacker to completely recover a from its encryption Enc(a) within a polynomial
number of queries. This illustrates that the barrier between predicate and func-
tional encryption is not just a limitation of proof techniques. We believe these
attacks shed significant light on the barriers to achieving full fledged functional
encryption for circuits from standard assumptions.

Along the way, we develop a new proof technique that permits the simulator
to program public parameters based on keys that will be requested in the future.
This technique may be of independent interest.

1.2 Our Techniques

Our work builds upon the constructions of Goldwasser et al. [GTKP+13] and
Gorbunov et al. [GVW15]. Both these systems begin with the idea that the pub-
lic attributes in an attribute based encryption scheme (ABE) may be hidden, and
yet remain amenable to computation, if they are encrypted using fully homomor-
phic encryption. Recall that in an attribute based encryption scheme [GPSW06],
a ciphertext is associated with a public attribute vector a and plaintext bit μ,
and it hides μ, but not a.

To hide a, one may encrypt it using FHE to obtain â, and treat this encryp-
tion as the public attribute in an ABE system. Since an ABE scheme for cir-
cuits [GVW13,BGG+14] allows for a key SKC to evaluate an arbitrary circuit
C on the attribute, the decryptor may now homomorphically compute on â
using the FHE evaluation circuit. Then, given a key corresponding to the circuit
FHE.Eval(C, ·), the decryptor may run the ABE decryption procedure to learn
the FHE encryption of C(a), namely ̂C(a).

This is not yet enough, as the goal is for the decryptor to learn C(a) in the
clear. To achieve this, FHE decryption must be performed on ̂C(a) in a manner
that does not permit decryption of any ciphertext other than ̂C(a). The scheme
of Goldwasser et al. [GTKP+13] resolves this difficulty by employing a single use
garbled circuit for the FHE decryption function and using ABE to provide labels
corresponding to input ̂C(a). This constrains FHE decryption, but restricts the
resultant FE scheme to only be secure against a single key request. The scheme
of Gorbunov et al. [GVW15] resolves this difficulty by making use of two nicely
matching asymmetries:
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1. The asymmetry in computation. To compute C(a) using the above method,
the bulk of the computation is to be performed on FHE ciphertext, namely
FHE.Eval(C, â), where â can be public. The remainder of the computation,
namely running the FHE decryption circuit on ̂C(a), is a relatively lightweight
circuit.

2. The asymmetry in attribute hiding in the ABE scheme of [BGG+14]. There is
an inherent asymmetry in the homomorphic multiplication procedure of the
ABE scheme [BGG+14], so that computing a product of two ciphertexts wth
attributes a1 and a2 respectively, only necessitates revealing one attribute
(say a1) while the other (a2) can remain hidden (for addition, both a1 and
a2 may remain hidden). This property is leveraged by [GVW15] to construct
partially hiding predicate (or attribute) encryption (PHPE), which allows
computation of an inner product of a public attribute vector corresponding
to FHE.Eval(C, â) and a private attribute vector, corresponding to the FHE
secret key. Since inner product loosely approximates FHE decryption, this
allows the decryptor to obtain a plaintext value corresponding to C(a) as
desired.

While the predicate encryption scheme [GVW15] can handle an unbounded
number of 0-queries from the adversary, it runs into at least three difficulties
when faced with a 1-query:

1. The proof of security in the PHPE scheme uses a trapdoor puncturing tech-
nique [ABB10] in the simulation, so that the simulator has a trapdoor to
sample keys for 0-queries but this trapdoor vanishes for 1-queries, disabling
the simulator.

2. Given a PHPE ciphertext CTâ with public attributes â, key homomorphism
[BGG+14,GVW15] enables the evaluation of a circuit C on the PHPE cipher-
text resulting in a PHPE ciphertext CTC( â ) with attributes C( â ). By con-
struction, this resultant ciphertext is an LWE sample with an error term
which is fixed and public linear combination of the error terms used to con-
struct CTâ. This error is learned by the adversary upon decryption, which
creates leakage that cannot be simulated. Indeed, this leakage, when suffi-
cient, can completely break LWE security and allow the adversary to learn a
in the clear (see Sect. 3 for details).

3. Recall that the FHE decryption operation is a lightweight operation con-
ducted using PHPE with the FHE secret key as the private attribute vector.
While FHE decryption is lightweight, it is still not lightweight enough to
be performed in its entirety while maintaining the privacy of the FHE secret.
FHE decryption is an inner product followed by a threshold function, of which
only the inner product can be performed securely by PHPE. The authors
overcome this hurdle by making use of the “lazy OR” trick, which roughly
allows the decryptor to learn not the threshold inner product, but the pure
inner product, which leaks sensitive information about the noise used while
encrypting a. Again, this leakage cannot be simulated, and when sufficiently
high, can lead to complete recovery of the FHE secret key.
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Attacks. Interestingly, all of the above difficulties in proving security translate
to polynomial time attacks that lead to complete message recovery in a game
where 1-keys are permitted. Our first and strongest attack is related to the first
difficulty, and is effective even against the inner product predicate encryption
scheme of Agrawal et al. [AFV11]. Recall that the inner product zero test func-
tionality of [AFV11] permits the decryptor to test whether the inner product of a
vector x ∈ Z

�
p in the ciphertext and vector v ∈ Z

�
p in the key is zero or non-zero.

We demonstrate that by requesting keys for linearly dependent functions, the
attacker can construct a short basis for a matrix F (say) which is related to the
LWE matrices used in the challenge ciphertext. By manipulating the challenge
ciphertext, the attacker may recover an LWE sample of the form FTs+noise. This
LWE sample unresistingly reveals all its secrets given a trapdoor for F, which
in turn allow the attacker to recover the entire message x from the challenge
ciphertext.

We believe this attack sheds significant light on the barriers to obtaining full
fledged functional encryption even for a simple functionality such as inner prod-
uct zero testing [KSW08,AFV11]. Note that full security has been achieved for
a functionality that computes the inner product of two vectors x,v ∈ Z

�
p given

CT(x) and SK(v), but it appears quite challenging to extend these techniques
for the case of inner product zero testing. Intuitively, this is because the inner
product zero test functionality is non-linear: 0 keys reveal almost nothing about
x while 1 keys reveal much more. This is in contrast to the inner product com-
putation functionality, in which all function queries, whether type 0 or type 1,
reveal proportionate information about x. Constructing functional encryption
with full fledged security even for the simple functionality of [KSW08,AFV11]
from lattice based assumptions appears to require fundamental new techniques.

Our second attack is against the Partially Hiding Predicate Encryption sys-
tem for circuits [GVW15] and stems from the second difficulty above. This attack
exploits the fact that the decryptor, given a 1-key, learns a public linear function
of the error terms used in encryption. By requesting sufficient 1-keys, the attacker
can solve this linear system to recover the errors used in encryption, which lead
to recovery of the predicate a even when functionality reveals much less.

Our third attack is against the Predicate Encryption (PE) system for circuits
[GVW15]. As discussed in the third difficulty above, the PE decryption key,
which wishes to provide the decryptor with a threshold inner product value,
instead can only provide the exact inner product value, leaving the decryptor to
compute the threshold herself. This leads to an attacker learning linear equations
in the errors used to construct the FHE encryption â, which, when sufficiently
many, let her recover the FHE secret, which in turn lets her recover a.

We emphasize that our attacks are entirely practical and also apply to
the weaker indistinguishability based security game of functional encryption
[BSW11] but do not work in the “weak attribute hiding” security game consid-
ered by [AFV11,GVW15]. This suggests that using predicate encryption systems
in scenarios where even a small number of arbitrary users collude is insecure in
practice.
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“Very-Selective” (1,poly)-Functional Encryption. We provide a construction
that overcomes the above vulnerabilities for the case of a single arbitrary key,
whether 1 or 0, and continues to support an unbounded number of 0-keys. By
restricting the attacker to any single query, this yields an alternate construction
for reusable garbled circuits [GTKP+13]. We summarize the main ideas here.
For clarity of exposition, we omit many details; we refer the reader to Sects. 4,
5 and 6 for the formal construction and proof.

Our starting point is the predicate encryption scheme of [GVW15], which
we will hereby refer to as (0,poly)-FE, as it supports zero 1-queries and any
polynomial number of 0-queries. The construction for (0,poly)-FE makes use of
two components as described above, namely, (0,poly)-partially hiding predicate
encryption (PHPE) and fully homomorphic encryption (FHE). Our construction
for (1,poly)-FE follows the same high level template as [GVW15], and as our
first step, we require (1,poly)-PHPE. Note that the (0,poly)-PHPE scheme does
allow the key generator to release an unbounded number of both 0 and 1 queries,
but as mentioned above, the proof of security breaks down if the adversary
requests a 1-key. This is because the secret key corresponding to a circuit C is a
low norm matrix K satisfying an equation of the following form:

[

A | AC

]

K = P mod q

where the matrices A,P are fixed and public, and the matrix AC is computed
by executing a homomorphic evaluation procedure [BGG+14,GVW15] corre-
sponding to the circuit C on some public matrices. In the real system, the key
generator has a trapdoor for A, which allows it to sample K using known tech-
niques [CHKP10,ABB10]. In the simulation, the matrix AC has a special form,
namely AC = [ARC −C(a) ·G] for some low norm matrix RC and fixed public
matrix G. The simulator has a trapdoor for G which enables it to sample the
required K also using known techniques but only when C(a) �= 0 [ABB10]. When
C(a) = 0, G vanishes along with its trapdoor, and the simulator has no method
by which to sample K1.

To overcome this, we note that if the circuit C is known before the public key
is generated, the simulator can instead sample K first and set P to satisfy the
above equation. This is a standard trick in LWE based systems [GPV08,Pei13],
and yields the same distribution of the pair (K,P) as in the real world. This
allows us to take a step forward2, but the adversary’s view remains distinguish-
able from the real world, because decryption leaks correlated noise which is

1 The careful reader may observe that the simulator is disabled when C(a) = 0,
not when C(a) = 1, though we have claimed that [AFV11,GVW15] can support 0-
queries and not 1 queries. This is because, traditional functional encryption literature
defines decryption to be permitted when the function value is 1, and defines the
function value to be 1 when C(a) = 0. We follow this flip to be consistent with prior
work.

2 This is presently a weak security game which we term as very-selective where the
circuit C as well as the challenge message is announced before the parameters are
generated. This restriction will be removed subsequently.
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un-simulatable, as discussed in difficulty #2 above. To overcome this, we must
choose the noise in the challenge ciphertext with care so that the noise yielded by
the decryption equation is statistically close to fresh and independently chosen
noise. Put together, these tricks enable us to build a (1,poly)-PHPE.

However, (1,poly)-PHPE does not immediately yield (1,poly)-FE due to dif-
ficulty #3 above, namely, leakage on FHE noise. To handle this, we modify the
circuit for which the PHPE key is provided so that the FHE ciphertext ̂C(a)
is flooded with large noise before the inner product with the FHE secret key is
computed. Now, though the attacker learns the exact noise in the evaluated FHE
ciphertext ̂C(a) as before, this noise is independent of the noise used to generate
â and no longer leaks any sensitive information. Note that care is required in
executing the noise flooding step, since correctness demands that the FHE mod-
ulus be of polynomial size and the noise to be added may be super-polynomial.
To ensure this, we flood the FHE ciphertext before the FHE “modulus reduc-
tion” step. Now, we have at our disposal a (1,poly)-FE scheme, albeit one that
is secure according to a very restricted definition of security, which requires the
attacker to commit to both the challenge messages and the single arbitrary func-
tion in the first step of the game. This “very selective” definition can be upgraded
to semi-adaptive, as described next.

Upgrading Very-Selective to Semi-Adaptive. We provide a method for compil-
ing our function-selective secure PHPE construction to one that satisfies semi-
adaptive security, in which the attacker may see the public parameters before
revealing the challenge. Our transformation is generic – it applies to all con-
structions that satisfy certain structural properties. In more detail, we require
that: (1) the PHPE ciphertext CTa be decomposable into |a| components CTi,
where CTi depends only on a[i], and (2) CTi is a fixed and public linear function
of the message a[i] and randomness chosen for encryption.

Concretely, consider the ciphertext in the (0,poly)-PHPE of [GVW15]. For
i ∈ [�],

CTi = ui =
(

Ai + a[i] · G)T
s + noisei ∈ Z

m
q

Clearly condition (1) is satisfied – the ith component of a influences only ui.
Additionally, note that

ui =
〈

[ AT

i , 1, 1 ]; [ s, a[i] · GTs, noisei ]
〉

mod q

Here, the first vector is a fixed public vector that is known to the key generator,
while the second vector is made up of components all of which are known to the
encryptor.

Given these two conditions, we construct a semi-adaptive PHPE for the cir-
cuit class C, denoted by SaPH, using two ingredients:
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1. A single key fully secure3 functional encryption scheme, denoted by FuLin,
for the inner product functionality defined as:

F(V1,...,Vk)(a1, . . . ,ak) =
∑

i∈[k]

Vi · ai mod q

Such a scheme was recently constructed by Agrawal et al. [ALS16].
2. A (1,poly) selectively secure PHPE scheme for the circuit class C, which we

denote by VSelPH.

Intuitively, the idea is to nest the selective PHPE system for C within an
adaptive FE system for inner products, so that the latter is used to generate
ciphertexts of the former on the fly. In more detail, the public parameters
of SaPH are set as the public parameters of FuLin, the secret key corresponding
to C, namely SaPH.SK(C) is the tuple

(

VSelPH.MPK, FuLin.SK( [ AT
i , 1, 1 ] ),

VSelPH.SK(C)
)

and the ciphertext is SaPH.CT = FuLin.CT
(

[ s, a[i] · GTs,
noisei ]

)

. Now, the ciphertext FuLin.CT
(

[ s, a[i] · GTs, noisei ]
)

and secret key
component FuLin.SK( [ AT

i , 1, 1 ] ) may be decrypted to obtain the VSelPH
ciphertext, which may be decrypted using VSelPH.SK(C). Some care is required
in ascertaining that FuLin is only invoked for a single secret key, but this can
be ensured by taking multiple copies of the FuLin scheme, and using the same
randomness to generate multiple copies of the same key.

The advantage to the above strategy is that the public parameters of the
SaPH scheme are now set as the public parameters of the FuLin scheme, and the
public parameters of the VSelPH scheme are moved into the secret keys of SaPH
scheme. This enables the simulator of the SaPH scheme to provide the public
parameters using the (adaptive/full) simulator for the FuLin scheme, and delay
programming the PHPE public parameters until after the challenge is received, as
required by the VSelPH simulator. Thus, very-selective security may be upgraded
to semi-adaptive security for the circuit class C, by leveraging adaptive security
of the simpler inner product functionality. For more details, please see Sect. 5.

Generalising to Q Queries. To construct (Q,poly)-FE, we again begin by con-
structing (Q,poly)-PHPE, which in turn is constructed from (1,poly)-PHPE.
The (1,poly)-PHPE scheme has the following structure: it encodes the message
b within an LWE sample β0 = PTs + noise + b. Given other components of the
ciphertext, the decryptor is able to compute a ciphertext cEval and key generator
provides as the key a short matrix K, where

cEval = [ A | AC ]Ts + noise, [ A | AC ] K = P mod q

By computing KTcEval − β0 and rounding the result, the decryptor recovers b.

3 Please see Appendix 2.3 for the definition of full security.
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To generalize the above to handle Q queries, a natural approach would be
to encode the message Q times, using Q distinct matrices P1, . . . ,PQ and have
the ith key Ki be a short matrix satisfying [ A | ACi

] Ki = Pi mod q. Then,
the key generator can pick Pi for the ith key, and sample the corresponding
Ki as the secret key. However, this straightforward idea would require the key
generator to keep track of how many keys it has produced so far and would make
the key generator stateful, which is undesirable.

To get around this, we make use of a trick using cover free sets [GVW12]. The
idea is to enable the key generator to generate a fresh matrix P∗

i for the ith key in
a stateless manner, as follows. We publish a set of matrices {P1, . . . ,Pk} in the
public key, for some parameter k. The key generator chooses a random subset
Δi ⊂ [k] s.t. |Δi| = v for some suitably chosen v, and computes P∗

i =
∑

j∈Δi

Pj .

It then samples Ki so that

[ A | ACi
] Ki = P∗

i mod q

If we choose (v, k) as functions of the security parameter κ and number of
queries Q in a way that the Q subsets Δ1, . . . ,ΔQ are cover free with high
probability, then this ensures that the matrices P∗

1, . . . ,P
∗
Q are independent and

uniformly distributed, which will enable the simulator to sample the requisite
keys. This idea can be converted to a secure scheme with only an additive blowup
of O(Q2) in the public key and ciphertext size. However, security is proven in a
game which is weaker than [GVW12] in which the attacker may not request the
1-keys adaptively, but must announce them all at once after seeing the public
parameters.

This gives us a (Q,poly)-PHPE but constructing (Q,poly)-FE requires some
more work. Instead of flooding the evaluated ciphertext with a single piece of
noise, we must now encode at least Q pieces of noise, to flood the ciphertext for Q
decryptions. Fortunately, this can be ensured by leveraging cover-free sets again,
so that the decryptor is forced to add a random cover-free subset sum of noise
terms to the ciphertext before decryption. This ensures that each decryption lets
the decryptor learn a fresh noise term which wipes out any troublesome noise
leakage. Details are in the full version [Agr16].

Additional Related Work. We note that in an independent and concurrent work,
Goyal et al. [GKW16] provide a generic method to compile selective security
to semi-adaptive security for functional encryption schemes. We note that this
result does not apply to our setting as-is, since our starting-point security defin-
ition is even more restricted than selective. See Sect. 2.1 for more details. In
another work, Brakerski and Vaikuntanathan [BV16] achieved semi-adaptive
security for “Attribute Based Encryption” using specialized techniques – these
also do not apply black box to our construction.

Organization of the Paper. The paper is organized as follows. Preliminaries are
provided in Sect. 2. In Sect. 3, we describe our three attacks using 1-keys against
existing predicate encryption systems. In Sect. 4 we provide our construction
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for (1,poly) partially hiding predicate encryption. This is upgraded to achieve
semi-adaptive security in Sect. 5. In Sect. 6 we provide our (1,poly) FE scheme.
The generalization to (q,poly) FE is provided in the full version of the paper
[Agr16].

2 Preliminaries

In this section we provide the preliminaries required for our work. For definitions
of lattices and the LWE problem, we refer the reader to the full version of the
paper [Agr16].

2.1 Functional Encryption

In this section, we provide the definition of functional encryption.

Definition 2.1. A functional encryption scheme FE for an input universe X ,
a circuit universe C and a message space M, consists of four algorithms FE =
(FE.Setup,FE.Keygen, FE.Enc,FE.Dec) defined as follows.

– FE.Setup(1κ) is a p.p.t. algorithm takes as input the unary representation
of the security parameter and outputs the master public and secret keys
(PK,MSK).

– FE.Keygen(MSK, C) is a p.p.t. algorithm that takes as input the master secret
key MSK and a circuit C ∈ C and outputs a corresponding secret key SKC .

– FE.Enc
(

PK, (a, μ)
)

is a p.p.t. algorithm that takes as input the master public
key PK and an input message (a, μ) ∈ X × M and outputs a ciphertext CTa.

– FE.Dec(SKC ,CTa) is a deterministic algorithm that takes as input the secret
key SKC and a ciphertext CTa and outputs μ iff C(a) = 1, ⊥ otherwise.

Note that our definition is a slightly modified, albeit equivalent version of the
standard definition for FE [BSW11]. For compatibility with the definition of
predicate encryption [GVW15], we define our functionality to incorporate a mes-
sage bit μ which is revealed when C(a) = 1.

Correctness. Next, we define correctness of the system.

Definition 2.2 (Correctness). A functional encryption scheme FE is correct
if for all C ∈ Cκ and all a ∈ Xκ,

– If C(a) = 1

Pr
[ (PK,MSK) ← FE.Setup(1κ);
FE.Dec

(

FE.Keygen(MSK, C),FE.Enc
(

PK, (a, μ)
)

)

�= μ

]

= negl(κ)

– If C(a) = 0

Pr
[ (PK,MSK) ← FE.Setup(1κ);
FE.Dec

(

FE.Keygen(MSK, C),FE.Enc
(

PK, (a, μ)
)

)

�= ⊥
]

= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.
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Security. Next, we define simulation based security for functional encryption.
Note that simulation based security is impossible for functional encryption
against an adversary that requests even a single key after seeing the challenge
ciphertext [BSW11], or an unbounded number of keys before seeing the chal-
lenge ciphertext [AGVW13]. However, against an adversary who only requests
an a-priori bounded number of keys before seeing the challenge ciphertext, sim-
ulation based security is possible but causes the ciphertext size to grow with the
number of requested keys [AGVW13].

For the application of reusable garbled circuits, it suffices to construct a func-
tional encryption scheme that supports a single key request made before seeing
the challenge ciphertext. We generalize this definition to subsume the notion
of predicate encryption, where an attacker can make an unbounded number of
function queries Ci so long as it holds that the function keys do not decrypt the
challenge ciphertext CT(a, μ) to recover μ. Thus, it holds that Ci(a) = 0 for all
requested Ci. We shall refer to such Ci as 0-keys, and any C such that C(a) = 1
as a 1-key. In our definition, the adversary can request a single arbitrary (i.e.
0 or 1) key followed by an unbounded polynomial number of 0-keys. We refer
to this security notion as (1,poly) simulation security. The notion we achieve is
semi-adaptive, in that the adversary must declare the challenge message after
receiving the public key.

Definition 2.3 ((1,poly)-SA-SIM Security). Let FE be a functional encryp-
tion scheme for a Boolean circuit family C. For every p.p.t. adversary Adv and
a stateful p.p.t. simulator Sim, consider the following two experiments:

ExprealFE,Adv(1
κ): ExpidealFE,Sim(1κ):

1: (PK,MSK) ← FE.Setup(1κ)
2: (a, μ, C∗, st) ← Adv(1κ,PK)
3: Let b = μ
4: CTa ← FE.Enc

(
PK,a, b

)

5: SKC∗ ← FE.Keygen(MSK, C∗)
6: α ←AdvFE.Keygen(MSK,·)(CTa, SKC∗ , st)
7: Output (a, μ, α)

1: PK ← Sim(1κ)
2: (a, μ, C∗, st) ← Adv(1κ,PK)
3: Let b = μ if C∗(a) = 1, ⊥ otherwise.
4: CTa ← Sim(1|a|, C∗, b)
5: SKC∗ ← Sim()
6: α ←AdvSim(CTa, SKC∗ , st)
7: Output (a, μ, α)

We say an adversary Adv is admissible if:

1. For a single query C∗, it may hold that C∗(a) = 1 or C∗(a) = 0.
2. For all other queries Ci �= C∗, it holds that Ci(a) = 0.

In the ideal experiment, the simulator Sim is traditionally given access to an
oracle U(a,μ)(·), which upon input C returns ⊥ if C(a) = 0 and μ if C(a) = 1.
However, we note that our simulator does not require access to an oracle because
an admissible adversary may only make a single 1 query C∗, which is provided
explicitly to the simulator. Every other query Ci made by the adversary is a 0
query, hence the simulator can compare each query Ci with C∗, and set Ci(a) = 0
when the equality does not hold.
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The functional encryption scheme FE is then said to be (1,poly)-SA-SIM-
secure if there is an admissible stateful p.p.t. simulator Sim such that for every
admissible p.p.t. adversary Adv, the following two distributions are computation-
ally indistinguishable.

{

ExprealFE,Adv(1
κ)

}

κ∈N

c≈
{

ExpidealFE,Sim(1κ)
}

κ∈N

For the (Q,poly) version of the above game, we merely replace each occur-
rence of C∗ with a tuple C∗

1 , . . . , C∗
Q.

2.2 Partially Hiding Predicate Encryption

A Partially-Hiding Predicate Encryption scheme PHPE for a pair of input-
universes X ,Y, a predicate universe C, a message space M, consists of four
algorithms (PH.Setup,PH.Enc,PH.KeyGen,PH.Dec):

PH.Setup(1κ,X ,Y, C,M) → (PH.PK,PH.MSK). The setup algorithm gets as
input the security parameter κ and a description of (X ,Y, C,M) and outputs
the public parameter PH.PK, and the master key PH.MSK.

PH.Enc(PH.PK, (x,y), μ) → CTy. The encryption algorithm gets as input
PH.PK, an attribute pair (x,y) ∈ X × Y and a message μ ∈ M. It out-
puts a ciphertext CTy.

PH.KeyGen(PH.MSK, C) → SKC . The key generation algorithm gets as input
PH.MSK and a predicate C ∈ C. It outputs a secret key SKC .

PH.Dec((SKC , C), (CT,y)) → μ∨⊥. The decryption algorithm gets as input the
secret key SKC , a predicate C, and a ciphertext CTy and the public part y
of the attribute vector. It outputs a message μ ∈ M or ⊥.

Correctness. We require that for all (PH.PK,PH.MSK) ← PH.Setup(1κ,X ,Y,
C,M), for all (x,y, C) ∈ X × Y × C and for all μ ∈ M,

– For 1-queries, namely C(x,y) = 1,
[

PH.Dec
(

(SKC , C), (CTy,y)
)

= μ
]

≥ 1 − negl(κ)

– For 0-queries, namely C(x,y) = 0,
[

PH.Dec
(

(SKC , C), (CTy,y)
)

= ⊥
]

≥ 1 − negl(κ)

Semi Adaptive SIM Security. Below, we define the SA-SIM security exper-
iment for partially hiding predicate encryption (PHPE) that supports a single
1-query and an unbounded number of 0-queries. We denote such a scheme by
(1,poly)-PHPE scheme. We note that the scheme of Gorbunov et al. [GVW15]
is a (0,poly)-PHPE scheme.
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Definition 2.4 ((1,poly)-SA-SIM Security). Let PHPE be a partially hiding
predicate encryption scheme for a circuit family C. For every stateful p.p.t. adver-
sary Adv and a stateful p.p.t. simulator Sim, consider the following two experi-
ments:

ExprealPHPE,Adv(1
κ): ExpidealPHPE,Sim(1κ):

1: (PH.PK,PH.MSK) ← PH.Setup(1κ)
2: (x,y, C∗) ← Adv(PH.PK)
3: SKC∗ ← PH.KeyGen

(
PH.MSK, C∗)

4: μ ← AdvPH.KeyGen(PH.MSK,·)(SKC∗)
5: Let b = μ.
6: CTy ← PH.Enc

(
PH.PK, (x,y), b

)

7: α ←AdvPH.KeyGen(PH.MSK,·)(CTy)
8: Output (x,y, μ, α)

1: PH.PK ← Sim(1κ)
2: (x,y, C∗) ← Adv(PH.PK)
3: SKC∗ ← Sim(y, 1|x|, C∗);
4: μ ← AdvSim(SKC∗)
5: Let b = μ if C∗(x,y) = 1, ⊥ otherwise.
6: CTy ← Sim (b)
7: α ←AdvSim(CTy)
8: Output (x,y, μ, α)

We say an adversary Adv is admissible if:

1. For the single query C∗, it may hold that C∗(x,y) = 1 or C∗(x,y) = 0.
2. For all queries C �= C∗, it holds that C(x,y) = 0.

In the ideal experiment, the simulator Sim is traditionally given access to
an oracle U(x,y,μ)(·), which upon input C returns ⊥ if C(x,y) = 0 and μ if
C(x,y) = 1. However, since in our case Sim is provided C∗ explicitly, and this
is the only possible 1-query, the simulator can check whether Ci = C∗ for any
query Ci, and if not, set Ci(x,y) = 0. Hence, to simplify notation, we omit the
oracle in the ideal experiment above.

The partially hiding predicate encryption scheme PHPE is said to be (1,poly)-
attribute hiding if there exists a p.p.t. simulator Sim such that for every admis-
sible p.p.t. adversary Adv, the following two distributions are computationally
indistinguishable:

{

ExprealPHPE,Adv(1
κ)

}

κ∈N

c≈
{

ExpidealPHPE,Sim(1κ)
}

κ∈N

Very Selective SIM Security. Next, we define a “very” selective variant of
the above game, in which the adversary must announce the challenge messages
as well as the challenge function C∗ in the very first step of the game.

Definition 2.5 ((1,poly) VSel-SIM Security). Let PHPE be a partially hiding
predicate encryption scheme for a circuit family C. For every p.p.t. adversary
Adv and a stateful p.p.t. simulator Sim, consider the following two experiments:
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ExprealPHPE,Adv(1
κ): ExpidealPHPE,Sim(1κ):

1: (x,y, C∗) ← Adv(PH.PK)
2: (PH.PK,PH.MSK) ← PH.Setup(1κ)
3: SKC∗ ← PH.KeyGen

(
PH.MSK, C∗)

4: μ ← AdvPH.KeyGen(SKC∗)
5: Let b = μ.
6: CTy ← PH.Enc

(
PH.PK, (x,y), b

)

7: α ←AdvPH.KeyGen(PH.MSK,·)(CTy)
8: Output (x,y, μ, α)

1: (x,y, C∗) ← Adv(PH.PK)
2: PH.PK ← Sim(1κ,y, 1|x|, C∗)
3: SKC∗ ← Sim();
4: μ ← AdvSim(SKC∗)
5: Let b = μ if C∗(x,y) = 1, ⊥ otherwise.
6: CTy ← Sim (b)
7: α ←AdvSim(CTy)
8: Output (x,y, μ, α)

The admissibility of the adversary Adv, the notes about the simulator and the
required indistinguishability of distributions are as in Definition 2.4.

For the definition of (Q,poly)-PHPE, where an adversary may request Q
decrypting queries, we merely replace each occurence of C∗ with a tuple
C∗

1 , . . . , C∗
Q in both the games above.

2.3 Full Security for Single Key Linear FE

Definition 2.6 (FULL-SIM security). Let FE be a single key functional
encryption scheme for a circuit family C. For every p.p.t. adversary Adv and
a stateful p.p.t. simulator Sim, consider the following two experiments:

ExprealFE,A(1κ): ExpidealFE,Sim(1κ):

1: (PK,MSK) ← FE.Setup(1κ)
2: (a, st) ←A

FE.Keygen(MSK,·)
1 (PK)

3: CT ← FE.Enc(PK,a)
4: α ← A2(CT, st)
5: Output (a, α)

1: PK ← Sim(1κ)
2: (a, st) ← A

Sim(·)
1 (PK)

3: CT ← Sim
(

C,C(a)
)

4: α ← A2(CT, st)
5: Output (a, μ, α)

The functional encryption scheme FE is then said to be FULL-SIM-secure if
there is a stateful p.p.t. simulator Sim such that for every p.p.t. adversary A =
(A1, A2), the following two distributions are computationally indistinguishable.

{

ExprealFE,A(1κ)
}

κ∈N

c≈
{

ExpidealFE,Sim(1κ)
}

κ∈N

2.4 Algorithms Used by Our Constructions

The following algorithms will be used crucially in our construction and proof.

Trapdoor Generation. Below, we discuss two kinds of trapdoors that our
construction and proof will use.
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Generating Random Lattices with Trapdoors. To begin, we provide an algorithm
for generating a random lattice with a trapdoor.

Theorem 2.7 [Ajt99,GPV08,MP12]. Let q, n,m be positive integers with
q ≥ 2 and m ≥ 6n lg q. There is a probabilistic polynomial-time algorithm
TrapGen(q, n,m) that with overwhelming probability (in n) outputs a pair (A ∈
Z

n×m
q , T ∈ Z

m×m) such that A is statistically close to uniform in Z

n×m
q and T

is a basis for Λ⊥
q ((A)) satisfying

‖T‖GS ≤ O(
√

n log q ) and ‖T‖ ≤ O(n log q).

The Primitive Matrix G and its Trapdoor. The matrix G ∈ Z

n×m
q is the “powers-

of two” matrix (see [MP12,Pei13] for the definition). The matrix G has a public
trapdoor TG such that ‖TG‖∞ = 2. Let G−1 : Z

n×m
q → Z

n×m
q denote a deter-

ministic algorithm which outputs a short preimage Ã so that G ·Ã = A mod q.

Three Ways of Generating a Distribution. Let F = [ A|AR + γ · G ]
where A ← Z

n×m
q , R ← {−1, 1}m×m, G is the primitive matrix defined above

and γ ∈ Zq is arbitrary (in particular, it can be 0). We are interested in the
distribution (F,K,P) ∈ Z

n×2m
q × Z

2m×m
q × Z

n×m
q satisfying F K = P mod q.

Given F, we provide three different ways of sampling (K,P) so that the same
resultant distribution is obtained.

1. The first method is to sample P ← Z

n×m
q randomly and use a trapdoor for the

left matrix of F, namely A to sample a low norm K. We let B � AR+ γ ·G
and p denote a column of P.
Algorithm SampleLeft(A,B,TA,p, σ) [CHKP10,ABB10]:

Inputs: a full rank matrix A in Z

n×m
q , a “short” basis TA of Λ⊥

q (A),
a matrix B in Z

n×m
q , a vector p ∈ Z

n
q , and a Gaussian parameter σ.

(2.1)

Output: The algorithm outputs a vector k ∈ Z

2m in coset Λp
q (F).

Its distribution is analyzed in the following theorem.

Theorem 2.8 ([ABB10, Theorem 17], [CHKP10, Lemma 3.2]). Let q >
2, m > n and σ > ‖TA‖GS · ω(

√

log(2m)). Then SampleLeft(A,B,TA,p, σ)
taking inputs as in (2.1), outputs a vector k ∈ Z

2m distributed statistically close
to DΛp

q (F),σ where F := (A ‖ B).

2. The second method is to again sample P ← Z

n×m
q and use a trapdoor for the

right matrix G (when γ �= 0) to sample K.
Algorithm SampleRight(A,G,R,TG,p, σ):

Inputs: matrices A in Z

n×k
q and R in Z

k×m, a full rank matrix G in
Z

n×m
q , a “short” basis TG of Λ⊥

q (G), a vector p ∈ Z

n
q , and a Gaussian

parameter σ.
(2.2)

Output: The algorithm outputs a vector k ∈ Z

2m in coset Λp
q (F).
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Often the matrix R given to the algorithm as input will be a random matrix
in {1,−1}m×m. Let Sm be the m-sphere {x ∈ R

m+1 : ‖x‖ = 1}. We define
sR := ‖R‖ = supx∈Sm−1‖R · x‖.

Theorem 2.9 ([ABB10, Theorem 19]). Let q > 2,m > n and σ > ‖TG‖GS ·
sR · ω(

√
log m). Then SampleRight(A,G,R,TG,p, σ) taking inputs as in (2.2)

outputs a vector k ∈ Z

2m distributed statistically close to DΛp
q (F),σ where F :=

(A ‖ AR + γ · G).

3. The final method is to sample K ← (DZ2m,σ

)m and set P = F · K mod q.
We note that this method works even if γ = 0. As argued by [GPV08, Lemma
5.2], this produces the correct distribution.

Lemma 2.10. Assume the columns of F generate Z

n
q and let σ ≥ ω(

√
n log q).

Then, for k ← DZ2m,σ, the distribution of the vector p = F ·k mod q is statisti-
cally close to uniform over Z

n
q . Furthermore, fix p ∈ Z

n
q and let t be an arbitrary

solution s.t. F · t = p mod q. Then, the conditional distribution of k ← DZ2m,σ

given F · k = p mod q is t + DΛ⊥(F),σ,−t, which is precisely DΛp
q (F),σ.

Public Key and Ciphertext Evaluation Algorithms. Our construction
will make use of the public key and ciphertext evaluation algorithms from
[BGG+14,GVW15]. Since these algorithms can be used as black boxes for our
purposes, we only state their input/output behavior and properties. These algo-
rithms were constructed by Boneh et al. [BGG+14] in the context of attribute
based encryption, and extended by Gorbunov et al. [GVW15] to the setting of
partially hiding predicate encryption. In this setting, the attributes are divided
into a private component x and a public component y, and the functionality sup-
ports computation of a lightweight inner product composed with a heavy circuit
̂C. Formally, [GVW15] construct algorithms PHPE.EvalMPK and PHPE.EvalCT to
support the following circuit family:

̂C ◦ IP(x,y) = 〈x, ̂C(y)〉.

They make crucial use of the fact that PHPE.EvalCT does not need x for its
execution since the computation involving x is an inner product. To compute
the inner product, the multiplication may be carried out keeping x private and
letting ̂C(y) be public, and addition may be carried out keeping both attributes
private. Additionally, the circuit ̂C operates entirely on public attributes y.

In more detail, [GVW15, Sect. 3.2] demonstrate the existence of the following
efficient algorithms:

1. EvalMPK takes as input � + t matrices {Ai}, {Bj} ∈ Z

n×m
q and a circuit

̂C ◦ IP ∈ C and outputs a matrix A
̂C◦IP ∈ Z

n×m
q .

2. EvalCT takes as input � + t matrices {Ai, }{Bj} ∈ Z

n×m
q , � + t vectors

{ui}, {vj}, the public attribute y ∈ {0, 1}� and a circuit ̂C ◦ IP ∈ C, and
outputs a vector u

̂C◦IP ∈ Z

m
q .
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3. EvalR takes as input � + t matrices {Ri}, {R′
j} ∈ Z

m×m
q , the matrix A, the

public attribute vector y ∈ {0, 1}� and a circuit ̂C ◦ IP ∈ C and outputs a
matrix R

̂C◦IP ∈ Z

m×m
q .

such that the following properties hold:

u
̂C◦IP =

(

A
̂C◦IP + ̂C ◦ IP(x,y) · G )T

s + eEval (2.3)

When

Ai = A · Ri − y[i] · G
Bi = A · R′

i − x[i] · G
Then A

̂C◦IP = AR
̂C◦IP − ̂C ◦ IP(x,y) · G (2.4)

Additionally, we may bound the norms as:

‖eEval‖∞ ≤ O(�n log q)O(d) · max
i∈[�]

{‖ui − (Ai + y[i] · G)Ts‖∞, . . .} (2.5)

‖R
̂C◦IP‖∞ ≤ O(�n log q)O(d) · max

i∈[�]
{‖R1‖∞, . . . , ‖R�‖∞, ‖R′

1‖∞, . . . , ‖R′
t‖∞}

(2.6)

2.5 Fully Homomorphic Encryption

A leveled symmetric key fully homomorphic scheme is a tuple of P.P.T algorithms
FHE.KeyGen, FHE.Enc, FHE.Eval and FHE.Dec:

FHE.KeyGen(1κ, 1d, 1k) : This is a probabilistic algorithm that takes as input the
security parameter, the depth bound for the circuit, the message length and
outputs the secret key FHE.SK.

FHE.Enc(FHE.SK, μ) : This is a probabilistic algorithm that takes as input the
secret key and message and produces the ciphertext FHE.CT.

FHE.Eval(C,FHE.CT): This is a deterministic algorithm that takes as input a
Boolean circuit C : {0, 1}k → {0, 1} of depth at most d and outputs another
ciphertext FHE.CT′.

FHE.Dec(FHE.SK,FHE.CT): This is a deterministic algorithm that takes as input
the secret key and a ciphertext and produces a bit.

Correctness. Let FHE.SK ← FHE.KeyGen(1κ, 1d, 1k) and C be a circuit of depth
d. Then we require that

Pr
[

FHE.Dec
(

FHE.SK, FHE.Eval(C,FHE.Enc(FHE.SK, μ))
)

= C(μ)
]

= 1

Security. Security is defined as the standard semantic security. Let A be an
efficient, stateful adversary and d, k = poly(κ). The semantic security game is
defined as follows.
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1. FHE.SK ← FHE.Setup(1κ, 1d, 1k)
2. (μ0, μ1) ← A(1κ, 1d, 1k)
3. b ← {0, 1}
4. FHE.CT ← FHE.Enc(FHE.SK, μb)
5. b′ ← A(FHE.CT)

We require that the advantage of A in the above game be negligible, namely

|Pr(b′ = b) − 1/2| = negl(κ)

Instantiating FHE from Learning with Errors. We make use of the following
instantiation of FHE from LWE.

Theorem 2.11 [BV11,BGV12,GSW13,BV14,AP14]. There is an FHE scheme
based on the LWE assumption such that, as long as q ≥ O(κ2):

1. FHE.SK ∈ Z

t
q for some t ∈ poly(κ).

2. FHE.CT(μ) ∈ {0, 1}� where � = poly(κ, k, d, log q).
3. FHE.Eval outputs a ciphertext FHE.CT′ ∈ {0, 1}�.
4. There exists an algorithm FHE.Scale(q, p) which reduces the modulus of the

FHE ciphertext from q to p.
5. For any Boolean circuit of depth d, FHE.Eval(C, ·) is computed by a Boolean

circuit of depth poly(d, κ, log q).
6. FHE.Dec on input FHE.SK and FHE.CT′ outputs a bit b ∈ {0, 1}. If FHE.CT′

is an encryption of 1, then
∑

i∈[t]

FHE.SK[i] · FHE.CT′[i] ∈ [�p/2� − B, �p/2� + B]

for some fixed B = poly(κ). If FHE.CT′ is an encryption of 0, then
∑

i∈[t]

FHE.SK[i] · FHE.CT′[i] /∈ [�p/2� − B, �p/2� + B]

7. Security relies on LWEΘ(t),q,χ.

3 Insecurity of Predicate Encryption Schemes Against
General Adversaries

In this section, we demonstrate that known LWE based predicate encryption
constructions [AFV11,GVW15] are insecure against an adversary that requests
1-keys.
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3.1 Attack #1 on [AFV11] Using 1-Keys.

Warmup Attack. To begin, we show a warmup attack that results from an adver-
sary requesting the same key multiple times. Since the key generation algorithm
is stateless, requesting many keys for the same function results in fresh, inde-
pendent keys, which may be combined to fully recover the message.

An observant reader may notice that our warmup attack may be easily pre-
vented by derandomizing key generation (using a PRF, say) so that multiple
requests of the same circuit result in the same key. However, as we show in
the full version [Agr16], the attack may be generalized to an adversary request-
ing non-identical functions against which derandomization does not work; the
warmup attack is only the simplest application of the technique.

We now describe the attack in detail. The construction of [AFV11] is
described here at a high level, for more details we refer the reader to the paper.

Say the attacker requests many keys for the vector v such that 〈x,v〉 = 0.
Let Av =

∑

viAi. Now by construction of keys in [AFV11], we have:

[A |Av]
[

e0

f0

]

= u (mod q) (3.1)

[A |Av]
[

e1

f1

]

= u (mod q) (3.2)

This implies [A |Av]
[

e0 − e1

f0 − f1

]

= 0 (mod q) (3.3)

Thus, we have a short vector in the lattice Λ⊥
q (A|Av). By making many queries

for the same v, the attacker may recover a full trapdoor basis for Λ⊥
q (A|Av).

Now, note that the ciphertext contains ATs+ noise as well as
(

Ai +x[i]G
)T
s+

noise. Since 〈x,v〉 = 0, we can follow the decryption procedure as:
∑

i

vi

(

Ai + x[i]G
)T
s + noise

=
(

Av + 〈x, v〉G )T
s + noise

= AT

vs + noise since 〈x, v〉 = 0

This in turn allows the attacker to recover

[A |Av]Ts + noise

for which he now has a trapdoor. Using the trapdoor, he can now recover the
noise terms to get exact linear equations in the LWE secret s, completely break-
ing LWE security. Note that by functionality, the attacker should only have been
able to learn a single bit of information, namely 〈x, v〉 = 0.

The reason this attack works given 1-keys, i.e. in the strong attribute hiding
setting, is that a particular linear relation needs to be satisfied to enable decryp-
tion, which, given a decrypting key, can be exploited to carry out the attack.
Specifically, in the above attack, the decryption procedure allows the attacker to
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recover [A |Av]Ts+noise which would not be possible if the decryption condition
did not hold, i.e. given only 0-keys.

The generalization of the above attack, as well as the second and third attack
are provided in the full version of the paper [Agr16].

4 (1, poly) Very Selective PHPE

In this section, we show that the partially hiding predicate encryption system
PHPE of [GVW15] satisfies a stronger definition than described in [GVW15],
namely (1,poly)-VSel-SIM security (see Definition 2.5). We emphasize that in
addition to a single query of any kind, PHPE supports an unbounded number
of 0-queries, as in [GVW15].

4.1 Construction

The construction of our (1,poly)-PHPE scheme is the same as in [GVW15],
except the setting of certain parameters described in the full version [Agr16].
The main novelty is in the proof, which shows that in the restricted game of
Definition 2.5, the attacker can obtain a key for any circuit of his choice. As in
[GVW15], he can also obtain an unbounded number of 0 keys, resulting in a
(1,poly)-PHPE scheme.

For completeness, we describe the construction below.

PH.Setup(1κ, 1t, 1�, 1d) : Given as input the security parameter κ, the length of
the private and public attributes, t and � respectively, and the depth of the
circuit family d, do the following:
1. Choose random matrices

Ai ∈ Z

n×m
q for i ∈ [�], Bi ∈ Z

n×m
q for i ∈ [t], P ∈ Z

n×m
q

To simplify notation, we denote by {Ai} the set {Ai}i∈[�] and by {Bi}
the set {Bi}i∈[t].

2. Sample (A,T) ← TrapGen(1m, 1n, q).
3. Let G ∈ Z

n×m
q be the powers of two matrix with public trapdoor TG.

4. Output the public and master secret keys.

PH.PK =
({Ai}, {Bi},A,P

)

, PH.MSK = (PH.PK,T)

PH.KeyGen(PH.MSK, ̂C ◦ IPγ) : Given as input the circuit and the master secret
key, do the following:
1. Let A

̂C◦IP = EvalMPK

({Ai}, {Bi}, ̂C ◦ IP
)

.
2. Sample K such that

[A| A
̂C◦IP + γ · G] · K = P mod q

using K ← SampleLeft(A,A
̂C◦IP + γ · G,T,P, s). Here s is the standard

deviation of the Gaussian being sampled (see [Agr16] for the parameters).
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3. Output SK
̂C◦IPγ

= K.

PH.Enc
(

PH.PK, (x,y), μ
)

: Given as input the master public key, the private
attributes x, public attributes y and message μ, do the following:
1. Sample s ← DZn,sB

and error terms e ← DZm,sB
and e′ ← DZm,sD

.
2. Let b = [0, . . . , 0, �q/2�μ]T ∈ Z

m
q . Set

β0 = ATs + e, β1 = PTs + e′ + b

3. For i ∈ [�], compute

ui = (Ai + yi · G)Ts + RT

ie

where Ri ← {−1, 1}m×m.
4. For i ∈ [t], compute

vi = (Bi + xi · G)Ts + (R′
i)

Te

where R′
i ← {−1, 1}m×m.

5. Output the ciphertext

CTy =
(

y,β0,β1, {ui}, {vj}
)

for i ∈ [�], j ∈ [t].

PH.Dec
(

SK
̂C◦IPγ

,CTy

)

: Given as input a secret key and a ciphertext, do the
following:
1. Compute

u
̂C◦IP = EvalCT

({Ai,ui}, {Bj ,vj}, ̂C ◦ IP,y
)

2. Compute

ν = β1 − KT

(

β0

u
̂C◦IP

)

3. Round each coordinate of ν and if
[

Round(ν[1]), . . . ,Round(ν[m−1])
]

= 0
then set μ = Round(ν[m]).

4. Output μ.

In the full version [Agr16], we show that the scheme is correct.

4.2 Proof of Security

Next, we argue that the above construction is secure against an adversary who
requests a single key of any kind and an unbounded number of 0-keys.

Theorem 4.1. The partially hiding predicate encryption scheme described in
Sect. 4.1 is secure according in the very-selective game defined in Definition 2.5.

Proof. We define a p.p.t. simulator Sim and argue that its output is computa-
tionally indistinguishable (under the LWE assumption) from the output of the
real world. Let b = μ if ̂C∗ ◦ IPγ(x,y) = 1, ⊥ otherwise.

Simulator. Sim(A
̂C∗◦IP,y, 1|x|, b):
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1. It generates all public parameters as in the real PH.Setup except P. To
generate P, it computes A

̂C∗◦IP = EvalMPK

({Ai}, {Bi}, ̂C∗ ◦ IP
)

, samples
K∗ ← (DZ2m,s

)m and sets:

P = [A | A
̂C∗◦IP + γ · G] K∗ (4.1)

2. It generates all keys using the real PH.KeyGen except the key for ̂C∗ ◦ IPγ ,
which is set as K∗ sampled above.

3. Sim.Enc
(

̂C∗◦IPγ ,y, 1|x|, b
)

: It takes as input the challenge circuit ̂C∗◦IPγ , the
public attributes y, the size of the private attributes x, and the message b = μ
if ̂C∗ ◦ IPγ(x,y) = 1, ⊥ otherwise. It constructs the challenge ciphertext as
follows.

– It samples β0,ui,vi independently and uniformly from Z

m
q . If b = ⊥, it

samples β1 also randomly from Z

m
q .

– If b = μ, it computes β1 to satisfy the decryption equation corresponding
to ̂C∗ ◦ IPγ as follows.

• Let u
̂C∗◦IP = EvalCT

({Ai,ui}, {Bi,vi}, ̂C∗ ◦ IP,y
)

.
• Sample e′′ ← DZm,sD

• Set β1 = (K∗)T
(

β0

u
̂C∗◦IP

)

+e′′+b where b = [0 . . . , 0, �q/2�μ]T ∈ Z

m
q .

– It outputs the challenge ciphertext

CT∗ =
(

{ui}i∈[�], {vi}i∈[t],y,β0,β1

)

We argue that the output of the simulator is distributed indistinguishably
from the real world. Intuitively, there are only two differences between the real
world and simulated distribution. The first is that instead of choosing P first and
sampling K∗ to satisfy Eq. 4.1, we now choose K∗ first and set P accordingly.
This is a standard trick in LWE based systems (see the survey [Pei13], where
this is trick 1), its first use that we are aware of appears in [GPV08].

The second difference is in how the challenge ciphertext is generated. In our
challenge ciphertext the elements (β0,ui,vi) are sampled uniformly at random
while β1 which is computed using the elements (β0,ui,vi) and K∗ in order
to satisfy the decryption equation for a 1 key. We note that β1 is the only
ciphertext element that is generated differently from the challenge ciphertext
in the simulator of [GVW15]. In the [GVW15] simulator, β1 is also sampled at
random, whereas in our case, it is generated to satisfy the decryption equation
involving CT∗ and SK( ̂C∗ ◦ IPγ) when ̂C∗ ◦ IPγ(x,y) = 1. Enforcing this relation
is necessary, as it is dictated by the correctness of the system4.

The formal proof is provided in the full version of the paper [Agr16].

4 Note that the step of “programming” β1 forces the simulator to use its knowledge
of y. On the other hand, the simulator in [GVW15] does not need to use y for
simulation, implying that even y is hidden when the attacker does not request 1-
keys. Since the real decryption procedure needs y in order to decrypt, this (in our
opinion) further illustrates the weakness of the weak attribute hiding definition.
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5 Upgrading Very Selective to Semi Adaptive Security
for PHPE

In this section, we show how to construct a (1,poly)-Partially Hiding Predicate
Encryption scheme for circuit class C satisfying semi adaptive security according
to Definition 2.4. Our construction, which we denote by SaPH, will make use of
two ingredients:

1. A single key5, FULL-SIM secure functional encryption scheme for the following
functionality:

F(V1,...,Vk)(a1, . . . ,ak) =
∑

i=1

Vi · ai mod q

where Vi ∈ Z

m×m
q and ai ∈ Z

m
q for i ∈ [k]. The parameters k, q,m are input

to the setup algorithm. Such a scheme was recently constructed by [ALS16]6.
We will denote this scheme by FuLin.

2. A (1,poly) very selectively secure PHPE scheme for the circuit class C, as
provided in Sect. 4. We will denote this scheme by VSelPH.

Our construction is described below.

SaPH.Setup(1κ, 1t, 1�, 1d): Given as input the circuit and the master secret key,
do the following:
1. For i ∈ [�], let (FuLin.PKi,FuLin.MSKi) ← FuLin.Setup

(

1κ, (Zm
q )3

)

.
2. For j ∈ [t], let (FuLin.PK′

j ,FuLin.MSK′
j) ← FuLin.Setup

(

1κ, (Zm
q )3

)

.
3. Let (FuLin.PK0,FuLin.MSK0) ← FuLin.Setup

(

1κ, (Zm
q )2

)

.
4. Let (FuLin.PK′

0,FuLin.MSK′
0) ← FuLin.Setup

(

1κ, (Zm
q )3

)

.
5. Let {PRG}s∈{0,1}κ be a family of PRGs with polynomial expansion. Sam-

ple a PRG seed, denoted by seed.
6. Output

PH.PK =
{
FuLin.PK0, FuLin.PK′

0, {FuLin.PKi}i∈[�], {FuLin.PK′
j}j∈[t]

}

PH.MSK =
{
seed, FuLin.MSK0, FuLin.MSK′

0, {FuLin.MSKi}i∈[�], {FuLin.MSK′
j}j∈[t]

}

SaPH.Enc
(

PH.PK, (x,y), μ
)

: Given as input the master public key, the private
attributes x, public attributes y and message μ, do the following:
1. Sample s ← DZn,sB

and error terms e ← DZm,sB
and e′ ← DZm,sD

.
2. Let b = [0, . . . , 0, �q/2�μ]T ∈ Z

m
q .

3. Sample Ri ← {−1, 1}m×m for i ∈ [�] and R′
j ← {−1, 1}m×m for j ∈ [t].

4. Set7

5 More precisely, we require that the adversary may request the same single function
any number of times, but multiple requests for the same function result in the same
key.

6 While the construction in [ALS16] has stateful KeyGen against a general adversary,
we only need the single key version which is clearly stateless.

7 Note that we are abusing notation slightly, since the message space of FuLin was set
as Z

m
q but s ∈ Z

n
q . However, since n < m, we can pad it with zeroes to make it

match. We do not explicitly state this for the sake of notational convenience.
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β̂0 = FuLin.Enc
(

s, e
)

, ûi = FuLin.Enc
(

s, y[i] · GTs, RT

ie
)

,

β̂1 = FuLin.Enc
(

s, e′,b
)

, v̂j = FuLin.Enc
(

s, x[j] · GTs, R′T
je

)

5. Output the ciphertext

CTy =
(

y, β̂0, β̂1, {ûi}, {v̂j}
)

for i ∈ [�], j ∈ [t].

SaPH.KeyGen(PH.MSK, ̂C ◦ IPγ) : Given as input the circuit and the master
secret key, do the following:
1. Use PRG(seed) to generate sufficient randomness rand for the

VSelPH.Setup algorithm as well as {randi}, {rand′
j}, rand0, rand′

0 for the
FuLin.KeyGen algorithms.

2. Sample (VSelPH.MPK,VSelPH.MSK) ← VSelPH.Setup
(

1κ, 1t, 1�, 1d,

rand
)

.
Parse VSelPH.MPK =

({Ai}, {Bj}, A, P
)

.
3. Let8

FuLin.SKi ← FuLin.KeyGen
(

FuLin.MSKi, (AT

i , 1, 1), randi

) ∀i ∈ [�]

FuLin.SK′
j ← FuLin.KeyGen

(

FuLin.MSK′
j , (B

T

j , 1, 1), rand′
j

) ∀j ∈ [t]

FuLin.SK0 ← FuLin.KeyGen
(

FuLin.MSK0, (AT, 1), rand0

)

FuLin.SK′
0 ← FuLin.KeyGen

(

FuLin.MSK′
0, (P

T, 1, 1), rand′
0

)

4. Let VSelPH.SK( ̂C ◦ IPγ) ← VSelPH.KeyGen
(

VSelPH.MSK, ̂C ◦ IPγ

)

.
5. Output

VSelPH.SK(Ĉ ◦ IPγ) =
((

VSelPH.MPK, VSelPH.SK(Ĉ ◦ IPγ)
)
,

( {FuLin.SKi}, {FuLin.SK′
j}, FuLin.SK0, FuLin.SK′

0

))

SaPH.Dec
(

SK
̂C◦IPγ

,CTy

)

: Given as input a secret key and a ciphertext, do the
following:
1. Let

β0 = FuLin.Dec(FuLin.SK0, β̂0), ui = FuLin.Dec(FuLin.SKi, ûi),

β1 = FuLin.Dec(FuLin.SK′
0, β̂1), vj = FuLin.Dec(FuLin.SK′

j , v̂j)

Let VSelPH.CT =
(

β0, β1, {ui}, {vj}, y
)

.
2. Output μ ← VSelPH.Dec

(

VSelPH.MPK, VSelPH.CT,VSelPH.SK
)

.

Correctness. Correctness may be argued using the correctness of FuLin and
VSelPH.

8 Here, 1 is used to denote the m × m identity matrix.
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By correctness of FuLin, the tuple (β0, β1, {ui}, {vj}) produced in the
first step of decryption is precisely the ciphertext of the VSelPH scheme. More
formally, we get:

ui = FuLin.Dec(FuLin.SKi, ûi) = (Ai + yi · G)Ts + RT

ie

vj = FuLin.Dec(FuLin.SK′
j , v̂j) = (Bi + xi · G)Ts + (R′

i)
Te

β0 = FuLin.Dec(FuLin.SK0, β̂0) = ATs + e

β1 = FuLin.Dec(FuLin.SK′
0, β̂1) = PTs + e′ + b

Let VSelPH.CT =
(

β0, β1, {ui}, {vj}, y
)

. Then, by correctness of VSelPH,
the following is correct

μ = VSelPH.Dec
(

VSelPH.MPK, VSelPH.CT,VSelPH.SK
)

In the full version of the paper [Agr16], we prove the following theorem.

Theorem 5.1. Assume that VSelPH satisfies VSel-SIM attribute hiding (Defin-
ition 2.5) and that FuLin satisfies FULL-SIM security (Appendix 2.3). Then the
scheme SaPH satisfies SA-SIM attribute hiding (Definition 2.4).

6 (1, poly)-Functional Encryption

In this section, we construct our (1,poly)-functional encryption scheme. The
ciphertext of the construction is succinct, providing a unification of the results
[GKP+13,GVW15]. Our construction of (1,poly)-functional encryption uses
(1,poly)-partially hiding predicate encryption and fully homomorphic encryp-
tion in a manner similar to [GVW15, Sect. 4].

6.1 Construction

We begin with an overview of the main ideas in the construction. Let us recall
the (0,poly)-FE scheme constructed by [GVW15]. The scheme makes use of two
ingredients, namely, a (0,poly)-PHPE scheme for circuits, and a fully homomor-
phic encryption scheme for circuits. The ciphertext of (0,poly)-FE corresponding
to an attribute a is a PHPE ciphertext corresponding to (â, t) where â is the
FHE encryption of a, and corresponds to the public attributes in PHPE, while
t is the FHE secret key and corresponds to the private attributes in PHPE.

The secret key corresponding to circuit C in the (0,poly)-FE scheme is a set
of PHPE secret keys { ̂C ◦ IPγ }γ∈[	p/2
−B,	p/2
+B] where:

̂C ◦ IPγ(x,y) = 1 if 〈x, ̂C(y)〉 = γ

= 0 otherwise.

The decryptor executes the homomorphic ciphertext evaluation procedure
for circuit FHE.Eval(·, C) on the attributes â embedded in the PHPE cipher-
text as in [BGG+14] to obtain a ciphertext corresponding to public attributes
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̂C(a), where ̂C(a) is an FHE encryption of C(a). Now, when C(a) = 1, then by
correctness of FHE, there exists a noise term γ ∈ [�p/2� − B, �p/2� + B] such
that

〈

t, ̂C(a)
〉

= γ. The decryptor tries keys corresponding to all possible γ

within the aforementioned range to ascertain whether ̂C ◦ IPγ(â, t) = 1. Note
that this step makes it crucial that the FHE decryption range be polynomial
in size. Fortunately, as noted by [GVW15], this can be ensured by the modu-
lus reduction technique in FHE schemes [BGV12,GSW13,BV14], which allows
a superpolynomial modulus to be scaled down to polynomial size.

The first idea in building (1,poly)-FE is to replace the use of (0,poly)-PHPE
in the above transformation by the (1,poly) PHPE constructed in Sect. 4. How-
ever, as discussed in Attack #3, Sect. 3, such a straightforward adaptation leads
to vulnerabilities. This is because decryption using a 1-key allows the decryptor
to learn the exact inner product of the FHE ciphertext ̂C(a) and the FHE secret
key t rather than the threshold inner product corresponding to FHE decryp-
tion. This lets her obtain leakage on the noise terms used to construct â, which
is problematic. We will denote the noise used in the construction of the FHE
ciphertext â by Noise( â ).

Overcoming Leakage on FHE Noise. For a single 1-key, there is a natural way
out, via “noise flooding” or “noise smudging” [Gen09,GKPV10,AJLA+12]. To
prevent leakage on Noise( â ), we may augment the FHE evaluation circuit with
a “flooding” operation, which, after computing FHE.Eval(â, C) adds to it an
encryption of 0 with large noise η to drown out the effects of Noise( â ). This
idea is complicated by the fact that our construction of (1,poly)-FE must use
an FHE scheme whose final modulus is polynomial in size, whereas η must be
chosen to satisfy:

Noise( FHE.Eval( â, C) ) + η
s≈ η (6.1)

so that it drowns the effects of Noise( â ). The above constraint may necessitate
η, and hence the FHE modulus, to be superpolynomial in the security parameter.

Fortunately, we can work around this difficulty by performing FHE modulus
reduction after flooding. Then, η can be superpolynomial in the security para-
meter to obliterate the dependency of the revealed noise on the initial noise,
while letting the final FHE modulus still be polynomial. Another method is to
use the “sanitization” operation [DS16], which will result in better parameters
for this step – however, since it does not improve our overall parameters, we do
not discuss this.

Formally, we require a PHPE scheme for the circuit family CPHPE where
̂C ◦ IP ∈ CPHPE is defined as follows. Let the private attributes x = t where
t is the FHE secret, and public attributes y = (â,̂0), where ̂0 is an FHE encryp-
tion of the bit 0, with large noise η. Then, define:
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̂C(̂0, â) = FHE.Scaleq,p

(

FHE.Eval(â, C) + ̂0
)

̂C ◦ IP
(

t,̂0, â
)

=
〈

t, ̂C(̂0, â)
〉

mod p

̂C ◦ IPγ

(

t,̂0, â
)

= 1 iff ̂C ◦ IP
(

t,̂0, â
)

= γ, 0 otherwise.

Above, FHE.Eval is the FHE ciphertext evaluation algorithm, and FHE.Scale
is the modulus reduction algorithm described in Sect. 2.5. Recall that
FHE.Scaleq,p takes as input an FHE ciphertext that lives modulo q and reduces
it to a ciphertext that lives modulo p. For the sake of brevity, we abuse notation
and do not explicitly include the inputs (q, p) in the inputs to ̂C ◦ IP.

Construction. We now proceed to describe the construction.

FE.Setup(1κ, 1k, 1d): The setup algorithm takes the security parameter κ, the
attribute length k and the function depth d and does the following:
1. Choose the FHE modulus q in which FHE.Eval(·, ·) will be computed and

the FHE modulus p ∈ poly(κ) in which decryption will be performed as
per Sect. 2.5.

2. Invoke the setup algorithm for the PHPE scheme for family CPHPE to get:

(PH.PK,PH.MSK) ← PH.Setup(1κ, 1t, 1�, 1d′
)

where length of private attributes t = |FHE.SK|, length of public
attributes � is the length of an FHE encryption of k+1 bits corresponding
to the attributes a and 0, i.e. � = (k + 1) · |FHE.CT| and d′ is the bound
on the augmented FHE evaluation circuit.

3. Output (PK = PH.PK, MSK = PH.MSK).
FE.Keygen(MSK, C) : The key generation algorithm takes as input the master

secret key MSK and a circuit C. It does the following:
1. Let R � [�p/2�−B, �p/2�+B]. Compute the circuit ̂C ◦ IPγ as described

above for γ ∈ R.
2. For γ ∈ R, compute

PH.SK
̂C◦IPγ

← PH.KeyGen(PH.MSK, ̂C ◦ IPγ)

3. Output the secret key as SKC = {PH.SK
̂C◦IPγ

}γ∈R.

FE.Enc(PK,a, μ): The encryption algorithm does the following:
1. Sample a fresh FHE secret key FHE.SK, and denote it by t.
2. Compute an FHE encryption of a to get â = FHE.Enc( t,a ).
3. Sample η to satisfy Eq. 6.1 and compute an FHE encryption of 0 with

noise η as ̂0.
4. Set public attributes y = (â,̂0) and private attributes x = t.
5. Compute PH.CTâ,̂0 = PH.Enc

(

PH.PK, (x,y), μ
)

.
6. Output CTa =

(

â,̂0,PH.CTâ,̂0

)

.

FE.Dec(SKC ,CTa): Do the following:
1. Parse SKC as the set {PH.SK

̂C◦IPγ
}γ∈R.

2. For γ ∈ R, let τγ = PH.Dec
(

CTa,PH.SK
̂C◦IPγ

)

. If there exists some
value γ′ for which τγ′ �= ⊥, then output μ = τγ′ , else output ⊥.
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Correctness. Correctness follows from correctness of PHPE and properties of
FHE (see Sect. 2.5). Please see the full version [Agr16] for details.

6.2 Proof of Security

Next, we argue that the above scheme satisfies semi-adaptive security.

Theorem 6.1. The (1,poly) functional encryption scheme described above is
secure according to Definition 2.3.

Proof. We construct a simulator FE.Sim as required by Definition 2.3 as follows.

Simulator FE.Sim(1κ). The simulator is described as follows.

1. It invokes PHPE.Sim(1κ) to obtain the public parameters and returns these.
2. The FE adversary outputs (a, μ, C∗) upon which, FE.Sim obtains (1|a|, μ, C∗).

It does the following:
(a) It samples an FHE secret key FHE.SK and sets â = FHE.Enc(FHE.SK,0)

and ̂0 = FHE.Enc(FHE.SK, 0).
(b) It samples γq to satisfy Eq. 6.1. Let γ denote its scaled down version

modulo p. It computes ̂C∗ ◦ IPγ as described above.
(c) It invokes PHPE.Sim

(

(â,̂0), 1|FHE.SK|, ̂C∗ ◦ IPγ , μ
)

to obtain
(

PH.CT, PH.SK( ̂C∗ ◦ IPγ)
)

.
(d) For ρ ∈ R\γ, it constructs ̂C∗ ◦ IPρ and sends these queries to PHPE.Sim.

It receives PH.SK( ̂C∗ ◦ IPρ).
(e) It outputs

(

PH.CT, {PH.SK( ̂C∗ ◦ IPρ)}ρ∈R

)

.
3. When Adv makes any query C, FE.Sim transforms it into { ̂C ◦ IPρ}ρ∈R and

sends this to PHPE.Sim. It returns the set of received keys to Adv. Note that
these are 0-keys.

4. When Adv outputs α, output the same.

We argue that the simulator is correct in the full version of the paper [Agr16].

We note that the above construction is shown secure in a game which allows
a single arbitrary query and other 0 queries. Circuit privacy may be obtained
by using symmetric key encryption SKE to hide the key and augmenting the
function circuit with SKE decryption, exactly as in [GKP+13]. The details as
well as the generalization to the bounded collusion setting is provided in the full
version of the paper [Agr16].
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Abstract. Predicate encodings (Wee, TCC 2014; Chen, Gay, Wee,
EUROCRYPT 2015), are symmetric primitives that can be used for
building predicate encryption schemes. We give an algebraic character-
ization of the notion of privacy from predicate encodings, and explore
several of its consequences. Specifically, we propose more efficient predi-
cate encodings for boolean formulae and arithmetic span programs, and
generic optimizations of predicate encodings. We define new construc-
tions to build boolean combination of predicate encodings. We formalize
the relationship between predicate encodings and pair encodings (Attra-
padung, EUROCRYPT 2014), another primitive that can be transformed
generically into predicate encryption schemes, and compare our construc-
tions for boolean combinations of pair encodings with existing similar
constructions from pair encodings. Finally, we demonstrate that our
results carry to tag-based encodings (Kim, Susilo, Guo, and Au, SCN
2016).

1 Introduction

Predicate Encryption (PE) [13,25] is a form of public-key encryption that sup-
ports fine-grained access control for encrypted data. In predicate encryption,
everyone can create ciphertexts while keys can only be created by the master
key owner. Predicate encryption schemes use predicates to model (potentially
complex) access control policies, and attributes are attached to both ciphertexts
and secret keys. A predicate encryption scheme for a predicate P guarantees
that decryption of a ciphertext ctx with a secret key sky is allowed if and only
if the attribute x associated to the ciphertext ct and the attribute y associ-
ated to the secret key sk verify the predicate P, i.e. P(x, y) = 1. Predicate
encryption schemes exist for several useful predicates, such as Zero Inner Prod-
uct Encryption (ZIPE), where attributes are vectors x and y and the predicate
P(x,y) is defined as x�y = 0. Predicate encryption subsumes several previously
defined notions of public-key encryption. For example, Identity-Based Encryp-
tion (IBE) [34] can be obtained by defining P(x, y) as x = y and Attribute-Based
Encryption (ABE) [33] can be obtained similarly. More concretely, for Key-Policy
c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part I, LNCS 10401, pp. 36–66, 2017.
DOI: 10.1007/978-3-319-63688-7 2
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ABE (KP-ABE), the attribute x is a boolean vector, the attribute y is a boolean
function, and the predicate P(x, y) is defined as y(x) = 1. For Ciphertext-Policy
ABE (CP-ABE), the roles of the attributes x and y are swapped.

Modular Approaches for PE. In 2014, two independent works by Wee [37] and
Attrapadung [6] proposed generic and unifying frameworks for obtaining effi-
cient fully secure PE schemes for a large class of predicates. Both works use
the dual system methodology introduced by Lewko and Waters [27,36] and
define a compiler that takes as input a relatively simple symmetric primitive
and produces a fully secure PE construction. Wee introduced so-called predicate
encodings, an information-theoretic primitive inspired from linear secret sharing.
Attrapadung introduced so-called pair encodings and provided computational
and information-theoretic security notions. These approaches greatly simplify
the construction and analysis of predicate encryption schemes and share several
advantages. First, they provide a good trade-off between expressivity and per-
formance, while the security relies on standard and well studied assumptions.
Second, they unify existing constructions into a single framework, i.e., previ-
ous PE constructions can be seen as instantiations of these new compilers with
certain encodings. Third, building PE schemes by analyzing and building these
simpler encodings is much easier than building PE schemes directly. Compared
to full security for PE, the encodings must verify much weaker security require-
ments. The power of pair and predicate encodings is evidenced by the discovery
of new constructions and efficiency improvements over existing ones. However,
both approaches were designed over composite order bilinear groups. In Chen et
al. [15] and Attrapadung [7] respectively extended the predicate encoding and
pair encoding compiler to the prime order setting. Next, Agrawal and Chase
[1] improved on Attrapadung’s work by relaxing the security requirement on
pair encodings and thus, capturing new constructions. In addition, their work
also brings both generic approaches closer together, because like in [15], the new
compiler relies (in a black-box way) on Dual System Groups (DSG) [16,17].
Additionally Kim et al. [22] recently introduced a new generic framework for
modular design of predicate encryption that improves on the performance of
existing compilers. Their core primitive, tag-based encodings, is very similar to
predicate encodings.

1.1 Our Contributions

We pursue the study of predicate encodings and establish several general results
and new constructions that broaden their scope and improve their efficiency. We
also compare predicate encodings to pair and tag-based encodings.

Predicate Encodings. We show that the information-theoretic definition of α-
privacy used in [15,37] is equivalent to an algebraic statement (furthermore
independent of α) about the existence of solutions for a linear system of equa-
tions. Leveraging this result, we prove a representation theorem for predicate
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encodings: every triple of encoding functions implicitly defines a unique pred-
icate for which it is a valid predicate encoding. Conversely, every predicate P
that admits a predicate encoding is logically equivalent to the implicit predicate
induced by its encoding functions. Moreover, our algebraic definition of privacy
simplifies all subsequent results in the paper.

First, we define a generic optimization of predicate encodings that often leads
to efficiency improvements and reduce the number of required group elements
in keys and ciphertexts. We prove the soundness of the transformations and
validate their benefits experimentally on examples from [15,37]; we successfully
apply these simplifications to reduce the size of keys and ciphertexts by up to
50% and to reduce the number of group operations needed in some of the existing
encodings.

Second, we define generic methods for combining predicate encodings. We
provide encoding transformations for the disjunction, conjunction and negation
of predicates, and for the dual predicate.

Tag-Based Encodings. We show that our results on predicate encodings general-
ize to tag-based encodings. In particular, we give a purely algebraic characteri-
zation of the hiding property of tag-based encodings. Moreover, we demonstrate
that the hiding property can be strengthened without any loss of generality, by
requiring equality rather than statistical closeness of distributions.

Comparison of Encodings. We compare the expressivity of the three core prim-
itives (predicate encodings, pair encodings and tag-based encodings) correspond-
ing to the three different modular frameworks. We provide an embedding that
produces an information-theoretical pair encoding from every predicate encod-
ing. Then, we use this encoding to compare our constructions to build boolean
combination of predicate encodings with similar constructions for pair encodings
that were introduced by [6].

In addition, we provide a transformation1 from tag-based encodings into
predicate encodings.

New Constructions. We develop several new constructions of predicate encodings
and predicate encryption:

• Combining predicates. We show how to combine our results to build Dual-
Policy Attribute-Based Encryption (DP-ABE) [9,10] in the frameworks of
predicate encodings and tag-based encodings (Sect. 6.1). Additionally, we con-
sider the idea of combining arbitrary encodings with a broadcast encryption
encoding to achieve direct revocation of keys. The former encoding takes care
of revocation, while the latter encodes the desired access structure.

• Improved predicate encodings. We provide new instances of predicate
encodings that improve on best known predicate encodings proposed in [15]
and have additional properties (Sect. 6.2).

1 This transformation has side conditions, thus it is not universal, but all existing
tag-based encodings (except one) satisfy these side conditions.
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• Extra features. Finally, we show how to construct a weakly attribute-hiding
predicate encoding for boolean formulas and how to enhance any predicate
encoding with support for delegation (Sect. 6.3).

Implementation and Evaluation. We implement a general library for predicate
encryption with support for the predicate encoding and pair encoding frame-
works. Our library uses the Relic-Toolkit [5] for pairings with a 256-bits Barreto-
Naehrig Curve [11]. We use our library for validating our constructions; exper-
imental results are presented in the relevant sections. All the experiments were
executed on a 8-core machine with 2.40 GHz Intel Core i7-3630QM CPU and
8 GB of RAM. Our scalability experiments show that predicate encodings can
be used for real applications. The code is publicly available and open source2.

1.2 Prior Work

Predicate encodings have been introduced in [37] and we use a refined version
that is defined in [15] as our starting point. Both variants use an information-
theoretic definition of the hiding while we show that there is an equivalent alge-
braic definition. Another related work is [20], initiating a systematic study of the
communication complexity of the so-called conditional secret disclosure primi-
tive, which is closely related to predicate encodings.

Other works also optimize existing predicate encryption schemes, for example
many works focus on going from composite order constructions to the more effi-
cient prime order ones [7,15,26]. In [15] they also propose performance improve-
ments on dual system groups. We believe our optimizations via predicate encod-
ings complement other possible enhancements of predicate encryption.

Boolean combinations of predicates have also been considered in the setting
of pair encodings. Attrapadung [9,10] proposes generic transformations for con-
junction and for the dual predicate, but neither for negation nor disjunction.
We propose new transformations for conjunction and dual in the framework of
predicate encodings and we also deal with negation and disjunction.

The main advantage of DP-ABE is the possibility of considering policies over
objective attributes (associated to data) and policies over subjective attributes
(associated to user credentials) at the same time. DP-ABE has been consid-
ered by Attrapadung in the pair encoding framework [9,10]. To the best of our
knowledge, we are the first to provide DP-ABE in the predicate encoding and
tag-based encoding frameworks.

Revocation is a desirable property for PE and ABE schemes that has also
been considered by many works in the literature. Revocation allows to invalidate
a user’s secret key in such a way that it becomes useless, even if its associated
attribute satisfies the policy associated to the ciphertext. Some attempts [32]
propose indirect revocation that requires that the master secret owner period-
ically updates secret keys for non-revoked users. Other attempts achieve direct
revocation [8,23,30,31], but either rely on strong assumptions or provide only

2 Source code at https://github.com/miguel-ambrona/abe-relic.

https://github.com/miguel-ambrona/abe-relic
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selectively security. Our construction not only allows to achieve revocation in a
fully secure framework, but it allows to add revocation to arbitrary predicate
encodings.

Policy hiding is another property of PE, and ABE in particular, that has
been broadly studied. In this context, policies associated to ciphertexts are not
attached to them and therefore, unauthorized users will only learn the fact that
their key does not satisfy the policy, but nothing else. Policy Hiding has been
considered in several works [13,25]. The security of our construction improves
on earlier works, thanks to the compiler from [15]. Our observation extends the
expressivity of attribute-hiding predicate encryption for ZIPE proposed in [15]
to support policy-hiding for boolean formulas.

In [15], the authors introduce the notion of spatial encryption predicate
encodings. We generalize this notion and introduce a transformation that makes
delegation possible for every predicate encoding.

Several works evaluate the suitability of ABE for different applications. For
example, ABE has been used and benchmarked to enforce privacy of Electronic
Medical Records (EMR) [3], in a system where healthcare organizations export
EMRs to external storage locations. Other examples are Sieve [35] or Stream-
force [18], systems that provide enforced access control for user data and stream
data in untrusted clouds. In contrast to these works, we are the first to evaluate
predicate encryption and ABE based on modern modular approaches such as
the predicate encoding and pair encoding frameworks. The resulting schemes
also satisfy a stronger security notion (full vs. selective security) compared to
the previously mentioned evaluations. We focus on synthetic case studies, while
other works analyze more realistic settings and integration of ABE into bigger
systems. Combining our methods with these more practical case studies is a very
interesting direction for future work.

1.3 Comparison with Agrawal and Chase (EUROCRYPT 2017)

Concurrently and independently, Agrawal and Chase [2] introduce a new secu-
rity notion, which they call symbolic property, for pair encodings. They adapt
previous generic frameworks [1,7] to define a compiler that takes pair encodings
satisfying the symbolic property and produces fully secure predicate encryp-
tion schemes under the q-ratio assumption—a new assumption that is implied
by some q-type assumptions proposed in [6,29]. Moreover, they introduce the
notion of tivially broken pair encoding and show that any not trivially broken
pair encoding must satisfy their symbolic property. Their definitions of sym-
bolic property and trivially broken for pair encodings are closely related to our
algebraic characterization of privacy of predicate encodings. However, the two
results are incomparable: although pair encodings are more general than predi-
cate encodings (see Sect. 5.1 for a more detailed comparison), their results rely
of q-type assumption, whereas our results build on previous frameworks that rely
on weaker assumptions (Matrix-DH or k-LIN).
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2 Background

In this section, we first introduce some mathematical notation and then define
predicate encodings, tag-based encodings and pair encodings the three primitives
used in the three different modular frameworks for predicate encryption.

2.1 Notation

For finite sets S, we use x
$← S to denote that x is uniformly sampled from S.

We define [n] as the range {1, . . . , n} for an arbitrary n ∈ N. For a predicate
P : X ×Y → {0, 1}, we use (x, y) ∈ P as a shorthand for P(x, y) = 1. We use the
same conventions for matrix-representations of linear maps on finite-dimensional
spaces. We define vectors v ∈ F

n as column matrices and denote the transpose
of a matrix A by A�. We use diag(v) to denote the diagonal matrix with main
diagonal v. We denote the identity matrix of dimension n by In, a zero vector
of length n by 0n and a zero matrix of m rows and n columns by 0m,n. Let
S be a set of indices and A be a matrix. AS denotes the matrix formed from
the set of columns of A with indices is in S. We define the colspan of a matrix
M ∈ F

m×n as the set of all possible linear combinations columns of M . That
is col

span 〈M〉 = {Mv : v ∈ F
n} ⊆ F

m. We analogously define the rowspan of a
matrix. We consider prime order bilinear groups G = (G1,G2,Gt, e : G1 ×G2 →
Gt) and use g1, g2, gt to denote their respective generators. The map e satisfies
e(ga

1 , gb
2) = gab

t for every a, b ∈ N. A bilinear group is said to be symmetric if
G1 = G2, otherwise it is called asymmetric. We abuse of notation and write gv

to denote (gv1 , . . . , gvn) for a group element g and a vector v ∈ Z
n
p .

2.2 Predicate Encodings

Predicate encodings are information-theoretic primitives that can be used for
building predicate encryption schemes [37]. We adopt the definition from [15],
but prefer to use matrix notation.

Definition 1 (Predicate encoding). Let P : X ×Y → {0, 1} be a binary pred-
icate over finite sets X and Y. Given a prime p ∈ N, and s, r, w ∈ N, a (s, r, w)-
predicate encoding for P consists of five deterministic algorithms (sE, rE, kE,
sD, rD): the sender encoding algorithm sE maps x ∈ X into a matrix sEx ∈ Z

s×w
p ,

the receiver encoding algorithm rE maps y ∈ Y into a matrix rEy ∈ Z
r×w
p , the key

encoding algorithm kE maps y ∈ Y into a vector kEy ∈ Z
r
p, while the sender and

receiver decoding algorithms, respectively sD and rD, map a pair (x, y) ∈ X × Y
into vectors sDx,y ∈ Z

s
p and rDx,y ∈ Z

r
p respectively. We require that the following

properties are satisfied:

reconstructability: for all (x, y) ∈ P, sD�
x,ysEx = rD�

x,yrEy and rD�
x,ykEy = 1;

α-privacy: for all (x, y) /∈ P, α ∈ Zp,

w
$← Z

w
p ; return (sExw, rEyw + α · kEy) ≡ w

$← Z
w
p ; return (sExw, rEyw)

where ≡ denotes equality of distributions.
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Reconstructability allows to recover α from (x, y, sExw, rEyw+α·kEy) if (x, y) ∈
P. Privacy ensures that α is perfectly hidden for such tuples if (x, y) /∈ P.

Example 1 (IBE predicate encoding). Let X = Y = Zp and let s = r = 1, w = 2.
We define the encoding functions as follows:

sEx =
(
x 1

)
sDx,y =

(
1
)

rEy =
(
y 1

)
rDx,y =

(
1
)

kEy =
(
1
)

The above is a predicate encoding for identity-based encryption, i.e., for the
predicate P(x, y) = 1 iff x = y. Note that

(
x 1

)
=

(
y 1

)
when x = y, so

reconstructability is satisfied. On the other hand, α-privacy follows from the
fact that if x 	= y, x · w1 + w2 and y · w1 + w2 are pair-wise independent. �

Predicate Encryption from Predicate Encodings. We try to provide some intu-
ition on how predicate encodings are compiled to predicate encryption schemes
by the compiler from [15]. We consider a simplified compiler (see explanations
below). The master keys, ciphertexts and secret keys have the following form:

msk = gα
2 ctx = (gs

1, g
s·sExw
1 , e(g1, g2)αs · m)

mpk = (g1, gw1 , g2, g
w
2 , e(g1, g2)α) sky = (gr

2, g
α·kEy+r·rEyw
2 )

The encrypted message m ∈ Gt is blinded by a random factor e(g1, g2)αs. The so-
called reconstruction property of predicate encodings ensures that this blinding
factor can be recovered for a pair (ctx,sky) if P(x, y) = 1. More concretely, for all
pairs (x, y) such that P(x, y) = 1, because multiplying by matrices sDx,y,rDx,y is
a linear operation, it is possible operate in the exponent and compute

g
s·sD�

x,ysExw

1 and g
rD�

x,y(α·kEy+r·rEyw)

2 ,

obtaining gsβ
1 and gα+rβ

2 for β = sD�
x,ysExw = rD�

x,yrEyw (note that knowing
the value of β is not necessary). Now, it is simple to recover e(g1, g2)αs from
e(gs

1, g
α+rβ
2 ) and e(gsβ

1 , gr
2). Security is ensured by the α-privacy property of

the encoding together with decisional assumptions about dual system groups.
Intuitively, the α-privacy property states that given certain values derived from
the output of the encoding functions for random input, α remains information-
theoretic hidden.

Note that the following is a simplification of their compiler, where we avoid
DSG for simplicity. The real scheme produced by their compiler would have twice
as many group elements (under SXDH) or three times as many (under DLIN).

2.3 Tag-Based Encodings

Tag-based encodings is a new primitive defined in a very recent work [22] that
defines a new generic framework (using prime order groups) for modular design
of predicate encryption.
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Definition 2 (Tag-based encoding). Let P : X × Y → {0, 1} be a binary
predicate over finite sets X and Y. Given a prime p ∈ N, and c, k, h ∈ N, a
(c, k, h)-tag-based encoding encoding for P consists of two deterministic algo-
rithms (cE, kE): the ciphertext encoding algorithm cE maps x ∈ X into a matrix
cEx ∈ Z

c×h
p and the key encoding algorithm kE maps y ∈ Y into a matrix

kEy ∈ Z
k×h
p . We require that the following properties are satisfied:

reconstructability: for all (x, y) ∈ P, there exists an efficient algorithm that
on input (x, y) computes vectors mc ∈ Z

c
p, mk ∈ Z

k
p such that

m�
c cEx = m�

k kEy 	= 0�
h

h-hiding: for all (x, y) /∈ P,

h
$← Z

h
p ; return (cExh, kEyh) ≈s h,h′ $← Z

h
p ; return (cExh, kEyh

′)

where ≈s denotes negligible statistical distance between distributions.

The compiler proposed in [22] uses similar ideas to the one for predicate
encodings. However, it does not rely on dual system groups and can be instan-
tiated with symmetric bilinear maps. The message is blinded and ciphertexts
and keys contain a set of group elements that are enough to recover the blinding
factor only when the predicate is true. This compiler has the advantage that
some elements of ciphertexts and keys are Zp values and not group elements,
which reduces the storage size.

2.4 Pair Encodings

Attrapadung [6,7] proposes an independent modular framework for predicate
encryption, based on a primitive called pair encoding. For our purposes, it suffices
to consider a more restrictive, information-theoretic, notion of pair encodings.

Definition 3 (Information-theoretic pair encoding). Let P : X × Y →
{0, 1} be a binary predicate over finite sets X and Y. Given a prime p ∈ N, and
c, k, l,m, n ∈ N, let h = (h1, . . . , hn), s = (s0, s1, . . . , sl) and r = (α, r1, . . . , rm)
be sets of variables. An information-theoretic (c, k, n)-pair encoding scheme for
P consists of three deterministic algorithms (Enc1,Enc2,Pair): the ciphertext
encoding algorithm Enc1 maps a value x ∈ X into a list of polynomials cx ∈
Zp[s,h]c, the key encoding algorithm Enc2 maps a value y ∈ Y into a list
of polynomials ky ∈ Zp[r,h]k and the decoding algorithm Pair maps a pair
(x, y) ∈ X ×Y into a matrix Ex,y ∈ Z

c×k
p . We require that the following properties

are satisfied:

polynomial constraints:
• For every x ∈ X and every f ∈ Enc1(x), f = f(s,h) only contains mono-

mials of the form si or sihj, i ∈ [0, l], j ∈ [n].
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• For every y ∈ Y and every f ∈ Enc2(y), f = f(r,h) only contains mono-
mials of the form α, ri or rihj, i ∈ [m], j ∈ [n].

reconstructability: for all (x, y) ∈ P and all cx ← Enc1(x), ky ← Enc2(y),
Ex,y ← Pair(x, y), the following polynomial equality holds c�

x Ex,yky = αs0.
perfect security: for all (x, y) /∈ P and all cx ← Enc1(x), ky ← Enc2(y),

h
$← Z

n
p ; r $← (Z∗

p)
m; s $← Z

l+1
p ; return (cx(s,h), ky(0, r,h)) ≡

h
$← Z

n
p ; r $← (Z∗

p)
m; s $← Z

l+1
p ;α $← Zp; return (cx(s,h), ky(α, r,h))

where ≡ denotes equality of distributions.

The compiler from pair encodings follows similar ideas to the other compilers.
The message is blinded by a random factor and ciphertexts and keys contain all
the information necessary to recover this blinded factor, only when the predicate
holds. The compiler from pair encodings requires to compute a polynomial num-
ber of pairings during decryption, unlike the compilers for predicate encodings
and tag-based encodings that need3 6 and 8 pairings respectively.

3 Predicate Encodings: Properties and Consequences

In this section, we present a purely algebraic (and independent of α) characteri-
zation of the α-privacy property. It simplifies both the analysis and the construc-
tion of predicate encodings. In particular, we use our characterization to define
and prove a new optimization of predicate encodings, i.e., a transformation that
makes the encoding functions smaller while preserving the predicate. Addition-
ally, we unify the reconstructability and privacy properties and show that they
are mutually exclusive and complementary, i.e., for every (x, y) ∈ X × Y, one
and only one of the two conditions holds. This unified treatment facilitates the
construction and study of predicate encodings.

3.1 Algebraic Properties of Predicate Encodings

The following theorem captures two essential properties of predicate encodings:
first, privacy admits a purely algebraic characterization (furthermore indepen-
dent of α) given in terms of existence of solutions of a linear system of equations.
Second, reconstructability and privacy, when viewed as properties of a single pair
(x, y), negate each other; i.e. a pair (x, y) always satisfies exactly one of the two
properties.

Theorem 1 (Algebraic characterization of privacy). Let p ∈ N be a
prime, let s, r, w ∈ N and let S ∈ Z

s×w
p , R ∈ Z

r×w
p , k ∈ Z

r
p. The following

are equivalent:
3 Decryption in the framework of predicate encodings needs 4 pairings under SXDH

assumption or 6 under DLIN, in the framework of tag-based encodings decryption
requires 8 pairings and the assumption is DLIN.
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• α-privacy For every α ∈ Zp,

w
$← Z

w
p ; return (Sw, Rw + α · k) ≡ w

$← Z
w
p ; return (Sw, Rw)

• (algebraic) privacy There exists w ∈ Z
w
p such that Sw = 0s and Rw = k

• non-reconstructability For every s ∈ Z
s
p and r ∈ Z

r
p, either s�S 	= r�R

or r�k 	= 1.

Proof. We first prove that α-privacy is equivalent to algebraic privacy. Note that
the fact that ∀α ∈ Zp,

w
$← Z

w
p ; return (Sw, Rw + α · k) ≡ w

$← Z
w
p ; return (Sw, Rw)

is equivalent to the existence of a bijection ρα such that for all w ∈ Z
w
p , Sw =

S · ρα(w) ∧ Rw + α · k = R · ρα(w). By linearity, it can be rewritten as

S(ρα(w) − w) = 0s ∧ α · k = R(ρα(w) − w)

Now, the existence of such a bijection is equivalent to the existence of a solution
for the following (parametric in α) linear system on w: Sw = 0s ∧ Rw = α ·k.
To see this, note that if ρα is such a bijection, ρα(w0) − w0 is a solution of the
system for every w0 ∈ Z

w
p . On the other hand, if w∗ is a solution of the system,

the bijection ρα(w) = w+w∗ satisfies the required identities. To conclude, note
that the above system has a solution iff the following (independent of α) does:

Sw = 0s ∧ Rw = k

Next, we prove the equivalence between algebraic privacy and non-
reconstructability. We use the following helping lemma from [12, Claim 2]: for
every field F, let A ∈ F

m×n and b ∈ F
n be matrices with coefficients in F, the

following two statements are equivalent:

• for every a ∈ F
m, b� 	= a�A;

• there exists z ∈ F
n such that z�b = 1 and Az = 0m.

Assume that algebraic privacy does not hold, i.e., for every w ∈ Z
w
p , either

Sw 	= 0s or Rw 	= k. Equivalently, for every w ∈ Z
w
p

(
0s

k

)
	=

(−S
R

)
w

which is equivalent (by our helping lemma) to the existence of (z1,z2) ∈ Z
s
p×Z

r
p

such that
(
z�
1 z�

2

)
(
0s

k

)
= 1 ∧ (

z�
1 z�

2

)
(−S

R

)
= 0�

w

That is, there exists z1 ∈ Z
s
p, z2 ∈ Z

r
p such that z�

1 S = z�
2 R ∧ z�

2 k = 1, which
is exactly reconstructability. The proof follows from the fact all the steps are
equivalences. �
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Our next result is a representation theorem. It is based on the notion of partial
encoding; informally, a partial encoding consists of the first three algorithms of
a predicate encoding; it is not attached to any specific predicate, nor is required
to satisfy any property.

Definition 4 (Partial encoding). Let X and Y be finite sets. Let p ∈ N be a
prime and s, r, w ∈ N. A (s, r, w)-partial encoding is given by three deterministic
algorithms (sE, rE, kE): sE maps x ∈ X into a matrix sEx ∈ Z

s×w
p , and rE, kE

map y ∈ Y into a matrix rEy ∈ Z
r×w
p and a vector kEy ∈ Z

r
p respectively.

The representation theorem shows that there exists an embedding from partial
encodings to predicate encodings, and that every predicate encoding lies the
image of the embedding.

Theorem 2 (Representation theorem). Let X and Y be finite sets. Let
p ∈ N be a prime and s, r, w ∈ N. Every (s, r, w)-partial encoding (sE, rE, kE)
for X and Y induces a predicate encoding (sE, rE, kE, sD, rD) for the following
predicate (henceforth coined implicit predicate):

Pred(x, y) � ∀w ∈ Z
w
p , sExw 	= 0s ∨ rEyw 	= kEy

Moreover, if (sE, rE, kE, sD, rD) is a predicate encoding for P, then for every
(x, y) ∈ X × Y, P(x, y) ⇔ Pred(x, y).

Example 2 (Implicit predicate of IBE predicate encoding). If we consider the
following partial encoding functions corresponding to the encoding presented in
Example 1:

sEx =
(
x 1

)
rEy =

(
y 1

)
kEy =

(
1
)

our Theorem 2 guarantees that it is a valid predicate encoding for the implicit
predicate:

Pred(x, y) = 1 iff ∀(w1, w2) ∈ Z
2
p, x · w1 + w2 	= 0 ∨ y · w1 + w2 	= 1

A simple analysis shows that the above predicate is equivalent to x = y. �

A consequence of Theorem 2 is that a predicate P over X and Y can be instan-
tiated by a (s, r, w)-predicate encoding iff there exist X -indexed and Y-indexed
matrices Sx ∈ Z

s×w
p and Ry ∈ Z

r×w
p and Y-indexed vectors ky ∈ Z

r
p such that:

P(x, y) = 1 iff
(
0s

ky

)
/∈ col
span

〈
Sx

Ry

〉

That is helpful to analyze the expressivity of predicate encodings of certain size.

Example 3. Let X and Y be finite sets, let n ∈ N, we will characterize all the
predicates that can be achieved from a (1, 1, n)-partial encoding, say (sE, rE, kE).
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Note that for every pair (x, y), sEx and rEy are vectors of length n, while kEy is
a single element. Say,

sEx = (f1(x), . . . , fn(x)) rEy = (g1(y), . . . , gn(y)) kEy = h(y)

for certain functions fi : X → Zp, gi, h : Y → Zp for every i ∈ [n]. Theorem 2
guarantees that the above is a valid predicate encoding for the predicate

P(x, y) = 1 iff h(y) 	= 0 ∧ ( ∃β ∈ Zp :
∧

i∈[n]

fi(x) = βgi(y)
)

It can be shown that the predicate P((x1, x2), y) = 1 iff (x1 = y) ∨ (x2 = y)
cannot be captured by (1, 1, n)-predicate encodings, while on the contrary, the
predicate P((x1, x2), y) = 1 iff (x1 = y) ∧ (x2 = y) could be instantiated. �

3.2 Optimizing Predicate Encodings

In this section, we show that the efficiency of predicate encodings can be
improved by pre- and post-processing. Specifically, we show that an (s, r, w)-
encoding (sE, rE, kE, sD, rD) for a predicate P can be transformed into a
(s′, r′, w′)-encoding (sE′, rE′, kE′, sD′, rD′) for the same predicate, by applying
a linear transformation to the matrices induced by sE, rE, kE.

More precisely, if we define sE′
x = AsEx, rE′

y = BrEy and kE′
y = BkEy

for two matrices A and B, the privacy of the encoding will be preserved, but
reconstructability may be destroyed. On the contrary, when we consider the
partial encoding sE′

x = sExC, rE′
y = rEyC and kE′

y = kEy for a matrix C,
reconstructability is automatically guaranteed, but privacy could not hold (for
the same predicate). Intuitively, this occurs because reconstructability depends
on the rowspan of the matrices sEx, rEy, while privacy depends on their colspan.
Our following theorem imposes conditions on these matrices A, B and C so that
the resulting predicate encoding is equivalent to the original one.

Theorem 3. Let X and Y be finite sets. Let p ∈ N be a prime, s, r, w, s′,
r′, w′ ∈ N, and let (sE, rE, kE, sD, rD) be a (s, r, w)-predicate encoding for P :
X × Y → {0, 1}. Let A be a function that maps every element x ∈ X into a
matrix Ax ∈ Z

s′×s
p , B be a function that maps y ∈ Y into a matrix By ∈ Z

r′×r
p

and let C ∈ Z
w×w′
p be a matrix. There exists a (s′, r′, w′)-partial encoding

(sE′, rE′, kE′, sD′, rD′) for P, where

sE′
x = AxsExC rE′

y = ByrEyC kE′
y = BykEy

provided the following conditions hold:

• For all (x, y) ∈ P, sD�
x,y ∈ row

span 〈Ax〉 and rD�
x,y ∈ row

span 〈By〉;
• For all (x, y) /∈ P, there exists w ∈ col

span 〈C〉 s.t. sExw = 0s and rEyw = kEy.
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This transformation is useful to make predicate encodings simpler and more
efficient in different manners. For instance, it can be used to make the matrices
corresponding to encoding and decoding functions become sparser. That is, if
we consider A and B as functions that apply matrix Gaussian elimination4 to
the matrices associated to sE and rE, kE, many entries from these matrices will
be zero. Hence, fewer group operations will be performed during encryption and
key generation, improving the performance. Moreover, the transformation can
be used to reduce the size of mpk, ctx and sky. If w′ < w, the number of elements
in mpk will decrease. This will also improve the performance of encryption and
key generation (both depend directly on mpk). Additionally, if s′ < s or r′ < r,
the number of elements in ctx and sky will also decrease respectively.

Note that a simplification from the right (multiplying by C) changes the
structure of the encoding and may open the possibility of left-simplifications
that were not available before and vice versa. Example 4 illustrates this idea.
We optimize a predicate encoding that corresponds to the result of applying
our negation transformation (from next section, Theorem6) to the predicate
encoding from Example 1.

Example 4. Let X = Y = Zp and consider the (2, 3, 4)-predicate encoding
(sE, rE, kE, sD, rD) for P(x, y) = 1 iff x 	= y, defined as

sEx =
(

x −1 0 0
1 0 −1 0

)
rEy =

⎛

⎝
0 1 0 y
0 0 1 1
0 0 0 1

⎞

⎠ kEy =

⎛

⎝
0
0
1

⎞

⎠

sD�
x,y =

( −1
x−y

x
x−y

)
rD�

x,y =
( 1

x−y
−x
x−y 1

)

Note that for every pair (x, y) /∈ P, i.e. x = y, the single solution of the system
sExw = 02 ∧ rEyw = kEy is w� =

(−1 −y −1 1
)
, thus the matrix

C =
(−1 0 −1 1

0 1 0 0

)�

satisfies the conditions of Theorem 3. Therefore, the (2, 3, 2)-partial encoding
(sE′, rE′, kE′), where

sE′
x = sExC =

(−x −1
0 0

)
rE′

y = rEyC =

⎛

⎝
y 1
0 0
1 0

⎞

⎠ kE′
y = kEy =

⎛

⎝
0
0
1

⎞

⎠

induces a predicate encoding for the same predicate. The previous simplification,
opens the possibility of applying again the theorem, with matrices Ax and By,
obtaining a (1, 2, 2)-predicate encoding for P(x, y) = 1 iff x 	= y. Concretely,

4 Note that if matrices Ax, By or C are invertible, they always satisfy their respective
requirements.
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Ax =
(−1 0

)
sE′′

x =
(
x 1

)
rE′′

y =
(

y 1
1 0

)
rE′′

y =
(

0
1

)

By =
(

1 0 0
0 0 1

)
sD′′�

x,y =
( 1

x−y

)
rD′′�

x,y =
( 1

x−y 1
)

�
The above simplifications can be successfully applied to actual predicate

encodings proposed in [15]. In Sect. 6.2 we propose improved predicate encodings
for monotonic boolean formulas and arithmetic span programs.

3.3 Combining Predicates

Using the new characterization of predicate encodings from the previous section,
we define transformations to combine predicate encodings into new predicate
encodings for more complex predicates. In particular, we define predicate encod-
ing transformations for disjunction, conjunction, negation and the dual predi-
cate. These combinations are useful to create new schemes that inherit different
properties from the more basic building blocks. In Sect. 6, we propose several
constructions that rely on these transformations.

Disjunction. We present a method to build a predicate encoding for the dis-
junction of P1 and P2 from predicate encodings for P1 and P2. Observe that
the predicate encryption scheme obtained from the resulting predicate encoding
is more efficient than the predicate encryption scheme obtained by compiling
the predicate encodings of P1 and P2 separately, and then applying a generic
transformation that builds predicate encryption schemes for a disjunction from
predicate encryption schemes of its disjuncts.

Theorem 4 (Disjunction of predicate encodings). For every (s1, r1, w1)-
predicate encoding (sE1, rE1, kE1, sD1, rD1) for P1 : X1 × Y1 → {0, 1} and every
(s2, r2, w2)-predicate encoding (sE2, rE2, kE2, sD2, rD2) for P2 : X2 ×Y2 → {0, 1},
there exists a (s1 + s2, r1 + r2, w1 +w2)-predicate encoding (sE, rE, kE, sD, rD) for
the predicate P : (X1,X2) × (Y1,Y2) → {0, 1} such that:

P((x1, x2), (y1, y2)) ⇔ P1(x1, y1) ∨ P2(x2, y2)

Concretely,

sE(x1,x2) =
(

sE1
x1

0s1,w2

0s2,w1 sE2
x2

)
rE(y1,y2) =

(
rE1

y1
0r1,w2

0r2,w1 rE2
y2

)
kE(y1,y2) =

(
kE1

y1

kE2
y2

)

sD�
(x1,x2),(y1,y2) = if P1(x1, y1) then

(
sD1�

x1,y1
0�

s2

)
else

(
0�

s1
sD2�

x2,y2

)

rD�
(x1,x2),(y1,y2) = if P1(x1, y1) then

(
rD1�

x1,y1
0�

r2

)
else

(
0�

r1
rD2�

x2,y2

)

Note that it is possible to obtain sharing between attributes, e.g., if X1 = X2

and the sender uses only the subset {(x, x) | x ∈ X1} of X1 × X2, the predicate
becomes P(x, (y1, y2)) = 1 iff P1(x, y1) ∨ P2(x, y2).
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Conjunction. In contrast to disjunction, the naive solution that just concate-
nates secret keys fails. Given keys for attribute pairs (y1, y2) and (y′

1, y
′
2), it would

be possible to recombine the components and obtain a key for (y1, y′
2) leading to

collusion attacks. Our predicate encoding transformation deals with this problem
by “tying” the two components together with additional randomness.

Theorem 5 (Conjunction of predicate encodings). For every (s1, r1, w1)-
predicate encoding (sE1, rE1, kE1, sD1, rD1) for P1 : X1 × Y1 → {0, 1} and every
(s2, r2, w2)-predicate encoding (sE2, rE2, kE2, sD2, rD2) for P2 : X2 ×Y2 → {0, 1},
there exists a (s1+s2, r1+r2, w1+w2+1)-predicate encoding (sE, rE, kE, sD, rD)
for the predicate P : (X1,X2) × (Y1,Y2) → {0, 1} such that:

P((x1, x2), (y1, y2)) ⇔ P1(x1, y1) ∧ P2(x2, y2)

Concretely,

sE(x1,x2) =
(

sE1
x1

0s1,w2 0s1

0s2,w1 sE2
x2

0s2

)
sD(x1,x2),(y1,y2) =

1
2

(
sD1

x1,y1

sD2
x2,y2

)

rE(y1,y2) =
(

rE1
y1

0r1,w2 kE1
y1

0r2,w1 rE2
y2

−kE2
y2

)
rD(x1,x2),(y1,y2) =

1
2

(
rD1

x1,y1

rD2
x2,y2

)

kE(y1,y2) =
(
kE1

y1

kE2
y2

)

Note that it is possible to combine Theorems 4 and 5 to create a predicate
encoding for P1 �� P2, where the placeholder ��∈ {∨,∧} can be part of keys or
ciphertexts.

Negation. To obtain a functionally complete set of boolean predicate encoding
transformers, we now define a transformation for negation. Our transformation
unifies negated predicates like Non-zero Inner Product Encryption (NIPE) and
Zero Inner Product Encryption (ZIPE). In Sect. 6.2 we use this transformation to
build optimized predicate encodings. The technique works for predicate encod-
ings where the negation transformation yields a predicate encoding that can be
further simplified (using our method from Sect. 3.2).

Theorem 6 (Negation of predicate encodings). For every (s, r, w)-
predicate encoding (sE, rE, kE, sD, rD) for P : X × Y → {0, 1} there exists a
(w,w + 1, s + w + r)-predicate encoding (sE′, rE′, kE′, sD′, rD′) for the predicate
P′ : X × Y → {0, 1} such that P′(x, y) ⇔ ¬P(x, y). Concretely,

sE′
x =

(
sE�

x −Iw 0w,r

)
rE′

y =
(
0w,s Iw rE�

y

0�
s 0�

w kE�
y

)
kE′

y =
(
0w

1

)

sD′
x,y = wx,y rD′

x,y =
(−wx,y

1

)
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where for a pair (x, y) ∈ X × Y such that P(x, y) = 0, wx,y is defined as the
witness for algebraic privacy, i.e., a vector such that

sExwx,y = 0s ∧ rEywx,y = kEy

Note that such a vector always exists when P(x, y) = 0. Moreover, sD and rD do
not need to be defined when P′(x, y) is not 1, that is, when P(x, y) is not 0.

A similar construction has been considered in a posterior work [4] to this
work. Specifically, they show how to transform a conditional disclosure of secrets
(CDS) for f into a CDS for f̄ (the complement of f).

Dual. In the literature, the notions of KP-ABE and CP-ABE are considered sep-
arately. In fact, many works are only valid for one of the two versions of Attribute
Based Encryption. Our transformation unifies the notion of KP-ABE and CP-
ABE in the framework of predicate encodings. In this context they should not be
considered separately, because our transformation provides a Ciphertext-Policy
predicate encoding from any Key-Policy predicate encoding and vice versa.

Theorem 7 (Dual predicate encoding). For every (s, r, w)-predicate encod-
ing (sE, rE, kE, sD, rD) for P : X × Y → {0, 1} there exists a (r, s + 1, w + 1)-
predicate encoding (sE′, rE′, kE′, sD′, rD′) for the predicate P′ : Y × X → {0, 1}
such that P′(y, x) ⇔ P(x, y). Concretely,

sE′
y =

(
rEy kEy

)
rE′

x =
(
sEx 0s

0�
w 1

)
kE′

x =
(
0s

1

)

sD′
y,x = rDx,y rD′

y,x =
(
sDx,y

1

)

4 Tag-Based Encodings

We show that our techniques for predicate encodings can be extended to the
framework of tag-based encodings. In particular, we show a similar result to our
Theorem 1, which establishes that h-hiding and reconstructability are mutually
exclusive and complementary.

Theorem 8. Let p ∈ N be a prime, let k, c, h ∈ N and let C ∈ Z
c×h
p , K ∈ Z

k×h
p .

The following are equivalent:

• h-hiding: h $← Z
h
p ; return (Ch, Kh) ≡ h,h′ $← Z

h
p ; return (Ch, Kh′)

• non-reconstructability For every mc ∈ Z
c
p and very mk ∈ Z

k
p, either

m�
c C 	= m�

k K or m�
c C = 0�

h .

where ≡ denotes equality of distributions.
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A consequence of Theorem 8 is that every valid tag-based encoding is per-
fectly hiding, or equivalently, there cannot exist a tag-based encoding where the
two distributions from h-hiding are negligibly close but not identical.

Thanks to the above theorem, it is possible to define disjunction and con-
junction transformations for tag-based encodings along the lines of predicate
encodings. We were not able to design a negation transformation for tag-based
encodings and leave it for future work. On the other hand, the dual transfor-
mation is straightforward in this framework, as mentioned in [22], because the
encoding primitives are completely symmetric.

Expressivity of Tag-Based Encodings vs Predicate Encodings. We propose a
transformation that produces valid predicate encodings from valid tag-based
encodings for the same predicate.

Theorem 9. Given a (c, 1, h)-tag-based encoding (cE, kE) for P : X × Y →
{0, 1}, the (c, 1, h)-partial predicate encoding (sE′, rE′, kE′) defined as sE′

x = cEx,
rE′

y = kEy, kE′
y =

(
1
)
, induces a predicate encoding for P.

Note that because of the symmetry of tag-based encodings, Theorem 9 can
be also applied to (1, k, h)-tag-based encodings. All the tag-based encodings
proposed in [22] (except one) have either c = 1 or k = 1, so the above theorem
can be applied to them.

5 Pair Encodings

In this section we provide an embedding that transforms every predicate encod-
ing into an information-theoretic pair encoding. Consequently, we can see pred-
icate encodings as a subclass of pair encodings. This opens the possibility of
reusing the conjunction and dual transformation proposed by Attrapadung [9,10]
for pair encodings, to create combinations of predicate encodings via our embed-
ding. We show that this alternative method is fundamentally different from our
direct conjunction and dual transformations on predicate encodings, where our
combinations produce more efficient encodings.

5.1 Embedding Predicate Encodings into Pair Encodings

In this section we provide an embedding that produces a valid information-
theoretic pair encoding from every valid predicate encoding (see Definitions 1
and 3 for predicate encodings and pair encodings respectively).

Definition 5 (Embedding to Pair Encodings). Given a (s, r, w)-predicate
encoding pe = (sE, rE, kE, sD, rD), we define the embedding Emb(pe) = (Enc1pe,
Enc2pe,Pairpe) as follows:

• Enc1pe(x) = (c0, c), where c0(s0,h) = s0, c(s0,h) = s0 · sExh
• Enc2pe(y) = (k0,k), where k0(α, r1,h) = r1, k(α, r1,h) = α · kEy + r1 · rEyh
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• Pairpe(x, y) =
(

0 rD�
x,y

−sDx,y 0s,r

)

All variables s = (s0) and r = (r1) appear in the clear in the Enc1 and Enc2 poly-
nomials respectively. This simplifies the pair encoding’s information-theoretical
security notion into one equivalent to the privacy of the predicate encoding (see
proof of Theorem10).

Theorem 10 (Correctness of the embedding). If pe = (sE, rE, kE, sD, rD)
is a valid (s, r, w)-predicate encoding for P, then Emb(pe) is a valid information
theoretic (s + 1, r + 1, w)-pair encoding for P.

Our embedding shows that every predicate encoding can be transformed into
a perfectly secure pair encoding. In fact, after applying the compiler from [1] to
the embedding of a predicate encoding, we get the same predicate encryption
scheme that the one provided by the compiler from [15].

We conclude that predicate encodings can be transformed into a very special
class of pair encodings: encodings that allow decryption with 2 pairings and
have only one element of randomness in both, ciphertexts and secret keys (what
makes them very efficient).

5.2 Comparison Between Encoding Transformations

Attrapadung proposed generic transformations of pair encodings [9,10]. In par-
ticular, he proposed the conjunction and dual transformations. In this section
we compare these transformations with the ones proposed in this work. For this,
we compare the conjunction of two pair encodings, (embedded from predicate
encodings) with the embedding of the conjunction of a (s1, r1, w1)-predicate
encoding pe1 = (sD1, rE1, kE1, sD1, rD1) and a (s2, r2, w2)-predicate encoding
pe2 = (sD2, rE2, kE2, sD2, rD2), i.e.,

Emb(pe1 ∧pred pe2) vs Emb(pe1) ∧pair Emb(pe2)

where ∧pred and ∧pair are the conjunction of predicate encodings and pair encod-
ings respectively. Note that ∧pred corresponds to the transformation from our
Theorem 5. On the other hand, for ∧pair we use the conjunction proposed in [10].

Emb(pe1 ∧pred pe2) =

⎧
⎨

⎩

Enc1((x1, x2)) = (c0, c1, c2)
Enc2((y1, y2)) = (k0,k1,k2)
Pair((x1, x2), (y1, y2)) = E(x1,x2),(y1,y2)

where h = (h0,h1,h2) and

c0(s0,h) = s0
c1(s0,h) = s0 · sE1

x1
h1

c2(s0,h) = s0 · sE2
x2
h2

k0(α, r1,h) = r1
k1(α, r1,h) = (α + h0) · kE1

y1
+ r1 · rE1

y1
h1

k2(α, r1,h) = (α − h0) · kE2
y2

+ r1 · rE2
y2
h2
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E(x1,x2),(y1,y2) =
1
2

⎛

⎝
0 rD1�

x1,y1
rD2�

x2,y2

−sD1
x1,y1

0s1,r1 0s1,r2

−sD2
x2,y2

0s2,r1 0s2,r2

⎞

⎠

Emb(pe1) ∧pair Emb(pe2) =

⎧
⎨

⎩

Enc1((x1, x2)) = (c0, c1, c2)
Enc2((y1, y2)) = (k0,k1, k2,k3)
Pair((x1, x2), (y1, y2)) = E(x1,x2),(y1,y2)

where h = (h1,h2) and

c0(s0,h) = s0
c1(s0,h) = s0 · sE1

x1
h1

c2(s0,h) = s0 · sE2
x2
h2

k0(α, (r1, r2, r3),h) = r1
k1(α, (r1, r2, r3),h) = r3 · kE1

y1
+ r1 · rE1

y1
h1

k2(α, (r1, r2, r3),h) = r2
k3(α, (r1, r2, r3),h) = (α − r3) · kE2

y2
+ r2 · rE2

y2
h2

E(x1,x2),(y1,y2) =

⎛

⎝
0 rD1�

x1,y1
0 rD2�

x2,y2

−sD1
x1,y1

0s1,r1 0s1 0s1,r2

0s2 0s2,r1 −sD2
x2,y2

0s2,r2

⎞

⎠

The resulting pair encodings are different. The first one (result of our conjunc-
tion) does not introduce new random variables and does not increase the number
of pairings for decryption. On the other hand, the second conjunction adds new
random variables to key generation and increases the number of pairings needed
during decryption. This overhead will be amplified if nested conjunctions are
used. We include a detailed comparison between the dual transformations in the
full version of this paper.

6 Constructions

We provide new instances of predicate encodings to achieve predicate encryption
schemes with new properties or better performance.

6.1 Combining Predicates

Dual-Policy ABE. Dual-Policy Attribute Based Encryption [9,10] has already
been considered in the pair encodings framework. It combines KP-ABE and CP-
ABE into a single construction that simultaneously allows two access control
mechanisms. The main advantage is the possibility of considering policies over
objective attributes (associated to data) and policies over subjective attributes
(associated to user credentials) at the same time.

Our combinations of predicate encodings allow us to create predicate encryp-
tion constructions for Dual-Policy ABE in the framework of pair encodings and
tag-based encodings. In particular, given an arbitrary predicate encoding for
P : X × Y → {0, 1}, applying Theorems 7 and 5 we get an encoding for DP-
ABE, i.e., for the predicate P� : (X × Y) × (Y × X ) → {0, 1} defined as

P�((x, y), (y′, x′)) = 1 iff P(x, y) ∧ P(y′, x′)
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Revocation. Another application of our combinations is predicate encryption
with revocation, by combining a boolean formula predicate encoding with a broad-
cast encryption predicate encoding. The former is used to encode the actual policy
of the scheme, while the latter takes care of revocation.

Fig. 1. Scalability of the PE for revocation

Broadcast encryption has
been considered in the literature
to approach revocation [19,23,
30]. In broadcast encryption, a
broadcasting authority encrypts
a message in such a way that
only authorized users will be
able to decrypt it. This can
be expressed with the predicate
P(x, i) = 1 if and only if xi =
1, where x ∈ X = {0, 1}n

and i ∈ Y = [n]. A draw-
back is that the number of users
in the system, n, is polynomial
size. Figure 1 shows the perfor-
mance of predicate encryption
built from a predicate encoding
that combines boolean formulas with broadcast encryption. The system supports
thousands of users in reasonable time.

6.2 Improved Predicate Encodings

In this section we propose new predicate encodings that are more efficient than
some of the encodings proposed previously in [15]. Our encodings are built by
applying Theorem6 to obtain negated encodings and observing that, in some
cases, Theorem 3 can be applied to simplify the negated version into a more effi-
cient encoding than the original one. The predicate associated to this new encod-
ing is negated, but if inputs are also negated, the predicate will be equivalent.
Figure 2 illustrates this idea. On the left, there is a boolean formula CP-ABE for
4 attributes {a, b, c, d}. On the right side, secret keys and policies are modified so
that the negated version is equivalent. The attribute universe is formed by the
negated attributes, secret keys are formed by all negated attributes do not appear
in the original key as normal attributes, policies are negated and expressed in
NNF (Negation Normal Form).

Boolean Formulas. In [15], the authors propose two predicate encoding (KP
and CP versions) for monotonic boolean formulas. The predicate they consider
is a particular case of a Linear Secret Sharing scheme [24]. Let X = {0, 1}n,Y =
Z

n×k
p for some n, k ∈ N,

P(x,M) = 1 iff
(
1 0 k−1. . . 0

) ∈ row
span 〈Mx〉
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P P̄

attributes = {a, b, c, d} attributes = {ā, b̄, c̄, d̄}
x = (a ∧ c) ∨ d x = (ā ∨ c̄) ∧ d̄

y = {a, c} y = {b̄, d̄}
P(x, y) = 1 iff x(y) P̄(x, y) = 1 iff ¬x(y)

P(x,M) = 1 iff 1 0 k−1. . . 0
) ∈ row

span 〈Mx〉

Fig. 2. Equivalent encodings of a policy using P (CP-ABE) on the left and P̄ (negated
CP-ABE) on the right.

where Mx denotes the matrix M filtered by x, i.e., Mx includes the i-th row of
M iff xi = 1.

It has been shown [28] that for every5 monotonic boolean formula f with
attributes from X there exists a matrix M ∈ Y such that for every x ∈ X ,
f(x) ⇔ P(x,M). The key-policy predicate encoding from [15] is the following,

sEx =
(
diag(x) 0n,k−1

)
rEM =

(
In M{2,...,k}

)
kEM =

(
M{1}

)

where M{1} denotes the first column of matrix M , M{2,...,k} represents the rest
of the matrix. We do not include explicit decryption functions sD and rD, but
they can be computed efficiently by Gaussian elimination.

In the above encoding, the number of elements in secret keys and ciphertexts
is always maximal, it equals the number of (possibly duplicated) attributes, even
for small policies. Furthermore, the maximum number of and-gates in a policy
must be fixed a priori (because it is related the number of columns in the matrix).

We propose the following improved predicate encoding for (negated) key-
policy monotonic boolean formulas, which is an equivalent predicate if instanti-
ated with negated inputs. Let X = {0, 1}n and Y = Z

n×k
p ,

sEx = In − diag(x) rEM = M� kEM =
(
1 0 k−1. . . 0

)�

In our encoding, the number of columns has been reduced up to half 6. Fur-
thermore, the size of secret keys is proportional to the complexity of policies. In
particular, it is equal to the number of and-gates in the policy (or equivalently,
the number of or-gates in the non-negated version). Note that our improvement
also works in the ciphertext-policy case.

In Fig. 3 we present a comparison between our improved encoding for key-
policy monotonic boolean formulas and the original one. To this end, we generate
random boolean formulas for different sizes, starting from a random set of leaf
5 Where every attribute appears at most once and the number of and-gates is

lower than k (one could overcome the one-use restriction by considering duplicated
attributes).

6 Being half when the bound on the number of and-gates is maximal.
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Fig. 3. Improved predicate encoding for boolean formulas vs original encoding

nodes and combining them with boolean operators ∨ and ∧. Our tables report
on the average time for each algorithm. Our encoding needs 50% less time than
the original algorithms for setup, encryption and key generation. For decryption
the performance is similar. All the analyzed schemes were instantiated with the
same compiler, therefore all achieve the same level of security (under SXDH
assumption). In terms of secret key size, our encoding is smaller in general (in
the worst case, when all the gates in the policy are or-gates, key sizes are equal).

Arithmetic Span Programs. Chen et al. proposed in [15] a predicate encoding
for Arithmetic Span Programs (ASP). That is, an encoding for the predicate P
defined as follows. Let X = Z

n
p , Y = Z

n×k
p × Z

n×k
p , for some n, k ∈ N; for every

x ∈ X and every (Y,Z) ∈ Y,

P(x, (Y,Z)) = 1 iff
(
1 0 k−1. . . 0

) ∈ row
span 〈diag(x)Y + Z〉

In [21], Ishai and Wee show how to relate Arithmetic Span Programs com-
putations of polynomial functions over a finite field F, i.e., functions f : Fn → F

that only use addition and multiplication over the field. Therefore, the above
predicate can be seen as f(x) = 0, where f is the polynomial function induced
by (Y,Z). Let X = Z

n
p , Y = Z

n×k
p × Z

n×k
p , the original predicate encoding for

arithmetic span programs proposed in [15] is the following:
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Fig. 4. Improved predicate encoding for ASP vs original encoding

sEx =
(
diag(x) In 0n,k−1

)
rE(Y,Z)=

(
In 0n,n Y{2,...,l}
0n,n In Z{2,...,l}

)
kE(Y,Z) =

(
Y{1}
Z{1}

)

We present a more efficient encoding for (negated7) arithmetic span programs:

sEx =
(
diag(x) −In

)
rE(Y,Z) =

(
Z� Y � )

kE(Y,Z) =
(
1 0 k−1. . . 0

)�

Figure 4 shows the performance of our new encoding for KP-ABE for Arith-
metic Span Programs compared to the original encoding from [15]. As we
expected, our encoding needs 66% of the time required for the original encoding
for setup, encryption and key generation. Additionally, secret key size is halved
with our encoding.

6.3 Extra Features

In this section we consider new theoretical results that can be proved thanks
to our algebraic characterization of α-privacy and can be used to produce new
predicate encodings enhanced with extra properties.

7 In [21] there is a modification of their algorithm that produces matrices (Y, Z) such
that the predicate associated is f(x) �= 0 (the double negation will cancel out).



Generic Transformations of Predicate Encodings 59

Attribute-Hiding for Boolean Formulas. Chen et al. proposed an exten-
sion of the compiler in [15] to build weakly attribute-hiding predicate encryption
schemes [13,25]. In a weakly attribute-hiding scheme, the ciphertext attribute x
remains secret for unauthorized users, that only learn the fact that their secret
keys are not valid. This additional compiler needs to be instantiated with pred-
icate encodings satisfying additional properties. The following is a definition
from [15].

Definition 6 (Attribute-Hiding Encodings). A (s, r, w)-predicate encod-
ing, (sE, rE, kE, sD, rD) for P : X × Y → {0, 1} is attribute-hiding if it verifies
the additional requirements:

x-oblivious reconstruction: sDx,y and rDx,y are independent of x.
attribute-hiding: for all (x, y) /∈ P,

w
$← Z

w
p ; return (sExw, rEyw) ≡ s

$← Z
s
p; r

$← Z
r
p; return (s, r)

where ≡ denotes equality of distributions.

The following theorem relates the second property with our alternative definition
of predicate encodings:

Theorem 11 (Algebraic characterization of attribute-hiding). Let p ∈
N be a prime, let s, r, w ∈ N and let S ∈ Z

s×w
p , R ∈ Z

r×w
p , k ∈ Z

r
p. The following

are equivalent:

• w
$← Z

w
p ; return (Sw, Rw) ≡ s

$← Z
s
p; r

$← Z
r
p; return (s, r)

• rank
(

S
R

)
= s + r

Note that for every (s, r, w)-predicate encoding (sE, rE, kE, sD, rD) that is
attribute-hiding, there exists an equivalent (s, 1, w)-predicate encoding. This is
because rD is independent from x and thus, we can apply our optimization The-
orem 3 with matrices By = rD�

x,y ∈ Z
1×w
p , Ax = Is, C = Iw. Therefore, the class

of predicates that can be built from attribute-hiding encodings is included in the
class of predicates achieved from (s, 1, w)-predicate encodings.

Further, note that our disjunction and conjunction combinations for predi-
cate encodings (Theorems 4 and 5 respectively) preserve the notion of attribute-
hiding8. Exploiting this fact, we propose a Policy-Hiding ABE scheme for non-
monotonic boolean formulas expressed in DNF (Disjunctive Normal Form). The
inner product can be used to encode conjunctions [25]. More concretely, let
y ∈ {0, 1}n ⊆ Z

n
p . We establish that the i-th attribute ai appears in a secret key

for y iff yi = 1. Let S, S̄ ⊆ {ai}n
i=1 be sets such that S ∩ S̄ = ∅,9

∧

a∈S

a ∧
∧

a∈S̄

ā ⇔9 x�y = |S| where ∀i ∈ [n], xi =

⎧
⎨

⎩

1 if ai ∈ S
−1 if ai ∈ S̄

0 otherwise

8 Conjunction also preserves x-oblivious reconstruction, while disjunction does not.
9 This equivalence holds when |S| < p, but in practice p is a large prime.
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Note that the ZIPE predicate encoding from [15, Appendix A.1] can be
modified into an attribute-hiding encoding for the predicate P((x, γ),y) =
1 iff x�y = γ.

Fig. 5. Example of delegation of keys for monotonic boolean formulas. Since A is a
linear function, it can be computed in the exponent from the given key.

Therefore, with a disjunction of k predicate encodings like the former we can
encode boolean formulas that have at most k disjuncts. Note that the result-
ing encoding is attribute-hiding but it is not x-oblivious. However, without the
knowledge of the policy x, one can guess for the disjunct his secret key satis-
fies (if any). In this way, a valid key will be enough to decrypt after at most k
decryption tries (one for every disjunct).

Delegation. Delegation of keys is a desirable property for every predicate
encryption scheme. Roughly, it allows the owner of a secret key to weaken his
key creating a new one that is less powerful than the original one. This property
can be used to achieve forward secrecy (see [14] for an application to ABE that
supports delegation), where past sessions are protected from the compromise of
future secret keys. More formally, we say that a predicate P : X × Y → {0, 1}
supports delegation if there is a partial ordering � on Y such that for every
x ∈ X , if P(x, y) = 1 and (y � y′), then P(x, y′) = 1.
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Delegation has been considered in [15] as the property of some predicate
encodings. We propose a generic method to convert any predicate encoding into
one supporting delegation.

Theorem 12 (Delegation). For every (s, r, w)-predicate encoding (sE, rE, kE,
sD, rD) for P : X × Y → {0, 1}, for every k ∈ N, (sE′, rE′, kE′, sD′, rD′) defined
below is a valid (s, r + k,w + k)-predicate encoding for P.

sE′
x =

(
sEx 0s,k

)
rE′

y =
(

rEy 0r,k

0k,w Ik

)
kE′

y =
(
kEy

0k

)

sD′
x,y = sDx,y rD′

x,y =
(
rDx,y

0k

)

The additional set of not-null rows in rE′
y can be used to weaken the linear

span of rEy, what directly modifies the predicate. In particular, this method
works really well for monotonic boolean formulas (see Fig. 5 for an example).
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A Proofs from Main Body

Proof (Of Theorem 2). The proof follows from Theorem 1 and the observation
that reconstructability of predicate encodings is equivalent to Pred, while privacy
of predicate encodings is equivalent to ¬Pred. �
Proof (Of Theorem 3). To see correctness of the new encoding, note that for all
(x, y) ∈ P, since

sD�
x,y ∈ row

span 〈Ax〉 ∧ rD�
x,y ∈ row

span 〈By〉
there exist sD′�

x,y and rD′�
x,y such that

sD�
x,y = sD′�

x,yAx ∧ rD�
x,y = rD′�

x,yBy

Therefore,

sD′�
x,y(AxsExC) = (sD�

x,ysEx)C = (rD�
x,yrEy)C = rD′�

x,y(ByrEyC)

rD′�
x,y(BykEy) = rD�

x,ykEy = 1

To see privacy, note that for every (x, y) /∈ P, there exists w ∈ col
span 〈C〉 such

that sExw = 0s ∧ rEyw = kEy. Therefore, there also exists w′ ∈ Z
w′
p such that

w = Cw′. Note that,

sE′
xw

′ = (AxsExC)w′ = AxsExw = Ax0s = 0s′

rE′
yw

′ = (ByrEyC)w′ = ByrEyw = BykEy = kE′
y

so algebraic privacy is satisfied. �
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Proof (Of Theorem 4). Reconstructability can be seen by a simple check based
on the reconstructability of the original encodings.
To see privacy, note that P1(x1, y1) ∨ P2(x2, y2) = 0 implies P1(x1, y1) = 0
and P2(x2, y2) = 0 implies. Let w1 and w2 be witnesses of privacy of predicate
encodings 1 and 2 respectively. It is easy to check that w� =

(
w�

1 w�
2

)
is a

witness of privacy of the transformed encoding. �
Proof (Of Theorem 5). A simple check shows reconstructability. To see pri-
vacy, P1(x1, y1) ∧ P2(x2, y2) = 0 implies P1(x1, y1) = 0 or P2(x2, y2) = 0.
If the first holds, let w1 be a witness of privacy of the first encoding. Then,
w� =

(
2w�

1 0�
w2

−1
)

is a witness of the algebraic privacy of the transformed
encoding. If the second holds, let w2 be a witness of privacy of the second encod-
ing. A valid witness now is w� =

(
0�

w2
2w�

2 1
)
. �

Proof (Of Theorem 6). It is not difficult to check reconstructability. Privacy holds
because when P(x, y) = 1, we can define w� =

(−sD�
x,y −sD�

x,ysEx rD�
x,y

)

which can be checked to be a witness of the algebraic privacy of the transformed
predicate encoding. �
Proof (Of Theorem 7). A simple check is enough to verify reconstructability. For
privacy, note that when P′(y, x) = 0, we have P(x, y) = 0. Let w be a witness
of the algebraic privacy of the original encoding. Now, w′� =

(−w� 1
)

is a
witness of the dual predicate encoding. �
Proof (Of Theorem 8). The proof follows directly from the following lemma
and the observation that (i) is equivalent to h-hiding, while (iii) is non-
reconstructability (take A = C and B = K). �
Lemma 1. Let A ∈ Z

m×n
p and B ∈ Z

l×n
p be matrices. Let C ∈ Z

(m+l)×n
p be the

concatenation of A and B by rows. The following three statements are equivalent:

(i) ∀a ∈ Z
m
p ,∀b ∈ Z

l
p, Pr

x
$←Zn

p

[Ax = a |Bx = b] = Pr
x

$←Zn
p

[Ax = a]

(ii) rank(C) = rank(A) + rank(B)

(iii) ∀a ∈ Z
m
p ,∀b ∈ Z

l
p, a�A 	= b�B ∨ a�A = 0�

n

Proof (Of the Lemma). Note that (i) holds for every a ∈ Z
m
p , b ∈ Z

l
p such that

Ax = a or Bx = b have no solution. Let a ∈ Z
m
p , b ∈ Z

l
p be such that the

systems Ax = a and Bx = b have individually at least one solution (note that
such a and b always exist). We define the sets ΩA = {x ∈ Z

n
p : Ax = a},

ΩB = {x ∈ Z
n
p : Bx = b}, ΩAB = {x ∈ Z

n
p : Ax = a ∧ Bx = b}. By the

Rouché-Capelli Theorem,

|ΩA| = pn−rank(A) |ΩB | = pn−rank(B) |ΩAB | = pn−rank(C)

Note that (i) can be expressed as |ΩAB |
pn = |ΩA|

pn · |ΩB |
pn which is equivalent to the

equation pn · |ΩAB | = |ΩA| · |ΩB |, and therefore, pn · pn−rank(C) = pn−rank(A) ·
pn−rank(B) if and only if rank(C) = rank(A) + rank(B) which is (ii).
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Now, note that rank(C) = rank(A) + rank(B) if and only if there is not
a non-zero linear combination of rows of A that can be expressed as a linear
combination of rows of B, which is equivalent to statement (iii). �
Proof (Of Theorem 9). According to our Theorem 2, the partial encoding (sE′,
rE′, kE′) induces a predicate encoding for the predicate Pred(x, y) = 1 iff ∃s ∈
Z

c
p, r ∈ Z

1
p s.t. s�sE′

x = r · rE′
y and r · kE′

y = 1, or equivalently, ∃s ∈
Z

c
p s.t. s�cEx = kEy, which is equivalent to the reconstructability of the tag-

based encoding (cE, kE). According to Theorem 8 it is also equivalent to the
predicate P. �
Proof (Of Theorem 10). Verifying correctness of the pair encoding is a simple
check. For perfect security we need to check that, when (x, y) /∈ P, the following
two distributions are identical:

α, s0
$← Zp; r1

$← Z
∗
p; h

$← Z
w
p ; return (s0, s0 · sExh, r1, r1 · rEyh) ≡

s0
$← Zp; r1

$← Z
∗
p; h

$← Z
w
p ; return (s0, s0 · sExh, r1, r1 · rEyh + α · kEy)

Since both distributions provide s0 and r1 in the clear, the above checking is
equivalent to the following:

h
$← Z

w
p ; return (sExh, rEyh) ≡

α
$← Zp; r1

$← Z
∗
p; h

$← Z
w
p ; return (sExh, rEyh + α/r1 · kEy)

but those distributions are identical due to the α-privacy of the predicate
encoding10. �
Proof (Of Theorem 11). Given (s, r) ∈ Z

s
p × Z

r
p, we define Ωs,r = {w ∈ Z

w
p :

Sw = s ∧ Rw = r}. The condition on the second bullet holds iff w − s − r ≥ 0
and the cardinality of Ωs,r is pw−s−r. Additionally, |Ωs,r| is independent from r
and s iff the two distributions from the first bullet are identical. �
Proof (Of Theorem 12). Correctness can be easily checked. For privacy, let
(x, y) /∈ P and let w ∈ Z

w
p be such that sExw = 0s and rEyw = kEy. Note

that w′� =
(
w� 0�

k

)
is a witness of privacy for (sE′, rE′, kE′, sD′, rD′). �
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3 Département d’informatique de l’ENS, École normale supérieure,
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Abstract. We present two practically efficient functional encryption
schemes for a large class of quadratic functionalities. Specifically, our con-
structions enable the computation of so-called bilinear maps on encrypted
vectors. This represents a practically relevant class of functions that
includes, for instance, multivariate quadratic polynomials (over the inte-
gers). Our realizations work over asymmetric bilinear groups and are
surprisingly efficient and easy to implement. For instance, in our most
efficient scheme the public key and each ciphertext consist of 2n + 1
and 4n + 2 group elements respectively, where n is the dimension of
the encrypted vectors, while secret keys are only two group elements.
Our two schemes build on similar ideas, but develop them in a differ-
ent way in order to achieve distinct goals. Our first scheme is proved
(selectively) secure under standard assumptions, while our second con-
struction is concretely more efficient and is proved (adaptively) secure in
the generic group model.

As a byproduct of our functional encryption schemes, we show new
predicate encryption schemes for degree-two polynomial evaluation,
where ciphertexts consist of only O(n) group elements. This significantly
improves the O(n2) bound one would get from inner product encryption-
based constructions.

1 Introduction

Traditional public key encryption allows the owner of a secret key sk to decrypt
ciphertexts created with respect to a (matching) public key mpk. At the same
time, without sk, ciphertexts should not reveal any non trivial information about
encrypted messages. This all-or-nothing nature of encryption is becoming insuffi-
cient in applications where a more fine-grained access to data is required. Func-
tional Encryption (FE) allows to overcome this user-centric access to data of
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encryption in a very elegant way. Intuitively, given Encrypt(m) and a key skf

corresponding to some function f , the owner of skf learns f(m) and nothing
else. Apart from being an interesting theoretical object, Functional Encryption
has many natural applications. Think about cloud storage scenarios where users
can rely on powerful external servers to store their data. To preserve their pri-
vacy, users might want to store their files encrypted. At the same time, the users
may wish to let the service providers perform basic data mining operations on
this data for commercial purposes, without necessarily disclosing the whole data.
Functional Encryption allows to reconcile these seemingly contradicting needs,
as service providers can get secret keys that allow them to perform the desired
computations while preserving, as much as possible, the privacy of users.

In terms of security, the standard notion for functional encryption is indistin-
guishability. Informally, this notion states that an adversary who is allowed to see
the secret keys for functionalities f1, . . . fn should not be able to tell apart which
of the challenge messages m0 or m1 has been encrypted, under the restriction
that fi(m0) = fi(m1), for all i. This notion was studied in [13,35] and shown
inadequate for certain, complex, functionalities1. They also explored an alterna-
tive, simulation-based, definition, which however cannot be satisfied, in general,
without resorting to the random oracle heuristic.

Background on Functional Encryption. The idea of functional encryption
originates from Identity Based Encryption (IBE) [11,37] and the closely related
concept of Searchable Encryption [1,10]. In IBE, the encrypted message can be
interpreted as a pair (I,m), where I is a public string and m is the actual message
(often called the “payload”). More in general, the index I can be interpreted as
a set of attributes that can be either public or private. Public index schemes
are often referred to as attribute based encryption [27,36], a primitive that is
by now very well understood [25]. For private index schemes, the situation is
more intricate. A first distinction is between weakly and fully attribute hiding
schemes [5]. The former notion refers to schemes where the set of secret keys
the adversary is allowed to see in the security games is significantly restricted.
The adversary is allowed to ask only keys corresponding to functions that can-
not be used to decrypt the challenge message. Examples of these schemes are
Anonymous Identity based encryption [11,22], Hidden Vector Encryption [15]
and (private index) predicate encryption [26,28].

Things are less well established for the setting of private index, fully attribute
hiding schemes, a notion that turns out to be equivalent to full fledged functional
encryption [13]. Indeed, all known constructions supporting arbitrary circuits,
either work for the case of bounded collusions [23,24] or rely on powerful, but
poorly understood, assumptions (e.g., [20]). Moreover, they are all terribly inef-
ficient from a practical point of view.

1 Here by complex we intend, for instance, functions that are supposed to have some
computational hiding properties. In particular, Boneh et al. [13] argue that, in appli-
cations where security relies on such properties, indistinguishability might become
problematic.
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To improve efficiency, a very natural approach is to try to realize schemes
using a different, bottom up, perspective. Rather than focusing on generality,
one might focus on devising efficient realizations for specific functionalities of
practical interest. In 2015, Abdalla et al. [2] addressed this question for the
case of linear functionalities. In particular, they show a construction which is
both very simple and relies on standard, well studied assumptions (such as LWE
and DDH). The construction was proved secure in the so-called selective setting
where the adversary is expected to choose the messages on which she wants to be
challenged in advance, even before the public key is set up. Not too surprisingly,
this result sparkled significant interest in this bottom-up approach, with several
results proposing new schemes [6], models [4,9] and improved security [3,6].

Still, none of these results managed to efficiently support more than linear
functionalities. In particular, the technical barrier is to find FE schemes in which
ciphertexts have size linear in the number of encrypted elements, in contrast to
quadratic, as it can be achieved by using a scheme for linear functions.2 This
motivates the following question:

Can we construct a practically efficient functional encryption scheme
supporting more than linear functionalities?

1.1 Our Contribution

In this paper we answer the question above in the affirmative. We build two
efficient functional encryption schemes for quadratic functions with linear-size
ciphertexts. In terms of security, our first scheme is proven selective-secure under
standard assumptions (Matrix Decisional Diffie Hellman [18] and 3-party DDH
[12]), whereas our second scheme is proven adaptively secure in the generic
group model, and is more efficient. In terms of functionality, to be more spe-
cific, our schemes allows to compute bilinear maps over the integers: messages
are expressed as pairs of vectors (x,y) ∈ Z

n×Z
m, secret keys are associated with

(n × m) matrices F, and decryption allows to compute x�Fy =
∑

i,j fijxiyj .
Bilinear maps represent a very general class of quadratic functions that includes,
for instance, multivariate quadratic polynomials. These functions have several
practical applications. For instance, a quadratic polynomial can express many
statistical functions (e.g., (weighted) mean, variance, covariance, root-mean-
square), the euclidean distance between two vectors, and the application of a
linear or quadratic classifier (e.g., linear or quadratic regression).

In addition to the above applications of quadratic functions, we also show
that our FE for bilinear maps can be used to construct new Predicate Encryption
schemes (PE for short) that satisfy the fully attribute hiding property, and yield
efficient solutions for interesting classes of predicates, such as constant-depth

2 Indeed, we note that a functional encryption for linear polynomials can be used
to support, say, quadratic polynomials, by simply encrypting all the degree-two
monomials in advance. This however leads to an inefficient solution where the size
of the ciphertexts is quadratic in the number of variables.
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boolean formulas and comparisons. In a nutshell, in our PE scheme ciphertexts
are associated with a set of attributes (x1, . . . , xn) and a plaintext M , secret
keys are associated with a degree-two polynomial P , and the decryption of a
ciphertext Ct(x1,...,xn)∈Zn with a secret key skP∈Z[X1,...,Xn], deg(P )≤2 recovers M
if, and only if, P (x1, . . . , xn) = 1. The attribute-hiding property refers to the fact
that Ct(x1,...,xn)∈Zn leaks no information on its attribute (x1, . . . , xn), beyond

what is inherently leaked by the boolean value P (x1, . . . , xn) ?= 1. Using our
new functional encryption schemes as underlying building blocks, we obtain PE
constructions for quadratic polynomials where ciphertexts consist of only O(n)
group elements. This is in sharp contrast with the O(n2) solutions one would
get via inner product encryption schemes (e.g., [28]).

An Informal Description of Our FE Schemes. Our solutions work over
asymmetric bilinear groups G1,G2,GT and are quite efficient. They are both
essentially optimal in communication size: public key and ciphertexts are both
linear in the size of the encrypted vectors; secret keys are only two group ele-
ments. Both our schemes share similar underlying ideas. These ideas are however
developed in different ways to achieve different security and efficiency goals. Our
first scheme, can be proved (selectively) secure under standard intractability
assumptions but achieves somewhat worse performances in practice. The sec-
ond construction, on the other hand, is (concretely) more efficient but it can
be proved (adaptively) secure only in the generic group model. In what follows
we will highlight some of the core ideas underlying both schemes. How these
ideas are implemented and developed in the two cases will be discussed when
introducing each specific scheme.

Let us recall that the functionality provided by our FE scheme is that one
encrypts pairs of vectors x,y, functions are matrices F, and decryption allows to
obtain x�Fy. The initial idea of the construction is to encrypt the two vectors
x ∈ Z

n and y ∈ Z
m in a sort of “matrix” ElGamal in the two groups G1 and

G2 respectively. Namely, we set

Ct(x,y) = {[ρAri + bxi]1}i=1,...,n, {[σBsj + ayj ]2}j=1,...,m

where: ρ, σ are randomly chosen, {Ari,Bsj}i,j are in the public key, and are
constructed from two random matrices A and B and a collection of random
vectors {ri, sj}i,j , and a, b are more carefully chosen vectors (see below) 3.
Towards finding a decryption method, we first observe that, given Ct(x,y) and a
function F, one can use the bilinear map to compute

U =[(ρσ)
∑

ij

fijr
�
i A�Bsj+ρ

∑

ij

fijr
�
i A�ayj+σ

∑

ij

fijs
�
j B�bxi+(b�a)·x�Fy]T .

Moreover, if we let [
∑

ij fijr
�
i A�Bsj ]1 be the secret key for function F and

include [ρσ]2 in the ciphertext, one can remove the first term in U .

3 Here we adopt the, by now standard, implicit representation [x]s = gx ∈ Gs. This
notion can be easily extended to vectors and matrices (see [18]).
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Our two schemes then extend this basic blueprint with additional (but dif-
ferent!) structure so as to enable the extraction from U of the value [x�Fy]T .
From this, in turn, the function’s result can be obtained via a brute force dis-
crete log computation4. At a very intuitive level (and deliberately ignoring many
important details) a key difference between the two schemes lies in the way A,
B, a and b are constructed.

In our first scheme, A and B are carefully sampled so that to be able to prove
(selective) security under standard intractability assumptions (e.g. Matrix Deci-
sional Diffie-Hellman). Moreover a and b are chosen such that A�a = B�b = 0
and b�a = 1. This ensures that the intermediate values ρ

∑
ij fijr

�
i A�ayj ,

σ
∑

ij fijs
�
j B�bxi cancel out at decryption time.

In our second scheme, on the other hand, the public key values Ari and Bsj

are simple scalars, and the “canceling” is performed via an appropriate choice
of vectors a, b and simple algebraic manipulations. This makes the resulting
construction (concretely) more efficient. At the same time, we lose the possibility
to rely on (general) matrix assumptions and we are able to prove (adaptive)
security in the generic group model. To this end, as a contribution that can
be of independent interest, we state and prove a master theorem that shows
hardness in the generic bilinear group model for a broad family of interactive
decisional problems (notably, a family that includes our FE scheme), extending
some of the tools and results of the generic group framework recently developed
by Barthe et al. [8].

Concurrent and Independent Work. In concurrent and independent work,
Lin [31], and Ananth and Sahai [7] present constructions of private-key func-
tional encryption schemes for degree-D polynomials based on D-linear maps.
As a special case for D = 2, these schemes support quadratic polynomials from
bilinear maps, as ours. Also, in terms of security, the construction of Lin is proven
selectively secure based on the SXDH assumption, while the scheme of Ananth
and Sahai is selectively secure based on ad-hoc assumptions that are justified in
the multilinear group model. In comparison to these works, our schemes have
the advantage of working in the (arguably more challenging) public key setting.

We provide a summary of the existing solutions for (efficient) functional
encryption for quadratic functions in Table 1.

2 Preliminaries

Notation. We denote with λ ∈ N a security parameter. A probabilistic polyno-
mial time (PPT) algorithm A is a randomized algorithm for which there exists a
polynomial p(·) such that for every input x the running time of A(x) is bounded
by p(|x|). We say that a function ε : N → R

+ is negligible if for every positive
polynomial p(λ) there exists λ0 ∈ N such that for all λ > λ0: ε(λ) < 1/p(λ). If
S is a set, x ←r S denotes the process of selecting x uniformly at random in S.

4 This means that in our scheme messages and functions coefficients are assumed to
be sufficiently small integers.
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Table 1. Comparison between different FE schemes for quadratic functions over vectors
of size n.

FE scheme Enc. model Security Assumption Ciph. size

Abdalla et al. [2] Public-key Selective DDH/DCR/LWE O(n2)

Agrawal et al. [6] Public-key Adaptive DDH/DCR/LWE O(n2)

Ananth-Sahai [7] Private-key Selective Ad-hoc (GGM) O(n)

Lin [31] Private-key Selective SXDH O(n)

Ours 1 Public-key Selective MDDH, 3-PDDH O(n)

Ours 2 Public-key Adaptive GGM O(n)

If A is a probabilistic algorithm, y ←r A(·) denotes the process of running A
on some appropriate input and assigning its output to y. For a positive integer
n, we denote by [n] the set {1, . . . , n}. We denote vectors x = (xi) and matrices
A = (ai,j) in bold. For a set S (resp. vector x) |S| (resp. |x|) denotes its car-
dinality (resp. number of entries). For any prime p and any matrix A ∈ Z

n×m
p

with n ≥ m, we denote by orth(A) := {a⊥ ∈ Z
n
p : A�a⊥ = 0}. For all square

matrices A ∈ Z
n×n
p , we denote by det(A) the determinant of A. For any n ∈ N

∗,
we denote by GLn the general linear group of degree n, that is, the set of all n×n
invertible matrices over Zp. By ≡, we denote the equality of statistical distribu-
tion, and for any ε > 0, we denote by ≈ε the ε-statistical of two distributions.

Bilinear Groups. Let G(1λ) be an algorithm (that we call a bilinear group
generator) which takes as input the security parameter and outputs the descrip-
tion of a bilinear group setting bgp = (p,G1,G2,GT , e, g1, g2), where G1, G2 and
GT are groups of the same prime order p > 2λ, g1 ∈ G1 and g2 ∈ G2 are two
generators, and e : G1 ×G2 → GT is an efficiently computable, non-degenerate,
bilinear map. We define gT = e(g1, g2) as the canonical generator of GT . In the
case G1 = G2, the groups are said symmetric, else they are said asymmetric. In
this paper we work with asymmetric bilinear groups in which there is no effi-
ciently computable isomorphisms between G1 and G2 (these are also known as
Type-III groups [19]).

We use implicit representation of group elements as introduced in [18]. For
s ∈ {1, 2, T} and x ∈ Zp, we let [x]s = gx

s ∈ Gs. This notation is extended to
matrices (and vectors) as follows. For any A = (ai,j) ∈ Z

m×n
p we define

[A]s =

⎛

⎝
g

a1,1
s . . . g

a1,n
s

g
am,1
s . . . g

am,n
s

⎞

⎠ ∈ G
m×n
s

Note that from an element [x]s ∈ Gs and a scalar a it is possible to efficiently
compute [ax] ∈ Gs. Also, given group elements [a]1 ∈ G1 and [b]2 ∈ G2, one can
efficiently compute [ab]T = e([a]1, [b]2). Furthermore, given a matrix of scalars
F = (fi,j) ∈ Z

n×n
p and two n-dimensional vectors of group elements [a]1, [b]2,

one can efficiently compute
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[a� F b]T =

⎡

⎣
∑

i,j∈[n]

fi,j · ai · bj

⎤

⎦

T

=
∑

i,j∈[n]

fi,j · e([ai]1, [bj ]2)

As above, for an easier and more compact presentation, in our work we slightly
abuse notation and treat all groups G1,G2,GT as additive groups.

2.1 Complexity Assumptions

We recall the definitions of the Matrix Decision Diffie-Hellman (mddh) Assump-
tion [18].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix dis-
tribution if it outputs in polynomial time matrices in Z

(k+1)×k
p of full rank k,

and satisfying the following property,

Property 1.

Pr[orth(A) ⊆ span(B)] =
1

Ω(p)
,

where A,B ←r Dk.

Without loss of generality, we assume the first k rows of A ←r Dk form an
invertible matrix. Note that the basis property is not explicit in [18], but, as noted
in [16, Lemma 1 (basis lemma)], all examples of matrix distribution presented
in [18, Sect. 3.4], namely Uk, Lk, SCk, Ck and ILk, satisfy this property.

The Dk-Matrix Diffie-Hellman problem in Gs for s ∈ {1, 2, T} is to dis-
tinguish the two distributions ([A]s, [Aw]s) and ([A]s, [u]s) where A ←r Dk,
w ←r Z

k
p and u ←r Z

k+1
p .

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-mddh). Let Dk

be a matrix distribution. The Dk-Matrix Diffie-Hellman (Dk-mddh) Assumption
holds relative to G in Gs, for s ∈ {1, 2, T}, if for all PPT adversaries A,

AdvDk-mddh
G,Gs,A (λ) := |Pr[A(bgp, [A]s, [Aw]s) = 1] − Pr[A(bgp, [A]s, [u]s) = 1]|

is negl(λ), where probabilities are over the choices of bgp ←r G(1λ), A ←r

Dk,w ←r Z
k
p,u ←r Z

k+1
p .

For each k ≥ 1, [18] specifies distributions (Uk, Lk, SCk, Ck and ILk)
over Z(k+1)×k

p such that the corresponding Dk-mddh assumptions are generically
secure in bilinear groups and form a hierarchy of increasingly weaker assump-
tions. Lk-mddh is the well known k-Linear Assumption k-Lin with 1-Lin = DDH.

Let Q ≥ 1. For W ←r Z
k×Q
q ,U ←r Z

(k+1)×Q
q , we consider the Q-fold Dk-

mddh Assumption which consists in distinguishing the distributions ([A], [AW])
from ([A], [U]). That is, a challenge for the Q-fold Dk-mddh Assumption consists
of Q independent challenges of the Dk-mddh Assumption (with the same A but
different randomness w). In [18] it is shown that the two problems are equivalent.
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Lemma 1 (Random self-reducibility of U�,k-mddh, [18]). Let k,Q ∈ N,
and s ∈ {1, 2, T}. For any PPT adversary A, there exists a PPT adversary B
such that

AdvQ-Dk-mddh
G,Gs,A (λ) ≤ AdvDk-mddh

G,Gs,B (λ) +
1

p − 1

where AdvQ-Dk-mddh
G,Gs,A (λ) := |Pr[B(bgp, [A]s, [AW]s) = 1] − Pr[B(bgp, [A]s,

[U]s) = 1]| and the probability is taken over bgp ←r G(1λ), A ←r Uk,W ←r

Z
k×Q
q ,U ←r Z

(k+1)×Q
q .

We also recall the definition of 3-party Decision Diffie-Hellman (3-pddh) Assump-
tion introduced in [12]. We give a variant in the asymmetric-pairing setting.

Definition 3 (3-party Decision Diffie-Hellman Assumption 3-pddh).
We say that the 3-party Decision Diffie-Hellman (3-pddh) Assumption holds

relative to G if for all PPT adversaries A,

Adv3−pddh
G,A (λ) := |Pr[A(bgp, [a]1, [b]2, [c]1, [c]2, [abc]1) = 1]

− Pr[A(bgp, [a]1, [b]2, [c]1, [c]2, [d]1) = 1]| = negl(λ)

where the probability is taken over bgp ←r G(1λ), a, b, c, d ←r Zp.

2.2 Functional Encryption

We recall the definitions of Functional Encryption as given by Boneh et al. [13].

Definition 4 (Functionality). A functionality F defined over (K,M) is a
function F : K × M → Y ∪ {⊥} where K is a key space, M is a message
space and Y is an output space which does not contain the special symbol ⊥.

Definition 5 (Functional Encryption). A functional encryption scheme FE
for a functionality F is defined by a tuple of algorithms FE = (Setup,KeyGen,
Encrypt,Decrypt) that work as follows.

Setup(1λ, F ) takes as input a security parameter 1λ, the functionality F : K ×
M → Y, and outputs a master secret key msk and a master public key mpk.

KeyGen(msk,K) takes as input the master secret key and a key K ∈ K of the
functionality (i.e., a function), and outputs a secret key skK .

Encrypt(mpk, msk ,M) takes as input the master public key mpk and a message
M ∈ M, and outputs a ciphertext Ct. It can take as an additional input the
master secret key, in which case, we talk about private-key functional encryp-
tion. By opposition, when msk is not an input of the encryption, algorithm,
we say that FE is public-key.

Decrypt(skK ,Ct) takes as input a secret key skK and a ciphertext Ct, and returns
an output Y ∈ Y ∪ {⊥}.

For correctness, it is required that for all (mpk,msk) ←r Setup(1λ), all keys
K ∈ K and all messages M ∈ M, if skK ←r KeyGen(msk,K) and Ct ←r

Encrypt(mpk, msk ,M), then it holds with overwhelming probability that Decrypt(
skK ,Ct) = F (K,M) whenever F (K,M) �= ⊥.
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Indistinguishability-Based Security. For a functional encryption scheme FE
for a functionality F over (K,M), security against chosen-plaintext attacks
(IND-FE-CPA, for short) is defined via the following experiment, denoted
Expind-fe-cpa-β

FE,A (λ), which is parametrized by an adversary A, a bit β ∈ {0, 1},
and a security parameter λ.

Setup: run (mpk,msk) ←r Setup(1λ) and give mpk to A.
Query: A adaptively makes secret key queries. At each query, A specifies a key

K and obtains skK ←r KeyGen(msk,K) from the challenger.
Challenge: A chooses a pair of messages M0,M1 ∈ M such that F (K,M0) =

F (K,M1) holds for all keys K queried in the previous phase. The challenger
computes Ct∗ ←r Encrypt(mpk,Mβ) and returns Ct∗ to A.

Query: A makes more secret key queries. At each query A can adaptively choose
a key K ∈ K, but under the requirement that F (K,M0) = F (K,M1).

Guess: A eventually outputs a bit β′ ∈ {0, 1}, and the experiment outputs the
same bit.

For any stateful adversary A, any functional encryption scheme FE for a
functionality F over (K,M), any bit β ∈ {0, 1}, and any security parameter λ,
we give a compact description of experiment Expind-pe-cpa-β

PE,A (λ), and its selective
version Expsel-ind-pe-cpa-β

PE,A (λ), in Fig. 1.

Fig. 1. Experiments Expind-fe-cpa-β
FE,A (λ) and Expsel-ind-fe-cpa-β

FE,A (λ) for b ∈ {0, 1}, used to
define adaptive, and selective security of FE, respectively. In each procedure, the com-
ponents inside a solid (dotted) frame are only present in the games marked by a solid

(dotted) frame, and the components inside a gray frame only appears for private-key

FE schemes. In both games, the oracle EncO(·, ·) is queries at most once (by A or
the game itself), on M0, M1, such that for all queries K to KeyGenO(·), we have:
F (K, M0) = F (K, M1). Note that in the case of private-key FE, this corresponds to
single-ciphertext security (which does not imply many-ciphertext security).

We define the advantage of A for adaptive security as:

Advind-fe-cpa
FE,A (λ) :=

∣
∣
∣Pr[Expind-fe-cpa-0

FE,A (λ) = 1] − Pr[Expind-fe-cpa-1
FE,A (λ) = 1]

∣
∣
∣

=
∣
∣
∣
∣1 − 2Pr

[

β′ = β :
β ←r {0, 1}
Expind-fe-cpa-β

FE,A (λ) = β′

]∣
∣
∣
∣
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We define the advantage Advsel-ind-fe-cpa
FE,A (λ) for selective security similarly,

with respect to experiments Expsel-ind-fe-cpa-β
FE,A (λ) for β ∈ {0, 1}.

Definition 6 (Indistinguishability-Based Security). A functional encryp-
tion scheme FE is adaptively secure (resp. selectively secure) against chosen-
plaintext attacks if for every PPT algorithm A, Advind-fe-cpa

FE,A (λ) (resp.
Advsel-ind-fe-cpa

FE,A (λ)) is negligible.

2.3 Bilinear Maps Functionality

In this work we consider functional encryption schemes for the following bilinear
map functionality. Let bgp = (p,G1,G2, g1, g2,GT , e) ←r G(1λ) be a bilinear
group setting, and let n,m ∈ N

+ be positive integers. We let the message space
M := Z

n
p × Z

m
p – every message M is a pair of vectors (x,y) – the key space

K := Z
n×m
p consists of matrices – every key K ∈ K is a matrix F = (fi,j) –

and the output space is Y := GT . The functionality F (K,M) is the one that
computes the value [x� Fy]T ∈ GT . As we discuss below, this functionality
allows for interesting applications.

Bilinear maps over the integers. We note that for appropriate choices of
M ⊂ Z

n
p ×Z

m
p and K ⊂ Z

n×m
p , the output space of F (K,M) can be made of size

polynomial in the security parameter. In this case, there exist efficient methods
to extract x� Fy ∈ Zp from [x� Fy]T ∈ GT .

For example, one can fix integers Bx, By, Bf ∈ N, and define M :=
{0, . . . , Bx}n × {0, . . . , By}m, K := {0, . . . , Bf}n×m. Then the quantity B =
mnBxByBf < p must be small enough to allow for efficient discrete logarithm
computation.

Multivariate quadratic polynomials. We also note that bilinear maps over
the integers capture an interesting class of quadratic functions, such multivariate
quadratic polynomials:

p(m) = p0 +
∑

i

pi · mi +
∑

i,j

pi,j · mi · mj .

This can be captured by setting x = y = (1,m) ∈ Z
n+1
p and by encoding

p’s coefficients in an upper triangular matrix F = (fi,j) ∈ Z
(n+1)×(n+1)
p where:

f1,1 = p0, f1,i = pi−1 for all i ∈ [2, n+1], fi,j = 0 for all i > j, and fi,j = pi−1,j−1

for all i ∈ [2, n + 1] and j ≥ i.

2.4 Predicate Encryption

We recall the definition of predicate encryption, as originally defined in [28,29].

Definition 7 (Predicate). A predicate P defined over (X ,Y) is a boolean func-
tion: P : X × Y → {0, 1}.
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Definition 8 (Predicate Encryption). A predicate encryption (PE) scheme
for a predicate P : X × Y → {0, 1} consists of four algorithms (Setup,Encrypt,
KeyGen,Decrypt):

Setup(1λ,P,M) → (mpk,msk). The setup algorithm gets as input the security
parameter λ, the predicate P : X × Y → {0, 1}, the message space M and
outputs the public parameter mpk, and the master key msk.

Encrypt(mpk, x,M) → Ctx. The encryption algorithm gets as input mpk, an
attribute x ∈ X and a message M ∈ M. It outputs a ciphertext Ctx.

KeyGen(mpk,msk, y) → sky. The key generation algorithm gets as input msk and
a value y ∈ Y, and outputs a secret key sky. Note that y is public in sky.

Decrypt(mpk, sky,Ctx) → M . The decryption algorithm gets as input sky and
Ctx such that P(x, y) = 1. It outputs a message M .

For correctness, it is requires that for all (x, y) ∈ X × Y such that P(x, y) = 1
and all M ∈ M, Pr[Decrypt(mpk, sky,Encrypt(mpk, x,M)) = M ] = 1, where the
probability is taken over (mpk,msk) ← Setup(1λ,X ,Y,M), sky ← KeyGen(mpk,
msk, y), and the coins of Encrypt.

Fully Attribute-Hiding Security. We recall the notion of fully attribute-
hiding security for predicate encryption as defined in [28]. The fully attribute
hiding property refers to the fact that an adversary cannot distinguish a cipher-
text for attribute x(0) from a ciphertext for x(1), as long as it only queries
keys sky where P(x(0), y) = P(x(1), y). This is stronger than the so-called weakly
attribute hiding property, which requires the adversary to only query keys sky

where P(x(0), y) = P(x(1), y) = 0.
Fully attribute hiding security is essentially the specialization of the indistin-

guishability based security notion for functional encryption, for the functionality
FP(y, (x,M)) that outputs M if P(x, y) = 1 and ⊥ otherwise.

For any stateful adversary A, any predicate encryption scheme PE, any
bit β ∈ {0, 1}, and any security parameter λ, we define experiments
Expind-pe-cpa-β

PE,A (λ) and Expsel-ind-pe-cpa-β
PE,A (λ) in Fig. 2. We define the advantage

of A for adaptive security as:

Advind-pe-cpa
PE,A (λ) :=

∣
∣
∣Pr[Expind-pe-cpa-0

PE,A (λ) = 1] − Pr[Expind-pe-cpa-1
PE,A (λ) = 1]

∣
∣
∣

=
∣
∣
∣
∣1 − 2Pr

[

β′ = β :
β ←r {0, 1}
Expind-pe-cpa-β

PE,A (λ) = β′

]∣
∣
∣
∣

We define the advantage Advsel-ind-pe-cpa
PE,A (λ) for selective security similarly,

with respect to experiments Expsel-ind-pe-cpa-β
PE,A (λ) for β ∈ {0, 1}.

Definition 9 (Fully Attribute-Hiding Security). A predicate encryption
scheme PE is fully attribute hiding, adaptively secure (resp. selectively secure)
against chosen-plaintext attacks if for every PPT algorithm A, Advind-pe-cpa

PE,A (λ)
(resp. Advsel-ind-pe-cpa

PE,A (λ)) is negligible.
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Fig. 2. Experiments Expind-pe-cpa-β
PE,A (λ) and Expsel-ind-pe-cpa-β

PE,A (λ) for b ∈ {0, 1}, used to
define adaptive, and selective security of PE, respectively. In each procedure, the com-
ponents inside a solid (dotted) frame are only present in the games marked by a solid
(dotted) frame. In both games, the oracle EncO(·, ·, ·, ·) is queried at most once (by A
or the game itself), on x(0), M0, x

(1), M1, such that for all queries y to KeyGenO(·),
we have: P(x(0), y) = P (x(1), y). Moreover, if P(x(0), y) = 1 for some query y to
KeyGenO(·), then M0 = M1.

3 Our Functional Encryption for Bilinear Maps
from MDDH

In this Section we present a functional encryption scheme that supports the
bilinear maps functionality described in Sect. 2.3, and is proven selectively secure
under standard assumptions.

To begin with, in Sect. 3.1 we describe a simple FE scheme that works in the
private-key setting, and is only single-ciphertext secure.

This private-key scheme is used as a building block in the security proof of
our main public-key FE scheme that we present in Sect. 3.2.

3.1 Private-Key, Single-Ciphertext Secure FE for Bilinear Maps

In this section, we present a family of private-key, single-ciphertext secure func-
tional encryption schemes for bilinear maps, parametrized by an integer k ≥ 1
and a matrix distribution Dk (see Definition 1). That is, for each k ∈ N, and each
matrix distribution Dk, the scheme FEone(k,Dk), presented in Fig. 3, is single-
ciphertext, selectively secure under the Dk-MDDH assumption, on asymmetric
pairings.

Technical overview. Before describing the scheme in full detail in Fig. 3, we
give an informal exposition of our techniques. The basic idea in our private-key,
single ciphertext secure FE is to create the ciphertext and the secret keys of the
form:

Ct(x,y) := {[Ari+b⊥xi]1}i∈[n], {[Bsj+a⊥yj ]2}j∈[m], skF := [
∑

i,j

fi,jr
�
i A

�Bsj ]T ,
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where A,B ←r Dk, and (A|b⊥), (B|a⊥) are bases of Z
k+1
p such that a⊥ ∈

orth(A) and b⊥ ∈ orth(B), à la [16]. The vectors [Ari]1 and [Bsj ]2 for
i ∈ [n], j ∈ [m], a⊥ and b⊥ are part of a master secret key, used to (deter-
ministically) generate Ctx,y and skF. Correctness follows from the orthogo-
nal property: decryption computes

∑
i,j fi,je([Ari + b⊥xi]�1, [Bsj + a⊥yj ]2) =

skF + (a⊥)�b⊥ · [F (F, (x,y))]T , from which one can extract F (F, (x,y)) = 0
since [(a⊥)�b⊥]T is public. Security relies on the Dk-MDDH Assumption [18],
which stipulates that given [A]1, [B]2 drawn from a matrix distribution Dk over
Z
(k+1)×k
p ,

[Ar]1 ≈c [u]1 ≈c [Ar + b⊥]1 and [Bs]2 ≈c [v]2 ≈c [Bs + a⊥]2,

where r, s ←r Z
k
p, and u,v ←r Z

k+1
p . This allows to change Ct(x(0),y(0)) into

Ct(x(1),y(1)), but creates an extra term
[
x(1)�Fy(1) − x(0)�Fy(0)

]
T

in the secret
keys skF. We conclude the proof using the fact that for all F queried to KeyGen,
F (F, (x(0),y(0))) = F (F, (x(1),y(1))), as required by the security definition for
FE (see Sect. 2.2 for the definition of FE), which cancels out the extra term in
all secret keys.

Fig. 3. FEone(k, Dk), a family of private-key, functional encryption schemes parame-
trized by k ∈ N

∗ and a matrix distribution Dk, single-ciphertext, selectively secure
under the Dk-MDDH assumption on asymmetric pairings.

In the following theorem we prove the correctness of the scheme FEone.

Theorem 1 (Correctness). For any k ∈ N
∗ and any matrix distribution Dk,

the functional encryption scheme FEone(k,Dk) defined in Fig. 3 has perfect cor-
rectness.

Proof of Theorem 1. Correctness follows from the fact that for all i ∈ [n], j ∈ [m],

e([ci]1, [ĉj ]2) = [r�
i A

�Bsj + (b⊥)�a⊥xiyj ]T ,
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since A�a⊥ = B�b⊥ = 0. Therefore, the decryption computes

D := [
∑

i,j

fi,jr
�
i A

�Bsj + x�Fy · (b⊥)�a⊥]T − e(K, [1]2) − e([1]1, K̂)

= x�Fy · [(b⊥)�a⊥]T .

Property 1 in Definition 1 implies that (b⊥)�a⊥ �= 0 with probability 1 − 1
Ω(p)

over the choices of A,B ←r Dk, a⊥ ←r orth(A), and b⊥ ←r orth(B). Therefore,
one can enumerate all possible v ∈ Y and check if v · [(b⊥)�a⊥]T = D. This can
be done in time |Y|, thus, we need to set Y to be of size poly(λ). ��

Next, we show that FEone is selective-secure, for adversaries that make a
single challenge encryption query, under the MDDH assumption.

Theorem 2 (Security). For any k ∈ N
∗ and any matrix distribution Dk, if

the Dk-MDDH assumptions hold in G1 and G2, then the functional encryption
scheme FEone(k,Dk) defined in Fig. 3 is selectively secure, in a single-ciphertext
setting (see Definition 6). Namely, for any PPT adversary A, there exist PPT
adversaries B1 and B2 such that:

Advsel-ind-fe-cpa
FEone,A (λ) ≤ 2 · AdvDk-mddh

G,G1,B1
(λ) + 2 · AdvDk-mddh

G,G2,B2
(λ) + 2−Ω(λ).

Fig. 4. Games G0, G1, G2, for the proof of selective security of FEone(k, Dk) in Fig. 3.
In each procedure, the components inside a solid (dotted) frame are only present in
the games marked by a solid (dotted) frame.

Proof of Theorem 2. We prove the security of FEone(k,Dk) via a series of games
that is compactly presented in Fig. 4. Before going to the details of the proof
and proving the indistinguishability of each consecutive pair of games, we provide
below a high level view of the game transitions:
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Game G0 is the selective security experiment for scheme FEone with only some
syntactic changes. This is shown in Lemma 2.

Game G1 is the same as game G0 except that the ci ciphertext components are
uniformly random over Gk+1

1 . In Lemma 3 we show that G0 is computationally
indistinguishable from G1 under the MDDH assumption.

Game G2 is the same as game G1 except that the ĉj ciphertext components are
uniformly random over Gk+1

2 . In Lemma 4 we show that G1 is computationally
indistinguishable from G2 under the MDDH assumption. Finally, we show in
in Lemma 5 that the adversary’s view in this game is independent of the bit
β, and thus the adversary’s advantage in this game is zero.

More formally, in what follows, we use Advi to denote the advantage of A in
game Gi, that is Advi := |1 − 2Pr[Gi returns 1]|.

Lemma 2 (G0). Adv0 = Advind-fe-cpa
FEone,A (λ).

Proof of Lemma 2. We show that G0 corresponds to the game for selective secu-
rity of the functional encryption scheme, in the private-key, single-ciphertext
setting, as defined in Definition 6. It is clear that the output of the Setup algo-
rithm is identically distributed in both of these games. We show that this is also
the case for the outputs of the KeyGenO oracle. Indeed, for all i ∈ [n], j ∈ [m],
we have:

c�
i ĉj = r�

i A
�Bsj + x

(β)
i y

(β)
j (b⊥)�a⊥.

Thus, in game G0, for all F ∈ Z
n×m
p , KeyGenO(F) computes:

K :=
∑

i,j

fi,j [c�
i ĉj ]1 − [x(β)�Fy(β)(b⊥)�a⊥]1 − [u]1

=
∑

i,j

fi,j [r�
i A

�Bsj ]1 + [x(β)�Fy(β)(b⊥)�a⊥]1 − [x(β)�Fy(β)(b⊥)�a⊥]1 − [u]1

=
∑

i,j

fi,j [r�
i A

�Bsj ]1 − [u]1

which is exactly as in the security game for selective security. ��
Lemma 3 (G0 to G1). There exists a PPT adversary B0 such that

|Adv0 − Adv1| ≤ 2 · AdvDk-mddh
G,G1,B0

(λ) + 2−Ω(λ).

Proof of Lemma 3. Here, we use the MDDH assumption on [A]1 to change the
distribution of the challenge ciphertext, after arguing that one can simulate the
game without knowing a⊥ or [A]2.

Namely, we build a PPT adversary B′
0 against the n-fold Dk-MDDH assump-

tion in G1 such that |Adv0 − Adv1| ≤ 2 · Advn-Dk-mddh
G,G1,B′

0
(λ) + 2−Ω(λ). Then,

by Lemma 1, this implies the existence of a PPT adversary B0 such that
|Adv0 − Adv1| ≤ 2 · AdvDk-mddh

G,G1,B0
(λ) + 2−Ω(λ).
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Adversary B′
0 simulates the game to A as described in Fig. 5. Finally, it

outputs 1 if the bit β′ output by the adversary A is equal to β, 0 otherwise. We
show that when B′

0 is given a real MDDH challenge, that is, [h1| · · · |hn]1 := AR
for R ←r Z

k×n
p , then it simulates the game G0, whereas it simulates the game

G1 when given a fully random challenge, i.e. when [h1| · · · |hn]1 ←r G
(k+1)×n
1 ,

which implies the lemma.

Fig. 5. Adversary B′
0 against the n-fold Dk-mddh assumption, for the proof of Lemma 3.

We use the following facts.

1. For all s ∈ Z
k
p, B ∈ Z

(k+1)×k
p , b⊥ ∈ orth(B), and a⊥ ∈ Z

k+1
p , we have:

(b⊥)�a⊥ = (b⊥)�(Bs + a⊥).

2. For all y
(β)
j ∈ Zp, s ∈ Z

k
p:

({sj}j∈[m]

)
sj←rZ

k
p

≡
(
{sj + y

(β)
j s}j∈[m]

)

sj←rZ
k
p

.

3. (
Bs + a⊥)

A,B←rDk,a⊥←rorth(A),s←rZ
k
p

≈ 1
Ω(p)

(z)z←rZ
k+1
p

,

since (B|a⊥) is a basis of Zk+1
p , with probability 1 − 1

Ω(p) over the choices of
A,B, and a⊥ (this is implied by Property 1).

Therefore, we have for all y(β) ∈ Z
m
p :

(
A, b⊥, {Bsj + y

(β)
j a⊥}j∈[m], (b

⊥)�a⊥)

where A,B ←r Dk,a⊥ ←r orth(A), b⊥ ←r orth(B), sj ←r Z
k
p

≡
(
A, b⊥, {Bsj + y

(β)
j a⊥}j∈[m], (b

⊥)�( Bs + a⊥ )

)
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where A,B ←r Dk,a⊥ ←r orth(A), b⊥ ←r orth(B), s ←r Z
k
p , sj ←r Z

k
p (by 1.)

≡
(
A, b⊥, {Bsj + y

(β)
j ( Bs + a⊥ )}j∈[m], (b

⊥)�(Bs + a⊥)

)

where A,B ←r Dk,a⊥ ←r orth(A), b⊥ ←r orth(B), s, sj ←r Z
k
p (by 2.)

≈ 1
Ω(p)

(
A, b⊥, {Bsj + y

(β)
j z }j∈[m], (b

⊥)� z
)

where A,B ←r Dk,a⊥ ←r orth(A), b⊥ ←r orth(B), z ←r Z
k+1
p , sj ←r Z

k
p (by 3.)

When B′
0 is given a real MDDH challenge, i.e., when for all i ∈ [n], hi := Ari,

for ri ←r Z
k
p, we have ci := Ari + x

(β)
i b⊥, exactly as in game G0, whereas ci

is uniformly random over Z
k+1
p when B′

0 is given a random challenge, i.e., when
for all i ∈ [n], hi ←r Z

k+1
p , as in game G1. As shown in the equation above, the

rest of A’s view, namely, mpk, {ĉj}j∈[m] computed by B′
0, and its simulation of

KeyGenO, are statistically close to those of G0 (resp. G1) when B′
0 is given a real

MDDH challenge (resp. a uniformly random challenge). ��
Lemma 4 (G1 to G2). There exists a PPT adversary B1 such that

|Adv1 − Adv2| ≤ 2 · AdvDk-mddh
G,G2,B1

(λ) +
2

p − 1
.

Proof of Lemma 4. Here, we use the MDDH assumption on [B]2 to change the
distribution of the challenge ciphertext, after arguing that one can simulate the
game without knowing b⊥ or [B]1.

Namely, we build a PPT adversary B′
1 against the m-fold Dk-MDDH assump-

tion in G2 such that |Adv1 − Adv2| ≤ 2 · Advm-Dk-mddh
G,G2,B′

1
(λ). Then, by Lemma 1,

this implies the existence of a PPT adversary B1 such that |Adv1 − Adv2| ≤
2 · AdvDk-mddh

G,G2,B1
(λ) + 2

p−1 .

Adversary B′
1 simulates the game to A as described in Fig. 6. Finally, it

outputs 1 if the bit β′ output by the adversary A is equal to β, 0 otherwise. We
show that when B′

1 is given a real MDDH challenge, that is, [h1| · · · |hm]2 :=
[BS]2 for S ←r Z

k×m
p , then it simulates the game G1, whereas it simulates the

game G2 when given a uniformly random challenge, i.e. when [h1| · · · |hm]2 ←r

G
(k+1)×m
2 , which implies the lemma.

We use the fact that for all A,B ∈ Z
(k+1)×k
p ,

(B,a⊥, (b⊥)�a⊥)a⊥←rorth(A),b⊥←rorth(B) ≡ (B,a⊥, v)v←rZp).

Note that the leftmost distribution corresponds to mpk, {ci}i∈[n], and KeyGenO
distributed as in games G1 or G2 (these are identically distributed in these two
games), while the last distribution corresponds to mpk, {ci}i∈[n], and KeyGenO
simulated by B′

1.
Finally, when B′

1 is given a real MDDH challenge, i.e., when for all j ∈ [m],
hj := Bsj , for sj ←r Z

k
p, we have ĉj := Bsj + y

(β)
j a⊥, exactly as in game G1,
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Fig. 6. Adversary B1 against the Dk-MDDH assumption, for the proof of Lemma 4.

whereas ĉj is uniformly random over Zk+1
p when B′

1 is given a random challenge,
i.e., when for all j ∈ [m], hj ←r Z

k+1
p , as in game G2. ��

Lemma 5 (G2). Adv2 = 0.

Proof of Lemma 5. By definition of the security game, for all F queried to
KeyGenO, we have: x(β)�Fy(β) = x(0)�Fy(0). Therefore, the view of the adver-
sary in G2 is completely independent from the random bit β ←r {0, 1}. ��

Combining Lemmas 3, 4, and 5 gives Theorem 2. ��

3.2 Public-Key FE for Bilinear Maps

In this section, we propose a family of public-key functional encryption schemes
for the bilinear map functionality, that is F : K × M → Y, where K := Z

n×m
p ,

M := Z
n
p × Z

m
p , and Y := GT . The family of schemes is parametrized by an

integer k ≥ 1 and a matrix distribution Dk (see Definition 1) so that, for each
k ∈ N, and each matrix distribution Dk, the scheme FE(k,Dk), presented in
Fig. 7, is selectively secure under the Dk-MDDH and the 3-pddh assumptions,
on asymmetric pairings.

Technical overview. We first give a high level view of our techniques. Our
public-key FE builds on the private-key, single ciphertext secure FE presented
in Sect. 3.1, but differs from it in the following essential way.

– In the public-key setting, for the encryption to compute [Ari + b⊥xi] and
[Bsj + a⊥yj ] for i ∈ [n], j ∈ [m] and any x ∈ Z

n
p ,y ∈ Z

m
p , the vectors [a⊥]2

and [b⊥]1 would need to be part of the public key, which is incompatible with
the MDDH assumption on [A]1 or [B]2. To solve this problem, we add an

extra dimension, namely, we use bases
(

A|b⊥ 0
0 1

)

and
(

B|a⊥ 0
0 1

)

where the

extra dimension will be used for correctness, while (A|b⊥) and (B|a⊥) will
be used for security (using the MDDH assumption, since a⊥ and b⊥ are not
part of the public key anymore).
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– To avoid mix and match attacks, the encryption randomizes the bases
(

A|b⊥ 0
0 1

)

and
(

B|a⊥ 0
0 1

)

into

W−1

(
A|b⊥ 0

0 1

)

and W�
(

B|a⊥ 0
0 1

)

for W ←r GLk+2 a random invertible matrix. This “glues” the components
of a ciphertext that are in G1 to those that are in G2.

– We randomize the ciphertexts so as to contain [Ari ·γ]1 and [Bsj ·σ]2, where
γ, σ ←r Zp are the same for all i ∈ [n], and j ∈ [m], but fresh for each
ciphertext. The ciphertexts also contain [γ · σ]1, for correctness.

Fig. 7. FE(k, Dk), a family of functional encryption schemes parametrized by k ∈
N

∗ and a matrix distribution Dk, selectively secure under the Dk-mddh and 3-pddh
assumptions.

Discussion on the Techniques. We note that the techniques used here share
some similarities with Dual Pairing Vector Space constructions (e.g., [17,30,32,
33]). In particular, our produced ciphertexts and private keys are distributed
as in their corresponding counterparts in [32]. The similarities end here though.
These previous constructions all rely on the Dual System Encryption paradigm
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[39], where the security proof uses a hybrid argument over all secret keys, leaving
the distribution of the public key untouched. Our approach, on the other hand,
manages to avoid this inherent security loss by changing the distributions of
both the secret and public keys. Our approach also differs from [12] and follow-
up works [14,21] in that they focus on the comparison predicate (see Sect. 5),
a function that can be expressed via a quadratic function that is significantly
simpler than those considered here. Indeed, for the case of comparisons predicates
it is enough to consider vectors of the form: [Ari +xib

⊥]1, [Bsj + yja
⊥]2, where

xi and yj are either 0, or some random value (fixed at setup time, and identical
for all ciphertexts and secret keys), or are just random garbage.

In the following theorem we show that the scheme satisfies correctness.

Theorem 3 (Correctness). For any k ∈ N
∗ and any matrix distribution Dk,

the functional encryption scheme FE(k,Dk) defined in Fig. 7 has perfect correct-
ness.

Proof of Theorem 3. Correctness follows from the facts that for all i ∈ [n], j ∈
[m]:

e([ci]1, [ĉj ]2)=[γr�
i A

�Bsj+xiyj ]T and e([cn+i]1, [ĉm+j ]2)=[γr�
n+iA

�Bsm+j ]T .

Therefore, the decryption gets

[
∑

i∈[n],j∈[m]

fi,jγ
(
r�

i A
�Bsj + r�

n+iA
�Bsm+j

)
]T

+ [
∑

i∈[n],j∈[m]

fi,jxiyj ]T − e([c0]1, K̂) − e(K, [ĉ0]2)

= [
∑

i∈[n],j∈[m]

fi,jxiyj ]T .

��
Next, in the following theorem we prove that the scheme satisfies indistin-

guishability based security in a selective sense.

Theorem 4 (Security). For any k ∈ N
∗ and any matrix distribution Dk, if

the Dk-MDDH and the 3-pddh assumptions hold relative to G, then the functional
encryption scheme FE(k,Dk) defined in Fig. 7 is selectively secure. Precisely, for
any PPT adversary A, there exists PPT adversaries B and B′ such that:

Advsel-ind-fe-cpa
FE,A (λ) ≤ 16 · AdvDk-mddh

G,B (λ) + 4 · Adv3−pddh
G,B′ (λ) + 2−Ω(λ).

We prove the security of FE(k,Dk) via a series of games that are compactly
presented in Fig. 8. The complete details of the proof are given in the full version;
here we give an intuitive description of each game transition:

Game G0 is the selective security experiment for scheme FE. For the sake of
the proof, we look at the public key elements {[Ari]1, [Bsj ]2}i∈[2n],j∈[2m] as
a ciphertext of the FEone scheme encrypting vectors (0,0) ∈ Z

2n
p × Z

2m
p .
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Fig. 8. Games Gi, i = 0, . . . , 5 for the proof of selective security of FE(k, Dk) in Fig. 7.
In each procedure, the components inside a solid (dotted, gray) frame are only present
in the games marked by a solid (dotted, gray) frame.

Game G1: with the above observation in mind, in this game we change the
distribution of the public key elements so as to be interpreted as an FEone

ciphertext encrypting the vectors

(x̃, ỹ) =
((

x(β)

−x(0)

)

,

(
y(β)

y(0)

))

∈ Z
2n
p × Z

2m
p

In the full version we show how to argue the indistinguishability of G1 from
G0 based on the selective, single-ciphertext security of FEone (that in turn
reduces to Dk-MDDH).

Game G2: in this game we change the distribution of the ci components of
the challenge ciphertext. We switch from using {γAri + x̃i · γb⊥}i∈[2n] to
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{γAri + x̃i · (γ + v)b⊥}i∈[2n], for a random v ←r Zp. In the full version we
argue the indistinguishability of this change under the 3-pddh assumption.

Game G3: by using a statistical argument we show that in this game the chal-
lenge ciphertexts can be rewritten as

ci :=
(

γAri + (γ + v)x(β)
i b⊥

0

)�

W−1;

cn+i :=

(
γArn+i − (γ + v)x(0)

i b⊥

x
(0)
i

)�

V−1;

ĉj := W
(
Bsj + y

(β)
j a⊥

0

)

; ĉm+j := V

(
Bsm+j + y

(0)
j a⊥

y
(0)
j

)

.

This step essentially shows that the change in game G2 made the ciphertexts
less dependent on the bit β.

Game G4: in this game we change again the distribution of the challenge cipher-
text components ci switching from using {γAri + x̃i · (γ + v)b⊥}i∈[2n] to
{γAri + x̃i · γb⊥}i∈[2n]. This change is analogous to that introduced in game
G2, and its indistinguishability follows from the 3-pddh assumption.

The crucial observation is that the public key in this game can be seen as
an FEone ciphertext encrypting vector (x̃, ỹ), while the challenge ciphertext
of game G4 can be seen as an encryption of vectors

((
0

x(0)

)

,

(
0

y(0)

))

∈ Z
2n
p × Z

2m
p

using such public key. At a high level, the idea is that we moved to a game
in which the dependence on the challenge messages (x(β),y(β)) is only in the
public key.

Game G5: in this game we change back the distribution of the public key ele-
ments so as to be interpreted as an FEone ciphertext encrypting vectors (0,0).
The indistinguishability of this game from game G4 can be argued based on
the selective, single-ciphertext security of the FEone scheme.

The proof is concluded by arguing that in this game the view of the adver-
sary is independent of the bit β.

4 Our Efficient Functional Encryption for Bilinear Maps
in the GGM

In this section, we present a functional encryption scheme, FEGGM, that supports
the bilinear map functionality, and is proven secure against adaptive adversaries
in the generic group model. In addition to be proven adaptive secure, this scheme
enjoys a simpler structure, and is more efficient, as it admits shorter ciphertexts
that comprise 2(n + m + 1) group elements (as opposed to 6n + 6m + 2 in
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the SXDH instantiation of the scheme of Sect. 3.2). For ease of exposition, the
scheme is presented for the case in which the functions act over vectors of the
same dimension n. It is easy to see that the case in which (x,y) ∈ Z

n
p ×Z

m
p with

n > m can be captured by padding y with zero entries.5

Technical Overview. We first provide a high-level view of the techniques
used in this construction. The initial idea of the construction is to encrypt the
two vectors x and y à la ElGamal in the two groups G1 and G2 respectively,
i.e., the ciphertext includes c = [r · a + x]1 and d = [s · b + y]2 where r, s are
randomly chosen and the vectors ([a]1, [b]2) are in the public key. At this point,
we observe that, given c,d and a function F, one can use the bilinear map to
compute U = [(r · a + x)�F(s · b + y)]T . This basic idea is similar to that of
the scheme of Sect. 3.2. However, here we develop a different technique to enable
decryption.

The basic scheme presented above is extended as follows. First, we let the
secret key for function F be the element [a�Fb]1. Now, if in the ciphertext we
include the element [rs]2, one can extract

[sx�Fb + ra�Fy + x�Fy]T = U · e([a�Fb]1, [rs]2)−1.

Above the function’s result is still “blinded” by cross terms s(x�Fb)+r(a�Fy).
Our second idea, to solve this issue and enable full decryption, is to add to the
ciphertext the ElGamal encryptions of the vectors s · x and r · y. Namely, we
add to the ciphertext the elements ĉ = [t · a + s · x]1 and d̂ = [z · b + r · y]2
for random t, z, and the element [rs − t − z]2 (instead of [rs]2). With all this
information, one can compute the value U in the same way as above, and then
use the public key ([a]1, [b]2) and the ciphertext components ĉ, d̂ to compute

U ′ = [(t · a + s · x)�Fb + a�F(z · b + r · y)]T .

By a simple calculation, the function’s result can be finally computed as

[x�Fy]T = U · U ′−1 · e([a�Fb]1, [rs − z − t]2)−1.

As a final note, in the full scheme secret keys are slightly different, we randomize
them in order to achieve collusion resistance.

Below we present our second FE scheme in detail.

Setup(1λ, n) runs the bilinear group generator bgp ←r G(1λ) to obtain para-
meters bgp = (p,G1,G2,GT , g1, g2, e). Next, the algorithm samples a scalar
w ←r Zp and two vectors a, b ←r Z

n
p uniformly at random. The message

space is M ⊆ Z
n
p × Z

n
p and the key space is the set of matrices K ⊆ Z

n×n
p .

It returns the master secret key msk := (w,a, b), and the master public key
mpk := (bgp, [a]1, [b]2, [w]2).

5 Furthermore, with a close look one can see that the last n − m components of the
vectors [b]2, d and d̂ would become useless and thus can be discarded.
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KeyGen(msk,F) takes as input the master secret key msk and a matrix F ∈ K
and it returns a secret key skF := (S1, S2,F) ∈ G

2
1 × K where S1, S2 are

computed as follows. It samples a random γ ←r Zp and computes

(S1, S2) := ([a�F b + γ · w]1, [γ]1).

Encrypt(mpk, (x,y)) takes as input the master public key and a message consist-
ing of two vectors x,y ∈ M, and returns a ciphertext Ct := (c, ĉ,d, d̂, E, Ê)
computed as follows.

Choose r, s, t, z ∈ Zp uniformly at random and compute

c := [r · a + x]1, ĉ := [t · a + s · x]1
d := [s · b + y]2, d̂ := [z · b + r · y]2

E := [rs − z − t]2 Ê := [w(rs − z − t)]2

Decrypt(skF,Ct) parsing skF := (S1, S2,F) and Ct := (c, ĉ,d, d̂, E, Ê), it com-
putes and outputs

V := c� Fd − [a]1
� F d̂ − ĉ� F [b]2 − e(S1, E) + e(S2, Ê) ∈ GT .

Correctness. To see the correctness of our scheme, let

A = c� Fd = [r · a + x]�1 F [s · b + y]2
= [(rs) · a� F b + r · a� Fy + s · x� F b + x� Fy]T

B = [a]1
� F d̂ + ĉ� F [b]2 = [a]�1 F [z · b + r · y]2 + [t · a + s · x]�1 F [b]2

= [z · a� F b + r · a� Fy + t · a� F b + s · x� F b]T

and note that

A − B = [(rs − t − z) · a� F b + x� Fy]T = e(S1 − [w · γ]1, E) + [x� Fy]T
= e(S1, E) − e(S2, Ê) + [x� Fy]T

Since V = A − B − e(S1, E) + e(S2, Ê) it is easy to see that V = [x� Fy]T .

Security of FEGGM. In this section we state the security of the functional encryp-
tion scheme FEGGM of Sect. 4 in the generic group model.

Theorem 5. The functional encryption scheme FEGGM described in Sect. 4 sat-
isfies security against chosen-plaintext attacks (i.e., indistinguishability-based
security) in the generic bilinear group model. Precisely, for every adversary A
which makes at most Q key derivation oracle queries and Q̃ generic group oracle
queries its advantage is

Advind-fe-cpa
FEGGM,A (λ) ≤ 5(6n + 6 + Q̃ + 2Q)2

p
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The full proof of security is deferred to the full version. Here we only provide
an overview of the strategy.

At an intuitive level, the proof consists of two main steps. We first state and
prove a master theorem that shows hardness in the generic bilinear group model
for a broad family of interactive decisional problems, notably a family which
includes the indistinguishability-based experiment for our functional encryption
scheme. Slightly more in detail, our master theorem states that these problems
are generically hard under a certain algebraic side condition on the distribution
of the elements received by the adversary. These results and techniques are rather
general and can be of independent interest.

Second, following the guidelines of our master theorem, the second step of the
proof consists in showing that the scheme FEGGM meets the algebraic side condi-
tion of our master theorem. This is the core part of the proof. Very intuitively,
we look at the structure of the scheme’s group elements seen by the adversary –
public key, ciphertext, secret keys for a bunch of functions – for which the match-
ing of the side condition means that the only information extractable from them
is the functions’ outputs. So, if the adversary issues only “legitimate” queries
(i.e., queries for functions that produce the same results on the two challenge
messages), it will not be able to understand which pair of vectors was encrypted.

5 Predicate Encryption for Bilinear Maps Evaluation

Here we show how to use our functional encryption schemes to build a Predicate
Encryption (PE) scheme for the evaluation of bilinear maps over attributes (for
lack of space, the definition of PE is recalled in Sect. 2.4). Specifically, we give a
scheme for the predicate P : X × Y → {0, 1} where X ⊂ Z

n
p × Z

m
p , Y ⊂ Z

n×m
p ,

and for all (x,y) ∈ X and F ∈ Y:

x�Fy ∈ {0, 1} and P((x,y),F) = 1 iff x�Fy = 1.

In Fig. 9, we present a generic construction of PE for P from any functional
encryption scheme FE for the bilinear maps functionality F : K × M′ → Y ′,
where M′ := Z

n
p × Z

m
p , K := Z

n×m
p , Y ′ := GT and for all (x,y) ∈ M′, F ∈ K

F (F, (x,y)) = [x�Fy]T .

The PE scheme can be instantiated by using one of our FE constructions pre-
sented in Sects. 3 and 4. We compare our constructions with previous PE that
support the evaluation of bilinear maps in Fig. 2.

Theorem 6 (Correctness). If FE := (SetupFE,KeyGenFE,EncryptFE,DecryptFE)
is a perfectly correct functional encryption scheme for functionality F , then so is the
predicate encryption scheme PE defined in Fig. 9.

Proof of Theorem 6. By correctness of FE, we have for all (x,y) ∈ X , w ∈ Zp,
F ∈ Y:

F (F, (w · x,y)) = [w · x�Fy]T = [w · P((x,y),F)]T .

Thus, when P((x,y),F) = 1, decryption recovers the encapsulation key [w]T .
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Table 2. Comparison between different PE for bilinear maps evaluation.

PE scheme Security Assumption Ciph. size

KSW08 [28] Selective Composite O(n2)

OT09 [33] Selective RDSP,IDSP O(n2)

AFV11 [5] Selective LWE O(n2)

OT11 [34] Adaptive DLIN O(n2)

Ours 1 Selective MDDH, 3-PDDH O(n)

Ours 2 Adaptive GGM O(n)

Fig. 9. PE, a predicate encryption scheme, selectively (resp. adaptively) secure if
the underlying FE scheme (SetupFE,KeyGenFE,EncryptFE,DecryptFE) is selectively (resp.
adaptively) secure.

Theorem 7 (Security). If FE := (SetupFE,KeyGenFE,EncryptFE,DecryptFE) is
an adaptively (resp. selectively) secure encryption scheme for F , then so is the
predicate encryption scheme PE defined in Fig. 9. Namely, for any PPT adver-
sary A, there exists a PPT adversary B such that:

Advind-pe-cpa
PE,A (λ) ≤ 4 · Advind-fe-cpa

FE,B (λ).

Similarly, in the selective case, for any PPT adversary A, there exists a PPT
adversary B such that:

Advsel-ind-pe-cpa
PE,A (λ) ≤ 4 · Advsel-ind-fe-cpa

FE,B (λ).

Proof of Theorem 7, Adaptive Security. We prove the adaptive security of PE via
a series of games described in Fig. 10 and we use Advi to denote the advantage
of A in game Gi, that is Advi := |1 − 2Pr[Gi returns 1]|. G0 is defined as:

G0 :
β ←r {0, 1}
β′ ← Expind-pe-cpa-β

PE,A (λ)
Return 1 if β′ = β, 0 otherwise.

Where Expind-pe-cpa-β
PE,A (λ) is the experiment used in Definition 9 of fully

attribute-hiding security for predicate encryption. In particular, we have that
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Fig. 10. Games Gi, for i = 0, 1, 2 for the proof of adaptive security of PE in Fig. 9. In
each procedure, the components inside a solid (dotted) frame are only present in the
games marked by a solid (dotted) frame.

Adv0 = Advind-pe-cpa
PE,A (λ). We explain in Remark 1 how to obtain the same results

for selective security.

Lemma 6 (G0 to G1). There exists a PPT adversary B0:

|Adv0 − Adv1| ≤ 2 · Advind-fe-cpa
FE,B0

(λ).

Proof of Lemma 6. By definition of the security game, we know that if M0 �= M1,
then it must be that for all queries F to KeyGenO(·), x(β)�Fy(β) = 0 (i.e.,
the predicate over the challenge attributes is false). Therefore, using the adap-
tive security of the underlying FE scheme, we can switch: Encrypt(mpk, (w ·
x(β),y(β))), computed by EncO when M0 �= M1, to Encrypt(mpk, (0,0)). ��
Lemma 7 (G1 to G2). There exists a PPT adversary B1:

|Adv1 − Adv2| ≤ 2 · Advind-fe-cpa
FE,B1

(λ).

Proof of Lemma 7. By definition of the security game, we know that for all
queries F to KeyGenO(·), P(

(x(0),y(0)),F
)

= P
(
(x(1),y(1)),F

)
. Together with

the fact that for all (x,y) ∈ X and F ∈ Y: x�Fy ∈ {0, 1}, we obtain that:
x(0)�Fy(0) = x(1)�Fy(1). Therefore, using the adaptive security of the underlying
FE scheme, we can switch: Encrypt(mpk, (w·x(β),y(β))), computed by EncO when
M0 = M1, to Encrypt(mpk, (w · x(0),y(0))). ��
Lemma 8 (G2). Adv2 = 0.
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Proof of Lemma 8. We show that the A’s view is independent of β ←r {0, 1} in
this game. If M0 �= M1, the challenge ciphertext is of the form (C0, C1) where
C0 := [w]T + Mβ for w ←r Zp, and C1 is independent of w and β. Thus, the
message Mβ is completely hidden by the one-time pad [w]T , and the ciphertext
is independent of β.

If M0 = M1, the challenge ciphertext is of the form (C0, C1) where C0 :=
[w]T + Mβ for w ←r Zp, which is independent of β since M0 = M1; and C1 :=
Encrypt(mpk, (w · x(0),y(0))), which is also independent of β. ��

Theorem 7 follows readily from Lemmas 6, 7, and 8. ��
Remark 1 (Selective FE ⇒ selective PE). We can adapt straightforwardly
the proof of Theorem7, to the selective setting, simply by constructing PPT
adversaries B0 and B1 against the selective security of the underlying FE,
exactly as those in Lemmas 6 and 7, except that those adversaries first receive
a challenge (x(0),y(0)), (x(1),y(1)) from the adversary A, playing against the
selective security of the PE, upon which they sample w ←r Zp, and send
(w · x(0),y(0)), (w · x(1),y(1)) as their selective challenge. Finally, we use the
statistical argument from Lemma 8, which works exactly in the same way for
the selective setting.

5.1 Applications of PE for Bilinear Maps Evaluation

In this section, we discuss two applications of our fully attribute-hiding PE
scheme supporting bilinear maps evaluation.

PE for Constant Depth Boolean Formulas. As a first application, we can
use the PE scheme in Fig. 9 to handle boolean functions of constant degree d
in n variables. This yields a solution where ciphertexts comprise O(nd/2) group
elements, in contrast to O(nd) group elements in [28] (the asymptotic is taken
for large n, constant d).

The idea is to encode a predicate for boolean formulas into a predicate
for bilinear maps evaluation. This can be done as follows. Consider the fol-
lowing predicate P : X × Y → {0, 1}, with X := Z

n
2 and Y := {T ∈

Z2[X1, . . . , Xn],deg(T ) ≤ d}, such that for all x ∈ X , T ∈ X , P(x, T ) = 1
iff T (x) = 1. Below we describe how to encode x ∈ X and T ∈ Y into a vector
x̃ and a matrix T̃ such that P(x, T ) = 1 iff x̃�T̃x̃ = 1.

To see this, assume for simplicity that d is even, and let us consider the setting
where n ≥ d

2 . First, we map every x ∈ X to x̃ := (M1(x), . . . ,M
˜d(x)) ∈ Z

˜d
2,

where d̃ :=
∑ d

2
i=0

(
n
i

)
, and for all j ∈

[(
n
d
2

)]
, Mj is the j-th monomial of degree

at most d
2 on n variables (there are exactly d̃ such monomials, which we order

arbitrarily). Second, we write every T ∈ Y as
∑

i,j∈[˜d] Ti,jMiMj , where for all

i, j ∈ [d̃], Ti,j ∈ Z2, and we map T ∈ Y to T̃ ∈ Z
˜d×˜d
2 such that for all i, j ∈ [d̃],

T̃i,j := Ti,j . This way, for all x ∈ X and T ∈ Y, we have P(x, T ) = 1 iff
x̃�T̃x̃ = T (x) = 1.
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Therefore, using the PE which supports bilinear maps evaluation presented
in Sect. 5, we obtain a PE for boolean formulas with ciphertexts of size O(d̃).
Using a similar encoding to the PE from [28] that support linear maps evaluation
yields a solution with ciphertexts of dimension O(d̂) where d̂ :=

∑d
i=0

(
n
i

)
. When

considering asymptotic for large n, constant d, our ciphertext size is O(nd/2),
against O(nd) for [28].

Finally, we note that boolean formulas can be arithmetized into a polynomial
over Z2, à la [38]. Namely, for boolean variables x, y ∈ Z2, AND(x, y) is encoded
as x · y, OR(x, y) is encoded as x + y − xy, and NOT(x) = 1 − x.

PE for Comparison. Let us consider the comparison predicate P≤ : [N ] ×
[N ] → {0, 1} that for all x, y ∈ [N ] is defined by

P≤(x, y) = 1 iff x ≤ y.

We can reduce this predicate to a polynomial of degree two, as done (implic-
itly) in [12], as follows. First, any integer x ∈ [N ] is canonically mapped to the
lexicographically ordered pair (x1, x2) ∈ [

√
N ]×[

√
N ] (we assume

√
N is an inte-

ger for simplicity). Then x1 is mapped to vectors x̃ :=
(

0x1

1
√

N−x1

)

∈ {0, 1}
√

N

where 1�, 0� denote the all-one and all-zero vectors in {0, 1}�, respectively; and
x̂ := ex1 ∈ {0, 1}

√
N , where for all i ∈ [

√
N ], ei denotes the i’th vector of the

canonical basis of Z
√

N
p . Finally, x2 ∈ [

√
N ] is mapped to x̄ :=

(
0x2−1

1
√

N−x2+1

)

.

For all (x1, x2), (y1, y2) ∈ [
√

N ] × [
√

N ]:

P≤((x1, x2), (y1, y2)) = 1 iff x̃y1 + x̂y1 · x̄y2 = 1,

where for any vector z ∈ Z

√
N

p , and any i ∈ [
√

N ], we denote by zi ∈ Zp the i-th
coordinate of z.

This means that by using the above encoding, for an integer attribute x ∈ [N ]
one can use a PE for bilinear maps evaluation to encrypt the pair of vectors

((
x̃
x̂

)

,

(
1
x̄

))

∈ Z
2
√

N
p × Z

1+
√

N
p

Table 3. Summary of different fully-attribute hiding PE schemes for comparison.

PE scheme Security Assumption Ciph. size

BSW06 [12] Selective Composite O(
√

N)

GKSW10 [21] Selective SXDH 5
√

N · |G1| + 4
√

N · |G2| + |GT |
Ours 1 Selective MDDH, 3-PDDH (12

√
N + 1) · |G1| + (6

√
N + 7) · |G2|

Ours 2 Adaptive GGM (4
√

N + 1) · |G1| + (2
√

N + 3) · |G2|
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This gives a PE for comparison with ciphertexts of O(
√

N) group elements,
as in [12,21]. A more precise comparison is given in Table 3.
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Abstract. Cryptographic reductions typically aim to be tight by trans-
forming an adversary A into an algorithm that uses essentially the same
resources as A. In this work we initiate the study of memory efficiency
in reductions. We argue that the amount of working memory used (rel-
ative to the initial adversary) is a relevant parameter in reductions, and
that reductions that are inefficient with memory will sometimes yield less
meaningful security guarantees. We then point to several common tech-
niques in reductions that are memory-inefficient and give a toolbox for
reducing memory usage. We review common cryptographic assumptions
and their sensitivity to memory usage. Finally, we prove an impossibility
result showing that reductions between some assumptions must unavoid-
ably be either memory- or time-inefficient. This last result follows from a
connection to data streaming algorithms for which unconditional mem-
ory lower bounds are known.

Keywords: Memory · Tightness · Provable security · Black box reduc-
tion

1 Introduction

Cryptographic reductions support the security of a cryptographic scheme S by
showing that any attack against S can be transformed into an algorithm for
solving a problem P. The tightness of a reduction is in general some measure
of how closely the reduction relates the resources of attacks against S to the
resources of the algorithm for P. A tighter reduction gives a better algorithm
for P, ruling out a larger class of attacks against S. Typically one considers
resources like runtime, success probability, and sometimes the number of queries
(to oracles defined in P) of the resultant algorithm when evaluating the tightness
of a reduction.

This work revisits how we measure the resources of the algorithm produced
by a reduction. We observe that memory usage is an often important but over-
looked metric in evaluating cryptographic reductions. Consider typical “tight”
reductions from the literature, which start with an attack against a scheme S
that uses (say) time tS to achieve success probability εS , and transform the
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attack into an algorithm for problem P running in time tP ≈ tS and succeeding
with probability εP ≈ εS . We observe that reductions tight in this sense are
sometimes highly memory-loose: If the attack against S used mS bits of work-
ing memory, the reduction may produce an algorithm using mP � mS bits of
memory to solve P. Depending on P, this changes the conclusions we can draw
about the security of the scheme.

In this paper we investigate memory-efficiency in cryptographic reductions
in various settings. We show that some standard decisions in security defi-
nitions have a bearing on memory efficiency of possible reductions. We give
several simple techniques for improving memory efficiency of certain classes of
reductions, and finally turn to a connection between streaming algorithms and
memory/time-efficient reductions.

Tightness, memory-tightness, and security. Reductions between a prob-
lem P and a cryptographic scheme S that approximately preserve runtime and
success probability are usually called tight (c.f. [6,8,17]). Tight reductions are
preferred because they provide stronger assurance for the security of S. Specifi-
cally, let us call an algorithm running in time t and succeeding with probability
ε a (t, ε)-algorithm (for a given problem, or to attack a given scheme). Suppose
that a reduction converts a (tS , εS)-adversary against scheme S into a (tP , εP )-
algorithm for P where (tP , εP ) are functions of the first two. If it is believed that
no (tP , εP ) algorithm should exist for P, then one concludes that no (tS , εS)
adversary can exist against S.

If a reduction is not tight, then in order to conclude that scheme S is secure
against (tS , εS)-adversaries one must adjust the parameters of the instance of P
on which S is built, leading to a less efficient construction. In some extreme cases,
obtaining a reasonable security level for a scheme with a non-tight reduction
leads to an impractical construction. Addressing this issue has become an active
area of research in the last two decades (e.g. [4–6,8,11,12,18]).

In this work we keep track of the amount of memory used in reductions. To
see when memory usage becomes relevant, let a (t,m, ε)-algorithm use t time
steps, m bits of memory, and succeed with probability ε. A tight reduction from
S to P transforms (tS ,mS , εS)-adversaries into (tP ,mP , εP )-algorithms, where
“tight” guarantees tS ≈ tP and εS ≈ εP , but permits mP � mS , up to the
worst-case mP ≈ tP .

Now, suppose concretely that we want S to be secure against (2256, 2128,
O(1))-adversaries, based on very conservative estimates of the resources available
to a powerful government. Consider two possible “tight” reductions: One that
is additionally “memory-tight” and transforms a (2256, 2128, O(1))-adversary A
against S into a (2256, 2128, O(1))-algorithm Bmt for P, and one that is “memory-
loose” and instead only yields a (2256, 2256, O(1))-algorithm Bnmt for P.

The crucial point is that some problems P can be solved faster when larger
amounts of memory are used. In our example above, it may be that P is impos-
sible to solve with 2256 time and 2128 memory for some specific security para-
meter λ. But with both time and memory up to 2256 bits, the best algorithm
may be able to solve instances of P with security parameter λ, and with even
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larger parameters up to some λ′ > λ. The memory-looseness of the reduction
now bites, because to achieve the original security goal for S we must use the
larger parameter λ′ for P, resulting in a slower instantiation of the scheme. When
P is a problem involving a symmetric primitive where the “security parameter”
cannot be changed the issue is more difficult to address.

We now address two points in turn: If P is easier to solve when large memory
is available, what does this mean for memory-tight reductions? And when are
reductions “memory-loose”?

Fig. 1. Time/memory trade-off plots for collision-resistance (CR2, left), triple collision-
resistance (CR3, middle) and LPN with dimension 1024 and error rate 1/4 (right). All
plots are log-log and the axes on the right plot are not to scale.

Memory-sensitive problems and memory-tightness. Many, but not all,
problems P relevant to cryptography can be solved more quickly with large mem-
ory than with small. In the public-key realm these include factoring, discrete-
logarithm in prime fields, Learning Parities with Noise (LPN), Learning With
Errors (LWE), approximate Shortest Vector Problem, and Short Integer Solu-
tion (SIS). In symmetric-key cryptography such problems include key-recovery
against multiple-encryption, finding multi-collisions in hash functions, and com-
putation of memory-hard functions. We refer to problems like these as memory-
sensitive. (We refer to Sect. 6 for more discussion.)

On the other hand, problems P exist where the best known algorithm also
uses small memory: Discrete-logarithm in elliptic curve groups over prime-
fields [16], finding (single) collisions in hash functions [23], finding a preimage in
hash functions (exhaustive search), and key recovery against block-ciphers (also
exhaustive search).

Let us consider some specific examples to illustrate the impact of a memory-
loose reduction to a non-memory-sensitive versus a memory-sensitive problem.
Let CRk be the problem of finding a k-way collision in a hash function H with
λ output bits, that is, finding k distinct domain points x1, . . . , xk such that
H(x1) = H(x2) = · · · = H(xk) for some fixed k ≥ 2.

First suppose we reduce the security of a scheme S to CR2, which is stan-
dard collision-resistance. The problem CR2 is not memory-sensitive, and the best
known attack is a (2λ/2, O(1), O(1))-algorithm. In the left plot of Fig. 1 we visu-
alize the “feasible” region for CR2, where the shaded region is unsolvable. Now
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we consider two possible reductions. One is a memory-tight reduction which
maps an adversary A (with some time and memory complexity, with possibly
much less memory than time) to an algorithm Bmt for CR2 with the same time
and memory. The other reduction is memory-loose (but time-tight) and maps
A to an adversary Bnmt that uses time and memory approximately equal to the
time of A. We plot the effect of these reductions in the left part of the figure.
A tight reduction leaves the point essentially unchanged, while a memory-loose
reduction moves the point horizontally to the right. Both reductions will produce
a Bnmt in the region not known to be solvable, thus giving a meaningful security
statement about A that amounts to ruling out the shaded region of adversaries.
We do note that there is a possible quantitative difference in the guarantees
of the reductions, since it is only harder to produce an algorithm with smaller
memory, but this benefit is difficult to measure.

Now suppose instead that we reduce the security of a scheme S to CR3. The
best known attack against CR3 is a (2(1−α)λ, 2αλ, O(1))-algorithm due to Joux
and Lucks [20], for any α ≤ 1/3. We visualize this time-memory trade-off in the
middle plot of Fig. 1, and again any adversary with time and memory in the
shaded region would be a cryptanalytic advance. We again consider a memory-
tight versus a memory-loose reduction. The memory-tight reduction preserves
the point for the adversary A in the plot and thus rules out (tS ,mS , O(1)) adver-
saries for any tS ,mS in the shaded region. A memory-loose (but time-tight)
reduction mapping A to Bnmt for CR3 that blows up memory usage up to time
usage will move the point horizontally to the right. We can see that there are
drastic consequences when the original adversary A lies in the triangular region
with time >2λ/3 and memory <λ/3, because the reduction produces an adver-
sary Bnmt using resources for which CR3 is known to be broken. In summary,
the reduction only rules out adversaries A below the horizontal line with time
= 2λ/3.

Finally we consider an example instantiation of parameters for the learning
parities with noise (LPN) problem, which is memory-sensitive, where a memory-
loose reduction would diminish security guarantees. In Sect. 6 we recall this prob-
lem and the best attacks, and in the right plot of Fig. 1 the shaded region repre-
sents the infeasible region for the problem in dimension 1024 and error rate 1/4.
(For simplicity, all hidden constants are ignored in the plot.) In this problem
the effect of memory-looseness is more stark. Despite using a large dimension,
a memory-loose reduction can only rule out attacks running in time <285. A
memory-tight reduction, however, gives a much stronger guarantee for adver-
saries with memory less than 285.

Memory-loose reductions. Reductions are often memory-loose, and small
decisions in definitions can lead to memory usage being artificially high. We
start with an illustrative example.

Suppose we have a tight security reduction (in the traditional sense) in the
random oracle model [7] between a problem P and some cryptographic scheme S.
More concretely, suppose a reduction transforms a (tS ,mS , εS)-adversary AS

in the random-oracle model into a (tP ,mP , εP )-algorithm AP for P. A typical
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reduction has AP simulate a security game for AS , including the random ora-
cle, usually via a table that stores responses to queries issued by AS . Naively
removing the table from storage usually is not an option for various reasons:
For example, if AS queries the oracle on the same input twice, then it expects
to see the same output twice, or perhaps the reduction needs to “program” the
random oracle with responses that must be remembered.

Storing a table for the random oracle may dramatically increase memory
usage of the algorithm AP . If adversary AS makes qH queries to the random
oracle, then AP will store Ω(qH) bits of memory, plus the internal memory mS

of AS during the simulation, which gives

mP = mS + Ω(qH).

In the worst case, AS could run in constant memory and make one random
oracle query per time unit, meaning that AP requires as much memory as its
running time. Thus the reduction may be “tight” in the traditional sense with
tP ≈ tS , εP ≈ εS , but also have

mP = mS + tS . (1)

Thus AP may use an enormous amount of memory mP even if AS satisfied
mS = O(1).

This example is only the start. Memory-looseness is sometimes, but not
always, easily fixed, and seems to occur because it was not measured in reduc-
tions. Below we will furnish examples of other reductions that are (sometimes
implicitly) memory-loose. We will also discuss some decisions in definitions and
modeling that dramatically effect memory usage but are not usually stressed.

1.1 Our Results

Even though there exists an extensive literature on tightness of cryptographic
security reductions (e.g. [5,8,11,12]), memory has, to the best of our knowl-
edge, not been considered in the context of security reductions. In this paper we
first identify the problems related to non-memory-tight security reductions. To
overcome the problems, we initiate a systematic study on how to make known
security reductions memory-tight. Concretely, we provide several techniques to
obtain memory-efficient reductions and give examples where they can be applied.
Our techniques can be used to make many security reductions memory-tight, but
not all of them. Furthermore, we show that this is inherent, i.e., that there exist
natural cryptographic problems that do not have a fully tight security reduction.
Finally, we examine various memory-sensitive problems such as the learning par-
ity with noise (LPN) problem, the factoring problem, and the discrete logarithm
problem over finite fields.

The Random Oracle technique. Recall that a classical simulation of the
random oracle using the lazy sampling technique requires the reduction to store
O(qH) values. The idea is to replace the responses H(x) to a random oracle
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query x by PRF(k, x), where PRF is a pseudo-random function and k is its key.
The limitation of this technique is that it can only be applied to very restricted
cases of a programmable random oracle.

The Rewinding Technique. The idea of the rewinding technique is to use
the adversary as a “memory device.” Concretely, whenever the reduction would
like to access values previously output by the adversary that it did not store in
its memory, it simply rewinds the adversary which is executed with the same
random coins and with the same input. This way the reduction’s running time
doubles, but (unlike previous applications of the rewinding technique in cryptog-
raphy, e.g., [22]) the overall success probability does not decrease. The rewinding
technique can be applied multiple times providing a trade-off between memory
efficiency and running time of the reduction. To exemplify the techniques, we
show a memory-tight security reduction to the RSA full-domain hash signature
scheme in the appendix.

A Lower Bound. Some reductions appear (to us at least) to inherently require
increased memory. We take a first step towards formalizing this intuition by
proving a lower bound on the memory usage of a class of black-box reductions
in two scenarios.

First, we revisit a reduction implicitly used to justify the standard unforge-
ability notion for digital signatures, which reduces a game with several chances
to produce a valid forgery to the standard game with only one chance. One can
take this as a possible indication that signatures with memory-tight reductions
in the more permissive model may be preferred. Second, we prove a similar lower
bound on the memory usage of a class of reductions between a “multi-challenge”
variant of collision resistance and standard collision resistance.

Interestingly, our lower bound follows from a result on streaming algorithms,
which are designed to use small space while working with sequential access to a
large stream of data.

Open problems. This work initiates the study of memory-tight reductions in
cryptography. We give a number of techniques to obtain such reductions, but
many open problems remain. There are likely other reductions in the literature
that we have not covered, and to which our techniques do not apply. It is even
unclear how one should consider basic definitions, like unforgeability for signa-
tures, since the generic reductions from more complicated (but more realistic)
definitions may be tight but not memory-tight.

One reduction we did consider, but could not improve, is the IND-CCA
security proof for Hash ElGamal in the random oracle model [1] under the gap
Diffie-Hellman assumption. This reduction (and some others that use “gap”
assumptions) use their random oracle table in a way that our techniques cannot
address. We conjecture that a memory-tight reduction does not exist in this case,
and leave it as an open problem to (dis)prove our conjecture.
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2 Complexity Measures

We denote random sampling from a finite set A according to the uniform distrib-
ution with a ← A. By Ber(α) we denote the Bernoulli distribution for parameter
α, i.e., the distribution of a random variable that takes value 1 with probability
α and value 0 with probability 1 − α; by P� the set of primes of bit size � and
by log the logarithm with base 2.

2.1 Computational Model

Computational model. All algorithms in this paper are taken to be RAMs.
These programs have access to memory with words of size λ, along with a con-
stant number of registers that each hold one word. In this paper λ will always
be the security parameter of a construction or a problem under consideration.

We define probabilistic algorithms to be RAMs with a special instruction
that fills a distinguished register with random bits (independent of other calls
to the special instruction). We note that this instruction does not allow for
rewinding of the random bits, so if the algorithm wants to access previously used
random bits then it must store them. Running an algorithm A means executing
a RAM machine with input written in its memory (starting at address 0). If
A is randomized, we write y ← A(I) to denote the random variable y that is
obtained by running A on input I (which may consist of a tuple I = (I1, . . . , In)).
If A is deterministic, we write ← instead of ←. We sometimes give an algorithm
A access to stateful oracles O1,O2, . . . ,On. Each Oi is defined by a RAM Mi.
We also define an associated string stO called the oracle state that is stored in
a protected region of the memory of A that can only be read by the oracles.
Initially stO is defined to be empty. An algorithm A calls an oracle Oi via a
special instruction, which runs the corresponding RAM on input from a fixed
region of memory of A along with the oracle state stO. The RAM Mi uses its own
protected working memory, and finally its output is written into a fixed region
of memory for A, the updated state is written to stO, and control is transferred
back to A.

Games. Most of our security definitions and proofs use code-based games [9]. A
game G consists of a RAM defining an Init oracle, zero or more stateful oracles
O1, . . . ,On, and a Fin RAM oracle. An adversary A is said to play game G if its
first instruction calls Init (handing over its own input) and its last instruction
calls Fin, and in between these calls it only invokes O1, . . . ,On and performs
local computation. We further require that A outputs whatever Fin outputs.

Executing game G with A is formally just running A with input λ, the security
parameter. Keeping with convention, we denote the random variable induced by
executing G with A as GA (where the sample space is the randomness of A and
the associated oracles). By GA ⇒ out we denote the event that G executed with
A outputs out. In our games we sometimes denote a “Stop” command that takes
an argument. When Stop is invoked, its argument is considered the output of the
game (and the execution of the adversary is halted). If a game description omits
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the Fin procedure, it means that when A calls Fin on some input x, Fin simply
invokes Stop with argument x. By default, integer variables are initialized to 0,
set variables to ∅, strings to the empty string and arrays to the empty array.

2.2 Complexity Measures

This work is concerned with measuring the resource consumption of an adver-
sary in a way that allows for meaningful conclusions about security. Success
probabilities and time are widely used in the cryptographic literature with gen-
eral agreement on the details, which we recall first. Memory consumption of
reductions is however new, so we next discuss the possible options in measuring
memory and the implications.

Success Probability. We define the success probability of A playing game G
as Succ(GA) := Pr[GA ⇒ 1].

Runtime. Let A be an algorithm (RAM) with no oracles. The runtime of A,
denoted Time(A), is the worst-case number of computation steps of A over all
inputs of bit-length λ and all possible random choices. Now let G be a game and A
be an adversary that plays game G. The runtime of executing G with A is usually
taken to be the number of computation steps of A plus the number of compu-
tation steps of each RAM used to respond to oracle queries: We denote this as
TotalTime(GA) or TotalTime(A). One may prefer not to include the time used
by the oracles, and in this case we denote LocalTime(GA) or LocalTime(A)
to be the number of steps of A only.

Memory. We define the memory consumption of a RAM program A without
oracles, denoted Mem(A), to be size (in words of length λ) of the code of A plus
the worst-case number of registers used in memory at any step in computation,
over all inputs of bit-length λ and all random choices. Now let G be a game and
A be an adversary that plays game G. The memory required to execute game G
with A includes the memory needed to input and output to A, as well as input
and output to each oracle, along with the working memory and state of each
oracle. We denote this as TotalMem(GA) or TotalMem(A). Alternatively, one
may measure only the code and memory consumed by A, but not its oracles. We
denote this measure by LocalMem(A).

One advantage of the LocalMem measure is that it can avoid small details
of security definitions drastically changing the meaning of memory-tightness in
reductions.

Sometimes it will be convenient to measure the memory consumption in bits,
in which case we use Mem2(A), LocalMem2(A), and TotalMem2(A).

2.3 Case Study I: Unforgeability of Digital Signatures

Let (Gen,Sign,Ver) be a digital signature scheme (see Sect. 5 for the exact
syntax of signatures, which is standard). On the left side of Fig. 2 we recall
the game UFCMA that defines the standard notion of (existential) unforge-
ability under chosen-message attacks. The advantage of an adversary A is
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Fig. 2. Games UFCMA,mUFCMA.

defined by Adv(UFCMAA) = Succ(UFCMAA), and a signature scheme where
Adv(UFCMAA) is “small” for some class of adversaries is usually defined to be
“secure”. In order for the definition to be meaningful, the game UFCMA checks
that the signature σ∗ on m∗ is valid, and also that m∗ was not queried to the
signing oracle. In our version of the definition, the signing oracle maintains a
set S of messages that were queried, and the game uses S to check if m∗ was
queried.

The UFCMA game is an example where we prefer LocalMem to TotalMem.
Any adversary A playing UFCMA will always have TotalMem(A) = Ω(qS),
where qS is the number of signature queries it issues, while it may have
LocalMem(A) much smaller. Restricting the number of signing queries qS is
an option but weakens the definition.

An alternative style of definition for unforgeability is to limit the class of
adversaries A considered to those that are “well behaved” in that they never
submit an m∗ that was previously queried. The game no longer needs to track
which messages were queried to the signing oracle in order to be meaningful.
This definition is equivalent up to a small increase in (local) running time, but
it is not clear if the same is true for memory. To convert any adversary to be
well behaved, natural approaches mimic our version of the game, storing a set
S and checking the final forgery locally before submitting.

We contend that there is good reason to prefer our definition over the version
that only quantifies over well-behaved adversaries. In principle, it is possible that
a signature construction is secure against a class of well-behaved adversaries (say,
running in a bounded amount of time and memory) but not against general
adversaries running with the same time/memory. Counter-intuitively, such a
general adversary might produce a forgery without knowing itself if the forgery
is fresh and thus wins the game. Since we cannot rule this out, we prefer our
stronger definition.
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Stronger unforgeability. Games in many crypto-definitions are chosen to
be simple and compact but also general. The game UFCMA only allows a single
attempt at a forgery in order to shorten proofs, but the definition also tightly
implies (up to a small increase in runtime) a version of unforgeability where
the attacker gets many attempts, which more closely models usages where an
attacker will have many chances to produce a forgery.

It is less clear how UFCMA relates to more general definitions when memory
tightness is taken into account. To make this more concrete, consider the game
mUFCMA (for “many UFCMA”) on the right side of Fig. 2. In this game the
adversary has an additional verification oracle. If it ever submits a fresh forgery
to this oracle, it wins the game. It is easy to give a tight, but non-memory-tight,
reduction converting any (t,m, ε)-adversary playing mUFCMA into a (t′,m′, ε)-
adversary playing UFCMA for t′ ≈ t but m′ � m. Other trade-offs are also
possible but achieving tightness in all three parameters seems difficult.

For the reasons described in the introduction, a memory-tight reduction from
winning mUFCMA to winning UFCMA is desirable. In Sect. 4, we show that
a certain class of black-box reductions for these problems in fact cannot be
simultaneously tight in runtime, memory, and success probability. We conclude
that signatures with dedicated memory-tight proofs against adversaries in the
mUFCMA may provide stronger security assurance, especially when security is
reduced to a memory-sensitive problem like RSA.

We remark that the common reduction from multi-challenge to single-
challenge IND-CPA/IND-CCA security for public-key encryption is memory tight
(but not tight in terms of the success probability).

2.4 Case Study II: Collision-Resistance Definitions

Collision-resistance, and multi-collision-resistance of hash functions, is used for
security reductions in many contexts. Let H be a keyed hash function (with κ-bit
keys), with standard syntax. On the left side of Fig. 3 we recall the game CRt

used to define t-collision resistance. The game provides no extra oracles, and A
wins if it can find t domain points that are mapped to the same point by H.

As we will see in later sections, it is sometimes feasible to fix typical
memory-tight reductions to CRt. We however now consider using collision-
resistance (for t = 2) for domain extension of pseudorandom functions. Let
F : {0, 1}κ × {0, 1}δ → {0, 1}ρ be a keyed function with input-length δ which
should have random looking input/output behavior to some class of adversaries
(see Sect. 3.1 for a formal definition of PRFs). We can define a new keyed function
F∗ that takes arbitrary-length inputs by

F∗ : {0, 1}2κ × {0, 1}∗ → {0, 1}ρ,

F∗((k, kh), x) = F(k, H(kh, x)).

The proof that F∗ is a PRF is an easy hybrid argument. One first bounds the
probability that an adversary submits two inputs that collide in H. Once this
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probability is known to be small, the memory-tight reduction to the pseudoran-
domness of F is immediate.

Naive attempts at the reduction to collision-resistance are however not
memory-tight. One can run the adversary attacking F∗ and record its queries,
checking for any collisions, but this increases memory usage.

To model what such a proof is trying to do, we formulate a new game for
t-collision resistance called mCRt in the right side of Fig. 3. In the game, the
adversary has an oracle ProcInput that takes a message and adds it to a set
S. At the end of the game, the adversary wins if S contains any t inputs that
are mapped to the same point. The game implements this check using counters
stored in a dictionary.

Fig. 3. Games CRt,mCRt.

Returning to the proof for F∗, one can easily construct an adversary to play
mCR2 using any PRF adversary. The resulting reduction will be memory-tight.
Thus it would be desirable to have a memory-tight reduction from mCR2 to CR2

to complete the proof. This however seems difficult or even impossible, and in
Sect. 4 we show that a class of black-box reductions cannot be memory-tight. As
discussed in the introduction, t-collision-resistance is not memory sensitive for
t = 2, and thus the meaning of a memory-tight reduction is somewhat diminished
(i.e. it does not justify more aggressive parameter settings). For t > 2 the effect
of memory-tightness is more significant.

3 Techniques to Obtain Memory Efficiency

In this section we describe four techniques to obtain memory-efficient reductions.
In Sect. 5 we show how to apply those techniques to memory-tightly prove the
security of the RSA Full Domain Hash signature scheme [7]. Using this example
we also point to technical challenges that may arise when applying multiple
techniques in the same proof.
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3.1 Pseudorandom Functions

First, we formally define pseudorandom functions. They are the main tool used
in this section to make reductions memory efficient.

Definition 1. Let κ, δ and ρ be integers. Further let F : {0, 1}κ × {0, 1}δ →
{0, 1}ρ be a deterministic algorithm and let A be an adversary that is given
access to an oracle and outputs a single bit. The PRF advantage of A is defined
as Adv(PRFA) := |Succ(RealA)−Succ(RandomA)|, where Real and Random are
the games depicted in Fig. 4.

Fig. 4. Games defining PRF and α-PRF advantage.

If the range of F is just a single bit {0, 1}, we define the α-PRF advantage
with bias 0 ≤ α ≤ 1 of A as Adv(PRFA

α) := |Succ(RealA) − Succ(RandomA
α)|,

where Real and Randomα are the games in Fig. 4.

Note that a 2−ρ-PRF can be easily constructed from a standard PRF with
range {0, 1}ρ by mapping 1ρ to 1 and all other values to 0. A 1/q-PRF for
arbitrary q can be constructed in a similar way from a standard PRF with
sufficiently large image size ρ.

3.2 Generating (Pseudo)random Coins

Our first technique is the simplest, where we observe random coins used by
adversaries can be replaced with pseudorandom coins, and that this substitution
will save memory in certain reductions.

Consider a security game G and an adversary A. Both are probabilistic
processes and therefore require randomness. When considering memory efficiency
details on storing random coins could come to dominate memory usage. Specif-
ically, some reductions run an adversary multiple times with the same random
tape, which must be stored in between runs. One possibility to do this is by
sampling all randomness required in game GA (including the randomness used
by A) in advance. More formally let L ≤ 2λ be an upper bound on the amount
of executions of the instruction filling an register with random bits in GA. Then
the sampling of random coins can be replaced filling and storing L registers
(memory units) with random bits at the beginning of Init and in the rest of the
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game replacing the ith call to the instruction with a procedure Coins returning
the contents of the ith register. This is formalized in game G0 of Fig. 5.

The game can be simulated in a memory-efficient way by replacing the
random bits used by G and A with pseudorandom bits generated by a PRF
F : {0, 1}κ × {0, 1}δ → {0, 1}λ, as described in Game G1 of Fig. 5. In this variant
the game sets up the counter i in the usual way. Then a PRF key k is sam-
pled from a key space {0, 1}κ and calls to Coins are simulated by returning the
pseudorandom bits F(k, i). We now compare the two ways of executing the game
in terms of success probability, running time, and memory consumption.

Fig. 5. Generating (pseudo)random coins in a memory-efficient way. By ri we denote
the ith block of λ bits of the string r.

Success Probability. By a simple reduction to the security of the PRF, there
exists an adversary B with LocalTime(B) = LocalTime(A), LocalMem(B) =
LocalMem(A) + 1 such that

∣
∣Succ(GA

0 )] − Succ(GA
1 )

∣
∣ ≤ Adv(PRFB)

(see Definition 1). Observe that B perfectly simulates the Coins oracle as follows.
For A’s ith query to Coins, it queries OF of the PRF games on i and relays its
response back to A. To do this, it needs to store a counter of log L bits. All other
procedures are simulated as specified in G1.

Running Time. Game G1 needs to evaluate the PRF (via algorithm F) L times,
hence we have TotalTime(GA

1 ) ≤ TotalTime(GA
0 ) + L · Time(F).

Memory. Both games have to store a counter i of size log L ≤ λ bits, which
equals one memory unit. But while game G0 needs memory for storing L strings,
the memory-efficient game G1 only needs additional memory Mem(F). Note that
the PRF key is included in the memory of F. So overall, we have

TotalMem(GA
0 ) = LocalMem(A) + 1 + L,

TotalMem(GA
1 ) = LocalMem(A) + 1 + Mem(F).

Note that when applying this (and the following) techniques in a larger envi-
ronment, special care has to be taken to keep the entire game consistent with
the components changed by the technique. In particular, all intermediate reduc-
tions in a sequence of games have to be memory efficient to yield an overall
memory-efficient reduction.
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3.3 Random Oracles

Suppose a security game G is defined in the random oracle model, that is one of
the game’s procedures models a random oracle

H : {0, 1}δ → {0, 1}λ.

The standard way of implementing this is via a technique called lazy sampling [9],
meaning that when an adversary A queries H on some value x, the game has
to check if H(x) is already defined, and if not, it samples H(x) from some
distribution and stores the value in a list, see G0 in Fig. 6. This means that in
the worst case, it needs to store as many strings as the number of adversarial
queries.

However, there are several settings where the random oracle can be imple-
mented by a PRF F : {0, 1}κ × {0, 1}δ → {0, 1}λ as described in G1 of Fig. 6,
thus making G more memory-efficient. Among these settings are the non-
programmable random oracle model and certain random oracles, where only
values obtained or computed during the Init procedure are used to program
them.

Fig. 6. The Random Oracle technique to simulate RO in a memory-efficient way. Here
xi denotes the ith query to RO. Note that the queries x1, . . . , xq are not necessarily
distinct.

In the following paragraph we analyze how success probability, running time
and memory consumption change if we apply this technique.

Success Probability. There exists an adversary B with LocalTime(A) =
LocalTime(B) and LocalMem(A) = LocalMem(B) such that

∣
∣Succ(GA

0 ) − Succ(GA
1 )

∣
∣ ≤ Adv(PRFB).

B perfectly simulates the RO by relaying all of A’s queries to OF of the PRF games
and forwarding the responses back to A. All other procedures are simulated as
specified in G1. When B is run with respect to game Random of Definition 1 it
provides A with a perfect simulation of G0, if it is run with respect to game Real
with a perfect simulation of game G1.



Memory-Tight Reductions 115

Running Time. Let qH be the number of random oracle queries posed by the
adversary. Then game G1 needs to evaluate the PRF qH times, hence we have
TotalTime(GA

1 ) ≤ TotalTime(GA
0 ) + qH · Time(F).

Memory. Game G0 needs to store an array H of size at least qH · λ bits (= qH

memory units), while the memory-efficient game only needs memory to execute
the PRF via algorithm F. So overall, we have

TotalMem(GA
0 ) ≥ LocalMem(A) + qH ,

TotalMem(GA
1 ) = LocalMem(A) + Mem(F).

3.4 Random Oracle Index Guessing Technique

This technique is used when random oracle queries are answered in two different
ways, e.g. in a reduction where challenge values, like a discrete logarithm chal-
lenge X = gx, are embedded in the programmable random oracle. Usually this
is done by guessing some index i∗ between 1 and qH in the beginning, where
qH is the number of random oracle queries posed by the adversary. During the
simulation, the challenge value is then embedded in the reduction’s response to
the i∗th random oracle query.

To do this, the game needs to keep a list of all queries and responses. Inde-
pendently of the way the game answers all the other queries except for the i∗th

one, simply keeping a counter is not sufficient, since an adversary posing the
same query all the time would then receive two different responses and the ran-
dom oracle thus wouldn’t be well defined anymore. An example of such a game
using the index guessing technique is game G0 of Fig. 7, where two deterministic
procedures P0 and P1 are used to program H depending on i∗.

To make games of this kind memory-efficient, one can use a 1/qH -PRF (see
Definition 1) F : {0, 1}κ×{0, 1}δ → {0, 1}, associating to each value of the domain
of the random oracle a bit 0 with probability 1−1/qH or 1 with probability 1/qH

and then programming the random oracle accordingly as described in game G1

of Fig. 7. This method of using a biased bit goes back to Coron [14].

Fig. 7. The random oracle index guessing technique. By xi we denote the ith query to
RO. F is a 1/qH -PRF. Note that the queries to RO are not necessarily distinct.
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We now compare the two games in terms of success probability, running time
and memory efficiency.

Success Probability. Let A be an adversary that is executed in G0. We define
an intermediate game G′

0, as depicted in Fig. 8, in which the index guessing is
replaced by tossing a biased coin for each query.

Fig. 8. Intermediate game for the transition to memory-efficient index guessing.

These games are identical if c[xi∗ ] = 0 and c[xi] = 1 for all i 
= i∗. Hence,

Succ((G′
0)

A) ≥ (1 − 1/qH)qH−1 · Succ(GA
0 ) ≥ e−1 · Succ(GA

0 ).

Now it is easy to construct an adversary B against F with LocalTime(B) =
LocalTime(A) and LocalMem(B) = LocalMem(A) that provides A with
a perfect simulation of G0′ when interacting with game Randomα of Fig. 4 or
respectively with a perfect simulation of G1 when interacting with Real. Hence
∣
∣Succ((G′

0)
A) − Succ(GA

1 )
∣
∣ ≤ Adv(PRFB

1/qH
). So overall, we have

Succ(GA
1 ) ≥ e−1 · Succ(GA

0 ) − Adv(PRFB
1/qH

).

Running Time. Game G1 needs to evaluate the 1/qH-PRF qH times, hence we
have TotalTime(GA

1 ) = TotalTime(GA
0 ) + qH · Time(F).

Memory. The standard game needs to store an array of size at least qH · λ
bits and the integer i∗, while the memory-efficient game only needs additional
memory Mem(F). So overall, we have

TotalMem(GA
0 ) ≥ LocalMem(A) + qH + 1,

TotalMem(GA
1 ) = LocalMem(A) + Mem(F).

Note that for simplicity we ignored the memory consumption and running time
for procedures P0 and P1.

3.5 Single Rewinding Technique

This technique can be used for games containing a procedure Query, which can be
called by an adversary A up to q times on inputs x1, . . . , xq. When A terminates,
it queries Fin on a value x∗. Procedure Fin then checks whether there exists
i ∈ {1, . . . , q} such that R(xi, x

∗) = 1, where R is an efficiently computable
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relation specific to the game. If so, it invokes Stop with 1. If no such i exists
it invokes Stop with 0. Note that we do not specify how queries to Query are
answered since it is not relevant here. To be able to check whether there exists
an i such that R(xi, x

∗) = 1, the game usually stores the values x1, . . . , xq as
described in G0 in Fig. 9.

However it is possible to make the game memory efficient as described in G1

of Fig. 9. In this variant the game no longer stores all the xi’s. Instead, it only
stores the adversarial input x∗ to Fin and then rewinds A to the start, i.e., it
runs it a second time providing it with the exact same input and random coins,
and responding to queries to Query with the same values as in the first run. This
means that from the adversary’s view, the second run is an exact replication of
the first one. Whenever A calls Query on a value xi, the game checks whether
R(x∗, xi) = 1 and—if so—invokes Stop with 1. Note that it is necessary to store
the random coins given to A as well as random coins potentially used to answer
queries to Query to be able to rewind. This can be done memory-efficiently with
the technique of Sect. 3.2.

Fig. 9. The single rewinding technique.

Success Probability. Since after rewinding, G1 provides A with the exact
same input as in the first execution, all values xi are the same in both executions
of A, so

Succ(GA
0 ) = Succ(GA

1 ).

Running Time. G0 runs A once, while G1 runs A twice. Both games invoke the
relation algorithm R a total number of q times, so overall we obtain

TotalTime(GA
1 ) ≤ 2 · TotalTime(GA

0 ).

Memory. GA
0 stores all values x1, . . . , xq, x

∗ while GA
1 only stores x∗ and one of

the xi, 1 ≤ i ≤ q at a time. Assuming each of the values x1, . . . , xq, x
∗ takes one

memory unit, we obtain

TotalMem(GA
0 ) = LocalMem(A) + Mem(R) + q + 1,

TotalMem(GA
1 ) = LocalMem(A) + Mem(R) + 2.
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We remark that the single rewinding technique can be extended to a multiple-
rewinding technique, in which the reduction runs the adversary m times (on the
same random coins and with the same input). For example, in Theorem4 we con-
sider a reduction between t-multi-collision-resistance and t-collision-resistance
that rewinds the adversary several times.

4 Streaming Algorithms and Memory-Efficiency

In this section we prove two lower bounds on the memory usage of black-box
reductions between certain problems. The first shows that any reduction from
mUFCMA to UFCMA must either use more memory, run the adversary many
times, or obey some tradeoff between the two options. The second gives a similar
result for mCRt to CRt reductions. We start by recalling results from the data-
stream model of computation which will provide the principle tools for our lower
bounds.

In this section we also deal with bit-memory (Mem2) which measures the
number of bits used, rather than Mem which measures the number of λ-bit
words used.

4.1 The Data Stream Model

The data stream model is typically used to reason about algorithmic challenges
where a very large input can only be accessed in discrete pieces in a given
order, possibly over multiple passes. For instance, data from a high-rate network
connection may often be too large to store and thus only accessed in sequence.

Streaming formalization. We adopt the following notation for a streaming
problem: An input is a vector y ∈ Un of dimension n over some finite universe U .
We say that the number of elements in the stream is n. An algorithm B accesses
y via a stateful oracle Oy that works as follows: On the first call it saves an
initial state i ← 0 and returns y[0]. On future calls, Oy sets i ← (i + 1 mod n),
and returns y[i]. The oracle models accessing a stream of data, one entry at a
time. When the counter i is set to 0 (either at the start or by wrapping modulo
n), the algorithm B is said to be initiating a pass on the data. The number of
passes during a computation BOy is thus defined as p = �q/n, where q is the
number of queries issued by B to its oracle.

A streaming lower bound. Below we will use a well-known result lower
bounding the trade-off between the number of passes and memory required to
determining the most frequent element in a stream. We will also use a lower
bound on a related problem that can be proven by the same techniques.

For a vector y ∈ Un, define F∞(y) as

F∞(y) = max
s∈U

|{i : y[i] = s}|.

That is, F∞(y) is the number of appearances of the most frequent value in y.
Our results will use the following modified version of F∞, denoted F∞,t that
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only checks if the most frequent value appears t times or not:

F∞,t(y) =

{

1 if F∞(y) ≥ t

0 otherwise

We also define the function G(y) as follows. It divides its input into two
equal-length halves y = y1‖y2, each in Un/2. We let

G(y1‖y2) =

{

1 if∃j ∀i : y2[j] 
= y1[i]
0 otherwise

.

In words, G outputs 1 whenever y2 contains an entry that is not in y1.

Theorem 1 (Corollary of [21,24]). Let t be a constant and B be a randomized
algorithm such that for all y ∈ Un,

Pr[BOy(|U |, n) = F∞,t(y))] ≥ c,

where 1/2 < c ≤ 1 is a constant. Then LocalMem2(B) = Ω(min{n/p, |U |/p}),
where p is the number of passes B makes in the worst case. The same statement
holds if F∞,t is replaced with G.

This theorem is actually a simple corollary of a celebrated result on the
communication complexity of the disjointness problem, which has several other
applications. See also the lecture notes by Roughgarden [25] that give an acces-
sible theorem statement and discussion after Theorem 4.11 of that document.

The standard version of this theorem only states that computing F∞ requires
the stated space, so we sketch how to obtain our easy corollary. The full proof
is omitted from this version due to the page limit. The proof for F∞ works by
showing that any p-pass streaming algorithm with local memory m can be used
to construct a p-round two-party protocol to compute whether sets S1, S2 held
by the parties are disjoint. One then proves a communication lower bound on
any protocol to test for disjointness.

A simple modification of this argument shows that computing G also gives
such a protocol: It easily allows two parties to compute if S1 \ S2 is empty,
which is equivalent to computing if S1 and S2 are disjoint. Thus one can reduce
disjointness to this problem by having the first party take the compliment of its
set.

The modification for F∞,t is slightly more subtle. The essential idea is that
one party can copy its set t−1 times when feeding it to the streaming algorithm.
Then if the parties’ sets are not disjoint, we will have F∞,t equal to 1 and 0
otherwise. Since t is a constant this affects the lower bound by only a constant
factor.

4.2 mUFCMA-to-UFCMA Lower Bound

Black-box reductions for mUFCMA to UFCMA. Let R be an algorithm
playing the UFCMA game. Recall that R receives input pk and has access to
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an oracle ProcSign, and stops the game by querying Fin(m∗, σ∗). Below for an
adversary A playing mUFCMA, we write RA to mean that R has additionally
“oracle access to A”, which means an oracle NxtQA that returns the “next query”
of A after accepting a response to the previous query from R. When A halts (i.e.
NxtQA returns a query to Fin), the oracle resets itself to start again with the
same random tape and input pk .

Definition 2. A restricted black-box reduction from mUFCMA to UFCMA for
signature scheme (Gen,Sign,Ver) is an oracle algorithm R, playing UFCMA, that
respects the following restrictions for any A:

1. RA starts by forwarding its initial input (consisting of the security parameter
and public key) to NxtQA.

2. When the oracle NxtQA emits a query for ProcSign(m), R forwards m to its
own signing oracle ProcSign and returns the result to NxtQA, possibly after
some computation.

3. When NxtQA emits a query for ProcVer(m∗, σ∗), R performs some computa-
tion then returns an empty response to NxtQA.

4. When R queries Fin(m∗, σ∗), the value (m∗, σ∗) will be amongst the values
that NxtQA returned as a query to ProcVer.

Finally we say that R is advantage-preserving if there exists an absolute constant
1/2 < c ≤ 1 such that for all adversaries A and all random tapes r for A,

Succ(UFCMARA | r) ≥ c · Succ(mUFCMAA | r), (2)

where Succ(· | r) is exactly Succ(·) conditioned on the tape of A being fixed
to r.

These restrictions force R to behave in a combinatorial manner that is amenable
to a connection to streaming lower bounds. The final condition, requiring R to
preserve the advantage of A for all random tapes, is especially restrictive. At the
end of the section we discuss directions for considering more general R.

Theorem 2. Let (Gen,Sign,Ver) be any signature scheme with message length
δ = λ. Let R be a restricted black-box reduction from mUFCMA to UFCMA that is
advantage-preserving, and let p be the number of times R runs A. Then for any1

q = q(λ) there exists an adversary A∗ making q signing queries, and using mem-
ory LocalMem2(A∗) = O(LocalMem2(Ver)), such that LocalMem2(RA∗

) =

Ω(min{ q

p + 1
,

2λ

p + 1
})−O(log q)−max{LocalMem2(Gen),LocalMem2(Ver)}.

Proof. Let R be a restricted black-box reduction for (Gen,Sign,Ver) that is
advantage-preserving for some c ≥ 1/2. We proceed fixing an adversary A∗

and using RA∗
to construct a streaming algorithm B, making p + 1 passes on its

stream, such that
Pr[BOy(2δ, n) = G(y)] ≥ c (3)

1 We assume that q is linear-space constructible.
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for all n and all y ∈ ({0, 1}λ)n. We will apply the streaming lower bound on
computing G (Theorem 1) to B, and then relate the memory used by B to that
of RA∗

to obtain the theorem.
We start by fixing the adversary A∗. It takes as input the security parameter λ

and public key pk . Then A∗ selects q random messages m1, . . . , mq, and queries
them to ProcSign, and ignores the outputs. Next A∗ selects q more random
messages m′

1, . . . , m
′
q, and for each m′

j it forges a signature σ′
j by brute force

and queries (m′
j , σ

′
j) to ProcVer. After the verification queries, it halts.

We record two facts about A∗. Let y ∈ ({0, 1}λ)2q the vector consisting of
all of its queried messages, in order (the first q to ProcSign, and the second q

to ProcVer along with signatures). First, if G(y) = 0, then Succ(mUFCMAA∗ |
y) = 0 because A∗ will not issue any queries with a fresh forgery. If however
G(y) = 1, then Succ(mUFCMAA∗ | y) = 1 because A∗ will issue at least one
fresh forgery to the verification oracle.

Algorithm BOy will run RA∗
, which expects input pk , oracles for ProcSign,

Fin (for the UFCMA game) and oracle NxtQA∗ for an adversary. BOy works as
follows, on input (2λ, n := 2q):

– B starts by initializing a log n-bit counter i ← 0, running (pk , sk) ← Gen(λ),
and running R on input pk .

– B responds the oracle query ProcSign(m) from R by returning Sign(sk ,m).
– When R queries NxtQA∗ , B ignores the input and responds as follows:

• If i < n/2, then B queries Oy, which returns y1[i], and has NxtQA∗ return
ProcSign(y1[i]) as the next query.

• If i ≥ n/2, it queries Oy to get y2[j] (where j = i−n/2). Then B computes
a valid signature σj by brute force, and increments i modulo n. It then
has NxtQA∗ return ProcVer(y2[j], σ) as the next query.

– When R queries Fin(m∗, σ∗), B performs another pass on its stream and checks
if m∗ appears anywhere in y1. If it does, then it outputs 0 and otherwise it
outputs 1.

We now verify (3). If G(y) = 0 then BOy will output 0 with probability 1.
This is because our restrictions on R, which restricts it to outputting a value m∗

that was queried by A∗ to ProcVer. On the other hand, if G(y) = 1 then BOy

will output 1 with probability at least c. This is because A∗ will have success
probability 1 when such a y is fixed, so by (2) RA∗

has success probability at
least c, and B outputs 1 whenever R succeeds in the simulated mUFCMA game.

It is clear that B makes p + 1 passes on its stream, where p is the number of
times RA∗

runs A∗. Applying Theorem1 to B we have

LocalMem2(B) = Ω(min{n/(p + 1), 2λ/(p + 1)}).

On the other hand, by the construction of B we have that LocalMem2(B)

= O(LocalMem2(RA∗
)) + max{LocalMem2(Gen),LocalMem2(Ver)})

Combining the two bounds on LocalMem2(B), and noting that q = Θ(n), gives
the theorem. ��
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4.3 mCRt-to-CRt Lower Bound

Black-box reductions for mCRt to CRt. Similar to the case with signatures,
we formalize a class of reductions from mCRt to CRt for a hash function H. Let
R be an oracle algorithm RA that play the CRt game (with the only oracle
being Fin), and additionally has access to an oracle NxtQA that returns the next
query or some adversary playing the game mCRt. The only oracles in mCRt are
ProcInput and Fin, so NxtQA either returns a domain point m or halts A. As
before, the oracle resets itself after the last query by A, with the same input and
random tape.

Definition 3. A restricted black-box reduction from mCRt to CRt for a hash
function H is an oracle algorithm R, playing CRt, that respects the following
restrictions for any A:

1. RA starts by forwarding its initial input (consisting of the security parameter
and hashing key) to NxtQA.

2. When R queries Fin(m1, . . . , mt), the values m1, . . . , mt will be amongst the
values that NxtQA returned as a query to ProcInput.

Finally we say that R is advantage-preserving if there exists an absolute constant
1/2 < c ≤ 1 such that for all adversaries A and all random tapes r for A,

Succ(mCRRA

t | r) ≥ c · Succ(CRA
t | r), (4)

where Succ(· | r) is exactly Succ(·) conditioned on the tape of A being fixed to
r.

Theorem 3. Let H be the function (with empty hash key) that truncates the last
λ bits of its input. Let R be a restricted black-box reduction from mCRt to CRt

that is advantage-preserving and let p be the number of times R runs A. Then
for any2 q = q(λ) ≤ 2λ there exists an adversary A∗ making q signing queries,
and using memory LocalMem2(A∗) = O(λ), such that

LocalMem2(RA∗
) = Ω(min{q/p, 2λ/p}).

Proof. We proceed similarly to the proof of Theorem2, but we now construct a
streaming algorithm BOy for F∞,t instead of G. Let R be a restricted black-box
reduction for H that is advantage-preserving for some c ≥ 1/2. We will fix an
adversary A∗ and use RA∗

to construct a streaming algorithm B, making p passes
on its stream, such that

Pr[BOy(2δ, n) = F∞,t(y)] ≥ c (5)

for all n and all y ∈ ({0, 1}λ)n.

2 We again assume that q is linear-space constructible.
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The adversary A∗ works as follows: On input λ (and empty hash key), it
chooses q random messages m1, . . . , mq and queries mi‖i to its ProcInput oracle,
where i is encoded in λ bits. It then queries Fin and halts.

Let y ∈ ({0, 1}λ)q be the vector consisting of all of messages queried to
ProcInput. If F∞,t(y) = 0, then Succ(mCRA∗

t |y) = 0 because there will be no
t-collision in the queries of A∗. If however F∞,t(y) = 1, then Succ(mUFCMAA∗ |y)
= 1 because A∗ there will be a t-collision, as the hash function H is defined to
truncate the final λ bits of its inputs, which consist of the counter value.

The streaming algorithm BOy(2λ, q) works as follows. It initializes a counter
i to 0 and runs R. When R requests an input from NxtQA∗ , BOy queries its oracle
for y[i] and returns y[i]‖i to R. When R halts by calling Fin(m1, . . . , mt), BOy

simply checks if the messages are all of the form y‖i for a fixed y and different
values of i. If so, it outputs 1 and otherwise it outputs 0.

It is easy to verify that B satisfies (5) and that it makes p passes on its input
stream. Therefore by Theorem 1 we have

LocalMem2(B) = Ω(min{q/p, 2λ/p}).

By construction we also have

LocalMem2(B) = O(LocalMem2(RA∗
)).

Combining these inequalities gives the theorem. ��

Sharpness of the bounds. We observe that when one is not concerned with
memory-tightness then it is trivial to reduce t-multi-collision-resistance to t-
collision-resistance, by simply storing all inputs to ProcInput and checking for
collisions. This will however be non-tight if the mCRt adversary uses small mem-
ory but produces a large number of domain points (i.e. q is large). Memory
tightness can be achieved via rewinding O(q) times, but this increases the run-
time of the reduction.

Theorem 4. Let H : {0, 1}κ × {0, 1}λ → {0, 1}λ be a hash function and let t
be a fixed natural number. Then for all adversaries A in the mCRt game with
parameter λ making q queries to ProcInput and for all natural numbers 1 ≤
c, p,m ≤ q < 2λ such that c · p · m = q there exists an adversary B in the CRt

game such that

Succ(CRB
t ) ≥ 1

2c
· Succ(mCRA

t ),

LocalTime(B) ≤ (2p + 1) · LocalTime(A) + (mp(q + 1) + q) · Time(H)
LocalMem(B) = LocalMem(A) + Mem(H) + 3m + t + 3.

If we choose c = 1 and m = q/p, this theorem proves that the lower bound from
Theorem 3 is sharp.
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Fig. 10. Adversary B in the CRt game. By A(j) we denote the j-th out of q inputs of A
to ProcInput.

Proof. By assumption m = q/cp. Let A be an adversary in the mCRt game. For
simplicity we assume that A is deterministic, otherwise we can apply the PRF
coin fixing technique from Sect. 3.2.

Consider adversary B as defined in Fig. 10. First, B stores the hash values of
m out of the q inputs of A to ProcInput. Note that A only needs to be run once to
perform these operations in line 05, as the indices i1 to im can be sorted. Then
it rewinds A to the start and checks for collisions of the stored hash values with
all of the hash values of A’s inputs to ProcInput. Assume that at least t of A’s
inputs have the same hash value. Then in each execution of the loop starting in
line 01 B succeeds in finding the colliding messages if it stored the corresponding
hash value. The probability of this event is bounded from below by m/q = 1/cp.
The loop is repeated p times with freshly sampled i1, . . . , im. Thus

Pr[CRB
t ⇒ 1 | mCRA

t ⇒ 1] ≥ 1 − (1 − 1/cp)p ≥ 1 − e−1/c ≥ 1/2c.

This implies Succ(CRB
t ) ≥ 1/2c · Succ(mCRA

t ). When B finds a collision, it
rewinds A one last time to obtain the preimages of the t colliding values.

So overall, B runs A at most 2p + 1 times and the hash algorithm H at most
p(m + mn) + q times. It needs to store 2m + 3 counters of size log q ≤ λ (i.e.
2m + 3 memory units), m values from H’s range {0, 1}ρ (i.e. m memory units)
and the t elements from {0, 1}δ that collide under H (i.e. t memory units) and
provide memory for A and H. ��

Limitations, extensions, and open problems. Our notion of black-box
reductions assumes that the reduction will only run the adversary A from begin-
ning to end, each time with the same random tape. It would be interesting to
generalize the reduction to allow for partial rewinding of A, and also for saving
“snapshots” of the state of A that allow for rewinding.
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Our restrictions on black-box reductions confine them to essentially work like
combinatorial streaming algorithms. It seems likely that these restrictions can
be greatly relaxed by using a different notion of black-box reduction and using
pathological (unbounded) signature schemes and hash functions to enforce the
combinatorial behavior of the reduction with high probability. We pursued our
version of the results for simplicity.

5 Memory-Tight Reduction for RSA Full Domain Hash
Signatures

This section gives an example of a memory-tight reduction obtained via the
techniques of Sect. 3. We first recall the syntax of signature schemes and recall
the RSA assumption. Then we show how the RSA Full Domain Hash signature
scheme can be shown secure in the random oracle model using coin replacement,
random oracle replacement, single rewinding, and the random oracle index guess-
ing technique. For subtle reasons we implement all techniques using a single PRF
to obtain a memory tight reduction.

Signature schemes. A signature scheme consists of algorithms Gen,Sign,Ver
such that: algorithm Gen generates a verification key pk and a signing key sk ; on
input of a signing key sk and a message m algorithm Sign generates a signature σ
or the failure indicator ⊥; on input of a verification key pk , a message m, and
a candidate signature σ, deterministic algorithm Ver outputs 0 or 1 to indicate
rejection and acceptance, respectively. A signature scheme is correct if for all
sk , pk ,m, if Sign(sk ,m) outputs a signature then Ver accepts it. Recall that
the standard security notion of existential unforgeability against chosen message
attacks is defined in Sect. 2.3 via the game of Fig. 2.

RSA assumption. Let GenRSAλ be an algorithm that returns (N = pq, e, d),
where p and q are distinct primes of bit size λ/2 and e, d are such that e =
d−1 mod Φ(N).

Definition 4 (RSA Assumption). Game RSAλ defining the hardness of RSA
relative to GenRSAλ is depicted in Fig. 11.

Fig. 11. The RSAλ game relative to algorithm GenRSAλ.
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RSA-FDH. The RSA Full Domain Hash (RSA-FDH) signature scheme [7] is
defined in Fig. 12. Its security can be reduced to the RSA assumption in the
random oracle model (see [8,14]). In the usual proof the reduction interacting
with an adversary against RSA-FDH’s existential unforgeability making up to
qH hash queries and up to qs signing queries simulates the random oracle using
lazy sampling and therefore has to store up to (qH + qs) messages making the
reduction highly non-memory-tight. However, the proof can be made memory-
efficient by using the coin replacement technique of Sect. 3.2, the random oracle
technique of Sect. 3.3, the random oracle index guessing technique of Sect. 3.4,
and the single rewinding technique of Sect. 3.5.

Fig. 12. The RSA-FDH signature scheme for parameter λ.

Theorem 5. Let F : {0, 1}λ × {0, 1}λ → {0, 1}2λ+1 be a PRF. Then for every
adversary A in the UFCMA game for RSA-FDH with parameter λ that poses
qH queries to the Hash, qs queries to the ProcSign oracle, and samples at most
L ≤ 2λ memory units of randomness, in the random oracle model there exist an
adversary B1 against the RSAλ game, an adversary B2 against the PRF game
such that

Succ(UFCMAA) ≤ e qs Succ(RSAB2
λ ) + e qs Adv(PRFB1).

Further it holds that

LocalMem(B1) = LocalMem(A) + Mem(GenRSAλ) + 6,

LocalMem(B2) = LocalMem(A) + Mem(F) + 6,

LocalTime(B1) ≈ 2LocalTime(A) + Time(RSAλ),
LocalTime(B2) ≈ LocalTime(A) + (qH + qs + L) · Time(F).

Note that in the proof of Theorem5 it is necessary to apply the random coins tech-
nique and the random oracle technique in the same step. Otherwise one obtains
an intermediate reduction that is not memory-tight: the reduction either has to
simulate the random oracle by lazy sampling (in case the random coins technique
is applied first) or, since rewinding is impossible, it has to store the messages
asked to the signing oracle (if the random oracle technique is applied first).

Proof. Consider the sequence of games of Fig. 13. For computations in ZN we
omit writing mod N if it is clear from the context. We assume without loss of
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Fig. 13. Games G0 to G3 for the proof of Theorem 5.

generality that any message procedures ProcSign or Fin are queried on was before
already queried to Hash.

Game G0 is the standard UFCMA game as in Fig. 2 instantiated with the
RSA-FDH algorithms and with the randomness for adversary A provided via
procedure Coins, so

Succ(UFCMAA) = Succ(GA
0 ). (6)

In G1, instead of returning H(m), the Hash procedure returns H(m)e and the
ProcSign procedure computes signatures as (H(m)e)d = H(m) accordingly. This
doesn’t change the distribution of the hash values and the signatures, so

Succ(GA
0 ) = Succ(GA

1 ). (7)

Game G2 introduces a couple of aborting conditions. With probability 1/qs abort
condition B[m∗] = 0 of line 17 does not occur. Furthermore, for each message
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mi the probability that abort condition B[mi] = 1 of line 12 does not occur is
given by 1 − 1/qs. Adversary A makes at most qs queries to ProcSign. Hence,

Succ(GA
2 ) ≥ 1/qs(1 − 1/qs)qs · Succ(GA

1 ) ≥ 1/(eqs) · Succ(GA
1 ). (8)

In Game G3 randomness is replaced by PRF F, whose range we split into
F = F0||F1||F2 ∈ {0, 1}λ × {0, 1}λ × {0, 1}. Sampling of random coins is replaced
in Game G3 by evaluating F0 on counter j, sampling the values H[mi] and B[mi]
is replaced by evaluating F1 and F2 on mi, respectively. For simplicity we assume
that F2 is a pseudorandom function that outputs elements in ZN ≈ {0, 1}λ and
that F2 is a α-biased pseudorandom function with α := 1/qs. (This is formally
not correct but we do not want to distract from the main points of our proof,
which is about memory-tightness.) We proceed by constructing an adversary B1

against the PRF game such that

Adv(PRFB1) ≥ |Succ(GA
2 ) − Succ(GA

3 )|, (9)
LocalTime(B1) ≈ 2LocalTime(A) + Time(RSAλ), (10)
LocalMem(B1) = LocalMem(A) + Mem(GenRSAλ) + 6. (11)

The definition of B1 is in Fig. 14. Adversary B1 sets up the values (N, e, d)
using GenRSA, samples x ← ZN , sets y ← xe and runs A on input (N, e). It sim-
ulates the procedures Hash, ProcSign and Coins by invoking its PRF oracle OF.
When A calls Fin on message-signature pair (m∗, σ∗) adversary B1 rewinds A to
line 03, answering all of its queries in the same way. Note that this is possible,
since all replies to queries on Hash, ProcSign and Coins are derived using OF.
During the rewinding B1 raises a flag coll if A queries procedure ProcSign on
m∗. Hence the event {coll = 1} is equivalent to condition m∗ ∈ M of line 19
of games G2 and G3. When A calls Fin a second time on (m∗, σ∗), adversary B1

stops with 0 or 1 according to the message-signature pair. If B1 interacts with
PRF-game Random it provides A with a perfect simulation of game G2, if it
interacts with Real with a perfect simulation of game G3. Hence Eq. (9) follows.
We now analyze B1’s running time and memory consumption. B1 runs GenRSAλ

Fig. 14. Adversary B1 against the PRF game for the proof of Theorem 5 in Sect. 5. B1

rewinds A once on the same inputs. Lines marked with (i) are only executed during
the i-th invocation.
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once and A twice and performs some minor bookkeeping. It furthermore has to
store the code of A and GenRSAλ as well as at any point in time 6λ bits which
equals 6 memory units (i.e., the three integers (N, e, y) of size 3λ, up to two
messages of length λ each and a counter of size log2(L) ≤ λ.

Fig. 15. Adversary B2 against the RSAλ game for the proof of Theorem 5 in Sect. 5.

We conclude the proof by giving an adversary B2 against the RSAλ game
such that

Succ(RSAB2
λ ) ≥ Succ(GA

3 ), (12)
LocalTime(B2) ≈ LocalTime(A) + (qH + qs + L)Time(F) (13)
LocalMem(B2) = LocalMem(A) + Mem(GenRSAλ) + 6. (14)

Then the claim of the theorem follows from Eq. (7) to (9) and Sect. 5. The defi-
nition of B2 is in Fig. 15. It queries InitRSA to receive an RSA challenge (N, e, y)
and samples a PRF key k. Then it invokes A on input (N, e) providing it with a
perfect simulation of the procedures Hash, ProcSign and Coins. When A invokes
procedure Fin on message-signature pair (m∗, σ∗), adversary B2 checks whether
F2(k,m∗) = 0 and—if so—aborts. Note that by definition of procedure Hash
adversary B2 not aborting implies that Hash(m∗) = (F1(k,m∗))ey. Hence if B2

does not abort and if the signature is valid, i.e. (σ∗)e = Hash(m∗) holds, then
B2’s answer x∗ = σ/F1(k,m∗) to the RSA challenge is valid. Since A succeeding
in game G3 implies both aforementioned conditions Sect. 5 follows. We conclude
the proof by analyzing B2’s running time and memory consumption. B2 runs
A once and F up to (qH + qs + L) times and performs some minor bookkeep-
ing. Furthermore it has to store the code of A and F as well as at any point
in time 6λ bits which equals 6 additional memory units (i.e., a counter of bit-
size log2(L) ≤ λ, a PRF key of bit-size κ ≤ λ, a message of bit-size λ and three
integers of size λ). ��

6 Memory-Sensitive Problems

In this section we discuss the memory sensitivity of two cryptographic problems,
multi-collision-resistance and learning parities with noise. In the full version
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of this paper [3], we will also analyze the memory sensitivity of the discrete
logarithm problem in prime fields and of the factoring problem.

To quantify the memory sensitivity of a problem P we plot time/memory
trade-offs as in the Fig. 1. The horizontal axis is memory consumption and the
vertical axis is running time, both on a log scale. A point (x, y) is either labeled
with “solvable” or “unsolvable”, where solvable means that there exists an algo-
rithm with running time at most 2x and memory consumption at most 2y that
solves the problem. We refer to the boundary between the solvable and unsolv-
able regions as the transition line.

A time/memory trade-off plot of a non-memory-sensitive problem typically
has an (approximately) horizontal transition line, and as discused in Sect. 1, a
non-memory-tight reduction has less impact. The steeper the slope of the transi-
tion line, the more memory-sensitive the problem is. We refer for the introduction
for an example with concrete numbers for.

k-Way Collision Resistance. The k-way collision problem CRk is to find a
k-collision in a hash function with λ output bits. The following table provides an
overview over known algorithms to solve CRk with constant success probability
for k ∈ {2, 3}.

Algorithm A Mem(CRA
t ) Time(CRA

t )

Birthday (k = 2) O(1) 2λ/2

Joux-Lucks [20] (k = 3) 2α 2λ(1−α) (α ≤ 1/3)

From the table we derive the time/memory graph of CRk in Fig. 16. CR3 is
memory sensitive, whereas CR2 is not (as it has a horizontal transition line).

Learning Parity with Noise. Another example of a memory sensitive prob-
lem is the well-known Learning Parity with Noise (LPN) problem. Let λ ∈ N

be the dimension and τ ∈ [0, 1/2) be a constant that defines the error prob-
ability. The problem LPNλ,τ is to compute a random secret s ← F

λ
2 , given

“noisy” random inner products with s, i.e. samples (ai, νi) where ai ← F
λ
2 , and

νi = 〈ai, s〉 + ei for ei ← Ber(τ).
Memory usage and running time of the best known algorithms for LPNλ,τ

with constant success probability are given in the following table.

Fig. 16. Time memory graphs of CRk for k = 2 (left) and k = 3 (middle) and of
LPNλ,τ for λ = 1024 and τ = 1/4 (right). Both Time and Mem are in log scale.
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Algorithm A LocalMem(LPNA
λ,τ ) LocalTime(LPNA

λ,τ )

BKW [10] 2
λ/log(λ/τ) 2

λ/log(λ/τ)

Gauss [15] O(1) 2λ log(1/1−τ)

Figure 16 provides the corresponding time/memory graph. Note that the
recent work [15] also considers a hybrid algorithm between Well-Pooled Gauss
and BKW, but the interval where the hybrid algorithm actually has better per-
formance is so small that we decided to ignore it.

We note that the situation with the Learning with Errors (LWE), the Shortest
Integer Solution (SIS), and the approximate SVP problem is similar to that of
the LPN problem [2,13,19].
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Abstract. For many cryptographic primitives, it is relatively easy to
achieve selective security (where the adversary commits a-priori to some
of the choices to be made later in the attack) but appears difficult to
achieve the more natural notion of adaptive security (where the adver-
sary can make all choices on the go as the attack progresses). A series
of several recent works shows how to cleverly achieve adaptive secu-
rity in several such scenarios including generalized selective decryption
(Panjwani, TCC ’07 and Fuchsbauer et al., CRYPTO ’15), constrained
PRFs (Fuchsbauer et al., ASIACRYPT ’14), and Yao garbled circuits
(Jafargholi and Wichs, TCC ’16b). Although the above works expressed
vague intuition that they share a common technique, the connection
was never made precise. In this work we present a new framework that
connects all of these works and allows us to present them in a unified
and simplified fashion. Moreover, we use the framework to derive a new
result for adaptively secure secret sharing over access structures defined
via monotone circuits. We envision that further applications will follow
in the future.

Underlying our framework is the following simple idea. It is well known
that selective security, where the adversary commits to n-bits of infor-
mation about his future choices, automatically implies adaptive security
at the cost of amplifying the adversary’s advantage by a factor of up to
2n. However, in some cases the proof of selective security proceeds via
a sequence of hybrids, where each pair of adjacent hybrids locally only
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requires some smaller partial information consisting of m � n bits. The
partial information needed might be completely different between differ-
ent pairs of hybrids, and if we look across all the hybrids we might rely
on the entire n-bit commitment. Nevertheless, the above is sufficient to
prove adaptive security, at the cost of amplifying the adversary’s advan-
tage by a factor of only 2m � 2n.

In all of our examples using the above framework, the different hybrids
are captured by some sort of a graph pebbling game and the amount of
information that the adversary needs to commit to in each pair of hybrids
is bounded by the maximum number of pebbles in play at any point in
time. Therefore, coming up with better strategies for proving adaptive
security translates to various pebbling strategies for different types of
graphs.

1 Introduction

Many security definitions come in two flavors: a stronger “adaptive” flavor, where
the adversary can arbitrarily make various choices during the course of the
attack, and a weaker “selective” flavor where the adversary must commit to
some or all of his choices a-priori. For example, in the context of identity-based
encryption, selective security requires the adversary to decide on the identity of
the attacked party at the very beginning of the game whereas adaptive secu-
rity allows the attacker to first see the master public key and some secret keys
before making this choice. Often, it appears to be much easier to achieve selective
security than it is to achieve adaptive security.

A series of recent works achieves adaptive security in several such scenarios
where we previously only knew how to achieve selective security: generalized
selective decryption (GSD) [8,23], constrained PRFs [9], and garbled circuits
[16]. Although some of these works suggest a vague intuition that there is a
general technique at play, there was no attempt to make this precise and to
crystallize what the technique is or how these results are connected. In this work
we present a new framework that connects all of these works and allows us to
present them in a unified and simplified fashion. Moreover, we use the framework
to derive a new result for adaptively secure secret sharing over access structures
defined via monotone circuits.

At a high level, our framework carefully combines two basic tools commonly
used throughout cryptography: random guessing (of the adaptive choices to be
made by the adversary)1 and the hybrid argument. Firstly, “random guessing”
gives us a generic way to qualitatively upgrade selective security to adaptive
security at a quantitative cost in the amount of security. In particular, assume
1 In many previous works – including [8,9,16], and by the authors of this paper –

this random guessing was referred to as “complexity leveraging”, but this seems to
be an abuse of the term. Instead, complexity leveraging [7] refers to the use of two
different schemes, S1, S2, where the two schemes are chosen with different values of
the security parameter, k1 and k2, where k1 < k2 and such that an adversary against
S2 (or perhaps even the honest user of S2) can break the security of S1.
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we can prove the security of a selective game where the adversary commits to
n-bits of information about his future choices. Then, we can also prove adap-
tive security by guessing this commitment and taking a factor of 2n loss in the
security advantage. However, this quantitative loss is often too high and hence
we usually wish to avoid it or at least lower it. Secondly, the hybrid argument
allows us to prove the indistinguishability of two games GL and GR by defining a
sequence of hybrid games GL ≡ H0,H1, . . . ,H� ≡ GR and showing that each pair
of neighboring hybrids Hi and Hi+1 are indistinguishable.

Our Framework. Our framework starts with two adaptive games GL and GR that
we wish to show indistinguishable but we don’t initially have any direct way of
doing so. Let HL and HR be selective versions of the two games respectively,
where the adversary initially has to commit to some information w ∈ {0, 1}n

about his future choices. Furthermore, assume there is some sequence of selective
hybrids HL = H0,H1, . . . ,H� ≡ HR such that we can show that Hi and Hi+1

are indistinguishable. A näıve combination of the hybrid argument and random
guessing shows that GL and GR are indistinguishable at a factor of 2n · � loss in
security, but we want to do better.

Recall that the hybrids Hi are selective and require the adversary to commit
to w. However, it might be the case that for each i we can prove that Hi and Hi+1

would be indistinguishable even if the adversary didn’t have to commit to all of
w but only some partial-information hi(w) ∈ {0, 1}m for m � n (formalizing
this condition precisely requires great care and is the major source of subtlety in
our framework). Notice that the partial information that we need to know about
w may be completely different for different pairs of hybrids, and if we look across
all hybrids then we may need to know all of w. Nevertheless, we prove that this
suffices to show that the adaptive games GL and GR are indistinguishable with
only a 2m · � � 2n · � loss of security.

Applications of Our Framework. We show how to understand all of the prior
works mentioned above as applications of our framework. In many cases, this
vastly simplifies prior works. We also use the framework to derive a new result,
proving the adaptive security of Yao’s secret sharing scheme for access structures
defined via monotone circuits.

In all of the examples, we get a series of selective hybrids H1, . . . ,H� that cor-
respond to pebbling configurations in some graph pebbling game. The amount of
information needed to show that neighboring hybrids Hi and Hi+1 are indistin-
guishable only depends on the configuration of the pebbles in the i’th step of the
game. Therefore, using our framework, we translate the problem of coming up
with adaptive security proofs to the problem of coming up with pebbling strate-
gies that only require a succinct representation of each pebbling configuration.

We now proceed to give a high level overview of each of our results applying
our general framework to specific problems, and refer to the main body for
technical details.
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1.1 Adaptive Secret Sharing for Monotone Circuits

Secret sharing schemes, introduced by Blakley [4] and Shamir [27], are methods
that enable a dealer, that has a secret piece of information, to distribute this
secret among n parties such that a “qualified” subset of parties has enough
information to reconstruct the secret while any “unqualified” subset of parties
learns nothing about the secret. The monotone collection of “qualified” subsets
is known as an access structure. Any access structure admits a secret sharing
scheme but the share size could be exponential in n [14]. We are interested in
efficient schemes in which the share size is polynomial (in n and possibly in a
security parameter).

Many of the classical schemes for secret sharing are perfectly (information
theoretically) secure. The largest class of access structures that admit such a
(perfect and efficient) scheme was obtained by Karchmer and Wigderson [18] for
the class of all functions that can be computed by monotone span programs. This
result generalized a previous work of Benaloh and Leichter [3] (which, in turn,
improved a result of Ito et al. [14]) that showed the same result but for a smaller
class of access structures: those functions that can be computed by monotone
Boolean formulas. Under cryptographic hardness assumptions, efficient schemes
for more general access structures are known (but security is only for bounded
adversaries). In particular, in an unpublished work (mentioned in [1], see also
Vinod et al. [28]), Yao showed how to realize schemes for access structures that
are described by monotone circuits. This construction could be used for access
structures which are known to be computed by monotone circuits but are not
known to be computed by monotone span programs, e.g., directed connectivity
[17,24].2 Komargodski et al. [21] showed how to realize the class of access struc-
tures described by monotone functions in NP3 under the assumption that witness
encryption for NP [10] and one-way functions exist.4,5

Selective vs. Adaptive Security. All of the schemes described above guarantee
security against static adversaries, where the adversary chooses a subset of par-
ties it controls before it sees any of the shares. A more natural security guarantee
would be to require that even an adversary that chooses its set of parties in an
adaptive manner (i.e., based on the shares it has seen so far) is unable to learn
the secret (or any partial information about it).

It is known that the schemes that satisfy perfect security (including the
works [3,14,18] mentioned above) actually satisfy this stronger notion of adaptive
2 In the access structure for directed connectivity, the parties correspond to an edge in

the complete directed graph and the “qualified” subsets are those edges that connect
two distinguished nodes s and t.

3 For access structures in NP, a qualified set of parties needs to know an NP witness
that they are qualified.

4 Witness encryption for a language L ∈ NP allows to encrypt a message relative to a
statement x ∈ L such that anyone holding a witness to the statement can decrypt
the message, but if x /∈ L, then the message is computationally hidden.

5 One can relax the additional assumption of one-way functions to an average-case
hardness assumption in NP [20].
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security. However, the situation for the schemes that are based on cryptographic
assumptions (including Yao’s scheme and the scheme of [21]) is much less clear.
Using random guessing (see Lemma 1) it can be shown that these schemes are
adaptively secure, but this reduction loses an exponential (in the number of
parties) factor in the security of the scheme. Additionally, as noted in [21], their
scheme can be shown to be adaptively secure if the witness encryption scheme is
extractable.6 The latter is a somewhat controversial assumption that we prefer
to avoid.

Our Results. We analyze the adaptive security of Yao’s scheme under our frame-
work and show that in some cases the security loss is much smaller than 2n.
Roughly, we show that if the access structure can be described by a monotone
circuit of depth d and s gates (with unbounded fan-in and fan-out) the security
loss is proportional to sO(d). Thus, for shallow circuits our analysis shows that
an exponential loss is avoidable.

To exemplify the usefulness of the result, consider, for instance, the directed
st-connectivity access structure mentioned in Footnote 6. It is known that it can
be computed by a monotone circuit of size O(n3 log n) and depth O(log2 n), but
its monotone formula and span-program complexity is 2Ω(log2 n) [17,24]. Thus,
no efficient perfectly secure scheme is known, and our proof shows that Yao’s
scheme for this access structure is secure based on the assumption that quasi-
polynomially-secure one-way functions exist.

Yao’s Scheme. In this scheme, an access structure is described by a monotone
circuit. The sharing procedure first labels the output wire of the circuit with the
shared secret and then proceeds to assign labels to all wires of the circuit; in the
end the label on each input wire is included in the share of the corresponding
party. The procedure for assigning labels is recursive and in each step it labels the
input wires of a gate g assuming its output wires are already labeled (recall that
we assume unbounded fan-in and fan-out so there are many input and output
wires). To do so, we first sample a fresh encryption key s for a symmetric-key
encryption scheme. If the gate is an AND gate, then we label each input wire
with a random string conditioned on their XOR being s, and if the gate is an OR
gate, then we label each input wire with s. In either case, we encrypt the labels
of the output wires under s and include these ciphertexts associated with the
gate g as part of ever party’s share. The reconstruction of the scheme works by
reversing the above procedure from the leaves to the root. This scheme is indeed
efficient for access structures that have polynomial-size monotone circuits.

Security Proof. Our goal is to show that as long as an adversary controls an
unqualified set, he cannot learn anything about the secret. We start by outlining
the selective security proof (following the argument of [28]), where the adver-
sary first commits to the “corrupted” set. The proof is via a series of hybrids in

6 This is a knowledge assumption that says that if an adversary can decrypt a witness
encryption ciphertext, then it must know a witness which can be extracted from it.
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which we slowly replace the ciphertexts associated with various gates g with
bogus ciphertexts. Once we do this for the output gate, the shares become
independent of the secret which proves security. The gates for which we can
replace the ciphertexts with bogus ones are the gates for which the adversary
cannot compute the corresponding encryption key. Since the adversary controls
an unqualified set, a sequence which eventually results with replacing the encryp-
tion of the root gate must exist. Since in every hybrid we “handle” one gate and
never consider it again, the number of hybrids is at most the number of gates in
the circuit.

The problem with lifting this proof to the adaptive case is that it seems
inherent to know the corrupted set of parties in order to know for which gates
g to switch the ciphertexts from real to bogus (and in what order). However, in
the adaptive game this set is not known during the sharing procedure. A näıve
use of random guessing would result in an exponential security loss 2n, where n
is the number of parties.

To overcome this we associate each intermediate hybrid Hi with a pebbling
configuration in which each gate in the circuit is either pebbled (ciphertexts are
bogus) or unpebbled (ciphertexts are real). The pebbling rules are:

1. Can place or remove a pebble on any AND gate for which (at least) one input
wire is either not corrupted or comes out of a gate with a pebble on it.

2. Can place or remove a pebble on any OR gate for which all of the incoming
wires are either non-corrupted input wires or come out of gates all of which
have pebbles on them.

The initial hybrid corresponds to the case in which all gates are unpebbled and
the final hybrid corresponds to the case in which all gates are unpebbled except
the root gate which has a pebble. Now, any pebbling strategy that takes us from
the initial configuration to the final one, corresponds to a sequence of selective
hybrids Hi. Furthermore, to prove indistinguishability of neighboring hybrids
Hi,Hi+1 we don’t need the adversary to commit to the entire set of corrupted
parties ahead of time but it suffices if the adversary only commits to the pebble
configuration in steps i and i + 1. Therefore, if the pebbling strategy has the
property that each configuration requires few bits to describe, then we would
be able to use our framework. We show that for every corrupted set and any
monotone circuit of depth d and s gates, there exists such a pebbling strategy,
where the number of moves is roughly 2O(d) and each configuration has a very
succinct representation: roughly d · log s bits. Plugging this into our framework,
we get a proof of adaptive security with security loss proportional to sO(d). We
refer to Sect. 4 for the precise details.

1.2 Generalized Selective Decryption

Generalized Selective Decryption (GSD), introduced by Panjwani [23], is a game
that captures the difficulty of proving adaptive security of certain protocols, most
notably the Logical Key Hierarchy (LKH) multicast encryption protocol. On a
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high level, it deals with scenario where we have many secret keys ki and various
ciphertexts encrypting one key under another (but no cycles). We will discuss
this problem in depth in the full version [15], here giving a high level overview
on how our framework applies to this problem.

Let (Enc,Dec) be a CPA-secure symmetric encryption scheme with (proba-
bilistic) Enc : K×M → C and Dec : K×C → M. We assume K ⊆ M, i.e., we can
encrypt keys. In the game, the challenger—either GL or GR—picks n+1 random
keys k0, . . . , kn ∈ K, and the adversary A is then allowed to make three types of
queries:7

– Encryption query: on input (encrypt, i, j) receives Enc(ki, kj).
– Corruption queries: on input (corrupt, i) receives ki.
– Challenge query, only one is allowed: on input (challenge, i) receives ki in

the real game GL, and a random value in the random game GR.

We think of this game as generating a directed graph, with vertex set V =
{0, . . . , n}, where every (encrypt, i, j) query adds a directed edge (i, j), and we
say a vertex vi is corrupted if a query (corrupt, i) was made, or vi can be reached
from a corrupted vertex. The goal of the adversary is to distinguish the games
GL or GR, with the restriction that the constructed graph has no cycles, and the
challenge vertex is a sink. To prove security, i.e., reduce the indistinguishability
of GL or GR to the security of Enc, we can consider a selectivized version of this
game where A must commit to the graph as described above (which uses <n2

bits). The security of this selectivized game can then be reduced to the security
of Enc by a series of <n2 hybrids, where a distinguisher for any two consecutive
hybrids can be used to break the security of Enc with the same advantage. Using
random guessing followed by a hybrid argument we conclude that if Enc is δ-
secure, the GSD game is δ · n2 · 2n2

-secure. Thus, we lose an exponential in n2

factor in the reduction.
Fortunately, if we look at the actual protocols that GSD is supposed to

capture, it turns out that the graphs that A can generate are not totally arbitrary.
Two interesting cases are given by GSD restricted to graphs of bounded depth,
and to trees. For these cases better reductions exist. Panjwani [23] shows that if
the adversary is restricted to play the game such that the resulting graph is of
depth at most d, a reduction losing a factor (2n)d exists. Moreover, Fuchsbauer
et al. [8] give a reduction losing a factor n3 log n when the underlying graph is
a tree. In the full version we prove these results in our framework. Our proofs
are much simpler than the original ones, especially than the proof of [23] which
is very long and technical. This is thanks to our modular approach, where our
general framework takes care of delicate probabilistic arguments, and basically
just leaves us with the task of designing pebbling strategies, where each pebbling
configuration has a succinct description, for various graphs, which is a clean
combinatorial problem. The generic connection between adaptive security proofs
of the GSD problem and graph pebbling is entirely new to this work.
7 In the actual game the adversary can also make standard CPA encryption queries
Enc(ki, m) for chosen m, i. As this doesn’t meaningfully change the security proof
we ignore this here.
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GSD on a Path. Let us sketch the proof idea for the [8] result, but for an even
more restricted case where the graph is a path visiting every node exactly once.
In other words there is a permutation σ over {0, . . . , n} and the adversary’s
queries are of the form (encrypt, σ(i − 1), σ(i)) and (challenge, σ(n)). We first
consider the selective game where A must commit to this permutation σ ahead
of time. Let HL,HR be the selectivized versions of GL, GR respectively.

To prove selective security, we can define a sequence of hybrid games HL =
H0, . . . ,H� = HR. Each hybrid is defined by a path, 0 → 1 → . . . → n, with a
subset of the edges holding a black pebble. In the hybrid games, a pebble on
(i, i + 1) means that instead of answering the query (encrypt, σ(i), σ(i + 1))
with the “real” answer Enc(kσ(i), kσ(i+1)), we answer it with a “fake” answer
Enc(kσ(i), r) for a random r. The goal is to move from a hybrid with no pebbles
(this corresponds to HL) to one with a single black pebble on the “sink” edge
(n − 1, n) (this corresponds to HR). We can prove that neighboring hybrids are
indistinguishable via a reduction from CPA-security as long as the pebbling
configurations are only modified via the following legal moves:

1. We can put/remove a pebble on the source edge (0, 1) at any time.
2. We can put/remove a pebble on an edge (i, i+1) if the preceding edge (i−1, i)

has a pebble.

This is because adding/removing a pebble (i, i + 1) means changing what we
encrypt under key kσ(i) and therefore we need to make sure that either the edge
is a source edge or there is already a pebble on the preceding edge to ensure that
the key kσ(i) is never being encrypted under some other key.

The simplest “basic pebbling strategy” consists of 2n moves where we add
pebbles on the path 0 → 1 → . . . → n, one by one starting on the left and
then remove one by one starting on the right, keeping only the pebble on the
sink edge (n − 1, n). This is illustrated in Fig. 1(a) for n = 8. The strategy uses
n pebbles. However, there are other pebbling strategies that allow us to trade
off more moves for fewer pebbles. For example there is a “recursive strategy”
(recursively pebble the middle vertex, then recursively pebble the right-most
vertex, then recursively remove the pebble from the middle vertex) that uses at
most log n + 1 pebbles (instead of n), but requires 3log n + 1 moves (instead of
just 2n). This is illustrated in Fig. 1(b).

As we described, each pebbling strategy with � moves gives us a sequence
of hybrids HL = H0, . . . ,H� = HR that allows us to prove selective security.
Furthermore, we can prove relatively easily that neighboring hybrids Hj ,Hj+1 are
indistinguishable even if the adversary doesn’t commit to the entire permutation
σ but only to the value σ(i) of vertices i where either Hj or Hj+1 has a pebble
on the edge (i − 1, i). Using our framework, we therefore get a proof of adaptive
security where the security loss is � · np where p is the maximum number of
pebbles used and � is the number of pebbling moves. In particular, if we use the
recursive pebbling strategy described above we only suffer a quasipolynomial
security loss 3log n · nlog n+1, as compared with 2n · (n + 1)! for näıve random
guessing where the adversary commits to the entire permutation σ.
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Fig. 1. “Classical” hybrid argument vs. improved hybrid argument. In both dia-
grams, the edges that carry a pebble are faked. (a) Illustration of the classical
hybrids H0, . . . ,H15 for GSD on a path graph with n = 8 edges: the number of
hybrids is 2n = 16, and the number of fake edges is at most n. (b) A sequence of
hybrids H̃0, . . . , H̃27 that use fewer fake edges: even though the number of hybrids is
3log n + 1 = 28, the number of fake edges is at most log n + 1 = 4. The argument on
the right is identical to the one using nested hybrids in [8].
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GSD on Low Depth and Other Families of Graphs. The proof outline for GSD
on paths is just a very special case of our general result for GSD for various
classes of graphs, which we discuss in the full version. If we consider a class of
graphs which can be pebbled using � pebbling configurations, each containing at
most q pebbles, we get a reduction showing that GSD for this class is δ · � · 2q

secure, assuming the underlying Enc scheme is δ-secure.
Unfortunately, this approach will not gain us much for graphs with high in-

degree: we can only put a pebble on an edge (i, j) if all the edges (∗, i) going into
node i are pebbled. So if we consider graphs which can have large in-degree d,
any pebbling strategy must at some point have pebbled all the parents of i, and
thus we’ll lose at least a factor 2d in the reduction. But remember that to apply
our Theorem 2, we just need to be able to “compress” the information required
to simulate the hybrids. So even if the hybrids correspond to configurations with
many pebbles, that is fine as long as we can generate a short hint which will
allow to emulate it (we use the same idea in the proof of adaptive security of
the secret sharing scheme for monotone circuits with large fan-in).

Consider the selective GSD game, where the adversary commits to all of
its queries, we can think of this as a DAG, where each edge comes with an
index indicating in which query this node was added. Assume the adversary is
restricted to choose DAGs of depth l (but no bound on the in-degree). One can
show that there exists a pebbling sequence (of length (2n)l), such that in any
pebbling configuration, all pebbles lie on a path from a sink to a root (which is
of length at most l), and on edges going into this path. Moreover, we can ensure
that in any configuration the following holds: if for a node j on this path, there
is a pebble on edge (i, j) with index t, then all edges of the form (∗, j) with index
<t must also have a pebble.

To describe such a configuration, we will output the ≤l nodes on the path,
specify for every edge on this path if it is pebbled, and for any node j on the
path, the number of edges going into j that have a pebble (note that there are at
most 2ln2l choices for this hint). The hint is sufficient to emulate a hybrid, as for
any query (encrypt, i, j) the adversary makes, we will know if the corresponding
edge has a pebble or not. This is clear if the edge (i, j) is on the path, as we
know this path in full. But also for the other edges that can hold a pebble, where
j is on the path but i is not. The reason is that we just have to count which
query of the form (∗, j) this is, as we got a number c telling us that the first c
such edges will have a pebble.

Applying Theorem 2, we recover Panjwani’s result [23] showing that if the GSD
game restricted to graphs of depth l only loses a factor nO(l) in the reduction.

1.3 Yao’s Garbled Circuits

Garbled circuits, introduced by Yao in (oral presentations of) [29,30], can be
used to garble a circuit C and an input x in a way that reveals C(x) but hides
everything else. More precisely, a garbling scheme has three procedures; one to
garble the circuit C and produce a garbled circuit ˜C, one to garble the input x
and produce a garbled input x̃, and one that evaluates the garbled circuit ˜C on
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the garbled input x̃ to get C(x). Furthermore, to prove security, there must be a
simulator that only gets the output of the computation C(x) and can simulate
the garbled circuit ˜C and input x̃, such that no PPT adversary can distinguish
them from the real garbling.

Adaptive vs. Selective Security. In the adaptive setting, the adversary A first
chooses the circuit C and gets back the garbled circuit ˜C, then chooses the input
x, and gets back garbled input x̃. The adversary’s goal is to decide whether he
was interacting with the real garbling scheme or the simulator. In the selective
setting, the adversary has to choose the circuit C as well as the input x at the
very beginning and only then gets back ˜C, x̃.

Prior Work. The work of Bellare et al. [2] raised the question of whether Yao’s
construction or indeed any construction of garbled circuits achieves adaptive
security. The work of Hemenway et al. [12] gave the first construction of non-
trivial adaptively secure garbled circuits based on one-way functions, by modi-
fying Yao’s construction with an added layer of encryption having some special
properties. Most recently, the work of Jafargholi and Wichs [16] gives the first
analysis of adaptive security for Yao’s unmodified garbled circuit construction
which significantly improves on the parameters of trivial random guessing. See
[16] for a more comprehensive introduction and broader background on garbled
circuits and adaptive security.

Here, we present the work of [16] as a special case of our general framework.
Indeed, the work of [16] already implicitly follows our general framework fairly
closely and therefore we only give a high level overview of how it fits into it.

Selective Hybrids. We start by outlining the selective security proof for Yao’s
garbled circuits, following the presentation of [12,16] which is in turn based on
the proof of Lindell and Pinkas [22]. Essentially the proof proceeds via series of
hybrids which modify one garbled gate at a time from the Real distribution to
a Simulated one. However, this cannot be done directly in one step and instead
requires going through an intermediate distribution called InputDep (we explain
the name later). There are important restrictions on the order in which these
steps can be taken:

1. We can switch a gate from Real to InputDep (and vice versa) if it is at the
input level or if its predecessor gates are already InputDep.

2. We can switch a gate from InputDep to Simulated (and vice versa) if it is at
the output level or if its successor gates are already Simulated.

The simplest strategy to switch all gates from Real to Simulated is to start
with the input level and go up one level at a time switching all gates to InputDep.
Then start with the output level and go down one level at a time switching all
gates to Simulated. This corresponds to the basic proof of selective security of
Yao garbled circuits.

However, the above is not the only possibility. In particular, any strategy for
switching all gates from Real to Simulated following rules (1) and (2) corresponds
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to a sequence of hybrid games for proving selective security. We can identify the
above with a pebbling game where one can place pebbles on the gates of the
circuit. The Real distribution corresponds to not having a pebble and there are
two types of pebbles corresponding to the InputDep and Simulated distributions.
The goal is to start with no pebbles and finish by placing a Simulated pebble on
every gate in the circuit while only performing legal moves according to rules
(1) and (2) above. Every pebbling strategy gives rise to a sequence of hybrid
games H0,H1, . . . ,H� for proving selective security, where the number of hybrids
� corresponds to the number of moves and each hybrid Hi is defined by the
configuration of pebbles after i moves.

From Selective to Adaptive. The problem with translating selective security
proofs into the adaptive setting lies with the InputDep distribution of a gate.
This distribution depends on the input x (hence the name) and, in the adaptive
setting, the input x that the adversary will choose is not yet known at the time
when the garbled circuit is created. To be more precise, the InputDep distrib-
ution of a gate i only depends on the 1-bit value going over the output wire
of that gate during the computation C(x). Moreover, if we take any two fixed
hybrid games Hi,Hi+1 corresponding to two neighboring pebble configurations
(ones which differ by a single move) we can prove indistinguishability even if
the adversary does not commit to the entire n-bit input x ahead of time but
only commits to the bits going over the output wires of all gates i that are in
InputDep mode in either configuration. This means that as long as the pebbling
strategy only uses m pebbles of the InputDep type at any point in time, each
pair of hybrids Hi,Hi+1 can proved indistinguishable in a partially selective set-
ting where the adversary only commits to m bits of information about his input
ahead of time, rather than committing to the entire n bit input x. Using our
framework, this shows that whenever there is a pebbling strategy for the circuit
C that requires � moves and uses at most m pebbles of the InputDep type, we
can translate the selective hybrids into a proof of adaptive security where the
security loss is � · 2m.

It turns out that for any graph of depth d there is a pebbling strategy that
uses O(d) pebbles and � = 2O(d) moves, meaning that we can prove adaptive
security with a 2O(d) security loss. This leads to a proof of adaptive security
for NC1 circuits where the reduction has only polynomial security loss, but more
generally we can often get a much smaller security loss than the trivial 2n bound
achieved by näıve random guessing.8

8 The presentation in [16] follows the above outline fairly closely and the reader can
easily match it with our general framework. The one conceptual difference is that
we think of all the hybrids Hi as existing in the selective setting where the adversary
commits to the entire input but then we analyze indistinguishability of neighboring
hybrids in a partially selective setting. The work of [16] thought of the hybrids Hi

as already being partially selective, which made it difficult to compare neighboring
hybrids, since the adversary was expected to commit to different information in each
one. We view our new framework as being conceptually simpler.
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1.4 Constrained Pseudorandom Functions

Goldreich et al. [11] introduced the notion of a pseudorandom function (PRF).
A PRF is an efficiently computable keyed function F : K×X → Y, where F(k, ·),
instantiated with a random key k ← K, cannot be distinguished from a function
randomly chosen from the set of all functions X → Y with non-negligible proba-
bility. More recently, the notion of constrained pseudorandom functions (CPRF)
was introduced as an extension of PRFs, by Boneh and Waters [5], Boyle et al. [6]
and Kiayias et al. [19], independently. Informally, a constrained PRF allows the
holder of a master key to derive keys which are constrained to a set, in the sense
that such a key can be used to evaluate the PRF on that set, while the outputs
on inputs outside of this set remain indistinguishable from random.

Goldreich et al., in addition to formally defining PRFs, gave a construction
of a PRF from any length doubling pseudorandom generator (PRG). Their con-
struction is depicted in Fig. 2. All three of the aforementioned results [5,6,19]
show that this GGM construction already gives a so-called “prefix-constrained”
PRF, which is a CPRF where for any x ∈ {0, 1}∗, one can give out keys which
allow to evaluate the PRF on all inputs whose prefix is x. This is a simple but
already very interesting class of CPRFs as it can be used to construct a punc-
tured PRF, which in turn is a major tool in constructing various sophisticated
primitives based on indistinguishability obfuscation (see, for example, [5,13,26]).

k∅

k0

k00

k000 k001

k01

k010 k011

k1

k10

k100 k101

k11

k110 k111

Fig. 2. Illustration of the GGM PRF. Every left child kx‖0 of a node kx is defined
as the first half of PRG(kx), the right child kx‖1 as the second half. The circled node
corresponds to GGM(k∅, 010).

Prior Work. To show that the GGM construction is a prefix-constrained PRF
one must show how to transform an adversary that breaks GGM as a prefix-
constrained PRF into a distinguisher for the underlying PRG. The proofs in
[5,6,19] only show selective security, where the adversary must initially commit
to the output he wants to be challenged on in the security game. There is a loss in
tightness by a factor of 2n. This can then be turned into a proof against adaptive
adversaries via random guessing, losing an additional exponential factor 2n in
the input length n.

Fuchsbauer et al. [9] showed that it is possible to achieve adaptive security
by losing only factor of (3q)log n, where q denotes the number of queries made by
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the adversary—if q is polynomial, the loss is not exponential as before, but just
quasi-polynomial. The bound relies on the so-called “nested hybrids” technique.
Informally, the idea is to iterate random guessing and hybrid arguments several
times. The random guessing is done in a way where one only has to guess some
tiny amount of information, which although insufficient to get a full reduction
using the hybrid argument, nevertheless reduces the complexity of the task sig-
nificantly. Every such iteration “cuts” the domain in half, so after logarithmically
many iterations the reduction is done. If the number of iterations is small, and
the amount of information guessed in each iteration tiny, this can still lead to a
reduction with much smaller loss than “single shot” random guessing.

Our Results. We cast the result in [9] in our framework, giving an arguably
simpler and more intuitive proof. To this aim, we first describe the GGM con-
struction and sketch its security proof.

Given a PRG : {0, 1}m → {0, 1}2m, the PRF GGM : {0, 1}m × {0, 1}n →
{0, 1}m is defined recursively as

GGM(k, x) = kx where k∅ = k and kx‖0‖kx‖1 = PRG(kx).

The construction is also a prefix-constrained PRF: given a key kx for any x ∈
{0, 1}∗, one can evaluate GGM(k, x′) for all x′ whose prefix is x.

The security of the GGM as a PRF is given in [11]. In particular, they show
that if an adversary exists who distinguishes GGM(k, ·) (real experiment) from
a uniformly random function (random experiment) with advantage ε making q
(adaptive) queries, then an adversary of roughly the same complexity exists who
distinguishes PRG(Um) from U2m with advantage ε/nq. Thus if we assume that
PRG is δ-secure, then GGM is δnq-secure against any q-query adversary of the
same complexity. This is one of the earliest applications of the hybrid argument.

The security definition for CPRFs is quite different from that of standard
PRFs: the adversary will get to query the CPRF F(k, ·) in both, the real and
random experiment (and can ask for constrained keys, not just regular outputs),
and only at the very end the adversary will choose a challenge query x∗, which
is then answered with either the correct CPRF output F(k, x∗) (in the real
experiment) or a random value (in the random experiment). In the selective
version of these security experiments, the adversary has to choose the challenge
x∗ before making any queries. In particular, for the case of prefix-constrained
PRFs, the experiment is as follows. The challenger samples k ∈ {0, 1}n uniformly
at random. The adversary A first commits to some x∗ ∈ {0, 1}n. Then it can
make constrain queries x ∈ {0, 1}∗ for any x which is not a prefix of x∗, and
receives the constrained key kx in return. Finally, A gets either GGM(k, x∗) (in
the real game) or a random value, and must guess which is the case.

Selective Hybrids. A näıve sequence of selective hybrids, which is of length 2n,
relies just on the knowledge of x∗. For n = 8 the corresponding 16 hybrid
games are illustrated in Fig. 1a. Each path C(n) corresponds to a hybrid, and it
“encodes” how the value of the function F is computed on the challenge input
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x∗ (and this determines how the function is computed on the rest of the inputs
too). An edge that does not carry a pebble is computed, normally, as defined
in GGM—i.e., if the ith edge is not pebbled then kx∗[1,i−1]‖0‖kx∗[1,i−1]‖1 is set
to PRG(kx[1,i−1]), where for x ∈ {0, 1}n, x[1, i] denotes its i bit prefix. On the
other hand, for an edge with a pebble, we replace the PRG output with a ran-
dom value—i.e., kx∗[1,i−1]‖0‖kx∗[1,i−1]‖1 is set to a uniformly random string in
{0, 1}2m. It’s not hard to see that any distinguisher for two consecutive hybrids
can be directly used to break the PRG with the same advantage by embedding
the PRG-challenge – which is either U2m or PRG(Um) – at the right place. Using
random guessing we can get adaptive security losing an additional factor 2n in
the distinguishing advantage by initially guessing x∗ ∈ {0, 1}n.

From Selective to Adaptive. Before we explain the improved reduction, we take
a step back and consider an even more selective game where A must com-
mit, in addition to the challenge query xq = x∗, also to the constrain queries
{x1, . . . , xq−1}. We can use the knowledge of x1, . . . , xq−1 to get a better sequence
of hybrids: this requires two tricks. First, as in GSD on a path, instead of using
the pebbling strategy in Fig. 1a, we switch to the recursive pebbling sequence in
Fig. 1b. Second, we need a more concise “indexing” for the pebbles: unlike in the
proof for GSD, here we can’t simply give the positions of the (up to log n + 1)
pebbles as hint to simulate the hybrids, as the graph has exponential size, thus
even the position of a single pebble would require as many bits to encode as the
challenge x∗. Instead, we assume there’s an upper bound q on the number of
queries made by the adversary. For a pebble on the ith edge, we just give the
index of the first constrain query whose i bit prefix coincides with x∗, i.e., the
minimum j such that xj [1, i] = x∗[1, i]. This information is sufficient to tell when
exactly during the experiment we have to compute a value that corresponds to
a pebbled edge.

As there are 3log n hybrids, and each hint comes from a set of size qlog n (i.e.,
a value ≤ q for every pebble), our Theorem 2 implies that GGM is a δ(3q)log n

secure prefix-constrained PRF if PRG is δ secure. Details are given in the full
version [15].

2 Notation

Throughout, we use λ to denote the security parameter. We use capital let-
ters like X to denote variables, small letters like x to denote concrete values,
calligraphic letters like X to denote sets and sans-serif letters like X to denote
algorithms. Our algorithms can all be modelled as (potentially interactive, prob-
abilistic, polynomial time) Turing machines. With X ≡ Y we denote that X has
exactly the same input/output distribution as Y, and X ∼ Y denotes that X
and Y have the same distributions. UX denotes the uniform distribution over X .
In particular, Un denotes the uniform distribution over {0, 1}n. For a set X , sX
denotes the complexity of sampling uniformly at random from X . For a, b ∈ N,
a ≥ b, by [a, b] we denote the set {a, a + 1, . . . , b}. For x ∈ {0, 1}n we’ll denote
with x[1, i] its i bit prefix.
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3 The Framework

We consider a game described via a challenger G which interacts with an adver-
sary A. At the end of the interaction, G outputs a decision bit b and we let 〈A,G〉
denote the random variable corresponding to that bit.

Definition 1. We say that two games defined via challengers G0 and G1 are
(s, ε)-indistinguishable if for any adversary A of size at most s:

|Pr[〈A,G0〉 = 1] − Pr[〈A,G1〉 = 1]| ≤ ε.

We say that two games are perfectly indistinguishable and write G0 ≡ G1 if they
are (∞, 0)-indistinguishable.

Selectivized Games. We define two operations that convert adaptive or partially
selective games into further selective games.

Definition 2 (Selectivized Game). Given an (adaptive) game G and some
function g : {0, 1}∗ → W we define the selectivized game H = SELW [G, g] which
works as follows. The adversary A first sends a commitment w ∈ W to H.
Then H runs the challenger G against A, at the end of which G outputs a
bit b′. Let transcript denote all communication exchanged between G and A. If
g(transcript) = w then H outputs the bit b′ and else it outputs 0. See Fig. 3(a).

Note that the selectivized game gets a commitment w from the adversary but
essentially ignores it during the rest of the game. Only, at the very end of the
game, it checks that the commitment matches what actually happened during
the game.

Definition 3 (Further Selectivized Game). Assume Ĥ is a (partially selec-
tive) game which expects to receive some commitment u ∈ U from the adversary
in the first round. Given functions g : {0, 1}∗ → W and h : W → U we define
the further selectivized game H = SELU→W [Ĥ, g, h] as follows. The adversary
A first sends a commitment w ∈ W to H and H begins running Ĥ and passes
it u = h(w). It then continues running the game between Ĥ and A at the end
of which Ĥ outputs a bit b′. Let transcript denote all communication exchanged
between Ĥ and A. If g(transcript) = w then H outputs the bit b′ and else it outputs
0. See Fig. 3(b).

Note that if Ĥ is a (partially selective) game where the adversary sends some
commitment u, then in the further selectivized game the adversary might have to
commit to more information w. The further selectivized game essentially ignores
w and only relies on the partial information u = h(w) during the course of the
game but only at the very end is still checks that the full commitment w matches
what actually happened during the game.
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Fig. 3. Selectivizing. (a): SELW [G, g], and (b): SELU→W [Ĥ, g, h]. The symbol τ is short
for transcript, the nodes with g and h compute the respective functions, whereas the
node with = outputs a bit b as prescribed in the consistency check.

Random Guessing. We first present the basic reduction using random guessing.

Lemma 1. Assume we have two games defined via challengers G0 and G1

respectively. Let g : {0, 1}∗ → W be an arbitrary function and define the
selectivized games Hb = SELW [Gb, g] for b ∈ {0, 1}. If H0, H1 are (s, ε)-
indistinguishable then G0, G1 are (s − sW , ε · |W|)-indistinguishable, where sW
denotes the complexity of sampling uniformly at random from W.

Proof. We prove the contrapositive. Assume that there is an adversary A of size
s′ = s − sW such that

|Pr[〈A,G0〉 = 1] − Pr[〈A,G1〉 = 1]| > ε · |W|.

Let A∗ be the adversary that first chooses a uniformly random w ← W and then
runs A. Then for b ∈ {0, 1}:

Pr[〈A∗,Hb〉 = 1] = Pr[〈A,Gb〉 = 1]/|W|

and therefore
|Pr[〈A∗,H0〉 = 1] − Pr[〈A∗,H1〉 = 1]| > ε.

Moreover, since A∗ is of size s′ + sW = s this shows that H0 and H1 are not
(s, ε)-indistinguishable.
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Partially Selective Hybrids. Consider the following setup. We have two
adaptive games GL and GR. For some function g : {0, 1}∗ → W we define the
selectivized games HL = SELW [GL, g], HR = SELW [GR, g] where the adver-
sary commits to some information w ∈ W. Moreover, to show the indis-
itinguishability of HL,HR we have a sequence of � (selective) hybrid games
HL = H0,H1, . . . ,H� = HR.

If we only assume that neighboring hybrids Hi,Hi+1 are indistinguishable
then by combining the hybrid argument and random guessing we know that GL

and GR are indistinguishable at a security loss of � · |W|.
Theorem 1. Assume that for each i ∈ {0, . . . , � − 1}, the games Hi,Hi+1 are
(s, ε)-indistinguishable. Then GL and GR are (s−sW , ε ·� · |W|)-indistinguishable,
where sW denotes the complexity of sampling uniformly at random from W.

Proof. Follows from Lemma 1 and the hybrid argument.

Our goal is to avoid the loss of |W| in the above theorem. To achieve this, we
will assume a stronger condition: not only are neighboring hybrids Hi,Hi+1 indis-
tinguishable, but they are selectivized versions of less selective games Ĥi,0, Ĥi,1

which are already indistinguishable. In particular, we assume that for each pair
of neighboring hybrids Hi,Hi+1 there exist some less selective hybrids Ĥi,0, Ĥi,1

where the adversary only commits to much less information hi(w) ∈ U instead
of w ∈ W. In more detail, for each i there is some function hi : W → U that lets
us interpret Hi+b as a selectivized version of Ĥi,b via Hi+b ≡ SELU→W [Ĥi,b, g, hi].
In that case, the next theorem shows that we only get a security loss propor-
tional to |U| rather than |W|. Note that different pairs of “less selective hybrids”
Ĥi,0, Ĥi,1 rely on completely different partial information hi(w) about the adver-
sary’s choices. Moreover, the “less selective” hybrid that we associate with each
Hi can be different when we compare Hi−1,Hi (in which case it is Ĥi−1,1) and
when we compare Hi and Hi+1 (in which case it is Ĥi,0).

Theorem 2 (main). Let GL and GR be two adaptive games. For some func-
tion g : {0, 1}∗ → W we define the selectivized games HL = SELW [GL, g],
HR = SELW [GR, g]. Let HL = H0,H1, . . . ,H� = HR be some sequence of hybrid
games.

Assume that for each i ∈ {0, . . . , � − 1}, there exists a function hi : W → U
and games Ĥi,0, Ĥi,1 such that:

Hi ≡ SELU→W [Ĥi,0, g, hi], Hi+1 ≡ SELU→W [Ĥi,1, g, hi]. (1)

Furthermore, assume that Ĥi,0, Ĥi,1 are (s, ε)-indistinguishable. Then GL and
GR are (s − sU , ε · � · |U|)-indistinguishable, where sU denotes the complexity of
sampling uniformly at random from U .

Proof. Assume that A is an adaptive distinguisher for GL and GR of size s′ such
that

|Pr[〈A,GL〉 = 1] − Pr[〈A,GR〉 = 1]| > ε′.
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Let A∗ be a fully selective distinguisher that guesses w ← W uniformly at random
in the first round and then runs A. By the same argument as in Lemma 1 and
Theorem 1 we know that there exists some i ∈ [0, �) such that:

|Pr[〈A∗,Hi〉 = 1] − Pr[〈A∗,Hi+1〉 = 1]| ≥ ε′/(� · |W|) (2)

Let A′ be a partially selective distinguisher that guesses u ← U uniformly at
random in the first round and then runs A. We want to relate the probabilities
Pr[〈A∗,Hi+b〉 = 1] and Pr[〈A′, Ĥi,b〉 = 1].

Recall that the game 〈A∗,Hi+b〉 consists of A∗ selecting a uniformly random
value w ← W (which we denote by the random variable W ) and then we run A
against Ĥi,b(u) (denoting the challenger Ĥi,b that gets a commitment u in first
round) which results in some transcript and an output bit b∗; if g(transcript) = w
the final output is b∗ else 0.

Similarly, the game 〈A′, Ĥi,b〉 consists of A′ selecting a uniformly random
value u ← U (which we denote by the random variable U) and then we run A
against Ĥi,b(u). Therefore:

Pr[〈A∗,Hi+b〉 = 1]

=
∑

u∈U
Pr[hi(W ) = u

︸ ︷︷ ︸

I

] · Pr[〈A, Ĥi,b(u)〉 = 1
︸ ︷︷ ︸

II

] · Pr[W = g(transcript)|I, II]

=
∑

u∈U

|h−1
i (u)|
|W| · Pr[〈A, Ĥi,b(u)〉 = 1] · 1

|h−1
i (u)|

=
1

|W| ·
∑

u∈U
Pr[〈A, Ĥi,b(u)〉 = 1]

=
|U|
|W| ·

∑

u∈U
Pr[〈A, Ĥi,b(u)〉 = 1] · Pr[U = u]

=
|U|
|W| · Pr[〈A′, Ĥi,b〉 = 1]

Combining the above with Eq. 2 we get:

|Pr[〈A′, Ĥi,0〉 = 1] − Pr[〈A′, Ĥi,1〉 = 1]| ≥ ε′/(� · |U|)
Since by assumption Ĥi,0, Ĥi,1 are (s, ε)-indistinguishable and A′ is of size

s′ + sU this shows that when s′ = s − sU then ε′ ≤ ε · � · |U| which proves the
theorem.

3.1 Example: GSD on a Path

As an example, we consider the problem of generalised selective decryption
(GSD) on a path graph with n edges, where n is a power of two.

Let (Enc,Dec) be a symmetric encryption scheme with (probabilistic)
Enc : K × M → C and Dec : K × C → M. We assume K ⊆ M so that we can
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encrypt keys, and that the encryption scheme is (s, δ)-indistinguishable under
chosen-plaintext attack.9 In the game, the challenger—either GL or GR—picks
n + 1 random keys k0, . . . , kn ∈ K, and the adversary A is then allowed to make
two types of queries:

– Encryption queries, (encrypt, vi, vj): it receives back Enc(ki, kj).
– Challenge query, (challenge, vi∗): here the answer differs between GL and
GR, with GL answering with ki∗ (real key) and GR answering with r ← K
(random, “fake” key).

A cannot ask arbitrary queries: it is restricted to encryption queries that form
a path graph with the challenge query as the sink. That is, a valid attacker A
is allowed exactly n encryption queries (encrypt, vit , vjt), for t = 1, . . . , n, and
a single (challenge, vi∗) query such that the directed graph Gκ = (V, E) with
V = {v0, . . . , vn} and E = {(vi1 , vj1), . . . , (vin , vjn)} forms a path with sink vi∗ .

Fully Selective Hybrids. Let’s look at a näıve sequence of intermediate hybrids
H0, . . . ,H2n−1. The fully selective challenger HI receives as commitment the
exact permutation σ that A will query—i.e., vσ(i) is the ith vertex on the path.
Therefore, W = Sn+1 (the symmetry group over 0, . . . , n) and g is the function
that outputs the observed permutation from transcript. Next, HI samples 2(n+1)
keys k0, . . . , kn, r0, . . . , rn, and when A makes a query (encrypt, vσ(i), vσ(i+1)),
it returns

for 0 ≤ I ≤ n :

Enc(kσ(i), rσ(i+1)) if (0 ≤ i ≤ I) (Fake edge)
Enc(kσ(i), kσ(i+1)) otherwise. (Real edge)

for n < I ≤ 2n − 1 :

Enc(kσ(i), rσ(i+1)) if (0 ≤ i ≤ 2n − 1 − I) ∨ (i = n − 1) (Fake edge)
Enc(kσ(i), kσ(i+1)) otherwise. (Real edge) (3)

Thus, in the sequence H0, . . . ,H2n−1, edges are “faked” sequentially down
the path, and then “restored”, except for the last edge, in the reverse order
up the path—see Fig. 1a. By definition, H0 = GL and H2n−1 = GR. More-
over, HI and HI+1 can be shown (s, δ)-indistinguishable: when A queries for
(encrypt, vσ(I), vσ(I+1)), the reduction RI returns the challenge ciphertext

C(·, kσ(I+1), rσ(I+1)) if (I ≤ n) (Real to fake)
C(·, rσ(I+1), kσ(I+1)) otherwise. (Fake to real) (4)

For the rest of the queries, RI works as prescribed in Eq. 3.10 It is easy to see
that RI simulates HI when the ciphertext corresponds to the first message, and
9 To be precise, we only need the encryption scheme to be secure in a weaker model

where encryptions of two random messages m0, m1 ∈ K under a random key k ∈
K are (s, δ)-indistinguishable, with the adversary having access to ciphertexts on
random messages from K.

10 Even though RI does not know the key kσ(I), the query (encrypt, vσ(I−1), vσ(I)) does
not cause a problem as its response is Enc(kσ(I), rσ(I−1)).
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HI+1 otherwise. By Theorem 1, (s−n·sEnc, δ(2n+1)(n+1)!)-indistinguishability
of GL and GR follows, where sEnc is the complexity of the Enc algorithm and the
(n + 1)! factor is the size of the set W = Sn+1.

Partially Selective Hybrids. In order to simulate according to the strategy just
described, it suffices for the hybrid (as well as the reduction) to guess the edges
that are faked—however, this number can be at most n (e.g., in the middle
hybrids) and, therefore, the simulator guesses the whole path anyway. Intuitively,
this is where the overall looseness of the bound stems from. Now, consider the
alternative sequence of hybrids H̃0, . . . , H̃27 given in Fig. 1b: the edges in this
sequence are faked and restored, one at a time, in a recursive manner to ensure
that at most four edges end up fake per hybrid. In particular, the new hybrid
H̃I , fakes all the edges that belong to a set PI ⊆ E . That is, when A makes a
query (encrypt, vi, vj)—instead of following Eq. 3,—H̃I returns

Enc(ki, rj) if ((vi, vj) ∈ PI) (Fake edge)
Enc(ki, kj) otherwise. (Real edge) (5)

This strategy can be extended to arbitrary n, and there exists such a sequence
of sets P0, . . . ,P3log n where the sets are of size at most log n + 1.11

H̃A
I+b

1: Obtain σ ∈ Sn+1 from A
2: Compute P := P0, . . . ,P�

3: Run ĤI,b((PI ,PI+1))
4: if g(transcript) = σ then
5: return ĤI,b’s output
6: else return 0
7: end if

ĤA
I,b((PI ,PI+1))
1: Choose 2n keys r1, . . . , rn, k1, . . . , kn ← K
2: Whenever A queries (encrypt, vi, vj):
3: if (vi, vj) ∈ PI+b then return Enc(ki, rj)
4: else return Enc(ki, kj)
5: end if
6: return A’s output

Algorithm 1: H̃I+b = SELU→W [ĤI,b, g, hI ]

Next, we show that the above simulation strategy satisfies the requirements
for applying Theorem 2. Firstly, as shown in Algorithm 1, the strategy is par-
tially selective—i.e., H̃I+b = SELU→W [ĤI,b, g, hI ], where, for I ∈ [0, � = 3log n],
the function hI : Sn+1 → E log n+1 computes PI . Secondly, as the simulation
in ĤI,0 and ĤI,1 differ by exactly one edge—which is real in one and fake
in the other—they can be shown to be (s, δ)-indistinguishable. To be precise,
if (vi∗ , vj∗) := PI�PI+1, where � denotes the symmetric difference, when A

queries for (encrypt, vi∗ , vj∗), the reduction R̃I returns

C(·, kj∗ , rj∗) if (PI ⊂ PI+1) (Real to fake)
C(·, rj∗ , kj∗) otherwise. (Fake to real) (6)

with the rest of the queries answered as in Eq. 5.
11 In the full version, one can see that the sequence P0, . . . , P3log n corresponds to an

“edge-pebbling” of the path graph.
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Although, the number of hybrids is greater than in the previous sequence,
the number of fake edges in any hybrid is at most log n + 1. Thus, the reduction
can work with less information than earlier. By Theorem 2, (s − n · sEnc − sP , δ ·
3log n · n2(log n+1))-indistinguishability of GL and GR follows, where sP is the size
of the algorithm that generates the set P = {P0, . . . ,P�}, and the n2(log n+1)

factor results from the fact that the compressed set U = E log n+1. Thus, the
bound is improved considerably from exponential to quasi-polynomial. A more
formal treatment is given in the full version [15].

4 Adaptive Secret Sharing for Monotone Circuits

Throughout history there have been many formulations of secret sharing
schemes, each providing a different notion of correctness or security. We focus
here on the computational setting and adapt the definitions of [21] for our pur-
poses. Rogaway and Bellare [25] survey many different definitions, so we refer
there for more information.

A computational secret sharing scheme involves a dealer who has a secret, a
set of n parties, and a collection M of “qualified” subsets of parties called the
access structure.

Definition 4 (Access structure). An access structure M on parties [n] is a
monotone set of subsets of [n]. That is, M ⊆ 2[n] and for all X ∈ M and X ⊆ X ′

it holds that X ′ ∈ M .

We sometimes think of M as a characteristic function M : 2[n] → {0, 1} that
outputs 1 on input X if and only if X is in the access structure. Here, we mostly
consider access structures that can be described by a monotone Boolean circuit.
These are directed acyclic graphs (DAGs) in which leaves are labeled by input
variables and every internal node is labeled by an OR or AND operation. We
assume that the circuit has fan-in kin and fan-out (at most) kout. The computa-
tion is done in the natural way from the leaves to the root which corresponds to
the output of the computation. A circuit in which every gate has fan-out kout = 1
is called a formula.

A secret sharing scheme for M is a method by which the dealer efficiently
distributes shares to the parties such that (1) any subset in M can efficiently
reconstruct the secret from its shares, and (2) any subset not in M cannot
efficiently reveal any partial information on the secret. We denote by Πi the
share of party i and by ΠX the joint shares of parties X ⊆ [n].

Definition 5 (Secret sharing). Let M : 2[n] → {0, 1} be an access structure.
A secret sharing scheme for M consists and secret space S of efficient sharing
and reconstruction procedures S and R, respectively, that satisfy the following
requirements:

1. S(1λ, n, S) gets as input the unary representation of a security parameter, the
number of parties and a secret S ∈ S, and generates a share for each party.
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2. R(1λ,ΠX) gets as input the unary representation of a security parameter, the
shares of a subset of parties X, and outputs a string S′.

3. Completeness: For a qualified set X ∈ M the reconstruction procedure R
outputs the shared secret:

Pr
[

R(1λ,ΠX) = S
]

= 1,

where the probability is over the randomness of the sharing procedure Π1, . . . ,
Πn ← S(1λ, n, S).

4. Adaptive security: For every adversary A of size s it holds that

|Pr[〈A,G0〉 = 1] − Pr[〈A,G1〉 = 1]| ≤ ε,

where the challenger Gb is defined as follows:
(a) The adversary A specifies a secret S ∈ S.

i. If b = 0: the challenger generate shares Π1, . . . , Πn ← S(1λ, n, S).
ii. If b = 1: the challenger samples a random S′ ∈ S and generate shares

Π1, . . . , Πn ← S(1λ, n, S′).
(b) The adversary adaptively specifies an index i ∈ [n] and if the set of parties

he requested so far is unqualified, he gets back Πi, the share of the i-th
party.

(c) Finally, the adversary outputs a bit b′, which is the output of the experi-
ment.

The selective security variant is obtained by changing item 4b in the definition
of the challenger Gb so that the adversary first sends a commitment to the set
of shares X he wants to see ahead of time before seeing any share. We denote
this challenger by Hb = SEL2[n] [Gb,X].

4.1 The Scheme of Yao

Here we describe the scheme of Yao (mentioned in [1], see also Vinod et al. [28]).
The access structure M is given by a monotone Boolean circuit that is composed
of AND and OR gates with fan-in kin and fan-out (at most) kout. Each leaf in
the circuit is associated with an input variable x1, . . . , xn (there may be multiple
inputs corresponding to the same input variable). During the sharing process,
each wire in the circuit is assigned a label and the shares of party i ∈ [n]
corresponds to the labels of the wires corresponding to the input variable xi.
The sharing is done from the output wire to the leaves. The reconstruction is
done in reverse: using the shares of the parties (that correspond to labels of the
input wires), we recover the label of the output wire which will correspond to
the secret.

The scheme (S,R) uses a symmetric-key encryption scheme SKE = (Enc,
Dec) in which keys are uniformly random strings in {0, 1}λ and is ε-secure: any
polynomial-time adversary cannot distinguish the encryption of m1 ∈ {0, 1}λ

from an encryption of m2 ∈ {0, 1}λ with probability larger than ε. The sharing
procedure S is described in Fig. 4.
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The sharing procedure S:

Input : A secret S ∈ {0, 1}λ.

1. Initialize Π(S, i) = ∅ for every i ∈ [n].
2. Label the output wire ow with the secret �ow = S.
3. Repeat the following until all input wires of the circuit are labeled.

(a) Let g be a gate with kin input wires and (at most) kout output wires.
Let w′

1, . . . , w
′
kout

be the output wires of g having labels �w′
1
, . . . , �w′

kout
and

w1, . . . , wkin be the input wires. Associate with g a fresh encryption key
sg ← {0, 1}λ.

(b) If g = AND, assign the label of w1, . . . , wkin to be random conditioned on
�w1 ⊕ · · · ⊕ �wkin

= sg.
(c) If g = OR, assign the label of w1, . . . , wkin to be sg.
(d) For every i ∈ [n], add to the share of the ith party an encryption of the labels

of the w′
i’s under sg. That is,

Π(S, i) = Π(S, i) ∪ {(g,Encsg (�w′
1
), . . . ,Encsg (�w′

kout
))}.

4. For every input wire w associated with the input variable xi, add to the share of
the ith party the tuple that consists of the name of the wire and its label:

Π(S, i) = Π(S, i) ∪ {(w, �w)}.

5. Output Π(S, 1), . . . , Π(S, n).

Fig. 4. Yao’s secret sharing scheme (S,R) for an access structure M described by a
monotone Boolean circuit.

The reconstruction procedure R of the scheme is essentially applying the
reverse operations from the leaves of the circuit to the root. Given the labels
of the input wires of an AND gate g, we recover the key associated with g by
applying a XOR operation on the labels of the input wires, and then recover the
labels of the output wires by decrypting the corresponding ciphertexts. Given
the labels of the input wires of an OR gate g, we recover the key associated with
g by setting it to be the label of any input wire, and then recover the labels of
the output wires by decrypting the corresponding ciphertexts. The label of the
output wire of the root gate is the recovered secret.

The scheme is efficient in the sense that the share size of each party is bounded
by kout · λ · s, where s is the number of gates in the circuit. So, if the circuit is
of polynomial-size (in n), then the share size is also polynomial (in n and in the
security parameter).

Correctness of the scheme follows by an induction on the depth of the circuit
and we omit further details here. Vinod et al. [28] proved that this scheme12 is
selectively secure by a sequence of roughly s hybrid arguments, where s is the

12 To be more precise, the scheme that Vinod et al. presented and analyzed is slightly
different. Specifically, they considered AND and OR gates with fan-out 1 and showed
how to separately handle FAN-OUT gates (gates that have fan-in 1 and fan-out 2).
Their analysis can be modified to handle our scheme.
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number of gates in the circuit representation of M . By the basic random guessing
lemma (Lemma 1), this scheme is also adaptively secure but the security loss
is exponential in the number of players the adversary requests to see. The later
can be exponential in O(n) so for our scheme to be adaptively secure, we need
the encryption scheme to be exponentially secure.

Theorem 3 [28]. Assume that SKE is a ε-secure symmetric-key encryption
scheme. Then, for any polynomial-time adversary A and any access structure
on n parties described by a monotone circuit with s gates, it holds that

|Pr[〈A,H0〉 = 1] − Pr[〈A,H1〉 = 1]| ≤ kout · s · ε,

and (using Lemma 1),

|Pr[〈A,G0〉 = 1] − Pr[〈A,G1〉 = 1]| ≤ 2n · kout · s · ε,

In the following subsection we prove that the scheme is adaptively secure and
the security loss is roughly 2d·log s, where d and s are the depth and number of
gates, respectively, in the circuit representing the access structure.

Theorem 4. Assume that SKE is ε-secure. Then, for any polynomial-time
adversary A and any access structure on n parties described by a monotone
circuit of depth d and s gates with fan-in kin and fan-out kout, it holds that

|Pr[〈A,G0〉 = 1] − Pr[〈A,G1〉 = 1]| ≤ 2d·(log s+log kin+2) · (2kin)2d · kout · ε.

4.2 Hybrids and Pebbling Configurations

To prove Theorem 4 we rely on the framework introduced in Theorem 2 that
we briefly recall here. Our goal is to prove that an adversary cannot distinguish
the challengers GL = G0 and GR = G1, corresponding to the adaptive game.
We define the selective version of the games HL = SEL2[n] [GL,X] and HR =
SEL2[n] [GR,X], where the adversary has to commit to the whole set of shares it
wished to see ahead of time. We construct a sequence of � selective hybrid games
HL = H0,H1, . . . ,H�−1,H� = HR. For each Hi we define two selective games Ĥi,0

and Ĥi,1 and show that for every i ∈ {0, . . . , �−1}, there exists a mapping hi such
that the games Hi+b and Ĥi,b (for b ∈ {0, 1}) are equivalent up to the encoding
of the inputs to the games (given by hi). Then, we can apply Theorem 2 and
obtain our result.

The Fully-Selective Hybrids. The sequence of fully selective hybrids HL = H0,
H1, . . . ,H�−1,H� = HR is defined such that each experiment is associated with a
pebbling configuration. In a pebbling configuration, each gate is either pebbled or
unpebbled. A configuration is specified by a compressed string that fully specifies
the names of the gates which have a pebble on them (and the rest of the gates
implicitly do not). We will define the possible pebbling configurations later but
for now let us denote by Q the number of possible pebbling configurations.
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We define for every j ∈ [Q], a hybrid experiment Hj in which the adversary
first commits to the set X of parties it wishes to see their shares, and then the
challenger executes a new sharing procedure Sj that depends on the j-th peb-
bling configuration. Roughly, this sharing procedure acts exactly as the original
sharing procedure S, but whenever it encounters a gate with a pebble it gen-
erates bogus ciphertexts rather than the real ones. This sharing procedure is
described in Fig. 5.

The sharing procedure Sj:

Input : A secret S ∈ {0, 1}λ.

1. Initialize Πi = ∅ for every i ∈ [n].
2. Label the output wire ow with the secret �ow = S.
3. Repeat the following until all input wires of the circuit are labeled.

(a) Let g be a gate with kin input wires and (at most) kout output wires.
Let w′

1, . . . , w
′
kout

be the output wires of g having labels �w′
1
, . . . , �w′

kout
and

w1, . . . , wkin be the input wires. Associate with g a fresh encryption key
sg ← {0, 1}λ.

(b) If g = AND, assign the label of w1, . . . , wkin to be random conditioned on
�w1 ⊕ · · · ⊕ �wkin

= sg.
(c) If g = OR, assign the label of w1, . . . , wkin to be sg.
(d) If g has no pebble on it: For every i ∈ [n], add to the share of the ith party

an encryption of the labels of the w′
i’s under sg. That is,

Πi = Πi ∪
(
g,Encsg (�w′

1
), . . . ,Encsg (�w′

kout
)
)

.

(e) If g has a pebble on it: Sample fresh random strings r1, . . . , rkout and for every
i ∈ [n], add to the share of the ith party an encryption of ri and under sg.
That is,

Πi = Πi ∪ {(g,Encsg (r1), . . . ,Encsg (rkout))}.

4. For every input wire w associated with the input variable xi, add to the share of
the ith party the tuple that consists of the name of the wire and its label:

Πi = Πi ∪ {(w, �w)}.

5. Output Π1, . . . , Πn.

Fig. 5. The sharing procedure Sj for an access structure M , described by a monotone
Boolean circuit, and the j-th pebbling configuration which encodes the color of the
pebble on each gates.

Observe that the hybrid that corresponds to the configuration in which all
gates are unpebbled is identical to the experiment HL and the configuration in
which there is a pebble only on the root gate corresponds to the experiment HR.
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Pebbling Rules and Strategies. The rules of the pebbling game depend on the
subset of parties whose shares the adversary sees. The rules are:

1. Can place or remove a pebble on any AND gate for which (at least) one input
wire is either not in X or comes out of a gate with a pebble on it.

2. Can place or remove a pebble on any OR gate for which all of the incoming
wires are either input wires not in X or come out of gates all of which have
pebbles on them.

Our goal is to find a sequence of pebbling rules so that starting with the initial
configuration (in which there are no pebbles at all) will end up with a pebbling
configuration in which only the root has a pebble. Jumping ahead, we would like
for the sequence of pebbling rules to have the property that each configuration
is as short to describe as possible (i.e., minimize Q). One way to achieve this
is to have at any configuration along the way, as few pebbles as possible. An
even more succinct representation can be obtained if we allow many pebbles but
have a way to succinctly represent their location. This is what we achieve in the
following lemma.

Lemma 2. For every subset of parties X and any monotone circuit of depth
d, fan-in kin, and s gates, there exists a sequence of (2kin)2d pebbling rules such
that every pebbling configuration can be uniquely described by at most d · (log s+
log kin + 1) bits.

Proof. A pebbling configuration is described by a list of pairs (gate name,
counter), where the counter is a number between 1 and kin, and another bit
b to specify whether the root gate has a pebble or not. The counter will repre-
sent the number of predecessors, ordered from left to right, that have a pebble
on them. Any encoding uniquely defines a pebbling configuration (but notice
that the converse is not true).

Denote by TX(d) the number of pebbling rules needed (i.e., the length of the
sequence) and by PX(d) the maximum size of the description of the pebbling
configuration during the sequence. The sequence of pebbling rules is defined via a
recursive procedure in the depth d. We first pebble each of the kin predecessors of
the root from left to right and add a pair (root gate, counter) to the configuration.
After we finish pebbling each predecessor we increase the counter by 1 to keep
track of how many predecessors have been pebbled. To pebble all predecessors
we used kin · TX(d − 1) pebbling rules and the maximal size of a configuration is
at most PX(d−1)+(log s+log kin+1). The log s term comes from specifying the
name of the root gate, the log kin term come from the number of predecessors of
the root gate that have a pebble on them, and the single bit is to signal whether
the root gate is pebbled or not.

After this recursive pebbling each of the predecessors have a pebble only at
their root gate and the root (of the depth d circuit) has no pebble. Now, we need
to remove the pebble from the root of every predecessor of the root gate and put
a pebble on the root gate. For the latter we apply one pebbling rule and put a
pebble on the root gate. To remove the pebbles from the predecessors of the root
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gate we reverse the recursive pebbling procedure (by “unpebbling” from right
to left and updating the counter appropriately), resulting in the application of
additional kin · TX(d − 1) pebbling rules. When we finish unpebbling, since the
root has no predecessors with pebbles, we remove from the description of the
configuration the pair corresponding to the root gate. Thus, we get that the
maximum size of a pebbling configuration at any point in time is

PX(d) ≤ PX(d − 1) + (log s + log kin + 1) ⇒ PX(d) ≤ d · (log s + log kin + 1).

The total number of pebbling rules we apply is

TX(d) ≤ 2kin · TX(d − 1) + 1 ⇒ TX(d) ≤ (2kin)2d.

This completes the proof of the lemma.

Recall that we denote by Q the number of possible pebbling configurations.
Using the pebbling strategy from Lemma 2, we get that

Q ≤ 2d·(log s+log kin+1).

The Partially-Selective Hybrids. We define the partially selective hybrids Ĥj,0

and Ĥj,1 for every Hj and j ∈ [Q]. In both hybrid games Ĥj,0 and Ĥj,1, the
adversary first commits to the j-th pebbling configuration and the next pebbling
rule to apply. Denote by j′ ∈ [Q] the index of the pebbling configuration resulting
from applying the next configuration rule to the j-th pebbling configuration. In
Ĥj,0 the challenger samples the shares from Sj and in Ĥj,1 the challenger samples
the shares from Sj′

(but other than this the games do not change).
Denote by U the space of messages that the adversary has to commit in

the partially selective hybrids Ĥj,b. This space includes all tuples of pebbling
configurations and an additional valid pebbling rule. First, recall that there are
Q possible pebbling configurations. Seocnd, observe that a pebbling rule can be
described by a gate name: a pebbling rule is just flipping the color of the pebble
on that gate. For a circuit with s gates this requires additional log s bits. Thus,
U = {(i, g) | i ∈ [Q], g ∈ [s]} and this means that the size of U is bounded by

|U| ≤ Q · s ≤ 2d·(log s+log kin+1) · s.

By semantic security of the symmetric-key encryption scheme and the fact
that we replace kout ciphertexts with bogus ones, we have that the games Ĥj,0

and Ĥj,1 are indistinguishable. The proof is by planting the challenge ciphertext
as the ciphertext in the gate where the “next pebbling rule” is applied. In Ĥj,0

it is a “real” ciphertext while in Ĥj,1 it is a bogus one.

Lemma 3. Assume that SKE is ε-secure. Then, for any polynomial-time adver-
sary A and any access structure on n parties described by a monotone circuit it
holds that

|Pr[〈A, Ĥj,0〉 = 1] − Pr[〈A, Ĥj,1〉 = 1]| ≤ kout · ε.
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Applying Theorem 2 with the fact that � ≤ (2kin)2d and |U| ≤
2d·(log s+log kin+1) · s, we get that if SKE is ε-secure, then for any polynomial-
time adversary A and any access structure on n parties described by a monotone
circuit of depth d and s gates of fan-in kin and fan-out kout, it holds that

|Pr[〈A,G0〉 = 1] − Pr[〈A,G1〉 = 1]| ≤ 2d·(log s+log kin+1) · s · (2kin)2d · kout · ε

≤ 2d·(log s+log kin+2) · (2kin)2d · kout · ε.

5 Open Problems

In this work we presented a framework for proving adaptive security of various
schemes including secret sharing over access structures defined via monotone
circuits, generalized selective decryption, constrained PRFs, and Yao’s garbled
circuits. The most natural future direction is to find more applications where
our framework can be used to prove adaptive security with better security loss
than using the standard random guessing. Also, improving our results in terms
of security loss is an open problem.

In all of our applications of the framework, the security loss of a scheme is cap-
tured by the existence of some pebbling strategy. Does there exist a connection in
the opposite direction between the security loss of a scheme and possible pebbling
strategies? That is, is it possible to use lower bounds for pebbling strategies to show
that various security losses are necessary?

Acknowledgments. The fourth author thanks his advisor Moni Naor for asking
whether Yao’s secret sharing scheme is adaptively secure and for his support.
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Abstract. We propose a new protocol, nicknamed TinyTable, for mali-
ciously secure 2-party computation in the preprocessing model. One ver-
sion of the protocol is useful in practice and allows, for instance, secure
AES encryption with latency about 1ms and amortized time about 0.5
µs per AES block on a fast cloud set-up. Another version is interesting
from a theoretical point of view: we achieve a maliciously and uncondi-
tionally secure 2-party protocol in the preprocessing model for computing
a Boolean circuit, where both the communication complexity and pre-
processed data size needed is O(s) where s is the circuit size, while the
computational complexity is O(kεs) where k is the statistical security
parameter and ε < 1 is a constant. For general circuits with no assump-
tion on their structure, this is the best asymptotic performance achieved
so far in this model.

1 Introduction

In 2-party secure computation, two parties A and B want to compute an agreed
function securely on privately held inputs, and we want to construct protocols
ensuring that the only new information a party learns is the intended output.

In this paper we will focus on malicious security: one of the parties is under
control of an adversary and may behave arbitrarily. As is well known, this means
that we cannot guarantee that the protocol always gives output to the honest
party, but we can make sure that the output, if delivered, is correct. It is also
well known that we cannot accomplish this task without using a computational
assumption, and in fact heavy public-key machinery must be used to some extent.

However, as observed in several works [BDOZ11,DPSZ12,NNOB12,DZ13],
one can confine the use of cryptography to a preprocessing phase where the
inputs need not be known and can therefore be done at any time prior to the
actual computation. The preprocessing produces “raw material” for the on-line
phase which is executed once the inputs are known, and this phase can be infor-
mation theoretically secure, and usually has very small computational and com-
munication complexity, but round complexity proportional to the depth of the
computation in question. An alternative (which is not our focus here) is to use
c© International Association for Cryptologic Research 2017
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Yao-garbled circuits. This approach is incomparable even in the case we consider
here where the function to compute is known in advance. This is because mali-
cious security requires many garbled circuit to be stored and evaluated in the
on-line phase. Hence, the round and communication complexity is smaller than
for information theoretic protocols, but the storage and computational complex-
ity is larger.

We will focus on the case where the desired computation is specified as a
Boolean circuit. The case of arithmetic circuits over large fields was handled
in [DPSZ12] which gave a solution where communication and computational
complexities as well as the size of the preprocessed data (called data complexity
in the following) are proportional to the circuit size. The requirement is that the
field has 2Ω(k) elements where k is the security parameter and the allowed error
probability is 2−Ω(k).

On the other hand, for Boolean circuits, state of the art is the protocol from
[DZ13], nick-named MiniMac which achieves data and communication complex-
ity O(s) where s is the circuit size, and computational complexity O(kεs), where
ε < 1 is a constant. For an alternative variant of the protocol, all complexities
are O(polylog(k)s). However, the construction only works for circuits with a
sufficiently nice structure, called “well formed” circuits in [DZ13]. Informally,
a well-formed circuit allows a modest amount of parallelization throughout the
computation – for instance, very tall and skinny circuits are not allowed. If
well-formedness is not assumed, both complexities would be Ω(ks) using known
protocols.

On the practical side, many of the protocols in the preprocessing model are
potentially practical and several of them have been implemented. In particular,
implementations of the MiniMac protocol were reported in [DLT14,DZ16]. In
[DLT14], MiniMac was optimised and used for computing many instances of
the same Boolean circuit in parallel, while in [DZ16] the protocol was adapted
specifically for computing the AES circuit, which resulted in an implementation
with latency about 6 ms and an amortised time of 0,4 ms per AES block.

Our Contribution. In this paper, we introduce a new protocol for the preprocess-
ing model, nick-named TinyTable. The idea is to implement each (non-linear)
gate by a scrambled version of its truthtable. Players will do look-ups in the
tables using bits that are masked by uniformly random bits chosen in the pre-
processing phase, together with the tables.

The idea of gate-scrambling goes back at least to [CDvdG87] where a (much
less efficient) approach based on the quadratic residuosity problem was pro-
posed. Scrambled truth tables also appear more recently in [IKM+13], but here
the truthtable for the entire function is scrambled, leading to a protocol with
complexity exponential in the length of the inputs (but very small communica-
tion). Even more recently, in [DZ16], a (different form of) table look-up was used
to implement the AES S-boxes.

What we do here is to observe that the idea of scrambled truth tables makes
especially good sense in the preprocessing model and, more importantly, if we
combine this with the “right” authentication scheme, we get an extremely prac-
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tical and maliciously secure protocol. This first version of our protocol has com-
munication complexity O(s) and data and computational complexity O(ks).
Although the computational complexity is asymptotically inferior to previous
protocols when counting elementary bit operations, it works much better in prac-
tice: XOR and NOT gates require no communication, and for each non-linear
gate, each player sends and receives 1 bit and XORs 1 word from memory into
a register. This means that TinyTable saves a factor of at least 2 in communica-
tion in comparison to standard passively secure protocols in the preprocessing
model, such as GMW with precomputed OT’s or the protocol using circuit ran-
domization via Beaver-triples.

We implemented a version of this protocol that was optimised for AES com-
putation, by using tables for each S-box. This is more costly in preprocessing but,
compared to a Boolean circuit implementation, it reduces the round complexity
of the on-line phase significantly (to about 10). On a fast cloud set-up, we obtain
on-line latency of 1 ms and amortized time about 0.5µs per AES block for an
error probability of 2−64. To the best of our knowledge, this is the fastest on-line
time obtained for secure two-party AES with malicious security. To illustrate
what we gain from the AES specific approach, we also implemented the version
that works for any Boolean circuit and applied it to an AES circuit computing
the same function as the optimized protocol does. On the same cloud set-up and
same security level, we obtained a latency of 2.4 ms and amortized time about
10µs per AES block.

We describe how one can do the preprocessing we require based on the pre-
processing phase of the TinyOT protocol from [NNOB12]. This protocol is basi-
cally maliciously secure OT extension with some extra processing on top. In the
case of Boolean circuits, the work needed to preprocess an AND gate roughly
equals the work we would need per AND gate in TinyOT. For the case of AES S-
box tables, we show how to use a method from [DK10] to preprocess such tables.
This requires 7 binary multiplications per table entry and local computation.

As for the speeds of preprocessing one can obtain, the best approaches and
implementations of this type of protocol are from [FKOS15]. They do not have
an implementation of the exact case we need here (2-party TinyOT) but they
estimate that one can obtain certainly more than 10.000 AND gates per second
and most likely up to 100.000 per second [Kel]. This would mean that we could
preprocess a binary AES circuits in about 40 ms.

Our final contribution is a version of our protocol that has better asymptotic
performance. We get data and communication complexity O(s), and computa-
tional complexity O(kεs), where ε < 1 is a constant. Alternatively we can also
have all complexities be O(polylog(k)s). While this is the same result that was
obtained for the MiniMac protocol, note that we get this for any circuit, not just
for well-formed ones. Roughly speaking, the idea is to use the MiniMac protocol
to authenticate the bits that players send during the on-line phase. This task is
very simple: it parallelizes easily and can be done in constant depth. Therefore
we get a better result than if we had used MiniMac directly on the circuit in
question.
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2 Construction

We show a 2PC protocol for securely computing a Boolean circuit C for two
players A and B. The circuit may contain arbitrary gates taking two inputs
and giving one output. We let G1, . . . , GN be the gates of the circuit, and let
w1, . . . , wW be the wires. We note that arbitrary fan-out is allowed, and we
do not assume special fan-out gates for this, we simply allow that an arbitrary
number of copies of a wire leave a gate, and all these copies are assigned the
same wire index. We assume for simplicity that both parties are to learn the
output.

We will fix some arbitrary order in which the circuit can be evaluated gate by
gate, such that the output gates come last, and such that when we are about to
evaluate gate i, its inputs have already been computed. We assume throughout
that the indexing of the gates satisfy this constraint. We call the wires coming
out of the output gates the output wires.

We first specify a functionality for preparing preprocessing material that will
allow computation of the circuit with semi-honest security, see Fig. 11.

The idea behind the construction of the tables is that when the time comes
to compute gate Gi, both players will know “encrypted bits” eu = bu ⊕ ru and
ev = bv⊕rv, for the input wires, where bu, bv are the actual “cleartext” bits going
into Gi, and ru, rv are random masking bits that are chosen in the preprocessing.
In addition, the preprocessing sets up two tables Ai, Bi for each gate, one held by
A and one held by B. These tables are used to get hold of a similar encrypted bit
for the output wire: eo = bo ⊕ ro, where bo = Gi(bu, bv). This works because the
tables are set up such that Ai[eu, ev], Bi[eu, ev] is an additive sharing of bo ⊕ ro,
i.e.,

Ai[bu ⊕ ru, bv ⊕ rv] ⊕ Bi[bu ⊕ ru, bv ⊕ rv] = bo ⊕ ro .

These considerations lead naturally to the protocol for computing C securely
shown in Fig. 2. For the security of this construction, note that since the masking
bits for the wires are uniformly random, each bit eu is random as well (except
when wu is an output wire), and so the positions in which we look up in the
tables are also random. With these observations, it is easy to see that we have:

Proposition 1. F pre
sem composed with πsem implements (with perfect semi-honest

security) the ideal functionality FSFE for secure function evaluation.

1 For this functionality as well as for the other preprocessing functionalities we define,
whenever players are to receive shares of a secret value, the functionality lets the
adversary choose shares for the corrupt player. This is a standard trick to make sure
that the functionality is easier to implement: the simulator can simply run a fake
instance of the protocol with the adversary and give to the functionality the shares
that the corrupt player gets out of this. If we had let the functionality make all the
choices, the simulator would have to force the protocol into producing the shares
that the functionality wants. This weaker functionality is still useful: as long as the
shared secret is safe, we don’t care which shares the corrupt player gets.



The TinyTable Protocol for 2-Party Secure Computation 171

Preprocessing Functionality F pre
sem.

1. On input C from both players, do the following: For each wire wu, choose a
random masking bit ru. This bit will be used to mask the bit bu that will
actually be on wu when we do the computation, i.e., eu = bu ⊕ ru will become
known to the players. If wu is an input wire, give ru to the player who owns
wu.

2. For each gate Gi, with input wires wu, wv and output wire wo, we will construct
two tables Ai, Bi each with 4 entries, indexed by bits (c, d). This is done as
follows: for each of the 4 possible values of bits (c, d), do:
(a) If both player are honest, choose a random bit sc,d. Otherwise take sc,d

as input from the adversary. Let Gi(·, ·) denotes the function computed by
gate Gi.

(b) If both parties are honest, or if A is corrupt, set
Ai[c, d] = sc,d and Bi[c, d] = sc,d ⊕ (ro ⊕ Gi(c ⊕ ru, d ⊕ rv)).

(c) If B is corrupt, set
Bi[c, d] = sc,d and Ai[c, d] = sc,d ⊕ (ro ⊕ Gi(c ⊕ ru, d ⊕ rv)).

3. For each gate Gi, hand Ai to player A and Bi to player B. For each output
wire wu, send ru to both players.

Fig. 1. Functionality for preprocessing, semi-honest security.

Protocol πsem.

1. A and B send C as input to F and get a set of tables {Ai, Bi| i = 1 . . . N}, as
well as a bit bu for each input wire wu.

2. For each input wire wu, if A holds input xu for this wire, send eu = xu ⊕ bu to
B. If B holds input xu, send eu = xu ⊕ bu to A.

3. For i = 1 to N , do: Let Gi have input wires wu, wv and output wire wo (so that
eu, ev have been computed). A sends Ai[eu, ev] to B, and B sends Bi[eu, ev] to
A. Set eo = Ai[eu, ev] ⊕ Bi[eu, ev].

4. The parties output the bits {eo ⊕ ro| wo is an output wire}.

Fig. 2. Protocol for semi-honest security.

Here, FSFE is a standard functionality that accepts C as input from both
parties, then gets x from A, y from B and finally outputs C(x, y) to both parties,
in case of semi-honest corruption. In case of malicious corruption, it will send
the output to the corrupted party and let the adversary decide whether to abort
or not. Only in the latter case will it send the output to the honest party. We
assume that the communication is not secret, even when both players are honest,
so the protocol does not have to keep the output secret in this case. We give a
precise specification in Fig. 4.

It is also very natural that we can get malicious security if we assume instead
a functionality that commits A and B to the tables. We can get this effect by
letting the functionality also store the tables and outputting bits from them to
the other party on request. In other words, what we need is a functionality that
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Functionality F pre
mal.

1. On input C from both players, execute the same algorithm as F pre
sem would on

input C.
2. In addition, for i = 1, . . . , N and for all 4 values of (c, d), do:

If both players are honest, select random k-bit strings a0
i,c,d, a

1
i,c,d, b

0
i,c,d, b

1
i,c,d.

If player A is corrupt, take b0i,c,d, b
1
i,c,d as input from the adversary and choose

a0
i,c,d, a

1
i,c,d at random.

If player B is corrupt, take a0
i,c,d, a

1
i,c,d as input from from the adversary and

choose b0i,c,d, b
1
i,c,d at random.

3. Hand a0
i,c,d, a

1
i,c,d to B and b0i,c,d, b

1
i,c,d to A.

Hand a
Ai[c,d]
i,c,d to A, and b

Bi[c,d]
i,c,d to B.

Fig. 3. Preprocessing functionality, malicious security.

Functionality FSFE.

1. On input C from both players, and inputs strings xA from A and xB from B
compute the output string y = C(xA, xB). If both players are honest, send y
to both players and the adversary.

2. On input “compute function” from the adversary, send y to the adversary.
3. On input “deliver output” from the adversary, send y to the honest player.
4. If a player is corrupted and at any point, the adversary sends “abort”, stop.

Fig. 4. Secure function evaluation functionality, malicious security.

allows us to commit players to correlated bit strings such that they can later
open a subset of the bits. Note that the subset cannot be known in advance,
which makes it more difficult to implement efficiently. Indeed, if we go for the
simplest information theoretically secure solution in the preprocessing model,
the storage requirement will be O(�k) bits where � is the string length and k
is the security parameter. This is achieved, essentially by committing to each
bit individually, we give more details on this below. In contrast, if we just need
to open the entire string or nothing, O(� + k) bits is sufficient using standard
techniques. However, this difference is not inherent: as we discuss in more detail
in Sect. 6, one can in fact achieve both storage and communication complexity
O(� + k) bits also for opening a subset that is unknown a priori. On the other
hand, the simple bit-by-bit solution works better in practice.

In Fig. 3, we show a functionality that does preprocessing as in the semi-
honest case, but in addition commits players bit by bit to the content of the
tables. The idea is that, for entry Ai[c, d] in a table, A is also given a random
string a

Ai[c,d]
i,c,d which serves as an authentication code that A can use to show

that he sends the correct value of Ai[c, d], while B is given the pair a0
i,c,d, a

1
i,c,d

serving as a key that B can use to verify that he gets the correct value. Of
course, using the authentication codes directly in this way, we would have to
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Protocol πmal.

1. A and B send C as input to F pre
mal and get a set of tables {Ai, Bi| i = 1 . . . N},

as well as masking bits for input and output wires. In addition, for all values
of (i, c, d), A receives strings b0i,c,d, b

1
i,c,d and a

Ai[c,d]
i,c,d . These are stored for later.

(Symmetrically, B gets and stores a corresponding set of strings.)
2. Initialize variables: A sets mA = tA = 0k, and B sets mB = tB = 0k. Here mA

is an accumulative MAC on the values that A sends and tB is a value held by
B that should equal mA if A was honest. A symmetric condition applies to mB

and tA.
3. For each input wire wu, if A holds input xu for this wire, send eu = xu ⊕ bu to

B. If B holds input xu, send eu = xu ⊕ bu to A.
4. Define M such that the last N − M gates are output gates. For i = 1 to M do:

(a) Let Gi have input wires wu, wv and output wire wo (so that eu, ev have
been computed).

(b) A sends eA = Ai[eu, ev] to B, and sets mA = mA ⊕ aeA
i,eu,ev

. B sets tB =

tB⊕aeA
i,eu,ev

. Note that B can do this, as he has both strings a0
i,eu,ev , a1

i,eu,ev .
(c) B sends eB = Bi[eu, ev] to A, and sets mB = mB ⊕ beBi,eu,ev

. A sets tA =
tA ⊕ beBi,eu,ev

.
(d) Both parties set eo = eA ⊕ eB .
Check if all bits opened until now were correct: A sends mA to B and B sends
mB to A. A verify that tA = mB and B verify that tB = mA. The parties abort
if this is not the case.

roF.stuptuoehtlaeveR.6.5 i = M + 1 to N do:
(a) Let Gi have input wires wu, wv and output wire wo (so that eu, ev have

been computed).
(b) A sends eA = Ai[eu, ev] and aeA

i,eu,ev
to B. B checks that aeA

i,eu,ev
is correct.

Note that B can do this, as he has both strings a0
i,eu,ev , a1

i,eu,ev .
(c) B sends eB = Bi[eu, ev] and beBi,eu,ev

to A. A checks that beBi,eu,ev
is correct.

(d) Both parties set eo = eA ⊕ eB .
If there are many outputs, the correctness of the sent information can be
checked via an accumulative MAC as in Step 3

7. The parties output the bits {eo ⊕ ro| wo is an output wire}.

Fig. 5. Protocol for malicious security.

send k bits to open each bit. However, in our application, we can bring down
the communication needed to (essentially) � + k bits, because we can delay
verification of most of the bits opened. The idea is that, instead of sending the
authentication codes, players will accumulate the XOR of all of them and check
for equality later at the end. The protocol shown in Fig. 5 uses this idea to
implement maliciously secure computation.

Theorem 1. F pre
mal composed with πmal implements FSFE with statistical security

against malicious and static corruption.

Proof. We will show security in the UC model (in the variant where the envi-
ronment also plays the role of the adversary), which means we need to exhibit
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a simulator S such that no (unbounded) environment Z can distinguish F pre
mal

composed with πmal from S composed with FSFE. The case where no player is
corrupt is trivial to simulate since messages sent contain uniformly random bits,
with the only exception of the output stage where the shares sent determine the
outputs - which the simulator knows, and hence these shares are also easy to
simulate. We now describe the simulation for the case where A is corrupt (the
other case where B is corrupt is similar).

Set-up. S runs internally copies of F pre
mal and πmal where it corrupts A, and

gives B a default input, say all zeros. It will let Z play the role of the corrupt
A. We assume that both players send the same circuit C to be computed
(otherwise there is nothing to simulate) and S will send C to FSFE.

Input. In the input stage of the protocol, when Z (corrupt A) sends eu for
an input wire, S computes bu = eu ⊕ ru and sends it to FSFE. This is the
extracted input of A for this wire, note that S knows ru from (its copy of)
F pre

mal.
Computing stage. For the first M gates, S will simply let its copy of B run the

protocol with Z acting as corrupt A. If B aborts, S sends “abort” to FSFE

and stops, otherwise it sends “compute result”.
Output stage. S gets the outputs from FSFE , i.e., bo for each output wire wo. S

modifies the table inside its copy of B such that for each output gate Gi with
input wires wu, wv and output wo, Bi[eu, ev] satisfies bo = ro ⊕ Ai[eu, ev] ⊕
Bi[eu, ev]. Note that S knows ro and Ai[eu, ev] from its copy of F pre

mal. S now
runs the output stage according to the protocol. If Z lets the protocol finish
normally, S sends “deliver output” to FSFE, otherwise it sends “abort”.

To show that this simulation is statistically good, observe first that the simula-
tion up until the point where the outputs are opened is perfect: this follows since
in the computation phase of the protocol, the honest player sends only uniformly
random bits that are independent of anything else in the environment’s view.
Therefore this also holds for the simulated honest player, even if he runs with a
default input. The reason why only random bits are sent is as follows: whenever
the honest player sends a bit, it can be assigned to a particular wire, say wv that
has not been handled before. Therefore no information about the wire mask rv

was released before. The bit sent by the honest player can be written as rv xored
with other bits and since rv was chosen independently of anything else, the bit
sent is also random in the adversary’s view.

In the verification step (last part of Item 4 of the protocol), the honest
player sends the correct verification value mB that can be computed from what
the environment has already seen. The correct verification value mA = tB to
be sent by A is well defined (it can be computed easily from the view of the
environment), and if the value actually sent is incorrect, the protocol will abort
in both the real and the simulated process.

Now, if the protocol proceeds to the output step, the only new information the
environment sees is, for each output gate Gi with input wires wu, wv and output
wo: the output bo as well as B’s share eB = Bi[eu, ev] and the verification value
beB
i,eu,ev

. Note the latter two values are determined from bo and the environment’s
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view so far: eB is determined by bo = eA ⊕ eB and then beB
i,eu,ev

is determined
by what A received from the preprocessing initially. It follows that the entire
simulation is perfect given the event that the output generated is the same in
the real as in the simulated process.

Now, in the simulation the output is always the correct output based on
the inputs determined in the input stage. Therefore, to argue statistically close
simulation, it is sufficient to show that the real protocol completes with incorrect
output except with probability 2−k. This in turn follows easily from the fact that
if A always sends correct shares from the tables, the output is always correct.
And if he does not, the verification value corresponding to the incorrect message
is completely unknown to A and can be guessed with probability at best 2−k.
Hence B will abort in any such case, except with probability 2−k.

This theorem can quite easily be extended to adaptive corruption (of one
player). For this case, the simulator would start running internally a copy of
the protocol where A,B are honest and use default inputs. When A (or B) will
be corrupted, one observes that the internal view of A can easily be modified
so it is consistent with the real input of A (which the simulator is now given).
The simulator gives this modified view of A to the environment and continues
as described in the proof of the above theorem.

2.1 Free XOR

It is easy to modify our construction to allow non-interactive processing of XOR
gates. For simplicity, we only show how this works for the case of semi-honest
security, malicious security is obtained in exactly the same way as in the previous
section (Fig. 6).

The idea is to select the wire masks in a different way, exploiting the homo-
morphic properties of XOR gates. Basically, if we encounter a NOT gate, we
make sure the output wire mask is equal the input wire mask. For XOR gates
we set the output wire mask to the XOR of the input wires masks. We ensure
this invariant by traversing the circuit, since the wire masks can no longer be
sampled independently at random. One could set the output wire mask to zero
for all output gates and traverse the gates backwards GN , . . . , G1 ensuring the
invariant on the wire masks. Another approach, which is the one we use in the
following, is to traverse the gates forwardly G1, . . . , GN ensuring the invariants
and then give output wire masks to the parties, who will then remove the mask
before returning the actual output. In the online phase, we can now process XOR
and NOT gates locally by computing the respective function directly on masked
values. The resulting protocol is shown in Fig. 7.

2.2 Removing NOT-Gates

A slight change in the preprocessing allows us to completely remove the on-line
operations associated with NOT gates. Namely, when preprocessing a NOT gate
Gi, we will set ro = 1−rv, where wu, wo are the input and output wires, anything
else remains unchanged. Then, in the on-line phase, we can simply ignore the
NOT gates, or in other words, by convention we will set eo = eu.
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Preprocessing Functionality F pre
freeXOR,sem.

1. On input C from both players, for each input wire wu, choose a random bit ru,
and if wu is an input wire, give ru to the player who owns that wire.
For i = 1 to N , do: Let wu, wv be the input wires of Gi and wo the output
wire. Note that we have already chosen masking bits ru, rv for wu, wv. If Gi is
an XOR gate, set ro = ru ⊕ rv. If Gi is a NOT gate (so that wu is the only
input wire), set ro = ru If Gi is any other gate, choose ro at random.

2. For each gate Gi which is not an XOR or NOT gate, with input wires wu, wv

and output wire wo, we will construct two tables Ai, Bi each with 4 entries,
indexed by bits (c, d). This is done as follows: for each of the 4 possible values
of bits (c, d), do:
(a) If both player are honest, choose a random bit sc,d. Otherwise take sc,d

as input from the adversary. Let Gi(·, ·) denote the function computed by
gate Gi.

(b) If both parties are honest, or if A is corrupt, set
Ai[c, d] = sc,d and Bi[c, d] = sc,d ⊕ (ro ⊕ Gi(c ⊕ ru, d ⊕ rv)).

(c) If B is corrupt, set
Bi[c, d] = sc,d and Ai[c, d] = sc,d ⊕ (ro ⊕ Gi(c ⊕ ru, d ⊕ rv)).

3. For each gate Gi, where we built tables, hand Ai to player A and Bi to player
B. Send wire masks for the output wires to both players.

Fig. 6. Functionality for preprocessing, semi-honest security with free XOR.

Protocol πsem.

1. A and B send C as input to F and get a set of tables {Ai, Bi| i = 1 . . . N}, as
well as a bit bu for each input wire wu.

2. For each input wire wu, if A holds input xu for this wire, send eu = xu ⊕ bu to
B. If B holds input xu, send eu = xu ⊕ bu to A.

3. For i = 1 to N , do: Let Gi have input wires wu, wv and output wire wo (so
that eu, ev have been computed). If Gi is an XOR gate, set eo = eu ⊕ ev. If Gi

is a NOT gate (so that wu is the only input wire), set eo = 1 − eu. Otherwise
(we have tables for this gate): A sends Ai[eu, ev] to B, and B sends Bi[eu, ev]
to A. Both set eo = Ai[eu, ev] ⊕ Bi[eu, ev].

4. The parties output the bits {eo ⊕ ro| wo is an output wire}.

Fig. 7. Protocol for semi-honest security, free XOR.

2.3 Generalisation to Bigger Tables

If the circuit contains a part that evaluates a non-linear function f on a small
input, it is natural to implement computation of this function as a table. If the
input is small, such a table is not prohibitively large. Suppose, for instance, that
the input and output is 8 bits, as is the case for the AES S-Box. Then we will
store tables Af , Bf each indexed by 8-bit value M such that Af [M ] ⊕ Bf [M ] =
f(x⊕M)⊕O, where O is an 8-bit output mask chosen in the preprocessing. We
make sure in the preprocessing that the i’th bit of B denoted B[i] equals the
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wire mask for the i’th wire going into the evaluation of f , whereas O[i] equals
the wire mask for the i’th wire receiving output from f . We can then use the
table for f exactly as we use the tables for the AND gates.

To get malicious security we must note that the simple authentication scheme
we used in the binary case will be less practical here: as we have 256 possible
output values, each party would need to store 256 strings per table entry. It
turns out this can be optimized considerably using a different MAC scheme, as
described in the following section.

3 The Linear MAC Scheme

In this section, we describe some variations over a well-known information theo-
retically secure MAC scheme that can be found, e.g., in [NNOB12]. We optimise
it to be efficient on modern Intel processors, this requires some changes in the
construction and hence we need to specify and reprove the scheme. It is intended
to be used in conjunction with the generalisation to bigger tables described in
the previous section.

There is a committer C, a verifier V and a preprocessor P. There is a security
parameter k. Some of the computations are done over the finite field F = GF(2k).
Let p(X) be the irreducible polynomial of degree k used to do the computation in
F = GF(2k), i.e., elements x, y ∈ F are polynomials of degree at most k − 1 and
multiplication is computed as z = xy mod p. We will also be doing computations
in the finite field G = GF(22k−1). Let q(X) be the irreducible polynomial of
degree 2k − 1 used to do the computation in G. Notice that elements x, y ∈ F

are polynomials of degree at most k − 1, so xy is a polynomial of degree at most
2k − 2. We can therefore think of xy as an element of G. Note in particular that
xy mod q = xy when x, y ∈ F.

3.1 Basic Version

The MAC scheme has message space F. We denote a generic message by x ∈ F.
The MAC scheme has key space F×G. We denote a generic key by K = (α, β) ∈
F×G. The tag space is G. We denote a generic tag by y ∈ G. The tag is computed
as y = macK(x) = αx + β. Note that α ∈ F and x ∈ F, so αx ∈ G as described
above and hence can be added to β in G. We use this particular scheme because
it can be computed very efficiently using the PCLMULQDQ instruction on modern
Intel processors. With one PCLMULQDQ instruction we can compute αx from which
we can compute αx + β using one additional XOR.

The intended use of the MAC scheme is as follows. The preprocessor samples
a message x and a uniformly random key K and computes y = macK(x). It
gives K to V and gives (x, y) to C. To reveal the message C sends (x, y) to V
who accepts if and only if y = macK(x). Since K is sampled independently of x,
the scheme is clearly hiding in the sense that V gets no information on x before
receiving the opening information. We now show that the scheme is binding.
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Let A be an unbounded adversary. Run A to get a message x ∈ F. Sample
a uniformly random key (α, β) ∈ F × G and compute y = αx + β. Given y to
A. Run A to get an output (y′, x′) ∈ G × F. We say that A wins if x′ �= x and
y′ = macK(x′). We can show that no A wins with probability better than 2−k.
To see this, notice that if A wins then he knows x, y, x′, y′ such that y = αx + β
and y′ = αx′ +β. This implies that y′ −y = α(x′ −x), from which it follows that
α = (y′ − y)(x′ − x)−1. This means that if A can win with probability r then
A can guess α with probability at least r. It is then sufficient to prove that no
adversary can guess α with probability better than 2−k. This follows from the
fact that α is uniformly random given αx + β, because αx is some element of G
and β is a uniformly random element of G independent of αx.

3.2 The Homomorphic Vector Version

We now describe a vector version of the scheme which allows to commit to
multiple message using a single key.

The MAC scheme has message space F
�. We denote a generic message by

x ∈ F
�. The MAC scheme has key space F × G

�. We denote a generic key by
K = (α,β) ∈ F × G

�. The tag space is G
�. We denote a generic tag by y ∈ G

�.
The tag is computed as y = macK(x) = αx + β, i.e., yi = αxi + βi. Note that
α ∈ F and xi ∈ F, so αxi ∈ G.

The intended use of the MAC scheme is as follows. The preprocessor samples
a message x and a uniformly random key K and computes y = macK(x). It
gives K to V and gives (x,y) to C. To reveal the message xi the comitter C
sends (xi, yi) to V, who accepts if and only if yi = αxi + βi.

The preprocessed information also allows to open to any sum of a subset
of the xi’s. Let λ ∈ F

� with λi ∈ {0, 1}. Let xλ =
∑

i λixi (mod F), let yλ =∑
i λiyi (mod G), and let let βλ =

∑
i λiβi (mod G). To reveal xλ the committer

C sends (xλ, yλ) and the verifier V checks that yλ = αxλ + βλ. If both players
are honest, this is clearly the case. The only non-trivial thing to notice is that
since

∑
i λixi (mod F) does not involve any reduction modulo p we have that∑

i λixi (mod F) =
∑

i λixi =
∑

i λixi (mod G).
The scheme is hiding in the sense that after a number of openings to ele-

ments xλ the verifier learns nothing more than what can be computed from the
received values xλ. To see this notice that K is independent of x and hence
could be simulated by V. Also the openings can be simulated. Namely, whenever
V received an opening (xλ, yλ) from an honest C, we know that yλ = αxλ + βλ,
so V could have computed yλ itself from xλ and K. Hence no information extra
to xλ is transmitted by transmitting (xλ, yλ).

We then prove that the scheme is binding. Let A be an unbounded adversary.
Run A to get a message x ∈ F

�. Sample a uniformly random key (α,β) ∈ F×G
�

and compute yi = αxi +βi for i = 1, . . . , �. Give y to A. Run A to get an output
(y′, x′,λ) ∈ G×F×{0, 1}�. We say that A wins if x′ �= xλ and y′ = αx′ +βλ. We
can show that no A wins with probability better than 2−k. To see this, notice
that if A wins then he knows x′ and y′ such that y′ = αx′ + βλ. He also knows
xλ and yλ as these can be computed from x, y and λ, which he knows already.
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And, it holds that yλ = αxλ + βλ. Therefore y′ − yλ = α(x′ − xλ), and it follows
as above that A can compute α. Since no information is leaked on α by the value
αx + β given to A it follows that it is uniform in F in the view of A. Therefore
A can compute α with probability at most 2−k.

We note for completeness that the scheme could be extended to arbitrary
linear combinations. In that case one would however have to send xλ =

∑
i λixi

(mod F) and yλ =
∑

i λixi (mod F) which would involve doing reductions mod-
ulo p. The advantage of the above scheme where λi ∈ {0, 1} is that no polyno-
mial reductions are needed, allowing full use of the efficiency of the PCLMULQDQ
instruction.

3.3 Batched Opening

We now present a method to open a large number of commitments in an amor-
tised efficient way, by sending only k bits.

For notational simplicity we assume that C wants to reveal all the values
(x1, . . . , xn), but the scheme trivially extends to opening arbitrary subsets and
linear combinations. To reveal (x1, . . . , xn) as described above, C would send
Y C = (y1, . . . , yn) and V would compute yV

i = αxi +βi for i = 1, . . . , n and Y V =
(yV

1 , . . . , yV
n) and check that Y V = Y C. Consider now the following optimization

where C and V is given a function H that outputs (at least) k bits. They could
then compare Y C and Y V by sending hC = H(Y C) and checking that hC =
H(Y V).

We saw above that if C sends (x′
1, . . . , x

′
n) and (y′

1, . . . , y
′
n) where x′

i �= xi for
some i, then C can guess yV

i with probability at most 2−k, so that Y C �= Y V

with overwhelming probability. We could therefore let H be any collision resistant
hash function, but we want something that can be implemented very efficiently
on modern processors. So we will instead define H as follows:

H(d1, . . . , dn) =
n⊕

i=1

F (di)

where we think of F as a random oracle that outputs k bits.
This is clearly secure in the random oracle model: by what we saw above,

if x′
i �= xi then with overwhelming probability, C has not been able to call the

oracle on input yV
i . Assuming he has not, he has no information on the value of

F (yV
i ), and hence the probability that hC happens to be equal to H(Y V) is 2−k.
Recall that we are going to use the MAC scheme outlined here for the case

where we use bigger tables than for Boolean gates, such as the AES S-box, and
that in such a case the preprocessing will produce this type of linear MACs.
This means that if we use the batch opening method, we will need to compute
H in the on-line phase. Our definition of H is well suited for this on modern Intel
processors: macs will typically be of size at most 128 bits, so as F we can use AES
encryption under a fixed key that is chosen for each protocol execution. We will
make the heuristic assumption that we can model this as a random permutation.
Then, assuming we will be calling the function much less than

√
2128 = 264 times
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(which should certainly be true in practice) such a permutation is well known
to be statistically indistinguishable from a random function.

4 Preprocessing

In this section we show how to securely implement the preprocessing for Boolean
circuits. The idea is to generate the tables by a computation on linear secret
shared values, which in case of malicious security also include MACs. We will
consider an additive secret sharing of x where A hold xA ∈ {0, 1} and B hold
xB ∈ {0, 1} such that x = xA + xB.

In the case of malicious security the MACs are elements in a finite field F

of characteristic 2 and size at least 2k where k is the security parameter. Here
A hold a key αA ∈ F and B a key αB ∈ F. We denote a secret shared value
with MACs [[x]] where A hold (xA, yA, βA) and B hold (xB , yB , βB) such that
yA = αBxA + βB and yB = αAxB + βA. If a value is to be opened the MAC
is checked, e.g. if x is opened to A she receives xB and yB and checks that
indeed yB = αAxB + βA or abort otherwise. This is also the format used in
the TinyOT protocol [NNOB12], so we can use the preprocessing protocol from
there to produce single values [[a]] for random a and triples of form [[x]], [[y]], [[z]]
where x, y are random bits and z = xy. Any other preprocessing producing the
same data format will of course also be OK, for instance, the protocols presented
in [FKOS15] will give better speeds than original TinyOT.

Note that, by a standard protocol [Bea91], we can use one triple to produce
from any [[a]], [[b]] the product [[ab]], this just requires opening a+x, b+y and local
computation. Also, we can compute the sum [[a + b]] by only local computation.

In Fig. 8, we describe a protocol that implements the preprocessing func-
tionality F pre

mal assuming a secure source of triples and single random values as
described here, and also assuming that the circuit contains only AND, XOR and
NOT gates. We use a function F that we model as a random oracle.

For simplicity the protocol is phrased as a loop that runs through all gates
of the circuit, but we stress that it can be executed in constant round: we can
execute step 3 in the protocol by first doing all the XOR and NOT gates, using
only local operations. At this point wire masks have been chosen for all input
and output wires of all AND gates, and they can now all be done in parallel.

Preprocessing for AES. To preprocess an AES Sbox table, we can again make
use of the TinyOT preprocessing. This can be combined with a method from
[DK10]. Here, it is shown how to compute the Sbox function securely using 7
binary multiplications and local operations. We can then make the table by
simply computing each entry (in parallel). It is also possible to compute the
Sbox using arithmetic in F256, but if we have to build such multiplications from
binary ones, as we would if using TinyOT, this most likely does not pay off.
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Protocol πpre
mal.

1. Invoke the TinyOT preprocessing such that for each AND gate we have a triple
secret of shared values [[x]], [[y]] and [[z]] such that xy = z.

2. Also using the TinyOT preprocessing, for each wire wi that is an input wire,
or an output wire from an AND gate, the players assign a random [[ri]] to wi,
ri will serve as the masking bit for wi.

3. For each gate Gi with where masking bits [[ru]], [[rv]] have been assigned to the
input wires wu, wv the players do as follows, depending on the type of gate:
NOT: Set the output wire mask [[ro]] = [[ru]]
XOR: Set the output wire mask [[ro]] = [[ru]] + [[rv]]
AND:

– Compute [[rurv]] from [[ru]] and [[rv]] using the triple assigned to this
AND gate, using the protocol from [Bea91].

– For all c, d ∈ {0, 1} define tc,d = (ru + c)(rv + d) + ro and compute a
secret sharing of it as follows: [[tc,d]] = [[rurv]]+c[[rv]]+d[[ru]]+[[cd]]+[[ro]].
This requires only local computation.

Note that tc,d is the bit that needs to be additively secret shared for entry
(c, d) in the table for gate Gi.
A sets Ai[c, d] to be his share of tc,d (which he knows from [[tc,d]]), B defines
Bi[c, d] similarly.
Note further that from his part of [[tc,d]], A can compute valid MACs
mac0i,c,d, mac1i,c,d for both possible values of B’s additive share in tc,d.
A sets a0

i,c,d = F (mac0i,c,d), a1
i,c,d = F (mac1i,c,d), while B defines b0i,c,d, b

1
i,c,d

similarlya.
4. For each output gate open the wire mask ro to both players. For each input

wire wi, open ri to the player who owns that wire.
5. The parties return the opened input masks, output masks as well as tables

Ai, Bi and verifications strings a0
i,c,d, a

1
i,c,d, b

0
i,c,d, b

1
i,c,d for each AND gate.

a We need to apply F because we want the verification strings to be independent,
and this is not the case if we use the macs directly.

Fig. 8. Protocol for preprocessing with malicious security

5 Implementation

We implement two clients, Alice and Bob, securely evaluating the aes-128
encryption function. Alice inputs the message, Bob inputs the expanded key
and both parties learns the ciphertext. This function contains several opera-
tions where all operations except subbytes are linear. We first implement an
optimized version where all linear operations are computed locally using the
aes-ni/sse instruction set, and every non-linear Sbox lookup is replaced with a
tinytable lookup and opening. Afterwards we implement a binary version with
free XOR gates and no NOT gates using the aes-expanded circuit from [TS].
For both implementations we benchmark a passively secure version and mali-
ciously secure versions all providing statistical security 2−k. Here we test the
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linear MAC scheme with k = 64 and the lookup table MAC scheme with k = 64
and k = 32.

In the protocol the parties receive preprocessed data generated by a trusted
party. We assume this data is present in memory and reuse the same instance for
our benchmark. The parties proceed to compute the encryption function on a set
of test vectors and verify correctness. We test the implementation on two setups:
a basic LAN setup and on a cloud. The LAN setup consist of two PCs connected
via 1 GbE, where each machine has a i7-3770K CPU at 3.5 GHz and 32 GB RAM.
For our cloud setup we use Amazon EC2 with two c4.8xlarge instances locally
connected via 10 GbE with 36 vCPUs (hyperthreads). The parties communicate
over the TCP protocol.

We now analyse the size of the preprocessed data - we concentrate on the
tables and ignore the size of the input and output bit masks. For the optimized
version, we need 40 KiB of preprocessing data for one passively secure evaluation
(160 tiny tables with 28 entries of one byte each). For the binary version we need
2.7 KiB (5440 tiny tables with 4 entries of one bit each). For malicious security
we add MACs. The simple lookup MAC scheme use k + 256k bits extra per
table entry. The linear MAC scheme reuse a k bit key and use 2k bits extra
per table entry. Beside the input phase, the optimized version has 10 rounds of
communication for the passive version and 12 rounds for the active version, i.e.
two more rounds for MAC checking before and after opening the result. Similarly
the binary version have 41 rounds of communication (layers in the circuit) for
the passive version and 43 for the active. The size of the preprocessed data can
be seen in Table 1.

Table 1. Size of preprocessed data

Optimized Binary

Linear-64 760.0 KiB 342.7 KiB

Lookup-64 80.4 MiB 512.7 KiB

Lookup-32 40.2 MiB 257.7 KiB

Passive 40.0 KiB 2.7 KiB

The results measured as the average over 30 s. For the sequential tests in both
the optimized and binary version, the network delay is the major factor. For the
amortized tests of the optimized version, the bandwidth is the limiting factor on
the LAN setup, whereas computation takes over on the cloud setup as we raise
the security parameter. For the amortized binary version the computation is the
limiting factor on both setups. The timings for the optimized implementation
are summarized in Table 2 and the binary version in Table 3.
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Table 2. Execution times for optimized version

LAN Cloud

Sequential Parallel Sequential Parallel

Linear-64 1.03 ms 3.15µs 1.09 ms 0.47µs

Lookup-64 1.03 ms 3.01µs 1.05 ms 0.45µs

Lookup-32 1.02 ms 2.95µs 1.05 ms 0.32µs

Passive 0.88 ms 2.89µs 0.97 ms 0.29µs

Table 3. Execution times for binary version

LAN Cloud

Sequential Parallel Sequential Parallel

Linear-64 4.92 ms 75.36µs 2.37 ms 19.19µs

Lookup-64 4.38 ms 54.72µs 2.22 ms 11.90µs

Lookup-32 4.18 ms 40.81µs 2.18 ms 9.98µs

Passive 3.94 ms 25.50µs 1.84 ms 6.73µs

6 An Asymptotically Better Solution

Recall that the main problem we have with obtaining malicious security is that
we must make sure that players reveal correct bits from the tables they are given,
but on the other hand only the relevant bits should be revealed.

In this section we show an asymptotically better technique for committing
players to their tables such that we can open only the relevant bits.

The idea is as follows: if player A is to commit to string s, that is known at
preprocessing time, then the preprocessing protocol will establish a (verifiable)
secret sharing of s among the players. Concretely, we will use the representation
introduced for the so-called MiniMac protocol in [DZ13]: we choose an appropri-
ate linear error correcting (binary) code C. This code should be able to encode
strings of length k bits, and have length and minimum distance linear in k.2

For a string s of length � (comparable to the circuit size, so � >> k) we
define the encoding C(s) by splitting s in k-bit blocks, encoding each block in C
and concatenating the encodings. The preprocessing will share C(s) additively
among the players.

The preprocessing also chooses a random string a, unknown to both players,
and both a and a∗C(s) are additively secret shared. Here ∗ denotes the bitwise
(Schur) product. We will use the notation [s] as shorthand for all the additive
shares of s, a and a ∗ C(s). The idea is that a ∗ C(s) serves as a message
authentication code for authenticating s, where a is the key. We note that, as
2 Furthermore its Schur transform should also have minimum distance linear in k.

The Schur transform is the code obtained as the linear span of all vectors in the set
{c ∗ d| c, d ∈ C}. See [DZ13] for further details on existence of such codes.
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Functionality F pre
MiniMac.

1. On input a circuit Circ from both players, execute the same algorithm as F pre
sem

would on input Circ.
2. Let sA be the string obtained by concatenating all tables {Ai} created for A.

Similarly sB contains all B’s tables. Create MiniMac representations [sA], [sB ]
and give the resulting additive shares to A and B.

3. Create correlated random strings dataA, dataB that will enable the MiniMac
protocol to do ��/k� multiplications of blocks, and hand dataA to A and dataB

to B.

Fig. 9. Preprocessing functionality using the MiniMac protocol

in [DZ13], a is in fact a global key that is also used for other data represented
in this same format.

Functionality FTable.

1. On input a circuit Circ from both players, execute the same algorithm as F pre
sem

would on input Circ.
2. Let sA be the string obtained by concatenating all tables {Ai} created for A.

Similarly sB contains all B’s tables. At any later point, whenever both players
input an index set pointing to a substring of sA or sB , output the substring to
both players.

Fig. 10. Functionality giving on-line access to tables

Based on this preprocessing, we can design a protocol that allows A to open
any desired substring of s, as follows: let I denote the characteristic vector of
the substring, i.e., it is an � bit string where the i’th bit is 1 if A is to reveal the
i’th bit of s and 0 otherwise.

We then compute a representation [I] (which is trivial using the additive
shares of a), use the MiniMac protocol to compute [I ∗ s] and then open this
representation to reveal I ∗ s which gives B the string he needs to know and
nothing more. This is possible if we let the preprocessing supply appropriate
correlated randomness for the multiplication of I and s. The protocol we just
sketched here will be called πMiniMac in the following.

In Fig. 9 we specify the preprocessing functionality F pre
MiniMac we assumed in

πMiniMac, i.e., it outputs the tables as well as MiniMac representations of them.
Now consider the functionality Ftable from Fig. 10 that simply stores the tables
and outputs bits from them on request. By trivial modification of the security
proof for MiniMac, we have

Lemma 1. The protocol πMiniMac composed with F pre
MiniMac implements Ftable

with statistical security against a malicious adversary.
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Protocol πtable
mal .

1. A and B send circuit Circ as input to Ftable and get a set of tables {Ai, Bi| i =
1 . . . N}, as well as a bit bu for each input wire wu.

2. For each input wire wu, if A holds input xu for this wire, send eu = xu ⊕ bu to
B. If B holds input xu, send eu = xu ⊕ bu to A.

3. Define M such that the last N − M gates are output gates. For i = 1 to M do:
(a) Let Gi have input wires wu, wv and output wire wo (so that eu, ev have

been computed).
(b) A sends eA = Ai[eu, ev] to B.
(c) B sends eB = Bi[eu, ev] to A.
(d) Both parties set eo = eA ⊕ eB .
Check if all bits opened until now were correct: A and B both ask Ftable for the
substring of A’s tables that she was supposed to reveal in the previous steps.
B checks against what he received from A and aborts if there is a mismatch.
Symmetrically, A and B also ask Ftable for the substring of B’s tables that she
was supposed to reveal in the previous steps. A checks against what he received
from B and aborts if there is a mismatch.

roF.stuptuoehtlaeveR.4 i = M + 1 to N do:
(a) Let Gi have input wires wu, wv and output wire wo (so that eu, ev have

been computed).
(b) A sends eA = Ai[eu, ev] to B.
(c) B sends eB = Bi[eu, ev] to A.
(d) Both parties set eo = eA ⊕ eB .

5. The parties use Ftable to confirm that the bits sent in the previous step were
correct, in the same way as in Step 4. If there was no abort, the parties output
the bits {eo| Go is an output gate}.

Fig. 11. Simple protocol for malicious security.

As for the on-line efficiency of πMiniMac, note that in [DZ13] the MiniMac
protocol is claimed to be efficient only for so-called well-formed circuits, but
this is not a problem here since the circuit we need to compute is a completely
regular depth 1 circuit. Indeed, bit-wise multiplication of strings is exactly the
operation MiniMac was designed to do efficiently. Therefore, simple inspection
of [DZ13] shows that the preprocessing data we need will be of size O(�) = O(s),
where s is the circuit size, and this is also the communication complexity. The
computational complexity is dominated by the time spent on encoding in C.
Unfortunately, we do not know codes with the right algebraic properties that
also have smart encoding algorithms, so the only approach known is to simply
multiply by the generator matrix. We can optimize by noting that if � > k2 we
will always be doing many encodings in parallel, so we can collect all vectors to
encode in a matrix and use fast matrix multiplication. With current state of the
art, this leads to computational complexity O(skε) where ε ≈ 0.3727.

Alternatively, we can let C be a Reed-Solomon code over an extension field
with Ω(k) elements. We can then use FFT algorithms for encoding and then all
complexities will be O(polylog(k)s).
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As a final step, consider the protocol πtable
mal from Fig. 11. By trivial adaptation

of the proof for semi-honest security, we get that

Lemma 2. The protocol πtable
mal composed with Ftable implements FSFE with mali-

cious and statistical security.

We can then combine Lemmas 1 and 2 to get a protocol for FSFE in the pre-
processing model, which together with the efficiency consideration above gives us:

Theorem 2. There exists 2-party protocol in the preprocessing model (using
F pre

MiniMac) for computing any Boolean circuit of size s with malicious and sta-
tistical security, where the preprocessed data size and communication complexity
are O(s) and the computational complexity is O(kεs) where k is the security
parameter and ε < 1. There also exists a protocol for which all complexities are
O(polylog(k)s).
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Abstract. Garbled circuits are of central importance in cryptography,
finding widespread application in secure computation, zero-knowledge
(ZK) protocols, and verifiable outsourcing of computation to name a
few. We are interested in a particular kind of garbling scheme, termed
privacy-free in the literature. We show that Boolean formulas can be gar-
bled information-theoretically in the privacy-free setting, producing no
ciphertexts at all. Existing garbling schemes either rely on cryptographic
assumptions (and thus require cryptographic operations to construct and
evaluate garbled circuits), produce garbled circuits of non-zero size, or
are restricted to low depth formulaic circuits. Our result has both theo-
retical and practical implications for garbled circuits as a primitive. On
the theory front, our result breaks the known theoretical lower bound of
one ciphertext for garbling an AND gate in this setting. As an interest-
ing implication of producing size zero garbled circuits, our scheme scores
adaptive security for free. On the practical side, our garbling scheme
involves only cheap XOR operations and produces size zero garbled cir-
cuits. As a side result, we propose several interesting extensions of our
scheme. Namely, we show how to garble threshold and high fan-in gates.

An aspect of our garbling scheme that we believe is of theoretical
interest is that it does not maintain the invariant that the garbled cir-
cuit evaluator must not at any point be in possession of both keys of any
wire in the garbled circuit.

Our scheme directly finds application in ZK protocols where the ver-
ification function of the language is representable by a formulaic circuit.
Such examples include Boolean formula satisfiability. The ZK protocols
obtained by plugging in our scheme in the known paradigm of building
ZK protocols from garbled circuits offer better proof size, while relying
on standard assumptions. Furthermore, the adaptivity of our garbling
scheme allows us to cast our ZK protocols in the offline-online setting
and offload circuit dependent communication and computation to the
offline phase. As a result, the online phase enjoys communication and
computation (in terms of number of symmetric key operations) com-
plexity that are linearly proportional to the witness size alone.
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1 Introduction

Garbled circuits (GC) are of paramount importance in cryptographic proto-
col theory, lending their power in building vital cryptographic primitives such
as secure computation in two party [Yao86,LP07,LP11,LR15] and multiparty
[BELO16,CKMZ14,MRZ15] settings, zero-knowledge protocols [JKO13,FNO15,
ZRE15], verifiable outsourcing of computation [GGP10], and functional encryp-
tion [SS10] to name a few. Roughly speaking, a GC allows evaluation of a cir-
cuit in its encoded form on an encoded input, and produces an encoded out-
put. Based on the application that a GC serves, the information required to
decode the output may be provided to the evaluator, or retained by the GC con-
structor if she wishes to keep the function output private. GCs first made their
appearance in Yao’s secure two-party computation protocol [Yao86]. Following
multiple optimizations [BMR90,MNPS04,NPS99,PSSW09,BHKR13,GLNP15,
ZRE15,KMR14,KS08], GCs today are an indispensable primitive used in var-
ious secure protocols. Their theoretical importance and potential to serve as a
cryptographic primitive has been recognized by Bellare et al. [BHR12b], who
elevate GCs from a technique to be used in other protocols, to a cryptographic
primitive. To facilitate abstraction as a primitive, the fundamental work of
Bellare et al. [BHR12b] formalizes three notions of security that a garbling
scheme may achieve; namely privacy, obliviousness, and authenticity, and shows
separation between them. Informally, privacy aims to protect the privacy of
encrypted inputs, while obliviousness hides both the input and the output when
the output decoding information is withheld. However once the output decod-
ing information is revealed, obliviousness does not necessarily imply privacy of
inputs. Lastly, authenticity captures the unforgeability of the output of a garbled
circuit evaluation. Different applications of GC often use different combinations
of the above properties of garbling schemes. Majority of the schemes in the
literature, including the classical scheme of Yao [Yao86], satisfy all the three
aforementioned properties.

In the original scheme of Yao [Yao86], each wire in the GC was assigned
two strings called “keys”, each corresponding to bit values zero and one on that
wire. A garbled gate in the circuit was represented by ciphertexts encrypting
its output wire keys using the corresponding input wire keys as per the gate’s
truth table. A garbled gate for a gate with fan-in two is thus constituted of four
ciphertexts. An evaluator who knows one key for each input wire can only open
one of the ciphertexts and therefore obtain only one key for the gate output
wire, corresponding to the bit output of the gate. The final garbled circuit was
a composition of the garbled gates, and its size was defined as the number of
bits of ciphertext needed overall. The encoded input consisted of the keys on the
input wires corresponding to the input bits. On receiving an encoded input, an
evaluator evaluates the gates topologically, finding the output key for every gate,
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and stops when the keys for the output gates are obtained. The efficiency of a
GC is determined by the computation cost (for the constructor and the evalu-
ator) and its size. The latter directly impacts the communication complexity of
protocols that employ the GC. Towards making secure computation practically
efficient, tremendous efforts have been made in boosting the performance and
efficiency of GCs. Some of the outstanding lines of work are highlighted below.

The work of the evaluator is significantly cut down via a technique called point-
and-permute [BMR90,MNPS04]. Specifically, it cuts down the computation cost
of an evaluator to one quarter, by introducing a pointing mechanism for every
gate that imparts to the evaluator the knowledge of the particular ciphertext
that she needs to decrypt in order to evaluate a garbled gate. Put differently, an
evaluator simply decrypts the relevant ciphertext, skipping the remaining three
for a two-input gate. Next, the celebrated Free-XOR technique [KS08] shows a
simple yet brilliant way of garbling and evaluating XOR gates with zero cipher-
texts and no cryptographic operations. Garbled Row Reduction (GRR) techniques
[NPS99,PSSW09,GLNP15,ZRE15] are devoted towards making concise garbled
gates by fixing some of the ciphertexts to constant values (therefore removing the
need to transmit them). Both free-XOR and GRR techniques are instrumental in
reducing the size of GCs. To date, the best known garbling scheme can garble an
XOR gate with zero ciphertexts, and an AND gate with just two ciphertexts using
free-XOR and clever GRR techniques [ZRE15]. Precluding further improvement in
this domain, the work of [ZRE15] shows optimality of two ciphertexts (or 2µ bits;
μ is the computational security parameter) for garbling an AND gate. Specifically,
the lowerboundholds true for any scheme that is capturedby their characterization
of linear garbling techniques. Informally, a garbling scheme qualifies to be linear
when the circuit constructor and evaluator need to perform linear operations apart
from making random oracle calls. Several other techniques for improving the com-
putation cost of the constructor and evaluator are reported in [BHR12b,BHKR13].
The efficiency study of GCs are further enriched and extended by considering a
number of interesting relaxations that lead to further optimizations. In one, some
of the security properties of GCs are compromised. In the others, specific classes of
circuits are used for garbling. As we discuss below, these relaxed notions of GCs are
not only interesting from an application perspective, but they also show significant
savings in terms of both size and computation cost. Since our work makes further
inroad in the study of the GCs exploiting some relaxations, we take a detailed look
at the relevant literature in order to set the stage for our contribution.

Privacy-Free Garbling. In a breakthrough result, Jawurek et al. [JKO13]
show that efficient zero knowledge (ZK) protocols for non-algebraic languages
can be constructed based on garbling schemes achieving only authenticity.
Frederiksen et al. [FNO15] termed this class of garbling schemes as privacy-
free. There has since been significant interest in garbled circuit based ZK proto-
cols [CGM16,HMR15]. A privacy-free garbling scheme does not need to satisfy
privacy nor obliviousness, instead it only requires authenticity and a notion
of verifiability. Informally, verifiability ensures that even a malicious construc-
tor cannot create a garbled circuit that can be evaluated to different garbled
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output values, for inputs which when applied to the circuit in clear give the
same output. This property is needed to mitigate selective failure attacks that a
malicious verifier could possibly mount in a ZK protocol. Though as of writing
this paper, the primary motivation of work in privacy-free garbling is to plug
into the GC based ZK protocols which can prove that a ‘prover’ knows x such
that f(x) = 1 in zero knowledge efficiently for non-algebraic f , verifiable out-
sourcing of computation provides another potential application for privacy-free
GCs [BHR12b,BHR12a]. Motivated by the important use-cases of privacy-free
garbling schemes, [FNO15,ZRE15] study the efficiency of privacy-free garbling.
Both works show that more efficient GCs than the most optimized Yao’s GC
can be constructed by leveraging privacy-freeness. In terms of individual gate
garbling computation and communication cost in the privacy-free setting, the
Half Gates approach [ZRE15] which is currently the most efficient, requires one
ciphertext per garbled AND gate, and no ciphertexts to garble XOR gates (with
two calls to a hash function H per AND gate). Zahur et al. [ZRE15] also argue
a lower bound of one ciphertext (or μ bits; μ is the computational security para-
meter) required to garble an AND gate for any linear scheme, and conclude
optimality of their privacy-free construction.

Garbling for Formulaic Circuits. Formulaic circuits or formulas, informally, are
circuits comprised solely of gates with fan-out of one. Formulaic circuits have
several use-cases, such as Boolean formula satisfiability and membership in a
language to name a few. By Cook’s theorem, there exists a Boolean formula
of size polynomial in |x| that can verify an NP-witness of membership of x in
language L. Formula satisfiability and language membership are well studied
languages in the study of ZK protocols [CD97,KR06,Gro10,Lip12,GGPR13].
There are examples abound showing that treating Boolean formulas as a separate
case from a general circuit may be apt [Kol05,KR06,KKKS15]. In the context of
garbling, Kempka et al. [KKKS15] show how to garble a formulaic circuit with
just four bits to represent each garbled gate. In contrast, even the best known
garbling scheme for general circuits [ZRE15] needs O(μ) bits where μ denotes
computational security parameter. However, the garbling scheme of Kempka et
al. [KKKS15] requires expensive public-key operations (which also disqualifies it
from being a linear scheme). In yet another attempt, Kolesnikov [Kol05] shows
how to garble a formula information-theoretically under the umbrella of “Gate
Evaluation Secret Sharing”, or GESS. The underlying garbling scheme achieves
privacy (and though not explicitly proven or defined, authenticity) using only
information-theoretic operations and produces a GC of size zero. On the down
side, the keys associated with the wires have their length dependent on the depth
of the circuit. Specifically, for a circuit of depth d and a statistical security
parameter κ, a key on an input wire can be of size O(d(κ + d)). Thus the
input circuit needs to be of low depth, apart from being formulaic. The blow-
up in key size also means that it does not meet the requirement of linearity
as per [ZRE15]. Information-theoretic schemes are attractive in practice due to
their highly efficient computation cost.

The schemes reported in [FNO15,ZRE15,KKKS15] are neither information-
theoretic nor do they produce size-zero GCs. On the other hand, while the scheme



192 Y. Kondi and A. Patra

of [Kol05] produces size-zero GCs, it is restricted to low-depth formulaic circuits.
This leaves open the question of achieving best of the both worlds and sets the
stage for our contribution.

1.1 Our Contribution

In this work, we explore privacy-free garbling for formulas (of arbitrary depth).
Our findings are presented below.

Privacy-Free Garbling for Formulas with Size-Zero GCs and Information-
Theoretic Security. The main contribution in this paper is to present a privacy-
free garbling scheme for formulas of arbitrary depth that achieves information-
theoretic security, size-zero GCs, and circuit-depth independence for the keys.
Unlike in the information-theoretic scheme of [Kol05], the key length for the
wires in our scheme is independent of the circuit depth. Unlike the schemes of
[FNO15,ZRE15,KKKS15], ours is information-theoretic and is extremely fast
due to the usage of cheap XOR operations. A couple of interesting theoretical
implications of our result are given below.

– Breaking the lower bound of [ZRE15]. The proven lower bound on the
number of ciphertexts (bits) for garbling an AND gate is one (μ bits; μ is
a security parameter) as per any linear garbling scheme. We show that our
scheme is linear and yet requires no ciphertext at all to garble any gate.
This breaks the lower bound shown in [ZRE15] for linear garbling schemes
in the privacy-free setting.

– Achieving Adaptive Security for Free. A garbling scheme is said to
achieve static security if its security properties are guaranteed as long as
the choice of input to the circuit is not allowed to depend on the garbled
circuit itself. A scheme is adaptively secure when there is no such restric-
tion. Several applications, notably one-time programs [GKR08], secure out-
sourcing [GGP10], and ZK protocols cast in offline-online setting [KR06]
need adaptive security, where the input may depend on the garbled circuit.
An interesting implication of size-zero GC is that, in the terminology of
Bellare et al. [BHR12b,BHR12a] achieving static security for our construc-
tion is equivalent to achieving adaptive security1.

Several works confirm that privacy-freeness brings along efficiency both in
terms of size and computation complexity of garbled circuits. We reaffirm this
belief. Specifically, garbling an XOR gate requires three XOR operations (which
can be improved in the multi-fan-in setting), while garbling an AND gate requires
only one XOR operation. Evaluating any gate requires at most one XOR opera-
tion. Interestingly, contrary to the norm in secure multiparty computation, AND
gates are handled (garbled, evaluated, and verified) more efficiently than XOR
gates in our construction. Furthermore, our scheme requires only one κ-bit ran-
dom string to generate all keys for both incoming wires to an AND or XOR gate.
1 Specifically, our scheme achieves aut1 security in the terminology of [BHR12a].
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In Table 1, we compare our work against other schemes operating in the privacy-
free setting to garble formulaic circuits, namely with [FNO15,ZRE15,Kol05].
The performance is measured with respect to a statistical security parameter κ
for the information-theoretic constructions and with respect to a computational
security parameter μ for cryptographic constructions, for a formulaic circuit of
depth d. For most of the practical purposes, the value of μ can be taken as 128,
while the value of κ can be taken as 40. Apart from usual measures (size and com-
putation cost) of GCs, we also take into account the input key length of the GCs
resulted from various schemes for comparison. The input key length impacts the
communication required in the input encoding phase, which is frequently done
by expensive Oblivious Transfer (OT) [EGL85] instances.

Table 1. Performance and security comparison of various privacy-free garbling schemes
for formulaic circuits. Calls to H refers to the number of hash function invocations. μ
and κ refer to the computational and the statistical parameter respectively. d is circuit
depth.

Garbling scheme Cost per gate Input key size Security
Size (in bits) Computation (calls to H)
XOR AND Constructor Evaluator

XOR AND XOR AND

Row reduction (GRR1) [FNO15] μ μ 0 3 0 1 μ Static computational

freeXOR+GRR2 [FNO15] 0 2μ 0 3 0 1 μ Static computational

Half gates [ZRE15] 0 μ 0 2 0 1 μ Static computational

GESS [Kol05] 0 0 0 0 0 0 O (d(κ + d)) Adaptive unconditional

This work 0 0 0 0 0 0 κ Adaptive unconditional

Technically, our scheme is very simple. We garble “upwards” from the output
wire similar to the garbling schemes of [Kol05,KKKS15]. As with many secure
computation protocols, at the heart of our scheme is our method for handling
AND gates. Here, we provide a preview of how our scheme garbles an AND
gate g. Denote the keys corresponding to bit b on the left and right incoming
wires, and the gate output wire, as Lb, Rb, and Kb respectively. Our garbling
scheme proceeds as follows. L1 and R1 are defined as additive shares of K1 so
that L1 ⊕ R1 = K1. Therefore, an evaluator can derive K1 = L1 ⊕ R1 only
if she has both L1 and R1. We then copy the value of K0 to the zero keys of
both incoming wires; L0 = R0 = K0. An evaluator hence has the output key
corresponding to bit value zero if she has a zero key on either incoming wire.
Note that in the case that the left incoming wire has value 0 flowing on it, and
the right incoming wire 1, an evaluator will effectively possess both keys R0 and
R1 on the right incoming wire; R1 obtained legitimately, and R0 as it is equal
to L0. We show that our scheme tolerates the leakage of certain keys within the
garbled circuit (both directly and indirectly due to the observation above), at
no cost of security.

The above aspect of our scheme is of theoretical interest as we do not maintain
the invariant that an evaluator is allowed to know only one key on each wire.
Our scheme achieves authenticity despite conceding both keys to an evaluator on
certain wires. In fact, this property is taken advantage of in order to gain much
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in terms of efficiency. To the best of our knowledge, ours is the first garbling
scheme where this invariant is not maintained. A direct implication of violating
this invariant is that the standard proof paradigms for garbled circuits (which
assume the invariant to hold) are not applicable here. We exploit the fact that
the only gate that is necessarily “uncompromised” is the circuit output gate, and
reduce (with no security loss) the authenticity of the circuit output gate in the
context of an arbitrarily large circuit, to the authenticity of a single-gate circuit.

Extensions for High Fan-In Gates and General Circuits. To optimize our gar-
bling scheme, we propose efficient garbling of �-fan-in gates. Apart from handling
�-fan-in XOR and AND gates, we consider threshold gates and provide a new
garbling scheme for them. A threshold gate with fan-in � and threshold t with
� > t outputs 1 when at least t + 1 inputs carry the bit 1, and zero otherwise.
The threshold range 1 < t < � − 1 is of interest to us, as the gate otherwise
degenerates into an �-fan-in AND or NAND gate, which can be handled more
efficiently by our scheme. Boolean threshold gates are considered and motivated
by Ball et al. [BMR16], who construct a scheme to garble them natively (gen-
erating O (

log3 �/ log log �
)

ciphertexts) as opposed to garbling a composition of
AND, XOR and NOT gates (yielding O (� log �) ciphertexts using the best known
garbling scheme of [ZRE15]). Here, we present a method of garbling Boolean
threshold gates (embedded in formulaic circuits) directly in privacy-free setting,
producing no ciphertext, and using only information-theoretic operations; specif-
ically two independent instances of Shamir secret sharing [Sha79] per threshold
gate.

The power of threshold gates is brought out in the fact that NC0
� AC0

�

TC0, where circuits deciding languages in TC0 contain majority gates in addi-
tion to AND, OR and NOT. More practically, threshold gates implement nat-
ural expressions in the settings of zero-knowledge [JKO13] and attribute-based
credentials [KKL+16]. In the former case, threshold gates can implement state-
ments of the form, “I have witnesses for at least t out of these � statements”,
without revealing for which statements the prover has witnesses. In the case of
attribute-based credentials, one can prove that her attributes satisfy at least t
criteria out of � in a policy, without revealing which ones, or how many exactly.

We show how to garble and evaluate � fan-in XOR and AND gates with fewer
XOR operations than are needed when we express such gates in terms of two
fan-in XOR and AND gates respectively. Specifically, garbling an �-fan-in XOR
gate directly takes 2� XOR operations, as opposed to 3(�−1) XOR operations to
garble � − 1 XOR gates individually. Evaluating an �-fan-in AND gate, in 2� − 1
cases out of 2�, will take zero XOR operations. In the final case, the evaluation
is done at the same cost as evaluating � − 1 individual AND gates.

For completeness, we describe how to adapt our scheme to garble generic
circuits in the privacy-free setting in the full version of the paper. While the
adaptation itself is not generally efficient for circuits that are not largely for-
mulaic, it establishes the feasibility of violating the single-key invariant when
garbling any generic circuit, at least in the privacy-free setting. Our approach
relies on cryptographic assumptions. For generic circuits that are not largely
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formulaic in nature, the construction of [FNO15,ZRE15] can be used. However,
both the constructions rely on non-standard assumptions. In [FNO15], it is a
customized notion of key derivation function (KDF) where random oracle can
be shown to be a secure KDF. In [ZRE15], the construction needs a circular cor-
relation robust hash function. We take a look at the scheme of [GLNP15] which
works under standard pseudo-random function (PRF) assumption and propose
several optimizations in privacy-free setting in the full version of the paper.

Application to ZK Protocols. Lately, ZK protocols from garbled circuits has
gained a lot of momentum [JKO13,FNO15,CGM16], with applications such as
attribute-based key exchange built on top of them [KKL+16]. We apply our
garbling scheme to the domain of ZK protocols where the verification function
of the language is representable by an almost formulaic circuit such as Boolean
formula satisfiability. When we plug in our scheme in the paradigm of [JKO13]
(with a slight tweak), we get ZK protocols that rely on standard assumption
(PRG) in the OT-hybrid model and results in a better proof size for right choice
of the security parameters than the known instantiations in the same paradigm.
The best known GC-based ZK instantiation that results from the composition of
the privacy-free construction of [ZRE15] and the ZK protocols of [JKO13] needs
to rely on KDF and circular correlation-robust hash function.

Leveraging the adaptivity of our garbling scheme, we cast our ZK protocols
in the offline-online paradigm and offload circuit dependent expensive communi-
cation and computation to the offline phase. As a result, the witness size alone
linearly impacts the communication and computation (in terms of number of
symmetric key operations) complexities of the online phase. The existing ZK
protocols relying on statically secure garbling schemes cannot match the online
complexities of our protocol as the garbled circuit needs to be sent in the online
phase. In contrast to the garbled circuit based ZK protocols (including ours)
where public key operations are proportional to the witness size, the theoreti-
cally interesting ZK proofs/arguments [CD97,KR06,Gro10,Lip12,GGPR13] for
satisfiability employ public key operations proportional to the circuit size. We
focus on the protocols that are practically relevant. A practical non-interactive
alternative can be found in ZKBoo [GOM16], however at the cost of a large proof
size; the proof is linear in the size of the statement, and computed (and commu-
nicated) only after the witness is available. A comparison of our ZK protocol for
Boolean formula satisfiability with [JKO13] instantiated in the offline-online par-
adigm with the state of the art privacy-free garbling scheme [ZRE15] is provided
in Table 2.

1.2 Organization

In Sect. 2, we recall the necessary definitions. In Sect. 3, we present our privacy-
free information-theoretic garbling scheme for formulas. The full proof of security
appears in Sect. 4. The definition of a privacy-free linear garbling scheme and the
proof that our scheme qualifies to be a linear scheme is presented in Sect. 5. We
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Table 2. Complexities of GC based ZK for Boolean formula satisfiability. The last
two rows correspond to the protocols in offline-online setting. The computational and
statistical security parameters are μ and κ respectively, and the size of the statement
is m, while the size of the witness is n.

Protocol Communication Computation (input encoding and GC evaluation)
Offline Online Offline Online

[JKO13] + [ZRE15] 0 O(μm + κn) 0 O(n) PKE + O(m) hash invocations

Our protocol 0 O(κm + κn) 0 O(n) PKE+O(m) XORs

[JKO13] + [ZRE15] (offline-online) O(μn) O(μm) O(n) PKE O(m) hash invocations

Our protocol (offline-online) O(κm) O(μn) O(n) PKE O(n) PRG invocations+O(m) XORs

present the optimizations for � fan-in gates in Sect. 6. Our ZK protocol appears
in Sect. 7 and the required functionalities are recalled in AppendixA.

2 Preliminaries

We use a ← {0, 1}n to denote that a is assigned a uniformly random n-bit
string, and a ← alg(x) to denote that a is assigned the value output by random-
ized algorithm alg when supplied the input x. We use b := a to denote that b
is deterministically assigned the value a. The operator a||b denotes the concate-
nation of a and b. PPT denotes probabilistic polynomial time. The value κ is
used throughout this paper to denote the statistical security parameter, which is
reflected in the key length of the instance of the garbling scheme. For all practi-
cal purposes, the value of κ can be taken as 40. We also use the terms “zero key”
and “key corresponding to bit value zero” interchangeably. In what follows, we
present the required definitions. We denote by [x], the set of elements {1, . . . , x}.

2.1 Formulaic Circuits

Informally, a formula is a circuit which has a fan-out of one for every gate. The
implication of this is that a gate’s output wire can either be a circuit output wire,
or an input wire for only one other gate. Formally, we use a modified version
of the syntax for circuits in [BHR12b]. In GC based ZK protocols [JKO13], the
verification circuit that needs to be garbled has one bit output. The output zero
indicates that the proof is rejected, whereas the output one indicates that the
proof is accepted.

Definition 1. A formulaic circuit is characterized by a tuple f = (n, q,A,B,G).
The parameters n, q define the number of input, and non-input wires respectively.
Wires are indexed from 1 to n + q, with 1 to n being input wires, and n + q
being the output wire. A gate is identified by its outgoing wire index. For a
gate g ∈ [n + 1, n + q], A(g) and B(g) are injective functions that map to left
and right incoming wire indices respectively2. We have B(g) ∈ [1, n + q − 1],
2 This is a departure from the [BHR12b] definition for conventional circuits. The

injection property required here ensures that every gate in the circuit has a fan-out
of one.
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and A(g) ∈ [0, n + q − 1]; A(g) = 0 if g has fan-in of 1. We also require that
A(g) < B(g) < g. Additionally, we require that for every gate g, if ∃g′, A(g′) = g,
then �g′′, B(g′′) = g, and vice versa. This is to ensure that a gate can be an
incoming wire to at most one other gate. The gate functionality G(g) is a map
G(g) : {0, 1}2 �→ {0, 1}.

The terms “wire” and “gate” are used interchangeably throughout the paper,
as a gate is identified by the index of its outgoing wire.

2.2 Privacy-Free Garbling Scheme

A garbling scheme, as defined in [BHR12b], is defined by a tuple (Gb,En,De,Ev).
Their arguments and outputs are as follows:

– Gb: (f, 1κ) �→ (F, e, d). Given the function f to garble, the PPT algorithm Gb
outputs the garbled circuit F , encoding information e, and decoding infor-
mation d.

– En: (x, e) �→ X. Given clear function input x and valid encoding information
e, the deterministic algorithm En outputs garbled input X.

– Ev: (F,X) �→ Y . Given a garbled circuit F and garbled input X for that
circuit, Ev deterministically outputs garbled output Y .

– De: (Y, d) �→ y. Given garbled output Y , and valid decoding information d, De
deterministically outputs the clear function output y. If Y is not consistent
with d, then De outputs ⊥.

Definition 2 (Correctness). A garbling scheme satisfies correctness if for
every valid circuit f and its input x, we have

∀(F, e, d) ← Gb (f, 1κ) , De (Ev (F,En(x, e)) , d) = f(x)

We consider only projective garbling schemes, where the encoding informa-
tion e is of the form

((
k0

i , k1
i

)
i∈[n]

)
. We refer the reader to [BHR12b] for a formal

treatment and discussion.
In [BHR12b], definitions for the security notions of privacy, obliviousness,

and authenticity are provided. However, as we are not interested in achieving
privacy or obliviousness, we will only consider authenticity, and the notion of
verifiability defined in [JKO13].

Definition 3 (Authenticity). A garbling scheme satisfies unconditional
authenticity if for every computationally unbounded A, and for every f :
{0, 1}n �→ {0, 1} and x ← {0, 1}n, we have

Pr [(Y 
= Ev(F,X)) ∧ (De(Y, d) 
= ⊥) : Y ← A (F,X)] ≤ 2−κ

where (F, e, d) ← Gb (f, 1κ), and X := En(e, x).
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The definition for unconditional authenticity in Definition 3 is stronger than
that of Bellare et al. [BHR12b], as it places no bound on the computational
power of the adversary, and specifies that no such adversary should be able to
perform better than randomly guessing a garbled output. Intuitively, schemes
delivering such guarantees should rely only on information theoretic operations.

Finally, we also consider the property of verifiability introduced in [JKO13].
A privacy-free garbling scheme that can be plugged into their ZK protocol must
have an additional ‘verification function’ Ve : (F, f, e) �→ b. The purpose of
this function is to enable the Prover (who evaluates the garbled circuit) to verify
that the garbled circuit that she was given was legitimately constructed, which is
important in ensuring that the garbled output obtained upon evaluation doesn’t
reveal any input bits, i.e. the Prover’s witness. This function outputs a single
bit b, given a garbled circuit F , the underlying clear function f , and encoding
information e. Informally, when Ve outputs 1 for a certain F, f, e, then evaluating
F on garbled input X corresponding to x such that f(x) = 1 will produce garbled
output that matches the expected garbled output that can be extracted given
F, e.

Definition 4 (Verifiability). A verifiable garbling scheme contains a poly-time
computable function Ve such that there exists a poly-time algorithm Ext, which
for every computationally unbounded adversary A, function f within the domain
of Gb, input x where f(x) = 1, ensures the following,

Pr [Ext(F, e) = Ev (F,En(e, x))] = 1, when Ve (F, f, e) = 1; (F, e) ← A (1κ, f)

For completeness, we require: ∀(F, e, d) ← Gb (f, 1κ) , Ve (F, f, e) = 1.

Note that like Definition 3 the above definition for verifiability is stronger than
the original one in [JKO13], owing to the fact that our Definition 4 does not
place a bound on the running time of the adversary, and does not permit even
a negligible error for the Ext algorithm.

An unconditionally secure privacy-free garbling scheme is defined by a tuple
G = (Gb,En,Ev,De,Ve), and satisfies the correctness, authenticity, and verifia-
bility properties detailed in Definitions 2, 3, and 4.

3 Privacy-Free Garbling for Formulas

In this section, we define our construction for an unconditionally secure, verifiable
privacy-free garbling scheme whose domain of circuits that can be garbled are
formulaic. As per previous paradigms of garbling formulaic circuits in [Kol05,
KKKS15], our garbling scheme proceeds upwards from the output wire.

3.1 Garbling Individual Gates

As per Yao’s paradigm of garbling circuits [Yao86], every wire in the circuit is
assigned two κ-bit string tokens, called “keys”; one each for bit values zero and
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one on that wire. For a gate g, let the output wire keys corresponding to zero
and one be K0 and K1 respectively. The zero and one keys of the left incoming
wire are L0, L1 respectively, and those of the right incoming wire are R0, R1

respectively. The bit value flowing on wire w is bw. A gate garbling routine is
a randomized algorithm that accepts the gate keys K0,K1 as arguments, and
returns constructed keys L0, L1, R0, R1 for the gate’s input wires. A gate eval-
uation routine deterministically returns a key KGg(bL,bR) where Gg is the gate
functionality, upon being supplied with input wire keys LbL , RbR (and possibly
input bits bL, bR). In this section, we define gate garbling and evaluation routines
for XOR, AND, and NOT gates.

Garbling XOR Gates. Garbling and evaluation of XOR gates is relatively
simple. Our garbling scheme for XOR gates is similar to that of Kolesnikov’s
[Kol05]. The wire keys produced by our garbling scheme maintain the same
relation, namely LbL⊕RbR = KbL⊕bR . However, while the construction of [Kol05]
requires four XOR operations to garble an XOR gate, our construction requires
only three (tending to two in the l-fan-in setting), hence saving on computation
cost.

First, K0 is split into two additive shares, assigned to L1 and R1 respectively.
Therefore, L1 ⊕ R1 = K0. Next, K1 is masked with R1 and assigned to L0, and
independently masked with L1 and assigned to R0. I.e. L0 := K1 ⊕ R1 and
R0 := K1 ⊕ L1. This ensures that L0 ⊕ R1 = R0 ⊕ L1 = K1. Conveniently,
L0 ⊕ R0 = L1 ⊕ R1 = K0.

Evaluation can hence be defined as follows: if the evaluator has keys LbL and
RbR , corresponding to bits bL and bR on the left and right wires respectively, she
can obtain the output key as KbL⊕bR = LbL ⊕RbR . Correctness of evaluating an
XOR gate as per this scheme is implicit.

The VeXOR routine defined in Fig. 1 ensures that any combination of
LbL , RbR taken from L0, L1, R0, R1 consistently evaluates to a KbL⊕bR . This can
be considered a “consistency check”, that a given tuple of keys (L0, L1, R0, R1)
maintain correctness of a garbled XOR gate.

Garbling AND Gates. Our construction for garbling AND gates is as simple
as the one defined for XOR gates, however the proof of authenticity is not as
straightforward. Interestingly, our scheme requires only one XOR operation to
garble an AND gate, and at most one XOR operation to evaluate a garbled
AND gate (in three out of four cases, evaluation is completely free). This makes
garbling, evaluation, and verification of AND gates cheaper than that of XOR
gates. Figure 2 formalizes the construction discussed in the Introduction.

Correctness of evaluating an AND gate as per this scheme is hence implicit.
Note that if an evaluator has key L0, she will be missing L1, therefore making
whatever key she has on the right incoming wire irrelevant; K1 remains com-
pletely hidden unless both L1 and R1 are available. A similar argument applies
in case she has R0. Additionally, if she is able to derive K1 during evaluation, it
implies that she started with L1 and R1, keeping K0 inaccessible for the lack of



200 Y. Kondi and A. Patra

GbXOR K0, K1, 1κ
)

The zero and one keys of the left and right incoming wires will be L0, R0 and L1, R1 respec-
tively

1. Split K0 into additive secret shares, L1 ← {0, 1}κ; R1 := K0 ⊕ L1

2. Mask K1 for the incoming zero keys, L0 := K1 ⊕ R1; R0 := K1 ⊕ L1

3. return L0, L1, R0, R1

EvXOR LbL , RbR
)

1. return LbL ⊕ RbR

VeXOR L0, L1, R0, R1
)

1. Generate both output keys in all combinations
i. K00 := L0 ⊕ R0; K01 := L0 ⊕ R1

ii. K11 := L1 ⊕ R1; K10 := L1 ⊕ R0

2. if K00 �= K11 or K10 �= K01 then the keys are inconsistent, return 0, ⊥, ⊥. else
return 1, K00, K01

Fig. 1. Garbling, evaluation and verification of an XOR gate

L0 and R0. Therefore, during an evaluation of the gate for the first time (when
no gate g′ > g has been evaluated yet), the evaluator will be unable to forge the
output key that she is missing.

It can be observed that knowledge of L0 implies knowledge of R0. Due to the
earlier argument regarding K1 being perfectly hidden unless both L1 and R1 are
known, this does not pose a problem. Intuitively, the worst that an adversary
could do with this knowledge (eg. given L0 and R1) is obtain both keys on
the right incoming wire, but the damage is “contained”; wires occurring after
this gate are not affected. Examining what an adversarial evaluator is capable
of doing with this information (beyond just one ‘pass’ of evaluation) requires a
more comprehensive analysis, which we defer to Sect. 4. We show that despite the
information leaked by the key structure of the AND gates, our scheme achieves
unconditional authenticity.

The routine VeAND defined in Fig. 2 verifies that both incoming wires of a
gate g have the same zero key, which will also be the zero key for g. The key
corresponding to bit value one for wire g is defined such that it requires no con-
sistency checking with respect to its incoming wires’ keys. This routine can hence
be considered a “consistency check” that a given tuple of keys (L0, L1, R0, R1)
maintain correctness of a garbled AND gate.

Garbling NOT Gates. NOT gates can be garbled for free, like in [Kol05], by
switching the association of the zero and one keys. If wire w has keys K0

w,K1
w
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GbAND K0, K1, 1κ
)

The zero and one keys of the left and right incoming wires areL0, R0 andL1, R1 respectively

1. Set both zero keys, L0 := K0; R0 := K0

2. Split K1 into additive secret shares, L1 ← {0, 1}κ; R1 := K1 ⊕ L1

3. return L0, L1, R0, R1

EvAND LbL , RbR , bL, bR

)

Note that we require the bit values on the incoming wires to evaluate AND gates

1. if bL = 0 then return LbL

2. else if bR = 0 then return RbR

3. else return LbL ⊕ RbR

VeAND L0, L1, R0, R1
)

1. if L0 �= R0 then zero keys are inconsistent, return 0, ⊥, ⊥. else return 1, L0, L1 ⊕R1

Fig. 2. Garbling, evaluation and verification of an AND gate

corresponding to bit values zero and one respectively, and is input to a NOT
gate g, the outgoing wire of g will have keys K0

g = K1
w, K1

g = K0
w corresponding

to values 0 and 1 respectively.
Note that none of the above schemes require ciphertexts to be published.

Given that XOR, NOT, and AND gates can be garbled without ciphertexts,
we therefore have a scheme to garble any formula without ciphertexts in the
information-theoretic, privacy-free setting. Note that unlike the GESS construc-
tion of [Kol05], in our scheme the key size on every wire is the same (κ bits),
hence allowing the online communication complexity of encoding the input x to
be dependent only on the size of the input x, and not circuit depth of f .

3.2 Garbling an Entire Circuit

We can combine the routines defined in Figs. 1 and 2 in order to construct a gar-
bling scheme for an entire formulaic circuit. Our garbling scheme G is defined by
the tuple G = (Gb,En,Ev,De,Ve), as detailed in Figs. 3, 4, 5, 4, and 6 respectively.

We can further optimize our scheme to handle �-fan-in gates with better
concrete efficiency. A detailed discussion is deferred to Sect. 6. The full proof of
security appears in the next section.
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Gb (f, 1κ)

– Parse n, q from f
– Denote the keys on wire w as K0

w, K1
w corresponding to bit values 0 and 1 respectively

1. Start with the the circuit output gate, g = n + q
2. Set circuit output gate keys, K0

g ← {0, 1}κ; K1
g ← {0, 1}κ

3. while g > n do
i. α := A(g); β := B(g)
ii. if g is an XOR Gate then K0

α, K1
α, K0

β , K1
β ← GbXOR K0

g , K1
g , 1κ

)
iii. else if g is an AND Gate then K0

α, K1
α, K0

β , K1
β ← GbAND K0

g , K1
g , 1κ

)
iv. else g is a NOT gate, K0

β := K1
g ; K

1
β := K0

g

v. Proceed to the previous gate, g := g − 1

4. Prepare encoding information, e :=
(

K0
i , K1

i

)
i∈[n]

)
5. Prepare decoding information, d := K0

n+q, K
1
n+q

)
6. return ∅, e, d

Fig. 3. Garbling an entire circuit

En (x, e)

Let xi denote the ith bit of x

1. Parse e into keys,
(

K0
i , K1

i

)
i∈[n]

)
:= e

2. return (Kxi
i ||xi)i∈[n]

De (Y, d)

1. if Y = d[0] then return 0
2. else if Y = d[1] then return 1
3. else return ⊥

Fig. 4. Encoding a clear function input and decoding a garbled output

4 Full Proof of Security

Theorem 1. The garbling scheme G is an unconditionally secure privacy-free
garbling scheme.

Correctness follows from the correctness of the garbling schemes for individual
gates, discussed in Sect. 3.1. Verifiability follows from the consistency-checks of
individual gates conducted in the Ve algorithm, discussed in Sect. 3.1.

We now construct a proof of authenticity by reducing the authenticity of
our scheme for a generic formulaic circuit to the authenticity of a single garbled
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Ev (F, X)

– The clear circuit f is assumed to be known
– Let Kw, bw denote the key obtained on wire w, and the bit on that wire respectively

1. Parse (Kw||bw)i∈[n] := X
2. Start with the first input gate g := n + 1
3. while g ≤ n + q do

i. α := A(g); β := B(g)
ii. if g is an XOR Gate then compute bg := bα ⊕ bβ and Kg ← EvXOR (Kα, Kβ)
iii. else if g is an AND Gate then compute bg := bα ∧ bβ and Kg ←

EvAND (Kα, Kβ , bα, bβ)
iv. else g is a NOT gate, bg := ¬bβ

v. Proceed to the next gate, g := g + 1
4. The key on the last wire is the garbled output, return Kn+q

Fig. 5. Evaluating a garbled circuit on garbled input

Ve (F, f, e)

– The consistency of each gate is verified, and if found to be consistent, the corresponding
keys are derived

– Let K0
w, K1

w denote the keys corresponding to values 0 and 1 respectively on wire w
– Parse n, q from f

1. Parse e into keys
(

K0
i , K1

i

)
i∈[n]

)
:= e

2. Start with the first gate, g := n + 1
3. while g ≤ n + q do

i. α := A(g); β := B(g)
ii. if g is an XOR gate then

– b, K0
g , K1

g := VeXOR K0
α, K1

α, K0
β , K1

β

)
– if b = 0 then return 0

iii. else if g is an AND gate then

– b, K0
g , K1

g := VeAND K0
α, K1

α, K0
β , K1

β

)
– if b = 0 then return 0

iv. else g is a NOT gate, K0
g := K1

β ; K1
g := K0

β

v. Proceed to the next gate, g := g + 1
4. All keys are consistent, return 1

Fig. 6. Verifying a garbled circuit

gate. We start by showing that a garbling of a circuit consisting of one gate is
authentic. We then show that forging an output for an n-input garbled formulaic
circuit is exactly as hard as forging an output for the same circuit with one of
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its gates deleted, when garbled with the same randomness3. The “hidden core”
of our argument is that any compromise in the keys of a gate allowed by our
scheme will not concede the gate’s child’s keys; the damage will only spread
‘upward’ to its incoming wires. We denote an adversary wishing to compromise
the authenticity of a circuit with n inputs as An.

4.1 Single Gate Case

Lemma 1. The garbling scheme G achieves unconditional authenticity as per
Definition 3 when the domain is restricted to circuits f with input size n = 2.

Proving that an adversarial evaluator will be unable to forge an output key,
given her requested input keys for any single gate will prove Lemma1. This can
be done by considering the garbling of AND and XOR gates, as per Figs. 2 and
1 respectively.

Let the keys on the left input wire be L0, L1, right input wire be R0, R1, and
output wire be K0,K1. The evaluator has input bits bL and bR on the left and
right input wires respectively. Consequently, she is given the keys LbL and RbR .
We denote the adversarial evaluator as A2, and show that she can not forge the
key K¬bK , where bK is the output bit (either bL ∧ bR or bL ⊕ bR as per the case).

XOR Gate. The authenticity of XOR gate garbling is relatively straightfor-
ward. As per the output of the GbXOR routine, we have,

L0 ⊕ R0 = L1 ⊕ R1 = K0, and L1 ⊕ R0 = L0 ⊕ R1 = K1

Let bK = bL ⊕ bR. The evaluator computes KbK = LbL ⊕ RbR . The adversarial
evaluator A2 wishing to forge K¬bK will notice that the only relations connecting
her input keys to K¬bK are as follows: K¬bK = L¬bL⊕RbR = LbL⊕R¬bR . Clearly,
she will be unable to forge K¬bK without guessing either L¬bL or R¬bR .

AND Gate. To show authenticity of a garbled AND gate, we have to take into
account that one of the input wires may compromise both keys. We analyze all
four cases, based on the input bits. Keep in mind that L0 = R0 = K0, and
L1 ⊕ R1 = K1.

1. bL = bR = 0: In this case, A2 has absolutely no information about K1, and
can do no better than directly guessing it.

2. bL = bR = 1: In this case, A2 has absolutely no information about K0, and
can do no better than directly guessing it.

3. bL = 1, bR = 0, bK = bL ∧ bR = 0: A2 has K0 = R0, as well as L1. Due to the
key structure, she also obtains L0 = R0. However, this information is useless,
as the missing output key K1 = L1 ⊕R1 requires knowledge of R1, which A2

does not have.
4. bL = 0, bR = 1, bK = bL ∧ bR = 0: This case is identical to Case 3, as the left

and right input wires are treated symmetrically.
3 I.e. the random tapes used in the garbling of f and f ′ are identical.
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NOT Gate. A NOT gate may be added on or removed from any wire at will,
with no implications for authenticity, as the distributions of input and output
keys for the individual gates remain unchanged.

Hence, we have shown on a case-by-case basis that there exists no gate or
input combination in which an adversary A2 can do better than guessing the out-
put key K¬bK that she is missing. Therefore, even a computationally unbounded
adversary will be successful in forging a gate output with probability no greater
than 2−κ, which proves Lemma 1.

4.2 Reduction Step

In this section, we perfectly reduce the authenticity of the garbling of an n-
input formulaic circuit to that of an (n − 1)-input one. We denote the garbling
(i.e. collection of keys on each wire, generated within Gb) of a function f as
K =

(
K0

i ,K1
i

)
i∈[1,n+q]

.
Simply put, given that garbling an n-input formulaic circuit f produces K,

an adversary loses no advantage by deleting an input gate g (gate fed only by
circuit input wires), as Lemma 1 demonstrates that the keys on input wires A(g)
and B(g) are completely useless in forging an unknown key for g. Hence, an
adversary An wishing to forge an output key as per K will be as successful in
forging an output key as per K′, a garbling of f with any input gate g deleted. An
adversary for the latter procedure is denoted by An−1. As there is no security loss
in the reduction from An to An−1, we finally conclude that An is as successful
in forging an output as per K as A2 is in forging an output for a single-gate
circuit. We know from Lemma 1 that no such computationally unbounded A2

succeeds with probability greater than 2−κ.
Given an adversary An that can forge an output for an n-input formulaic

circuit f , we construct adversary An−1 (in Fig. 7), that can forge an output for
an (n − 1)-input formulaic circuit f ′ with the same probability of success. For
readability, for a scheme G, denote the event that a computationally unbounded
adversary A succeeds in forging a garbled output Y given F,X for some f, x
(where (F, e, d) ← Gb(f, 1κ);X ← En(e, x)), by the outcome of AutG (A, 1κ).
Specifically,

AutG (A, 1κ) =

{
1 if A(F,X) = Y ;Y 
= Ev(F,X),De(Y, d) 
= ⊥
0 otherwise

It is clear to see that a garbling scheme G is authentic if, and only if,
Pr [AutG (A, 1κ) = 1] ≤ 2−κ, ∀A. Therefore, as there is no security loss in our
reduction from An to An−1, we have:

Pr [AutG (An, 1κ) = 1] = Pr [AutG (An−1, 1κ) = 1] =
· · · = Pr [AutG (A2, 1κ) = 1] ≤ 2−κ

Note that the reduction from An to An−1 detailed in Fig. 7 only works for
formulaic circuits; deleting a gate with fan-out of l will produce l different input
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An−1

– An−1 has black-box access to An, which is capable of forging Y for the garbled circuit F
and corresponding encoded input X for a certain formulaic circuit f and corresponding
n-bit input x.

– Using An, An−1 forges garbled output Y ′ for a (F ′, X ′), for some formulaic circuit f ′

and corresponding (n − 1)-bit input x′.
– f ′, x′ are derived from f, x as follows:

i. Choose some gate g from f such that both parents A(g) and B(g) are input wiresa.
ii. Construct f ′ identical to f , with the exception that g, A(g), B(g) are replaced with

a single input wire numbered g′.
iii. Parse x into bits x1x2 · · · xi · · · xn, copy them to create x′, with the exception of

xA(g) and xB(g), which are replaced with x′
g′ = Gg xA(g), xB(g)

)
b

iv. f ′, x′ are now an (n − 1)-input function and its corresponding input such that
f(x) = f ′(x′)

1. Parse X ′ into keys X ′
1X

′
2 · · · X ′

n−1, and copy them into X at the appropriate locations.
2. X will be missing keys at locations A(g) and B(g). They can be generated as followsc:

- if g was an XOR gate then XA(g) ← {0, 1}κ; XB(g) := XA(g) ⊕ X ′
g′

- else if g was an AND gate then
i. if xA(g) = xB(g) = 0 then XA(g) := XB(g) := X ′

g′
ii. else if xA(g) = xB(g) = 1 then XA(g) ← {0, 1}κ, XB(g) := XA(g) ⊕ X ′

g′
iii. else if xA(g) = 0 then XA(g) := X ′

g′ , XB(g) ← {0, 1}κ

iv. else XB(g) := X ′
g′ , XA(g) ← {0, 1}κ

3. Send X to An and output the response, output An (∅, X, 1κ)

a Even g such that its parent is a NOT gate A(g) with its parent as an input wire w =
B(A(g)) < n will work. In this case, consider ¬xw in place of xw wherever relevant in
this algorithm.

b Gg is the gate functionality of gate g, ie. XOR or AND
c This subroutine effectively garbles the missing gate g such that the keys for parents
A(g), B(g) consistently evaluate to the keys on wire g′. Note that this leaves all the orig-
inal keys generated when garbling f ′ undisturbed, hence implying that a forged key re-
turned by An for its garbling of f can directly be output as a forged key for the garbling
of f ′ given to An−1. Also note a minor technical detail, that we ignore that Xi is actually
Ki||bi on an input wire, for readability.

Fig. 7. Constructing adversary An−1 given An

wires, each with its own independent pair of keys. For An−1 to ensure that the
deleted gate’s keys are consistent with l different outgoing wires is undefined as
per our garbling scheme.

Hence, there exists no computationally unbounded adversary that succeeds
in forging an output for a formulaic circuit of any size when garbled by G, with
probability greater than 2−κ. This proves Theorem 1.
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4.3 Adaptive Security

We had mentioned in an earlier section that our scheme achieves adaptive secu-
rity, or aut1 in the terminology of [BHR12a], as opposed to Definition 3 which
they term static security, or aut.

We show this by illustrating that an adversary in the Aut1G game (which
forms the basis for the definition of adaptive security) is at no advantage in
forging a garbled output, as compared to an adversary wishing to break the
‘static’ authenticity of our scheme as per Definition 3.

In the Aut1G game, the adversary is allowed to request from the game the
garbled circuit F for her function f before she chooses x for which she receives
encoded input X = En(e, x). The Aut1G game consists of three stages:

1. The Garble stage accepts from A a circuit f , computes (F, e, d) ←
Gb (1κ, f), and returns F to A.

2. The Input stage accepts from A an input x, outputs ⊥ if it is not in the
domain of f , otherwise returns X = En(e, x) to A.

3. The Finalize stage accepts from A a garbled output Y , and outputs 1 if
Y 
= Ev(F,X) while still being a valid garbled output (i.e. De(Y, d) 
= ⊥),
and 0 otherwise.

The output of the experiment Aut1G (A, 1κ) is the value output by the Final-
ize stage. An unconditionally adaptively authentic scheme will ensure that
Pr[Aut1G (A, 1κ) = 1] ≤ 2−κ for all computationally unbounded A.

It is immediately evident that this extra concession granted to the adversary
is useless in our setting, as our scheme does not produce any ciphertexts to rep-
resent a garbled circuit. An adversary A′ for the Aut1G game can be given a null
string to serve as the garbled circuit F of any function f that it may submit to
the Garble stage. Therefore, A′ is forced to choose x completely independently
of the garbling of f , effectively having to commit to f, x simultaneously. Hence,
the task of A′ is equivalent to that of a static adversary A (F,X) attempting to
forge a garbled output as per Definition 3, which is proven not to succeed with
probability better than 2−κ by Theorem 1.

5 Breaking the Lower Bound of [ZRE15]

Zahur et al. [ZRE15] observe that most known garbling schemes fit into
their characterization of linear garbling techniques. Informally, a linear gar-
bling scheme proceeds gate by gate, at each gate generating a vector S =
(R1, · · · , Rr, Q1, · · · , Qq), where Ris are fresh random values, and Qis are
obtained by independent calls to a random oracle (queries may depend on Ri

values). The gate ciphertexts as well as the keys on each wire touching the gate
are derived by linearly combining the values in S. The only non-linearity allowed
in their model is through the random oracle invocations, and permutation bits.
All elements are μ bits long, where μ is the security parameter. They prove
that an ideally secure garbling scheme that is linear as per their characterization
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must adhere to certain lower bounds in terms of bits of ciphertext produced
when garbling a single atomic AND gate. An ideally secure garbling scheme
ensures that no computationally unbounded adversary (with bounded calls to
the random oracle) will have advantage better than poly (μ) /2μ in the security
games of Bellare et al. [BHR12b]. The following are the bounds in the private
and privacy-free settings respectively, as argued by Zahur et al. [ZRE15].

Lower Bound for Garbling Schemes Achieving Privacy. Linear garbling schemes
are shown to require at least 2µ bits of ciphertext to garble an AND gate
privately. This bound was circumvented (but not contradicted) in the works of
Ball et al. [BMR16] and Kempka et al. [KKS16] by a different treatment of
permutation bits. Both schemes garble a single AND gate privately but non-
composably with just one ciphertext.

Lower Bound for Privacy-Free Garbling Schemes. Linear garbling schemes
achieving authenticity are argued to require at least μ bits of ciphertext to
garble an AND gate. To the best of our knowledge, this bound is currently
unchallenged. Our scheme is clearly linear (with no requirement of a random
oracle) and yet garbles AND gates with no ciphertexts for any μ. Moreover, our
scheme composes to garble a non-trivial class of circuits (i.e. formulas) with no
ciphertexts.

5.1 Linear Garbling

We recall the formal definition of linear garbling [ZRE15], but simplified for the
privacy-free setting. Specifically, we enforce that the permutation bit always be
0, as there is no reason for the semantic value of a wire key to be hidden from
an evaluator in this setting. Indeed, both previous privacy-free schemes [ZRE15,
FNO15] rely on an evaluator knowing the semantic value of the key she has. A
garbling scheme G is linear if its routines are of the form described in Fig. 8.

Claim ([ZRE15]). Every linear ideally secure privacy-free garbling scheme for
AND gates must have p ≥ 1. The garbled gate consists of at least μ bits.

Our privacy-free garbling scheme is a linear garbling scheme with the follow-
ing parameters for an AND gate and with μ = κ:

– Number of ciphertexts p = 0, random values r = 3 and random oracle queries
q = 0.

– The same vector to obtain all zero keys, L0 = R0 = K0 = [1 0 0]
– Vectors to select independent input 1-keys, L1 = [0 1 0], R1 = [0 0 1]
– Output 1-key vector as the sum of both input 1-keys, K1 = L1 +R1 = [0 1 1]
–

(
Ci

)
i∈[p]

is an empty set as there are no ciphertexts required.
– Evaluation vectors (Vα,β)α,β∈{0,1} as follows:

• When the evaluator has a zero key, output the zero key. So, V0,0 = V0,1 =
[1 0], V1,0 = [0 1].

• When both keys correspond to 1, output their sum. So V1,1 = [1 1].
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– We describe here a simplified characterization of linear garbling [ZRE15] for the privacy-
free setting. Note that garbling by default is for a single gate.

– The integers p, q, r, and vectors L0, L1, R0, R1, K0, K1, Ci
)

i∈[p]
, (Vα,β)α,β∈{0,1} pa-

rameterize garbling scheme G = (Gb,En,Ev,De). p denotes the number of ciphertexts.
r and q denote the number of uniformly random elements and the number of random
oracle calls needed. Each of the above vectors is of size r + q (except Vα,β which is of
size p + q + 2) with entries in GF (2μ).

Gb (·, 1μ)

1. for i ∈ [r] do Choose Ri ← GF (2μ)
2. for i ∈ [q] do Make a query to the random oracle, store the response in Qi

3. Construct S = (R1, · · · , Rr, Q1, · · · , Qq)
4. for i ∈ {0, 1} do Corresponding to semantic value i, compute keys on the two input

wires as Li := 〈Li, S〉 and Ri := 〈Ri, S〉, and the output wire as Ki := 〈Ki, S〉
5. for i ∈ [p] do Compute the ith gate ciphertext Ci := 〈Ci, S〉
6. Construct and output encoding information e := ((L0, L1) , (R0, R1)), and gate cipher-

texts F = (Ci)i∈[p]

En (x, e)

1. Parse (x0, x1) := x, and ((L0, L1) , (R0, R1)) := e
2. Output X = (Lx0 ||x0, Rx1 ||x1)

Ev (F, X)

1. Parse input labels (Lα||α, Rβ ||β) := X , and ciphertexts (Ci)i∈[p] := F

2. for i ∈ [q] do Make a query to the random oracle, store the response in Q′
i

3. Construct T = Lα, Rβ , Q′
1, · · · , Q′

q, C1, · · · , Cp

)
4. Output 〈Vα,β ,T〉

Fig. 8. Form of linear garbling schemes

Succinctness of Our Garbling Scheme. As Zahur et al. [ZRE15] note, almost all
practical techniques so far for garbling Boolean circuits qualify as linear as per
their characterization. If we use their parameters to define s = p + r + q as a
measure of ‘program succinctness’ of a linear garbling scheme, then we observe
that our garbling scheme has the most succinct program (s = 3) of all garbling
schemes in the literature.

5.2 Where the [ZRE15] Technique for Bounding Privacy-Free
Garbling Fails

As illustrated above, our garbling scheme is clearly linear and achieves ideal
security, but can still garble an AND gate in the privacy-free setting with no
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ciphertext. Our scheme is therefore a simple and direct counterexample to the
argument of Zahur et al. [ZRE15] that a linear garbling scheme achieving ideal
authenticity must produce at least μ bits of ciphertext when garbling and AND
gate.

In more detail, the ciphertext generating Ga,b becomes a dimension 0 matrix.
At the core of the linear garbling model is that the evaluator’s behaviour must
depend only on the public α, β ‘signal’ bits, a property which is adhered to
by our privacy-free scheme. In our setting, the signal bits convey the actual
semantic values with which the keys are associated. However, the lower bound
proof in [ZRE15] relies on the property that changing a ‘permute’ bit a/b which
is defined when garbling, must also change the corresponding signal bit on which
the evaluator acts. In our setting it is immediate that this assumption does not
need to hold (as α, β are not tied to a, b), and our scheme takes advantage of
this to break the claimed lower bound.

6 �-fan-in Gates

In this section, we describe how to handle �-fan-in gates efficiently. We first
provide a new garbling scheme for threshold gates in Sect. 6.1, then describe
how to save computation in garbling and evaluating �-fan-in XOR and AND
gates respectively in Sects. 6.2 and 6.3.

6.1 Threshold Gates

An �-input threshold gate, parameterized by a threshold t, realizes the following
function:

ft(x1, · · · , xi, · · · , x�) =

⎧
⎨

⎩
1, if

�∑

i=1

xi > t

0, otherwise

The threshold range 1 < t < � − 1 is of interest to us, as the gate otherwise
degenerates into an �-fan-in AND or NAND gate, which can be handled more
efficiently by our scheme. Boolean threshold gates are considered and motivated
by Ball et al. [BMR16], who construct a scheme to garble them natively (gen-
erating O (

log3 �/ log log �
)

ciphertexts) as opposed to garbling a composition of
AND, XOR and NOT gates (yielding O (� log �) ciphertexts using the best known
garbling scheme of [ZRE15]). Here, we present a method of garbling Boolean
threshold gates (embedded in formulaic circuits) directly, producing no cipher-
text, and using only information-theoretic operations; specifically two indepen-
dent instances of Shamir secret sharing [Sha79] per threshold gate assuming the
underlying field to be GF (2κ).

The idea is as follows; an evaluator having inputs x1 · · · x� to the threshold

gate computing ft, such that
�∑

i=1

x� = m, will possess m input 1-keys, and �−m

input 0-keys. Let the gate output keys be denoted as K0 and K1, and denote the
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GbTHR �, t, K0, K1, 1κ
)

The zero and one keys of the ith incoming wire will be K0
i , K1

i . We denote the set of all
t-degree polynomials with constant s as Ps,t.

1. Choose a uniformly random t-degree polynomial withK1 as its constant, hK1 ← PK1,t

2. Generate the input 1-keys to be Shamir shares of K1, for all i ∈ [�] do K1
i := hK1(i)

3. Choose a uniformly random (� − (t + 1))-degree polynomial with K0 as its constant,

hK0 ← PK0,(�−(t+1))

4. Generate the input 0-keys to be Shamir shares of K0, for all i ∈ [�] do K0
i := hK0(i).

5. return K0
i , K1

i

)
i∈[1,�]

EvTHR
(
t′, (ji, Ki)i∈[t+1]

)

1. The input to this routine is assumed to be a set of t′ + 1 unique (index, key) pairs, where
each key corresponds to the same value. Note that t′ may be t or � − (t + 1) depending
on the gate output.

2. Using Lagrange interpolation, we obtain the unique t-degree polynomial h, such that
h (ji) = Ki, ∀i ∈ [t + 1].

3. Compute the output key by retrieving the constant of h; K := h(0).
4. return K

VeTHR
(
t, K0

i , K1
i

)
i∈[�]

)

1. Using Lagrange interpolation, we obtain the unique t-degree polynomial hK1 , such that
hK1 (i) = K1

i , ∀i ∈ [t + 1].
2. if ∃j ∈ [t + 2, �] such that hK1 (j) �= K1

j then return 0, ⊥, ⊥
3. Using Lagrange interpolation, we obtain the unique (� − (t + 1))-degree polynomial

hK0 , such that hK0 (i) = K0
i , ∀i ∈ [� − t].

4. if ∃j ∈ [� − t + 1, �] such that hK0 (j) �= K0
j then return 0, ⊥, ⊥

5. The input 0-keys and 1-keys each define unique polynomials of degrees �− (t+1) and t
respectively. Compute the output keys to be the constants of the curves, K0 := hK0(0)
and K1 := hK1(0)

6. return 1, K0, K1

Fig. 9. Garbling, evaluation and verification of a threshold gate

keys on the ith input wire as K0
i ,K1

i . As the requirement of the threshold gate
is that more than t of the evaluator’s inputs must be 1 in order to output 1, we
need to devise a garbled evaluation scheme which allows the evaluator to obtain
K1 when she has more than t K1

i s. A natural candidate for this construction
is a threshold secret sharing scheme, where the K1

i s form a t-out-of-l sharing of
K1; i.e. any t + 1 of the K1

i s are sufficient to reconstruct K1, while having t or
fewer K1

i s renders K1 unconditionally hidden except with a probability of 2−κ.
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Note that in order to correctly realise ft, our garbled gate evaluation scheme
also needs to ensure that if (and only if) the evaluator has fewer than (t + 1)
input values equal to 1, she should obtain K0. In this case, her � − m zero keys
K0

i should be sufficient to reconstruct K0. Therefore, we define the K0
i s to form

an (� − (t + 1))-out-of-l sharing of K0, i.e. any (� − t) of the K0
i s are sufficient

to reconstruct K0. This also ensures that when m > t (i.e. ft (x1 · · · x�) = 1),
she will be unable to reconstruct K0, as (� − m) < (� − t), and she only has
(� − m) K0

i s.
We formalize the described scheme in Fig. 9. It is evident how to invoke the

GbTHR, EvTHR, and VeTHR routines within the Gb, Ev, and Ve algorithms
respectively. To formally prove the authenticity of our threshold gate garbling
routine, we describe how the adversary An−�+1, given black-box access to An,
can forge an output for an n−�+1 input formula obtained by deleting an �-fan-in
input threshold gate from an n-input formula used by An, in Fig. 10.

An−�+1 (f ′, x′, F ′, X ′)

– This procedure is a modification of the adversary from Fig. 7, to accommodate threshold
gates.

– Without loss of generality, f ′ was generated by deleting an input threshold gate g from f ,
which was fed by input bits x1 · · · x�.

– This routine adds a clause to Step 2 of the original An−1 to detail how to generate
X1 · · · X� for An, given the input key X ′

g on wire g′.

2. - else if g was a threshold gate ft then
i. b := ft (x1 · · · x�)
ii. if b = 1 then Choose a uniformly random t-degree polynomial with X ′

g as its

constant, h ← PX′
g,t

iii. else Choose a uniformly random (� − (t + 1))-degree polynomial with X ′
g as

its constant, h ← PX′
g,(�−(t+1))

iv. for i ∈ [1, �] do
• if xi = b then Xi := h(i)
• else Xi ← {0, 1}κ

Fig. 10. Deleting a threshold gate to reduce An to An−�+1 as per the gate deletion
proof strategy

Security. As discussed earlier, the unconditional authenticity of our threshold
gate garbling in the single gate case is implied by the unconditional security of
Shamir’s secret sharing [Sha79]. Observe that our threshold gate garbling scheme
is also made possible by the violation of Yao’s invariant; the nature of threshold
secret sharing is such that once the curve is reconstructed, the missing shares
can be computed as well. Specifically, possessing the 1-key on t+1 input wires to
an �-fan-in threshold gate computing ft, allows the reconstruction of the 1-keys
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on the remaining � − (t + 1) input wires in addition to the gate output 1-key.
However, this information is useless in reconstructing the 0-key of the gate, and
hence has no impact on authenticity.

Extension to Circuits. It is easy to see that our threshold gate garbling gadget
can be used to augment any privacy-free circuit garbling scheme Gc, at the
cost of cryptographic assumptions no stronger than required by Gc. Every input
key kb

i to the threshold gate g can be mapped to a corresponding Kb
i output

by GbTHR. During evaluation, Kb
i is made accessible given kb

i by means of a
ciphertext T [g]i,b = H(g, i, kb

i , b) ⊕ Kb
i , where H is the cryptographic primitive

used to implement encryption in Gc, eg. PRF [GLNP15], KDF [FNO15], circular
correlation robust hash [ZRE15].

While this gadget costs only 2� ciphertexts to implement, we can additionally
optimize this construction to cut down the ciphertexts by half. Intuitively, we can
set the curves hK1 and hK0 pseudorandomly rather than uniformly at random.
Specifically, the polynomial hK1 in GbTHR (Fig. 9) can be set by fixing t − 1
points as hK1(i) = H(g, i, 1, k1

i ), ∀i ∈ [t − 1], so that cipherexts are needed to
convey only the remaining � − t + 1 points. The same optimization applied to
hK0 yields that the total number of ciphertexts that need to be communicated
for this gadget is now � + 2.

Performance. Our base construction for formulas is significantly more efficient
than a naive approach, as representing threshold gates in a formula is highly
non-trivial, with upper bounds of O (

�3.04
)

[Ser14]. As for general circuits, the
construction of Ball et al. [BMR16] will cost O (

log3 �/ log log �
)

more ciphertexts
than our construction when embedded directly in a Boolean circuit (accounting
for � ‘projection’ gates) despite relying on a circular correlation robust hash
function.

6.2 Improved �-fan-in XOR

The routine to garble an individual XOR gate described in Fig. 1 performs 3
XOR operations in order to derive the incoming wire keys corresponding to a
given pair of gate keys. Hence, in order to garble � XOR gates, repeating this
routine � − 1 times will cost 3(� − 1) XOR operations.

Consider a subtree (with � leaves) consisting only of XOR gates, contained
within the tree representation of a formulaic circuit. Note that there are � − 1
gates in this subtree. Without loss of generality, let the subtree be collapsed into
a single gate accepting � incoming wires. For convenience, the incoming wires
(leaves of the subtree) are assumed to be numbered consecutively from w to
w + � − 1, with the final XOR gate itself (root of the subtree) being numbered
g such that the internal nodes of the subtree are numbered consecutively from
w + � to g − 1. As usual, the keys on wire i are denoted K0

i ,K1
i , corresponding

to bit values 0 and 1 respectively.
Consider the keys

(
K0

i ,K1
i

)
i∈[w,g]

to be produced by � − 1 instances of the
GbXOR routine from Fig. 1; starting from the root K0

g ,K1
g and ending at the
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leaves to produce
(
K0

i ,K1
i

)
i∈[w,w+�−1]

. Observe that the zero and one keys on
each wire differ by the same offset; i.e. ∀i ∈ [w, g]:

K0
w ⊕ K1

w = · · · = K0
i ⊕ K1

i = · · · = K0
g ⊕ K1

g (1)

We make use of the property observed in Eq. (1) in order to garble such an �-fan-
in XOR gate more efficiently. Essentially, the 0-keys of the incoming wires are
chosen so as to form an additive secret sharing of the gate’s 0-key. The 1-keys
are then generated by offsetting the 0-keys by the same offset as the gate key
pair (i.e. K0

g ⊕ K1
g ). The formal description is given in Fig. 11.

GbXOR �, K0, K1, 1κ
)

– We have to generate � key pairs, which will produce either K0 or K1 appropriately upon
being combined by XORing

– The resultant keys are locally indexed here as K0
i , K1

i , i ∈ [1, �]

1. Calculate the offset, Δ := K0 ⊕ K1

2. Choose the 0-keys on all but one wire randomly, for all i ∈ [1, � − 1] do K0
i ← {0, 1}κ

3. Set the final 0-key so that all the incoming wires’ 0-keys form an additive secret sharing

of K0, K0
� :=

(
�−1⊕
i=1

K0
i

)
⊕ K0

4. Offset the 0-keys to generate the 1-keys on the incoming wires. for all i ∈ [1, �] do
K1

i = K0
i ⊕ Δ

5. return K0
i , K1

i

)
i∈[1,�]

Fig. 11. Garbling an �-fan-in XOR gate

The routine detailed in Fig. 11 produces keys that adhere to the exact same
distribution as the result of invoking the original GbXOR routine � − 1 times in
an appropriate sequence. The evaluation and verification algorithms for garbled
XOR gates (Fig. 1) are directly compatible. A separate proof of authenticity is
therefore not required.

As for the computation cost, the new GbXOR routine of Fig. 11 requires one
XOR operation to find the gate offset, �−1 XOR operations to additively secret
share one of the gate keys, and � XOR operations to offset each of the 1-keys
on the incoming wires, bringing the total to 2�. This beats the 3(� − 1) cost of
using multiple instances of the original routine when � > 3.

6.3 Improved �-fan-in AND

The cost of garbling an AND gate is already minimal, at a single XOR operation
per gate. Instead, we focus on optimizing the evaluation of AND gates.
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Similar to the �-fan-in case of XOR gates, consider a subtree consisting solely
of AND gates, contained in a formulaic circuit. The gates in the subtree are
numbered as described in the �-fan-in XOR section; w to w + � − 1 for the
inputs, w + � to g for the intermediate gates, and g for the root of the subtree.
The subtree is collapsed into a single �-fan-in AND gate. We follow the standard
naming convention for wire keys and bit values.

Observe that if any of the bit values on wires w to w + � − 1 are 0, then the
entire subtree (the �-fan-in AND gate) will evaluate to 0, as bg = bw∧· · ·∧bw+�−1.
Also observe that as per the GbAND routine defined in Fig. 2, the following
relation holds:

K0
w = · · · = K0

i = · · · = K0
g , ∀i ∈ [w, g] (2)

We exploit the above relation in order to save time during evaluation; if a wire
j ∈ [w,w + � − 1] is found to be carrying a bit value of 0, then the �-fan-in AND
gate output is set to 0, with the key Kj being assigned to the gate output key
Kg. The routine is formally detailed in Fig. 12.

EvAND
(
(Ki, bi)i∈[1,�] , 1

κ
)

– We have to process � (key, bit value) pairs that effectively correspond to an �-fan-in AND
gate.

– The incoming wire keys and bit values are locally indexed as Ki, bi, where i ∈ [1, �], and
the resultant key and bit value are locally indexed as Kg, bg .

1. if ∃j ∈ [1, �] such that bj = 0 then Gate output is zero, Kj is also the output key.
Kg := Kj

2. else Gate output is 1, XOR all input keys. Kg :=
�⊕

i=1

Ki

3. return Kg, bg

Fig. 12. Evaluating an l-fan-in AND gate

The only case where XOR operations are performed in the EvAND routine
in Fig. 12 is when all input bit values are 1; i.e. bi = 1,∀i ∈ [w,w + � − 1]. Even
so, only � − 1 XOR operations are performed, which is the same as when � − 1
instances of the original EvAND routine from Fig. 2 are executed. However, if
there exists at least one incoming wire carrying bit value 0, i.e. ∃j ∈ [w,w +
� − 1], bj = 0, no XOR operations are performed to evaluate the entire �-fan-in
AND gate. This occurs for 2� − 1 out of the 2� input cases. The number of XOR
operations saved will be equal to the number of gates in the (now collapsed)
subtree that evaluate to bit value 1. As there is no modification to the garbling
routine, there is no additional proof of authenticity required here.



216 Y. Kondi and A. Patra

7 Online-Efficient Zero-Knowledge

Privacy-free GCs are motivated by applications to ZK protocols. Specifically,
when plugged into the ZK protocol of [JKO13], a privacy-free GC yields an
efficient method to prove non-algebraic statements. In this section, we show
that when instantiated with our scheme, we obtain a ZK protocol for Boolean
formula satisfiability (SAT) statements in the online-offline paradigm, where the
communication in the online phase is linearly proportional only to the size of
the witness.

A SAT verification function can be realised by a formula. A witness bit may
occur a number of times in the formula. While realizing the formula as a formulaic
circuit, each occurrence of a witness bit in the formula is treated as a separate
input wire. Denoting the ith witness bit of the formula to be represented by
input wires Ii = {i0, i1, · · · il} in the formulaic circuit, in order for the formula
to correctly check a witness w = (wi)i∈[n] we must ensure that ∀j ∈ Ii, xj = wi.
We stress that the cumulative size of the Iis may be much bigger than the witness
length. We denote the size of ∪n

i Ii as n′. We denote the size of the (formulaic)
circuit by m and the size of the witness w as n. So we have n ≤ n′ ≤ m.

Our ZK protocol π = (πoff , πon) is described in Fig. 13. Informally, protocol
π is a direct adaptation of the ZK protocol in [JKO13] to the online-offline set-
ting, by shifting the public-key operations (OTs) to the offline phase. However,
we observe that the same witness bit is used to select multiple GC keys, and
accordingly use a domain extension technique for the OTs in order to encode n′

garbled inputs with just n OT instances. This is the core of why the communi-
cation required in πon is only proportional to the witness size, and not the size
of the statement. The proof of security appears in the full version of the paper
and the formal definitions of the necessary ideal functionalities FCOM,FCOT,FR

ZK

are postponed to Appendix A.

Computation Cost. The offline phase will require O (n) PRG invocations by V,
and O (n) public key operations (OTs) by both P and V. The online phase will
require O (n) PRG invocations by P to unmask the input keys, O (m) XORs
to evaluate the GC, and another O (n) public key operations to verify that the
GC is valid. V need only perform O(n) XOR operations in the online phase, and
open one commitment.

Communication Cost. The preprocessing phase will require O (m), and the
online phase will require O (n) bits of communication. The ZK protocol when
instantiated with a statically secure garbling scheme can not possibly yield an
online phase which is independent of the size of the statement. This is because
the garbled circuit will necessarily have to be sent after the evaluator commits
to her input.

Our ZK Protocol Without Offline Phase. Our protocol in Fig. 13 in its monolithic
form can be obtained by running the OTs in an online fashion where the inputs of
V are the seeds of the PRG and the inputs of P are the witness bits directly. We



Privacy-Free Garbled Circuits for Formulas 217

Fig. 13. Online-efficient ZK from our privacy-free garbling scheme

compare this protocol with that of [JKO13] composed with [ZRE15]. While our
protocol offers the qualitative advantage of relying on weaker primitives (PRGs),
we also note that since our garbling scheme is instantiated with a statistical
security parameter, it can offer a better proof size.
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A Zero-Knowledge from Garbled Circuits: Required
Functionalities

Here we describe the required ideal functionalities. The Zero-knowledge func-
tionality is detailed in Fig. 14. The FCOT and FCOM functionalities are provided
in Figs. 15 and 16 respectively. The FCOT functionality can be securely realised
in the framework of [PVW08] with an augmentation for the Open-all property,
as discussed in [JKO13]. The FCOM functionality can be securely and efficiently
realised as well [Lin11].

Fig. 14. The zero-knowledge functionality

Fig. 15. The ideal committing OT functionality
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Fig. 16. The ideal commitment functionality
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Abstract. We study the complexity of securely evaluating an arithmetic
circuit over a finite field F in the setting of secure two-party computa-
tion with semi-honest adversaries. In all existing protocols, the number of
arithmetic operations per multiplication gate grows either linearly with
log |F| or polylogarithmically with the security parameter. We present
the first protocol that only makes a constant (amortized) number of field
operations per gate. The protocol uses the underlying field F as a black
box, and its security is based on arithmetic analogues of well-studied
cryptographic assumptions.

Our protocol is particularly appealing in the special case of securely
evaluating a “vector-OLE” function of the form ax + b, where x ∈ F is
the input of one party and a, b ∈ F

w are the inputs of the other party. In
this case, which is motivated by natural applications, our protocol can
achieve an asymptotic rate of 1/3 (i.e., the communication is dominated
by sending roughly 3w elements of F). Our implementation of this proto-
col suggests that it outperforms competing approaches even for relatively
small fields F and over fast networks.

Our technical approach employs two new ingredients that may be of
independent interest. First, we present a general way to combine any
linear code that has a fast encoder and a cryptographic (“LPN-style”)
pseudorandomness property with another linear code that supports fast
encoding and erasure-decoding, obtaining a code that inherits both the
pseudorandomness feature of the former code and the efficiency features
of the latter code. Second, we employ local arithmetic pseudo-random
generators, proposing arithmetic generalizations of boolean candidates
that resist all known attacks.

1 Introduction

There are many situations in which computations are performed on sensi-
tive numerical data. A computation on numbers can usually be expressed
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as a sequence of arithmetic operations such as addition, subtraction, and
multiplication.1

In cases where the sensitive data is distributed among multiple parties, this
calls for secure arithmetic computation, namely secure computation of functions
defined by arithmetic operations. It is convenient to represent such a function
by an arithmetic circuit, which is similar to a standard boolean circuit except
that gates are labeled by addition, subtraction, or multiplication. It is typically
sufficient to consider such circuits that evaluate the operations over a large finite
field F, since arithmetic computations over the integers or (bounded precision)
reals can be reduced to this case. Computing over finite fields (as opposed to
integers or reals) can also be a feature, as it is useful for applications in threshold
cryptography (see, e.g., [15,26]). In the present work we are mainly interested
in the case of secure arithmetic two-party computation in the presence of semi-
honest adversaries.2 From here on, the term “secure computation” will refer
specifically to this case.

Oblivious Linear-Function Evaluation. A natural complete primitive for secure
arithmetic computation is Oblivious Linear-function Evaluation (OLE). OLE is
a two-party functionality that receives a field element x ∈ F from Alice and field
elements a, b ∈ F from Bob and delivers ax + b to Alice. OLE can be viewed as
the arithmetic analogue of 1-out-of-2 Oblivious Transfer of bits (bit-OT) [22]. In
the binary case, every boolean circuit C can be securely evaluated with perfect
security by using O(|C|) invocations of an ideal bit-OT oracle via the “GMW
protocol” [27,30]. A simple generalization of this protocol can be used to evaluate
any arithmetic circuit C over F using O(|C|) invocations of OLE and O(|C|) field
operations [35].

The Complexity of Secure Arithmetic Computation. The goal of this work is
to minimize the complexity of secure arithmetic computation. In light of the
above, this reduces to efficiently realizing multiple instances of OLE. We start
by surveying known approaches. The most obvious is a straightforward reduction
to standard secure computation methods by emulating field operations using bit
operations. This approach is quite expensive both asymptotically and in terms
of concrete efficiency. In particular, it typically requires many “cryptographic”
operations for securely emulating each field operation.

A more direct approach is via homomorphic encryption. Since OLE is a
degree-1 function, it can be directly realized by using “linear-homomorphic”
encryption schemes (that support addition and scalar multiplication). This app-
roach can be instantiated using Paillier encryption [18,26,48] or using encryption
schemes based on (ring)-LWE [19,43]. While these techniques can be optimized
to achieve good communication complexity, their concrete computational cost is

1 More complex numerical computations can typically be efficiently reduced to these
simple ones, e.g., by using suitable low-degree approximations.

2 Our results extend naturally to the case of secure multi-party computation with no
honest majority. We restrict the attention to the two-party case for simplicity.
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quite high. In asymptotic terms, the best instantiations of this approach have
computational overhead that grows polylogarithmically with the security para-
meter k. That is, the computational complexity of such secure computation pro-
tocols (in any standard computational model) is bigger than the computational
complexity of the insecure computation by at least a polylogarithmic factor in k.

Another approach, first suggested by Gilboa [26] and recently implemented
by Keller et al. [37], is to use a simple information-theoretic reduction of OLE
to string-OT. By using a bit-decomposition of Alice’s input x, an OLE over a
field F with �-bit elements can be perfectly reduced to � instances of OT, where
in each OT one of two field elements is being transferred from Bob to Alice.
Using fast methods for OT extension [12,31], the OTs can be implemented quite
efficiently. However, even when neglecting the cost of OTs, the communication
involves 2� field elements and the computation involves O(�) field operations per
OLE. This overhead can be quite large for big fields F that are often useful in
applications.

A final approach, which is the most relevant to our work, uses a computa-
tionally secure reduction from OLE to string-OT that assumes the peudoran-
domness of noisy random codewords in a linear code. This approach was first
suggested by Naor and Pinkas [46] and was further developed by Ishai et al. [35].
The most efficient instantiation of these protocols relies on the assumption that
a noisy random codeword of a Reed-Solomon code is pseudorandom, provided
that the noise level is sufficiently high to defeat known list-decoding algorithms.
In the best case scenario, this approach has polylogarithmic computational over-
head (using asymptotically fast FFT-based algorithms for encoding and decod-
ing Reed-Solomon codes). See Sect. 1.3 for a more detailed overview of existing
approaches and [35] for further discussion of secure arithmetic computation and
its applications.

The above state of affairs leaves the following question open:
Is it possible to realize secure arithmetic computation with constant com-
putational overhead?

To be a bit more precise, by “constant computational overhead” we mean
that there is a protocol which can securely evaluate any arithmetic circuit C over
any finite field F, with a computational cost (on a RAM machine) that is only
a constant times bigger than the cost of performing |C| field operations with no
security at all. Here we make the standard convention of viewing the size of C
also as a security parameter, namely the view of any adversary running in time
poly(|C|) can be simulated up to a negligible error (in |C|). In the boolean case,
Ishai et al. [34] showed that secure computation with constant computational
overhead can be based on the conjectured existence of a local polynomial-stretch
pseudo-random generator (PRG). In contrast, in all known protocols for the
arithmetic case the computational overhead either grows linearly with log |F| or
polylogarithmically with the security parameter.

1.1 Our Contribution

We improve both the asymptotic and the concrete efficiency of secure arith-
metic computation. On the asymptotic efficiency front, we settle the above open
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question in the affirmative under plausible cryptographic assumptions. More
concretely, our main result is a protocol that securely evaluates any arithmetic
circuit C over F using only O(|C|) field operations, independently of the size of F.
The protocol uses the underlying field F as a black box, where the number of field
operations depends only on the security parameter and not on the field size.3

The security of the protocol is based on arithmetic analogues of well-studied
cryptographic assumptions: concretely, an arithmetic version of an assumption
due to Alekhnovich [1] (or similar kinds of “LPN-style” assumptions) and an
arithmetic version of a local polynomial-stretch PRG [4,11,34].4

On the concrete efficiency front, our approach is particularly appealing for
a useful subclass of arithmetic computations that efficiently reduce to a multi-
output extension of OLE that we call vector-OLE. A vector-OLE of width w is a
two-party functionality that receives a field element x ∈ F from Alice and a pair
of vectors a, b ∈ F

w from Bob and delivers ax + b to Alice. We obtain a secure
protocol for vector-OLE with constant computational overhead and with an
asymptotic communication rate of 1/3 (i.e., the communication is dominated by
sending roughly 3w elements of F). Our implementation of this protocol suggests
that it outperforms competing approaches even for relatively small fields F and
over fast networks. The protocol is also based on more conservative assumptions,
namely it can be based only on the first of the two assumptions on which our
more general result is based. This assumption is arguably more conservative
than the assumption on noisy Reed-Solomon codes used in [35,46], since the
underlying codes do not have an algebraic structure that gives rise to efficient
(list-)decoding algorithms.

Vector-OLE can be viewed as an arithmetic analogue of string-OT. Similarly
to the usefulness of string-OT for garbling schemes [54], vector-OLE is useful for
arithmetic garbling [5,10] (see Sect. 4). Moreover, there are several natural secure
computation tasks that can be directly and efficiently realized using vector-OLE.
One class of such tasks are in the domain of secure linear algebra [17]. As a simple
example, the secure multiplication of an n×n matrix by a length-n vector easily
reduces to n instances of vector-OLE of width n. Another class of applications
is in the domain of securely searching for nearest neighbors, e.g., in the context
of secure face recognition [21]. The goal is to find in a database of n vectors of
dimension d the vector which is closest in Euclidean distance to a given target
vector. This task admits a simple reduction to d instances of width-n vector OLE,
followed by non-arithmetic secure computation of a simple function (minimum)
of n integers whose size is independent of d. The cost of such a protocol is

3 The protocol additionally uses standard “bit-operations,” but their complexity is
dominated by the field operations for every field size.

4 More precisely, we need a polynomial-stretch PRG with constant locality and con-
stant degree, or equivalently, a polynomial-stretch PRG which can be computed by a
constant-depth (NC0) arithmetic circuit. For brevity, through the introduction we
refer to such a PRG as being local and implicitly assume the additional constant-
degree requirement.
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dominated by the cost of vector-OLE. See Sect. 5 for a more detailed discussion
of these applications.

1.2 Overview of Techniques

Our constant-overhead protocol for a general circuit C is obtained in three steps.
The first step is a reduction of the secure computation of C to n = O(|C|)
instances of OLE via an arithmetic version of the GMW protocol.

The second step is a reduction of n instances of OLE to roughly
√

n instances
of vector-OLE of width w = O(

√
n). This step mimics the approach for constant-

overhead secure computation of boolean circuits taken in [34], which com-
bines a local polynomial-stretch PRGs with an information-theoretic garbling
scheme [32,54]. To extend this approach from the boolean to the arithmetic case,
two changes are made. First, the information-theoretic garbling scheme for NC0

is replaced by an arithmetic analogue [10]. More interestingly, the polynomial-
stretch PRGs in NC0 needs to be replaced by an arithmetic analogue. We pro-
pose candidates for such arithmetic PRGs that generalize the boolean candidates
from [11,28] and can be shown to resist known classes of attacks. While the secu-
rity of these PRG candidates remains to be further studied, there are no apparent
weaknesses that arise from increasing the field size.

The final, and most interesting, step is a constant-overhead protocol for
vector-OLE. As noted above, the protocol obtained in this step is independently
useful for applications, and our implementation of this protocol beats competing
approaches not only asymptotically but also in terms of its concrete efficiency.

Our starting point is the code-based OLE protocol from [35,46]. This protocol
can be based on any randomized linear encoding scheme E over F that has a
the following “LPN-style” pseudorandomness property: If we encode a message
x ∈ F and replace a small random subset of the symbols by uniformly random
field elements, the resulting noisy codeword is pseudorandom. For most linear
encoding schemes this appears to be a conservative assumption, since there are
very few linear codes for which efficient decoding techniques are known. The
OLE protocol proceeds by having Alice compute a random encoding y = E(x)
and send a noisy version y′ of y to Bob. Bob returns c′ = ay′ + b to Alice,
where b = E(b) is a random linear encoding of b. Knowing the noise locations,
Alice can decode c = ax + b from c′ via erasure-decoding in the linear code
defined by E. If we ignore the noise coordinates, c′ does not reveal to Alice any
additional information about (a, b) except the output ax+ b. However, the noise
coordinates can reveal more information. To prevent this information from being
leaked, Alice uses oblivious transfer (OT) to selectively learn only the non-noisy
coordinates of c′.

An attempt to extend the above protocol to the case of vector-OLE immedi-
ately encounters a syntactic difficulty. If the single value a is replaced by a vector
a, it is not clear how to “multiply” y′ by a. A workaround taken in [35] is to use a
“multiplicative” encoding scheme E based on Reed-Solomon codes. The encoding
and decoding of these codes incurs a polylogarithmic computational overhead,
and the high noise level required for defeating known list-decoding algorithms
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results in a poor concrete communication rate. The algebraic nature of the codes
also makes the underlying intractability assumption look quite strong. It is there-
fore desirable to base a similar protocol on other types of linear codes.

Our first idea for using general linear codes is to apply “vector-OLE rever-
sal.” Concretely, we apply a simple protocol for reducing vector-OLE to the
computation of ax + b where a is the input of Bob, x and b the are the inputs
of Alice, and the output is delivered to Bob. Now a general linear encoding E
can be used by Bob to encode its input a, and since x is a scalar Alice can mul-
tiply the encoding by x and add an encoding of b. If we base E on a linear-time
encodable and decodable code, such as the code of Spielman [51], the protocol
can be implemented using only O(w) field operations. The problem with this
approach the is that the pseudorandomness assumption looks questionable in
light of the existence of an efficient decoding algorithm for E. Even if the noise
level can chosen in a way that still respects linear-time erasure-decoding but
makes error-correction intractable (which is not at all clear), this would require
a high noise rate and hurt the concrete efficiency.

Our final idea, which may be of independent interest, is that instead of requir-
ing a single encoding E to simultaneously satisfy both “hardness” and “easiness”
properties, we can combine two types of encoding to enjoy the best of both
worlds. Concretely, we present a general way to combine any linear code C1

that has a fast encoder and a cryptographic (“LPN-style”) pseudorandomness
property with another linear code C2 that supports fast encoding and erasure-
decoding (but has no useful hardness properties) to get a randomized linear
encoding E that inherits the pseudorandomness feature from C1 and the effi-
ciency features from C2. This is achieved by using a noisy output of C1 to mask
the output of C2, which we pad with a sufficient number of 0s. Given the knowl-
edge of the noise locations in the padding zone, the entire C1 component can
be recovered in a “brute-force” way via Gaussian elimination, and one can then
compute and decode the output of C2. When the expansion of E is sufficiently
large, the Gaussian elimination is only applied to a short part of the encoding
length and hence does not form an efficiency bottleneck. Using these ideas, we
obtain a constant-overhead vector-OLE protocol under a seemingly conserva-
tive assumption, namely a natural arithmetic analogue of an assumption due to
Alekhnovich [1] or a similar assumption for other linear-time encodable codes
that do not have the special structure required for fast erasure-decoding.

1.3 Related Work

We first give an overview of known techniques for OLE (with semi-honest secu-
rity) and compare to what can be obtained using our approach.

First, the work of Gilboa [26] (see also [37]) implements OLE in a field with
n-bit elements using n oblivious transfers of field elements. The asymptotic com-
munication complexity of this approach is larger than ours by a factor Ω(n).

In particular, if the goal is to implement vector-OLE, we can say something
more concrete. Our vector-OLE implementation sends n/r bits to do 1 OLE
on n-bit field elements, where r is the rate, which is between 1/5 and 1/10 for



Secure Arithmetic Computation with Constant Computational Overhead 229

our implementation. The OT based approach will need to send at least n2 bits
to do the same. So in cases where network bandwidth is the bottleneck, we can
expect to be faster than the OT based approach by a factor nr. Our experiments
indicate that this happens for network speeds around 20–50 Mbits/sec. Actually,
also at large network speeds, our vector-OLE implementation outperforms the
OT based approach: The latest timings for semi-honest string OT on the type of
architecture we used (2 desktop computers connected by a LAN) are from [12]
(see also [37]) and indicate that one OT can be done in amortised time about
0.2µs, so that 0.2 nµs would an estimate for the time needed for one OLE. In
contrast, our times (for 100-bit security) are much smaller, even for the smallest
case we considered (n = 32) we have 0.7µs amortised time per OLE. For larger
fields, the picture is similar, for instance for n = 1024, we obtain 19.5µs per
OLE, where the estimate for the OT based technique is about 200µs.

A second class of OLE protocols can be obtained from homomorphic encryp-
tion schemes: one party encrypts his input under his own key and sends the
ciphertext to the other party. He can now multiply his input “into the cipher-
text” and randomize it appropriately before returning it for decryption. This will
work based on Paillier encryption (see, e.g., [21] for an application of this) but
will be very slow because exponentiation is required for the plaintext multiplica-
tion. A more efficient approach is to use (ring)-LWE based schemes, as worked
out in [19] by Damg̊ard et al. Here the asymptotic communication overhead is
worse than ours by a poly-logarithmic factor, at least for prime fields if one uses
the so-called SIMD variant where the plaintext is a vector of field elements. How-
ever, the approach becomes very problematic for extension fields of large degree
because key generation requires that we find a cyclotomic polynomial that splits
in a very specific way modulo the characteristic, and one needs to go to very
large keys before this happens. Quantifying this precisely is non-trivial and was
not done in [19], but as an example, the overhead in ciphertext size is a factor
of about 7 for a 64-bit prime fields, but is 1850 for F28 . Also, the computational
overhead for ring-LWE based schemes is much higher than ours: even if we pack
as many field elements, say λ, into a ciphertext as possible, the overhead involved
in encryption and decryption is superlinear in λ. Further λ needs to grow with
the field size, again the asymptotic growth is hard to quantify exactly, but it
is definitely super logarithmic. In more concrete terms, the computational over-
head of homomorphic encryption makes these protocols slower in practice than
the pure OT-based approach (see [37]), which is in turn generally slower than
our approach for the case of vector-OLE.

A final class of protocols is more closely related to ours, namely the code-
based approach of Naor and Pinkas [46] and its generalizations from [35]. The
most efficient instantiation of these protocols is based on an assumption on
pseudo-randomness of noisy Reed-Solomon codewords, whereas we use codes
generated from sparse matrices. Because encoding and decoding Reed-Solomon
codes is not known to be in linear time, these protocols are asymptotically slower
that ours by a poly-logarithmic factor. As for the communication, we obtain
an asymptotic rate of 1/3 and can obtain a practical rate of around 1/4. The
rate of the protocol from [35] is also constant but much smaller: one loses a
factor 2 because the protocol involves point-wise multiplication of codewords, so
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codewords need to be long enough to allow decoding of a Reed-Solomon code
based on polynomials of double degree. Even more significantly, on top of the
above, the distance needs to be increased (so the rate decreases) to protect
against attacks that rely on efficient list-decoding algorithms for Reed-Solomon
codes. This class of attacks does not apply to our approach, since it does not
require the code for which the pseudorandomness assumption holds to have any
algebraic structure.

2 Preliminaries

2.1 The Arithmetic Setting

Our formalization of secure arithmetic computation follows the one from [35],
but simplifies it to account for the simpler setting of security against semi-honest
adversaries. We also refine the computational model to allow for a more concrete
complexity analysis. We refer the reader to [35] for more details.

Functionalities. We represent the functionalities that we want to realize securely
via a multi-party variant of arithmetic circuits.

Definition 1 (Arithmetic circuits). An arithmetic circuit C has the same
syntax as a standard boolean circuit, except that the gates are labeled by ‘+’ (addi-
tion), ‘−’ (subtraction) or ‘*’ (multiplication). Each input wire can be labeled
by an input variable xi or a constant c ∈ {0, 1}. Given a finite field F, an
arithmetic circuit C with n inputs and m outputs naturally defines a function
CF : Fn → F

m. An arithmetic functionality circuit is an arithmetic circuit whose
inputs and outputs are labeled by party identities. In the two-party case, such a
circuit C naturally defines a two-party functionality CF : Fn1 ×F

n2 → F
m1 ×F

m2 .
We denote by CF(x1, x2)P the output of Party P on inputs (x1, x2).

Protocols and Complexity. To allow for a concrete complexity analysis, we view
a protocol as a finite object that is generated by a protocol compiler (defined
below). We assume that field elements have an adversarially chosen represen-
tation by �-bit strings, where the protocol can depend on � (but not on the
representation). The representation is needed for realizing our protocols in the
plain model. When considered as protocols in the OT-hybrid model, our proto-
cols can be cast in the more restrictive arithmetic model of Applebaum et al. [5],
where the parties do not have access to the bit-length of field elements or their
representation, but can still perform field operations and communicate field ele-
ments over the OT channel. Protocols in this model have the feature that the
number of field operations is independent of the field size.

By default, we model a protocol by a RAM program.5 The choice of compu-
tational model does not change the number of field operations, which anyway
5 This choice is related to our use of the linear-time decoding algorithm of

Spielman [51], which can only be implemented in linear time in the RAM model
(and requires quasi-linear circuit size).
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dominates the overall cost as the field grows. In our theorem statements we will
only refer to the number of field operations T , with the implicit understanding
that all other computations can be implemented using O(T�) bit operations.
(Note that T� bit operations are needed just for writing the outputs of T field
operations.)

Protocol Compiler. A protocol compiler P takes a security parameter 1k, an
arithmetic (two-party) functionality circuit C and bit-length parameter � as
inputs, and outputs a protocol Π that realizes C given an oracle to any field F

whose elements are represented by �-bit strings. It should satisfy the following
correctness and security requirements.

– Correctness: For every choice of k,C,F, �, any representation of elements of F
by �-bit strings, and every possible pair of inputs (x1, x2) for C, the execution
of Π on (x1, x2) ends with the parties outputting C(x1, x2), except with
negligible probability in k.

– Security: For every polynomial-size non-uniform A there is a negligible func-
tion ε such that the success probability of A in the following game is bounded
by 1/2 + ε(k):

• On input 1k, the adversary A picks a functionality circuit C, positive
integer � and field F whose elements are represented by �-bit strings.
The representation of field elements and field operations are implemented
by a circuit F output by A. (Note that all of the above parameters,
including the complexity of the field operations, are effectively restricted
to be polynomial in k.)

• Let ΠF be the protocol returned by the compiler P on 1k, C, �, instanti-
ating the field oracle F using F .

• A picks a corrupted party P ∈ {1, 2} and two input pairs x0 = (x0
1, x

0
2),

x1 = (x1
1, x

1
2) such that CF(x0)P = CF(x1)P .

• Challenger picks a random bit b.
• A is given the view of Party P in ΠF (xb) and outputs a guess for b.

OLE and Vector OLE. We will be particularly interested in the following two
arithmetic computations: an OLE takes an input x ∈ F from Alice and a pair
a, b ∈ F from Bob and delivers ax+b to Alice. Vector OLE of width w is similar,
except that the input of Bob is a pair of vectors a, b ∈ F

w and the output is
ax + b. OLE and vector OLE can be viewed as arithmetic analogues of bit-OT
and string-OT, respectively. Indeed, in the case F = F2, the OLE functionalities
coincide with the corresponding OT functionalities up to a local relabeling of the
inputs. An arithmetic generalization of the standard “GMW Protocol” [30,35]
compiles any arithmetic circuit functionality C into a perfectly secure protocol
that makes O(s×) calls to an ideal OLE functionality, where s× is the number of
multiplication gates, and O(|C|) field operations. Hence, to securely compute C
with O(|C|) field operations in the plain model it suffices to realize n instances
of OLE using O(n) field operations.
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2.2 Decomposable Affine Randomized Encoding (DARE)

Let f : F
� → F

m where F is some finite field.6 We say that a function f̂ :
F

� × F
ρ → F

m is a perfect randomized encoding [8,32] of f if for every input
x ∈ F

�, the distribution f̂(x; r) induced by a uniform choice of r
$←F

ρ, “encodes”
the string f(x) in the following sense:

1. (Correctness) There exists a decoding algorithm Dec such that for every x ∈
F

� it holds that
Pr

r
$← Fρ

[Dec(f̂(x; r)) = f(x)] = 1.

2. (Privacy) There exists a randomized algorithm S such that for every x ∈ F
�

and uniformly chosen r
$←F

ρ it holds that

S(f(x)) is distributed identically to f̂(x; r).

We say that f̂(x; r) is decomposable and affine if f̂ can be written as f̂(x; r) =
(f̂0(r), f̂1(x1; r), . . . , f̂n(x�; r)) where f̂i is linear in xi, i.e., it can be written as
aixi + bi where the vectors ai and bi arbitrarily depend on the randomness r.

It follows from [33] (cf. [10]) that every single-output function f : Fd → F

which can be computed by constant-depth circuit (aka NC0 function) admits
a decomposable encoding which can be encoded and decoded by an arithmetic
circuit of finite complexity D which depends only in the circuit depth. Note
that any multi-output function can be encoded by concatenating independent
randomized encodings of the functions defined by its output bits. Thus, we have
the following:

Fact 1. Let f : F� → F
m be an NC0 function. Then, f has a DARE f̂ which

can be encoded, decoded and simulated by an arithmetic circuit of size O(m)
where the constant in the big-O notation depends on the circuit depth.7

We mention that the circuits for the encoding, decoder, and simulator can be
all constructed efficiently given the circuit for f .

3 Vector OLE of Large Width

In this section, our goal is to construct a semi-honest secure protocol for Vector
OLE of width w over the field F = Fp for parties Alice and Bob.

As a stepping stone, we will first implement a “reversed” version of this that
can easily be turned into what we actually want: for the Reverse vector OLE
functionality, Bob has input a ∈ F

w, while Alice has input x ∈ F, b ∈ F
w, and

the functionality outputs nothing to Alice and a · x + b to Bob. The latter will
6 The following actually holds even for the case of general rings.
7 This hidden constant corresponds to the maximal complexity of encoding an output

of f . The latter is at most cubic in the size of the branching program that computes
fi (and can be even smaller for some concrete useful special cases).
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be based on a special gadget (referred to as fast hard/easy code) that allows
fast encoding and decoding under erasures but semantically hides the encoded
messages in the presence of noise. We describe first this gadget and then give
the protocol.

3.1 Ingredients

The main ingredient we need is a public matrix M over F with the following
pseudorandomness property: If we take a random vector y in the image of M ,
and perturb it with “noise”, the resulting vector ŷ is computationally indis-
tinguishable from a truly random vector over F. Our noise distribution corre-
sponds to the p-ary symmetric channel with crossover over probability μ, that is,
ŷ = y +e where for each coordinate of e we assign independently the value zero
with probability 1 − μ and a uniformly chosen non-zero element from F with
probability 1 − μ. We let D(F)t

μ denote the corresponding noise distributions
for vectors of length t (and occasionally omit the parameters F, μ and t when
they are clear from the context). For concreteness, the reader may think of μ
as 1/4. The properties needed for our protocol are summarized in the following
assumption, that will be discussed in Sect. 7.

Assumption 2 (Fast pseudorandom matrix). There exists a constant μ <
1/2 and an efficient randomized algorithm M that given a security parameter
1k and a field representation F, samples a k3 × k matrix M over F such that the
following holds:

1. (Linear-time computation) The mapping fM : x �→ Mx can be computed in
linear-time in the output length. Formally, we assume that the sampler outputs
a description of an O(k3)-size arithmetic circuit over F for computing fM .

2. (Pseudorandomness) The following ensembles (indexed by k) are computa-
tionally indistinguishable for poly(k) adversaries

(M,Mr + e) and (M,z),

where M
$←M(1k, p), r

$←F
k
p, e

$←Dμ(Fp)� and z
$←F

k3

p .

3. (Linear independence) If we sample M
$←M(1k,F) and keep each of the first

k log2 k rows independently with probability μ (and remove all other rows),
then, except with negligible probability in k, the resulting matrix has full rank.

We will also need a linear error correcting code Ecc over F with constant rate
R and linear time encoding and decoding, where we only need decoding from
a constant fraction of erasures μ′ which is slightly larger than the noise rate μ.
(For μ = 1/4 we can take μ′ = 1/3.) Such codes are known to exist (cf. [51]) and
can be efficiently constructed given a black-box access to F.

Fast Hard/Easy Code. We combine the “fast code” Ecc and the “fast pseudo-
random code” M into a single gadget that provides fast encoding and decoding
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under erasures, but hides the encoded message when delivered through a noisy
channel. The gadget supports messages of length w = Θ(k3). Our gadget is ini-
tialized by sampling a k3 × k matrix M over F using the randomized algorithm
M promised in Assumption 2. We view the matrix M as being composed of two
matrices M top with u = 2k log2 k rows and k columns, placed above Mbottom

which has v = k3 − u rows and k columns. Let w = Rv = Θ(k3) be a message
length parameter (corresponding to the width of the vector-OLE). Note that our
Ecc encodes vectors of length w into vectors of length v.

For a message a ∈ F
w, and random vector r ∈ F

k, define the mapping

Er(a) = Mr + (0u ◦ Ecc(a)),

where ◦ denotes concatenation (and so (0u ◦Ecc(a)) is a vector of length u+ v).
We will make use of the following useful properties of E:

1. (Fast and Linear) The mapping Er(a) can be computed by making only
O(k3) arithmetic operations. Moreover, it is a linear function of (r,a) and so
Er(a) + Er′(a′) = Er+r′(a + a′).

2. (Hiding under errors) For any message a and r
$←F

k e
$←D(F)k3

μ , the vector
Er(a) + e is pseudorandom and, in particular, it computationally hides a.

3. (Fast decoding under erasures) Given a random (1 − μ)-subset I of the coor-
dinates of z = Er(a) (i.e., each coordinate is erased with independently
probability μ) it is possible to recover the vector a, with negligible error prob-
ability, by making only O(|z|) = O(k3) arithmetic operations. Indeed, letting
I0 (resp., I1) denote the coordinates received from the u-prefix of z (resp.,
v-suffix of z), we first recover r by solving the linear system zI0 = (M topr)I0

via Gaussian elimination in O(k3) arithmetic operations. By Assumption 2
(property 3) the system is likely to have a unique solution. Then we compute
(Mbottomr)I1 in time O(k3), subtract from (Er(a))I1 to get Ecc(a)I1 , from
which a can be recovered by erasure decoding in time O(k3).

3.2 From Fast Hard/Easy Code to Reverse Vector-OLE

Our protocol uses the gadget E to implement a reversed vector-OLE. In the
following we assume that the parties have access to a variant Oblivious Transfer
of field elements which we assume (for now) is given as an ideal functionality.
To be precise, the variant we need is one where Alice sends a field element f ,
Bob chooses to receive f , or to receive nothing, while Alice learns nothing new.

We describe the protocol under the assumption that the width w is taken to
be Θ(k3). A general value of w will be treated either by padding or by partition-
ing into smaller blocks of size O(k3) each. (See the proof of Theorem 3.)

Construction 1 (Reverse Vector OLE protocol). To initialize the protocol
one of the parties samples the matrix M

$←M(1k,F) and publish it. The gadget E
(and the parameters u, v and w) are now defined based on M and k as described
above.
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1. Bob has input a ∈ F
w. He selects random r ∈ F

k, chooses e according to
D(F)u+v

μ and sends to Alice the vector c = Er(a) + e.
2. Alice has input x, b. She chooses r′ ∈ F

k at random and computes d =
x · c + Er′(b).

3. Let I be an index set that contain those indices i for which ei = 0. These
are called the noise free positions in the following. The parties now execute,
for each entry i in d, an OT where Alice sends di. If i ∈ I, Bob chooses to
receive di, otherwise he chooses to receive nothing.

4. Notice that, since the function E is linear, we have

d = Exr+r′(xa + b) + xe.

Using subscript-I to denote restriction to the noise-free positions, what Bob
has just received is

dI = (Es(xa + b))I ,

where s = xr + r′. Using the fast-decoding property of E (property 3), Bob
recovers the vector xa + b (by making O(k3) arithmetic operations) and out-
puts xa + b.

We are now ready to show that the reverse vector OLE protocol works:

Lemma 1. Suppose that Assumption 2 holds. Then Construction 1 implements
the Reverse Vector-OLE functionality of width w = Θ(k) over F with semi-honest
and computational security in the OT-hybrid model. Furthermore, ignoring the
cost of initialization, the arithmetic complexity of the protocol is O(w).

Proof. The running time follows easily by inspection of the protocol. We prove
correctness. By Assumption 2 (property 3), except with negligible probability
Bob recovers the vector s correctly. Also, by a Chernoff bound, the v-suffix of
the error vector e contains at most μ′v non-zero coordinates. Therefore, the
decoding procedure of the error-correcting code succeeds.

As for privacy, consider first the case where Alice is corrupt. We can then sim-
ulate Bob’s message with a random vector in F

u+v which will be computationally
indistinguishable by Assumption 2. If Bob is corrupt, we can simulate what Bob
receives in OTs given Bob’s output xa+ b, namely we compute f = Es(xa+ b)
for a random s and sample a set I as in the protocol (each coordinate i ∈ [k3]
is chosen with probability 1 − μ). Then for the OT in position i, we let Bob
receive f i if i ∈ I and nothing otherwise. This simulates Bob’s view perfectly,
since in the real protocol s = xr + r′ is indeed uniformly random, and the
received values for positions in I do not depend on x or e, only on s and Bob’s
output. �	

3.3 From Reverse Vector-OLE to Vector-OLE

Finally, to get a protocol for the vector OLE Functionality, note that we can get
such a protocol from the Reverse vector OLE functionality:
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Construction 2 (vector-OLE Protocol). Given an input a, b ∈ F
w for Bob,

and x ∈ F for Alice, the parties do the following:

1. Call the Reverse Vector-OLE functionality, where Bob uses input a and Alice
uses input x and a randomly chosen b′ $←F

w. As a result, Bob will receive
xa + b′.

2. Bob sends b+(xa+b′) to Alice. Now, Alice outputs (b+(xa+b′)−b′ = xa+b.

It is trivial to show that this implements the vector-OLE functionality with
perfect security. Combining the above with Lemma 1, we derive the following
theorem.

Theorem 3. Suppose that Assumption 2 holds. Then, there exists a protocol that
implements the vector-OLE functionality of width w over F with semi-honest
computational security in the OT-hybrid model with arithmetic complexity of
O(w) + poly(k).

Proof. For w < k3, the theorem follows directly from Construction 2 and
Lemma 1 (together with standard composition theorem for secure computation).
The more general case (where w is larger) follows by reducing long w-vector
OLE’s into t calls to w0-vector OLE for w0 = Θ(k3) and t = w/w0. Since initial-
ization is only performed once (with a one-time poly(k) cost) and M is re-used,
the overall complexity is poly(k) + O(tw0) = poly(k) + O(w) as claimed. �	
Remark 1 (Implementing the OTs). First, note that the OT variant we need can
be implemented efficiently for large fields as follows: Alice chooses a short seed
for a PRG and to send field element f , she sends f ⊕ PRG(seed) and then does
an OT where she offers Bob seed and a random value. If Bob wants to receive
f , he chooses to get seed, otherwise he choose the random value.

Our protocol employs O(w) such OTs on field elements, or equivalently, on
strings of length log |F| bits. For sufficiently long strings (i.e., w = poly(k) for
sufficiently large polynomial) one can get these OT very cheaply both practically
and theoretically.

Indeed, the implementation we described (which is similar to an observation
from [34]), can be done with optimal asymptotic complexity of O(w log |F|) bit
operations assuming the existence of a linear-stretch pseudorandom generator
G : {0, 1}k → {0, 1}2k which is computable in linear-time O(k). Moreover, such a
generator can be based on the binary version of Assumption 2, as follows from [9].
In practice, we can get the OT’s very efficiently via OT extension and perhaps
(for very large fields) using a PRG based on AES which is extremely efficient on
modern Intel CPUs.

Remark 2 (On the achievable rate). Note that the full vector OLE protocol com-
municates u+v field elements, does u+v OTs and finally sends w field elements.
The rate is defined as the size of the output (w) divided by the communication
complexity. Now, asymptotically, we can ignore u since it is o(v). Furthermore,
v is the length of the code Ecc, which needs to be about w/(1 − μ) to allow for
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erasure decoding w values from a fraction of μ random erasures. By the previ-
ous remark, an OT can be done at rate 1, so it counts as 1 field element. So
we find that the rate asymptotically at best approaches (1 − μ)/(3 − μ) (i.e.,
3/11 ≈ 1/4 for μ = 1/4). If we are willing to believe that Assumption 2 holds
for any constant error rate (and large enough code length k) then we can obtain
rate approaching 1/3 − ε for any constant ε > 0.

4 Batch-OLEs

In this section we implement n copies of OLE (of width 1) with constant compu-
tational overhead based on vector-OLE with constant computational overhead
and a polynomial-stretch arithmetic pseudorandom generator of constant depth.
The transformation is similar to the one described in [34] for the binary setting,
and is based on a combination Beaver’s OT extension [13] with a decomposable
randomized encoding.

4.1 From Vector-OLE to NC0 Functionalities

We begin by observing that local functionalities can be reduced to vector-OLE
with constant computational overhead. This follows from an arithmetic variant of
Yao’s protocol [54] where the garbled circuit is replaced with fully-decomposable
randomized encoding. For simplicity, we restrict our attention to functionalities
in which only the first party Alice gets the input.

Lemma 2. Let F be a finite field and let f be a two-party NC0 functionality
that takes �1 field elements from the sender, �2 field elements from the receiver,
and delivers m field elements to the receiver. Then, we can securely compute f
with an information-theoretic security in the semi-honest model with arithmetic
complexity of O(m) and by making O(�2) calls to ideal O(m/�2)-width OLE.

The constant in the big-O notation depends on the circuit depth of f .

Proof. View f as a function over F
� where � = �1 + �2. By Fact 1, there exists a

DARE f̂ which can be encoded and decoded by an O(m)-size arithmetic circuit.
Recall, that

f̂(x; r) = (f̂0(r), (f̂i(xi; r))i∈[�]), where f̂i(xi; r) = xiai(r) + bi(r).

Since the encoding is computable by O(m)-size circuit, it is also possible to take r
and collectively compute (ai(r), bi(r))i∈[�] by O(m) arithmetic operations. Also,
the total length of these vectors is O(m).

Let us denote by A ∪ B the partition of [�] to the inputs given to Alice and
the inputs given to Bob, and so |A| = �1 and |B| = �2. Let w = m/�2 and assume
an ideal vector OLE of width w. Given an input xA for Alice and xB for Bob,
the parties use Yao’s garbled-circuit protocol to compute f as follows:

– Bob selects randomness r
$←F

ρ for the encoding and sends f̂0(r) together
with (f̂i(xi; r))i∈B .
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– For every i ∈ A the parties invoke width w-OLE where Alice uses xi as her
input and Bob uses (ai(r), bi(r)) as his inputs. If the length Wi of ai(r) and
bi(r) is larger than w, the vectors are partitioned to w-size blocks and the
parties use (Wi/w)� calls to w-width OLE. (In the j-th call Bob uses the
j-th block of (ai(r), bi(r)) as his input and Alice uses xi as her input.)

– Finally, Alice aggregates the encoding f̂(x; r), applies the decoder and recov-
ers the output f(x).

It is not hard to verify that both parties can be implemented by making at
most O(�) arithmetic operations. (In fact, they can be implemented by O(�)-
size arithmetic circuits). Moreover, the number of call to the w vector-OLE
is

∑
i∈AWi/w� = O(m/w) = O(�2). The correctness of the protocol follows

from the correctness of the DARE. Assuming perfect OLE, the protocol pro-
vides perfect security for Bob (who gets no message during the protocol) and
for Alice (whose view can be trivially simulated using the perfect simulator of
the DARE). �	

4.2 From Pseudorandom-OLE to OLE

The following lemma is an arithmetic variant of Beaver’s reduction from batch-
OT to OT with “pseudorandom” selection bits.

Lemma 3. Let G : Fk → F
n be a pseudorandom generator. Consider the two-

party functionality g that takes a seed s ∈ F
k from Alice and n pairs of field

elements (ai, bi), i ∈ [n] from Bob and delivers to Alice the value yiai + bi where
y = G(s). Then, in the g-hybrid model it is possible to securely compute n copies
of OLE of width 1 with semi-honest computational security and complexity of
O(n) arithmetic operations and a single call to g.

Proof. Let x = (xi)i∈[n] be Alice’s input and let (ai, bi), i ∈ [n] be Bob’s input.

1. Alice and Bob call the protocol for g where Alice uses a random seed s
$←F

k

as an input and Bob uses the pairs (ai, ci), i ∈ [n] where ci
$←F are chosen

uniformly at random. Alice gets back the value ui = yiai + ci for i ∈ [n].
2. Alice sends to Bob the values Δi = xi − yi, for every i ∈ [n].
3. Bob responds with vi = Δiai + (bi − ci) for every i ∈ [n].
4. Alice outputs zi = ui + vi for every i ∈ [n].

It is not hard to verify that correctness holds, i.e., zi = xiai + bi. To prove
security, observe that Alice’s view, which consists of (x, s,u,v), can be perfectly
simulated. Indeed, given an input x and an output z: Sample s

$←F
k together

with u
$←F

n and set v = z − u. As for Bob, his view consists of a, b, c and a
pseudorandom string Δ. We can therefore simulate Bob’s view by sampling Δ
(and c) uniformly at random. �	
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4.3 From NC0 PRG to Batch-OLE

To get our final result, we need a polynomial-stretch NC0 arithmetic pseudo-
random generator. In fact, it suffices to have a collection of such PRG’s.

Assumption 4 (polynomial-stretch NC0 PRG (arithmetic version)).
There exists a polynomial-time algorithm that given 1k and a field represen-
tation F samples an NC0 mapping G : Fk → F

k2
(represented by a circuit) such

that with all but negligible probability G is a pseudorandom generator against
poly(k) adversaries.

Assumption 4 is discussed in Sect. 7. For now, let us mention that similar assump-
tions were made in the binary setting and known binary candidates have natural
arithmetic variants.

Combining Lemmas 2 with 3, we get the following theorem.

Theorem 5. Suppose that Assumption 4 holds. Then, it is possible to securely
compute n copies of OLE over F in the semi-honest model by making O(n/k) calls
to ideal O(k)-width OLE and O(n) + poly(k) additional arithmetic operations.

Proof. Let t = n/k2. Implement the OLE’s using t batches each of size k2. By
Lemmas 2 and 3, each such batch can be implemented by making k calls to
ideal O(k)-width OLE and O(k2) additional arithmetic operations. Since the
initialization of the pseudorandom generator has a one-time poly(k) cost, we get
the desired complexity. �	

Combining Theorems 3 and 5, together with an optimal OT implementa-
tion (which by Remark 1 follows from standard OT), and plugging in standard
composition theorem for secure computation, we derive the following theorem.

Corollary 1 (main result). Suppose that Assumptions 2 and 4 hold, and a
standard binary OT exists. Then, there exists a protocol for securely computing
n copies of OLE over F with semi-honest computational security, and arithmetic
complexity of O(n) + poly(k).

5 Applications of Vector-OLE

In the previous section we used vector-OLE only as a tool to obtain OLE. How-
ever, there are applications where vector-OLE is precisely what we need.

First, it is easy to see that a secure multiplication of an n × n matrix by a
length-n vector reduces to n instances of width-n vector-OLE. Therefore, using
our implementation of vector-OLE, it is straightforward to multiply a matrix by
a vector with O(n2) field operations, which is asymptotically optimal, and with
a small concrete overhead. This can be used as a building block for other natural
secure computation tasks, such as matrix multiplication and other instances of
secure linear algebra; see [17,44] for other examples and motivating applications.

Another class of applications is where a party holds some object that needs to
be compared to entries in a database held by another party. The characteristic
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property is that the input of party is fixed whereas the input from the other
party varies (as we run through the database). A good example is secure face
recognition, where a face has been measured in some location and we now want to
securely test if the measurement is close to an object in a database – containing,
say, suspects of some kind. This reduces to computing the Euclidean distance
from one point in a space of dimension m (say) to n points in the same space,
and then comparing these distances, perhaps to some threshold. It is clearly
sufficient to compute the square distance, so this means that what we need to
compute will numbers of form

∑

i

(xi − yj
i )

2 =
∑

i

x2
i + (yj

i )
2 − 2xiy

j
i ,

where (x1, ..., xm) is the point held by the client, and (yj
1, ..., y

j
m) is the j′th point

in the database. Clearly, additive shares of x2
i and (yj

i )
2 can be computed locally,

while additive shares of 2xiy
j
i can be done using vector-OLE, namely we fix i

and compute 2xi · (y1
i , ..., yn

i ).
Once we have additive shares of the square distances, the comparisons can be

done using standard Yao-garbling. Since this only requires small circuits whose
size is independent of the dimension m, this can be expected to add negligible
overhead.

We note that the secure face recognition problem was considered in [21],
where a solution based on Paillier encryption was proposed (see [50] for optimiza-
tions). This adds a very large computational overhead compared our solution,
since an exponentiation is required for each product 2xiy

j
i .

Similar applications of vector-OLE can apply in many other contexts of
securely computing on numerical data that involve computations of low-degree
polynomials. See, e.g., [16,24] and references therein for some recent relevant
works in the context of secure machine learning.

6 Implementation

We have implemented the vector-OLE protocol. This is the most practical of our
constructions and, as we explained in the previous section, it has applications of
its own, even without the conversion to OLEs of width 1.

6.1 Choice of the Matrix M

For the vector OLE protocol, we need a fast pseudorandom matrix M (see
Assumption 2). For this, we have chosen to use a random d-sparse matrix for
a suitable constant d. This means we are basing ourselves on Assumption 6 from
Sect. 7, which essentially just says that a random d-sparse matrix is likely to sat-
isfy a good “expansion” property which leads to pseudorandomness (i.e., satisfy
Assumption 2). In particular, to get b bits of security, we select the size of M ,
such that, except with tiny probability, every set S of at most b rows have joint
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support which is larger than |S| (i.e., S is non-shrinking). This level of expansion
is somewhat optimistic, but still seems to defend against known attacks. (See
the discussion in Sect. 7.)

In the earlier theory sections we have assumed that the number rows in M is
Θ(k3). This was because we wanted to amortize away the O(k3) amount of work
needed to do Gaussian elimination using the top part of the matrix. However,
to achieve this number of rows in the concrete security analysis we would need
to go to rather large values of k, and this would create some issues with memory
management. Hence, to get a more practical version with a relatively small
footprint, we chose to settle for O(k2) rows. Then, for 80-bit security and d = 10
it turns out that we will need approximately k = 182 columns and k2 rows, while
for 100-bit security we need k = 240.

Note that once the number of rows and columns is fixed, this also fixes the
parameters u, v from the vector OLE protocol.

6.2 ECC: Using Luby Transform Codes

It remains to consider the erasure correcting code ECC. For this, we want to use
Luby Transform (LT) codes [42]. LT codes have extremely simple and efficient
en- and decoding algorithms, using only field addition and subtraction, no mul-
tiplications or inversions are needed. On the other hand, LT codes were designed
for a streaming scenario, where one continues the stream until the receiver has
enough data to decode. In our case, we must stop at some finite codeword size,
and this means we will have a non-negligible probability that decoding fails. In
practice, one can think of this as a small but constant error probability, say
1%. On the other hand, this be detected, and the event that decoding fails
only depends on the concrete choice of LT code and the choice of the noiseless
positions.

Since the player A knows the LT code to be used and is also the one who
chooses the noise pattern, he can simply choose a random noise pattern subject
to the condition that decoding succeeds.

The protocol will then always terminate successfully, but we need to make a
slightly stronger computational assumption to show that the protocol is secure:
the pseudorandomness condition for the matrix M must hold even if we exclude,
say 1% of the possible noise patterns. It turns out that, given the known attacks,
excluding any 1% of the noise patterns makes no significant difference.8

More concretely we instantiate the encoding function Ecc : Fw → F
v over the

Robust Soliton distribution also defined in [42]. One generates a output symbol
8 Indeed, since we remove a small subset of all possible noise patterns, the remaining

patterns cannot be linearized, i.e., cannot be written as a low-degree function of
few fresh variables, and so known attacks do not seem to apply. Of course, one
should make sure that the excluded noise patterns do not correlate somehow with
the choice of the “pseudorandom” matrix M (say in a way that leaves few “special”
coordinates of the secret random seed, r, uncovered). However, in our case, the
matrix M is chosen at random independently of the choice of the LT-code (which
determines the excluded noise patterns). See also the discussion in Sect. 7.
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by sampling a degree dec from that distribution and defining the symbol as the
sum of dec input symbols chosen uniformly among alle the input symbols. This
distribution is defined over two constant parameters δ and c. Here δ denotes
the probability of failed decoding, which together with c adds extra weight to
the probability of smaller degree encoding symbols. The two parameters also
determine a constant β for which v = wβ, but since v and w is fixed in our
construction, β is also fixed, and we have one degree of freedom less. Thus we
instantiate the distribution with parameters w, v and δ and let those determine
c such that β = v/w.

Note that δ may deviate from the actual probability of failed decoding λ
depending on the concrete code. We estimate λ by testing our code on 50.000
random codewords. Note that we fixed the value of v earlier, as a result of
choosing M . Given this, we tested different combinations of w and δ to achieve
a code decodes w/4 errors with probability λ. Our concrete parameters are shown
in Table 1. Here is presented different choices for w and δ that shows how one
may trade width for failure probability. In the implementation we will use the
codes corresponding to δ = 0.01 for both security parameters.

Table 1. Implementation parameters

k u v w δ λ

182 244 33.124 5.000 0.001 0.0017

10.000 0.01 0.016

14.000 0.1 0.095

240 320 57.600 10.000 0.001 0.0003

20.000 0.01 0.015

23.000 0.1 0.069

6.3 Doing Oblivious Transfers

In the vector OLE protocol we need 1 OT for each row of M . It is natural
to implement this via OT extension which can be done very efficiently in a
situation like ours where we need a substantial number of OTs. For instance, in
[12,36], an amortised time of about 0.2µs per semi-honestly secure string OT was
obtained, when generating enough of them in one go. Note that in the protocol
specification, we required a special OT variant where one message is sent and
the receiver chooses to get it or not. But this can of course be implemented using
standard 1–2 string OT where the sender offers the message in question and a
dummy.

In order to not require a specific relation between the number of OTs pro-
duced by one run of an OT extension and what our protocol requires, we have
assumed that we precompute a number of random OTs, which we then adjust
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to the actual values using standard techniques. The adjustment requires one
message in both directions where the first one can be sent in parallel with the
message in the Vector OLE protocol, so we get a protocol with a total of 3
messages.

We have not implemented the OT extension itself, instead we simulate the
data and communication needed when using the preprocessed OTs. The hypoth-
esis is that that time required to create the random OTs in the first place is
insignificant compared to the rest of the computation required. We discuss below
the extent to which this turned out to be true.

6.4 Communication Overhead

Having fixed the parameter choices, we can already compute the communication
we will need: we can ignore the communication relating to the top part of the
matrix M as this is responsible for less than 1% of the communication. Then,
by simple inspection of the protocol, one sees that we need to send v + w field
element and do v OTs. We implement the OTs directly from 1–2 OT which
means an OT costs communication of 2 field elements and 1 bit. So we get a
total of 3v + w field elements (plus v bits, which we can ignore when the field
is large). With our choice of LT code, v is roughly 3w, so we have 10w field
elements to send. Hence the rate is indeed constant, as expected, namely 1/10.
Accepting a larger failure probability for LT decoding, we could get a rate of
roughly 1/7. As explained in Remark 2, the best we can hope for asymptotically
is about 1/4 when the noise rate is 1/4.

There are two reasons why we do not reach this goal: first, we chose to use
LT codes for erasure correction to optimize the computational overhead, but
this comes at the price of a suboptimal rate. Second we implement the OTs
at rate 1/2. As explained in Remark 1, rate (almost) 1 is possible, but only for
large fields. So for fields of size 1000 bits or more, we believe the rate of our
implementation can be pushed to about 1/5 without significantly affecting its
concrete computational overhead.

6.5 Test Set-Up and Results

Our set-up consists of two identical machines, each with 32 GB RAM and a 64-
bit i7-3770K CPU running at 3.5 GHz. The machines are connected on a 1 GbE
network with 0.15 ms delay.

A b-bit field is instantiated by choosing Fp for the largest prime p < 2b.
All matrix operations are optimized to that of sparse matrices except for the
Gaussian elimination, where we construct an augmented matrix and do standard
row reduction. All parameters are loaded into memory prior to the protocol
execution including the matrix M , the LT code and a finite set of test vectors.

First a version is implemented using the GNU Multiple Precision Arithmetic
Library for finite field arithmetic. We benchmark this version with b-bit field
for b ∈ {32, 64, . . . , 2048}. In this setting we allocate 2b bits for each element
once, such that we never have to allocate more e.g. at multiplication operations,
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which consists of a mul and mod GMP call. We further replace the mod call
after addition and subtraction with a conditional sum.

Since most computation in the protocol includes field operations, we opti-
mized the finite field for 32-bit and 64-bit versions. Here the 32-bit version only
use half of the machine’s word size, but offers fast modulo operation after a
multiplication with the div instruction. The 64-bit version utilizes the full word
size, but relies on the compiler’s implementation of the modulo operation for
uint128 t as supported in GCC-based compilers. For random number genera-
tion, we use the Mersenne Twister SFMT variant instead of GMP.

In Tables 2 and 3 it is shown how the GMP and the optimized version compare
for respectively k = 182 and k = 240. Here, we measure the amortized time
per single OLE, or more precisely, since the protocol securely computes the
multiplication of a scalar by a vector of length w, we divide the time for this by
w to get the time per oblivious multiplication. We obtain these times by having as
many threads as possible run the protocol in a loop and counting only successful
executions. These amortized timings are also depicted in Fig. 1. Afterwards we
run the protocol sequentially in a single thread and measure how fast we can
execute one instance of the protocol. This indicates the latency, i.e., the time
taken from the protocol starts until data is ready. Finally, since we use much
less network speed than what is available, we present the network bandwidth we
actually use, as this may become a limiting factor in low-bandwidth networks.
The reason why the optimized versions use more bandwidth than corresponding
GMP versions is that they are computationally faster, so the network is forced
to handle the same amount of communication in shorter time. Then for larger
fields, bandwidth usage increases because larger field elements need to be sent,
but for the largest field size (2048 bits) we see a decrease because computation
now has slowed down to the extent that there is more than twice the time to
send field elements of double size (compared to 1024 bits).

Table 2. Benchmark of the vector-OLE protocol for k = 182

Field size Version OLE time Latency Network

32 bit Optimized 0.56µs 0.04 s 45.53 MB/s

64 bit Optimized 1.00µs 0.14 s 50.83 MB/s

32 bit GMP 3.65µs 0.26 s 6.98 MB/s

64 bit GMP 3.66µs 0.27 s 13.92 MB/s

128 bit GMP 4.24µs 0.31 s 24.03 MB/s

256 bit GMP 6.37µs 0.47 s 31.98 MB/s

512 bit GMP 9.58µs 0.64 s 42.50 MB/s

1024 bit GMP 18.29µs 1.15 s 44.53 MB/s

2048 bit GMP 50.85µs 2.87 s 32.04 MB/s
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Table 3. Benchmark of the vector-OLE protocol for k = 240

Field size Version OLE time Latency Network

32 bit Optimized 0.70µs 0.12 s 31.70 MB/s

64 bit Optimized 1.14µs 0.25 s 38.86 MB/s

32 bit GMP 3.96µs 0.48 s 5.57 MB/s

64 bit GMP 3.97µs 0.48 s 11.12 MB/s

128 bit GMP 4.52µs 0.56 s 19.56 MB/s

256 bit GMP 6.61µs 0.82 s 26.75 MB/s

512 bit GMP 9.93µs 1.15 s 35.59 MB/s

1024 bit GMP 19.48µs 2.22 s 36.29 MB/s

2048 bit GMP 51.73µs 5.45 s 27.34 MB/s

32 64 128 256 512 1,024 2,048

0

20

40

Field size in bits

A
m

o
rt

iz
ed

µ
s

p
er

O
L
E

32 64

1

2

3

4

Field size in bits

Fig. 1. Amortized time per OLE compared to field size

We note the protocol latency for 100-bit security is about 2–3 times that of
80-bit security. But for the amortized times the increase in security parameter
comes cheaply because we double w in going from 80 to 100-bit security.

In our setup, we need to execute between 2 and 3 OTs per single OLE. Given
the results from [12] which were obtained on an architecture similar to ours, we
can expect these to take an amortised time of 0.6µs, which as expected becomes
insignificant as the field size grows, but cannot be ignored for the optimized
version on smaller fields.

As computation is the bottleneck compared to network bandwidth, we iden-
tify which part of the computation is the most expensive. We test the optimized
32-bit version for k = 182 and focus on the Gaussian elimination, the Luby
encoding and decoding and a matrix-vector product c = M · r. This is presented
in Table 4 as an index set. Here the Gaussian elimination acts as base value and
takes 45% of the total protocol time including communication.

Since the Gaussian elimination costs more than other parts of the protocol,
this means that one would need to increase w for the amortization to work.
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Table 4. Timing of computation

Operation Index

Gauss elimination 100

Luby decoding 22

Luby encoding (Ecc) 3

Encode c = M · r 13

However one could replace this step with any algorithm for solving linear sys-
tems, in particular algorithms taking advantage of matrix sparsity such as [53].
Finally one may take advantage of specific constructions of finite fields allowing
for even faster arithmetic operations.

7 About the Assumptions

Our results rely on two types of assumptions, both of which can be viewed as nat-
ural arithmetic analogues of assumptions that have been studied in the boolean
case. We discuss our instantiations of these assumptions below. In Sect. 7.1 we
discuss the assumption we use for instantiating our constant-overhead vector-
OLE protocol, whereas in Sect. 7.2 we discuss the additional assumption used
for obtaining constant-overhead protocol for general arithmetic computations.

7.1 Instantiating Assumption 2 (Fast Pseudorandom Matrix)

An distribution ensemble M = {Mk} over m(k) × k matrices is pseudorandom
for noise rate μ if it satisfies property 2 of Assumption 2. It is natural to assume
that, for every m = poly(k), a random m × k matrix is pseudorandom over any
finite field. (This is the arithmetic analogue of the Decisional-Learning-Parity-
with-Noise assumption [14,29,49]). However, Assumption 2 requires the corre-
sponding linear map to be computable in O(m) arithmetic operations (together
with an additional linear-independency condition). We suggest two possible
instantiations for this assumption.

The Druk-Ishai Ensemble. Druk and Ishai [20] constructed, for any finite
field F and any code length m ∈ poly(k), an ensemble M of linear-time
computable (m, k) error-correcting code over F whose distance approaches the
Gilbert-Varshamov bound [25,52] with overwhelming probability. It was fur-
ther conjectured that, over the binary field, the ensemble is pseudorandom for
arbitrary polynomial m(k).9 The assumption seems to hold for arbitrary finite
9 The basic construction is described for codes with codeword of length m = O(k);

however, one can extend it for codes with codeword of polynomial length m(k), by
independently sampling polynomially many O(k)×k generating matrixes and placing
them one on top of the other to get a poly(k) × k matrix. The pseudorandomness
assumption of [20, Sect. 5.1] applies to this variant for arbitrary polynomial number
of samples.
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fields as well. Moreover, the ensemble satisfies Condition 3 of Assumption 2 since,
by [20, Theorem 5], every subset of m′ = ω(k) rows of the code generates, except
with negligible probability, a code of distance 1 − 1/|F| − o(1).

Alechnovich’s Ensemble. Alekhnovich [1, Remark 1] conjectured that sparse
binary matrices which are “well expanding” are pseudorandom for constant noise
rate. We will use the arithmetic version of this assumption. For this we will need
the following definition.

Definition 2. Let G = (S1, . . . , Sm) as a d-uniform hypergraph with m hyper-
edges over k nodes (hereafter referred to as (k,m, d)-hypergraph). We say that
G is expanding with threshold r and expansion factor c (in short G is (r, c)-
expanding) if the union of every set of � ≤ r hyperedges Si1 , . . . , Si�

contains at
least c� nodes. For a field F and (k,m, d)-hypergraph G we define a probability
distribution M(G,F) over m × k matrices as follows: Take Mi,j to be a fresh
random non-zero field element if j appears in the i-th hyperedge of G; otherwise,
set Mi,j to zero.

Assumption 6 (Arithmetic version of Alekhnovich’s assumption). For
every constant d > 3, m = poly(k), real μ ∈ (0, 1/2) and finite field F, the
following holds for all sufficiently large k’s. If G is a (k,m, d)-hypergraph which
is (t, 2d/3)-expanding then any circuit of size T = exp(Ω(t)) cannot distin-
guish with advantage better than 1/T between (M,v) and (M,Mr + e) where
M

$←M(G,F), v
$←F

m, r
$←F

k and e
$←Dμ(Fp)�.

Remarks:

1. (Expansion vs. Security) The assumption says that the level of security is
exponential in the size of the smallest expanding set. In particular, an expan-
sion threshold of (kε) guarantees sub-exponential hardness.10 This bound
is consistent with the best known attacks, and, over the binary field, can
be analytically established for a large family of algorithms including myopic
algorithms, semi-definite programs, linear-tests, low-degree polynomials, and
constant depth circuits (see [6] and references therein). Many of these results
can be established for the arithmetic setting as well. The constant 2d/3 (and
the hidden constant in the Omega notation), determine the exact relation
between expansion and security. The choice of 2d/3 is somewhat arbitrary,
and it may be the case that an absolute expansion factor (which does not
grow with d) suffice. For our practical implementation, we take an “opti-
mistic” estimate and require an expansion factor slightly larger than 1, which
guarantees that the support of r-size sets do not shrink.

2. (Variants) One may conjecture that the assumption holds with probability
1 over the choice of M . That is, any matrix (including 0–1 matrix) whose
underlying graph is expanding is pseudorandom.

10 An exponential level of security requires expansion threshold of Ω(k) which can be
achieved only when the number of rows is linearly larger than the number of columns.
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3. (Efficiency) Observe that since G is (k,m, d)-hypergraph any matrix in the
support of M(G,Fp) is d-sparse in the sense that each of its rows has exactly
d non-zero elements. The linear mapping fM : x �→ Mx can be therefore
computed by performing O(dm) = O(m) arithmetic operations.

4. (Linear Independency) Recall that Assumption 2 requires that a random sub-
set of k log2 k of the rows of M have, except with negligible probability, full
rank. In Lemma 5 we show that this condition holds as long as G is semi-
regular in the sense that each of its nodes participates in at least Ω(m/k)
hyperedges.

5. (Different noise distributions) The choice of i.i.d based noise is somewhat
arbitrary and it seems likely that other noise distributions can be used. In
fact, it seems plausible that one can use any noise distribution which has high
entropy and cannot be approximated by a low-degree function of few fresh
variables (and thus is not subject to linearization attacks).

Given the above discussion, Assumption 2 now follows from Assumption 6 and
the existence of an explicit family of expanders. The latter point is discussed in
Sect. 7.2.

7.2 Instantiating Assumption 4 (NC0 Polynomial-Stretch PRG)

In the binary setting, the existence of locally-computable polynomial-stretch
PRG was extensively studied in the last decade. (See [4] and references therein.)
Let f : Fk → F

m be a d-local function which maps a k-long vector x into an
m-long vector (P1(xS1), . . . , P (xSm

)) where Si ∈ [k]d is a d-tuple and Pi is a
d-variate multi-linear polynomial. Over the binary field, it is conjectured that as
long as the (k,m, d) hypergraph G = (S1, . . . , Sm) is expanding and the Pi’s are
sufficiently “non-degenerate” the function forms a good pseudorandom genera-
tor. (This is an extension of Goldreich’s original one-wayness conjecture [28].)
In fact, this is conjectured to be the case even if all the polynomials P1, . . . , Pm

are taken to be the same polynomial P . We denote the resulting function by
fG,P and make the analog arithmetic assumption. In the following we say that
a function f : Fk → F

m is T -pseudorandom if every circuit of size at most T

cannot distinguish f(x), x $←F
k from y

$←F
m with advantage better than 1/T .

Assumption 7. For every finite field F and every polynomial m(k) there exists
a constant d and a d-variate multi-linear polynomial P : Fd → F such that for
every (k,m, d) hypergraph G which is (t, 2d/3)-expanding the function fG,P :
F

k → F
m is exp(Ω(t))-pseudorandom over F.

As in the case of Alechnovich’s assumption, the constant 2/3 is somewhat arbi-
trary and a smaller constant may suffice. (A lower-bound of 1/d can be estab-
lished.) In the binary setting, security was reduced to one-wayness assumption [3]
and was analytically established for a large family of algorithms including myopic
algorithms, linear tests, statistical algorithms, semi-definite programs and alge-
braic attacks [6,7,11,23,38,47]. Some of these results can be extended to the
arithmetic setting as well.
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On Explicit Unbalanced Constant-Degree Expanders. In order to employ
Assumptions 6 and 7 one needs an explicit family of (k,m = k1+δ, d = O(1))
hypergraphs which are (kε, (1+Ω(1))d)-expanding.11 This assumption is known
to be necessary for the existence of d-local (binary) PRG that stretches k bits to
m bits [9], and so it was used (either explicitly or implicitly) in previous works
who employed such a local PRG (e.g., [2,34,39–41]).

While recent advances in the theory of pseudorandomness have come close to
generating such explicit highly-expanding hypergraphs, in our regime of parame-
ters (m = ω(k) and d = O(1)), an explicit provable construction is still unknown.
It is important to mention that, by a standard calculation (cf. [45]), a uniformly
chosen hypergraph G (i.e., each hyperedge contains a random d-subset of the
nodes) is likely to be (r = poly(k), 2d/3)-expanding except with some inverse
polynomial failure probability ε(k). Moreover, we can reduce the failure prob-
ability to 1/kc for an arbitrary (predetermined) constant c at the expense of
increasing the sampling complexity to kbc , where the constant b grows with c.
(This can be done by rejecting hypergraphs which fail to expand for sets of
size at most bc, and re-sampling the hypergraph if needed). As a result one
gets a protocol that fails with “tunable” inverse polynomial probability which is
independent of the running-time of the adversary. Moreover, the failure event is
restricted to a one-time setup phase and its probability does not increase with
the number of times the protocol is executed. Such a guarantee seems to be
satisfactory in most practical scenarios. Finally, we mention that there are sev-
eral heuristic approaches for constructing unbalanced constant-degree expanding
hypergraphs. For example, by using some fixed sequence of bits (e.g., the binary
expansion of π) and interpreting it as an (k,m, d)-hypergraph via some fixed
translation. Assuming such a heuristic to give an explicit construction can be
viewed as being a conservative “combinatorial” assumption, in the spirit of stan-
dard cryptographic assumptions.
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A The Rank of Sparse Matrices

In this section we analyze the rank of matrices which are sampled from the
distribution M(G,Fp) where G is a hypergraph with m hyperedges and k. We
begin with the following key observation.

Lemma 4. Let F be a field of cardinality p > 2 and let G be a hypergraph over
k nodes and � hyperedges with the property that every set of nodes S appears in
at least t|S| hyperedges for t = ω(log k). Then, a random matrix M

$←M(G,Fp)
will have full rank except with probability exp(−Ω(t)).

Proof. To prove the claim it suffices to show that

Pr
M

[∃v �= 0k s.t Mv = 0�] = exp(−Ω(t))

For a non-empty subset S ⊆ [k], let VS be the set of all vectors v ∈ F
k whose

support (set of non-zero coordinates) equals to S. By a union-bound, it suffices
to upper-bound

∑

S �=∅
qS , where qS = Pr[∃v ∈ VS s.t Mv = 0�]. (1)

We will later show that

qS ≤ 2−|S|(t−1) log(p−1) = 2−Ω(|S|t) (2)

Hence we can upper-bound (1) by

k∑

w=1

∑

S:|S|=w

qS ≤
k∑

w=1

kw2−Ω(wt) ≤
k∑

w=1

2−Ω(wt) ≤ 2−Ω(t).

It is left to prove (2). Fix a set S of cardinality w, and let us assume without
loss of generality that the first t hyperedges of G touch S. Fix some vector
v ∈ VS and recall that the vector ri, i ∈ [t] is sampled by assigning a random
non-zero field element to every j ∈ [k] that participates in the i-th hyperedges.
Therefore, every such row is orthogonal to v independently with probability at
most 1/(p − 1). We conclude that, for every v ∈ VS , we have that

Pr
M

[Mv = 0�] ≤ (p − 1)−tw.

By a union-bound, we conclude that

qS ≤
∑

v∈VS

Pr[Mv = 0�] ≤ (p − 1)−w(t−1),

as required. �	
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Lemma 5. Let G be a (k,m, d) hypergraph with m = ω(kr) where d = O(1)
and r = ω(k log k). Assume that each node of G participates in at least
Ω(m/k) hyperedges. Then, for any field F of size larger than 2, if we sample
M

$←M(G,F) and sub-sample r rows from M , then the resulting matrix M ′ will
have full rank except with negligible probability. Moreover, the above is true even
if the rows of M ′ are sampled from M with replacement.

For m = k3 and r = k log2 k, we conclude that the distribution M(G,F) satisfies
the linear-independence condition from Assumption 2.

Proof. Let us describe the sampling procedure in an equivalent way: First sam-
ple a hypergraph G′ by sub-sampling r hyperedges from G, and then sample M ′

from M(G′,F). By Lemma 4, it suffices to show that, except with negligible prob-
ability, every set S of nodes in G′ participates in at least ω(log k)|S| hyperedges.
Below, we will show that each fixed subset S participates in at least ω(log k)|S|
hyperedges except with probability exp(−ω(k)). The theorem therefore follows
by a union bound over all 2k possible subsets.

Fix some non-empty set of nodes S. By assumption, the number of “good”
hyperedges in G that touch S is at least m0 = |S|Ω(m/(dk)). Observe that
whenever we sample an hyperedge from M the probability of hitting a good
hyperedge is at least q = (m0 − r)/m, regardless of the “history” of the previous
samples. (This is true for both sampling with or without replacement.) There-
fore, the probability of “failure”, i.e., hitting less than qr/2 good hyperedges, is
upper-bounded by the probability of failure in a binomial experiment where we
sample r hyperedges where is good independently with probability q. By a mul-
tiplicative Chernoff bound, the probability of seeing less that qr/2 successes is at
most exp(−Ω(qr)). Noting that qr = Ω( r|S|

dk ) − r2

m = |S|Ω(r/k) = |S|ω(log2 k),
concludes the proof. �	

By taking G to be the complete (k,m =
(
k
d

)
, d) hypergraph, we derive the

following lemma.

Lemma 6. Let F be a field of cardinality p > 2, and let d be a constant. Then,
except with negligible probability in k, a random d-sparse k log2 k × k matrix M
over F has full rank.

Proof. Let G the complete (k,m =
(
k
d

)
, d) hypergraph and note that the distri-

bution of M can be obtained by sampling T
$← M(G,F) and then sub-sampling

k log2 k rows from T . The lemma follows from Lemma 5. �	
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Abstract. At CRYPTO 2016, Couteau, Peters and Pointcheval intro-
duced a new primitive called encryption switching protocols, allowing to
switch ciphertexts between two encryption schemes. If such an ESP is
built with two schemes that are respectively additively and multiplica-
tively homomorphic, it naturally gives rise to a secure 2-party compu-
tation protocol. It is thus perfectly suited for evaluating functions, such
as multivariate polynomials, given as arithmetic circuits. Couteau et al.
built an ESP to switch between Elgamal and Paillier encryptions which
do not naturally fit well together. Consequently, they had to design a
clever variant of Elgamal over Z/nZ with a costly shared decryption.

In this paper, we first present a conceptually simple generic construc-
tion for encryption switching protocols. We then give an efficient instanti-
ation of our generic approach that uses two well-suited protocols, namely
a variant of Elgamal in Z/pZ and the Castagnos-Laguillaumie encryption
which is additively homomorphic over Z/pZ. Among other advantages,
this allows to perform all computations modulo a prime p instead of an
RSA modulus. Overall, our solution leads to significant reductions in the
number of rounds as well as the number of bits exchanged by the parties
during the interactive protocols. We also show how to extend its security
to the malicious setting.

1 Introduction

Through interactive cryptographic protocols, secure multi-party computation
(MPC) allows several parties to compute the image of a pre-agreed function of
their private inputs. At the end of the interaction, anything that a party (or a
sufficiently small coalition of parties) has learned from the protocol could have
been deduced from its public and secret inputs and outputs. In other words, the
adversary’s view can be efficiently forged by a simulator that has only access
to the data publicly known by the adversary. This important area of research
emerged in the 80s with the works of Yao [46] and Goldreich et al. [22]. Formal
security notions can be found in [4,8,34]. Initially considered as a theoretical
subject due to overly inefficient protocols, MPC has nowadays reached a rea-
sonable complexity and has became relevant for practical purposes [6] especially
in the 2-party case [31,33,40]. Several techniques may be used to design secure
c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part I, LNCS 10401, pp. 255–287, 2017.
DOI: 10.1007/978-3-319-63688-7 9
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multi-party computation. Some recently proposed solutions use or combine tools
from oblivious transfer [3,30], secret sharing with pre-processing [16,37], garbled
circuits [31], homomorphic encryption [11,15], and somewhat or fully homomor-
phic encryption [2,5].

In [10], Couteau et al. formalized an innovative technique to securely compute
functions between two players, thanks to interactive cryptographic protocols
called encryption switching protocols (ESP). This mechanism permits secure 2-
party computations against semi-honest adversaries (honest-but-curious) as well
as malicious adversaries, i.e. opponents which might not follow the specifications
of the protocol. Couteau et al.’s proposal relies on a pair of encryption schemes
(Π+,Π×) which are respectively additively and multiplicatively homomorphic
and which share a common message space. Furthermore, there exists switching
algorithms to securely convert ciphertexts between Π+ and Π×. More precisely,
there exists a protocol Switch+→× which takes as input an encryption C+

m of a
message m under Π+, and returns a ciphertext C×

m of the same message m under
Π×. Symmetrically, there exists a second protocol Switch×→+ which computes
a ciphertext for m under Π+ when given a ciphertext for m under Π×. The
advantage of this construction is that it benefits from the intrinsic efficiency of
multiplicatively homomorphic encryption like Elgamal [18] or additively homo-
morphic encryption like Paillier [38]. In [10], Couteau et al. present a natural
construction for secure 2-party computation from any ESP.

Applications. Two-party computation is the most important application of an
ESP. In [11], an MPC protocol is built from only an additively homomorphic
encryption scheme which is a natural alternative to an ESP. The round complex-
ity of their protocol is in O(d), where d is the depth of the circuit C to be evalu-
ated, and if we suppose that the multiplicative gates can be evaluated in parallel
at each level. With an ESP, gathering the additive and multiplicative gates sep-
arately would imply a dramatic improvement. Fortunately, the result by Valiant
et al. from [45, Theorem 3], states that for any circuit C of size s and degree d
computing a polynomial f , there is another circuit C′ of size O(s3) and depth
O(log(s) log(d)) which computes the same polynomial f . Moreover, Allender
et al. showed that the circuit C′ is by construction layered (see [1]), in the sense
that it is composed of layers whose gates are all the same and alternatively +
and ×. Roughly speaking, C′ is of the form (

∑ ∏
)O(log(s) log(d)) where

∑
has

only additive gates and
∏

has only multiplicative gates. In other words, the
polynomial f can be written as a composition of O(log(s) log(d)) polynomials
written in a sparse representation. The ESP allows to treat each

∑
and

∏
inde-

pendently, so that the number of switches and therefore the number of rounds
is essentially O(log(s) log(d)), instead of O(d) for [11]. Any enhancement of an
ESP will naturally improve any protocol which requires to evaluate on encrypted
data a polynomial given in the form of a sum of monomials. Especially it is well-
suited to oblivious evaluation of multivariate polynomials [27,36,42] or private
disjointness testing [47].
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Related Works. The idea of switching between ciphertexts for different homo-
morphic encryption schemes was first proposed by Gavin and Minier in [20] in
the context of oblivious evaluation of multivariate polynomials. They proposed
to combine a variant of Elgamal over (Z/NZ)∗ (where N is an RSA modulus)
with a Goldwasser-Micali encryption protocol [23]. Unfortunately, as noticed
by Couteau et al. [10], their design contains a serious flaw which renders their
scheme insecure (the public key contains a square root of unity with Jacobi sym-
bol −1, which exposes the factorization of N). Another attempt was proposed
in [44] with a compiler designed to embed homomorphic computation into C pro-
grams to operate on encrypted data. The security of this construction relies on a
very strong assumption since switching between the encryption schemes is done
using a secure device which decrypts and re-encrypts using the secret key. In [29],
Lim et al. proposed a primitive called switchable homomorphic encryption imple-
mented using Paillier and Elgamal, in the context of computation on encrypted
data. Again, this proposal uses an insecure version of Elgamal, which does not
satisfy the indistinguishability under a chosen plaintext attack. It is indeed very
difficult to design two compatible encryption schemes from unrelated protocols
like Paillier and Elgamal. Couteau et al. managed to tune Elgamal so that it can
switch with Paillier, but their construction remains fairly expensive. In partic-
ular, they constructed a variant of Elgamal over (Z/nZ)∗, where n is an RSA
modulus, which is the same as the Paillier modulus. As Elgamal is secure only
in the subgroup Jn of (Z/nZ)∗ of elements of Jacobi symbol +1, they need a
careful encoding of the group (Z/nZ)∗. The security relies on the DDH assump-
tion in Jn and the quadratic residuosity assumption in (Z/nZ)∗. Because their
Elgamal variant does not support a simple 2-party decryption (a Paillier layer
has to be added to Elgamal in order to simulate a threshold decryption), the
switching protocols are intricate and specific to their construction.

Our Contributions and Overview of Our Results. In this paper, we first
propose a generic ESP inspired by Couteau et al.’s solid basis. Our construc-
tion relies on the existence of an additively homomorphic encryption Π+ and a
multiplicatively homomorphic encryption Π× which support a 1-round thresh-
old decryption and achieve classical security properties (IND-CPA and zero-
knowledge of the 2-party decryption). Because the message spaces must be com-
patible, we suppose that Π+ works over a ring R and Π× over a monoid M
with R∩M = R∗ where R∗ is the set of invertible elements of R. A major issue
when designing an ESP is to embed the zero message1 into the message space for
Π×, while preserving the homomorphic and security properties. In Sect. 4.2, we
propose a generic technique to do so, inspired by the approach employed in [10].
Contrary to their construction, our switching protocols over R∗ (i.e. without
the zero-message) are symmetrical, i.e. both Switch+→× and Switch×→+ follow
the same elementary description given in Fig. 3. This is possible for two reasons:
first because we suppose that both Π+ and Π+ admit a single round 2-party
1 The zero message has to be taken into account since it can arise easily by homomor-

phically subtracting two equivalent ciphertexts of the same message.
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decryption, and second because they both possess a ScalMul algorithm which
takes as input a ciphertext of m and a plaintext α and outputs a ciphertext of
α × m (which is why we consider a ring as the message space for Π+ instead of
an additive group).

Besides, they are very efficient: as detailed in Sect. 5.3, they only require 2
rounds, whereas Couteau et al.’s Switch×→+ needs 6. Our full switching protocols
work over R∗ ∪ {0}. They are built on top of the switching protocols over R∗

(i.e. without 0), plus some additional tools like 2-party re-encryption, encrypted
zero test, and a 2-party protocol to homomorphically compute a product under
Π+ (see Fig. 1). Our security proofs are simpler than Couteau et al.’s. In terms
of round complexity, the savings are substantial: our full ESP protocols require
7 and 4 rounds respectively, whereas Couteau et al’s ESP need 7 and 11.

In a second part, we propose an efficient instantiation of our generic protocol
over the field Z/pZ. Working over Z/pZ has several advantages compared to
Z/nZ (for an RSA modulus n): it means true message space equality, instead
of computational equality. It also means faster arithmetic by carefully choosing
the prime p. Our instantiation combines a variant of Elgamal together with the
Castagnos-Laguillaumie additively homomorphic encryption from [9]. Because
Elgamal is only secure in the subgroup of squares modulo p, our variant over
Z/pZ∗, denoted Eg∗, encodes the messages into squares and adds the encryption
of a witness bit (i.e. the Legendre Symbol) under Goldwasser-Micali [23] for its
homomorphic properties modulo 2. For Π+, we use a variant of the Castagnos-
Laguillaumie encryption scheme (CL) described in [9, Sect. 4]. We work over
(subgroups of) the class group of an order of a quadratic field of discriminant
Δp = −p3. Computations are done in this class group. The elements are repre-
sented by their unique reduced representative, i.e. by two integers of size

√|Δp|.
Thus, an element of the class group requires 3 log p bits. Under slightly different
security assumptions, it is possible to further reduce the size of the elements and
to achieve a better bit complexity. We discuss these implementation options in
Sect. 5.3 and compare their costs with the ESP from Couteau et al. [10]. Our
ESP protocol reduces the round complexity by a factor of almost 3 in the × → +
direction, while remaining constant in the other direction. Using the variant of
CL optimized for size, the bit complexity is also significantly reduced in the
× → +, while remaining in the same order of magnitude in the other.

We also propose improvements on CL that can be on independent interest.
That system makes exponentiations in a group whose order is unknown but
where a bound is known. We show that using discrete Gaussian distribution
instead of uniform distribution improves the overall computational efficiency
of the scheme. Moreover in order to use our generic construction, we devise a
2-party decryption for CL.

Eventually we discuss in Sect. 6 how to adapt our generic construction and
our instantiation against malicious adversaries.
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2 Cryptographic Building Blocks

In this section, we recall some classical definitions and operations that will be
useful in the rest of the paper.

2.1 Homomorphic Encryption Schemes

In Sect. 3, we will give a definition of Encryption Switching Protocols (ESP),
previously proposed in [10]. An ESP allows to switch a ciphertext under an
encryption protocol Π1 into a ciphertext under another encryption protocol Π2,
and vice versa. ESP require the protocols Π1 and Π2 to be (partially) homo-
morphic. In this paper, we consider ESP between an additively homomorphic
encryption Π+ and a multiplicatively homomorphic encryption Π×.

In Definitions 1 and 2 below, we define Π+ and Π× formally in a generic
context. An additive homomorphic encryption is most commonly defined over
a group. In our setting, Π+ is defined over a ring R to guarantee that for
m,m′ ∈ R, the product m × m′ is well defined. For genericity Π× is defined
over an algebraic structure with a single associative binary operation (denoted
×) and an identity element; i.e. a monoid. By doing so, our definition encapsu-
lates encryption schemes over (Z/pqZ)∗ ∪ {0} (with p, q primes) such as [10], as
well as our instantiation over Z/pZ presented in Sect. 5.

Definition 1 (Additively homomorphic encryption). Let (R, +, ×, 1R,
0R) be a ring. An additively homomorphic encryption scheme over the message
space R is a tuple Π+ = (Setup,KeyGen,Encrypt,Decrypt,Hom+,ScalMul) such
that:

Setup is a PPT algorithm which takes as input a security parameter 1λ and
outputs public parameters params (these public parameters will be omitted in the
algorithms’ inputs).

KeyGen is a PPT algorithm taking public parameters as inputs and outputting a
pair of public and secret key (pk, sk).

Encrypt is a PPT algorithm which takes as input some public parameters, a
public key pk and a message m ∈ R, and outputs an encryption c.

Decrypt is a PPT algorithm which takes as input public parameters, a public key
pk (omitted in Decrypt’s input), a secret key sk and a ciphertext c, and outputs
a message m ∈ R.

Hom+ is a PPT algorithm which takes as inputs some public parameters, a
public key pk and two ciphertexts c and c′ of m ∈ R and m′ ∈ R respectively,
and outputs a ciphertext c′′ such that Π+.Decrypt(sk, c′′) = m + m′ ∈ R.

ScalMul is a PPT algorithm which takes as inputs some public parameters, a
public key pk, a ciphertext c of m ∈ R and a plaintext α ∈ R, and outputs a
ciphertext c′ such that Π+.Decrypt(sk, c′) = α × m ∈ R.
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Remark 1. A generic algorithm for computing Π+.ScalMul(pk, c, α) is given by
2Mul+(c,Π+.Encrypt(α)), where 2Mul+ is an interactive PPT algorithm which
computes homomorphically the product of two ciphertexts for Π+. 2Mul+ is
defined more formally in Sect. 2.3. For our instantiation we provide a non-
interactive, more efficient version over Z/pZ (see Sect. 5).

Definition 2 (Multiplicatively homomorphic encryption). Let (M, ×,
1M) be a monoid. A multiplicatively homomorphic encryption scheme over
the message space M is Π× = (Setup,KeyGen,Encrypt,Decrypt,Hom×,ScalMul)
such that:

Setup, KeyGen, Encrypt and Decrypt as in Definition 1 except that Encrypt and
Decrypt receives the input messages from M instead of R.

Hom× is a PPT algorithm which takes as input some public parameters, a public
key pk and two ciphertexts c and c′ of m ∈ M and m′ ∈ M respectively, and
outputs a ciphertext c′′ such that Π×.Decrypt(sk, c′′) = m × m′ ∈ M.

ScalMul is a PPT algorithm which takes as inputs some public parameters, a
public key pk, a ciphertext c of m ∈ M and a plaintext α ∈ M, and outputs a
ciphertext c′ such that Π×.Decrypt(sk, c′) = α × m ∈ M.

Remark 2. A generic algorithm for computing Π×.ScalMul(pk, c, α) is given by
Π×.Hom×(pk, c, c′), where c′ = Π×.Encrypt(pk, α). In Sect. 5, we provide a more
efficient version over (Z/pZ)∗.

The above encryption schemes must be correct in the usual sense. Moreover,
we consider as a security requirement the indistinguishability under a chosen
plaintext attack (IND-CPA). We refer the reader to e.g., [25] for the standard
definition of IND-CPA.

2.2 One Round 2-Party Decryption

A crucial feature of the encryption protocols which are used in the ESP is the
fact that they support a 2-party decryption (threshold cryptosystems were intro-
duced in [17]). These encryption schemes are equipped with a Share procedure
that is run by a trusted dealer, which works as follows: it takes as input a pair
of keys (sk, pk) obtained from the KeyGen algorithm and produces two shares
skA and skB of the secret key sk. It outputs (skA, skB) and an updated public
part still denoted pk. Its decryption procedure is an interactive protocol denoted
2Dec which takes as inputs the public parameters, a ciphertext c, and the secret
key of each participant skA and skB and outputs a plaintext m which would
have been obtained as Decrypt(sk, c).

Contrary to the classical definition of threshold decryption, we suppose that
the protocol is in a single round. The protocol 2Dec(pk, c; skA; skB) is supposed
as follows: Alice starts the protocol and sends her information in one flow to
Bob which ends the computation and gets the plaintext. This is because in our
context, we do not decrypt plaintexts but plaintexts which are masked by a
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random element. For example, protocols whose decryption only performs expo-
nentiations with secret exponents gives one round 2-party decryption by sharing
the exponentiations. This is the case for many cryptosystems.

The semantic security is adapted from the standard IND-CPA notion by
giving the adversary one of the two secret keys, as well as a share decryption
oracle which simulate the party with the other secret key. A formal definition
can be found for instance in [11,41].

We need as an additional security requirement the notion of zero-knowledge
defined in AppendixA, which means that no information on the secret keys
are leaked during an interaction with a curious adversary. Cryptosystems like
Elgamal [17] or Paillier [19] satisfy all these properties. We will propose a variant
of Elgamal and a variant of Castagnos-Laguillaumie [9] that satisfy also these
properties in Sect. 5.

2.3 Homomorphically Computing a Product with Π+

A core routine of our protocol is the computation of a Π+-encryption of a product
XY given Π+-encryptions of X and Y (this is why we assume that Π+ has a
ring R as message space). We describe in Fig. 1 a protocol which is implicitly
used in [10]. It is a simplified variant of a protocol proposed by Cramer et al.
from [11]: the main difference comes from the fact that the result of this 2-party
computation is obtained only by one of the user, who can forward the result to
the other. This leads to the use of a single randomness on Alice’s side, instead
of one on each side. We will denote by 2Mul+(pk,C+

X , C+
Y ; skA; skB) a call to

this protocol. Again, this protocol will be a 2-round protocol since the shared
decryption is single round, and the first ciphertext can be sent along with the
shared decryption. This protocol has to be zero-knowledge in the sense similar
to those of Definitions 5 and 7 (we do not write down this definition which can
be readily adapted).

Input : pk, skA, C
+
X

, C
+
Y

Input : pk, skB, C
+
X

, C
+
Y

r
$←− R

C+
r = Π+.Encrypt(pk, r)

C
+
−rX

= Π+.ScalMul(pk, C
+
X

, −r)
C

+
−rX−−−−−−−−−−−−−−−→

C
+
r+Y

= Π+.Hom+(pk, C
+
Y

, C+
r )

2Dec(pk, C
+
r+Y

; skA; skB)
−−−−−−−−−−−−−−−−−−−−−−−→ Bob gets r + Y

C
+
X(r+Y ) = Π+.ScalMul(pk, C

+
X

, r + Y )

C
+
XY←−−−−−−−−−−−−−−− C

+
XY

= Π+.Hom+(pk, C
+
X(r+Y ), C−rX )

Fig. 1. 2Mul+: 2-party protocol to compute C+
XY from C+

X and C+
Y

Theorem 1. Let Π+ be an additively homomorphic encryption scheme with a
zero-knowledge one round 2-party decryption. Then, the protocol described in
Fig. 1 is correct and zero-knowledge.
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Proof. The correctness follows from the correctness of the encryption scheme
and its homomorphic properties. Let us prove first that it is zero-knowledge
for Alice. We describe a simulator Sim whose behavior is indistinguishable from
Alice’s behavior in front of an adversarial Bob. The simulator receives as input
the public key pk+ and will set SimShare as follows: it calls out Sim2d

Share proce-
dure of the zero-knowledge property of 2-party decryption for Π+ with pk+ as
input. It obtains a simulated share skB = x+

B and feeds the adversary with it.
When Sim is requested for the 2-party computation of C+

XY from C+
X and C+

Y ,
it receives a pair of ((C+

X , C+
Y ), C̄) where C̄ is a ciphertext of XY , it does the

following to simulate C+
−rX , C+

r+Y and CA: First, It picks R at random in the
plaintext space and sets C+

r+Y = Encrypt(pk,R). Then it uses the simulator for
the zero-knowledge for Alice of the 2-party decryption Share2d

A (C+
r+Y , R, x+

B) so
that Bob decrypts R (which is equivalent to Decrypt(sk, C+

r+Y )). Eventually, it
sets C−rX = Hom+(C̄,ScalMul(C+

X ,−R)). This ciphertext encrypts XY − RX
so that Bob’s final Hom+ evaluation will cancel out the RX part and lead to C̄.

The simulated view is the same as a genuine one with R = r + Y , which
means that they are indistinguishable, and the protocol is zero-knowledge for
Alice. The protocol is obviously zero-knowledge for Bob: Bob’s contribution is
simulated by just sending C̄. ��

2.4 2-Party Re-encryption

The final tool we need to build our encryption switching protocol is an interac-
tive 2-party protocol to re-encrypt a ciphertext from an encryption scheme Π+

intended to pk into a ciphertext of the same encryption scheme of the same mes-
sage, but intended to another key pk′. This protocol is depicted in Fig. 2. Note
that the initial ciphertext to be transformed is not known to Bob. This protocol
readily extends to the multiplicative case, which is useless for our purpose. With
a proof similar to the proof of Theorem1, we showed that

Theorem 2. Let Π+ be an additively homomorphic encryption scheme with a
zero-knowledge one round 2-party decryption then the protocol described in Fig. 2
is correct and zero-knowledge.

3 Encryption Switching Protocols

The global scenario is established as follows: two semantically secure threshold
homomorphic encryption schemes, one additive, and the other multiplicative, are
at the disposal of two players. A public key is provided for each protocols, and
the matching secret key is shared among the players by a trusted dealer. Ideally,
these two encryption schemes should have the same plaintext space, which is
assumed to be a ring or a field. An encryption switching protocols makes it
possible to interactively transform a ciphertext from a source encryption scheme
into a ciphertext for the other encryption scheme (the target one) and vice versa.
The formal definitions are given in the following paragraphs.
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Input : pk, pk′, skA, Cm Input : pk, pk′, skB

r
$←− R

C′
−r = Π+.Encrypt(pk′, −r)

C′
−r−−−−−−−−−−−−−→

Cr = Π+.Encrypt(pk, r)
Cm+r = Π+.Hom+(pk, Cm, Cr)

2Dec(pk, C+
m+r; skA; skB)

−−−−−−−−−−−−−−−−−−−→ Bob gets m + r
C′

m+r = Π+.Encrypt(pk′, m + r)

C′
m←−−−−−−−−−−−−− C′

m = Π+.Hom+(pk′, C′
m+r, C′

−r)

Fig. 2. 2-party ReEnc+

Definition 3 (Twin ciphertexts). Let Π+ and Π× be two different encryption
schemes with plaintext and ciphertext spaces respectively M+, C+ and M×, C×. If
C+

m ∈ C+ and C×
m ∈ C× are two encryptions of the same message m ∈ M+∩M×,

they are said to be twin ciphertexts.

We will say that two ciphertexts from the same encryption scheme which
decrypt to the same plaintext are equivalent.

Definition 4 (Encryption Switching Protocols). An encryption switching
protocol (ESP) between Π+ and Π×, denoted Π+ � Π×, is a protocol involving
three parties: a trusted dealer D and two users A and B. It uses common Setup
and KeyGen algorithms to set the message space between Π+ and Π× and keys.
It is a pair of interactive protocols (Share,Switch) defined as follows:

– Share((pk+, sk+), (pk×, sk×)) → (pk, skA, skB): It is a protocol (run by D)
which takes as input two pairs of keys (pk+, sk+) and (pk×, sk×) produced
from Π+.KeyGen, Π×.KeyGen and Setup. It outputs the shares skA (sent to
A) and skB (sent to B) of (sk+, sk×) and updates the public key pk.

– Switchway((pk, skA, c), (pk, skB , C)) → C ′ or ⊥: It is an interactive protocol
in the direction way ∈ {+ → ×,× → +} which takes as common input the
public key and a ciphertext C under the source encryption scheme and as
secret input the secret shares skA and skB. The output is a twin ciphertext
C ′ of C under the target encryption scheme or ⊥ if the execution encountered
problems.

Correctness. An encryption switching protocols Π+ � Π× is correct if for
any λ ∈ N, (params+, params×) ← Setup(1λ), for any pair of keys (pk+, sk+) ←
Π+.KeyGen(1λ, params+) and (pk×, sk×) ← Π×.KeyGen(1λ, params×), for any
shares (pk, skA, skB) ← Share((pk+, sk+), (pk×, sk×)), for any twin ciphertext
pair (C+

m, C×
m) of a message m ∈ M+ ∩ M×,

Π+.Decrypt(sk+,Switch×→+((pk, skA, C×
m), (pk, skB , C×

m))) = m

Π×.Decrypt(sk×,Switch+→×((pk, skA, C+
m), (pk, skB , C+

m))) = m.
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Zero-Knowledge. An ESP has to satisfy a notion of zero-knowledge similar
to the notion of zero-knowledge for threshold decryption (see Definition 7). This
property means that an adversary will not learn any other information on the
secret share of a participant that he can learn from his own share, the input,
and the output of the protocol.

Definition 5. An encryption switching protocols Π+ � Π× is zero-knowledge
for A if there exists an efficient simulator Sim = (SimShare,SimA) which simulates
the sharing phase and the player A.

The subroutine SimShare takes as input a public key (pk+, pk×) and outputs
(pk′, sk′

B) that simulates the public key obtained from the Share algorithm and
Bob’s share of the secret key.

The subroutine SimA takes as input a direction way ∈ {+ → ×,× → +}, a
source ciphertext C, a twin ciphertext C̄ and a flow flow. It emulates the output
of an honest player A would answer upon receiving the flow flow when running
the protocol Switchway((pk, skA, C), (pk, skB , C)) without skA but possibly skB,
and forcing the output to be a ciphertext C ′ which is equivalent to C̄.

Then, for all λ ∈ N, for any parameters (params+, params×) ← Setup(1λ),
for any pairs of keys (pk+, sk+) ← Π+.KeyGen(1λ, params+) and (pk×, sk×) ←
Π×.KeyGen(1λ, params×), (pk, skA, skB) ← Share((pk+, sk+), (pk×, sk×)) or for
any simulated share (pk′, sk′

B) ← SimShare(pk), and for any adversary D playing
the role of B, the advantage

Advzk
A,Π+�Π×(D) =

∣
∣
∣Pr[1 ← DA(pk, skB)] − Pr[1 ← DSimA()(pk′, sk′

B)]
∣
∣
∣

is negligible.
We define similarly an encryption switching protocols Π+ � Π× that is

zero-knowledge for B. It is zero-knowledge if it is zero-knowledge for A and B.

4 Generic Construction of an ESP on a Ring

We describe in this section a generic construction of an encryption switching
protocol in the semi-honest model. Even though an ESP could allow to switch
between any encryption schemes, its main interest is when its implemented with
homomorphic encryptions. Therefore, we start with an additively homomorphic
encryption Π+ and a multiplicatively homomorphic encryption Π× whose mes-
sage space is respectively a ring R and a monoid M. To fit most of the appli-
cations, we will make the assumption that M = R∗, the subgroup of invertible
elements of R, since in general the multiplicative homomorphic encryption will
have a group as message space. In particular, this means that the intersection
over which the switches are defined is R ∩ M = R∗.

As in [10], in the first place, we are going to describe how we can switch
between Π+-encryptions and Π×-encryptions over R∗. Then we will show how
to modify Π× in order to extend its message space to R∗ ∪ {0}.
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Definition 6 (Compatible encryption protocols). Let (R,+,×) be a ring.
Let Π+ and Π× be an additively and multiplicatively homomorphic encryption in
the sense of Definitions 1 and 2. They are said to be compatible if Π+ and Π×
have respectively R and R∗ as message space, both of them admit a one-round
2-party decryption as defined in Sect. 2.2, there exists a common setup algorithm
Setup and common KeyGen which allows to set common parameters.

Remark 3. To illustrate this, our instantiation (resp. Couteau et al.’s instanti-
ation) switches between an additively homomorphic encryption whose message
space is the field (Z/pZ,+,×) (resp. the ring (Z/NZ,+,×)) and a multiplica-
tive homomorphic encryption whose message space is the group ((Z/pZ)∗,×)
(resp. ((Z/NZ)∗,×)) and the former is modified so that its message space is the
monoid (Z/pZ,×) (resp. ((Z/NZ)∗ ∪ {0},×)). In particular, Couteau et al.’s
make the additional algorithmic assumption that (Z/NZ)∗ is computationally
equal to Z/NZ.

Share Protocol of the ESP. The keys of Π+ and Π× are first shared by a
trusted dealer, this corresponds to the Share algorithm from Definition 4. From
public parameters generated using the common Setup algorithm and two pairs of
keys (pk+, sk+) and (pk×, sk×) it outputs the secret share skA = (sk+

A , sk×
A) for

Alice and skB = (sk+
B , sk×

B) for Bob using the Share procedures of the 2-party
decryption of Π+ and Π×.

4.1 Switching Protocols over R∗

We describe here the two 2-party switching protocols from an additive homo-
morphic encryption of m to a multiplicative one and vice versa. Contrary to
Couteau et al.’s protocol [10], the two protocols are actually the same since both
the additive and the multiplicative scheme support a ScalMul operation and a
single-round 2-party decryption. It is important to note that in our instantia-
tion, the round complexity is only 2, since the first ciphertext C

(2)
R−1 can be sent

within the flow of the 2-party decryption which is only one round (cf. Sect. 2.2
or Figs. 9 and 11). We suppose that m 
= 0 here, and more precisely the message
to be switched lies in R ∩ M = R∗.

Switching Protocols Between Π1.Encrypt(m) and Π2.Encrypt(m). In Fig. 3,
as our switching protocols in the two directions are the same, the pair (Π1,Π2)
is either (Π+,Π×) or (Π×,Π+).

The correctness of these two protocols is clear. They are generic and the
switch from Π× to Π+ is highly simpler than the one in [10] (ours is 2-round
instead of 6-round) and our instantiation will keep this simplicity. We prove in
the following theorem that they are zero-knowledge, and the security proof itself
is also very simple. It only relies on the zero-knowledge property of the shared
decryptions.
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Input : pk1, pk2, sk1
A, C(1)

m Input : pk1, pk2, sk1
B , C(1)

m

R
$←− R∗

C
(1)
mR = Π1.ScalMul(pk1, C(1)

m , R)

C
(2)
R−1 = Π2.Encrypt(pk2, R−1)

C
(2)
R−1−−−−−−−−−−−−−→

2Dec(pk1, C
(1)
mR; sk1

A; sk1
B)−−−−−−−−−−−−−−−−−−−→ Bob gets mR

C(2)
m←−−−−−−−−−−−−− C(2)

m = Π2.ScalMul(pk2, C
(2)
R−1 , mR)

Fig. 3. 2-party Switch1→2 from Π1 to Π2 where (Π1, Π2) ∈ {(Π+, Π×), (Π×, Π+)}.

Theorem 3. The ESP between Π+ and Π×, whose switching routines are
described in Fig. 3, is zero-knowledge if Π+ and Π× are two compatible encryp-
tion schemes which have zero-knowledge one round 2-party decryptions.

Proof. The proof consists in proving that after a share of the secret keys, both
switching procedures are zero-knowledge for Alice and Bob. Let us start with
the proof that the ESP is zero-knowledge for Alice. We are going to describe a
simulator Sim whose behavior is indistinguishable from Alice’s behavior in front
of an adversarial Bob.
SimShare: The simulator receives as input the public key (pk+, pk×) and simulates
the Share procedure as follows: it calls out the Sim2d

Share procedures of the zero-
knowledge property of Alice for 2-party decryption of respectively Π+ and Π×
with pk+ and pk× as input. In particular it obtains sk′

B = (x+
B , x×

B) it can feed
the adversary with. When Sim is requested for a switch, it receives a pair of twin
ciphertexts (C, C̄).
Game G0. This game is the real game. The simulator generates all the secret
shares in an honest way and gives his share to Bob. It plays honestly any switch-
ing protocols on an input (C, C̄) using Alice’s secret key.
Game G1. The first modification concerns the additive to multiplicative direc-
tion. The setup and key generation are the same as in the previous game. When
requested to participate to a Switch+→×, with (C, C̄) as input, the simula-
tor picks uniformally at random x ∈ R∗ and sets C+

mR = Π+.Encrypt(x) and
C×

R−1 = Π×.ScalMul(C̄, x−1). The simulator then concludes the protocol hon-
estly. This game is indistinguishable from the previous since, as x is random,
it is equivalent to a genuine protocol using R = x/m, where m is the plaintext
under C and C̄.
Game G2. In this game, we modify the shared decryption for Π+ using the simu-
lator of 2-party decryption. First, the simulation gives the key x+

B obtained by the
simulation of the shares to Bob. Then after Sim simulated the pair (C+

mR, C×
R−1)

as above, it uses the simulator Sim2d
A (C+

mR, x, x+
B , ·) for the 2-party decryption

of Π+ to interact with Bob, where C+
mR is an encryption of x. Thanks to the

property of this simulator this game is indistinguishable from the previous one
(note that the key x+

B is only used in that part of the protocol). Eventually,



Encryption Switching Protocols Revisited: Switching Modulo p 267

the last computation done by Bob, Π×.ScalMul(C×
R−1 , x) gives a multiplicative

ciphertext of m equivalent to C̄.
Game G3. In this game, we address the multiplicative to additive way. The
setup and key generation are the same as in the previous games. As in Game
G1, when requested to participate to a Switch×→+, with (C, C̄) as input, the
simulator picks uniformally at random x ∈ R∗ and sets C×

mR = Π×.Encrypt(x)
and C+

R−1 = Π+.ScalMul(C̄, x−1). Then, Sim continues honestly the protocol.
This game is indistinguishable from the previous one.
Game G4. The shared Π× decryption is modified as in Game G2. The simulation
now gives the simulated key x×

B to Bob and then uses the simulator for the 2-
party decryption of Π× with ciphertext C×

mR and corresponding plaintext x.
Thanks to the property of this simulator this game is indistinguishable from
the previous one. Again, Bob’s last computation Π+.ScalMul(C+

R−1 , x) gives a
ciphertext equivalent to C̄.

In conclusion, the advantage of the attacker is negligible.
We now prove that the ESP is zero-knowledge for Bob, by describing a simu-

lator Sim whose behavior is indistinguishable from Bob’s behavior in front of an
adversarial Alice. The simulator receives as input the public key pk = (pk+, pk×)
and simulates the Share procedure as above and feed the adversary (Alice) with
the corresponding secret key. When Sim is requested for a switch, it receives a
pair of twin ciphertexts (C, C̄). In both directions, the simulation is trivial, since
Bob’s only flow is the final forward of the twin ciphertext (we have suppose that
the 2-party decryption has only one round from Alice to Bob), which is done by
sending the C̄ ciphertext. This is indistinguishable from a true execution since
C̄ is a random ciphertext which encrypts the same plaintext that C. ��

4.2 Modification of Π× to Embed the Zero Message

One technical issue to design switching protocols between Π+ and Π× is to
embed the zero message into Π×’s message space so that the message spaces
match. To do so, we need to modify the Π× encryption. We will use a technique
quite similar to those in [10]: During their encryption, if the message m is equal
to 0, a bit b is set to 1. It is set to 0 for any other message. Then, the message
m + b (which is never 0) is encrypted using their Elgamal encryption. As this
encryption scheme is no longer injective, to discriminate an encryption of 0, the
ciphertext is accompanied by two encryptions under classical Elgamal of T b and
T ′b where T, T ′ are random elements. We note that these two encryptions are
in fact encryptions of b which are homomorphic for the or gate: If b = 0, we get
an Elgamal encryption of 1 and if b = 1, an Elgamal encryption of a random
element (which is equal to 1 only with negligible probability). Thanks to the
multiplicativity of Elgamal, if we multiply an encryption of b and an encryption
of b′, we get an Elgamal encryption of 1 only if b = b′ = 0 and an Elgamal
encryption of a random element otherwise. In [10] the second encryption of b is
actually an extractable commitment, the corresponding secret key is only known
by the simulator in the security proof.
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In our case, we use the additively homomorphic encryption Π+ to discrimi-
nate the zero message: Π+ is used to encrypt a random element r if m = 0 and 0
otherwise. As a consequence, it will be possible to directly obtain an encryption
of b̄ (the complement of the bit b used during encryption) under Π+ using the
zero-testing procedure during the switch from Π0

× to Π+ (see Fig. 7). This gives
a real improvement compared to [10] when we instantiate our generic protocols.
As in [10] we add a useless second encryption of r to be used by the simulation in
the security proof. Our modification is formally described in Fig. 4. The Hom×
procedure is obtained by applying the Hom× procedures of Π×, and Π+. For
the ScalMul procedure, which corresponds to a multiplication by a plaintext α,
it applies the ScalMul procedure of Π× if α 
= 0 and add an encryption of 0 to
the additive part. If α = 0, it outputs an encryption of 0.

Algo. (Π+ � Π0
×).KeyGen(1λ)

1. params ← (Π+ � Π×).Setup(1λ)
2. ((pk×, sk×), (pk+, sk+)) ← (Π+ � Π×).KeyGen(1λ, params)
3. (pk′, sk′) ← Π+.KeyGen(1λ, params)
4. Set pk ← (pk×, pk+, pk′) and sk ← (sk×, sk+, sk′)
5. Return (pk, sk)

Algo. Π0
×.Encrypt(pk, m)

1. Parse pk as (pk×, pk+, pk′)

2. If m = 0 set b ← 1 and r
$←− R∗

otherwise set b ← 0 and r ← 0
3. C×

m+b ← Π×.Encrypt(pk×, m + b)

4. C+
r ← Π+.Encrypt(pk+, r)

5. C′
r ← Π+.Encrypt(pk′, r)

6. Return (C×
m+b, C

+
r , C′

r)

Algo. Π0
×.Decrypt(sk, (C×

m+b, C
+
r , C′

r))

1. Parse sk as (sk×, sk+, sk′)
2. B ← Π+.Decrypt(sk+, C+

r )
3. If B �= 0 return 0

else
return Π×.Decrypt(sk×, C×

m+b)

Fig. 4. Π× over R: Π0
×

The protocol Π0
× directly inherits the indistinguishability under a chosen

message attack from those of Π× and Π+. By a standard hybrid argument, we
can prove the following theorem, whose proof is omitted.

Theorem 4. If Π+ and Π× are IND-CPA, then Π0
× is also IND-CPA.

4.3 Full Switching Protocols

Encrypted Zero-Test. In [10] an encrypted zero test (EZT) to obliviously
detect the zero messages during switches is presented. In our case, EZT takes
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as input a ciphertext C+
m from the additively homomorphic encryption Π+ of

a message m and outputs a Π+ ciphertext C+
b of a bit b equals to 1 if m = 0

and equals to 0 otherwise. The EZT has to be zero-knowledge in the sense that
there exists an efficient simulator for each player which, on input a pair of twin
ciphertext (C, C̄), is indistinguishable from these honest players. This simulator
runs without the secret share of the user it simulates.

During the security proof, the simulator will obtain the bit b thanks to
the knowledge of the secret key which decrypts the additional encryption of
r appended during encryption (see Fig. 4).

This EZT protocol is done using garbled circuits techniques. An alternative
would be to use techniques based on homomorphic encryption [32]. The resulting
protocol is described in Fig. 5. The function H : R∗ −→ {0, 1}κ (for a security
parameter κ) belongs to a universal hash function family (in practice, this will
be a reduction modulo 2κ of the integer representation of an element of R). We
denote by eq the function that on input (u, v) ∈ {0, 1}κ outputs 1 if u = v and
0 otherwise and we denote by Garble(f) the computation of a garbled circuit
evaluating the function f .

Input : pk, skA, C+
m Input : pk, skB

r
$←− R∗

r′ ← H(r)
C+

r ← Π+.Encrypt(pk, r)

C
+
m+r

← Π+.Hom+(pk, C+
m, C+

r )

2Dec(pk, C
+
m+r

; skA; skB)
−−−−−−−−−−−−−−−−−−−−−−−→ Bob gets m + r

r′′ ← H(m + r)

bA
$←− {0, 1}

C
+
bA

← Π+.Encrypt(pk, bA)

C(·) ← Garble(bA ⊕ eq(r′, ·)) C(·)−−−−−−−−−−−−−−−→ bB ← C(r′′)
C

+
bB←−−−−−−−−−−−−−−− C

+
bB

← Π+.Encrypt(pk, bB)

C
+
−2bAbB

← Π+.ScalMul(pk, C
+
bB

, −2bA)

C
+
bB−2bAbB

← Π+.Hom+(pk, C
+
bB

, C
+
−2bAbB

)

Cb ← Π+.Hom+(pk, C
+
bA

, C
+
bB−2bAbB

)

Fig. 5. EZT: 2-party protocol to compute C+
b from C+

m

The correctness of the protocol comes from the fact that the last three lines of
the protocol compute the encryption of bA ⊕ bB by homomorphically evaluating
bA + bB − 2bAbB from the encryptions of bA and bB . By construction, bA ⊕ bB =
eq(r′, r′′) which is equals to 1 if m = 0 and 0 otherwise, with probability 1−2−κ.
This is exactly the encryption of the bit b. This protocol is zero-knowledge (see
[10]). Using [28], the communication needed is 8κ2 bits of preprocessing for the
garbled circuit and κ2 bits and κ oblivious transfers for the online phase (cf. [10,
Fig. 4]).
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Input : (pk×, pk+, pk′), skA, C+
m Input : (pk×, pk+, pk′), skB , C+

m

Alice gets C+
b

EZT(C+
m)←−−−−−−−−−−−−→

Alice gets C′
b

ReEnc+(pk+, pk′, C+
b )←−−−−−−−−−−−−−−−→ Bob gets C′

b

C+
m+b = Π+.Hom+(pk+, C+

m, C+
b )

C+
m+b−−−−−−−−−−−−−→

Alice gets C×
m+b

Switch+→×(C+
m+b)←−−−−−−−−−−−−→ Bob gets C×

m+b

r, r′ $←− R∗

C+
rb = Π+.ScalMul(pk+, C+

b , r)
C′

r′b
= Π+.ScalMul(pk′, C′

b, r′)

C×
m = (C×

m+b, C+
rb, C′

r′b
)

C×
m−−−−−−−−−−−−−→

Fig. 6. 2-party Switch+→× from Π+ to Π0
× over R∗ ∪ {0}

Input : pk, skA, C×
m = (C×

m+b, C+
r , C′

r) Input : pk, skB , C×
m = (C×

m+b, C+
r , C′

r)

Alice gets C+
m+b

Switch×→+(C×
m+b)←−−−−−−−−−−−−→ Bob gets C+

m+b

Alice gets C+
b̄

EZT(C+
r )←−−−−−−−−−→

Alice gets C+
b̄(m+b)

= C+
m

2Mul+(C+
m+b, C+

b̄
; skA; skB)

←−−−−−−−−−−−−−−−−−−−−−→ Bob gets C+
b̄(m+b)

= C+
m

Fig. 7. 2-party Switch×→+ from Π0
× to Π+ over R∗ ∪ {0}

4.4 2-Party ESP Between Π+.Encrypt(m) and Π0
×.Encrypt(m)

The protocol of Fig. 6 is quite similar to the one of [10]. First we use the EZT
sub-protocol to get a Π+ encryption of the bit b. A notable difference with the
protocol of [10] is that this encryption of b can be used directly to set an element
of the ciphertext for Π0

+, which saves many rounds in the interaction. Since the
bit b is encrypted twice (this second encryption is only used during the security
proof), the ReEnc+ protocols allows to re-encrypt the output of EZT to the right
public key. Then, thanks to the homomorphic property of the Π+ scheme, Alice
can construct an additive encryption of m + b and the Switch+→× protocol of
Fig. 3 is used to get the Π+-encryption of m + b. The two ciphertexts of b are
randomized to get a proper multiplicative ciphertext.

In Fig. 7, starting from a multiplicative ciphertext of m, we run an Switch×→+

with the first component of C×
m, which is a Π×-encryption of m + b. Hence, we

get C+
m+b. Then, we run the EZT protocol on the second component C+

r and
the output the encryption of a bit b′ whose value is 1 when r = 0, i.e., when
b = 0 and 0 otherwise. Therefore b′ = b̄ and EZT actually outputs an encryption
of b̄. It is now possible to homomorphically remove the bit b remaining in the
Π+-encryption of m + b, C+

m+b. Inspired by the implicit technique used in [10],
we use the 2Mul+ protocol to obtain, from C+

b̄
and C+

m+b, a Π+-encryption of
(m + b)b̄ which is equal to a Π+-encryption of m.
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Note that we can not simply use the fact that m + b + b̄ − 1 = m over Z
to get m: The expression m + b is really equal to the message m plus the bit b
only for fresh multiplicative ciphertexts. After an homomorphic multiplication
between a ciphertext of a non zero message with a ciphertext of zero it becomes
something random. As a result, we have to multiply it by b̄ to get 0.

The zero-knowledge property of our ESP essentially comes from the fact that
each routine (ReEnc+ and 2Mul+) is individually zero-knowledge, inherited from
the zero-knowledge of the 2-party decryption of the encryption protocols. We
also use the fact that the encryption schemes are IND-CPA, in order to be able
to simulate intermediate ciphertexts. This means that the assumptions in our
theorem are weak and very natural.

Theorem 5. The ESP between Π+ and Π0
× whose routines are described in

Figs. 6 and 7 is zero-knowledge if Π+ and Π× are two compatible encryptions
that are IND-CPA and whose 2-party decryptions are zero-knowledge, and EZT
is zero-knowledge.

Proof (sketch). The full proof of this theorem can be found in AppendixB.
This proof can be sketched as follows: First we give the secret key sk′ to the
simulation. From a pair of twin ciphertexts, it allows the simulation to know the
bit that encode the fact that the plaintext is 0 or not. With that knowledge, the
simulation can retrieve the ciphertexts that constitute the input and the output
of each building block, and use their zero-knowledge simulator to emulate them.
Then, we remove the knowledge of sk′ from the simulation which replaces each
input and output by random ciphertexts. Thanks to the IND-CPA property of
the encryption schemes this is indistinguishable from the previous step. As a
result, the whole protocol is simulated without knowing any secret. ��

5 Instantiation of Our Generic Construction on Z/pZ

In this section we provide an instantiation of our generic construction on a field
Z/pZ for a prime p, by describing an additively homomorphic encryption and
a multiplicatively homomorphic one. Both schemes enjoy an Elgamal structure.
For the additively homomorphic encryption scheme, we will use as a basis the
scheme introduced in [9] (denoted CL in the following). It uses the notion of a
DDH group with an easy DL subgroup, which is instantiated using class groups
of quadratic fields. For the multiplicatively homomorphic scheme, we devise a
variant of the traditional Elgamal encryption over the whole group (Z/pZ)∗.
Both schemes are described in the next subsection. We also describe their 2-
party decryption, since it is required by the generic construction.

5.1 Additively Homomorphic Scheme over Z/pZ

Castagnos-Laguillaumie Encryption. The encryption scheme from [9] is
additively homomorphic modulo a prime p. The general protocol is well suited
for relatively small p. For the ESP context, we need a large message space as p
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must be at least of 2048 bits for the security of the Elgamal protocol. As a result,
we use the first variant of CL described in [9, Sect. 4]. This variant is defined
with subgroups of the class group of an order of a quadratic field of discriminant
Δp = −p3. Thus all computations are done in this class group. Note that ele-
ments are classes of ideals, that can be represented by their unique reduced
elements, i.e., by two integers of roughly the size of

√|Δp|. As a consequence, a
group element can be represented with 3 log p bits.

We provide some improvements detailed in the following. The CL scheme
does exponentiations to some random powers in a cyclic group of unknown order.
Let us denote by g a generator of this group. Only an upper bound B on this
order is known. In order to make the result of these exponentiations look like
uniform elements of the cyclic group, the authors of [9] choose to sample random
exponents from a large enough uniform distribution, and more precisely over
{0, . . . , B′} where B′ = 2λ−2B, so that the resulting distribution is as distance
to uniform less than 2−λ.

However, it is more efficient to use a folded discrete Gaussian Distribution
instead of a folded uniform distribution. Let z ∈ Z and σ > 0 a real number and
let us denote by ρσ(z) = exp(−πz2/σ2) a Gaussian centered function and define
the probability mass function Dσ over Z by Dσ(z) := ρσ(z)/

∑
z∈Z ρσ(z).

If z is sampled from Dσ, we have |z| > τσ with probability smaller than√
2πeτ exp(−πτ2) (cf. [35, Lemma 2.10]). We denote by τ(λ) the smallest τ such

that this probability is smaller than 2−λ.
If we set σ =

√
ln(2(1 + 2λ+1))/πB, Lemma 1 of Appendix C of the long ver-

sion shows that the distribution obtained by sampling z from Dσ and computing
gz is at distance less than 2−λ to the uniform distribution in 〈g〉.

For instance for λ = 128, we only add, in the worst case, 6 iterations in
the square and multiply algorithm to compute gz, whereas one has to add 126
iterations with a folded uniform distribution.

Description of the Scheme. We denote by CL.Gen a parameter generator for CL.
It takes as input 1λ and outputs a tuple (p, g, f, σ). This tuple is such that p
is a prime satisfying p ≡ 3 (mod 4) so that computing discrete logarithms in
C(−p), the ideal class group of the quadratic order of discriminant −p, takes
2λ times. Then g ∈ C(−p3) is a class of order ps where s is unknown and
expected to be of the order of magnitude of the class number of C(−p): a concrete
implementation for g is given in [9, Fig. 2]. It consists in generating a random
ideal of the maximal order of discriminant −p, and lifting it in the order of
discriminant −p3. Eventually, f ∈ C(−p3) is the class of the ideal p2Z + ((−p +√

−p3)/2)Z and σ will be the standard deviation of the Gaussian Distribution
discussed before: σ =

√
ln(2(1 + 2λ+1))/πB, with B = log(p)p3/2/(4π).

The scheme relies on the notion of a DDH group with an easy DL subgroup.
It is IND-CPA under the DDH assumption in the group generated by g. On the
other hand, in the subgroup of order p generated by f, there is a polynomial time
algorithm, denoted CL.Solve which takes as input an element of 〈f〉 and which
outputs its discrete logarithm in basis f. We refer the reader to [9] for concrete
implementation of CL.Gen and CL.Solve. The resulted scheme is given in Fig. 8.
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CL.Setup(1λ)

1. (p, g, f, σ) ← CL.Gen(1λ)
2. Return params := (p, g, f, σ)

CL.KeyGen

1. Pick x
$←− Dσ and set h ← gx

2. Set pk ← h and set sk ← x.
3. Return (pk, sk)

CL.Decrypt(sk, (c1, c2))

1. Set M ← c2/c
x
1

2. m ← CL.Solve(M)
3. Return m

CL.Encrypt(pk, m)

1. Pick r
$←− Dσ

2. Compute c1 ← gr

3. Compute c2 ← fmhr

4. Return (c1, c2)

CL.Hom+(pk, (c1, c2), (c
′
1, c

′
2))

1. Pick r
$←− Dσ

2. Return (c1c
′
1g

r, c2c
′
2h

r)

CL.ScalMul(pk, (c1, c2), α)

1. Pick r
$←− Dσ

2. Return (cα1 g
r, cα2 h

r)

Fig. 8. Castagnos-Laguillaumie over Z/pZ: CL

Theorem 6 [9]. The CL scheme of Fig. 8 is an additively homomorphic encryp-
tion scheme over Z/pZ, IND-CPA under the DDH assumption in the ideal class
group of the quadratic order of discriminant −p3.

One Round 2-Party Decryption for CL. We now devise in Fig. 9 a one
round 2-party decryption for CL as defined in Sect. 2.2, i.e. subroutines to share
the secret key and the interactive protocol for decryption. As the scheme has
an Elgamal structure, it can be readily adapted from the threshold variant of
the original Elgamal scheme (cf. [39] for instance) with a simple additive secret
sharing of the key x = xA + xB. However, as the group order is unknown, this
secret sharing must be done over the integers. This kind of sharing has been
addressed before (cf. [14, Sect. 4] for instance).

As x is sampled from Dσ, we saw before that x ∈ [−τ(λ)σ, τ(λ)σ] for a small
τ(λ) except with negligible probability. Then the integer xA is taken uniformly
at random in the interval [−τ(λ)σ2λ, τ(λ)σ2λ], and xB = x − xA. This choice
makes the secret sharing private. Note that in that case, there is no gain in using
a Gaussian Distribution to generate the shares. We refer the interested reader
to Appendix D of the long version for details.

Theorem 7. The 2-party Decryption for CL described in Fig. 9 is correct and
zero-knowledge.

Proof. Correctness follows from the shared exponentiation. Let us prove first
that the protocol is zero-knowledge for Alice (see Definition 7 in AppendixA).

For the secret key shares, the simulator Sim2d
Share picks x′ from Dσ, x′

A
$←−

{−τ(λ)σ2λ, . . . , τ(λ)σ2λ} and set x′
B = x′ −x′

A. As the secret sharing is private,
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CL.Share(sk, pk)

1. Parse x = sk
2. Pick xA

$←− {−τ(λ)σ2λ, . . . , τ(λ)σ2λ} and set xB = x − xA

3. Return (pk, skA = xA, skB = xB)

CL.2Dec(pk, C = (c1, c2); skA = xA; skB = xB)

Input : pk, skA, C Input : pk, skB

c1,A ← c
xA
1

C, c1,A−−−−−−−−−−−−−→ Compute M ← c2/(c
xB
1 c1,A)

m ← CL.Solve(M)

return m

Fig. 9. 2-party decryption for CL

the distribution of x′
B is statistically indistinguishable from the distribution of

the real xB (see Appendix D of the long version for the computation of the
statistical distance).

Then we describe the simulator Sim2d
A which emulates Alice. From a cipher-

text C, a plaintext m, it computes M = fm. Then it simulates c1,A by setting
c1,A = c2/(Mc

x′
B

1 ), so that Bob’s computations leads to M. The value sent by
the simulation is thus perfectly indistinguishable from the real one.

It is straightforward to see that the protocol is zero-knowledge for Bob: secret
key shares are simulated as previously, and x′

A is obviously indistinguishable from
the real xA, and then Bob sends nothing during the protocol. ��

5.2 Multiplicatively Homomorphic Scheme over Z/pZ

Elgamal over (Z/pZ)*. Let q be an odd Sophie Germain prime, and let us
denote by p the associated prime, i.e., p = 2q + 1. The DDH assumption is
widely supposed to hold in the subgroup of order q of (Z/pZ)∗ which is the
subgroup of quadratic residues modulo p, denoted Sp. The Elgamal cryptosystem
defined in Sp is multiplicatively homomorphic and semantically secure if the DDH
assumption holds in that subgroup.

It is well-known that the DDH assumption does not hold in the whole group
(Z/pZ)∗. As a result, in order to extend the message space to (Z/pZ)∗, we
need to encode elements of (Z/pZ)∗ as quadratic residues. The situation is quite
similar to the Elgamal over (Z/nZ)∗ of [10], but actually simpler to handle since
we work modulo a prime p and not modulo an RSA integer n (in particular, we
can publicly compute square roots or distinguish quadratic and non quadratic
residues and we do not have to hide the factorization of n).

Since p = 2q + 1, we have p ≡ 3 (mod 4), and −1 is not a quadratic residue
modulo p. Let m ∈ (Z/pZ)∗, let us denote by (m/p) the Legendre symbol of m
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modulo p. Then (m/p) × m is a quadratic residue mod p. Let L be the group
morphism from ((Z/pZ)∗,×) to (Z/2Z,+) that maps m to 0 (resp. to 1) if m is
a quadratic residue (resp. is a non quadratic residue). The map

((Z/pZ)∗,×) −→ (Sp,×) × (Z/2Z,+)
m �−→ (

(m/p) × m, L(m)
)

is a group isomorphism. As a consequence we can encode elements of (Z/pZ)∗ as
a square plus one bit. The square can be encrypted with the traditional Elgamal
encryption, and the bit L(m) has to be encrypted separately. In order to have
a multiplicatively homomorphic encryption, L(m) has to be encrypted with a
scheme that is homomorphic for the addition in Z/2Z. We choose Goldwasser-
Micali encryption [23] for that. The drawback is that we need an additional
assumption, namely the Quadratic Residuosity assumption (QR) for the secu-
rity of our protocol. To avoid that, an idea could have been to encrypt L(m) as
an integer in the exponent with another Elgamal scheme or with the additive
scheme of the previous Subsection. However, after computing the product of �
messages m1, . . . ,m� over encrypted data, the decryption would give more infor-
mation than the Legendre symbol of the product of the mi’s, namely

∑n
i=1 L(mi)

in the integers, instead of modulo 2. Moreover, this extra information has to be
taken into account to devise a zero-knowledge 2-party decryption. As this infor-
mation can not be simulated, this gives a complex 2-party protocol, perhaps by
using an extra homomorphic encryption scheme like in [10]. Note that a solu-
tion consisting in randomizing L(m) by adding a (small) even integer, with a
Gaussian Distribution, for instance, still leaks the number � of multiplications
that have been made. As a result, it seems to be an interesting open problem to
devise an encryption scheme that allows homomorphic addition in Z/2Z, or that
simulates it without leaks, without relying on a factorization-based assumption
(in [10], the same problem was handled more smoothly thanks to the fact that
the authors worked with a composite modulus).

Description of the Scheme. Let λ be a security parameter. Let GM.Gen be a
parameter generator for the Goldwasser-Micali encryption scheme. It takes as
input 1λ and outputs (N, p′, q′) such that p′, q′ ≡ 3 (mod 4) are primes and
N = p′q′ is such that factoring N takes 2λ time. We use the threshold variant
of Goldwasser-Micali described in [26] to define a suitable 2-party decryption.

We also define Eg∗.Gen a parameter generator for Elgamal. It takes as input
1λ and outputs (p, q, g) such that q is a prime, p = 2q + 1 is a prime such that
computing discrete logarithms in (Z/pZ)∗ takes 2λ times, and g a generator of
Sp, i.e., and element of (Z/pZ)∗ of order q. We depict in Fig. 10, the adaptation
of Elgamal over the whole multiplicative group (Z/pZ)∗, denoted Eg∗.

The following theorem is a consequence of the previous discussion and the
properties of the Goldwasser-Micali variant. Note that modulo N , c

(N−p′−q′+1)/4
3

equals 1 if c3 is a quadratic residue, and −1 if c3 has Jacobi symbol 1 and is not
a quadratic residue.
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Eg∗.Setup(1λ)

1. Set (p, q, g) ← Eg∗.Gen(1λ)
2. Return params := (p, q, g)

Eg∗.KeyGen

1. Set (N, p′, q′) ← GM.Gen(1λ)
2. Add N to params

3. Pick x
$←− {0, . . . , q − 1}

4. Set h ← gx

5. Set pk ← h
6. Set sk ← (x, p′, q′)
7. Return (pk, sk)

Eg∗.Decrypt(sk, (c1, c2, c3))

1. Set M ← c2/cx
1 (mod p)

2. Set L ← c
(N−p′−q′+1)/4
3 (mod N)

3. If L = 1 return M else return −M

Eg∗.Encrypt(pk, m)

1. Pick r
$←− {1, . . . , q − 1}

2. Pick r′ $←− {1, . . . , N − 1}
3. Set c1 ← gr (mod p)
4. Set c2 ← (m/p)mhr (mod p)
5. Set c3 ← (−1)L(m)r′2 (mod N)
6. Return (c1, c2, c3)

Eg∗.Hom×(pk, (c1, c2, c3), (c
′
1, c

′
2, c

′
3))

1. Pick r
$←− {0, . . . , q − 1}

2. Pick r′ $←− {1, . . . , N − 1}
3. Return (c1c

′
1g

r, c2c
′
2h

r, c3c
′
3r

′2)

Eg∗.ScalMul(pk, (c1, c2, c3), α)

1. Pick r
$←− {0, . . . , q − 1}

2. Pick r′ $←− {1, . . . , N − 1}
3. Set c′

1 ← c1g
r (mod p)

4. Set c′
2 ← (α/p)αc2h

r (mod p)
5. Set c′

3 ← (−1)L(α)c3r
′2 (mod N)

6. Return (c′
1, c

′
2, c

′
3)

Fig. 10. Elgamal over (Z/pZ)∗: Eg∗

Theorem 8. The Eg∗ scheme of Fig. 10 is multiplicatively homomorphic over
(Z/pZ)∗, and it is IND-CPA under the DDH assumption in the subgroup of
quadratic residues of (Z/pZ)∗ and the QR assumption in (Z/NZ)×.

One Round 2-Party Decryption for Eg∗. We describe in Fig. 11 a one round
2-party decryption for Eg∗. This protocol is adapted from the threshold variant
of the original Elgamal scheme and the basic threshold Goldwasser-Micali of [26,
Subsect. 3.1].

This simple protocol gives a huge performance improvement compared to
the Elgamal over (Z/nZ)∗ of [10]: in that work, after the exponentiations, a
CRT reconstruction is needed to recover m, and a quantity that leads to the
factorization of n must be shared. To make this 2-party reconstruction zero-
knowledge, the authors use an additional additively homomorphic encryption,
and have to do the reconstruction over encrypted data. As a result, the protocol
is very complex (implicitly described in [10, Fig. 2]) with 5 rounds instead of 1.

Theorem 9. The 2-party Decryption for Eg∗ described in Fig. 11 is correct and
zero-knowledge.
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Eg∗.Share(sk, pk)

1. Parse (x, p′, q′) = sk

2. Pick xA
$←− {0, . . . , q − 1} and set xB ≡ x − xA (mod q)

3. Pick pA, pB , qA, qB
$←− {0, . . . , N} such that pA ≡ pB ≡ qA ≡ qB ≡ 0 (mod 4)

4. Set p0 = p′ − pA − pB and q0 = q′ − qA − qB

5. Set pk ← (pk, N0 = (N − p0 − q0)/4)
6. Return (pk, skA = (xA, x′

A), skB = (xB , x′
B))

Eg∗.2Dec(pk, C = (c1, c2, c3); skA = (xA, pA, qA); skB = (xB , pB , qB))

Input : pk, skA, C Input : pk, skB

c1,A ← c
xA
1 (mod p)

c3,A ← c
(−pA−qA)/4
3 (mod N)

C, c1,A, c3,A−−−−−−−−−−−−−→ Set M ← c2/(c
xB
1 c1,A) (mod p)

Set L ← c3,Ac
(−pB−qB)/4
3 C

N0
3 (mod N)

If L = 1 return M else return −M

Fig. 11. 2-party decryption for Eg∗

Proof. The proof is similar to the proof of Theorem 7. For the Elgamal part of the
protocol, secret key shares are simply taken uniformly at random in {0, . . . , q−1},
and the value sent by Alice is computed as c1,A = c2/(McxB

1 ), where M =
(m/p)m. The Goldwasser-Micali part of the protocol is also simulated in a similar
fashion from c3 and L(m) and the key share from a fake factorization of N just
as in [26, Subsect. 3.1] ��

Extension of the Message Space from (Z/pZ)∗ to Z/pZ. We use the
generic construction depicted in Fig. 4 with the additively homomorphic scheme
described in the previous subsection. We denote by Egp.Gen, a group generator
which combines the generators for Eg∗ and CL: on input 1λ, it first runs Eg∗.Gen,
which outputs (p, q, g). The prime p equals 3 mod 4 and is such that computing
discrete logarithms in (Z/pZ)∗ takes time 2λ. As the best algorithms for com-
puting such discrete logarithms are faster than the algorithms for computing
discrete logarithms in the class group C(−p) (the sub-exponential complexity
is respectively Lp[1/3, (64/9)1/3 + o(1)] and Lp[1/2, 1 + o(1)], see [24,43]), this
prime p is compatible with the prime generated by CL.Gen. As a result Egp.Gen
executes CL.Gen by setting this prime p and adapts the others quantities accord-
ingly. The resulting scheme is described in Fig. 12 for completeness.
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Egp.Setup(1λ)

1. Set (p, q, g, g, f, σ) ← Eg∗.Gen(1λ)
2. Return params := (p, q, g, g, f, σ)

Egp.KeyGen

1. Set (N, p′, q′) ← GM.Gen(1λ)
2. Add N to params

3. Pick x× $←− {0, . . . , q − 1}
4. Set h× ← gx×

5. Pick x+ $←− Dσ and set h+ ← gx+

6. Pick x′ $←− Dσ and set h′ ← gx′

7. Set pk ← (h×, h+, h′)
8. Set sk ← (x×, p′, q′, x+, x′)
9. Return (pk, sk)

Egp.Decrypt(sk, (c1, c2, c3))

1. Set M ← c2/c
x+

1

2. Set B ← CL.Solve(M)
3. If B �= 0 return 0

4. Set M ← c2/cx×
1 (mod p)

5. Set L ← c
(N−p′−q′+1)/4
3 (mod N)

6. If L = 1 return M else return −M

Egp.Encrypt(pk, m)

1. If m = 0 set b ← 1 and r
$←− (Z/pZ)∗

otherwise set b ← 0 and r ← 0
2. Pick r× $←− {1, . . . , q − 1}
3. Pick r×′ $←− {1, . . . , N − 1}
4. Set c1 ← gr×

(mod p)

5. Set c2 ← ((m + b)/p)(m + b)h×r×

(mod p)

6. Set c3 ← (−1)L(m+b)r×′2
(mod N)

7. Pick r+
$←− Dσ

8. Compute c1 ← gr+
, c2 ← frh+

r+

9. Pick r′ $←− Dσ

10. Compute c′1 ← gr′
, c′2 ← frh′r′

11. Return (c1, c2, c3, c1, c2, c
′
1, c

′
2)

Fig. 12. Elgamal over Z/pZ: Egp

5.3 ESP over Z/pZ: Efficiency and Comparisons

In Table 1 we give the round complexity (rc) and bit complexity (bc) of our
algorithms and we compare our full ESP protocols with that of Couteau
et al. [10]. For sake of clarity, and because it is identical to that of [10], we omit
the complexities resultant from the garbled circuit-based EZT protocols. Our
2-party decryption algorithms (both for CL and Eg∗) only require 1 round. Note
that we carefully analyzed the interactive algorithms so as to gather consecutive
flows when possible within a single round. For example our 2Mul+ and ReEnc+
protocols (see Figs. 1 and 2) require only 2 rounds since Alice can send C+

rX

(resp. C ′
−r) and her 2Dec data simultaneously. For the same reason, our generic

switches in R∗ also require 2 rounds. Therefore, our (Π+ � Π0
×).Switch+→×

needs 7 rounds: 2 for the initial EZT, 2 for ReEnc+, 2 for sending C+
m+b and the

Switch+→×, and 1 for sending the final result to Bob. In the other direction,
the initial Switch×→+ and the EZT are independent and can thus be processed
simultaneously in 2 rounds. Adding 2 rounds for the 2Mul+, the round complex-
ity for (Π+ � Π0

×).Switch×→+ adds up to 4 rounds only. In comparison, and



Encryption Switching Protocols Revisited: Switching Modulo p 279

using the same optimizations, the ESP switches from Couteau et al. requires 7
and 11 rounds respectively.

We express the communication cost in terms of the number of bits exchanged
between the parties. The bit complexity (bc) is given as a function of the
ring/field size. Observe that although, the best (conjectured) asymptotic com-
plexity to compute a discrete logarithm in the ideal class group used in
CL is in Lp[1/2, 1 + o(1)] (see [24]), one must consider a prime p that is
large enough to guarantee that the DLP over (Z/pZ)∗ is hard, i.e. such that
Lp[1/3, (64/9)1/3 + o(1)] > 2λ (see e.g. [43]). In Table 1, �, represents the bit
length of p for our protocol over Z/pZ and of n for Couteau et al.’s protocol
over Z/nZ.

For our protocols, we give the bit complexities for two variants: for the version
of CL used in this paper bc is the cost deduced from Fig. 8. The drawback of
this scheme is that ciphertexts are represented with 2 elements of C(−p3) which
gives 2 × 2 × 3

2 × � = 6� against 2� for Paillier. Therefore, we include a column
with the cost bc’ that correspond to the so-called “faster variant” of CL from [9,
Sect. 4]. This variant defines ciphertexts in C(−p) × C(−p3), represented with
� + 3� = 4� elements. Moreover, for 2-party decryption we only have to share an
exponentiation in C(−p) instead of C(−p3) so the cost drops from 6� + 3� = 9�
to 4� + � = 5�.

Table 1. Comparisons of the round complexities and bit complexities of our protocols
(v1 and v2) with that of Couteau et al. [10]. (∗) For the EZT protocol the communi-
cation cost for the garbled circuit is omitted as it is the same for v1, v2 and [10] (cf.
Subsect. 4.3 for the cost).

Round complexity Bit complexity

This work [10] v1 v2 [10]

Algorithms

Eg∗.2Dec 1 n/a 5� 5� n/a

CL.2Dec 1 n/a 9� 5� n/a

CL.EZT(∗) 2 n/a 15� 9� n/a

CL.2Mul+ 2 n/a 21� 13� n/a

CL.ReEnc+ 2 n/a 21� 13� n/a

(Π+ � Π×).Switch+→× 2 2 15� 11� 10�

(Π+ � Π×).Switch×→+ 2 6 17� 13� 36�

ESP protocols

(Π+ � Π0
×).Switch+→× 7 7 69� 45� 37�

(Π+ � Π0
×).Switch×→+ 4 11 53� 35� 61�

For the former variant, the security depends upon DDH in C(−p3) whereas
for the faster variant it is based upon the following indistinguishability argu-
ment: Let g be a generator of a subgroup of C(−p). After having chosen m, the
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adversary is asked to distinguished the following distributions: {(gx, gy, ψ(gxy)),
x, y ← Dσ/p} and {(gx, gy, ψ(gxy)fm), x, y ← Dσ/p}, where Dσ is the Gaussian
Discrete distribution defined in Subsect. 5.1 and ψ is a lifting map from C(−p)
to C(−p3), defined in [9, Lemma 3]. We denote LDDH by the corresponding
assumption. The algorithmic assumptions required for each protocol are pre-
sented in Table 2.

Table 2. Algorithmic assumptions

This work (v1) This work (v2) [10]

DDH in C(−p3) LDDH in C(−p3) DCR

DDH in Sp DDH in Sp DDH in Sn

QR QR QR

6 ESP Secure Against Malicious Adversaries

To reach the security against malicious adversaries, it is necessary to add zero-
knowledge proofs by all parties that every computation is done correctly with
the knowledge of every plaintext. In [10], the zero-knowledge proofs are classical
Schnorr-like proofs and range proofs, but they need also to design a new strong
primitive called twin ciphertext proof (TCP) to prove that a pair of ciphertexts
from two different encryption schemes is actually a pair of twin ciphertexts. This
allows to avoid generic circuit-based zero-knowledge proofs, but still requires a
costly cut-and-choose technique (which can be amortized). This proof consists
first in gathering a large pool of random genuine twin ciphertexts (proved thanks
to the knowledge of the plaintext and the randomness, and of the homomorphic
property of the encryption schemes). This part is done once for all. During an
ESP, each time a twin ciphertext proof is needed, a fresh twin ciphertext pair is
taken from the pool to perform a simple co-linearity proof.

To enhance our generic construction against malicious adversaries, we use the
same method. In fact, the additional properties needed for the homomorphic
encryption schemes are the same as in [11]: the Π+ and the Π× encryption
schemes must support zero-knowledge proof of plaintext knowledge, proof that
the ScalMul operation has been performed correctly and also support a 2-party
decryption in the malicious setting. Then we use the TCP technique as in [10]
for twin ciphertext proofs.

As a result, we modify our generic construction by adding such proofs in each
step of the switching protocols. This ensures honest behavior and thus make the
ESP secure in the malicious settings. In particular this brings soundness in the
sense of [10]: no malicious player can force the output of an ESP not to be a twin
ciphertext.
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The protocols Π+ and Π× described in the instantiation from the previous
section support the required features. For the Π× encryption scheme, we need
zero knowledge proofs and 2-party decryption secure against malicious adver-
sary for the classical Elgamal and for the Goldwasser-Micali encryption scheme.
This can be done with classical methods: zero-knowledge proof á la Schnorr,
adding verification keys to the public keys for 2-party decryption and proof of
exponentiations to the same power. Note that for Goldwasser-Micali, we need
to modify key generation to use strong primes p′ and q′ as in [26].

For the Π+ encryption scheme which is based on the Castagnos-Laguillaumie
encryption scheme, we need proofs for an Elgamal variant in a group of unknown
order, namely a class group of a quadratic order. Then 2-party decryption secure
against malicious adversary is obtained as for the Π× scheme.

Generalizations of Schnorr proofs in group of unknown orders have been
addressed extensively in [7]. In this framework, a generalized Schnorr proof can
be used if the cyclic group considered is what is called a safeguard group, which
is roughly a group whose set of small orders elements is small and known, and
for which it is hard to find roots of elements. The case of class groups has been
explicitly taken in account for example in [12,13], where it is argue in particular
that class groups of discriminant −p, C(−p), can be considered to have the
properties of safeguard groups. As a result, we can apply directly the framework
of [7] for the faster variant of CL mentioned in Subsect. 5.3 as exponentiations
are defined in C(−p) for this variant.

7 Conclusion

The encryption switching protocol is a promising cryptographic primitive for-
malized by Couteau et al. in [10]. We propose in this article a generic framework
to build such an ESP. Our approach makes the design of an ESP simple and
efficient. In particular, we propose an instantiation whose round complexity is
dramatically improved compared to Couteau et al., since we reduce by a factor
3 the number of round in the multiplicative to additive direction (while we have
the same number of rounds in the other way). Again, in terms of bit complexity,
our switching protocol in the multiplicative to additive direction gains a fac-
tor almost 1.7, while in the other direction Couteau et al.’s switch is smaller
by a factor 1.2. This is essentially because in our case, the additively homomor-
phic encryption has large ciphertexts. In particular, any additively homomorphic
encryption satisfying the conditions of our construction with smaller elements
will allow to gain in terms of bit complexity. Our instantiation, which is secure
in the semi-honest model under classical assumptions can be extended to the
malicious case. We believe that it is possible to improve our instantiation by
deviating a bit more from the generic construction. Moreover, an interesting
open problem is to design an encryption scheme which is homomorphic for the
+ in F2 without the factorization assumption. A consequence could be to have
an ESP whose security relies only on a discrete logarithm related assumption.
Designing a more efficient encrypted zero-test is also a direction which will allow
a significant improvement in the protocol.
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A 2-Party Decryption: Zero-Knowledge

Definition 7. An encryption scheme Π supporting 2-party decryption is zero-
knowledge for A if there exists an efficient simulator Sim2d = (Sim2d

Share,Sim
2d
A )

which simulates the sharing phase and the player A.
The subroutine Sim2d

Share takes as input a public key pk and outputs (pk′, sk′
B)

that simulates the public key obtained from the Share algorithm and Bob’s share
of the secret key.

The subroutine Sim2d
A takes as input a public key pk a ciphertext c, a plaintext

m, possibly skB and a flow flow. It emulates honest player A’s answer upon
receiving the flow flow when running the protocol 2Dec(pk, c; skA; skB) without
skA, and forcing the output to be m.

Then, for all λ ∈ N, for any (params ← Setup(1λ), for any pair of keys
(pk, sk) ← Π.KeyGen(1λ, params), for any shares (pk, skA, skB) ← Share(pk, sk)
or for any simulated share (pk′, sk′

B) ← Sim2d
Share(pk), and for any adversary D

playing the role of B, the advantage

Advzk
A,Π(D) =

∣
∣
∣Pr[1 ← DA(pk, skB)] − Pr[1 ← DSim2d

A ()(pk′, sk′
B)]

∣
∣
∣

is negligible. We define similarly that Π is zero-knowledge for B. It is zero-
knowledge if it is zero-knowledge for A and B.

B Proof of Theorem 5

Proof. Once again, the proof consists in proving that after a share of the secret
keys, both switching procedures are zero-knowledge for Alice and Bob. As both
switches consist in a sequence of protocols that have been independently proved
secure, the main issue in the proof consists in showing that their sequential
combination is still secure. The reduction will get a pair (C, C̄) of input and
output of the whole switches, and the main idea is to construct such intermediate
pairs for each independent subroutines using random ciphertexts.
ZK for Alice. Let us start with the proof that the ESP is zero-knowledge for
Alice. We describe a simulator Sim whose behavior is indistinguishable from
Alice’s behavior in front of an adversarial Bob.
SimShare: The simulator receives the public key (pk+, pk×) and sets SimShare as
follows: it calls out the Sim2d

Share procedures of the zero-knowledge property of
Alice for 2-party decryption of respectively Π+ and Π× with pk+ and pk× as
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input. In particular it gets sk′
B = (x+

B , x×
B) it feeds the adversary with. When

Sim is requested for a switch, it receives a pair of twin ciphertexts (C, C̄).
Game G0. This game is the real game. The simulator simulates all the secrets
in an honest way and gives his share to Bob. It plays honestly any switching
protocols on an input (C, C̄) using Alice’s secret key.
Game G1. Each time Sim is requested for a switch (Switch×→+ or Switch+→×)
it is given as input (C, C̄) and one of the two is an encryption of m under
Π0

×, which contains an Π+-encryption under pk′ of the bit b. The simulation
uses its knowledge of the secret key sk′ to decrypt the bit b. This game is
indistinguishable from the previous one.
Game G2. A modification is done for the additive to multiplicative case. The
setup and key generation are the same as in the previous game. When requested
to participate to a Switch+→×, with (C, C̄) as input, the simulator uses its knowl-
edge of b to query the EZT’s simulator for Alice with (C,Π+.Encrypt(pk+, b)) as
input. By definition of the simulator for the EZT, this game is indistinguishable
from the previous one.
Game G3. After the simulation of the EZT procedure, Alice and Bob gets C+

b .
The simulation now uses the ReEnc+’s simulator for Alice with this C+

b and
Π+.Encrypt(pk′, b) as input, once again thanks to the knowledge of b. Thanks to
the zero-knowledge property of ReEnc+, this game is indistinguishable from the
previous one.
Game G4. Now the simulation uses the simulator for the Switch+→×. As the
simulation knows C̄, it can extract its first component which is a Π×-encryption
of m+b. Therefore, it calls Switch+→×’s simulator for Alice with C+

m+b (obtained
by genuinely computing the Hom+ after the re-encryption) and C̄’s first com-
ponent. Because we proved that the Switch+→× procedure is zero-knowledge in
Theorem 3, this game is indistinguishable from the previous one.
Game G5. The final flow from the switching protocols is simply the forward
of C̄ since it is a twin ciphertext of C: this game is indistinguishable from the
previous one.
Game G6. The modification now concerns the multiplicative to additive case.
The simulation has as input (C, C̄) where C is an encryption of a message
m under Π0

× and C̄ is a twin ciphertext. Sim still knows the bit b. To sim-
ulate the switch, it uses the corresponding simulator for Alice with, as input
the first component of C which is an encryption using Π× of m + b and
Π+.Hom+(pk+, C̄,Π+.Encrypt(pk+, b)) which is an encryption m+ b under Π+.
Because of the zero-knowledge property of this switch proved in Theorem 3, this
game is indistinguishable from the previous one.
Game G7. The simulation now simulates the EZT procedure: it feeds the corre-
sponding simulator with the second component of C (which is an encryption of a
random element under Π+) and Π+.Encrypt(pk+, b̄), which is a valid input. The
EZT being zero-knowledge, this game is indistinguishable from the previous.
Game G8. The last step of the switch in the multiplicative to additive direction
is the computation of the Π+ encryption of a product. The simulation makes a
call to the simulator of the 2Mul+ protocol with as input: the output of the first
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switch, the output of the EZT and C̄. As this is a genuine input, this game is
indistinguishable from the previous.
Game G9. From now on, the simulation will not use its knowledge of b and
of the secret key sk′. To do so, in the additive to multiplicative direction, the
simulation will feed the EZT simulator with (C,C ′), where C ′ is a ciphertext of
a random element in R under pk, instead of an encryption of b (see Game G2.).
Thanks to the IND-CPA property of Π+, this game is indistinguishable from
the previous one.
Game G10. The simulation runs the simulator for the re-encryption process with
C+

b and a ciphertext of random element in R under pk′, instead of an encryption
of b, and again, because Π+ is IND-CPA, this game is indistinguishable from
the previous one.
Game G11. In the multiplicative to additive direction, the simulator of the first
ESP is run with the first component of C and a ciphertext of a random element
in R∗ under pk×. Since Π× is IND-CPA, this game is indistinguishable from the
previous one.
Game G12. The simulation now runs the EZT simulator with the second com-
ponent of C and a ciphertext of a random element of R instead of an encryption
of b̄. Because Π+ is IND-CPA, this game is indistinguishable from the previous.
Game G13. The simulation now uses the procedure SimShare to simulates Bob’s
keys. By the zero-knowledge property of the 2-party decryption, this game is
indistinguishable from the previous one and the adversary is in an environment
completely simulated by Sim.
ZK for Bob. The proof that the protocols are zero-knowledge for Bob follows
the same lines. It is a bit simpler since Bob has less contribution in the additive
to multiplicative direction and the switch the other way around is essentially
symmetric. ��
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Abstract. Bitcoin’s innovative and distributedly maintained blockchain
data structure hinges on the adequate degree of difficulty of so-called
“proofs of work,” which miners have to produce in order for transac-
tions to be inserted. Importantly, these proofs of work have to be hard
enough so that miners have an opportunity to unify their views in the
presence of an adversary who interferes but has bounded computational
power, but easy enough to be solvable regularly and enable the miners
to make progress. As such, as the miners’ population evolves over time,
so should the difficulty of these proofs. Bitcoin provides this adjustment
mechanism, with empirical evidence of a constant block generation rate
against such population changes.

In this paper we provide the first formal analysis of Bitcoin’s target
(re)calculation function in the cryptographic setting, i.e., against all pos-
sible adversaries aiming to subvert the protocol’s properties. We extend
the q-bounded synchronous model of the Bitcoin backbone protocol [Euro-
crypt 2015], which posed the basic properties of Bitcoin’s underlying
blockchain data structure and shows how a robust public transaction
ledger can be built on top of them, to environments that may introduce
or suspend parties in each round.

We provide a set of necessary conditions with respect to the way the
population evolves under which the “Bitcoin backbone with chains of
variable difficulty” provides a robust transaction ledger in the presence
of an actively malicious adversary controlling a fraction of the miners
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strictly below 50% at each instant of the execution. Our work introduces
new analysis techniques and tools to the area of blockchain systems that
may prove useful in analyzing other blockchain protocols.

1 Introduction

The Bitcoin backbone [11] extracts and analyzes the basic properties of Bitcoin’s
underlying blockchain data structure, such as “common prefix” and “chain qual-
ity,” which parties (“miners”) maintain and try to extend by generating “proofs
of work” (POW, aka “cryptographic puzzles” [1,8,14,23])1. It is then formally
shown in [11] how fundamental applications including consensus [17,22] and a
robust public transaction ledger realizing a decentralized cryptocurrency (e.g.,
Bitcoin [20]) can be built on top of them, assuming that the hashing power of
an adversary controlling a fraction of the parties is strictly less than 1/2.

The results in [11], however, hold for a static setting, where the protocol is
executed by a fixed number of parties (albeit not necessarily known to the par-
ticipants), and therefore with POWs (and hence blockchains) of fixed difficulty.
This is in contrast to the actual deployment of the Bitcoin protocol where a
“target (re)calculation” mechanism adjusts the hardness level of POWs as the
number of parties varies during the protocol execution. In more detail, in [11] the
target T that the hash function output must not exceed, is set and hardcoded
at the beginning of the protocol, and in such a way that a specific relation to
the number of parties running the protocol is satisfied, namely, that a ratio f
roughly equal to qnT/2κ is small, where q is the number of queries to the hash
function that each party is allowed per round, n is the number of parties, and
κ is the length of the hash function output. Security was only proven when the
number of parties is n and the choice of target T is never recalculated, thus
leaving as open question the full analysis of the protocol in a setting where, as
in the real world, parties change dynamically over time.

In this paper, we abstract for the first time the target recalculation algorithm
from the Bitcoin system, and present a generalization and analysis of the Bitcoin
backbone protocol with chains of variable difficulty, as produced by an evolving
population of parties, thus answering the aforementioned open question.

In this setting, there is a parameter m which determines the length of an
“epoch” in number of blocks.2 When a party prepares to compute the j-th
block of a chain with j mod m = 1, it uses a target calculation algorithm that
determines the proper target value to use, based on the party’s local view about
the total number of parties that are present in the system, as reflected by the rate
of blocks that have been created so far and are part of the party’s chain. (Each
block contains a timestamp of when it was created; in our synchronous setting,
timestamps will correspond to the round numbers when blocks are created—see
1 In Bitcoin, solving a proof of work essentially amounts to brute-forcing a hash

inequality based on SHA-256.
2 In Bitcoin, m is set to 2016 and roughly corresponds to 2 weeks in real time—

assuming the number of parties does not change much.
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Sect. 2.) To accomodate the evolving population of parties, we extend the model
of [11] to environments that are free to introduce and suspend parties in each
round. In other respects, we follow the model of [11], where all parties have
the same “hashing power,” with each one allowed to pose q queries to the hash
function that is modeled as a “random oracle” [3]. We refer to our setting as the
dynamic q-bounded synchronous setting.

In order to give an idea of the issues involved, we note that without a tar-
get calculation mechanism, in the dynamic setting the backbone protocol is not
secure even if all parties are honest and follow the protocol faithfully. Indeed, it
is easy to see that a combination of an environment that increases the number
of parties and adversarial network conditions can lead to substantial divergence
(a.k.a. “forks”) in the chains of the honest parties, leading to the violation of the
agreement-type properties that are needed for the applications of the protocol,
such as maintaining a robust transaction ledger. The attack is simple: the envi-
ronment increases the number of parties constantly so that the block production
rate per round increases (which is roughly the parameter f mentioned above);
then, adversarial network conditions may divide the parties into two sets, A and
B, and schedule message delivery so that parties in set A receive blocks produced
by parties in A first, and similarly for set B. According to the Bitcoin protocol,
parties adopt the block they see first, and thus the two sets will maintain two
separate blockchains.

While this specific attack could in principle be thwarted by modifying the
Bitcoin backbone (e.g., by randomizing which block a party adopts when they
receive in the same round two blocks of the same index in the chain), it certainly
would not cope with all possible attacks in the presence of a full-blown adversary
and target recalculation mechanism. Indeed, such an attack was shown in [2],
where by mining “privately” with timestamps in rapid succession, corrupt miners
are able to induce artificially high targets in their private chain; even though such
chain may grow slower than the main chain, it will still make progress and, via
an anti-concentration argument, a sudden adversarial advance that can break
agreement amongst honest parties cannot be ruled out.

Given the above, our main goal is to show that the backbone protocol with a
Bitcoin-like target recalculation function satisfies the common prefix and chain
quality properties, as an intermediate step towards proving that the protocol
implements a robust transaction ledger. Expectedly, the class of protocols we will
analyze will not preserve its properties for arbitrary ways in which the number
of parties may change over time. In order to bound the error in the calibration
of the block generation rate that the target recalculation function attempts, we
will need some bounds on the way the number of parties may vary. For γ ∈ R

+

and s ∈ N, we will call a sequence (nr)r∈N of parties (γ, s)-respecting if it holds
that in a sequence of rounds S with |S| ≤ s, maxr∈S nr ≤ γ ·minr∈S nr, and will
determine for what values of these parameters the backbone protocol is secure.

After formally describing blockchains of variable difficulty and the Bitcoin
backbone protocol in this setting, at a high level our analysis goes as follows.
We first introduce the notion of goodness regarding the approximation that is
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performed on f in an epoch. In more detail, we call a round r (η, θ)-good, for
some parameters η, θ ∈ R

+, if the value fr computed for the actual number
of parties and target used in round r by some honest party, falls in the range
[ηf, θf ], where f is the initial block production rate (note that the first round
is always assumed good). Together with “goodness” we introduce the notion of
typical executions, in which, informally, for any set S of consecutive rounds the
successes of the adversary and the honest parties do not deviate too much from
their expectations as well as no “bad” event concerning the hash function occurs
(such as a collision). Using a martingale bound we demonstrate that almost all
polynomially bounded (in κ) executions are typical.

Next, we proceed to show that in a typical execution any chain that an honest
party adopts (1) contains timestamps that are approximately accurate (i.e., no
adversarial block has a timestamp that differs too much from its real creation
time), and (2) it has a target such that the probability of block production
remains near the fixed constant f , i.e., it is “good.” Finally, these properties
allow us to demonstrate that a typical execution enjoys the common prefix and
chain quality properties, which is a stepping stone towards the ultimate goal, that
of establishing that the backbone protocol with variable difficulty implements a
robust transaction ledger. Specifically, we show the following:

Main Result. (Informal—see Theorems 4 and 5). The Bitcoin backbone pro-
tocol with chains of variable difficulty, suitably parameterized, satisfies with
overwhelming probability in m and κ the properties of (1) persistence—if a
transaction tx is confirmed by an honest party, no honest party will ever dis-
agree about the position of tx in the ledger, and (2) liveness—if a transaction
tx is broadcast, it will eventually become confirmed by all honest parties.

Remark. Regarding the actual parameterization of the Bitcoin system (that uses
epochs of m = 2016 blocks), even though it is consistent with all the constraints
of our theorems (cf. Remark 3 in Sect. 6.1), it cannot be justified by our martin-
gale analysis. In fact, our probabilistic analysis would require much longer epochs
to provide a sufficiently small probability of attack. Tightening the analysis or
discovering attacks for parameterizations beyond our security theorems is an
interesting open question.

Finally, we note that various extensions to our model are relevant to the
Bitcoin system and constitute interesting directions for further research. Impor-
tantly, a security analysis in the “rational” setting (see, e.g., [9,15,24]), and in
the “partially synchronous,” or “bounded-delay” network model [7,21]3.

2 Model and Definitions

We describe our protocols in a model that extends the synchronous communica-
tion network model presented in [10,11] for the analysis of the Bitcoin backbone
3 In the latest version of [10], we show that in the case of fixed difficulty, the analysis of

the Bitcoin backbone in the synchronous model extends with relative ease to partial
synchrony. We leave the extension of the variable-difficulty case for future work.
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protocol in the static setting with a fixed number of parties (which in turn is
based on Canetti’s formulation of “real world” notion of protocol execution [4–6]
for multi-party protocols) to the dynamic setting with a varying number of par-
ties. In this section we provide a high-level overview of the model, highlighting
the differences that are intrinsic to our dynamic setting.

Round Structure and Protocol Execution. As in [10], the protocol exe-
cution proceeds in rounds with inputs provided by an environment program
denoted by Z to parties that execute the protocol Π, and our adversarial model
in the network is “adaptive,” meaning that the adversary A is allowed to take
control of parties on the fly, and “rushing,” meaning that in any given round the
adversary gets to see all honest players’ messages before deciding his strategy.
The parties’ access to the hash function and their communication mechanism are
captured by a joint random oracle/diffusion functionality which reflects Bitcoin’s
peer structure. The diffusion functionality, [10], allows the order of messages to
be controlled by A, i.e., there is no atomicity guarantees in message broadcast
[13], and, furthermore, the adversary is allowed to spoof the source information
on every message (i.e., communication is not authenticated). Still, the adversary
cannot change the contents of the messages nor prevent them from being deliv-
ered. We will use Diffuse as the message transmission command that captures
this “send-to-all” functionality.

The parties that may become active in a protocol execution are encoded as
part of a control program C and come from a universe U of parties.

The protocol execution is driven by an environment program Z that interacts
with other instances of programs that it spawns at the discretion of the control
program C. The pair (Z, C) forms of a system of interactive Turing machines
(ITM’s) in the sense of [5]. The execution is with respect to a program Π, an
adversary A (which is another ITM) and the universe of parties U . Assuming the
control program C allows it, the environment Z can activate a party by writing
to its input tape. Note that the environment Z also receives the parties’ outputs
when they are produced in a standard subroutine-like interaction. Additionally,
the control program maintains a flag for each instance of an ITM, (abbreviated
as ITI in the terminology of [5]), that is called the ready flag and is initially set
to false for all parties.

The environment Z, initially is restricted by C to spawn the adversary A.
Each time the adversary is activated, it may send one or more messages of the
form (Corrupt, Pi) to C and C will mark the corresponding party as corrupted.

Functionalities Available to the Protocol. The ITI’s of protocol Π will
have access to a joint ideal functionality capturing the random oracle and the
diffusion mechanism which is defined in a similar way as [10] and is explained
below.

– The random oracle functionality. Given a query with a value x marked for
“calculation” for the function H(·) from an honest party Pi and assuming
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x has not been queried before, the functionality returns a value y which is
selected at random from {0, 1}κ; furthermore, it stores the pair (x, y) in the
table of H(·), in case the same value x is queried in the future. Each honest
party Pi is allowed to ask q queries in each round as determined by the
diffusion functionality (see below). On the other hand, each honest party is
given unlimited queries for “verification” for the function H(·). The adversary
A, on the other hand, is given a bounded number queries in each round as
determined by diffusion functionality with a bound that is initialized to 0
and determined as follows: whenever a corrupted party is activated, the party
can ask the bound to be increased by q; each time a query is asked by the
adversary the bound is decreased by 1. No verification queries are provided to
A. Note that the value q is a polynomial function of κ, the security parameter.
The functionality can maintain tables for functions other than H(·) but, by
convention, the functionality will impose query quotas to function H(·) only.

– The diffusion functionality. This functionality keeps track of rounds in the
protocol execution; for this purpose it initially sets a variable round to be
1. It also maintains a Receive() string defined for each party Pi in U . A
party that is activated is allowed to query the functionality and fetch the
contents of its personal Receive() string. Moreover, when the functionality
receives a message (Diffuse,m) from party Pi it records the message m. A
party Pi can signal when it is complete for the round by sending a special
message (RoundComplete). With respect to the adversary A, the functionality
allows it to receive the contents of all contents sent in Diffuse messages for
the round and specify the contents of the Receive() string for each party
Pi. The adversary has to specify when it is complete for the current round.
When all parties are complete for the current round, the functionality inspects
the contents of all Receive() strings and includes any messages m that were
diffused by the parties in the current round but not contributed by the adver-
sary to the Receive() tapes (in this way guaranteeing message delivery). It
also flushes any old messages that were diffused in previous rounds and not
diffused again. The variable round is then incremented.

The Dynamic q-Bounded Synchronous Setting. Consider n = {nr}r∈N

and t = {tr}r∈N two series of natural numbers. As mentioned, the first instance
that is spawned by Z is the adversary A. Subsequently the environment may
spawn (or activate if they are already spawned) parties Pi ∈ U . The control
program maintains a counter in each sequence of activations and matches it
with the current round that is maintained by the diffusion functionality. Each
time an honest party diffuses a message containing the label “ready” the control
program C increases the ready counter for the round. In round r, the control
program C will enable the adversary A to complete the round, only provided
that (i) exactly nr parties have transmitted ready message, (ii) the number of
(“corrupt”) parties controlled by A should match tr.

Parties, when activated, are able to read their input tape Input() and com-
munication tape Receive() from the diffusion functionality. Observe that par-
ties are unaware of the set of activated parties. The Bitcoin backbone protocol
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requires from parties (miners) to calculate a POW. This is modeled in [11] as
parties having access to the oracle H(·). The fact that (active) parties have
limited ability to produce such POWs, is captured as in [11] by the random ora-
cle functionality and the fact that it paces parties to query a limited number of
queries per round. The bound, q, is a function of the security parameter κ; in this
sense the parties may be called q-bounded4. We refer to the above restrictions
on the environment, the parties and the adversary as the dynamic q-bounded
synchronous setting.

The term {viewP,t,n
Π,A,Z(z)}z∈{0,1}∗ denotes the random variable ensemble

describing the view of party P after the completion of an execution running
protocol Π with environment Z and adversary A, on input z ∈ {0, 1}∗. We will
only consider a “standalone” execution without any auxiliary information and
we will thus restrict ourselves to executions with z = 1κ. For this reason we will
simply refer to the ensemble by viewP,t,n

Π,A,Z . The concatenation of the view of all
parties ever activated in the execution is denoted by viewt,n

Π,A,Z .

Properties of Protocols. In our theorems we will be concerned with properties
of protocols Π running in the above setting. Such properties will be defined as
predicates over the random variable viewt,n

Π,A,Z by quantifying over all possible
adversaries A and environments Z. Note that all our protocols will only satisfy
properties with a small probability of error in κ as well as in a parameter k that
is selected from {1, . . . , κ} (with foresight we note that in practice would be able
to choose k to be much smaller than κ, e.g., k = 6).

The protocol class that we will analyze will not be able to preserve its prop-
erties for arbitrary sequences of parties. To restrict the way the sequence n is
fluctuating we will introduce the following class of sequences.

Definition 1. For γ ∈ R
+, we call a sequence (nr)r∈N (γ, s)-respecting if for

any set S of at most s consecutive rounds, maxr∈S nr ≤ γ · minr∈S nr.

Observe that the above definition is fairly general and also can capture expo-
nential growth; e.g., by setting γ = 2 and s = 10, it follows that every 10 rounds
the number of ready parties may double. Note that this will not lead to an expo-
nential running time overall since the total run time is bounded by a polynomial
in κ, (due to the fact that (Z, C) is a system of ITM’s, Z is locally polynomial
bounded, C is a polynomial-time program, and thus [5, Proposition 3] applies).

More formally, a protocol Π would satisfy a property Q for a certain class of
sequences n, t, provided that for all PPT A and locally polynomial bounded Z,
it holds that Q(viewt,n

Π,A,Z) is true with overwhelming probability of the coins
of A,Z and the random oracle functionality.

In this paper, we will be interested in (γ, s)-respecting sequences n, sequences
t suitably restricted by n, and protocols Π suitably parameterized given n, t.
4 In [11] this is referred to as the “flat-model” in terms of computational power,

where all parties are assumed equal. In practice, different parties may have different
“hashing power”; note that this does not sacrifice generality since one can imagine
that real parties are simply clusters of some arbitrary number of flat-model parties.
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3 Blockchains of Variable Difficulty

We start by introducing blockchain notation; we use similar notation to [10],
and expand the notion of blockchain to explicitly include timestamps (in the
form of a round indicator). Let G(·) and H(·) be cryptographic hash functions
with output in {0, 1}κ. A block with target T ∈ N is a quadruple of the form
B = 〈r, st, x, ctr〉 where st ∈ {0, 1}κ, x ∈ {0, 1}∗, and r, ctr ∈ N are such that
they satisfy the predicate validblockT

q (B) defined as

(H(ctr,G(r, st, x)) < T ) ∧ (ctr ≤ q).

The parameter q ∈ N is a bound that in the Bitcoin implementation deter-
mines the size of the register ctr; as in [10], in our treatment we allow q to be
arbitrary, and use it to denote the maximum allowed number of hash queries
in a round (cf. Sect. 2). We do this for convenience and our analysis applies
in a straightforward manner to the case that ctr is restricted to the range
0 ≤ ctr < 232 and q is independent of ctr.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block
is the head of the chain, denoted head(C). Note that the empty string ε is also a
chain; by convention we set head(ε) = ε. A chain C with head(C) = 〈r, st, x, ctr〉
can be extended to a longer chain by appending a valid block B = 〈r′, st′, x′, ctr′〉
that satisfies st′ = H(ctr,G(r, st, x)) and r′ > r, where r′ is called the
timestamp of block B. In case C = ε, by convention any valid block of the
form 〈r′, st′, x′, ctr′〉 may extend it. In either case we have an extended chain
Cnew = CB that satisfies head(Cnew) = B.

The length of a chain len(C) is its number of blocks. Consider a chain C of
length � and any nonnegative integer k. We denote by C�k the chain resulting
from “pruning” the k rightmost blocks. Note that for k ≥ len(C), C�k = ε. If C1

is a prefix of C2 we write C1 � C2.
Given a chain C of length len(C) = �, we let xC denote the vector of � values

that is stored in C and starts with the value of the first block. Similarly, rC is
the vector that contains the timestamps of the blockchain C.

For a chain of variable difficulty, the target T is recalculated for each block
based on the round timestamps of the previous blocks. Specifically, there is a
function D : Z∗ → R which receives an arbitrary vector of round timestamps
and produces the next target. The value D(ε) is the initial target of the system.
The difficulty of each block is measured in terms of how many times the block
is harder to obtain than a block of target T0. In more detail, the difficulty of a
block with target T is equal to T0/T ; without loss of generality we will adopt
the simpler expression 1/T (as T0 will be a constant across all executions). We
will use diff(C) to denote the difficulty of a chain. This is equal to the sum of
the difficulties of all the blocks that comprise the chain.

The Target Calculation Function. Intuitively, the target calculation func-
tion D(·) aims at maintaining the block production rate constant. It is parame-
terized by m ∈ N and f ∈ (0, 1); Its goal is that m blocks will be produced every
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m/f rounds. We will see in Sect. 6 that the probability f(T, n) with which n
parties produce a new block with target T is approximated by

f(T, n) ≈ qTn

2κ
.

(Note that T/2κ is the probability that a single player produces a block in a
single query.)

To achieve the above goal Bitcoin tries to keep qTn/2κ close to f . To that end,
Bitcoin waits for m blocks to be produced and based on their difficulty and how
fast these blocks were computed it computes the next target. More specifically,
say the last m blocks of a chain C are for target T and were produced in Δ
rounds. Consider the case where a number of players

n(T,Δ) =
2κm

qTΔ

attempts to produce m blocks of target T ; note that it will take them approxi-
mately Δ rounds in expectation. Intuitively, the number of players at the point
when m blocks were produced is estimated by n(T,Δ); then the next target T ′

is set so that n(T,Δ) players would need m/f rounds in expectation to produce
m blocks of target T ′. Therefore, it makes sense to set

T ′ =
Δ

m/f
· T,

because if the number of players is indeed n(T,Δ) and remains unchanged, it
will take them m/f rounds in expectation to produce m blocks. If the initial
estimate of the number parties is n0, we will assume T0 is appropriately set so
that f ≈ qT0n0/2κ and then

T ′ =
n0

n(T,Δ)
· T0.

Remark 1. Recall that in the flat q-bounded setting all parties have the same
hashing power (q-queries per round). It follows that n0 represents the estimated
initial hashing power while n(T,Δ) the estimated hashing power during the last
m blocks of the chain C. As a result the new target is equal to the initial target
T0 multiplied by the factor n0/n(T,Δ), reflecting the change of hashing power
in the last m blocks.

Based on the above we give the formal definition of the target (re)calculation
function, which is as follows.

Definition 2. For fixed constants κ, τ,m, n0, T0, the target calculation function
D : Z∗ → R is defined as

D(ε) = T0 and D(r1, . . . , rv) =

⎧
⎪⎨

⎪⎩

1
τ · T if n0

n(T,Δ) · T0 < 1
τ · T ;

τ · T if n0
n(T,Δ) · T0 > τ · T ;

n0
n(T,Δ) · T0 otherwise,
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where n(T,Δ) = 2κm/qTΔ, with Δ = rm′ − rm′−m, T = D(r1, . . . , rm′−1), and
m′ = m · �v/m�.

In the definition, (r1, . . . , rv) corresponds to a chain of v blocks with ri the
timestamp of the ith block; m′,Δ, and T correspond to the last block, duration,
and target of the last completed epoch, respectively.

Remark 2. A remark is in order about the case n0
n(T,Δ) ·T0 /∈ [ 1τ T, τT ], since this

aspect of the definition is not justified by the discussion preceeding Definition 2.
At first there may seem to be no reason to introduce such a “dampening filter”
in Bitcoin’s target recalculation function and one should let the parties to try
collectively to approximate the proper target. Interestingly, in the absence of
such dampening, an efficient attack is known [2] (against the common-prefix
property). As we will see, this dampening is sufficient for us to prove security
against all attackers, including those considered in [2] (with foresight, we can
say that the attack still holds but it will take exponential time to mount).

4 The Bitcoin Backbone Protocol with Variable Difficulty

In this section we give a high-level description of the Bitcoin backbone proto-
col with chains of variable difficulty; a more detailed description, including the
pseudocode of the algorithms, is given in the full version. The presentation is
based on the description in [11]. We then formulate two desired properties of the
blockchain—common prefix and chain quality—for the dynamic setting.

4.1 The Protocol

As in [11], in our description of the backbone protocol we intentionally avoid
specifying the type of values/content that parties try to insert in the chain, the
type of chain validation they perform (beyond checking for its structural prop-
erties with respect to the hash functions G(·),H(·)), and the way they interpret
the chain. These checks and operations are handled by the external functions
V (·), I(·) and R(·) (the content validation function, the input contribution func-
tion and the chain reading function, resp.) which are specified by the application
that runs “on top” of the backbone protocol. The Bitcoin backbone protocol in
the dynamic setting comprises three algorithms.

Chain Validation. The validate algorithm performs a validation of the struc-
tural properties of a given chain C. It is given as input the value q, as well as
hash functions H(·), G(·). It is parameterized by the content validation predicate
predicate V (·) as well as by D(·), the target calculation function (Sect. 3). For
each block of the chain, the algorithm checks that the proof of work is properly
solved (with a target that is suitable as determined by the target calculation
function), and that the counter ctr does not exceed q. Furthermore it collects
the inputs from all blocks, xC , and tests them via the predicate V (xC). Chains
that fail these validation procedure are rejected.
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Chain Comparison. The objective of the second algorithm, called maxvalid,
is to find the “best possible” chain when given a set of chains. The algorithm
is straightforward and is parameterized by a max(·) function that applies some
ordering to the space of blockchains. The most important aspect is the chains’
difficulty in which case max(C1, C2) will return the most difficult of the two. In
case diff(C1) = diff(C2), some other characteristic can be used to break the tie.
In our case, max(·, ·) will always return the first operand to reflect the fact that
parties adopt the first chain they obtain from the network.

Proof of Work. The third algorithm, called pow, is the proof of work-finding
procedure. It takes as input a chain and attempts to extend it via solving a
proof of work. This algorithm is parameterized by two hash functions H(·), G(·)
as well as the parameter q. Moreover, the algorithm calls the target calculation
function D(·) in order to determine the value T that will be used for the proof of
work. The procedure, given a chain C and a value x to be inserted in the chain,
hashes these values to obtain h and initializes a counter ctr. Subsequently, it
increments ctr and checks to see whether H(ctr, h) < T ; in case a suitable ctr is
found then the algorithm succeeds in solving the POW and extends chain C by
one block.

The Bitcoin Backbone Protocol. The core of the backbone protocol with
variable difficulty is similar to that in [11], with several important distinctions.
First is the procedure to follow when the parties become active. Parties check the
ready flag they possess, which is false if and only if they have been inactive in
the previous round. In case the ready flag is false, they diffuse a special message
‘Join’ to request the most recent version of the blockchain(s). Similarly, parties
that receive the special request message in their Receive() tape broadcast their
chains. As before parties, run “indefinitely” (our security analysis will apply
when the total running time is polynomial in κ). The input contribution function
I(·) and the chain reading function R(·) are applied to the values stored in the
chain. Parties check their communication tape Receive() to see whether any
necessary update of their local chain is due; then they attempt to extend it via
the POW algorithm pow. The function I(·) determines the input to be added
in the chain given the party’s state st, the current chain C, the contents of
the party’s input tape Input() and communication tape Receive(). The input
tape contains two types of symbols, Read and (Insert, value); other inputs are
ignored. In case the local chain C is extended the new chain is diffused to the
other parties. Finally, in case a Read symbol is present in the communication
tape, the protocol applies function R(·) to its current chain and writes the result
onto the output tape Output().

4.2 Properties of the Backbone Protocol with Variable Difficulty

Next, we define the two properties of the backbone protocol that the protocol
will establish. They are close variants of the properties in [11], suitably modified
for the dynamic q-bounded synchronous setting.
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The common prefix property essentially remains the same. It is parameterized
by a value k ∈ N, considers an arbitrary environment and adversary, and it holds
as long as any two parties’ chains are different only in their most recent k blocks.
It is actually helpful to define the property between an honest party’s chain and
another chain that may be adversarial. The definition is as follows.

Definition 3 (Common-Prefix Property). The common-prefix property Qcp

with parameter k ∈ N states that, at any round of the execution, if a chain C
belongs to an honest party, then for any valid chain C′ in the same round such
that either diff(C′) > diff(C), or diff(C′) = diff(C) and head(C′) was computed
no later than head(C), it holds that C�k � C′ and C′�k � C.

The second property, called chain quality, expresses the number of honest-
party contributions that are contained in a sufficiently long and continuous part
of a party’s chain. Because we consider chains of variable difficulty it is more
convenient to think of parties’ contributions in terms of the total difficulty they
add to the chain as opposed to the number of blocks they add (as done in
[11]). The property states that adversarial parties are bounded in the amount of
difficulty they can contribute to any sufficiently long segment of the chain.

Definition 4 (Chain-Quality Property). The chain quality property Qcq

with parameters μ ∈ R and � ∈ N states that for any party P with chain C in
viewt,n

Π,A,Z , and any segment of that chain of difficulty d such that the timestamp
of the first block of the segment is at least � smaller than the timestamp of the
last block, the blocks the adversary has contributed in the segment have a total
difficulty that is at most μ · d.

4.3 Application: Robust Transaction Ledger

We now come to the (main) application the Bitcoin backbone protocol was
designed to solve. A robust transaction ledger is a protocol maintaining a ledger
of transactions organized in the form of a chain C, satisfying the following two
properties.

– Persistence: Parameterized by k ∈ N (the “depth” parameter), if an honest
party P , maintaining a chain C, reports that a transaction tx is in C�k, then
it holds for every other honest party P ′ maintaining a chain C′ that if C′�k

contains tx, then it is in exactly the same position.
– Liveness: Parameterized by u, k ∈ N (the “wait time” and “depth” parame-

ters, resp.), if a transaction tx is provided to all honest parties for u consec-
utive rounds, then it holds that for any player P , maintaining a chain C, tx
will be in C�k.

We note that, as in [11], Liveness is applicable to either “neutral” transactions
(i.e., those that they are never in “conflict” with other transactions in the ledger),
or transactions that are produced by an oracle Txgen that produces honestly
generated transactions.
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5 Overview of the Analysis

Our main goal is to show that the backbone protocol satisfies the properties com-
mon prefix and chain quality (Sect. 4.2) in a (γ, s)-respecting environment as an
intermediate step towards proving, eventually, that the protocol implements a
robust transaction ledger. In this section we present a high-level overview of our
approach; the full analysis is then presented in Sect. 6. To prove the aforemen-
tioned properties we first characterize the set of typical executions. Informally,
an execution is typical if for any set S of consecutive rounds the successes of
the adversary and the honest parties do not deviate too much from their expec-
tations and no bad event occurs with respect to the hash function (which we
model as a “random oracle”). Using the martingale bound of Theorem 6 we
demonstrate that almost all polynomially bounded executions are typical. We
then proceed to show that in a typical execution any chain that an honest party
adopts (1) contains timestamps that are approximately accurate (i.e., no adver-
sarial block has a timestamp that differs too much by its real creation time) and
(2) has a target such that the probability of block production remains near a
fixed constant f . Finally, these properties of a typical execution will bring us
to our ultimate goal: to demonstrate that a typical execution enjoys the com-
mon prefix and the chain quality properties, and therefore one can build on the
blockchain a robust transaction ledger (Sect. 4.3). Here we highlight the main
steps and the novel concepts that we introduce.

“Good” Executions. In order to be able to talk quantitatively about typ-
ical executions, we first introduce the notion of (η, θ)-good executions, which
expresses how well the parties approximate f . Suppose at round r exactly n
parties query the oracle with target T . The probability at least one of them will
succeed is

f(T, n) = 1 −
(
1 − T

2κ

)qn

.

For the initial target T0 and the initial estimate of the number of parties n0,
we denote f0 = f(T0, n0). Looking ahead, the objective of the target recalcula-
tion mechanism is to maintain a target T for each party such that f(T, nr) ≈ f0
for all rounds r. (For succintness, we will drop the subscript and simply refer to
it as f .)

Now, at a round r of an execution E the honest parties might be querying
the random oracle for various targets. We denote by Tmin

r (E) and Tmax
r (E) the

minimum and maximum over those targets. We say r is a target-recalculation
point of a valid chain C, if there is a block with timestamp r and m exactly
divides the number of blocks up to (and including) this block. Consider constants
η ∈ (0, 1] and θ ∈ [1,∞) and an execution E:

Definition 5 (Abridged). A round r is (η, θ)-good in E if ηf ≤ f(Tmin
r (E), nr)

and f(Tmax
r (E), nr) ≤ θf . An execution E is (η, θ)-good if every round of E was

(η, θ)-good.
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We are going to study the progress of the honest parties only when their
targets lie in a reasonable range. It will turn out that, with high probability, the
honest parties always work with reasonable targets. The following bound will be
useful because it gives an estimate of the progress the honest parties have made
in an (η, θ)-good execution. We will be interested in the progress coming from
uniquely successful rounds, where exactly one honest party computed a POW.
Let Qr be the random variable equal to the (maximum) difficulty of such rounds
(recall a block with target T has difficulty 1/T ); 0 otherwise. We refer to Qr also
as “unique” difficulty. We are able to show the following.

Proposition 2 (Informal). If r is an (η, θ)-good round in an execution E, then
E[Qr(Er−1)] ≥ (1−θf)pnr, where Qr(Er−1) is the unique difficulty conditioned
on the execution so far, and p = q

2κ .
“Per round” arguments regarding relevant random variables are not suffi-

cient, as we need executions with “good” behavior over a sequence of rounds—
i.e., variables should be concentrated around their means. It turns out that this
is not easy to get, as the probabilities of the experiments performed per round
depend on the history (due to target recalculation). To deal with this lack of
concentration/variance problem, we introduce the following measure.

Typical Executions. Intuitively, the idea that this notion captures is as fol-
lows. Note that at each round of a given execution E the parties perform
Bernoulli trials with success probabilities possibly affected by the adversary.
Given the execution, these trials are determined and we may calculate the
expected progress the parties make given the corresponding probabilities. We
then compare this value to the actual progress and if the difference is “reason-
able” we declare E typical. Note, however, that considering this difference by
itself will not always suffice, because the variance of the process might be too
high. Our definition, in view of Theorem 6 (AppendixA), says that either the
variance is high with respect to the set of rounds we are considering, or the par-
ties have made progress during these rounds as expected. A bit more formally,
for a given random oracle query in an execution E, the history of the execution
just before the query takes place, determines the parameters of the distribution
that the outcome of this query follows as a POW (a Bernoulli trial). For the
queries performed in a set of rounds S, let V (S) denote the sum of the variances
of these trials.

Definition 8 (Abridged). An execution E is (ε, η, θ)-typical if, for any given set
S of consecutive rounds such that V (S) is appropriately bounded from above:

– The average unique difficulty is lower-bounded by 1
|S| (

∑
r∈S E[Qr(Er−1)] −

ε(1 − θf)p
∑

r∈S nr);
– the average maximum difficulty is upper-bounded by 1

|S| (1 + ε)p
∑

r∈S nr;
– the adversary’s average difficulty of blocks with “easy” targets is upper-

bounded by 1
|S| (1 + ε)p

∑
r∈S tr, while the number of blocks with “hard”

targets is bounded below m by a suitable constant; and
– no “bad events” with respect to the hash function occur (e.g., collisions).



The Bitcoin Backbone Protocol with Chains of Variable Difficulty 305

The following is one of the main steps in our analysis.

Proposition 4 (Informal). Almost all polynomially bounded executions (in κ)
are typical. The probability of an execution not being typical is bounded by
exp(−Ω(min{m,κ}) + lnL) where L is the total run-time.

Recall (Remark 2) that the dynamic setting (specifically, the use of target
recalculation functions) offers more opportunities for adversarial attacks [2]. The
following important intermediate lemma shows that if a typical execution is good
up to a certain point, chains that are privately mined for long periods of time
by the adversary will not be adopted by honest parties.

Lemma 2 (Informal). Let E be a typical execution in a (γ, s)-respecting envi-
ronment. If Er is (η, θ)-good, then, no honest party adopts at round r+1 a chain
that has not been extended by an honest party for at least O( m

τf ) consecutive
rounds.

An easy corollary of the above is that in typical executions, the honest parties’
chains cannot contain blocks with timestamps that differ too much from the
blocks’ actual creation times.

Corollary 1 (Informal). Let E be a typical execution in a (γ, s)-respecting
environment. If Er−1 is (η, θ)-good, then the timestamp of any block in Er is
at most O( m

τf ) away from its actual creation time (cf. the notion of accuracy in
Definition 6).

Additional important results we obtain regarding (η, θ)-good executions are
that their epochs last about as much as they should (Lemma 3), as well as
a “self-correcting” property, which essentially says that if every chain adopted
by an honest party is (ηγ, θ

γ )-good in Er−1 (cf. the notion of a good chain in
Definition 5), then Er is (η, θ)-good (Corollary 2). The above (together with
several smaller intermediate steps that we omit from this high-level overview)
allow us to conclude:

Theorem 1 (Informal). A typical execution in a (γ, s)-respecting environment
is O( m

τf )-accurate and (η, θ)-good.

Common Prefix and Chain Quality. Typical executions give us the two
desired low-level properties of the blockchain:

Theorems 2 and 3 (Informal). Let E be a typical execution in a (γ, s)-
respecting environment. Under the requirements of Table 1 (Sect. 6.1), common
prefix holds for any k ≥ θγm/8τ and chain quality holds for � = m/16τf and
μ ≤ 1 − δ/2, where for all r, tr < nr(1 − δ).

Robust Transaction Ledger. Given the above we then prove the properties
of the robust transaction ledger:
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Theorems 4 and 5 (Informal). Under the requirements of Table 1, the back-
bone protocol satisfies persistence with parameter k = Θ(m) and liveness with
wait time u = Ω(m + k) for depth k.

We refer to Sect. 6 for the full analysis of the protocol.

6 Full Analysis

In this section we present the full analysis and proofs of the backbone protocol
and robust transaction ledger application with chains of variable difficulty. The
analysis follows at a high level the roadmap presented in Sect. 5.

6.1 Additional Notation, Definitions, and Preliminary Propositions

Our probability space is over all executions of length at most some polynomial
in κ. Formally, the set of elementary outcomes can be defined as a set of strings
that encode every variable of every party during each round of a polynomially
bounded execution. We won’t delve into such formalism and leave the details
unspecified. We will denote by Pr the probability measure of this space. Define
also the random variable E taking values on this space and with distribution
induced by the random coins of all entities (adversary, environment, parties)
and the random oracle.

Suppose at round r exactly n parties query the oracle with target T . The
probability at least one of them will succeed is

f(T, n) = 1 −
(
1 − T

2κ

)qn

.

For the initial target T0 and the initial estimate of the number of parties
n0, we denote f0 = f(T0, n0). Looking ahead, the objective of the target recal-
culation mechanism would be to maintain a target T for each party such that
f(T, nr) ≈ f0 for all rounds r. For this reason, we will drop the subscript from f0
and simply refer to it as f ; to avoid confusion, whenever we refer to the function
f(·, ·), we will specify its two operands.

Note that f(T, n) is concave and increasing in n and T . In particular, Fact 2
applies. The following proposition provides useful bounds on f(T, n). For con-
venience, define p = q/2κ.

Proposition 1. For positive integers κ, q, T, n and f(T, n) defined as above,

pTn

1 + pTn
≤ f(T, n) ≤ pTn ≤ f(T, n)

1 − f(T, n)
, where p =

q

2κ
.

Proof. The bounds can be obtained using the inequalities (1 − x)α ≥ 1 − xα,
valid for x ≤ 1 and α ≥ 1, and e−x ≤ 1

1+x , valid for x ≥ 0. ��
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At a round r of an execution E the honest parties might be querying the
random oracle for various targets. We denote by Tmin

r (E) and Tmax
r (E) the

minimum and maximum over those targets. We say r is a target-recalculation
point of a valid chain C, if there is a block with timestamp r and m exactly
divides the number of blocks up to (and including) this block.

We now define two desirable properties of executions which will be crucial in
the analysis. We will show later that most executions have these properties.

Definition 5. Consider an execution E and constants η ∈ (0, 1] and θ ∈ [1,∞).
A target-recalculation point r in a chain C in E is (η, θ)-good if the new tar-
get T satisfies ηf ≤ f(T, nr) ≤ θf . A chain C in E is (η, θ)-good if all its
target-recalculation points are (η, θ)-good. A round r is (η, θ)-good in E if
ηf ≤ f(Tmin

r (E), nr) and f(Tmax
r (E), nr) ≤ θf . We say that E is (η, θ)-good if

every round of E was (η, θ)-good.

For a round r, the following set of chains is of interest. It contains, besides the
chains that the honest parties have, those chains that could potentially belong
to an honest party.

Sr =

⎧
⎪⎪⎨

⎪⎪⎩

C ∈ Er

“C belongs to an honest party” or
“for some chain C′ of an honest party diff(C) > diff(C′)” or
“for some chain C′ of an honest party diff(C) = diff(C′) and

head(C) was computed no later than head(C′)”

⎫
⎪⎪⎬

⎪⎪⎭

,

where C ∈ Er means that C exists and is valid at round r.

Definition 6. Consider an execution E. For ε ∈ [0,∞), a block created at round
r is ε-accurate if it has a timestamp r′ such that |r′ − r| ≤ εm

f . We say that Er

is ε-accurate if no chain in Sr contains a block that is not ε-accurate. We say
that E is ε-accurate if for every round r in the execution, Er is ε-accurate.

Our next step is to define the typical set of executions. To this end we define
a few more quantities and random variables.

In an actual execution E the honest parties may be split across different
chains with possibly different targets. We are going to study the progress of the
honest parties only when their targets lie in a reasonable range. It will turn
out that, with high probability, the honest parties always work with reasonable
targets. For a round r, a set of consecutive rounds S, and constant η ∈ (0, 1), let

T (r,η) =
ηf

pnr
and T (S,η) = min

r∈S
T (r,η).

To expunge the mystery from the definition of T (r,η), note that in an (η, θ)-good
round all honest parties query for target at least T (r,η). We now define for each
round r a real random variable Dr equal to the maximum difficulty among all
blocks with targets at least T (r,η) computed by honest parties at round r. Define
also Qr to equal Dr when exactly one block was computed by an honest party
and 0 otherwise.
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Regarding the adversary, we are going to be interested in periods of time
during which he has gathered a number of blocks in the order of m. Given that
the targets of blocks are variable themselves, it is appropriate to consider the
difficulty acquired by the adversary not in a set of consecutive rounds but rather
in a set of consecutive adversarial queries that may span a number of rounds
but do are not necessarily a multiple of q.

For a set of consecutive queries indexed by a set J , we define the follow-
ing value that will act as a threshold for targets of blocks that are attempted
adversary.

T (J) =
η(1 − δ)(1 − 2ε)(1 − θf)

32τ3γ
· m

|J | · 2κ.

Given the above threshold, for j ∈ J , if the adversary computed at his j-th
query a block of difficulty at most 1/T (J), then let the random variable A(J)

j be
equal to the difficulty of this block; otherwise, let A(J)

j = 0. The above definition
suggests that we collect in A(J)

j the difficulty acquired by the adversary as long
as it corresponds to blocks that are not too difficult (i.e., those with targets
less than T (J)). With foresight we note that this will enable a concentration
argument for random variable A(J)

j . We will usually drop the superscript (J)
from A.

Let Er−1 contain the information of the execution just before round r. In
particular, a value Er−1 of Er−1 determines the targets against which every
party will query the oracle at round r, but it does not determine Dr or Qr.
If E is a fixed execution (i.e., E = E), denote by Dr(E) and Qr(E) the value
of Dr and Qr in E. If a set of consecutive queries J is considered, then, for
j ∈ J , A(J)

j (E) is defined analogously. In this case we will also write E(J)
j for the

execution just before the j-th query of the adversary.
With respect to the random variables defined above, the following bound will

be useful because it gives an estimate of the progress the honest parties have
made in an (η, θ)-good execution. Note that we are interested in the progress
coming from uniquely successful rounds, where exactly one honest party com-
puted a POW. The expected difficulty that will be computed by the nr honest
parties at round r is pnr. However, the easier the POW computation is, the
smaller E[Qr|Er−1 = Er−1] will be with respect to this value. Since the execu-
tion is (η, θ)-good, a POW is computed by the honest parties with probability
at most θf . This justifies the appearance of (1 − θf) in the bound.

Proposition 2. If round r is (η, θ)-good in E, then E[Qr|Er−1 = Er−1] ≥
(1 − θf)pnr.

Proof. Let us drop the subscript r for convenience. Suppose that the honest
parties were split into k chains with corresponding targets T1 ≤ T2 ≤ · · · ≤
Tk = Tmax. Let also n1, n2, . . . , nk, with n1 + · · ·+nk = n, be the corresponding
number of parties with each chain. First note that

∏

j∈[k]

[
1 − f(Tj , nj)

] ≥
∏

j∈[k]

[
1 − f(Tmax, nj)

]
= 1 − f(Tmax, n) ≥ 1 − θf,
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where the first inequality holds because f(T, n) is increasing in T . Proposition 1
now gives

E[Qr|Er−1 = Er−1] =
∑

i∈[k]

f(Ti, ni)/Ti

1 − f(Ti, ni)
·

∏

j∈[k]

[
1 − f(Tj , nj)

] ≥ (1 − θf)
∑

i∈[k]

pni.

��
The properties we have defined will be shown to hold in a (γ, s)-respecting

environment, for suitable γ and s. The following simple fact is a consequence of
the definition.

Fact 1. In a (γ, s)-respecting environment, for any set S of consecutive rounds
with |S| ≤ s, any S′ ⊆ S, and any n ∈ {nr : r ∈ S},

1
γ

· n ≤ 1
|S′| ·

∑

r∈S′
nr ≤ γ · n.

Proof. The average of several numbers is bounded by their min and max. Fur-
thermore, the definition of (γ, s)-respecting implies minr∈S nr ≥ 1

γ maxr∈S nr ≥
1
γ n and maxr∈S nr ≤ γ minr∈S ≤ γn. Thus,

1
γ

· n ≤ min
r∈S

nr ≤ min
r∈S′

nr ≤ 1
|S′| ·

∑

r∈S′
nr ≤ max

r∈S′
nr ≤ max

r∈S
nr ≤ γ · n.

��
Our analysis involves a number of parameters that are suitably related.

Table 1 summarizes them, recalls their definitions and lists all the constraints
that they should satisfy.

Remark 3. We remark that for the actual parameterization of the parameters
τ,m, f of Bitcoin5, i.e., τ = 4,m = 2016, f = 0.03, vis-à-vis the constraints of
Table 1, they can be satisfied for δ = 0.99, η = 0.268, θ = 1.995, ε = 2.93 · 10−8,
for γ = 1.281 and s = 2.71 · 105. Given that s measures the number of rounds
within which a fluctuation of γ may take place, we have that the constraints
are satisfiable for a fluctuation of up to 28% every approximately 2 months
(considering a round to last 18 s).

5 Note that in order to calculate f , we can consider that a round of full interaction
lasts 18 s; If this is combined with the fact that the target is set for a POW to be
discovered approximately every 10 min, we have that 18/600 = 0.3 is a good estimate
for f .
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Table 1. System parameters and requirements on them. The parameters are as follows:
positive integers s, m, L; positive reals f, γ, δ, ε, τ, η, θ, where f, ε, δ ∈ (0, 1), and 0 <
η ≤ 1 ≤ θ.

nr: number of honest parties mining in round r

tr: number of activated parties that are corrupted

δ: advantage of honest parties, ∀r(tr/nr < 1 − δ)

(γ, s): determines how the number of parties fluctuates across rounds, cf.
Definition 1

f : probability at least one honest party succeeds in a round assuming n0 parties
and target T0 (the protocol’s initialization parameters)

τ : the dampening filter, see Definition 2

(η, θ): lower and upper bound determining the goodness of an execution, cf.
Definition 5

ε: quality of concentration of random variables in typical executions, cf.
Definition 8

m: the length of an epoch in number of blocks

L: the total run-time of the system

[(R0)] ∀r : tr < (1 − δ)nr

[(R1)] s ≥ τm
f

+ m
8τf

[(R2)] δ
2

≥ 2ε + θf

[(R3)] τ − 1/8τ > 1/(1 − ε)(1 − θf)η

[(R4)] 17(1 + ε)θ ≤ 8τ(γ − θf)

[(R5)] 9(1 + ε)ηγ2 ≤ 4(1 − ηγf)

[(R6)] 7θ(1 − ε)(1 − θf) ≥ 8γ2

6.2 Chain-Growth Lemma

We now prove the Chain-growth lemma. This lemma appears already in [11],
but it refers to number of blocks instead of difficulty. In [16] the name “chain
growth” appears for the first time and the authors explicitly state a chain-growth
property.

Informally, this lemma says that honest parties will make as much progress
as how many POWs they obtain. Although simple to prove, the chain-growth
lemma is very important, because it shows that no matter what the adversary
does the honest parties will advance (in terms of accumulated difficulty) by at
least the difficulty of the POWs they have acquired.

Lemma 1. Let E be any execution. Suppose that at round u an honest party
has a chain of difficulty d. Then, by round v + 1 ≥ u, every honest party will
have received a chain of difficulty at least d +

∑v
r=u Dr(E).

Proof. By induction on v−u. For the basis, v+1 = u and d+
∑v

r=u Dr(E) = d.
Observe that if at round u an honest party has a chain C of difficulty d, then
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that party broadcast C at a round earlier than u. It follows that every honest
party will receive C by round u.

For the inductive step, note that by the inductive hypothesis every honest
party has received a chain of difficulty at least d′ = d +

∑v−1
r=u Dr by round v.

When Dv = 0 the statement follows directly, so assume Dv > 0. Since every
honest party queried the oracle with a chain of difficulty at least d′ at round v, if
follows that an honest party successful at round v broadcast a chain of difficulty
at least d′ + Dv = d +

∑v
r=u Dr. ��

6.3 Typical Executions: Definition and Related Proofs

We can now define formally our notion of typical executions. Intuitively, the idea
that this definition captures is as follows. Suppose that we examine a certain
execution E. Note that at each round of E the parties perform Bernoulli trials
with success probabilities possibly affected by the adversary. Given the execu-
tion, these trials are determined and we may calculate the expected progress the
parties make given the corresponding probabilities. We then compare this value
to the actual progress and if the difference is reasonable we declare E typical.
Note, however, that considering this difference by itself will not always suffice,
because the variance of the process might be too high. Our definition, in view
of Theorem 6, says that either the variance is high with respect to the set of
rounds we are considering, or the parties have made progress during these rounds
as expected.

Beyond the behavior of random variables described above, a typical execution
will also be characterized by the absence of a number of bad events about the
underlying hash function H(·) which is used in proofs of work and is modeled as
a random oracle. The bad events that are of concern to us are defined as follows;
(recall that a block’s creation time is the round that it has been successfully
produced by a query to the random oracle either by the adversary or an honest
party).

Definition 7. An insertion occurs when, given a chain C with two consecutive
blocks B and B′, a block B∗ created after B′ is such that B,B∗, B′ form three
consecutive blocks of a valid chain. A copy occurs if the same block exists in
two different positions. A prediction occurs when a block extends one with later
creation time.

Given the above we are now ready to specify what is a typical execution.

Definition 8 (Typical execution). An execution E is (ε, η, θ)-typical if the
following hold:

(a) If, for any set S of consecutive rounds, pT (S,η)
∑

r∈S nr ≥ ηm
16τγ , then

∑

r∈S

Qr(E) ≥
∑

r∈S

E[Qr|Er−1 = Er−1] − ε(1 − θf)p
∑

r∈S

nr

and
∑

r∈S

Dr(E) ≤ (1 + ε)p
∑

r∈S

nr.
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(b) For any set J indexing a set of consecutive queries of the adversary we have
∑

j∈J

Aj(E) ≤ (1 + ε)2−κ|J |

and during these queries the blocks with targets (strictly) less than τT (J) that
the adversary has acquired are (strictly) less than η(1−ε)(1−θf)

32τ2γ · m.
(c) No insertions, no copies, and no predictions occurred in E.

Remark 4. Note that if J indexes the queries of the adversary in a set S of
consecutive rounds, then |J | = q

∑
r∈S tr and the inequality in Definition 8(b)

reads
∑

j∈J Aj(E) ≤ (1 + ε)p
∑

r∈S tr.

The next proposition simplify our applications of Definition 8(a).

Proposition 3. Assume E is a typical execution in a (γ, s)-respecting environ-
ment. For any set S of consecutive rounds with |S| ≥ m

16τf ,

∑

r∈S

Dr ≤ (1 + ε)p
∑

r∈S

nr.

If in addition, E is (η, θ)-good, then
∑

r∈S

Qr ≥ (1 − ε)(1 − θf)p
∑

r∈S

nr

and any block computed by an honest party at any round r corresponds to target
at least T (r,η), and so contributes to the random variables Dr and Qr (if the r
was uniquely successful).

Proof. We first partition S into several parts with size at least m
16τf and at most

s. In view of Proposition 2, for both of the inequalities, we only need to verify
the ‘if’ part of Definition 8(a) for each part S′ of S. Indeed, by the definition of
T (S′,η) and Fact 1, pT (S′,η) ∑

r∈S′ nr ≥ ηf |S′|/γ ≥ ηm
16τγ . The last part, in view

of the definition of T (r,η), is equivalent to r being (η, θ)-good. ��
Almost all polynomially bounded executions (in κ) are typical:

Proposition 4. Assuming the ITM system (Z, C) runs for L steps, the event
“E is not typical” is bounded by exp(−Ω(min{m,κ}) + lnL). Specifically, the
bound is exp

{−ηε2(1−2δ)m
64τ3γ + 2(ln L + ln 2)

}
+ 2−κ+1+2 log L.

Proof. See the full version. ��
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6.4 Typical Executions are Good and Accurate

Lemma 2. Let E be a typical execution in a (γ, s)-respecting environment. If
Er is (η, θ)-good, then Sr+1 contains no chain that has not been extended by an
honest party for at least m

16τf consecutive rounds.

Proof. Suppose—towards a contradiction—C ∈ Sr+1 and has not been extended
by an honest party for at least m

16τf rounds. Without loss of generality we may
assume that r + 1 is the first such round.

Let r∗ ≤ r denote the greatest timestamp among the blocks of C computed by
honest parties (r∗ = 0 if none exists). Define S = {r∗ +1, . . . , r} with |S| ≥ m

16τf

and the index-set of the corresponding set of queries J = {1, . . . , q
∑

r∈S tr}.
Suppose that the blocks of C with timestamps in S span k epochs with corre-
sponding targets T1, . . . , Tk. For i ∈ [k] let mi be the number of blocks with
target Ti and set M = m1 + · · · + mk.

Our plan is to contradict the assumption that C ∈ Sr+1, by showing that
the honest parties have accumulated more difficulty than the adversary. To be
precise, note that the blocks C has gained in S sum to

∑
i∈[k]

mi

Ti
difficulty. On

the other hand, by the Chain-Growth Lemma 1, all the honest parties have
advanced during the rounds in S by

∑
r∈S Dr(E) ≥ ∑

r∈S Qr(E). Since |S| ≥
m

16τf , Proposition 3 implies that
∑

r∈S Qr(E) is at least (1−ε)(1−θf)p
∑

r∈S nr.
Therefore, to obtain a contradiction, it suffices to show that

∑

i∈[k]

mi

Ti
< (1 − ε)(1 − θf)p

∑

r∈S

nr. (1)

We proceed by considering cases on M .
First, suppose M ≥ 2M ′, where M ′ = η(1−ε)(1−θf)

32τ2γ · m (see Definition 8(b)).
Partition the part of C with these M blocks into � parts, so that each part has
the following properties: (1) it contains at most one target-calculation point,
and (2) it contains at least M ′ blocks with the same target. Note that such a
partition exists because M ≥ 2M ′ and M ′ < m. For i ∈ [�], let ji ∈ J be the
index of the query during which the last block of the i-th part was computed. Set
Ji = {ji−1 + 1, . . . , ji}, with j0 = 0. Note that Definition 8(c) implies ji−1 < ji,
and this is a partition of J . Recalling Definition 8(b), the sum of the difficulties
of all the blocks in the i-th part is at most

∑
j∈Ji

Aj(E). This holds because one
of the targets is at least τT (Ji) (since more than M ′ blocks have been computed
in Ji with this target) and so both are at least T (Ji) (since targets with at most
one calculation point between them can differ by a factor at most τ). Thus,
∑

i∈[k]

mi

Ti
≤

∑

i∈[�]
j∈Ji

Aj(E) ≤
∑

i∈[�]

1 + ε

2κ
|Ji| = (1 + ε)p

∑

r∈S

tr < (1 + ε)(1 − δ)p
∑

r∈S

nr,

where in the last step we used Requirement (R0). Requirement (R1) implies
(1+ε)(1−δ) ≤ (1−ε)(1−θf)); thus, Eq. (1) holds concluding the case M ≥ 2M ′.

Otherwise, k ≤ 2 and m1 +m2 < 2M ′. Let S′ consist of the first m
16τf rounds

of S. We are going to argue that in this case Eq. (1) holds even for S′ in the place
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of S. Since we are in a (γ, s)-respecting environment, by Fact 1, γ
∑

r∈S′ nr ≥
nr∗ |S′|. Furthermore, since r∗ is (η, θ)-good, T1 ≥ T (r∗,η) = ηf/pnr∗ . Recalling
also that T2 ≥ T1/τ , we have m1

T1
+ m2

T2
≤ m1+τm2

T1
, which in turn is at most

τM

T (r∗,η)
<

2τM ′pnr∗

ηf
≤ 2τγM ′p

∑
r∈S′ nr

ηf |S′| ≤ 32τ2γM ′p
∑

r∈S nr

ηm

and, after substituting M ′, Eq. (1) holds concluding this case and the proof. ��
Corollary 1. Let E be a typical execution in a (γ, s)-respecting environment. If
Er−1 is (η, θ)-good, then Er is m

16τf -accurate.

Proof. Suppose—towards a contradiction—that, for some r∗ ≤ r, C ∈ Sr∗ con-
tains a block which is not m

16τf -accurate and let u ≤ r∗ ≤ r be the timestamp of
this block and v its creation time. If u−v > m

16τf , then every honest party would
consider C to be invalid during rounds v, v + 1, . . . , u. If v − u > m

16τf , then in
order for C to be valid it should not contain any honest block with timestamp in
u, u + 1, . . . , v. (Note that we are using Definition 8(c) here as a block could be
inserted later.) In either case, C ∈ Sr∗ , but has not been extended by an honest
party for at least m

16τf rounds. Since Er∗−1 is (η, θ)-good, the statement follows
from Lemma 2. ��
Lemma 3. Let E be a typical execution in a (γ, s)-respecting environment and
r∗ an (ηγ, θ

γ )-good target-recalculation point of a valid chain C. For r > r∗ + τm
f ,

assume Er−1 is (η, θ)-good. Then, either the duration Δ of the epoch of C starting
at r∗ satisfies

m

τf
≤ Δ ≤ τm

f
,

or C /∈ Su for each u ∈ {r∗ + τm
f , . . . , r}.

Proof. Let T be the target of the epoch in question.
For the upper bound, assume Δ > τm

f . We show first that in the rounds
S = {r∗ + m

16τf , . . . , r∗ + τm
f − m

16τf } the honest parties have acquired more than
m
T difficulty. Note that the rounds of S are (η, θ)-good as they come before r.
Thus, by Proposition 3, the difficulty acquired in S by the honest parties is at
least

(1 − ε)(1 − θf)p
∑

r∈S

nr ≥ (1 − ε)(1 − θf)p · |S|nr∗

γ
≥ (1 − ε)(1 − θf)|S|ηf

T
>

m

T
.

For the first inequality, we used Fact 1. For the second, recall that r∗ is (ηγ, θ/γ)-
good and so pTnr∗ ≥ f(T, nr∗) ≥ ηγf . For the last inequality observe that
|S| = m

f (τ − 1/8τ) and thus follows from Requirement (R3).
Next, we observe that chain C either has a block within the epoch in question

that is computed by an honest party in a round within the period [r∗, r∗ + m
16τf ),

or by Lemma 2, C /∈ Su for each u ∈ {r∗ + m
16τf , . . . , r} ⊇ {r∗ + τm

f , . . . , r}.
Assuming the first happens, it follows that by round r∗ + τm

f − m
16τf the honest
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parties’ chains have advanced by an amount of difficulty which exceeds the total
difficulty of the epoch in question. This means that no honest party will extend C
during the rounds {r∗ + τm

f − m
16τf +1, . . . ,Δ}. Since it is assumed Δ > r∗ + τm

f ,
Lemma 2 can then be applied to imply that C /∈ Su for u ∈ {r∗ + τm

f , . . . , r}.
For the lower bound, we assume Δ < m

τf and that C ∈ Su for some u ∈ {r∗ +
Δ + 1, . . . , r}, and seek a contradiction. Clearly, the honest parties contributed
only during the set of rounds S = {r∗, . . . , r∗ +Δ}. The adversary, by Lemma 2,
may have contributed only during S′ = {r∗ − m

16τf , . . . , r∗ +Δ+ m
16τf }. Let J be

the set of queries available to the adversary during the rounds in S′. We show
that in a typical execution the honest parties together with the adversary cannot
acquire difficulty m

T in the rounds in the sets S and S′ respectively. With respect
to the honest parties, Proposition 3 applies. Regarding the adversary, assume
first T ≥ T (J) (it is not hard to verify that the case T < T (J) leads to a more
favorable bound). It follows that the total difficulty contributed to the epoch is
at most

(1 + ε)p
(

∑

r∈S

nr +
∑

r∈S′
tr

)

≤ (1 + ε)pγnr∗(|S| + |S′|) < (1 + ε)pγnr∗ · 17m

8τf
.

The first inequality follows from Fact 1 using tr < (1 − δ)nr. For the second
substitute the upper bounds on the sizes of S and S′. Next, note that r∗ is
an (ηγ, θ/γ)-good recalculation point and so f(T, nr∗) ≤ θf/γ. By Proposition 1,
pTnr∗ < f(T, nr∗)/(1 − f(T, nr∗)) ≤ (θf/γ)/(1 − θf/γ). It follows that the last
displayed quantity is at most 17(1+ε)θ

8τ(γ−θf) · m
T and recalling Requirement (R4) this

less than m
T as desired. ��

Proposition 5. Assume E is a typical execution in a (γ, s)-respecting environ-
ment. Consider a round r and a set of consecutive rounds S with |S| ≥ m

32τ2f . If
Er−1 is (η, θ)-good, then the adversary, during the rounds in S, has contributed
at most (1 − δ)(1 + ε)p

∑
r∈S nr difficulty to Sr.

Proof. Without loss of generality, we will assume in this proof that tr = (1−δ)nr

for each r ∈ S. Furthermore, we assume |S| ≤ τm
f . If this is not the case, then

we can partition S to parts of appropriate sizes and apply the arguments that
follow to each sum. The statement will follow upon summing over all parts.

By Lemma 2, for any block B in Sr, there is a block in the same chain and
computed at most m

16τf rounds earlier than it. By Lemma 3, there is at most one
recalculation point between them. Let u be the round the honest party computed
this block and T its target. Note that since E is (η, θ)-good, T ≥ T (u,η) = ηf

pnu

and the target of B is at least τ (−1)T . We are going to show that, with J the set
of queries that correspond to S, we have τ−1T ≥ T (J). This will suffice, because
(1 − δ)(1 + ε)p

∑
r∈S nr ≥ (1 + ε)p

∑
r∈S tr, and this is at least

∑
j∈J Aj in a

typical execution (Definition 8(b)).
Note first that, using Fact 1 and the lower-bound on |S|,

2−κ|J | = (1 − δ)p
∑

r∈S

nr ≥ (1 − δ)p
|S|nu

γ
≥ (1 − δ)p

mnu

32τ3fγ
.
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Recalling the definition of T (J) and using this bound,

T (J) =
η(1 − δ)(1 − 2ε)(1 − θf)

32τ3γ
· m

|J | · 2κ ≤ ηf(1 − 2ε)(1 − θf)
τpnu

<
T (u,η)

τ
≤ T

τ
,

as desired. ��
Lemma 4. Let E be a typical execution in a (γ, s)-respecting environment and
assume Er−1 is (η, θ)-good. If C ∈ Sr, then C is (ηγ, θ/γ)-good in Er.

Proof. Note that it is our assumption that every chain is (ηγ, θ/γ)-good at the
first round. Therefore, to prove the statement, it suffices to show that if a chain
is (ηγ, θ/γ)-good at a recalculation point r∗, then it will also be (ηγ, θ/γ)-good at
then next recalculation point r∗ + Δ.

Let r∗ and r∗ +Δ ≤ r be two consecutive target-calculation points of a chain
C and T the target of the corresponding epoch. By Lemma 3 and Definition 2
of the target-recalculation function, the new target will be

T ′ =
Δ

m/f
· T,

where Δ is the duration of the epoch.
We wish to show that

ηγf ≤ f(T ′, nr∗+Δ) ≤ θf/γ.

To this end, let S = {r∗, . . . , r∗ + Δ}, S′ =
{
max{0, r∗ − m

16τf }, . . . ,min{r∗ +
Δ+ m

16τf , r}}
, and let J index the queries available to the adversary in S′. Note

that, by Corollary 1, every block in the epoch was computed either by an honest
party during a round in S or by the adversary during a round in S′.

Suppose—towards a contradiction—that f(T ′, nr∗+Δ) < ηγf . Using the def-
inition of f(T, n), this implies qnr∗+Δ ln

(
1 − T ′

2κ

)
> ln(1 − ηγf). Applying the

inequality − x
1−x < ln(1 − x) < −x, valid for x ∈ (0, 1), substituting the expres-

sion for T ′ above and rearranging, we obtain

m

T
>

1 − ηγf

ηγ
· pΔnr∗+Δ.

By Propositions 3 and 5 it follows that

m

T
≤ 2(1 + ε)p

∑

r∈S′
nr ≤ 2(1 + ε)p ·

Δ + m
8τf

|S′| ·
∑

r∈S′
nr.

By Lemma 3, Δ ≥ m
τf . Thus,

Δ+ m
8τf

Δ ≤ 9
8 . Using this, Requirement (R5), and

combining the inequalities on m
T ,

γnr∗+Δ <
9(1 + ε)ηγ2

4(1 − ηγf)
· 1
|S′|

∑

r∈S′
nr ≤ 1

|S′|
∑

r∈S′
nr,

contradicting Fact 1.
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For the upper bound, assume f(T ′, nr∗+Δ) > θf/γ, which (see Proposition 1)
implies

m

T
<

γ

θ
· pΔnr∗+Δ.

Set S = {r∗ + m
16τf , . . . , r∗ +Δ− m

16τf }. Since an honest party posses C at round
r, it follows by Lemma 2 that there is a block computed by an honest party in
C during {r∗, . . . , r∗ + m

16τf − 1} and one during {r∗ +Δ− m
16τf +1, . . . , r∗ +Δ}.

By the Chain-Growth Lemma 1, it follows that the honest parties computed less
than m

T difficulty during S. In particular,

m

T
> (1 − ε)(1 − θf)p

∑

r∈S

nr ≥ (1 − ε)(1 − θf)p ·
Δ − m

8τf

|S| ·
∑

r∈S

nr.

By Lemma 3, Δ ≥ m
τf . Thus,

Δ− m
8τf

Δ ≥ 7
8 . Using this, Requirement (R6), and

combining the inequalities on m
T ,

nr∗+Δ

γ
>

7θ

8γ2
(1 − ε)(1 − θf) · 1

|S|
∑

r∈S

nr ≥ 1
|S|

∑

r∈S

nr,

contradicting Fact 1. ��
Corollary 2. Let E be a typical execution in a (γ, s)-respecting environment
and Er−1 be (η, θ)-good. If every chain in Sr−1 is (ηγ, θ

γ )-good, then Er is
(η, θ)-good.

Proof. We use notations and definitions of Lemma 3. Let CSr and let r∗ be its
last recalculation point in Er−1. Let T be the target after r∗ and T ′ the one at
r. We need to show that f(T ′, nr) ∈ [ηf, θf ]. Note that if r is a recalculation
point, this follows by Lemma 4. Otherwise, T ′ = T and ηγ ≤ f(T, nr∗) ≤ θf/γ.
Using Lemma 3, r − r∗ ≤ Δ ≤ τm

f . Thus, 1
γ nr∗ ≤ nr ≤ γnr∗ . By Fact 2 we

have f(T, nr) ≤ f(T, γnr∗) ≤ γf(T, nr∗) ≤ θf and f(T, nr) ≥ f(T, 1
γ nr∗) ≥

1
γ f(T, nr∗) ≥ ηf. ��

Corollary 3. Let E be a typical execution in a (γ, s)-respecting environment.
Then every round is (η, θ)-good in E.

Proof. For the sake of contradiction, let r be the smallest round of E that is
not (η, θ)-good. This means that there is a chain C and an honest party that
possesses this chain in round r and the corresponding target T is such that
f(T, nr) �∈ [ηf, θf ]. Note that Er−1 is (η, θ)-good, and so, by Corollary 1, Er is

m
16τf -accurate. Let r∗ < r be the last (ηγ, θ/γ)-good recalculation point of C (let
r∗ be 0 in case there is no such point).

First suppose that there is another recalculation point r′ ∈ (r∗, r]. By the
definition of r∗, r′ is not (ηγ, θ/γ)-good. However, the assumptions of Lemma 4
hold, implying that C is (ηγ, θ/γ)-good. We have reached a contradiction.
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We may now assume that there is no recalculation point in (r∗, r] and so the
points r∗ and r correspond to the same target T with ηγ ≤ f(T, nr∗) ≤ θf/γ.
Note that since r∗ is an (ηγ, θ/γ)-good recalculation point and Er−1 is (η, θ)-
good, we have r−r∗ ≤ τm

f . This follows from Lemma 3, because C belongs to an
honest party at round r. Thus, 1

γ nr∗ ≤ nr ≤ γnr∗ , and so (by Fact 2) f(T, nr) ≤
f(T, γnr∗) ≤ γf(T, nr∗) ≤ θf and f(T, nr) ≥ f(T, 1

γ nr∗) ≥ 1
γ f(T, nr∗) ≥ ηf. ��

Theorem 1. A typical execution in a (γ, s)-respecting environment is m
16τf -

accurate and (η, θ)-good.

Proof. This follows from Corollaries 3 and 1. ��

6.5 Common Prefix and Chain Quality

Proposition 6. Let E be a typical execution in a (γ, s)-respecting environment.
Any θγm

8τ consecutive blocks in an epoch of a chain C ∈ Sr have been computed
in at least m

16τf rounds.

Proof. Suppose—towards a contradiction—that the blocks of C where computed
during the rounds in S∗, for some S∗ such that |S∗| < m

16τf . Consider an S such
that S∗ ⊆ S and |S| = m

16τf and the property that a block of target T in C
was computed by an honest party in some round v ∈ S. Such an S exists by
Lemmas 2 and 3. By Propositions 3 and 5, the number of blocks of target T
computed in S is at most

(1+ε)(2−δ)pT
∑

u∈S

nu ≤ (1+ε)(2−δ)pTγnv|S| ≤ (1 + ε)(2 − δ)γ|S|θf
1 − θf

≤ θγm

8τ
.

For the first inequality we used Fact 1, for the second Fact 1 and that round v
is (η, θ)-good, and for the last one Requirement (R2). ��

Let us say that two chains C and C′ diverge before round r, if the timestamp
of the last block on their common prefix is less than r.

Lemma 5. Let E be a typical execution in a (γ, s)-respecting environment. Any
C, C′ ∈ Sr do not diverge before round r − m

16τf .

Proof. Consider the last block on the common prefix of C and C′ that was com-
puted by an honest party and let r∗ be the round on which it was computed
(set r∗ = 0 if no such block exists). Denote by C∗ the common part of C and C′

up to (and including) this block and let d∗ = diff(C∗) and S = {i : r∗ < u < r}.
We claim that

(1 + ε)(1 − δ)p
∑

u∈S

nu ≥
∑

u∈S

Qu. (2)

In view of Proposition 5, it suffices to show that the difficulty which the adversary
contributed to C and C′ is at least the right-hand side of (2). The proof of this
rests on the following observation.
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Consider any block B extending a chain C1 that was computed by an honest
party in a uniquely successful round u ∈ S. Consider also an arbitrary d ∈ R

such that diff(C1) ≤ d < diff(C1B). We are going to argue that if another chain of
difficulty at least d exists, then the block that “contains” the point of difficulty d
was computed by the adversary. More formally, suppose a chain C2B

′ exists such
that B′ �= B and diff(C2) ≤ d < diff(C2B

′). We observe that B′ was computed
by the adversary. This is because no honest party would extend C2 at a round
later than u since diff(C2) ≤ d < diff(C1B); on the other hand, if an honest party
computed B′ at some round u′ < u, then no honest party would have extended
C1 at round u since diff(C1) ≤ d < diff(C2B

′); finally, note that u is also ruled
out since it was a uniquely successful round by assumption.

Returning to the proof of (2) note that, by the Chain-Growth Lemma 1,
diff(C′) and diff(C) are at least d∗ +

∑
u∈S Qu. To show (2) it suffices to argue

that for all d ∈ (d∗,
∑

u∈S Qu] there is always a B′ as above that lies either on C,
or on C′, or on their common prefix. But this is always possible since B cannot
be both on C and C′ (note that by the definition of r∗, B cannot be on their
common prefix). To finish the proof note that (2) contradicts Proposition 3 for
large enough S. ��
Theorem 2 (Common Prefix). Let E be a typical execution in a (γ, s)-
respecting environment. For any round r and any two chains in Sr, the common-
prefix property holds for k ≥ θγm

4τ .

Proof. Suppose common prefix fails for two chains C and C′ at round r. At least
k/2 of the blocks in each chain after their common prefix, lie in a single epoch.
Proposition 6 implies that C and C′ diverge before round r − m

16τf , contradicting
Lemma 5. ��
Theorem 3 (Chain Quality). Suppose E is a typical execution in a (γ, s)-
respecting environment. For the chain of any honest party at any round in E,
the chain-quality property holds with parameters � = m

16τf and μ = (1 + δ/2)λ <

(1 − δ/2), where λ = max{tr/nr} < (1 − δ).

Proof. Let us denote by Bi the i-th block of C so that C = B1 . . . Blen(C) and
consider L consecutive blocks Bu, . . . , Bv. Define L′ as the least number of con-
secutive blocks Bu′ , . . . , Bv′ that include the L given ones (i.e., u′ ≤ u and
v ≤ v′) and have the properties (1) that the block Bu′ was computed by an
honest party or is B1 in case such block does not exist, and (2) that there exists
a round at which an honest party was trying to extend the chain ending at block
Bv′ . Observe that number L′ is well defined since Blen(C) is at the head of a
chain that an honest party is trying to extend. Denote by d′ the total difficulty
of these L′ blocks. Define also r1 as the round that Bu′ was created (set r1 = 0
if Bu′ is the genesis block), r2 as the first round that an honest party attempts
to extend Bv′ , and let S = {r : r1 ≤ r ≤ r2}. Note that |S| ≥ m

16τf .
Now let x denote the total difficulty of all the blocks from honest parties that

are included in the L blocks and—towards a contradiction—assume that

x <
[
1 −

(
1 +

δ

2

)
λ
]
d ≤

[
1 −

(
1 +

δ

2

)
λ
]
d′. (3)
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Suppose first that all the L′ blocks {Bj : u′ ≤ j ≤ v′} have been com-
puted during the rounds in the set S. Recalling Proposition 5, we now argue the
following sequence of inequalities.

(1 + ε)(1 − δ)p
∑

u∈S

nu ≥ d′ − x ≥
(
1 +

δ

2

)
λd′ ≥

(
1 +

δ

2

)
λ

∑

u∈S

Qu. (4)

The first inequality follows from the definition of x and d′ and Proposition 5. The
second one comes from the relation between x and d′ outlined in (3). To see the
last inequality, assume

∑
u∈S Qu > d′. But then, by the Chain-Growth Lemma 1,

the assumption than an honest party is on Bv′ at round r2 is contradicted as all
honest parties should be at chains of greater length. We now observe that (4)
contradicts Proposition 3, since

(
1 +

δ

2

)
λ

∑

u∈S

Qu > (1 − ε)(1 − θf)
(
1 − δ

2

)
p

∑

u∈S

nu ≥ (1 + ε)(1 − δ)p
∑

u∈S

nu,

where the middle inequality follows by Requirement (R2).
To finish the proof we need to consider the case in which these L′ blocks

contain blocks that the adversary computed in rounds outside S. It is not hard
to see that this case implies either a prediction or an insertion and cannot occur
in a typical execution. ��

6.6 Persistence and Liveness

Theorem 4. Let E be a typical execution in a (γ, s)-respecting environment.
Persistence is satisfied with depth k ≥ θγm

4τ .

Proof. Suppose an honest party P has at round r a chain C such that C�k contains
a transaction tx.

We first show that the k ≥ θγm
4τ blocks of C cannot have been computed

in less than m
16τf rounds. Suppose—towards a contradiction—that this was the

case. By Lemma 3, at least θγm
8τ of the k blocks belong to a single epoch and

Proposition 6 is contradicted.
To show persistence, note that if any party P ′ �= P has a chain C′ at round

r and C�k is not a prefix of C′, then Lemma 5 is contradicted. Next, let r′ > r
be the first round after r such that an honest party P ′ has a chain C′ such that
C�k is not a prefix of C′. By the note above and the minimality of r′ it follows
that no honest party had a prefix of C′ at round r′ − 1. Thus, C′ existed at
round r′ − 1 and P ′ had another chain C′′ at that round such that C�k � C′′

and diff(C′′) < diff(C′). We now observe that C′ and C′′ contradict Lemma 5 at
round r′ − 1. ��
Theorem 5. Let E be a typical execution in a (γ, s)-respecting environment.
Liveness is satisfied for depth k with wait-time m

16τf + γk
ηf(1−ε)(1−θf) .
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Proof. Suppose a transaction tx is included in any block computed by an honest
party for m

16τf consecutive rounds and let S denote the set of γk
ηf(1−ε)(1−θf) rounds

that follow these rounds. Consider now the chain C of an arbitrary honest party
after the rounds in S. By Lemma 2, C contains an honest block computed in the

m
16τf rounds. This block contains tx. Furthermore, after the rounds in the set
S, on top of this block there has been accumulated at least

∑
r∈S Qr amount

of difficulty. We claim that this much difficulty corresponds to at least k blocks.
To show this, assume |S| ≤ s (or consider only the first s rounds of S). Let T
be the smallest target computed by an honest party during the rounds in S and
let u be such a round. It suffices to show T

∑
r∈S Qr ≥ k. Indeed,

T
∑

r∈S

Qr ≥ (1 − ε)(1 − θf)pT
∑

r∈S

nr ≥ (1 − ε)(1 − θf)
pTnu|S|

γ
≥ k.

The first inequality follows from Proposition 3, the second by Fact 1, and for the
last one we substitute the size of S and use that pTnu ≥ f(T, nu) ≥ ηf (since u
is (η, θ)-good). ��

A Martingale Sequences and Other Mathematical Facts

Definition 9 [19, Chap. 12]. A sequence of random variables X0,X1, . . . is a
martingale with respect to the sequence Y0, Y1, . . . , if, for all n ≥ 0, (1) Xn is a
function of Y0, . . . , Yn, (2) E[|Xn|] < ∞, and (3) E[Xn+1|Y0, . . . , Yn] = Xn.

Theorem 6 [18, Theorem 3.15]. Let X0,X1, . . . be a martingale with respect
to the sequence Y0, Y1, . . . . For n ≥ 0, let

V =
n∑

i=1

var(Xi −Xi−1|Y0, . . . , Yi−1) and b = max
1≤i≤n

sup(Xi −Xi−1|Y0, . . . , Yi−1),

where sup is taken over all possible assignments to Y0, . . . , Yi−1. Then, for any
t, v ≥ 0,

Pr
[
(Xn ≥ X0 + t) ∧ (V ≤ v)

] ≤ exp
{

− t2

2v + 2bt/3

}

.

Fact 2. Suppose f : R≥0 → R≥0 is concave and f(0) ≥ 0. Then, for any x, y ∈
[0,∞) and λ ∈ [1,∞), f(x/λ) ≥ f(x)/λ, f(λx) ≤ λf(x), f(x+y) ≤ f(x)+f(y).

The following well-known inequalities may be used without reference.

Fact 3. (1) 1 + x < ex, for all x. (2) − x
1−x < ln(1 − x), for x ∈ (0, 1). (3)

x
1+x/2 < ln(1 + x) < x, for x > 0.
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Abstract. Bitcoin is one of the most prominent examples of a distrib-
uted cryptographic protocol that is extensively used in reality. Nonethe-
less, existing security proofs are property-based, and as such they do not
support composition.

In this work we put forth a universally composable treatment of the
Bitcoin protocol. We specify the goal that Bitcoin aims to achieve as
a ledger functionality in the (G)UC model of Canetti et al. [TCC’07].
Our ledger functionality is weaker than the one recently proposed by
Kiayias, Zhou, and Zikas [EUROCRYPT’16], but unlike the latter sug-
gestion, which is arguably not implementable given the Bitcoin assump-
tions, we prove that the one proposed here is securely UC realized under
standard assumptions by an appropriate abstraction of Bitcoin as a UC
protocol. We further show how known property-based approaches can
be cast as special instances of our treatment and how their underlying
assumptions can be cast in (G)UC without restricting the environment
or the adversary.

1 Introduction

Since Nakamoto first proposed Bitcoin as a decentralized cryptocurrency [28],
several works have focused on analyzing and/or predicting its behavior under dif-
ferent attack scenarios [4,14,15,18,30,33,34]. However, a core question remained:

What security goal does Bitcoin achieve under what assumptions?
An intuitive answer to this question was already given in Nakamoto’s original

white paper [28]: Bitcoin aims to achieve some form of consensus on a set of valid
transactions. The core difference of this consensus mechanism with traditional
consensus [24–26,31] is that it does not rely on having a known (permissioned)
set of participants, but everyone can join and leave at any point in time. This is
often referred to as the permissionless model. Consensus in this model is achieved
by shifting from the traditional assumptions on the fraction of cheating versus
honest participants, to assumptions on the collective computing power of the
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cheating participants compared to the total computing power of the parties that
support the consensus mechanism. The core idea is that in order for a party’s
action to affect the system’s behavior, it needs to prove that it is investing suf-
ficient computing resources. In Bitcoin, these resources are measured by means
of solutions to a presumably computation-intensive problem.

Although the above idea is implicit in [28], a formal description of Bitcoin’s
goal had not been proposed or known to be achieved (and under what assump-
tions) until the recent works of Garay et al. [16] and Pass et al. [29]. In a nutshell,
these works set forth models of computation and, in these models, an abstraction
of Bitcoin as a distributed protocol, and proved that the output of this proto-
col satisfies certain security properties, for example the common prefix [16] or
consistency [29] property. This property confirms—under the assumption that
not too much of the total computing power of the system is invested in breaking
it—a heuristic argument used by the Bitcoin specification: if some block makes
it deep enough into the blockchain of an honest party, then it will eventually
make it into the blockchain of every honest party and will never be reversed.1

In addition to the common prefix property, other quality properties of the out-
put of the abstracted blockchain protocol were also defined and proved. A more
detailed description of the security properties in [16,29] is included in Sect. 4.4.

Bitcoin as a Service for Cryptographic Protocols. The main use of the Bitcoin
protocol is as a decentralized monetary system with a payment mechanism,
which is what it was designed for. And although the exact economic forces that
guide its sustainability are still being researched, and certain rational models
predict it is not a stable solution, it is a fact that Bitcoin has not met any
of these pessimistic predictions for several years and it is not clear it ever will
do. And even if it does, the research community has produced and is testing
several alternative decentralized cryptocurrencies, e.g., [7,9,27], that are more
functional and/or resilient to theoretic attacks than Bitcoin. Thus, it is reason-
able to assume that decentralized cryptocurrencies are here to stay.

This leads to the natural questions of how one can use this new reality to
improve the security and/or efficiency of cryptographic protocols? First answers
to this question were given in [1–3,8,20–23] where it was shown how Bitcoin can
be used as a punishment mechanism to incentivize honest behavior in higher
level cryptographic protocols such as fair lotteries, poker, and general multi-
party computation. But in order to formally define and prove the security of the
above constructions in a widely accepted cryptographic framework for multi-
party protocols, one needs to define what it means for these protocols to be run
in a world that gives them access to the Bitcoin network as a resource to improve
their security. In other words, the question now becomes:

What functionality can Bitcoin provide to cryptographic protocols?

1 In the original Bitcoin heuristic “deep enough” is defined as six blocks, whereas in
these works it is defined as linear in an appropriate security parameter.
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To address this question, Bentov and Kumaresan [8] introduced a model of
computation in which protocols can use a punishment mechanism to incentivize
adversaries to adhere to their protocol instructions. As a basis, they use the
universal composition framework of Canetti [10], but the proposed modifications
do not support composition and it is not clear how standard UC cryptographic
protocols can be cast as protocols in that model.

In a different direction, Kiayias et al. [19] connected the above question
with the original question of Bitcoin’s security goal. More concretely, they pro-
posed identifying the resource that Bitcoin (or other decentralized cryptocur-
rencies) offers to cryptographic protocols as its security goal, and expressing it
in a standard language compatible with the existing literature on cryptographic
multi-party protocols. More specifically, they modeled the ideal guarantees as a
transaction-ledger functionality in the universal composition framework. To be
more precise, the ledger of [19] is formally a global setup in the (extended) GUC
framework of Canetti et al. [11].

In a nutshell, the ledger proposed by [19] corresponds to a trusted party which
keeps a state of blocks of transactions and makes it available, upon request, to
any party. Furthermore, it accepts transactions from any party and records them
as long as they pass an appropriate validation procedure that depends on the
above publicly available state as well as other registered messages. Periodically,
this ledger puts the transactions that were recently registered into a block and
adds them into the state. As proved in [19], giving multi-party protocols access
to such a transaction-ledger functionality allows for formally capturing, within
the composable (G)UC framework, the mechanism of leveraging security loss
with coins. The proposed ledger functionality guarantees all properties that one
could expect from Bitcoin and encompasses the properties in [16,29]. Therefore,
it is natural to postulate that it is a candidate for defining the security goal
of Bitcoin (and potentially other decentralized cryptocurrencies). However, the
ledger functionality proposed by [19] was not accompanied by a security proof
that any of the known cryptocurrencies implements it.

However, as we show, despite being a step in the right direction, the ledger
proposed in [19] cannot be realized under standard assumptions about the Bit-
coin network. On the positive side, we specify a new transaction ledger func-
tionality which still guarantees all properties postulated in [16,29], and prove
that a reasonable abstraction of the Bitcoin protocol implements this ledger. In
our construction, we describe Bitcoin as a UC protocol which generalizes both
protocols proposed in [16,29]. Along the way we devise a compound way of cap-
turing in UC assumptions like the ones in [16,29], which enables us to compare
the strengths of these models.

Related Literature. The security of Bitcoin as a cryptographic protocol was
previously studied by Garay et al. [16] and by Pass et al. [29] who proposed and
analyzed an abstraction of the core of the Bitcoin protocol in a property-based
manner. The treatment of [16,29] does not offer composable security guaran-
tees. More recently, Kiayias et al. [19] proposed capturing the security goal and
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resource implemented by Bitcoin by means of a shared transaction-ledger func-
tionality in the universal composition with global setup (GUC) framework of
Canetti et al. [11]. However, the proposed ledger-functionality is too strong to be
implementable by Bitcoin. We refer the interested reader to the full version [6] for
the basic elements of these works and a discussion on simulation-based security
in general. A formal comparison of our treatment with [16,29], which indicates
how both these protocols and definitions can be captured as special cases of our
security definition, is given in Sect. 4.4.

Our Results. We put forth the first universally composable (simulation-based)
proof of security of Bitcoin in the (G)UC model of Canetti et al. [11]. We observe
that the ledger functionality proposed by Kiayas et al. [19] is too strong to be
implemented by the Bitcoin protocol—in fact, by any protocol in the permis-
sionless setting, which uses network assumptions similar to Bitcoin. Intuitively,
the reason is that the functionality allows too little interference of the simulator
with its state, making it impossible to emulate adversarial attacks that result,
e.g., in the adversary inserting only transactions coming from parties it wants
or that result in parties holding chains of different length.

Therefore, we propose an alternative ledger functionality Gledger which shares
certain design properties with the proposal in [19] but which can be provably
implemented by the Bitcoin protocol. As in [19], our proposed functionality can
be used as a global setup to allow protocols with different sessions to make use
of it, thereby enabling the ledger to be cast as shared among any protocol that
wants to use it. The ledger is parametrized by a generic transaction validation
predicate which enables it to capture decentralized blockchain protocols beyond
Bitcoin. Our functionality allows for parties/miners to join and or leave the
computation and allows for adaptive corruption.

Having defined our ledger functionality we next prove that for an appro-
priate validation predicate Gledger is implemented by Bitcoin assuming that
miners which deviate from the Bitcoin protocol do not control a majority of
the total hashing power at any point. To this end, we describe an abstraction
of the Bitcoin protocol as a synchronous UC protocol. Our protocol generalizes
both [16,29]—as we argue, the protocols described in these works can be cap-
tured as instances of our protocols. The difference between these two instances
is the network assumption that is used—more precisely, the assumption about
knowledge on the network delay—and the assumption on the number of queries
per round. To capture these assumptions in UC, we devise a methodology to
formulate functionality wrappers to capture assumptions, and discuss the impli-
cations of such a method in preserving universal composability.

Our protocol works over a network of bounded-delay channels, where similar
to [29], the miners are not aware of (an upper bound on) the actual delay that the
network induces. We argue that such a network is strictly weaker than a network
with known bounded delay, which is implicit in the synchrony assumptions of [16]
(cf. Remark 1). Notwithstanding, unlike previous works, instead of starting from
a complete network that offers multicast, we explain how such a network could be



328 C. Badertscher et al.

implemented by running the message-diffusion mechanism of the Bitcoin network
(which is run over a lower level network of unicast channels). Intuitively, this
network is built by every miner, upon joining the system, choosing some existing
miners of its choice to use them as relay-nodes.

Our security proof proposes a useful modularization of the Bitcoin protocol.
Concretely, we first identify the part of the Bitcoin code which intuitively corre-
sponds to the lottery aspect, provide an ideal UC functionality that reflects this
lottery aspect, and prove that this part of the Bitcoin code realizes the proposed
functionality. We then analyze the remainder of the protocol in the simpler world
where the respective code that implements the lottery aspect is replaced by invo-
cations of the corresponding functionality. Using the composition theorem, we
can then immediately combine the two parts into a proof of the full protocol.

Similarly to the backbone protocol from [16] our above UC protocol descrip-
tion of Bitcoin relies only on proofs of work and not on digital signatures. As
a result, it implements a somewhat weaker ledger, which does not guarantee
that transactions submitted by honest parties will eventually make it into the
blockchain.2 As a last result, we show that (similarly to [16]) by incorporating
public-key cryptography, i.e., taking signatures into account in the validation
predicate, we can implement a stronger ledger that ensures that transactions
issued by honest users—i.e., users who do not sign contradicting transactions
and who keep their signing keys for themselves—are guaranteed to be eventu-
ally included into the blockchain. The fact that our protocol is described in UC
makes this a straight-forward, modular construction using the proposed trans-
action ledger as a hybrid. In particular, we do not need to consider the specifics
of the Bitcoin protocol in the proof of this step. This also allows us to identify
the maximum (worst-case) delay a user needs to wait before being guaranteed to
see its transaction on the blockchain and be assured that it will not be inverted.

2 A Composable Model for Blockchain Protocols
in the Permissionless Model

In this section we describe our (G)UC-based model of execution for the Bitcoin
protocol. We remark that providing such a formal model of execution forces us
to make explicit all the implicit assumptions from previous works. As we lay
down the theoretical framework, we will also discuss these assumptions along
with their strengths and differences.

Bitcoin miners are represented as players—formally Interactive Turing
Machine instances (ITIs)—in a multi-party computation. They interact which
each other by exchanging messages over an unauthenticated multicast network
with eventual delivery (see below) and might make queries to a common ran-
dom oracle. We will assume a central adversary A who gets to corrupt miners
and might use them to attempt to break the protocol’s security. As is common
in (G)UC, the resources available to the parties are described as hybrid func-
tionalities. Before we provide the formal specification of such functionalities, we
2 We formulate a weakened guarantee, which we then amplify using digital signatures.
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first discuss a delicate issue that relates to the set of parties (ITIs) that might
interact with an ideal functionality.

Functionalities with Dynamic Party Sets. In many UC functionalities, the
set of parties is defined upon initiation of the functionality and is not subject to
change throughout the lifecycle of the execution. Nonetheless, UC does provide
support for functionalities in which the set of parties that might interact with
the functionality is dynamic. This dynamic nature is an inherent feature of the
Bitcoin protocol—where miners come and go at will. In this work we make this
explicit by means of the following mechanism: All the functionalities considered
here include the following three instructions that allow honest parties to join or
leave the set P of players that the functionality interacts with, and inform the
adversary about the current set of registered parties:3

– Upon receiving (register, sid) from some party pi (or from A on behalf of
a corrupted pi), set P = P ∪ {pi}. Return (register, sid, pi) to the caller.

– Upon receiving (de-register, sid) from some party pi ∈ P, set P := P\{pi}.
Return (de-register, sid, pi) to pi.

– Upon receiving (get-registered, sid) from the adversary A, the function-
ality returns (get-registered, sid,P) to A.

For simplicity in the description of the functionalities, for a party pi ∈ P we
will use pi to refer to this party’s ID.

In addition to the above registration instructions, global setups, i.e., shared
functionalities that are available both in the real and in the ideal world and allow
parties connected to them to share state [11], allow also UC functionalities to
register with them.4 Concretely, global setups include, in addition to the above
party registration instructions, two registration/de-registration instructions for
functionalities:

– Upon receiving (register, sidC) from a functionality F, set F := F ∪ {F}.
– Upon receiving (de-register, sidC) from a functionality F, set F := F \{F}.
– Upon receiving (get-registered-f, sidC) from the adversary A, the func-

tionality returns (get-registered-f, sidC , F ) to A.

The above three (or six in case of global setups) instructions will be part of
the code of all ideal functionalities considered in this work. However, to keep the
description simpler we will omit these instructions from the formal descriptions.
We are now ready to formally describe each of the available functionalities.

3 Note that making the set of parties dynamic means that the adversary needs to be
informed about which parties are currently in the computation so that he can chose
how many (and which) parties to corrupt.

4 Although we allow no communication between functionalities, we will allow func-
tionalities to communicate with global setups. (They can use the interface of global
setups to additional honest parties, which is anyway open to the environment.)
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The Communication Network. In Bitcoin, parties/miners communicate over
an incomplete network of asynchronous unauthenticated unidirectional chan-
nels. Concretely, every miner chooses a set of other miners as its immediate
neighbors—typically by using some public information on IP addresses of exist-
ing miners—and uses its neighbors to send messages to all the miners in the Bit-
coin network. This corresponds to multicasting the message5. This is achieved
by a standard diffusion mechanism: The sender sends the message it wishes to
multicast to all its neighbors who check that a message with the same content
was not received before, and if this is the case forward it to their neighbors,
who then do the same check, and so on. We make the following two assumptions
about the communication channels in the above diffusion mechanism/protocol:

– They guarantee (reliable) delivery of messages within a delay parameter Δ,
but are otherwise specified to be of asynchronous nature (see below) and
hence no protocol can rely on timings regarding the delivery of messages.
The adversary might delay any message sent through such a channel, but at
most by Δ. In particular, the adversary cannot block messages. However, he
can induce an arbitrary order on the messages sent to some party.

– The receiver gets no information other than the messages themselves. In par-
ticular, a receiver cannot link a message to its sender nor can he observe
whether or not two messages were sent from the same sender.

– The channel offers no privacy guarantees. The adversary is given read access
to all messages sent on the network.

Our formal description of communication with eventual delivery within the
UC framework builds on ideas from [5,13,17]. In particular, we capture such
communication by assuming for each miner pj ∈ P a multi-use unicast chan-
nel Fu-ch with receiver pj , to which any miner pi ∈ P can connect and input
messages to be delivered to pj ∈ P. A miner connecting to the unicast channel
with receiver pj corresponds to the above process of looking up pj and making
him one of its access points. The unicast channel does not provide any infor-
mation to its receiver about who else is using it. In particular, messages are
buffered but the information of who is the sender is deleted; instead, the channel
creates unique independent message-IDs that are used as handles for the mes-
sages. Furthermore, the adversary—who is informed about both the content of
the messages and about the handles—is allowed to delay messages by any finite
amount, and allowed to deliver them in an arbitrary out-of-order manner.

To ensure that the adversary cannot arbitrarily delay the delivery of messages
submitted by honest parties, we use the following idea: We first turn the UC
channel-functionality to work in a “fetch message” mode, where the channel
delivers the message to its intended recipient pj if and only if pj asks to receive
it by issuing a special “fetch” command. If the adversary wishes to delay the
delivery of some message with message ID mid, he needs to submit to the channel
5 In [16] this mechanism is referred to as “broadcast”; here, we use multicast to make

explicit the fact that this primitive is different from a standard Byzantine-agreement-
type broadcast, in that it does not guarantee any consistency for a malicious sender.
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functionality an integer value Tmid—the delay for message with ID mid. This will
have the effect that the channel ignores the next Tmid fetch attempts, and only
then allows the receipt of the sender’s message. Importantly, we require that the
channel does not accept more than Δ accumulative delay on any message. To
allow the adversary freedom in scheduling the delivery of messages, we allow him
to input delays more than once, which are added to the current delay amount. If
the adversary wants to deliver the message in the next activation, all he needs to
do is submit a negative delay. Furthermore, we allow the adversary to schedule
more than one messages to be delivered in the same “fetch” command. Finally, to
ensure that the adversary is able to re-order such batches of messages arbitrarily,
we allow A to send special (swap,mid,mid′) commands that have as an effect
to change the order of the corresponding messages. The detailed specification of
the described channels, denoted Fu-ch is provided in the full version [6]. Note
that in the descriptions throughout the paper, for a vector �M we denote by the
symbol || the operation which adds a new element to �M .

From Unicast to Multicast. As already mentioned, the Bitcoin protocol
uses the above asynchronous-and-bounded-delay unicast network as a basis to
achieve a multicast mechanism. A multicast functionality with bounded delay
can be defined similarly to the above unicast channel. The main difference is
that once a message is inserted it is recorded once for each possible receiver. The
adversary can add delays to any subset of messages, but again for any message
the cumulative delay cannot exceed Δ. He is further allowed to do partial and
inconsistent multicasts, i.e., where different messages are sent to different parties.
This is the main difference of such a multicast network from a broadcast network.
The detailed specification of the corresponding functionality Fn-mc is similar to
that of Fu-ch and is provided in the full version [6]. There we also show how the
simple round-based diffusion mechanism can be used to implement a multicast
mechanism from unicast channels as long as the corresponding network among
honest parties stays strongly connected. (A network graph is strongly connected
if there is a directed path between any two nodes in the network, where the
unicast channels are seen as the directed edges from sender to receiver.)

The Random Oracle. As usual in cryptographic proofs, the queries to the hash
function are modeled by assuming access to a random oracle (functionality) Fro.
This functionality is specified as follows: upon receiving a query (eval, sid, x)
from a registered party, if x has not been queried before, a value y is chosen
uniformly at random from {0, 1}κ (for security parameter κ) and returned to
the party (and the mapping (x, y) is internally stored). If x has been queried
before, the corresponding y is returned.

Synchrony. Katz et al. [17], proposed a methodology for casting synchronous
protocols in UC by assuming they have access to an ideal functionality Gclock,
the clock, that allows parties to ensure that they proceed in synchronized rounds.



332 C. Badertscher et al.

Informally, the idea is that the clock keeps track of a round variable whose value
the parties can request by sending it (clock-read, sidC). This value is updated
only once all honest parties sent the clock a (clock-update, sidC) command.

Given such a clock, the authors of [17] describe how synchronous proto-
cols can maintain their necessary round structure in UC: For every round ρ
each party first executes all its round-ρ instructions and then sends the clock a
clock-update command. Subsequently, whenever activated, it sends the clock
a clock-read command and does not advance to round ρ+1 before it sees the
clocks variable being updated. This ensures that no honest party will start round
ρ + 1 before every honest party has completed round ρ. In [19], this idea was
transfered to the (G)UC setting, by assuming that the clock is a global setup.
This allows for different protocols to use the same clock and is the model we will
also use here. The detailed specification of Gclock is given in the full version [6].

As argued in [17], in order for an eventual-delivery (aka guaranteed termina-
tion) functionality to be UC implementable by a synchronous protocol, it needs
to keep track of the number of activations that an honest party gets—so that it
knows when to generate output for honest parties. This requires that the pro-
tocol itself, when described as a UC interactive Turing-machine instance (ITI),
has a predictable behavior when it comes to the pattern of activations that it
needs before it sends the clock an update command. We capture this property
in a generic manner in Definition 1.

In order to make the definition better accessible, we briefly recall the mechan-
ics of activations in UC. In a UC protocol execution, an honest party (ITI) gets
activated either by receiving an input from the environment, or by receiving a
message from one of its hybrid-functionalities (or from the adversary). Any acti-
vation results in the activated ITI performing some computation on its view of
the protocol and its local state and ends with either the party sending a message
to some of its hybrid functionalities or sending an output to the environment, or
not sending any message. In either of this case, the party loses the activation.6

For any given protocol execution, we define the honest-input sequence �IH

to consist of all inputs that the environment gives to honest parties in the
given execution (in the order that they were given) along with the identity
of the party who received the input. For an execution in which the envi-
ronment has given m inputs to the honest parties in total, �IH is a vector
of the form ((x1, pid1), . . . , (xm, pidm)), where xi is the i-th input that was
given in this execution, and pidi is the corresponding party who received this
input. We further define the timed honest-input sequence, denoted as �IT

H , to
be the honest-input sequence augmented with the respective clock time when
an input was given. If the timed honest-input sequence of an execution is �IT

H =
((x1, pid1, τ1), . . . , (xm, pidm, τm)), this means that ((x1, pid1), . . . , (xm, pidm))
is the honest-input sequence corresponding to this execution, and for each i ∈ [n],
τi is the time of the global clock when input xi was handed to pidi.

6 In the latter case the activation goes to the environment by default.
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Definition 1. A Gclock-hybrid protocol Π has a predictable synchronization
pattern iff there exist an algorithm predict-timeΠ(·) such that for any possible
execution of Π (i.e., for any adversary and environment, and any choice of
random coins) the following holds: If �IT

H = ((x1, pid1, τ1), . . . , (xm, pidm, τm))
is the corresponding timed honest-input sequence for this execution, then for any
i ∈ [m − 1] : predict-timeΠ((x1, pid1, τ1), . . . , (xi, pidi, τi)) = τi+1.

As we argue, all synchronous protocol described in this work are designed to
have a predictable synchronization pattern.

Assumptions as UC Functionality Wrappers. In order to prove statements
about cryptographic protocols one often makes assumptions about what the
environment can or cannot do. For example, a standard assumption in [16,29] is
that in each round the adversary cannot do more calls to the random oracle than
what the honest parties (collectively) can do. This can be captured by assuming a
restricted environment and adversary which balances the amount of times that
the adversary queries the random oracle. In a property-based treatment such
as [16,29] this assumptions is typically acceptable.

However, in a simulation-based definition, restricting the class of adversaries
and environments in a security statement means that we can no longer generically
apply the composition theorem, which dismisses one of the major advantages of
using simulation-based security in the first place. Therefore, instead of restrict-
ing the class of environments/adversaries, here we take a different approach to
capture the fact that the adversary’s access to the RO is restricted with respect
to that of honest parties. In particular, we capture this assumption by means of
a functionality wrapper that wraps the RO functionality and forces the above
restrictions on the adversary, for example by assigning to each corrupted party
at most q activations per round for a parameter q. To keep track of rounds the
functionality registers with the global clock Gclock. We refer the reader to [6] for
a detailed specification of such a wrapped random-oracle functionality Wq(Fro).

Remark 1 (Functionally Black-box Use of the Network (Delay)). A key difference
between the models in [16,29] is that in the latter the parties do not know
any bound on the delay of the network. In particular, although both models
are in the synchronous setting, in [29] a party in the protocol does not know
when to expect a message which was sent to it in the previous round. Using
terminology from [32], the protocol uses the channel in a functionally black-
box manner. Restricting to such protocols—a restriction which we also adopt
in this work—is in fact implying a weaker assumption on the protocol than
standard (known) bounded-delay channel. Intuitively the reason is that no such
protocol can realize a bounded-delay network with a known upper bound (unless
it sacrifices termination) since the protocol cannot decide whether or not the
bound has been reached.
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3 The Transaction-Ledger Functionality

In this section we describe our ledger functionality, denoted as Gledger, which
can, for example, be achieved by (a UC version) of the Bitcoin protocol. As
in [19], our ledger is parametrized by certain algorithms/predicates that allow
us to capture a more general version of a ledger which can be instantiated by
various cryptocurrencies. Since our abstraction of the Bitcoin protocol is in the
synchronous model of computation (this is consistent with known approaches
in the cryptographic literature), our ledger is also designed for this synchronous
model. Nonetheless, several of our modeling choices are made with the foresight
of removing or limiting the use of the clock and leaving room for less synchrony.

At a high level, our ledger Gledger has a similar structure as the ledger
proposed in [19]. Concretely, anyone (whether an honest miner or the adver-
sary) might submit a transaction which is validated by means of a predicate
Validate, and if it is found valid it is added to a buffer buffer. The adversary A
is informed that the transaction was received and is given its contents.7 Infor-
mally, this buffer also contains transactions that, although validated, are not yet
deep enough in the blockchain to be considered out-of-reach for a adversary.8

Periodically, Gledger fetches some of the transactions in the buffer, and using
an algorithm Blockify creates a block including these transactions and adds this
block to its permanent state state, which is a data structure that includes the
part of the blockchain the adversary can no longer change. This corresponds to
the common prefix in [16,29]. Any miner or the adversary is allowed to request
a read of the contents of the state.

This sketched specification is simple, but in order to have a ledger that can be
implemented by existing blockchain protocols, we need to relax this functionality
by giving the adversary more power to interfere with it and influence its behavior.
Before sketching the necessary relaxations we discuss the need for a new ledger
definition and it potential use as a global setup.

Remark 2 (Impossibility to realize the ledger of [19]). The main reasons why the
ledger in [19] is not realizable by known protocols under reasonable assumptions
are as follows: first, their ledger guarantees that parties always obtain the same
common state. Even with strong synchrony assumptions, this is not realizable
since an adversary, who just mined a new block, is not forced to inform each party
instantaneously (or at all) and thus could, e.g., make parties observe different
lengths of the same prefix. Second, the adversarial influence is restricted to
permuting the buffer. This is too optimistic, as in reality the adversary can
try to mine a new block and possibly exclude certain transactions. Also, this
excludes any possibility to quantify quality. Third, letting the update rate be
fixed does not adequately reflect the probabilistic nature of blockchain protocols.

7 This is inevitable since we assume non-private communication, where the adversary
sees any message as soon as it is sent, even if the sender and receiver are honest.

8 E.g., in [19] the adversary is allowed to permute the contents of the buffer.
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Remark 3 (On the sound usage of a ledger as a global setup). As presented in [19],
a UC ledger functionality Gledger can be cast as a global setup [11] which allows
different protocols to share state. This is true for any UC functionality as stated
in [11,12]. Nonetheless, as pointed out in the recent work of Canetti et al. [12],
one needs to be extra careful when replacing a global setup by its implementa-
tion, e.g., in the case of Gledger by the UC Bitcoin protocol of Sect. 4. Indeed,
such a replacement does not, in general, preserve a realization proof of some
ideal functionality F that is conducted in a ledger-hybrid world, because the
simulator in that proof might rely on specific capabilities that are not available
any more after replacement (as the global setup is also replaced in the ideal
world). The authors of [12] provide a sufficient condition for such a replacement
to be sound. This condition is generally too strong to be satisfied by any natural
ledger implementation, which opens the question of devising relaxed sufficient
conditions for sound replacements in an MPC context. As this work focuses on
the realization of ledger functionalities per se, we can treat Gledger as a standard
UC functionality.

In the following, we review the necessary relaxations to obtain a realizable
ledger. We conclude this section with the specification of our generic ledger
functionality.

State-Buffer Validation. The first relaxation is with respect to the invariant that
is enforced by the validation predicate Validate. Concretely, in [19] it is assumed
that the validation predicate enforces that the buffer does not include conflicting
transactions, i.e., upon receipt of a transaction, Validate checks that it is not in
conflict with the state and the buffer, and if so the transaction is added to the
buffer. However, in reality we do not know how to implement such a strong filter,
as different miners might be working on different, potentially conflicting sets of
transactions. The only time when it becomes clear which of these conflicting
transactions will make it into the state is once one of them has been inserted
into a block which has made it deep enough into the blockchain (i.e., has become
part of state). Hence, given that the buffer includes all transactions that might
end up in the state, it might at some point include both conflicting transactions.

To enable us for a provably implementable ledger, in this work we take a
different approach. The validate predicate will be less restrictive as to which
transactions make it into the buffer. Concretely, at the very least, Validate will
enforce the invariant that no single transaction in the buffer contradicts the state
state, while different transactions in buffer might contradict each other. Looking
ahead, a stronger version that is achievable by employing digital signatures (pre-
sented in Sect. 5), could enforce that no submitted transaction contradicts other
submitted transactions. As in [19], whenever a new transaction x is submitted
to Gledger, it is passed to Validate which takes as input a transaction and the
current state and decides if x should be added to the buffer. Additionally, as
buffer might include conflicts, whenever a new block is added to the state, the
buffer (i.e., every single transaction in buffer) is re-validated using Validate and
invalid transactions in buffer are removed. To allow for this re-validation to be
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generic, transactions that are added to the buffer are accompanied by certain
metadata, i.e., the identity of the submitter, a unique transaction ID txid 9, or
the time τ when x was received.

State Update Policies and Security Guarantees. The second relaxation is with
respect to the rate and the form and/or origin of transactions that make it into
a block. Concretely, instead of assuming that the state is extended in fixed time
intervals, we allow the adversary to define when this update occurs. This is done
by allowing the adversary, at any point, to propose what we refer to as the next-
block candidate NxtBC. This is a data structure containing the contents of the
next block that A wants to have inserted into the state. Leaving NxtBC empty
can be interpreted as the adversary signaling that it does not want the state to
be updated in the current clock tick.

Of course allowing the adversary to always decide what makes it into the
state state, or if anything ever does, yields a very weak ledger. Intuitively, this
would be a ledger that only guarantees the common prefix property [16] but
no liveness or chain quality. Therefore, to enable us to capture also stronger
properties of blockchain protocols we parameterize the ledger by an algorithm
ExtendPolicy that, informally, enforces a state-update policy restricting the
freedom of the adversary to choose the next block and implementing an appro-
priate compliance-enforcing mechanism in case the adversary does not follow
the policy. This enforcing mechanism simply returns a default policy-complying
block using the current contents of the buffer. We point out that a good simula-
tor for realizing the ledger will avoid triggering this compliance-enforcing mech-
anism, as this could result in an uncontrolled update of the state which would
yield a potential distinguishing advantage. In other words, a good simulator, i.e.,
ideal-world adversary, always complies with the policy.

In a nutshell, ExtendPolicy takes the current contents of the buffer buffer,
along with the adversary’s recommendation NxtBC, and the block-insertion times
vector �τstate. The latter is a vector listing the times when each block was inserted
into state. The output of ExtendPolicy is a vector including the blocks to
be appended to the state during the next state-extend time-slot (where again,
ExtendPolicy outputting an empty vector is a signal to not extend). To ensure
that ExtendPolicy can also enforce properties that depend on who inserted how
many (or which) blocks into the state—e.g. the so-called chain quality property
from [16]—we also pass to it the timed honest-input sequence �IT

H (cf. Sect. 2).
Some examples of how ExtendPolicy allows us to define ways that the pro-

tocol might restrict the adversary’s interference in the state-update include the
following properties from [16]:

– Liveness corresponds to ExtendPolicy enforcing the following policy: If the
state has not been extended for more that a certain number of rounds and the

9 In Bitcoin, txid would be the hash-pointer corresponding to this transaction. Note
that the generic ledger can capture explicit guarantees on the ability or disabil-
ity to link transactions, as this crucially depends on the concrete choice of an ID
mechanism.
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simulator keeps recommending an empty NxtBC, ExtendPolicy can choose
some of the transactions in the buffer (e.g., those that have been in the buffer
for a long time) and add them to the next block. Note that a good ideal-world
adversary will never allow for this automatic update to happen and will make
sure that he keeps the state extend rate within the right amount.

– Chain quality corresponds to ExtendPolicy enforcing the following policy:
ExtendPolicy looks into the blocks of state for a special type of transaction
(corresponding to a so-called coinbase transaction) and parses the state (using
the sequence of honest inputs �IT

H and the block-insertion times vector �τstate)
to see how long ago (in time or block-number) the last block that gave a
block-mining reward to some honest party was inserted into the state. If this
happened “too long” ago (this will be a parameter of this ExtendPolicy),
then ExtendPolicy forces the coinbase transaction of the next block to have
as the miner ID the ID submitted by some honest miner.

In addition to the above standard properties, ExtendPolicy allows us to also
capture additional security properties of various blockchain protocols, e.g., the
fact that honest transactions eventually make it into a block and the fact that
transactions with higher rewards make it into a block faster than others.

In Sect. 4 where we prove the security of Bitcoin, we will provide the con-
crete specification of Validate and ExtendPolicy for which the Bitcoin protocol
realizes our ledger.

Output Slackness and Sliding Window of State Blocks. The common prefix prop-
erty guarantees that blocks which are sufficiently deep in the blockchain of an
honest miner will eventually be included in the blockchain of every honest miner.
Stated differently, if an honest miner receives as output from the ledger a state
state, every honest miner will eventually receive state as its output. However, in
reality we cannot guarantee that at any given point in time all honest miners
see exactly the same blockchain length; this is especially the case when network
delays are incorporated into the model, but it is also true in the zero-delay model
of [16]. Thus it is unclear how state can be defined so that at any point all parties
have the same view on it.

Therefore, to have a ledger implementable by standard assumptions we make
the following relaxation: We interpret state as the view of the state of the miner
with the longest blockchain. And we allow the adversary to define for every
honest miner pi a subchain statei of state of length |statei| = pti that corresponds
to what pi gets as a response when he reads the state of the ledger (formally,
the adversary can fix a pointer pti). For convenience, we denote by state|pti

the
subchain of state that finishes in the pti-th block. Once again, to avoid over-
relaxing the functionality to an unuseful setup, our ledger allows the adversary to
only move the pointers forward and it forbids the adversary to define pointers for
honest miners that are too far apart, i.e., more than windowSize state blocks.
The parameter windowSize ∈ N denotes a core parameter of the ledger. In
particular, the parameter windowSize reflects the similarity of the blockchain to
the dynamics of a so-called sliding window, where the window of size windowSize
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contains the possible views of honest miners onto state and where the head of
the window advances with the head of the state. In addition, it is convenient
to express security properties of concrete blockchain protocols, including the
properties discussed above, as assertions that hold within such a sliding window
(for any point in time).

Synchrony. In order to keep the ideal execution indistinguishable from the real
execution, the adversary should be unable to use the clock for distinguishing.
Since in the ideal world when a dummy party receives a clock-update-message
for Gclock it will forward it, the ledger needs to be responsible that the clock
counter does not advance before all honest parties have received sufficiently many
activations. This is achieved by the use of the function predict-time(�IT

H) (see
Definition 1), which, as we show, is defined for our ledger protocol. This function
allows Gledger to predict when the protocol would update the round and ensure
that it only allows the clock to advance if and only if the protocol would. Observe
that the ledger sees all protocol-relevant inputs/activations to honest parties and
can therefore easily keep track of the honest inputs sequence �IT

H .
A final observation is with respect to guarantees that the protocol (and there-

fore also the ledger) can give to recently registered honest parties. Consider the
following scenario: An honest party registers as miner in round r and waits to
receive from honest parties the transactions to mine and the current longest
blockchain. In Bitcoin, upon joining, the miner sends out a special request—we
denote this here as a special new-miner-message—and as soon as any party
receives it, it responds with the set of transactions and longest blockchain it
knows. Due to the network delay, the parties might take up to Δ rounds to
receive the new-miner notification, and their response might also take up to
Δ rounds before it arrives to the new miner. However, because we do not make
any assumption on honest parties knowing Δ (see Remark 1) they need to start
mining as soon as a message arrives (otherwise they might wait indefinitely).
But now the adversary, in the worst case, can make these parties mine on any
block he wants and have them accept any valid chain he wants as the current
state while they wait for the network’s response: simply delay everything sent
to these parties by honest miners by the maximum delay Δ, and instead, imme-
diately deliver what you want them to work on. Thus, for the first Delay := 2Δ
rounds10 (where Delay is a parameter of our ledger) these parties are practically
in the control of the adversary and their computing power is contributed to his.
We will call such miners de-synchronized and denote the set of such miners by
PDS . The formal specification of our ledger functionality Gledger is given in the
following. Using standard notation, we write [n] to denote the set {1, . . . , n}.

10 For technical reasons described in Sect. 4.1, Δ rounds in the protocol correspond to
2Δ clock-ticks.
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4 Bitcoin as a Transaction Ledger Protocol

In this section we prove our main theorem, namely that, under appropriate
assumptions, Bitcoin realizes an instantiation of the ledger functionality from
the previous section. More concretely, we cast the Bitcoin protocol as a UC pro-
tocol, where consistent with the existing methodology we assume that the pro-
tocol is synchronous, i.e., parties can keep track of the current round by using
an appropriate global clock functionality. We first describe the UC protocol,
denoted Ledger-Protocol, in Sect. 4.1 which abstracts the components of Bitcoin
that are relevant for the construction of such a ledger—similar to how the back-
bone protocol [16] captures core Bitcoin properties in their respective model of
computation. Later, in Sect. 4.2, we specify the ledger functionality GB

ledger that
is implemented by the UC ledger protocol as an instance of our general ledger
functionality, i.e., by providing appropriate instantiations of algorithms Validate,
Blockify, and ExtendPolicy. In fact, for the sake of generality, we specify generic
classes of Validate and Blockify and parameterize our Ledger-Protocol with these
classes, so that the security statement still stays generic. We then prove our main
theorem (Theorem 1) which can be described informally as follows:

Theorem (informal). Let Validate be the class of predicates that only take into
account the current state and a transaction (i.e., no transaction IDs, time, or
party IDs), and let windowSize = ω(log κ), κ being the length of the outputs of
the random oracle. Then, for an appropriate ExtendPolicy and for any func-
tion Blockify, the protocol Ledger-Protocol instantiated with algorithms Validate
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and Blockify securely realizes a ledger functionality GB
ledger (the generic ledger

instantiated with the above functions) under the following assumptions on net-
work delays and mining power, where mining power is roughly understood as
the ability to find proofs of work via queries to the random oracle (and will be
formally defined later):

– In any round of the protocol execution, the collective mining power of the
adversary, contributed by corrupted and temporarily de-synchronized miners,
does not exceed the mining power of honest (and synchronized) parties in
that round. The exact relation additionally captures the (negative) impact of
network delays on the coordination of mining power of honest parties.

– No message can be delayed in the network by more than Δ = O(1) rounds.

We prove the above theorem via what we believe is a useful modularization
of the Bitcoin protocol (cf. Fig. 1). Informally, this modularization distills out
form the protocol a reactive state-extend subprocess which captures the lottery
that decides which miner gets to advance the blockchain next and additionally
the process of propagating this state to other miners. Lemma1 shows that the
state-extend module/subprocess implements an appropriate reactive UC func-
tionality FStX. We can then use the UC composition theorem which allows us
to argue security of Ledger-Protocol in a simpler hybrid world where, instead of
using this subprocess, parties make calls to the functionality FStX. We conclude
this section (Subsect. 4.4) by showing how both the GKL and PSs protocols can
be cast as special cases of our protocol which provides the basis for comparing
the different models and their respective assumptions.

4.1 The Bitcoin Ledger as a UC Protocol

In the following we provide the formal description of protocol Ledger-Protocol.
The protocol assumes as hybrids the multi-cast network Fn-mc (recall that we
assume that this network does have an upper bound Δ on the delay unknown
to the protocol) and a random oracle functionality Fro. Before providing the
detailed specification of our ledger protocol, we establish some useful notation
and terminology that we use throughout this section. For compatibility with
existing work, wherever it does not overload notation, we use some of the termi-
nology and notation from [16].

Blockchain. A blockchain C = B1, . . . ,Bn is a (finite) sequence of blocks where
each block Bi = 〈si, sti, ni〉 is a triple consisting of the pointer si, the state block
sti, and the nonce ni. A special block is the genesis block G = 〈⊥, gen,⊥〉 which
contains the genesis state gen. The head of chain C is the block head(C) := Bn

and the length length(C) of the chain is the number of blocks, i.e., length(C) = n.
The chain C�k is the (potentially empty) sequence of the first length(C) − k
blocks of C. The state �st corresponding to C is defined as a sequence of the
corresponding state blocks, i.e., �st := st1|| . . . ||stn. In other words, one should
think of the blockchain C as an encoding of its underlying state �st; such an
encoding might, e.g., organize C is an efficient searchable data structure as is
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Fig. 1. Modularization of the Bitcoin protocol.

the case in the Bitcoin protocol where a blockchain is a linked list implemented
with hash-pointers.

In the protocol, the blockchain is the data structure storing a sequence of
entries, often referred to as transactions. Furthermore, as in [19], in order to cap-
ture blockchains with syntactically different state encoding, we use an algorithm
blockifyB to map a vector of transactions into a state block. Thus, each block
st ∈ �st (except the genesis state) of the state encoded in the blockchain has the
form st = Blockify( �N) where �N is a vector of transactions.

For a blockchain C to be considered a valid blockchain, it needs to satisfy
certain conditions. Concretely, the validity of a blockchain C = B1, . . . ,Bn where
Bi = 〈si, sti, ni〉 depends on two aspects: chain-level validity, also referred to as
syntactic validity, and a state-level validity also referred to as semantic validity.
Syntactic validity is defined with respect to a difficulty parameter D ∈ [κ], where



Bitcoin as a Transaction Ledger: A Composable Treatment 343

κ is the security parameter, and a given hash function H(·) : {0, 1}∗ → {0, 1}κ;
it requires that, for each i > 1, the value si contained in Bi satisfies si = H[Bi−1]
and that additionally H[Bi] < D holds.

The semantic validity on the other hand is defined on the state �st encoded in
the blockchain C and specifies whether this content is valid (which might depend
on a particular application). The validation predicate Validate defined in the ledger
functionality (cf. Sect. 3) plays a similar role. In fact, the semantic validity of the
blockchain can be defined using an algorithm that we denote isvalidstate which
is builds upon the Validate predicate. The idea is that for any choice of Validate,
the blockchain protocol using isvalidstate for semantic validation of the chain
implements the ledger parametrized with Validate. More specifically, algorithm
isvalidstate checks that a given blockchain state can be built in an iterative man-
ner, such that each contained transaction is considered valid according to Validate
upon insertion. It further ensures that the state starts with the genesis state and
that state blocks contain a special coin-base transaction xcoin-baseminerID which assigns
them to a miner. We remark that this only works for predicates Validate which
ignore all information other than the state and transaction that is being vali-
dated.11 To avoid confusion, throughout this section we use ValidTxB to refer to
the validate predicate with the above restriction. The pseudo-code of the algo-
rithm isvalidstate which builds upon ValidTxB is provided in the full version [6].
We succinctly denote by isvalidchainD(C) the predicate that returns true iff chain
C satisfies syntactic and semantic validity as defined above.

The Ledger Protocol. We are now ready to formally define our blockchain pro-
tocol Ledger-Protocolq,D,T (we usually omit the parameters when clear from the
context). The protocol allows an arbitrary number of parties/miners to communi-
cate by means of a multicast network Fn-mc. Note that this means that the adver-
sary can send different messages to different parties. New miners might dynam-
ically joint or leave the protocol by means of the registration/de-registration
commands: when they join they register with all associated functionalities and
when they leave they deregister.12

Each party maintains a local blockchain which initially consists of the gene-
sis block. The chains of honest parties might differ (but as we will prove, it will
have a common prefix which will define the ledger state). New transactions are
added in a ‘mining process’. First, a party collects valid transactions (accord-
ing to ValidTxB) and creates a new state block st using blockifyB. Next, the
party attempts to mine a new block which can be validly added to their local
blockchain. The mining is done using the extendchainD algorithm which takes
as inputs a chain C, a state block st, and the number q of attempts. The core

11 Recall that in the general ledger description, Validate might depend on some associ-
ated metadata; although this might be useful to capture alternative blockchains, it is
not the case for Bitcoin.

12 Note that when a party registers to a local functionality such as the network or the
random oracle it does not lose its activation token. This is a subtle point to ensure
that the real and ideal worlds are in-sync regarding activations.
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idea of the algorithm is to find a proof-of-work which allows to extend C by a
block which encodes st. The pseudo-code of this algorithm is provided in the
full version [6]. After each mining attempt parties will multicast their current
chain. A party will replace its local chain if it receives a longer chain. When
queried to output the state of the ledger, Ledger-Protocol outputs the state of its
longest chain, where it first chops-off the most recent T blocks. This behavior
will ensure that all honest parties output a consistent ledger state.

As already mentioned, our Bitcoin-Ledger protocol proceeds in rounds which
are implemented by using a global synchronization clock Gclock. For formal rea-
sons that have to do with how activations are handled in UC, we have each round
correspond to two sub-rounds (also known as mini-rounds). To avoid confusion
we refer to clock rounds as clock-ticks. We say that a protocol is in round r if the
current time of the clock is τ ∈ {2r − 1, 2r}. In fact, having two clock-ticks per
round is the way to ensure in synchronous UC that messages (e.g., a block) sent
within a round are delivered at the beginning of the next round. The idea is that
each round is divided into two mini-rounds, where each mini-round corresponds
to a clock tick, and treat the first mini-round as a working mini-round where
parties might mine new blocks and submit them to the multicast network for
delivery, and in the second reading mini-round they simply fetch messages from
the network to obtain messages sent in the previous round. The pseudo-code of
this UC blockchain protocol, denoted as Ledger-Protocol, is provided in the full
version [6], where we also argue that the protocol satisfies Definition 1.

4.2 The Bitcoin Ledger

We next show how to instantiate the ledger functionality from Sect. 3 with appro-
priate parameters so that it is implemented by protocol Ledger-Protocol. To
define this Bitcoin ledger GB

ledger, we need to give specific instantiations of the
three functions Validate, Blockify, and ExtendPolicy.

As mentioned above, in case of Validate we use the same predicate as the
protocol uses to validate the states: For a given transaction x and a given state
state, the predicate decides whether this transaction is valid with respect to
state. Given such a validation predicate, the ledger validation predicate takes
a specific simple form which, excludes dependency on anything other than the
transaction x and the state state, i.e., for any values of txid, τL, pi, and buffer:

Validate((x, txid, τL, pi), state, buffer) := ValidTxB(x, state).

Blockify can be an arbitrary algorithm, and if the same algorithm is used in
Ledger-Protocol the security proof will go through. However, as discussed below
(in Definition 2), a meaningful Blockify should be in certain relation with the
ledger’s Validate predicate. (This relation is satisfied by the Bitcoin protocol.)

Finally, we define ExtendPolicy. At a high level, upon receiving a list of pos-
sible candidate blocks which should go into the state of the ledger, ExtendPolicy
does the following: for each block it first verifies that the blocks are valid with
respect to the state they extend. (Only valid blocks might be added to the state.)
Moreover, ExtendPolicy ensures the following property:
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1. The speed of the ledger is not too fast. This is implemented by defining a
bound minTimewindow on the time (number of rounds) within which no more
than windowSize state blocks can be added.

2. The speed of the ledger is not too slow. This is implemented by defining a
bound maxTimewindow within which at least windowSize state blocks have to
be added. This is known as minimal chain-growth.

3. The adversary cannot claim too many block for parties it is corrupting. This
is formally enforced by defining an upper bound η on the number of these
so-called adversarial blocks within a sequence of state blocks. This is known
as chain quality. Formally, this is enforced by requiring that a certain fraction
of blocks need to start with a coinbase transaction that is associated with an
actual honest and synchronized party.

4. Last but not least, ExtendPolicy guarantees that if a transaction is “old
enough”, and still valid with respect to the actual state, then it is included
into the state. This is a weak form of guaranteeing that a transaction will
make it into the state unless it is in conflict. As we show in Sect. 5, this
guarantee can be amplified by using digital signatures.

In order to enforce these policies, ExtendPolicy first defines an alternative block,
which satisfies all of the above criteria in an ideal way, and whenever it catches
the adversary in trying to propose blocks that do not obey the policies, it pun-
ishes the adversary by proposing its own generated block. The formal description
of the extend policy (as pseudo-code) for GB

ledger is given in the full version [6].

On the Relation Between Blockify and Validate. As already discussed above,
ExtendPolicy guarantees that the adversary cannot block the extension of the
state indefinitely, and that occasionally an honest miner will receive the block
reward (via the coin-base) transaction. These correspond to the chain-growth
and chain-quality properties from [16]. However, our generic ExtendPolicy
makes explicit that a priori, we cannot exclude that the chain always extends
with blocks that include a coin-base transaction only, i.e., any submitted trans-
action is ignored and never inserted into a new blocks. This issue is an orthog-
onal one to ensuring that honest transactions are not invalidated by adversarial
interaction—which, as argued in [16], is achieved by adding digital signatures.

To see where this could be problematic in general, consider a blockify that,
at a certain point, creates a block that renders all possible future transactions
invalid. Observe that this does not mean that our protocol is insecure and that
this is as well possible for the protocols of [16,29]; indeed our proof shows that
the protocol will give exactly the same guarantees as an Gledger parametrized
with such an algorithm Blockify.

Nonetheless, a look in reality indicates that this situation never occurs with
Bitcoin. To capture that this is the case, Validate and Blockify need to be in a
certain relation with each other. Informally, this relation should ensure that the
above sketched situation never occurs. A way to ensure this, which is already
implemented by the Bitcoin protocol, is by restricting Blockify to only make an
invertible manipulation of the blocks when they are inserted into the state—e.g.,
be an encoding function of a code—and define Validate to depend on the inverse
of Blockify. This is captured in the following definition.



346 C. Badertscher et al.

Definition 2. A co-design of Blockify and Validate is non-self-disqualifying if
there exists an efficiently computable function Dec mapping outputs of Blockify
to vectors �N such that there exists a validate predicate Validate′ for which the fol-
lowing properties hold for any possible state state = st1|| . . . ||st�, buffer buffer,

vectors �N := (x1, . . . , xm), and transaction x:

1.Validate(x, state, buffer) = Validate′(x, Dec(st1)|| . . . ||Dec(st�), buffer)

2.Validate(x, state||Blockify( �N), buffer)

= Validate′(x, Dec(st1)|| . . . ||Dec(st�)|| �N, buffer)

We remark that the actual validation of Bitcoin does satisfy the above def-
inition, since a transaction is only rendered invalid with respect to the state if
the coins it is trying to spend have already been spent, and this only depends
on the transactions in the state and not the metadata added by Blockify. Hence,
in the following, we assume that ValidTxB and blockifyB satisfy the relation in
Definition 2.

4.3 Security Analysis

We next turn to the security analysis of our protocol. As already mentioned,
we argue security in two step. In a first step, we distill out from the protocol
Ledger-Protocol a state-extend subprocess, denoted as StateExchange-Protocol,
and devise an alternative, modular description of the Ledger-Protocol protocol
in which every party makes invocations of this subprocess. We denote this mod-
ularized protocol by Modular-Ledger-Protocol. By a game-hopping argument, we
prove that the original protocol Ledger-Protocol and the modularized protocol
Modular-Ledger-Protocol are in fact functionally equivalent. The advantage of
having such a modular description is that we are now able to define an appro-
priate ideal functionality FStX that is realized by StateExchange-Protocol. Using
the universal composition theorem we can deduce that Ledger-Protocol UC emu-
lates Modular-Ledger-Protocol where invocations of StateExchange-Protocol are
replaced by invocations of FStX. The second step of the proof consists of proving
that, under appropriate assumptions, Modular-Ledger-Protocol, where invoca-
tions of StateExchange-Protocol are replaced by invocations of FStX, implements
the Bitcoin ledger described in Sect. 4.2.

Step 1. The state-exchange functionality FStX allows parties to submit ledger
states which are accepted with a certain probability. Accepted states are then
multicast to all parties. Informally, it can be seen as lottery on which (valid)
states are exchanged among the participants. Parties can use FStX to multicast
a valid state, but instead of accepting any submitted state and sending it to all
(registered) parties, FStX keeps track of all states that it ever saw, and imple-
ments the following mechanism upon submission of a new ledger state �st and
a state block st from any party: If �st was previously submitted to FStX and
�st||st is a valid state, then FStX accepts �st||st with probability pH (resp. pA
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for dishonest parties); accepted states are then sent to all registered parties. The
formal specification follows:

The Modular-Ledger-Protocol uses the same hybrids as Ledger-Protocol but
abstracts the lottery implemented by the mining process by making calls to
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the above state exchange functionality FΔ,pH ,pA

StX . The detailed specification of
the Modular-Ledger-Protocol protocol can be found in the full version [6]. Note
that the only remaining parameter of Modular-Ledger-Protocol is the chop-off
parameter T , the rest is part of FΔ,pH ,pA

StX . The following Lemma states that
our Bitcoin protocol implements the above modular ledger protocol. The proof
appears in [6].

Lemma 1. The UC blockchain protocol Ledger-Protocolq,D,T UC emulates the
protocol Modular-Ledger-ProtocolT that runs in a hybrid world with access to the
functionality FΔ,pH ,pA

StX with pA := D
2κ and pH = 1 − (1 − pA)q, and Δ denotes

the network delay.

Step 2. We are now ready to complete the proof of our main theorem. Before
providing the formal statement it is useful to discuss some of the key properties
used in both, the statement and the proof. The security of the Bitcoin protocol
depends on various key properties of an execution. This means that its security
depends on the number of random oracle queries (or, in the FStX hybrid world,
the number of submit-queries) by the pool of corrupted miners. Therefore it
is important to capture the relevant properties of such a UC execution. In the
following we denote by upper-case R the number of rounds of a given protocol
execution.

Capturing Query Power in an Execution. In an execution, we measure the query
power per logical round r, which can be conveniently captured as a function
Tqp(r). We observe that in an interval of, say, trc rounds, the total number of
queries is

Qr′
trc

=
r′+trc−1∑

r=r′
Tqp(r).

In each round r ∈ [R], each honest miner gets a certain number q
(r)
i of

activations from the environment to maintain the ledger (i.e., to try to extend
the state). Let

q
(r)
H :=

∑

pi honest in round r

q
(r)
i .

Also, the adversary makes a certain number q
(r)
A of queries to FStX. We get

Tqp(r) = q
(r)
A + q

(r)
H .

Quantifying Total Mining Power in an Execution. Mining power is the expected
number of successful state extensions, i.e., the number of times a new state block
is successfully mined. The mining power of round r is therefore

Tmp(r) := q
(r)
A · pA + q

(r)
H · pH .
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Recall that pH is the success probability per query of an honest miner and
pA is the success probability per query of a corrupted miner. If pA = p and
pH = 1−(1−p)q, it is convenient to consider (q(r)A +q ·q(r)H ) ·p as the total mining
power (by applying Bernoulli’s inequality). Within an interval of trc rounds, we
can for example quantify the overall expectation by Ttotal

mp (trc) :=
∑trc

r=1 Tmp(r).
This allows to formulate the goal of a re-calibration of the difficulty parameter
as requiring that this value should be 2016 blocks for trc corresponding a desired
time bound (such as roughly two weeks), which is part of future work.

Quantifying Adversarial Mining Power in an Execution. The adversarial mining
power mpA(r) per round is made up of two parts: first, queries by corrupted
parties, and second, queries by honest, but de-synchronized miners.

mpA(r) := pA · q
(r)
A + pH ·

∑

pi is de-sync

q
(r)
i .

Recall that a party is considered desynchronized for 2Δ rounds after its
registration.

It is convenient to measure the adversary’s contribution to the mining power
as the fraction of the overall mining power. In particular, we assume there is a
parameter ρ ∈ (0, 1) such that in any round r, the relation mpA(r) ≤ ρ · Tmp(r)
holds. We then define βr := ρ · Tmp(r). Looking ahead, if a model is flat, then
the fraction (1 − ρ) corresponds to the fraction of users that are honest and
synchronized.

Quantifying Honest and Synchronized Mining Power in an Execution. In each
round r ∈ [R], each honest miner gets a certain number qi,r of activations from
the environment, where it can submit one new state to FStX. This state is
accepted with probability pH . We define the vector �qr such that for any honest
miner pi in round r, �qr[i] = qi,r. The probability that a miner pi is successful
to extend the state by at least one block is αi,r := 1 − (1 − pH)qi,r and the
probability that at least one registered and synchronized, uncorrupted miner
successfully queries FStX to extend its local longest state is

αr := 1 −
∏

honest sync pi

(1 − αi,r) = 1 −
∏

honest sync pi

(1 − pH)qi,r .

Looking ahead, in existing flat models of Bitcoin, parties are expected to be
synchronized and are otherwise counted as dishonest and the quantity (1 − ρ) is
the fraction of honest and synchronized miners.

Worst-Case Analysis. We analyze Bitcoin in a worst-case fashion. Let us assume
that the protocol runs for [R] rounds, then

α := min {αr}r∈[R], and β := max {βr}r∈[R].
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Remark 4. This view on Bitcoin gives already a glimpse for the relevance of the
re-calibration sub-protocol which is considered as part of future work. Ideally,
we would like the variation among the values αr and among the values βr to
be small, which needs an additional assumption on the increase of computing
power per round. Thanks to the re-calibration phase, such a bound can exist
at all. If no re-calibration phase would happen, any strictly positive gradient of
the computing power development would eventually provoke Bitcoin failing, as
the value β (as a fraction of the total mining power) could not be reasonably
bounded. We are now ready to state the main theorem. The proof of the theorem
can be found in the full version [6].

Theorem 1. Let the functions ValidTxB, blockifyB, and ExtendPolicy be as
defined above. Let p ∈ (0, 1), integer q ≥ 1, pH = 1 − (1 − p)q, and
pA = p. Let Δ ≥ 1 be the upper bound on the network delay. Consider
Modular-Ledger-ProtocolT in the (Gclock,FΔ,pH ,pA

StX ,FΔ
n-mc)-hybrid world. If, for

some λ > 1, the relation

α · (1 − 2 · (Δ + 1) · α) ≥ λ · β (1)

is satisfied in any real-world execution, where α and β are defined as above, then
the protocol Modular-Ledger-ProtocolT UC-realizes GB

ledger for any parameters in
the range

windowSize = T and Delay = 4Δ,

maxTimewindow ≥ windowSize

(1 − δ) · γ
and minTimewindow ≤ windowSize

(1 + δ) · maxr Tmp(r)
,

η > (1 + δ) · windowSize · β

γ
,

where γ := α
1+Δα and δ > 0 is an arbitrary constant. In particular, the realization

is perfect except with probability R · negl(T ), where R denotes the upper bound
on the number of rounds, and negl(T ) denotes a negligible function in T .

Remark 5. It is worth noting the implications of Eq. 1. In practice, typically p is
small such that α (and thus γ) can be approximated using Bernoulli’s inequal-
ity to be (1 − ρ)mp, where m is the estimated number of hash queries in the
Bitcoin network per round. Hence, by canceling out the term mp and letting p
be sufficiently small (compared to 1

Δm ), Eq. 1 collapses roughly to the condition
that (1− ρ)(1− ε) ≥ (1+ δ)ρ, which basically relates the fractions of adversarial
vs. honest mining power. Also, as pointed out by [29], for too large values of p
in the order of p > 1

mp , Eq. 1 is violated for any constant fraction ρ of corrupted
miners and they present an attack in this case.

Proof (Overview). To show the theorem we specify a simulator for the ideal
world that internally runs the round-based mining procedure of every honest
party. Whenever the real world parties complete a working round, then the sim-
ulator has to assemble the views of all honest (and synchronized) miners that
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it simulates and determine their common prefix of states, i.e., the longest state
stored or received by each simulated party when chopping off T blocks. The
adversary will then propose a new block candidate, i.e., a list of transactions,
to the ledger to announce that the common prefix has increased. To reflect that
not all parties have the same view on this common prefix, the simulator can
adjust the state pointers accordingly. This simulation is perfect and corresponds
to an emulation of real-world processes. What possibly prevents a perfect simu-
lation is the requirement of a consistent prefix and the restrictions imposed by
ExtendPolicy. In order to show that these restrictions do not forbid a proper
simulation, we have to justify why the choice of the parameters in the theo-
rem statement is acceptable. To this end, we analyze the real-world execution
to bound the corresponding bad events that prevent a perfect simulation. This
can be done following the detailed analysis provided by Pass et al. [29] which
includes the necessary claims for lower and upper on chain growth, chain qual-
ity, and prefix consistency. From these claims, it follows that our simulator can
simulate the real-world, since the restrictions imposed by the ledger prohibit a
prefect simulation only with probability R · negl(T ). This is an upper bound on
the distinguishing advantage of the real and ideal world. The detailed proof is
found in [6]. 
�

Note that the theorem statement a-priori holds for any environment (but
simply yields a void statement if the conditions are not met). In order to turn
this into a composable statement, we follow the approach proposed in Sect. 2
and model restrictions as wrapper functionalities to ensure the condition of the
theorem. We review two particular choices in Sect. 4.4. The general conceptual
principle behind this is the following: For the hybrid world, that consists of a
network Fn-mc, a clock Gclock and a random oracle Fro with output length κ (or
alternatively the state-exchange functionality FStX instead of the random ora-
cle), define a wrapper functionality W which ensures the condition in Eq. 1 and
(possibly) additional conditions on minimal (honest) and maximal (dishonest)
mining power. This can be done by enforcing appropriate restrictions along the
lines of the basic example in Sect. 2 (e.g., imposing an upper bound on parties,
or RO queries per round etc.). We provide the details and the specification of
such a general random-oracle wrapper WΔ,λ,Tmp

α,β,D (Fro) with its parameters13 in
the full version of this work [6]. For this wrapper we have the following desired
corollary to Theorem 1 and Lemma 1. This statement is guaranteed to compose
according to the UC composition theorem.

Corollary 1. The UC blockchain protocol Ledger-Protocolq,D,T that is executed
in the (Gclock,FΔ

n-mc,WΔ,λ,Tmp

α,β,D (Fro))-hybrid world, UC-realizes functionality

GB
ledger (with the respective parameters assured by Theorem1).

13 The parameters are the ones introduced in this section: a lower bound on honest
mining power (per round) α, an upper bound on adversarial mining power (per
round) β, the total mining power (per round) Tmp, the network delay Δ, the difficulty
parameter D (that influences the probability of a successful PoW), and finally a value
λ > 1 describing the required gap between honest and dishonest mining power.
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4.4 Comparison with Existing Work

We demonstrate how the protocols, assumptions, and results from the two exist-
ing works analyzing security of Bitcoin (in a property based manner) can be cast
as special cases of our construction.

We start with the result in [16], which is the so-called flat and synchronous
model14 with instant delivery and a constant number of parties n (i.e., Bitcoin
is seen as an n-party MPC protocol).15 Consider the concrete values for α and
β as follows:

– Let n denote the number of parties. Each corrupted party gets at most q acti-
vations to query the FStX per round. Each honest party is activated exactly
once per round.

– In the model of GKL, we have q ≥ 1. Thus, we get pH = 1 − (1 − p)q and
pA = p. We can further conclude that TGKL

mp (r) ≤ p · q · n.
– The adversary gets (at most) q queries per corrupted party with probability

pA = p and one query per honest but desynchronized party with success
probability pH = 1 − (1 − p)q. If tr denotes the number of corrupted or
desynchronized parties in round r, we get mpGKL

A (r) ≤ tr · q · p and thus
βGKL

r = p · q · (ρ · n), where ρn is the (assumed) upper bound on the number
of miners contributing to the adversarial mining power (independent of r).

– Each honest and synchronized miner gets exactly one activation per round,
i.e., qi,r := 1, with pH = 1−(1−p)q ∈ (0, 1), for some integer q > 0. Inserting
it into the general equation yields αGKL

r = 1 − (1 − p)q(1−ρ)·n (independent
of r). Note that since n is assumed to be fixed in their model, q(1 − ρ) · n is
in fact a lower bound on the honest and synchronized hashing power.

We can now easily specify a wrapper WGKL as special case of the above gen-
eral wrapper. In the hybrid world (Gclock,WGKL(FΔ,pH ,pA

StX ),FΔ
n-mc) this ensures

the condition of Theorem1 and we arrive at the following composable statement:

Corollary 2. The protocol Modular-Ledger-ProtocolT UC-realizes the function-
ality GB

ledger in the (Gclock,WGKL(F1,pH ,pA

StX ),F1
n-mc)-hybrid model (setting delay

Δ = 1) for the parameters assured by Theorem1 for the above choice:

αGKL = 1 − (1 − p)(1−ρ)·q·n and βGKL = p · q · (ρ · n).

Similarly, we can instantiate the above values with the assumptions of [29]:

– For each corrupted (and desynchronized) party, the adversary gets at most
one query per round. Each honest miner makes exactly one query per round.
This means that q

(r)
A + q

(r)
H = nr.

14 The flat model means that every party gets the same number of hash queries in
every round.

15 In a recent paper, the authors of [16] propose an analysis of Bitcoin for a variable
number of parties. Capturing the appropriate assumptions for this case, as a wrapper
in our composable setting, is part of future work.
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– In the PSs model, pH = pA = p and hence TPSs
mp (r) ≤ p · nr = p · n, where n

is as above. With these values we get mpPSs
A (r) = p · ncorr

r and consequently
βPSs

r = p · (ρ · n), where ρn denotes the upper bound on corrupted parties in
any round. Putting things together, we also have αPSs

r = 1 − (1 − p)(1−ρ)·n.
Note that since n is assumed to be fixed in their model, (1 − ρ) · n is in fact
a lower bound on the honest and synchronized hashing power.

We can again specify a wrapper functionality WPSs as above (where the
restriction is 1 query per corrupted instead of q). We again have that the hybrid
world (Gclock,WPSs(FΔ,p,p

StX ),FΔ
n-mc) will ensure the condition of the theorem and

directly yields the following composable statement.

Corollary 3. The protocol Modular-Ledger-ProtocolT UC-realizes GB
ledger in the

(Gclock,W(FΔ,p,p
StX ),FΔ

n-mc)-hybrid model (with network delay Δ ≥ 1) for the
parameters assured by Theorem1 for the above choice:

αPSs = 1 − (1 − p)(1−ρ)·n and βPSs = p · (ρ · n).

5 Implementing a Stronger Ledger

As already observed in [16], the Bitcoin protocol makes use of digital signa-
tures to protect transactions which allows it to achieve stronger guarantees.
Informally, the stronger guarantee ensures that every transaction submitted by
an honest miner will eventually make it into the state. Using our terminology,
this means that by employing digital signatures, Bitcoin implements a stronger
ledger. In this section we present this stronger ledger and show how such an
implementation can be captured as a UC protocol which makes black-box use
of the Ledger-Protocol to implement this ledger. The UC composition theorem
makes such a proof immediate, as we do not need to think about the specifics of
the invoked ledger protocol, and we can instead argue security in a world where
this protocol is replaced by GB

ledger.

Protection of Transactions Using Accounts. In Bitcoin, a miner creates an
account ID AccountID by generating a signature key pair and hashing the
public key. Any transaction of this party includes this account ID, i.e., x =
(AccountID, x′). An important property is that a transaction of a certain
account cannot be invalidated by a transaction with a different account ID.
Hence, to protect the validity of a transaction, upon submitting x, party pi

has to sign it, append the signature and verification key to get a transaction
((AccountID, x′), vk , σ). The validation predicate now additionally has to check
that the account ID is the hash of the public key and that the signature σ is valid
with respect to the verification key vk . Roughly, an adversary can invalidate x,
only by either forging a signature relative to vk , or by possessing key pair whose
hash of the public key collides with the account ID of the honest party. The
details of the protocol and the validate predicate as pseudo-code are provided in
the full version [6].
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Realized Ledger. The realized ledger abstraction, denoted by GB+
ledger, is formally

specified in [6]. Roughly, it is a ledger functionality as the one from the previous
section, but which additionally allows parties to create unique accounts. Upon
receiving a transaction from party pi, GB+

ledger only accepts a transaction contain-
ing the AccountID that was previously associated to pi and ensures that parties
are restricted to issue transactions using their own accounts.

Amplification of Transaction Liveness. In Bitcoin a given transaction can only
be invalidated due to another one with the same account. By definition of
the enhanced ledger, this means that no other party can make a transaction
of pi not enter the state. The liveness guarantee for transactions specified by
ExtendPolicy in the previous chapter implies captures that if a valid trans-
action is in the buffer for long enough then it eventually enters the state. For
GB+
ledger, this implies that if pi submits a single transaction which is valid accord-

ing to the current state, then this transaction will eventually be contained in
the state. More precisely, we can conclude that this happens within the next
2 · windowSize new state blocks in the worst case. Relative to the current view
of pi this is no more than within the next 3 ·windowSize blocks as argued in [6].
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Abstract. We present “Ouroboros”, the first blockchain protocol based
on proof of stake with rigorous security guarantees. We establish secu-
rity properties for the protocol comparable to those achieved by the bit-
coin blockchain protocol. As the protocol provides a “proof of stake”
blockchain discipline, it offers qualitative efficiency advantages over
blockchains based on proof of physical resources (e.g., proof of work).
We also present a novel reward mechanism for incentivizing Proof of
Stake protocols and we prove that, given this mechanism, honest behav-
ior is an approximate Nash equilibrium, thus neutralizing attacks such
as selfish mining.

1 Introduction

A primary consideration regarding the operation of blockchain protocols based
on proof of work (PoW)—such as bitcoin [18]—is the energy required for their
execution. At the time of this writing, generating a single block on the bitcoin
blockchain requires a number of hashing operations exceeding 260, which results
in striking energy demands. Indeed, early calculations indicated that the energy
requirements of the protocol were comparable to that of a small country [20].

This state of affairs has motivated the investigation of alternative blockchain
protocols that would obviate the need for proof of work by substituting it with
another, more energy efficient, mechanism that can provide similar guarantees.
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It is important to point out that the proof of work mechanism of bitcoin facili-
tates a type of randomized “leader election” process that elects one of the miners
to issue the next block. Furthermore, provided that all miners follow the pro-
tocol, this selection is performed in a randomized fashion proportionally to the
computational power of each miner. (Deviations from the protocol may distort
this proportionality as exemplified by “selfish mining” strategies [10,25].)

A natural alternative mechanism relies on the notion of “proof of stake”
(PoS). Rather than miners investing computational resources in order to partic-
ipate in the leader election process, they instead run a process that randomly
selects one of them proportionally to the stake that each possesses according to
the current blockchain ledger.

In effect, this yields a self-referential blockchain discipline: maintaining the
blockchain relies on the stakeholders themselves and assigns work to them (as
well as rewards) based on the amount of stake that each possesses as reported
in the ledger. Aside from this, the discipline should make no further “artificial”
computational demands on the stakeholders. In some sense, this sounds ideal;
however, realizing such a proof-of-stake protocol appears to involve a number of
definitional, technical, and analytic challenges.

Previous Work. The concept of PoS has been discussed extensively in the bitcoin
forum.1 Proof-of-stake based blockchain design has been more formally studied
by Bentov et al., both in conjunction with PoW [4] as well as the sole mechanism
for a blockchain protocol [3]. Although Bentov et al. showed that their protocols
are secure against some classes of attacks, they do not provide a formal model
for analysing PoS based protocols or security proofs relying on precise defini-
tions. Heuristic proof-of-stake based blockchain protocols have been proposed
(and implemented) for a number of cryptocurrencies.2 Being based on heuris-
tic security arguments, these cryptocurrencies have been frequently found to be
deficient from the point of view of security. See [3] for a discussion of various
attacks.

It is also interesting to contrast a PoS-based blockchain protocol with a clas-
sical consensus blockchain that relies on a fixed set of authorities (see, e.g.,
[8]). What distinguishes a PoS-based blockchain from those which assume sta-
tic authorities is that stake changes over time and hence the trust assumption
evolves with the system.

Another alternative to PoW is the concept of proof of space [1,9], which has
been specifically investigated in the context of blockchain protocols [21]. In a
proof of space setting, a “prover” wishes to demonstrate the utilization of space
(storage/memory); as in the case of a PoW, this utilizes a physical resource but
can be less energy demanding over time. A related concept is proof of space-time
(PoST) [16]. In all these cases, however, an expensive physical resource (either
storage or computational power) is necessary.
1 See “Proof of stake instead of proof of work”, Bitcoin forum thread. Posts by user

“QuantumMechanic” and others. (https://bitcointalk.org/index.php?topic=27787.
0.).

2 A non-exhaustive list includes NXT, Neucoin, Blackcoin, Tendermint, Bitshares.

https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0


Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol 359

The PoS Design Challenge. A fundamental problem for PoS-based blockchain
protocols is to simulate the leader election process. In order to achieve a fair
randomized election among stakeholders, entropy must be introduced into the
system, and mechanisms to introduce entropy may be prone to manipulation
by the adversary. For instance, an adversary controlling a set of stakeholders
may attempt to simulate the protocol execution trying different sequences of
stakeholder participants so that it finds a protocol continuation that favors the
adversarial stakeholders. This leads to a so called “grinding” vulnerability, where
adversarial parties may use computational resources to bias the leader election.

Our Results. We present “Ouroboros”, a provably secure proof of stake system.
To the best of our knowledge this is the first blockchain protocol of its kind with
a rigorous security analysis. In more detail, our results are as follows.

First, we provide a model that formalizes the problem of realizing a PoS-based
blockchain protocol. The model we introduce is in the spirit of [12], focusing on
persistence and liveness, two formal properties of a robust transaction ledger.
Persistence states that once a node of the system proclaims a certain transaction
as “stable”, the remaining nodes, if queried and responding honestly, will also
report it as stable. Here, stability is to be understood as a predicate that will
be parameterized by some security parameter k that will affect the certainty
with which the property holds. (E.g., “more than k blocks deep”.) Liveness
ensures that once an honestly generated transaction has been made available for
a sufficient amount of time to the network nodes, say u time steps, it will become
stable. The conjunction of liveness and persistence provides a robust transaction
ledger in the sense that honestly generated transactions are adopted and become
immutable. Our model is suitably amended to facilitate PoS-based dynamics.

Second, we describe a novel blockchain protocol based on PoS. Our protocol
assumes that parties can freely create accounts and receive and make payments,
and that stake shifts over time. We utilize a (very simple) secure multiparty
implementation of a coin-flipping protocol to produce the randomness for the
leader election process. This distinguishes our approach (and prevents so called
“grinding attacks”) from other previous solutions that either defined such values
deterministically based on the current state of the blockchain or used collective
coin flipping as a way to introduce entropy [3]. Also, unique to our approach is
the fact that the system ignores round-to-round stake modifications. Instead, a
snapshot of the current set of stakeholders is taken in regular intervals called
epochs; in each such interval a secure multiparty computation takes place utiliz-
ing the blockchain itself as the broadcast channel. Specifically, in each epoch a
set of randomly selected stakeholders form a committee which is then responsible
for executing the coin-flipping protocol. The outcome of the protocol determines
the set of next stakeholders to execute the protocol in the next epoch as well as
the outcomes of all leader elections for the epoch.

Third, we provide a set of formal arguments establishing that no adver-
sary can break persistence and liveness. Our protocol is secure under a number
of plausible assumptions: (1) the network is synchronous in the sense that an
upper bound can be determined during which any honest stakeholder is able to
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communicate with any other stakeholder, (2) a number of stakeholders drawn
from the honest majority is available as needed to participate in each epoch,
(3) the stakeholders do not remain offline for long periods of time, (4) the adap-
tivity of corruptions is subject to a small delay that is measured in rounds
linear in the security parameter (or alternatively, the players have access to a
sender-anonymous broadcast channel). At the core of our security arguments is
a probabilistic argument regarding a combinatorial notion of “forkable strings”
which we formulate, prove and also verify experimentally. In our analysis we also
distinguish covert attacks, a special class of general forking attacks. “Covertness”
here is interpreted in the spirit of covert adversaries against secure multiparty
computation protocols, cf. [2], where the adversary wishes to break the protocol
but prefers not to be caught doing so. We show that covertly forkable strings are
a subclass of the forkable strings with much smaller density; this permits us to
provide two distinct security arguments that achieve different trade-offs in terms
of efficiency and security guarantees. Our forkable string analysis is a natural
and fairly general tool that can be applied as part of a security argument the
PoS setting.

Fourth, we turn our attention to the incentive structure of the protocol.
We present a novel reward mechanism for incentivizing the participants to the
system which we prove to be an (approximate) Nash equilibrium. In this way,
attacks like block withholding and selfish-mining [10,25] are mitigated by our
design. The core idea behind the reward mechanism is to provide positive payoff
for those protocol actions that cannot be stifled by a coalition of parties that
diverges from the protocol. In this way, it is possible to show that, under plausible
assumptions, namely that certain protocol execution costs are small, following
the protocol faithfully is an equilibrium when all players are rational.

Fifth, we introduce a stake delegation mechanism that can be seamlessly
added to our blockchain protocol. Delegation is particularly useful in our con-
text as we would like to allow our protocol to scale even in a setting where the
set of stakeholders is highly fragmented. In such cases, the delegation mechanism
can enable stakeholders to delegate their “voting rights”, i.e., the right of par-
ticipating in the committees running the leader selection protocol in each epoch.
As in liquid democracy, (a.k.a. delegative democracy [11]), stakeholders have the
ability to revoke their delegative appointment when they wish independently of
each other.

Given our model and protocol description we also explore how various attacks
considered in practice can be addressed within our framework. Specifically,
we discuss double spending attacks, transaction denial attacks, 51% attacks,
nothing-at-stake, desynchronization attacks and others. Finally, we present evi-
dence regarding the efficiency of our design. First we consider double spending
attacks. For illustrative purposes, we perform a comparison with Nakamoto’s
analysis for bitcoin regarding transaction confirmation time with assurance
99.9%. Against covert adversaries, the transaction confirmation time is from
10 to 16 times faster than that of bitcoin, depending on the adversarial hashing
power; for general adversaries confirmation time is from 5 to 10 times faster.
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Moreover, our concrete analysis of double-spending attacks relies on our combi-
natorial analysis of forkable and covertly forkable strings and applies to a much
broader class of adversarial behavior than Nakamoto’s more simplified analysis.3

We then survey our prototype implementation and report on benchmark exper-
iments run in the Amazon cloud that showcase the power of our proof of stake
blockchain protocol in terms of performance. Due to lack of space we present
the above in the full version [14].

Related Work. In parallel to the development of Ouroboros, a number of other
protocols were developed targeting various positions in the design space of dis-
tributed ledgers based on PoS. Sleepy consensus [5] considers a fixed stakeholder
distribution (i.e., stake does not evolve over time) and targets a “mixed” cor-
ruption setting, where the adversary is allowed to perform fail-stop and recover
corruptions in addition to Byzantine faults. It is actually straightforward to
extend our analysis in this mixed corruption setting, cf. Remark 2; nevertheless,
the resulting security can be argued only in the “corruptions with delay” set-
ting that we introduce, and thus is not fully adaptive. Snow White [6] addresses
an evolving stakeholder distribution and uses a corruption delay mechanism
similar to ours for arguing security. Nevertheless, contrary to our protocol, the
Snow White design is susceptible to a “grinding” type of attack that can bias
high probability events in favor of the adversary. While this does not hurt secu-
rity asymptotically, it prevents a concrete parameterisation that does not take
into account adversarial computing power. Algorand, [15], provides a distributed
ledger following a Byzantine agreement per block approach that can withstand
adaptive corruptions. Given that agreement needs to be reached for each block,
such protocols will produce blocks at a rate substantially slower than a PoS
blockchain (where the slow down matches the length of the execution of the
Byzantine agreement protocol). In this respect, despite the existence of forks,
blockchain protocols enjoy the flexibility of permitting the clients to set the level
of risk that they are willing to undertake, allowing low risk profile clients to enjoy
faster processing times. Finally, Fruitchain, [23], provides a reward mechanism
and an approximate Nash equilibrium proof for a PoW-based blockchain. We use
a similar reward mechanism at the blockchain level, nevertheless our underlying
mechanics are different since we have to operate in a PoS setting. The core of
the idea is to provide a PoS analogue of “endorsing” inputs in a fair proportion
using the same logic as the PoW-based byzantine agreement protocol for honest
majority from [12].

2 Model

Time, Slots, and Synchrony. We consider a setting where time is divided into
discrete units called slots. A ledger, described in more detail below, associates
3 Nakamoto’s simplifications are pointed out in [12]: the analysis considers only the

setting where a block withholding attacker acts without interaction as opposed to a
more general attacker that, for instance, tries strategically to split the honest parties
in more than one chains during the course of the double spending attack.
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with each time slot (at most) one ledger block. Players are equipped with (roughly
synchronized) clocks that indicate the current slot. This will permit them to
carry out a distributed protocol intending to collectively assign a block to this
current slot. In general, each slot slr is indexed by an integer r ∈ {1, 2, . . .},
and we assume that the real time window that corresponds to each slot has the
following properties.

– The current slot is determined by a publicly-known and monotonically
increasing function of current time.

– Each player has access to the current time. Any discrepancies between parties’
local time are insignificant in comparison with the length of time represented
by a slot.

– The length of the time window that corresponds to a slot is sufficient to
guarantee that any message transmitted by an honest party at the beginning
of the time window will be received by any other honest party by the end of
that time window (even accounting for small inconsistencies in parties’ local
clocks). In particular, while network delays may occur, they never exceed the
slot time window.

Transaction Ledger Properties. A protocol Π implements a robust transac-
tion ledger provided that the ledger that Π maintains is divided into “blocks”
(assigned to time slots) that determine the order with which transactions are
incorporated in the ledger. It should also satisfy the following two properties.

– Persistence. Once a node of the system proclaims a certain transaction tx
as stable, the remaining nodes, if queried, will either report tx in the same
position in the ledger or will not report as stable any transaction in conflict
to tx. Here the notion of stability is a predicate that is parameterized by a
security parameter k; specifically, a transaction is declared stable if and only
if it is in a block that is more than k blocks deep in the ledger.

– Liveness. If all honest nodes in the system attempt to include a certain
transaction, then after the passing of time corresponding to u slots (called the
transaction confirmation time), all nodes, if queried and responding honestly,
will report the transaction as stable.

In [13,22] it was shown that persistence and liveness can be derived from
the following three elementary properties provided that protocol Π derives the
ledger from a data structure in the form of a blockchain.

– Common Prefix (CP); with parameters k ∈ N. The chains C1, C2 pos-
sessed by two honest parties at the onset of the slots sl1 < sl2 are such that
C�k
1 � C2, where C�k

1 denotes the chain obtained by removing the last k blocks
from C1, and � denotes the prefix relation.

– Chain Quality (CQ); with parameters μ ∈ (0, 1] → (0, 1] and � ∈
N. Consider any portion of length at least � of the chain possessed by an
honest party at the onset of a round; the ratio of blocks originating from the
adversary is at most 1 − μ. We call μ the chain quality coefficient.
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– Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider the
chains C1, C2 possessed by two honest parties at the onset of two slots sl1, sl2
with sl2 at least s slots ahead of sl1. Then it holds that len(C2)−len(C1) ≥ τ ·s.
We call τ the speed coefficient.

Some remarks are in place. Regarding common prefix, we capture a strong
notion of common prefix, cf. [13]. Regarding chain quality, the function μ satisfies
μ(α) ≥ α for protocols of interest. In an ideal setting, μ would be the identity
function: in this case, the percentage of malicious blocks in any sufficiently long
chain segment is proportional to the cumulative stake of a set of (malicious)
stakeholders.

It is worth noting that for bitcoin we have μ(α) = α/(1 − α), and this bound
is in fact tight—see [12], which argues this guarantee on chain quality. The same
will hold true for our protocol construction. As we will show, this will still be
sufficient for our incentive mechanism to work properly.

Finally chain growth concerns the rate at which the chain grows (for honest
parties). As in the case of bitcoin, the longest chain plays a preferred role in our
protocol; this provides an easy guarantee of chain growth.

Security Model. We adopt the model introduced by [12] for analysing security
of blockchain protocols enhanced with an ideal functionality F . We denote by
VIEWP,F

Π,A,Z(κ) the view of party P after the execution of protocol Π with adver-
sary A, environment Z, security parameter κ and access to ideal functionality
F . We note that multiple different “functionalities” can be encompassed by F .

We stress that contrary to [12], our analysis is in the “standard model”, and
without a random oracle functionality. Nevertheless we do employ a “diffuse”
and “Key and Transaction” functionality with the following interfaces described
below.

– Diffuse functionality. It maintains a incoming string for each party Ui that
participates. A party, if activated, is allowed at any moment to fetch the
contents of its incoming string hence one may think of this as a mailbox.
Furthermore, parties can give the instruction to the functionality to diffuse
a message. The functionality keeps rounds (called slots) and all parties are
allowed to diffuse once in a round. Rounds do not advance unless all parties
have diffused a message. The adversary, when activated, can also interact with
the functionality and is allowed to read all inboxes and all diffuse requests
and deliver messages to the inboxes in any order it prefers. At the end of
the round, the functionality will ensure that all inboxes contain all messages
that have been diffused (but not necessarily in the same order they have
been requested to be diffused). The current slot index may be requested at
any time by any party. If a stakeholder does not fetch in a certain slot the
messages written to its incoming string, they are flushed.

– Key and Transaction functionality. The key registration functionality is ini-
tialized with n users, U1, . . . , Un and their respective stake s1, . . . , sn; given
such initialization, the functionality will consult with the adversary and will
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accept a (possibly empty) sequence of (Corrupt, U) messages and mark the
corresponding users U as corrupt. For the corrupt users without a public-key
registered the functionality will allow the adversary to set their public-keys
while for honest users the functionality will sample public/secret-key pairs
and record them. Public-keys of corrupt users will be marked as such. Subse-
quently, any sequence of the following actions may take place: (i) A user may
request to retrieve its public and secret-key, whereupon, the functionality will
return it to the user. (ii) The whole directory of public-keys may be required
in whereupon, the functionality will return it to the requesting user. (iii) A
new user may be requested to be created by a message (Create, U, C) from the
environment, in which case the functionality will follow the same procedure
as before: it will consult the adversary regarding the corruption status of U
and will set its public and possibly secret-key depending on the corruption
status; moreover it will store C as the suggested initial state. The functionality
will return the public-key back to the environment upon successful comple-
tion of this interaction. (iv) A transaction may be requested on behalf of a
certain user by the environment, by providing a template for the transaction
(which should contain a unique nonce) and a recipient. The functionality will
adjust the stake of each stakeholder accordingly. (v) An existing user may be
requested to be corrupted by the adversary via a message (Corrupt, U). A user
can only be corrupted after a delay of D slots; specifically, after a corruption
request is registered the secret-key will be released after D slots have passed
according to the round counter maintained in the Diffuse interface.

Given the above we will assume that the execution of the protocol is with
respect to a functionality F that is incorporating the above two functionalities
as well as possibly additional functionalities to be explained below. Note that
a corrupted stakeholder U will relinquish its entire state to A; from this point
on, the adversary will be activated in place of the stakeholder U . Beyond any
restrictions imposed by F , the adversary can only corrupt a stakeholder if it
is given permission by the environment Z running the protocol execution. The
permission is in the form of a message (Corrupt, U) which is provided to the
adversary by the environment. In summary, regarding activations we have the
following.

– At each slot slj , the environment Z is allowed to activate any subset of
stakeholders it wishes. Each one of them will possibly produce messages that
are to be transmitted to other stakeholders.

– The adversary is activated at least as the last entity in each slj , (as well as
during all adversarial party activations).

It is easy to see that the model above confers such sweeping power on the
adversary that one cannot establish any significant guarantees on protocols of
interest. It is thus important to restrict the environment suitably (taking into
account the details of the protocol) so that we may be able to argue security.
With foresight, the restrictions we will impose on the environment are as follows.
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Restrictions Imposed on the Environment. The environment, which is responsi-
ble for activating the honest parties in each round, will be subject to the following
constraints regarding the activation of the honest parties running the protocol.

– In each slot there will be at least one honest activated party (independently
of whether it is a slot leader).

– There will be a parameter k ∈ Z that will signify the maximum number of
slots that an honest shareholder can be offline. In case an honest stakeholder is
spawned after the beginning of the protocol via (Create, U, C) its initialization
chain C provided by the environment should match an honest parties’ chain
which was active in the previous slot.

– In each slot slr, and for each active stakeholder Uj there will be a set Sj(r) of
public-keys and stake pairs of the form (vki, si) ∈ {0, 1}∗×N, for j = 1, . . . , nr

where nr is the number of users introduced up to that slot. Public-keys will be
marked as “corrupted” if the corresponding stakeholder has been corrupted.
We will say the adversary is restricted to less than 50% relative stake if it
holds that the total stake of the corrupted keys divided by the total stake∑

i si is less than 50% in all possible Sj(r). In case the above is violated an
event Bad

1/2 becomes true for the given execution.

We note that the offline restriction stated above is very conservative and our
protocol can tolerate much longer offline times depending on the way the course
of the execution proceeds; nevertheless, for the sake of simplicity, we use the
above restriction. Finally, we note that in all our proofs, whenever we say that a
property Q holds with high probability over all executions, we will in fact argue
that Q ∨ Bad

1/2 holds with high probability over all executions. This captures
the fact that we exclude environments and adversaries that trigger Bad

1/2 with
non-negligible probability.

3 Our Protocol: Overview

We first provide a general overview of our protocol design approach. The proto-
col’s specifics depend on a number of parameters as follows: (i) k is the number
of blocks a certain message should have “on top of it” in order to become part
of the immutable history of the ledger, (ii) ε is the advantage in terms of stake
of the honest stakeholders against the adversarial ones; (iii) D is the corruption
delay that is imposed on the adversary, i.e., an honest stakeholder will be cor-
rupted after D slots when a corrupt message is delivered by the adversary during
an execution; (iv) L is the lifetime of the system, measured in slots; (v) R is the
length of an epoch, measured in slots.

We present our protocol description in four stages successively improving the
adversarial model it can withstand. In all stages an “ideal functionality” FD,F

LS is
available to the participants. The functionality captures the resources that are
available to the parties as preconditions for the secure operation of the protocol
(e.g., the genesis block will be specified by FD,F

LS ).
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Stage 1: Static stake; D = L. In the first stage, the trust assumption is static
and remains with the initial set of stakeholders. There is an initial stake distri-
bution which is hardcoded into the genesis block that includes the public-keys
of the stakeholders, {(vki, si)}n

i=1. Based on our restrictions to the environment,
honest majority with advantage ε is assumed among those initial stakeholders.
Specifically, the environment initially will allow the corruption of a number of
stakeholders whose relative stake represents 1−ε

2 for some ε > 0. The environ-
ment allows party corruption by providing tokens of the form (Corrupt, U) to the
adversary; note that due to the corruption delay imposed in this first stage any
further corruptions will be against parties that have no stake initially and hence
the corruption model is akin to “static corruption.” FD,F

LS will subsequently sam-
ple ρ which will seed a “weighted by stake” stakeholder sampling and in this way
lead to the election of a subset of m keys vki1 , . . . , vkim

to form the committee
that will possess honest majority with overwhelming probability in m, (this uses
the fact that the relative stake possessed by malicious parties is 1−ε

2 ; a linear
dependency of m to ε−2 will be imposed at this stage). In more detail, the com-
mittee will be selected implicitly by appointing a stakeholder with probability
proportional to its stake to each one of the L slots. Subsequently, stakeholders
will issue blocks following the schedule that is determined by the slot assignment.
The longest chain rule will be applied and it will be possible for the adversary to
fork the blockchain views of the honest parties. Nevertheless, we will prove with
a Markov chain argument that the probability that a fork can be maintained
over a sequence of n slots drops exponentially with at least

√
n, cf. Theorem 1

against general adversaries.

Stage 2: Dynamic state with a beacon, epoch period of R slots, D = R � L.
The central idea for the extension of the lifetime of the above protocol is to
consider the sequential composition of several invocations of it. We detail a
way to do that, under the assumption that a trusted beacon emits a uniformly
random string in regular intervals. More specifically, the beacon, during slots
{j · R + 1, . . . , (j + 1)R}, reveals the j-th random string that seeds the leader
election function. The critical difference compared to the static state protocol is
that the stake distribution is allowed to change and is drawn from the blockchain
itself. This means that at a certain slot sl that belongs to the j-th epoch (with
j ≥ 2), the stake distribution that is used is the one reported in the most recent
block with time stamp less than j · R − 2k.

Regarding the evolving stake distribution, transactions will be continuously
generated and transferred between stakeholders via the environment and players
will incorporate posted transactions in the blockchain based ledgers that they
maintain. In order to accommodate the new accounts that are being created, the
FD,F

LS functionality enables a new (vk, sk) to be created on demand and assigned
to a new party Ui. Specifically, the environment can create new parties who will
interact with FD,F

LS for their public/secret-key in this way treating it as a trusted
component that maintains the secret of their wallet. Note that the adversary can
interfere with the creation of a new party, corrupt it, and supply its own (adver-
sarially created) public-key instead. As before, the environment, may request
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transactions between accounts from stakeholders and it can also generate trans-
actions in collaboration with the adversary on behalf of the corrupted accounts.
Recall that our assumption is that at any slot, in the view of any honest player,
the stakeholder distribution satisfies honest majority with advantage ε (note that
different honest players might perceive a different stakeholder distribution in a
certain slot). Furthermore, the stake can shift by at most σ statistical distance
over a certain number of slots. The statistical distance here will be measured
considering the underlying distribution to be the weighted-by-stake sampler and
how it changes over the specified time interval. The security proof can be seen
as an induction in the number of epochs L/R with the base case supplied by the
proof of the static stake protocol. In the end we will argue that in this setting, a
1−ε
2 −σ bound in adversarial stake is sufficient for security of a single draw (and

observe that the size of committee, m, now should be selected to overcome also
an additive term of size ln(L/R) given that the lifetime of the systems includes
such a number of successive epochs). The corruption delay remains at D = R
which can be selected arbitrarily smaller than L, thus enabling the adversary to
perform adaptive corruptions as long as this is not instantaneous.

Stage 3: Dynamic state without a beacon, epoch period of R slots, R = Θ(k) and
delay D ∈ (R, 2R) � L. In the third stage, we remove the dependency to the
beacon, by introducing a secure multiparty protocol with “guaranteed output
delivery” that simulates it. In this way, we can obtain the long-livedness of the
protocol as described in the stage 2 design but only under the assumption of the
stage 1 design, i.e., the mere availability of an initial random string and an initial
stakeholder distribution with honest majority. The core idea is the following:
given we guarantee that an honest majority among elected stakeholders will hold
with very high probability, we can further use this elected set as participants to
an instance of a secure multiparty computation (MPC) protocol. This will require
the choice of the length of the epoch to be sufficient so that it can accommodate
a run of the MPC protocol. From a security point of view, the main difference
with the previous case, is that the output of the beacon will become known to the
adversary before it may become known to the honest parties. Nevertheless, we
will prove that the honest parties will also inevitably learn it after a short number
of slots. To account for the fact that the adversary gets this headstart (which it
may exploit by performing adaptive corruptions) we increase the wait time for
corruption from R to a suitable value in (R, 2R) that negates this advantage and
depends on the secure MPC design. A feature of this stage from a cryptographic
design perspective is the use of the ledger itself for the simulation of a reliable
broadcast that supports the MPC protocol.

Stage 4: Input endorsers, stakeholder delegates, anonymous communication. In
the final stage of our design, we augment the protocol with two new roles for the
entities that are running the protocol and consider the benefits of anonymous
communication. Input-endorsers create a second layer of transaction endorsing
prior to block inclusion. This mechanism enables the protocol to withstand devi-
ations such as selfish mining and enables us to show that honest behaviour is an
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approximate Nash equilibrium under reasonable assumptions regarding the costs
of running the protocol. Note that input-endorsers are assigned to slots in the
same way that slot leaders are, and inputs included in blocks are only acceptable
if they are endorsed by an eligible input-endorser. Second, the delegation feature
allows stakeholders to transfer committee participation to selected delegates that
assume the responsibility of the stakeholders in running the protocol (including
participation to the MPC and issuance of blocks). Delegation naturally gives rise
to “stake pools” that can act in the same way as mining pools in bitcoin. Finally,
we observe that by including an anonymous communication layer we can remove
the corruption delay requirement that is imposed in our analysis. This is done
at the expense of increasing the online time requirements for the honest parties.
Due to lack of space we refer to the full version for more details, [14].

4 Our Protocol: Static State

4.1 Basic Concepts and Protocol Description

We begin by describing the blockchain protocol πSPoS in the “static stake” set-
ting, where leaders are assigned to blockchain slots with probability proportional
to their (fixed) initial stake which will be the effective stake distribution through-
out the execution. To simplify our presentation, we abstract this leader selection
process, treating it simply as an “ideal functionality” that faithfully carries out
the process of randomly assigning stakeholders to slots. In the following section,
we explain how to instantiate this functionality with a secure computation.

We remark that—even with an ideal leader assignment process—analyzing
the standard “longest chain” preference rule in our PoS setting appears to
require significant new ideas. The challenge arises because large collections of
slots (epochs, as described above) are assigned to stakeholders at once; while
this has favorable properties from an efficiency (and incentive) perspective, it
furnishes the adversary a novel means of attack. Specifically, an adversary in
control of a certain population of stakeholders can, at the beginning of an epoch,
choose when standard “chain update” broadcast messages are delivered to hon-
est parties with full knowledge of future assignments of slots to stakeholders.
In contrast, adversaries in typical PoW settings are constrained to make such
decisions in an online fashion. We remark that this can have a dramatic effect
on the ability of an adversary to produce alternate chains; see the discussion on
“forkable strings” below for detailed discussion.

In the static stake case, we assume that a fixed collection of n stakeholders
U1, . . . , Un interact throughout the protocol. Stakeholder Ui possesses si stake
before the protocol starts. For each stakeholder Ui a verification and signing key
pair (vki, ski) for a prescribed signature scheme is generated; we assume without
loss of generality that the verification keys vk1, . . . are known by all stakehold-
ers. Before describing the protocol, we establish basic definitions following the
notation of [12].
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Definition 1 (Genesis Block). The genesis block B0 contains the
list of stakeholders identified by their public-keys, their respective stakes
(vk1, s1), . . . , (vkn, sn) and auxiliary information ρ.

With foresight we note that the auxiliary information ρ will be used to seed
the slot leader election process.

Definition 2 (State). A state is a string st ∈ {0, 1}λ.

Definition 3 (Block). A block B generated at a slot sli ∈ {sl1, . . . , slR} con-
tains the current state st ∈ {0, 1}λ, data d ∈ {0, 1}∗, the slot number sli and
a signature σ = Signski

(st, d, sl) computed under ski corresponding to the stake-
holder Ui generating the block.

Definition 4 (Blockchain). A blockchain (or simply chain) relative to the
genesis block B0 is a sequence of blocks B1, . . . , Bn associated with a strictly
increasing sequence of slots for which the state sti of Bi is equal to H(Bi−1),
where H is a prescribed collision-resistant hash function. The length of a chain
len(C) = n is its number of blocks. The block Bn is the head of the chain,
denoted head(C). We treat the empty string ε as a legal chain and by convention
set head(ε) = ε.

Let C be a chain of length n and k be any non-negative integer. We denote by
C�k the chain resulting from removal of the k rightmost blocks of C. If k ≥ len(C)
we define C�k = ε. We let C1 � C2 indicate that the chain C1 is a prefix of the
chain C2.

Definition 5 (Epoch). An epoch is a set of R adjacent slots S =
{sl1, . . . , slR}.
(The value R is a parameter of the protocol we analyze in this section.)

Definition 6 (Adversarial Stake Ratio). Let UA be the set of stakeholders
controlled by an adversary A. Then the adversarial stake ratio is defined as

α =

∑
j∈UA sj

∑n
i=1 si

,

where n is the total number of stakeholders and si is stakeholder Ui’s stake.

Slot Leader Selection. In the protocol described in this section, for each 0 < j ≤
R, a slot leader Ej is determined who has the (sole) right to generate a block at
slj . Specifically, for each slot a stakeholder Ui is selected as the slot leader with
probability pi proportional to its stake registered in the genesis block B0; these
assignments are independent between slots. In this static stake case, the genesis
block as well as the procedure for selecting slot leaders are determined by an ideal
functionality FD,F

LS , defined in Fig. 1. This functionality is parameterized by the
list {(vk1, s1), . . . , (vkn, sn)} assigning to each stakeholder its respective stake,
a distribution D that provides auxiliary information ρ and a leader selection
function F defined below.
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Definition 7 (Leader Selection Process). A leader selection process with
respect to stakeholder distribution S = {(vk1, s1), . . . , (vkn, sn)}, (D,F) is a pair
consisting of a distribution and a deterministic function such that, when ρ ← D
it holds that for all slj ∈ {sl1, . . . , slR}, F(S, ρ, slj) outputs Ui ∈ {U1, . . . , Un}
with probability

pi =
si∑n

k=1 sk

where si is the stake held by stakeholder Ui (we call this “weighing by stake”);
furthermore the family of random variables {F(S, ρ, slj)}R

j=1 are independent.

We note that sampling proportional to stake can be implemented in a
straightforward manner. For instance, a simple process operates as follows. Let
p̃i = si/

∑n
j=i sj . For each i = 1, . . . , n− 1, provided that no stakeholder has yet

been selected, the process flips a p̃i-biased coin; if the result of the coin is 1, the
party Ui is selected for the slot and the process is complete. (Note that p̃n = 1,
so the process is certain to complete with a unique leader.) When we imple-
ment this process as a function F (·), sufficient randomness must be allocated
to simulate the biased coin flips. If we implement the above with λ precision
for each individual coin flip, then selecting a stakeholder will require n�log λ�
random bits in total. Note that using a pseudorandom number generator (PRG)
one may use a shorter “seed” string and then stretch it using the PRG to the
appropriate length.

Fig. 1. Functionality FD,F
LS .

A Protocol in the FD,F
LS -Hybrid Model. We start by describing a simple PoS

based blockchain protocol considering static stake in the FD,F
LS -hybrid model, i.e.,

where the genesis block B0 (and consequently the slot leaders) are determined
by the ideal functionality FD,F

LS . The stakeholders U1, . . . , Un interact among
themselves and with FD,F

LS through Protocol πSPoS described in Fig. 2.
The protocol relies on a maxvalidS(C,C) function that chooses a chain given

the current chain C and a set of valid chains C that are available in the network.
In the static case we analyze the simple “longest chain” rule. (In the dynamic
case the rule is parameterized by a common chain length; see Sect. 5.)
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Function maxvalid(C,C): Returns the longest chain from C∪ {C}. Ties are
broken in favor of C, if it has maximum length, or arbitrarily otherwise.

Fig. 2. Protocol πSPoS.

4.2 Forkable Strings

In our security arguments we routinely use elements of {0, 1}n to indicate which
slots—among a particular window of slots of length n—have been assigned to
adversarial stakeholders. When strings have this interpretation we refer to them
as characteristic strings.

Definition 8 (Characteristic String). Fix an execution with genesis block
B0, adversary A, and environment Z. Let S = {sli+1, . . . , sli+n} denote a
sequence of slots of length |S| = n. The characteristic string w ∈ {0, 1}n of
S is defined so that wk = 1 if and only if the adversary controls the slot leader
of slot sli+k. For such a characteristic string w ∈ {0, 1}∗ we say that the index
i is adversarial if wi = 1 and honest otherwise.

We start with some intuition on our approach to analyze the protocol. Let
w ∈ {0, 1}n be a characteristic string for a sequence of slots S. Consider two
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observers that (i) go offline immediately prior to the commencement of S, (ii)
have the same view C0 of the current chain prior to the commencement of S, and
(iii) come back online at the last slot of S and request an update of their chain.
A fundamental concern in our analysis is the possibility that such observers
can be presented with a “diverging” view over the sequence S: specifically, the
possibility that the adversary can force the two observers to adopt two different
chains C1, C2 whose common prefix is C0.

We observe that not all characteristic strings permit this. For instance the
(entirely honest) string 0n ensures that the two observers will adopt the same
chain C which will consist of n new blocks on top of the common prefix C0. On
the other hand, other strings do not guarantee such common extension of C0; in
the case of 1n, it is possible for the adversary to produce two completely different
histories during the sequence of slots S and thus furnish to the two observers two
distinct chains C1, C2 that only share the common prefix C0. In the remainder
of this section, we establish that strings that permit such “forkings” are quite
rare—indeed, we show that they have density 2−Ω(

√
n) so long as the fraction of

adversarial slots is 1/2 − ε.
To reason about such “forkings” of a characteristic string w ∈ {0, 1}n, we

define below a formal notion of “fork” that captures the relationship between
the chains broadcast by honest slot leaders during an execution of the protocol
πSPoS. In preparation for the definition, we recall that honest players always
choose to extend a maximum length chain among those available to the player
on the network. Furthermore, if such a maximal chain C includes a block B pre-
viously broadcast by an honest player, the prefix of C prior to B must entirely
agree with the chain (terminating at B) broadcast by this previous honest player.
This “confluence” property follows immediately from the fact that the state of
any honest block effectively commits to a unique chain beginning at the gene-
sis block. To conclude, any chain C broadcast by an honest player must begin
with a chain produced by a previously honest player (or, alternatively, the gen-
esis block), continue with a possibly empty sequence of adversarial blocks and,
finally, terminate with an honest block. It follows that the chains broadcast
by honest players form a natural directed tree. The fact that honest players
reliably broadcast their chains and always build on the longest available chain
introduces a second important property of this tree: the “depths” of the various
honest blocks added by honest players during the protocol must all be distinct.

Of course, the actual chains induced by an execution of πSPoS are comprised of
blocks containing a variety of data that are immaterial for reasoning about fork-
ing. For this reason the formal notion of fork below merely reflects the directed
tree formed by the relevant chains and the identities of the players—expressed
as indices in the string w—responsible for generating the blocks in these chains.

Forks and Forkable Strings. We define, below, the basic combinatorial structures
we use to reason about the possible views observed by honest players during a
protocol execution with this characteristic string.
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Fig. 3. A fork F for the string w = 010100110; vertices appear with their labels
and honest vertices are highlighted with double borders. Note that the depths of the
(honest) vertices associated with the honest indices of w are strictly increasing. Two
tines are distinguished in the figure: one, labeled t̂, terminates at the vertex labeled
9 and is the longest tine in the fork; a second tine t terminates at the vertex labeled
3. The quantity gap(t) indicates the difference in length between t and t̂; in this case
gap(t) = 4. The quantity reserve(t) = |{i | �(v) < i ≤ |w| and wi = 1}| indicates the
number of adversarial indices appearing after the label of the last honest vertex v of
the tine; in this case reserve(t) = 3. As each leaf of F is honest, F is closed.

Definition 9 (Fork). Let w ∈ {0, 1}n and let H = {i | wi = 0} denote the set
of honest indices. A fork for the string w is a directed, rooted tree F = (V,E)
with a labeling � : V → {0, 1, . . . , n} so that

– each edge of F is directed away from the root;
– the root r ∈ V is given the label �(r) = 0;
– the labels along any directed path in the tree are strictly increasing;
– each honest index i ∈ H is the label of exactly one vertex of F ;
– the function d : H → {1, . . . , n}, defined so that d(i) is the depth in F of

the unique vertex v for which �(v) = i, is strictly increasing. (Specifically, if
i, j ∈ H and i < j, then d(i) < d(j).)

As a matter of notation, we write F � w to indicate that F is a fork for the
string w. We say that a fork is trivial if it contains a single vertex, the root.

Definition 10 (Tines and height). A path in a fork F originating at the root
is called a tine. For a tine t we let length(t) denote its length, equal to the
number of edges on the path. The height of a fork (as usual for a tree) is defined
to be the length of the longest tine. For two tines t1 and t2 of a fork F , we write
t1 ∼ t2 if they share an edge. Note that ∼ is an equivalence relation on the set
of nontrivial tines; on the other hand, if tε denotes the “empty” tine consisting
solely of the root vertex then tε �∼ t for any tine t.

If a vertex v of a fork is labeled with an adversarial index (i.e., w�(v) = 1) we
say that the vertex is adversarial ; otherwise, we say that the vertex is honest. For
convenience, we declare the root vertex to be honest. We extend this terminology
to tines: a tine is honest if it terminates with an honest vertex and adversarial
otherwise. By this convention the empty tine tε is honest.
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See Fig. 3 for an example, which also demonstrates some of the quantities
defined above and in the remainder of this section. The fork shown in the figure
reflects an execution in which (i) the honest player associated with the first slot
builds directly on the genesis block (as it must), (ii) the honest player associated
with the third slot is shown a chain of length 1 produced by the adversarial
player of slot 2 (in addition to the honestly generated chain of step (i)), which it
elects to extend, (iii) the honest player associated with slot 5 is shown a chain of
length 2 building on the chain of step (i) augmented with a further adversarial
block produced by the player of slot 4, etc.

Definition 11. We say that a fork is flat if it has two tines t1 �∼ t2 of length
equal to the height of the fork. A string w ∈ {0, 1}∗ is said to be forkable if there
is a flat fork F � w.

Note that in order for an execution of πSPoS to yield two entirely disjoint
chains of maximum length, the characteristic string associated with the execution
must be forkable. Our goal is to establish the following upper bound on the
number of forkable strings.

Theorem 1. Let ε ∈ (0, 1) and let w be a string drawn from {0, 1}n by indepen-
dently assigning each wi = 1 with probability (1− ε)/2. Then Pr[w is forkable] =
2−Ω(

√
n).

In subsequent work, Russell et al. [24] improved this bound to 2−Ω(n).

Structural Features of Forks: Closed Forks, Prefixes, Reach, and Margin. We
begin by defining a natural notion of inclusion for two forks:

Definition 12 (Fork prefixes). If w is a prefix of the string w′ ∈ {0, 1}∗,
F � w, and F ′ � w′, we say that F is a prefix of F ′, written F � F ′, if F
is a consistently-labeled subgraph of F ′. Specifically, every vertex and edge of F
appears in F ′ and, furthermore, the labels given to any vertex appearing in both
F and F ′ are identical.

If F � F ′, each tine of F appears as the prefix of a tine in F ′. In particular,
the labels appearing on any tine terminating at a common vertex are identical
and, moreover, the depth of any honest vertex appearing in both F and F ′ is
identical.

In many cases, it is convenient to work with forks that do not “commit”
anything beyond final honest indices.

Definition 13 (Closed forks). A fork is closed if each leaf is honest. By con-
vention the trivial fork, consisting solely of a root vertex, is closed.

Note that a closed fork has a unique longest tine (as all maximal tines ter-
minate with an honest vertex, and these must have distinct depths). Note, addi-
tionally, that if w is a prefix of w′ and F ′ � w′, then there is a unique closed
fork F � w for which F � F ′.
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Definition 14 (Gap, reserve and reach). Let F � w be a closed fork and let
t̂ denote the (unique) tine of maximum length in F . We define the gap of a tine
t, denoted gap(t), to be the difference in length between t̂ and t; thus

gap(t) = length(t̂) − length(t).

We define the reserve of a tine t to be the number of adversarial indices appearing
in w after the last index in t; specifically, if t is given by the path (r, v1, . . . , vk),
where r is the root of F , we define

reserve(t) = |{i | wi = 1 and i > �(vk)}|.
We remark that this quantity depends both on F and the specific string w asso-
ciated with F . Finally, for a tine t we define

reach(t) = reserve(t) − gap(t).

Definition 15 (Margin). For a closed fork F � w we define λ(F ) to be the
maximum reach taken over all tines in F :

λ(F ) = max
t

reach(t).

Likewise, we define the margin of F , denoted μ(F ), to be the “penultimate” reach
taken over edge-disjoint tines of F : specifically,

margin(F ) = μ(F ) = max
t1 �∼t2

(
min{reach(t1), reach(t2)}

)
. (1)

We remark that the maxima above can always obtained by honest tines. Specif-
ically, if t is an adversarial tine of a fork F � w, reach(t) ≤ reach(t), where t is
the longest honest prefix of t.

As ∼ is an equivalence relation on the nonempty tines, it follows that there
is always a pair of (edge-disjoint) tines t1 and t2 achieving the maximum in the
defining Eq. (1) which satisfy reach(t1) = λ(F ) ≥ reach(t2) = μ(F ).

The relevance of margin to the notion of forkability is reflected in the following
proposition.

Proposition 1. A string w is forkable if and only if there is a closed fork F � w
for which margin(F ) ≥ 0.

Proof. If w has no honest indices, then the trivial fork consisting of a single root
node is flat, closed, and has non-negative margin; thus the two conditions are
equivalent. Consider a forkable string w with at least one honest index and let î
denote the largest honest index of w. Let F be a flat fork for w. As mentioned
above, there is a unique closed fork F � w obtained from F by removing any
adversarial vertices from the ends of the tines of F . Note that the tine t̂ containing
î is the longest tine in F , as this is the largest honest index of w. On the other
hand, F is flat, in which case there are two edge-disjoint tines t1 and t2 with
length at least that of t̂. The prefixes of these two tines in F must clearly have
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reserve no less than gap (and hence non-negative reach); thus margin(F ) ≥ 0 as
desired.

On the other hand, suppose w has a closed fork with margin(F ) ≥ 0, in which
case there are two edge-disjoint tines of F , t1 and t2, for which reach(ti) ≥ 0.
Then we can produce a flat fork by simply adding to each ti a path of gap(ti) ver-
tices labeled with the subsequent adversarial indices promised by the definition
of reserve().

In light of this proposition, for a string w we focus our attention on the
quantities

λ(w) = max
F
w,

F closed

λ(F ), μ(w) = max
F
w,

F closed

μ(F ),

and, for convenience,
m(w) = (λ(w), μ(w)).

Note that this overloads the notation λ(·) and μ(·) so that they apply to both
forks and strings, but the setting will be clear from context. We remark that the
definitions do not guarantee a priori that λ(w) and μ(w) can be achieved by the
same fork, though this is established by the full treatment in [14]. In any case,
it is clear that λ(w) ≥ 0 and λ(w) ≥ μ(w) for all strings w; furthermore, by
Proposition 1 a string w is forkable if and only if μ(w) ≥ 0. We refer to μ(w) as
the margin of the string w.

With these definitions in place, we are prepared to survey the proof of
Theorem 1.

Proof (of Theorem 1; high level survey). The proof proceeds by establishing a
recursive description of m(w0) and m(w1) in terms of m(w) and providing an
analysis of the Markov chain that arises by considering m(·) for strings drawn
from a binomial distribution. This yields an upper bound on the probability that
μ(w) ≥ 0 and hence the event that w is forkable. The full proof appears in the
e-print version of the paper [14].

Covert Adversaries. Observe that an adversary that broadcasts two distinct
blocks for a particular slot leaves behind a suspicious “audit trail”—multiple
signed blocks for the same slot—which conspicuously deviates from the protocol.
This may be undesirable for certain practical adversaries, who wish to maintain
the facade of honesty. We say that such an adversary is “covert” and note that
such adversaries have reduced power to disrupt the protocol. We discuss this in
detail and consider the probability of forkability with these weakened adversaries
in the full version of the paper [14].

4.3 Common Prefix

Recall that the chains constructed by honest players during an execution of πSPoS

correspond to tines of a fork, as defined and studied in the previous sections.
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The random assignment of slots to stakeholders given by FD,F
LS guarantees that

the coordinates of the associated characteristic string w follow the binomial
distribution with probability equal to the adversarial stake. Thus Theorem 1
establishes that no execution of the protocol πSPoS can induce two tines (chains)
of maximal length with no common prefix.

In the context of πSPoS, however, we wish to establish a much stronger com-
mon prefix property: The chains reported by any two honest players must have
a “recent” common prefix, in the sense that removing a small number of blocks
from the shorter chain results in a prefix of the longer chain.

Theorem 2. Let k,R ∈ N and ε ∈ (0, 1). The probability that the πSPoS protocol,
when executed with a (1−ε)/2 fraction of adversarial stake, violates the common
prefix property with parameter k throughout an epoch of R slots is no more than
exp(−Ω(

√
k)+ln R); the constant hidden by the Ω() notation depends only on ε.

Proof (sketch). The full proof (see [14]) proceeds by showing that if common
prefix with parameter k is violated for a particular fork, then the underlying
characteristic string must have a forkable substring of length k. Thus

Pr[common prefix violation] ≤ Pr
[
∃α, β ∈ {1, . . . , R} so that α+k−1 ≤ β
and wα . . . wβ is forkable

]

≤
∑

1≤α≤R

∑

α+k−1≤β≤R

Pr[wα . . . wβ is forkable]

︸ ︷︷ ︸
(∗)

.

Recall that the characteristic string w ∈ {0, 1}R for such an execution of
πSPoS is determined by assigning each wi = 1 independently with probability
(1 − ε)/2. According to Theorem 1 the probability that a string of length t
drawn from this distribution is forkable is no more than exp(−c

√
t) for a positive

constant c. Note that for any α ≥ 1,

R∑

t=α+k−1

e−c
√

t ≤
∫ ∞

k−1

e−c
√

t dt = (2/c2)(1 + c
√

k − 1)e−c
√

k−1 = e−Ω(
√

k)

and it follows that the sum (∗) above is exp(−Ω(
√

t)). Thus

Pr[common prefix violation] ≤ R · exp(−Ω(
√

k)) ≤ exp(ln R − Ω(
√

k)),

as desired.

4.4 Chain Growth and Chain Quality

Anticipating these two proofs, we record an additive Chernoff–Hoeffding bound.
(See, e.g., [17] for a proof.)
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Theorem 3 (Chernoff–Hoeffding bound). Let X1, . . . , XT be independent
random variables with E[Xi] = pi and Xi ∈ [0, 1]. Let X =

∑T
i=1 Xi and μ =

∑T
i=1 pi = E[X]. Then, for all δ ≥ 0,

Pr[X ≥ (1 + δ)μ] ≤ e− δ2
2+δ μ and Pr[X ≤ (1 − δ)μ] ≤ e− δ2

2+δ μ.

We will start with the chain growth property.

Theorem 4. The πSPoS protocol satisfies the chain growth property with para-
meters τ = 1 − α, s ∈ N throughout an epoch of R slots with probability at least
1 − exp(−Ω(ε2s) + ln R) against an adversary holding an α − ε portion of the
total stake.

Proof (sketch). The proof proceeds by applying the Chernoff bound to ensure
that with high probability a characteristic string drawn from the binomial dis-
tribution has a ≈ τ = (1 − α) fraction of honest indices. Note that each honest
player will force the length of the resulting chain to increase by one in any
execution of πSPoS. See [14] for a complete presentation.

Having established chain growth we now turn our attention to chain quality.
Recall that the chain quality property with parameters μ and � asserts that
among every � consecutive blocks in a chain (possessed by an honest user), the
fraction of adversarial blocks is no more than μ.

Theorem 5. Let α−ε be the adversarial stake ratio. The πSPoS protocol satisfies
the chain quality property with parameters μ(α − ε) = α/(1 − α) and � ∈ N

throughout an epoch of R slots with probability at least

1 − exp
(−Ω(ε2α�) + ln R

)
.

Proof (sketch). This likewise follows from appropriate application of the Cher-
noff bound. See [14] for full discussion.

5 Our Protocol: Dynamic Stake

5.1 Using a Trusted Beacon

In the static version of the protocol in the previous section, we assumed that
stake was static during the whole execution (i.e., one epoch), meaning that stake
changing hands inside a given epoch does not affect leader election. Now we put
forth a modification of protocol πSPoS that can be executed over multiple epochs
in such a way that each epoch’s leader election process is parameterized by the
stake distribution at a certain designated point of the previous epoch, allowing
for change in the stake distribution across epochs to affect the leader election
process. As before, we construct the protocol in a hybrid model, enhancing the
FD,F

LS ideal functionality to now provide randomness and auxiliary information
for the leader election process throughout the epochs (the enhanced functionality
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will be called FD,F
DLS). We then discuss how to implement FD,F

DLS using only FD,F
LS

and in this way reduce the assumption back to the simple common random string
selected at setup.

Before describing the protocol for the case of dynamic stake, we need to
explain the modification of FD,F

LS so that multiple epochs are considered. The
resulting functionality, FD,F

DLS , allows stakeholders to query it for the leader selec-
tion data specific to each epoch. FD,F

DLS is parameterized by the initial stake of
each stakeholder before the first epoch e1 starts; in subsequent epochs, parties
will take into consideration the stake distribution in the latest block of the pre-
vious epoch’s first R − 2k slots. Given that there is no predetermined view of
the stakeholder distribution, the functionality FD,F

DLS will provide only a random
string and will leave the interpretation according to the stakeholder distribu-
tion to the party that is calling it. The effective stakeholder distribution is the
sequence S1,S2, . . . defined as follows: S1 is the initial stakeholder distribution;
for slots {(j − 1)R + 1, . . . , jR} for j ≥ 2 the effective stakeholder Sj is deter-
mined by the stake allocation that is found in the latest block with time stamp
at most (j − 1)R − 2k, provided all honest parties agree on it, or is undefined if
the honest parties disagree on it. The functionality FD,F

DLS is defined in Fig. 4.

Fig. 4. Functionality FD,F
DLS .

We now describe protocol πDPoS, which is a modified version of πSPoS that
updates its genesis block B0 (and thus the leader selection process) for every new
epoch. The protocol also adopts an adaptation of the static maxvalidS function,
defined so that it narrows selection to those chains which share common prefix.
Specifically, it adopts the following rule, parameterized by a prefix length k:

Function maxvalid(C,C). Returns the longest chain from C∪{C} that does
not fork from C more than k blocks. If multiple exist it returns C, if this
is one of them, or it returns the one that is listed first in C.

Protocol πDPoS is described in Fig. 5 and functions in the FD,F
DLS -hybrid model.
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Fig. 5. Protocol πDPoS

Remark 1. The modification to maxvalid(·) to not diverge more than k blocks
from the last chain possessed will require stakeholders to be online at least every
k slots. The relevance of the rule comes from the fact that as stake shifts over
time, it will be feasible for the adversary to corrupt stakeholders that used to
possess a stake majority at some point without triggering Bad

1/2 and thus any
adversarial chains produced due to such an event should be rejected. It is worth
noting that this restriction can be easily lifted if one can trust honest stakeholders
to securely erase their memory; in such case, a forward secure signature can be
employed to thwart any past corruption attempt that tries to circumvent Bad1/2.

5.2 Simulating a Trusted Beacon

While protocol πDPoS handles multiple epochs and takes into consideration
changes in the stake distribution, it still relies on FD,F

DLS to perform the leader
selection process. In this section, we show how to implement FD,F

DLS through
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Protocol πDLS, which allows the stakeholders to compute the randomness and
auxiliary information necessary in the leader election.

Recall, that the only essential difference between FD,F
LS and FD,F

DLS is the con-
tinuous generation of random strings ρ2, ρ3, . . . for epochs e2, e3, . . .. The idea
is simple, protocol πDLS will use a coin tossing protocol to generate unbiased
randomness that can be used to define the values ρj , j ≥ 2 bootstrapping on the
initial random string and initial honest stakeholder distribution. However, notice
that the adversary could cause a simple coin tossing protocol to fail by aborting.
Thus, we build a coin tossing scheme with “guaranteed output delivery.”

Protocol πDLS is described in Fig. 6 and uses a publicly verifiable secret shar-
ing (PVSS) [26] (we defer to the full version the full description of the scheme).

The assumption we will use about the PVSS scheme is that the resulting
coin-flipping protocol simulates a perfect beacon with distinguishing advantage
εDLS. Simulation here suggests that, in the case of honest majority, there is
a simulator that interacts with the adversary and produces indistinguishable
protocol transcripts when given the beacon value after the commitment stage.
We remark that using [26] as a PVSS, a simulator can achieve simulatability
in the random oracle model by taking advantage of the programmability of the
oracle. Using a random oracle is by no means necessary though and the same
benefits may be obtained by a CRS embedded into the genesis block.

5.3 Robust Transaction Ledger

We are now ready to state the main result of the section that establishes that
the πDPOS protocol with the protocol πDLS as a sub-routine implements a robust
transaction ledger under the environmental conditions that we have assumed.
Recall that in the dynamic stake case we have to ensure that the adversary cannot
exploit the way stake changes over time and corrupt a set of stakeholders that
will enable the control of the majority of an elected committee of stakeholders
in an epoch. In order to capture this dependency on stake “shifts”, we introduce
the following property.

Definition 16. Consider two slots sl1, sl2 and an execution E. The stake shift
between sl1, sl2 is the maximum possible statistical distance of the two weighted-
by-stake distributions that are defined using the stake reflected in the chain C1 of
some honest stakeholder active at sl1 and the chain C2 of some honest stakeholder
active at sl2 respectively.

Given the definition above we can now state the following theorem.

Theorem 6. Fix parameters k,R,L ∈ N, ε, σ ∈ (0, 1). Let R = 10k be the epoch
length and L the total lifetime of the system. Assume the adversary is restricted
to 1−ε

2 − σ relative stake and that the πSPOS protocol satisfies the common pre-
fix property with parameters R, k and probability of error εCP, the chain quality
property with parameters μ ≥ 1/k, k and probability of error εCQ and the chain
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Fig. 6. Protocol πDLS.

growth property with parameters τ ≥ 1/2, k and probability of error εCG. Further-
more, assume that πDLS simulates a perfect beacon with distinguishing advantage
εDLS.

Then, the πDPOS protocol satisfies persistence with parameters k and liveness
with parameters u = 2k throughout a period of L slots (or Bad

1/2 happens) with
probability 1 − (L/R)(εCQ + εCP + εCG + εDLS), assuming that σ is the maximum
stake shift over 10k slots, corruption delay D ≥ 2R − 4k and no honest player
is offline for more than k slots.

Proof. (sketch) Let us first consider the execution of πDPOS when FD,F
DLS is

used instead of πDLS. Let BADr be the event that any of the three proper-
ties CP,CQ,CG is violated at round r ≥ 1 while no violation of any of them
occurred prior to r. It is easy to see that Pr[∪r≤RBADr] ≤ εCQ + εCP + εCG.
Conditioning now on the negation of this event, we can repeat the argument
for the second epoch, since D ≥ R and thus the adversary cannot influence
the stakeholder selection for the second epoch. It follows that Pr[∪r≤LBADr] ≤
(L/R)(εCQ + εCP + εCG). It is easy now to see that persistence and liveness hold
conditioning on the negation of the above event: a violation of persistence would
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violate common prefix. On the other hand, a violation of liveness would violate
either chain growth or chain quality for the stated parameters.

Observe that the above result will continue to hold even if FD,F
DLS was weakened

to allow the adversary access to the random value of the next epoch 6k slots
ahead of the end of the epoch. This is because the corruption delay D ≥ 2R −
4k = 16k.

Finally, we examine what happens when FD,F
DLS is substituted by FD,F

LS and
the execution of protocol πDLS. Consider an execution with environment Z and
adversary A and event BAD that happens with some probability β in this exe-
cution. We construct an adversary A∗ that operates in an execution with FD,F

DLS ,
weakened as in the previous paragraph, and induces the event BAD with roughly
the same probability β. A∗ would operate as follows: in the first 4k slots, it will
use an honest party to insert in the blockchain the simulated commitments of
the honest parties; this is feasible for A∗ as in 4k slots, chain growth will result in
the blockchain growing by at least 2k blocks and thus in the first k blocks there
will be at least a single honest block included. Now A∗ will obtain from FD,F

DLS

the value of the beacon and it will simulate the opening of all the commitments
on behalf of the honest parties. Finally, in the last 2k slots it will perform the
forced opening of all the adversarial commitments that were not opened. The
protocol simulation will be repeated for each epoch and the statement of the
theorem follows. ��
Remark 2. We note that it is easy to extend the adversarial model to include
fail-stop (and recover) corruptions in addition to Byzantine corruptions. The
advantage of this mixed corruption setting, is that it is feasible to prove that we
can tolerate a large number of fail-stop corruptions (arbitrarily above 50%). The
intuition behind this is simple: the forkable string analysis still applies even if
an arbitrary percentage of slot leaders is rendered inactive. The only necessary
provision for this would be expand the parameter k inverse proportionally to the
rate of non-stopped parties. We omit further details.

6 Incentives

So far our analysis has focused on the cryptographic adversary setting where
a set of honest players operate in the presence of an adversary. In this section
we consider the setting of a coalition of rational players and their incentives to
deviate from honest protocol operation.

Input Endorsers. In order to address incentives, we modify further our basic
protocol to assign two different roles to stakeholders. As before in each epoch
there is a set of elected stakeholders that runs the secure multiparty coin flipping
protocol and are the slot leaders of the epoch. Together with those there is a (not
necessarily disjoint) set of stakeholders called the endorsers. Now each slot has
two types of stakeholders associated with it; the slot leader who will issue the
block as before and the slot endorser who will endorse the input to be included in
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the block. Moreover, contrary to slot leaders, we can elect multiple slot endorsers
for each slot, nevertheless, without loss of generality we just assume a single
input endorser per slot in this description. While this seems like an insignificant
modification it gives us a room for improvement because of the following reason:
endorsers’ contributions will be acceptable even if they are d slots late, where
d ∈ N is a parameter.

The enhanced protocol, πDPOSwE, can be easily seen to have the same per-
sistence and liveness behaviour as πDPOS: the modification with endorsers does
not provide any possibility for the adversary to prevent the chain from grow-
ing, accepting inputs, or being consistent. However, if we measure chain quality
in terms of number of endorsed inputs included this produces a more favorable
result: it is easy to see that the number of endorsed inputs originating from a
set of stakeholders S in any k-long portion of the chain is proportional to the
relative stake of S with high probability. This stems from the fact that it is
sufficient that a single honest block is created for all the endorsed inputs of the
last d slots to be included in it. Assuming d ≥ 2k, any set of stakeholders S
will be an endorser in a subset of the d slots with probability proportional to its
cumulative stake, and thus the result follows.

A Suitable Class of Reward Mechanisms. The reward mechanism that we will
pair with input endorsers operates as follows. First we set the endorsing accep-
tance window, d to be d = 2k. Let C be a chain consisting of blocks B0, B1, . . ..
Consider the sequence of blocks that cover the j-th epoch denoted by B1, . . . , Bs

with timestamps in {jR + 1, . . . , (j + 1)R + 2k} that contain an r ≥ 0 sequence
of endorsed inputs that originate from the j-th epoch (some of them may be
included as part of the j + 1 epoch). We define the total reward pool PR to be
equal to the sum of the transaction fees that are included in the endorsed inputs
that correspond to the j-th epoch. If a transaction occurs multiple times (as part
of different endorsed inputs) or even in conflicting versions, only the first occur-
rence of the transaction is taken into account (and is considered to be part of
the ledger at that position) in the calculation of P , where the total order used is
induced by the order the endorsed inputs that are included in C. In the sequence
of these blocks, we identify by L1, . . . , LR the slot leaders corresponding to the
slots of the epoch and by E1, . . . , Er the input endorsers that contributed the
sequence of r endorsed inputs. Subsequently, the i-th stakeholder Ui can claim
a reward up to the amount (β · |{j | Ui = Ej}|/r + (1 − β) · |{j | Ui = Lj}|/R)P
where β ∈ [0, 1]. Claiming a reward is performed by issuing a “coinbase” type of
transaction at any point after 4k blocks in a subsequent epoch to the one that
a reward is being claimed from.

Observe that the above reward mechanism has the following features: (i) it
rewards elected committee members for just being committee members, indepen-
dently of whether they issued a block or not, (ii) it rewards the input endorsers
with the inputs that they have contributed. (iii) it rewards entities for epoch j,
after slot jR + 4k.
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We proceed to show that our system is a δ-Nash (approximate) equilibrium,
cf. [19, Sect. 2.6.6]. Specifically, the theorem states that any coalition deviating
from the protocol can add at most an additive δ to its total rewards.

A technical difficulty in the above formulation is that the number of players,
their relative stake, as well as the rewards they receive are based on the transac-
tions that are generated in the course of the protocol execution itself. To simplify
the analysis we will consider a setting where the number of players is static, the
stake they possess does not shift over time and the protocol has negligible cost
to be executed. We observe that the total rewards (and hence also utility by our
assumption on protocol costs) that any coalition V of honest players are able
extract from the execution lasting L = tR + 4k + 1 slots, is equal to

RV (E) =
t∑

j=1

P
(j)
all

(

β
IEj

V (E)
R

+ (1 − β)
SLj

V (E)
rj

)

for any execution E where common prefix holds with parameter k, where rj is
the total endorsed inputs emitted in the j-th epoch (and possibly included at
any time up to the first 2k slots of epoch j +1), P

(j)
all is the reward pool of epoch

j, SLj
V (E) is the number of times a member of V was elected to be a slot leader

in epoch j and IEj
V (E) the number of times a member of V was selected to

endorse an input in epoch j.
Observe that the actual rewards obtained by a set of rational players V in an

execution E might be different from RV (E); for instance, the coalition of V may
never endorse a set of inputs in which case they will obtain a smaller number of
rewards. Furthermore, observe that we leave the value of RV (E) undefined when
E is an execution where common prefix fails: it will not make sense to consider
this value for such executions since the view of the protocol of honest parties
can be divergent; nevertheless this will not affect our overall analysis since such
executions will happen with sufficiently small probability.

We will establish the fact that our protocol is a δ-Nash equilibrium by proving
that the coalition V , even deviating from the proper protocol behavior, it cannot
obtain utility that exceeds RV (E) + δ for some suitable constant δ > 0.

Theorem 7. Fix any δ > 0; the honest strategy in the protocol is a δ-Nash
equilibrium against any coalition commanding a proportion of stake less than
(1 − ε)/2 − σ for some constants ε, σ ∈ (0, 1) as in Theorem 6, provided that
the maximum total rewards Pall provided in all possible protocol executions is
bounded by a polynomial in λ, while εCQ + εCP + εCG + εDLS is negligible in λ.

We refer to the full version of the paper, [14], for the proof.

Remark 3. In the above theorem, for simplicity, we assumed that protocol costs
are not affective the final utility (in essence this means that protocol costs are
assumed to be negligible). Nevertheless, it is straightforward to extend the proof
to cover a setting where a negative term is introduced in the payoff function
for each player proportional to the number of times inputs are endorsed and
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the number of messages transmitted for the MPC protocol. The proof would
be resilient to these modifications because endorsed inputs and MPC protocol
messages cannot be stifled by the adversary and hence the reward function can be
designed with suitable weights for such actions that offsets their cost. Still note
that the rewards provided are assumed to be “flat” for both slots and endorsed
inputs and thus the costs would also have to be flat. We leave for future work the
investigation of a more refined setting where costs and rewards are proportional
to the actual computational steps needed to verify transactions and issue blocks.

7 Stake Delegation

In this section we introduce a delegation scheme whereby the stakeholders of
the PoS protocol can delegate the protocol execution rights to another set of
parties, the delegates. A delegate may participate in the protocol only if it rep-
resents a certain number of stakeholders whose aggregate stake exceeds a given
threshold. Such a participation threshold ensures that a “fragmentation” attack,
that aims to increase the delegate population in order to hurt the performance
of the protocol, cannot incur a large penalty as it is capable to force the size
of the committee that runs the protocol to be small (it is worth noting that
the delegation mechanism is similar to mining pools in proof-of-work blockchain
protocols).

Delegation Scheme. The concept of delegation is simple: any stakeholder can
allow a delegate to generate blocks on her behalf. In the context of our protocol,
where a slot leader signs the block it generates for a certain slot, such a scheme
can be implemented in a straightforward way based on proxy signatures [7].

A stakeholder can transfer the right to generate blocks by creating a proxy
signing key that allows the delegate to sign messages of the form (st, d, slj)
(i.e., the format of messages signed in Protocol πDPoS to authenticate a block).
In order to limit the delegate’s block generation power to a certain range of
epochs/slots, the stakeholder can limit the proxy signing key’s valid message
space to strings ending with a slot number slj within a specific range of values.
The delegate can use a proxy signing key from a given stakeholder to simply run
Protocol πDPoS on her behalf, signing the blocks this stakeholder was elected to
generate with the proxy signing key. This simple scheme is secure due to the
Verifiability and Prevention of Misuse properties of proxy signature schemes,
which ensure that any stakeholder can verify that a proxy signing key was actu-
ally issued by a specific stakeholder to a specific delegate and that the delegate
can only use these keys to sign messages inside the key’s valid message space,
respectively. We remark that while proxy signatures can be described as a high
level generic primitive, it is easy to construct such schemes from standard digital
signature schemes through delegation-by-proxy as shown in [7]. In this construc-
tion, a stakeholder signs a certificate specifying the delegates identity (e.g., its
public key) and the valid message space. Later on, the delegate can sign messages
within the valid message space by providing signatures for these messages under



Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol 387

its own public key along with the signed certificate. As an added advantage,
proxy signature schemes can also be built from aggregate signatures in such a
way that signatures generated under a proxy signing key have essentially the
same size as regular signatures [7].

An important consideration in the above setting is the fact that a stakeholder
may want to withdraw her support to a stakeholder prior to its proxy signing
key expiration. Observe that proxy signing keys can be uniquely identified and
thus they may be revoked by a certificate revocation list within the blockchain.

Eligibility Threshold. Delegation as described above can ameliorate fragmenta-
tion that may occur in the stake distribution. Nevertheless, this does not pre-
vent a malicious stakeholder from dividing its stake to multiple accounts and,
by refraining from delegation, induce a very large committee size. To address
this, as mentioned above, a threshold T , say 1%, may be applied. This means
that any delegate representing less a fraction less than T of the total stake is
automatically barred from being a committee member. This can be facilitated by
redistributing the voting rights of delegates representing less than T to other del-
egates in a deterministic fashion (e.g., starting from those with the highest stake
and breaking ties according to lexicographic order). Suppose that a committee
has been formed, C1, . . . , Cm, from a total of k draws of weighing by stake. Each
committee member will hold ki such votes where

∑m
i=1 ki = k. Based on the

eligibility threshold above it follows that m ≤ T−1 (the maximum value is the
case when all stake is distributed in T−1 delegates each holding T of the stake).
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Abstract. Non-Interactive Multiparty Computations (Beimel et al.,
Crypto 2014) is a very powerful notion equivalent (under some cor-
ruption model) to garbled circuits, Private Simultaneous Messages pro-
tocols, and obfuscation. We present robust solutions to the problem
of Non-Interactive Multiparty Computation in the computational and
information-theoretic models. Our results include the first efficient and
robust protocols to compute any function in NC1 for constant-size col-
lusions, in the information-theoretic setting and in the computational
setting, to compute any function in P for constant-size collusions, assum-
ing the existence of one-way functions. Our constructions start from a
Private Simultaneous Messages construction (Feige, Killian Naor, STOC
1994 and Ishai, Kushilevitz, ISTCS 1997) and transform it into a Non-
Interactive Multiparty Computation for constant-size collusions.

We also present a new Non-Interactive Multiparty Computation pro-
tocol for symmetric functions with significantly better communication
complexity compared to the only known one of Beimel et al.

Keywords: Non-interactive multiparty computation · Private Simulta-
neous Messages

1 Introduction

A non-interactive multiparty computation enables n parties P1, . . . , Pn, each
holding a private input, and a special party P0, called an evaluator, to compute
a joint function of the n parties’ inputs so that the evaluator learns the output.
The communication structure in this setting is that each party sends a single
message to the evaluator. This is a highly desired mode of interaction as the
required connectivity between the parties is extremely simple, yet it enables to
carry out natural computations such as voting and auctions.

Feige et al. [4] were first to study such a model, referred to as the Private
Simultaneous Messages (PSM)1 model. They considered information-theoretic
security, namely, in a PSM protocol for a function f , the evaluator of the func-
tion learns the output of the function on the parties’ inputs and nothing else.
1 Name given by Ishai and Kushilevitz [9].
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Essential to their solutions was the assumption that the evaluator does not col-
lude with any of the n parties. If such collusions were possible, even with a single
misbehaving party, their protocols would lose the privacy guarantee.

Beimel et al. [3] generalized the PSM model to what they call Non-Interactive
Multiparty Computation (NIMPC), by considering the possibility of collusions
between parties and the evaluator. In this setting the notion of security needs
to be modified as clearly we cannot prevent the evaluator from computing the
function on all possible inputs of the colluding parties. Thus, they define the
notion of “best possible security” by utilizing the residual function [8] for a set
of colluding parties T . The residual function of f is all the values f(y1, . . . , yn)
where yi = xi if Pi /∈ T (xi being the input of the non-colluding party Pi) and
yi ∈ {0, 1} for Pi ∈ T . A secure protocol would enable the adversary to learn
the residual function and nothing more. An NIMPC protocol that can withstand
collusions of up to t parties is called t-robust. If t = n the protocol is said to be
fully robust.

Due to their very restricted communication pattern, both PSM and NIMPC
require some form of setup arrangement. PSM assumes a common random string
shared by the parties while NIMPC allows for a setup phase where parties are
provided with correlated randomness. The latter models an offline stage run
independently of the parties’ inputs with the actual computation of the function
happening in a later online phase.

We note that while the above notions were introduced in the information-
theoretic setting, they apply to the computational case as well. The notion of
NIMPC turns out to be extremely powerful both in the computational and
information-theoretic setting, and for a wide range of applications. It generalizes
such notions as obfuscation and garbling schemes, and is a weaker variant of
multi-input functional encryption. At the same time, in more practical settings,
NIMPC can be used for voting, auctions, or distributed computations on bulletin
boards.

The wide applicability of the NIMPC abstraction is also reflected in the wide
range of results (and open questions) for what is computable in this model. In
the information-theoretic setting, Feige et al. [4] show that any function can
be computed with exponential size messages sent from parties to evaluator. At
the same time, they show that any function in NC1 can be computed with
polynomial-size messages. Ishai and Kushilevitz [9] further expanded the class
of functions that can be computed by PSM protocols to log-space language
classes such as modpL and to log-space counting classes such as #L.

Not surprisingly, the NIMPC model proves to be more challenging, even for
restricted robustness. Beimel et al. [3] prove that some non-trivial functions can
be computed with information-theoretic security in this model. They showed that
the iterated product function f(x1, . . . , xn) = x1 · · · xn over a group G can be
computed efficiently with a collusion of any size. In addition, for any function f ,
they exhibit a solution that can tolerate arbitrary collusions but is exponential
in the total bit-length of the inputs. Their strongest result shows that symmetric
functions over a domain X1 × · · · × Xn where each Xi is of constant-size admits
a t-robust NIMPC with polynomial complexity for constant t.
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Can these information-theoretic NIMPC results be extended to a larger class,
e.g., NC1, as in the PSM case? A negative result follows from Goldwasser and
Rothblum [6] implicitly stating that the existence of an efficient protocol for NC1

that can tolerate a polynomial-size collusion (i.e., of size t = Ω(nα), with α > 0
being constant) in the information-theoretic setting would imply the collapse
of the polynomial-time hierarchy. This still leaves the possibility that robust
NIMPC with restricted, say constant-size, collusions are still possible for NC1.
Yet, Beimel et al. show evidence that even achieving 1-robustness, i.e., security
against a collusion of one party with the evaluator, may require a new technical
approach (they show that natural approaches to realize NIMPC based on known
PSM or garbling techniques fail even for t = 1). They leave this question open.

In the computational setting the situation is strikingly different. First of all,
in the PSM model or the equivalent 0-robust NIMPC, one can compute any
polynomial-time computable function with polynomial-size messages under the
sole assumption of the existence of one-way functions. Indeed, note that a Yao
garbled circuit is a 0-robust NIMPC. At the other end, fully-robust NIMPC
for any polynomial function can be constructed using multi-input functional
encryption which Goldwasser et al. [5] build on the basis of indistinguishabil-
ity obfuscation (iO) and one-way functions. Actually, the existence of efficient
NIMPC protocols for P that can tolerate a polynomial-size collusion implies iO.

The above results leave two wide gaps in our knowledge regarding the fea-
sibility of constructing robust NIMPC protocols. In the information-theoretic
setting, PSM exists for at least all of NC1 while NIMPC with non-zero robust-
ness is only known for a handful of simple functions [3]. In the computational
setting, one-way functions suffice for 0-robust NIMPC for all polynomial func-
tions, and under iO fully-robust NIMPC for all P is possible.
This raises two important questions:

1. Do information-theoretic robust NIMPC protocols exist, even for
1-robustness, for a class of functions covered by PSM, e.g., NC1?

2. Do computational robust NIMPC protocols exist for P , with restricted
robustness, under weaker assumptions than iO?

These are open questions postulated in the work of Beimel et al. [3] and the ones
that we set to answer.

1.1 Our Results

From PSM to NIMPC. Our main theorem shows an information-theoretic
transformation which takes any PSM (or 0-robust NIMPC) construction and
transforms it into a t-robust NIMPC protocol. The resultant protocol has com-
plexity that is, roughly, nO(t) times that of the given PSM protocol. Furthermore,
if the original PSM relied on some assumptions the new protocol relies on the
same assumptions without needing to introduce any further assumptions.

This single theorem is extremely powerful and its corollaries give an affirma-
tive answer to the two questions raised above.
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In the information-theoretic setting we have that for constant t, there exist
efficient t-robust protocols for the same class of functions for which efficient PSM
protocols exist, in particular for the whole class NC1 and the classes shown in [9],
namely, modpL and log-space counting classes such as #L.

In the computational setting, we achieve robust NIMPC solutions for
constant-size collusions for any polynomial-time function, solely based on one
way functions. That is, we narrow the gap between the PSM solutions based on
one-way functions that tolerate no collusions, and the solutions based on iO, that
can tolerate any number of collusions. Recall that robust NIMPC solutions for
any polynomial-time function, even for polynomial-size collusions, implies iO.

Design. The idea governing our result was to directly find a solution to the
problem identified by Beimel et al. [3, Sect. 6]. The essence of the problem can
be understood by considering a Yao garbled circuit. The circuit is set up so that
each input wire i has two possible labels m′

i,0,m
′
i,1 one of which will be used

by party Pi to convey its input to the evaluator. The problem arises when Pi

colludes with the evaluator providing both labels for input wire i. One might
hope that this would only enable the evaluator to compute the residual function,
i.e., f(x1, . . . , xi−1, 0, xi+1, . . . , xn) and f(x1, . . . , xi−1, 1, xi+1, . . . , xn), which is
allowed. However, the above paper shows that in fact more is exposed via the
knowledge of both labels, thus violating the security of the computation. This
problem also arises in similar constructions based on Barrington theorem [2] and
Kilian randomization [12], or the Ishai-Kushilevitz protocol in [9].

The issue is that the adversary can learn two different labels m′
i,0 and m′

i,1

for the same input wire i, when Pi is colluding. If we could prevent it, this would
resolve the problem described above. Yet, this seems challenging as we need to
enable Pi to still have a message for a possible input of 0 and a message for
a possible input of 1, otherwise it will render the computation impossible. But
maybe this counter-intuitive approach can be achieved?

Given a function f , n parties, P1, . . . , Pn, holding inputs x1, . . . , xn (resp.), an
evaluator P0, and a PSM which computes the function we will do the following.
We duplicate the PSM a number of times (this number is a function of the
number of colluding parties; we denote it for now by κ), creating the copies
PSM1, . . . ,PSMκ. Each PSM will have a fresh set of labels for its input wires.
Concretely, PSMσ will have labels m′

σ,i,0,m
′
σ,i,1 for i = {1, . . . , n}. On top of

these copies of the PSM we will put NIMPC protocols which we call selectors.
There will be n selectors Sel1, . . . ,Seln, one for each party. The input wires for
all the selectors will be labeled by mi,0,mi,1 for i = {1, . . . , n}. The selector Sel i
is expected to output a label m′

σ,i,xi
for exactly one index σ. Each selector will

have one output wire for a total of n output wires for all the selectors combined.
Clearly, the adversary can still utilize both mi,0,mi,1 of a colluding party on

the input wires to the selectors. But the selectors will be sophisticated. Given
a specific set of labels for the inputs wires, they will provide a full set of labels
for only one of the copies of the PSM. Given a different set of input wire labels,
they will provide a full set of labels for a different PSM. So for the example
above, on input the set of labels m1,x1 , . . . ,mi−1,xi−1 ,mi,0,mi+1,xi+1 , . . . ,mn,xn

,
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the adversary will receive the labels for PSMσ and on input the set of
labels m1,x1 , . . . ,mi−1,xi−1 ,mi,1, ,mi+1,xi+1 , . . . ,mn,xn

it will receive the labels
for PSMσ′ . Thus, effectively disarming the adversary from the ability to learn
two different labels for the same input of the same PSM. Note, that the adver-
sary can still run the selectors multiple times on different inputs, in fact, on 2t

if there are t colluding parties. But the selectors can “tolerate” such behavior
without violating the privacy of the inputs of the non-colluding parties.

Thus we have achieved that the combination of selectors Sel i and κ copies
of the original PSM yield a t-robust NIMPC for the function computed by the
PSM. See Fig. 1.

Example for One Colluding Party. In the following, we give a flavor of the
ideas of our protocols in the specific case where only one party is colluding
with the evaluator. In this case we would need two copies of the PSM, PSM1

and PSM2 with labels m′
1,i,0, m′

1,i,1 and m′
2,i,0,m

′
2,i,1 (resp.) for the input wire

corresponding to party Pi. Thus, we want the selectors either to provide a full
set of labels for one or the other of the two PSMs.

Fig. 1. NIMPC transformation
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We define Sel i, the algorithm used by the evaluator to derive exactly one of
the labels m′

1,i,xi
,m′

2,i,xi
from the input labels m1,x1 , . . . ,mn,xn

, as:

Sel i(m1,x1 , . . . ,mn,xn
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m′
1,i,0 if

∑n
j=1 xj = 0 mod 2 and xi = 0,

m′
1,i,1 if

∑n
j=1 xj = 0 mod 2 and xi = 1,

m′
2,i,0 if

∑n
j=1 xj = 1 mod 2 and xi = 0,

m′
2,i,1 if

∑n
j=1 xj = 1 mod 2 and xi = 1.

We assume that xi can be implicitly obtained from mi,xi
. Things will be made

more formal later.
Let us examine the output of the selector and see that it works properly.

W.l.o.g., assume that Pi is the colluding party and that the evaluator first uses
the message corresponding to an input of 0 for Pi and that this sets the sum
of all the parties’ inputs to 0. In this case the selector for all parties, colluding
or not, will output one of the values from the two top rows depending on the
party’s individual input. These are all labels for PSM1. Now, if the evaluator
flips the input value of the colluding party to be 1, this causes the sum of all the
parties’ inputs to flip to 1, resulting in the selector outputting a value from the
bottom two rows of the function. Those outputs are all labels of PSM2. Thus,
we manage to prevent the evaluator from learning two labels for the same input
of the same PSM.

NIMPC for Symmetric Functions. While our above result and also [3]
provide NIMPC protocols for symmetric functions (both of complexity nO(t)),
here we present a specialized solution that improves significantly the level of
robustness it can offer.

A symmetric Boolean function can be seen as a function of the sum of its
inputs over Zn+1. Our core idea is to start with an inefficient NIMPC solu-
tion based on an information-theoretic implementation of Yao’s garbling and
then improve its complexity via a “divide-and-conquer” approach that uses the
Chinese remainder theorem to create small instances of the problem. The
NIMPC protocols on these smaller instances provide much stronger collusion
resistance. Using this technique we show that there exists an information-
theoretic t-robust NIMPC for symmetric Boolean functions with communication
complexity nlog log n+log t+O(1), improving significantly on the best prior protocol
in [3, Theorem 4.17] that has communication complexity

(
n
t

)
· O(2t · n4).

1.2 Related Work

Halevi et al. [8] wanted to avoid the need for a fresh common or correlated ran-
domness string for each execution. However, their model requires the parties to



Robust Non-interactive Multiparty Computation 397

sequentially interact with the evaluator. They provide solutions for very specific
patterns of interaction, assuming a public-key infrastructure (PKI).

Halevi et al. [7] expand the graphs of interaction patterns that can be han-
dled in [8] to directed graphs, chains, and star. They examine which functions
can be computed under these communication patterns and show that any inter-
action pattern can be reduced via an information theoretic protocol to a star,
while providing the best possible security that can be achieved. Note that a
star communication pattern is equivalent to the pattern presented in NIMPC.
Using our new t-robust NIMPC protocols for the star communication pattern
can enable a constant number of colluding parties for general communication
patterns without relying on strong assumptions such as iO.

In [16] the authors provide an exponential lower bound of the communica-
tion complexity of NIMPC protocols for arbitrary functions, and improve the
polynomial factors of the communication complexity of the NIMPC protocol
for arbitrary functions of Beimel et al. They further extend their result in [14]
improved complexity of the previous NIMPC protocol for arbitrary function with
multi-bit inputs, yet it still has exponential complexity.

1.3 Organization of the Paper

In Sect. 2, we start by an extensive overview to provide intuition for the tech-
niques we use in our transformation of PSM into t-robust NIMPC. After some
formal preliminaries in Sect. 3, we present one of the main components of the
transformation and of our NIMPC protocol for symmetric functions, namely
selectors, in Sect. 4. In Sect. 5, we define and construct another component of
the transformation, namely admissible linear indexing function. The transfor-
mation itself is formally described and proven in Sect. 6. Finally, in Sect. 7, we
show our new NIMPC protocol for symmetric functions.

2 Overview

In this section we provide an extensive overview of the techniques we use in
our transformation from PSM to t-robust NIMPC with emphasis on ideas and
intuition at the expense of formalism. For the sake of simplicity, we assume that
the inputs of the parties are bits.

2.1 Defining the Indexing Function

In the Introduction we showed that we need selectors that, for every given set of
inputs of the parties, choose a different PSM, and then output a consistent set
of labels for the input wires of the chosen PSM. In this section, we explain how
to choose the PSM. This is done via what we call an indexing function ind.

The indexing function ind takes as input a vector x, which reflects the inputs
of the parties. The entry for a non-colluding Pi will be set to its actual input,
xi and the rest of the entries are fixed by the adversary. When the adversary
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controls t parties it can create 2t distinct vectors x, running over all possible
inputs of the colluding parties. These 2t vectors can in fact be reflected in 2t

evaluations of the selectors. Thus, we want to have (at least) 2t PSM and in
return require that the indexing function, ind, will map each one of the possible
vectors into a different PSM. We will index the PSM by σ in some set S.

We now build the indexing function ind. Let ind be a function that on input
x = (x1, . . . , xn) outputs an index σ ∈ S. The function ind should have the
property that if a party Pi is colluding then any input x to ind that has xi = 0
should produce a different σ than the same x but with xi = 1. In general, no
coalition of t colluding parties should be able to choose their inputs so that two
different inputs lead to the selection of the same index σ. Note that this does
not mean that ind should be injective but rather that if one fixes the inputs of
the non-colluding parties, then any two assignments of the remaining t inputs
should result in a different value σ output by ind. Going back to the example
from the Introduction, for t = 1 we implicitly defined ind(x) = x1 + · · ·+xn and
obtained the desired property. Indeed, if all the inputs are fixed except the one
of a single colluding party Pi, each input xi of Pi yields a different value ind(x)
(note that this property assumes a single colluding party but does not require
to know who this party is).

For the general case of t colluding parties we build ind using a linear code.
We first observe that for any value σ in the range of ind, it should be that the
set ind−1(σ) forms a code of distance at least t + 1. Indeed, assume that two
different elements x1,x2 in the set ind−1(σ) have Hamming distance ≤ t and
let T ⊆ {1, . . . , n} be the set of entries where the two differ. Choosing T as the
set of colluding parties, we have that x1,x2 coincide in all the honest parties’
inputs, differ on the colluding parties’ inputs, yet they are mapped to the same
value σ. This contradicts our requirement from ind. We can thus define ind via
a linear code of distance t + 1 over a linear space F

n
q (for some prime power q)

as follows. Let H ∈ F
�×n
q be the parity-check matrix of such a code, namely,

the code is formed by all vectors x ∈ F
n
q for which H · x = 0. This means that

H−1(0) is a code of distance t + 1 and the same is also true, by linearity, for
H−1(σ) for any other σ in the range of H. Thus, defining ind(x) = H ·x we get
the property we needed. See Sect. 5 for the details.

We note that using such an H, we get that the set of possible values σ (i.e.,
the range of the function ind) is of size q� (� = t in our implementation, for
well-chosen prime powers q) and that is also the number of PSMs. This is the
source of exponential complexity in our construction and the reason for why we
are polynomial-time only for constant t.

2.2 Reduction of Sel i to Message-Outputting Protocols

Given an indexing function ind : x �→ H · x ∈ F
�
q as above, our goal is now

to construct the selector Sel i which is an NIMPC protocol for the following
functions:

hi : x ∈ {0, 1}n �→ m′
ind(x),i,xi

. (1)
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where messages m′
σ,i,b are implicit secret parameters of the NIMPC. The message

m′
σ,i,b is the message that party Pi would send on input b in the PSM PSMσ.

We recall that the selector Sel i ensures that an adversary should not be able to
obtain two messages m′

σ,i,b and m′
σ,i,1−b for the same σ and i.

We can reduce the construction of such selectors Sel i to the construction of
an NIMPC for the following functions:

hσ,i,b : x ∈ F
n
q �→

{
m′

σ,i,b if ind(x) = σ and xi = b,

⊥ otherwise.
(2)

The idea consists in running all the NIMPC protocols for all the functions hσ,i,b,
for each σ ∈ S and each b ∈ {0, 1}, in parallel, to get the selector Sel i. Exactly
one of them will have a non-⊥ output. To avoid leaking the value b = xi and
σ = ind(x), these protocols are randomly permuted.

As the condition “ind(x) = σ and xi = b” in Eq. (2) is linear, we can rewrite
these functions in terms of matrix-vector operations, a representation that will
facilitate the design of NIMPC protocols for such functions. We first define the
following generic family of functions indexed by a public matrix M in F

k×n
q (for

our constructions, k = � + 1), a secret vector u in F
k
q , and a secret message m̃

in Fq:

hM,u,m̃ : x ∈ F
n
q �→

{
m̃ ∈ Fq if u = M · x,

⊥ otherwise.

An NIMPC for such a function is called a message-outputting protocol.
Now, assuming w.l.o.g. that m′

σ,i,b ∈ Fq,2 we can represent the above func-
tions hσ,i,b as special cases of hM,u,m̃ by setting

M = M (i) =
(

H
eᵀ

i

)

, u = u(σ,b) =
(

σ
b

)

, m̃ = m′
σ,i,b,

where σ ∈ F
�
q, and ei is the i-th vector of the canonical basis of Fn

q .
To sum up, we have reduced the task of designing the selectors Sel i to the

task of designing outputting-message protocols, i.e., NIMPC for hM,u,m̃. At this
point, we can completely ignore the process that lead us to considering these
functions hM,u,m̃.

2.3 Robust Message-Outputting Protocols

Let us now design robust message-outputting protocols, i.e., NIMPC for hM,u,m̃.
We note that while in our application M is public and u and m̃ are to remain
hidden, here our presentation treats u as public. A full description of the NIMPC
protocol for hM,u,m̃, including addressing the secrecy of u, is presented in
Sect. 4.2.

2 We can always represent the message m′
σ,i,b as a tuple of elements in Fq, and use an

independent message-outputting protocol for each of these elements.
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Linear Secret Sharing Scheme. We start by recalling the following linear
secret sharing scheme LSSS [11], a variant of which is at the core of our con-
struction.

The scheme is specified for n parties and an access structure defined on the
basis of a matrix M ∈ F

k×n
q and vector v in F

k
q . Parties Pi, for i in some set

I ⊆ {1, . . . , n}, can reconstruct the secret message m̃ if and only if:

v ∈ Span((M·,i)i∈I), (3)

where M·,i denotes the i-th column of M , in which case, we say that the set I
is authorized.

The scheme provides each party Pi with a share s′
i defined as:

s′
i = sᵀ · M·,i,

where s is a randomly chosen vector in F k
q . In addition, the scheme publishes

(or gives to each party)
s′
0 = m̃ − sᵀ · v,

where m̃ is the secret being shared.
An authorized set I can recover the secret m̃ as follows. Since I is authorized,

there exist scalars λi ∈ Fq for i ∈ I so that
∑

i∈I λi · M·,i = v. Thus, parties Pi

for i ∈ I recover the secret m̃ as:

m̃ = s′
0 +

∑

i∈I

λi · s′
i.

Conversely, if I is not an authorized set, the values s′
i only define the linear

form v ∈ F
k
q �→ sᵀ · v for vectors v in the span of the columns M·,i, for i ∈ I.

As v is not in this span, the value sᵀ · v is uniformly random from the point of
view of the parties, and m̃ is completely masked.

NIMPC for When hM ,u,m̃(x) = m̃. Back to our NIMPC construction for
the family hM,u,m̃, we want that the adversary can reconstruct m̃ if and only if
it has access to a vector x ∈ F

n
q such that

u = M · x.

More precisely, let T ⊆ {1, . . . , n} be the set of colluding parties. For any vector
x ∈ F

n
q , let xT and xT̄ be the two vectors in F

n
q defined as:

xT,i =

{
xi if i ∈ T,

0 otherwise,
and xT̄ ,i =

{
0 if i ∈ T,

xi otherwise.

In other words, xT corresponds to the inputs that the adversary can control3

while xT̄ corresponds to the inputs fixed by the honest parties. Each vector xT

3 Note that while the honest parties’ inputs are from {0, 1}, we cannot control the
inputs the adversary uses. The adversary can choose inputs from Fq.



Robust Non-interactive Multiparty Computation 401

is related to one value of the residual function that the adversary is allowed to
compute. We have:

x = xT + xT̄ .

With this terminology, we have that the adversary should be able to recon-
struct m̃ if and only if there exists a vector xT such that

u = M · x = M · (xT + xT̄ ),

or, equivalently,
u − M · xT̄ ∈ Span((M·,i)i∈T ).

This corresponds exactly to the definition of the access structure for the
above LSSS scheme where v = u−M ·xT̄ . We adapt this scheme to our NIMPC
setting as follows (see Fig. 2 in Sect. 4.2 for the details).

Recall that an NIMPC protocol starts with a setup phase (a.k.a. offline pre-
processing) in order to generate the correlated randomness. It is indeed impossi-
ble to achieve any reasonable security notion without correlated randomness in
this non-interactive setting.

In this setup phase, we first generate a uniform vector s ∈ F
k
q and give to

each party Pi the share of the above secret sharing scheme, namely, s′
i = sᵀ ·M·,i,

as part of its correlated randomness. Assuming we know xT̄ , we could define the
following value

s′
0 = m̃ − sᵀ · u + sᵀ · M · xT̄

that would correspond to the value s′
0 in the secret sharing scheme when v =

u − M · xT̄ . Yet, this value (as well as v) depends on the set T and xT̄ that is
unknown at the time of sharing. Thus, the correlated randomness (and thus the
messages sent by the parties) needs to contain additional information to allow
authorized reconstruction of s′

0 and, as a result, m̃.
To achieve this, in the setup phase, we also generate independent uniform

scalars r1, . . . , rn ∈ Fq, compute r0 =
∑n

i=1 ri, publish (in lieu of s′
0):

μ0 = m̃ − sᵀ · u − r0,

and give to each party Pi the scalar ri as part of its correlated randomness.
Finally, party Pi on input xi outputs the message:

μi,xi
= ri + s′

i · xi.

With these values, message m̃ can be reconstructed in case that M · x = u
through the following computation:

m̃ = μ0 +
n∑

i=1

μi,xi
.

(this equality is obtained by developing the right-hand term as μ0+r0+
∑

s′
ixi =

m̃ − sᵀ · u +
∑

siM·,ixi = m̃ − sᵀ · u +
∑

siui = m̃).
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The above shows correctness of the NIMPC scheme for the family hM,u,m̃.
We now argue robustness, namely, only m̃ is disclosed and only in case that
M · x = u. All other information remains (information-theoretically) hidden.

Note that when the set of colluding parties is T , the adversary’s view (in
collusion with P0) consists of:

μ0 = m̃ − sᵀ · u − r0

μi,xi
= ri + sᵀ · M·,i · xi for i ∈ T̄ = {1, . . . , n} \ T

ri for i ∈ T

s′
i = sᵀ · M·,i for i ∈ T.

The proof of robustness follows by showing that all these values can be sim-
ulated given only

s′
0 = m̃ − sᵀ · u + sᵀ · M · xT̄ and s′

i = sᵀ · M·,i for i ∈ T, (4)

which correspond to the shares of parties Pi, for i ∈ T , for the access structure
defined by Eq. (3) of the LSSS scheme when v = u − M · xT̄ . This shows that
the above view of the adversary contains no more information than the LSSS
shares hence implying the secrecy of m̃ in case that the equality u = M · x does
not hold.

Detecting When hM ,u,m̃(x) =⊥. The above NIMPC protocol is almost a
protocol for hM,u,m̃, except that it always outputs something even when it should
output ⊥. To finish the construction, we need to add a way to detect whether
hM,u,m̃(x) =⊥ or not, i.e., whether M · x = u or not.

This is simple to achieve: in the setup phase, we just pick uniform independent
vectors r′

1, . . . , r
′
n ∈ F

n
q , compute r′

0 =
∑n

i=1 r′
i, publish ν0 = u + r′

0, and give
to each party Pi the vector r′

i as part of its correlated randomness.
Then, on input xi, party Pi outputs (in addition to μi,xi

):

νi,xi
= r′

i + M·,i · xi.

In other words, on input xi, Pi outputs the message mi,xi
= (μi,xi

,νi,xi
).

To check whether M · x = u, it is then sufficient to check whether:

ν0 =
n∑

i=1

νi,xi
.

Robustness and correctness are straightforward.

2.4 Putting It All Together

We now summarize the steps in our transformation from a PSM for a function
f to a t-robust NIMPC for the same function f . Full and formal details are
presented in Sects. 4.2, 5, and 6 (see Fig. 4).
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First, we choose a linear code of length n and of distance at least t + 1, for
a well-chosen prime power q. Let H ∈ F

�×n
q be its parity-check matrix (we can

choose q as the smallest prime power greater or equal to n, and � = t). We define
the indexing function as ind : x �→ H · x ∈ F

�
q.

Second, in the setup phase, we consider q� copies of the PSM, indexed by
elements σ of F�

q. We generate the correlated randomness of all these PSMs, and
denote by m′

σ,i,b the message that party Pi would send on input b in the PSM
PSMσ of index σ, for σ ∈ F

�
q, i ∈ {1, . . . , n}, and b ∈ {0, 1}.

Third, we construct the n NIMPC protocols, Sel1, . . . ,Seln (the linear selec-
tors), for the functions h1, . . . , hn (resp.) defined in Eq. (1):

hi : x ∈ {0, 1}n �→ m′
ind(x),i,xi

.

As explained in Sect. 2.2, these selectors are constructed as parallel composition
of outputting-message protocols, described in Sect. 2.3.

The correlated randomness of the resulting t-robust NIMPC protocol just
consists in the concatenation of the correlated randomness of Sel1, . . . ,Seln.
The message that party Pi sends on input xi is the concatenation of the ones it
would send in Sel1, . . . ,Seln on input xi. To compute the output, the evaluator
first simulates the evaluators of Sel1, . . . ,Seln to get m′

σ,i,xi
for all i ∈ {1, . . . , n}

and for σ = ind(x). It then simulates the evaluator of the original PSM on these
messages to get the output f(x1, . . . , xn).

3 Preliminaries

3.1 NIMPC Definition

We recall the definition of NIMPC protocols from [3]. We first introduce the
following notation.

Let X1, . . . ,Xn be non-empty sets and let X denote their Cartesian product,
namely, X := X1×· · ·×Xn. We use vector notation (boldface font) to denote the
elements in X , e.g., x ∈ X (even though X is not necessarily a vector space). For
a subset T = {i1, . . . , it} ⊆ {1, . . . , n} and x = (x1, . . . , xn) ∈ X we denote by
xT the t-coordinate projection vector (xi1 , . . . , xit). For a function f : X → Ω,
we denote by f |T̄ ,xT̄

the function f with the inputs corresponding to positions
T̄ fixed to the entries of vector xT̄ .4

Definition 3.1 (NIMPC Protocol). Let F = (Fn)n∈N>0
be an ensemble of

sets Fn of functions f : X → Ω, where Ω is a finite set and X is the Carte-
sian product of non-empty finite sets X1, . . . ,Xn. A non-interactive secure mul-
tiparty computation (NIMPC) protocol for F is a tuple of three algorithms
Π = (Setup,Msg,Rec), where:

4 In Sect. 3.2 we slightly change notation for vectors xT .
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– Setup takes as input unary representations of n and of the security para-
meter K, and (a representation of) a function f ∈ Fn and outputs a tuple
(ρ0, ρ1, . . . , ρn);5

– Msg takes as input a value ρi and an input xi ∈ Xi, and deterministically
outputs a message mi,xi

;
– Rec takes as input a value ρ0 and a tuple of n messages (mi,xi

)i=1,...,n and
outputs an element of Ω.

satisfying the following property:

– Correctness. For any values n ∈ N>0, security parameter K ∈ N, f ∈ Fn,
x ∈ X and (ρ0, . . . , ρn) R← Setup(f):

Rec(ρ0,Msg(ρ1, x1), . . . ,Msg(ρn, xn)) = f(x).

While the previous definition is abstract, in the sequel, we will often view
NIMPC protocols as protocols with n parties P1, . . . , Pn with respective inputs
x1, . . . , xn, and an evaluator P0. This is actually the view adopted in the Intro-
duction and in Sect. 2. More precisely, an NIMPC Π = (Setup,Msg,Rec) yields
a protocol in three phases as follows:

Offline preprocessing. For the security parameter K and the function f ∈ Fn,
a trusted party generates (ρ0, ρ1, . . . , ρn) R← Setup(1n, 1K, f) and gives ρi to
party Pi (for i ∈ {1, . . . , n}) and ρ0 to the evaluator P0.

Online messages. On input xi, party Pi computes mi,xi
:= Msg(ρi, xi) and

outputs mi,xi
to the evaluator P0.

Reconstruction. After receiving mi,xi
from all the parties Pi (for i ∈

{1, . . . , n}), the evaluator P0 computes and outputs Rec(ρ0,m1,x1 , . . . ,mn,xn
).

A polynomial-time NIMPC protocol for F is an NIMPC protocol (Setup,Msg,
Rec) where Setup, Msg, and Rec run in polynomial time in n and K. In particular,
functions f ∈ F should be representable by polynomial-size bit strings.

The online communication complexity of Π, CCon(Π), is defined as the max-
imum of the size of the messages mi,xi

. The offline communication complexity
of Π, CCoff(Π), is defined as the maximum of the size of the correlated random-
ness ρi. The communication complexity CC(Π) is defined as the maximum of the
online communication complexity and of the offline communication complexity.

Robustness. We now recall the notions of robustness for NIMPC protocols.
Informally, T -robustness for a set T ⊆ {1, . . . , n} of colluding parties means that
if xT̄ represents the inputs of the honest parties, then an evaluator colluding
with the parties in set T can compute the residual function f |T̄ ,xT̄

on any input
xT but cannot learn anything else about the input of the honest parties. This
describes the best privacy guarantee attainable in this adversarial setting. The

5 One refers to the vector (ρ0, ρ1, . . . , ρn) as the correlated randomness of the parties,
with ρ0 called public randomness.
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formal definition is stated in terms of a simulator that can generate the view
of the adversary (evaluator plus the colluding parties in set T ) with sole oracle
access to the residual function f |T̄ ,xT̄

.
All our constructions and transformations are unconditional. But when com-

bined with statistically or computationally robust 0-NIMPC protocols, the
resulting protocols are only statistically or computationally robust. Therefore,
we also need to define statistical and computational variants of robustness.

Definition 3.2 (NIMPC Robustness). Let n ∈ N>0 be a positive integer
and T ⊆ {1, . . . , n} be a subset. An NIMPC protocol Π is perfectly (resp., sta-
tistically, computationally) T -robust if there exists a randomized algorithm Sim
(called a simulator) such that for any f ∈ Fn and xT̄ ∈ XT̄ , the following dis-
tributions are perfectly (resp., statistically, computationally) indistinguishable:

{Simf |T̄ ,xT̄ (1n, 1K, T )} and {View(1n, 1K, f, T,xT̄ )},

where View(1n, 1K, f, T,xT̄ ) is the view of the evaluator P0 and of the colluding
parties Pi (for i ∈ T ) from running Π on inputs xT̄ for the honest parties Pi (for
i ∈ T̄ ): namely, ((mi,xT̄ ,i

)
i∈T̄

, ρ0, (ρi)i∈T ) where (ρ0, . . . , ρn) R← Setup(1n, 1K, f)
and mi,xT̄ ,i

← Msg(ρi, xT̄ ,i) for i ∈ T̄ .
Let t be an integer which is a function of n, then an NIMPC protocol Π

is perfectly (resp., statistically, computationally) t-robust if for any n ∈ N>0

and any subset T ⊆ {1, . . . , n} of size at most t = t(n), Π is perfectly (resp.,
statistically, computationally) t-robust. It is perfectly (resp., statistically, com-
putationally) fully robust, if it is perfectly (resp., statistically, computationally)
n-robust.

Computational robustness is defined non-uniformly to simplify the defini-
tion. However, it is also possible to define a uniform version with an explicit
distinguisher which first chooses n, f , T , and xT̄ .

Robustness does not necessarily imply that the simulator Sim is the same for
any n and T nor that it runs in polynomial time in n and K. Our constructions
are efficient in the sense that the simulators are polynomial-time (in the com-
munication complexity of the underlying protocols), and our transformations
preserve the efficiency of the simulator.

Simplifications. In the sequel, we simplify notations as follows. The security
parameter K is dropped for all perfectly robust protocols. Furthermore, we sup-
pose all the functions f ∈ Fn have the same domain X and the same number of
parties n. The set Fn is simply denoted F . We will sometimes refer to NIMPC
for single functions f , to mean NIMPC for F = {f}.

3.2 Group Embedding

While the definition of NIMPC is stated for arbitrary sets Xi, for our treatment
it is convenient (but not mandatory) to associate to these sets an addition opera-
tion and a neutral element 0. For this, we use the convention that each input set
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Xi is embedded (via an arbitrary injective mapping) into a group of cardinality
≥ |Xi| (same group for all i ∈ {1, . . . , n}). Thus, hereafter, we treat the sets Xi

as subsets of a group where these subsets always include the neutral element 0;
in our applications the group is typically a field Fq or a ring.

With this convention we re-define vectors of the form xT as follows:

XT := {x ∈ X | ∀i ∈ T̄ , xi = 0}, XT̄ := {x ∈ X | ∀i ∈ T, xi = 0}.

Let x ∈ X be a vector. We define the vectors xT ∈ XT and xT̄ ∈ XT̄ to be the
only two such vectors so that x = xT +xT̄ . In other words, for all i ∈ {1, . . . , n}:

xT,i =

{
xi if i ∈ T,

0 otherwise,
and xT̄ ,i =

{
0 if i ∈ T,

xi otherwise.

Let xT̄ ∈ XT̄ be a vector. With this notation we re-define the restriction of
a function f : X → Ω to T̄ ,xT̄ , which we denote by f |T̄ ,xT̄

, as follows:

f |T̄ ,xT̄
: xT ∈ XT �→ f(xT + xT̄ ) ∈ Ω.

That is, f |T̄ ,xT̄
is the function f for which the inputs xi are fixed for i ∈ T̄

to xT̄ ,i.
Finally, we define the Hamming weight of an element x ∈ X as the number of

coordinates i for which xi �= 0, and define Hamming distance between elements
x1 and x2 in X as the Hamming weight of x1 − x2.

4 Selectors

In this section, we introduce the notion of selectors, which are used both in
our transformation from PSM to O(1)-robust NIMPC and in our construction
of NIMPC for symmetric functions. Intuitively, a selector is an NIMPC which
selects a given message in a collection of messages depending on the inputs of
the parties. In our construction, the collection of messages correspond to various
inputs of other PSMs or NIMPCs. In other words, selectors compose easily with
other NIMPCs. That is why they play a central role in our constructions.

We start by defining general selectors, before considering and constructing
two particular cases: linear selectors and NIMPC for Abelian programs. The for-
mer selectors are used in our transformation from PSM to O(1)-robust NIMPC,
while the latter selectors are used for symmetric functions. Our constructions
are perfectly fully robust. An interesting point if that these selectors are also
new constructions of fully robust NIMPCs (of which very few are known, even
assuming the existence of one-way functions).

4.1 Definitions

General Definition. The next definition is the general definition. Definitions
of the two interesting particular cases follow.
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Definition 4.1. Let X1, . . . ,Xn,U ,M be finite sets. Let X := X1×· · ·×Xn. Let
sel : X → U be a function. A selector for the function sel and the message set
M is an NIMPC protocol for the following set of functions H = {hsel,m̃}m̃∈MU ,
where:

hsel,m̃ : x ∈ X �→ m̃sel(x).

The message set M is often implicitly defined. We also implicitly assume
that elements of M can be represented by vectors of �logq |M| elements in Fq.
The set MU is the set of tuples m̃ = (m̃u)u∈U of messages in M, indexed by
elements in U .

In this paper, we are interested in two specific types of selectors: linear selec-
tors and NIMPC for Abelian program.

Linear Selectors. Linear selectors are used for our transformation from PSM
to O(1)-robust NIMPC and are defined as follows.

Definition 4.2 (linear selector). Let Fq be a finite field. Let k and n be pos-
itive integers. Let M ∈ F

k×n
q be a matrix. A linear selector for M is a selector

for the function sel defined by:

sel : x ∈ F
n
q �→ M · x ∈ U := F

k
q .

In the above definition, X1, . . . , Xn are implicitly defined as Fq. The set of
messages M can be any finite set.

NIMPC for Abelian Programs. For our construction of NIMPC for sym-
metric functions, we need to introduce another type of selectors.

Abelian programs can be seen a generalization of symmetric functions intro-
duced in [3, Sect. 4]. More precisely, we have the following definition.

Definition 4.3 (Abelian program). Let G be a finite Abelian group. Let
X1, . . . ,Xn be subsets of G. Let X := X1 ×· · ·×Xn ⊆ G

n denote their Cartesian
product. Let Ω be some finite set. An Abelian program for G, X , and Ω is a
function:

h̃g̃ : x ∈ X �→ g̃(
n∑

i=1

xi),

where g̃ : G → Ω is a function.

An NIMPC for Abelian program is just an NIMPC for the class of Abelian
programs for a given group G, input set X , and output set Ω. In this paper, we
prefer to view NIMPC for Abelian programs as selectors, as follows.

Definition 4.4 (NIMPC for Abelian Programs). Let G be a finite (addi-
tive) Abelian group. Let X1, . . . ,Xn be subsets of G. Let X := X1×· · ·×Xn ⊆ G

n
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denote their Cartesian product. An NIMPC for Abelian programs (for X and
G) is a selector for the function sel defined by:

sel : x ∈ X �→
n∑

i=1

xi ∈ U =: G.

The message M corresponds to the set Ω.
We remark that if G is a finite field Fq and X1 = · · · = Xn = G, then an

NIMPC for Abelian programs for X and G is a exactly a linear selector for the
matrix M = (1, . . . , 1) ∈ F

1×n
q . However, for our constructions, the sets Xi are

strictly included in the group G. We therefore need to use completely different
techniques for the construction of NIMPC for Abelian programs, compared to
the ones used for the construction of linear selectors.

4.2 Construction of Linear Selectors

Let us now show how to construct linear selectors. As explained in Sect. 2.2, we
first define and construct outputting-message NIMPC protocols.

Outputting-Message NIMPC

Definition 4.5 (outputting-message NIMPC). Let Fq be a finite field
and M be a finite set. Let M ∈ F

k×n
q be a matrix. An outputting-message

NIMPC for M is a NIMPC protocol for the following set of functions HM :=
{hM,u,m̃}u∈Fk

q ,m̃∈M where:

hM,u,m̃ : x ∈ F
n
q �→

{
m̃ if u = M · x,

⊥ otherwise,

where ⊥ is a fresh symbol not in M.

As for linear selectors, in the above definition, X1, . . . , Xn are implicitly defined
as Fq.

Theorem 4.6. Let Fq be a finite field and M be a finite message set. Let
M ∈ F

k×n
q be a matrix. There exists a perfectly fully robust outputting-message

NIMPC for M with communication complexities:

CCon(Π) = (k + �logq |M|) · �log q,
CCon(Π) = (k + 2 · �logq |M|) · �log q.

Furthermore, the simulator for t-robustness runs in time qmin(t,k) · poly(q, k, n,
log |M|). In particular, when t or k is a constant, the simulator runs in polyno-
mial time in q, k, n, and log |M|.
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Fig. 2. Outputting-message NIMPC (SetupM ,MsgM ,RecM ) for M ∈ F
k×n
q

The term qmin(t,k) in the simulator running time comes from the following
fact. The simulator needs to enumerate all the possible input values xT of the
colluding parties Pi (i ∈ T ; there are qt such values) or all the resulting values
M · xT (there are at most qk such values) to find whether there exists xT ∈ XT ,
such that hM,u,m̃|T̄ ,xT̄

(xT ) �=⊥.

Proof Theorem (4.6). Fig. 2 describes the construction of the outputting-message
NIMPC (SetupM ,MsgM ,RecM ) for M ∈ F

k×n
q , when the message set is M =

Fq. The security proof follows the informal presentation from Sect. 2.3 and is
provided in the full version.

To construct an outputting-message NIMPC for an arbitrary message set M
(instead of Fq), we just split the messages in sub-messages in Fq (in other words,
we represent a message in M as a vector of �logq |M| elements of Fq) and using
an independent instance of the linear selector for each sub-message. To get the
communication complexities of the theorem, we remark that the vectors r′

i can
be the same for each sub-message. ��

Construction of Linear Selectors. We can now construct linear selectors.
More precisely, we have the following theorem.

Theorem 4.7. Let Fq be a finite field and M be a finite message set. Let M ∈
F

k×n
q be a matrix. There exists a perfectly fully robust linear selector for M with

communication complexities:



410 F. Benhamouda et al.

CCon(Π) = qk · (k + �logq |M|) · �log q,
CCoff(Π) = qk · (k + 2 · �logq |M|) · �log q.

Furthermore, the simulator for t-robustness runs in time qk · poly(q, k, n,
log |M|). In particular, when k is a constant, the simulator runs in polynomial
time in q, n, and log |M|.

Proof. Fig. 3 describes the construction of a fully robust linear selector (SetupM ,
MsgM ,RecM ) for M ∈ F

k×n
q , from an outputting-message NIMPC. Complexi-

ties are computed assuming the outputting-message NIMPC is the one from
Theorem 4.6. The security proof is provided in the full version. ��

Fig. 3. Linear selector ΠM = (SetupM ,MsgM ,RecM ) for M ∈ F
k×n
q from outputting-

message NIMPC Π ′
M = (Setup′

M ,Msg′
M ,Rec′

M )

4.3 NIMPC for Abelian Programs

In [3], Beimel et al. constructed a t-robust NIMPC for any Abelian program. But
the complexity is at least

(
n
t

)
· |M|. Because of the factor

(
n
t

)
= ω(nlog log n+log t),

this t-robust NIMPC protocol is not useful for our construction.
Instead, we propose a fully robust construction based on an information-

theoretic variant of Yao’s garbled circuits [10,15] (for a specific circuit with gates
over G instead of classical Boolean gates) with communication complexity O(n ·
|G|log n ·(log |Ω|+log |G|)). When G has logarithmic size in n, the communication
complexity is only nO(log log n), which is only slightly quasi-polynomial.

More formally, we prove the following theorem in the full version.

Theorem 4.8. Let G be an Abelian group and Ω = M be a finite message
set. Let X1, . . . ,Xn be subsets of G. Let X := X1 × · · · × Xn ⊆ F

n
q denote their
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Cartesian product. There exists a perfectly fully robust NIMPC Π for Abelian
programs (for G, X , and M), with communication complexities:

CCon(Π) ≤ |G|�log n� · (log |Ω| + 2 · �log |G|),
CCoff(Π) = O(n · |G|�log n�+2 · (log |Ω| + log |G|)).

5 Admissible Linear Indexing Functions

We recall that the high level idea behind our transformation from a given PSM
(or 0-robust NIMPC) protocol to a t-robust NIMPC, is to create a collection
of instances (in the form of messages mi,xi

) of the underlying PSM protocol
and then use an indexing function that maps parties’ inputs to an index that
identifies one and only one of these instances. Here we describe the indexing
function we use. An informal presentation of the ideas behind this function and
its design are presented in Sect. 2 (more specifically, Sect. 2.1).

5.1 Definition

Definition 5.1. Let X1, . . . ,Xn be subsets of Fq all containing 0. Let X :=
X1 × · · · × Xn ⊆ F

n
q denote their Cartesian product. Let S be a finite set and

ind : X → S be a function. Let T ⊆ {1, . . . , n} be a subset and t ∈ {0, . . . , n} be
an integer.

The function ind is a T -admissible indexing function if for any x ∈ XT̄ , the
values ind(x + y) for y ∈ XT are all distinct. The function ind is a t-admissible
indexing function if it is T -admissible for every subset T ⊆ {1, . . . , n} of size
|T | ≤ t.

We want S to be as small as possible as in our transformation we need to
consider |S| instances of the 0-robust protocol. In particular, to have polynomial
communication complexity, we need |S| to be polynomial in n.

We focus on admissible linear indexing functions, of the form

ind : x ∈ F
n
q �→ H · x ∈ F

�
q,

where H ∈ F
�×n
q is a matrix. W.l.o.g., we assume H to be full rank (if not,

we replace H with a full rank sub-matrix that spans the same row-subspace of
F 1×n

q ). Note that full-rank matrices minimize the size of the indexing function’s
range S which in turn improves on the complexity of our construction.

5.2 Relation with Codes

A q-ary code of length n is a subset C of F
n
q and the distance δ of C is the

smallest Hamming distance of two distinct vectors in C.
We have the following lemma.
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Lemma 5.2. Let t ∈ {1, . . . , n} be an integer. Let X1, . . . ,Xn,X ,S be defined
as in Definition 5.1. Then a function ind : X → S is a t-admissible indexing
function (not necessarily linear) if and only if for any σ ∈ S, ind−1(σ) is a code
of distance δ ≥ t + 1.

Proof. The proof follows from the fact that two vectors x and y of X have
distance at most t if and only if xT̄ = yT̄ for a subset T ⊆ {1, . . . , n} of size at
most t. ��

When we restrict ourselves to linear indexing functions, the corresponding
codes are either empty or shifts of the same linear code ind−1(0). We recall that
a q-ary linear code of length n and dimension k = n− � is a q-ary code of length
n that is also a linear subspace C of F

n
q . It can be defined as the kernel of a

full-rank matrix H ∈ F
�×n
q where H is called the parity-check matrix of the

code, namely, C = {x ∈ F
n
q | H · x = 0}. A q-ary linear code of length n, of

dimension k, and of minimum distance δ is called a [n, k, δ]q-code.
We have the following lemma which is a specialization of Lemma 5.2 to the

linear case.

Lemma 5.3. Let t ∈ {1, . . . , n} be an integer. Let H ∈ F
�×n
q be a full-rank

matrix. The function ind : x ∈ F
n
q �→ H · x is a t-admissible linear indexing

function if and only if H is a parity-check matrix of a linear code of distance
δ ≥ t + 1.

Proof. H is a parity-check matrix of a linear code of distance δ if and only if
ind−1(0), the kernel of matrix H, is a linear code of distance δ, and this holds if
and only if ind−1(σ) is a code of distance δ for all σ ∈ F

�
q. By Lemma 5.2 the latter

condition holds if and only if ind is a t-admissible linear indexing function. ��

5.3 Constructions

Constructions of t-admissible linear indexing functions can be obtained using
different error correcting codes, in particular Reed-Solomon codes [13] as stated
next.

Lemma 5.4. Let t ∈ {1, . . . , n} be an integer. Let q ≥ n be a prime power. Let
� = t. Then there exists a t-admissible linear indexing function ind : x ∈ F

n
q �→

H · x, for a matrix H ∈ F
�×n
q . In particular, H can be a parity-check of the

Reed-Solomon [n, n − �, � + 1]q-code.

We remark that between n and 2n, there always exists a power of 2.6 There-
fore, the above lemma shows the existence of t-admissible linear indexing func-
tions with |S| = q� ≤ (2n)t.

In the special case where t = 1, there is a more efficient construction using
the parity code, i.e.:

H =
(
1 . . . 1

)
∈ F

1×n
q .

In that case, the prime power q can be any prime power (it does not need to be
at least equal to n).
6 Better bounds for intervals containing a prime (power) exist. See [1].
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5.4 Lower Bound (on the Need for Constant t)

Using the relation of t-admissible indexing functions and codes of distance δ ≥
t + 1 (Lemma 5.2) together with a sphere-packing-like Hamming bound, we get
the following lower bound on |S|. It shows that if t = ω(1) (as a function of
n → ∞), |S| cannot be polynomial in n. It is formally proven in the full version.

Lemma 5.5. Let t ∈ {1, . . . , n} be an integer. Let X1, . . . ,Xn,X ,S be defined
as in Definition 5.1. We suppose that for any i ∈ {1, . . . , n}, |Xi| ≥ q′ for some
integer q′ ≥ 2. (In the case of linear indexing functions, Xi = Fq and we can
take q′ = q.) If a function ind : X → S is t-admissible, then:

|S| ≥
�t/2�∑

k=0

(
n

k

)

(q′ − 1)k ≥
(n

t

)�t/2�
.

6 From 0-Robustness to O(1)-Robustness

Here we present the main construction and result of the paper, namely, a trans-
formation from any PSM (i.e., 0-robust NIMPC) to a t-robust NIMPC where the
latter has polynomial complexity for constant t provided the original protocol
is polynomial time and the input set for each party is of polynomial size too.
The transformation uses two main tools: the linear selector presented in Sect. 4.2
and admissible linear indexing functions introduced in Sect. 5. The main ideas
and intuition about these tools and constructions are described in Sect. 2. The
transformation is presented in Fig. 4, but first let us formally define what an
NIMPC transformation is.

6.1 Definition of an NIMPC Transformation

An NIMPC transformation is a function T which takes as input an NIMPC
protocol Π ′ = (Setup′,Msg′,Rec′) (usually 0-robust) and outputs a new NIMPC
protocol Π (usually t-robust for t > 0). We focus on blackbox transformations
that use the original algorithms Setup′,Msg′,Rec′ in a blackbox way (i.e., as
oracles).

For convenience and without loss of generality we assume that the original
NIMPC protocols Π ′ do not use public randomness, namely, ρ0 =⊥ (indeed,
if ρ0 �=⊥, ρ0 can be appended to ρ1 and to all the messages sent by the first
party P1).

Definition 6.1 (NIMPC transformation). Let X1, . . . ,Xn, Ω be non-empty
finite sets. An NIMPC transformation is a tuple of three algorithms T =
(Setup,Msg,Rec), each with oracle access to three other algorithms Π ′ = (Setup′,
Msg′,Rec′) satisfying the following property:
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Fig. 4. Main NIMPC transformation T = (Setup,Msg,Rec)

– Functionality preservation. If Π ′ = (Setup′,Msg′,Rec′) is an NIMPC
protocol for some set F of functions, then Π := T (Π ′) := (SetupΠ′

,MsgΠ′
,

MsgΠ′
)7 is also an NIMPC protocol for the same set F of functions.

To be useful, an NIMPC transformation also needs to be robust. We consider
a very strong notion of robustness. Informally, a transformation T is T -robust
if T (Π ′) can be proven T -robust for any 0-robust Π ′, in a black-box way. More
formally, we have the following definition.

Definition 6.2 (robustness). Let n ∈ N>0 and T ⊆ {1, . . . , n}. An NIMPC
transformation T = (Setup,Msg,Rec) is T -robust if there exists a simulator
S̃im with oracle access to four oracles (Setup′,Msg′,Rec′, O) such that: if Π ′ =
(Setup′,Msg′,Rec′) is an NIMPC protocol, the following two distributions are
indistinguishable:

{S̃im
Π′,On,K,f,T

(1n, 1K, T )} and {View(1n, 1K, f, T,xT̄ )},

7 The notation SetupΠ′
is a shortcut for SetupSetup′,Msg′,Rec′

, i.e., Setup with the three
oracles Setup′,Msg′,Rec′.
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where On,K,f,T : xT ∈ XT �→ View′(1n, 1K, f, ∅,xT̄ +xT ), and View and View′ are
the views from running Π = T (Π ′) and Π ′ (resp.), as defined in Definition 3.2.

Let t be an integer, then an NIMPC transformation is t-robust if it is T -robust
for any subset T ⊆ {1, . . . , n} of size at most t.

The power of a T -robust NIMPC transformation for transforming 0-
robustness into t-robustness, is shown in the following lemma whose proof follows
directly from the above definition.

Lemma 6.3. Let n ∈ N>0, T ⊆ {1, . . . , n}. Let T = (Setup,Msg,Rec) be a
T -robust NIMPC transformation. If Π ′ is a perfectly (resp., statistically, com-
putationally) 0-robust NIMPC, then Π = T (Π ′) is perfectly (resp., statis-
tically, computationally) T -robust, with the simulator Sim defined as follows:

Sim
f |T̄ ,xT̄ (1n, 1K, T ) = S̃im

Π′,O′
n,K,f,T (1n, 1K, T ), where O′

n,K,f,T : xT ∈ XT �→
Sim

′f |∅,xT̄ +xT (1n, 1K, ∅) using notation in Definition 6.2 and where Sim′ is a sim-
ulator for Π ′).

6.2 Actual Transformation

The main theorem of the paper is presented next. It proves that the transfor-
mation described in Fig. 4 is functionality preserving (Definition 6.1) and robust
(Definition 6.2).

Theorem 6.4. The NIMPC transformation T = (Setup,Msg,Rec) depicted in
Fig. 4 satisfies:

1. Functionality preservation. For any NIMPC protocol Π ′ = (Setup′,Msg′,
Rec′) for a set of functions F from X = X1 × · · · × Xn, the resulting NIMPC
protocol Π = T (Π ′) has the following online and offline communication com-
plexities (when the underlying linear selector is the one from Theorem4.7):

CCon(Π) ≤ q�+1 · n · (� + 1 + �CCon(Π ′)/ log q) · �log q,
CCoff(Π) ≤ q�+1 · n · (� + 1 + 2 · �CCon(Π ′)/ log q) · �log q,

where q ≥ max(|X1|, . . . , |Xn|) and q is a prime power, and � is the dimension
of the range of the linear indexing function ind : x ∈ F

n
q �→ H · x ∈ F

�
q.

8

2. T-robustness. For any T ⊆ {1, . . . , n}, if ind is a T -admissible indexing
function and ΠM is a perfectly T -robust linear selector, the NIMPC trans-
formation from Fig. 4 is T -robust. The corresponding simulator S̃im runs in
polynomial time in n,K, q�,CCon(Π ′), |XT | and calls its oracle O once for each
vector xT ∈ XT , when the underlying linear selector is the one from Theo-
rem4.7.

The proof of the theorem appears in the full version. We have the following
corollary.
8 We recall that Π ′ is assumed not to use any public randomness: ρ0 =⊥.
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Corollary 6.5. Let t be a positive integer. Let Π ′ = (Setup′,Msg′,Rec′) be an
NIMPC protocol for a set of functions F from X = X1 × · · · × Xn. Let q be
the smallest prime power at least equal to max(n, |X1|, . . . , |Xn|). We recall that
q ≤ 2max(n, |X1|, . . . , |Xn|).9 Let ind : x ∈ F

n
q �→ H · x ∈ F

�
q be the t-admissible

linear indexing function defined in Lemma5.4 (in particular � = t).
The NIMPC protocol Π = T (Π ′) from Fig. 4 is perfectly (resp., statistically,

computationally) t-robust, if Π ′ is perfectly (resp., statistically, computationally)
0-robust. Furthermore, if t = O(1) and the communication complexity of Π ′ and
the input size Xi (for all i) are all polynomial in n and K, then the communication
complexity of Π is polynomial in n and K. If in addition Π ′ is polynomial-time,
so is Π. Similarly, if the simulator for Π ′ is polynomial-time, so is the simulator
for Π.

We point out that the simulator S̃im is uniform in T and n.

7 NIMPC for Symmetric Functions

In this section, we construct NIMPC protocols for symmetric functions with
better asymptotic complexity than with our generic transformation (from an
efficient 0-robust NIMPC for symmetric function which exists for any symmetric
function) or with [3, Sect. 4]. The communication complexity of the latter con-
struction is

(
n
t

)
· O(2t · n4), while our new construction for symmetric functions

achieve a communication complexity of nlog log n+log t+O(1). Our construction uses
our new fully robust NIMPC for Abelian programs in Sect. 4.3.

7.1 Symmetric Functions

Let us first recall the definition of a symmetric function. We focus on the case
where each input is a bit. But our construction can be generalized.

Definition 7.1. Let n be a positive integer and Ω be a finite set. A function
f : {0, 1}n → Ω is symmetric if and only if for any permutation π of {1, . . . , n}
and for any x ∈ {0, 1}n, f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)).

7.2 Overview of the Construction

We remark that symmetric functions f : {0, 1}n → Ω are Abelian programs
(Definition 4.3) over any group G = ZN with N > n:

f : x ∈ {0, 1}n �→ g̃(
n∑

i=1

xi) ∈ Ω,

where g̃ : ZN → Ω is some function.

9 Better bounds for intervals containing a prime (power) exist. See [1].
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If we directly use the construction of NIMPC for Abelian programs in
Sect. 4.3, we would get a fully robust NIMPC for symmetric function with com-
munication complexity nlog n+O(1) · log |Ω|. This is already an interesting result.
However, we would like to go further. For that we use the Chinese Remainder
Theorem to decompose the initial function over a large group Zn+1 or Z into
functions over smaller groups.

Decomposition and Recombination Using CRT. Let p1 < · · · < p� be the
first � prime numbers, such that N :=

∏�
j=1 pj ≥ n + 1. We recall that there is

a ring isomorphism CRT:
∏�

j=1 Zpj
→ ZN . In particular CRT(y1, . . . , y�) is the

only integer y in {0, . . . , N − 1} such that y mod pj = yj for any j ∈ {1, . . . , �}.
By the prime number theorem, we can choose pj = O(log n) for j ∈ {1, . . . , �}
(and � = O(log n) too). The main idea is the following: we first compute some
well-chosen Abelian programs over each group Zpj

(over the original inputs
(x1, . . . , xn) ∈ X ) and then combine back the intermediate results (correspond-
ing to some function of

∑n
i=1 xi mod pj) to compute g̃(

∑n
i=1 xi).

We need to combine the results in a robust way. We consider a fully robust
NIMPC for the following set of functions (with � parties) F ′ = {f ′

g̃}g̃
indexed by

a function g̃ : Zn+1 → Ω, where the function f ′
g̃ :

∏�
j=1 Zpj

→ Ω ∪{⊥} is defined
by:

f ′
g̃(y1, . . . , y�) �→

{
g̃(y) if y := CRT(y1, . . . , y�) ∈ {0, . . . , n},

⊥ otherwise.

We can use the construction in [3, Sect. 3, Theorem 3.3] to get a fully robust
NIMPC for F ′ of communication complexity O(N ·p2� ·� · log |Ω|) = O(n · log |Ω| ·
polylog(n)). Let m′

j,yj
be the message that party Pj would send on input yj in

this protocol.
For each j ∈ {1, . . . , �}, we can then use our construction for Abelian pro-

grams in Sect. 4.3 in the groups Zpj
for the input sets X1 = · · · = Xn = {0, 1}

and the messages m̃j defined by m̃j,v = m′
j,v (for each v ∈ Zpj

) to enable
the computation (or selection) of m′

j,yj
for yj =

∑n
i=1 xi mod pj . The resulting

construction would have communication complexity nlog log n+O(1) · log |Ω|, as
|Zpj

|log n = nlog log n+O(1).

Issues with Robustness. Unfortunately, this construction is not t-robust: the
adversary might use different values xi for i ∈ T as input to each NIMPC for
Abelian program. For example, if P1 is colluding, the adversary can compute
for any j: mj,yj

and mj,yj+1, if we write yj =
∑n

i=2 xi mod pj . He can then mix
and match them when using them as input of the fully robust protocol for f ′

g̃.
In other words, he can compute:

g̃(CRT(y1 + b1, . . . , y� + b�))
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for any (b1, . . . , b�) ∈ {0, 1}�, instead of just:

g̃(CRT(y1, . . . , y�)) and g̃(CRT(y1 + 1, . . . , y� + 1)),

(i.e., b1 = · · · = b� ∈ {0, 1}).
One first solution consists in choosing pj such that when b1, . . . , b� are not

the same bit (or more generally not the same integer in {0, . . . , t} when t parties
are colluding):

CRT(y1 + b1, . . . , y� + b�) > n,

so that g̃(CRT(y1 + b1, . . . , y� + b�)) =⊥. This works but makes parameters
cumbersome to compute and non-optimal.

We propose a cleaner solution. Instead of working in Zpj
, we work in

Gj = Zpj
×Zt+1. The second part zj of an element (yj , zj) ∈ Gj plays a role very

similar to indexes σ in our transformation from 0-robustness to O(1)-robustness.
It prevents mix and matching values computed from different inputs. We con-
sider a fully robust NIMPC protocol for the following set of functions (with �
parties) F ′ = {f ′

g̃}g̃
indexed by a function g̃ : Zn+1 → Ω, where the function

f ′
g̃ :

∏�
j=1 Gj → Ω ∪ {⊥} is defined by:

f ′
g̃((y1, z1), . . . , (y�, z�)) =

⎧
⎪⎨

⎪⎩

g̃(y) if y := CRT(y1, . . . , y�) ∈ {0, . . . , n}
and z1 = · · · = z�,

⊥ otherwise.

Let m′
j,yj ,zj

be the message that party Pj would send on input (yj , zj) in this
protocol.

For each j ∈ {1, . . . , �}, we now use our construction for Abelian programs
in Sect. 4.3 in the groups Gj for the input sets X1 = · · · = Xn = {0, 1} and
the messages m̃j defined by m̃j,v = m′

j,v (for each v ∈ Gj), where 1 ∈ {0, 1}
is identified to (1, 1) ∈ Gj and 0 ∈ {0, 1} is identified to (0, 0) ∈ Gj . The
communication complexity becomes nlog log n+log t+O(1) · log |Ω|.

7.3 Formal Construction

We formally prove the following theorem in the full version.

Theorem 7.2. Let F = {fg̃}g̃ be the set of symmetric functions fg̃ : x ∈
{0, 1}n �→ g̃(

∑n
i=1 xi) ∈ Ω, where g̃ : Zn+1 → Ω and Ω is some finite set. Let t be

an integer. There exists a t-robust NIMPC for F with communication complex-
ity nlog log n+log t+O(1) · log |Ω|. In particular, if t = O(log n), the communication
complexity if nO(log log n) · log |Ω|.
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Abstract. Traditional protocols for secure multi-party computation
among n parties communicate at least a linear (in n) number of bits,
even when computing very simple functions. In this work we investi-
gate the feasibility of protocols with sublinear communication complex-
ity. Concretely, we consider two clients, one of which may be corrupted,
who wish to perform some “small” joint computation using n servers but
without any trusted setup. We show that enforcing sublinear communi-
cation complexity drastically affects the feasibility bounds on the number
of corrupted parties that can be tolerated in the setting of information-
theoretic security.

We provide a complete investigation of security in the presence
of semi-honest adversaries—static and adaptive, with and without
erasures—and initiate the study of security in the presence of mali-
cious adversaries. For semi-honest static adversaries, our bounds essen-
tially match the corresponding bounds when there is no communication
restriction—i.e., we can tolerate up to t < (1/2 − ε)n corrupted parties.
For the adaptive case, however, the situation is different. We prove that
without erasures even a small constant fraction of corruptions is intoler-
able, and—more surprisingly—when erasures are allowed, we prove that
t < (1 − √

0.5 − ε)n corruptions can be tolerated, which we also show to
be essentially optimal. The latter optimality proof hinges on a new treat-
ment of probabilistic adversary structures that may be of independent
interest. In the case of active corruptions in the sublinear communica-
tion setting, we prove that static “security with abort” is feasible when
t < (1/2 − ε)n, namely, the bound that is tight for semi-honest secu-
rity. All of our negative results in fact rule out protocols with sublinear
message complexity.

The full version of this paper can be found at the Cryptology ePrint Archive [28].
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1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a
function on their joint inputs in a secure way. Roughly speaking, security means
that even when some of the parties misbehave, they can neither disrupt the out-
put of honest parties (correctness), nor can they obtain more information than
their specified inputs and outputs (privacy). Misbehaving parties are captured
by assuming an adversary that corrupts some of the parties and uses them to
attack the protocol. The usual types of adversary are semi-honest (aka “pas-
sive”), where the adversary just observes the view of corrupted parties, and
malicious (aka “active”), where the adversary takes full control of the corrupted
parties.

The seminal results from the ’80s [32,52] proved that under standard crypto-
graphic assumption, any multi-party functionality can be securely computed in
the presence of a polynomially bounded semi-honest adversary corrupting arbi-
trarily many parties. For the malicious case, Goldreich et al. [32] proved that
arbitrarily many corruptions can be tolerated if we are willing to give up on
fairness, and achieve so-called security with abort; otherwise, an honest majority
is required.

In the information-theoretic (IT) model—where there are no restrictions on
the adversary’s computational power—the situation is different. Ben-Or et al.
[4] and independently Chaum et al. [14] proved that IT security is possible if
and only if t < n/3 parties are actively corrupted (or t < n/2 are passively
corrupted, respectively). The solutions in [4] are perfectly secure, i.e., there is a
zero-error probability. Rabin and Ben-Or [50] proved that if a negligible error
probability is allowed, and a broadcast channel is available to the parties, then
any function can be IT-securely computed if and only if t < n/2 parties are
actively corrupted. All the above bounds hold both for a static adversary, who
chooses which parties to corrupt at the beginning of the protocol execution,
and for an adaptive adversary, who might corrupt more parties as the protocol
evolves and depending on his view of the protocol so far.

In addition to their unconditional security and good concrete efficiency, infor-
mation theoretic protocols typically enjoy strong composability guarantees. Con-
cretely, the above conditions for the IT setting allow for universally composable
(UC) protocols [10]. This is known to be impossible in the plain model—i.e.,
without assuming access to a trusted setup functionality such as a common ref-
erence string (CRS) [12], even if one settles for computational security. Given the
above advantages of IT protocols, it is natural to investigate alternative models
that allow for IT-secure protocols without an honest majority.

It is well known that assuming a strong setup such as oblivious transfer
(OT) [49], we can construct IT secure protocols tolerating an arbitrary number
of corruptions both in the semi-honest setting [32] and in the malicious setting
[43,45]. However, these solutions require trusting (a centralized party that serves
as) an OT functionality.

An alternative approach is for the parties to procure help from other servers
in a network they have access to, such as the Internet. This naturally leads to
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the formulation of the problem in the so-called client-server model [16,18,19,36].
This model refines the standard MPC model by separating parties into clients,
who wish to perform some computation and provide the inputs to and receive
outputs from it, and servers, who help the clients perform their computation.
(The same party can play both roles, as is the case in the standard model of
secure computation.) The main advantage of this refinement is that it allows
to decouple the number of clients from the expected “level of security,” which
depends on the number of servers and the security threshold, and, importantly,
it allows us to address the question of how the communication complexity (CC)
of the protocol increases with the number n of servers.

A direct approach to obtain security in the client/server model would be to
have the clients share their input to all the servers (denoted by n from now
on), who would perform the computation on these inputs and return to the
clients their respective outputs. Using [4,14,32,50], this approach yields a pro-
tocol tolerating t < n/2 semi-honest corrupted servers, or, for the malicious
setting, t < n/2 corrupted servers if broadcast is available, and t < n/3, other-
wise. (Recall that the above bounds are required in addition to arbitrarily many
corruptions of clients.)

Despite its simplicity, however, the above approach incurs a high overhead in
communication when the number of clients is small in comparison to the number
of servers, which is often the case in natural application scenarios. Indeed, the
communication complexity of the above protocol would be polynomial in n. In
this work we investigate the question of how to devise IT protocols with near-
optimal resilience in the client/server model, where the communication complex-
ity is sublinear in the number of servers n. As we prove, this low-communication
requirement comes at a cost, inducing a different—and somewhat surprising—
landscape of feasibility bounds.

Our Contributions. In this work we study the feasibility of information-
theoretic MPC in the client-server model with sublinear communication com-
plexity. We consider the case of two clients and n servers, which we refer to as
the (2, n)-client/server model, and prove exact feasibility bounds on the num-
ber of corrupted servers that can be tolerated for MPC in addition to a cor-
rupted client.1 We provide a complete investigation of security against semi-
honest adversaries—static and adaptive, with and without erasures—and also
initiate the study of malicious adversaries. Our results can be summarized as
follows:

– As a warmup, for the simplest possible case of static semi-honest corrup-
tions, we confirm that the folklore protocol which has one of the clients ask
a random sublinear-size server “committee” [8] to help the clients perform
their computation, is secure and has sublinear message complexity against

1 Our bounds are for the two-client case, but can be easily extended to the multi-client
setting with constantly many clients, as such an extension will just incur a constant
multiplicative increase in CC.
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t < (1/2− ε)n corrupted servers, for any given constant 0 < ε < 1/2. Further,
we prove that this bound is tight. Thus, up to an arbitrarily small constant
fraction, the situation is the same as in the case of MPC with unrestricted
communication.

– In the case of adaptive semi-honest corruptions we distinguish between two
cases, depending on whether or not the (honest) parties are allowed to erase
their state. Naturally, allowing erasures makes it more difficult for the adver-
sary to attack a protocol. However, restricting to sublinear communication
complexity introduces a counterintuitive complication in providing optimally
resilient protocols. Specifically, in communication-unrestricted MPC (e.g.,
MPC with linear or polynomial CC), the introduction of erasures does not
affect the exact feasibility bound t < n/2 and typically makes it easier2 to
come up with a provably secure protocol against any tolerable adversary.
In contrast, in the sublinear-communication realm erasures have a big effect
on the feasibility bound and make the design of an optimal protocol a far
more challenging task. In fact, proving upper and lower bounds for this (the
erasures) setting is the most technically challenging part of this work.

In more detail, when no erasures are assumed, we show that an adversary
corrupting a constant fraction of the servers (in addition to one of the clients,
say, c1), cannot be tolerated. The reason for this is intuitive: Since there is a
sublinear number of messages, there can only be a sublinear number of servers
that are activated (i.e., send or receive messages) during the protocol. Thus,
if the adversary has a linear corruption budget, then if he manages to find the
identities of these active servers, he can adaptively corrupt all of them. Since
the parties cannot erase anything (and in particular they cannot erase their
communication history), the adversary corrupting c1 can “jump” to all servers
whose view depends on c1’s view, by traversing the communication graph
which includes the corrupted client. Symmetrically, the adversary corrupting
the other client c2, can corrupt the remainder “protocol-relevant” parties
(i.e., parties whose view depends on the joint view of the clients). Security
in the presence of such an adversary contradicts classical MPC impossibility
results [35], which prove that if there is a two-set partition of the party-set and
the adversary might corrupt either of the sets (this is called the Q2 condition
in [35]) then this adversary cannot be tolerated for general MPC—i.e., there
are functions that cannot be computed securely against such an adversary.

Most surprising is the setting when erasures are allowed. We prove that, for
any constant ε > 0, an adversary corrupting at most t < (1−

√
0.5−ε)n servers

can be tolerated, and moreover that this bound is essentially tight. The idea
of our protocol is as follows. Instead of having the clients contact the servers
for help—which would lead, as above, to the adversary corrupting too many
helpers—every server probabilistically “wakes up” and volunteers to help.
However, a volunteer cannot talk to both clients as with good probability the
corrupted client will be the first he talks to which will result in the volunteer

2 As opposed to requiring the use of more complex cryptographic tools such as non-
committing encryption [11,21] as in the non-erasure setting.
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being corrupted before erasing. Instead, each volunteer asks a random server,
called the intermediary, to serve as his point of contact with one of the two
clients. By an appropriate scheduling of message-sending and erasures, we can
ensure that if the adversary jumps and corrupts a volunteer or an intermediary
because he communicated with the corrupted client, then he might at most
learn the message that was already sent to this client. The choice of 1−

√
0.5

is an optimal choice that will ensure that no adaptive adversary can corrupt
more than 1/2 of the active servers set in this protocol. The intuition behind
it is that if the adversary corrupts each party with probability 1 −

√
0.5,

then for any volunteer-intermediary pair, the probability that the adversary
corrupts both of them before they erase (by being lucky and corrupting any
on of them at random) is 1/2.

Although proving the above is far from straightforward, the most challeng-
ing part is the proof of impossibility for t = (1 −

√
0.5 + ε)n corruptions. In

a nutshell, this proof works as follows: Every adaptive adversary attacking
a protocol induces a probability distribution on the set of corrupted parties;
this distribution might depend on the coins of the adversary and the inputs
and coins of all parties. This is because the protocol’s coins and inputs define
the sequence of point-to-point communication channels in the protocol, which
in turn can be exploited by the adversary to expand his corruption set, by
for example jumping to parties that communicate with the already corrupted
set. Such a probability distribution induces a probabilistic adversary struc-
ture that assigns to each subset of parties the probability that this subset
gets corrupted.

We provide a natural definition of what it means for such a probabilis-
tic adversary structure to be intolerable and define a suitable “domination”
condition which ensures that any structure that dominates an intolerable
structure is also intolerable. We then use this machinery to prove that the
adversary that randomly corrupts (approximately) (1 −

√
0.5)n servers and

then corrupts everyone that talks to the corrupted parties in every protocol
round induces a probabilistic structure that dominates an intolerable struc-
ture and is, therefore, also intolerable. We believe that the developed machin-
ery might be useful for analyzing other situations in which party corruption
is probabilistic.

– Finally, we initiate the study of actively secure MPC with sublinear commu-
nication. Here we look at static corruptions and provide a protocol which is
IT secure with abort [32,42] against any adversary corrupting a client and
t < (1/2 − ε)n servers for a constant 0 < ε < 1/2. This matches the semi-
honest lower bound for static security, at the cost, however, of allowing the
protocol to abort, a price which seems inevitable in our setting. We leave open
the questions of obtaining full security or adaptive security with erasures in
the case of actively secure MPC.
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We finally note that both our positive and negative results are of the strongest
possible form. Specifically, our designed protocols communicate a sublinear num-
ber of bits, whereas our impossibility proofs apply to all protocols that communi-
cate a sublinear number of messages (independently of how long these messages
are).

Related Work. The literature on communication complexity (CC) of MPC is
vast. To put out results in perspective, we now discuss some of the most relevant
literature on IT MPC with low communication complexity. For simplicity, in our
discussion we shall exclude factors that depend only on the security parameter
which has no dependency on n, as well as factors that are poly-logarithmic in n.

The CC of the original protocols from the ’80s was polynomial (in the best
case quadratic) in n, in particular, poly(n) · |C| where |C| denotes the size of
the circuit C that computes the given function. A long line of work ensued that
reduced this complexity down to linear in the size of the party set by shifting
the dependency on different parameters [2,3,6,17,22,24–27,37–39,43,44].

In the IT setting in particular, Damg̊ard and Nielsen [23] achieve a CC of
O(n|C|+n2) messages—i.e., their CC scales in a linear fashion with the number
of parties. Their protocol is perfectly secure in the presence of t < n/2 semi-
honest corruptions. In the malicious setting, they provide a protocol tolerating
t < n/3 corruptions with a CC of O(n|C| + d · n2) + poly(n) messages, where
d is the multiplicative depth of the circuit C. Beerliová-Trub́ıniová and Hirt [3]
extended this result to perfect security, achieving CC of O(n|C| + d · n2 + n3).
Later on, Ben-Sasson et al. [5] achieved CC O(n|C| + d · n2) + poly(n) messages
against t < n/2 active corruptions, which was brought down to O(n|C| + n2)
by Genkin et al. [29]. Note that with the exception of the maliciously secure
protocol in [23], all the above works tolerate a number of corruptions which is
tight even when there is no bound on the communication complexity.

Settling for a near-optimal resilience of t < (1/2 − ε)n, the above bounds
can be improved by a factor of n, making the communication complexity grow
at most polylogarithmically with the number of parties. This was first shown
for client-server protocols with a constant number of clients by Damg̊ard and
Ishai [19] (see also [43]) and later in the standard MPC model by Damg̊ard et
al. [20]. The latter protocol can in fact achieve perfect security if t < (1/3 − ε)n.

We point out that all the above communication bounds include polynomial
(in n) additive terms in their CC. This means that even for circuits that are small
relative to the number of parties (e.g., even when |C| = o(n)), they communicate
a number of bits (or, worse, messages) which is polynomial in n. Instead, in this
work we are interested in achieving overall (bit) communication complexity of
o(n)|C| without such additive (polynomial or even linear in n) terms, and are
willing to settle for statistical (rather than perfect) security.

Finally, a different line of work studies the problem of reducing the communi-
cation locality of MPC protocols [6,7,13]. This measure corresponds to the max-
imum number of neighbors/parties that any party communicates with directly,
i.e., via a bilateral channel, throughout the protocol execution. Although these
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works achieve a sublinear (in n) communication locality, their model assumes
each party to have an input, which requires the communication complexity to
grow (at least) linearly with the number of parties. Moreover, the protocols pre-
sented in these works either assume a trusted setup or are restricted to static
adversaries.

Organization of the Paper. In Sect. 2 we present the model (network, secu-
rity) used in this work and establish the necessary terminology and notation.
Section 3 presents our treatment of semi-honest static security, while Sect. 4
is dedicated to semi-honest adaptive corruptions, with erasures (Sect. 4.1) and
without erasures (Sect. 4.2). Finally, Sect. 5 includes our feasibility result for
malicious (static) adversaries.

2 Model, Definitions and Building Blocks

We consider n + 2 parties, where two special parties, called the clients, wish to
securely compute a function on their joint inputs with the help of the remaining
n parties, called the servers. We denote by C = {c1, c2} and by S = {s1, . . . , sn}
the sets of clients and servers, respectively. We shall denote by P the set of
all parties, i.e., P = C ∪ S. The parties are connected by a complete network
of (secure) point-to-point channel as in standard unconditionally secure MPC
protocols [4,14]. We call this model the (2, n)-client/server model.

The parties wish to compute a given two-party function f , described as an
arithmetic circuit Cf , on inputs from the clients by invoking a synchronous
protocol Π. (Wlog, we assume that f is a public-output function f(x1, x2) =
y, where xi is ci’s input; using standard techniques, this can be extended to
multi-input and private-output functions—cf. [46].) Such a protocol proceeds in
synchronous rounds where in each round any party might send messages to other
parties and the guarantee is that any message sent in some round is delivered
by the beginning of the following round. Security of the protocol is defined as
security against an adversary that gets to corrupt parties and uses them to attack
the protocol. We will consider both a semi-honest (aka passive) and a malicious
(aka active) adversary. A semi-honest adversary gets to observe the view of
parties it corrupts—and attempts to extract information from it—but allows
parties to correctly execute their protocol. In contrast, a malicious adversary
takes full control of corrupted parties. Furthermore, we consider both static and
adaptive corruptions. A static adversary chooses the set of corrupted parties at
the beginning of the protocol execution, whereas and adaptive adversary chooses
this set dynamically by corrupting (additional) parties as the protocol evolves
(and depending on his view of the protocol). A threshold (tc, ts)-adversary in the
client/server model is an adversary that corrupts in total up to tc clients and
additionally up to ts servers.

The adversary is rushing [9,40], i.e., in each round he first receives the mes-
sages that are sent to corrupted parties, and then has the corrupted parties
send their messages for that round. For adaptive security with erasures we adopt
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the natural model in which each of the operations “send-message,” “receive-
message,” and “erase-messages from state” is atomic and the adversary is able
to corrupt after any such atomic operation. This, in particular, means that when
a party sends a message to a corrupted party, then the adversary can corrupt the
sender before he erases this message. In more detail, every round is partitioned
into “mini-rounds,” where in each mini-round the party can send a message, or
receive a message, or erase a message from its state—exclusively. This is not
only a natural erasure model, but ensures that one does not design protocols
whose security relies on the assumption that honest parties can send and erase a
message simultaneously, as an atomic operation (see [40] for a related discussion
about atomicity of sending messages).

The communication complexity (CC) of a protocol is the number of bits sent
by honest parties during a protocol execution.3 Throughout this work we will
consider sublinear-communication protocols, i.e., protocols in which the honest
(and semi-honest) parties send at most o(n)|Cf | number of messages, were the
message size is independent of n. Furthermore, we will only consider information-
theoretic security (see below).

Simulation-Based Security. We will use the standard simulation-based defi-
nition of security from [9]. At a high level, a protocol for a given function is ren-
dered secure against a given class of adversaries if for any adversary in this class,
there exists a simulator that can emulate, in an ideal evaluation experiment, the
adversary’s attack to the protocol. In more detail, the simulator participates
in an ideal evaluation experiment of the given function, where the parties have
access to a trusted third party—often referred to as the ideal functionality—
that receives their inputs, performs the computation and returns their outputs.
The simulator takes over (“corrupts”) the same set of parties as the adversary
does (statically or adaptively), and has the same control as the (semi-honest or
malicious) adversary has on the corrupted parties. His goal is to simulate the
view of the adversary and choose inputs for corrupted parties so that for any ini-
tial input distribution, the joint distribution of the honest parties’ outputs and
adversarial view in the protocol execution is indistinguishable from the joint dis-
tribution of honest outputs and the simulated view in an ideal evaluation of the
function. Refer to [9] for a detailed specification of the simulation-based security
definition.

In this work we consider information-theoretic security and therefore we will
require statistical indistinguishability. Using the standard definitions of negligible
functions [30], we say that a pair of distribution ensembles X and Y indexed by
n ∈ N are (statistically) indistinguishable if for all (not necessarily efficient)
distinguishers D the following function with domain S:
3 Note that in the semi-honest setting this number equals the total number of bits

received during the protocol. However, in the malicious setting, corrupted parties
might attempt to send more bits to honest parties than what the protocol specifies,
thereby flooding the network and increasing the total number of bits received. As
we shall see, our malicious protocol defends even against such an attack by having
the parties abort if they receive too many bits/messages.
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ΔX ,Y(n) := |Pr[D(Xn) = 1] − Pr[D(Yn) = 1]|

is negligible in s. In this case we write X ≈ Y to denote this relation. We will
further use X ≡ Y to denote the fact that X and Y are identically distributed.

The view of the adversary in an execution of a protocol consists of the inputs
and randomness of all corrupted parties and all the messages sent and received
during the protocol execution. We will use ViewA,Π to denote the random
variable (ensemble) corresponding to the view of the adversary when the parties
run protocol Π. The view Viewσ,f of the simulator σ in an ideal evaluation of
f is defined analogously.

For a probability distribution Pr over a sample space T and for any T ∈ T
we will denote by Pr(T ) the probability of T . We will further denote by T ← Pr
the action of sampling the set T from the distribution Pr. In slight abuse of
notation, for an event E we will denote by Pr(E) the probability that E occurs.
Finally, for random variables X and Y we will denote by PrX (x) the probability
that X = x and by PrX|Y(x|y) the probability that X = x conditioned on Y = y.

Oblivious Transfer and OT Combiners. Oblivious Transfer (OT) [49] is a
two-party functionality between a sender and a receiver. In its most common
variant called 1-out-of-2-OT,4 the sender has two inputs x0, x1 ∈ {0, 1} and the
receiver has one bit input b ∈ {0, 1}, called the selection bit. The functionality
allows the sender to transmit the input xb to the receiver so that (1) the sender
does not learn which bit was transmitted (i.e., learns nothing), and (2) the
receiver does not learn anything about the input xb̄.

As proved by Kilian and Goldreich et al. [32,45], the OT primitive is com-
plete for secure xtwo-party computation (2PC), even against malicious adver-
saries. Specifically, Kilian’s result shows that given the ability to call an ideal
oracle/functionality fOT that computes OT, two parties can securely compute
an arbitrary function of their inputs with unconditional security. The efficiency
of these protocols was later improved by Ishai et al. [43].

Beaver [1] showed how OT can be pre-computed, i.e., how parties can, in
an offline phase, compute correlated randomness that allows, during the online
phase, to implement OT by simply the sender sending to the receiver two mes-
sages of the same length as the messages he wishes to input to the OT hybrid
(and the receiver sending no message). Thus, a trusted party which is equivalent
(in terms of functionality) to OT, is one that internally pre-computes the above
correlated randomness and hands to the sender and the receiver their “parts” of
it. We will refer to such a correlated randomness setup where the sender receives
Rs and the receiver Rr as an (Rs, Rr) OT pair. The size of each component in
such an OT pair is the same as (or linear in) the size of the messages (inputs)
that the parties would hand to the OT functionality.

A fair amount of work has been devoted to so-called OT combiners, namely,
protocols that can access several, say, m OT protocols, out of which � might
be insecure, and combine them into a secure OT protocol (e.g., [33,34,47]). OT

4 In this work we will use OT to refer to 1-out-of-2 OT.
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combiners with linear rate (i.e., where the total communication of the combiner
is linear in the total communication of the OT protocol) exist both for semi-
honest and for malicious security as long as � < m/2. Such an OT combiner
can be applied to the pre-computed OT protocol to transform m precomputed
OT strings out of which � are sampled from the appropriate distribution by a
trusted party, into one securely pre-computed OT string, which can then be used
to implement a secure instance of OT.

3 Sublinear Communication with Static Corruptions

As a warm up, we start our treatment of secure computation in the (2, n)-
client/server model with the case of a static adversary, where, as we show, requir-
ing sublinear communication complexity comes almost at no cost in terms of how
many corrupted parties can be tolerated. We consider the case of a semi-honest
adversary and confirm that using a “folklore” protocol any (1, t)-adversary with
t < ( 12 − ε)n corruptions can be tolerated, for an arbitrary constant 0 < ε < 1

2 .
We further prove that this bound is tight (up to an arbitrary small constant
fraction of corruptions); i.e., if for some ε > 0, t = (12 + ε)n, then a semi-honest
(1, t)-adversary cannot be tolerated.5

Specifically, in the static semi-honest case the following folklore protocol
based on the approach of selecting a random committee [8] is secure and has
sublinear message complexity. This protocol has any of the two clients, say,
c1, choose (with high probability) a random committee/subset of the servers
of at most polylogarithmic size and inform the other client about his choice.
These servers are given as input secret sharings of the clients’ inputs, and are
requested to run a standard MPC protocol that is secure in the presence of an
honest majority, for example, the semi-honest MPC protocol by Ben-Or et al. [4],
hereafter referred to as the “BGW” protocol. The random choice of the servers
that execute the BGW protocol will ensure that, except with negligible (in n)
probability, a majority of them will be honest. Furthermore, because the BGW
protocol’s complexity is polynomial in the party size, which in this case is poly-
logarithmic, the total communication complexity in this case is polylogarithmic.
We denote the above protocol as Πstat and state its security in Theorem 1. The
proof is simple and follows the above idea. We refer to the full version [28] for
details.

Theorem 1. Protocol Πstat unconditionally securely computes any given 2-party
function f in the (2, n)-client/server model in the presence of a passive and
static (1, t)-adversary with t < (1/2 − ε)n, for any given constant 0 < ε < 1/2.
Moreover, Πstat communicates O(logδ′

(n)|Cf |) messages, for a constant δ′ > 1.

Next, we prove that Theorem 1 is tight. The proof idea is as follows: If the
adversary can corrupt a majority of the servers, i.e., t ≥ n/2, then no mat-
ter which subset of the servers is actually activated (i.e., sends or receives a
5 Wlog we can assume that the semi-honest adversary just outputs his entire view [9];

hence semi-honest adversaries only differ in the set of parties they corrupt.
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message) in the protocol6, an adversary that randomly chooses the parties to
corrupt has a good chance of corrupting any half of the active server set. Thus,
existence of a protocol for computing, e.g., the OR function while tolerating such
an adversary would contradict the impossibility result by Hirt and Maurer [35]
which implies that an adversary who can corrupt a set and its complement—or
supersets thereof—is intolerable for the OR function. The actual theorem state-
ment is tighter, and excludes even adversaries that corrupt t ≥ n/2−δ, for some
constant δ ≥ 0. The proof uses the above idea with the additional observation
that due to the small (sublinear) size of the set S̄ of active servers, i.e., servers
that send or receive a message in the protocol, a random set of δ = O(1) servers
has noticeable chance to include no such active server. We refer to the full
version of this work [28] for a formal proof.

Theorem 2. Assuming a static adversary, there exists no information theoret-
ically secure protocol for computing the boolean OR of the (two) clients’ inputs
with message complexity m = o(n) tolerating a (1, t)-adversary with t ≥ n/2− δ,
for some δ = O(1).

4 Sublinear Communication with Adaptive Corruptions

In this section we consider an adaptive semi-honest adversary and prove cor-
responding tight bounds for security with erasures—the protocol can instruct
parties to erase their state so as to protect information from an adaptive adver-
sary who has not yet corrupted the party—and without erasures—everything
that the parties see stays in their state.

4.1 Security with Erasures

We start with the setting where erasures of the parties’ states are allowed, which
prominently demonstrates that sublinear communication comes at an unex-
pected cost in the number of tolerable corruptions. Specifically, in this section
we show that for any constant 0 < ε < 1 −

√
0.5, there exists a protocol that

computes any given two-party function f in the presence of a (1, t)-adversary if
t < (1 −

√
0.5 − ε)n (Theorem 3). Most surprisingly, we prove that this bound

is tight up to any arbitrary small constant fraction of corruptions (Theorem 4).
The technique used in proving the lower bound introduces a novel treatment of
(and a toolboox for) probabilistic adversary structures that we believe can be of
independent interest.

We start with the protocol construction. First, observe that the idea behind
protocol Πstat cannot work here as an adaptive adversary can corrupt client c1,
wait for him to choose the servers in S̄, and then corrupt all of them adap-
tively since he has a linear corruption budget. (Note that erasures cannot help
here as the adversary sees the list of all receivers by observing the corrupted
6 Note that not all servers can be activated as the number of active servers is naturally

bounded by the (sublinear) communication complexity.
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sender’s state.) This attack would render any protocol non-private. Instead, we
will present a protocol which allows clients c1 and c2 to pre-compute sufficiently
many 1-out-of-2 OT functionalities fOT((m0,m1), b) = (⊥,mb) in the (2, n)-
client/server model with sublinear communication complexity. The completeness
of OT ensures that this allows c1 and c2 to compute any given function.

A first attempt towards the above goal is as follows. Every server indepen-
dently decides with probability p = logδ n

n (based on his own local randomness)
to “volunteer” in helping the clients by acting as an OT dealer (i.e., acting as a
trusted party that prepares and sends to the clients an OT pair). The choice of
p can be such that with overwhelming probability not too many honest servers
volunteer (at most sublinear in n) and the majority of the volunteers are honest.
Thus, the majority of the distributed OT pairs will be honest, which implies
that the parties can use an OT-combiner that is secure for a majority of good
OTs (e.g., [34]) on the received OT pairs to derive a secure implementation of
OT.

Unfortunately, the above idea does not quite work. To see why, consider an
adversary who randomly corrupts one of the clients and as soon as any honest
volunteer sends a messages to the corrupted client, the adversary corrupts him
as well and reads his state. (Recall that send and erase are atomic operations.)
It is not hard then to verify that even if the volunteer erases part of its state
between contacting each of the two clients, with probability (at least) 1/2 such
an adversary learns the entire internal state of the volunteer before he gets a
chance to erase it.

So instead of the above idea, our approach is as follows. Every server, as
above, decides with probability p = logδ n

n to volunteer in helping the clients by
acting as an OT dealer and computes the OT pair, but does not send it. Instead,
it first chooses another server, which we refer to as his intermediary, uniformly at
random, and forwards him one of the components in the OT pairs (say, the one
intended for the receiver); then, it erases the sent component and the identity of
the intermediary along with the coins used to sample it (so that now his state
only includes the sender’s component of the OT pair); finally, both the volunteer
and his intermediary forward their values to their intended recipient.

It is straightforward to verify that with the above strategy the adversary
does not gain anything by corrupting a helping server—whether a volunteer or
his associated intermediary—when he talks to the corrupted client. Indeed, at
the point when such a helper contacts the client, the part of the OT pair that
is not intended for that client and the identity of the other associated helper
have both been erased. But now we have introduced an extra point of possible
corruption: The adversary can learn any given OT pair by corrupting either the
corresponding volunteer or his intermediary before the round where the clients
are contacted. However, as we will show, when t < (1−

√
0.5−ε)n, the probability

that the adversary corrupts more than half of such pairs is negligible.
The complete specification of the above sketched protocol, denoted ΠOT

adap,
and the corresponding security statement are shown below.
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Protocol ΠOT
adap(C = {c1, c2}, S = {s1, . . . , sn})

1. Every server si ∈ S locally decides to become active with probability p = logδ n
n

for a publicly known constant δ > 1. Let S̄1 denote the set of parties
that become active in this round. Every si ∈ S̄1 prepares an OT pair

((mi, ri), otidi), where otidi ∈ {0, 1}logδ n is a uniformly chosen identifier.
2. Every si ∈ S̄1 choses an intermediary sij ∈ S uniformly at random and sends

(ri, otidi) to sij . Denote by S̄2 = {sij |si ∈ S̄} the set of all relayers.
3. Every si ∈ S̄1 erases ri, the identity of sij , and the randomness used to select

sij ; and every sij ∈ S̄2 erases the identity of si.
4. Every si ∈ S̄1 sends (mi, otidi) to c1 and every sij ∈ S̄2 sends (ri, otidi)

to c2.
5. Every si ∈ S̄1 and every sij ∈ S̄2 erase their entire internal state.
6. The clients c1 and c2 use the OT pairs with matching otid’s within a (semi-

honest) (n/2, n) OT-combiner [34] to obtain a secure OT protocol.

Theorem 3. Protocol ΠOT
adap unconditionally securely computes the function

fOT((m0,m1), b) = (⊥,mb) in the (2, n)-client/server model in the presence of
a passive and adaptive (1, t)-adversary with t < (1 −

√
0.5 − ε)n, for any given

constant 0 < ε < 1−
√

0.5 and assuming erasures. Moreover, ΠOT
adap communicates

O(logδ(n)) messages, with δ > 1, except with negligible probability.

Proof. Every server s ∈ S is included in the set of servers that become active
in the first round, i.e., S̄1, with probability p = logδ n

n independent of the
other servers. Thus by application of the Chernoff bound we get that for every
0 < γ < 1/2:

Pr[|S̄1| > (1 + γ) logδ n] < e− γ logδ n
3 (1)

which is negligible. Moreover, each si ∈ S̄1 chooses one additional relay-party
sij which means that for any constant 1/2 < γ′ < 1:

|S̄| = |S̄1 ∪ S̄2| ≤ (2 + γ′) logδ n

with overwhelming probability. (As in the proof of Theorem 2, S̄ denotes the
set of active servers at the end of the protocol.) Since each such party communi-
cates at most two messages, the total message complexity is O(logδ n) plus the
messages exchanged in the OT combiner which are polynomial in the number of
OT pairs. Thus, with overwhelming probability, the total number of messages is
O(logδ′

(n)) for some constant δ′ > δ.
To prove security, it suffices to ensure that for the uncorrupted client, the

adversary does not learn at least half of the received OT setups. Assume wlog
that c2 is corrupted. (The case of a corrupted c1 is handled symmetrically,
because, wlog, we can assume that an adversary corrupting some party in S̄1

also corrupts all parties in S̄2 which this party sends messages to after its cor-
ruption.) We show that the probability that the adversary learns more than half
of the mi’s is negligible.
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First, we can assume, wlog, that the adversary does not corrupt any servers
after Step 5, i.e., after the states of the servers have been erased. Indeed, for
any such adversary A there exists an adversary A′ who outputs a view with the
same distribution as A but does not corrupt any of the parties that A corrupts
after Step 5; in particular A′ uses A as a blackbox and follows A’s instructions,
and until Step 5 corrupts every server that A requests to corrupt, but after that
step, any request from A to corrupt a new server s is replied by A′ simulating s
without corrupting him. (This simulation is trivially perfect since at Step 5, s will
have erased its local state so A′ needs just to simulate the unused randomness.)

Second, we observe that, since the adversary does not corrupt c1, the only
way to learn some mi is by corrupting the party in S̄1 that sent it to c1. Hence
to prove that the adversary learns less than 1/2 of the mi’s it suffices to prove
that the adversary corrupts less than 1/2 of S̄1.

Next, we observe that the adversary does not gain any advantage in cor-
rupting parties in S̄1 by corrupting client c2, since (1) parties in S̄1 do not
communicate with c2, and (2) by the time an honest party sij ∈ S̄2 communi-
cates with c2 he has already erased the identity of si. (Thus, corrupting sij after
he communicates with c2 yields no advantage in finding si.) Stated differently, if
there is an adversary who corrupts more than 1/2 servers in S̄1, then there exists
an adversary that does the same without even corrupting c2. Thus, to complete
the proof it suffices to show that any adversary who does not corrupt c2, corrupts
less than 1/2 of the servers in |S̄1|. This is stated in Lemma 2, which is proved
using the following strategy: First, we isolate a “bad” subset S̄ ′

1 of S̄1 which we
call over-connected parties, for which we cannot give helpful guarantees on the
number of corruptions. Nonetheless, we prove in Lemma 1 that this “bad” set
is “sufficiently small” compared to S̄1. By this we mean that we can bound the
fraction of corrupted parties in S̄1 sufficiently far from 1/2 so that even if give
this bad set S̄ ′

1 to the adversary to corrupt for free, his chances of corrupting a
majority in S̄1 are still negligible. The formal arguments follow.

Let E = {(s, s′) | s ∈ S̄1 ∨ s′ ∈ S̄2} and let G denote the graph with vertex-
set S and edge-set E. We say that server si ∈ S̄1 is an over-connected server if
the set {si, sij} has neighbors in G. Intuitively, the set of over-connected servers
is chosen so that if we remove these servers from G we get a perfect matching
between S̄1 and S̄2.

Next, we show that even if we give up all over-connected servers in S̄1 (i.e.,
allow the adversary to corrupt all of them for free) we still have a majority of
uncorrupted servers in S̄1. For this purpose, we first prove in Lemma 1 that the
fraction of S̄1 servers that are over-connected is an arbitrary small constant.

Lemma 1. Let S̄ ′
1 ⊆ S̄1 denote the set of over-connected servers as defined

above. For any constant 1 > ε′ > 0 and for large enough n, |S̄ ′
1| < ε′|S̄1| except

with negligible probability.

Proof. To prove the claim we make use of the generalized Chernoff bound [48].
For each si ∈ S̄1 let Xi ∈ {0, 1} denote the indicator random variable that is 1
if si ∈ S̄ ′

1 and 0 otherwise. As above for each si ∈ S̄1 we denote by sij the party
that si chooses as its intermediary in the protocol.
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Pr[Xi = 1] = Pr[(sij ∈ S̄1) ∪ (∃sk ∈ S̄1 : skj ∈ {si, sij})]
≤ Pr[sij ∈ S̄1] + Pr[∃sk ∈ S̄1 : skj = si]

+ Pr[∃sk ∈ S̄1 : skj = sij ]

≤ 3
|S̄1|
n

,

where both inequalities follow by a direct union bound since sij is chosen
uniformly at random, and for each of the servers si and sij there are at
most |S̄1| servers that might choose them as an intermediary. But from Eq. 1,
|S̄1| < (1 + γ) logδ n except with negligible probability. Thus, for large enough
n, Pr[Xi = 1] < ε′.

Next, we observe that for any subset Q of indices of parties in S̄1 and for
any i ∈ Q it holds that Pr[Xi = 1 |

∧
j∈Q\{i} Xj = 1] ≤ Pr[Xi = 1]. This is

the case because the number of edges (sk, skj) is equal to the size of S̄1 and
any connected component in G with � nodes must include at least � such edges.
Hence, for any such Q, Pr[∧i∈QXi = 1] ≤

∏
i∈Q Pr[Xi = 1] ≤ ε1

|Q|. Therefore,
by an application of the generalized Chernoff bound [48], for δ = ε1 < ε′ and
γ = ε′, we obtain

Pr[
n∑

i=1

Xi ≥ ε′n] ≤ e−n2(ε′−ε1)
2
,

which is negligible. ��

Now, let A be an adaptive (1, t)-adversary and let C be the total set of
servers corrupted by A (at the end of Step 5). We want to prove that |C ∩ S̄1| <
1
2 |S̄1| except with negligible probability. Towards this objective, we consider the
adversary A′ who is given access to the identities of all servers in S̄ ′

1, corrupts all
these parties and, additionally, corrupts the first t − |S̄ ′

1| parties that adversary
A corrupts. Let C ′ denote the set of parties that A′ corrupts. It is easy to verify
that if |C ∩ S̄1| ≥ 1

2 |S̄1| then |C ′ ∩ S̄1| ≥ 1
2 |S̄1|. Indeed, A′ corrupts all but the

last |S̄ ′
1| of the parties that A corrupts; if all these last parties end up in S̄1 then

we will have |C ′ ∩ S̄1| = |C ∩ S̄1|, otherwise, at least one of them will not be
in C ∩ S̄1 in which case we will have |C ′ ∩ S̄1| > |C ∩ S̄1|. Hence, to prove that
|C ∩ S̄1| < 1

2 |S̄1| it suffices to prove that |C ′ ∩ S̄1| < 1
2 |S̄1|.

Lemma 2. The set C ′ of servers corrupted by A′ as above has size
|C ′ ∩ S̄1| < 1

2 |S̄1|, except with negligible probability.

Proof. Consider the gaph G′ which results by deleting from G the ver-
tices/servers in S̄ ′

1. By construction, G′ is a perfect pairing between parties
in S̄1 \ S̄ ′

1 and parties in S̄2 \ S̄ ′
1. For each si ∈ S̄1 \ S̄ ′

1, let Xi denote the Boolean
random variable with Xi = 1 if {si, sij} ∩ (C ′ \ S̄ ′

1) �= ∅ and Xi = 0 otherwise.
When Xi = 1, we say that the adversary has corrupted the edge ei = (si, sij).
Clearly, the number of corrupted edges is an upper bound on the corresponding
number of corrupted servers in S̄1 \ S̄ ′

1. Thus, we will show that the number of
corrupted edges is bounded away from 1/2.
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By construction of G′ the Xi’s are independent, identically distributed ran-
dom variables. Every edge in G′ is equally likely, thus the adversary gets no
information on the rest of the graph by corrupting some edge. Therefore we
can assume wlog that A′ chooses the servers in C ′ \ S̄ ′

1 at the beginning of the
protocol execution. In this case we get the following for C ′

1 = C ′ \ S̄ ′
1:

Pr[Xi = 1] = Pr[si ∈ C ′
1] + Pr[sij ∈ C ′

1] − Pr[{si, sij} ⊆ C ′
1]

= 2
|C| − |S̄ ′

1|
n − |S̄ ′

1|
−

(
|C| − |S̄ ′

1|
n − |S̄ ′

1|

)2

≤ 2(1 −
√

0.5 − ε)n
n − |S̄ ′

1|
−

(
(1 −

√
0.5 − ε)n − |S̄ ′

1|
n − |S̄ ′

1|

)2

.

To make the notation more compact, let λ = 1 −
√

0.5 − ε. Because, from
Lemma 1, |S̄ ′

1| ≤ ε′n (and thus n − |S̄ ′
1| > (1 − ε′)n) except with negligible

probability, we have that for large enough n and some negligible function μ:

Pr[Xi = 1] ≤ 2λn

(1 − ε′)n
−

(
λn − |S̄ ′

1|
n − |S̄ ′

1|

)2

+ μ. (2)

Moreover,

(
λn − |S̄ ′

1|
n − |S̄ ′

1|

)2

≥
(

λn − |S̄ ′
1|

n

)2

=
(

λ − |S̄ ′
1|

n

)2

≥ λ2 − 2λ|S̄ ′
1|

n
.

(3)

But because, from Eq. 1, |S̄1| = O(logδ n) with overwhelming probability, we
have that for every constant 0 < ε1 < 1 and every negligible function μ′, and for
all sufficiently large n, 2λ|S̄′

1|
n + μ′ < ε1 holds. Thus, combining Eqs. 2 and 3 we

get that for all such ε1 and for sufficiently large n:

Pr[Xi = 1] ≤ 2
(1 − ε′)

λ − λ2 + ε1

=
2

(1 − ε′)
(1 −

√
0.5 − ε) − 1.5 − ε2 + 2ε + 2(1 − ε)

√
0.5 + ε1

≤ 2
(1 − ε′)

− 2ε

(1 − ε′)
− 1.5 − ε2 + 2ε + ε1

≤ 2
(1 − ε′)

− 1.5 − ε2 + ε1.

For ε′ ≤ 1 − 2
2+ε2/4 and ε1 = ε2/4, the last equation gives

Pr[Xi = 1] ≤ 1
2

− ε2

2
.
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Furthermore, because the Xi’s are independent, the assumptions in [48] are
satisfied for δ = 1

2 − ε2

2 , hence,

Pr[
∑

si∈S̄1\S̄′
1

Xi ≥ (1/2 − ε2/3)|S̄1 \ S̄ ′
1|] ≤ e−n(ε2/6),

which is negligible. Note that, by Lemma 1, for large enough n, with overwhelm-
ing probability |S̄ ′

1| < 2ε2

3+2ε2 |S̄1|. Thus, with overwhelming probability the total
number of corrupted servers in S̄1 is less than 1

2 |S̄1|. ��

The above lemma ensures that the adversary cannot corrupt a majority of
the OT pairs. Furthermore, with overwhelming probability, all the otid’s chosen
by the parties in S̄ are distinct. Thus, the security of the protocol follows from
the security of the OT combiner. This concludes the proof of Theorem 3. ��

Next, we turn to the proof of the lower bound. We prove that there exists
an adaptive (1, t)-adversary that cannot be tolerated when t = (1 −

√
0.5 + ε)n

for any (arbitrarily small) constant ε > 0. To this end, we start with the obser-
vation that every adaptive adversary attacking a protocol induces a probability
distribution on the set of corrupted parties, which might depend on the coins
of the adversary and on the inputs and coins of all parties. Such a probability
distribution induces a probabilistic adversary structures that assigns to each sub-
set of parties the probability that this subset gets corrupted. Hence, it suffices
to prove that this probabilistic adversary structure is what we call intolerable,
which, roughly, means that there are functions that cannot be computed when
the corrupted sets are chosen from this structure. Before sketching our proof
strategy, it is useful to give some intuition about the main challenge one encoun-
ters when attempting to prove such a statement. This is best demonstrated by
the following counterexample.

A Counterexample. It is tempting to conjecture that for every probabilistic
adversary A who corrupts each party i with probability pi > 1/2, there is no
(general purpose) information-theoretic MPC protocol which achieves security
against A. While this is true if the corruption probabilities are independent, we
show that this is far from being true in general.

Let fk denote the boolean function fk : {0, 1}3k → {0, 1} computed by a
depth-k complete tree of 3-input majority gates. It follows from [15,36] that there
is a perfectly secure information-theoretic MPC protocol that tolerates every set
of corrupted parties T whose characteristic vector χT satisfies f(χT ) = 0. We
show the following.

Proposition 1. There exists a sequence of distributions Xk, where Xk is dis-
tributed over {0, 1}3k

, such that for every positive integer k we have (1) fk(Xk)
is identically 0, and (2) each entry of Xk takes the value 1 with probability
1 − (2/3)k.
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Proof. Define the sequence Xk inductively as follows. X1 is a uniformly ran-
dom over {100, 010, 001}. The bit-string Xk is obtained as follows. Associate the
entries of Xk with the leaves of a complete ternary tree of depth k. Randomly
pick Xk by assigning 1 to all leaves of one of the three sub-trees of the root
(the identity of which is chosen at random), and assigning values to each of the
two other sub-trees according to Xk−1. Both properties can be easily proved by
induction on k. ��

Letting Ak denote the probabilistic adversary corresponding to Xk, we get a
strong version of the desired counterexample, thus contradicting the aforemen-
tioned conjecture for k ≥ 2.

The above counterexample demonstrates that even seemingly straightfor-
ward arguments when considering probabilistic adversary structures can be false,
because of correlation in the corruption events. Next, we present the high-level
structure of our lower bound proof.

We consider an adversary A who works as follows: At the beginning of the
protocol, A corrupts each of the n servers independently with probability 1−

√
0.5

and corrupts one of the two clients, say, c1, at random; denote the set of initially
corrupted servers by C0 and initialize C := C0. Subsequently, in every round,
if any server sends or/receives a message to/from one of the servers in C, then
the adversary corrupts him as well and adds him to C. Observe that A does
not corrupt servers when they send or receive messages to the clients. (Such an
adversary would in fact be stronger but we will show that even the above weaker
adversary cannot be tolerated.) We also note that the above adversary might
exceed his corruption budget t = (1 −

√
0.5 − ε)n. However, an application of

the Chernoff bound shows that the probability that this happens in negligible
in n so we can simply have the adversary abort in the unlikely case of such an
overflow.

We next observe that because A corrupts servers independently at the begin-
ning of the protocol, we can consider an equivalent random experiment where
first the communication pattern (i.e., the sequence of edges) is decided and then
the adversary A chooses his initial sets and follows the above corruption paths
(where edges are processed in the given order). For each such sequence of edges,
A defines a probability distribution on the (active) edge set that is fully cor-
rupted, namely, both its end-points are corrupted at the latest when they send
any message in the protocol (and before they get a chance to erase it). Shift-
ing the analysis from probabilistic party-corruption structures to probabilistic
edge-corruption structures yields a simpler way to analyze the view of the experi-
ment. Moreover, we provide a definition of what it means for an edge-corruption
structure to be intolerable, which allows us to move back from edge to party
corruptions.

Next, we define a domination relation which, intuitively, says that a proba-
bilistic structure PrAE

1
dominates another probabilistic structure PrAE

2
on the

same set of edges, if there exist a monotone probabilistic mapping F among sets
of edges—i.e., a mapping from sets to their subsets—that transforms PrAE

1
into

PrAE
2
. Conceptually, for an adversary that corrupts according to PrAE

1
(hereafter
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referred to as a PrAE
1
-adversary), the use of F can be thought as “forgetting”

some of the corrupted edges.7 Hence, intuitively, an adversary who corrupts edge
sets according to PrAE

2
(or, equivalently, according to “PrAE

1
with forget”) is eas-

ier to simulate than a PrAE
1
-adversary, as if there is a simulator for the latter,

we can apply the forget predicate F on the (simulated) set of corrupted edges
to get a simulator for PrAE

2
. Thus, if PrAE

2
is intolerable, then so is PrAE

1
.

Having such a domination relation in place, we next look for a simple prob-
abilistic structure that is intolerable and can be dominated by the structure
induced by our adversary A. To this end, we prove intolerability of a special
structure, where each edge set is sampled according to the following experiment:
Let E be a collection of edge sets such that no E ∈ E can be derived as a union
of the remaining sets; we choose to add each set from E to the corrupted-edge
set independently with probability 1/2. The key feature of the resulting prob-
abilistic corruption structure that enables us to prove intolerability and avoid
missteps as in the above counterexample, is the independence of the above sam-
pling strategy.

The final step, i.e., proving that the probabilistic edge-corruption structure
induced by our adversary A dominates the above special structure, goes through
a delicate combinatorial argument. We define a special graph traversing algo-
rithm for the given edge sequence that yields a collection of potentially fully
corruptible subsets of edges in this sequence, and prove that the maximal ele-
ments in this collection can be used to derive such a dominating probabilistic
corruption structure.

The complete proof of our impossibility (stated in Theorem 4 below) can be
found in [28].

Theorem 4. Assume an adaptive passive adversary and that erasures are
allowed. There exists no information theoretically secure protocol for computing
the boolean OR function in the (2, n)-client/server model with message complex-
ity m = o(n) tolerating a (1, t)−adversary, where t = (1 −

√
0.5 + ε)n for any

constant ε > 0.

4.2 Security Without Erasures

We next turn to the case of adaptive corruptions (still for semi-honest adver-
saries) in a setting where parties do not erase any part of their state (and thus an
adaptive adversary who corrupts any party gets to see the party’s entire proto-
col view from the beginning of the protocol execution). This is another instance
which demonstrates that requiring sublinear communication induces unexpected
costs on the adversarial tolerance of MPC protocols.

In particular, when we do not restrict the communication complexity, then
any (1, t)-adversary can be tolerated for information-theoretic MPC in the
(2, n)-client/server model, as long as t < n/2 [4]. Instead, as we now show,

7 Here, “forgetting” means removing the view of their end-points from the adversary’s
view.
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when restricting to sublinear communication, there are functions that cannot
be securely computed when any (arbitrary small) linear number of servers is
corrupted (Theorem 5). If, on the other hand, we restrict the number of corrup-
tions to be sublinear, a straightforward protocol computes any given function
(Theorem 6).

The intuition behind the impossibility can be demonstrated by looking at
protocol Πstat from Sect. 3: An adaptive adversary can corrupt client c1, wait
for him to choose the servers in S̄, and then corrupt all of them rendering
any protocol among them non-private. In fact, as we show below, this is not
a problem of the protocol but an inherent limitation in the setting of adaptive
security without erasures.

Specifically, the following theorem shows that if the adversary is adaptive
and has the ability to corrupt as many servers as the protocols’ message com-
plexity, along with any one of the clients, then there are functions that cannot
be privately computed. The basic idea is that such an adversary can wait until
the end of the protocol, corrupt any of the two clients, say, ci, and, by following
the messages’ paths, also corrupt all servers whose view is correlated to that of
ci. As we show, existence of a protocol tolerating such an adversary contradicts
classical impossibility results in the MPC literature [4,35].

Theorem 5. In the non-erasure model, there exists no information-theoretically
secure protocol for computing the boolean OR function in the (2, n)-client/server
model with message complexity m = o(n) tolerating an adaptive (1,m + 1)-
adversary.

Proof. Assume towards contradiction that such a protocol Π exists. First
we make the following observation: Let G denote the effective communi-
cation graph of the protocol defined as follows: G = (V,E) is an undi-
rected graph where the set V of nodes is the set of all parties, i.e.,
V = S ∪ {c1, c2}, and the set E of edge includes of pairs of parties
that exchanged a message in the protocol execution; i.e., E := {(pi, pj) ∈
V 2 s.t. pi exchanged a message with pj in the execution of Π}.8 By definition,
the set S̄ of active parties is the set of nodes in G with degree d > 0. Let S̄ ′

denote the set of active parties that do not have a path to any of the two clients.
(In other words, nodes in S̄ ′ do not belong in a connected component including
c1 or c2.)

We observe that if a protocol is private against an adversary A, then it
remains private even if A gets access to the entire view of parties in S̄ ′ and of
the inactive servers S \ S̄. Indeed, the states of these parties are independent of
the states of active parties and depend only on their internal randomness, hence
they are perfectly simulatable.

Let A1 denote the adversary that attacks at the end of the protocol and
chooses the parties A1 to corrupt by the following greedy strategy: Initially
A1 := {c1}, i.e., A1 always corrupts the first client. For j = 1 . . . ,m, A1 adds
to A1 all servers that are not already in A1 and exchanged a message with
8 Note that G is fully defined at the end of the protocol execution.
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some party in A1 during the protocol execution. (Observe that A1 does not
corrupt the second client c2.) Note that the corruption budget of the adversary
is at least as big as the total message complexity, hence he is able to corrupt
every active server (if they all happen to be in the same connected component
as c1). Symmetrically, we define the adversary A2 that starts with A2 = {c2}
and corrupts servers using the same greedy strategy. Clearly, A1 ∪ A2 = S̄ \ S̄ ′.
Furthermore, as argued above, if Π can tolerate Ai, then it can also tolerate
A′

i which in addition to Ai learns the state of all servers in S̄ ′ ∪ (S \ S̄); denote
by A′

i the set of parties whose view A′
i learns. Clearly, A′

1 ∪ A′
2 = S, and thus,

existence of such a Π contradicts the impossibility of computing the OR against
non-Q2 adversary structures [35]. ��

Corollary 1. In the non-erasure model, there exists no information theoretically
secure protocol for computing the boolean OR function of the (two) clients’ inputs
with message complexity m = o(n) tolerating an adaptive (1, t)-adversary, where
t = εn for some constant ε > 0.

For completeness, we show that if the adversary is restricted to a sublinear
number t of corruptions, then there is a straightforward secure protocol with
sublinear communication. Indeed, in this case we simply need to use Πstat, with
the modification that c1 chooses n′ = 2t + 1 servers to form a committee.
Because t = o(n), this committee is trivially of sublinear size, and because
n′ > 2t a majority of the servers in the committee will be honest. Hence, the
same argument as in Theorem 1 applies also here. This proves the following
theorem; the proof uses the same structure as the proof of Theorem 1 and is
therefore omitted.

Theorem 6. Assuming t = o(n), there exists an unconditionally secure
(privately) protocol that computes any given 2-party function f in the
(2, n)-client/server model in the presence of a passive adaptive (1, t)-adversary
and communicates o(n)|Cf | messages. The statement holds even when no era-
sures are allowed.9

5 Sublinear Communication with Active (Static)
Corruptions

Finally, we initiate the study of malicious adversaries in MPC with sublinear
communication, restricting our attention to static security. Since the bound from
Sect. 3 is necessary for semi-honest security, it is also necessary for malicious secu-
rity (since a possible strategy of a malicious adversary is to play semi-honestly).

9 A protocol that is secure when no erasures are allowed is also secure when erasures
are allowed.
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In this section we show that if t < (1/2 − ε)n, then there exists a maliciously
secure protocol for computing every two-party function with abort. To this end,
we present a protocol which allows clients c1 and c2 to compute the 1-out-of-2
OT functionality fOT((m0,m1), b) = (⊥,mb) in the (2, n)-client/server model
with sublinear communication complexity. As before, the completeness of OT
ensures that this allows c1 and c2 to compute any function.

We remark that the impossibility result from Sect. 3 implies that no fully
secure protocol (i.e., without abort) can tolerate a malicious (1, t)-adversary
as above. As we argue below, the ability of the adversary to force an abort
seems inherent in protocols with sublinear communication tolerating an active
adversary with a linear number of corruptions. It is an interesting open question
whether the impossibility of full security can be extended to malicious security
with abort.

Towards designing a protocol for the malicious setting, one might be tempted
to think that the semi-honest approach of one of the clients choosing a commit-
tee might work here as well. This is not the case, as this client might be cor-
rupted (and malicious) and only pick servers that are also corrupted. Instead,
here we use the following idea, inspired by the adaptive protocol with erasures
(but without intermediaries): Every server independently decides with probabil-
ity p = logδ n

n (based on his own local randomness) to volunteer in helping the
clients by acting as an OT dealer. The choice of p is such that with overwhelm-
ing probability not too many honest servers (at most sublinear in n) volunteer.
The clients then use the OT-combiner on the received pre-computed OT pairs
to implement a secure OT. Note that this solution does not require any inter-
mediaries as we have static corruptions.

But now we have a new problem to solve: The adversary might pretend to
volunteer with more parties than the honest volunteers. (The adversary can do
that since he is allowed a linear number of corruptions.) If the clients listen to
all of them, then they will end up with precomputed OTs a majority of which
is generated by the adversary. This is problematic since no OT combiner exists
that will yield a secure OT protocol when the majority of the combined OTs is
corrupted (cf. [34,47]).

We solve this problem as follows: We will have each of the clients abort during
the OT pre-computation phase if he receives OT pairs from more than a (sublin-
ear) number q of parties. By an appropriate choice of q we can ensure that if the
adversary attempts to contact the clients with more corrupted parties than the
honest volunteers, then with overwhelming probability he will provoke an abort.
As a desirable added feature, this technique also protects against adversaries
that try to increase the overall CC by sending more or longer messages. We
note in passing that such an abort seems inevitable when trying to block such
a message overflow by the adversary as the adversary is rushing and can make
sure that his messages are always delivered before the honest parties’ messages.
The resulting protocol, ΠOT

act , is given below along with its security statement.
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Protocol ΠOT
act (C = {c1, c2}, S = {s1, . . . , sn})

1. Every server si ∈ S locally decides to become active with probability p = logδ n
n

for a given (public) constant δ > 1. Let S̄ denote the set of active servers.
2. Every si ∈ S̄ prepares an OT pair (mi, ri) and sends mi to c1 and ri to c2.
3. Each ci, i ∈ {1, 2}, sends ⊥ to c2−i and aborts the protocol execution if ci was

contacted by more than (1 − 16ε4) logδ n parties in the previous step.
4. If ci, i ∈ {1, 2}, received a ⊥ from c2−i in the previous step then he aborts.
5. The clients use the � received OT pairs in a malicious (�/2, �) OT-combiner [34]

to obtain a secure OT protocol.

Theorem 7. Protocol ΠOT
act unconditionally securely computes the function

fOT((m0,m1), b) = (⊥,mb) with abort in the (2, n)-client/server model in the
presence of an active and static (1, t)-adversary with t ≤ (1/2 − ε)n, for any
given 0 < ε < 1/2. Moreover, ΠOT

act communicates O(logδ(n)) messages, for a
given constant δ > 1, except with negligible probability.

Proof. Without loss of generality we can assume that adversary A corrupts
T = �(12 − ε)n� parties. Indeed, if the protocol can tolerate such an adversary
then it can also tolerate any adversary corrupting t ≤ T parties.

For a given execution of ΠOT
act let S̄ denote the set of servers that would

become active if the adversary would behave semi-honestly (i.e., allow all cor-
rupted parties to play according to the protocol). Then, each server s ∈ S is
included in the set S̄ with probability p = logδ n

n independently of the other
servers. Thus, by application of the Chernoff bound we get that for any constant
1 < γ < 0:

Pr[|S̄| ≤ (1 − γ) logδ n] < e− γ2 logδ n
3 .

For γ = 4ε2 he above equation implies that with overwhelming probability:

|S̄| > (1 − 4ε2) logδ n. (4)

Now let C ⊆ S denote the set of servers who are corrupted by the (static)
adversary A. (Recall that A corrupts T = �(12 −ε)n� parties.) For each si ∈ S̄, let
Xi denote the random variable which is 1 if si ∈ C and 0 otherwise. Because the
parties become OT dealers independently of the corruptions and the adversary
corrupts T parties, X1, . . . , X|S̄| are i.i.d. random variables with Pr[Xi = 1] =

T/n. Thus, X =
∑|S̄|

i=1 Xi = |S̄ ∩C| with mean μ = |S̄|T
n . By another application

of the Chernoff bound we get that for any 0 < ε1 < 1:

Pr[|S̄ ∩ C| ≥ (1 + ε1)μ] < e− ε21T

3 . (5)

Hence, with overwhelming probability for ε1 = 2ε:

|S̄ ∩ C| < (1 + ε1)
T

n
|S̄| ≤ (1 + ε1)(

1
2

− ε)|S̄| = (
1
2

− 2ε2)|S̄|.
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Therefore, again with overwhelming probability the number h of honest par-
ties that contact each of the parties as OT dealers is:

h = |S̄ \ C| ≥
(

1
2

+ 2ε2
)

|S̄|
(4)
>

(
1
2

+ 2ε2
)

(1 − 4ε2) logδ n. (6)

However, unless the honest client aborts, he accepts at most ρ = (1 + ε2) logδ n
offers for dealers; therefore, the fraction of honest OT dealers among these ρ
dealers is

h

ρ
>

( 12 + 2ε2)(1 − 4ε2)
1 − 16ε4

=
1
2

· (1 + 4ε2)(1 − 4ε2)
1 − 16ε4

=
1
2
.

Thus, at least a 1/2 fraction of the OT vectors that an honest client receives is
private and correct, in which case the security of protocol ΠOT

act follows from the
security of the underlying OT-combiner used in the last protocol step. ��
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Abstract. A distributed computation in which nodes are connected by a par-
tial communication graph is called topology-hiding if it does not reveal infor-
mation about the graph beyond what is revealed by the output of the func-
tion. Previous results have shown that topology-hiding computation protocols
exist for graphs of constant degree and logarithmic diameter in the number
of nodes [Moran-Orlov-Richelson, TCC’15; Hirt et al., Crypto’16] as well as
for other graph families, such as cycles, trees, and low circumference graphs
[Akavia-Moran, Eurocrypt’17], but the feasibility question for general graphs was
open.

In this work we positively resolve the above open problem: we prove that
topology-hiding MPC is feasible for all graphs under the Decisional Diffie-
Hellman assumption.

Our techniques employ random-walks to generate paths covering the graph,
upon which we apply the Akavia-Moran topology-hiding broadcast for chain-
graphs (paths). To prevent topology information revealed by the random-walk,
we design multiple random-walks that, together, are locally identical to receiv-
ing at each round a message from each neighbors and sending back processed
messages in a randomly permuted order.

1 Introduction

The beautiful theory of secure multiparty computation (MPC) enables multiple par-
ties to compute an arbitrary function of their inputs without revealing anything but the
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function’s output [10,11,24]. In the original definitions and constructions of MPC, the
participants were connected by a full communication graph (a broadcast channel and/or
point-to-point channels between every pair of parties). In real-world settings, however,
the actual communication graph between parties is usually not complete, and parties
may be able to communicate directly with only a subset of the other parties. Moreover,
in some cases the graph itself is sensitive information (e.g., if you communicate directly
only with your friends in a social network).

A natural question is whether we can successfully perform a joint computation over
a partial communication graph while revealing no (or very little) information about the
graph itself. In the information-theoretic setting, in which a variant of this question was
studied by Hinkelman and Jakoby [15], the answer is mostly negative. The situation is
better in the computational setting. Moran et al. showed that topology-hiding computa-
tion is possible against static, semi-honest adversaries [21]; followed by constructions
with improved efficiency that make only black-box use of underlying primitives [16].
However, all these protocol are restricted to communication graphs with small diameter.
Specifically, these protocols address networks with diameter D = O(log n), logarithmic
in the number of nodes n (where the diameter is the maximal distance between two
nodes in the graph). Akavia and Moran [1] showed that topology hiding computation is
feasible also for large diameter networks of certain forms, most notably, cycles, trees,
and low circumference graphs.

However, there are natural network topologies not addressed by the above protocols
[1,16,21]. They include, for example, wireless and ad-hoc sensor networks, as in [8,23].
The topology in these graphs is modeled by random geometric graphs [22], where,
with high probability, the diameter and the circumference are simultaneously large [3,
9]. These qualities exclude the use of all aforementioned protocols. So, the question
remained:

Is topology hiding MPC feasible for every network topology?

1.1 Our Results

In this work we prove that topology hiding MPC is feasible for every network topol-
ogy under the Decisional Diffie-Hellman (DDH) assumption, thus positively resolving
the above open problem. The adversary is static and semi-honest as in the prior works
[1,16,21].1 Our protocol also fits a stronger definition of security than that from prior
works: instead of allowing the adversary to know who his neighbors are, he only gets
pseudonyms; importantly, an adversary cannot tell if two nodes he controls share an hon-
est neighbor. This stronger definition is elaborated on in the full version of this paper.

Theorem 1 (Topology-hiding broadcast for all network topologies – informal).
There exists a topology-hiding protocol realizing the broadcast functionality on every
network topology (under DDH assumption and provided the parties are given an upper-
bound n on the number of nodes).

The formal theorem is stated and proved in Sect. 3.3.

1 Moran et al. [21] consider also a fail-stop adversary for proving an impossibility result.
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As in [1,16,21], given a topology-hiding broadcast for a point-to-point chan-
nels network, we can execute on top of it any MPC protocol from the literature
that is designed for networks with broadcast channels; the resulting protocol remains
topology-hiding. Put together with the existence of secure MPC for all efficiently com-
putable functionalities (assuming parties have access to a broadcast channel and that
public key encryption exist) [10,11,24], we conclude that topology-hiding MPC for
all efficiently computable functionality and all networks topologies (assuming a certain
type of public key encryption exists).

1.2 High-Level Overview of Our Techniques

Our main innovation is the use of random walks on the network graph for specifying a
path, and then viewing this path as a chain-graph and employing the topology-hiding
broadcast for chains of Akavia and Moran [1].

A challenge we face is that the walk itself may reveal topology information. For
example, a party can deduce the graph commute-time from the number of rounds before
a returning visit by the walk. We therefore hide the random-walk by using multiple
simultaneous random-walks (details below). The combination of all our random-walks
obeys a simple communication structure: at every round each node receives an incoming
message from each of its neighbors, randomly permutes the messages, and sends them
back.

To give more details on our protocol, let us first recall the Akavia-Moran protocol
for chain-graphs. The Akavia-Moran protocol proceeds in two phases, a forward and
a backward phase. In the forward phase, messages are passed forward on the chain,
where each node adds its own encryption layer and computes the OR of the received
message with its bit using homomorphic multiplication (with proper re-randomizing).
In the backward phase, the messages are passed backward along the same path, where
each node deletes its encryption layer. At the end of the protocol, the starting node
receives the plaintext value for the OR of all input bits. This protocol is augmented to
run n instances simultaneously; each node initiates an execution of the protocol while
playing the role of the first node. So, by the end of the protocol, each node has the OR
of all bits, which will be equal to the broadcast bit. Intuitively, this achieves topology-
hiding because at each step, every node receives an encrypted message and public key.
An encryption of zero is indistinguishable from an encryption of 1, and so each node’s
view is indistinguishable from every other view.

We next elaborate on how we define our multiple random walks, focusing on two
viewpoints: the viewpoint of a node, and the viewpoint of a message. We use the former
to argue security, and the latter to argue correctness.

From the point of view of a node v with d neighbors, the random walks on the
forward-phase are specified by choosing a sequence of independent random permu-
tations πt : [d] → [d], where in each forward-phase round t, the node forwards mes-
sages received from neighbor i to neighbor πt(i) (after appropriate processing of the
message, as discussed above). The backward-phase follows the reverse path, sending
incoming message from neighbor j to neighbor i = π−1

t ( j), where t is the correspond-
ing round in the forward-phase. Furthermore, recall that all messages are encrypted
under semantically-secure encryption. This fixed communication pattern together with
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the semantic security of the messages content leads to the topology-hiding property of
our protocol.

From the point of view of a message, at each round of the forward-phase the mes-
sage is sent to a uniformly random neighbor. Thus, the path the message goes through is
a random-walk on the graph.2 A sufficiently long random walk covers the entire graph
with overwhelming probability. In this case, the output is the OR of the inputs bits of
all graph nodes, and correctness is guaranteed.

1.3 Related Work

Topology Hiding in Computational Settings. Figure 1 compares our results to the previ-
ous results on topology hiding computation and specifies, for each protocol, the classes
of graphs for which it is guaranteed to run in polynomial time.

The first result was a feasibility result and was the work of Moran et al. [21] from
2015. Their result was a broadcast protocol secure against static, semi-honest adver-
saries, and a protocol against failstop adversaries that do not disconnect the graph. How-
ever, their protocol is restricted to communication graphs with diameter logarithmic in
the total number of parties.

Fig. 1. Rows correspond to graph families; columns corresponds to prior works in the first two
columns and to this work in last the column. A +/− mark for graph x and work y indicates that a
topology hiding protocol is given/not-given in work y for graph x.

The main idea behind their protocol is a series of nested multiparty computations,
in which each node is replaced by a secure computation in its local neighborhood that
simulates that node. The drawback is that in order to get full security, this virtualization
needs to extend to the entire graph, but the complexity of the MPC grows exponentially
with the size of the neighborhood.

Our work is also a feasibility result, but instead builds on a protocol much more
similar to the recent Akavia-Moran paper [1], which takes a different approach. They
employ ideas from cryptographic voting literature, hiding the order of nodes in the cycle
by “mixing” encrypted inputs before decrypting them and adding layers of public keys
to the encryption at each step. In this work, we take this layer-adding approach and

2 We remark that the multiple random-walks are not independent; we take this into account in
our analysis.
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apply it to random walks over all kinds of graphs instead of deterministically figuring
out the path beforehand.

Other related works include a work by Hirt et al. [16], which describes a protocol
that acheives better efficiency than [21], but as it uses similar tactics, is still restricted
to network graphs with logarithmic diameter. Addressing a problem different from
topology-hiding, the work by Chandran et al. [7] reduces communication complexity
of secure MPC by allowing each party to communicate with a small (sublinear in the
number of parties) number of its neighbors.

Topology Hiding in Information Theoretic Settings. Hinkelmann and Jakoby [15] con-
sidered the question of topology-hiding secure computation, but focused on the infor-
mation theoretic setting. Their main result was negative: any MPC protocol in the
information-theoretic setting inherently leaks information about the network graph to
an adversary. However, they also show that the only information we need to leak is the
routing table: if we leak the routing table beforehand, then one can construct an MPC
protocol which leaks no further information.

Secure Multiparty Computation with General Interaction Patterns. Halevi et al. [13]
presented a unified framework for studying secure MPC with arbitrary restricted inter-
action patterns, generalizing models for MPC with specific restricted interaction pat-
terns [4,12,14]. Their goal is not topology hiding, however. Instead, they ask the ques-
tion of when is it possible to prevent an adversary from learning the output to a function
on several inputs. They started by observing that an adversary controlling the final play-
ers Pi, · · · , Pn in the interaction pattern can learn the output of the computed function
on several inputs because the adversary can rewind and execute the protocol on any pos-
sible party values xi, · · · , xn. This model allows complete knowledge on the underlying
interaction pattern (or as in our case, the graph).

1.4 Organization of Paper

In Sect. 2 we describe our adversarial model and introduce some notation. In Sect. 2.5
we detail the special properties we require from the encryption scheme that we use
in our cycle protocol, and show how it can be instantiated based on DDH. In Sect. 3,
we explain our protocol for topology-hiding broadcast on general graphs and prove
its completeness and security. Then, in Sect. 4, we go over a time and communication
tradeoff, and explain how we can optimize our protocol with respect to certain classes
of graphs. Finally, in Sect. 5, we conclude and discuss future work.

2 Preliminaries

2.1 Computation and Adversarial Models

We model a network by an undirected graph G = (V, E) that is not fully connected.
We consider a system with n parties denoted P1, . . . , Pn, where n is upper bounded by
poly(κ) and κ is the security parameter. We identify V with the set of parties {P1, . . . , Pn}.
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We consider a static and computationally bounded (PPT) adversary that controls
some subset of parties (any number of parties). That is, at the beginning of the protocol,
the adversary corrupts a subset of the parties and may instruct them to deviate from the
protocol according to the corruption model. Throughout this work, we consider only
semi-honest adversaries. In addition, we assume that the adversary is rushing; that is, in
each round the adversary sees the messages sent by the honest parties before sending the
messages of the corrupted parties for this round. For general MPC definitions including
in-depth descriptions of the adversarial models we consider, see [10].

2.2 Notation

In this section, we describe our common notation conventions for both graphs and for
our protocol.

Graph Notation

Let G = (V, E) be an undirected graph. For every v ∈ V , we define the neighbors of v as
N(v) = {w : (v,w) ∈ E} and will refer to the degree of v as dv = |N(v)|.
Protocol Notation

Our protocol will rely on generating many public-secret key pairs, and ciphertexts at
each round. In fact, each node will produce a public-secret key pair for each of its
neighbors at every timestep. To keep track of all these, we introduce the following
notation. Let pk(t)

i→d represent the public key created by node i to be used for neighbor

d at round t; sk(t)
i→d is the corresponding secret key. Ciphertexts are labeled similarly:

c(t)
d→i, is from neighbor d to node i.

2.3 UC Security

As in [21], we prove security in the UC model [5]. If a protocol is secure in the UC
model, it can be composed with other protocols without compromising security, so
we can use it as a subprotocol in other constructions. This is critical for constructing
topology-hiding MPC based on broadcast—broadcast is used as a sub-protocol.

A downside of the UC model is that, against general adversaries, it requires setup.
However, setup is not necessary against semi-honest adversaries that must play accord-
ing to the rules of the protocol. Thus, we get a protocol that is secure in the plain model,
without setup. For details about the UC framework, we refer the reader to [5].

2.4 Simulation-Based Topology Hiding Security

Here we will review the model for defining simulation-based topology hiding compu-
tation, as proposed by [21], in the UC framework.

The UC model usually assumes all parties can communicate directly with all other
parties. To model the restricted communication setting, [21] define the Fgraph-hybrid
model, which employs a special “graph party,” Pgraph. Figure 2 shows Fgraph’s function-
ality: at the start of the functionality, Fgraph receives the network graph from Pgraph,
and then outputs, to each party, that party’s neighbors. Then, Fgraph acts as an “ideal
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channel” for parties to communicate with their neighbors, restricting communications
to those allowed by the graph.

Since the graph structure is an input to one of the parties in the computation, the
standard security guarantees of the UC model ensure that the graph structure remains
hidden (since the only information revealed about parties’ inputs is what can be com-
puted from the output). Note that the Pgraph party serves only to specify the communi-
cation graph, and does not otherwise participate in the protocol.

Fig. 2. The functionality Fgraph.

The initialization phase of Fgraph provides local information about the graph to
every corrupted party, and so both ideal-world and real-world adversaries get access
to this information. This information is independent of the functionality we are trying
to implement, but always present. So we will isolate it in the functionality FgraphInfo

which contains only the initialization phase of Fgraph, and then, for any functionality F ,
we compose F with FgraphInfo, writing (FgraphInfo||F ) as the “composed functionality.”
Now we can define topology-hiding MPC in the UC framework:

Definition 2. We say that a protocol Π securely realizes a functionality F hiding topol-
ogy if it UC-realizes (FgraphInfo||F ) in the Fgraph-hybrid model.
This definition also captures functionalities that depend on the structure of the graph,
like shortest path or determining the length of the longest cycle.

Broadcast Functionality, FBroadcast

In accordance with this definition, we need to define an ideal functionality of broadcast,
denoted FBroadcast, shown in Fig. 3. We will prove that a simulator only with knowledge

Fig. 3. The functionality FBroadcast.
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of the output of FBroadcast and knowledge of the local topology of the adversarially
chosen nodes Q can produce a transcript to nodes in Q indistinguishable from running
our protocol.

2.5 Privately Key-Commutative and Rerandomizable Encryption

As in [1], we require a public key encryption scheme with the properties of being
homomorphic (with respect to OR in our case), privately key-commutative, and re-
randomizable. In this section we first formally define the properties we require, and
then show how they can be achieved based on the Decisional Diffie-Hellman assump-
tion.

We call an encryption scheme satisfying the latter two properties, i.e., privately key-
commutative and re-randomizable, a PKCR-enc;

Required Properties

Let KeyGen : {0, 1}∗ �→ PK × SK ,Enc : PK ×M × {0, 1}∗ �→ C,Dec : SK × C �→
M be the encryption scheme’s key generation, encryption and decryption functions,
respectively, where PK is the space of public keys, SK the space of secret keys,M the
space of plaintext messages and C the space of ciphertexts.

We will use the shorthand [m]k to denote an encryption of the message m under
public-key k. We assume that for every secret key sk ∈ SK there is associated a single
public key pk ∈ PK such that (pk, sk) are in the range of KeyGen. We slightly abuse
notation and denote the public key corresponding to sk by pk(sk).

Privately Key-Commutative

The set of public keys PK form an abelian (commutative) group. We denote the group
operation �. Given any k1, k2 ∈ PK , there exists an efficient algorithm to compute k1 �
k2. We denote the inverse of k by k−1 (i.e., k−1 � k is the identity element of the group).
Given a secret key sk, there must be an efficient algorithm to compute the inverse of its
public key (pk(sk))−1.

There exist a pair of algorithms AddLayer : C×SK �→ C and DelLayer : C×SK �→
C that satisfy:

1. For every public key k ∈ PK , every message m ∈ M and every ciphertext c = [m]k,

AddLayer (c, sk) = [m]k�pk(sk) .

2. For every public key k ∈ PK , every message m ∈ M and every ciphertext c = [m]k,

DelLayer (c, sk) = [m]k�(pk(sk))−1 .

We call this privately key-commutative since adding and deleting layers both require
knowledge of the secret key.

Note that since the group PK is commutative, adding and deleting layers can be
done in any order.

Rerandomizable

We require that there exists a ciphertexts “re-randomizing” algorithm Rand : C×PK ×
{0, 1}∗ �→ C satisfying the following:
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1. Randomization: For every message m ∈ M, every public key pk ∈ PK
and ciphertext c = [m]pk, the distributions (m, pk, c,Rand (c, pk,U∗)) and
(m, pk, c,Encpk(m;U∗)) are computationally indistinguishable.

2. Neutrality: For every ciphertext c ∈ C, every secret key sk ∈ SK and every r ∈
{0, 1}∗,

Decsk(c) = Decsk(Rand (c, pk(sk), r)).

Furthermore, we require that public-keys are “re-randomizable” in the sense that the
product k� k′ of an arbitrary public key k with a public-key k′ generated using KeyGen
is computationally indistinguishable from a fresh public-key generated by KeyGen.

Homomorphism

We require that the message space M forms a group with operation denoted ·, and
require that the encryption scheme is homomorphic with respect this operation · in
the sense that there exists an efficient algorithm hMult : C × C �→ C that, given two
ciphertexts c = [m]pk and c′ = [m′]pk, returns a ciphertext c′′ ← hMult (c, c′) s.t.
Decsk(c′′) = m · m′ (for sk the secret-key associated with public-key pk).

Notice that with this operation, we can homomorphically raise any ciphertext to any
power via repeated squaring. We will call this operation hPower.

Homomorphic OR

This feature is built up from the re-randomizing and the homomorphism features. One
of the necessary parts of our protocol for broadcast functionality is to have a homo-
morphic OR. We need this operation not to reveal if it is ORing two 1’s or one 1 at
decryption. So, following [1], first we define an encryption of 0 to be an encryption
of the identity element in M and an encryption of 1 to be an encryption of any other
element. Then, we define HomOR so that it re-randomizes encryptions of 0 and 1 by
raising ciphertexts to a random power with hPower.

function HomOR(c, c′, pk, r = (r, r′)) // r is randomness.
ĉ← hPower (c, r, pk) and ĉ′ ← hPower (c′, r′, pk)
return Rand (hMult (ĉ, ĉ′′) , pk)

end function

Claim. LetM have prime order p, where 1/p is negligible in the security parameter,
and M,M′ ∈ {0, 1} be messages with corresponding ciphertexts c and c′ under pub-
lic key pk. The distribution (c, c′, pk,M,M′,Enc(M ∨ M′, pk;U∗)) is computationally
indistinguishable from (c, c′, pk,M,M′,HomOR(c, c′, pk;U∗)).

Proof. We will go through three cases for values of M and M′: first, when M = M′ = 0;
second when M = 1 and M′ = 0; and third when M = 1 and M′ = 1. The case M = 0
and M′ = 1 is handled by the second case.

– Consider when M = M′ = 0. Note that 1M is the group element inM that encodes
0, so an encryption of 0 is represented by an encryption of the identity element,
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m = m′ = 1M, ofM. Consider c0 and c′0 both encryptions of 1M. After hPower, both
ĉ0 and ĉ′0 are still encryptions of 1M. hMult then produces an encryption of 1M·1M =
1M, and Rand makes that ciphertext indistinguishable to a fresh encryption of 1M.
We have proved our first case.

– Next, let c0 be an encryption of 0 and c′1 be an encryption of 1. In this case, 0 is

represented again by 1M, but c′1 is represented by some m′
$← M (with all but

negligible probability m′ � 1). After hPower, ĉ0 still encrypts 1M, but ĉ′1 encrypts

m̂ = m′r′ for some r′
$← Zp. hMult yeilds an encryption of m̂ and Rand makes a

ciphertext computationally indistinguishable from a fresh encryption of m̂. SinceM
has prime order p and r′

$← Zp, as long as m′ � 1, m′r is uniformly distributed over
M, and so computationally has a distribution indistinguishable to a fresh encryption
of the boolean message 1.

– Finally, let c1 and c′1 both be encryptions of 1: c1 encrypts m
$←M and c′1 encrypts

m′
$← M. We will go through the same steps to have at the end, a ciphertext com-

putationally indistinguishable3 from a fresh encryption of mr · m′r′ for r, r′
$← Zp.

Again because the order ofM is prime, mr · m′r′ is uniformly distributed over Zp,
and so the resulting ciphertext looks like a fresh encryption of 1. �

This claim means that we cannot tell how many times 1 or 0 has been OR’d together
during an or-and-forward type of protocol. This will be critical in our proof of security.

Instantiation of OR-Homomorphic PKCR-enc Under DDH

We use standard ElGamal, augmented by the additional required functions. The
KeyGen, Dec and Enc functions are the standard ElGamal functions, except that to
obtain a one-to-one mapping between public keys and secret keys, we fix the group G
and the generator g, and different public keys vary only in the element h = gx. Below, g
is always the group generator. The Rand function is also the standard rerandomization
function for ElGamal:

function Rand(c = (c1, c2), pk, r)
return (c1 · gr, pkr · c2)

end function
We use the shorthand notation of writing Rand (c, pk) when the random coins r are
chosen independently at random during the execution of Rand. We note that the dis-
tribution of public-keys outputted by KeyGen is uniform, and thus the requirement for
“public-key rerandomization” indeed holds. ElGamal public keys are already defined
over an abelian group, and the operation is efficient. For adding and removing layers,
we define:

3 In our definition of a PKCR encryption scheme, Rand is only required to be computation-
ally randomizing, which carries over in our distribution of homomorphically-OR’d cipher-
texts. However, ElGamal’s re-randomization function is distributed statistically close to a fresh
ciphertext, and so our construction will end up having HomOR be identically distributed to a
fresh encryption of the OR of the bits.
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function AddLayer(c = (c1, c2), sk)
return (c1, c2 · csk1 )

end function
function DelLayer(c = (c1, c2), sk)

return (c1, c2/csk1 )
end function

Every ciphertext [m]pk has the form (gr, pkr · m) for some element r ∈ Zord(g). So

AddLayer
(
[m]pk , sk

′) = (gr , pkr · m · gr·sk′ ) = (gr , pkr · (pk′)r · m) = (gr , (pk · pk′)r · m) = [m]pk·pk′ .

It is easy to verify that the corresponding requirement is satisfied for DelLayer as well.
ElGamal message space already defined over an abelian group with homomorphic

multiplication, specifically:

function hMult(c = (c1, c2), c′ = (c′1, c
′
2))

return c′′ = (c1 · c′1, c2 · c′2)
end function

Recalling that the input ciphertext have the form c = (gr, pkr ·m) and c′ = (gr
′
, pkr

′ ·m′)
for messages m,m′ ∈ Zord(g), it is easy to verify that decrypting the ciphertext c′′ =
(gr+r

′
, pkr+r

′ ·m ·m′) returned from hMult yields the product message Decsk(c′′) = m ·m′.
Finally, to obtain a negligible error probability in our broadcast protocols, we takeG

a prime order group of size satisfying that 1/ |G| is negligible in the security parameter κ.
With this property and valid Rand and hMult operations, we get hPower and hence
HomOR with ElGamal.

3 Topology Hiding Broadcast Protocol for General
Graphs

In this section, we describe how our protocol works and prove that it is complete and
secure.

The protocol (see Protocol 1) is composed of two phases: an aggregate (forward)
phase and a decrypt (backward) phase. In the aggregate phase messages traverse a ran-
dom walk on the graph where each of the passed-through nodes adds a fresh encryption
layer and homomorphically ORs the passed message with its bit. In the decrypt phase,
the random-walk is traced back where each node deletes the encryption layer it pre-
viously added. At the end of the backward phase, the node obtains the plaintext value
of the OR of all input bits. The protocol executes simultaneous random walks, locally
defined at each node v with d neighbors by a sequence of permutations πt : [d]→ [d] for
each round t, so that at round t of the forward phase messages received from neighbor
i are forwarded to neighbor πt(i), and at the backward phase messages received from
neighbor j are sent back to neighbor π−1

t ( j).

3.1 Proof of Completeness

The main idea of the protocol is that we take a random walk around the graph, or-ing
bits as we go, and hopefully by the time we start walking backwards along that path
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Protocol 1. Topology-hiding broadcast for general graphs. Inputs parameters: n is the
number of nodes; 2−τ the failure probability; di the degree of node i; and bi the input bit
of node i. See Sect. 2.2 for an explanation of notation.
1: procedure broadcast((n, τ, di, bi))
2: // The number of steps we take in our random walk will be T .
3: T ← τ · 8n3

4: Generate T · di key pairs: for t ∈ [T ] and d ∈ [di], generate pair (pk(t)
i→d, sk

(t)
i→d) ←

KeyGen(1κ).
5: Generate T −1 random permutations on di elements {π1, · · · , πT−1}. Let πT be the identity

permutation.
6: // Aggregate phase.
7: For all d ∈ [di], send to neighbor d the ciphertext [bi]pk(1)

i→d
and the public key pk(1)

i→d.

8: for t = 1 to T − 1 do
9: for Neighbors d ∈ [di] do

10: Wait to receive ciphertext c(t)
d→i and public key k(t)

d→i.
11: Let d′ ← πt(d).
12: Compute k(t+1)

i→d′ = k(t)
d→i � pk(t+1)

i→d′ .

13: Compute ĉ(t+1)
i→d ← AddLayer

(
c(t)
d→i, sk

(t+1)
i→d′
)

and [bi]k(t+1)
i→d′

.

14: Compute c(t+1)
i→d′ ← HomOR

(
[bi]k(t+1)

i→d′
, ĉ(t+1)

i→d′

)
.

15: Send c(t+1)
i→d′ and k(t+1)

i→d′ to neighbor d′.
16: end for
17: end for
18: Wait to receive c(T )

d→i and k(T )
d→i from each neighbor d ∈ [di].

19: Compute [bi]k(T )
d→i

and let e(T )
d→i ← HomOR

(
c(T )
d→i, [bi]k(T )

d→i

)

20: // Decrypt phase.
21: for t = T to 1 do
22: For each d ∈ [di], send e(t)

i→d′ to d′ = π−1
t (d). // Passing back.

23: for d ∈ [di] do
24: Wait to receive e(t)

d→i from neighbor d.
25: Compute d′ ← π−1

t (d).
26: e(t−1)

i→d′ ← DelLayer
(
e(t)
d→i, sk

(t)
i→d′
)
// If t = 1, DelLayer decrypts..

27: end for
28: end for
29: // Produce output bit.
30: b← ∨d∈[di] e

(0)
i→d.

31: Output b.
32: end procedure

we have reached all of the nodes. We will rely on the following definition and theorem
from Mitzenmacher and Upfal’s book (see Chap. 5) [20].

Definition 3 (Cover time). The cover time of a graph G = (V, E) is the maximum over
all vertices v ∈ V of the expected time to visit all of the nodes in the graph by a random
walk starting from v.
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Theorem 4 (Cover time bound). The cover time of any connected, undirected graph
G = (u, v) is bounded above by 4nm ≤ 4n3.

Corollary 5. LetW(u, τ) be a random variable whose value is the set of nodes covered
by a random walk starting from u and taking τ · (8n3) steps. We have

Pr
W

[W(u, τ) = V] ≥ 1 − 1
2τ
.

Proof. First, consider a random walk that takes t steps to traverse a graph. Theorem 4
tells us that we expect t ≤ 4n3, and so by a Markov bound, we have

Pr
[
t ≥ 2 · (4n3)

]
≤ 1

2

Translating this into our notation, for any node u ∈ G, Pr[W(u, 1) = V] ≥ 1
2 .

We can representW(u, τ) as a union of τ random walks, each of length 8n3:W(u1 =

u, 1) ∪W(u2, 1) ∪ · · · ∪W(uτ, 1), where ui is the node we have reached at step i · 8n3

(technically, ui is a random variable, but the specific node at which we start each walk
will not matter).W(u, τ) will succeed in covering all nodes in G if anyW(ui, 1) covers
all nodes.

So, we will bound the probability that allW(ui, 1) � V . Note that eachW(ui, 1) is
independent of all other walks except for the node it starts on, but our upper bound is
independent of the starting node. This means

Pr [W(ui, 1) � V, ∀i ∈ [τ]] =
∏

i∈[τ]
Pr [W(ui, 1) � V] ≤ 1

2τ
.

Therefore,

Pr [W(u, τ) = V] = 1 − Pr [W(u, τ) � V] ≥ 1 − Pr [W(u, 1) � V]τ ≥ 1 − 1
2τ
.

�

Theorem 6 (Completeness). At the end of Protocol 1, which takes 2 · τ · 8n3 rounds,
every node will have b =

∨
i∈[n] bi with probability at least 1 − n/2τ.

Proof. First, we will prove that by the end of our protocol, every node along the walk
OR’s its bit and the resulting bit is decrypted. Then, we will prove that with all but
probability n/2τ, every node has some walk that gets the output bit, meaning that with
high probability, b at the end of the protocol is the output bit received by each node.

So, consider a single node, u0, with bit b0. Recall that T = τ · 8n3. We will follow
one walk that starts at u0 with bit b0. In the protocol, u0’s neighbors are ordered 1
to du0 and referred to by their number. Since this ordering is arbitrary, we will let u1

identify the neighbor chosen by the protocol to send the encryption of b0 in the first
round, and, generalizing this notation, ui will identify the ith node in the walk. For the
sake of notation, pki will denote the public key generated by node ui at step i + 1 for
node ui+1 (so pki = pk(i+1)

ui→ui+1
), and ki will be the aggregate key-product at step i (so

ki = pk0 � . . . � pki).
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– On the first step, u0 encrypts b0 with pk0 into c1 and sends it and public key pk0 to
one of its neighbors, u1. We will follow c1 on its random walk through T nodes.

– At step i ∈ [T − 1], ci was just sent to ui from ui−1 and is encrypted under the
product ki−1 = pk0 � pk1 � · · · � pki−1, also sent to ui. ui computes the new public
key pk0 � · · · � pki = ki, adding its own public key to the product, encrypts bi under
ki, and re-encrypts ci under ki via AddLayer. Then, using the homomorphic OR, ui
computes ci+1 encrypted under ki. ui sends ci+1 and ki to ui+1 = π

(ui)
i (ui−1).

– At step T , node uT receives cT , which is the encryption of b0 ∨ b1 ∨ · · · bT−1 under
key pk0� · · ·� pkT−1 = kT−1. uT encrypts and then OR’s his own bit to get ciphertext
eT = HomOR(cT , [bT ]kT−1 ). uT sends eT back to uT−1.

– Now, on its way back in the decrypt phase, for each step i ∈ [T − 1], ui has just
received ei from node ui+1 encrypted under pk1 � · · · � pki = ki. ui deletes the key
layer pki to get ki−1 and then using DelLayer, removes that key from encrypting ei
to get ei−1. ui sends ei−1 and ki−1 to ui−1 = (π(ui)

i )−1(ui+1).
– Finally, node u0 receives e0 encrypted only under public key pk0 on step 1. u0 deletes

that layer pk0, revealing e0 = b0 ∨ · · · ∨ bT .

Now notice that each of these “messages” sent from every node to every neighbor
takes a random walk on the graph when viewed on their own (these are correlated
random walks when viewed as a whole, but independently, they can be analyzed as
random walks). LetWu represent some walk of the message starting at node u—even
though u starts deg(u) different walks, we will only consider one walk per node.

By Corollary 5, for each Wu, their set of traversed nodes covers the graph with
probability 1 − 1

2τ where τ = T/(8n3). A union bound yields

Pr [∃u ∈ V, Wu � V] ≤
∑

u∈V
Pr [Wu � V] ≤ n · 1

2n
≤ n

2τ
.

This means that all walks cover the graph with at least the following probability

Pr [∀u ∈ V, Wu = V] ≥ 1 − n
2τ
,

and every walk will traverse the entire graph with all but negligible probability in our
parameter τ. �

3.2 Proof of Soundness

We now turn to analyzing the security of our protocol, with respect to the topology-
hiding security from Definition 2.

Theorem 7. If the underlying encryption OR-homomorhpic PKCR scheme is CPA-
secure, then Protocol 1 realizes the functionality of FBroadcast in a topology-hiding way
against a statically corrupting, semi-honest adversary.

Proof. First, we will describe an ideal-world simulator S: S lives in a world where all
honest parties are dummy parties and has no information on the topology of the graph
other than what a potential adversary knows. More formally, S works as follows
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1. Let Q be the set of parties corrupted by A. A is a static adversary, so Q and the
inputs of parties in Q must be fixed by the start of the protocol.

2. S sends the input for all parties in Q to the broadcast function Fbroadcast. Fbroadcast
outputs bit bout and sends it to S. Note S only requires knowledge of Q’s inputs and
the output of FBroadcast.

3. S gets the local neighborhood for each P ∈ Q: S knows how many neighbors each
P has and if that neighbor is also in Q, but doesn’t need to know anything else about
the topology4.

4. Consider every party P ∈ Q suchN(P) � Q. S will need to simulate these neighbors
not in Q.

– Simulating messages from honest parties in Aggregate phase. For every Q ∈
N(P) and Q � Q, S simulates Q as follows. At the start of the algorithm, S
creates T key pairs:

(pk(1)
Q→P, sk

(1)
Q→P), · · · , (pk(T )

Q→P, sk
(T )
Q→P)← Gen(1κ)

At step t = i in the for loop on line 8, S simulates Q sending a message to P by
sending ([0]pk(i)

Q→P
, pk(i)

Q→P). S receives the pair (c(i)
P→Q, k

(i)
P→Q) from P at this step.

– Simulating messages from honest parties in the Decrypt phase. Again, for
every P ∈ Q, Q ∈ N(P) and Q � Q, S simulates Q. At t = i in the for loop on
line 21, S sends [bout]k(i)

Q→P
to P. S receives e(i)

P→Q from P.

We will prove that any PPT adversary cannot distinguish whether he is interacting
with the simulator S or with the real network except with negligible probability.

1. Hybrid 1. S simulates the real world exactly and has information on the entire topol-
ogy of the graph, each party’s input, and can simulate each random walk identically
to how the walk would take place in the real world (Fig. 4, top).

2. Hybrid 2. S replaces the real keys with simulated public keys, but still knows every-
thing about the graph (as in Hybrid 1). Formally, for every honest Q that is a neighbor
to P ∈ Q, S generates

(pk(1)
Q→P, sk

(1)
Q→P), · · · , (pk(T )

Q→P, sk
(T )
Q→P)← Gen(1κ)

and instead of adding a layer to the encrypted [b]pk∗ that P has at step t, as done in
line 12 and 13, S computes b′ ← bQ∨b and sends [b′]pk(t)

Q→P
to P during the aggregate

phase; it is the same message encrypted in Hybrid 1, but it is now encrypted under
an unlayered, fresh public key. In the decrypt phase, each honest Q neighbor to P
will get back the bit we get from the sequence of OR’s encrypted under that new
public key as well; the way all nodes in Q peel off layers of keys guarantees this.

3. Hybrid 3. S now simulates the ideal functionality during the aggregate phase, send-
ing encryptions of 0. Formally, during the aggregate phase, every honest Q that is

4 Recall that from Definition 2, FgraphInfo reveals if nodes in Q have neighbors in common, how-
ever all S needs to know is which neighbors are also in Q; S does not use all of the available
graph information (in the full version of the paper, we describe a stronger definition capturing
this quality).
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Fig. 4. An example of how the simulator works. The top shows how the graph normally looks. The
bottom shows the graph topology that the simulator generates. Black nodes are nodes inQ. Notice
that the simulator doesn’t require knowing if nodes in Q have a common neighbor—neighbors
can identify themselves with pseudonyms or edge-labels.

a neighbor to P ∈ Q S sends [0]pk(t)
Q→P

to P instead of sending [b′]pk(t)
Q→P

. Nothing

changes during the decrypt phase; the simulator still sends the resulting bit from
each walk back and is not yet simulating the ideal functionality.

4. Hybrid 4. S finally simulates the ideal functionality at the during the decrypt phase,
sending encryptions of bout, the output of FBroadcast, under the simulated public keys.
This is instead of simulating random walks through the graph and ORing only spe-
cific bits together. Notice that this hybrid is equivalent to our original description of
S and requires no knowledge of other parties’ values or of the graph topology other
than local information about Q (as specified by the FgraphInfo functionality).

Now, let’s say we have an adversary A that can distinguish between the real world
and the simulator. This means A can distinguish between Hybrids 1 and 4. So, A can
distinguish, with non-negligible probability, between two consecutive hybrids. We will
argue that given the security of our public key scheme and the high probability of suc-
cess of the algorithm, that this should be impossible.

1. First, we claim no adversary can distinguish between Hybrid 1 and 2. The difference
between these Hybrids is distinguishing between AddLayer and computing a fresh
encryption key. In Hybrid 1, we compute a public key sequence, multiplying pub-
lic key k by a freshly generated public key. In Hybrid 2, we just use a fresh public
key. Recall that the public keys in our scheme form a group. Since the key sequence
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k � pknew has a new public key that has not been included anywhere else in the
transcript, k � pknew can be thought of as choosing a new public key indepen-
dently at random from k. This is the same distribution as just choosing a new public
key: {k � pknew} ≡ {pknew}. Therefore, any tuple of multiplied keys and fresh keys
are indistinguishable from each other. So, no adversary A can distinguish between
Hybrids 1 and 2.

2. Now we will show that no PPT adversary can distinguish between Hybrids 2 and 3.
The only difference between these two hybrids is that A sees encryptions of the
broadcast bit as it is being transmitted as opposed to seeing only encryptions of 0
from the simulator. Note that the simulator chooses a key independent of any key
chosen by parties in Q in each of the aggregate rounds, and so the bit is encrypted
under a key that A does not know. This means that if A can distinguish between
these two hybrids, thenA can break semantic security of the scheme, distinguishing
between encryptions of 0 and 1.

3. For this last case, we will show that there should not exist a PPT adversary A that
can distinguish between Hybrids 3 and 4.
There are two differences between Hybrids 3 and 4. The first is that, during the
decrypt phase, we send bout =

∨
i∈[n] bi, the OR of all of the node’s bits, instead of

bW =
∨

u∈W bu, the OR of all node’s bits in a specific length-T walk.
Corollary 5 tells us that a walkW taken during the course of the algorithm covers
the graph with probability 1− 1/2τ. There are two walks starting at each edge in the
graph, which is at most 2n2 walks. So, the probability that bout � bW at most 2n2/2τ,
which is negligible in τ, and therefore is undetectable.
The second difference is that our simulated encryption of bout is generated by mak-
ing a fresh encryption of bout. But, if bout = bW (which it will with overwhelm-
ing probability), by the claim in Sect. 2.5, the encryption generated by ORing
many times in the graph is computationally indistinguishable to a fresh encryp-
tion of bout. Therefore, computationally, it is impossible to distinguish between
Hybrids 3 and 4. �

3.3 Proof of Main Theorem

In this section, we put the pieces together: we formally state and prove Theorem 1 using
Protocol 1.

Theorem 8 (Topology-hiding broadcast for all network topologies). If there exists
an OR-homomorphic PKCR, then for any network topology graph G on n nodes, there
exists a polynomial-time protocol Π that is a topology-hiding realization of broadcast
functionality Fbroadcast.
Proof. Will will show that Protocol 1 is the topology-hiding realization of Fbroadcast.
Since we assume existence of an OR-homomorphic PKCR, we are able to run our
protocol. The rest of this proof is simply combining the results of Theorems 6 and 7.
Now, for a security parameter κ, we let τ = κ + log(n).

To show Protocol 1 is complete, Theorem 6 states that for our parameter τ, Proto-
col 1 outputs the correct bit for every node with probability at least 1− n/2τ = 1− 1/2κ.
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This means, our protocol is correct with overwhelming probability with respect to the
security parameter κ.

To show our protocol is sound, Theorem 7 states that for our input parameter τ, an
adversary can distinguish a simulated transcript from a real transcript with probability
negligible in τ. Since τ is strictly greater than κ, our protocol is secure with respect to
κ as well. Therefore, Protocol 1 is sound against all PPT adversaries: they have only a
negligible chance with respect to κ of distinguishing the simulation versus a real instan-
tiation of the protocol. �

Corollary 9. Under the DDH assumption, there exists polynomial-time executable,
topology-hiding broadcast for any graph G.

Proof. ElGamal, which is secure under the DDH assumption, is an OR-homomorphic
PKCR by Sect. 2.5. So, applying Theorem 8, we get that there exists a protocol which
is a topology-hiding realization of Fbroadcast. �

Because we now have topology-hiding broadcast on any graph, we can use the exis-
tence of secure MPC for all efficiently computable functionalities F , we get topology-
hiding MPC for all efficiently computable F (assuming we have an OR-homomorphic
PKCR, or DDH).

4 Complexity and Optimizations

In this section we give an upper bound on the communication complexity of Proto-
col 1 and discuss optimizations for graph families where tighter cover time bounds are
known.

In the following n,m are upper bounds on the number of nodes and edges; B an
upper bound on the cover time; and τ an input parameter controlling the probability of
incorrect output to be at most n/2τ. We point out that while in Protocol 1 we set the
number of rounds to be T = 2τB for B = 4n3; our completeness and soundness proofs
hold for every upper bound B on the cover time.

4.1 Communication Complexity

We show that the communication complexity is Θ(Bτm) group elements, where B is an
upper bound on the cover time of the graph (for our protocol on general graphs, we have
B = 4n3). We measure the communication complexity in terms of the overall number of
group elements transmitted throughout the protocol (where the group elements are for
the ciphertext and public-key pairs of the underlying DDH-based encryption scheme,
and their size is polynomial in the security parameter).

Claim (Communication complexity). The communication complexity of Protocol 1
with T = 2τB is Θ(Bτm) group elements.

Proof. The random-walks in Protocol 1 are of length T = 2Bτ, yielding 2T total rounds
of communication including both the forward and backwards phases. At each round,
every node v sends out deg(v) messages. Summing over all v ∈ V , all of the nodes
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communicate 2m messages every round – one for each direction of each edge (for m
denoting the number of edges in the network graph). By the end of the protocol, the
total communication is 4Tm = Θ(Bτm). �

We conclude the communication complexity of Protocol 1 on input n, τ is Θ(τn5)
group elements.

Corollary 10. On input n, τ, the communication complexity of Protocol 1 is Θ(τn5)
group elements.

Proof. For a graph with at most n nodes, B = 4n3 is an upper bound on the cover
time (see Theorem 4), and m = n2 is an upper bound on the number of edges.
Assigning those B,m in the bound from Sect. 4.1, the proof follows: Θ(Bτm) =
Θ(τ · n3 · n2) = Θ(τn5). �

4.2 Better Bounds on Cover Time for Some Graphs

Now that we have seen how the cover time bound B controls both the communication
and the round complexity, we will look at how to get a better bound than O(n3).

Cover time has been studied for various kinds of graphs, and so if we leak the kind
of graph we are in (e.g. expanders), then we can use a better upper bound on the cover
time, shown in Fig. 5.

For example on expander graphs (arising for example in natural applications on
random regular graphs), it is known that the cover times CG = O(n log n), much less
than O(n3) [6]. This means that for expanders, we can run in CG = O(n log n) round
complexity, and O(CGτm) = O(τmn log n) communication complexity. Even assigning
the worst case bound m ≤ n2, we get round and communication complexity O(n log n)
and O(τn3 log n) respectively—much better than the general case that has O(τn5) com-
munication complexity.

Fig. 5. Cover times for specific graphs.

5 Conclusion and Future Work

This work showed that topology-hiding computation is feasible for every network topol-
ogy (in the computational setting, assuming DDH), using random walks. This resolu-
tion completes a line of works on the feasibility of topology hiding computation against
a static semi-honest adversary [1,16,21]. Yet, it leaves open the feasibility question
against a malicious or adaptive adversary. Another intriguing question is whether our
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random walks could be derandomized, perhaps using universal-traversal [2,19] that
is a deterministic walk guaranteed to cover all d-regular n-nodes graph, with explicit
constructions known under some restrictions such as consistent labeling [17].
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Combinatorics, Paul Erdős is Eighty, vol. 2, pp. 353–398. János Bolyai Mathematical Soci-
ety, Budapest (1996)

20. Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

21. Moran, T., Orlov, I., Richelson, S.: Topology-hiding computation. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9014, pp. 169–198. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46494-6 8

22. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003). no. 5
23. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43(5), 51–58

(2000)
24. Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual

Symposium on Foundations of Computer Science, SFCS 1986, pp. 162–167. IEEE Computer
Society, Washington, D.C. (1986)

http://dx.doi.org/10.1007/978-3-662-53008-5_12
http://dx.doi.org/10.1007/978-3-662-46494-6_8
http://dx.doi.org/10.1007/978-3-662-46494-6_8


A New Approach to Round-Optimal Secure
Multiparty Computation

Prabhanjan Ananth1(B), Arka Rai Choudhuri2, and Abhishek Jain2

1 University of California, Los Angeles, USA
prabhanjan@cs.ucla.edu

2 Johns Hopkins University, Baltimore, USA
{achoud,abhishek}@cs.jhu.edu

Abstract. We present a new approach towards constructing round-
optimal secure multiparty computation (MPC) protocols against mali-
cious adversaries without trusted setup assumptions. Our approach
builds on ideas previously developed in the context of covert multiparty
computation [Chandran et al., FOCS’07] even though we do not seek
covert security. Using our new approach, we obtain the following results:

– A five round MPC protocol based on the Decisional Diffie-Hellman
(DDH) assumption.

– A four round MPC protocol based on one-way permutations and
sub-exponentially secure DDH. This result is optimal in the number
of rounds.

Previously, no four-round MPC protocol for general functions was known
and five-round protocols were only known based on indistinguishabil-
ity obfuscation (and some additional assumptions) [Garg et al., EURO-
CRYPT’16].

1 Introduction

The notion of secure multiparty computation (MPC) [16,42] is fundamental in
cryptography. Informally speaking, an MPC protocol allows mutually distrusting
parties to jointly evaluate a function on their private inputs in such a manner
that the protocol execution does not leak anything beyond the output of the
function.

A fundamental measure of efficiency in MPC is round complexity, i.e., the
number of rounds of communication between the parties. Protocols with smaller
round complexity are more desirable so as to minimize the effect of network
latency, which in turn decreases the time complexity of the protocol. Indeed,
the round complexity of MPC has been extensively studied over the last three
decades.

In this work, we study round-optimal MPC against malicious adversaries
who may corrupt an arbitrary subset of parties, in the plain model without any
trusted setup assumptions. We consider the traditional simultaneous message
model for MPC, where in each round of the protocol, each party simultaneously
broadcasts a message to the other parties.
c© International Association for Cryptologic Research 2017
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A lower bound for this setting was established last year by Garg et al. [14]
who proved that three rounds are insufficient for coin-tossing w.r.t. black-box
simulation. (Their work builds on [26] who proved the necessity of five rounds for
coin-tossing in the unidirectional message model.) In the positive direction, sev-
eral constant-round MPC protocols were constructed in a long sequence of works,
based on a variety of assumptions and techniques (see, e.g., [18,27,34,35,41]).
Garg et al. [14] established an upper bound on the exact round complexity of
MPC by constructing a five round protocol based on indistinguishability obfus-
cation [4,12] and some additional assumptions.1 Their work constitutes the state
of the art on this subject.

Our Goals. Presently, no constructions of indistinguishability obfuscation are
known from standard assumptions. This motivates the following important ques-
tion:

Does there exist a five round maliciously-secure MPC protocol for general
functions based on standard polynomial-time assumptions?

Furthermore, given the gap between the lower bound (three rounds) and the
upper bound (five rounds) established by [14], we ask whether their upper bound
is tight:

Does there exist a four round maliciously-secure MPC protocol for general
functions?

In this work, we resolve both of these questions in the affirmative.

The Main Barrier. We highlight the main conceptual barrier towards achieving
our goals. Garg et al. [14] follow a natural two-step approach to obtain their
positive results: in the first step, they construct a four round multiparty coin-
tossing protocol. In the next step, they use their coin-tossing protocol to replace
the common random string (CRS) in a two-round MPC protocol in the CRS
model [11,31].

We note, however, that this approach, in general, cannot do better than five
rounds. Indeed, since at least one of the rounds of the two-round MPC must
depend upon the CRS, we can only hope to parallelize its first round with the
coin-tossing protocol. Since coin-tossing requires four rounds, this only yields a
five round protocol at best.

A New Approach. In this work, we present a new approach towards con-
structing round-optimal MPC protocols in the plain model. At a high level,
our approach implements the classical GMW methodology [16] for constructing
maliciously-secure MPC protocols, with a crucial twist, to minimize the number
of rounds. This approach is inspired by the beautiful work of Chandran et al. [8]
for constructing covert multiparty computation protocols [8,20,40].

1 Garg et al. also construct a four-round protocol for the coin-tossing functionality. In
this work, we are interested in MPC for general functions.
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Recall that the GMW compiler transforms a semi-honest MPC protocol into
a maliciously secure one by requiring the parties to prove (using zero-knowledge
proofs [17]) that each message in the semi-honest protocol was computed “hon-
estly.” Towards our goal of minimizing round complexity, we cannot afford to
prove honest behavior with every round of semi-honest MPC. Therefore, in our
approach, the parties prove honest behavior only once.

At first, such an approach may sound completely absurd. If each party is only
required to give a single proof of honest behavior, then a malicious adversary
may choose to cheat in the first few rounds of the semi-honest MPC protocol.
By the time the proof is completed and the honest parties are able to detect
cheating, it may already be “too late.” Indeed, the opportunity to cheat in even
a single round may be sufficient for a malicious adversary to completely break
the security of a semi-honest protocol. Therefore, it is not at all clear why such
an approach can be implemented in a secure manner.

In order to tackle this problem, we design a “special-purpose” semi-honest
MPC protocol that remains partially immune to malicious behavior before the
last round of the protocol. Specifically, in such a protocol, an adversary can influ-
ence the protocol outcome but not learn any private information by behaving
maliciously before the last round. We then “shield” the last round from being
revealed to the adversary until it has proven honest behavior for all of the preced-
ing rounds. A single proof suffices to accomplish this task. By parallelizing this
proof with the semi-honest MPC, we are able to minimize the round complexity.

We note that the above idea of delaying the proof of honest behavior to the
end of the computation was first developed in [8]. While they developed this
technique to achieve covert security (namely, hiding protocol participation from
other players), we use it in our setting to minimize round complexity.

1.1 Our Results

We present a new approach for constructing round-efficient MPC protocols that
are secure against malicious adversaries in the plain model. Using this approach,
we are able to achieve both of our aforementioned goals.

I. Robust Semi-honest MPC. As a first step towards obtaining our results
for maliciously-secure MPC, we construct a four round robust semi-honest MPC
protocol that remains partially immune to malicious behavior. In this protocol,
at the end of the first three rounds of computation, each party receives a secret
share of the function output. In the last round, the parties simply exchange their
shares to reconstruct the output. The key security property of this protocol is
that if the adversary cheats in the first three rounds, then it can only influence
the function output, but not learn any private information.

We construct such an MPC scheme for general functions assuming the exis-
tence of low-depth pseudorandom generators (PRGs) and a two-round “covert”
oblivious transfer (OT) protocol [40].2 Both of these primitives can be instanti-
ated from the Decisional Diffie-Hellman (DDH) assumption.
2 We use low-depth PRGs to obtain degree-three randomizing polynomials for general

functions [2].
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Theorem 1. Assuming DDH, there exists a four round robust semi-honest
MPC protocol for general functions.

The above result may be of independent interest.

II. Maliciously-secure MPC. Using Theorem 1, we next construct
maliciously-secure MPC protocols in the plain model.

Our first result is a five round MPC protocol based on any four-round robust
semi-honest MPC, injective one-way functions and collision-resistant hash func-
tions (CRHFs). Since injective one-way functions and CRHFs can be built from
Discrete Log, we obtain the following result:

Theorem 2 (Five Rounds). Assuming DDH, there exists a five round
maliciously-secure MPC protocol for computing general functions.

We next modify our five round protocol to obtain a four round protocol,
albeit using sub-exponential hardness. The security of our construction uses
complexity leveraging between multiple primitives.

Theorem 3 (Four Rounds). Assuming one-way permutations and sub-
exponentially secure DDH, there exists a four round maliciously-secure MPC
protocol for computing general functions.

1.2 Our Techniques

As discussed earlier, the approach of Garg et al. [14] for constructing maliciously-
secure MPC protocols is unsuitable for achieving our goals. Therefore, we develop
a new approach for constructing round-efficient MPC against malicious adver-
saries.

At a high-level, our approach implements the GMW paradigm for construct-
ing maliciously-secure MPC protocols, with a crucial twist. Recall that the GMW
paradigm transforms a semi-honest MPC protocol into a maliciously secure one
using the following three steps: (1) first, the parties commit to their inputs and
random tapes. (2) Next, the parties perform coin-tossing to establish an unbiased
random tape for each party. (3) Finally, the parties run the semi-honest MPC
protocol where along with every message, each party also gives zero-knowledge
proof of “honest” behavior consistent with the committed input and random
tape.

Both steps (2) and (3) above introduce additional rounds of interaction, and
constitute the main bottleneck towards constructing round-optimal MPC.

Main Ideas. Towards this, we develop two key modifications to the GMW
compiler:

1. “One-shot” proof: Instead of requiring the parties to give a proof of honest
behavior in each round of the underlying semi-honest protocol, we use a
“delayed verification” technique where the parties prove honest behavior only
once, towards the end of the protocol. As we explain below, this allows us to
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limit the overhead of additional rounds introduced by zero-knowledge proofs
in the GMW compiler.

The idea of delayed verification was previously developed in the work of
Chandran et. al. [8]. Interestingly, while they used this technique to achieve
security in the setting of covert computation [8,40], we use this technique to
minimize the round complexity of our protocol.

2. No coin tossing: Second, we eliminate the coin-tossing step (i.e., step 2).
Note that by removing coin-tossing, we implicitly allow the adversarial parties
to potentially use “bad” randomness in the protocol. To ensure security in
this scenario, we will use a special semi-honest MPC protocol that is secure
against bad randomness. This idea has previously been used in many works
(see, e.g., [3,31]).

We now elaborate on the first step, which constitutes the conceptual core of
our work. We consider semi-honest MPC protocols with a specific structure con-
sisting of two phases: (a) Computation phase: in the first phase of the protocol,
the parties compute the function such that each party obtains a secret-share of
the output. (b) Output phase: In the second phase, the parties exchange their
output shares with each other to compute the final output. This phase consists
of only one round and is deterministic. Note that standard MPC protocols such
as [16] follow this structure.

At a high-level, we implement our delayed verification strategy as follows:
the parties first run the computation phase of the semi-honest protocol “as is”
without giving any proofs. At the end of this phase, each party gives a single
proof that it behaved honestly throughout the computation phase (using the
committed input and random tape). If all the proofs verify, then the parties
execute the output phase.

Right away, one may notice a glaring problem in the above approach. If
the computation phase is executed without any proof of honest behavior, the
adversary may behave maliciously in this phase and potentially learn the honest
party inputs even before the output phase begins! Indeed, standard semi-honest
MPC protocols do not guarantee security in such a setting.

To combat this problem, we develop a special purpose semi-honest MPC pro-
tocol that remains “partially immune” to malicious behavior. Specifically, such
a protocol maintains privacy against malicious adversaries until the end of the
computation phase. However, output correctness is not guaranteed if the adver-
sary behaved maliciously in the computation phase. We refer to such an MPC
protocol as robust semi-honest MPC. Later, we describe a four-round construc-
tion of robust semi-honest MPC where the first three rounds correspond to the
computation phase and the last round constitutes the output phase.

Note that the robustness property as described above perfectly suits our
requirements because in our compiled protocol, the output phase is executed
only after each party has proven that it behaved honestly during the computation
phase. This ensures full security of our compiled protocol.

A New Template for Malicious MPC. Putting the above ideas together,
we obtain the following new template for maliciously-secure MPC:
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– First, each party commits to its input and randomness using both a three-
round extractable commitment scheme3, and a non-interactive commitment
scheme. In parallel, the parties also execute the computation phase of a four-
round robust semi-honest MPC.

– Next, each party proves to every other party that it behaved honestly during
the first three rounds.

– Finally, the parties execute the output phase of the robust semi-honest MPC
and once again prove that their message is honestly computed.

In order to obtain a five round protocol from this template, we need to
parallelize the proofs with the other protocol messages. For this purpose, we use
delayed-input proofs [29] where the instance is only required in the last round.4

In particular, we use four-round delayed input zero-knowledge (ZK) proofs whose
first three messages are executed in parallel with the first three rounds of the
robust semi-honest MPC. This yields us a five round protocol.

We remark that during simulation, our simulator is able to extract the adver-
sary’s input only at the end of the third round. This means that we need to sim-
ulate the first three rounds of the robust semi-honest MPC without knowledge
of the adversary’s input (or the function output). Our robust semi-honest MPC
satisfies this property; namely, the simulator for our robust semi-honest MPC
needs the adversary’s input and randomness (and the function output) only to
simulate the output phase.

Four Rounds: Main Ideas. We next turn to the problem of constructing
four-round MPC. At first, it is not clear how to obtain a four round protocol
using the above template. Indeed, as argued earlier, we cannot afford to execute
the output phase without verifying that the parties behaved honestly during
the computation phase. In the above template, the output phase is executed
after this verification is completed. Since three-round zero-knowledge proofs with
polynomial-time simulation are not known presently, the verification process in
the above protocol requires four rounds. Therefore, it may seem that that we
are limited to a five round protocol.

Towards that, we note that our robust semi-honest MPC (described later)
satisfies the following property: in order to simulate the view of the adversary
(w.r.t. the correct output), the simulator only needs to “cheat” in the output
phase (i.e., the last round). In particular, the simulation of the computation
phase can be done “honestly” using random inputs for the honest parties. In this
case, we do not need full-fledged ZK proofs to establish honest behavior in the
computation phase; instead, we only need strong witness indistinguishable (WI)
proofs. Recall that in a strong WI proof system, for any two indistinguishable
instance distributions D1 and D2, a proof for x1 ← D1 using a witness w1 is

3 We use a variant of the extractable commitment scheme in [38] for this purpose.
This variant has been used in many prior works such as [13,19,21] because it is
“rewinding secure” – a property that is used in the security proofs.

4 Note that the witness for these proofs corresponds to the adversary’s input and
random tape which is already fixed in the first round.
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indistinguishable from a proof for x2 ← D2 using a witness w2. This suffices
for us because using strong WI, we can switch from an honest execution of the
computation phase using the real inputs of the honest parties to another honest
execution of the computation phase using random inputs for the honest parties.

Recently, Jain et al. [25] constructed three-round delayed-input strong WI
proofs of knowledge from the DDH assumption. However, their proof system
only guarantees strong WI property if the entire statement is chosen by the
prover in the last round. In our case, this is unfortunately not true, and hence
we cannot use their construction. Therefore, we take a different route, albeit at
the cost of sub-exponential hardness assumptions. Specifically, we observe that
by relying upon sub-exponential hardness, we can easily construct a three-round
(delayed-input) strong WI argument by combining any three-round (delayed-
input) WI proof of knowledge with a one or two-message “trapdoor phase” in
our simultaneous message setting. For example, let f be a one-way permutation.
The trapdoor phase can be implemented by having the verifier send y = f(x)
for a random x in parallel with the first prover message. The statement of the
WI proof of knowledge is changed to: either the original statement is true or the
prover knows x.

Now, by running in exponential time in the hybrids, we can break the one-
way permutation to recover x and then prove knowledge of x. This allows us to
switch from honest execution of the computation phase using the real inputs of
the honest parties to another honest execution using random inputs. After this
switch, we can go back to proving the honest statement which can be done in
polynomial time. This ensures that our final simulator is also polynomial time.

Handling Non-malleability Issues. So far, we ignored non-malleability
related issues in our discussion. However, as noted in many prior works, zero-
knowledge proofs with standard soundness guarantee do not suffice in the setting
of constant-round MPC. Indeed, since proofs are being executed in parallel, we
need to ensure that an adversary’s proofs remain sound even when the honest
party’s proofs are being simulated [39].

We handle such malleability issues by using the techniques developed in a
large body of prior works. In our five round MPC protocol, we use a slight
variant of the four-round non-malleable zero-knowledge (NMZK) argument of
[9] to ensure that adversary’s proofs remain sound even during simulation.5 We
make non-black-box use of their protocol in our security proof. More specifically,
following prior works such as [5,13,19,21], we establish a “soundness lemma” to
ensure that the adversary is behaving honestly across the hybrids. We use the
extractability property of the non-malleable commitment used inside the non-
malleable zero-knowledge argument to prove this property.

In our four round protocol, we use the above NMZK to prove honest behavior
in the output phase. In order to prove honest behavior in the computation phase,
we use a slightly modified version of the strong WI argument system described

5 We also use the fact that argument system of [9] allows for simulating multiple proofs
executed in parallel.
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above which additionally uses either a three-round [22] or two-round [28] non-
malleable commitment scheme with extractability to achieve the desired non-
malleability properties. Unlike the five round construction, here, we rely upon
complexity leveraging in several of the hybrids to argue the “soundness lemma”
as well as to tackle some delicate rewinding-related issues that are commonplace
in such proofs.6 We refer the reader to the technical sections for details.

Robust Semi-honest MPC. We now briefly describe the high-level ideas in
our four-round construction of robust semi-honest MPC for general functionali-
ties. Towards this, we note that it suffices to achieve a simpler goal of construct-
ing robust semi-honest MPC for a restricted class of functionalities, namely,
for computing randomized encodings.7 That is, in order to construct a robust
MPC for a n-party functionality F , it suffices to construct a robust MPC for a
n-functionality Frnd that takes as input (x1, r1; · · · ;xn, rn) and outputs a ran-
domized encoding of F (x1, . . . , xn) using randomness r1⊕· · ·⊕rn. This is because
all the parties can jointly execute the protocol for Frnd to obtain the randomized
encoding. Each party can then individually execute the decoding algorithm of
the randomized encoding to recover the output F (x1, . . . , xn). Note that this
transformation preserves round complexity.

To construct a robust semi-honest n-party protocol for Frnd, we consider a
specific type of randomized encoding defined in [2]. In particular, they construct
a degree 3 randomizing polynomials8 for arbitrary functionalities based on low-
depth pseudorandom generators. In their construction, every output bit of the
encoding can be computed by a degree 3 polynomial on the input and the ran-
domness. Hence, we further break down the goal of constructing a protocol for
Frnd into the following steps:

– Step 1: Construct a robust semi-honest MPC 3-party protocol for computing
degree 3 terms. In particular, at the end of the protocol, every party who
participated in the protocol get a secret share x1x2x3, where xq is the qth

party’s input for q ∈ {1, 2, 3}. The randomness for the secret sharing comes
from the parties in the protocol.

– Step 2: Using Step 1, construct a robust semi-honest MPC protocol to com-
pute degree 3 polynomials.

– Step 3: Using Step 2, construct a robust semi-honest MPC protocol for Frnd.

Steps 2 and 3 can be achieved using standard transformations and these transfor-
mations are round preserving. Thus, it suffices to achieve Step 1 in four rounds.

6 We believe that some of the use of complexity leveraging in our hybrids can be
avoided by modifications to our protocol. We leave further exploration of this direc-
tion for subsequent work.

7 A randomized encoding of function f and input x is such that, the output f(x) can
be recovered from this encoding and at the same time, this encoding should not leak
any information about either f or x.

8 The terms randomized encodings and randomizing polynomials are interchangeably
used.
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Suppose P1, P2 and P3 participate in the protocol. Roughly, the protocol pro-
ceeds as follows: P1 and P2 perform a two message covert OT protocol to receive
a share of x1x2. Then, P1 and P3 perform a two message OT protocol to receive a
share of x1x2x3. We need to do more work to ensure that at the end, all of them
have shares of x1x2x3. Further, the robustness guarantee is argued using the
covert security of the OT protocol. We refer the reader to the technical sections
for more details.

1.3 Concurrent Work

In a concurrent and independent work, Brakerski et al. [7] construct a
maliciously-secure 4-round MPC protocol based on the sub-exponential hardness
of the Learning with Errors (LWE) problem and on the adaptive commitments
of [33]. Their approach is very different from ours, most notably in the initial
step, in that they construct and use a 3-round protocol against semi-malicious
adversaries from LWE, while we construct and use a robust semi-honest MPC
protocol from DDH.

1.4 Related Work

The study of constant-round protocols for MPC was initiated by Beaver et al.
[6]. Their constructed constant-round MPC protocols in the presence of honest
majority. Subsequently, a long sequence of works constructed constant-round
MPC protocols against dishonest majority based on a variety of assumptions
and techniques (see, e.g., [18,27,34,35,41]). Very recently, Garg et al. [14] con-
structed five round MPC using indistinguishability obfuscation and three-round
parallel non-malleable commitments. They also construct a six-round MPC pro-
tocol using learning with errors (LWE) assumption and three-round parallel
non-malleable commitments. All of these results are in the plain model where
no trusted setup assumptions are available.

Asharov et al. [3] constructed three round MPC protocols in the CRS model.
Subsequently, two-round MPC protocols in the CRS model were constructed by
Garg et al. [11] using indistinguishability obfuscation, and by Mukherjee and
Wichs [31] using LWE assumption.

1.5 Full Version

Due to space constraints, much of the details of the security proofs for our
constructions are omitted from this manuscript. The full version of the paper is
available at [1].

2 Definitions

We denote n to be the security parameter. Consider two distributions D0 and
D1. We denote D0 ≈c D1 if D0 and D1 are computationally indistinguishable.
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2.1 Oblivious Transfer

We recall the notion of oblivious transfer [10,37] below. We require that the obliv-
ious transfer protocol satisfies covert security [8,20,40]. Intuitively, we require
that the receiver’s messages are computationally indistinguishable from a uni-
form distribution to a malicious sender. Similarly, we require that the sender’s
messages are computationally indistinguishable from a uniform distribution to
a malicious receiver.

Definition 1 (Covert Oblivious Transfer). A 1-out-of-2 oblivious transfer
(OT) protocol OT is a two party protocol between a sender and a receiver. A
sender has two input bits (b0, b1) and the receiver has a choice bit c. At the end
of the protocol, the receiver receives an output bit b′. We denote this process by
b′ ← 〈Sen(b0, b1),Rec(c)〉.

We require that an OT protocol satisfies the following properties:

– Correctness: For every b0, b1, c ∈ {0, 1}, we have:

Pr[bc ← 〈Sen(b0, b1),Rec(c)〉] = 1

– Covert security against adversarial senders: For all PPT senders Sen∗,
we require that the honest receiver’s messages are computationally indistin-
guishable from uniform distribution.

– Covert security against adversarial receivers: Suppose the input of the
sender (b0, b1) is sampled from a distribution on {0, 1}2. For all PPT receivers
Rec∗, we require that the honest sender’s messages (computed as a function
of (b0, b1)) are computationally indistinguishable from uniform distribution.

An oblivious transfer protocol satisfying the above definition was constructed
in [40] using [32].

Theorem 4 [40]. Assuming decisional Diffie Helman assumption, there exists
a two message 1-out-of-2 covert oblivious transfer protocol.

We note that for our constructions, it actually suffices if the OT protocol
achieves indistinguishability security against malicious senders and receivers.
(This property is satisfied by [32].) The covertness property helps to simplify
the proof of our robust semi-honest MPC.

2.2 Randomizing Polynomials

We first recall the definition of randomizing polynomials [2,24]. Instead of con-
sidering the standard form of randomizing polynomials consisting of encode and
decode algorithms, we instead consider a decomposable version where the circuit
is first encoded as polynomials and decode algorithm gets as input evaluations
of polynomials on input and randomness.

Definition 2 (Randomizing Polynomials). A randomizing polynomials
scheme RP = (CktE,D) for a family of circuits C has the following syntax:
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– Encoding, CktE(C): On input circuit C ∈ C, input x, it outputs polynomials
p1, . . . , pm.

– Decoding, D(p1(x; r), . . . , pm(x; r)): On input evaluations of polynomials
p1(x; r), . . . , pm(x; r), it outputs the decoded value α.

RP is required to satisfy the following properties:

– Correctness: For every security parameter n ∈ N, circuit C and input x,
C(x) = D(p1(x; r), . . . , pm(x; r)), where (i) (p1, . . . , pm) ← CktE(C), (ii) r is
randomness sampled from uniform distribution.

– Efficiency: The typical efficiency we require is that the degree of the polynomi-
als {pi} should be significantly smaller than the degree of the circuit C, where
(p1, . . . , pm) ← CktE(C).

– Security: For every PPT adversary A, for large enough security parameter
n ∈ N, circuit C and input x, there exists a simulator Sim such that:

{(p1(x; r), . . . , pm(x; r))} ≈c

{
Sim(1n, 1|C|, C(x))

}
,

where (i) (p1, . . . , pm) ← CktE(C), (ii) r is randomness sampled from uniform
distribution.

We define the degree of randomizing polynomials to be maxC∈C{deg(pi) :
(p1, . . . , pm) ← CktE(C ∈ C)}.
We have the following theorem from [2].

Theorem 5 [2]. Assuming the existence of pseudorandom generators in
⊕L/Poly for all polynomial-time computable functions.

2.3 Non-malleable Commitments

Let Π = 〈C,R〉 be a statistically binding commitment scheme. Consider MiM
adversaries that are participating in one left and one right sessions in which
k commitments take place. We compare between a MiM and a simulated exe-
cution. In the MiM execution, the adversary A, with auxiliary information z,
is participating in one left and one right sessions. In the left session, the MiM
adversary interacts with C receiving commitments to value m using identities
id of its choice. In the right session A interacts with R, attempting to commit
to a related value m̃ again using identities ĩd of its choice. If any the right com-
mitment is invalid, or undefined, its value is set to ⊥. If ĩd = id, set m̃ =⊥ (i.e.,
any commitment where the adversary uses the same identity as that of honest
senders is considered invalid). Let mimA,m

Π (z) denote the random variable that
describes the values m̃ and the view of A, in the above experiment.

In the simulated execution, an efficient simulator Sim directly interacts with
R. Let simSim

Π (1n, z) denote the random variable describing the value m̃ commit-
ted by Sim, and the output view of Sim; whenever the view contains the same
identity as that identity of the left session, m̃ is set to ⊥.
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Definition 3 (non-malleable commitment scheme). A commitment
scheme is non-malleable with respect to commitment if, for every PPT paral-
lel MiM adversary A, there exists a PPT simulator Sim such that for all m the
following ensembles are computationally indistinguishable:

{mimA,m
Π (z)}n∈N,z∈{0,1}∗ ≈ {simSim

Π (1n, z)}n∈N,z∈{0,1}∗

For our construction, we will require that the non-malleable commitments are
public coin and extractable. Four round non-malleable commitments based on
CRHFs satisfying both the conditions are described in [23]. Similarly, three round
non-malleable commitments based on quasi-polynomial injective OWFs satisfy-
ing both conditions are described in [22]. Two round (private coin) non-malleable
commitments, with respect to commitment, are based on sub-exponential hard-
ness of DDH [28]. Additionally, two round non-interactive concurrent non-
malleable commitments can be based on time-lock puzzles [30].

Binding Property of the Commitments. For convenience, we assume that the
first message sent by the committer in the four round non-malleable commit-
ment scheme is statistically binding. Thus, the second message in the scheme is
statistically binding. The non-malleable commitment scheme in [9] satisfies this
property. But importantly, with minor modifications our proofs go through even
without this assumption.

2.4 Delayed-Input Non-malleable Zero Knowledge

Let Πnmzk = 〈P, V 〉 be a delayed-input interactive argument system for an NP-
language L with witness relation RelL. Consider a PPT MiM adversary A that
is simultaneously participating in one left session and one right session. Before
the execution starts, both P , V and A receive as a common input the security
parameter n, and A receives as auxiliary input z ∈ {0, 1}∗.

In the left session A interacts with P using identity id of his choice. In the
right session, A interacts with V , using identity ĩd of his choice.

In the left session, before the last round of the protocol, P gets the statement
x. Also, in the right session A, during the last round of the protocol selects the
statement x̃ to be proved and sends it to V . Let ViewA(1n, z) denote a random
variable that describes the view of A in the above experiment.

Definition 4 (Delayed-input NMZK). A delayed-input argument system
Πnmzk = 〈P, V 〉 for NP-language L with witness relation RelL is Non-Malleable
Zero Knowledge (NMZK) if for any MiM adversary A that participates in one
left session and one right session, there exists a PPT machine Sim(1n, z) such
that

1. The probability ensembles {Sim1(1n, z)}n∈N,z∈{0,1}∗ and
{ViewA(1n, z)}λ∈N,z∈{0,1}∗ are computationally indistinguishable over n,
where Sim1(1n, z) denotes the first output of Sim(1n, z).
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2. Let z ∈ {0, 1}∗ and let (View, w̃) denote the output of Sim(1n, z). Let x̃ be the
right-session statement appearing in View and let id and ĩd be the identities
of the left and right sessions appearing in View. If the right session is accepting
and id 	= ĩd, then RelL(x̃, w̃) = 1.

The above definition, is easily extended to parallel NMZK, where the adver-
sary interacts with a polynomially bounded sessions on the left and right in
parallel.

For our constructions, we shall use a slight variant of the 4-round NMZK
protocol in [9]. The protocol is secure assuming CRFHs, and can thus be instan-
tiated from DDH, and we refer the reader to their paper for a description of the
protocol. In their protocol, in the honest setting, the internal WI proof system
proves that the non-malleable commitment contains the witness to the NMZK
language9, or that it knows the trapdoor. Instead in our variant, we modify the
internal proof system to prove that either the NMZK instance is true or the
non-malleable commitment contains the trapdoor. We give a detailed discussion
in the full version of our paper. Additionally, we note that their protocol is also
parallel ZK since we can extract trapdoors of multiple executions in parallel.

2.5 Extractable Commitment Scheme

We will also use a simple challenge-response based extractable statistically-
binding string commitment scheme 〈C,R〉 that has been used in several prior
works, most notably [36,38]. We note that in contrast to [36] where a multi-slot
protocol was used, here (similar to [38]), we only need a one-slot protocol.

Protocol 〈C,R〉. Let com(·) denote the commitment function of a non-interactive
perfectly binding string commitment scheme which requires the assumption of
injective one-way functions for its construction. Let n denote the security para-
meter. The commitment scheme 〈C,R〉 is described as follows.

Commit Phase:

1. To commit to a string str, C chooses k = ω(log(n)) independent random
pairs {α0

i , α
1
i }k

i=1 of strings such that ∀i ∈ [k], α0
i ⊕ α1

i = str; and commits
to all of them to R using com. Let B ← com(str), and A0

i ← com(α0
i ),

A1
i ← com(α1

i ) for every i ∈ [k].
2. R sends k uniformly random bits v1, . . . , vn.
3. For every i ∈ [k], if vi = 0, C opens A0

i , otherwise it opens A1
i to R by sending

the appropriate decommitment information.

Open Phase: C opens all the commitments by sending the decommitment infor-
mation for each one of them.

For our construction, we require a modified extractor for the extractable
commitment scheme. The standard extractor returns the value str that was
9 It actually proves that the non-malleable commitment contains the masked witness,

where the mask is sent separately. But we ignore this technicality for the discussion.
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committed to in the scheme. Instead, we require that the extractor return i, and
the openings of A0

i and A1
i . This extractor can be constructed easily, akin to the

standard extractor for the extractable commitment scheme.
This completes the description of 〈C,R〉.

“Rewinding secure” Commitment Scheme. Due to technical reasons, we will also
use a minor variant, denoted 〈C ′, R′〉, of the above commitment scheme which
will be rewinding secure. Protocol 〈C ′, R′〉 is the same as 〈C,R〉, except that for
a given receiver challenge string, the committer does not “open” the commit-
ments, but instead simply reveals the appropriate committed values (without
revealing the randomness used to create the corresponding commitments). More
specifically, in protocol 〈C ′, R′〉, on receiving a challenge string v1, . . . , vn from
the receiver, the committer uses the following strategy: for every i ∈ [k], if
vi = 0, C ′ sends α0

i , otherwise it sends α1
i to R′. Note that C ′ does not reveal

the decommitment values associated with the revealed shares.
The scheme is rewinding secure because we can respond to queries from the

adversary (for the commitment scheme) when we need to rewind it, and the
commitment scheme is exposed to an external challenger. This follows from the
fact that we can send random messages in the third round when the adversary
makes a different second round query.

When we use 〈C ′, R′〉 in our main construction, we will require the committer
C ′ to prove the “correctness” of the values (i.e., the secret shares) it reveals in
the last step of the commitment protocol. In fact, due to technical reasons, we
will also require the committer to prove that the commitments that it sent in
the first step are “well-formed”. Below we formalize both these properties in the
form of a validity condition for the commit phase.

Proving Validity of the Commit Phase. We say that commit phase between C ′

and R′ is well formed with respect to a value ˆstr if there exist values {α̂0
i , α̂

1
i }k

i=1

such that:

1. For all i ∈ [k], α̂0
i ⊕ α̂1

i = ˆstr, and
2. Commitments B, {A0

i , A
1
i }k

i=1 can be decommitted to ˆstr, {α̂0
i , α̂

1
i }k

i=1 respec-
tively.

3. Let ᾱv1
1 , . . . , ᾱvk

k denote the secret shares revealed by C in the commit phase.
Then, for all i ∈ [k], ᾱvi

i = α̂vi
i .

We state a simple lemma below, that states that ∃ an extractor E that
extracts the correct committed value with overwhelming probability if the com-
mitment is well formed. This lemma is implicit from [36,38].

Lemma 1. If the validity condition for the commitment protocol holds, then E
fails to extract the committed value with only negligible probability.

3 Robust Semi-honest MPC

We consider semi-honest secure multi-party computation protocols that satisfy
an additional robustness property. Intuitively the property says that, except the
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final round, the messages of honest parties reveal no information about their
inputs even if the adversarial parties behave maliciously.

Definition 5. Let F be an n-party functionality. Let A = (A1,A2) represent a
PPT algorithm controlling a set of parties S ⊆ [n]. For a t-round protocol com-
puting F , we let RealExecA1

(t−1)(x, z) denote the view of A1 during the first t − 1
rounds in the real execution of the protocol on input x = (x1, · · · , xn) and auxil-
iary input z. We require that at the end of the first t−1 rounds in the real proto-
col, A1 outputs state and (inp, rand) on a special tape where either (inp, rand) =
(⊥,⊥) (if A1 behaved maliciously) or (inp, rand) = ({x̂i}i∈S , {r̂i}i∈S) which is
consistent with the honest behavior for RealExec(t−1) (first t − 1 rounds).

A protocol is said to be a “robust” secure multiparty computation protocol
for F if for every PPT adversary A = (A1,A2) controlling a set of parties
S in the real world, where A2 is semi-honest, there exists a PPT simulator
Sim = (Sim1,Sim2) such that for every initial input vector x, every auxiliary
input z

– If (inp, rand) 	= (⊥,⊥), then:
(
RealExecA1

(t−1)(x, z), RealExecA2

t (x, state)
)

≈c

(
RealExecA1

(t−1)(x, z), Sim2({x̂i}i∈S , {r̂i}i∈S , y, state)
)

≈c

(
Sim1(z), Sim2 ({x̂i}i∈S , {r̂i}i∈S , y, state)

)
.

Here y = F (x̂1, . . . , x̂n), where x̂i = xi for i /∈ S. And RealExecA2

t (x, state) is
the view of adversary A2 in the tth round of the real protocol.

– Else,
RealExecA1

(t−1)(x, z) ≈c Sim1(z).

Note that, in general, a semi-honest MPC protocol may not satisfy this prop-
erty. Below, we construct a four-round semi-honest MPC protocol with robust-
ness property.

3.1 Four Round Robust Semi-honest MPC

We first describe the tools required for our construction. We require,

– Two message 1-out-of-2 covert oblivious transfer protocol. Denote this by OT.
– Degree 3 randomizing polynomials for arbitrary polynomial sized circuits.

Denote this by RP = (CktE,D).

Both the tools mentioned above can be instantiated from DDH.
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Construction. Our goal is to construct an n-party MPC protocol ΠF
sh secure

against semi-honest adversaries for an n-party functionality F . Moreover, we
show that ΠF

sh satisfies Robust property (Definition 5). We employ the following
steps:

– Step I: We first construct an 3-party semi-honest MPC protocol Π3MULT
sh

for the functionality 3MULT defined below. This protocol is a three round
protocol. However, we view this as a four round protocol (with the last round
being empty) – the reason behind doing this is because this protocol will be
used as a sub-protocol in the next steps and in the proof, the programming
of the simulator occurs only in the fourth round.

3MULT((x1, r1); (x2, r2); (x3)) outputs (r1; r2; x1x2x3 + r1 + r2)

– Step II: We use Π3MULT
sh to construct an n-party semi-honest MPC protocol

Π
3POLY{p}
sh for the functionality 3POLY{p} defined below, where p is a degree

3 polynomial in F2[y1, . . . ,yN ]. This protocol is a four round protocol and it
satisfies robust property.

3POLY{p}(X1; · · · ;Xn) outputs p(y1, . . . ,yN ),

where X1, . . . , Xn are partitions of y1, . . . ,yN .
– Step III: We use Π3POLY

sh to construct an n-party semi-honest MPC protocol
ΠF

sh. This protocol is a four round protocol and it satisfies robust property.

We now describe the steps in detail.

Step I: Constructing Π3MULT
sh . Denote the parties by P1, P2 and P3. Denote

the input of P1 to be (x1, r1), the input of P2 to be (x2, r2) and the input of P3

to be (x3). The protocol works as follows:

– Round 1: P1 participates in a 1-out-of-2 oblivious transfer protocol OT12

with P2. P1 plays the role of receiver. It generates the first message of OT12

as a function of x1.
Simultaneously, P2 and P3 participate in a 1-out-of-2 protocol OT23. P3 takes
the role of the receiver. It generates the first message of OT23 as a function
of x3.

– Round 2: P2 sends the second message in OT12 as a function of (x2 · 0 +
r′
2; x2 · 1 + r′

2), where r′
2 is sampled at random. P2 sends the second message

in OT23 as a function of (0 · r′
2 + r2; 1 · r′

2 + r2).
Simultaneously, P1 and P3 participate in a OT protocol OT13. P3 takes the
role of the receiver. It sends the first message of OT13 as a function of x3.

– Round 3: Let u be the value recovered by P1 from OT12. P1 sends the second
message to P3 in OT13 as a function of (u · 0+ r1, u · 1+ r1). Let α′

3 recovered
from OT13 by P3 and let α′′

3 be the output recovered from OT23.

P1 outputs α1 = r1, P2 outputs α2 = r2 and P3 outputs α3 = α′
3+α′′

3 (operations
performed over F2).
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Theorem 6. Assuming the correctness of OT, Π3MULT
sh satisfies correctness

property.

Theorem 7. Assuming the security of OT, Π3MULT
sh is a robust semi-honest

three-party secure computation protocol satisfying Definition 5.

Step II: Constructing Π
3POLY{p}
sh . We first introduce some notation. Consider

a polynomial q ∈ F2[y1, . . . ,yN ] with coefficients over F2. We define the set
MonS{q} as follows: a term t ∈ MonS{q} if and only if t appears in the expansion
of the polynomial q. We define MonS{q}i as follows: a term t ∈ MonS{q}i if and
only if t ∈ MonS{q} and t contains the variable yi.

We now describe Π
3POLY{p}
sh .

Protocol Π
3POLY{p}
sh : Let P1, . . . , Pn be the set of parties in the protocol. Let Xi

be the input set of Pi for every i ∈ [n]. We have,
∑n

i=1 |Xi| = N and Xi ∩Xj = ∅
for i 	= j. Every x ∈ Xi corresponds to a unique variable yj for some j.

– For every i ∈ [n], party Pi generates n additive shares si,1, . . . , si,n of 0. It
sends share si,j to Pj in the first round.

– In parallel, for every term t in the expansion of p, do the following:
- If t is of the form x3

i , then Pi computes x3
i .

- If t is of the form x2
i xj then pick k ∈ [n] and k 	= i, k 	= j. Let rt

i and rt
j

be the randomness, associated with t, sampled by Pi and Pj respectively.
The parties Pi(xi, r

t
i), Pj(xj , r

t
j) and Pk(1) execute Π3MULT

sh to obtain the
corresponding shares αt

i, α
t
j and αt

k. Note that this finishes in the third
round.
- If t is of the form xixjxk, then parties Pi, Pj and Pk sample randomness
rt
i , r

j
t and rt

k respectively. Then, they execute Π3MULT
sh on inputs (xi, r

t
i),

(xj , r
t
j) and (xk) to obtain the corresponding shares αt

i, α
t
j and αt

k. Note
that this finishes in the third round.

– After the third round, Pi adds all the shares he has so far (including his own
shares) and he broadcasts his final share si to all the parties. This consumes
one round.

– Finally, Pi outputs
∑n

i=1 si.

Theorem 8. Assuming Π3MULT
sh satisfies correctness, Π

3POLY{p}
sh satisfies cor-

rectness property.

Theorem 9. Assuming the security of Π3MULT
sh , Π3POLY{p}

sh is a robust semi-honest
MPC protcol satisfying Definition 5 as long as Π3MULT

sh satisfies Definition 5.

Step III: Constructing ΠF
sh. We describe ΠF

sh below.

Protocol ΠF
sh: Let C be a circuit representing F . That is, F (x1; . . . , xn) =

C(x1|| · · · ||xn). Let RP.CktE(C) = (p1, . . . , pm). Note that pi, for every i, is
a degree 3 polynomial in F2[y1, . . . ,yn, r1, . . . , rN ]. Construct polynomial p̂i ∈
F2[y1, . . . ,yn, , r1,1, . . . , rn,N ] by replacing rj , for every j ∈ [N ], in pi by the
polynomial

∑n
k=1 rk,j . Note that p̂i is still a degree 3 polynomial.
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Pi samples randomness ri,j , for every j ∈ [N ]. For every j ∈ [m], all the
parties execute the protocol Π

3POLY{p̂j}
sh . The input of Pi is (xi, ri,1, . . . , ri,N )

in this protocol. In the end, every party receives αj = p̂j(x1, . . . , xn), for every
j ∈ [m]. Every party then executes D(α1, . . . , αn) to obtain α∗. It outputs α∗.

Theorem 10. Assuming the security of Π
3POLY{p}
sh and security of RP, ΠF

sh is
a robust semi-honest secure MPC protocol satisfying Definition 5 as long as
Π

3POLY{p}
sh satisfies Definition 5.

The proofs can be found in the full version of the paper.

4 Five Round Malicious MPC

Overview. We start by giving an overview of our construction. We want to use
the robust semi honest MPC as the basis for our construction, but its security
is only defined in the semi-honest setting. We enforce the semi-honest setting by
having the players prove, in parallel, that they computed the robust semi honest
MPC honestly. Players prove that (1) they computed the first three rounds of
the robust semi honest MPC honestly; and (2) they committed their input and
randomness used in the robust semi honest MPC to every other party using both
an extractable commitment scheme, and a non-interactive commitment scheme.
To do so, we use a four round input delayed proof system, where the statement
for the proof can be delayed till the final round. This lets players send the final
round of their proof in the fourth round. Before proceeding, we verify each of
the proofs received to ensure everyone is behaving in an honest manner. Next, to
prove that the last round of the robust semi honest MPC is computed correctly,
we use another instance of the four round input delayed proof system. The first
three rounds run in parallel with the first three rounds of the protocol, but the
last round of the proof system is delayed till the fifth round, after computing the
last round of the robust semi honest MPC. This gives the total of five rounds.

Construction. For construction of the protocol, we require the following tools:

1. A 3-round “rewinding-secure” extractable commitment scheme Πrext =
〈Crext, Rrext〉 (refer to definition in Sect. 2.5). We require the commitments
to be well formed, where this property is defined in Sect. 2.5. Since there will
be commitments in both directions for every pair of players, we introduce
notation for individual messages of the protocol. πj

rextk→i
refers to the j-th

round of the Pk’s commitment to Pi.
We will denote by τrexti→k :=

(
π1
rexti→k

, π2
rexti→k

, π3
rexti→k

)
.

2. A non-interactive commitment scheme Πnic = 〈Cnic, Rnic〉.
3. A 4-round robust semi honest MPC protocol ΠrMPC (refer to Definition 5)

that has a next-message function nextMsgΠrMPC which, for player Pi, on input
(xi, ri,m

1, · · · ,m j) returns mj+1
i , the message Pi broadcasts to all other play-

ers in the (j+ 1)-th round as a part of the protocol. Here m j = (mj
1, · · · ,mj

n)
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consists of all the messages sent during round j of the protocol. The robust
semi honest MPC also consists of a function OutΠrMPC that computes the final
output y.

4. Two 4-round delayed-input parallel non-malleable zero-knowledge protocols
(refer to Definition 4). We use the variant of the NMZK protocol in [9]
described earlier. (Our proof will make non-black box use of the NMZK.)
Πnmzk = 〈Pnmzk, Vnmzk〉 for the language

L =
{

({τrexti→k , r
1
rexti→k

, πnici→k}k∈[n]\{i}, idi,m i = (m1,m2,m3
i )) :

∃(xi, ri, {decrexti→k , decnici→k}k∈[n]) s.t.
(
(∀ k : τrexti→k is a well formed

commitment of
(
(xi, ri) ⊕ r1rexti→k

)
AND πnici→k is a commitment of

(xi, ri)) AND (m1
i = nextMsgΠrMPC(xi, ri) AND m2

i =

nextMsgΠrMPC(xi, ri,m
1) AND m3

i = nextMsgΠrMPC(xi, ri,m
1,m2) )

)}

and Π̂nmzk = 〈P̂nmzk, V̂nmzk〉 for the language

L̂ =
{

({τrexti→k , r
1
rexti→k

, πnici→k}k∈[n]\{i}, idi,m i = (m1,m2,m3,m4
i )) :

∃(xi, ri, {decrexti→k , decnici→k}k∈n) s.t.
(
( ∀ k : τrexti→k is a well formed

commitment of
(
(xi, ri) ⊕ r1rexti→k

)
AND πnici→k is a commitment of

(xi, ri)) AND ( m4
i = nextMsgΠrMPC(xi, ri,m

1,m2,m3) )
)}

.

We represent by πj
nmzkk→i

and π̂j
nmzkk→i

the messages sent in the j-th round of
Pk’s proof to Pi for an instance of L and L̂ respectively.
Here L consists of instances where the player with identifier idi, Pi, correctly
computes the first 3 rounds of the robust semi honest MPC with inputs
(xi, ri), and commits to this input to ever other player (in both commitments).
Likewise, L̂ consists of instances where the player with identifier idi, Pi,
correctly computes the 4-th round of the robust semi honest MPC with inputs
(xi, ri), and commits to this input to ever other player (in both commitments).

Let P = {P1, · · · , Pn} be the set of parties and {id1, · · · , idn} denote their
corresponding unique identifiers (one can think of idi = i). The input and ran-
domness (xi, ri) to the robust semi honest MPC for player Pi is fixed in the
beginning of the protocol.

The protocol instructs each player Pi to compute a message M j
i for round

j and broadcasts it over the simultaneous broadcast channel. Thus in round j,
messages (M j

1, · · · ,M j
n) are simultaneously broadcast.

The protocol is detailed below. For ease of notation, we shall assume the that
security parameter n is an implicit argument to each of the functions.
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Round 1. Each player Pi computes the message M1
i to be sent in the first round

as follows:

1. Compute independently, with fresh randomness, the first (committer) mes-
sage of the “rewinding secure” extractable commitment for every other player.
i.e., ∀k ∈ [n] \ {i}

r0rexti→k
← {0, 1}|(xi,ri)|; (π1

rexti→k
, decrexti→k) ← Crext(r0rexti→k

)

Set π1
rexti := (π1

rexti→1
, · · · , π1

rexti→i−1
,⊥, π1

rexti→i+1
, · · · , π1

rexti→n
).

2. Compute independently, with fresh randomness, the non-interactive commit-
ment for every other player. i.e., ∀k ∈ [n] \ {i}

(πnici→k , decnici→k) ← Cnic((xi, ri))

Set πnici := (πnici→1 , · · · , πnici→i−1 ,⊥, πnici→i+1 , · · · , πnici→n).
3. Compute independently, with fresh randomness, the first (verifier) message

of both non-malleable zero-knowledge protocols for every other player. i.e.,
∀k ∈ [n] \ {i}

π1
nmzkk→i

← Vnmzk(idk, �), π̂1
nmzkk→i

← V̂nmzk(idk, �̂)

where � and �̂ are the lengths of the input delayed statements for L and L̂
respectively.

Set

π1
nmzki := (π1

nmzk1→i
, · · · , π1

nmzki−1→i
,⊥, π1

nmzki+1→i
, · · · , π1

nmzkn→i
)

π̂1
nmzki := (π̂1

nmzk1→i
, · · · , π̂1

nmzki−1→i
,⊥, π̂1

nmzki+1→i
, · · · , π̂1

nmzkn→i
)

M1
i is now defined as, M1

i := (π1
rexti , πnici , π

1
nmzki

, π̂1
nmzki

). Broadcast M1
i and

receive M1
1 , · · · ,M1

i−1,M
1
i+1, · · · ,M1

n .

Round 2. Each player Pi computes the message M2
i to be sent in the second

round as follows:

1. Compute the second message of the “rewinding secure” extractable commit-
ment in response to the messages from the other parties. i.e., ∀k ∈ [n] \ {i}

π2
rextk→i

← Rrext(π1
rextk→i

)

where π1
rextk→i

can be obtained from π1
rextk in M1

k .
Set π2

rexti := (π2
rext1→i

, · · · , π2
rexti−1→i

,⊥, π2
rexti+1→i

, · · · , π2
rextn→i

).
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2. Compute the second message of both non-malleable zero-knowledge protocols
in response to the messages from the other parties. i.e., ∀k ∈ [n] \ {i}

π2
nmzki→k

← Pnmzk(idi, �, π1
nmzki→k

); π̂2
nmzki→k

← P̂nmzk(idi, �̂, π̂1
nmzki→k

)

where π1
nmzkk→i

and π̂1
nmzkk→i

can be obtained from π1
nmzkk

and π̂1
nmzkk

respec-
tively in M1

k . Set

π2
nmzki := (π2

nmzki→1
, · · · , π2

nmzki→i−1
,⊥, π2

nmzki→i+1
, · · · , π2

nmzki→n
)

π̂2
nmzki := (π̂2

nmzki→1
, · · · , π̂2

nmzki→i−1
,⊥, π̂2

nmzki→i+1
, · · · , π̂2

nmzki→n
)

3. Compute the first message of the robust semi honest MPC,

m1
i ← nextMsgΠrMPC(xi, ri).

M2
i is now defined as, M2

i := (π2
rexti , π

2
nmzki

, π̂2
nmzki

,m1
i ). Broadcast M2

i and receive
M2

1 , · · · ,M2
i−1,M

2
i+1, · · · ,M2

n .

Round 3. Each player Pi computes the message M3
i to be sent in the third round

as follows:

1. Compute the final message of the “rewinding secure” extractable commit-
ment. i.e., ∀k ∈ [n] \ {i}

π3
rexti→k

← Crext(π1
rexti→k

, π2
rexti→k

)

where π1
rexti→k

is as computed earlier and π2
rexti→k

is obtained from π2
rextk in

M2
k . Set π3

rexti := (π3
rexti→1

, · · · , π3
rexti→i−1

,⊥, π3
rexti→i+1

, · · · , π3
rexti→n

).
2. Compute (xi, ri) masked with the randomness sent in the “rewinding secure”

extractable commitment, i.e. ∀k ∈ [n] \ {i}
r1rexti→k

:= r0rexti→k
⊕ (xi, ri)

Set r1rexti := (r1rexti→1
, · · · , r1rexti→i−1

,⊥, r1rexti→i+1
, · · · , r1rexti→n

).
3. Compute the third message of both non-malleable zero-knowledge protocols.

i.e., ∀k ∈ [n] \ {i}
π3
nmzkk→i

← Vnmzk(idk, π1
nmzkk→i

, π2
nmzkk→i

)

π̂3
nmzkk→i

← V̂nmzk(idk, π̂1
nmzkk→i

, π̂2
nmzkk→i

)

where π1
nmzkk→i

is as computed earlier and π2
nmzkk→i

is obtained from π2
nmzkk

in
M2

k . π̂1
nmzkk→i

and π̂2
nmzkk→i

are obtained similarly.
Set

π3
nmzki := (π3

nmzk1→i
, · · · , π3

nmzki−1→i
,⊥, π3

nmzki+1→i
, · · · , π3

nmzkn→i
)

π̂3
nmzki := (π̂3

nmzk1→i
, · · · , π̂3

nmzki−1→i
,⊥, π̂3

nmzki+1→i
, · · · , π̂3

nmzkn→i
)
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4. Compute the second message of the robust semi honest MPC,

m2
i ← nextMsgΠrMPC(xi, ri,m

1)

where m1 := (m1
1, · · · ,m1

n).

M3
i is now defined as, M3

i := (π3
rexti , r

1
rexti , π

3
nmzki

, π̂3
nmzki

,m2
i ). Broadcast M3

i and
receive M3

1 , · · · ,M3
i−1,M

3
i+1, · · · ,M3

n .

Round 4. Each player Pi computes the message M4
i to be sent in the fourth

round as follows:

1. Compute the third message of the robust semi honest MPC,

m3
i ← nextMsgΠrMPC(xi, ri,m

1,m2)

where m1 := (m1
1, · · · ,m1

n) and m2 := (m2
1, · · · ,m2

n).
2. Compute the final message of the non-malleable zero-knowledge protocol for

language L. i.e., ∀k ∈ [n] \ {i}
wnmzki :=

(
xi, ri, {decrexti→k , decnici→k}k∈[n]

)

m i :=
(
m1,m2,m3

i

)

xnmzki :=
({

τrexti→k , r
1
rexti→k

, πnici→k

}
k∈[n]

, idi,m i

)

π4
nmzki→k

← Pnmzk(idi, �, xnmzki , wnmzkiπ
1
nmzki→k

, π2
nmzki→k

, π3
nmzki→k

)

where |xnmzki | = �, and π1
nmzki→k

is obtained from π1
nmzkk

in M1
k . Similarly,

π3
nmzki→k

is be obtained from π3
nmzkk

in M3
k . π2

nmzki→k
is as computed earlier.

Set π4
nmzki

:= (π4
nmzki→1

, · · · , π4
nmzki→i−1

,⊥, π4
nmzki→i+1

, · · · , π4
nmzki→n

).

M4
i is now defined as, M4

i := (π4
nmzki

,m3
i ). Broadcast M4

i and receive
M4

1 , · · · ,M4
i−1,M

4
i+1, · · · ,M4

n .

Round 5. Each player Pi computes the message M5
i to be sent in the fifth round

as follows:

1. Check if all the proofs in the protocol are accepting. The proof from Pk to Pj

is accepting if Pk has computed the first 3 rounds of the robust semi honest
MPC correctly and has committed to the same inputs, used in the robust
semi honest MPC, to every other player.
First, compute the statement xnmzkk for each player Pk. i.e., ∀k ∈ [n] \ {i}

mk :=
(
m1,m2,m3

k

)
; xnmzkk :=

({
τrextk→t , r

1
rextk→t

, πnick→t

}
t∈[n]

, idk,mk

)

Next, check if every proof is valid.

if ∃k, j s.t accept 	= Vnmzk(idk, xnmzkk , π
1
nmzkk→j

, π2
nmzkk→j

, π3
nmzkk→j

, π4
nmzkk→j

)

then output ⊥ and abort

else continue
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This can be done because the proofs are public coin. Moreover this is done to
avoid the case that some honest parties continue on to the next round, but
the others abort.

2. Compute the final message of the robust semi honest MPC,

m4
i ← nextMsgΠrMPC(xi, ri,m

1,m2,m3)

where m1 := (m1
1, · · · ,m1

n), m
2 := (m2

1, · · · ,m2
n) and m3 := (m3

1, · · · ,m3
n).

3. Compute the final message of the non-malleable zero-knowledge protocol for
language L̂. i.e., ∀k ∈ [n] \ {i}

ŵnmzki :=
(
xi, ri, {decrexti→k , decnici→k}k∈[n]

)

m i :=
(
m1,m2,m3,m4

i

)

x̂nmzki :=
({

τrexti→k , r
1
rexti→k

, πnici→k

}
k∈[n]

, idi,m i

)

π̂4
nmzki→k

← P̂nmzk(idi, �̂, x̂nmzki , ŵnmzki , π̂
1
nmzki→k

, π̂2
nmzki→k

, π̂3
nmzki→k

)

where |x̂nmzki→k | = �̂, and π̂1
nmzki→k

is obtained from π̂1
nmzkk

in M1
k . Similarly,

π̂3
nmzki→k

is obtained from π̂3
nmzkk

in M3
k . π̂2

nmzkk→i
is as computed earlier.

Set π̂4
nmzki

:= (π̂4
nmzki→1

, · · · , π̂4
nmzki→i−1

,⊥, π̂4
nmzki→i+1

, · · · , π̂4
nmzki→n

)

M5
i is now defined as, M5

i := (m4
i , π̂

4
nmzki

). Broadcast M5
i and receive

M5
1 , · · · ,M5

i−1,M
5
i+1, · · · ,M5

n .

Output Computation. To compute the output, Pi performs the following steps:

1. Check if all the proofs in the protocol are accepting. The proof from Pk to
Pj is accepting if Pk has computed the 4-th round of the robust semi honest
MPC correctly and has committed to the same inputs, used in the robust
semi honest MPC, to every other party.
First, compute the statement x̂nmzkk for each player Pk. i.e., ∀k ∈ [n] \ {i}

m̂k :=
(
m1,m2,m3,m4

k

)

x̂nmzkk :=
({

τrextk→t , r
1
rextk→t

, πnick→t

}
t∈[n]

, idk, m̂k

)

Next, check if every proof is valid.

if ∃k, j s.t accept 	= V̂nmzk(idk, x̂nmzkk , π̂
1
nmzkk→j

, π̂2
nmzkk→j

, π̂3
nmzkk→j

, π̂4
nmzkk→j

)

then output ⊥ and abort

else continue

2. Compute the output of the protocol as

y ← OutΠrMPC(xi, ri,m
1,m2,m3,m4)
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Theorem 11. Assuming security of the “rewinding secure” extractable com-
mitment, non-interactive commitment scheme, robust semi-honest MPC and
NMZK, the above described five round protocol is secure against malicious adver-
saries.

We use the standard definition of security with abort against malicious adver-
saries (see [15] for details).

Extractable commitments and NMZK can be instantiated from DL, while the
robust semi-honest MPC can be instantiated from DDH. Thus, all the required
primitives can be instantiated from DDH.

The complete proof can be found in the full version of our paper, but we
give an overview of the simulator below. Before we proceed to the simulator, we
discuss a few properties of the underlying primitives that we will need:

– Recall that simulator for the robust semi honest MPC consists of two parts.
The first part, Sim1

rMPC, simulates the first three rounds of the robust semi
honest MPC without requiring inputs or outputs of the adversary. The second
part, Sim2

rMPC, when given the inputs, random tape and outputs a simulated
transcript of the last round that is consistent with the input and random-
ness. Additionally, note that this simulation succeeds as long as the adversary
behaved honestly in the first three rounds of the robust semi honest MPC.

– The extractor for the 3 round “rewinding secure” extractable commitment
works by rewinding the second and third round polynomial number of times.
From Lemma 1, we know that if the commitments are well formed, extraction
fails with only negligible probability.

– The simulator of the NMZKs works by extracting a trapdoor. Specifically,
it rewinds the second and third round polynomial number of times to get
signatures for two distinct messages. Further, this extraction fails only with
negligible probability.

– Combining the above two properties, we see that the rewindings of NMZK and
the “rewinding secure” extractable commitment are “composable” because
they rewind in the same rounds in our MPC protocol.

We describe the ideal world simulator Sim below. We shall denote the set of
honest players by H and the set of corrupted players by PA.

1. The first three rounds of protocol are simulated as follows:
– For the robust semi honest MPC, since Sim1

rMPC doesn’t require any input
or output to simulate the first three rounds, we use it directly to obtain{
m1

i ,m
2
i ,m

3
i

}
Pi∈H. Since the robust semi honest MPC starts from the

second round,
{
m3

i

}
Pi∈H is sent in the 4th round with the last round of

the NMZK for L, but we group them here for simplicity.
– For simulating proofs for the NMZKs, we deal with three different cases:

(a) For proofs from the adversary, the honest player acts as a verifier. In
this case, fix a random tape for the verifier and respond honestly to
adversary queries.
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(b) For proofs within honest players, we fix the random tape for the
verifiers and thus can trivially compute the trapdoor in the NMZKs
for both languages using the verifier’s random tape.

(c) For proofs from honest players to the adversary, we run the simu-
lators Simnmzk and Ŝimnmzk to simulate the first three rounds. This
internally rewinds polynomial many times to obtain the trapdoors. If
the extractor fails, output ⊥nmzk and abort.

– For the “rewinding secure” extractable commitment, we deal with two
cases:
(a) For commitments from the honest players to the adversary, we just

commit to the all ‘0’ string. We do this for commitments within the
honest players as well.

(b) For commitments where the honest players are recipients, run the
extractor to send responses and extract the values inside the commit-
ments. If extractor fails, output ⊥rext and abort.

– For the non-interactive commitments, commit to the all ‘0’ string for
commitments from the honest players to the adversary.

– For the masked value in the third round, send the same random string as
committed earlier in the “rewinding secure” extractable commitment.

As noted earlier, the rewinding performed within the NMZK simulator and
the extractor for “rewinding secure” extractable commitments work in the
same rounds and can be performed for each without affecting the other.
Additionally, these extracted values along with the masked values sent by
the adversary gives us its input and randomness.

2. Simulate the last round of the NMZK for L in two steps.
– For proofs from the honest parties to the adversary, use Simnmzk and the

trapdoors obtained to compute the last round of the NMZK for L.
– For proofs within honest parties, the trapdoor is trivially known to the

simulator and thus compute the last round of the NMZK for L.
On receiving the proofs for L from the adversary, check if all the received
proofs are valid. This is equivalent to checking if all proofs in the protocol
verify. If the check fails, send abort to the ideal functionality and exit.

3. We perform an additional check before we obtain the final round of the robust
semi honest MPC. Given m1,m2,m3, {(xk, rk)}Pk∈PA , we check if the adver-
sary has followed the computation in the first three rounds correctly. If the
check fails we output ⊥1

rMPC and abort. It is implicit that the proofs for L
have verified prior to this step.

4. Send the extracted inputs {xk}Pk∈PA to the ideal functionality to obtain the
output y.

Compute the final round (of all players) of the robust semi honest MPC as
{
m4

i

}
Pi∈P ← Sim2

rMPC

(
m1,m2,m3, {xk}Pk∈PA , {rk}Pk∈PA , y

)
.

Additionally, simulate the last round of the NMZK for L̂. This is done in two
steps



A New Approach to Round-Optimal Secure Multiparty Computation 493

– For proofs from the honest parties to the adversary, use Ŝimnmzk and the
trapdoors obtained to compute the last round of the NMZK for L̂.

– For proofs within honest parties, the trapdoor is trivially known to the
adversary and thus compute the last round of the NMZK for L̂.

5. On receiving the proofs for L̂ from the adversary check if all the received
proofs are valid. If the check fails, send abort to the ideal functionality.
Otherwise, on receiving

{
m∗4

k

}
Pk∈PA from the adversary, we check if it

matches the transcript simulated by Sim2
rMPC earlier. If not, but the proofs

above have verified output ⊥2
rMPC and abort. Else send continue to the ideal

functionality.

5 Four Round Malicious MPC

Overview. We give an overview of our four round construction. At a high-level,
the four round protocol is very similar to the five round protocol (from the
previous section) but to compress the number of rounds we cannot have two
instances of the four-round NMZK as before. Instead, we use a 3 round input-
delayed strong WI argument of knowledge (with appropriate non-malleability
properties), ending in the third round, to enable parties to prove their honest
behavior of the first three rounds. This lets the players send the fourth message
in the clear if the proof at the end of the third round verifies. For the output
round, we use a four-round NMZK as before to prove honest behavior.

The three-round input-delayed proof system that we use to establish honest
behavior in the first three rounds is depicted in Fig. 1. We do not argue its secu-
rity separately, but within the hybrids of our overall security proof. We present
the construction with 2-round non-malleable commitment for simplicity, but a
3-round non-malleable commitment can also be used. The required complexity
leveraging levels for the proof are different in each case.

Proof for a language L using this proof system requires:

– Prover committing to 0 using a 2-round non-malleable commitment [28]. The
relevance of this will become clear shortly.

– The verifier sends the image of the one way permutation applied on a random
string r.

– An input delayed witness indistinguishable proof of knowledge (WIPoK) prov-
ing knowledge of either: (1) w such that (x,w) ∈ RelL and the non-malleable
commitment decommits to 0; or (2) the decommitment of the non-malleable
commitment to pre-image r of the one way permutation. Informally speak-
ing, one can think of the above construction as a strong input delayed WI
argument of knowledge with non-malleability properties.

Construction. For construction of the protocol, we require the tools described
below. The exact security levels for each of these primitives are discussed at the
end of the construction.
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P (Pi) V (Pk)

. . . . . . . . . . . . . . . . . . . . . . . . . Round 1 . . . . . . . . . . . . . . . . . . . . . . . . .

π1
WIPoKi→k

f(r), π1
nmcomi→k

. . . . . . . . . . . . . . . . . . . . . . . . . Round 2 . . . . . . . . . . . . . . . . . . . . . . . . .

π2
nmcomi→k(0)

π2
WIPoKi→k

. . . . . . . . . . . . . . . . . . . . . . . . . Round 3 . . . . . . . . . . . . . . . . . . . . . . . . .

Set x for WIPoK π3
WIPoKi→k

Fig. 1. Components of the proof system

1. A one-way permutation f .
2. A 3-round “rewinding secure” extractable commitment scheme Πrext =

〈Crext, Rrext〉 (refer to definition in Sect. 2.5).
3. A non-interactive commitment scheme Πnic = 〈Cnic, Rnic〉.
4. An instance of a 2-round (private coin) extractable non-malleable commit-

ment scheme Πnmcom = 〈Cnmcom, Rnmcom〉. These can be constructed from the
assumption of sub-exponentially hard DDH [28].10

We will use the following notation throughout the protocol for the various
commitment schemes

τrexti→k :=
(
π1
rexti→k

, π2
rexti→k

, π3
rexti→k

)
; τnmcomi→k :=

(
π1
nmcomi→k

, π2
nmcomi→k

)

5. A 4-round robust semi-honest MPC protocol ΠrMPC as described in the five
round protocol.

6. A 3 round input delayed witness indistinguishable proof of knowledge
(WIPoK) protocol ΠWIPoK = (PWIPoK, VWIPoK) for the language LWIPoK. We
require the protocols to be public coin and instantiate them using the Lapidot-
Shamir protocol [29].
For the sake of readability and clarity, we modularize the language to obtain
the final language.

10 While in all other cases, we have required the use of public coins, we can make do
with a private coin protocol here. This will become apparent in the proof.
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L =
{

({τrexti→k , r
1
rexti→k

, πnici→k}k∈[n]\{i}, idi,m i = (m1,m2,m3
i )) :

∃(xi, ri, {decrexti→k , decnici→k}k∈[n]) s.t.
(
(∀ k : τrexti→k is a well formed

commitment of
(
(xi, ri) ⊕ r1rexti→k

)
AND πnici→k is a commitment of

(xi, ri)) AND (m1
i = nextMsgΠrMPC(xi, ri) AND m2

i =

nextMsgΠrMPC(xi, ri,m
1) AND m3

i = nextMsgΠrMPC(xi, ri,m
1,m2) )

)}

L is the language which consists of instances where player Pi correctly com-
putes the first three rounds of the robust semi honest MPC with inputs
(xi, ri), commits to (xi, ri) ⊕ r1rexti→k

to every other player Pk in the “rewind-
ing secure” extractable commitment and commits to (xi, ri) to every other
player Pk in the non-interactive commitment. Additionally, we require that
the commitments in each of these “rewinding secure” extractable commit-
ment is well formed. We define xLi := ({τrexti→k , r

1
rexti→k

}k∈[n]\{i}, idi,m i =
(m1,m2,m3

i )).

LWIPoK =
{

(xLi , idk, τnmcomi→k , yk→i) : ∃(w, decnmcomi→k , ρ) s.t.
(

(xLi , w) ∈ RelL
)
OR

(
f(ρ) = yk→i AND ( (ρ,

decnmcomi→k , idi) is a valid decommitment of τnmcomi→k )
)}

LWIPoK consists of instances where player Pi proves to player Pk that either
– it behaved honestly, i.e. it has a witness w such that (xLi , w) ∈ RelL; or
– it possesses the trapdoor mentioned earlier, and has committed to it in

the non-malleable commitment.
We define xWIPoKi→k := (xLi , idk, τnmcomi→k , yk→i).

7. A 4-round delayed-input parallel non-malleable zero-knowledge protocols (refer
to Definition 4). We use a variant the NMZK protocol in [9] described earlier.
Our proof will make non-black box use of the NMZK. Πnmzk = 〈Pnmzk, Vnmzk〉
for the language

L̂ =
{

({τrexti→k , r
1
rexti→k

, πnici→k}k∈[n]\{i}, idi,m i = (m1,m2,m3,m4
i )) :

∃(xi, ri, {decrexti→k , decnici→k}k∈n) s.t.
(
( ∀ k : τrexti→k is a well formed

commitment of
(
(xi, ri) ⊕ r1rexti→k

)
AND πnici→k is a commitment of

(xi, ri)) AND ( m4
i = nextMsgΠrMPC(xi, ri,m

1,m2,m3) )
)}

.

L̂ is the language which consists of instances where player Pi (a) correctly
computed the final round of the robust MPC with inputs (xi, ri); (b) com-
mits to (xi, ri) ⊕ r1rexti→k

to every other player Pk in the “rewinding secure”
extractable commitment such that they are well formed; and (c) commits to
(xi, ri) to every other player Pk in the non-interactive commitment. We define
x̂Li := ({τrexti→k , r

1
rexti→k

}k∈[n]\{i}, idi,m i = (m1,m2,m3,m4
i )).
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We briefly describe each round of the protocol. A complete description of the
protocol can be found in the full version.

Round 1. Each player Pi computes the message M1
i to be broadcast in the first

round constituting of:

1. The first (committer) message of the “rewinding secure” extractable commit-
ment for every other player, computed independently with fresh randomness.

2. Commit to the input and randomness to every other player independently
with fresh randomness, using the non-interactive commitment.

3. The first message of the robust semi honest MPC.
4. The different components that make up the proof system for L, computed

independently for every other player. This includes the image of the one-way
permutation on a random string, the first (receiver) message of the non-
malleable commitment and the first message for the input delayed witness
indistinguishable proof of knowledge (WIPoK) for LWIPoK.

5. The first (verifier) message of the non-malleable zero-knowledge protocol for
every other player, computed independently with fresh randomness.

Round 2. Each player Pi computes the message M2
i to be broadcast in the second

round consisting of:

1. The second message of the “rewinding secure” extractable commitment in
response to the messages from the other parties.

2. The second message of the robust semi honest MPC,
3. The second message for the different components in the proof system for L.

This includes the second message of the non-malleable commitment scheme
and the second message of the input delayed WIPoK for LWIPoK, in response
to messages from every other player.

4. The second message of the non-malleable zero-knowledge protocols in
response to the messages from the other parties.

Round 3. Each player Pi computes the message M3
i to be broadcast in the third

round constituting of:

1. The final message of the “rewinding secure” extractable commitment.
2. (xi, ri) masked with the randomness sent in the “rewinding secure”

extractable commitment. Here (xi, ri) is the input and randomness used by
Pi in the robust semi honest MPC.

3. The third message of the robust semi honest MPC.
4. The final message WIPoK for language LWIPoK.
5. The third message of the non-malleable zero-knowledge protocol.

Round 4. Each player Pi computes the message M4
i to be broadcast in the fourth

round:
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1. The final message of the robust semi honest MPC. Prior to computing the
final message, Pi checks if proofs for LWIPoK between every pair of players
are accepting. This is possible since the proofs are public coin and have been
previously broadcast. If the proofs fail, Pi aborts the protocol.

2. The final message of the non-malleable zero-knowledge protocol for language
L̂.

Output Computation. To compute the output, Pi performs the following steps:

1. Check if proofs between every pair of players for L̂WIPoK are accepting. As
before, abort if the check fails.

2. Compute the output of the protocol.

In the full version of our paper [1], we prove the security of the above protocol
where we rely on complexity leveraging between various primitives. Overall, our
construction can be based on one-way permutation and sub-exponential DDH.
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Abstract. A software watermarking scheme allows one to embed a
“mark” into a program without significantly altering the behavior of
the program. Moreover, it should be difficult to remove the watermark
without destroying the functionality of the program. Recently, Cohen et
al. (STOC 2016) and Boneh et al. (PKC 2017) showed how to watermark
cryptographic functions such as PRFs using indistinguishability obfusca-
tion. Notably, in their constructions, the watermark remains intact even
against arbitrary removal strategies. A natural question is whether we
can build watermarking schemes from standard assumptions that achieve
this strong mark-unremovability property.

We give the first construction of a watermarkable family of PRFs
that satisfy this strong mark-unremovability property from standard lat-
tice assumptions (namely, the learning with errors (LWE) and the one-
dimensional short integer solution (SIS) problems). As part of our con-
struction, we introduce a new cryptographic primitive called a translu-
cent PRF. Next, we give a concrete construction of a translucent PRF
family from standard lattice assumptions. Finally, we show that using our
new lattice-based translucent PRFs, we obtain the first watermarkable
family of PRFs with strong unremovability against arbitrary strategies
from standard assumptions.

1 Introduction

A software watermarking scheme enables one to embed a “mark” into a program
such that the marked program behaves almost identically to the original pro-
gram. At the same time, it should be difficult for someone to remove the mark
without significantly altering the behavior of the program. Watermarking is a
powerful notion that has many applications for digital rights management, such
as tracing information leaks or resolving ownership disputes. Although the con-
cept itself is quite natural, and in spite of its numerous potential applications, a
rigorous theoretical treatment of the notion was given only recently [6,7,31].

Constructing software watermarking with strong security guarantees has
proven difficult. Early works on cryptographic watermarking [35,36,40] could
only achieve mark-unremovability against adversaries who can only make
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a restricted set of modifications to the marked program. The more recent
works [12,21] that achieve the strongest notion of unremovability against arbi-
trary adversarial strategies all rely on heavy cryptographic tools, namely, indis-
tinguishability obfuscation [6,23]. In this paper, we focus on constructions that
achieve the stronger notion of mark-unremovability against arbitrary removal
strategies.

Existing constructions of software watermarking [12,21,35,36,40] with for-
mal security guarantees focus primarily on watermarking cryptographic func-
tions. Following [12,21], we consider watermarking for PRFs. In this work, we
give the first watermarkable family of PRFs from standard assumptions that
provides mark-unremovability against arbitrary adversarial strategies. All previ-
ous watermarking constructions [12,21] that could achieve this notion relied on
indistinguishability obfuscation. As we discuss in Sect. 1.2, this notion of soft-
ware watermarking shares some similarities with program obfuscation, so it is
not entirely surprising that existing constructions rely on indistinguishability
obfuscation.

To construct our watermarkable family of PRFs, we first introduce a new
cryptographic primitive we call translucent constrained PRFs. We then show
how to use translucent constrained PRFs to build a watermarkable family of
PRFs. Finally, we leverage a number of lattice techniques (outlined in Sect. 2)
to construct a translucent PRF. Putting these pieces together, we obtain the
first watermarkable family of PRFs with strong mark-unremovability guaran-
tees from standard assumptions. Thus, this work broadens our abilities to con-
struct software watermarking, and we believe that by leveraging and extending
our techniques, we will see many new constructions of cryptographically-strong
watermarking for new functionalities (from standard assumptions) in the future.

1.1 Background

The mathematical foundations of digital watermarking were first introduced by
Barak et al. [6,7] in their seminal work on cryptographic obfuscation. Unfortu-
nately, their results were largely negative, for they showed that assuming indis-
tinguishability obfuscation, then certain forms of software watermarking cannot
exist. Central to their impossibility result is the assumption that the underly-
ing watermarking scheme is perfect functionality-preserving. This requirement
stipulates that the input/output behavior of the watermarked program is iden-
tical to the original unmarked program on all input points. By relaxing this
requirement to allow the watermarked program to differ from the original pro-
gram on a small number (i.e., a negligible fraction) of the points in the domain,
Cohen et al. [21] gave the first construction of an approximate functionality-
preserving watermarking scheme for a family of pseudorandom functions (PRFs)
using indistinguishability obfuscation.

Watermarking Circuits. A watermarking scheme for circuits consists of two
algorithms: a marking algorithm and a verification algorithm. The marking algo-
rithm is a keyed algorithm takes as input a circuit C and outputs a new circuit
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C ′ such that on almost all inputs x, C ′(x) = C(x). In other words, the water-
marked program preserves the functionality of the original program on almost
all inputs. The verification algorithm then takes as input a circuit C ′ and either
outputs “marked” or “unmarked.” The correctness requirement is that any cir-
cuit output by the marking algorithm should be regarded as “marked” by the
verification algorithm. A watermarking scheme is said to be publicly-verifiable if
anyone can test whether a circuit is watermarked or not, and secretly-verifiable
if only the holder of the watermarking key is able to test whether a program is
watermarked.

The primary security property a software watermarking scheme must satisfy
is unremovability, which roughly says that given a watermarked circuit C, the
adversary cannot produce a new circuit C̃ whose functionality is similar to C,
and yet is not considered to be marked from the perspective of the verification
algorithm. The definition can be strengthened by also allowing the adversary
to obtain marked circuits of its choosing. A key source of difficulty in achiev-
ing unremovability is that we allow the adversary complete freedom in crafting
its circuit C̃. All existing constructions of watermarking from standard assump-
tions [35,36,40] constrain the output or power of the adversary (e.g., the adver-
sary’s output must consist of a tuple of group elements). In contrast, the works
of Cohen et al. [21], Boneh et al. [12], and this work protect against arbitrary
removal strategies.

A complementary security property to unremovability is unforgeability, which
says that an adversary who does not possess the watermarking secret key is
unable to construct a new program (i.e., one sufficiently different from any
watermarked programs the adversary might have seen) that is deemed to be
watermarked (from the perspective of the verification algorithm). As noted by
Cohen et al. [21], unforgeability and unremovability are oftentimes conflicting
requirements, and depending on the precise definitions, may not be simultane-
ously satisfiable. In this work, we consider a natural setting where both condi-
tions are simultaneously satisfiable (and in fact, our construction achieves exactly
that).

Watermarking PRFs. Following Cohen et al. [21] and Boneh et al. [12], we
focus on watermarking cryptographic functions, specifically PRFs, in this work.
Previously, Cohen et al. [21] demonstrated that many natural classes of func-
tions, such as any efficiently learnable class of functions, cannot be watermarked.
A canonical and fairly natural class of non-learnable functionalities are crypto-
graphic ones. Moreover, watermarking PRFs already suffices for a number of
interesting applications; we refer to [21] for the full details.

Building Software Watermarking. We begin by describing the high-level
blueprint introduced by Cohen et al. [21] for constructing watermarkable PRFs.1

To watermark a PRF F with key k, the marking algorithm first evaluates the
PRF on several (secret) points h1, . . . , hd to obtain values t1, . . . , td. Then, the

1 There are numerous technicalities in the actual construction, but these are not essen-
tial to understanding the main intuition.
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marking algorithm uses the values (t1, . . . , td) to derive a (pseudorandom) pair
(x∗, y∗). The watermarked program is a circuit C that on all inputs x �= x∗, out-
puts F (k, x), while on input x∗, it outputs the special value y∗. To test whether
a program C ′ is marked or not, the verification algorithm first evaluates C ′ on
the secret points h1, . . . , hd. It uses the function evaluations to derive the test
pair (x∗, y∗). Finally, it evaluates the program at x∗ and outputs “marked” if
C ′(x∗) = y∗; otherwise, it outputs “unmarked.” For this scheme to be secure
against arbitrary removing strategies, it must be the case that the watermarked
circuit C hides the marked point x∗ from the adversary. Moreover, the value y∗

at the “reprogrammed” point should not be easily identifiable. Otherwise, an
adversary can trivially defeat the watermarking scheme by simply producing a
circuit that behaves just like C, but outputs ⊥ whenever it is queried on the
special point x∗. In some sense, security requires that the point x∗ is carefully
embedded within the description of the watermarked program such that no effi-
cient adversary is able to identify it (or even learn partial information about it).
This apparent need to embed a secret within a piece of code is reminiscent of
program obfuscation, so not surprisingly, the existing constructions of software
watermarking all rely on indistinguishability obfuscation.

Puncturable and Programmable PRFs. The starting point of our con-
struction is the recent watermarking construction by Boneh et al. [12] (which
follows the Cohen et al. [21] blueprint sketched above). In their work, they first
introduce the notion of a private puncturable PRF. In a regular puncturable
PRF [14,15,33], the holder of the PRF key can issue a “punctured” key skx∗

such that skx∗ can be used to evaluate the PRF everywhere except at a sin-
gle point x∗. In a private puncturable PRF, the punctured key skx∗ also hides
the punctured point x∗. Intuitively, private puncturing seems to get us partway
to the goal of constructing a watermarkable family of PRFs according to the
above blueprint. After all, a private puncturable PRF allows issuing keys that
agree with the real PRF almost everywhere, and yet, the holder of the punctured
key cannot tell which point was punctured. Unfortunately, standard puncturable
PRFs do not provide an efficient algorithm for testing whether a particular point
is punctured or not, and thus, we do not have a way to determine (given just
oracle access to the program) whether the program is marked or not.

To bridge the gap between private puncturable PRFs and watermarkable
PRFs, Boneh et al. introduced a stronger notion called a private programmable
PRF, which allows for arbitrary reprogramming of the PRF value at the punc-
tured point. This modification allows them to instantiate the Cohen et al. blue-
print for watermarking. However, private programmable PRFs seem more diffi-
cult to construct than a private puncturable PRF, and the construction in [12]
relies on indistinguishability obfuscation. In contrast, Boneh et al. [10] as well
as Canetti and Chen [19] have recently showed how to construct private punc-
turable PRFs (and in the case of [19], private constrained PRFs for NC1) from
standard lattice assumptions.
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1.2 Our Contributions

While the high-level framework of Cohen et al. [21] provides an elegant app-
roach for building watermarkable PRFs (and by extension, other cryptographic
functionalities), realizing it without relying on some form of obfuscation is chal-
lenging. Our primary contribution in this work is showing that it is possible
to construct a watermarkable family of PRFs (in the secret-key setting) while
only relying on standard lattice assumptions (namely, on the subexponential
hardness of LWE and 1D-SIS). Thus, this work gives the first construction of
a mathematically-sound watermarking construction for a nontrivial family of
cryptographic primitives from standard assumptions. In this section, we give a
brief overview of our main construction and results. Then, in Sect. 2, we give a
more detailed technical overview of our lattice-based watermarking construction.

Relaxing Programmability. The work of Boneh et al. [12] introduces two
closely-related notions: private puncturable PRFs and private programmable
PRFs. Despite their similarities, private programmable PRFs give a direct con-
struction of watermarking while private puncturable PRFs do not seem suffi-
cient. In this work, we take a “meet-in-the-middle” approach. First, we identify
an intermediate notion that interpolates between private puncturable PRFs and
private programmable PRFs. For reasons described below, we refer to our new
primitive as a private translucent PRF. The advantages to defining this new
notion are twofold. First, we show how to augment and extend the Boneh et
al. [10] private puncturable PRF to obtain a private translucent PRF from stan-
dard lattice assumptions. Second, we show that private translucent PRFs still
suffice to instantiate the rough blueprint in [21] for building cryptographic water-
marking schemes. Together, these ingredients yield the first (secretly-verifiable)
watermarkable family of PRFs from standard assumptions.2

Private Translucent PRFs. The key cryptographic primitive we introduce in
this work is the notion of a translucent puncturable PRF. To keep the description
simple, we refer to it as a “translucent PRF” in this section. As described above,
private translucent PRFs interpolate between private puncturable PRFs and pri-
vate programmable PRFs. We begin by describing the notion of a (non-private)
translucent PRF. A translucent PRF consists of a set of public parameters pp
and a secret testing key tk. Unlike standard puncturable and programmable
PRFs, each translucent PRF (specified by (pp, tk)) defines an entire family of
puncturable PRFs over a domain X and range Y, and which share a common set
of public parameters. More precisely, translucent PRFs implement a SampleKey
algorithm which, on input the public parameters pp, samples a PRF key k from
the underlying puncturable PRF family. The underlying PRF family associated
with pp is puncturable, so all of the keys k output by SampleKey can be punc-
tured.

2 Another approach for building a watermarkable family of PRFs is to directly con-
struct a private programmable PRF (from standard assumptions) and then invoke
the construction in [12]. We discuss this approach at the end of this section.
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The defining property of a translucent PRF is that when a punctured key skx∗

(derived from some PRF key k output by SampleKey) is used to evaluate the PRF
at the punctured point x∗, the resulting value lies in a specific subset S ⊂ Y.
Moreover, when the punctured key skx∗ is used to evaluate at any non-punctured
point x �= x∗, the resulting value lies in Y \ S with high probability. The partic-
ular subset S is global to all PRFs in the punctured PRF family, and moreover,
is uniquely determined by the public parameters of the overall translucent PRF.
The second requirement we require of a translucent PRF is that the secret testing
key tk can be used to test whether a particular value y ∈ Y lies in the subset S
or not. In other words, given only the evaluation output of a punctured key skx∗

on some input x, the holder of the testing key can efficiently tell whether x = x∗

(without any knowledge of skx∗ or its associated PRF key k).
In a private translucent PRF, we impose the additional requirement that

the underlying puncturable PRF family is privately puncturable (that is, the
punctured keys also hide the punctured point). An immediate consequence of
the privacy requirement is that whenever a punctured key is used to evaluate
the PRF at a punctured point, the output value (contained in S) should look
indistinguishable from a random value in the range Y. If elements in S are
easily distinguishable from elements in Y \ S (without tk), then an adversary
can efficiently test whether a punctured key is punctured at a particular point
x, thus breaking privacy. In particular, this means that S must be a sparse
hidden subset of Y such that anyone who does not possess the testing key tk
cannot distinguish elements in S from elements in Y. Anyone who possesses
the testing key, however, should be able to tell whether a particular element is
contained in S or not. Moreover, all of these properties should hold even though
it is easy to publicly sample elements from S (the adversary can always sample a
PRF key k using SampleKey, puncture k at any point x∗, and then evaluate the
punctured key at x∗). Sets S ⊂ Y that satisfy these properties were referred to
as “translucent sets” in the work of Canetti et al. [20] on constructing deniable
encryption. In our setting, the outputs of the punctured PRF keys in a private
translucent PRF precisely implement a translucent set system, hence the name
“translucent PRF.”

From Private Translucency to Watermarking. Once we have a private
translucent PRF, it is fairly straightforward to obtain from it a family of
watermarkable PRFs. Our construction roughly follows the high-level blueprint
described in [21]. Take any private translucent PRF with public parameters pp
and testing key tk. We now describe a (secretly-verifiable) watermarking scheme
for the family of private puncturable PRFs associated with pp. The watermark-
ing secret key consists of several randomly chosen domain elements h1, . . . , hd ∈ X
and the testing key tk for the private translucent PRF. To watermark a PRF key
k (output by SampleKey), the marking algorithm evaluates the PRF on h1, . . . , hd

and uses the outputs to derive a special point x∗ ∈ X . The watermarked key skx∗

is the key k punctured at the point x∗. By definition, this means that if the water-
marked key skx∗ is used to evaluate the PRF at x∗, then the resulting value lies
in the hidden sparse subset S ⊆ Y specific to the private translucent PRF.
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To test whether a particular program (i.e., circuit) is marked, the verification
algorithm first evaluates the circuit at h1, . . . , hd. Then, it uses the evaluations
to derive the special point x∗. Finally, the verification algorithm evaluates the
program at x∗ to obtain a value y∗. Using the testing key tk, the verification
algorithm checks to see if y∗ lies in the hidden set S associated with the public
parameters of the private translucent PRF. Correctness follows from the fact that
the punctured key is functionality-preserving (i.e., computes the PRF correctly
at all but the punctured point). Security of the watermarking scheme follows
from the fact that the watermarked key hides the special point x∗. Furthermore,
the adversary cannot distinguish the elements of the hidden set S from random
elements in the range Y. Intuitively then, the only effective way for the adversary
to remove the watermark is to change the behavior of the marked program on
many points (i.e., at least one of h1, . . . , hd, x

∗). But to do so, we show that such
an adversary necessarily corrupts the functionality on a noticeable fraction of
the domain. In Sect. 6, we formalize these notions and show that every private
translucent PRF gives rise to a watermarkable family of PRFs. In fact, we show
that starting from private translucent PRFs, we obtain a watermarkable family of
PRFs satisfying a stronger notion of mark-unremovability security compared to
the construction in [12]. We discuss this in greater detail in Sect. 6 (Remark 6.8).

Message-Embedding via t-Puncturing. Previous watermarking constructions [12,
21] also supported a stronger notion of watermarking called “message-
embedding” watermarking. In a message-embedding scheme, the marking algo-
rithm also takes as input a message m ∈ {0, 1}t and outputs a watermarked
program with the message m embedded within it. The verification algorithm
is replaced with an extraction algorithm that takes as input a watermarked
program (and in the secret-key setting, the watermarking secret key), and
either outputs “unmarked” or the embedded message. The unremovability prop-
erty is strengthened to say that given a program with an embedded message
m, the adversary cannot produce a similar program on which the extraction
algorithm outputs something other than m. Existing watermarking construc-
tions [12,21] leverage reprogrammability to obtain a message-embedding water-
marking scheme—that is, the program’s outputs on certain special inputs are
modified to contain a (blinded) version of m (which the verification algorithm
can then extract).

A natural question is whether our construction based on private translucent
PRFs can be extended to support message-embedding. The key barrier seems
to be the fact that private translucent PRFs do not allow much flexibility in
programming the actual value to which a punctured key evaluates on a punctured
point. We can only ensure that it lies in some translucent set S. To achieve
message-embedding watermarking, we require a different method of embedding
the message. Our solution contains two key ingredients:

– First, we introduce a notion of private t-puncturable PRFs, which is a nat-
ural extension of puncturing where the punctured keys are punctured on
a set of exactly t points in the domain rather than a single point. Fortu-
nately, for small values of t (i.e., polynomial in the security parameter), our
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private translucent PRF construction (Sect. 5) can be modified to support
keys punctured at t points rather than a single point. The other properties
of translucent PRFs remain intact (i.e., whenever a t-punctured key is used
to evaluate at any one of the t punctured points, the result of the evaluation
lies in the translucent subset S ⊂ Y).

– To embed a message m ∈ {0, 1}t, we follow the same blueprint as before, but
instead of deriving a single special point x∗, the marking algorithm instead
derives 2 · t (pseudorandom) points x

(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t . The watermarked

key is a t-punctured key, where the t points are chosen based on the bits
of the message. Specifically, to embed a message m ∈ {0, 1}t into a PRF
key k, the marking algorithm punctures k at the points x

(m1)
1 , . . . , x

(mt)
t . The

extraction procedure works similarly to the verification procedure in the basic
construction. It first evaluates the program on the set of (hidden) inputs, and
uses the program outputs to derive the values x

(b)
i for all i = 1, . . . , t and

b ∈ {0, 1}. For each index i = 1, . . . , t, the extraction algorithm tests whether
the program’s output at x

(0)
i or x

(1)
i lies within the translucent set S. In this

way, the extraction algorithm is able to extract the bits of the message.

Thus, without much additional overhead (i.e., proportional to the bit-length of
the embedded messages), we obtain a message-embedding watermarking scheme
from standard lattice assumption.

Constructing Translucent PRFs. Another technical contribution in this
work is a new construction of a private translucent PRF (that supports
t-puncturing) from standard lattice assumptions. The starting point of our pri-
vate translucent PRF construction is the private puncturable PRF construction
of Boneh et al. [10]. We provide a detailed technical overview of our algebraic
construction in Sect. 2, and the concrete details of the construction in Sect. 5.
Here, we provide some intuition on how we construct a private translucent PRF
(for the simpler case of puncturing). Recall first that the construction of Boneh et
al. gives rise to a PRF with output space Z

m
p . In our private translucent PRF

construction, the translucent set is chosen to be a random noisy 1-dimensional
subspace within Z

m
p . By carefully exploiting the specific algebraic structure of

the Boneh et al. PRF, we ensure that whenever an (honestly-generated) punc-
tured key is used to evaluate on a punctured point, the evaluation outputs a
vector in this random subspace (with high probability). The testing key simply
consists of a vector that is essentially orthogonal to the hidden subspace. Of
course, it is critical here that the hidden subspace is noisy. Otherwise, since the
adversary is able to obtain arbitrary samples from this subspace (by generating
and puncturing keys of its own), it can trivially learn the subspace, and thus,
efficiently decide whether a vector lies in the subspace or not. Using a noisy sub-
space enables us to appeal to the hardness of LWE and 1D-SIS to argue security
of the overall construction. We refer to the technical overview in Sect. 2 and the
concrete description in Sect. 5 for the full details.

An Alternative Approach. An alternative method for constructing a water-
markable family of PRFs is to construct a private programmable PRF from
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standard assumptions and apply the construction in [12]. For instance, suppose
we had a private puncturable PRF with the property that the value obtained
when using a punctured key to evaluate at a punctured point varies depend-
ing on the randomness used in the puncturing algorithm. This property can be
used to construct a private programmable PRF with a single-bit output. Specif-
ically, one can apply rejection sampling when puncturing the PRF to obtain a
key with the desired value at the punctured point. To extend to multiple out-
put bits, one can concatenate the outputs of several single-bit programmable
PRFs. In conjunction with the construction in [12], this gives another approach
for constructing a watermarkable family of PRFs (though satisfying a weaker
security definition as we explain below). The existing constructions of private
puncturable PRFs [10,19], however, do not naturally satisfy this property. While
the puncturing algorithms in [10,19] are both randomized, the value obtained
when using the punctured key to evaluate at the punctured point is independent
of the randomness used during puncturing. Thus, this rejection sampling app-
roach does not directly yield a private programmable PRF, but may provide an
alternative starting point for future constructions.

In this paper, our starting point is the Boneh et al. [10] private puncturable
PRF, and one of our main contributions is showing how the “matrix-embedding-
based” constrained PRFs in [10,17] (and described in Sect. 2) can be used to
construct watermarking.3 One advantage of our approach is that our private
translucent PRF satisfies key-injectivity (a property that seems non-trivial to
achieve using the basic construction of private programmable PRFs described
above). This property enables us to achieve a stronger notion of security for
watermarking compared to that in [12]. We refer to Sect. 4 (Definition 4.14) and
Remark 6.8 for a more thorough discussion. A similar notion of key-injectivity
was also needed in [21] to argue full security of their watermarking construc-
tion. Moreover, the translucent PRFs we support allow (limited) programming
at polynomially-many points, while the rejection-sampling approach described
above supports programming of at most logarithmically-many points. Although
this distinction is not important for watermarking, it may enable future applica-
tions of translucent PRFs. Finally, we note that our translucent PRF construc-
tion can also be viewed as a way to randomize the constraining algorithm of the
PRF construction in [10,17], and thus, can be combined with rejection sampling
to obtain a programmable PRF.

Open Problems. Our work gives a construction of secretly-verifiable water-
markable family of PRFs from standard assumptions. Can we construct a
publicly-verifiable watermarkable family of PRFs from standard assumptions? A
first step might be to construct a secretly-verifiable watermarking scheme that
gives the adversary access to an “extraction” oracle. The only watermarking
schemes (with security against arbitrary removal strategies) that satisfy either
one of these goals are due to Cohen et al. [21] and rely on indistinguishability
obfuscation. Another direction is to explore additional applications of private
3 In contrast, the Canetti-Chen constrained PRF construction [19] builds on secure

modes of operation of the Gentry et al. multilinear map [26].
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translucent PRFs and private programmable PRFs. Can these primitives be
used to base other cryptographic objects on standard assumptions?

1.3 Additional Related Work

Much of the early (and ongoing) work on digital watermarking have focused
on watermarking digital media, such as images or video. These constructions
tend to be ad hoc, and lack a firm theoretical foundation. We refer to [22]
and the references therein for a comprehensive survey of the field. The work
of Hopper et al. [31] gives the first formal and rigorous definitions for a digital
watermarking scheme, but they do not provide any concrete constructions. In the
same work, Hopper et al. also introduce the formal notion of secretly-verifiable
watermarking, which is the focus of this work.

Early works on cryptographic watermarking [35,36,40] gave construc-
tions that achieved mark-unremovability against adversaries who could only
make a restricted set of modifications to the marked program. The work of
Nishimaki [36] showed how to obtain message-embedding watermarking using
a bit-by-bit embedding of the message within a dual-pairing vector space (spe-
cific to his particular construction). Our message-embedding construction in this
paper also takes a bit-by-bit approach, but our technique is more general: we
show that any translucent t-puncturable PRF suffices for constructing a water-
markable family of PRFs that supports embedding t-bit messages.

In a recent work, Nishimaki et al. [37] show how to construct a traitor tracing
scheme where arbitrary data can be embedded within a decryption key (which
can be recovered by a tracing algorithm). While the notion of message-embedding
traitor tracing is conceptually similar to software watermarking, the notions are
incomparable. In a traitor-tracing scheme, there is a single decryption key and
a central authority who issues the marked keys. Conversely, in a watermark-
ing scheme, the keys can be chosen by the user, and moreover, different keys
(implementing different functions) can be watermarked.

PRFs from LWE. The first PRF construction from LWE was due to Baner-
jee et al. [5]. Subsequently, [4,11] gave the first lattice-based key-homomorphic
PRFs. These constructions were then generalized to the setting of constrained
PRFs in [3,10,17]. Recently, Canetti and Chen [19] showed how certain secure
modes of operation of the multilinear map by Gentry et al. [26] can be used
to construct a private constrained PRF for the class of NC1 constraints (with
hardness reducing to the LWE assumption).

ABE and PE from LWE. The techniques used in this work build on a series of
works in the areas of attribute-based encryption [39] and predicate encryption [13,
32] from LWE. These include the attribute-based encryption constructions of
[1,9,16,18,28,30], and predicate encryption constructions of [2,24,29].4

4 We note that the LWE-based predicate encryption constructions satisfy a weaker
security property (compared to [13,32]) sometimes referred to as weak attribute-
hiding.
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2 Construction Overview

In this section, we give a technical overview of our private translucent
t-puncturable PRF from standard lattice assumptions. As described in Sect. 1,
this directly implies a watermarkable family of PRFs from standard lattice
assumptions. The formal definitions, constructions and accompanying proofs of
security are given in Sects. 4 and 5. The watermarking construction is given in
Sect. 6.

The LWE Assumption. The learning with errors (LWE) assumption [38],
parameterized by n,m, q, χ, states that for a uniformly random vector s ∈ Z

n
q

and a uniformly random matrix A ∈ Z
n×m
q , the distribution (A, sTA + eT ) is

computationally indistinguishable from the uniform distribution over Z
n×m
q ×

Z
m
q , where e is sampled from a (low-norm) error distribution χ. To simplify the

presentation in this section, we will ignore the precise generation and evolution
of the error term e and just refer to it as “noise.”

Matrix Embeddings. The starting point of our construction is the recent pri-
vately puncturable PRF of Boneh, Kim, and Montgomery [10], which itself builds
on the constrained PRF construction of Brakerski and Vaikuntanathan [17]. Both
of these constructions rely on the matrix embedding mechanism introduced by
Boneh et al. [9] for constructing attribute-based encryption. In [9], an input
x ∈ {0, 1}ρ is embedded as the vector

sT
(
A1 + x1 · G | · · · | Aρ + xρ · G)

+ noise ∈ Z
mρ
q , (2.1)

where A1, . . . ,Aρ ∈ Z
n×m
q are uniformly random matrices, s ∈ Z

n
q is a uniformly

random vector, and G ∈ Z
n×m
q is a special fixed matrix (called the “gadget

matrix”). Embedding the inputs in this way enables homomorphic operations on
the inputs while keeping the noise small. In particular, given an input x ∈ {0, 1}ρ

and any polynomial-size circuit C : {0, 1}ρ → {0, 1}, there is a public operation
that allows computing the following vector from Eq. (2.1):

sT
(
AC + C(x) · G)

+ noise ∈ Z
m
q , (2.2)

where the matrix AC ∈ Z
n×m
q depends only on the circuit C, and not on the

underlying input x. Thus, we can define a homomorphic operation Evalpk on the
matrices A1, . . . ,Aρ where on input a sequence of matrices A1, . . . ,Aρ and a
circuit C, Evalpk(C,A1, . . . ,Aρ) → AC .

A Puncturable PRF from LWE. Brakerski and Vaikuntanathan [17] showed
how the homomorphic properties in [9] can be leveraged to construct a (single-
key) constrained PRF for general constraints. Here, we provide a high-level
description of their construction specialized to the case of puncturing. First,
let eq be the equality circuit where eq(x∗, x) = 1 if x∗ = x and 0 otherwise. The
public parameters5 of the scheme in [17] consist of randomly generated matrices

5 Since a constrained PRF is a secret-key primitive, we can always include the public
parameters as part of the secret key. However, in the lattice-based constrained PRF
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A0,A1 ∈ Z
n×m
q for encoding the PRF input x and matrices B1, . . .Bρ ∈ Z

n×m
q

for encoding the punctured point x∗. The secret key for the PRF is a vector
s ∈ Z

n
q . Then, on input a point x ∈ {0, 1}ρ, the PRF value at x is defined to be

PRF(s, x) := �sT · Aeq,x�p where Aeq,x := Evalpk(eq,B1, . . . ,Bρ,Ax1 , . . . ,Axρ),

where A0,A1,B1, . . . ,Bρ ∈ Z
n×m
q are the matrices in the public parameters,

and �·	p is the component-wise rounding operation that maps an element in Zq

to an element in Zp where p < q. By construction, Aeq,x is a function of x.
To puncture the key s at a point x∗ ∈ {0, 1}ρ, the construction in [17] gives

out the vector

sT · (A0 + 0 · G | A1 + 1 · G | B1 + x∗
1 · G | · · · | Bρ + x∗

ρ · G)
+ noise. (2.3)

To evaluate the PRF at a point x ∈ {0, 1}ρ using a punctured key, the user first
homomorphically evaluates the equality circuit eq on input (x∗, x) to obtain the
vector sT

(
Aeq,x + eq(x∗, x) · G)

+ noise. Rounding down this vector yields the
correct PRF value whenever eq(x∗, x) = 0, or equivalently, whenever x �= x∗,
as required for puncturing. As shown in [17], this construction yields a secure
(though non-private) puncturable PRF from LWE with some added modifica-
tions.

Private Puncturing. The reason the Brakerski-Vaikuntanathan puncturable
PRF described here does not provide privacy (that is, hide the punctured point)
is because in order to operate on the embedded vectors, the evaluator needs
to know the underlying inputs. In other words, to homomorphically compute
the equality circuit eq on the input (x∗, x), the evaluator needs to know both x
and x∗. However, the punctured point x∗ is precisely the information we need
to hide. Using an idea inspired by the predicate encryption scheme of Gorbunov
et al. [29], the construction of Boneh et al. [10] hides the point x∗ by first
encrypting it using a fully homomorphic encryption (FHE) scheme [25] before
applying the matrix embeddings of [9]. Specifically, in [10], the punctured key
has the following form:

sT · (A0 + 0 · G | A1 + 1 · G | B1 + ct1 · G | · · · | Bz + ctz · G
| C1 + sk1 · G | · · · | Cτ + skτ · G)

+ noise,

where ct1, . . . , ctz are the bits of an FHE encryption ct of the punctured point x∗,
and sk1, . . . , skτ are the bits of the FHE secret key sk. Given the ciphertext ct,
the evaluator can homomorphically evaluate the equality circuit eq and obtain an
FHE encryption of eq(x∗, x). Next, by leveraging an “asymmetric multiplication
property” of the matrix encodings, the evaluator is able to compute the inner

constructions [3,10,17], the public parameters can be sampled once and shared across
multiple independent secret keys. Our construction of translucent PRFs will rely on
choosing the public parameter matrices to have a certain structure that is shared
across multiple secret keys.
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product between the encrypted result with the decryption key sk.6 Recall that
for lattice-based FHE schemes (e.g. [27]), decryption consists of evaluating a
rounded inner product of the ciphertext with the decryption key. Specifically, the
inner product between the ciphertext and the decryption key results in q

2+e ∈ Zq

for some “small” error term e.
Thus, it remains to show how to perform the rounding step in the FHE

decryption. Simply computing the inner product between the ciphertext and the
secret key results in a vector

sT
(
AFHE,eq,x +

(q

2
· eq(x∗, x) + e

)
· G

)
+ noise,

where e is the FHE noise (for simplicity, by FHE, we always refer to the spe-
cific construction of [27] and its variants hereafter). Even though the error e is
small, neither s nor G are low-norm and therefore, the noise does not simply
round away. The observation made in [10], however, is that the gadget matrix G
contains some low-norm column vectors, namely the identity matrix I as a sub-
matrix. By restricting the PRF evaluation to just these columns and sampling
the secret key s from the low-norm noise distribution, they show that the FHE
error term sT · e · I can be rounded away. Thus, by defining the PRF evaluation
to only take these specific column positions of

PRF(s, x) := �sTAFHE,eq,x	p,

it is possible to recover the PRF evaluation from the punctured key if and only
if eq(x∗, x) = 0.7

Trapdoor at Punctured Key Evaluations. We now describe how we extend
the private puncturing construction in [10] to obtain a private translucent punc-
turable PRF where a secret key can be used to test whether a value is the result
of using a punctured key to evaluate at a punctured point. We begin by describ-
ing an alternative way to perform the rounding step of the FHE decryption in the
construction of [10]. First, consider modifying the PRF evaluation at x ∈ {0, 1}ρ

to be
PRF(s, x) := �sTAFHE,eq,x · G−1(D)	p,

6 Normally, multiplication of two inputs requires knowledge of both of the underlying
inputs. The “asymmetry” in the embedding scheme of [9] enables multiplications to
be done even if only one of the values to be multiplied is known to the evaluator. In
the case of computing an inner product between the FHE ciphertext and the FHE
secret key, the evaluator knows the bits of the ciphertext, but not the FHE secret
key. Thus, the asymmetry enables the evaluator to homomorphically evaluate the
inner product without knowledge of the FHE secret key.

7 To actually show that the challenge PRF evaluation is pseudorandom at the punc-
tured point, additional modifications must be made such as introducing extra ran-
domizing terms and collapsing the final PRF evaluation to be field elements instead
of vectors. We refer to [10] for the full details.
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where D ∈ Z
n×m
q is a public binary matrix and G−1 is the component-wise bit-

decomposition operator on matrices in Z
n×m
q .8 The gadget matrix G is defined

so that for any matrix A ∈ Z
n×m
q , G · G−1(A) = A. Then, if we evaluate the

PRF using the punctured key and multiply the result by G−1(D), we obtain the
following:

(
sT
(
AFHE,eq,x +

(q

2
· eq(x∗, x) + e

)
· G

)
+ noise

)
G−1(D)

= sT
(
AFHE,eq,xG−1(D) +

(q

2
· eq(x∗, x) + e

)
· D

)

︸ ︷︷ ︸
ÃFHE,eq,x

+noise′

= sT ÃFHE,eq,x + noise′

Since D is a low-norm (in fact, binary) matrix, the FHE error component sT ·
e · D is short, and thus, will disappear when we round. Therefore, whenever
eq(x∗, x) = 0, we obtain the real PRF evaluation.

The key observation we make is that the algebraic structure of the PRF
evaluation allows us to “program” the matrix ÃFHE,eq,x whenever eq(x∗, x) = 1
(namely, when the punctured key is used to evaluate at the punctured point).
As described here, the FHE ciphertext decrypts to q/2+e when the message is 1
and e when the message is 0 (where e is a small error term). In the FHE scheme
of [27] (and its variants), it is possible to encrypt scalar elements in Zq, and more-
over, to modify the decryption operation so that it outputs the encrypted scalar
element (with some error). In other words, decrypting a ciphertext encrypting
w ∈ Zq would yield a value w + e for some small error term e. Then, in the PRF
construction, instead of encrypting the punctured point x∗, we encrypt a tuple
(x∗, w) where w ∈ Zq is used to program the matrix ÃFHE,eq,x.9 Next, we replace
the basic equality function eq in the construction with a “scaled” equality func-
tion that on input (x, (x∗, w)), outputs w if x = x∗, and 0 otherwise. With these
changes, evaluating the punctured PRF at a point x now yields:10

sT
(
AFHE,eq,xG−1(D) + (w · eq(x∗, x) + e) · D)

+ noise.

Since w can be chosen arbitrarily when the punctured key is constructed,
a natural question to ask is whether there exists a w such that the matrix
AFHE,eq,xG−1(D) + w · D has a particular structure. This is not possible if w is
a scalar, but if there are multiple w’s, this becomes possible.

8 Multiplying by the matrix G−1(D) can be viewed as an alternative way to restrict
the PRF to the column positions corresponding to the identity submatrix in G.

9 A similar construction is used in [10] to show security. In their construction, they
sample and encrypt a random set of w’s and use them to blind the real PRF value
at the punctured point.

10 To reduce notational clutter, we redefine the matrix AFHE,eq,x here to be the matrix
associated with homomorphic evaluation of the scaled equality-check circuit.
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To support programming of the matrix ÃFHE,eq,x, we first take N = m · n
(public) binary matrices D� ∈ {0, 1}n×m where the collection {D�}�∈[N ] is
a basis for the module Z

n×m
q (over Zq). This means that any matrix in

Z
n×m
q can be expressed as a unique linear combination

∑
�∈[N ] w�D� where

w = (w1, . . . , wN ) ∈ Z
N
q are the coefficients. Then, instead of encrypting a

single element w in each FHE ciphertext, we encrypt a vector w of coefficients.
The PRF output is then a sum of N different PRF evaluations:

PRF(s, x) :=

⎢
⎢
⎢
⎣
∑

�∈[N ]

sTAFHE,eq�,xG−1(D�)

⎤

⎥
⎥
⎥

p

,

where the �th PRF evaluation is with respect to the circuit eq� that takes as
input a pair (x, (x∗,w)) and outputs w� if x = x∗ and 0 otherwise. If we now
consider the corresponding computation using the punctured key, evaluation at
x yields the vector

∑

�∈[N ]

sT
(
AFHE,eq�,xG−1(D�) + (w� · eq(x∗, x) + e) · D�

)
+ noise (2.4)

The key observation is that for any matrix W ∈ Z
n×m
q , the puncturing algorithm

can choose the coefficients w ∈ Z
N
q so that

W =

⎛

⎝
∑

�∈[N ]

AFHE,eq�,x∗G−1(D�)

⎞

⎠ +
∑

�∈[N ]

w� · D�. (2.5)

Next, we choose W to be a lattice trapdoor matrix with associated trapdoor
z (i.e., Wz = 0 mod q). From Eqs. (2.4) and (2.5), we have that whenever a
punctured key is used to evaluate the PRF at the punctured point, the result is
a vector of the form

⌊
sTW

⌉
p

∈ Z
m
p . Testing whether a vector y is of this form

can be done by computing the inner product of y with the trapdoor vector z
and checking if the result is small. In particular, when y = �sTW	p, we have
that 〈�sTW	p, z

〉 ≈ �sTWz	p = 0.

In our construction, the trapdoor matrix W is chosen independently of the PRF
key s, and included as part of the public parameters. To puncture a key s,
the puncturing algorithm chooses the coefficients w such that Eq. (2.5) holds.
This allows us to program punctured keys associated with different secret keys
si to the same trapdoor matrix W. The underlying “translucent set” then is
the set of vectors of the form �sT

i W	p. Under the LWE assumption, this set is
indistinguishable from random. However, as shown above, using a trapdoor for
W, it is easy to determine if a vector lies in this set. Thus, we are able to embed
a noisy hidden subspace within the public parameters of the translucent PRF.

We note here that our construction is not expressive enough to give a pro-
grammable PRF in the sense of [12], because we do not have full control of
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the value y ∈ Z
m
p obtained when using the punctured key to evaluate at the

punctured point. We only ensure that y lies in a hidden (but efficiently testable)
subspace of Z

m
p . As we show in Sect. 6, this notion suffices for watermarking.

Puncturing at Multiple Points. The construction described above yields a
translucent puncturable PRF. As noted in Sect. 1, for message-embedding water-
marking, we require a translucent t-puncturable PRF. While we can trivially
build a t-puncturable PRF from t instances of a puncturable PRF by xoring the
outputs of t independent puncturable PRF instances, this construction does not
preserve translucency. Notably, we can no longer detect whether a punctured key
was used to evaluate the PRF at one of the punctured points. Instead, to pre-
serve the translucency structure, we construct a translucent t-puncturable PRF
by defining it to be the sum of multiple independent PRFs with different (pub-
lic) parameter matrices, but sharing the same secret key. Then, to puncture at t
different points we first encrypt each of the t punctured points x∗

1, . . . , x
∗
t , each

with its own set of coefficient vectors w1, . . . ,wt to obtain t FHE ciphertexts
ct1, . . . , ctt. The constrained key then contains the following components:

sT · (A0 + 0 · G | A1 + 1 · G | B1,1 + ct1,1 · G | · · · | Bt,z + ctt,z · G
| C1 + sk1 · G | · · · | Cτ + skτ · G)

+ noise.

To evaluate the PRF at a point x ∈ {0, 1}ρ using the constrained key, one
evaluates the PRF on each of the t instances, that is, for all i ∈ [t],

sT

⎛

⎝
∑

�∈[N ]

AFHE,eq�,i,xG−1(D�) + eq(x∗
i , x) ·

∑

�∈[N ]

wi,� · D�

⎞

⎠ + noise′.

The output of the PRF is the (rounded) sum of these evaluations:

sT

⎛

⎜
⎜
⎝

∑

i∈[t]
�∈[N ]

(
AFHE,eq�,i,xG−1(D�)

)
+
∑

i∈[t]

⎛

⎝eq(x∗
i , x) ·

∑

�∈[N ]

wi,� · D�

⎞

⎠

⎞

⎟
⎟
⎠ + noise′.

Similarly, the real value of the PRF is the (rounded) sum of the t independent
PRF evaluations:

PRF(s, x) :=

⎢
⎢
⎢
⎢
⎢
⎣s

T
∑

i∈[t]
�∈[N ]

AFHE,eq�,i,xG−1(D�)

⎤

⎥
⎥
⎥
⎥
⎥

p

.

If the point x is not one of the punctured points, then eq(x∗
i , x) = 0 for all i ∈ [t]

and one recovers the real PRF evaluation at x. If x is one of the punctured points
(i.e., x = x∗

i for some i ∈ [t]), then the PRF evaluation using the punctured key
yields the vector
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sT

⎛

⎜
⎜
⎝

∑

i∈[t]
�∈[N ]

(
AFHE,eq�,i,xG−1(D�)

)
+ eq(x∗

i , x) ·
∑

�∈[N ]

wi,� · D�

⎞

⎟
⎟
⎠ + noise′.

and as before, we can embed trapdoor matrices Wi∗ for all i∗ ∈ [t] by choosing
the coefficient vectors wi∗ = (wi∗,1, . . . , wi∗,N ) ∈ Z

N
q accordingly:11

Wi∗ =
∑

i∈[t]
�∈[N ]

(
AFHE,eq�,i,x∗

i∗G
−1(D�)

)
+

∑

�∈[N ]

wi∗,� · D�.

A Technical Detail. In the actual construction in Sect. 5.1, we include an
additional “auxiliary matrix” Â in the public parameters and define the PRF
evaluation as the vector

PRF(s, x) :=

⎢
⎢
⎢
⎢
⎢
⎣s

T

⎛

⎜
⎜
⎝Â +

∑

i∈[t]
�∈[N ]

AFHE,eq�,i,xG−1(D�)

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥

p

.

The presence of the additional matrix Â does not affect pseudorandomness, but
facilitates the argument for some of our other security properties. We give the
formal description of our scheme as well as the security analysis in Sect. 5.

3 Preliminaries

We begin by introducing some of the notation we use in this work. For an integer
n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For a distribution D,
we write x ← D to denote that x is sampled from D; for a finite set S, we write
x

r← S to denote that x is sampled uniformly from S. We write Funs[X ,Y] to
denote the set of all functions mapping from a domain X to a range Y. For a
finite set S, we write 2S to denote the power set of S, namely the set of all
subsets of S.

Unless specified otherwise, we use λ to denote the security parameter. We
say a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc)
for all c ∈ N. We say that an event happens with overwhelming probability
if its complement happens with negligible probability. We say an algorithm is
efficient if it runs in probabilistic polynomial time in the length of its input. We
use poly(λ) to denote a quantity whose value is bounded by a fixed polynomial
in λ, and polylog(λ) to denote a quantity whose value is bounded by a fixed
polynomial in log λ (that is, a function of the form logc λ for some c ∈ N). We
say that a family of distributions D = {Dλ}λ∈N is B-bounded if the support of

11 For the punctured keys to hide the set of punctured points, we need a different
trapdoor matrix for each punctured point. We provide the full details in Sect. 5.
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D is {−B, . . . , B − 1, B} with probability 1. For two families of distributions
D1 and D2, we write D1

c≈ D2 if the two distributions are computationally
indistinguishable (that is, no efficient algorithm can distinguish D1 from D2,
except with negligible probability). We write D1

s≈ D2 if the two distributions
are statistically indistinguishable (that is, the statistical distance between D1

and D2 is negligible).

Vectors and Matrices. We use bold lowercase letters (e.g., v,w) to denote
vectors and bold uppercase letter (e.g., A,B) to denote matrices. For two vectors
v,w, we write IP(v,w) = 〈v,w〉 to denote the inner product of v and w. For a
vector s or a matrix A, we use sT and AT to denote their transposes, respectively.
For an integer p ≤ q, we define the modular “rounding” function

�·	p : Zq → Zp that maps x → �(p/q) · x	
and extend it coordinate-wise to matrices and vectors over Zq. Here, the opera-
tion �·	 is the rounding operation over the real numbers.

In the full version of this paper [34], we also review the definition of a pseudo-
random function and provide some background on the lattice-based techniques
that we use in this work.

4 Translucent Constrained PRFs

In this section, we formally define our notion of a translucent constrained PRFs.
Recall first that in a constrained PRF [14], the holder of the master secret key
for the PRF can issue constrained keys which enable PRF evaluation on only the
points that satisfy the constraint. Now, each translucent constrained PRF actu-
ally defines an entire family of constrained PRFs (see the discussion in Sect. 1.2
and Remark 4.2 for more details). Moreover, this family of constrained PRFs
has the special property that the constraining algorithm embeds a hidden sub-
set. Notably, this hidden subset is shared across all PRF keys in the constrained
PRF family; the hidden subset is specific to the constrained PRF family, and is
determined wholly by the parameters of the particular translucent constrained
PRF. This means that whenever an (honestly-generated) constrained key is used
to evaluate at a point that does not satisfy the constraint, the evaluation lies
within this hidden subset. Furthermore, the holder of the constrained key is
unable to tell whether a particular output value lies in the hidden subset or not.
However, anyone who possesses a secret testing key (specific to the translucent
constrained PRF) is able to identify whether a particular value lies in the hidden
subset or not. In essence then, the set of outputs of all of the constrained keys
in a translucent constrained PRF system defines a translucent set in the sense
of [20]. We now give our formal definitions.

Definition 4.1 (Translucent Constrained PRF). Let λ be a security
parameter. A translucent constrained PRF with domain X and range Y is
a tuple of algorithms ΠTPRF = (TPRF.Setup,TPRF.SampleKey,TPRF.Eval,
TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) with the following properties:
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– TPRF.Setup(1λ) → (pp, tk): On input a security parameter λ, the setup algo-
rithm outputs the public parameters pp and a testing key tk.

– TPRF.SampleKey(pp) → msk: On input the public parameter pp, the key sam-
pling algorithm outputs a master PRF key msk.

– TPRF.Eval(pp,msk, x) → y: On input the public parameters pp, a master PRF
key msk and a point in the domain x ∈ X , the PRF evaluation algorithm
outputs an element in the range y ∈ Y.

– TPRF.Constrain(pp,msk, S) → skS: On input the public parameters pp, a mas-
ter PRF key msk and a set of points S ⊆ X , the constraining algorithm
outputs a constrained key skS.

– TPRF.ConstrainEval(pp, skS , x) → y: On input the public parameters pp, a
constrained key skS, and a point in the domain x ∈ X , the constrained eval-
uation algorithm outputs an element in the range y ∈ Y.

– TPRF.Test(pp, tk, y′) → {0, 1}: On input the public parameters pp, a testing
key tk, and a point in the range y′ ∈ Y, the testing algorithm either accepts
(with output 1) or rejects (with output 0).

Remark 4.2 (Relation to Constrained PRFs). Every translucent constrained
PRF defines an entire family of constrained PRFs. In other words, every set of
parameters (pp, tk) output by the setup function TPRF.Setup of a translucent
constrained PRF induces a constrained PRF family (in the sense of [14, Sect. 3.1])
for the same class of constraints. Specifically, the key-generation algorithm
for the constrained PRF family corresponds to running TPRF.SampleKey(pp).
The constrain, evaluation, and constrained-evaluation algorithms for the con-
strained PRF family correspond to TPRF.Constrain(pp, ·), TPRF.Eval(pp, ·, ·),
and TPRF.ConstrainEval(pp, ·, ·), respectively.

Correctness. We now define two notions of correctness for a translucent con-
strained PRF: evaluation correctness and verification correctness. Intuitively,
evaluation correctness states that a constrained key behaves the same as the
master PRF key (from which it is derived) on the allowed points. Verification
correctness states that the testing algorithm can correctly identify whether a
constrained key was used to evaluate the PRF at an allowed point (in which
case the verification algorithm outputs 0) or at a restricted point (in which case
the verification algorithm outputs 1). Like the constrained PRF constructions
of [10,17], we present definitions for the computational relaxations of both of
these properties.

Definition 4.3 (Correctness Experiment). Fix a security parameter λ, and
let ΠTPRF be a translucent constrained PRF (Definition 4.1) with domain X and
range Y. Let A = (A1,A2) be an adversary and let S ⊆ 2X be a set system. The
(computational) correctness experiment ExptΠTPRF,A,S is defined as follows:
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Experiment ExptΠTPRF,A,S(λ):

1. (pp, tk) ← TPRF.Setup(1λ)
2. msk ← TPRF.SampleKey(pp)
3. (S, stA) ← A1(1

λ, pp) where S ∈ S
4. Output (x, S) where x ← A2(stA, sk) and sk ← TPRF.Constrain(pp,msk, S)

Definition 4.4 (Correctness). Fix a security parameter λ, and let ΠTPRF be
a translucent constrained PRF with domain X and range Y. We say that ΠTPRF

is correct with respect to a set system S ⊆ 2X if it satisfies the following two
properties:

– Evaluation correctness: For all efficient adversaries A and setting
(x, S) ← ExptΠTPRF,A,S(λ), then

x ∈ S and TPRF.ConstrainEval(pp, skS , x) �= TPRF.Eval(pp,msk, x)

with probability negl(λ).
– Verification correctness: For all efficient adversaries A and taking

(x, S) ← ExptΠTPRF,A,S(λ), then

x ∈ X \ S and TPRF.Test(pp, tk,TPRF.ConstrainEval(pp, skS , x)) = 1

with probability 1 − negl(λ). Conversely,

x ∈ S and TPRF.Test(pp, tk,TPRF.ConstrainEval(pp, skS , x)) = 1

with probability negl(λ).

Remark 4.5 (Selective Notions of Correctness). In Definition 4.3, the adver-
sary is able to choose the set S ∈ S adaptively, that is, after seeing the public
parameters pp. We can define a weaker (but still useful) notion of selective cor-
rectness, where the adversary is forced to commit to its set S before seeing the
public parameters. The formal correctness conditions in Definition 4.4 remain
unchanged. For certain set systems (e.g., when all sets S ∈ S contain a polyno-
mial number of points), complexity leveraging [8] can be used to boost a scheme
that is selectively correct into one that is also adaptively correct, except under
a possibly super-polynomial loss in the security reduction. For constructing a
watermarkable family of PRFs (Sect. 6), a selectively-correct translucent PRF
already suffices.

Translucent Puncturable PRFs. A special case of a translucent constrained
PRF is a translucent puncturable PRF. Recall that a puncturable PRF [14,15,
33] is a constrained PRF where the constrained keys enable PRF evaluation at
all points in the domain X except at a single, “punctured” point x∗ ∈ X . We
can generalize this notion to a t-puncturable PRF, which is a PRF that can be
punctured at t different points. Formally, we define the analog of a translucent
puncturable and t-puncturable PRFs.
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Definition 4.6 (Translucent t-Puncturable PRFs). We say that a translu-
cent constrained PRF over a domain X is a translucent t-puncturable PRF if it
is constrained with respect to the set system S(t) = {S ⊆ X : |S| = |X | − t}. The
special case of t = 1 corresponds to a translucent puncturable PRF.

4.1 Security Definitions

We now introduce several security requirements a translucent constrained PRF
should satisfy. First, we require that Eval(pp,msk, ·) implements a PRF whenever
the parameters pp and msk are honestly generated. Next, we require that given
a constrained key skS for some set S, the real PRF values Eval(pp,msk, x) for
points x /∈ S remain pseudorandom. This is the notion of constrained pseudo-
randomness introduced in [14]. Using a similar argument as in [10, Appendix A],
it follows that a translucent constrained PRF satisfying constrained pseudoran-
domness is also pseudorandom. Finally, we require that the key skS output by
Constrain(pp,msk, S) hides the constraint set S. This is essentially the privacy
requirement in a private constrained PRF [12].

Definition 4.7 (Pseudorandomness). Let λ be a security parameter, and
let ΠTPRF be a translucent constrained PRF with domain X and range Y. We
say that ΠTPRF is pseudorandom if for (pp, tk) ← TPRF.Setup(1λ), the tuple
(KeyGen,Eval) is a secure PRF, where KeyGen(1λ) outputs a fresh draw k ←
TPRF.SampleKey(pp) and Eval(k, x) outputs TPRF.Eval(pp, k, x). Note that we
implicitly assume that the PRF adversary in this case also is given access to the
public parameters pp.

Definition 4.8 (Constrained Pseudorandomness Experiment). Fix a
security parameter λ, and let ΠTPRF be a translucent constrained PRF with
domain X and range Y. Let A = (A1,A2) be an adversary, S ⊆ 2X be a set
system, and b ∈ {0, 1} be a bit. The constrained pseudorandomness experiment
CExpt

(b)
ΠTPRF,A,S(λ) is defined as follows:

Experiment CExpt
(b)
ΠTPRF,A,S(λ):

1. (pp, tk) ← TPRF.Setup(1λ)
2. msk ← TPRF.SampleKey(pp)

3. (S, stA) ← ATPRF.Eval(pp,msk,·)
1 (1λ, pp) where S ∈ S

4. Output b′ ← ATPRF.Eval(pp,msk,·),Ob(·)
2 (stA, sk) where

sk ← TPRF.Constrain(pp,msk, S) and the challenge oracle Ob is defined as
follows:
– O0(·) = TPRF.Eval(pp,msk, ·)
– O1(·) = f(·) where f

r← Funs[X , Y] is chosen (and fixed) at the beginning
of the experiment.

Definition 4.9 (Constrained Pseudorandomness [14, adapted]). Fix a
security parameter λ, and let ΠTPRF be a translucent constrained PRF with
domain X and range Y. We say that an adversary A is admissible for the con-
strained pseudorandomness game if all of the queries x that it makes to the
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evaluation oracle TPRF.Eval satisfy x ∈ S and all of the queries it makes to the
challenge oracle (O0 or O1) satisfy x /∈ S.12 Then, we say that ΠTPRF satisfies
constrained pseudorandomness if for all efficient and admissible adversaries A,

∣
∣
∣Pr

[
CExpt

(0)
ΠTPRF,A,S(λ) = 1

]
− Pr

[
CExpt

(1)
ΠTPRF,A,S(λ) = 1

]∣∣
∣ = negl(λ).

Theorem 4.10 (Constrained Pseudorandomness Implies Pseudoran-
domness [10]). Let ΠTPRF be a translucent constrained PRF. If ΠTPRF satisfies
constrained pseudorandomness (Definition 4.9), then it satisfies pseudorandom-
ness (Definition 4.7).

Proof. Follows by a similar argument as that in [10, Appendix A].

Definition 4.11 (Privacy Experiment). Fix a security parameter λ, and
let ΠTPRF be a translucent constrained PRF with domain X and range Y. Let
A = (A1,A2) be an adversary, S ⊆ 2X be a set system, and b ∈ {0, 1} be a bit.
The privacy experiment PExpt(b)ΠTPRF,A,S(λ) is defined as follows:

Experiment PExpt
(b)
ΠTPRF,A,S(λ):

1. (pp, tk) ← TPRF.Setup(1λ)
2. (S0, S1, stA) ← A1(1

λ, pp) where S0, S1 ∈ S
3. skb ← TPRF.Constrain(pp,msk, Sb) where msk ← TPRF.SampleKey(pp)
4. Output b′ ← A2(stA, skb)

Definition 4.12 (Privacy [12, adapted]). Fix a security parameter λ. Let
ΠTPRF to be a translucent constrained PRF with domain X and range Y. We
say that ΠTPRF is private with respect to a set system S ⊆ 2X if for all efficient
adversaries A,

∣
∣
∣Pr

[
PExpt

(0)
ΠTPRF,A,S(λ) = 1

]
− Pr

[
PExpt

(1)
ΠTPRF,A,S(λ) = 1

]∣∣
∣ = negl(λ).

Remark 4.13 (Selective vs. Adaptive Security). We say that a scheme satisfying
Definition 4.9 or Definition 4.12 is adaptively secure if the adversary chooses the
set S (or sets S0 and S1) after seeing the public parameters pp for the translucent
constrained PRF scheme. As in Definition 4.5, we can define a selective notion of
security where the adversary commits to its set S (or S0 and S1) at the beginning
of the game before seeing the public parameters.

Key Injectivity. Another security notion that becomes useful in the context of
watermarking is the notion of key injectivity. Intuitively, we say a family of PRFs

12 In the standard constrained pseudorandomness game introduced in [14], the adver-
sary is also allowed to make evaluation queries on values not contained in S. While
our construction can be shown to satisfy this stronger property, this is not needed for
our watermarking construction. To simplify the presentation and security analysis,
we work with this weaker notion here.
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satisfies key injectivity if for all distinct PRF keys k1 and k2 (not necessarily
uniformly sampled from the key-space), the value of the PRF under k1 at any
point x does not equal the value of the PRF under k2 at x with overwhelming
probability. We note that Cohen et al. [21] introduce a similar, though incompa-
rable, notion of key injectivity13 to achieve their strongest notions of watermark-
ing (based on indistinguishability obfuscation). We now give the exact property
that suffices for our construction:

Definition 4.14 (Key Injectivity). Fix a security parameter λ and let
ΠTPRF be a translucent constrained PRF with domain X . Take (pp, tk) ←
TPRF.Setup(1λ), and let K = {Kλ}λ∈N be the set of possible keys output by
TPRF.SampleKey(pp). Then, we say that ΠTPRF is key-injective if for all keys
msk1,msk2 ∈ K, and any x ∈ X ,

Pr[TPRF.Eval(msk1, x) = TPRF.Eval(msk2, x)] = negl(λ),

where the probability is taken over the randomness used in TPRF.Setup.

5 Translucent Puncturable PRFs from LWE

In this section, we describe our construction of a translucent t-puncturable PRF.
After describing the main construction, we state the concrete correctness and
security theorems for our construction. We defer their formal proofs to the full
version [34]. Our scheme leverages a number of parameters (described in detail at
the beginning of Sect. 5.1). We give concrete instantiations of these parameters
based on the requirements of the correctness and security theorems in Sect. 5.2.

5.1 Main Construction

In this section, we formally describe our translucent t-puncturable PRF (Defi-
nition 4.6). Let λ be a security parameter. Additionally, we define the following
scheme parameters:

– (n,m, q, χ) - LWE parameters
– ρ - length of the PRF input
– p - rounding modulus
– t - the number of punctured points (indexed by i)
– N - the dimension of the coefficient vectors w1, . . . ,wt (indexed by �). Note

that N = m · n
– Btest - norm bound used by the PRF testing algorithm

Let ΠHE = (HE.KeyGen,HE.Enc,HE.Enc,HE.Dec) be the (leveled) homomorphic
encryption scheme with plaintext space {0, 1}ρ × Z

N
q . We define the following

additional parameters specific to the FHE scheme:
13 Roughly speaking, Cohen et al. [21, Definition 7.1] require that for a uniformly

random PRF key k, there does not exist a key k′ and a point x where PRF(k, x) =
PRF(k′, x). In contrast, our notion requires that any two PRF keys do not agree at
any particular point with overwhelming probability.
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– z - bit-length of a fresh FHE ciphertext (indexed by j)
– τ - bit-length of the FHE secret key (indexed by k)

Next, we define the equality-check circuit eq� : {0, 1}ρ×{0, 1}ρ×Z
N
q → Zq where

eq�(x, (x∗,w)) =

{
w� if x = x∗

0 otherwise,
(5.1)

as well as the circuit C
(�)
Eval : {0, 1}z × {0, 1}ρ → {0, 1}τ for homomorphic evalu-

ation of eq�:
C

(�)
Eval(ct, x) = HE.Eval(eq�(x, ·), ct). (5.2)

Finally, we define the following additional parameters for the depths of these
two circuits:

– deq - depth of the equality-check circuit eq�

– d - depth of the homomorphic equality-check circuit C
(�)
Eval

For � ∈ [N ], we define the matrix D� to be the �th elementary “basis matrix”
for the Zq-module Z

n×m
q . More concretely,

D�[a, b] =

{
1 if am + b = �

0 otherwise.

In other words, each matrix D� has its �th component (when viewing the matrix
as a collection of N = mn entries) set to 1 and the remaining components set
to 0.

Translucent PRF Construction. The translucent t-puncturable PRF
ΠTPRF = (TPRF.Setup,TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,
TPRF.Test) with domain {0, 1}ρ and range Z

m
p is defined as follows:

– TPRF.Setup(1λ): On input the security parameter λ, the setup algorithm
samples the following matrices uniformly at random from Z

n×m
q :

• Â: an auxiliary matrix used to provide additional randomness
• {Ab}b∈{0,1}: matrices to encode the bits of the input to the PRF
• {Bi,j}i∈[t],j∈[z]: matrices to encode the bits of the FHE encryptions of the

punctured points
• {Ck}k∈[τ ]: matrices to encode the bits of the FHE secret key

It also samples trapdoor matrices (Wi, zi) ← TrapGen(1n, q) for all i ∈ [t].
Finally, it outputs the public parameters pp and testing key tk:

pp =
(
Â, {Ab}b∈{0,1}, {Bi,j}i∈[t],j∈[z], {Ck}k∈[τ ], {Wi}i∈[t]

)
tk = {zi}i∈[t].

– TPRF.SampleKey(pp): On input the public parameters pp, the key generation
algorithm samples a PRF key s ← χn and sets msk = s.
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– TPRF.Eval(pp,msk, x): On input the public parameters pp, the PRF key
msk = s, and an input x = x1x2 · · · xρ ∈ {0, 1}ρ, the evaluation algorithm
first computes

B̃i,� ← Evalpk
(
C�,Bi,1, . . . ,Bi,z,Ax1 , . . . ,Axρ

,C1, . . . ,Cτ

)

for all i ∈ [t] and � ∈ [N ], and where C� = IP ◦ C
(�)
Eval. Finally, the evaluation

algorithm outputs the value

yx =

⎢
⎢
⎢
⎢
⎢
⎣s

T

⎛

⎜
⎜
⎝Â +

∑

i∈[t]
�∈[N ]

B̃i,� · G−1(D�)

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥

p

.

– TPRF.Constrain(pp,msk,T):14 On input the public parameters pp, the PRF
key msk = s and the set of points T = {x∗

i }i∈[t] to be punctured, the con-
straining algorithm first computes

B̃i,i∗,� ← Evalpk(C�,Bi,1, . . . ,Bi,z,Ax∗
i∗,1

, . . . ,Ax∗
i∗,ρ

,C1, . . . ,Cτ )

for all i, i∗ ∈ [t] and � ∈ [N ] where C� = IP ◦ C
(�)
Eval. Then, for each

i∗ ∈ [t], the puncturing algorithm computes the (unique) vector wi∗ =
(wi∗,1, . . . , wi∗,N ) ∈ Z

N
q where

Wi∗ = Â +
∑

i∈[t]
�∈[N ]

B̃i,i∗,� · G−1(D�) +
∑

�∈[N ]

wi∗,� · D�.

Next, it samples an FHE key HE.sk ← HE.KeyGen(1λ, 1deq , 1ρ+N ), and for
each i ∈ [t], it constructs the ciphertext cti ← HE.Enc(HE.sk, (x∗

i ,wi)) and
finally, it defines ct = {cti}i∈[t]. It samples error vectors e0 ← χm, e1,b ← χm

for b ∈ {0, 1}, e2,i,j ← χm for i ∈ [t] and j ∈ [z], and e3,k ← χm for k ∈ [τ ]
and computes the vectors

âT = sT Â + eT
0

aT
b = sT (Ab + b · G) + eT

1,b ∀b ∈ {0, 1}
bT

i,j = sT (Bj + cti,j · G) + eT
2,i,j ∀i ∈ [t],∀j ∈ [z]

cT
k = sT (Ck + HE.skk · G) + eT

3,k ∀k ∈ [τ ].

Next, it sets enc =
(
â, {ab}b∈{0,1}, {bi,j}i∈[t],j∈[z], {ck}k∈[τ ]

)
. It outputs the

constrained key skT = (enc, ct).
– TPRF.ConstrainEval(pp, skT, x): On input the public parameters pp, a con-

strained key skT = (enc, ct), where enc =
(
â, {ab}b∈{0,1}, {bi,j}i∈[t],j∈[z],

14 For notational convenience, we modify the syntax of the constrain algorithm to take
in a set T of t punctured points rather than a set of allowed points.
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{ck}k∈[τ ]

)
, ct = {cti}i∈[t], and a point x ∈ {0, 1}ρ, the constrained evalu-

ation algorithm computes

b̃i,� ← Evalct((cti, x), C�,bi,1, . . . ,bi,z,ax1 , . . . ,axρ
, c1, . . . , cτ )

for i ∈ [t] and � ∈ [N ], and where C�(ct, x) = IP ◦ C
(�)
Eval. Then, it computes

and outputs the value

yx =

⎢
⎢
⎢
⎢
⎢
⎣â +

∑

i∈[t]
�∈[N ]

b̃T
i,� · G−1(D�)

⎤

⎥
⎥
⎥
⎥
⎥

p

.

– TPRF.Test(pp, tk,y): On input the testing key tk = {zi}i∈[t] and a point
y ∈ Z

m
p , the testing algorithm outputs 1 if 〈y, zi〉 ∈ [−Btest, Btest] for some

i ∈ [t] and 0 otherwise.

Correctness Theorem. We now state that under the LWE and 1D-SIS assump-
tions (with appropriate parameters), our translucent t-puncturable PRF ΠTPRF

satisfies (selective) evaluation correctness and verification correctness (Defini-
tion 4.4, Remark 4.5). We give the formal proof in the full version [34].

Theorem 5.1 (Correctness). Fix a security parameter λ, and define parame-
ters n,m, p, q, χ, t, z, τ, Btest as above. Let B be a bound on the error distribution
χ, and suppose Btest = B(m + 1), p = 2ρ(1+ε)

for some constant ε > 0, and
q

2pmB > B · mO(d). Then, take m′ = m · (3 + t · z + τ) and β = B · mO(d).
Under the LWEn,m′,q,χ and 1D-SIS-Rm′,p,q,β assumptions, ΠTPRF is (selectively)
correct.

Security Theorems. We now state that under the LWE assumption (with
appropriate parameters), our translucent t-puncturable PRF ΠTPRF satisfies
selective constrained pseudorandomness (Definition 4.9), selective privacy (Defi-
nition 4.12) and weak key-injectivity (Definition 4.14). We give the formal proofs
in the full version [34]. As a corollary of satisfying constrained pseudorandom-
ness, we have that ΠTPRF is also pseudorandom (Definition 4.7, Theorem 4.10).

Theorem 5.2 (Constrained Pseudorandomness). Fix a security parame-
ter λ, and define parameters n,m, p, q, χ, t, z, τ as above. Let m′ = m · (3+ t(z +
1)+τ), m′′ = m ·(3+t ·z+τ) and β = B ·mO(d) where B is a bound on the error
distribution χ. Then, under the LWEn,m′,q,χ and 1D-SIS-Rm′′,p,q,β assumptions,
ΠTPRF satisfies selective constrained pseudorandomness (Definition 4.9).

Corollary 5.3 (Pseudorandomness). Fix a security parameter λ, and define
the parameters n,m, p, q, χ, t, z, τ as above. Under the same assumptions as in
Theorem5.2, ΠTPRF satisfies selective pseudorandomness (Definition 4.7).
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Theorem 5.4 (Privacy). Fix a security parameter λ, and define parame-
ters n,m, q, χ, t, z, τ as above. Let m′ = m · (3 + t(z + 1) + τ). Then, under
the LWEn,m′,q,χ assumption, and assuming the homomorphic encryption scheme
ΠHE is semantically secure, ΠTPRF is selectively private (Definition 4.12).

Theorem 5.5 (Key-Injectivity). If the bound B on the error distribution
χ satisfies B < p̂/2 where p̂ is the smallest prime dividing the modulus q, and
m = ω(n), then the translucent t-puncturable PRF ΠTPRF satisfies key-injectivity
(Definition 4.14).

5.2 Concrete Parameter Instantiations

In this section, we give one possible instantiation for the parameters for the
translucent t-puncturable PRF construction in Sect. 5.1. We choose our parame-
ters so that the underlying LWE and 1D-SIS assumptions that we rely on are
as hard as approximating worst-case lattice problems to within a subexponen-
tial factor 2Õ(n1/c) for some constant c (where n is the lattice dimension). Fix a
constant c and a security parameter λ.

– We set the PRF input length ρ = λ. Then, the depth deq of the equality check
circuit eq� satisfies deq = O(log ρ) = O(log λ).

– We set the lattice dimension n = λ2c.
– The noise distribution χ is set to be the discrete Gaussian distribution DZ,

√
n.

Then the FHE ciphertext length z and the FHE secret key length τ is deter-
mined by poly(λ, deq, ρ, log q) = poly(λ). The depth of the FHE equality check
circuit is d = poly(deq, log z) = polylog(λ). Finally, we set Btest = B · (m + 1).

– We set q > mO(d) in order to invoke correctness and security of the leveled
homomorphic encryption scheme and the matrix embeddings. We refer to the
full version [34] for more details. Furthermore, for the 1D-SIS-R assumption,
we need q to be the product of λ primes p1, . . . , pλ. For each i ∈ [λ], we set
the primes pj = 2O(n1/2c) such that p1 < · · · < pλ.

– We set p = 2n1/2c+ε

for any ε > 0, so the condition in Theorem 5.1 is satisfied.
– We set m = Θ(n log q), and Btest = B · (m+1). For these parameter settings,

mO(d) = mpolylog(λ) and q = 2Õ(n1/2c) = 2Õ(λ).

Under these parameter setting, the private translucent t-puncturable PRF in
Sect. 5.1 is selectively secure assuming the polynomial hardness of approximat-
ing worst-case lattice problems over an n-dimensional lattice to within a subex-
ponential approximation factor 2Õ(n1/2c). Using complexity leveraging [8], the
same construction is adaptively secure assuming subexponential hardness of the
same worst-case lattice problems.

6 Watermarkable PRFs from Translucent PRFs

In this section, we formally introduce the notion of a watermarkable family of
PRFs. Our definitions are adapted from those of [12,21]. Then, in Sect. 6.2, we
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show how to construct a secretly-extractable, message-embedding watermark-
able family of PRFs from translucent t-puncturable PRFs. Combined with our
concrete instantiation of translucent t-puncturable PRFs from Sect. 5, this gives
the first watermarkable family of PRFs (with security against arbitrary removal
strategies) from standard assumptions.

6.1 Watermarking PRFs

We begin by introducing the notion of a watermarkable PRF family.

Definition 6.1 (Watermarkable Family of PRFs [12, adapted]). Fix a sec-
urity parameter λ and a message space {0, 1}t. Then, a secretly-extractable,
message-embedding watermarking scheme for a PRF ΠPRF = (PRF.KeyGen,
PRF.Eval) is a tuple of algorithms ΠWM = (WM.Setup,WM.Mark,WM.Extract)
with the following properties:

– WM.Setup(1λ) → msk: On input the security parameter λ, the setup algorithm
outputs the watermarking secret key msk.

– WM.Mark(msk, k,m) → C: On input the watermarking secret key msk, a PRF
key k (to be marked), and a message m ∈ {0, 1}t, the mark algorithm outputs
a marked circuit C.

– WM.Extract(msk, C ′) → m: On input the master secret key msk and a circuit
C ′, the extraction algorithm outputs a string m ∈ {0, 1}t ∪ {⊥}.

Definition 6.2 (Circuit Similarity). Fix a circuit class C on n-bit inputs.
For two circuits C,C ′ ∈ C and for a non-decreasing function f : N → N, we
write C ∼f C ′ to denote that the two circuits agree on all but an 1/f(n) fraction
of inputs. More formally, we define

C ∼f C ′ ⇐⇒ Pr
x

r←{0,1}n

[C(x) �= C ′(x)] ≤ 1/f(n)

We also write C �f C ′ to denote that C and C ′ differ on at least a 1/f(n)
fraction of inputs.

Correctness. The correctness property for a watermarking scheme for a PRF
family consists of two requirements which we state below.

Definition 6.3 (Watermarking Correctness). Fix a security parame-
ter λ. We say that a watermarking scheme ΠWM = (WM.Setup,WM.Mark,
WM.Extract) for a PRF ΠPRF = (PRF.KeyGen,PRF.Eval) with domain {0, 1}n

is correct if for all messages m ∈ {0, 1}t, and setting msk ← WM.Setup(1λ),
k ← PRF.KeyGen(1λ), and C ← WM.Mark(msk, k,m), the following two proper-
ties hold:

– Functionality-preserving: C(·) ∼f PRF.Eval(k, ·) where 1/f(n) = negl(λ)
with overwhelming probability.

– Extraction correctness: Pr[WM.Extract(msk, C) = m] = 1 − negl(λ).
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Security. Following [12,21], we introduce two different security notions for a
watermarking scheme: unremovability and unforgeability. We begin by defining
the watermarking experiment.

Definition 6.4 (Watermarking Experiment [12, adapted]). Fix a security
parameter λ. Let ΠWM = (WM.Setup,WM.Mark,WM.Extract) be a watermarking
scheme for a PRF ΠPRF = (PRF.KeyGen,PRF.Eval) with key-space K, and let A
be an adversary. Then the watermarking experiment ExptΠWM,A(λ) proceeds as
follows. The challenger begins by sampling msk ← WM.Setup(1λ). The adversary
A is then given access to the following oracles:

– Marking oracle. On input a message m ∈ {0, 1}t and a PRF key k ∈ K,
the challenger returns the circuit C ← WM.Mark(msk, k,m) to A.

– Challenge oracle. On input a message m ∈ {0, 1}t, the challenger samples a
key k ← PRF.KeyGen(1λ), and returns the circuit C ← WM.Mark(msk, k,m)
to A.

Finally, A outputs a circuit C ′. The output of the experiment, denoted
ExptΠWM,A(λ), is WM.Extract(msk, C ′).

Definition 6.5 (Unremovability [12,21]). Fix a security parameter λ. For
a watermarking scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract) for a
PRF ΠPRF = (PRF.KeyGen,PRF.Eval) and an adversary A, we say that A is
unremoving-admissible if the following conditions hold:

– The adversary A makes exactly one query to the challenge oracle.
– The circuit C̃ that A outputs satisfies C̃ ∼f Ĉ, where Ĉ is the circuit output

by the challenge oracle and 1/f = negl(λ).

Then, we say that ΠWM is unremovable if for all efficient and unremoving-
admissible adversaries A,

Pr[ExptΠWM,A(λ) �= m̂] = negl(λ),

where m̂ is the message A submitted to the challenge oracle in ExptΠWM,A(λ).

Definition 6.6 (δ-Unforgeability [12,21]). Fix a security parameter λ. For
a watermarking scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract) for a
PRF ΠPRF = (PRF.KeyGen,PRF.Eval) and an adversary A, we say that A is
δ-unforging-admissible if the following conditions hold:

– The adversary A does not make any challenge oracle queries.
– The circuit C̃ that A outputs satisfies C̃ �∼f C� for all � ∈ [Q], where Q is the

number of queries A made to the marking oracle, C� is the output of the mark-
ing oracle on the �th query, and 1/f > δ. Moreover, C̃ �∼f PRF.Eval(k�, ·),
where k� is the key the adversary submitted on its �th query to the marking
oracle.



532 S. Kim and D.J. Wu

Then, we say that ΠWM is δ-unforgeable if for all efficient and δ-unforging-
admissible adversaries A,

Pr[ExptΠWM,A(λ) �= ⊥] = negl(λ).

Remark 6.7 (Giving Access to an Extraction Oracle). As noted in [21], in the
secret-key setting, the watermarking security game (Definition 6.4) can be aug-
mented to allow the adversary oracle access to an extraction oracle (which
implements WM.Extract(msk, ·)). It is an open problem to construct secretly-
extractable watermarking from standard assumptions where the adversary is
additionally given access to a extraction oracle. The only known constructions
today [21] rely on indistinguishability obfuscation.

Remark 6.8 (Marking Oracle Variations). In the watermarking security game
(Definition 6.4), the adversary can submit arbitrary keys (of its choosing) to the
marking oracle. Cohen et al. [21] also consider a stronger notion where the adver-
sary is allowed to submit arbitrary circuits (not corresponding to any particular
PRF) to the marking oracle. However, in this model, they can only achieve
lunch-time security (i.e., the adversary can only query the marking oracle before
issuing its challenge query). In the model where the adversary can only query
the marking oracle on valid PRF keys, their construction achieves full security
(assuming the PRF family satisfies a key-injectivity property). Similarly, our
construction achieves full security in this model (in the secret-key setting), and
also relies on a key-injectivity property on the underlying PRF. Our notion is
strictly stronger than the notion in [12]. In the Boneh et al. model [12], the
adversary cannot choose the key for the marking oracle. Instead, the marking
oracle samples a key (honestly) and gives both the sampled key as well as the
watermarked key to the adversary. In contrast, in both our model as well as that
in [21], the adversary is allowed to see watermarked keys on arbitrary keys of its
choosing. The key difference in our security analysis that enables us to achieve
this stronger security notion (compared to [12]) is the new key-injectivity prop-
erty on the underlying translucent PRF. Instantiating the construction in [12]
with a private programmable PRF satisfying key-injectivity should also yield a
watermarkable family of PRFs under our strengthened definition.

In the full version of this paper [34], we further compare our correctness and
security notions to those considered in previous work [12,21].

6.2 Watermarking Construction

In this section, we show how any translucent t-puncturable PRF can be used to
obtain a watermarkable family of PRFs. Combined with our construction of a
translucent t-puncturable PRF from Sect. 5.1, we obtain the first watermarkable
family of PRFs from standard assumptions.

Construction 6.9. Fix a security parameter λ and a positive real value δ < 1
such that d = λ/δ = poly(λ). Let {0, 1}t be the message space for the watermark-
ing scheme. Our construction relies on the following two ingredients:
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– Let ΠTPRF be a translucent t-puncturable PRF (Definition 4.6) with key-space
K, domain {0, 1}n, and range {0, 1}m.

– Let ΠPRF be a secure PRF with domain ({0, 1}m)d and range ({0, 1}n)2t.

We require n,m, t = ω(log λ). The secretly-extractable, message-embedding
watermarking scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract) for the PRF
associated with ΠTPRF is defined as follows:

– WM.Setup(1λ): On input the security parameter λ, the setup algorithm runs
(pp, tk) ← TPRF.Setup(1λ). Next, for each j ∈ [d], it samples hj

r← {0, 1}n.
It also samples a key k∗ ← PRF.KeyGen(1λ). Finally, it outputs the master
secret key msk = (pp, tk, h1, . . . , hd, k

∗).
– WM.Mark(msk, k,m): On input the master secret key msk = (pp, tk, h1, . . . ,

hd, k
∗), a PRF key k ∈ K to be marked, and a message m ∈ {0, 1}t, the

marking algorithm proceeds as follows:
1. For each j ∈ [d], set yj ← TPRF.Eval(pp, k, hj). Let y = (y1, . . . , yd).
2. Compute points x =

(
x
(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t

) ← PRF.Eval(k∗,y).
3. Compute the t-punctured key skS ← TPRF.Constrain(pp, k, S), where the

set S is given by S = {x ∈ {0, 1}n : x �= x
(mi)
i ∀i ∈ [t]},

4. Output the circuit C where C(·) = TPRF.ConstrainEval(pp, skS , ·).
– WM.Extract(msk, C): On input the master secret

key msk = (pp, tk, h1, . . . , hd, k) and a circuit C : {0, 1}n → {0, 1}m, the
extraction algorithm proceeds as follows:
1. Compute points x =

(
x
(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t

) ← PRF.Eval(k∗, C(h1),
. . . , C(hd)).

2. For each i ∈ [t], and b ∈ {0, 1}, compute z
(b)
i = TPRF.Test(pp,

tk, C(x(b)
i )).

3. If there exists some i for which z
(0)
i = z

(1)
i , output ⊥. Otherwise, output

the message m ∈ {0, 1}t where mi = 0 if z
(0)
i = 1 and mi = 1 if z

(1)
i = 1.

Security Analysis. We now state the correctness and security theorems for our
construction, but defer their formal proofs to the full version of this paper [34].

Theorem 6.10. If ΠTPRF is a secure translucent t-puncturable PRF, and ΠPRF

is a secure PRF, then the watermarking scheme in Construction 6.9 is correct.

Theorem 6.11. If ΠTPRF is a selectively-secure translucent t-puncturable PRF,
and ΠPRF is secure, then the watermarking scheme in Construction 6.9 is unre-
movable.

Theorem 6.12. If ΠTPRF is a selectively-secure translucent t-puncturable PRF,
and ΠPRF is secure, then the watermarking scheme in Construction 6.9 is
δ-unforgeable.
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Abstract. We provide the first constructions of identity-based encryp-
tion and hierarchical identity-based encryption based on the hardness
of the (Computational) Diffie-Hellman Problem (without use of groups
with pairings) or Factoring. Our construction achieves the standard
notion of identity-based encryption as considered by Boneh and Franklin
[CRYPTO 2001]. We bypass known impossibility results using garbled
circuits that make a non-black-box use of the underlying cryptographic
primitives.

1 Introduction

Soon after the invention of public-key encryption [20,43], Shamir [44] posed the
problem of constructing a public-key encryption scheme where encryption can
be performed using just the identity of the recipient. In such an identity-based
encryption (IBE) scheme there are four algorithms: (1) Setup generates the global
public parameters and a master secret key, (2) KeyGen uses the master secret
key to generate a secret key for the user with a particular identity, (3) Encrypt
allows for encrypting messages corresponding to an identity, and (4) Decrypt can
be used to decrypt the generated ciphertext using a secret key for the matching
identity.

The ability of IBE to “compress” exponentially many public keys into “small”
global public parameters [11,19] provides a way for simplifying certificate man-
agement in e-mail systems. Specifically, Alice can send an encrypted email to
Bob at bob@iacr.org by just using the string “bob@iacr.org” and the public
parameters generated by a setup authority. In this solution, there is no need for
Alice to obtain Bob’s public key. Bob could decrypt the email using a secret key
corresponding to “bob@iacr.org” that he can obtain from the setup authority.
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The more functional notion of hierarchical IBE (HIBE) [28,32] additionally
allows a user with a secret key for an identity id to generate a secret key for any
identity id‖id′. For instance, in the example above, Bob can use the secret key
corresponding to identity “bob@iacr.org” to obtain a secret key corresponding
to the identity “bob@iacr.org‖2017”. Bob could then give this key to his secre-
tary who could now decrypt all his emails tagged as being sent during the year
2017, while Bob is on vacation.

The first IBE schemes were realized by Boneh and Franklin [11] and
Cocks [19]. Subsequently, significant research effort has been devoted to real-
izing IBE and HIBE schemes. By now, several constructions of IBE are known
based on (i) various assumptions on groups with a bilinear map, e.g. [8,9,11,
16,41,48], (ii) the quadratic residuocity assumption [12,19] (in the random ora-
cle model [6]), or (iii) the learning-with-errors (LWE) assumption [3,17,27]. On
the other hand, HIBE schemes are known based on (i) various assumptions on
groups with a bilinear map [8,10,25,28,32,35,45,47], or (ii) LWE [1,2,17].

On the negative side, Boneh et al. [13] show that IBE cannot be realized
using trapdoor permutations or CCA-secure public-key encryption in a black-
box manner. Furthermore, Papakonstantinou et al. [42] show that black-box use
of a group over which DDH is assumed to be hard is insufficient for realizing IBE.

1.1 Our Results

In this work, we show a fully-secure construction of IBE and a selectively secure
HIBE based just on the Computational Diffie-Hellman (CDH). In the group of
quadratic residues this problem is as hard as the Factoring problem [7,38,46].
Therefore, this implies a solution based on the hardness of factoring as well.

Our constructions bypass the known impossibility results [13,42] by making
a non-black-box use of the underlying cryptographic primitives. However, this
non-black-box use of cryptographic primitives also makes our scheme inefficient.
In Sect. 6, we suggest ideas for reducing the non-black-box of the underlying
primitives thereby improving the efficiency of our scheme. Even with these opti-
mizations, our IBE scheme is prohibitive when compared with the IBE schemes
based on bilinear maps. We leave open the problem of realizing an efficient IBE
scheme from the Diffie-Hellman Assumption.

Subsequent Work. In a followup paper [21] we show how the techniques from
this paper can be used to obtain generic constructions of fully-secure IBE and
selectively-secure HIBE starting with any selectively-secure IBE scheme.

2 Our Techniques

In this section, we give an intuitive explanation of our construction of IBE from
the Decisional Diffie-Hellman (DDH) Assumption. We defer the details on con-
structing HIBE and obtaining the same results based on Computational Diffie-
Hellman to the main body of the paper.

We start by describing a chameleon hash function [34] that supports cer-
tain encryption and decryption procedures. We refer to this new primitive as
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a chameleon encryption scheme.1 Subsequently, we describe how chameleon
encryption along with garbled circuits can be used to realize IBE.

2.1 Chameleon Encryption

As mentioned above, a chameleon encryption scheme is a chameleon hash func-
tion that supports certain encryption and decryption procedures along with.
We start by describing the chameleon hash function and then the associated
encryption and decryption procedures. Recall that a chameleon hash function is
a collision resistant hash function for which the knowledge of a trapdoor enables
collision finding.

Our Chameleon Hash. Given a cyclic group G of prime order p with a gen-
erator g consider the following chameleon hash function:

H(k, x; r) = gr
∏

j∈[n]

gj,xj
,

where k = (g, {gj,0, gj,1}j∈[n]), r ∈ Zp and xj is the jth bit of x ∈ {0, 1}n. It is not
very hard to note that this hash function is (i) collision resistant based on the
hardness of the discrete-log problem, and (ii) chameleon given the trapdoor infor-
mation {dlogg gj,0, dlogg gj,1}j∈[n]—specifically, given any x, r, x′ and the trap-
door information we can efficiently compute r′ such that H(k, x; r) = H(k, x′; r′).

The Associated Encryption—Abstractly. Corresponding to a chameleon
hash function, we require encryption and decryption algorithms such that

1. encryption Enc(k, (h, i, b),m) on input a key k, a hash value h, a location
i ∈ [n], a bit b ∈ {0, 1}, and a message m ∈ {0, 1} outputs a ciphertext ct,
and

2. decryption Dec(k, (x, r), ct) on input a ciphertext ct, x and coins r yields m if

h = H(k, x; r) and xi = b,

where (h, i, b) are the values used in the generation of the ciphertext ct.

In other words, the decryptor can use the knowledge of the preimage of h as the
key to decrypt m as long as the ith bit of the preimage it can supply is equal to
the value b chosen at the time of encryption. Our security requirement roughly
is that

{k, x, r,Enc(k, (h, i, 1 − xi), 0)} c≈ {k, x, r,Enc(k, (h, i, 1 − xi), 1)},

where
c≈ denotes computational indistinguishability.2

1 The notion of chameleon hashing is closely related to the notion of chameleon com-
mitment scheme [15] and we refer the reader to [34] for more discussion on this.

2 The success of decryption is conditioned on certain requirements placed on (x, r).
This restricted decryption capability is reminiscent of the concepts of witness encryp-
tion [22] and extractable witness encryption [4,14].
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The Associated Encryption—Realization. Corresponding to the chamel-
eon hash defined above our encryption procedure Enc(k, (h, i, b),m) proceeds as

follows. Sample a random value ρ
$←− Zp and output the ciphertext ct where

ct = (e, c, c′, {cj,0, cj,1}j∈[n]\{i}) and

c := gρ c′ := hρ,

∀j ∈ [n]\{i}, cj,0 := gρ
j,0 cj,1 := gρ

j,1,

e := m ⊕ gρ
i,b.

It is easy to see that if xi = b then decryption Dec(ct, (x, r)) can just output

e ⊕ c′

cr
∏

j∈[n]\{i} cj,xj

.

However, if xi �= b then the decryptor has access to the value gρ
i,xi

but not gρ
i,b,

and this prevents him from learning the message m. Formalizing this intuition,
we can argue security of this scheme based on the DDH assumption.3 In a bit
more detail, we can use an adversary A breaking the security of the chameleon
encryption scheme to distinguish DDH tuples (g, gu, gv, guv) from random tuples
(g, gu, gv, gs). Fix (adversarially chosen) x ∈ {0, 1}n, index i ∈ [n] and a bit b ∈
{0, 1}. Given a tuple (g, U, V, T ), we can simulate public key k, hash value h, coins

r and ciphertext ct as follows. Choose uniformly random values αj,0, αj,1
$←− Zp

and set gj,0 = gαj,0 and gj,1 = gαj,1 for j ∈ [n]. Now reassign gi,1−xi
= U and

set k := (g, {gj,0, gj,1}j∈[n]). Choose r
$←− Zp uniformly at random and set h :=

H(k, x; r). Finally prepare a challenge ciphertext ct := (e, c, c′, {cj,0, cj,1}j∈[n]\{i})
by choosing

c := V c′ := V r ·
∏

j∈[n]

V αj,xj ,

∀j ∈ [n]\{i}, cj,0 := V αj,0 cj,1 := V αj,1 ,

e := m ⊕ T,

where m ∈ {0, 1}. Now, if (g, U, V, T ) = (g, gu, gv, guv), then a routine calculation
shows that k, h, r and ct have the same distribution as in the security experiment,
thus A’s advantage in guessing m remains the same. On the other hand, if T is
chosen uniformly at random and independent of g, U, V , then A’s advantage to
guess m given k, h, r and ct is obviously 0, which concludes this proof-sketch.

2.2 From Chameleon Encryption to Identity-Based Encryption

The public parameters of an IBE scheme need to encode exponentially many
public keys succinctly—one per each identity. Subsequently, corresponding to

3 In Sect. 5, we explain our constructions of chameleon encryption based on the
(Computational) Diffie-Hellman Assumption, or the Factoring Assumption.
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these public parameters the setup authority should be able to provide the secret
key for any of the exponentially many identities. This is in sharp contrast with
public-key encryption schemes for which there is only one trapdoor per public
key, which if revealed leaves no security. This is the intuition behind the black-
box impossibility results for realizing IBE based on trapdoor permutations and
CCA secure encryption [13,42]. At a very high level, we overcome this intuitive
barrier by actually allowing for exponentially many public keys which are some-
how compressed into small public parameters using our chameleon hash function.
We start by describing how these keys are sampled and hashed.

Arrangement of the Keys. We start by describing the arrangement of the
exponentially many keys in our IBE scheme for identities of length n bits. First,
imagine a fresh encryption decryption key pair for any public-key encryption
scheme for each identity in {0, 1}n. We will denote this pair for identity v ∈
{0, 1}n by (ekv, dkv). Next, in order to setup the hash values, we sample n hash
keys — namely, k0, . . . kn−1. Now, consider a tree of depth n and for each node
v ∈ {0, 1}≤n−1 ∪ {ε}4 the hash value hv is set as:

hv =

{
H(ki, ekv‖0‖ekv‖1; rv) v ∈ {0, 1}n−1 where i = |v|
H(ki, hv‖0‖hv‖1; rv) v ∈ {0, 1}<n−1 ∪ {ε} where i = |v| (1)

where rv for each v ∈ {0, 1}<n ∪ {ε} are chosen randomly.

Generating the Tree on Demand. Note that the setup authority cannot
generate and hash these exponentially many hash keys at setup time. Instead,
it generates them implicitly. More specifically, the setup authority computes
each hv as H(k|v|, 0λ;ωv). Then, later on when needed, using the trapdoor t|v|
for the hash key k|v| we can obtain coins rv such that the generated value hv
indeed satisfies Eq. 1. Furthermore, in order to maintain consistency (in the tree
and across different invocations) the randomness ωv used for each v is chosen
using a pseudorandom function. In summary, with this change the entire can be
represented succinctly.

What Are the Public Parameters? Note that the root hash value hε some-
how binds the entire tree of hash values. With this in mind, we sent the public
parameters of the scheme to be the n hash keys and the root hash value, i.e.

k0, . . . kn−1, hε.

Secret-Key for a Particular Identity id. Given the above tree structure the
secret key for some identity id simply consists of the hash values along the path
from the root to the leaf corresponding to id and their siblings along with the

4 We use ε to denote the empty string.
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decryption key dkid.5 Specifically, the secret key skid for identity id consists of
({lkv}v∈V , dkid) where V := {ε, id[1], . . . id[1 . . . n − 1]} and

lkv =

{
(hv, hv‖0, hv‖1, rv) for v ∈ V \{id[1 . . . n − 1]}
(hv, ekv‖0, ekv‖1, rv) for v = id[1 . . . n − 1]

.

Encryption and Decryption. Before providing details of encryption and
decryption, we will briefly discuss how chameleon encryption can be useful in
conjunction with garbled circuits.6 Chameleon encryption allows an encryptor
knowing a key k and a hash value h to encrypt a set of labels {labj,0, labj,1}j such
that a decryptor knowing x and r with H(k, x; r) = h can recover {labj,xj

}j . On
the other hand, security of chameleon encryption guarantees that the receiver
learns nothing about the remaining labels. In summary, using this mechanism,
an the generated ciphertexts enable the decryptor to feed x into a garbled circuit
to be processed further.

To encrypt a message m to an identity id ∈ {0, 1}n, the encryptor will gener-
ate a sequence of n+1 garbled circuits {P̃ 0, . . . P̃n−1, T̃} such that a decryptor in
possession of the identity secret key skid = ({lkv}v∈V , dkid) will be able evaluate
these garbled circuits one after another. Roughly speaking, circuit P i for any
i ∈ {0 . . . n − 1} and v = id[1 . . . i] takes as input a hash value hv and generates
chameleon encryptions of the input labels of the next garbled circuit P̃ i+1 using
a k|v| hardwired inside it and the hash value h given to it as input (in a manner
as described above). The last circuit T will just take as input an encryption key
pkid and output an encryption of the plaintext message m under ekid. Finally,
the encryptor provides input labels for the first garbled circuit P̃ 0 for the input
hε in the ciphertext.

During decryption, for each i ∈ {0 . . . n − 1} and v = id[1 . . . i] the decryptor
will use the local key lkv to decrypt the ciphertexts generated by P̃ i and obtain
the input labels for the garbled circuits P̃ i+1 (or, T if i = n − 1). We will now
explain the first iteration of this construction in more detail, all further iterations
proceed analogously. The encryptor provides garbled input labels corresponding
to input hε for the first garbled circuit P̃ 0 in the ciphertext. Thus the decryptor
can evaluate P̃ 0 and obtain encryptions of input labels {labj,0, labj,1}j∈[λ] for the

circuit P̃ 1, namely:

{Enc(k0, (hε, id[1] · λ + j, 0), labj,0), Enc(k0, (hε, id[1] · λ + j, 1), labj,1)}j∈[λ]

The garbled circuit has id[1] and the input labels {labj,0, labj,1}j∈[λ] hardwired
in it. Given these encryptions the decryptor uses lkε = (hε, h0, h1, rε) to learn
the garbled input labels {labj,hid[1],j }j∈[λ] where hid[1],j is the jth bit of hid[1].

5 We note that our key generation mechanism can be seen as an instantiation of
the Naor and Yung [40] tree-based construction of signature schemes from universal
one-way hash functions and one-time signatures. This connection becomes even more
apparent in the follow up paper [21].

6 For this part of the intuition, we assume familiarity with garbled circuits.
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In other words, the decryptor now possesses input labels for the input hid[1] for
the garbled circuit P̃ 1 and can therefore evaluate P̃ 1. Analogous to the previous
step, the decryptor uses lkid[1] and rid[1] to obtain input labels to P̃ 2 and so on.
The decryptor’s ability to provide the local keys lkv for v ∈ V keeps this process
going ultimately revealing an encryption of the message m under the encryption
key pkid. This final ciphertext can be decrypted using the decryption key dkid.
At a high level, our encryption method (and the use of garbled circuits for it)
has similarities with garbled RAM schemes [18,23,24,26,37]. Full details of the
construction are provided in Sect. 6.

Proof Sketch. The intuition behind the proof of security which follows by a
sequence of hybrid changes is as follows. The first (easy) change is to replace the
pseudorandom function used to generate the local keys by a truly random func-
tion something that should go undetected against a computationally bounded
attacker. Next, via a sequence of hybrids we change the n + 1 garbled circuits
P̃ 0, . . . P̃n−1, T̃ to their simulated versions one by one. Once these changes are
made the simulated circuit T̃ just outputs an encryption of the message m under
the encryption key pkid∗ corresponding challenge identity id∗, which hides m
based on semantic security of the encryption scheme.

The only “tricky” part of the proof is the one that involves changing garbled
circuits to their simulated versions. In this intuitive description, we explain how
the first garbled circuit P̃ 0 is moved to its simulated version. The argument of
the rest of the garbled circuits is analogous. This change involves a sequence of
four hybrid changes.

1. First, we change how hε is generated. As a quick recap, recall that hε is gen-
erated as H(k0, 02λ;ωε) and rε are set to H−1(t0, (02λ, ωε), h0‖h1). We instead
generate hε directly to be equal to the value rε are set to H(k0, h0‖h1, rε)
using fresh coins rε. The trapdoor collision and uniformity properties of the
chameleon encryption scheme ensure that this change does not affect the
distribution of the hε and rε, up to a negligible error.

2. The second change we make is that the garbled circuit P̃ 0 is not gener-
ates in simulated form instead of honestly. Note that at this point the
distribution of this garbled circuit depends only on its output which is
{Enc(kε, (hε, j, b), labj,b)}j∈[λ],b∈{0,1} where {labj,b}j∈[λ],b∈{0,1} are the input
labels for the garbled circuit P̃ 1.

3. Observe that at this point the trapdoor tε is not being used at all and P̃ 0

is the simulated form. Therefore, based on the security of the chameleon
encryption we have that for all j ∈ [λ],Enc(kε, (hε, j, 1 − hid[1],j), labj,1−hid[1],j )
hides labj,1−hid[1],j . Hence, we can change the hardcoded ciphertexts from

{Enc(kε, (hε, j, b), labj,b)}j∈[λ],b∈{0,1}

to
{Enc(kε, (hε, j, b), labj,hid[1],j )}j∈[λ],b∈{0,1}
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4. Finally, the fourth change we make is that we reverse the first change. In
particular, we generate hε as is done in the real execution.

As a consequence, at this point only the labels {labj,hid[1],j }j∈[λ] are revealed in
an information theoretic sense and the same sequence of hybrids can be repeated
for the next garbled circuit P̃ 1. The only change in this step is that now both
h0 and h1 will be generated (if needed) by first sampling their children. The full
proof of security is provided in Sect. 6.2.

3 Preliminaries

Let λ denote the security parameter. We use the notation [n] to denote the set
{1, . . . , n}. By PPT we mean a probabilistic polynomial time algorithm. For any

set S, we use x
$←− S to mean that x is sampled uniformly at random from the

set S.7 Alternatively, for any distribution D we use x
$←− D to mean that x is

sampled from the distribution D. We use the operator := to represent assignment
and = to denote an equality check.

3.1 Computational Problems

Definition 1 (The Diffie-Hellman (DH) Problem). Let (G, ·) be a cyclic
group of order p with generator g. Let a, b be sampled uniformly at random from
Zp (i.e., a, b

$←− Zp). Given (g, ga, gb), the DH(G) problem asks to compute gab.

Definition 2 (The Factoring Problem). Given a Blum integer N = pq
(p and q are large primes with p = q = 3 mod 4) the FACT problem asks to
compute p and q.

3.2 Identity-Based Encryption

Below we provide the definition of identity-based encryption (IBE).

Definition 3 (Identity-Based Encryption (IBE) [11,44]). An identity-
based encryption scheme consists of four PPT algorithms (Setup,
KeyGen,Encrypt,Decrypt) defined as follows:

– Setup(1λ): given the security parameter, it outputs a master public key mpk
and a master secret key msk.

– KeyGen(msk, id): given the master secret key msk and an identity id ∈ {0, 1}n,
it outputs a decryption key skid.

– Encrypt(mpk, id,m): given the master public key mpk, an identity id ∈ {0, 1}n,
and a message m, it outputs a ciphertext ct.

7 We use this notion only when the sampling can be done by a PPT algorithm and
the sampling algorithm is implicit.
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– Decrypt(skid, ct): given a secret key skid for identity id and a ciphertext ct, it
outputs a string m.

The following completeness and security properties must be satisfied:

– Completeness: For all security parameters λ, identities id ∈ {0, 1}n and
messages m, the following holds:

Decrypt(skid,Encrypt(mpk, id,m)) = m

where skid ← KeyGen(msk, id) and (mpk,msk) ← Setup(1λ).
– Security: For any PPT adversary A = (A1,A2), there exists a negligible

function negl(.) such that the following holds:

Pr[INDIBE
A (1λ) = 1] ≤ 1

2
+ negl(λ)

where INDIBE
A is shown in Fig. 1, and for each key query id that A sends to

the KeyGen oracle, it must hold that id �= id∗.

Experiment INDIBE
A (1λ):

1. (mpk,msk) $←− Setup(1λ).

2. (id∗,m0,m1, st)
$←− AKeyGen(msk,.)

1 (mpk) where |m0| = |m1| and for each
query id by A1 to KeyGen(msk, .) we have that id �= id∗.

3. b
$←− {0, 1}.

4. ct∗ $←− Encrypt(mpk, id∗,mb).

5. b′ $←− AKeyGen(msk,.)
2 (mpk, ct∗, st) where for each query id by A2 to

KeyGen(msk, .) we have that id �= id∗.
6. Output 1 if b = b′ and 0 otherwise.

Fig. 1. The INDIBE
A experiment

Hierarchical Identity-Based Encryption (HIBE). A HIBE scheme is an
IBE scheme except that we set skε := msk and modify the KeyGen algorithm. In
particular, KeyGen takes skid and a string id′ as input and outputs a secret key
skid‖id′ . More formally:

– KeyGen(skid, id′): given the secret key skid and an identity id′ ∈ {0, 1}∗, it
outputs a decryption key skid‖id′ .

Correctness condition for HIBE is same as it was from IBE. Additionally, the
security property is analogous to INDIBE

A (1λ) except that now we only consider
the notion of selective security for HIBE—namely, the adversary A is required
to announce the challenge identity id∗ before it has seen the mpk and has made
any secret key queries. This experiment INDHIBE

A is shown formally in Fig. 2.
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Experiment INDHIBE
A (1λ):

1. (id∗,m0,m1, st)
$←− A1 where |m0| = |m1|.

2. (mpk,msk) $←− Setup(1λ).

3. b
$←− {0, 1}.

4. ct∗ $←− Encrypt(mpk, id∗,mb).

5. b′ $←− AKeyGen(msk,.)
2 (mpk, ct∗, st) where for each query id by A2 to

KeyGen(msk, .) we have that id �= id∗.
6. Output 1 if b = b′ and 0 otherwise.

Fig. 2. The INDHIBE
A experiment

3.3 Garbled Circuits

Garbled circuits were first introduced by Yao [49] (see Lindell and Pinkas [36] and
Bellare et al. [5] for a detailed proof and further discussion). A circuit garbling
scheme is a tuple of PPT algorithms (GCircuit,Eval). Very roughly GCircuit is
the circuit garbling procedure and Eval the corresponding evaluation procedure.
More formally:

– (C̃, {labw,b}w∈inp(C),b∈{0,1})
$←− GCircuit

(
1λ,C

)
: GCircuit takes as input a secu-

rity parameter λ and a circuit C. This procedure outputs a garbled circuit C̃
and labels {labw,b}w∈inp(C),b∈{0,1} where each labw,b ∈ {0, 1}λ.8

– y := Eval
(
C̃, {labw,xw

}w∈inp(C)

)
: Given a garbled circuit C̃ and a garbled input

represented as a sequence of input labels {labw,xw
}w∈inp(C), Eval outputs an

output y.

Correctness. For correctness, we require that for any circuit C and input
x ∈ {0, 1}m (here m is the input length to C) we have that:

Pr
[
C(x) = Eval

(
C̃, {labw,xw

}w∈inp(C)

)]
= 1

where (C̃, {labw,b}w∈inp(C),b∈{0,1})
$←− GCircuit

(
1λ,C

)
.

8 Typical definitions of garbled circuits do not require the length of each input label
to be λ bits long. This additional requirement is crucial in our constructions as we
chain garbled circuits. Note that input labels in any garbled circuit construction can
always be shrunk to λ bits using a pseudorandom function.
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Security. For security, we require that there is a PPT simulator Sim such that
for any C, x, we have that

(
C̃, {labw,xw

}w∈inp(C)

)
comp≈ Sim

(
1λ,C(x)

)

where (C̃, {labw,b}w∈inp(C),b∈{0,1})
$←− GCircuit

(
1λ,C

)
.9

4 Chameleon Encryption

In this section, we give the definition of a chameleon encryption scheme.

Definition 4 (Chameleon Encryption). A chameleon encryption scheme
consists of five PPT algorithms Gen, H, H−1, Enc, and Dec with the following
syntax.

– Gen(1λ, n): Takes the security parameter λ and a message-length n (with
n = poly(λ)) as input and outputs a key k and a trapdoor t.

– H(k, x; r): Takes a key k, a message x ∈ {0, 1}n, and coins r and outputs a
hash value h, where h is λ bits.

– H−1(t, (x, r), x′): Takes a trapdoor t, previously used message x ∈ {0, 1}n and
coins r, and a message x′ ∈ {0, 1}n as input and returns r′.

– Enc(k, (h, i, b),m): Takes a key k, a hash value h, an index i ∈ [n], b ∈ {0, 1},
and a message m ∈ {0, 1}∗ as input and outputs a ciphertext ct.10

– Dec(k, (x, r), ct): Takes a key k, a message x, coins r and a ciphertext ct, as
input and outputs a value m (or ⊥).

We require the following properties11

– Uniformity: For x, x′ ∈ {0, 1}n we have that the two distributions H(k, x; r)
and H(k, x′; r′) are statistically close (when r, r′ are chosen uniformly at ran-
dom).

– Trapdoor Collisions: For every choice of x, x′ ∈ {0, 1}n and r it holds that

if (k, t) $←− Gen(1λ, n) and r′ := H−1(t, (x, r), x′), then it holds that

H(k, x; r) = H(k, x′; r′),

i.e. H(k, x; r) and H(k, x′; r′) generate the same hash h. Moreover, if r is chosen
uniformly at random, then r′ is also statistically close to uniform.

9 In abuse of notation we assume that Sim knows the (non-private) circuit C. When
C has (private) hardwired inputs, we assume that the labels corresponding to these
are included in the garbled circuit C̃.

10 ct is assumed to contain (h, i, b).
11 Typically, Chameleon Hash functions are defined to also have the collision resilience

property. This property is implied by the semantic security requirement below. How-
ever, we do not need this property directly. Therefore, we do not explicitly define it
here.
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– Correctness: For any choice of x ∈ {0, 1}n, coins r, index i ∈ [n] and

message m it holds that if (k, t) $←− Gen(1λ, n), h := H(k, x; r), and ct
$←−

Enc(k, (h, i, xi),m) then Dec(k, ct, (x, r)) = m.
– Security: For any PPT adversary A = (A1,A2) there exists a negligible

function negl(·) such that the following holds:

Pr[INDCE
A (1λ) = 1] ≤ 1

2
+ negl(λ)

where INDCE
A is shown in Fig. 3.

Experiment INDCE
A=(A1,A2)(1

λ):

1. (k, t) $←− Gen(1λ, n).

2. (x, r, i ∈ [n], st) $←− A1(k).

3. b
$←− {0, 1}.

4. ct
$←− Enc(k, (H(k, x; r), i, 1 − xi), b).

5. b′ $←− A2(k, ct, (x, r), st).
6. Output 1 if b = b′ and 0 otherwise.

Fig. 3. The INDCE
A experiment

5 Constructions of Chameleon Encryption from CDH

Let (G, ·) be a cyclic group of order p (not necessarily prime) with generator g.
Let Sample(G) be a PPT algorithm such that its output is statistically close to
a uniform element in Zp, where p (not necessarily prime) is the order of G.12

We will now describe a chameleon encryption scheme assuming that the DH(G)
problem is hard.

– Gen(1λ, n): For each j ∈ [n], choose uniformly random values αj,0, αj,1
$←−

Sample(G) and compute gj,0 := gαj,0 and gj,1 := gαj,1 . Output (k, t) where13

k :=
(

g,

(
g1,0, g2,0 . . . , gn,0

g1,1, g2,1, . . . , gn,1

))
t :=

(
α1,0, α2,0 . . . , αn,0

α1,1, α2,1, . . . , αn,1

)
. (2)

– H(k, x; r): Parse k as in Eq. 2, sample r
$←− Sample(G), set h := gr ·∏j∈[n] gj,xj

and output h

12 We will later provide instantiations of G which are of prime order and composite
order. The use of Sample(G) procedure is done to unify these two instantiations.

13 We also implicitly include the public and secret parameters for the group G in k and
t respectively.
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– H−1(t, (x, r), x′): Parse t as in Eq. 2, compute r′ := r +
∑

j∈[n](αj,xj
− αj,x′

j
)

mod p. Output r′.
– Enc(k, (h, i, b),m): Parse k as in Eq. 2, h ∈ G and m ∈ {0, 1}. Sample ρ

$←−
Sample(G) and proceed as follows:
1. Set c := gρ and c′ := hρ.
2. For every j ∈ [n]\{i}, set cj,0 := gρ

j,0 and cj,1 := gρ
j,1.

3. Set ci,0 := ⊥ and ci,1 := ⊥.
4. Set e := m ⊕ HardCore(gρ

i,b).
14

5. Output ct :=
(

e, c, c′,
(

c1,0, c2,0 . . . , cn,0

c1,1, c2,1, . . . , cn,1

))
.

– Dec(k, (x, r), ct): Parse ct :=
(

e, c, c′,
(

c1,0, c2,0 . . . , cn,0

c1,1, c2,1, . . . , cn,1

))

Output e ⊕ HardCore
(

c′
cr·∏j∈[n]\{i} cj,xj

)
.

Multi-bit Encryption. The encryption procedure described above encrypts
single bit messages. Longer messages can be encrypted by encrypting individual
bits.

Lemma 1. Assuming that DH(G) is hard, the construction described above is a
chameleon encryption scheme, i.e. it satisfies Definition 4.

Proof. We need to argue the trapdoor collision property, uniformity property,
correctness of encryption property and semantic security of the scheme above
and we that below.

– Uniformity: Observe that for all k and x, we have that H(k, x; r) = gr ·∏
j∈[n] gj,xj

is statistically close to a uniform element in G. This is because r
is sampled statistically close to uniform in Zp, where p is the order of G.

– Trapdoor Collisions: For any choice of x, x′, r, k, t the value r′ is obtained
as r+

∑
j∈[n](αj,xj

−αj,x′
j
) mod p. It is easy to check that H(k, x′; r′) is equal

to H(k, x; r).
Moreover, as r is statistically close to uniform in Zp, r′ := r +

∑
j∈[n](αj,xj

−
αj,x′

j
) mod p is also statistically close to uniform in Zp.

– Correctness: For any choice of x ∈ {0, 1}n, coins r, index i ∈ [n] and message

m ∈ {0, 1} if (k, t) $←− Gen(1λ, n), h := H(k, x; r), and ct := Enc(k, (h, i, xi),m)
then we have that Dec (k, (x, r), ct) = e ⊕ HardCore

(
c′

cr·∏j∈[n]\{i} cj,xj

)
which

evaluates to e ⊕ HardCore(gρ
i,xi

). Finally, this value can be seen to be equal
to m.

14 We assume that the HardCore(gab) is a hardcore bit of gab given ga and gb. If a
deterministic hard-core bit for the specific function is not known then we can always
use the Goldreich-Levin [30] construction. We skip the details of that with the goal
of keeping exposition simple.
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– Security: For the sake of contradiction, let us assume that there exists a
PPT adversary A = (A1,A2) and a non-negligible function μ(·) such that

Pr[INDCE
A (1λ) = 1] ≥ 1

2
+ μ(λ).

Now we will provide a PPT reduction RA which on input g, U = gu, V = gv

correctly computes the hardcore bit HardCore(guv) with probability 1
2 + ν(λ)

for some non-negligible function ν. Formally, Reduction RA=(A1,A2)(g, U, V )
proceeds as follows:

1. For each j ∈ [n], sample αj,0, αj,1
$←− Sample(G) and set gj,0 := gαj,0 and

gj,1 := gαj,1 .

2. Sample x
$←− {0, 1} and i∗ $←− [n] and reassign gi∗,x := U . Finally set

k :=
(

g,

(
g1,0, g2,0 . . . , gn,0

g1,1, g2,1, . . . , gn,1

))
.

3. (x, r, i) $←− A1(k).
4. If i �= i∗ or xi = x then skip rest of the steps and output a random bit

b
$←− {0, 1}.

5. Otherwise, set h := H(k, x; r) and ct :=
(

e, c, c′,
(

c1,0, c2,0 . . . , cn,0

c1,1, c2,1, . . . , cn,1

))

where:

c := V c′ := V r+
∑

j∈[n] αi,xi ,

∀j ∈ [n]\{i}, cj,0 := V αj,0 cj,1 := V αj,1 ,

e
$←− {0, 1}.

6. b
$←− A2(k, (x, r), ct).

7. Output b ⊕ e.

Let E be the event that the i = i∗ and xi �= x. Now observe that the distri-
bution of k in Step 3 is statistically close to distribution resulting from Gen.
This implies that (1) the view of the attacker in Step 3 is statistically close
to experiment INDCE

A , and (2) Pr[E] is close to 1
2n up to a negligible addi-

tive term. Furthermore, conditioned on the fact that E occurs we have that
the view of the attacker in Step 3 is statistically close to experiment INDCE

A
where ct is an encryption of e ⊕ HardCore(guv) (where U = gu and V = gv).
Now, if A2 in Step 6 correctly predicts e ⊕ HardCore(guv) then we have that
the output of our reduction R is a correct prediction of HardCore(guv). Thus,
we conclude that R predicts HardCore(guv) correctly with probability at least
1
2 · (

1 − 1
2n

)
+ 1

2n · (
1
2 + μ

)
= 1

2 + μ
2n up to a negligible additive term.
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5.1 Instantiations

Instantiating by Prime Order Groups. Our scheme can be directly instanti-
ated in any prime order group G where DH(G) is assumed to be hard. Candidates
are prime order multiplicative subgroups of finite fields [20] and elliptic curve
groups [33,39].

Corollary 1. Under the assumption that DH(G) is hard over some group G,
there exists a chameleon encryption scheme.

Instantiating by Composite Order Groups and Reduction to the
Factoring Assumption. Consider the group of quadratic residues QRN over
a Blum integer N = PQ (P and Q are large safe primes15 with P = Q = 3
mod 4). Let g be a random generator of G and Sample(G) just outputs a uni-
formly random number from the set [(N −1)/4]. Shmuely [46] and McCurley [38]
proved that the DH(QRN ) problem is at least as hard as FACT (also see [7,31]).

For this instantiation, we assume that the Gen algorithm generates a fresh
Blum integer N = PQ = (2p + 1)(2q + 1), includes N in the public key k and
|G| = |QRN | = φ(N)/4 = pq in the trapdoor t. Notice that only the trapdoor-
collision algorithm H−1 needs to know the group-order |G| = pq, while all other
algorithms use the public sampling algorithm Sample(G).

Hence, using the group QRN in the above described construction yields a
construction of chameleon encryption based on the FACT Assumption.

Corollary 2. Under the assumption that FACT is hard there exists a chameleon
encryption scheme.

6 Construction of Identity-Based Encryption

In this section, we describe our construction of IBE from chameleon encryption.
Let PRF : {0, 1}λ × {0, 1}≤n ∪ {ε} → {0, 1}λ be a pseudorandom function,
(Gen,H,H−1,Enc,Dec) be a chameleon encryption scheme and (G,E,D) be any
semantically secure public-key encryption scheme.16 We let id[i] denote the ith-
bit of id and let id[1 . . . i] denote the first i bits of id. Note that id[1 . . . 0] is the
empty string denoted by ε of length 0.

NodeGen and LeafGen Functions. As explained in the introduction, we need an
exponential sized tree of hash values. The functions NodeGen and LeafGen pro-
vides efficient access to the hash value corresponding to any node in this (expo-
nential sized) tree. We will use these function repeatedly in our construction.
15 A prime number P > 2 is called safe prime if (P − 1)/2 is also prime.
16 The algorithm G takes as input the security parameter 1λ and generates encryption

key and decryption key pair ek and dk respectively, where the encryption key ek
is assumed to be λ bits long. The encryption algorithm E(ek,m) takes as input
an encryption key ek and a message m and outputs a ciphertext ct. Finally, the
decryption algorithm D(dk, ct) takes as input the secret key and the ciphertext and
outputs the encrypted message m.
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NodeGen((k0, . . . kn−1), (t0, . . . tn−1, s), v):

1. Let i := |v| (length of v) and generate

hv := H(ki, 0
2λ;PRF(s, v)),

hv‖0 := H(ki+1, 0
2λ;PRF(s, v‖0)),

hv‖1 := H(ki+1, 0
2λ;PRF(s, v‖1)).

2. rv := H−1(tv, (0
2λ,PRF(s, v)), hv‖0‖hv‖1).

3. Output (hv, hv‖0, hv‖1, rv).

LeafGen(kn−1, (tn−1, s), v):

1. Generate

hv := H(kn−1, 0
2λ;PRF(s, v))

(ekv‖0, dkv‖0) := G(1λ;PRF(s, v‖0)),

(ekv‖1, dkv‖1) := G(1λ;PRF(s, v‖1)).

2. rv := H−1(tn, (02λ,PRF(s, v)), ekv‖0‖ekv‖1).
3. Output ((hv, ekv‖0, ekv‖1, rv), dkv‖0, dkv‖1).

Fig. 4. Description of NodeGen and LeafGen.

The NodeGen function takes as input the hash keys k0, . . . kn−1 and correspond-
ing trapdoors t0, . . . tn−1, the PRF seed s, and a node v ∈ {0, 1}≤n−2 ∪ {ε}.
On the other hand, the LeafGen function takes as input the hash key kn−1 and
corresponding trapdoor tn−1, the PRF seed s, and a node v ∈ {0, 1}n−1. The
NodeGen and LeafGen functions are described in Fig. 4.

Construction. We describe our IBE scheme (Setup,KeyGen,Encrypt,Decrypt).

– Setup(1λ, 1n): Proceed as17 follows:

1. Sample s
$←− {0, 1}λ (seeds for the pseudorandom function PRF).

2. For each i ∈ {0, . . . n − 1} sample (ki, ti)
$←− Gen(1λ, 2λ).

3. Obtain (hε, h0, h1, rε) := NodeGen((k0, . . . kn−1), (t0, . . . tn−1, s), ε)
4. Output (mpk,msk) where mpk := (k0, . . . kn−1, hε) and msk :=

(mpk, t0, . . . tn−1, s)
– KeyGen(msk = ((k0, . . . kn−1, hε), t0, . . . tn−1, s), id ∈ {0, 1}n):

V := {ε, id[1], . . . id[1 . . . n − 1]}, where ε is the empty string
For all v ∈ V \{id[1 . . . n − 1]}:

17 The IBE scheme defined in Sect. 3 does not fix the length of identities that it can
be used with. However, in this section we fix the length of identities at setup time
and use appropriately changed definitions. Looking ahead, the HIBE construction
in Sect. 7 works for identities of arbitrary length.
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lkv := NodeGen((k0, . . . kn−1), (t0, . . . tn−1, s), v)
For v = id[1 . . . n − 1], set (lkv, dkv‖0, dkv‖1) := LeafGen(kn−1, (tn−1, s), v)
skid := (id, {lkv}v∈V , dkid)

– Encrypt(mpk = (k0, . . . kn−1, hε), id ∈ {0, 1}n,m): Before describing the
encryption procedure we describe two circuits18 that will be garbled during
the encryption process.

• T[m](ek): Compute and output E(ek,m).
• P[β ∈ {0, 1}, k, lab](h): Compute and output {Enc(k, (h, j + β ·

λ, b), labj,b)}j∈[λ],b∈{0,1}, where lab is short for {labj,b}j∈[λ],b∈{0,1}.
Encryption proceeds as follows:
1. Compute T̃ as:

(T̃ , lab) $←− GCircuit(1λ,T[m]).

2. For i = n − 1, . . . , 0 generate (P̃ i, lab
′
) $←− GCircuit(1λ,P[id[i + 1], ki, lab])

and set lab := lab
′
.

3. Output ct := ({labj,hε,j
}j∈[λ], {P̃ 0, . . . , P̃n−1, T̃}) where hε,j is the jth bit

of hε.
– Decrypt(ct, skid = (id, {lkv}v∈V ), dkid): Decryption proceeds as follows:

1. Parse ct as ({labj,hε,j
}j∈[λ], {P̃ 0, . . . , P̃n−1, T̃}).

2. Parse lkv as (hv, hv‖0, hv‖1, rv) for each v ∈ V \{id[1 . . . n − 1]}. (Recall
V = {ε, id[1] . . . id[1 . . . n − 1]}.)

3. And for v = id[1 . . . n − 1], parse lkv as (hv, ekv‖0, pkv‖1, rv).
4. Set y := hε.
5. For each i ∈ {0, . . . n − 1}, set v := id[1 . . . i], and proceed as follows:

(a) {ej,b}j∈[λ],b∈{0,1} := Eval(P̃ i, {labj,yj
}j∈[λ]).

(b) If i = n − 1 then set y := ekid and for each j ∈ [λ], compute

labj,yj
:= Dec(kv, ej,yj

, (ekv‖0‖ekv‖1, rv)).

(c) If i �= n − 1 then set y := hv and for each j ∈ [λ], compute

labj,yj
:= Dec(kv, ej,yj

, (hv‖0‖hv‖1, rv)).

6. Compute f := Eval(T̃ , {labj,yj
}j∈[λ]).

7. Output m := Dec(dkid, f).

A Note on Efficiency. The most computationally intensive part of the con-
struction is the non-black box use of Enc inside garblings of the circuit P and
E inside garbling of the circuit T. However, we note that not all of the com-
putation corresponding to Enc and E needs to be performed inside the garbled
circuit and it might be possible to push some of it outside of the garbled circuits.

18 Random coins used by these circuits are hardwired in them. For simplicity, we do
not mention them explicitly.



554 N. Döttling and S. Garg

In particular, when Enc is instantiated with the DDH based chameleon encryp-
tion scheme then we can reduce each Enc to a single modular exponentiation
inside the garbled circuit. Similar optimization can be performed for E. In short,
this reduces the number of non-black-box modular exponentiations to 2λ for
every circuit P and 1 for the circuit T. Finally, we note that additional improve-
ments in efficiency might be possible by increasing the arity of the tree from 2 to
a larger value. This would also reduce the depth of the tree and thereby reduce
the number of non-black-box modular exponentiations needed.

6.1 Proof of Correctness

We will first show that our scheme is correct. For any identity id, let V =
{ε, id[1], . . . id[1 . . . n−1]}. Then the secret key skid consists of (id, {lkv}v∈V , dkid).
We will argue that a correctly generated ciphertext on decryption reveals the
original message. Note that by construction (and the trapdoor collision property
of the chameleon encryption scheme for the first equation below) for all nodes
v ∈ V \{id[1 . . . n − 1]} we have that:

H(k|v|, hv‖0‖hv‖1; rv) = hv.

and additionally for v = id[1 . . . n − 1] we have

H(kn−1, ekv‖0‖ekv‖1; rv) = hv.

Next consider a ciphertext ct = ({labj,hε,j
}j∈[λ], {P̃ 0, . . . , P̃n−1, T̃}). We argue

correctness as each step of decryption is performed. By correctness of garbled
circuits, we have that the evaluation of P̃ 0 yields correctly formed ciphertexts
ej,b which are encryptions of labels of the next garbled circuit P̃ 1. Next, by cor-
rectness of Dec of the chameleon encryption scheme we have that the decrypting
the appropriate ciphertexts yields the correct labels {labj,hid[1],j }j∈[λ] for the next
garbled circuit, namely P̃ 1. Following the same argument we can argue that the
decryption of the appropriate ciphertexts generated by P̃ 1 yields the correct
input labels for P̃ 2. Repeatedly applying this argument allows us to conclude
that the last garbled circuit P̃n−1 outputs labels corresponding to ekid as input
for the circuit T which outputs an encryption of m under ekid. Finally, using
the correctness of the public-key encryption scheme (G,E,D) we have that the
recovered message m is the same as the one encrypted.

6.2 Proof of Security

We are now ready to prove the security of the IBE construction above. For the
sake of contradiction we proceed by assuming that there exists an adversary A
such that Pr[INDIBE

A (1λ) = 1] ≥ 1
2 +ε for a non-negligible ε (in λ), where INDIBE

A
is shown in Fig. 1. Assume further that q is a polynomial upper bound for the
running-time of A, and thus also an upper bound for the number of A’s key
queries. Security follows by a sequence of hybrids. In our hybrids, changes are
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made in how the secret key queries of the adversary A are answered and how
the challenge ciphertext is generated. Furthermore, these changes are intertwined
and need to be done carefully. Our proof consist of a sequence of n + 2 hybrids
H−1,H0,H1, . . . Hn+1. We next describe these hybrids.

– H−1: This hybrid corresponds to the experiment INDIBE
A as shown in Fig. 1.

– H0: In this hybrid, we change how the public parameters are generated and
how the adversary’s requests to the KeyGen oracle are answered. Specifically,
we replace all pseudorandom function calls PRF(s, ·) with a random function.
The only change from H−1 to H0 is that calls to a pseudorandom are replaced
by a random function. Therefore, the indistinguishability between the two
hybrids follows directly from the pseudorandomness property of the pseudo-
random function.

– Hτ for τ ∈ {0 . . . n}: For every τ , this hybrid is identical to the experiment H0

except in how the ciphertext is generated. Recall that the challenge ciphertext
consists of a sequence of n+1 garbled circuits. In hybrid Hτ , we generate the
first τ of these garbled circuits using the simulator provided by the garbled
circuit construction. The outputs hard-coded in the simulated circuits are set
to be consistent with the output that would have resulted from the execution
of honestly generated garbled circuits in there unsimulated versions. More
formally, for the challenge identity id∗ the challenge ciphertext is generated
as follows (modifications with respect to honest ciphertext generation have
been highlighted in red). Even though, the adversary never queries skid, we can
generate it locally. In particular, it contains the values lkv = (hv, hv‖0, hv‖1, rv)
for each v ∈ {ε, . . . id[1 . . . n − 2]}, lkv = (hv, ekv‖0, ekv‖1, rv) for each v =
id[1 . . . n − 1], and dkid∗ .
1. Compute T̃ as:

If τ �= n

(T̃ , lab) $←− GCircuit(1λ,T[m])

where lab = {labj,b}j∈[λ],b∈{0,1}. Else set y = ekid∗ and generate garbled
circuit as,

(T̃ , {labj,yj
}j∈[λ])

$←− Sim(1λ,E(y,m))

and set lab := {labj,yj
, labj,yj

}j∈[λ].

2. For i = n − 1, . . . , τ generate (P̃ i, lab
′
) $←− GCircuit(1λ,P[id[i + 1], ki, lab])

and set lab := lab
′
.

3. For i = τ − 1, . . . , 0, set v = id∗[1 . . . i − 1] and generate

P̃ i, {lab′
j,hv,j }j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1})

and set lab := {lab′
j,hv,j , lab

′
j,hv,j }j∈[λ].

4. Output ct := ({labj,hε,j
}j∈[λ], {P̃ 0, . . . , P̃n−1, T̃}) where hε,j is the jth bit

of hε.
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The computational indistinguishability between hybrids Hτ−1 and Hτ is based
on Lemma 2 which is proved in Sect. 6.3.

Lemma 2. For each τ ∈ {1 . . . n} it is the case that Hτ−1
c≈ Hτ .

– Hn+1: This hybrid is same as Hn except that we change the ciphertext
E(ekid∗ ,m) hardwired in the simulated garbling of the circuit T to be
E(ekid∗ , 0). Note that the adversary A never queries for skid∗ . Therefore, it
is never provided the value dkid∗ . Therefore, we can use an adversary distin-
guishing between Hn and Hn+1 to construct an attacker against the semantic
security of the public-key encryption scheme (G,E,D). This allows us to con-
clude that Hn

c≈ Hn+1.
Finally, note that the hybrid Hn+1 is information theoretically independent
of the plaintext message m.

6.3 Proof of Lemma 2

The proof follows by a sequence of sub-hybrids Hτ,0 to Hτ,6 where Hτ,0 is same
as Hτ−1 and Hτ,6 is same as Hτ .

– Hτ,0: This hybrid is same as Hτ−1.
– Hτ,1: Skip this hybrid if τ = n. Otherwise, this hybrid is identical to Hτ,0,

except that we change how the values hv and rv for v ∈ {0, 1}τ (if needed to
answer a KeyGen query of the adversary) are generated.

Recall that in hybrid Hτ,0, hv is generated as H(kτ , 02λ;ωv) and then

rv :=

{
H−1(kτ , (02λ, ωv), hv‖0‖hv‖1) if τ < n − 1
H−1(kτ , (02λ, ωv), ekv‖0‖ekv‖1) otherwise

.

In this hybrid, we generate rv first as being chosen uniformly. Next,

hv :=

{
H(kτ , hv‖0‖hv‖1; rv) if τ < n − 1
H(kτ , ekv‖0‖ekv‖1; rv) otherwise

.

Statistical indistinguishability of hybrids Hτ,0 and Hτ,1 follows from the trap-
door collision and uniformity properties of the chameleon encryption scheme.

– Hτ,2: We start with the case when τ < n. For this case, in this hybrid, we
change how the garbled circuit P̃ τ is generated. Let v = id∗[1 . . . τ ] and recall
that

lkv =

{
(hv, ekv‖0, hv‖1, rv) if τ < n − 1
(hv, ekv‖0, ekv‖1, rv) if τ = n − 1

.

In this hybrid, we change the generation process of the garbled circuit P̃ τ

from
(P̃ τ , lab

′
) $←− GCircuit(1λ,P[id[τ + 1], kτ , lab])
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and setting lab := lab
′
to

(P̃ i, {lab′
j,hv,j }j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1})

and set lab := {lab′
j,hv,j , lab

′
j,hv,j }j∈[λ].

For the case when τ = n, then we change computation of T̃ from

(T̃ , lab) $←− GCircuit(1λ,T[m])

where lab = {labj,b}j∈[λ],b∈{0,1} to setting y = ekid∗ and generating garbled
circuit as,

(T̃ , {labj,yj
}j∈[λ])

$←− Sim(1λ,E(y,m))

and setting lab := {labj,yj
, labj,yj

}j∈[λ].
For the case when τ < n, computational indistinguishability of hybrids
Hτ,1 and Hτ,2 follows by the security of the garbling scheme and the fact
that {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1} is exactly the output of the circuit
P[id[τ + 1], kτ , lab] on input hv. On the other hand, for the case when τ = n,
then again indistinguishability of hybrids Hn,1 and Hn,2 follows by the secu-
rity of the garbling scheme and the fact that E(ekid∗ ,m) is the output of the
circuit T[m] on input ekid∗ .

– Hτ,3: Skip this hybrid if τ = n. This hybrid is identical to Hτ,2, except that
using v := id[1 . . . τ ] we change

(P̃ i, {lab′
j,hv,j }j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1})

to

P̃ i, {lab′
j,hv,j }j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,hid[1...τ+1],j )}j∈[λ],b∈{0,1})

Notice that tv is not used in this experiment. Therefore computational indis-
tinguishability of hybrids Hτ,2 and Hτ,3 follows by λ2 invocations (one invo-
cation for each bit of the λ labels) of the security of the chameleon encryption
scheme. We now provide the reduction for one change below.
More formally, we now describe a reduction to the security of the chameleon
hash function. Specifically, the challenger provides a hash key k∗ and the
attacker needs to submit x∗, r∗. Our reduction achieves this by setting
kτ := k∗. It then submits the x∗ := hv‖0‖hv‖1 and randomly chosen coins
rv := r∗ used in the computation of hv := H(kτ , x∗; r∗) for the node v. Now
we can use the attackers ability to distinguish the encryptions of the provided
labels to break the security of the chameleon encryption scheme.

Remark: We note that the ciphertexts hardwired inside the garbled circuit
only provide the labels {labj,hid[1...τ+1],j}j∈[λ] (in an information theoretical
sense).



558 N. Döttling and S. Garg

– Hτ,4: Skip this hybrid if τ = n. In this hybrid, we undo the change made in
going from hybrid Hτ,0 to hybrid Hτ,1, i.e. we go back to generating all hv
values using NodeGen and LeafGen.
Computational indistinguishability of hybrids Hτ,3 and Hτ,4 follows from
the trapdoor collision and uniformity properties of the chameleon encryption
scheme. Observe that the hybrid Hτ,4 is the same as hybrid Hτ .

7 Construction of Hierarchical Identity-Based Encryption

In this section, we describe our construction of HIBE from chameleon encryption.
Let (Gen,H,H−1,Enc,Dec) be a chameleon encryption scheme and (G,E,D) be
any semantically secure public-key encryption scheme. We let id[i] denote the
ith-bit of id and id[1 . . . i] denote the first i bits of id (and id[1 . . . 0] = ε).

Notation for the Pseudorandom Function F. Let PRG : {0, 1}λ → {0, 1}3λ

be a length tripling pseudorandom generator and PRG0,PRG1 and PRG2 be the
1 . . . λ, λ+1 . . . 2λ and 2λ+1 . . . 3λ bits of the output of PRG, respectively. Now
define a GGM-type [29] pseudo-random function F : {0, 1}λ×{0, 1, 2}∗ → {0, 1}λ

such that F(s, x) := PRGxn
(PRGxn−1(. . . (PRGx1(s)) . . .)), where n = |x| and for

each i ∈ [n] xi is the ith element (from 0, 1 or 2) of string x.19

NodeGen and NodeGen′ Functions. As explained in the introduction, we need
an exponential sized tree of local-keys. The function NodeGen provides efficient
access to local-keys corresponding to any node in this (exponential sized) tree.
We will use this function repeatedly in our construction. The function takes as
input the hash key kG (a key of the chameleon hash function from 2� + 2λ bits
to λ bits, where � is specified later), a node v ∈ {0, 1}∗ ∪ {ε} (ε denotes the
empty string), and s = (s1, s2, s3) seeds for the pseudo-random function PRF.
This function is explained in the Fig. 5.

We also define a function NodeGen′, which is identical to NodeGen except
that it additionally takes a bit β as input and outputs dkv‖β . More formally,
NodeGen′(kG, v, (s1, s2, s3), β) executes just like NodeGen but in Step 8 it out-
puts dkv‖β .

Construction. We describe our HIBE scheme (Setup,KeyGen,Encrypt,Decrypt).

– Setup(1λ): Proceed as follows:

1. Sample s
$←− {0, 1}λ (seeds for the pseudorandom function PRF).

2. Setup a global hash function (kG, ·) := Gen(1λ, 2�+2λ)20 where � = �′ +λ
and �′ is the length of k generated from Gen(1λ, λ).

3. Obtain (kε, hε, rε, h
′
ε, r

′
ε, k0, h0, k1, h1) := NodeGen(kG, ε, s)

19 F(s, ε) is set to output s.
20 The trapdoor for the global hash function is not needed in the construction or the

proof and is therefore dropped.
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4. Output (mpk,msk) where mpk := (kG, kε, hε) and msk = skε := (ε, ∅, s,⊥)
– KeyGen(skid = (id, {lkv}v∈V , s, dkid), id′ ∈ {0, 1}∗):21

Let n := |id′| and set V ′ := {id‖id′[1 . . . j − 1]}j∈[n]

For all v ∈ V ′:
lkv := NodeGen(kG, v, (F(s, v‖2),F(s, v‖0‖2),F(s, v‖1‖2)))

Let v := id‖id′[1 . . . n − 1]
dkid‖id′ := NodeGen′(kG, v, (F(s, v‖2),F(s, v‖0‖2),F(s, v‖1‖2)), id′[n])

Output skid‖id′ := (id, {lkv}v∈V ∪V ′ ,F(s, id′), dkid‖id′)

NodeGen(kG, v, (s1, s2, s3)):

1. Obtain ω1, ω2, and ω3 be the first, second
and third λ/3 bits of s1, respectively.

2. Generate (kv, tv) := Gen(1λ; ω1) and hv :=
H(kv, 0

λ; ω2).
3. Analogous to the previous two steps gen-

erate kv‖0, hv‖0 using seed s2 and kv‖1, hv‖1
using seed s3.

4. Sample r′
v and generate (ekv‖0, dkv‖0)

$←−
G(1λ) and (ekv‖1, dkv‖1)

$←− G(1λ) using ω3

as random coins.
5. h′

v := H(kG, kv‖0||hv‖0||kv‖1||hv‖1‖ekv‖0‖ekv‖1; r′
v).

6. rv := H−1(tv, (0
λ, ω2), h

′
v).

7. lkv := (kv, hv, rv, h
′
v, r

′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1).

8. Output lkv

λ

h′
v

hv

kv‖0‖hv‖0‖kv‖1‖hv‖1‖ekv‖0‖ekv‖1

kG r′
v

kv rv

2�′ + 4λ

Fig. 5. Explanation on how NodeGen works. Strings ω1, ω2 and ω3 are used as ran-
domness for cryptographic functions and can be sufficiently expanded using a PRG.

Remark: We note that in our construction the secret key for any identity is
unique regardless of many iterations of KeyGen operations were performed to
obtain it.

– Encrypt(mpk = (kG, kε, hε), id ∈ {0, 1}n,m): Before describing the encryption
procedure we describe four circuits that will be garbled during the encryption
process.

• T[m](ek): Compute and output E(ek,m).
• Qlast[β ∈ {0, 1}, kG, tlab](h): Compute and output {Enc(kG, (h, j +β ·λ+

2�, b), tlabj,b)}j∈[λ],b∈{0,1}, where tlab is short for {tlabj,b}j∈[λ],b∈{0,1}.
• Q[β ∈ {0, 1}, kG, plab](h): Compute and output {Enc(kG, (h, j + β ·

�, b), plabj,b)}j∈[	],b∈{0,1}, where plab is short for {plabj,b}j∈[	],b∈{0,1}.

21 HIBE is often defined to have separate KeyGen and Delegate algorithms. For sim-
plicity, we describe our scheme with just one KeyGen algorithm that enables both
the tasks of decryption and delegation. Secret-keys without delegation capabilities
can be obtained by dropping the third entry (the PRG seed) from skid.
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• P[qlab](k, h): Compute and output {Enc(k, (h, j, b), qlabj,b)}j∈[λ],b∈{0,1},
where qlab is short for {qlabj,b}j∈[λ],b∈{0,1}.

Encryption proceeds as follows:
1. Compute T̃ as:

(T̃ , tlab) $←− GCircuit(1λ,Qout[kG,m])

2. For i = n, . . . , 1 generate
(a) If i = n then

(Q̃n, qlab
n
) $←− GCircuit(1λ,Qlast[id[n], kG, tlab]),

else
(Q̃i, qlab

i
) $←− GCircuit(1λ,Q[id[i], kG, plab

i+1
]).

(b) (P̃ i, plab
i
) $←− GCircuit(1λ,P[qlab

i
]).

3. Set xε := kε‖hε.
4. Output ct := ({plab1j,xε,j

}j∈[	], {P̃ i, Q̃i}i∈[n], T̃ ) where xε,j is the jth bit
of xε.

– Decrypt(ct, skid = (id, {lkv}v∈V ), s, dkid): Decryption proceeds as follows:
1. Parse ct as ({plab1j,xε,j

}j∈[	], {P̃ i, Q̃i}i∈[n], T̃ ) where xε := kε‖hε and xε,j

is its jth bit.
2. Parse lkv as (hv, rv, h′

v, r
′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1) for each v ∈ V .

(Recall V = {id[1 . . . j − 1]}j∈[n].)
3. For each i ∈ [n], proceed as follows:

(a) Set v := id[1 . . . i − 1], xv := kv‖hv, yv := h′
v, and if i < n then set

zv := kv‖id[i]‖hv‖id[i] else set zv := ekid.22

(b) {ei
j,b}j∈[λ],b∈{0,1} := Eval(P̃ i, {plabi

j,xv,j
}j∈[	]).

(c) For each j ∈ [λ], compute qlabi
j,yv,j

:= Dec(kv, ei
j,yv,j

, (h′
v, rv)).

(d) If i < n then,

{f i
j,b}j∈[	],b∈{0,1} := Eval(Q̃i, qlabi

j,yv,j
)

and for each j ∈ [�]

plabi+1
j,zv,j

:= Dec(kG, f i
j,zv,j

, (kv‖0‖hv‖0‖kv‖1‖hv‖1‖ekv‖0‖pkv‖1, r′
v))

(e) else,

{gj,b}j∈[λ],b∈{0,1} := Eval(Q̃n, qlabn
j,yv,j

)

and for each j ∈ [λ]

tlabj,zv,j := Dec(kG, gj,zv,j , (kv‖0‖hv‖0‖kv‖1‖hv‖1‖pkv‖0‖pkv‖1, r′
v)).

4. Output D(dkid,Eval(T̃ , {tlabj,ekid,j
}j∈[λ])).

22 For i < n, zv will become the xv in next iteration.



Identity-Based Encryption from the Diffie-Hellman Assumption 561

7.1 Proof of Correctness

For any identity id, let V = {id[1 . . . j − 1]}j∈[n] be the set of nodes on the
root-to-leaf path corresponding to identity id. Then the secret key skid consists
of {lkv}v∈V , dkid and a seed of the pseudorandom function F. {lkv}v∈V , dkid
and will be used for decryption and s is used for delegating keys. Note that by
construction (and the trapdoor collision property of the chameleon encryption
scheme for the first equation below) for all nodes v ∈ V we have that:

H(kG, kv‖0||hv‖0||kv‖1||hv‖1‖pkv‖0‖ekv‖1; r′
v) = h′

v,

H(kv, h′
v; rv) = hv.

By correctness of garbled circuits, we have that the evaluation of P̃ 1 yields
correctly formed ciphertexts f1

j,b. Next, by correctness of Dec of the chameleon
encryption scheme we have that the decrypted values qlab1j,yε,j

are the correct
input labels for the next garbled circuit Q̃1. Following the same argument we
can argue that the decryption of ciphertexts generated by Q̃1 yields the correct
input labels for P̃ 2. Repeatedly applying this argument allows us to conclude
that the last garbled circuit Q̃n outputs correct encryptions of input labels of
T̃ . The decryption of appropriate ciphertexts among these and the execution of
the garbled circuit T̃ using the obtained labels yields the ciphertext E(ekid,m)
which can be decrypted using the decryption key dkid. Correctness of the last
steps depends on the correctness of the public-key encryption scheme.

Next, the correctness of delegation follows from the fact that for every
id and id′

KeyGen(skε, id‖id′) = KeyGen(KeyGen(skε, id), id′).

This fact follows directly from the following property of the GGM PRF. Specif-
ically, for every x we have that F(s, id‖x) = F(F(s, id), x).

7.2 Proof of Security

We are now ready to prove the selective security of the HIBE construction above.
For the sake of contradiction we proceed by assuming that there exists an adver-
sary A such that Pr[INDHIBE

A (1λ) = 1] ≥ 1
2 +ε for a non-negligible ε (in λ), where

INDHIBE
A is shown in Fig. 2. Assume further that q is a polynomial upper bound

for the running-time of A, and thus also an upper bound for the number of A’s
key queries. Security follows by a sequence of hybrids. In our hybrids, changes
are made in how the secret key queries of the adversary A are answered and
how the challenge ciphertext is generated. However, unlike the IBE case these
changes are not intertwined with each other. In particular, we will make changes
to the secret keys first and then the ciphertext. We describe our hybrids next.
Our proof consist of a sequence of hybrids H−3,H−2,H−1,H0,H1, . . . Hn+2. We
describe these below. Since we are in the selective the case the adversary declares
the challenge identity id∗ before the public parameters mpk are provided to it.
Also, we let V ∗ be the set {ε, id∗[1] . . . id∗[1 . . . n − 1]}.
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– H−3: This hybrid corresponds to the experiment INDHIBE
A as shown in Fig. 2.

– H−2: In this hybrid, we change how the seed s of generated in Step 1 of Setup

is used. Specifically, we sample s
$←− {0, 1}λ and generate

1. For each i ∈ [n], let ai := F(s, id∗[1 . . . i − 1]‖(1 − id∗[i]).
2. b := F(s, id∗).
3. For each i ∈ {0 . . . n − 1}, let ci := F(s, id∗[1 . . . i]‖2).

Now, through out the execution of the experiment we replace the use of s with
the values ({ai}, b, {ci}). First, observe that (by standard properties of the
GGM pseudorandom function) given these values we can generate F(s, v‖2)
for all v ∈ {0, 1}∗ ∪ {ε}. Also, note that for the execution of the functions
NodeGen and NodeGen′ only F(s, v‖2) needs to be generated. Therefore, all
executions of NodeGen and NodeGen′ remain unaffected.
Secondly, note that the A is only allowed to make KeyGen queries for identities
id �∈ V ∗ ∪ {id∗}. Therefore, in order to answer these queries the experiment
needs to generate F(s, v) for v /∈ V ∗ ∪ {id∗}. Observe that using ({ai}, b) by
standard properties of the GGM pseudorandom function the experiment can
compute F(s, v) for any v �∈ V ∗. Therefore, all of A’s KeyGen queries can be
answered.23

The hybrids H−3 and H−2 are the same distribution and the only change we
have made is syntactic.

– H−1: In this hybrids, we change how each ci is generated. In particular, we
sample each ci uniformly and independently instead of using F.
The indistinguishability between hybrids H−2 and H−1 follows based on the
pseudorandomness of the pseudorandom function F.

– H0: In this hybrid, we change how NodeGen and NodeGen′ behave when com-
puted with an input v ∈ V ∗.24 For all v �∈ V ∗ the behavior of NodeGen and
NodeGen′ remains unchanged. At a high level, the goal is to change the gen-
erating of {lkv}v∈V ∗ such that the trapdoor values tv∈V ∗ are unused and so
that the encryption key ekid∗ is sampled independent of everything else. The
execution of NodeGen and NodeGen′ for every v �∈ V ∗ remain unaffected. In
particular, at Setup time we proceed as follows and fix the values {lkv}v∈V ∗

and {dkv‖0, dkv‖1}v∈V ∗ .25

1. For every v ∈ V ∗:
(a) Generate (kv, tv)

$←− Gen(1λ).

(b) Generate (ekv‖0, dkv‖0)
$←− G(1λ) and (ekv‖1, dkv‖1)

$←− G(1λ).
(c) Sample r′

v, rv.
2. Let S∗ := {id∗[1 . . . i−1]‖(1−id∗[i])}i∈[n]∪{id∗}. (Note that S∗∩V ∗ = ∅.)

23 The experiment can provide F(s, id∗) even though it does not appear in any of the A’s
secret key queries. The reason is that F(s, id∗) allows the capabilities of delegation
but not decryption for ciphertexts to identity id∗.

24 Observe that these are specifically the cases in which one or two of the values s1, s2
and s3 given as input to NodeGen and NodeGen′ depend on the {ci} values.

25 Note that since the adversary never makes a KeyGen query for an identity id that is
a prefix of id∗. Therefore, we have that dkv for v ∈ V ∗ ∪ {id∗} will not be provided
to A.
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3. For all v ∈ S∗ set kv, hv as first two outputs of NodeGen(kG, v,
(F(s, v‖2),F(s, v‖0‖2),F(s, v‖1‖2))).

4. For each i ∈ {n − 1 . . . 0}:
(a) Set v := id∗[1 . . . i]
(b) Generate h′

v := H(kG, kv‖0||hv‖0||kv‖1||hv‖1‖ekv‖0‖ekv‖1; r′
v).

(c) hv := H(kv, h′
v; rv).

(d) lkv := (kv, hv, rv, h′
v, r

′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1).

5. Output {lkv}v∈V ∗ and {dkv‖0, dkv‖1}v∈V ∗ .
Statistical indistinguishability of hybrids Hτ,−1 and Hτ,0 follows from the
trapdoor collision and uniformity properties of the chameleon encryption
scheme. Note that in this hybrid the trapdoor tv for any node v ∈ V ∗ is
no longer being used.

– Hτ for τ ∈ {1 . . . n} : This hybrid is identical to H0 except we change how
the ciphertext is generated. Recall that the challenge ciphertext consists of
a sequence of 2n + 1 garbled circuits. In hybrid Hτ , we generate the first
2τ of these garbled circuits (namely, P̃ 1, Q̃1 . . . P̃ τ , Q̃τ ) using the simulator
provided by the garbled circuit construction. The outputs hard-coded in the
simulated circuits are set to be consistent with the output that would have
resulted from the execution of honestly generated garbled circuits using keys
obtained from invocations of NodeGen. More formally, for the challenge iden-
tity id∗ the challenge ciphertext is generated as follows (modifications with
respect to honest ciphertext generation have been highlighted in red):
1. Compute T̃ as:

(T̃ , tlab) $←− GCircuit(1λ,Qout[kG,m])

2. For i = n, . . . , τ + 1 generate
(a) If i = n then

(Q̃n, qlab
n
) $←− GCircuit(1λ,Qlast[id[n], kG, tlab]),

else
(Q̃i, qlab

i
) $←− GCircuit(1λ,Q[id[i], kG, plab

i+1
]).

(b) (P̃ i, plab
i
) $←− GCircuit(1λ,P[qlab

i
]).

3. For i = τ, . . . , 1:
(a) Set v = id∗[1 . . . i − 1], xv := kv‖hv, yv := h′

v, and if i < n then
zv := kv‖id∗[i]‖hv‖id∗[i] else zv := ekid∗ .

(b) If i = n then (Q̃n, {qlabn
j,yv,j

}j∈[λ]) := Sim(1λ, {Enc(kG, (h′
v, j +

id∗[n] · λ + 2�, b), tlabj,zv,j )}j∈[λ],b∈{0,1}) else (Q̃i, {qlabi
j,yv,j

}j∈[λ]) :=
Sim(1λ, {Enc(kG, (h′

v, j + id∗[i] · �, b), plabi+1
j,zv,j

)}j∈[	],b∈{0,1}).

(c) qlab
i
:= {qlabi

j,yv,j
, qlabi

j,yv,j
}j∈[λ].

(d) (P̃ i, {plabi
j,xv,j

}j∈[	]) :=Sim(1λ, {Enc(kv, (hv, j, b), qlabi
j,yv,j

)}j∈[λ],b∈{0,1}).

(e) plab
i
:= {plabi

j,xv,j
, plabi

j,xv,j
}j∈[	].

4. Set xε := kε‖hε.
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5. Output ct := ({plab1j,xε,j
}j∈[λ], {P̃ i, Q̃i}i∈[n], T̃ ) where xε,j is the jth bit

of xε.

The computational indistinguishability between hybrids Hτ−1 and Hτ is based
on Lemma 3 which is proved in Sect. 7.3.

Lemma 3. For each τ ∈ {1 . . . n} it is the case that Hτ−1
c≈ Hτ .

– Hn+1: This hybrid is same as hybrid Hn except that we generate the gar-
bled circuit T̃ to using the garbling simulator. More specifically, instead of
generating T̃ as

(T̃ , tlab) $←− GCircuit(1λ,Qout[kG,m])

we set y = ekid∗ and generate garbled circuit as,

(T̃ , {labj,yj
}j∈[λ])

$←− Sim(1λ,E(y,m))

and set lab := {labj,yj
, labj,yj

}j∈[λ].
Computational indistinguishability between hybrids Hn and Hn+1 follows
directly from the security of the gabled circuits.

– Hn+2: This hybrid is same as Hn except that we change the ciphertext
E(ekid∗ ,m) hardwired in the simulated garbling of the circuit T to be
E(ekid∗ , 0).
Note that the adversary A never queries for skid∗ . Therefore, it is never
provided the value dkid∗ . Therefore, we can use an adversary distinguish-
ing between Hn+1 and Hn+2 to construct an attacker against the semantic
security of the public-key encryption scheme (G,E,D). This allows us to con-
clude that Hn+1

c≈ Hn+2.
Finally, note that the hybrid Hn+2 is information theoretically independent
of the plaintext message m.

7.3 Proof of Lemma 3

The proof follows by a sequence of sub-hybrids Hτ,0 to Hτ,4 where Hτ,0 is same
as Hτ−1 and Hτ,4 is same as Hτ .

– Hτ,0: This hybrid is same as Hτ−1.
– Hτ,1: In this hybrid, we change how the garbled circuit P̃ τ is generated. Let

v = id∗[1 . . . τ − 1] and lkv = (kv, hv, rv, h′
v, r

′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1)

and define xv := kv‖hv. The change we make is the following. We generate

(P̃ τ , plab
τ
) $←− GCircuit(1λ,P[qlab

τ
])

now as

(P̃ τ , {plabτ
j,xv,j

}j∈[	])
$←− Sim(1λ, {Enc(kv, (hv, j, b), qlabτ

j,b)}j∈[λ],b∈{0,1})
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where xv,j is the jth bit of xv. Next, we set plab
i
:={plabi

j,xv,j
, plabi

j,xv,j
}j∈[	].

Computational indistinguishability of hybrids Hτ,0 and Hτ,1 follows
by the security of the garbling scheme GCircuit and the fact that
{Enc(kv, (hv, j, b), qlabτ

j,b)}j∈[λ],b∈{0,1} is exactly the output of the circuit
P [qlab

τ
] on input xv.

– Hτ,2: This hybrid is identical to Hτ,2, except that for v = id∗[1 . . . τ − 1] we
change

(P̃ τ , {plabτ
j,xv,j

}j∈[	]) := Sim(1λ, {Enc(kv, (hv, j, b), qlabτ
j,b)}j∈[λ],b∈{0,1})

to

(P̃ τ , {plabτ
j,xv,j

}j∈[	]) := Sim(1λ, {Enc(kv, (hv, j, b), qlabτ
j,yv,j

)}j∈[λ],b∈{0,1}),

where yv := h′
v.

Notice that node v is generated so that the trapdoor value tv is not used in the
execution of the experiment. Therefore, computational indistinguishability of
hybrids Hτ,1 and Hτ,2 follows by λ2 invocations (one invocation for each
bit of the λ labels) of the security of the chameleon encryption scheme. The
reduction is analogous to the reduction proving indistinguishability of hybrids
Hτ,2 and Hτ,3 in the proof of Lemma 2.
Remark: We note that the ciphertexts hardwired inside the garbled circuit
only provide the labels {qlabτ

j,yv,j
}j∈[λ] (in an information theoretical sense).

– Hτ,3 This hybrid is identical to Hτ,2, except that for v = id∗[1 . . . τ − 1] we
change how Q̃τ is generated. If τ = n then

(Q̃n, qlab
n
) $←− GCircuit(1λ,Qlast[id∗[n], kG, tlab]),

is changed to (Q̃n, {qlabn
j,yv,j

}j∈[λ]) :=Sim(1λ, {Enc(kG, (h′
v, j + id∗[n] · λ + 2�,

b), tlabj,b)}j∈[λ],b∈{0,1}), and qlab
n
:={qlabn

j,yv,j
, qlabn

j,yv,j
}j∈[λ] where yv :=h′

v.
Otherwise, if τ �= n then

(Q̃τ , qlab
τ
) $←− GCircuit(1λ,Q[id∗[τ ], kG, plab

τ+1
])

is changed to (Q̃τ , {qlabτ
j,yv,j

}j∈[λ]) := Sim(1λ, {Enc(kG, (h′
v, j + id∗[τ ] · �, b),

plabτ+1
j,b )}j∈[	],b∈{0,1}), and qlab

τ
:= {qlabτ

j,yv,j
, qlabτ

j,yv,j
}j∈[λ] where yv := h′

v.
Computational indistinguishability between hybrids Hτ,2 and Hτ,3 fol-
lows by the security of the garbling scheme and the fact that is the
output of the circuit Qlast[id∗[n], kG, tlab] is {Enc(kG, (h′

v, j + id∗[n] · λ +
2�, b), tlabj,b)}j∈[λ],b∈{0,1} and the output of the circuit Q[id∗[τ ], kG, plab

τ+1
]

is {Enc(kG, (h′
v, j + id∗[τ ] · �, b), plabτ+1

j,b )}j∈[	],b∈{0,1}.
– Hτ,4: This hybrid is identical to Hτ,4, except that we change generation of

Q̃τ . Specifically, in the case τ = n then we change the generation process of
Q̃n from (Q̃n, {qlabn

j,yv,j
}j∈[λ]) := Sim(1λ, {Enc(kG, (h′

v, j + id∗[n] · λ + 2�, b),
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tlabj,b)}j∈[λ],b∈{0,1}) to (Q̃n, {qlabn
j,yv,j

}j∈[λ]) := Sim(1λ, {Enc(kG, (h′
v, j +

id∗[n] ·λ+2�, b), tlabj,zv,j )}j∈[λ],b∈{0,1}), where zv := ekid∗ . On the other hand,
when τ �= n then it is changed from (Q̃τ , {qlabτ

j,yv,j
}j∈[λ]) := Sim(1λ, {Enc

(kG, (h′
v, j + id∗[τ ] · �, b), plabτ+1

j,b )}j∈[	],b∈{0,1}) to (Q̃τ , {qlabτ
j,yv,j

}j∈[λ]) :=
Sim(1λ, {Enc(kG, (h′

v, j + id∗[τ ] · �, b), plabτ+1
j,zv,j

)}j∈[	],b∈{0,1}) where zv :=
hv‖id∗[τ ]‖kv‖id∗[τ ].
Notice that since the trapdoor for kG is unavailable (never generated or
used), computational indistinguishability of hybrids Hτ,3 and Hτ,4 follows
by λ2 invocations (one invocation per bit of the λ labels) if τ = n and by �λ
invocations (one invocation per bit of the � labels) otherwise of the security
of the chameleon encryption scheme. And the reduction to the security of
the chameleon encryption scheme is analogous to the reduction described for
indistinguishability between hybrids Hτ,1 and Hτ,2.
Observe that the hybrid Hτ,4 is the same as hybrid Hτ .

Acknowledgments. We thank the anonymous reviewers of CRYPTO 2017 for their
valuable feedback.
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Abstract. SHA-1 is a widely used 1995 NIST cryptographic hash func-
tion standard that was officially deprecated by NIST in 2011 due to
fundamental security weaknesses demonstrated in various analyses and
theoretical attacks.

Despite its deprecation, SHA-1 remains widely used in 2017 for docu-
ment and TLS certificate signatures, and also in many software such as
the GIT versioning system for integrity and backup purposes.

A key reason behind the reluctance of many industry players to replace
SHA-1 with a safer alternative is the fact that finding an actual collision
has seemed to be impractical for the past eleven years due to the high
complexity and computational cost of the attack.

In this paper, we demonstrate that SHA-1 collision attacks have finally
become practical by providing the first known instance of a collision.
Furthermore, the prefix of the colliding messages was carefully chosen
so that they allow an attacker to forge two distinct PDF documents
with the same SHA-1 hash that display different arbitrarily-chosen visual
contents.

We were able to find this collision by combining many special cryptan-
alytic techniques in complex ways and improving upon previous work. In
total the computational effort spent is equivalent to 263.1 calls to SHA-1’s
compression function, and took approximately 6 500 CPU years and 100
GPU years. While the computational power spent on this collision is
larger than other public cryptanalytic computations, it is still more than
100 000 times faster than a brute force search.

Keywords: Hash function · Cryptanalysis · Collision attack · Collision
example · Differential path construction

1 Introduction

A cryptographic hash function H : {0, 1}∗ → {0, 1}n is a function that computes
for any arbitrarily long message M a fixed-length hash value of n bits. It is
a versatile cryptographic primitive used in many applications including digital
signature schemes, message authentication codes, password hashing and content-
addressable storage. The security or even the proper functioning of many of these
c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part I, LNCS 10401, pp. 570–596, 2017.
DOI: 10.1007/978-3-319-63688-7 19
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applications rely on the assumption that it is practically impossible to find col-
lisions, i.e. two distinct messages x, y that hash to the same value H(x) = H(y).
When the hash function behaves in a “sufficiently random” way, the expected
number of calls to H (or in practice its underlying fixed-size function) to find a
collision using an optimal generic algorithm is

√
π/2 · 2n/2 (see e.g. [33, App-

ndix A]); an algorithm that is faster at finding collisions for H is then a collision
attack for this function.

A major family of hash function is “MD-SHA”, which includes MD5,
SHA-1 and SHA-2 that all have found widespread use. This family originally
started with MD4 [36] in 1990, which was quickly replaced by MD5 [37] in 1992
due to serious attacks [9,11]. Despite early known weaknesses of its underlying
compression function [10], MD5 was widely deployed by the software industry
for over a decade. The MD5CRK project that attempted to find a collision for
MD5 by brute force was halted early in 2004, when Wang and Yu produced
explicit collisions [49], found by a groundbreaking attack that pioneered new
techniques. In a major development, Stevens et al. [45] later showed that a more
powerful type of attack (the so-called chosen-prefix collision attack) could be
performed against MD5. This eventually led to the forgery of a Rogue Certifi-
cation Authority that in principle completely undermined HTTPS security [46]
in 2008. Despite this, even in 2017 there are still issues in deprecating MD5 for
signatures [18].

Currently, the industry is facing a similar challenge in the deprecation of
SHA-1, a 1995 NIST standard [31]. It is one of the main hash functions of today,
and it also has been facing important attacks since 2005. Based on previous suc-
cessful cryptanalysis [3–5] of SHA-0 [30] (SHA-1’s predecessor, that only differs
by a single rotation in the message expansion function), Wang et al. [48] pre-
sented in 2005 the very first collision attack on SHA-1 that is faster than brute-
force. This attack, while groundbreaking, was purely theoretical as its expected
cost of 269 calls to SHA-1’s compression function was practically out-of-reach.

Therefore, as a proof of concept, many teams worked on generating collisions
for reduced versions of the function: 64 steps [8] (with a cost of 235 SHA-1 calls),
70 steps [7] (cost 244 SHA-1), 73 steps [15] (cost 250.7 SHA-1) and finally 75
steps [16] (cost 257.7 SHA-1) using extensive GPU computation power.

In 2013, building on these advances and a novel rigorous framework for ana-
lyzing SHA-1, the current best collision attack on full SHA-1 was presented by
Stevens [43] with an estimated cost of 261 calls to the SHA-1 compression func-
tion. Nevertheless, a publicly known collision still remained out of reach. This
was also highlighted by Schneier [38] in 2012, when he estimated the cost of a
SHA-1 collision attack to be around US$ 700K in 2015, down to about US$ 173K
in 2018 (using calculations by Walker based on a 261 attack cost [43], Amazon
EC2 spot prices and Moore’s Law), which he deemed to be within the resources
of criminals.

More recently, a collision for the full compression function underlying
SHA-1 was obtained by Stevens et al. [44] using a start-from-the-middle app-
roach and a highly efficient GPU framework (first used to mount a similar
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freestart attack on the function reduced to 76 steps [21]). This required only
a reasonable amount of GPU computation power, about 10 days using 64
GPUs, equivalent to approximately 257.5 calls to SHA-1 on GPU. Based on
this attack, the authors projected that a collision attack on SHA-1 may cost
between US$ 75K and US$ 120K by renting GPU computing time on Amazon
EC2 [39] using spot-instances, which is significantly lower than Schneier’s 2012
estimates. These new projections had almost immediate effect when CABForum
Ballot 152 to extend issuance of SHA-1 based HTTPS certificates was with-
drawn [13], and SHA-1 was deprecated for digital signatures in the IETF’s TLS
protocol specification version 1.3.

Unfortunately CABForum restrictions on the use of SHA-1 only apply to
actively enrolled Certification Authority certificates and not on any other cer-
tificates, e.g. retracted CA certificates that are still supported by older systems
(and CA certificates have indeed been retracted for continued use of SHA-1 cer-
tificates to serve to these older systems unchecked by CABForum regulations1),
and certificates for other TLS applications including up to 10% of credit card
payment systems [29,47]. It thus remains in widespread use across the software
industry for, e.g., digital signatures of software, documents, and many other
applications, most notably in the GIT versioning system.

It is well worth noting that academic researchers have not been the only
ones to compute (and exploit) hash function collisions. Nation-state actors [24,
25,34] have been linked to the highly advanced espionage malware “Flame” that
was found targeting the Middle-East in May 2012. As it turned out, it used a
forged signature to infect Windows machines via a man-in-the-middle attack on
Windows Update. Using a new technique of counter-cryptanalysis that is able to
expose cryptanalytic collision attacks given only one message from a colliding
message pair, it was proven that the forged signature was made possible by a
then secret chosen-prefix attack on MD5 [12,42].

2 Our Contributions

We are the first to exhibit an example collision for SHA-1, presented in Table 1,
thereby proving that theoretical attacks on SHA-1 have now become practical.
Our work builds upon the best known theoretical collision attack [43] with esti-
mated cost of 261 SHA-1 calls. This is an identical-prefix collision attack, where
a given prefix P is extended with two distinct near-collision block pairs such
that they collide for any suffix S:

SHA-1
(
P ||M (1)

1 ||M (1)
2 ||S

)
= SHA-1

(
P ||M (2)

1 ||M (2)
2 ||S

)
. (1)

The computational effort spent on our attack is estimated to be equivalent to
263.1 SHA-1 calls (see Sect. 6). There is certainly a gap between the theoretical
attack as presented in [43] and our executed practical attack that was based
1 For instance, SHA-1 certificates are still being sold by CloudFlare at the time of

writing: https://www.cloudflare.com/ssl/dedicated-certificates/.

https://www.cloudflare.com/ssl/dedicated-certificates/
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Table 1. Colliding message blocks for SHA-1.

CV0 4e a9 62 69 7c 87 6e 26 74 d1 07 f0 fe c6 79 84 14 f5 bf 45

M
1

1 7f 46 dc 93 a6 b6 7e 01 3b 02 9a aa 1d b2 56 0b

45 ca 67 d6 88 c7 f8 4b 8c 4c 79 1f e0 2b 3d f6

14 f8 6d b1 69 09 01 c5 6b 45 c1 53 0a fe df b7

60 38 e9 72 72 2f e7 ad 72 8f 0e 49 04 e0 46 c2

CV
1

1 8d 64 d6 17 ff ed 53 52 eb c8 59 15 5e c7 eb 34 f3 8a 5a 7b

M
1

2 30 57 0f e9 d4 13 98 ab e1 2e f5 bc 94 2b e3 35

42 a4 80 2d 98 b5 d7 0f 2a 33 2e c3 7f ac 35 14

e7 4d dc 0f 2c c1 a8 74 cd 0c 78 30 5a 21 56 64

61 30 97 89 60 6b d0 bf 3f 98 cd a8 04 46 29 a1

CV2 1e ac b2 5e d5 97 0d 10 f1 73 69 63 57 71 bc 3a 17 b4 8a c5

CV0 4e a9 62 69 7c 87 6e 26 74 d1 07 f0 fe c6 79 84 14 f5 bf 45

M
2

1 73 46 dc 91 66 b6 7e 11 8f 02 9a b6 21 b2 56 0f

f9 ca 67 cc a8 c7 f8 5b a8 4c 79 03 0c 2b 3d e2

18 f8 6d b3 a9 09 01 d5 df 45 c1 4f 26 fe df b3

dc 38 e9 6a c2 2f e7 bd 72 8f 0e 45 bc e0 46 d2

CV
2

1 8d 64 c8 21 ff ed 52 e2 eb c8 59 15 5e c7 eb 36 73 8a 5a 7b

M
2

2 3c 57 0f eb 14 13 98 bb 55 2e f5 a0 a8 2b e3 31

fe a4 80 37 b8 b5 d7 1f 0e 33 2e df 93 ac 35 00

eb 4d dc 0d ec c1 a8 64 79 0c 78 2c 76 21 56 60

dd 30 97 91 d0 6b d0 af 3f 98 cd a4 bc 46 29 b1

CV2 1e ac b2 5e d5 97 0d 10 f1 73 69 63 57 71 bc 3a 17 b4 8a c5

on it. Indeed, the theoretical attack’s estimated complexity does not include
the inherent relative loss in efficiency when using GPUs, nor the inefficiency
we encountered in actually launching a large scale computation distributed over
several data centers. Moreover, the construction of the second part of the attack
was significantly more complicated than could be expected from the literature.

To find the first near-collision block pair (M (1)
1 ,M

(2)
1 ) we employed the open-

source code from [43], which was modified to work with our prefix P given
in Table 2, and for large scale distribution over several data centers. To find
the second near-collision block pair (M (1)

2 ,M
(2)
2 ) that leads to the collision was

more challenging, as the attack cost is known to be significantly higher, but also
because of additional obstacles.

In Sect. 5 we will discuss in particular the process of building the second near-
collision attack. Essentially we followed the same steps as was done for the first
near-collision attack [43], combining many existing cryptanalytic techniques. Yet
we further employed the SHA-1 collision search GPU framework from Karpman
et al. [21] to achieve a significantly more cost efficient attack.

We also describe two new additional techniques used in the construction of
the second near-collision attack. The first allowed us to use additional differential
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Table 2. Identical prefix of our collision.

25 50 44 46 2d 31 2e 33 0a 25 e2 e3 cf d3 0a 0a %PDF-1.3.%......

0a 31 20 30 20 6f 62 6a 0a 3c 3c 2f 57 69 64 74 .1 0 obj.<</Widt

68 20 32 20 30 20 52 2f 48 65 69 67 68 74 20 33 h 2 0 R/Height 3

20 30 20 52 2f 54 79 70 65 20 34 20 30 20 52 2f 0 R/Type 4 0 R/

53 75 62 74 79 70 65 20 35 20 30 20 52 2f 46 69 Subtype 5 0 R/Fi

6c 74 65 72 20 36 20 30 20 52 2f 43 6f 6c 6f 72 lter 6 0 R/Color

53 70 61 63 65 20 37 20 30 20 52 2f 4c 65 6e 67 Space 7 0 R/Leng

74 68 20 38 20 30 20 52 2f 42 69 74 73 50 65 72 th 8 0 R/BitsPer

43 6f 6d 70 6f 6e 65 6e 74 20 38 3e 3e 0a 73 74 Component 8>>.st

72 65 61 6d 0a ff d8 ff fe 00 24 53 48 41 2d 31 ream......$SHA-1

20 69 73 20 64 65 61 64 21 21 21 21 21 85 2f ec is dead!!!!!./.

09 23 39 75 9c 39 b1 a1 c6 3c 4c 97 e1 ff fe 01 .#9u.9...<L.....

paths around step 23 for increased success probability and more degrees of free-
dom without compromising the use of an early-stop technique. The second was
necessary to overcome a serious problem of an unsolvable strongly over-defined
system of equations over the first few steps of SHA-1’s compression function that
threatened the feasibility of finishing this project.

As can be deduced from Eq. 1, our example colliding files only differ in two
successive random-looking message blocks generated by our attack. We exploit
these limited differences to craft two colliding PDF documents containing arbi-
trary distinct images. Examples can be downloaded from https://shattered.io.
PDFs with the same MD5 hash have previously been constructed by Gebhardt
et al. [14] by exploiting so-called Indexed Color Tables and Color Transformation
functions. However, this method is not effective for many common PDF viewers
that lack support for these functionalities. Our PDFs rely on distinct parsings
of JPEG images, similar to Gebhardt et al.’s TIFF technique [14] and Albertini
et al.’s JPEG technique [1]. Yet we improved upon these basic techniques using
very low-level “wizard” JPEG features such that these work in all common PDF
viewers, and even allow very large JPEGs that can be used to craft multi-page
PDFs. This overall approach and the technical details will be described in a
separate article [2].

The remainder of this paper is organized as follows. We first give a brief
description of SHA-1 in Sect. 3. Then, we give a high-level overview of our attack
in Sect. 4, followed by Sect. 5 that details the entire process and the cryptana-
lytic techniques employed, where we also highlight improvements with respect
to previous work. Finally, we discuss the large-scale distributed computations
required to find the two near-collision block pairs in Sect. 6. The parameters
used to find the second colliding block are given in the appendix, in Sect.A.

3 The SHA-1 Hash Function

We provide a brief description of SHA-1 as defined by NIST [31]. SHA-1 takes an
arbitrary-length message and computes a 160-bit hash. It divides the (padded)

https://shattered.io
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input message into k blocks M1, . . . ,Mk of 512 bits. The 160-bit internal state
CVj of SHA-1, called the chaining value, is initialized to a predefined initial
value CV0 = IV . Each message block is then fed to a compression function h
that updates the chaining value, i.e. CVj+1 = h(CVj ,Mj+1), for 0 ≤ j < k,
where the final CVk is output as the hash.

The compression function h takes a 160-bit chaining value CVj and a 512-
bit message block Mj+1 as inputs, and outputs a new 160-bit chaining value
CVj+1. It mixes the message block into the chaining value as follows, operating
on words, simultaneously seen as 32-bit strings and as elements of Z/232Z: the
input chaining value is parsed as five words a, b, c, d, e, and the message block as
16 words m0, . . . ,m15. The latter are expanded into 80 words using the following
recursive linear equation:

mi = (mi−3 ⊕ mi−8 ⊕ mi−14 ⊕ mi−16)�1, for 16 ≤ i < 80.

Starting from (A−4, A−3, A−2, A−1, A0) := (e�2, d�2, c�2, b, a), each mi is mixed
into an intermediate state over 80 steps i = 0, . . . , 79:

Ai+1 = A�5
i + ϕi(Ai−1, A

�2
i−2, A

�2
i−3) + A�2

i−4 + Ki + mi,

where ϕi and Ki are predefined Boolean functions and constants:

Step i ϕi(x, y, z) Ki

0 ≤ i < 20 ϕIF = (x ∧ y) ∨ (¬x ∧ z) 0x5a827999

20 ≤ i < 40 ϕXOR = x ⊕ y ⊕ z 0x6ed9eba1

40 ≤ i < 60 ϕMAJ = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8f1bbcdc

60 ≤ i < 80 ϕXOR = x ⊕ y ⊕ z 0xca62c1d6

After the 80 steps, the new chaining value is computed as the sum of the
input chaining value and the final intermediate state:

CVj+1 = (a + A80, b + A79, c + A�2
78 , d + A�2

77 , e + A�2
76 ).

4 Overview of our SHA-1 Collision Attack

We illustrate our attack from a high level in Fig. 1. Starting from identical chain-
ing values for two messages, we use two pairs of blocks. The differences in the
first block pair cause a small difference in the output chaining value, which is
canceled by the difference in the second block pair, leading again to identical
chaining values and hence a collision (indicated by (2)). We employ differential
paths that are a precise description of differences in state words and message
words and of how these differences should propagate through the 80 steps.

Note that although the first five state words are fixed by the chaining value,
one can freely modify message words and thus directly influence the next sixteen
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Fig. 1. Attack overview

state words. Moreover, with additional effort this can be extended to obtain lim-
ited influence over another eight state words. However, control over the remaining
state words (indicated by (1)) is very hard and thus requires very sparse target
differences that correctly propagate with probability as high as possible. Fur-
thermore, these need to be compatible with differences in the expanded message
words. The key solution is the concept of local collisions [5], where any state bit-
difference introduced by a perturbation message bit-difference is to be canceled
in the next five steps using correction message bit-differences.

To ensure all message word bit differences are compatible with the linear
message expansion, one uses a disturbance vector (DV) [5] that is a correctly
expanded message itself, but where every “1” bit marks the start of a local
collision. The selection of a good disturbance vector has a very high impact on
the overall attack cost. As previously shown by Wang et al. [48], the main reason
of using two block pairs (i.e. to search for a near-collision over a first message
block, that is completed to a full collision over a second) instead of only one
is that this choice alleviates an important restriction on the disturbance vector,
namely that there are no state differences after the last step. Similarly, it may be
impossible to unite the input chaining value difference with the local collisions for
an arbitrary disturbance vector. This was solved by Wang et al. [48] by crafting a
tailored differential path (called the non-linear (NL) path, indicated by (3)) that
over the first 16 steps connects the input chaining value differences to the local
collision differences over the remaining steps (called the linear path, referring to
the linear message expansion dictating the local collision positions).

One has to choose a good disturbance vector, then craft a non-linear differ-
ential path for each of the two near-collision attacks (over the first and second
message blocks), determine a system of equations over all steps and finally find
a solution in the form of a message block pair (as indicated by (4A) and (4B)).
Note that one can only craft the non-linear path for the second near-collision
attack once the chaining values resulting from the first block pair are known.
This entire process including our improvements is described below.

5 Near-Collision Attack Procedure

This section describes the overall procedure of each of the two near-collision
attacks. Since we relied on our modification of Stevens’ public source-code [17,43]
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DV selection
Craft non-
linear path

Determine
attack

conditions

Find
additional
conditions

Fix
solvability
first steps

Find
speed-ups

(boomerangs)

Write attack
algorithm

Run attack

Fig. 2. The main steps for each near-collision attack.

for the first near-collision attack, we focus on our extended procedure for our
second near-collision attack. As shown in Fig. 2, this involves the following steps
that are further detailed below:

1. selection of the disturbance vector (same for both attacks);
2. construction of the non-linear differential path;
3. determine attack conditions over all steps;
4. find additional conditions beyond the fixed differential path for early-stop;
5. if necessary fix solvability of attack conditions over the first few steps;
6. find message modification rules to speed-up collision search;
7. write the attack algorithm;
8. finally, run the attack to find a near-collision block pair.

5.1 Disturbance Vector Selection

The selection of which disturbance vector to use is a major choice, as it directly
determines many aspects of the collision attack. These include the message XOR
differences, but also in theory the optimal attack choices over the linear path,
including the optimal set of candidate endings for the non-linear path together
with optimal linear message-bit equations that maximize the success probability
over the linear part.

Historically several approaches have been used to analyze a disturbance vec-
tor to estimate attack costs over the linear part. Initially, the Hamming weight of
the DV that counts the active number of local collisions was used (see e.g. [4,35]).
For the first theoretical attack on SHA-1 with cost 269 SHA-1-calls by Wang
et al. [48] a more refined measure was used, that counts the number of bit-
conditions on the state and message bits that ensure that the differential path
would be followed. This was later refined by Yajima et al. [51] to a more pre-
cise count by exploiting all possible so-called bit compressions and interactions
through the Boolean functions. However, this approach does not allow any dif-
ference in the carry propagation, which otherwise could result in alternate differ-
ential paths that may improve the overall success probability. Therefore, Mendel
et al. [28] proposed to use the more accurate probability of single local collisions
where carry propagations are allowed, in combination with known local collision
interaction corrections.
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The current state-of-the-art is joint-local-collision analysis (JLCA) intro-
duced by Stevens [41,43] which given sets of allowed differences for each state
word Ai and message word mi (given by the disturbance vector) computes the
exact optimal success probability over the specified steps by exhaustively evalu-
ating all differential paths with those allowed differences. This approach is very
powerful as it also provides important information for the next steps, namely
the set of optimal chaining value differences (by considering arbitrary high prob-
ability differences for the last five Ais) and the set of optimal endings for the
non-linear path, together with a corresponding set of message-bit equations,
using which the optimal highest success probability of the specified steps can
actually be achieved. The best theoretical collision attack on SHA-1 with cost
261 SHA-1 calls [43] was built using this analysis. As we build upon this collision
attack, we use the same disturbance vector, named II(52, 0) by Manuel [26] and
originally described by Jutla and Patthak [20].

5.2 Construction of a Non-linear Differential Path

Once the disturbance vector and the corresponding linear part of the differential
path have been fixed, the next step consists in finding a suitable non-linear path
connecting the chaining value pair (with fixed differences) to the linear part.
This step needs to be done separately for each near-collision attack of the full
collision attack2.

As explained for instance in [43], in the case of the first near-collision attack,
the attacker has the advantage of two additional freedoms. Firstly, an arbitrary
prefix can be included before the start of the attack to pre-fulfill a limited number
of conditions on the chaining value. This allows greater freedom in constructing
the non-linear path as this does not have to be restricted to a specific value
of the chaining value pair, whereas the non-linear path for the second near-
collision attack has to start from the specific given value of input chaining value
pair. Secondly, it can use the entire set of output chaining value differences with
the same highest probability. The first near-collision attack is not limited to a
particular value and succeeds when it finds a chaining value difference in this set,
whereas the second near-collision attack has to cancel the specific difference in
the resulting chaining value pair. Theory predicts the first near-collision attack
to be at least a factor six faster than the second attack [43]. For our collision
attack it is indeed the second near-collision attack that dominates the overall
attack complexity.

Historically, the first non-linear paths for SHA-1 were hand-crafted by Wang
et al. Several algorithms were subsequently developed to automatically search
for non-linear paths for MD5, SHA-1, and other functions of the MD-SHA family.
The first automatic search for SHA-1 by De Cannière and Rechberger [8] was
based on a guess-and-determine approach. This approach tracks the allowed

2 We eventually produced two message block pair solutions for the first near-collision
attack. This provided a small additional amount of freedom in the search for the
non-linear path of the second block.
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values of each bit pair in the two related compression function computations.
It starts with no constraints on the values of these bit pairs other than the
chaining value pair and the linear part differences. It then repeatedly restricts
values on a selected bit pair and then propagates this information via the step
function and linear message expansion relation, i.e., it determines and eliminates
previously-allowed values for other bit pairs that are now impossible due the
added restriction. Whenever a contradiction occurs, the algorithm backtracks
and chooses a different restriction on the last selected bit pair.

Another algorithm for SHA-1 was introduced by Yajima et al. [52] that is
based on a meet-in-the-middle approach. It starts from two fully-specified differ-
ential paths; the first is obtained from a forward expansion of the input chaining
value pair, whereas the other is obtained from a backward expansion of the linear
path. It then tries to connect these two differential paths over the remaining five
steps in the middle by recursively iterating over all solutions over a particular
step.

A similar meet-in-the-middle algorithm was independently first developed for
MD5 and then adapted to SHA-1 by Stevens et al. [17,41,45], which operates
on bit-slices and is more efficient. The open-source HashClash project [17] seems
to be the only publicly available non-linear path construction implementation,
which we improved as follows. Originally, it expanded a large set of differential
paths step by step, keeping only the best N paths after each step, for some user-
specified number N . However, there might be several good differential paths
that result in the same differences and conditions around the connecting five
steps, where either none or all lead to fully-connected differential paths. Since
we only need the best fully-connected differential path we can find, we only need
to keep a best differential path from each subset of paths with the same differ-
ences and conditions over the last five steps that were extended. So to remove
this redundancy, for each step we extend and keep, say, the 4N best paths, then
we remove all such superfluous paths, and finally keep at most N paths. This
improvement led to a small but very welcome reduction in the amount of differ-
ential path conditions under the same path construction parameter choices, but
also allowed a better positioning of the largest density of sufficient conditions
for the differential path.

Construction of a very good non-linear path for the second near-collision
attack using our improved HashClash version took a small effort with our
improvements, yet even allowed us to restrict the section with high density of
conditions to just the first six steps. However, to find a very good non-linear
differential path that is also solvable turned out to be more complicated. Our
final solution is described in Sect. 5.5, which in the end did allow us to build
our attack on the best non-linear path we found without any compromises. The
fixed version of this best non-linear path is presented in Fig. 3, Sect. A.

5.3 Determine Attack Conditions

Having selected the disturbance vector and constructed a non-linear path that
bridges into the linear part, the next step is to determine the entire system of
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equations for the attack. This system of equations is expressed entirely over the
computation of message M (1), and not over M (2), and consists of two types of
equations:

1. Linear equations over message bits. These are used to control the additive
signs of the message word XOR differences implied by the disturbance vector.
Since there are many different “signings” over the linear part with the same
highest probability, instead of one specific choice one uses a linear hull that
captures many choices to reduce the amount of necessary equations.

2. Linear equations over state bits given by a fixed differential path up to some
step i (that includes the non-linear path). These control whether there is a
difference in a state bit and which sign it has, furthermore they force target
differences in the outputs of the Boolean functions ϕi.

We determine this entire system by employing our implementation of joint-
local-collision analysis that has been improved as follows. JLCA takes input sets
of allowed differences for each Ai and mi and exhaustively analyzes the set of
differential paths with those allowed differences, which originally is only used to
analyze the linear part. We additionally provide it with specific differences for
Ai and mi as given by the non-linear path, so we can run JLCA over all 80 steps
and have it output an optimal fixed differential path over steps 0, . . . , 22 together
with an optimal set of linear equations over message bits over the remaining
steps. These are optimal results since JLCA guarantees these lead to the highest
probability that is possible using the given allowed differences, but furthermore
that a largest linear hull is used to minimize the amount of equations.

Note that having a fixed differential path over more steps directly provides
more state bit equations which is helpful in the actual collision search because we
can apply an early-stop technique. However, this also adds further restrictions on
Ai limiting a set of allowed differences to a single specific difference. In our case
limiting A24 would result, besides a drop in degrees of freedom, in a lower overall
probability, thus we only use a fixed differential path up to step 22, i.e., up to
A23. Below in Sect. 5.4 we show how we compensated for fewer state equations
that the actual collision search uses to early stop.

5.4 Find Additional State Conditions

As explained in Sect. 5.3, the system of equations consists of linear equations
over (expanded) message bits and linear equations over state bits. In the actual
collision search algorithm, we depend on these state bit equations to stop com-
putation on a bad current solution as early as possible and start backtracking.
These state bit equations are directly given by a fixed differential path, where
every bit difference in the state and message is fixed. Starting from step 23 we
allow several alternate differential paths that increase success probability, but
also allow distinct message word differences that lead to a decrease in the overall
number of equations. Each alternate differential path depends on its own (dis-
tinct) message word differences and leads to its own state bit equations. To find
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additional equations, we also consider linear equations over state and message
bits around steps 21–25. Although in theory these could be computed by JLCA
by exhaustively reconstructing all alternate differential paths and then deter-
mining the desired linear equations, we instead took a much simpler approach.
We generated a large amount of random solutions of the system of equations
up to step 31 using an unoptimized general collision search algorithm. We then
proceeded to exhaustively test potential linear equations over at most four state
bits and message bits around steps 21–25, which is quite efficient as on average
only two samples needed to be checked for each bad candidate. The additional
equations we found and used for the collision search are shown in Table 4, Sect. A.

5.5 Fix Solvability over the First Steps

This step is not required when there are sufficient degrees of freedom in the non-
linear part, as was the case in the first-block near-collision attack. As already
noted, in the case of the second-block near-collision attack, the non-linear path
has to start will a fully-fixed chaining value and has significantly more condi-
tions in the first steps. As a result, the construction of a very good and solvable
non-linear differential path for the second near-collision attack turned out to
be quite complex. Our initially constructed paths unfortunately proved to be
unsolvable over the first few steps. We tried several approaches including using
the guess-and-determine non-linear path construction to make corrections as
done by Karpman et al. [21], as well as using worse differential path construc-
tion parameters, but all these attempts led to results that not only were unsat-
isfactory but that even threatened the feasibility of the second near-collision
attack. Specifically, both approaches led to differential paths with a significantly
increased number of conditions, bringing the total number of degrees of freedom
critically low. Moreover, the additional conditions easily conflicted with candi-
date speed-up measures named “boomerangs” necessary to bring the attack’s
complexity down to a feasible level. Our final solution was to encode this prob-
lem into a satisfiability (SAT) problem and use a SAT solver to find a drop-in
replacement differential path over the first eight steps that is solvable.

More specifically, we adapted the SHA-1 SAT system generator from
Nossum3 [32] (initially used to compute reduced-round practical preimages) to
generate two independent 8-step compression function computations, which we
then linked by adding constraints that set the given input chaining value pair,
the message XOR differences over m0, . . . ,m7, the path differences of A4, . . . , A8

and the path conditions of A5, . . . , A8. In effect, we allowed complete freedom
over A1, A2, A3 and some freedom over A4. All solutions were exhaustively gen-
erated by MiniSAT4 and then converted into drop-in replacement paths, from
which we kept the one with fewest conditions.

This allowed us to build our attack on the best non-linear path we found
without any compromises and the corrected non-linear path is presented in Fig. 3,

3 https://github.com/vegard/sha1-sat.
4 http://minisat.se/.

https://github.com/vegard/sha1-sat
http://minisat.se/
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Sect. A. Note that indeed the system of equations is over-defined: over the first
five steps, there are only 15 state bits without an equation, while at the same
time there are 23 message equations.

5.6 Find Message Modifications to Speed-Up Collision Search

To speed-up the collision search significantly, it is important to employ message
modification rules, that make small changes in the current message block that
do not affect any bit involved with the state and message-bit equations up to
some step n (with sufficiently high probability). This effectively allows such a
message modification rule to be applied to one solution up to step n to generate
several solutions up to the same step with almost no additional cost, thereby
significantly reducing the average cost to generate solutions up to step n.

The first such speed-up technique that was developed in attacks of the MD-
SHA family was called neutral bits, introduced by Biham and Chen to improve
attacks on SHA-0 [3]. A message bit is neutral up to a step n if flipping this
bit causes changes that do not interact with differential path conditions up to
step n with high probability. As the diffusion of SHA-0/SHA-1’s step function
is rather slow, it is not hard to find many bits that are neutral for a few steps.

A nice improvement of the original neutral bits technique was ultimately
described by Joux and Peyrin as “boomerangs” [19]. It consists in carefully
selecting a few bits that are all flipped together in such a way that this effectively
flips, say, only one state bit in the first 16 steps, and such that the diffusion of
uncontrollable changes is significantly delayed. This idea can be instantiated effi-
ciently by flipping together bits that form a local collision for the step function.
This local collision will eventually introduce uncontrollable differences through
the message expansion; however, these do not appear immediately, and if all
conditions for the local collision to be successful are verified, the first few steps
after the introduction of its initial perturbation will be free of any difference.
Joux and Peyrin then noted that sufficient conditions for the local collision can
be pre-satisfied when creating the initial partial solution, effectively leading to
probability-one local collisions. This leads to a few powerful message modifica-
tion rules that are neutral up to very late steps.

A closely-related variant of boomerangs is named advanced message modi-
fication by Wang et al. in their attack of the MD-SHA family (see e.g. [48]).
While the objective of this technique is also to exploit the available freedom in
the message, it applies this in a distinct way by identifying ways of interacting
with an isolated differential path condition with high probability. Then, if an
initial message pair fails to verify a condition for which a message modification
exists, the bits of the latter are flipped, so that the resulting message pair now
verifies the condition with high probability.

In our attack, we used both neutral bits and boomerangs as message modifi-
cation rules. This choice was particularly motivated by the ability to efficiently
implement these speed-up techniques on GPUs, used to compute the second
block of the collision, similar to [21,44].
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Our search process for finding the neutral bits follows the one described
in [44]. Potential boomerangs are selected first, one being eligible if its initial
perturbation does not interact with differential path conditions and if the cor-
rections of the local collision do not break some linear message-bit-relation (this
would typically happen if an odd number of bits to be flipped are part of such
a relation). The probability with which a boomerang eventually interacts with
path conditions is then evaluated experimentally by activating it on about 4 000
independent partial solutions; the probability threshold used to determine up to
which step a boomerang can be used is set to 0.9, meaning that it can be used
to generate an additional partial solution at step n from an existing one if it
does not interact with path conditions up to step n with probability more than
0.1. Once boomerangs have been selected, the sufficient conditions necessary
to ensure that their corresponding local collisions occur with probability 1 are
added to the differential path, and all remaining free message bits are tested
for neutrality using the same process (i.e., a bit is only eligible if flipping it
does not trivially violate path conditions or make it impossible to later satisfy
message-bit-relations, and its quality is evaluated experimentally).

The list of neutral bits and boomerangs used for the second block of the
attack is given in Sect. A. There are 51 neutral bits, located on message words
m11 to m15, and three boomerangs each made of a single local collision started
on m6 (for two of them) or m9.

5.7 Attack Implementation

A final step in the design of the attack is to implement it. This is needed for
obvious reasons if the goal is to find an actual collision as we do here, but it is also
a necessary step if one wishes to obtain a precise estimate of the complexity of the
attack. Indeed, while the complexity of the probabilistic phase of the attack can
be accurately computed using JLCA (or can also be experimentally determined
by sampling many mock partial solutions), there is much more uncertainty as to
“where” this phase actually starts. In other words, it is hard to exactly predict
how effective the speed-up techniques can be without actually implementing
them. The only way to determine the real complexity of an attack is then to
implement it, measure the rate of production of partial solutions up to a step
where there is no difference in the differential path for five consecutive state
words, and use JLCA to compute the exact probability of obtaining a (near-)
collision over the remaining steps.

The first near-collision block pair of the attack was computed with CPUs,
using an adapted version of the HashClash software [17]. As the original code
was not suitable to run on a large scale, a significant effort was spent to make
it efficient on the hundreds of cores necessary to obtain a near-collision in rea-
sonable time. The more expensive computation of the second block was done on
GPUs, based on the framework used by Karpman et al. [21], which we briefly
describe below.

The main structure used in this framework consists in first generating base
solutions on CPUs that fix the sixteen free message words, and then to use GPUs
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to extend these to partial solutions up to a late step, by only exploiting the free-
dom offered by speed-up techniques (in particular neutral bits and boomerangs).
These partial solutions are then sent back to a CPU to check if they result in
collisions.

The main technical difficulty of this approach is to make the best use of the
power offered by GPUs. Notably, their programming model differs from the one
of CPUs in how diverse the computations run on their many available cores can
be: on a multicore CPU, every core can be used to run an independent process;
however, even if a recent GPU can feature many more cores than a CPU (for
instance, the Nvidia GTX970 used in [21,44] and the initial implementation of
this attack features 1664 cores), they can only be programmed at the granularity
of warps made of 32 threads, which must then run the same code. Furthermore,
divergence in the control flow of threads of a single warp is dealt with by serial-
izing the diverging computations; for instance, if a single thread takes a different
branch than the rest of the warp in an if statement, all the other threads become
idle while it is taking its own branch. This limitation would make a näıve parallel
implementation of the usage of neutral bits rather inefficient, and there is instead
a strong incentive to minimize control-flow divergence when implementing the
attack.

The approach taken by Karpman et al. [21] to limit the impact of the inherent
divergence in neutral bit usage is to decompose the attack process step by step
and to use the fair amount of memory available on recent GPUs to store partial
solutions up to many different steps in shared buffers. In a nutshell, all threads
of a single warp are asked to load their own partial solution up to a certain state
word Ai, and they will together apply all neutral bits available at this step, each
time checking if the solution can be validly extended to a solution up to Ai+1;
if and only if this is the case, this solution is stored in the buffer for partial
solutions up to Ai+1, and this selective writing operation is the only moment
where the control flow of the warps may diverge.

To compute the second block pair of the attack, and hence obtain a full
collision, we first generated base solutions consisting of partial solutions up to
A14 on CPU, and used GPUs to generate additional partial solutions up to A26.
These were further probabilistically extended to partial solutions up to A53, still
using GPUs, and checking whether they resulted in a collision was finally done on
a CPU. The probability of such a partial solution to also lead to a collision can be
computed by JLCA to be equal to 2−27.8, and 2−48.7 for partial solutions up to
A33 (these probabilities could in fact both be reduced by a factor 20.6; however,
the ones indicated here correspond to the attack we carried out). On a GTX 970,
a prototype implementation of the attack produced partial solutions up to A33

at a rate of approximately 58 100 per second, while the full SHA-1 compression
function can be evaluated about 231.8 times per second on the same GPU. Thus,
our attack has an expected complexity of 264.7 on this platform.

Finally, adapting the prototype GPU implementation to a large-scale
infrastructure suitable to run such an expensive computation also required a
fair amount of work.
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6 Computation of the Collision

This section gives some details about the computation of the collision and pro-
vides a few comparisons with notable cryptographic computations.

6.1 Units of Complexity

The complexity figures given in this section follow the common practice in the
cryptanalysis of symmetric schemes of comparing the efficiency of an attack to
the cost of using a generic algorithm achieving the same result. This can be
made by comparing the time needed, with the same resources, to e.g. compute
a collision on a hash function by using a (memoryless) generic collision search
versus by using a dedicated process. This comparison is usually expressed by
dividing the time taken by the attack, e.g. in core hours, by the time taken to
compute the attacked primitive once on the same platform; the cost of using a
generic algorithm is then left implicit. This is for instance how the figure of 264.7

from Sect. 5.7 has been derived.
While this approach is reasonable, it is far from being as precise as what a

number such as 264.7 seems to imply. We discuss below a few of its limitations.

The Impact of Code Optimization. An experimental evaluation of the com-
plexity of an attack is bound to be sensitive to the quality of the implementation,
both of the attack itself and of the reference primitive used as a comparison.
A hash function such as SHA-1 is easy to implement relatively efficiently, and
the difference in performance between a reference and optimized implementation
is likely to be small. This may however not be true for the implementation of
an attack, which may have a more complex structure. A better implementation
may then decrease the “complexity” of an attack without any cryptanalytical
improvements.

Although we implemented our attack in the best way we could, one cannot
exclude that a different approach or some modest further optimizations may
lead to an improvement. However, barring a radical redesign, the associated
gain should not be significant; the improvements brought by some of our own
low-level optimizations was typically of about 15%.

The Impact of the Attack Platform. The choice of the platform used to run
the attack may have a more significant impact on its evaluated complexity. While
a CPU is by definition suitable to run general-purpose computations, this is not
the case of e.g. GPUs. Thus, the gap between how fast a simple computation,
such as evaluating the compression function of SHA-1, and a more complex one,
such as our attack, need not be the same on the two kinds of architectures. For
instance, the authors of [21] noticed that their 76-step freestart attack could
be implemented on CPU (a 3.2 GHz Haswell Core i5) for a cost equivalent to
249.1 compression function computations, while this increased to 250.25 on their
best-performing GTX970, and 250.34 on average.
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This difference leads to a slight paradox: from an attacker’s point of view, it
may seem best to implement the attack on a CPU in order to be able to claim a
better attack complexity. However, a GPU being far more powerful, it is actually
much more efficient to run it on the latter: the attack of [21] takes only a bit
more than four days to run on a single GTX 970, which is much less than the
estimated 150 days it would take using a single quad-core CPU.

We did not write a CPU (resp. GPU) implementation of our own attack for
the search of the second (resp. first) block, and are thus unable to make a similar
comparison for the present full hash function attack. However, as we used the
same framework as [21], it is reasonable to assume that the gap would be of the
same order.

How to Pick the Best Generic Attack. As we pointed out above, the
common methodology for measuring the complexity of an attack leaves implicit
the comparison with a generic approach. This may introduce a bias in suggesting
a strategy for a generic attacker that is in fact not optimal. This was already
hinted in the previous paragraph, where we remarked that an attack may seem
to become worse when implemented on a more efficient platform. In fact, the
underlying assumption that a generic attacker would use the same platform as
the one on which the cryptanalytic attack is implemented may not always be
justified: for instance, even if the latter is run on a CPU, there is no particular
reason why a generic attacker would not use more energy-efficient GPUs or
FPGAs. It may thus be hard to precisely estimate the absolute gain provided
by a cryptanalytic attack compared to the best implementation of a generic
algorithm with identical monetary and time resources, especially when these
are high.

The issues raised here could all be addressed in principle by carefully imple-
menting, say van Oorschot and Wiener’s parallel collision search on a cluster
of efficient platforms [33]. However, this is usually not done in practice, and we
made no exception in our case.

Despite the few shortcomings of this usual methodology used to evaluate the
complexity of attacks, it remains in our opinion a reliable measure thereof, that
allows to compare different attack efforts reasonably well. For want of a better
one, it is also the approach used in this paper.

6.2 The Computation

The major challenge when running our near-collision attacks distributed across
the world was to adapt it into a distributed computation model which pursues
two goals: the geographically distributed workers should work independently
without duplication of work, and the number of the wasted computational time
due to worker’s failures should be minimized. The first goal required storage with
the ability endure high loads of requests coming from all around the globe. For
the second goal, the main sources of failures we found were preemption by higher-
priority workers and bugs in GPU hardware. To diminish the impact of these
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failures, we learned to predict failures in the early stages of computation and
terminated workers without wasting significant amounts of computational time.

First Near-Collision Attack. The first phase of the attack, corresponding to
the generation of first-block near collisions, was run on a heterogeneous CPU
cluster hosted by Google, spread over eight physical locations. The computation
was split into small jobs of expected running time of one hour, whose objectives
were to compute partial solutions up to step 61. The running time of one hour
proved to be the best choice to be resilient against various kind of failures (mostly
machine failure, preemption by other users of the cluster, or network issues),
while limiting the overhead of managing many jobs. A MapReduce paradigm
was used to collect the solutions of a series of smaller jobs; in hindsight, this was
not the best approach, as it introduced an unnecessary bottleneck in the reduce
phase.

The first first-block near collision was found after spending about 3583 core
years that had produced 180 711 partial solutions up to step 61. A second near
collision block was then later computed; it required an additional 2987 core years
and 148 975 partial solutions.

There was a variety of CPUs involved in this computation, but it is reasonable
to assume that they all were roughly equivalent in performance. On a single
core of a 2.3 GHz Xeon E5-2650v3, the OpenSSL implementation of SHA-1 can
compute up to 223.3 compression functions per second. Taking this as a unit, the
first near-collision block required an effort equivalent to 260 SHA-1 compression
function calls, and the second first block required 259.75.

Second Near-Collision Attack. The second more expensive phase of the
attack was run on a heterogeneous cluster of K20, K40 and K80 GPUs, also
hosted by Google. It corresponded to the generation of a second-block near-
collision leading to a full collision.

The overall setup of the computation was similar to the one of the first
block, except that it did not use a MapReduce approach and resorted to using
simpler queues holding the unprocessed jobs. A worker would then select a job,
potentially produce one or several partial solutions up to step 61, and die on
completion.

The collision was found after 369 985 partial solutions had been produced5.
The production rates of partial 61-step solutions of the different devices used
in the cluster were of 0.593 per hour for the K80 (which combines two GPU
chips on one card), 0.444 for the K40 and 0.368 for the K20. The time needed
for a homogeneous cluster to produce the collision would then have been of 114
K20-years, 95 K40-years or 71 K80-years.

The rate at which these various devices can compute the compression function
of SHA-1 is, according to our measurements, 231.1 s−1 for the K20, 231.3 s−1 for

5 We were quite lucky in that respect. The expected number required is about 2.5
times more than that.
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the K40, and 231 s−1 for the K80 (230 s−1 per GPU). The effort of finding the
second block of the collision for homogeneous clusters, measured in number of
equivalent calls to the compression function, is thus equal to 262.8 for the K20
and K40 and 262.1 for the K80.

Although a GTX 970 was only used to prototype the attack, we can also
consider its projected efficiency and measure the effort spent for the attack w.r.t.
this GPU. From the measured production rate of 58 100 step 33 solutions per
second, we can deduce that 0.415 step 61 solutions can be computed per hour
on average. This leads to a computational effort of 102 GPU years, equivalent
to 263.4 SHA-1 compression function calls.

The monetary cost of computing the second block of the attack by rent-
ing Amazon instances can be estimated from these various data. Using a
p2.16xlarge instance, featuring 16 K80 GPUs and nominally costing US$ 14.4
per hour would cost US$ 560K for the necessary 71 device years. It would be
more economical for a patient attacker to wait for low “spot prices” of the
smaller g2.8xlarge instances, which feature four K520 GPUs, roughly equiva-
lent to a K40 or a GTX 970. Assuming thusly an effort of 100 device years, and
a typical spot price of US$ 0.5 per hour, the overall cost would be of US$ 110K.

Finally, summing the cost of each phase of the attack in terms of compression
function calls, we obtain a total effort of 263.1, including the redundant second
near-colliding first block and taking the figure of 262.8 for the second block col-
lision. This should however not be taken as an absolute number; depending on
luck and equipment but without changing any of the cryptanalytical aspects of
our attack, it is conceivable that the spent effort could have been anywhere from,
say, 262.3 to 265.1 equivalent compression function calls.

6.3 Complexity Comparisons

We put our own result into perspective by briefly comparing its complexity to a
few other relevant cryptographic computations.

Comparison with MD5 and SHA-0 Collisions. An apt comparison is first
to consider the cost of computing collisions for MD5 [37], a once very popular
hash function, and SHA-0 [30], identical to SHA-1 but for a missing rotation
in the message expansion. The most efficient known identical-prefix collision
attacks for these three functions are all based on the same series of work from
Wang et al. from the mid-2000s [48–50], but have widely varying complexities.

The best current identical-prefix collision attacks on MD5 are due to Stevens
et al., and require the equivalent of about 216 compression function calls [46].
Furthermore, in the same paper, chosen-prefix collisions are computed for a cost
equivalent to about 239 calls, increasing to 249 calls for a three-block chosen-
prefix collision as was generated on 200 PS3s for the rogue Certification Author-
ity work.

Though very similar to SHA-1, SHA-0 is much weaker against collision
attacks. The best current such attack on SHA-0 is due to Manuel and Peyrin [27],
and requires the equivalent of about 233.6 calls to the compression function.
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Identical-prefix collisions for MD5 and SHA-0 can thus be obtained within
a reasonable time by using very limited computational power, such as a decent
smartphone.

Comparison with RSA Modulus Factorization and Prime Field
Discrete Logarithm Computation. Some of the most expensive attacks
implemented in cryptography are in fact concerned with establishing records of
factorization and discrete logarithm computations. We believe that it is instruc-
tive to compare the resources necessary in both cases. As an example, we consider
the 2009 factorization of a 768-bit RSA modulus from Kleinjung et al. [22] and
the recent 2016 discrete logarithm computation in a 768-bit prime field from
Kleinjung et al. [23].

The 2009 factorization required about 2000 core years on a 2.2 GHz AMD
Opteron of the time. The number of single instructions to have been executed
is estimated to be of the order of 267 [22]6.

The 2016 discrete logarithm computation was a bit more than three times
more expensive, and required about 5300 core years on a single core of a 2.2 GHz
Xeon E5-2660 [23].

In both cases, the overall computational effort could have been decreased
by reducing the time that was spent collecting relations [22,23]. However, this
would have made the following linear-algebra step harder to manage and a longer
computation in calendar time. Kleinjung et al. estimated that a shorter sieving
step could have resulted in a discrete logarithm computation in less than 4000
core years [23].

To compare the cost of the attacks, we can estimate how many SHA-1 (com-
pression function) calls can be performed in the 5300 core years of the more
expensive discrete logarithm record [23]. Considering again a 2.3 GHz Xeon E5-
2650 (slightly faster than the CPU used as a unit by Kleinjung et al.) running
at about 223.3 SHA-1 calls per second, the overall effort of [23] is equivalent
to approximately 260.6 SHA-1 calls. It is reasonable to expect that even on an
older processor the performance of running SHA-1 would not decrease signifi-
cantly; taking the same base figure per core would mean that the effort of [22]
is equivalent to approximately 258.9–259.2 SHA-1 calls.

In absolute value, this is less than the effort of our own attack, the more
expensive discrete logarithm computation being about five times cheaper7, and
less than twice more expensive than computing a single first-block near collision.
However, the use of GPUs for the computation of the second block of our attack
allowed both to significantly decrease the calendar time necessary to perform the
computation, and its efficiency in terms of necessary power: as an example, the
peak power consumption of a K40 is only 2.5 times the one of a 10-core Xeon
E5-2650, yet it is about 25 times faster at computing the compression function of

6 Note that the comparison between factorization and discrete logarithm computation
mentioned in [23] gives for the former a slightly lower figure of about 1700 core years.

7 But now is also a good time to recall that directly comparing CPU and GPU cost
is tricky.
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SHA-1 than the whole CPU, and thence 10 times more energy-efficient overall.
The energy required to compute a collision using GPUs is thus about twice less
than the one required for the discrete logarithm computation8. As a conclusion,
computing a collision for SHA-1 seems to need slightly more effort than 768-bit
RSA factorization or prime-field discrete logarithm computation but, if done on
GPUs, the amount of resources necessary to do so is slightly less.

Acknowledgements. We thank the anonymous reviewers for their helpful comments,
and Michael X. Lyons for pointing out a few minor inconsistencies between the pre-
sented differential path and the actual colliding blocks.

A The Attack Parameters

The first block of the attack uses the same path and conditions as the one
given in [43, Sect. 5], which we refer to for a description. This section gives
the differential path, linear (message) bit-relations and neutral bits used in our
second-block near-collision attack.

We use the notation of Table 3 to represent signed differences of the differ-
ential path and to indicate the position of neutral bits.

We give the differential path of the second block up to A23 in Fig. 3. We
also give necessary conditions for A22 to A26 in Table 4, which are required for
all alternate differential paths allowed. In order to maximize the probability,
some additional conditions are also imposed on the message. These message-bit-
relations are given in Table 5. The rest of the path can then be determined from
the disturbance vector.

We also give the list of the neutral bits used in the attack. There are 51 of
them over the seven message words m11 to m15, distributed as follows (visualized
in Fig. 4):

Table 3. Meaning of the bit difference symbols, for a symbol located on At[i]. The
same symbols are also used for m.

8 This is assuming that the total energy requirements scale linearly with the consump-
tion of the processing units.
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Fig. 3. The differential path of the second block up to A23.

Table 4. Additional necessary conditions used for A22 to A26.

– m11: bit positions (starting with the least significant bit at zero) 7, 8, 9, 10,
11, 12, 13, 14, 15

– m12: positions 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
– m13: positions 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 30
– m14: positions 4, 6, 7, 8, 9, 10
– m15: positions 5, 6, 7, 8, 9, 10, 12
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Table 5. Linear part message-bit-relations for the second block path.

Fig. 4. The 51 single neutral bits used in the second block attack.

Not all of the neutral bits of the same word (say m13) are neutral up to the
same point. Their repartition in that respect is as follows, a graphical represen-
tation being also given in Fig. 5.

– Bits neutral up to A14 (included): m11[9,10,11,12,13,14,15],
m12[2,14,15,16,17,18,19,20], m13[12,16]

– Bits neutral up to A15 (included): m11[7,8], m12[9,10,11,12,13], m13[15,30]
– Bits neutral up to A16 (included): m12[5,6,7,8], m13[10,11,13]
– Bits neutral up to A17 (included): m13[5,6,7,8,9], m14[10]
– Bits neutral up to A18 (included): m14[6,7,9], m15[10,12]
– Bits neutral up to A19 (included): m14[4,8], m15[5,6,7,8,9]

A bit neutral to Ai is then used to produce partial solutions at Ai+1. One should
also note that this list only includes a single bit per neutral bit group, and some
additional flips may be necessary to preserve message-bit-relations.

Out of the three boomerangs used in the attack, one first introduced a per-
turbation on m9 on bit 7, and the other two on m6, on bit 6 and on bit 8. All
three boomerangs then introduce corrections to ensure a local collision. Because
these local collisions happen in the first round, where the Boolean function is
ϕIF, only two corrections are necessary for each of them.
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Fig. 5. The 51 single neutral bits regrouped by up to where they are neutral.

Fig. 6. Boomerang local collision patterns using symbols. The first perturbation differ-
ence is highlighted with a black symbol. Associated correcting differences are identified
with the corresponding white symbol.

The lone boomerang introduced on m9 is neutral up to A22, and the couple
introduced on m6 are neutral up to A25. The complete sets of message bits
defining all of them are shown in Fig. 6, using a “difference notation”.
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Abstract. Two recent works [Lin, EUROCRYPT 2016, Lin and Vaikun-
tanathan, FOCS 2016] showed how to construct Indistinguishability
Obfuscation (IO) from constant degree multilinear maps. However, the
concrete degrees of multilinear maps used in their constructions exceed
30. In this work, we reduce the degree of multilinear maps needed to 5,
by giving a new construction of IO from asymmetric L-linear maps and
a pseudo-random generator (PRG) with output locality L and polyno-
mial stretch. When plugging in a candidate PRG with locality-5 (e.g.,
[Goldreich, ECCC 2010, Mossel, Shpilka, and Trevisan, FOCS 2013,
O’Donnald and Wither, CCC 2014]), we obtain a construction of IO
from 5-linear maps.

Our construction improves the state-of-the-art at two other fronts:
First, it relies on “classical” multilinear maps, instead of their power-
ful generalization of graded encodings. Second, it comes with a security
reduction to (i) the SXDH assumption on algebraic multilinear maps
[Boneh and Silverberg, Contemporary Mathematics, Rothblum, TCC
2013], (ii) the security of PRG, and (iii) sub-exponential LWE, all with
sub-exponential hardness. The SXDH assumption is weaker and/or sim-
pler than assumptions on multilinear maps underlying previous IO con-
structions. When noisy multilinear maps [Garg et al., EUROCRYPT
2013] are used instead, security is based on a family of more complex
assumptions that hold in the generic model.

1 Introduction

Indistinguishability obfuscation, defined first in the seminal work of Barak
et al. [11], aims to transform programs into “unintelligible” ones while preserving
functionality. IO is an extradinarily powerful object and has been used as a cen-
tral tool for obtaining a plethora of new cryptographic constructions, solutions to
long-standing open problems, and techniques enabling new cryptographic goals.

Unfortunately, so far, the existence of IO remain uncertain. Most known can-
didate IO schemes [5,7,10,17,25,27,30,33,46,49,53] are built from the so-called
graded encoding schemes [26], a framework of complex algebraic structures that,
in essence, enables evaluating polynomial-degree polynomials on secret encoded
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values and revealing whether the output is zero or not. The security of most
IO candidates are either analyzed in the ideal model or based on strong uber
assumptions [49], with only one exception [33]. On the front of instantiating
graded encodings from concrete mathematical objects, the state of affairs is
even more worrisome: Vulnerabilities have been demonstrated in all instantia-
tions proposed so far [21,22,26,31,39]. Of course, this does not mean that the
resulting IO constructions are insecure. In fact, this has motivated the search
for IO constructions that withstand all existing attacks [29].

The state-of-affairs motivates the following natural question.

How much can we narrow the gap between
objects and assumptions that imply IO and well − studied ones,

such as, asymmetric bilinear maps with the SXDH assumption?

Two recent works [41,44] have made significant progress towards answering the
question: Lin [41] showed that to construct IO, we do not need full-fledged
graded encodings that support evaluation of all polynomial-degree polynomi-
als, instead, it suffices to start with graded encodings for only constant-degree
polynomials, called constant-degree graded encodings. Following that, Lin and
Vaikuntanathan [44] further weakened the assumption on constant-degree graded
encodings from a uber assumption in [41] to the so-called joint-SXDH assump-
tion, which is a stronger variant of the classical SXDH assumption. Besides from
multilinear maps, their IO constructions additionally rely on PRGs in NC0 and
sub-exponential LWE.

The trajectory of recent developments points towards the holly grail of
“building IO from bilinear maps”. In this work, we make new strides in this
direction: We give a new construction of IO from asymmetric L-linear maps
and a PRG with output locality L (i.e., every output bit depends on at most
L input bits). When plugging in a candidate PRG with locality-5 in the litera-
ture [34,47,48], we obtain a construction of IO from 5-linear maps. This gets the
degree of multilinear maps needed for IO much closer to the dream version of 2.
In comparison, previous IO constructions [41,44] rely on multilinear maps with
degree at least 30. On the other hand, no PRGs with locality 4 exist [23,47].
Thus, our approach hits a barrier and cannot base IO on multilinear maps with
degree L ≤ 4. This barrier is common to recent IO constructions [41,44] and
suggests that we need new techniques circumventing the lower bound on locality
of PRGs.

In addition to reducing the degree of multilinear maps, our IO construction
improves the state-of-the-art at two other fronts. First, our construction uses
the classical asymmetric multilinear maps introduced in [15,50], which are direct
generalization of bilinear pairing groups to higher degree. Previous constructions
rely on graded encodings, which are enhanced versions of multilinear maps with
more powerful functionalities (such as, supporting complex label structures).
Second, the security of our IO scheme is based on the sub-exponential SXDH
assumption on L-linear maps, the sub-exponential security of PRGs, and sub-
exponential LWE. The SXDH assumption on multilinear maps is much simpler
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and/or weaker than the assumption on graded encodings underlying previous
IO constructions, for instance, the joint-SXDH assumption in [44] and the mul-
tilinear subgroup elimination assumption in [33].

1.1 Our Results

We start with defining the SXDH assumption on multilinear maps and then
describe our results.

SXDH on Multilinear Maps. Asymmetric multilinear pairing groups intro-
duced in [15,50] generalize asymmetric bilinear pairing maps to a collection of
source groups G1, · · · , GD, whose elements can be paired to produce elements in
a target group GT via a multilinear map e(ga1

1 , · · · , gaD

D ) = ga1···aD

T . The degree
(a.k.a. multilinearity) of the multilinear map is the number of elements that can
be paired together, which equals to the number of source groups D. We say
that the multilinear pairing groups have prime order if all source groups and the
target group have the same prime order, and composite order if all groups have
the same composite order. In this work, we consider constant-degree multilinear
paring groups, and in particular 5-linear pairing groups, with either prime or
composite order. We omit specifying the order of groups below.

The SXDH assumption on asymmetric multilinear pairing groups is a nat-
ural generalization of the standard symmetric external Diffie-Hellman (SXDH)
assumption on asymmetric bilinear pairing groups, introduced first in [50]. In
short, SXDH states that the decisional Diffie-Hellman assumption holds in every
source group: It postulates that the distribution of ga

d , gb
d, g

ab
d in any source group

d should be indistinguishable to that of ga
d , gb

d, g
r
d. Formally, for all d ∈ [D],

{
ga

d , gb
d

$← Gd : {gi}i∈[D], ga
d , gb

d, gab
d

}

≈
{

ga
d , gb

d, gr
d

$← Gd : {gi}i∈[D], ga
d , gb

d, gr
d

}
,

where {gi} is the set of generators in all groups. When D = 2, this gives the
SXDH assumption on bilinear pairing groups.

Multilinear Maps v.s. Graded Encodings. The interface of (asymmetric) multi-
linear pairing groups is much simpler than that of graded encoding schemes
introduced by [26]. First, graded encoding schemes support graded multiplica-
tion over a collection of groups {Gl}: Graded multiplication can pair elements
of two groups Gl1 , Gl2 , indexed by two labels l1, l2, to produce an element in
the group Gl1+l2 , indexed by label l1 + l2

1. In particular, the output element in
Gl1+l2 can be further paired with elements in other groups to produce elements
in group Gl1+l2+l3+··· and so on. In contrast, multilinear map allows only “one-
shot” multiplication, where the output element belongs to the target group GT

1 The operation is according to some well-defined addition operation over the labels;
for example, if labels are integers, + is integer addition, and if labels are sets, + is
set union.
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that cannot be paired anymore. Second, graded encoding schemes support the
notion of “pairable groups” in the sense that only elements from groups Gl1 , Gl2

that satisfy a “pairable” relation can be paired.2

The support for graded multiplication between pairable groups provides pow-
erful capabilities. In essence, GES allows one to “engineer” the labels of a set of
group elements {gai

li
}, so that, only polynomials of certain specific forms can be

evaluated on values in the exponent. In contrast, the simple interface of multi-
linear maps does not provide such capabilities.

SXDH v.s. Joint-SXDH. Lin and Vaikuntanathan introduced the joint-SXDH
assumption on graded encoding schemes, and showed that IO for P/poly can
be based on sub-exponential joint-SXDH and PRG in NC0. Their joint-SXDH
assumption strengthens the SXDH assumption as follows: It considers the joint
distribution of elements (ga

l , gb
l , g

ab
l )l∈S in a set S of groups. The intuition is that

as long as no pairs of groups Gl1 , Gl2 in the set S are pairable, in the same spirit
as SXDH, the distribution is possibly indistinguishable to the joint distribution of
elements (ga

l , gb
l , g

r
l )l∈S in the same set of groups.3 The joint-SXDH assumption

is more complex and potentially stronger than the SXDH assumption.

Our Main Result: IO from SXDH on L-Linear Maps and Local-L PRG

Theorem 1 (Main Theorem). Let L be any positive integer. Assume the sub-
exponential hardness of LWE with sub-exponential modulus-to-noise ratio. Then,
IO for P/poly is implied by the sub-exponential SXDH assumption on L-linear
pairing groups, and the existence of a sub-exponentially secure locality-L PRG
with polynomial n1+ε-stretch for some ε > 0.

We note that the sub-exponential hardness of SXDH and PRG required by
our theorem is weaker than standard notions of sub-exponential hardness of
decisional problems, in the sense that we only require the distinguishing gap to
be sub-exponentially small against polynomial time adversaries, as opposed to
sub-exponential time adversaries.

Our result establishes a direct and tight connection between the degree
D of multilinear maps needed for constructing IO and the locality L of
PRGs—they are the same D = L—assuming sub-exponential LWE. In compari-
son, the previous state-of-the-art [44] requires the degree of the multilinear map
to be much larger, namely D > 6L. Thus, when plugging-in a PRG of locality-
5, their construction requires at least 30-linear maps, whereas our construction
relies on 5-linear maps.

Step 1: Bootstrapping IO from Locality-L PRG and Degree-L FE.
We follow the same two-step approach in all previous IO constructions: First,
2 For instance, if labels are sets, then two groups are pairable, if their label-sets l1, l2

are disjoint.
3 Note that in both distributions, the same exponents, a, b, r, are used in all groups

in S.
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construct IO for P/poly from some simpler primitives—call this the bootstrapping
step—and then instantiate the primitives needed, using graded encodings or
multilinear maps. In the literature, previous bootstrapping theorems have shown
that general purpose IO can be built from one of the following: (i) IO for NC1 [27],
or (ii) sub-exponentially secure FE for NC1 [2,3,13,14], or (iii) sub-exponentially
secure IO for constant degree computations and PRG in NC0 [41], or (iv) sub-
exponentially secure FE for NC0 and PRG in NC0 [44].4

In this work, we strengthen the bootstrapping theorem of [44], and show
how to build IO from PRGs with locality-L and FE for computing degree L
polynomials in some ring R (which eventually corresponds to the exponent space
of multilinear maps used for instantiating the FE).

Theorem 2 (Bootstrapping Theorem). Let L be any positive integer.
Assume the sub-exponential hardness of LWE with sub-exponential modulus-to-
noise ratio. IO for P/poly is implied by the existence of sub-exponentially secure
(collusion resistant) secret-key FE schemes for computing degree-L polynomials
in some ring R with linear efficiency, and a sub-exponentially secure locality-L
PRG with n1+ε-stretch for some ε > 0.

(In the case that the FE schemes are public-key, the assumption of sub-
exponential LWE is not needed.)

Above, the linear efficiency of FE schemes means that encryption time is linear
in the input length N(λ), that is, TimeFE.Enc = N(λ)poly(λ). In fact, we only
need the FE scheme to achieve the weaker functionality of revealing whether
the output of a degree-L polynomial is zero in R. Below, we refer to such FE
schemes as degree-L FE in R with linear efficiency.

In comparison, with locality-L PRG, the bootstrapping theorem in [44] needs
to start with FE for computing polynomials with higher degree 3L + 2. We here
reduce the degree of FE to exactly L, by proposing a new pre-processing idea:
At a very high-level, we let the encryptor pre-process the input to be encrypted
to perform part of the degree-(3L+2) computations, and encrypt the processed
values, so that later, the decryptor only need to perform a degree-L computation,
and hence degree-L FE suffices. An overview of our bootstrapping step is given
in Sect. 2.1.

Step 2: Degree Preserving Construction of FE. Next, we construct degree-
L FE based on the SXDH assumption on L-linear maps.

Theorem 3. Let D be any positive integer and R any ring. Assuming SXDH
on D-linear maps over ring R, there exist secret key FE schemes for degree-D
polynomials in R, with linear efficiency.

This new FE scheme is our main technical contribution. Previous constructions
of FE for NC1 either relies on IO for NC1 or high degree multilinear maps [27,28],

4 Some bootstrapping theorems additionally assume LWE [27,41] or the existence of
public key encryption [13]).
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whose degree is polynomial in the circuit-size of the computations. In [44], Lin
and Vaikuntanathan constructed FE for NC0 from constant-degree graded encod-
ings. Their construction, however, is not degree-preserving: To compute NC0

functions that can be evaluated in degree D, they require degree 2D graded
encodings. Our FE construction is the first one that supports degree-D compu-
tations using only degree-D multilinear maps.

It turns out that removing a factor of 2 in the degree requires completely
new techniques for constructing FE. The reason is that the factor of 2 increase
in degree allows the FE construction in [44] to evaluate instead of a degree-D
computation directly, an arithmetic randomized encodings of the computation.
The benefit is that they can rely on the security of randomized encoding to
argue the security of FE. In our case, since the degree is exactly D, we cannot
afford to “embed” any cryptographic primitives in the FE construction, and must
come up with ways of encoding inputs and intermediate computation values
using multilinear maps that directly guarantee security. For this reason, our
construction share similar flavor with constructions of inner product encryptions
based on bilinear maps. See Sects. 2.2 and 2.3 for an overview of our degree-
preserving FE construction.

Additional Contributions. Along the way of designing our degree-preserving
FE construction, we also construct the following primitives that are of indepen-
dent interests.

Simple Function Hiding IPE Schemes from SXDH on Bilinear Maps. Without
using the heavy hammers of multilinear maps or IO, the state-of-the-art col-
lusion resistant FE schemes can only compute inner products, they are called
Inner Product Encryption (IPE). In the literature, Abdalla et al. (ABDP) [1]
came up with a public key IPE scheme based on one of a variety of assumptions,
such as, DDH, Paillier, and LWE.

Bishop et al. [12] (BJK) constructed the first secret-key IPE scheme based
on the SXDH assumption over asymmetric bilinear pairing groups. Their scheme
achieves a stronger security notion, called weak function-hiding, and is improved
by [24] to achieve full function hiding. Lin and Vaikuntanathan [44] further
showed that any weakly function hiding IPE scheme can be generically trans-
formed into a function hiding IPE scheme. Here, (weak) function hiding requires
the FE scheme to hide both inputs and functions (revealing only outputs), and
is much harder to achieve than standard security that hides only inputs.

While the ABDP public-key IPE scheme is simple, the secret-key (weak)
function hiding IPE schemes [12,24] are much more complex. In this work, we
give a simple construction of weak function hiding IPE from SXDH on bilinear
maps, which can then be transformed to function hiding IPE using [44]. Our
IPE scheme is built from the ABDP public-key IPE scheme in a modular way,
and inherits its efficiency and simplicity: Ciphertexts and secret keys of length-N
vectors consists of (N + 2) group elements, and the construction and security
proof of our scheme fits within 2 pages (reducing to the security of the ABDP
IPE scheme). In addition, the new scheme satisfies certain special properties
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that are important for our construction of degree-L FE schemes, which are not
satisfied by previous IPE schemes [12,24]. See Sect. 2.5 for an overview of our
simple function hiding IPE.

High-Degree IPE. We also generalize IPE to the notion of high-degree IPE, or
HIPE for short. They are multi-input FE schemes [35] for computing, so called,
degree-D inner product defined as

〈
x1, · · · ,xD

〉
= Σi∈[N ]x

1
i x

2
i · · · xD

i .

We construct HIPE for degree-D inner products from degree-D multilinear maps,
which is then used to build degree-D FE schemes. We believe that this notion
is interesting on its own and may have other applications. See Sect. 2.3 for an
overview of HIPE.

Algebraic v.s. Noisy Multilinear Maps. Our results and proofs are
described w.r.t. algebraic multilinear maps. However, finding algebraic multi-
linear maps with degree above 2 is still a major open problem. Can our IO
and FE schemes be instantiated with known noisy multilinear map candidates
[21,22,26,31,39]? The answer is nuanced: The constructions can be instantiated
as-is with noisy multilinear maps and correctness holds, but the security proof
fails, for (1) the SXDH assumption does not hold on known candidates, and
(2) the current security reduction relies on the homomorphic scalar multiplica-
tion functionality, which is not supported by known candidates. (The latter is
shared with all previous reductions that base security on a laconic and instance-
independent assumption [33,44].) Nevertheless, the security proof of the degree-L
FE scheme (the only component that relies on multilinear maps) can be adapted
into a proof in the degree-5 ideal multilinear map model without homomorphic
scalar multiplication. Security in the ideal model does not imply security against
known cryptanalytic attacks [6,16,18–20,26,32,46]. It is unclear whether these
instantiations are secure against them—we have no concrete attacks nor formal
arguments that validate their security against known attacks, such as, a security
proof in the weak multilinear map model [29]. See Sect. 2.6 for a more detailed
discussion.

1.2 Concurrent and Independent Work

In a concurrent work, Ananth and Sahai [4] (AS) showed a similar result. Both
works convey the same high-level message that “IO can be constructed from
5-linear maps and locality-5 PRG, assuming sub-exponential LWE”. But, the
concrete theorem statements differ. First, while our construction relies on the
classical 5-linear maps, the AS construction uses degree-5 set-based graded encod-
ings, which, as discussed above, is more powerful. Second, a main contribution
of this paper is basing security of IO on the SXDH assumption, which is laconic
and instance dependent. In comparison, the AS construction is proven secure
based on two assumptions on graded encodings that are tailored to their con-
struction and justified in the ideal model, and the security of their FE scheme
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follows immediately from the assumptions. In terms of techniques, both works
follow the paradigm of IO construction in [44]. The two works propose different
notions of FE for low-degree polynomials, and use completely different methods
to construct them.

1.3 Subsequent Works

Given that locality 4 PRGs do not exist [47], the approach (in this and recent
works [4,44]) of using local PRGs to reduce the degree of multilinear maps used
in IO constructions hits a barrier at degree 5. In a subsequent work, Lin and
Tessaro [43] overcame this barrier and further reduced the degree of multilinear
maps needed to 3. More specifically, they showed that assuming sub-exponential
LWE, IO can be based on the SXDH assumption on L-linear maps and PRGs
with a new notion of block-wise locality L. Roughly speaking, a PRG has block-
wise locality L if every output bit depends on at most L input blocks, each
containing up to log λ bits. Their result crucially relies on our IO construction,
with the modification of replacing locality L PRGs with block-wise locality L
PRGs in the first bootstrapping step (the rest of the construction, such as,
the low-degree FE scheme, is kept the same). They further initiated the study of
block-wise local PRGs based on Goldreich’s local functions and their (in)security.
In particular, they showed that the security of candidates with block-wise locality
L ≥ 3 is backed by similar validation as candidates with (conventional) locality
5. Soon after their work, two exciting cryptanalytic works [9,45] showed that,
unfortunately, (polynomial-stretch) PRGs with block-wise locality 2 do not exist.

Summarizing the new state-of-the-art: Assuming sub-exponential LWE, there
is a construction of IO from trilinear maps and PRGs with block-wise locality
3—we are one degree away from the dream statement of “building IO from
bilinear maps”.

Organization. Next, we proceed to give an overview of our FE and IO con-
structions and their security proofs. Due to the lack of space, we leave the formal
description of constructions and proofs to the full version [42]. In Sect. 2.6, we
discuss in more detail issues related to instantiating our schemes with noisy
multilinear maps.

2 Overview

In this work, scalars are written in normal font, such as a, b, and vectors are
written in boldface, such as v,w.

2.1 Bootstrapping

Our bootstrapping theorem follows the same two step approach as [41,44]. To
construct IO for P/poly,
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Step 1. First, construct sub-exponentially secure single-key FE schemes CFE
for NC1 that are weakly compact, meaning that encryption time scales poly-
nomially in the security parameter λ and the input length N , but also scales
sublinearly in the maximal size S of the circuits for which secret keys are
generated. More precisely, a FE scheme is said to be (1 − ε)-weakly-compact
if its encryption time is poly(λ,N)S1−ε.

Step 2. If the FE schemes obtained from Step 1 are public-key schemes, invoke
the result of [2,14] that any public-key (single-key) weakly-compact FE
schemes (for any ε > 0) imply IO for P/poly.
Otherwise, if the FE schemes obtained are secret-key schemes, then invoke
the recent result of [13] that any secret-key weakly-compact FE schemes also
imply IO for P/poly, assuming additionally sub-exponential LWE.

The challenging task is constructing (public-key or secret-key) weakly-compact
FE schemes for NC1 from simpler primitives. In [44] (LV), they constructed
such schemes from (public key or secret key respectively) collusion resistant FE
schemes for NC0 with linear efficiency, assuming the existence of a polynomial-
stretch PRG in NC0. We observe that in their construction, if the PRG has
locality L, the NC0-FE scheme is used to compute polynomials with low degree
3L + 2. In this work, we show that the degree of the FE schemes (i.e., the
degree of the polynomials supported) can be reduced to L. Below, we start with
reviewing the LV construction of weakly-compact FE for NC1, and then modify
their construction to reduce the degree of the underlying FE scheme. (In the
exposition below, we do not differentiate public-key vs secret-key schemes, since
they are handled in the same way.)

The LV Weakly-Compact FE for NC1. To construct weakly-compact FE
schemes for NC1 from FE schemes for NC0, LV uses Randomized Encodings
(RE) [8,37] to represent every NC1 function f(x), as a simpler NC0 randomized
function f̂(x; r). Then, to enable computing f(x), it suffices to publish a secret
key for f̂ ∈ NC0, and a ciphertext of (x, r), which can be done using the NC0-FE
scheme. But, the resulting ciphertext is not compact, since the randomness r for
computing the randomized encoding is at least of length S(λ)poly(λ), where S(λ)
is the size of the circuit computing f . The key idea of LV is using a polynomial-
stretch PRG PRG : {0, 1}n → {0, 1}n1+α

in NC0 to generate pseudo-randomness
for RE, that is, computing instead g(x, s) = f̂(x;PRG(s)). Now the input of the
function becomes (x, s), whose length is sublinear in S(λ) thanks to the fact that
the PRG has polynomial stretch. Since the NC0-FE scheme has linear efficiency,
the ciphertext size is also sublinear in S(λ). In addition, the function g can still
be computed in NC0.

Observe that if g can be computed by a degree-D polynomial in some ring
R, then one can instantiate the LV construction with degree-D FE schemes in
R. The question is how large is the degree D? Plug in the randomized encoding
scheme by Applebaum et al. [8], whose encodings f̂(x; r) are computable in NC0

4

and has degree 1 in x and degree 3 in r. Then, the degree of g is determined
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by the degree DPRG of the PRG (i.e., the minimal degree of polynomials that
computes PRG in R), namely, D = 3DPRG + 1. As the degree of PRG is upper
bounded by its locality DPRG ≤ L, the degree of g is bounded by 3L+1. For the
security proof to work out, the actual functions used in the LV construction are
more complicated and has degree 3L + 2. For simplicity of this overview, it is
convenient to ignore this issue, as it does not affect understanding the main ideas.

A formal description of the LV weakly-compact FE scheme CFEN,D,S for
NC1 circuits with input-length N = N(λ), depth D = D(λ), and size S = S(λ)
can be found in Fig. 1; it relies on the following tools:

– A (collusion resistant) FE scheme for degree-(3D + 2) polynomials {FE =
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)} in some ring R with linear efficiency.

– A pseudorandom generator PRG with n1+α-stretch for any α > 0 that is
computable in degree D in ring R.

– A weak PRF F in NC1.
– A specific randomized encoding scheme, which is the composition of Yao’s

garbling scheme [51,52] and the AIK randomized encoding scheme in NC0 [8].
Denote by Ĉx = Yao(C,x; r) Yao’s garbling algorithm that compiles a circuit
C and an input x into a garbled circuit Ĉx, and by Π = AIK(f,x ; r) the
AIK encoding algorithm.

We refer the reader to [44] for the correctness and security of the scheme, and
to our full version [42] for the analysis of compactness and degree.

Relying on Degree-L FE. To reduce the degree of polynomials computed using
the low-degree FE, our key idea is pre-processing the input (x, s), so that, part
of the computation of the function g is already done at encryption time. To illus-
trate the idea, recall that g is linear in x. Thus, if one pre-computes x ⊗ s (where
x ⊗ s is the tensor product of x and s), then g can be computed with one degree
less. More specifically, there exists another function g′ that takes input (x, s,x ⊗
s) and computes g(x, s) in degree 3L, by replacing every monomial of form
xisi1si2 · · · with (xisi1) si2 · · · , where xisi1 is taken directly from x ⊗ s. There-
fore, we can modify the LV construction to encrypt (x, s,x ⊗ s), whose length
is still sublinear in S(λ), and generate keys for functions g′ that have degree 3L.

The more tricky part is how to further reduce the degree of g in s. The naive
method of pre-computing s⊗ s at encryption time would not work, since it would
make encryption time exceed S(λ), losing compactness. To avoid this, consider
a simple case where the NC1 function f to be computed is decomposable, in the
sense that it has I = S(λ)/poly(λ) output bits, and every output bit i ∈ [I]
can be computed by a function fi of fixed polynomial size poly(λ). (In fact, it
is w.l.o.g. to assume this, since every function f can be turned into one that is
decomposable using Yao’s garbled circuits.) Then, the AIK randomized encoding
of f consists of {f̂i(x, r[i])}i∈[I], where the random tape r[i] for every encoding
has a fixed polynomial length Q = poly(λ), since |fi| = poly(λ).

In LV, all the random tapes {r[i]} are generated by evaluating a PRG on a
single seed r = PRG(s). We first modify how these random tapes are generated.
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Parse s as Q equally-long seeds, s1, · · · sQ, and use sq to generate the qth bit in
all the random tapes, that is,

∀ q ∈ [Q], i ∈ [I], r[i]q = PRG(sq)|i = PRGi({sq,γ}γ∈Γ(i)) ,

where PRGi is the function that computes the ith output bit of the PRG, which
depends on at most L seed bits with indexes γ ∈ Γ(i). PRG(sq) is a length-I

Single-key Compact FE Scheme CFE by [44]

Setup: CFE.Setup(1λ) samples (mpk,msk)
$← FE.Setup(1λ).

Key Generation: CFE.KeyGen(msk, f) does the following:

– Sample CT
$← {0, 1}�, where � = �(λ) is set below.

– Define function g as follows: On input x of length N , a weak PRF key k of
length poly(λ), two PRG seeds s, s′ each of length �1/(1+α) and a bit b,

g(x,k, s, s′, b) does the following:
• Let hi(x,k) denote the function that computes the ith bit in Yao’s garbling

of (f,x) using pseudo-randomness generated by a weak PRF

∀i ∈ [I], hi(x,k) := Yaoi(f,x ; r = {rj = F(k, j)}) ,

where I is the length of Yao’s garbling of (f,x). (Note that h ∈ NC1 since
Yao’s garbling algorithm and the weak PRF are both computable in NC1.)

• If b = 0, for every i ∈ [I], compute the AIK encoding Π[i] of computation
(hi, (x,k))), using pseudo-randomness generated by a PRG

∀ i ∈ [I], Π[i] = AIK(hi, (x,k) ; r[i]) , where r[i] = PRG[i](s)

where PRG[i](s) denotes the ith portion in the output of PRG, and each
portion has equal length poly(λ).
Output Π = {Π[i]}i.

• If b = 1, output Π = CT ⊕ PRG(s′).
For every l ∈ [� = |Π|], let Pl denote the degree-(3D + 2) polynomial in R
that computes the lth output bit of g. (See the full version [42] for a proof that
every output bit of g can indeed be computed by a degree-(3D+2) polynomial
in R.)

– For every l ∈ [�], generate a secret key SKl
$← FE.KeyGen(msk, Pl) for Pl.

Output SK = {SKl}l∈[�].

Encryption: CFE.Enc(mpk,x) samples k
$← {0, 1}poly(λ), s, s′ $← {0, 1}�1/(1+α)

,
and generates

CT
$← FE.Enc(mpk, (x,k, s, s′, 0))

Decryption: CFE.Dec(SK,CT) computes Π = {FE.Dec(SKl,CT)}l∈[�], parses
Π = {Π[i]}i∈I , and decodes every Π[i] using the AIK decoding algorithm to
obtain a garbled circuit, which is further decoded to obtain the output f(x).

Fig. 1. Single-key compact FE CFE by [44]
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string, and hence the length |sq| of each seed sq is sublinear in S(λ). Since each
encoding f̂i has degree 3 in its random tape r[i], consider an arbitrary degree 3
monomial r[i]q1r[i]q2r[i]q2 .

r[i]q1r[i]q2r[i]q2 = PRGi({sq1,γ}γ∈Γ(i)) PRGi({sq2,γ}γ∈Γ(i)) PRGi({sq3,γ}γ∈Γ(i))

=
∑

Monomials
X,Y,Z in PRGi

⎛

⎝
X(sq1,γ1 , · · · , sq1,γL)

× Y (sq2,γ1 , · · · , sq2,γL)
× Z(sq3,γ1 , · · · , sq3,γL)

⎞

⎠ ,

where Γ(i) = {γ1, · · · , γL}. Now, suppose that for every index γ ∈ [|sq|] in all
seeds, the encryptor pre-compute all the degree ≤ 3 monomials over the γth bits
in all Q seeds; denote this set as

M3(s, γ) =
{

degree ≤ 3 monomials over {sq,γ}q∈[Q]

}
.

Note that given M3(s, γ) for every γ ∈ Γ(i), the above monomial r[i]q1r[i]q2r[i]q2
can be computed in just degree L. Therefore, given M3(s, γ) for every γ ∈
[|sq|], the function g can be computed in degree L (with additionally the above-
mentioned trick for reducing the degree in x). More precisely, there exists a
degree-L polynomial g′′ that, on input x, {M3(s, γ)}γ , and their tensor product,
computes g(x, s).

Finally, we need to make sure that the total number of such degree ≤ 3
monomials is sublinear in S(λ), so that, encryption remains weakly-compact.
Note that, for each γ ∈ [|sq|], the number of degree ≤ 3 monomials over the γth

bits in these Q seeds is bounded by (Q + 1)3 = poly(λ). Moreover, the length of
each seed |sq| is still sublinear in S(λ). Thus, the total number of monomials to
be pre-computed is sublinear in S(λ).

A formal description of our weakly-compact FE scheme can be found in Fig. 2.
Important difference from the LV scheme is highlighted with red underline.

2.2 Quadratic Secret-Key FE

Before proceeding to constructing degree-D FE schemes from SXDH on degree-D
MMaps, we describe a self-contained construction of FE for quadratic polyno-
mials from SXDH on bilinear maps. The degree-D scheme is a generalization of
the quadratic scheme.

We start with reviewing the tool, Inner Product Encryption (IPE), for con-
structing quadratic FE. A (public key or secret key) IPE scheme allows to encode
vectors y and x in a ring R, in a function key iSK(y) and ciphertext iCT(x)
respectively, and decryption evaluates the inner product 〈y,x〉. In this work
(like in [44]), we use specific IPEs that compute the inner product in the expo-
nent, which, in particular, allows the decryptor to test whether the inner product
is zero, or whether it falls into any polynomial-sized range.5

5 Such IPEs should be contrasted with functional encryption for testing the orthogo-
nality of two vectors (see, e.g., [38,40] and many others), which reveals only whether
the inner product is zero and nothing else. In particular, they do not compute the
inner product in the exponent in a way that allows for further computation, which
is needed for our quadratic FE construction.
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Our Single-key Compact FE Scheme CFE

Setup: CFE.Setup(1λ) samples (mpk,msk)
$← FE.Setup(1λ).

Key Generation: CFE.KeyGen(msk, f) does the following:

– Sample CT
$← {0, 1}�, where � = �(λ) is set below.

– Define function g defined as follows: On input x of length N , a weak PRF key
k of length poly(λ), PRG seeds s and s′ of length I1/(1+α) × Q and �1/1+α

respectively, and a bit b,

g(x,k, s, s′, b) does the following:
• Let hi(x,k) denote the function that computes the ith bit in Yao’s garbling

of (f,x),

∀i ∈ [I], hi(x,k) := Yaoi(f,x ; r = {rj = F(k, j)}) ,

where I is the length of Yao’s garbling of (f,x).

• If b = 0, parse s into Q strings, s = s1|| · · · ||sQ, of equal length I1/(1+α),
and compute

∀ i ∈ [I], Π[i] = AIK(hi, (x,k) ; r[i]) ,

where Q = |r[i]| and ∀ q ∈ [Q] , r[i]q = PRGi(sq)

Output Π = {Π[i]}i.

• If b = 1, output Π = CT ⊕ PRG(s′).
For every l ∈ [� = |Π|], let Pl denote the degree-(3D + 2) polynomial in Rλ

that computes the lth output bit of g. Moreover, define

P ′
l ((1||x||k||b) ⊗ (1||S), (b(x||k)) ⊗ S, (1||b) ⊗ (1||s′))

:= The degree L polynomial that computes Pl(x,k, s, s′, b) in Figure 1

where L is the locality of PRG and
S = {(1||s�,γ) ⊗ (1||s�,γ) ⊗ (1||s�,γ)}γ∈[I1/(1+α)].

– For every l ∈ [�], generate a secret key SKl
$← FE.KeyGen(msk, P ′

l ) for P ′
l .

Output SK = {SKl}l∈[�].

Encryption: CFE.Enc(mpk,x) samples k
$← {0, 1}poly(λ), s

$← {0, 1}I1/(1+α)×Q,

and s′ $← {0, 1}�1/(1+α)
, and generates

CT
$← FE.Enc(mpk, (1||x||k||0) ⊗ (1||S), (0(x||k)) ⊗ S, (1||0) ⊗ (1||s′))

Decryption: CFE.Dec(SK,CT) computes Π = {FE.Dec(SKl,CT)}l∈[�], parse Π =
{Π[i]}i∈I , and decodes every Π[i] using the AIK decoding algorithm to obtain a
garbled circuit, which is further decoded to obtain the output f(x).

Fig. 2. Single-key compact FE CFE from locality-L PRG and degree-L FE
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Given IPE schemes, it is trivial to implement FE for quadratic polynomials,
or quadratic FE schemes for short: Simply write a quadratic function f as a
linear function over quadratic monomials f(x) = Σi,jci,jxixj = 〈c,x ⊗ x〉. Then,
generate an IPE secret key iSK(c), and an IPE ciphertext iSK(x⊗x), from which
the function output can be computed. However, such a scheme has encryption
time quadratic in the input length N = |x|. The key challenge is improving the
encryption time to be linear in the input length under standard assumptions
(e.g. bilinear maps).

In this work, we do so based on SXDH on bilinear maps, where the exponent
space R of the bilinear map is the ring in which quadratic polynomials are
evaluated. At a high-level, our key idea is “compressing” the encryption time of
the above trivial quadratic FE schemes from quadratic to linear, by publishing
some “compressed information” of linear size at encryption time, which can
be expanded to an IPE ciphertext of x ⊗ x at decryption time. To make this
idea work, we will use, as our basis, the public key IPE scheme by Abdalla
et al. (ABDP) [1] based on the DDH assumption; we briefly review their scheme.

The ABDP Public Key IPE Scheme. The ABDP scheme IPE resembles the El
Gamal encryption and is quite simple. Let G be a cyclic group of order p with
generator g, in which DDH holds. A master secret key of the ABDP scheme
is a random vector s = s1, · · · , sN

$← Z
N
p , and its corresponding public key is

iMPK = gs1 , · · · gsN . A ciphertext encrypting a vector x = x1, · · · , xN looks like
iCT = g−r, grs1+x1 , · · · , grsN+xN , where r is the random scalar “shared” for
encrypting every coordinate. It is easy to see that it follows from DDH that this
encryption is semantically secure.

To turn the above scheme into an IPE, observe that given a vector y ∈ Z
N
p ,

and in addition the inner product 〈y, s〉 in the clear, one can homomorphically
compute inner product in the exponent to obtain g−r〈y,s〉gr〈s,y〉+〈x,y〉 = g〈x,y〉,
which reveals whether the inner product 〈x,y〉 is zero or not. Therefore, the
ABDP scheme sets the secret key to be iSK = 〈s,y〉 ||y.

In this work, we will use the bracket notation [x]l = gx
l to represent elements

in group Gl, and omit l when there is no need to specify the group. Under this
notation, the ABDP scheme can be written as,

iMSK = s $← Zp, iMPK = [s], iCT = [−r || (r s + x)] iSK = 〈s,y〉 ||y

where au denotes coordinate-wise multiplication with a scalar a and u+v denotes
coordinate-wise addition between two vectors. We will also refer to [x]l as an
encoding of x in group Gl.

Compress an ABDP Ciphertext iCT(x ⊗ x). The first difficulty with “compress-
ing” a ciphertext iCT = iCT(x ⊗ x) = [−r || (r s + x ⊗ x)] is that it contains
information of the master secret key s of quadratic length, which is truely ran-
dom and cannot be “compressed”.

Our idea is replacing the truly random secret key s with the tensor product
of two length-N vectors s1 ⊗ s2, so that, the new ciphertext depends only on
information, namely (r, s1, s2,x), of linear size. The reason that we use the tensor
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product s1 ⊗ s2 as the secret key is that under DDH, encodings
[
s1 ⊗ s2

]
is

indistinguishable to encodings of N2 truely random elements, and hence there
is hope that s1 ⊗ s2 is “as good as” a truly random master secret key. As we
will see later, this hope is true, however through complicated security proof.

Now, it is information theoretically possible to compress iCT(x ⊗ x). How-
ever, simply publishing (r, s1, s2,x) would blatantly violate security. We need
a way to securely and succinctly encode them so that only the ciphertext iCT
is revealed. Classical cryptographic tools for hiding computation like garbled
circuits or randomized encodings do not help here, since the output length is
quadratic, and garbled circuits or randomized encodings have at least quadratic
size too. Instead, we leverage the special structure of iCT: Each of the last N2

encodings of iCT encodes an element that is the inner product of two length-2
vectors,

iCT[0] = [−r],
(
iCT[i, j] =

[ 〈
xi||s1

i , xj ||rs2
j

〉 ])
i∈[N ],j∈[N ]

Here, for convenience, we use 0 and {(i, j)} to index different encodings in iCT.
Suppose that we have a (secret key) IPE scheme cIPE that is function hiding

(defined shortly) from bilinear maps, and has certain canonical form: In partic-
ular, its ciphertexts and secret keys encodes the input and function vectors in
different source groups G1, G2 of the bilinear map, and decryption simply uses
pairing to produce an encoding of the output inner product in the target group
G3. (Unfortunately, off-the-shelf function hiding IPEs [12,24,44] do not have the
canonical form and we discuss how to construct such a scheme later.)

Then, we can use a canonical function hiding IPE, to generate the last N2

encodings {iCT[i, j]}: Publish N ciphertext {cCTi} where each cCTi encrypts
vector (xi||s1

i ), and N secret keys {cSKj} where each cSKj encrypts vector
(xj ||rs2

j ). To obtain the (i, j)th encoding, one can simply decrypt the ith cipher-
text using the jth secret key, which produces

iCT[i, j] =
[ 〈

xi||s1
i , xj ||rs2

j

〉 ]
= cIPE.Dec(cSKj , cCTi)

In order to hide r, xj ’s, and s1
j , s

2
j ’s, it is necessary that the IPE scheme is

function hiding, which guarantees that secret keys and ciphertexts for two sets of
vectors {ui,vi} and {u′

i,v
′
i} are indistinguishable if they produce identical inner

products 〈ui,vj〉 = 〈u′
i,v

′
j〉. The hope is that function hiding is also sufficient, as,

intuitively, it ensures that only the set of possible outputs {iCT[i, j]} is revealed,
and all other information of (r,x, s1, s2) is hidden. (This intuition is not precise,
as the IPE scheme is not simulation-secure, but is a good starting point.)

In summary, we now have the first version of our quadratic FE schemes.

Version 1 of Our Secret Key Quadratic FE scheme qFE
– Setup: A master secret key msk consists of two random vectors s1, s2

of length N .
– Key Generation: A secret key SK(c) of a function fc(x) = 〈c,x ⊗ x〉
consists of

SK(c) =
( 〈

s1 ⊗ s2, c
〉
, c

)
.



614 H. Lin

– Encryption: Sample a random scalar r
$← Zp. A ciphertext CT(x) of

input vector x contains

CT(x) =
(
[−r],

{
cCTi(χ1

i ), cSKi(χ2
i )
}

i∈[N ]

)

where χd
i =

{
xi||s1

i if d = 1
xi||rs2

i if d = 2
(1)

and {cSKj , cCTi} are generated using a freshly sampled master secret key
cMSK of a canonical function hiding IPE cIPE.
– Decryption: For every (i, j) ∈ [N ]2, decrypt cCTi using cSKj to obtain

cIPE.Dec(cSKj , cCTi) =
[〈

χ1
i ,χ

2
j

〉]
=
[
rs1

i s
2
j + xixj

]
= iCT[i, j]. (2)

Homomorphically compute Λ1 =
〈
s1 ⊗ s2, c

〉
[−r] =

[−r
〈
s1 ⊗ s2, c

〉]
,

and Λ2 = 〈{iCT[i, j]}, c〉. Homomorphically add Λ1 + Λ2 to produce an
encoding of the output [fc(x)].

Next, we move to describing ideas for the security proof. As we develop the proof
ideas, we will need to make several modifications to the above scheme.

Selective IND-Security of Our Quadratic FE Scheme. We want to show
that ciphertexts of qFE of one set of inputs {ui} is indistinguishable from that
of another {vi}, as long as all the secret keys published are associated with
functions {fcj

} that do not separate these inputs, that is, fcj
(ui) = fcj

(vi) for
all i, j. For simplicity of this overview, we restrict our attention to the simpler
case where only a single ciphertext and many secret keys are published. The
security proof for the general case with many ciphertexts follows from a hybrid
argument where the encrypted vectors are switched one by one from ui to vi,
and the indistinguishability of each step is proven using the same ideas to the
single-ciphertext case.

Naturally, we want to reduce the security of qFE the security of the ABDP
IPE scheme IPE and the function hiding of cIPE. Our intuition is that given
a ciphertext CT(x) for x = u or v, the security of cIPE ensures that the N
ciphertexts and secret keys {cCTi}, {cSKj} contained in ciphertext CT(x) reveals
only the output encodings {iCT[i, j]} and nothing else. Then, the security of the
ABDP scheme ensures that the derived ciphertext iCT encrypting either u ⊗ u
or v ⊗ v is indistinguishable, at the presence of secret keys for vectors {cj}
that do not separate them. This intuition would go through if the two building
blocks cIPE and IPE provide very strong security guarantees: Naturally, cIPE
has simulation security, so that, its ciphertexts and secret keys {cCTi}, {cSKj}
can be simulated from the set of output encodings {iCT[i, j]}, and second, the
ABDP scheme is secure even when the master secret keys are generated as a
tensor product s1 ⊗ s2 as opposed to be truely random. Unfortunately, our
building blocks do not provide such strong security guarantees, which leads to
the following challenges.
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– Challenge 1—Relying only on indistinguishability-based function hiding of
cIPE. The simulation security of cIPE essentially allows one to easily reduce
the security of qFE to that of IPE. With only indistinguishability-based secu-
rity of cIPE, the reduction to security of IPE becomes significantly harder.
Typically, one build a black-box security reduction that receives from its chal-
lenger IPE secret keys and a ciphertext, in this case {SKj}, iCT, and embeds
them in the view of the adversary attacking the qFE scheme. However, the
ciphertext CT of qFE has only linear size, but iCT has quadratic size—there
is not enough space for embedding.6

To resolve this problem, our idea is to embed iCT in “piecemeal”. Observe that
the ABDP scheme encrypts its input vector element by element using different
master secret key elements, and a shared random scalar. Thus, we can flexi-
bly view its ciphertext iCT either as a single ciphertext, or as a list of many
ciphertexts encrypting a list of vectors of shorter length. In particular, we will
“cut” the ciphertext into N pieces, each of length N and indexed by i ∈ [N ].

iCT = [r],
{
iCT[i, �] = {[rs1

i s
2
j + xixj

]}j∈[N ]

}
i∈[N ]

.

Since the ith ciphertext-piece can be viewed as an IPE ciphertext of vector
xix, generated with master secret key s1

i s
2 and shared random scalar r. Our

idea is gradually switching the values of xix from uiu to viv piece by piece in
N steps. In each step, we first apply the function hiding of cIPE to move to a
hybrid distribution where the challenge-piece iCT[i, �] is directly hardwired in
the qFE ciphertext; since |iCT[i, �]| = N , there is enough space for it. Then,
we rely on the indistinguishability-security of IPE to argue that switching
the plaintext-piece underlying iCT[i, �] from uiu to viv is indistinguishable.

– Challenge 2—Relying on the security of the ABDP scheme under correlated
randomness. Arguing the indistinguishability of switching the vectors under-
lying each ciphertext-piece iCT[i, �] from uiu to viv turns out to be tricky.
First, An acute reader might have already noticed the problem that changing
pieces in the tensor product would affect the function output, which is notice-
able. For example, after switching the first plaintext piece to viv, the function
output changes to 〈cj ,u ⊗ u〉 �= 〈cj , v1v||u≥1 ⊗ u〉. To resolve this problem,
we modify the scheme to build in an offset value Δj in every secret key SKj

to ensure that the function output remains the same throughout all steps.
Second, the challenge ciphertext-piece is generated with master secret key
s1

i s
2, which is not truly random, since the vector s2 is used for generating

the master secret keys s1
ks

2 of other ciphertext-pieces for k �= i. We overcome
this by relying on the SXDH assumption to argue that encodings of s1

i s
2,

given encodings of s1
i and s2, are indistinguishable to encodings of random

elements, and hence as good as a truly random master secret key. Similar
idea was used in [44].

6 Non-black-box security reduction may get around this difficulty, but is unclear how
one can design a non-black-box reduction here.
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Next, we discuss in more detail how to overcome these two challenges.

Overcoming Challenge 1—Embed ABDP IPE ciphertext in piecemeal.
Our goal is switching piece by piece the tensor product underlying the derived
IPE ciphertext from u ⊗ u to v ⊗ v, which corresponds to changing the
encrypted input from u to v. To do so, we build a sequence of 2N hybrids
{Hb

ρ}ρ∈[N ],b∈{0,1} satisfying the following desiderata:

1. In Hb
ρ, the ρth ciphertext-piece iCT[ρ, �] is embedded in the qFE ciphertext

CT,
2. The derived IPE ciphertext iCT encrypts the following “hybrid” vectors.

In H0
ρ , v1v|| · · · ||vρ−1v|| uρu ||uρ+1u|| · · · ||uNu

In H1
ρ , v1v|| · · · ||vρ−1v|| vρv ||uρ+1u|| · · · ||uNu

To build such hybrids, we need to modify our qFE scheme to build in more
“redundant space” in its ciphertext.

Version 2 of Our Secret Key Quadratic FE scheme qFE
– Encryption: A ciphertext CT(x) consists of

CT(x) =
(
[−r],

{
cCTi( X1

i )
}

i∈[N ]
,
{
cSKj( X2

j )
}

j∈[N ]

)
,

where Xd
i = (χd

i ||0, 0) (3)

where {cCTi} and {cSKj} encode vectors χd
i like before, but now padded

with 3 zeros.

We refer to the first 4 elements in X’s as the first slot, which holds two vectors
of length 2, and the last element as the second slot. In the honest executions,
these vectors {Xd

i } are set to either (μd||0, 0) if u is encrypted, or (νd||0, 0) if
v is encrypted, with μ and ν defined as χ in Eq. 1 but replacing xi with ui or
vi respectively.

Set the Vector X’s in Hybrid Hb
ρ. Hybrid Hb

ρ uses the following set of vectors
X’s, which leverages the “space” of the additional zeros to satisfy the above
desiderata.

X1
i =

⎛
⎜⎝

⎧
⎪⎨
⎪⎩

0 || ν1
i if i < ρ

μ1
i || 0 if i > ρ

0 || 0 if i = ρ

,

⎧
⎪⎨
⎪⎩

0 if i < ρ

0 if i > ρ

1 if i = ρ

⎞
⎟⎠

X2
j =

(
μ2

j ||ν2
j ,

{〈
μ1

ρ,μ
2
j

〉
in H0

ρ〈
ν1

ρ ,ν2
j

〉
in H1

ρ

)

Let us first see how the challenge ciphertext-piece iCT[ρ, �] is hardwired. Observe
that the last slots of X2

j ’s contain exactly the values encoded in iCT[ρ, �]: In
H0

ρ , they are set to {〈μ1
ρ,μ

2
j

〉
= rs1

ρs
2
j + uρuj}j∈[N ] (see Eq. 2), corresponding
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to encrypting uρu, while in H1
ρ , they are set to {〈ν1

ρ ,ν2
j

〉
= rs1

ρs
2
j + vρvj}j ,

encrypting vρv. By the fact that cIPE encodes its function vectors, X2
j ’s here,

in a bilinear source group,
[
X2

j

]
is effectively embedded in cSKj ’s and hence so

is iCT[ρ, �]. Next, we check that the IPE ciphertext derived by decrypting every
pair (cCTi, cSKj) indeed encrypts the right hybrid vector.

cIPE.Dec(cSKj , cCTi) =
[〈
X1

i ,X
2
j

〉]

=

⎡
⎢⎣

⎧
⎪⎨
⎪⎩

〈
0 || ν1

i || 0, μ2
j || ν2

j || �
〉

=
〈
ν1

i , ν2
j

〉
if i < ρ〈

μ1
i || 0 || 0, μ2

j || ν2
j || �

〉
=
〈
μ1

i , μ2
j

〉
if i > ρ〈

0 || 0 || 1, μ2
j || ν2

j || �
〉

= � if i = ρ

⎤
⎥⎦

In the case i = ρ, iCT[ρ, �] encodes exactly the values hardwired in the last
slot, which as argued above encrypts uρu in H0

ρ and vρv in H1
ρ as desired. In

the case i < ρ, the derived ciphertext-piece iCT[i, �] encodes values {〈ν1
i ,ν2

j

〉}j ,
corresponding to encrypting viv; and similarly, when i > ρ, the ciphertext-piece
iCT[i, �] encrypts uiu as desired. Therefore, all desiderata above are satisfied.

Now, to show the security of qFE, it suffices to argue that every pair of
neighboring hybrids is indistinguishable. Note that the only difference between
different hybrids lies in the values of the X vectors encoded in the ciphertexts
and secret keys of cIPE. Observe first that in hybrids H1

ρ and H0
ρ+1, every

pair of vectors (X1
i ,X

2
j ) produce the same inner products, and hence the indis-

tinguishability of H1
ρ and H0

ρ+1 follows immediately from the function hiding
property of cIPE. This is, however, not the case in hybrids H0

ρ and H1
ρ , where

for the special index ρ, the challenge ciphertext-piece change from encrypting
uρu to vρv. Next, we show how to reduce the indistinguishability of H0

ρ and H1
ρ

to the security of the ABDP IPE scheme, which turns out to be quite tricky.

Overcoming Challenge 2: Indistinguishability of H0
ρ and H1

ρ from IPE
security. The goal is relying on the security of IPE to argue that the embedded
challenge ciphertext-pieces in H0

ρ and H1
ρ are indistinguishable, and hence so are

the hybrids. But, we immediately encounter a problem: The function outputs
obtained when decrypting the derived ciphertext iCT using secret keys SKj ’s are
different in H0

ρ and H1
ρ , namely

〈
v1v|| · · · ||vρ−1v|| uρu ||uρ+1u|| · · · ||uNu, , cj

〉

�= 〈
v1v|| · · · ||vρ−1v|| vρv ||uρ+1u|| · · · ||uNu , cj

〉
.

This means the hybrids are clearly distinguishable. To fix this, we modify our
qFE scheme to build in an offset value Δ in its secret keys, which will be added
to the decryption output. In the honest execution, the offsets are set to zero,
whereas in hybrid Hb

ρ, they are set to Δb
j(ρ) in each secret key SKj , so that, the

above inner products when added with Δ0
j (ρ) in the left hand side and Δ1

j (ρ) in
the right hand side become equal. Clearly, whether the offset values Δ are used
(set to non-zero) at all and their values must be hidden, we do so by encoding
it using cIPE, as described below.
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Version 3 of Our Secret Key Quadratic FE schemes qFE
– Setup: A master secret key msk = (s1, s2, cMSK′) contains additionally
a master secret key cMSK′ of cIPE.
– Key Generation: In the secret key SK(c), the inner product〈
s1 ⊗ s2, c

〉
is now encoded, together with an offset value Δ, using cMSK′

of cIPE:

SK(c) =
(
cSK′ ( 〈s1 ⊗ s2, c

〉 ||Δ = 0
)
, c

)
.

– Encryption: In the ciphertext CT(x), the random scalar r is now
encrypted, with an additional 0, using cMSK′ of cIPE:

CT(x) =
(
cCT′(−r||0),

{
cCTi(X2

j )
}

i∈[N ]
,
{
cSKj(X2

j )
}

j∈[N ]

)
.

– Decryption: Decryption proceeds as before, except that now encod-
ing Λ1 is obtained by decrypting cCT′ using cSK′, which yields[−r

〈
s1 ⊗ s2, c

〉
+ Δ

]
as desired.

With the new offset value in secret key, we can now fix our hybrids so that the
function outputs always stay the same.

Set the offsets in hybrid Hb
ρ. In hybrid Hb

ρ, not only that the vectors X’s are set
differently as above, the cIPE ciphertext cCT′ in ciphertext CT encrypts (0||1)
instead of (−r||0) and the corresponding cIPE secret key cSK′

j in SKj encodes
vector (

〈
s1 ⊗ s2, c

〉 || r
〈
s1 ⊗ s2, c

〉
+ Δb

j(ρ)), instead of (
〈
s1 ⊗ s2, c

〉 ||0). At
decryption time, the offset Δb

j(ρ) is added to the inner product between cj and
hybrid vector underlying iCT. Setting Δb

j(ρ) appropriately ensures that

〈
v1v|| · · · ||vρ−1v|| uρu ||uρ+1u|| · · · ||uNu, , cj

〉
+ Δ0

j (ρ)

=
〈
v1v|| · · · ||vρ−1v|| vρv ||uρ+1u|| · · · ||uNu , cj

〉
+ Δ1

j (ρ) = fc(u) .

Now H0
ρ and H1

ρ have the same function outputs. But, to formally reduce
their indistinguishability to the security of IPE, we need a way to incorpo-
rate the offsets Δ’s into the challenge IPE ciphertexts. We do so by viewing
Δj ’s as extension of the plaintext. More specifically, we implicitly switch from
encrypting U = uρu||Δ0

1(ρ)|| · · · ||Δ0
L(ρ) to V = vρv||Δ1

1(ρ)|| · · · ||Δ1
L(ρ) using

master secret key S = s1
ρs

2||t1|| · · · ||tL, at the presence of secret keys for vectors
Yj = {cj [ρ, �]||ej}j , where L is the total number of keys, tj ’s are implicitly sam-
pled secret key elements, and ej is the unit vector of length L with a single one at
index j. Observe that from such ciphertexts and secret keys, one can extract the
challenge ciphertext-piece iCT[ρ, �] encrypting uρu or vρv, and obtain an encod-
ing of −r

〈
s1 ⊗ s2, c

〉
+Δb

j(ρ) embedded in each secret key cSK′
j—these are the

only parts that hybrids H0
ρ and H1

ρ differ at. Given that 〈U,Yj〉 = 〈V,Yj〉 for
every j, we are almost done: Apply the security of IPE to argue that H0

ρ and
H1

ρ are indistinguishable, except that we must overcome one last hurdle—the
master secret key for encrypting uiu or viv is not truely random.
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Pseudorandomness from SXDH. The master secret key of the challenge
ciphertext-piece is s1

ρs
2. It is not truely random since s2 is also used for gen-

erating the master secret keys of other ciphertext-pieces. But, observe that both
the challenge ciphertext-piece and s2 are embedded in secret keys {cSKj}, and
hence encoded in the same bilinear map source group. Furthermore, thanks to
the fact that in Hb

ρ, the ρth ciphertext cCTρ encrypts the vector (0||0, 1), the
key element s1

ρ does not appear in the other source group. Therefore, we can
apply the SXDH assumption to argue that encodings of s1

ρs
2 is indistinguishable

to that of a truly random vector w—in other words, the master secret key s1
ρs

2

is pseudorandom, inside encodings. Therefore, the security of IPE applies, and
we conclude that hybrid H0

ρ and H1
ρ are indistinguishable.

2.3 Degree-D Secret-Key FE

Generalizing from quadratic FE to degree-D secret key FE, the natural idea is
again starting from the trivial IPE-based construction that encrypts all degree-
D monomials, denoted as x≤D = ⊗d∈[D]x, and compressing the ND-size cipher-
text into linear size. Naturally, instead of compressing a ciphertext generated
using a truly random master secret key, we will use a structured master secret
key s≤D = ⊗d∈[D]si. Thus the IPE ciphertext to be compressed looks like:

iCT[0] = [−r], iCT[I1, · · · , Id] =
[
rs1

I1 · · · sD
ID

+ xI1 · · · xID

]

The challenge is how to generate the ND encodings iCT[I] from just linear-sized
information?

Key Tool: High-Degree IPE. We generalize IPE to the notion of high-degree IPE,
or HIPE for short. More precisely, a degree-D HIPE is a multi-input functional
encryption scheme for degree-D inner product defined as follows,

〈
x1, · · · ,xD

〉
= Σi∈[N ]x

1
i x

2
i · · · xD

i

Introduced by [35], a multi-input functional encryption allows one to encrypt
inputs at different coordinates, and generate secret keys associated with multi-
input functions, so that, decryption computes the output of the function eval-
uated on inputs encrypted at different coordinates. In the context of HIPE, a
degree-D HIPE encryption scheme hIPE allows one to generate a ciphertext
hCTd(xd) encrypting an input vector xd at a coordinate d ∈ [D − 1], and a
secret key hSK(xD) at coordinate D, so that, decryption reveals whether the
degree-D inner product

〈
x1 · · ·xD

〉
is zero or not. Under this generalization,

standard IPE is a special case of HIPE for degree D = 2.
In terms of security, the notion of function hiding also generalizes naturally,

HIPE is function hiding, if ciphertexts and keys {hCT1
i , · · · , hCTD−1

i , hSKi}i∈[L]

encoding two sets of vectors {u1
i , · · · ,uD−1

i ,uD
i }i∈[L] and {v1

i , · · · ,vD−1
i ,vD

i }i∈[L]

are indistinguishable, whenever all degree-D inner products that can be computed
from them are identical, that is,

∀I ∈ [L]D,
〈
u1

I1 , · · ·uD
ID

〉
=
〈
v1

I1 , · · ·vD
ID

〉
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In this work, we give a construction of function hiding degree-D HIPE scheme
from the SXDH assumption on degree-D multilinear maps. Our construction
starts from a canonical function hiding IPE scheme (for D = 2), and inductively
build degree-(D +1) HIPE scheme, by composing a degree-D HIPE scheme and
a special-purpose function hiding IPE scheme. Our HIPE schemes have canoni-
cal form (similar to the canonical form for standard IPE): Ciphertexts (or secret
keys) at coordinate d (or D) consist of encodings in the dth (or Dth respec-
tively) MMap source group, and decryption uses degree-D pairing to produce
an encoding of the degree-D inner product. That is,

hIPE.Dec(hSK(xD), hCT1(x1), · · · , hCTD(xD−1)) =
[〈
x1, · · · ,xD

〉]

From Degree-D HIPE to Degree-D FE. HIPE works perfectly for our goal of
compressing the ciphertext iCT. Generalizing qFE, our degree-D FE scheme
dFE generates ciphertexts as follows:

CT(x) =

(
cCT′(−r||0),

{
cCT1

i (X
1
i ), · · · , cCTD−1

i (XD−1
i ), cSKi(X

D
i )
}

i∈[N ]

)

where Xd
i = χd

i ||0 and χd
i =

{
xi||sd

i if d < D

xi||rsD
i if d = D

.

From such a ciphertext, a decryptor can “expand” out a size-ND IPE cipher-
text iCT by decrypting every combination of HIPE ciphertexts and secret keys.
Namely, for every I ∈ [N ]D,

hIPE.Dec(cCT1
I1 , · · · , cCTD−1

ID−1
, cSKID

) =
[〈
X1

I1 , · · · ,XD
ID

〉]

=

⎡
⎣r

∏
d∈[D]

sd
Id

+
∏

d∈[D]

xId

⎤
⎦ = iCT[I]

where iCT[I] encrypts the Ith degree-D monomial
∏

d∈[D] xId
, using the Ith key

element
∏

d∈[D] s
d
Id

.
To show security of dFE, we, again, switch the degree-D monomials

encrypted in the IPE ciphertext iCT in piecemeal. In each step, we can still
only embed a size-N ciphertext-piece; naturally we embed iCT[ρ, �] for a prefix
ρ ∈ [N ]D−1 of length D − 1. Thus, the ND encrypted monomials are changed
piece by piece in ND−1 steps, where in the ρth step, all monomials with index I
smaller than ρ (i.e., I≤D−1 < ρ) have already been switched to

∏
d∈[D] vId

, mono-
mials with index I larger than ρ (i.e., I≤D−1 > ρ) remain to be

∏
d∈[D] uId

, and
monomials with index I that agrees with ρ (i.e., I≤D−1 = ρ) are being switched
from

∏
d∈[D] uId

in H0
ρ to

∏
d∈[D] vId

in H1
ρ .

Creating a sequence of hybrids that carry out these steps is more complex
than the case for degree 2. First, we need more space in the ciphertext to make
sure that the right monomials are encrypted for every index I; thus, the vec-
tors X’s are padded to length 2D − 1. Second, it becomes significantly harder
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to argue that the key elements (
∏

d∈[D−1] s
d
ρd

)s≤D are pseudorandom, as the
shares sd

i ’s are encoded in different MMap source groups, and unlike the degree
2 case, we cannot eliminate the appearance of all shares {sd

ρd
} since they are also

used for generating the master secret keys of other ciphertext-pieces (whereas
in the degree 2 case, s1

ρ is only used for generating s1
ρs

2). To resolve this, we
apply the SXDH assumption iteratively to gradually replace every partial prod-
uct

∏
d∈[d�] s

d
ρd

with an independent and random element wd
ρ, so that, the mas-

ter secret keys for other ciphertext-pieces are generated using independent w
elements.

2.4 Construction of HIPE

We construct function hiding HIPE schemes by induction in the degree D.

– For the base case of D = 2, function hiding degree-2 HIPE is identical to
function hiding IPE, which we give a new construction discussed shortly in
the next subsection.

– For the induction step, we show that for any D ≥ 2, if there exist a function
hiding degree-D HIPE scheme, denoted as dIPE, from SXDH on degree-
D MMap, then there exist a function-hiding degree-(D + 1) HIPE scheme,
denoted as hIPE, from SXDH on degree-(D+1) MMap. Our induction keeps
the invariant that both dIPE and hIPE have canonical form.

In the induction step, we construct the degree-D + 1 scheme hIPE, by com-
bining the degree-D scheme dIPE, with a special purpose IPE scheme sIPE.
Denote by (hCT1, · · · , hCTD) and hSK the ciphertexts and secret key of hIPE,
(dCT1, · · · , dCTD−1) and dSK that of dIPE, and sCT and sSK that of sIPE.

To achieve functionality, we need to specify how to generate ciphertexts and
secret key for input vectors x1, · · · ,xD and xD+1, so that,

hIPE.Dec(hSK, hCT1, · · · , hCTD) =
[〈
x1, · · · ,xD,xD+1

〉]
.

Observe that a degree-(D + 1) inner product of x1, · · ·xD+1, can be computed
as the inner product between xD+1 and the coordinate-wise product of the first
D vectors

∏
d∈[D] x

d, denoted as x≤D, that is,

y =
〈
x1, · · ·xD+1

〉
=

〈 ∏
d∈[D]

xd,xD+1

〉
=
〈
x≤D,xD+1

〉

Therefore, if the decryptor obtains a pair of sIPE ciphertext and secret key
(sCT, sSK) for (x≤D,xD+1), he/she can decrypt to obtain [y]. To do so, our new
scheme hIPE simply publishes sSK as its secret key,

Secret key of hIPE: hSK = sSK ← sIPE.KeyGen(sMSK,xD+1).

However, it cannot directly publish a ciphertext of x≤D, as x≤D is the product of
D input vectors, but each encryption algorithm hIPE.Encd receives only a single
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vector xd as input and cannot compute x≤D. The idea is to include in the D
ciphertexts hCT1, · · · , hCTD of hIPE, ciphertexts and secret keys of the degree-
D scheme, so that the decryptor can combine them to generate a ciphertext sCT
of x≤D.

Towards this end, we rely on the first property of sIPE that its ciphertext
sCT consists of many encodings {sCTl}l∈[L]. Suppose that the element encoded
sctl in every encoding sCTl can be expressed as the inner product of D vectors

Condition C: sctl =
〈
χ1

l , · · · χD
l

〉
, and each χd

l depends only on xd,

Then, it suffices to encode these vectors in a tuple (dCT1
l , · · · dCTD−1

l , dSKl)
of ciphertexts and secret key of dIPE using an independently sampled master
secret key dMSKl, from which the decryptor can obtain exactly sCTl. Thus, the
D ciphertexts hCT1, · · · , hCTD of our new scheme hIPE consists of exactly one
such tuple (dCT1

l , · · · dCTD−1
l , dSKl) for every l, namely,

Ciphertext of hIPE:

hCTd =

⎧
⎨
⎩

{
dCTd

l ← dIPE.Enc(dMSKl,χ
d
l )
}

l∈[L]
if d ≤ D

{
dSKl ← dIPE.KeyGen(dMSKl,χ

D
l )
}

l∈[L]
if d = D

.

Given (hCT1, · · · , hCTD) and hSK as specified above, the decryptor proceeds in
two steps:

1. First, decrypt for every l, the tuple (dCT1
l , · · · dCTD−1

l , dSKl) using the
decryption algorithm of dIPE to obtain sCTl; put them together to get a
ciphertext sCT of x≤D.

2. Then, decrypt the obtained ciphertext sCT using the decryption algorithm of
sIPE and secret key hSK = sSK of xD+1 to obtain an encoding of the final
inner product y, as illustrated below.

hCT1 = {dCT1
l }l, · · · , hCTD−1 = {dCTD−1

l }l, hCTD = {dSKl}l︸ ︷︷ ︸
hSK = sSK

Decrypt to sCT︸ ︷︷ ︸
Decrypt to [y]

Setting Condition C – A First Attempt. We now argue that Condition C
above indeed holds. This relies on a second property of the special-purpose IPE
scheme sIPE that the elements {sctl} encoded in its ciphertext sCT, depends
linearly in the encrypted vector x≤D and randomness r of encryption. More
specifically, when the master secret key sMSK is fixed, each element sctl is the
output of a linear function h

(sMSK)
l on input (x≤D, r),

sCT = sIPE.Enc(sMSK, x≤D; r) = {[sctl]}l ,

with sctl = h
(sMSK)
l (x≤D, r) =

〈
c(sMSK)

l , (x≤D||r)
〉

,
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where c(sMSK)
l is the coefficient vector of h

(sMSK)
l . Then, since x≤D = x1 · · ·xD, we

can represent sctl as the inner product of D vectors χ1
l , · · · ,χD

l , each depending
on only one input vector xD, as follows:

sctl =
〈
χ1

l ,χ
2
l , · · · χD

l

〉
χd

l =

⎧
⎪⎨
⎪⎩

x1||r if d = 1
xd||1 if 1 < d < D

(xD||1)(c(sMSK)
l ) if d = D

.

Therefore, as discussed above, encrypting the vectors {χd
l } in the ciphertexts

of hIPE guarantees that the decryptor can obtain sCT from the ciphertexts,
and decrypting the ciphertext sCT further produces an encoding of the correct
output y.

A Security Issue. The above way of setting the vectors {χd
l }d,l achieves func-

tionality, but, does not guarantee security. A security issue stems from the fact
that the randomness r used for generating the ciphertext sCT is hardcoded
entirely in the input vectors {χ1

l }l encrypted at the first coordinate. Consider a
simple scenario where a single ciphertext of hIPE at the first coordinate, two
ciphertexts at each other coordinate, and a single secret key, are published:

hCT1, hCT2
0, · · · , hCTD

0 , hSK

hCT2
1, · · · , hCTD

1

Since the randomness r is embedded in hCT1, different combinations of cipher-
texts, say hCT1 and hCT2

b2 · · · hCTD
bD

, produce sIPE ciphertexts encrypting
different vectors, x1x2

b2
· · ·xD

bD
, but using the same random coins r. The secu-

rity of sIPE does not hold when attackers can observe ciphertexts with shared
randomness, and in particular, information of the encrypted vector x1x2

b2
· · ·xD

bD

may be revealed. On the other hand, the function hiding property requires that
only the final degree-(D+1) inner products x1x2

b2
· · ·xD

bD
xD+1 are revealed, and

nothing else.

Setting Condition C, Right. To address this security issue, we need to ensure
that ciphertexts sCT produced by different combinations of ciphertexts of hIPE
correspond to (at the very least) distinct randomness. To do so, we embed fresh
randomness rd in ciphertexts at every coordinate by modifying the encrypted
vectors χd

l to the following:

χd
l =

{
xd||rd if d < D

(xD||rD)(c(sMSK)
l ) if d = D

Note that the inner products of these vectors correspond to a ciphertext sCT
generated using random coins r≤D =

∏
d∈[D] r

d. That is,

〈χ1, · · · ,χD〉 =
〈
c(sMSK)

l , (x≤D||r≤D)
〉

= h
(sMSK)
l (x≤D, r≤D) = sctl,

sCT = {[sctl]}l = sIPE.Enc(sMSK, x≤D; r≤D).
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In the simple scenario above, combining hCT1, hCT2
b2 · · · , hCTD

bD
now produces

sCT with randomness r1r2
b2

· · · rD
bD

, which is distinct for each combination.
Having distinct randomness is still not enough for applying the security of

sIPE, which requires independently and uniformly sampled randomness. We
will rely on the SXDH assumption to argue that they are indeed pseudorandom.
The security analysis of the above scheme turns out to be quite complicated,
and in fact for security to hold, the scheme needs to further pad the vectors χd

l

with zeros, serving as redundant space for hardwiring information in different
hybrids in the security proof.

2.5 Simple Function Hiding IPE

As described above, our construction of degree-D FE crucially relies on a canon-
ical function hiding IPE. However, known secret-key IPE schemes [12,24,44] do
not have the canonical form, in particular, their decryption does not produce
an encoding of the output inner product [〈x,y〉], but produce the inner product
masked by a scalar [〈x,y〉 θ] together with [θ], where the scalar θ is determined
by the randomness used in key generation and encryption. In this work, we give
a construction of a canonical function hiding IPE. Our construction is extremely
simple and may be of independent interests. We now summarize the idea of the
construction in one paragraph.

Lin and Vaikuntanathan [44] give a simple transformation from IPE with
weak function hiding to IPE with full function hiding. Our construction starts
from the ABDP public key IPE scheme, whose secret key for a vector y reveals
y and its inner product with the master secret key 〈s,y〉 in the clear. To achieve
weak function hiding, we need to hide y. Our idea is to simply encrypt the
secret key as an input vector using the ABDP scheme itself, with an indepen-
dently sampled master secret key s′ of length N +1, which yields the new secret
key iSK′ = [r′s′ + (〈s,y〉 || y)]. Recall that decryption of the ABDP scheme
simply computes (homomorphically) the inner product between its secret key
and ciphertext. Now that the original secret key is encrypted, we correspond-
ingly encode the original ciphertext in a secret key using s′, which gives the new
ciphertext iCT′ = [〈s′ , (rs + x)〉 || (rs + x)]. Computing the “inner product”
of iCT′ and iSK′ using paring simultaneously decrypts both “layers” of ABDP
encryption, and produce exactly an encoding of the output inner product.

We have described ideas underlying our FE and IO constructions; due to
the lack of space, we refer the reader to the full version [42] for their formal
description and proofs. With a better view of the constructions and security
proofs, next, we revisit the topic of instantiating our schemes with known noisy
multilinear map candidates in more detail.

2.6 On Instantiation with Noisy Multilinear Maps

As mentioned in the introduction when replacing algebraic multilinear maps with
noisy ones [21,22,26,31,39], the constructions work as-is, but not the security
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proofs. Nevertheless, the security proof can be modified into an ideal model
proof, or a proof based on a family of more complex assumptions.

The FE Security Proof Fails. The only component in our IO construction that
relies on MMaps is the low-degree FE scheme. When using known noisy MMap
candidates, its security proofs fail for two reasons:

1. The SXDH assumption does not hold on known noisy MMap candidates.
Roughly speaking, a noisy multilinear map scheme can encode a ring element
a and a label l with some noise. Let L be a set of labels that correspond to the
set of source groups in algebraic MMaps. Translating the SXDH assumption
to the noisy setting would require for every label l ∈ L, the distribution of
randomly sampled encodings of a, b, ab with label l to be indistinguishable to
that of a, b, r, for random ring elements a, b, r, even when low-level encodings
of 1 with each label l ∈ L is published. Unfortunately, given these encodings
of 1, known noisy MMap candidates can be completely broken.

2. The security reduction uses the homomorphic scalar multiplication function-
ality of algebraic MMaps, which is not support by current candidates.

The reason that encodings of 1 is needed in the assumption and homomorphic
scalar multiplication is needed for the reduction is as follows. The security of
the FE scheme is based on the SXDH assumption, via a security reduction that
turns FE attackers to SXDH distinguishers. To do so, given a challenge sampled
according to (one of the two distributions specified in) the SXDH assumption,
our reduction internally simulates the view of the attacker in the FE security
game, and appropriately embeds the challenge into the view. Since the challenge
is “laconic”—containing only a constant number of encodings. To concoct the
attacker’s view, the reduction needs to (i) generate new encodings and (ii) ran-
domize some encodings in the challenge for embedding. It does so using encodings
of 1 in the challenge and homomorphic scalar multiplication. It seems (to us)
that any reduction to a laconic and/or instance-independent assumption (i.e.,
one that is independent of the scheme and the attacker) necessarily needs the
capabilities of generating and randomizing encodings. This is indeed the case
for previous such reductions [33,44] and they also require homomorphic scalar
multiplication. Designing a reduction that does not rely on homomorphic scalar
multiplication, or rely only on homomorphic scalar multiplication with small
scalars is an interesting open question.

Security Proofs to Non-laconic Assumptions, and in Ideal MMap Model. Above
problems can be eliminated if we give up on having a security reduction to a
laconic and instance-independent assumption. In particular, our security proof
presents a sequence of hybrids that gradually “morph” from one honest execu-
tion of the FE scheme to another (where the attacker receives secret keys and
ciphertexts of different functions and inputs as specified in the security defin-
ition of FE). Each pair of neighboring hybrids defines an indistinguishability
assumption that simply states that the attacker’s views in these two hybrids
are indistinguishable, and the security of FE can be based on such a family of
non-laconic and instance-dependent assumptions, without using encodings of 1
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and homomorphic scalar multiplication. Such a security proof is non-trivial since
the assumptions only require indistinguishability of distributions that are almost
identical modulo the difference induced by switching a single DDH tuple to a
random tuple. Moreover, since these assumptions hold in the ideal model, such
a proof also gives a proof in degree-5 ideal multilinear map model.

Instantiating the Construction with Noisy Multilinear Maps. We can instantiate
our FE scheme with noisy MMaps and correctness holds. The above-discussed
issues w.r.t. the security proof do not appear when instantiating the construction.
This is because the secret keys and ciphertexts of our FE scheme do not contain
any low-level encodings of 0 or 1, in fact, they contain only encodings of large
randomized elements, and its algorithms do not rely on homomorphic scalar
multiplication. We note, however, decryption may generate top-level encodings
of 0 or 1 for correctness. It is unclear (to us) whether these instantiations are
secure against known cryptanalytic attacks. We do not know whether known
attacks can be adapted to break their security, nor have formal arguments that
validate their security against known attacks. Obtaining a concrete attack or
give some formal proof, such as, a security proof in the weak MMap model [29],
are interesting open problems.

Acknowledgements. The author thanks Benny Applebaum, Nir Bitansky, Stefano
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Abstract. We consider the question of finding the lowest degree L
for which L-linear maps suffice to obtain IO. The current state of the
art (Lin, EUROCRYPT’16, CRYPTO ’17; Lin and Vaikunthanathan,
FOCS’16; Ananth and Sahai, EUROCRYPT ’17) is that L-linear maps
(under suitable security assumptions) suffice for IO, assuming the exis-
tence of pseudo-random generators (PRGs) with output locality L. How-
ever, these works cannot answer the question of whether L < 5 suffices,
as no polynomial-stretch PRG with locality lower than 5 exists.

In this work, we present a new approach that relies on the existence
of PRGs with block-wise locality L, i.e., every output bit depends on at
most L (disjoint) input blocks, each consisting of up to log λ input bits.
We show that the existence of PRGs with block-wise locality is plausible
for any L ≥ 3, and also provide:

– A construction of a general-purpose indistinguishability obfuscator
from L-linear maps and a subexponentially-secure PRG with block-
wise locality L and polynomial stretch.

– A construction of general-purpose functional encryption from
L-linear maps and any slightly super-polynomially secure PRG with
block-wise locality L and polynomial stretch.

All our constructions are based on the SXDH assumption on L-linear
maps and subexponential Learning With Errors (LWE) assumption, and
follow by instantiating our new generic bootstrapping theorems with
Lin’s recently proposed FE scheme (CRYPTO ’17). Inherited from Lin’s
work, our security proof requires algebraic multilinear maps (Boneh and
Silverberg, Contemporary Mathematics), whereas security when using
noisy multilinear maps is based on a family of more complex assump-
tions that hold in the generic model.

Our candidate PRGs with block-wise locality are based on Goldre-
ich’s local functions, and we show that the security of instantiations with
block-wise locality L ≥ 3 is backed by similar validation as constructions
with (conventional) locality 5. We further complement this with hard-
ness amplification techniques that further weaken the pseudorandomness
requirements.

1 Introduction

Indistinguishability obfuscation (IO), first defined in the seminal work of Barak
et al. [16], aims to obfuscate functionally equivalent programs into indistinguish-
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able ones while preserving functionality. IO is an extraordinarily powerful object
that has been shown to enable a large set of new cryptographic applications.
All existing IO constructions [4,5,10,15,24,36,39,41,45,52,53,56,63,65] rely on
multilinear maps or graded encodings. In particular, the power of an L-linear
map – first made explicit by Boneh and Silverberg [23] – stems from the fact
that it essentially allows to evaluate degree-L polynomials on secret encoded
values, and to test whether the output of such polynomials is zero or not.

The case L = 2 corresponds to bilinear maps, which can be efficiently instan-
tiated from elliptic curves. In contrast, the instantiation of L-linear maps with
L ≥ 3 has turned to be a far more challenging problem. Garg et al. [38]
proposed in particular noisy (i.e., approximate) versions of L-linear maps for
L ≥ 3, and gave the first candidate construction. Unfortunately, vulnerabili-
ties [6,27,28,31,59] were later demonstrated against this and subsequent candi-
dates [32,33,44,51]. Of course, this does not mean that the resulting construc-
tions are insecure. In fact, this has motivated the search for IO constructions
which withstand all existing attacks [41].

IO from Low-Degree Multilinear Maps. This paper addresses the problem
of finding the smallest L such that degree-L mutlilinear maps are sufficient for
constructing IO. This fits within the more general goal of ultimately assessing
whether bilinear maps are sufficient. While first-generation IO constructions all
required polynomial-degree multilinear maps, a series of recent works [4,52,53,
56] reduced the required degree to L = 5, assuming the existence of PRGs
with output locality 5 and subexponential LWE, and under suitable assumption
on the 5-linear maps. However, these works left open the question of whether
multilinear maps with degree L < 5 are sufficient.

Further reducing the degree is important. On the one hand, if IO can be
achieved from bilinear maps, this is going to take us one step closer. On the
other hand, even if bilinear maps would not suffice, it is potentially easier to
find secure algebraic instantiations for low degree multilinear maps. Moreover,
we want to understand the precise power these maps would enable.

Our Contributions, in a Nutshell. This paper presents a new paradigm
for IO constructions which admits instantiations with L-linear maps for L ≥ 3,
provided the SXDH assumption holds for the L-linear map. While this falls short
of achieving IO from bilinear maps, our result shifts the focus on the fact that the
gap between two- and three-linear maps is a seemingly fundamental barrier to
be overcome. In particular, under the assumptions needed for our construction
be secure, this shows that building three-linear maps is as difficult as getting
full-blown IO.

We fundamentally rely on the recent line of works on building IO from
constant-degree multilinear maps [4,52,53,56], which all rely on so-called local
pseudo-random generators (PRGs) – a PRG with locality L has every output bit
depend on L input bits. It is known that if PRGs with locality L and polynomial
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stretch exist, then IO can be constructed from L-linear maps [4,53]. Unfortu-
nately, we do not even have locality-4 (polynomial stretch) PRGs [34,60], and
candidate PRGs only exist starting from locality 5 [47,60,61]. To circumvent
the lower bound on PRG locality, we propose a new, relaxed, notion of locality,
called block-wise locality. We build upon Lin’s [53] recent IO construction, but
show that in order to obtain IO from L-linear maps, it suffices to use PRGs with
block-wise locality L. As we will discuss below, such PRGs can exist for L as
low as three.

Block-Wise Locality and IO. We say that a PRG mapping n × � input bits
to m output bits has block-wise locality L and block-size �, if when viewing its
input (i.e., the seed) as a matrix of n × � bits, every output bit depends on at
most L columns in the matrix (as opposed to L input bits), as depicted in Fig. 1.
Observe that that the actual locality of such PRGs can go up to L × �, yet,
it has the special structure that all these input bits come from merely L input
columns. This special structure is the key feature that allows for replacing local
PRGs with block-wise-local PRGs, in the following applications.

– Application I: If there exists a subexponentially-secure PRG with block-wise-
locality L, and any block-size � = O(log λ), then we can construct general-
purpose IO from L-linear maps.

– Application II: If the block-wise local PRG is only slightly superpolynomially
secure, we can still build special-purpose IO for circuits with super-logarithmic
length inputs, which implies full-fledged Functional Encryption (FE), from
L-linear maps.

All our constructions come with security reductions to (1) the security of block-
wise-local PRGs, (2) the SXDH assumption on L-linear maps, and (3) the subex-
ponential Learning With Errors (LWE), where (2) and (3) have the same level
of hardness as that of the PRG.

Concurrently, we investigate the existence of block-wise local PRGs. In par-
ticular, we propose candidates following the common paradigm for candidate

y1 yi yj ym

·· · ·· · ·· · ·· · ·· · ·· ·

x1 xi xn

·· · ·· · ·· · ·· ·

y1 yi yj ym

·· · ·· · ·· · ·· · ·· · ·· ·

x1 xi xn·· · ·· · ·· · ·· · �

Fig. 1. Left: PRG with locality L = 3. Right: PRG with block-wise locality L = 3 and
block size �.
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local PRGs [7,12,34,60,61], which are variants of Goldreich’s functions [46]. We
simply replace every PRG input bit with a column of � input bits. Such a block-
wise local PRG is parameterized by a bipartite expander graph and a predicate
(or potentially a set of predicates) over L × � input bits. We discuss the security
of these candidates, against known attacks, in relation to the choice of graph
and predicate. Furthermore, aiming at weakening the assumption on our candi-
dates, we present two hardness amplification techniques that amplify respectively
the weaker next-bit-unpredictability property and pseudo-min-entropy generation
property to different levels of pseudorandomness guarantees.

Instantiating the Underlying Multilinear Maps. We note that the results
of this paper, per se, are merely new bootstrapping theorems, which do not rely,
by themselves, on multilinear maps. More specifically, we show how to boostrap
a FE scheme for computing degree-L polynomials to an IO scheme, using a PRG
with block-wise-locality L, and then rely on Lin’s [53] FE construction. Some
remarks on instantiations of the underlying multilinear maps are in order.

Concretely, the FE scheme from [53] relies on algebraic L-linear maps, for
which to date no candidate for L ≥ 3 is known to exist. The alternative approach
would be to instantiate them with existing noisy multilinear-map candidates. As
discussed in [53, Sect. 2.6], the existing proof would however fail in this case, in
addition to the SXDH assumption itself being false on exiting noisy multilinear-
map candidates. Still, a proof for ideal multilinear maps would be valid, but it is
not known whether (1) existing cryptanalytic attacks can be adapted to break a
construction, or (2) whether a proof in a weak ideal model as in [41] is possible.

Background on Previous Versions of This Work. In a previous version of
this paper, we incorrectly claimed that our approach can be extended to bilinear
maps. Two subsequent works, one by Barak et al. [14], the other by Lombardi
and Vaikuntanathan [57], have presented attacks against PRGs with block-wise
locality two. Strictly speaking, these results leave a narrow window of expansion
factors open where block-wise PRGs could exist, but we are not aware whether
our approach could be modified to use such low-stretch PRGs, or whether the
attacks can be extended. We discuss these results more in detail further below
in Sect. 1.3.

In contrast, attacks for L ≥ 3 appear out of reach, as our assumption is
implied by that made by recent works in the area of local PRGs and PRFs, c.f.
e.g. the pseudorandomness assumptions from the recent work by Applebaum and
Raykov [13]—and in fact, our amplification results show that even less needs to
be achieved by the local function.

1.1 Block-Wise Locality

A (n × �,m)-PRG maps n × � input bits to m output bits. As introduced above,
a PRG has block-wise locality L and block-size �, if when viewing the input as a
n× � matrix, every output bits depend on input bits in at most L columns. Such
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a function is fully specified by the input-output dependency graph G describing
which input columns each output bit depends on, and the set of predicates
{Pj}j∈[m] that each output bit is evaluated through.

In all our applications, we consider block-wise local PRGs with sufficiently
large polynomial input- and output-lengths, n and m (in the security parame-
ter λ) and logarithmic block-size � = O(log(λ)). In this setting, a PRG has
polynomial-stretch if m = n1+α for some positive constant α > 0. For conve-
nience, below we assume such parameters are fixed in our discussion.

When compared with traditional local PRGs (which can be thought as the
special case with block size � = 1), the advantage of block-wise local PRGs is that
while they will still permit instantiations with L-linear maps in our applications,
their output bits depend on L×� input bits, and hence we can use more complex,
say logarithmic-degree, predicates. For this reason, known lower bounds on the
locality of PRGs do not apply to block-wise locality, even when L < 5, when
the block size satisfies � = Ω(log(λ)). Effectively, such PRGs can be seen as
operating on input symbols with polynomial alphabet size. Moreover, the lower
bounds in [34,60] show that for conventional locality, PRGs with polynomial
stretch require L ≥ 5, but they crucially rely on the fact that any locality-
4 predicate is correlated with two of its input bits to rule out the existence of
locality-4 PRGs. In contrast, a PRG with block-wise locality L can use predicates
that depend on L log λ input bits; setting the predicate to be uncorrelated with
any subset of log λ input bits circumvents the lower bound argument in [34,60].

Block-Wise Local PRGs via Local PRGs. Every function with block-wise
locality L and block size � is a function with locality L�. Therefore, the rich
literature on the security of Goldreich’s local functions (see Applebaum’s sur-
vey [8]) provides guidelines on how to choose candidate block-wise local PRGs,
more specifically, the dependency graph G and predicates {Pj}. In particular,
the graph G should be (k, c)-expanding, i.e., every subset of k′ ≤ k output bits
depends on at least c×k′ input columns, for appropriately large k and c. We show
that for L ≥ 3, a large 1−o(1) fraction of graphs G is (n1−η, (1−η)L)-expanding.
This in turn means that we can think of this as an instance of Goldreich’s func-
tion with locality L� built from a graph which is (n1−η, (1 − η)L�)-expanding,
thus taking us back to the classical setting studied in the literature.

Using this analogy, we can show for example that for block-wise locality
3 and block size 2, for most graphs G, the resulting function withstands all
linear attacks with sub-exponential bias ε when using the predicate outputting
x0
1 ⊕ x0

2 ⊕ x0
3 ⊕ (x1

1 ∧ x1
2) on input three columns (x0

1, x
1
1), (x

0
2, x

1
2), (x

0
3, x

1
3). This

is a criterion that has been adopted so far to validate PRG security of local
functions.

Moving even one step further, Applebaum and Raykov [13] recently postu-
lated the following (even stronger) pseudorandomness assumption on functions
with logarithmic locality:

Assumption 1 (Informal). For locality D = O(log λ), and arbitrarily poly-
nomial output length m = n1+α, there exist a suitable predicate, P ′, such that,
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for any dependency graph G′ that is (n1−η, (1 − η)D)-expanding for some 0 <

η < 1/2, the locality-D function specified by P ′ and G′ is 2−n1−η

-pseudorandom
again 2n1−η

-time distinguishers.

In our setting, for block-wise locality L ≥ 3 and block-size log λ, we show
that when choosing the dependency graph G at random, the obtained block-wise
local function can be thought as a function with locality D = L log λ satisfying
the properties specified by the Applebaum-Raykov assumption, with 1 − o(1)
probability. In particular, such functions withstand myopic inversion attacks
(cf. e.g. [30]). In fact, our applications only need pseudorandomness to hold
for output length m = n1+α for some arbitrarily small constant α > 0, and
against polynomial time attackers, thus a much weaker requirement than what
is guaranteed by the Applebaum-Raykov assumption.

For the case L = 2, the assumption that a block-wise local PRG exists is
not backed by any of the past results, and indeed, recent works (following up on
an earlier version of this paper) show that blockwise-local PRGs with sufficient
stretch do not exist. We discuss this further below in Sect. 1.3.

Amplification. In order to validate our assumptions even further, we present
two transformations meant to enhance security of functions with block-wise local-
ity. We consider two different techniques:

– Amplification Technique I: produces a PRG construction with quasi-
polynomial indistinguishability-gap (to polynomial-time distinguishers), from
any unpredictable generator satisfying just polynomial next-bit unpredictabil-
ity (i.e., the probability of predicting any output bit given previous output
bits is at most 1

2 + 1
poly(λ) , albeit for predictors in quasi-polynomial time).

Though such PRGs are not strong enough for constructing IO, it suffices for
constructing FE from L-linear maps; see the next section.

– Amplification Technique II: produces a PRG construction with sub-
exponential indistinguishability-gap, from certain special pseudo-min-entropy-
generator whose output has sufficiently-high pseudo-min-entropy.

1.2 From Block-Wise Locality to IO and FE

We now move to an overview of our constructions from block-wise local PRGs.

IO from Subexponentially Secure Block-Wise-Local PRGs. Recent IO
constructions from low-degree multilinear maps [4,53,56] follow a common two-
step approach: They first implement appropriate FE schemes, and then trans-
form them into an IO scheme; we refer to the second step as the (FE-to-IO)
bootstrapping step. In more detail, they use locality-L PRGs in the bootstrap-
ping step in order to start with FE schemes that support only computation of
degree-L polynomials; they then show that such FE schemes can be constructed
from L-linear maps. In this work, following the blueprint and technique in [53],
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we show how to replace the use of local PRGs with block-wise local PRGs within
the bootstrapping step.

Theorem 1 (Bootstrapping using block-wise local PRGs). Let L be any
positive integer. There is a construction of IO for P/poly from the following
primitives:

– Public-key fully-selectively-secure (collusion-resistant) FE for degree-L poly-
nomials whose encryption time is linear in the input length (i.e., poly(λ)N);
or with a secret-key FE scheme with the same properties, assuming addition-
ally the subexponential hardness of LWE with subexponential modulus-to-noise
ratio.

– a PRG with block-wise locality L, block-size log λ, and n1+α-stretch for some
positive constant α.

where both FE and PRG need to have subexponential security.

The type of secret-key FE schemes for degree-L polynomials needed above was
constructed by Lin [53] assuming the SXDH assumption on L-linear maps.

Theorem 2 [53]. Let L be any positive integer. Assuming the SXDH assump-
tion on asymmetric L-linear maps, there is a construction of secret-key fully-
selectively-secure (collusion-resistant) FE schemes for degree-L polynomials
whose encryption time is linear in the input length (i.e., poly(λ)N). Moreover,
the security reduction has a polynomial security loss.

Therefore, combining our new bootstrapping theorem with Lin’s FE construc-
tion, we obtain IO from the subexponential SXDH assumption on L-linear maps,
subexponentially-secure PRG with block-wise locality L, and subexponential
LWE.

The Power of Super-Polynomially Secure Block-Wise Local PRGs.
While constructing full-fledged IO for all polynomial-sized programs requires
block-wise local PRGs with subexponentially-security, we ask what can be built
from PRGs with weaker (slightly) superpolynomial-security. In particular, such
PRGs can be obtained using the aforementioned amplification technique I, from
unpredictable generator satisfying just polynomial next-bit unpredictability. To
this end, we first give a parameterized version of Theorem 1 showing that if the
PRG and L-linear maps are (2−i�negl)-secure, then we can build IO schemes for
circuits with i�-bit inputs.

Theorem 3 (Parameterized version of Theorem 1). Let L be any positive
integer. Then, there is a construction of IO for the class of polynomial-sized
circuits with i�-bit inputs from the same primitives as in Theorem1, and if FE
and PRG are (2−(i�+κ)negl)-secure, the resulting IO scheme is (2−κnegl)-secure.

Therefore, as discussed above, from slightly superpolynomially secure L-linear
maps, a PRG with block-wise locality L, and subexponential LWE, we obtain IO
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for circuits with super-logarithmic, ω(log λ), length inputs, and if the primitives
are quasi-polynomially secure, we obtain IO for circuits with poly-logarithmic
log1+ε(λ) length inputs. Such IO schemes are already sufficient for two types of
natural applications of IO:

– Type 1: Applications where IO is used to obfuscate a circuit with short inputs.
For instance, for building FHE without relying on circular security [25],
and constructing succinct randomized encoding for bounded space Turning
machines [17]. In these applications, IO is used to obfuscate a circuit that
receive as input an index from an arbitrary polynomial range.

– Type 2: Applications where the input length of the obfuscated circuit is deter-
mined by the security parameter of some other primitive. Then, by assuming
exponential security of the other primitive, the input length can be made
poly-logarithmic. For instance, as observed in [18,50], in the construction of
public key encryption from one-way functions via IO, if assuming exponen-
tially secure one-way functions, then IO for circuits with ω(log λ) bit inputs
suffices for the application.

We further show that IO for circuits with super-logarithmic length inputs
implies full-fledged functional encryption.

Theorem 4 (Functional Encryption from ω(log λ)-Input IO). Let i� be
any super-logarithmic polynomial, that is, i� = ω(log λ). Assume IO for the class
of polynomial-sized circuits with i�-bit inputs and public key encryption, both
with (2−i�negl)-security. Then, there exist collusion resistant (compact) public-
key functional encryption for P/poly, satisfying adaptive-security.

Combining the above two theorems, we immediately have that the existence
of a PRG with block-wise locality L and L-linear maps, both with slighly
super-polynomial security (and assuming subexponential LWE), implies the exis-
tence of full-fledged functional encryption, and all its applications, including, for
instance, non-interactive key exchange (NIKE) for unbounded users [43], trap-
door permutations [43], PPAD hardness [19,42], publicly-verifiable delegation
schemes in the CRS model [62], and secure traitor tracing scheme [22,29,39],
which further implies hardness results in differential privacy [37,64].

1.3 Subsequent Works

Two recent works by Lombardi and Vaikuntanathan (LV) [57], and Barak,
Brakerski, Komargodski, and Kothari (BBKK) [14] essentially rule out the exis-
tence of PRGs with block-wise locality L = 2, except for a very narrow window
of expansion, as we explain next.

The LV Attack. The LV attack considers generators whose output bits are
evaluated using the same predidate P , and whose dependency graph G is chosen
at random. LV show that for any predicate P and a 1 − o(1) fraction of the
graphs, the output can be efficiently distinguished from random, if its length
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reaches Ω̃(n2�), where recall that � = O(log λ) is the block size. Their attack
relies on two important ingredient. The first ingredient consists of techniques
for refuting random L-CSPs over large q-ary alphabets, which corresponds to
PRGs with block-wise locality-L and block-size � = log q. Allen, O’Donnell, and
Witmer [1] presented an efficient algorithm for this, which succeeds when the
number of constraints is roughly Ω̃(nL/2poly(q)/ε2), where ε controls the “qual-
ity” of refutation. The second ingredient is a novel structural lemma showing that
any locality-2 balanced predicate P over alphabet Zq must be (1/2+O(1)/

√
q)-

correlated with a locality-2 predicate Q over the constant-sized alphabet Z16.
Roughly speaking, to distinguish the output of a PRG with predicate P , they
apply the refutation technique on CSPs w.r.t. the predicate Q correlated with
P . This allows them to rule out PRGs with output length as short as Ω̃(n2�).

The BBKK Attack. BBKK considered the more general case where the gen-
erators use an arbitrary set of predicates {Pj} and arbitrary dependency graph
G. They show that PRGs with block-wise locality 2 and output length Ω̃(n22�)
do not exist. The bound on the output length can be improved to Ω̃(n2�) for
the case where G is randomly chosen, and so is the predicate (in particular, the
predicate is the same for all output bits). In fact, they proved a more general
lower bound: There is no PRG whose outputs are evaluated using polynomials of
degree at most d involving at most s monomials, and of output length Õ(sn�d/2�).
Note that every block-wise locality L PRG can be written as such a generator,
with n2� input bits, and using polynomials of degree L and at most 2L� mono-
mials. Their result is based on semidefinite programming and in particular the
sum of squares (SOS) hierarchy.

BV and BBKK essentially rule out the existence of PRGs with block-wise
locality 2, except for the corner case where the generator can use a set of dif-
ferent predicates {Pj}, a specific or random graph, and the output length is
Õ(n2(1+ε)�), for some 0 < ε < 1. However, it is unclear to us whether PRGs with
such small expansion is sufficient for constructing IO, or whether the attacks can
be extended to cover this case.

Outline of This Paper
Section 2 discusses candidate constructions of block-wise local PRGs. Section 3
discusses our bootstrapping method using block-wise local PRGs. Finally, in
Sect. 4, we discuss constructions of functional-encryption schemes in Sect. 4.

Further, the paper employs standard notation and terminology on functional
encryption and IO. We refer the reader to the full version for the complete
formalism [55].

2 Block-Wise Local PRGs

In this section, we introduce the notion of a block-wise local PRG. We start
with formal definitions, in Sect. 2.1, which we refer to throughout the rest of the
paper. Then, the remaining sub-sections will discuss a graph-based framework
for block-wise local functions, and discuss candidates.
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2.1 Pseudorandom Generators, Locality, and Block-Wise Locality

We review the notion of a PRG family, and its locality.

Definition 1 (Family of Pseudo-Random Generators (PRGs)). Let n
and m be polynomials. A family of (n(λ),m(λ))-PRG is an ensemble of distrib-
utions PRG = {PRGλ} satisfying the following properties:

Syntax: For every λ ∈ N, every PRG in the support of PRGλ defines a func-
tion mapping n(λ) bits to m(λ) bits.

Efficiency: There is a uniform Turning machine M satisfying that for every
λ ∈ N, every PRG in the support of PRGλ, and every x ∈ {0, 1}n(λ),
M(PRG, x) = PRG(x).

μ-Indistinguishability: The following ensembles are μ-indistinguishable

{PRG $← PRGλ; s
$← {0, 1}n(λ) : (PRG,PRG(s)}λ∈N

≈μ {PRG $← PRGλ; r
$← {0, 1}m(λ) : (PRG, r)}λ∈N

Definition 2 (Block-Wise Locality of PRGs). Let n, m, L, and � be poly-
nomials. We say that a family of (n(λ)�(λ),m(λ))-PRGs has block-wise locality-
(L(λ), �(λ)) if for every λ and every PRG in the support of PRGλ, inputs of
PRG are viewed as n(λ) × �(λ) matrices of bits, and every output bit of PRG
depends on input bits contained in at most L(λ) columns.

2.2 Graph-Based Block-Wise Local Functions

In this section, we discuss candidate PRGs with block-wise locality d, where d
can be as small as two. Here, we start with the notational framework and then
move on to discussing concrete assumptions on them in Sect. 2.3.

Goldreich’s Function. We will consider local functions based on Goldreich’s
construction [46], which have been the subject for extensive study (cf. e.g. Apple-
baum’s survey [8]).

Recall first that an [n,m, d]-hypergraph is a collection G = (S1, . . . , Sm)
where the hyerpedges Si are elements of [n]d, i.e., Si = (i1, . . . , id), where ij ∈ [n]
(note that we allow for potential repetitions, merely for notational convenience).
We use hypergraphs to build functions as follows.

Definition 3 (Goldreich’s function). Let G = {Gλ}λ∈N be an ensemble such
that Gλ is a distribution on [n(λ),m(λ), d(λ)]-hypergraphs, for polynomial func-
tions m,n, d. Also let P = {Pλ}λ∈Nq be a family of predicates, where Pλ operates
on d(λ)-bit strings. Then, define the function ensemble GFG,P = {GFG,P

λ }λ∈N,

where GFG,P
λ samples first a graph G = (S1, . . . , Sm) $← Gλ, and then outputs

the function GFG,P : {0, 1}n → {0, 1}m such that for all n-bit x,

GFG,P (x) = (y1, . . . , ym), yi = P (x[Si]),
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where x[S] denotes the d-bit sub-string obtained by concatenating the bits at
positions indexed by S.1

Functions with Block-Wise Locality. We want to extend the notation used
above to consider the case where an edge of G does not solely give a pointer
to individual bits to be injected in the computation, but rather, to “chunks”
consisting of �-bit strings, and the predicate is applied to the concatenation of
these bits. The resulting function clearly then satisfies block-wise locality d with
block size �.

Definition 4 (Block-wise local graph-based function). Let G = {Gλ}λ∈N

be such that Gλ is a distribution on [n(λ),m(λ), d(λ)]-hypergraphs, for polyno-
mial functions m,n, d. Also let �(λ) be a polynomial function, and P = {Pλ}λ∈N

a family of predicates, where Pλ operates on (d(λ) × �(λ))-bit strings. Then,
define the function ensamble GFG,P,� = {GFG,P,�

λ }λ∈N, where GFG,P,�
λ samples

first a graph G = (S1, . . . , Sm) $← Gλ, and then outputs the function GFG,P,� :
{0, 1}n·� → {0, 1}m such that for all (n×�)-bit inputs x = (x[1], . . . ,x[n]), where
x[1], . . . ,x[n] ∈ {0, 1}�,

GFG,P,�(x) = (y1, . . . , ym), yi = P (x[Si]),

where x[S] denotes the d · �-bit sub-string obtained by concatenating �-bit input
chunks indexed by S.

We typically refer to the graph G describing GFG,P,� as the base graph. This
is because GFG,P,� can be seen as a special case of Goldreich’s function defined
above, for a suitable graph. Namely, the base graph G can be extended to an
[n · �,m, d�]-hypergraph G naturally, where each edge Si = (i1, . . . , id) from G is
mapped into a new hyper-edge Si with d · � elements such that

Si = ((i1 − 1) · � + 1, . . . , i1 · �, · · · , (id − 1) · � + 1, . . . , id · �),

then clearly GFG,P,� = GFG,P,1 = GFG,P . This view will be convenient to
connect back to the body of work on studying the security of Goldreich’s function
on suitable graphs, for which our block-wise local designs serve as a special case.

Expansion Properties. In general, we will want to instantiate our framework
with functions where the base graph G is a good expander graph. Recall the
following.

Definition 5. G = (S1, . . . , Sm) is a (k, c)-expander (or, equivalently, is (k, c)-
expanding) if for all sets J ⊆ [m] with |J | ≤ k, we have |⋃j∈J Sj | ≥ c · |J |.
1 The notion could be block-wise to the cases where predicates are drawn by a distri-

bution, and possibly differ from each output bit. We are going to dispense with such
extensions, which are straightforward but easily lead to notational overhead.



Indistinguishability Obfuscation from Trilinear Maps 641

Ideally, we will want in fact G to be a good expander (in order to resort to
large body of analyses for such functions). This will follow by making the base
graph a good expander. In particular, the following simple fact stems from the
observation that when going from G to G, we have |Sj | = �|Sj |, and hence the
(relative) expansion factors of G and G are identical.

Lemma 1. Let G be an [n,m, d]-hypergraph which is (k, (1 − γ)d)-expanding.
Then, for any block-size �, the resulting [n·�,m, d�]-hypergraph G is (k, (1−γ)d�)-
expanding.

In general, if we have high degree (say O(log λ)), we can prove the existence
(at least probabilistically) of very good expanders with expansion rate very close
to the degree. Unfortunately, our construction of G imposes some structure, and
the actual expansion factor is dictated by the graph G with much lower degree d.
The following lemma establishes the existence of good expander graphs, which
we summarize below in a corollary with more useful parameters. While the proof
of the lemma is folklore (we take notational inspiration from the one in [9]), we
give it for completeness in the full version [55].

Lemma 2 (Strong expansion lemma). Let d ≥ 2, and let γ ∈ (0, 1) and
β ∈ (0, 1/2) be such that dγ = 1 + β. Further, let 1 ≤ Δ ≤ nβ/ log(n). Then,
there exists a constant α > 0 such that a random [n,m = Δn, d]-hypergraph G
is a (k = αn/Δ1/β , d(1 − γ))-expander with probability 1 − o(1).

Corollary 1. For every γ and d such that 1 < γd < 1.5, and every η ∈ (0, 1),
there exists a [n, n1+ζ , d]-hypergraph (for some ζ > 0) which is a (n1−η, (1−γ)d)-
expander.

2.3 Pseudorandom and Unpredictability Generators

We are interested in the question of finding [n,m, d]-hypergraphs for m = n1+α

and a constant d ≥ 2 such that GFG,P,� is a good PRG, for � = O(log λ).
We consider a parameterized assumption on such functions (in terms of unpre-
dictability), and discuss it briefly. Below, we are then going to show how strong
indistinguishability follows from (potentially) weaker versions of this assump-
tion.

Unpredictability Generator and Assumptions. Let UG = {UGλ}λ∈N be
a function ensemble, where UGλ is a distribution on functions from n(λ) to
m(λ) bits, for some polynomial functions m and n.

Definition 6 (Unpredictability generator). We say that UG is an (s, δ)-
unpredictability generator (or (s, δ)-UG, for short) if for all (non-uniform)
adversaries A = {Aλ}λ∈N with size at most s(λ) and all sequences of indices
i(λ) ∈ {0, . . . , i(λ) − 1}, we have

Pr

[
x

$← {0, 1}n(λ)

UG $← UGλ

: Aλ(UG,UG≤i(λ)(x)) = UGi(λ)+1(x)

]

≤ 1
2

+ δ(λ),
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where UG≤j(x) and UGj(x) denote the first j bits and the j-th bit of UG(x),
respectively.

Note that by a standard argument, being a (s, δ)-UG implies being a (family of)
(s,O(m · δ))-PRGs. We now consider the following assumption, which parame-
trizes the fact that GFG,P,� is a good PRG.

Definition 7 (BLUG-assumption). Let n, �, s : N → N, and let d ≥ 2 and
α > 0 be constants. Also, let δ : N → [0, 1]. Then, the (d, �)-BLUG(n, α, s, δ)
assumption is the assumption that there exists a family G = {Gλ}λ∈N of
[n(λ), n(λ)1+α, d] hypergraphs, and a family P = {Pλ}λ∈N of predicates on
(d(λ) × �(λ))-bit strings such that GFG,P,� is an (s, δ)-UG.

We are being a bit informal here, in the sense that obviously we would like
GFG,P,� to additionally be efficiently computable in a uniform sense. Our can-
didates will not have this property, as we are only able to infer the existence of
suitable G’s probabilistically. There are two ways of thinking about the resulting
ensemble: Either non-uniformly – the graph Gλ is given as advice for security
parameter λ – but usually we actually show that a 1 − o(1) fraction of the
[n, n1+α, d]-hypergraphs are good choices. In that case, we replace G with G
where Gλ chooses a random [n(λ), n(λ)1+α, d(λ)]-hypergraph G, which is bad
with vanishing probability o(1). This is of course not good enough, yet the prob-
lem can often be by-passed in an application-dependent way, by considering the
fact that the end scheme using GFG,P,� will also be insecure with probability
o(1). One can then consider ω(1)-instances of this scheme, each using an inde-
pendent instance from GFG,P,�, and then combine them with a combiner, if it
exists.

Our constructions below require (d,O(log(λ)))-BLUG(n, α,poly(λ), 2−ω(log λ))
to be true for some n(λ) = poly(λ) and α > 0. For stronger results, we are
going to replace 2−ω(log λ) with 2−λε

for some ε > 0. Below, we will discuss
whether this assumption can be implied by (qualitatively) weaker properties.
We will show in particular that (d,O(log1−ε(λ)))-BLUG(n, α, 2ω(log λ), 1/λΩ(1))
implies (d,O(log(λ)))-BLUG(n, α,poly(λ), 2−ω(log λ)).

Here, we briefly discuss what can be expected to start with.

The case d ≥ 3. For the case d ≥ 3, a good candidate to study is the case
where � = O(log(λ)) and G = {Gλ}λ∈N is such that Gλ is an [n(λ), n(λ)1+α, d]-
hypergraph which is a good (n1−γ , (1−γ)d)-expander where γ < 1

2 , which exists
(for some suitable α > 0) by Corollary 1. The corresponding Gλ are then in turn
also (n1−γ , (1 − γ)d�)-expanders by Lemma 1.

Applebaum and Raykov [13] recently justify the assumption that for suit-
able predicates, P , the function family GFG,P is one way and a PRG against
adversary running in time 2n1−γ

, which cannot succeed with probability larger
than 2−n1−γ

. In the same paper, they also give a decision-to-search reduction
for such functions, which however applies only for degrees where we can accom-
modate some γ with 3γ < 1. In particular, such functions withstand existing
attacks, such as myopic inversion attacks [30]. Also, the degree of P can be high,
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e.g., O(log(λ)), and this prevents a number of attacks exploiting weakness of the
predicate [21,34].

Also, as we show in the next section, it is possible to adopt the techniques
from [9] to show that we can get good ε-biased generators (for a sub-exponential
ε) with block-wise locality (3, 2). This has been the main technique in validating
PRG assumptions on graph-based local functions [9,60,61].

The special case d = 2. The case d = 2 is particularly important, as it does
allow instantiations from bilinear maps in our applications. Note that algebraic
attacks are mitigated here – in contrast to the case of plain locality, i.e., � = 1,
we can set � = O(log λ) and achieve sufficiently high algebraic degree of the
predicate P . Unfortunately, this is not sufficient to prove pseudorandomness, as
shown by recent attacks [14,57], which we have discussed above in Sect. 1.3.

2.4 Block-Wise Local Small-Bias Generators

Several works [9,12,34,60] have focused on studying weaker properties achieved
by local generators. In particular, a standard statement towards validating their
security is that of showing that the meet the definition of being a small-bias
generator.

Definition 8. We say SB : {0, 1}n → {0, 1}m is an ε-small biased generator

if maxJ⊆[n],J 	=∅
∣
∣Pr[x $← {0, 1}n :

⊕
j∈J SBj(x) = 1] − 1

2

∣
∣ ≤ ε, where SBj(x)

denotes the j-th bit of SB(x).

We show that GFG,Q,2 is a good small-biased generator for a sub-exponential
ε, where G is an [n,m, 3]-hypergraph, and Q is the predicate which given three
2-bit blocks x1,x2,x3 where xi = (xl

i, x
h
i ), outputs

Q(x1,x2,x3) = xl
1 ⊕ xl

2 ⊕ xl
3 ⊕ (xh

1 ∧ xh
2 ).

Another convenient way to think about GFG,Q,2 is as

GFG,Q,2((xl
1, x

h
1 ), . . . , (xl

n, xh
n)) = GFG,Ql(xl

1, . . . , x
l
n) ⊕ GFG,Qh(xh

1 , . . . , xj
n),

where Ql(x1, x2, x3) = x1 ⊕ x2 ⊕ x3 and Qh(x1, x2, x3) = x1 ∧ x2. To show that
GFG,Q,2 has small bias, the main idea is fairly straightforward. Indeed, current
analyses of local small-biased generators give two separate analyses for so called
“light tests” and “heavy tests”, where the “weight” of a test amounts to the
cardinality of |J |. For standard locality, withstanding both at the same time
forces the graph degree to be at least five, since the predicate needs to be “non-
degenerate” for the construction to withstand tests (and the theorem of [9] to
apply), and all predicates up to d = 4 are degenerate (cf. e.g. [34]). This will not
be a problem here, as we only target block-wise locality, and thus effectively the
predicate can be non-degenerate. The proof is in the full version [55].

Lemma 3. For all δ > 0 and α < 1−δ
4 , for a fraction of 1 − o(1) of all

[n, n1+α, 3]-hypergraphs G, and Q as defined above, GFG,Q,2 is an
(
e− nδ

4

)
-biased

generator.



644 H. Lin and S. Tessaro

2.5 Hardness Amplification via the XOR Construction

In this paper, we rely on the assumption that GFG,P,� is a good PRG for an
appropriate family G of expanders. However, we want to add additional justi-
fication to our assumptions. Here, in particular, we discuss how weak unpre-
dictability for graph-based block-wise local functions can be amplified to super-
polynomially small unpredictability generically. This means in particular that
block-wise local PRGs have strong self-amplifying properties, and that for any
G and P , in order to invalidate our assumption, we need to find an attack which
succeeds in predicting the next bit with large (i.e., polynomial) advantage over
1
2 . For otherwise, the lack of such an attack would imply that for the same G

and (a related) P ′ and �′, GFG,P ′,�′
is a strong PRG.

To this end, we use a simple construction xoring the outputs of generators,
which has already been studied to amplify PRG security [35,58]. Our analysis
resembles the one from [35], but is given for completeness. Also, a more general
construction, with xoring replaced by a general extractor, was considered by
Applebaum [7]. The use of xor, however, is instrumental to preserve block-wise
locality. The main drawback of this construction is that it can at best ensure
2−Ω(log1+θ λ) distinguishing gap for some θ ∈ (0, 1] while retaining block size
� = O(log λ). In the full version [55], we explain a different approach which relies
on a different assumption. and potentially guarantees 2−λΩ(1)

distinguishing gap.

The XOR Construction. Let UG = {UGλ}λ∈N be an (s, δ)-UG, where
UGλ is a distribution on functions {0, 1}n(λ) → {0, 1}m(λ). For an additional
parameter k = k(λ) ≥ 1, we define the ensemble UGk = {UGk

λ}λ∈N, where

UGk
λ samples functions UG1, . . . ,UGk

$← UGλ and output the description of a
function UGk : {0, 1}n×k → {0, 1}m which, on input x = x1 ‖ · · · ‖ xk, where
xi ∈ {0, 1}n(λ), outputs

UGk(x) = UG1(x1) ⊕ · · · ⊕ UGk(xk).

We prove the following in the full version [55].

Theorem 5 (Security of the XOR Construction). If UG is a (s, δ)-UG
and k = k(λ) is polynomial in λ, then UGk is a (s′, ε)-PRG, where

ε(λ) ≤ (2δ(λ))k(λ), s′(λ) = Θ

(
δ(λ)2k · s(r)
k log(k/δ(λ))

)

.

Block-Wise Local Instantiation. We instantiate the construction with para-
meter k when UG = GFG,P,� for a family of [n,m, d]-hypergraphs G =
{Gλ}λ∈N, some � = �(λ), and a family P of (d × �)-bit predicates. Since the
resulting function UGk

λ uses k instances of the same function GFGλ,Pλ,�, it can
equivalently be thought as having the form (up to re-arranging the order of the
input bits) GFGλ,P k

λ ,�(λ)·k(λ), where the predicate P k on input d (k ·�)-bit blocks
x1, . . . ,xd, it interprets each of them as k �-bit blocks xi = xi,1 ‖ · · · ‖ xi,k and
outputs
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P k(x1, . . . ,xd) = P (x1,1, . . . ,xd,1) ⊕ · · · ⊕ P (xk,1, . . . ,xk,d).

To instantiate our transformation, we assume that for some �(λ) = Ω(log1−θ(λ))
and a family of [n(λ),m(λ), d]-hypergraphs G = {Gλ}λ∈N, the function family
UG = GFG,P,� is a (s(λ) = 2log

3(λ), δ(λ) = λ−Ω(1))-UG. Now, set k(λ) =
logθ(λ). Then, UGk is by the above (d,O(log(λ)))-block-wise local, and it is also
(s′, ε)-UG for s′(λ) = poly(λ), and

ε(λ) = (2δ(λ))k(λ) = 2−Ω(log1+θ(λ)).

In other words, we have just established the following corollary.

Corollary 2. For any β > 0, d ≥ 2, and θ ∈ (0, 1], if
the (d,O(log1−θ(λ)))-BLUG(n, β, 2log

3(λ), 1/λΩ(1)) assumption holds, then the
assumption (d,O(log(λ)))-BLUG(n, β,poly(λ), 2−Ω(log1+θ(λ))) also holds true.

3 IO from Block-Wise Locality-(L, log λ) PRG and
L-Linear Maps

In this section, we prove the following bootstrapping theorem.

Theorem 6 (Bootstrapping via block-wise local PRGs). Let R = {Rλ}
be any family of rings, ε be any positive constant, L any positive integer, n any
sufficiently large polynomial, and i� and κ any polynomials. There is a construc-
tion of i�(λ)-bit-input IO for P/poly, from the following primitives:

– A family of (n(λ) × log λ, n(λ)1+ε)-PRGs with block-wise locality (L, log λ).
– A public-key FE for degree-L polynomials in R, with linear efficiency and

Full-Sel-security; or with a secret-key FE with the same properties, assuming
additionally LWE with subexponential modulo-to-noise ratio.

The IO scheme is (2−κ(λ)negl(λ))-secure, if the PRG and FE schemes are
(2−i�(λ)+κ(λ)negl(λ))-secure, and LWE is (2−i�(λ)+κ(λ)negl(λ))-hard.

Theorem 6 follows the same approach as Lin’s recent bootstrapping theo-
rem [53], but modifies it in two ways. First, it uses block-wise local PRGs to
replace local PRGs. Second, it makes explicit the relation between the security
level (more precisely, the maximal distinguishing gap) of the underlying PRG and
FE, and the input-length and security level of the resulting IO—if the underlying
primitives are 2−i�+κnegl-secure, then the resulting IO scheme is for i�-bit-input
circuits and 2κnegl-security. Such relations are implicit in previous works, and
not as tight as shown here.

Overview of Proof of Theorem 6. To show the theorem, similar to previous
works [53,56], we take two steps:
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Step 1. Construct a single-key public-key (or secret-key) FE schemes CFE =
{CFEN,D,S} for P/poly, with (1 − ε)-sublinear compactness and 2−i�+κnegl-
Full-Sel-security, starting from a public-key (or secret-key) FE for degree-L poly-
nomials in R, with linear efficiency and Full-Sel-security.

Previously, the work of [56] showed how to achieve this transformation from
a locality-L PRGs and FE for computing degree 3L + 2 polynomials. Following
that, the two recent works of [4,53] used a pre-processing technique to relax
the requirement on the underlying FE to supporting only degree-L polynomials.
In this work, we extend their pre-processing technique even further, in order to
relax the requirement on the underlying PRGs from having locality L to having
block-wise locality (L, log λ). We describe this step in full detail in Sect. 3.1.

In the case that the obtained FE scheme CFE is a secret-key one, we invoke
the result of [18] to transform it into a public key FE scheme with the same
properties, assuming LWE with subexponential modulus-to-noise ratio.

Since our transformation from FE for low-degree computations to weakly-
compact FE for P/poly in Sect. 3.1 incurs only a polynoimal security loss, and so
does the transformation of [18], the resulting weakly-compact FE has essentially
the same level of security as that of underlying primitives.
Step 2. Apply an FE-to-IO transformation to obtain i�-bit-input IO for P/poly,
with 2−κnegl-security.

The literature already offers three FE-to-IO transformations [2,20,54] that
start from a public key FE scheme CFE = {CFEN,D,S} as described above
w.r.t. any positive constant ε. In this work, we reduce the security loss incurred
in the transformation so as to start with 2−i�+κnegl-secure FE (as opposed to
2−O(i�2)+κnegl-secure or 2−O(log λ)i�+κnegl-secure FE as in previous works). To
do so, we present a new FE-to-IO transformation inspired by that of [54] and
present a tight analysis. We describe this step in the full version [55].

3.1 Step 1: Constructing Weakly-Compact FE

Proposition 1. Let R, ε, L, and n be defined as in Theorem6, and κ̄ be any
polynomial. There is a construction of 1-key weakly-compact public-key FE for
P/poly from the following primitives:

– A family of (n(λ) × log λ, n(λ)1+ε)-PRGs with block-wise locality (L, log λ).
– Public-key FE for degree-L polynomials in R, with linear efficiency and

Full-Sel-security; or secret-key FE with the same properties, assuming addi-
tionally LWE with subexponential modolus-to-noise ratio.

The weakly-compact FE is (2−κ̄(λ)negl(λ))-Full-Sel-secure, if the underlying PRG
and FE are (2−κ̄(λ)negl(λ))-secure and LWE is (2−κ̄(λ)negl(λ))-hard.

It was shown in [53] that 1-key weakly-compact FE for P/poly can be con-
structed from locality-L PRG and (unbounded collusion) FE for degree-L poly-
nomials. Their construction of weakly-compact FE follows from the blue-print
of previous works [52,56], which uses FE for low degree polynomials to compute
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a randomized encoding of a computation in P/poly, with pseudo-randomness
generated through a local PRG. The locality of RE and PRG ensures that their
composition can be computed in low degree. However, the straightforward com-
position of RE and PRG leads to a computation with degree 3L + 2. The key
idea in [53] and the concurrent work of [4] is that part of the RE computation
can already be done at encryption time, that is, by asking the encryptor to
pre-process the inputs (of the computation in P/poly) and seeds of PRG, and
encrypt the pre-processed values, the composition of RE and PRG can be com-
puted in just degree L from the pre-processed values, at decryption time—This
is called the preprocessing technique. We take this technique one step further:
By also performing part of the PRG computation at encryption time, we can
replace local PRG with block-wise local PRG (with appropriate parameters) at
“no cost”.

Below, we first briefly review the blueprint of [56], then describe the pre-
processing idea of [53] and how to use it to accommodate PRG with block-wise
locality.

The General Blueprint of [56]. To construct 1-key weakly-compact FE for
P/poly, Lin and Vaikuntanathan [56] (LV) first observed that, using the Trojan
Method [26], it suffices to construct 1-key weakly-compact FE for NC1 functions
with some fixed depth D(λ) = O(log λ); denote this class of functions as NC1

D.
Next, to bootstrap a low-degree FE scheme to FE for NC1

D, the idea is using
randomized encoding to “compress” any function h(x) ∈ NC1

D into a function
g(x, s) = REnc(f,x ; PRG(s)) with small degree in R. The reason that local
PRG is used is that the locality of a Boolean function bounds the degree of
computing this function in any ring. Then, plugging-in randomized encodings
with small locality like that of [11] the overall degree of g is small. For the
security proof to work out, the actual functions used in the LV construction are
more complicated and has form

g(x, s, s′, b) = (1 − b)(REnc(f,x ; PRG(s))) + b(CT ⊕ PRG(s′)),

where CT is a ciphertext hardwired in the secret key, and serves as “space” to
hide values in the secret key in the security proof.

A formal description of the LV public key FE scheme CFEN,D,S for NC1

circuits with input-length N = N(λ), depth D = D(λ) = O(log λ), and size
S = S(λ) is in Fig. 2. (The secret-key case has almost identical construction.)
The scheme uses the following tools:

– Full-Sel-secure (collusion resistant) FE schemes for degree-(3L+2) polynomi-
als in some R, {FEN ′

= (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)}, with linear
efficiency.

– A (n, n1+α)-pseudorandom generator PRG with locality L, for a sufficiently
large polynomial input length n = n(λ) and any positive constant α.

– The AIK randomized encoding scheme in NC0 [11]; denote the encoding algo-
rithm as AIK(f,x ; r).
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We refer the reader to [56] for the correctness and security of the scheme.
The compactness of the scheme CFE follows from the following two facts:

1. The length of the input (x, s, s′, 0) encrypted using FE is N + 2Γ + 1 =
N + S(λ)1/(1+α)poly(λ).

2. FE has linear efficiency.

Putting them together, we have,

TimeCFE.Enc(MPK,x) = TimeFE.Enc(MPK, (x, s, s′, 0))

= poly(λ)|(x, s, s′, 0)| = S(λ)1/(1+α)poly(λ,N)

which is sublinear in the function size as desired. Furthermore, to see why degree-
(3L + 2) FE suffices for the construction, note that the construction uses the
underlying FE to generate keys computing the function g in Fig. 2, and hence
it suffices to argue that g can be computed in degree 3L + 2. By definition of
g, when b = 1, the output can be computed in degree L as the PRG can be
computed in degree L in R (XOR with CT does not incur additional degree
as CT are constants hardwired in the function g); when b = 0, the output can
be computed in degree 3L + 1, since the AIK randomized encoding has degree
3 in the random bits (i.e. PRG output) and 1 in the input x. Therefore, g has
exactly degree 3L + 2, as selection by b can be done with one multiplication.

The Idea of Preprocessing in [53]. Towards reducing the degree of the under-
lying FE and accommodating PRGs with block-wise locality-(L, log λ), the idea
is letting the encryptor pre-process the input (x, s, s′, b) to produce certain inter-
mediate values, from which the output of function g can be computed in exactly
degree L. To see this, the output of g is viewed as corresponding to S AIK ran-
domized encodings for functions {hi}i∈[S]. If the lth output bit belongs to the ith

randomized encoding for hi with random tape r[i], the function gl computing it
can be written as a sum of monomials as follows:

gl(x, s, s′, b) = (1 − b)gl0(x, s) + bgl1(s′)

= (1 − b)
∑

i0,i1,i2,i3

ci0,i1,i2,i3xi0r[i]i1r[i]i2r[i]i3 + b
∑

j

cjr′
j (1)

where r[i] is the ith portion in r = PRG(s), and r′ = PRG(s′). This is because
in the case of b = 0, the output is a bit in the AIK encoding of hi and hence
has degree 1 in the input x and degree 3 in r[i], while in the case of b = 1, the
output has degree 1 in r′.

When PRG has locality L, the straightforward way of computing a degree-3
monomial r[i]i1r[i]i2r[i]i3 from the seed s requires degree 3L. The works of [4,53]
showed how to reduce the degree to just L. First, they use a different way to
compute each r[i]. View the seed s as a Q×Γ ′ matrix with Q = Q(λ) = poly(λ)
rows and Γ ′ = S1/1+α columns; apply PRG on each row of s to expand the seed
matrix into a Q × S matrix r of pseudo-random bits. That is, denote the qth
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Single-key Compact FE Scheme CFE by [56]

Setup: CFE.Setup(1λ) samples (MPK,MSK)
$← FE.Setup(1λ).

Encryption: CFE.Enc(MPK,x) samples s, s′ $← {0, 1}Γ for Γ = S1/1+α poly(λ),
and generates

CT
$← FE.Enc(MPK, (x, s, s′, 0))

Key Generation: CFE.KeyGen(MSK, h) does the following:

– Sample CT
$← {0, 1}�, where � is set below.

– Define function g as follows: On input x of length N , two PRG seeds s, s′ each
of length Γ , and a bit b,

g(x, s, s′, b) does the following:
• For every i ∈ [S], let hi(x) denote the function that computes the ith

output bit of h(x). Since h ∈ NC1
D, hi has depth D(λ) = O(log λ) and size

2D(λ) = poly(λ).

• If b = 0, compute r = PRG(s), whose output has length Γ 1+α = S poly(λ);
divide the output into S equally long portions and denote by r[i] the ith

portion.
For every i ∈ [S], compute the AIK encoding Π[i] of computation (hi,x)
as follows:

∀ i ∈ [S], Π[i] = AIK(hi, x ; r[i]) .

Output Π = {Π[i]}i; set � = |Π|.
• If b = 1, output Π = CT ⊕ PRG(s′).

– For every l ∈ [�], generate a secret key SKl
$← FE.KeyGen(MSK, gl) for gl that

computes the lth output bit of g.

Output SK = {SKl}l∈[�].

Decryption: CFE.Dec(SK,CT) computes Π = {FE.Dec(SKl,CT)}l∈[�], parses
Π = {Π[i]}, and decodes every Π[i] using the AIK decoding algorithm to ob-
tain the output h(x).

Fig. 2. Single-key compact FE CFE by [56]

row of s and r as sq and rq; rq = PRG(sq). Finally, set the random tape for
computing the ith AIK encoding to be the ith column r[i] of r.

In [53], they used PRGs with locality L. Let PRG[i] denote the function
computing the ith output bit of PRG, and let Nbr(i) = {γ1, · · · , γL} be the
indexes of the L seed bits that the ith output bit depends on. Therefore,

r[i]i1r[i]i2r[i]i3 = PRG[i](si1) PRG[i](si2) PRG[i](si3)

=
∑

Monomials
X,Y,Z in PRG[i]

⎛

⎝
X(si1,γ1 , · · · , si1,γL

)
× Y (si2,γ1 , · · · , si2,γL

)
× Z(si3,γ1 , · · · , si3,γL

)

⎞

⎠ . (2)
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Suppose that one has pre-computed all degree ≤ 3 monomials over bits in each
column s[γ] of s.

Define Mnml≤3(A) := {aiajak | ai, aj , ak ∈ A ∪ {1}}
Given Mnml≤3(s[γ]) for every γ ∈ Nbr(i), one can compute r[i]i1r[i]i2r[i]i3 in
Eq. (2) using just degree L. Similarly, given Mnml≤3(s[γ]) for all γ ∈ [Γ ′], one
can compute any degree 3 monomials over bits in r[i] for any i, sufficient for the
computation of g.

Furthermore, the size of each set Mnml≤3(s[γ]) is bounded by (Q + 1)3 =
poly(λ), and thus the size of their union for all γ is bounded by Γ ′poly(λ) =
S1/1+αpoly(λ)—only a polynomial factor (in λ) larger than the original seed s
itself. Therefore the encryptor can afford to precompute all these monomials and
encrypt them, without compromising the weak-compactness of the resulting FE
for NC1

D scheme.

This Work: Handling Block-Wise Local PRG. Our new observation is that
the above technique naturally extends to accommodate block-wise local PRGs.
Consider a family of (n(λ) × log λ, n(λ)1+α)-PRGs with block-wise locality-
(L, log λ). As before, we think of the seed of such PRGs as a vector t of length
n, where every element ti is a block of log λ bits, and each output bit PRG[i](t)
depends on at most L blocks.

Correspondingly, think of the seed matrix s described above as consisting of
Q × Γ ′ blocks of log λ bits. When r[i] is computed using block-wise local PRGs,
the degree-3 monomial r[i]i1r[i]i2r[i]i3 in Eq. (2) now depends on a set of blocks
{sit,γs

}t∈[3],s∈[L]. Though the actual locality of the PRG is L log λ, due to its
special structure, we can still pre-process the seed s to enable computing any
degree-3 monomial over r[i] for any i using degree L, in the following two steps.

1. Precompute all multilinear monomials over bits in each block sq,γ in s.

Define Mnml(A) := {ai1ai2 · · · aiq
| q ≤ |A| and ∀j, k aij

�= aik
∈ A}.

More precisely, precompute Mnml(sq,γ) for all q ∈ [Q] and γ ∈ [Γ ′]. Note that
each set Mnml(sq,γ) has exactly size λ.

2. For every column γ ∈ [Γ ′], take the union of monomials over blocks in column
γ, that is, ∪qMnml(sq,γ). Then, precompute all degree-≤ 3 monomials over
this union, that is, Mnml≤3(∪qMnml(sq,γ)), for each γ. Observe that from
{Mnml≤3(∪qMnml(sq,γ))}γ∈[Γ ′], one can again compute any degree-3 mono-
mial in r[i] for any i in just degree L.

Furthermore, since |Mnml(sq,γ)| = λ for any q, γ, the number of monomials
in Mnml≤3(∪qMnml(sq,γ)) is bounded by (Qλ + 1)3 = poly(λ). Therefore, the
total size of pre-computed monomials is

∣
∣
∣{Mnml≤3(∪qMnml(sq,γ))}γ∈[Γ ′]

∣
∣
∣ ≤ Γ ′poly(λ) = S1/1+αpoly(λ), (3)

which is still sublinear in the circuit size S and does not compromise the weak-
compactness of the resulting FE for NC1

D scheme.
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Putting Things Together. So far, we showed how to “compress” the compu-
tation of degree 3 monomials over r[i], for any i, into a degree-L computation. To
compute function g in Eq. (1) in degree L, we need to additionally pre-compute
multiplications with x and b. As described in [53], this can be done easily by
pre-computing the following:

V1 = {Mnml≤3 (∪qMnml(sq,γ))}γ∈[Γ ′] ⊗ (x||b||1)

(where the sets of monomials are first interpreted as a vector before taking tensor
product). Given the tensor product, one can compute any monomial with degree
≤ 3 in r[i] for any i, degree ≤ 1 in x, and degree ≤ 1 in b, in just degree L, which
is sufficient for computing the first additive term in gl in Eq. (1). Similarly, to
compute the second additive term in gl, it suffices to precompute all multilinear
monomials over every block in s′ (of length Γ ), and compute their tensor product
with b||1, that is,

V2 = {Mnml(s′
γ)}γ∈[Γ ] ⊗ (b||1)

In summary, for every l ∈ [�], there exists a degree-L polynomial Pl that on
input (V1,V2) outputs gl(x, s, s′, b).

Define Pl := the degree-L polynomial s.t. Pl(V1,V2) = gl(x, s, s′, b) (4)

Moreover, we show that both V1 and V2 have length sublinear in the circuit
size. First, combining Eq. (3) with the fact that |(x||b||1)| = N +2, we have that

|V1| ≤ S1/1+αpoly(λ) × (N + 2) = S1/1+αpoly(λ,N). (5)

The size of V2 is

|V2| = λ × Γ × 2 ≤ S1/1+αpoly(λ). (6)

Finally, to construct a 1-key weakly-compact FE scheme for NC1
D from FE for

just degree L polynomials. We modify the LV construction as follows: (1) Instead
of encrypting (x, s, s′, b), the encryptor pre-computes and encrypts V1||V2 as
described above, and (2) instead of generating secret keys for functions {gl}l∈[�]

which have degree 3L+2, generate secret keys for {Pl}l∈[�] which have only degree
L. This way, at decryption time, the decryptor computes the correct output
{Pl(V1||V2) = gl(x, s, s′, b)}. The resulting new compact FE scheme CFE is
described in Fig. 3 (with key difference from the LV scheme highlighted). The
compactness of the new scheme follows directly from the fact that the encrypted
input V1,V2 have length sublinear in S(λ), and that the degree-L FE scheme
has linear efficiency. Moreover, its correctness and security follows from the same
proof as that in [56]; since their security proof incur only a polynomial security
loss, we conclude Proposition 1.
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4 FE from ω(log λ)-Bit-Input IO for P/poly

In this section, we show Theorem 4, i.e., we prove via a new transformation
that adaptively-secure collusion-resistant public-key functional encryption for
P/poly is implied by IO for circuits with short, ω(log λ)-bit, inputs and public
key encryption, both with slightly super-polynomial security. Note that, in con-
trast, previous constructions of collusion-resistant FE for P/poly either rely on
multilinear maps [40], or require IO for all P/poly, including circuits with long
(polynomial) inputs [39].

Our proof generically transforms any 1-key (public key) FE scheme for any
circuit class C into a collusion-resistant (public key) FE scheme for the same
circuit class, using IO for circuits with ω(log λ)-bit inputs. The encryption time
of the resulting FE schemes is polynomial in the encryption time of the original
schemes, and hence if the original scheme is (non-)compact, so is the resulting FE
scheme. The transformation also preserves the same type of security—namely
Full-Sel- or Adap-security—and incurs a 2ω(log λ) security loss.

More precisely, we prove the following below in Sect. 4.1.

Proposition 2. Let C be any circuit class, τ be any polynomial, and i� be any
polynomial such that i�(λ) = ω(log λ) ≤ λ. Assume the existence of an i�(λ)-bit-
input indistinguishability obfuscator iO for P/poly. Then, any 1-key public-key
FE schemes OFE for C can be generically transformed into collusion-resistant
FE schemes CRFE for C, with the following properties:

– The encryption time of CRFE is polynomial in the encryption time of OFE.
– If iO is 2−(i�(λ)+τ(λ))negl(λ)-secure and OFE is 2−(i�(λ)+τ(λ))negl(λ)-(Adap

or Full-Sel)-secure, then CRFE is 2−τ(λ)negl(λ)-(Adap or Full-Sel)-secure.

It is known that adaptively-secure 1-key non-compact public-key FE for
P/poly can be constructed from just public key encryption [48].

Theorem 7 (1-Key Adap-Secure Public-Key FE for P/poly [48]). Let μ be
any function from N to [0, 1]. Assuming public key encryption with μ(λ)negl(λ)-
security, there exist μ(λ)negl(λ)-Adap-secure 1-key non-compact public-key FE
schemes for P/poly.

Now, applying the transformation of Proposition 2 to the μnegl-Adap-secure
1-key FE schemes for P/poly with μ = 2−(i�+τ), yields 2−τnegl-Adap-secure
collusion-resistant (non-compact public-key) FE for P/poly. Finally, note that
it follows from [3] that collusion-resistant non-compact FE schemes implies
collusion-resistant compact FE schemes with the same level of security, which
yields Theorem 4.

4.1 From 1-Key to Collusion-Resistant FE, Generically

In this section, we prove Proposition 2. Let us fix any circuit class C, and any i�
such that i�(λ) = ω(log λ) ≤ λ. The resulting collusion-resistant FE scheme for
C, denoted CRFE = (CRFE.Setup,CRFE.KeyGen,CRFE.Enc,CRFE.Dec), relies
on the following building blocks:
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Our Single-key Compact FE Scheme CFE

Setup: CFE.Setup(1λ) samples (MPK,MSK)
$← FE.Setup(1λ), and PRG

$← PRGλ.

Encryption: CFE.Enc(MPK,x) samples

– a PRG seed s viewed as a Q × Γ ′ matrix for Q = poly(λ) and Γ ′ = S1/1+α,
where each element sq,γ in s is a block of log λ bits, and

– another PRG seed s′ viewed as a vector of length Γ = S1/1+α poly(λ), where
again each element s′

γ in s′ is a block of log λ bits.

Pre-Compute the following for b = 0:

V1 =
{
Mnml≤3 (∪qMnml(sq,γ))

}
γ∈[Γ ′]

⊗ (x||b||1) (7)

V2 =
{
Mnml(s′

γ)
}

γ∈[Γ ]
⊗ (b||1) (8)

Finally generate:

CT
$← FE.Enc(MPK, (V1,V2))

Key Generation: CFE.KeyGen(MSK, h) does the following:

– Sample CT
$← {0, 1}�, where � is set below.

– Define function g as follows: On input x of length N , PRG seeds s and s′ of
dimensions described above, and a bit b.

g(x, s, s′, b) does the following:
• For every i ∈ [S], let hi(x) denote the function that computes the ith

output bit of h(x). Since h ∈ NC1
D, hi has depth D(λ) = O(log λ) and size

2D(λ) = poly(λ).

• If b = 0, do:
Expand each row of s using PRG to obtain a Q × S matrix r of pseudo-
random bits. That is, let si denote the ith row of s; the ith row ri of r
is PRG(si). Denote by r[i] the ith column of matrix r, which has length
Q = poly(λ).
For every i ∈ [S], compute the AIK encoding Π[i] of computation (hi,x)
as follows:

∀ i ∈ [S], Π[i] = AIK(hi, x ; r[i]) .

Output Π = {Π[i]}i; set � = |Π|.
• If b = 1, output Π = CT ⊕ PRG(s′).

– For every l ∈ [�], let Pl be the degree-L polynomial that on input (V1,V2) in
Equations (7) and (8) computes the lth output bit of g(x, s, s′, b).

For every l, generate a secret key SKl
$← FE.KeyGen(MSK, Pl) for Pl.

Output SK = {SKl}l∈[�].

Decryption: CFE.Dec(SK,CT) computes Π = {FE.Dec(SKl,CT)}l∈[�], parses
Π = {Π[i]}, and decodes every Π[i] using the AIK decoding algorithm to ob-
tain the output h(x).

Fig. 3. Single-key compact FE CFE from block-wise locality-L PRG and degree-L FE



654 H. Lin and S. Tessaro

– An i�-bit-input indistinguishability obfuscator iO for P/poly.
– A 1-key FE scheme OFE = (OFE.Setup,OFE.KeyGen,OFE.Enc,OFE.Dec)

for C.
– A puncturable PRF scheme PPRF = (PRF.Gen,PRF.Punc,F).

Given the above building blocks, to construct collusion resistant FE CRFE for
C, we start with the following intuition. If efficiency were not a problem, we could
trivially construct a FE scheme that support releasing any polynomial number
of secret keys, essentially by using a super-polynomial number of instances of
OFE. Concretely, we would proceed as follows:

– Setup: Generate a super-polynomial number, M = 2i�(λ) = 2ω(λ), of OFE

instances with master keys {(OMPKi,OMSKi)
$← OFE.Setup(1λ)}i∈[M ].

– Key Generation: To generate a key for a function f , sample an index at

random if
$← [M ] and generate a secret key using the ithf master secret

key OSKif

$← OFE.KeyGen(OMSKif
, f). Since there are at most a polyno-

mial number of secret keys ever generated, the probability that every OFE
instance is used to generate at most one secret key is overwhelming.

– Encryption: To encrypt any input x, simply encrypt the input x under all

master public keys, {OCTi
$← OFE.Enc(OMPKi, x)}i∈[M ]. Given the set of

ciphertexts, one can compute the output f(x) of any function f for which a
secret key OSKif

has been generated, by decrypting the appropriated cipher-
text OCTif

using the secret key OSKif
.

Of course, the only problem with this FE scheme is that its setup and encryp-
tion algorithms run in super-polynomial time. To address this, we follow the
previously adopted idea (e.g. [17,25]) of using IO to “compress” these super-
polynomially many OFE instances into “polynomial size”. More precisely,
instead of having the setup algorithm publish all M master public keys, let
it generate an obfuscated circuit that on input i ∈ [M ] outputs the ith mas-
ter public key. Similarly, instead of having the encryption algorithm publish M
ciphertexts, let it generate an obfuscated circuit that on input i ∈ [M ] out-
puts the ith ciphertext under the ith master public key. Since the inputs to the
obfuscated circuits are indexes from the range [M ], which could be represented
in i� bits, it suffices to use i�-bit-input IO. Furthermore, for “compression” to
the possible, all M master public and secret keys, as well as all M ciphertexts,
need to be sampled using pseudo-randomness generated by puncturable PRFs.
The resulting obfuscated circuits have polynomial size, since generating indi-
vidual master public keys and ciphertexts using pseudorandomness is efficient,
and hence the new FE scheme becomes efficient. Finally, the security of the new
FE scheme follows from the common “one-input-at-a-time” argument, which
incurs a 2−|i| = 2−i� security loss. We formally describe the collusion-resistant
FE scheme CRFE for C in Fig. 4.

We postpone the analysis of correctness, efficiency, and security of the CRFE
scheme to the full version [55].
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Collusion Resistant FE Scheme CRFE for C

Setup: CRFE.Setup(1λ) does:

– Sample a PPRF key Ks $← PRF.Gen(1λ).
– Obfuscate the program Psetup[0, Ks, ⊥] described in Figure 5

P̂setup
$← iO(1κ, Psetup[0, Ks, ⊥, ⊥]) ,

where the IO scheme is invoked with a security parameter κ = max(λ, |Psetup|).
– Output MPK = P̂setup and MSK = Ks.

Encryption: CRFE.Enc(MPK = P̂setup, x) does the following to encrypt an input
x ∈ {0, 1}N :

– Sample a PPRF key Ke $← PRF.Gen(1λ).
– Obfuscate the program Penc[P̂setup, 0, Ke, x, ⊥, ⊥] described in Figure 6,

CT = P̂enc
$← iO(1κ′

, Penc[P̂setup, 0, Ke, x, ⊥, ⊥, ⊥]) ,

where the IO scheme is invoked with a security parameter κ′ = max(λ, |Penc|).
– Output the obfuscated circuit as the ciphertext CT = P̂enc.

Key Generation: CRFE.KeyGen(MSK = Ks, f) a key for function f ∈ C as fol-
lows:

– Sample at random an index if
$← [M ].

– Generate a secret key of f under the ithf master secret key,

(OMPKif ,OMSKif ) = OFE.Setup(1λ ; F(Ks, if )) ,

OSKif

$← OFE.KeyGen(OMSKif , f) .

– Output SK = (if ,OSKif ).

Decryption: CRFE.Dec(SK = (if ,OSKif ),CT = P̂enc) does:

– Compute the ciphertext of x under the ithf master public key,

OCTif = P̂enc(if ) .

– Decrypt the obtained ciphertext using OSKif ,

y = OFE.Dec(OSKif ,OCTif ) .

– Output y.

Fig. 4. Collusion resistant FE scheme CRFE for C from i�(λ) = ω(λ)-bit-input IO
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Circuit Psetup[i
∗, Ks,OMPK∗]

Constants: i∗ ∈ {0, · · · , M + 1} is an index, for M = 2i�(λ) and i� = ω(log λ),
Ks is a PPRF key, and OMPK∗ is a master public key of the OFE scheme.

Input: Index i ∈ [M ].
Procedure:

1. If i 
= i∗, compute (OMPKi,OMSKi) = OFE.Setup(1λ ; F(Ks, i)).
2. If i = i∗, output OMPKi∗ = OMPK∗.

Output OMPKi.

Fig. 5. Circuit Psetup in the construction and analysis of CRFE

Circuit Penc[P̂setup, i∗, Ke, x0, x1,OCT∗]

Constants: P̂setup is an obfuscated program, i∗ ∈ {0, · · · , M + 1} is an index, for
M = 2i�(λ) and i� = ω(log λ), Ks is a PPRF key, x0, x1 ∈ {0, 1}N are two
inputs, and OCT∗ is a ciphertext of OFE.

Input: Index i ∈ [M ].
Procedure:

1. If i < i∗,
compute OMPKi = P̂setup(i) and OCTi = OFE.Enc(OMPKi, x1; F(Ke, i)).

2. If i = i∗, output OCTi∗ = OCT∗.
3. If i > i∗,

compute OMPKi = P̂setup(i) and OCTi = OFE.Enc(OMPKi, x0; F(Ke, i)).
Output OCTi.

Fig. 6. Circuit Penc in the construction and analysis of CRFE
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Abstract. Indistinguishability obfuscation (IO) enables many hereto-
fore out-of-reach applications in cryptography. However, currently all
known constructions of IO are based on multilinear maps which
are poorly understood. Hence, tremendous research effort has been
put towards basing obfuscation on better-understood computational
assumptions. Recently, another path to IO has emerged through func-
tional encryption [Anath and Jain, CRYPTO 2015; Bitansky and
Vaikuntanathan, FOCS 2015] but such FE schemes currently are still
based on multi-linear maps. In this work, we study whether IO could be
based on other powerful encryption primitives.
Separations for IO. We show that (assuming that the polynomial hier-
archy does not collapse and one-way functions exist) IO cannot be con-
structed in a black-box manner from powerful all-or-nothing encryption
primitives, such as witness encryption (WE), predicate encryption, and
fully homomorphic encryption. What unifies these primitives is that they
are of the “all-or-nothing” form, meaning either someone has the “right
key” in which case they can decrypt the message fully, or they are not
supposed to learn anything.
Stronger Model for Separations. One might argue that fully black-
box uses of the considered encryption primitives limit their power too
much because these primitives can easily lead to non-black-box construc-
tions if the primitive is used in a self-feeding fashion—namely, code of
the subroutines of the considered primitive could easily be fed as input to
the subroutines of the primitive itself. In fact, several important results
(e.g., the construction of IO from functional encryption) follow this very
recipe. In light of this, we prove our impossibility results with respect
to a stronger model than the fully black-box framework of Impagliazzo
and Rudich (STOC’89) and Reingold, Trevisan, and Vadhan (TCC’04)
where the non-black-box technique of self-feeding is actually allowed.
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1 Introduction

Program obfuscation provides an extremely powerful tool to make computer
programs “unintelligible” while preserving their functionality. Barak et al. [11]
formulated this notion in various forms and proved that their strongest for-
mulation, called virtual black-box (VBB) obfuscation, is impossible for general
polynomial size circuits. However, a recent result of Garg et al. [31] presented a
candidate construction for a weaker notion of obfuscation, called indistinguisha-
bility obfuscation (IO). Subsequent work showed that IO, together with one-way
functions, enables numerous cryptographic applications making IO a “crypto-
graphic hub” [63].

Since the original work of [31] many constructions of IO were proposed [3,
5,8,10,18,31,32,53,65]. However, all these constructions are based on computa-
tional hardness assumptions on multilinear maps [27,30,37]. Going a step fur-
ther, recent works of Lin [48] and Lin and Vaikunthanatan [49] showed how
to weaken the required degree of the employed multilinear maps schemes to
be a constant. Another line of work showed how to base IO on compact func-
tional encryption [1,13]. However, the current constructions of compact func-
tional encryption are in turn based on IO (or, multilinear maps). In summary,
all currently known paths to obfuscation start from multilinear maps, which are
poorly understood. In particular, many attacks on the known candidate multi-
linear map constructions have been shown [23,25,26,30,46,54].

In light of this, it is paramount that we base IO on well-studied computa-
tional assumptions. One of the assumptions that has been used in a successful
way for realizing sophisticated cryptographic primitives is the Learning with
Errors (LWE) assumption [61]. LWE is already known to imply attribute-based
encryption [42] (or even predicate encryption [43]), fully homomorphic encryp-
tion [19,20,36,38]1, multi-key [17,24,55,60] and spooky homomorphic encryp-
tion [29]. One thing that all these primitives share is that they are of an “all-
or-nothing” nature. Namely, either someone has the “right” key, in which case
they can decrypt the message fully, or if they do not posses a right key, then
they are not supposed to learn anything about the plaintext.2 In this work, our
main question is:

Main Question: Can IO be based on any powerful ‘all-or-nothing’ encryp-
tion primitive such as predicate encryption or fully homomorphic encryp-
tion?

We show that the answer to the above question is essentially “no.” However,
before stating our results in detail, we stress that we need to be very care-
ful in evaluating impossibility results that relate to such powerful encryption
primitives and the framework they are proved in. For example, such a result
1 Realizing full-fledged fully-homomorphic encryption needs additional circular secu-

rity assumptions.
2 This is in contrast with functional encryption where different keys might leak dif-

ferent information about the plaintext.
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if proved in the fully black-box framework of [47,62] has limited value as we
argue below.3 Note that the black-box framework restricts to constructions that
use the primitive and the adversary (in the security reduction) as a black-box.
The reason for being cautious about this framework is that the constructions
of powerful encryption primitive offer for a very natural non-black-box use. In
fact, the construction of IO from compact functional encryption [1,2,13] is non-
black-box in its use of functional encryption. This is not a coincidence (or, just
one example) and many applications of functional encryption (as well as other
powerful encryption schemes) and IO are non-black-box [14,33,34,36,63]. Note
that the difference between these powerful primitives and the likes of one-way
functions, hash functions, etc., is that these powerful primitives include subrou-
tines that take arbitrary circuits as inputs. Therefore, it is very easy to self-feed
the primitive. In other words, it is easy to plant gates of its own subroutines
(or, subroutines of other cryptographic primitives) inside such a circuit that is
then fed to it as input. For example, the construction of IO from FE plants FE’s
encryption subroutine as a gate inside the circuit for which it issues decryption
keys. This makes FE a “special” primitive in that at least one of its subroutines
takes an arbitrary circuit as input and we could plant code of its subroutines in
this circuit. Consequently, the obtained construction would be non-black-box in
the underlying primitive. This special aspect is present in all of the primitives
that we study in this work. For example, one of the subroutines of predicate
encryption takes a circuit as input and this input circuit is used to test whether
the plaintext is revealed during the decryption or not. Along similar lines, eval-
uation subroutine of an FHE scheme is allowed to take as input a circuit that is
executed on an encrypted message.

The above “special” aspects of the encryption functionalities (i.e. that they
take as input general circuits or Turing machines and execute them) is the
main reason that many of the applications of these primitives are non-black-box
constructions. Therefore, any effort to prove a meaningful impossibility result,
should aim for proving the result with respect to a more general framework than
that of [47,62]. In particular, this more general framework should incorporate
the aforementioned non-black-box techniques as part of the framework itself.

The previous works of Brakerski et al. [16] and the more recent works of
Asharov and Segev [6,7] are very relevant to our studies here. All of these works
also deal with proving limitations for primitives that in this work we call special
(i.e. those that take general circuits as input), and prove impossibility results
against constructions that use these special primitives while allowing some form
of oracle gates to be present in the input circuits. A crucial point, however,
is that these works still put some limitation on what oracle gates are allowed,
and some of the subroutines are excluded. The work of [16] proved that the
primitive of Witness Indistinguishable (WI) proofs for NPO statements where
O is a random oracle does not imply key-agreement protocols in a black-box way.
However, the WI subroutines themselves are not allowed inside input circuits.

3 Such results could still have some value for demonstrating efficiency limitations but
not for showing infeasibility, as is the goal of this work.



664 S. Garg et al.

The more recent works of [6,7] showed that by using IO over circuits that are
allowed to have one-way functions gates one cannot obtain collision resistant
hash functions or (certain classes of) one-way permutations families (in a black-
box way). However, not all of the subroutines of the primitive itself are allowed
to be planted as gates inside the input circuits (e.g., the evaluation procedure of
the IO).

In this work, we revisit the models used in [6,7,16] who allowed the use
of one-way function gates inside the given circuits and study a model where
there is no limitation on what type of oracle gates could be used in the circuits
given as input to the special subroutines, and in particular, the primitive’s own
subroutines could be planted as gates in the input circuits. We believe a model
that captures the “gate plantation” technique without putting any limitation on
the types of gates used is worth to be studied directly and at an abstract level,
due to actual positive results that exactly benefit from this “self-feeding” non-
black-box technique. For this goal, here we initiate a formal study of a model
that we call extended black-box, which captures the above-described non-black-
box technique that is commonplace in constructions that use primitives with
subroutines that take arbitrary circuits as input.

More formally, suppose P is a primitive that is special as described above,
namely, at least one of its subroutines might receive a circuit or a Turing machine
C as input and executes C internally in order to obtain the answer to one of
its subroutines. Examples of P are predicate encryption, fully homomorphic
encryption, etc. An extended black-box construction of another primitive Q (e.g.,
IO) from P will be allowed to plant the subroutines of P inside the circuit C as
gates with no further limitations. To be precise, C will be allowed to have oracle
gates that call P itself. Some of major examples of non-black-box constructions
that fall into this extended model are as follows.

– Gentry’s bootstrapping construction [35] plants FHE’s own decryption gates
inside a circuit that is given as input to the evaluation subroutine. This trick
falls into the extended black-box framework since planting gates inside eval-
uation circuits is allowed.

– The bootstrapping of IO for NC1 (along with FHE) to obtain IO for P/poly
[31]. This construction uses P that includes both IO for NC1 and FHE, and
it plants the FHE decryption gates inside the NC1 circuit that is obfuscated
using IO for NC1. Analogously, bootstrapping methods using one-way func-
tions [4,22] also fall in our framework.

– The construction of IO from functional encryption [1,2,13] plants the func-
tional encryption scheme’s encryption subroutine inside the circuits for which
decryption keys are issued. Again, such a non-black-box technique does fall
into our extended black-box framework. We note that the constructions of
obfuscation based on constant degree graded encodings [48] also fit in our
framework.
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The above examples show the power of the “fully” extended black-box model in
capturing one of the most commonly used non-black-box techniques in cryptog-
raphy and especially in the context of powerful encryption primitives.

What is not captured by extended black-box model? It is instructive to
understand the kinds of non-black-box techniques not captured by our extension
to the black-box model. This model does not capture non-black-box techniques
that break the computation of a primitives sub-routines into smaller parts—
namely, we do not include techniques that involve partial computation of a sub-
routine, save the intermediate state and complete the computation later. In other
words, the planted sub-routines gates must be executed in one-shot. Therefore,
in our model given just an oracle that implements a one-way function it is not
possible to obtain garbled circuits that evaluate circuits with one-way function
gates planted in them. For example, Beaver’s OT extension construction cannot
be realized given just oracle access to a random function.

However, a slight workaround (though a bit cumbersome) can still be used to
give meaningful impossibility results that use garbled circuits (or, randomized
encodings more generally) in our model. Specifically, garbled circuits must now
be modeled as a special primitive that allows for inputs that can be arbitrary
circuits with OWF gates planted in them. With this change the one-way func-
tion gate planted inside circuit fed to the garbled circuit construction is treated
as a individual unit. With this change we can realize Beaver’s OT extension
construction in our model.

In summary, intuitively, our model provides a way to capture “black-box”
uses of the known non-black-box techniques. While the full power of non-black-
box techniques in cryptography is yet to be understood, virtually every known
use of non-black-box techniques follows essentially the same principles, i.e. by
plating subroutines of one primitive as gates in a circuit that is fed as input to
the same (or, another) primitive. Our model captures any such non-black box
use of the considered primitives.

Our Results. The main result of this paper is that several powerful encryption
primitives such as predicate encryption and fully-homomorphic encryption are
incapable of producing IO via an extended black-box construction as described
above. A summery of our results is presented in Fig. 1. More specifically, we
prove the following theorem.

Theorem 1 (Main Result). Let P be one of the following primitives:
fully-homomorphic encryption, attribute-based encryption, predicate encryption,
multi-key fully homomorphic encryption, or spooky encryption. Then, assum-
ing one-way functions exist and NP �⊆ coAM, there is no construction of IO
from P in the extended black-box model where one is allowed to plant P gates
arbitrarily inside the circuits that are given to P as input.
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WE

HWE

IHWE �=⇒
�=⇒IO

=
⇒

PE

=⇒ =⇒

Spooky Encryption Attribute-Based FHE=⇒ = ⇒

Multi-Key FHE =⇒ FHE

Fig. 1: Summary of our separation results. IHWE
denotes instance hiding WE and HWE denotes homo-
morphic witness encryption.

All-or-Nothing Aspect.
One common aspect of
all of the primitives
listed in Theorem 1 is
that they have an all-or-
nothing nature. Namely,
either someone has the
right key to decrypt
a message, in which
case they can retrieve
all of the message, or
if they do not have
the right key then they
are supposed to learn
nothing. In contrast, in
a functional encryption
scheme (a primitive that
does imply IO) one can
obtain a key kf for a
function f that allows
them to compute f(x)
from a ciphertext c containing the plaintext x. So, they could legitimately learn
only a “partial” information about x. Even though we do not yet have a general
result that handles such primitives uniformly in one shot, we still expect that
other exotic encryption primitives (that may be developed in the future) that are
of the all-or-nothing flavor will also not be enough for realizing IO. Additionally,
we expect that our techniques will be useful in deriving impossibility results in
such case.

What Does Our Results Say About LWE? Even though our separations
of Theorem 1 covers most of the powerful LWE-based primitives known to date,
it does not imply whether or not we can actually base IO on LWE. In fact, our
result only rules out specific paths from LWE toward IO that would go through
either of the primitives listed in Theorem 1. Whether or not a direct construction
from LWE to IO is possible still remains as a major open problem in this area.

Key Role of Witness Encryption. Witness encryption and its variations play
a key role in the proof or our impossibility results. Specifically, we consider two
(incompatible) variants of WE—namely, instance hiding witness encryption and
homomorphic witness encryption. The first notion boosts the security of WE and
hides the statement while the second enhances the functionality of WE with some
homomorphic properties. We obtain our separation results in two steps. First, we
show that neither of these two primitives extended black-box imply IO. Next, we
show that these two primitives extended black-box imply extended versions of all
the all-or-nothing primitives listed above. The final separations follow from a spe-
cific transitivity lemma that holds in the extended black-box model.
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Further Related Work. Now we describe previous work on the complexity
of assumptions behind IO and previous works on generalizing the black-box
framework of [47,62].

Previous Lower Bounds on Complexity of IO. The work of Mahmoody
et al. [52] proved lower bounds on the assumptions that are needed for building
IO in a fully black-box way.4 They showed that, assuming NP �= co-NP, one-
way functions or even collision resistant hash functions do not imply IO in a
fully black-box way.5 Relying on the works of [21,50,58] (in the context of VBB
obfuscation in idealized models) Mahmoody et al. [52] also showed that building
IO from trapdoor permutations or even constant degree graded encoding oracles
(constructively) implies that public-key encryption could be based on one-way
functions (in a non-black-box way). Therefore, building IO from those primitives
would be as hard as basing PKE on OWFs, which is a long standing open
question of its own. Relying on the recent beautiful work of Brakerski et al. [15]
that ruled out the existence of statistically secure approximately correct IO and a
variant of Borel-Cantelli lemma, Mahmoody et al. [51] showed how to extend the
‘hardness of constructing IO’ result of [52] into conditional black-box separations.

Other Non-Black-Box Separations. Proving separations for non-black-box
constructions are usually extremely hard. However, there are a few works in this
area that we shall discuss here. The work of Baecher et al. [9] studied various
generalizations of the black-box framework of [62] that also allow some forms of
non-black-box use of primitives. The work of Pass et al. [59] showed that under
(new) believable assumptions one can rule out non-black-box constructions of
certain cryptographic primitives (e.g., one-way permutations, collision-resistant
hash-functions, constant-round statistically hiding commitments) from one-way
functions, as long as the security reductions are black-box. Pass [57] showed that
the security of some well-known cryptographic protocols and assumptions (e.g.,
the Schnorr identification scheme) cannot be based on any falsifiable assump-
tions [56] as long at the security proof is black-box (even if the construction is
non-black-box). The work of Genry and Wichs [39] showed that black-box secu-
rity reductions (together with arbitrary non-black-box constructions) cannot be
used to prove the security of any SNARG construction based on any falsifi-
able cryptographic assumption. Finally, the recent work of Dachman-Soled [28]
showed that certain classes of constructions with some limitations, but with spe-
cific non-black-box power given to them are not capable of reducing public-key
encryption to one way functions.

4 A previous result of Asharov and Segev [6] proved lower bounds on the complexity
of IO with oracle gates, which is a stronger primitive. (In fact, how this primitive
is stronger is tightly related to how we define extensions of primitives. See Sect. 3
where we formalize the notion of such stronger primitives in a general way.).

5 Note that since statistically secure IO exists if P = NP, therefore we need compu-
tational assumptions for proving lower bounds for assumptions implying IO.
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Organization. Due to limited space, in this draft we only prove the separation
of IO from witness encryption (in the extended black-box setting) and refer the
reader to the full version of the paper for other separations. In Sect. 2 we review
the needed preliminaries and also review some of the tools that are developed in
previous work for proving lower bounds on IO. In Sect. 3 we discuss the extended
black-box model and its relation to extended primitives in detail and give a
formal definition of extended black-box constructions from witness encryption.
In Sect. 4 we give a full proof of the extended black-box separation of IO from
(even instance-revealing) witness encryption.

2 Preliminaries

Notation. We use “|” to concatenate strings and we use “,” for attaching strings
in a way that they could be retrieved. Namely, one can uniquely identify x and y
from (x, y). For example (00|11) = (0011), but (0, 011) �= (001, 1). When writing
the probabilities, by putting an algorithm A in the subscript of the probability
(e.g., PrA[·]) we mean the probability is over A’s randomness. We will use n or κ
to denote the security parameter. We call an efficient algorithm V a verifier for an
NP relation R if V(w, a) = 1 iff (w, a) ∈ R. We call LR = LV = {a | ∃w, (a,w) ∈
R} the corresponding NP language. By PPT we mean a probabilistic polynomial
time algorithm. By an oracle PPT/algorithm we mean a PPT that might make
oracle calls.

2.1 Primitives

In this subsection we define the primitives that we deal with in this work and
are defined prior to our work. In the subsequent sections we will define variants
of these primitives.

The definition of IO below has a subroutine for evaluating the obfuscated
code. The reason for defining the evaluation as a subroutine of its own is that
when we want to construct IO in oracle/idealized models, we allow the obfuscated
circuit to call the oracle as well. Having an evaluator subroutine to run the
obfuscated code allows to have such oracle calls in the framework of black-
box constructions of [62] where each primitive Q is simply a class of acceptable
functions that we (hope to) efficiently implement given oracle access to functions
that implement another primitive P (see Definition 7).

Definition 2 (Indistinguishability Obfuscation (IO)). An Indistinguisha-
bility Obfuscation (IO) scheme consists of two subroutines:

– Obfuscator iO is a PPT that takes as inputs a circuit C and a security para-
meter 1κ and outputs a “circuit” B.

– Evaluator Ev takes as input (B, x) and outputs y.

The completeness and soundness conditions assert that:
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– Completeness: For every C, with probability 1 over the randomness of iO, we
get B ← iO(C, 1κ) such that: For all x it holds that Ev(B, x) = C(x).

– Security: for every poly-sized distinguisher D there exists a negligible function
μ(·) such that for every two circuits C0, C1 that are of the same size and
compute the same function, we have:

|Pr
iO

[D(iO(C0, 1κ) = 1] − Pr
iO

[D(iO(C1, 1κ) = 1]| ≤ μ(κ)

Definition 3 (Approximate IO). For function 0 < ε(n) ≤ 1, an ε-
approximate IO scheme is defined similarly to an IO scheme with a relaxed
completeness condition:

– ε-approximate completeness. For every C and n we have:

Pr
x,iO

[B = iO(C, 1κ), Ev(B, x) = C(x)] ≥ 1 − ε(κ)

Definition 4 (Witness Encryption (WE) indexed by verifier V). Let L
be an NP language with a corresponding efficient relation verifier V (that takes
instance x and witness w and either accepts or rejects). A witness encryption
scheme for relation defined by V consists of two PPT algorithms (Enc,DecV)
defined as follows:

– Enc(a,m, 1κ): given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and
security parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

– DecV(w, c): given ciphertext c and “witness” string w, it either outputs a
message m ∈ {0, 1}∗ or ⊥.

We also need the following completeness and security properties:

– Completeness: For any security parameter κ, any (a,w) such that V(a,w) =
1, and any m it holds that

Pr
Enc,DecV

[DecV(w,Enc(a,m, 1κ)) = m] = 1

– Security: For any PPT adversary A, there exists a negligible function μ(.)
such that for all a /∈ LV (i.e., that there is no w for which V(a,w) = 1) and
any m0 �= m1 of the same length |m0| = |m1| the following holds:

|Pr[A(Enc(a,m0, 1κ)) = 1] − Pr[A(Enc(a,m1, 1κ)) = 1]| ≤ μ(κ)

When we talk about the witness encryption as a primitive (not an indexed fam-
ily) we refer to the special case of the ‘complete’ verifier V which is a circuit
evaluation algorithm and V(w, a) = 1 if a(w) = 1 where a is a circuit evaluated
on witness w.

The family version of WE in Definition 4 allows the verifier V to be part
of the definition of the primitive. However, the standard notion of WE uses
the “universal” V which allows us to obtain WE for any other efficient relation
verifier V.

The following variant of witness encryption strengthens the functionality.
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Definition 5 (Instance-revealing Witness Encryption (IRWE)). A wit-
ness encryption scheme is said to be instance-revealing if it satisfies the proper-
ties of Definition 4 and, in addition, includes the following subroutine.

– Instance-Revealing Functionality: Rev(c) given ciphertext c outputs a ∈
{0, 1}s ∪ {⊥}, and for every a,m, κ:

Pr
Enc,Rev

[Rev(Enc(a,m, 1κ)) = a] = 1.

2.2 Black-Box Constructions and Separations

Impagliazzo and Rudich [47] were the first to formally study the power of
“black-box” constructions that relativize to any oracle. Their notion was further
explored in detail by Reingold et al. [62]. The work of Baecher et al. [9] further
studied the black-box framework and studied variants of the definition of black-
box constructions. We first start by recalling the definition of cryptographic
primitives, and then will go over the notion of (fully) black-box constructions.

Definition 6 (Cryptographic Primitives [62]). A primitive P = (F ,R) is
defined as set of functions F and a relation R between functions. A (possibly
inefficient) function F ∈ {0, 1}∗ → {0, 1}∗ is a correct implementation of P if
F ∈ F , and a (possibly inefficient) adversary A breaks an implementation F ∈ F
if (A,F ) ∈ R.

Definition 7 (black-box constructions [62]). A black-box construction of
a primitive Q from a primitive P consists of two PPT algorithms (Q,S):

1. Implementation: For any oracle P that implements P, QP implements Q.
2. Security reduction: for any oracle P implementing P and for any (computa-

tionally unbounded) oracle adversary A breaking the security of QP , it holds
that SP,A breaks the security of P .

Definition 8 (Black-box constructions of IO). A fully-black-box construc-
tion of IO from any primitive P could be defined by combining Definitions 7
and 2.

The Issue of Oracles Gates. Note that in any such construction of Defin-
ition 8 the input circuits to the obfuscation subroutine do not have any oracle
gates in them, while the obfuscation algorithm and the evaluation procedure are
allowed to use the oracle implementing P. In Sect. 3 we will see that one can
also define an extended variant of the IO primitive (as it was done in [6,7]) in
which the input circuits have oracle gates.



Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 671

2.3 Black-Box Separations

In this section we recall lemmas that can be used for proving black-box impos-
sibility results (a.k.a. separations). The arguments described in this section are
borrowed from a collection of recent works [15,21,50–52,58] where a framework
for proving lower bounds for (assumptions behind) IO are laid out. However, the
focus in those works was to prove lower bounds for IO in the (standard) black-box
model rather than the extended model. We will indeed use those tools/lemmas
by relating the extended black-box model to the black-box model.

Idealized Models/Oracles and Probability Measures over Them. An
idealized model I is a randomized oracle that supposedly implements a primitive
(with high probability over the choice of oracle); examples include the random
oracle, random trapdoor permutation oracle, generic group model, graded encod-
ing model, etc. An I ← I can (usually) be represented as a sequence (I1, I2, . . . )
of finite random variables, where In is the description of the prefix of I that
is defined for inputs whose length is parameterized by (a function of) n. The
measure over the actual infinite sample I ← I could be defined through the
given finite distributions Di over Ii.6

Definition 9 (Oracle-fixed constructions in idealized models [52]). We
say a primitive P has an oracle-fixed construction in idealized model I if there
is an oracle-aided algorithm P such that:

– Completeness: P I implements P correctly for every I ← I.
– Black-box security: Let A be an oracle-aided adversary AI where the query

complexity of A is bounded by the specified complexity of the attacks for prim-
itive P. For example if P is polynomially secure (resp., quasi-polynomially
secure), then A only asks a polynomial (resp., quasi-polynomial) number of
queries but is computationally unbounded otherwise. Then, for any such A,
with measure one over the choice of I

$← I, it holds that A does not break
P I .7

Definition 10 (Oracle-mixed constructions in idealized models [52]).
An oracle-mixed construction of a primitive P in idealized model I is defined
similarly to the oracle-fixed definition, but with the difference that the correctness
and soundness conditions of the construction P I hold when the probabilities are
taken over I ← I as well.

Lemma 11 (Composition lemma [52]). Suppose Q is a fully-black-box con-
struction of primitive Q from primitive P, and suppose P is an oracle-fixed
6 Caratheodory’s extension theorem shows that such finite probability distributions

could always be extended consistently to a measure space over the full infinite space
of I ← I. See Theorem 4.6 of [45] for a proof.

7 For breaking a primitive, the adversary needs to ‘win’ with ‘sufficient advantage’
(this depends on what level of security is needed) over an infinite sequence of security
parameters.
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construction for primitive P relative to I (according to Definition 10). Then QP

is an oracle-fixed implementation of Q relative to the same idealized model I.

Definition 12 (Oracle-mixed constructions in idealized models [51]).
We say a primitive P has an oracle-mixed black-box construction in idealized
model I if there is an oracle-aided algorithm P such that:

– Oracle-Mixed Completeness: P I implements P correctly where the prob-
abilities are also over I ← I.8 For the important case of perfect completeness,
this definition is the same as oracle-fixed completeness.

– Oracle-mixed black-box security: Let A be an oracle-aided algorithm in
idealized model I whose query complexity is bounded by the specified com-
plexity of the attacks defined for primitive P. We say that the oracle-mixed
black-box security holds for P I if for any such A there is a negligible μ(n)
such that the advantage of A breaking P I over the security parameter n is at
most μ(n) where this bound is also over the randomness of I.

Using a variant of the Borel-Cantelli lemma, [51] proved that oracle-mixed
attacks with constant advantage leads to breaking oracle-fixed constructions.

Lemma 13 [51]. If there is an algorithm A that oracle-mixed breaks a construc-
tion P I of P in idealized model I with advantage ε(n) ≥ Ω(1) for an infinite
sequence of security parameters, then the same attacker A oracle-fixed breaks the
same construction P I over a (perhaps more sparse but still) infinite sequence of
security parameters.

The following lemmas follows as a direct corollary to Lemmas 11 and 13.

Lemma 14 (Separation Using Idealized Models). Suppose I is an ideal-
ized model, and the following conditions are satisfied:

– Proving oracle-fixed security of P. There is an oracle fixed black-box
construction of P relative to I.

– Breaking oracle-mixed security of Q with Ω(1) advantage. For any
construction QP of Q relative to I there is a computationally-unbounded
query-efficient attacker A (whose query complexity is bounded by the level
of security demanded by P) such that for an infinite sequence of security
parameters n1 < n2 < . . . the advantage of A in oracle-mixed breaking P I is
at least ε(ni) ≥ Ω(1).

Then there is no fully black-box construction for Q from P.

8 For example, an oracle-mixed construction of an ε-approximate IO only requires
approximate correctness while the probability of approximate correctness is com-
puted also over the probability of the input as well as the oracle.
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2.4 Tools for Getting Black-Box Lower Bounds for IO

The specific techniques for proving separations for IO that is developed in [15,
21,51,52] aims at employing Lemma 14 by “compiling” out an idealized oracle
I from an IO construction. Since we know that statistically secure IO does not
exist in the plain model [41] this indicates that perhaps we can compose the
two steps and get a query-efficient attacker against IO in the idealized model
I. The more accurate line of argument is more subtle and needs to work with
approximately correct IO and uses a recent result of Brakerski et al. [15] who
ruled out the existence of statistically secure approximate IO.

To formalize the notion of “compiling out” an oracle in more than one step we
need to formalize the intuitive notion of sub oracles in the idealized/randomized
context.

Definition 15 (Sub-models). We call the idealized model/oracle O a sub-
model of the idealized oracle I with subroutines (I1, . . . , Ik), denoted by O  I,
if there is a (possibly empty) S ⊆ {1, . . . , k} such that the idealized oracle O is
sampled as follows:

– First sample I ← I where the subroutines are I = (I1, . . . , Ik).
– Then provide access to subroutine Ii if and only if i ∈ S (and hide the rest of

the subroutines from being called).

If S = ∅ then the oracle O will be empty and we will be back to the plain model.

Definition 16 (Simulatable Compiling Out Procedures for IO). Sup-
pose O � I. We say that there is a simulatable compiler from IO in idealized
model I into idealized model O with correctness error ε if the following holds.
For every implementation PI = (iOP , EvP) of δ-approximate IO in idealized
model I there is a implementation PO = (iOO, EvO) of (δ + ε)-approximate
IO in idealized model O such that the only security requirement for these two
implementations is that they are related as follows:
Simulation: There is an efficient PPT simulator S and a negligible function
μ(·) such that for any C:

Δ(S(iOI(C, 1κ)), iOO(C, 1κ)) ≤ μ(κ)

where Δ(., .) denotes the statistical distance between random variables.

It is easy to see that the existence of the simulator according to Definition 16
implies that PO in idealized model O is “as secure as” PI in the idealized model
I. Namely, any oracle-mixed attacker against the implementation PO in model
O with advantage δ (over an infinite sequence of security parameters) could
be turned in to an attacker against PI in model I that breaks against PI with
advantage δ−negl(κ) over an infinite sequence of security parameters. Therefore
one can compose the compiling out procedures for a constant number of steps
(but not more, because there is a polynomial blow up in the parameters in each
step).
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By composing a constant number of compilers and relying on the recent result
of Brakerski et al. [15] one can get a general method of breaking IO in idealized
models. We first state the result of [15].

Theorem 17 [15]. Suppose one-way functions exist, NP �⊆ coAM, and
δ, ε : N �→ [0, 1] are such that 2ε(n) + 3δ(n) < 1 − 1/poly(n), then there is
no (ε, δ)-approximate statistically-secure IO for all poly-size circuits.

The above theorem implies that if we get any implementation for IO in the
plain model that is 1/100-approximately correct, then there is a computationally
unbounded adversary that breaks the statistical security of IO with advantage at
least 1/100 over an infinite sequence of security parameters. Using this result, the
following lemma shows a way to obtain attacks against IO in idealized models.

Lemma 18 (Attacking IO Using Nested Oracle Compilers). Suppose
∅ = I0  I1 · · ·  Ik = I for constant k = O(1) are a sequence of idealized
models. Suppose for every i ∈ [k] there is a simulatable compiler for IO in model
Ii into model Ii−1 with correctness error εi < 1/(100k). Then, assuming one-
way functions exist, NP �⊆ coAM, any implementation P of IO in the idealized
model I could be oracle-mixed broken by a polynomial-query adversary A with a
constant advantage δ > 1/100 for an infinite sequence of security parameters.

Proof. Starting with our initial ideal-model construction PI = PIk
, we itera-

tively apply the simulatable compiler to get PIi−1 from PIi
for i = {k, ..., 1}.

Note that the final correctness error that we get is εI0 < k/(100k) < 1/100,
and thus by Theorem17 there exists a computationally unbounded attacker AI0

against PI0 with constant advantage δ. Now, let Si be the PPT simulator whose
existence is guaranteed by Definition 16 for the compiler that transforms PIi

into
PIi−1 . We inductively construct an adversary AIi

against PIi
from an adver-

sary AIi−1 for PIi−1 starting with AI0 . The construction of AIi
simply takes

its input obfuscation in the Ii ideal-model iOIi , runs Si(iOIi) and feeds the
result to AIi−1 to get its output. Note that, after constant number k, we still
get δ′ < δ − k negl(κ) a constant advantage over infinite sequence of security
parameters against PIk

.

Finally, by putting Lemmas 18 and 14 together we get a lemma for proving
black-box lower bounds for IO.

Lemma 19 (Lower Bounds for IO using Oracle Compilers). Suppose
∅ = I0  I1 · · ·  Ik = I for constant k = O(1) are a sequence of idealized
models. Suppose for every i ∈ [k] there is a simulatable compiler for IO in model
Ii into model Ii−1 with correctness error εi < 1/(100k). If primitive P can be
oracle-fixed constructed in the idealized model I, then there is no fully black-box
construction of IO from P.

We will indeed use Lemma 19 to derive lower bounds for IO even in the
extended black-box model by relating such constructions to fully black-box
constructions.
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3 An Abstract Extension of the Black-Box Model

In what follows, we will gradually develop an extended framework of construc-
tions that includes the fully black-box framework of [62] and allows certain non-
black-box techniques by default. This model uses steps already taken in works of
Brakerski et al. [16] and the more recent works of Asharov and Segev [6,7] and
takes them to the next level by allowing even non-black-box techniques involving
‘self-calls’ [1,2,13]. In a nutshell, this framework applies to ‘special’ primitives
that accept generic circuits as input and run them on other inputs; therefore
one can plant oracle gates to the same primitives inside those circuits. We will
define such constructions using the fully black-box framework by first extending
these primitives and then allowing the extensions to be used in a black-box way.

We will first give an informal discussion by going over examples of primitives
that could be used in an extended black-box way. We then discuss an abstract
model that allows formal definitions. We will finally give concrete and formal
definitions for the case of witness encryption which is the only primitive that we
will formally separate from IO in this draft. For the rest of the separations see
the full version of the paper.

Special Primitives Receiving Circuits as Input. At a very high level, we
call a primitive ‘special’, if it takes circuits as input and run those circuits as part
of the execution of its subroutines, but at the same time, the exact definition
depends on the execution of the input circuit only as a ‘black-box’ while the exact
representation of the input circuits do not matter. In that case one can imagine
an input circuit with oracle gates as well. We will simply call such primitives
special till we give formal definitions that define those primitives as ‘families’ of
primitives indexed by an external universal algorithm.

Here is a list of examples of special primitives.

– Zero-knowledge proofs of circuit satisfiability (ZK-Cir-SAT). A
secure protocol for ZK-Cir-SAT is an interactive protocol between two par-
ties, a prover and a verifier, who take as input a circuit C. Whether or not
the prover can convince the verifier to accept the interaction depends on the
existence of x such that C(x) = 1. This definition of the functionality of
ZK-Cir-SAT does not depend on the specific implementation of C and only
depends on executing C on x ‘as a black-box’.

– Fully homomorphic encryption (FHE). FHE is a semantically secure
public-key encryption where in addition we have an evaluation sub-routine
Eval that takes as input a circuit f and ciphertexts c1, . . . , ck containing
plaintexts m1, . . . ,mk, and it outputs a new ciphertext c = Eval(f, c1, . . . , ck)
such that decrypting c leads to f(m1, . . . ,mk). The correctness definition of
the primitive FHE only uses the input-output behavior of the circuit f , so
FHE is a special primitive.

– Encrypted functionalities. Primitives such as attribute, predicate, and
functional encryption all involve running some generic computation at the
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decryption phase before deciding what to output. There are two ways that
this generic computation could be fed as input to the system:

• Key policy [44,64]: Here the circuit C is given as input to the key gener-
ation algorithm and then C(m) is computed over plaintext m during the
decryption.

• Ciphertext policy [12]: Here the circuit C is the actual plaintext and the
input m to C is used when issuing the decryption keys.

Both of these approaches lead to special primitives. For example, for the case
of predicate encryption, suppose we use a predicate verification algorithm
P that takes (k, a), interprets k as a circuits and runs k(a) to accept or
reject. Such P would give us the key policy predicate encryption. Another P
algorithm would interpret a as a circuit and runs it on k, and this gives us
the ciphertext policy predicate encryption. In other words, one can think of
the circuit C equivalent to P(k, ·) (with k hard coded in it, and a left out as
the input) being the “input” circuit KGen subroutine, or alternatively one
can think of P(·, a) (with a hardcoded in it, and k left out as the input) to be
the “input” circuit given to the Enc subroutine. In all cases, the correctness
and security definitions of these primitives only depend on the input-output
behavior of the given circuits.

– Witness encryption. The reason that witness encryption is a special prim-
itive is very similar to the reason described above for the case of encrypted
functionalities. Again we can think of V(·, a) as the circuit given to the Enc
algorithm. In this case, the definition of witness encryption (and it security)
only depend on the input-output behavior of these ‘input circuits’ rather their
specific implementations.

– Indistinguishability Obfuscation. An indistinguishability obfuscator
takes as input a circuit C and outputs B that can be used later on the
compute the same function as C does. The security of IO ensures that for
any two different equally-sized and functionally equivalent circuits C0, C1, it is
hard to distinguish between obfuscation of C0 and those of C1. Therefore, the
correctness and security definitions of IO depend solely on the input-output
behavior (and the sizes) of the input circuits.

When a primitive is special, one can talk about “extensions” of the same
primitive in which the circuits that are given as input could have oracle gates
(because the primitive is special and so the definition of the primitive still extends
to such inputs).

3.1 An Abstract Model for Extended Primitives and Constructions

We define special primitives as ‘restrictions’ of a (a family of) primitives indexed
by a subroutine W to the case that W is a universal circuit evaluator. We then
define the extended version to be the case that W accepts oracle-aided circuits.
More formally we start by defining primitives indexed by a class of functions.
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Definition 20 (Indexed primitives). Let W be a set of (possibly ineffi-
cient) functions. An W-indexed primitive P[W] is indeed a set of primi-
tives {P[W ]}W∈W indexed by W ∈ W where, for each W ∈ W, P[W ] =
(F [W ],R[W ]) is a primitive according to Definition 6.

For the special case of W = {W} we get back the RTV definition for a
primitive.

We will now define variations of indexed primitives that restrict the family
to a smaller class W ′ and, for every W ∈ W ′, it might further restrict the set of
correct implementations to be a subset of F [W ]. We first define restricted forms
of indexed primitives then provide various restrictions that will be of interest
to us.

Definition 21 (Restrictions of indexed primitives). For P[W] =
{(F [W ],R[W ])}W∈W and P ′[W ′] = {(F ′[W ],R′[W ])}W∈W′ , we say P ′[W ′] is
a restriction of P[W] if the following two holds. (1) W ′ ⊆ W, and (2) for all
W ∈ W ′, F ′[W ] ⊆ F [W ], and (3) for all W ∈ W ′, R′[W ] = R′[W ].

Definition 22 (Efficient restrictions). We call a restriction P ′[W ′] of P[W]
an efficient restriction if W ′ = {w} where w is a polynomial time algorithm (with
no oracle calls). In this case, we call P ′[w] simply a w-restriction of P[W].

We are particularly interested in indexed primitives when they are indexed
by the universal algorithm for circuit evaluation. This is the case for all the prim-
itives of witness encryption, predicate encryption,9 fully homomorphic encryp-
tion, and IO. All of the examples of the special primitives discussed in previous
section fall into this category. Finally, the formal notion of what we previously
simply called a ‘special’ primitives is defined as follows.

Definition 23 (The universal variant of indexed primitives). We call
P ′[{w}] the universal variant of P[W] if P ′[{w}] is an efficient restriction of
P[W] for the specific algorithm w(·) that interprets its input as a pair (x,C)
where C is a circuit, and then it simply outputs C(x).

For example, in the case of witness encryption, the relation between witness
w and attribute a is verified by running a as a circuit over w and outputting the
first bit of this computation. In order to define extensions of universal variants
of indexed primitives (i.e., special primitives for short) we need the following
definition.

Definition 24 (w(·)-restrictions). For an oracle algorithm w(·) we call
P ′[W ′]= {(F ′[W ],R[W ])}W∈W′ the w(·)-restriction of P[W] = {(F [W ],
R[W ])}W∈W , if P ′[W ′] is constructed as follows. For all W ∈ W and F , we
include W ∈ W ′ and F ∈ F ′[W ], if it holds that W = wF and F ∈ F [W ].

9 Even in this case, we can imagine that we are running a circuit on another input
and take the first bit of it as the predicate.
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Definition 25 (The extended variant of indexed primitives). We call
P ′[W ′] the extended variant of P[W] if P ′[W ′] is an w(·)-restriction of P[W]
for the specific w(·) that interprets its input (x,C) as a pair where C(·)(x) is an
oracle-aided circuit, and then w(x,C) outputs C(·)(x) by forwarding all of C’s
oracle queries to its own oracle.

Case of Witness Encryption. Here we show how to derive the definition of
extended witness encryption as a special case. First note that witness encryp-
tion’s decryption is indexed by an algorithm V (w, a) that could be any predicate
function. In fact, it could be any function where we pick its first bit and inter-
pret it as a predicate. So WE is indeed indexed by V ∈ V which the set of all
predicates. Then, the standard definition of witness encryption for circuit satisfi-
ability (which is the most powerful WE among them all) is simply the universal
variant of this indexed primitive WE[V], and the following will be exactly the
definition of the extended universal variant of WE[V], which we simply call the
extended WE.

In the full version of the paper we give similar definitions for other primitives
of predicate encryption, fully homomorphic encrypion, etc.

Definition 26 (Extended Witness Encryption). Let V(Enc,Dec)(w, a) be the
‘universal circuit-evaluator’ Turing machine, which is simply an algorithm with
oracle access to (Enc,Dec) that interprets a as an circuit with possible (Enc,Dec)
gates and runs a on w and forwards any oracle calls made by a to its own orcle
and forwards the answer back to the corresponding gate inside a to continue the
execution. An extended witness encryption scheme (defined by V) consists of
two PPT algorithms (Enc,DecV) defined as follows:

– Enc(a,m, 1κ): is a randomized algorithm that given an instance a ∈ {0, 1}∗

and a message m ∈ {0, 1}∗, and security parameter κ (and randomness as
needed) outputs c ∈ {0, 1}∗.

– DecV(w, c): given ciphertext c and “witness” string w, it either outputs a
message m ∈ {0, 1}∗ or ⊥.

– Correctness and security are defined similarly to Definition 4. But the key
point is that here the relation V(Enc,Dec) is somehow recursively depending on
the (Enc,Dec = DecV ) on smaller input lengths (and so it is well defined).

3.2 Extended Black-Box Constructions

We are finally ready to define our extended black-box framework. Here we assume
that for a primitive P we have already defined what its extension ˜P means.

Definition 27 (Extended Black-Box Constructions – General Case).
Suppose Q is a primitive and ˜P is an extended version of the primitive P. Any
fully black-box construction for Q from ˜P (i.e. an extended version of P) is called
an extended black-box construction of Q from P.
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Examples. Below are some examples of non-black-box constructions in cryp-
tography that fall into the extended black-box framework of Definition 27.

– Gentry’s bootstrapping construction [35] plants FHE’s own decryption in a
circuit for the evaluation subroutine. This trick falls into the extended black-
box framework since planting gates inside evaluation circuits is allowed.

– The construction of IO from functional encryption by [1,13] uses the encryp-
tion oracle of the functional encryption scheme inside the functions for which
decryption keys are issued. Again, such non-black-box technique does fall into
our extended black-box framework.

Definition 28 (Formal Definition of Extended Black-Box Construc-
tions from Witness Encryption). Let P be witness encryption and ˜P be
extended witness encryption (Definition 26). Then an extended black-box con-
struction using P is a fully black-box construction using ˜P.

The following transitivity lemma (which is a direct corollary to the transi-
tivity of fully black-box constructions) allows us to derive more impossibility
results.

Lemma 29 (Composing extended black-box constructions). Suppose P,

Q,R are cryptographic primitives and Q,P are special primitive and ˜Q is the
extended version of Q. If there is an extended black-box construction of ˜Q from
P and if there is an extended black-box construction of R from Q, then there is
an extended black-box construction of R from P.

Proof. Since there is an extended black-box construction of R from Q, by Def-
inition 27 it means that there is an extension ˜Q of Q such that there is a fully
black-box construction of R from ˜Q. On the other hand, again by Definition 27,
for any extension of Q, and in particular ˜Q, there is a fully black-box construc-
tion of ˜Q from some extension ˜P of P. Therefore, since fully-black-box construc-
tions are transitive under nested compositions, there is a fully construction of
R from ˜P which (by Definition 27) means that we have an extended black-box
construction of R from P.

Getting More Separations. A corollary of Lemma 29 is that if one proves:
(a) There is no extended black-box construction of R from P and (b) there is
an extended black-box construction of any extended version ˜R (of R) from Q,
then these two together imply that: there is no extended black-box construction
of Q from P. We will use this trick to derive our impossibility results from a core
of two separations regarding variants of witness encryption. For example, in the
full version of the paper we will use this lemma to derive separations between
attribute based encryption and IO in the extended black-box model.
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4 Separating IO from Instance Revealing Witness
Encryption

In this section, we formally prove our first main separation theorem which
states that there is no black-box constructions of IO from WE (under believable
assumptions). It equivalently means that there will be no fully black-box con-
struction of indistinguishability obfuscation from extended witness encryption
scheme.

Theorem 30. Assume the existence of one-way functions and that NP �⊆
coAM. Then there exists no extended black-box construction of indistinguisha-
bility obfuscation (IO) from witness encryption (WE).

In fact, we prove a stronger result by showing a separation of IO from a
stronger (extended) version of witness encryption, which we call extractable
instance-revealing witness encryption. Looking ahead, we require the extractabil-
ity property to construct (extended) attribute-based encryption (ABE) from this
form of witness encryption. By using Lemma29, this would also imply a separa-
tion of IO from extended ABE.

Definition 31 (Extended Extractable Instance-Revealing Witness
Encryption (ex-EIRWE)). Let V be a universal circuit-evaluator Turing
machine as defined in Definition 26. For any given security parameter κ, an
extended extractable instance-revealing witness encryption scheme for V con-
sists of three PPT algorithms P = (Enc,Rev,Dec) defined as follows:

– Enc(a,m, 1κ): given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and
security parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

– Rev(c): given ciphertext c outputs a ∈ {0, 1}∗ ∪ {⊥}.
– Dec(w, c): given ciphertext c and “witness” string w, it outputs a message

m′ ∈ {0, 1}∗.

An extended extractable instance-revealing witness encryption scheme satisfies
the following completeness and security properties:

– Decryption Correctness: For any security parameter κ, any (w, a) such
that VP (w, a) = 1, and any m it holds that

Pr
Enc,Dec

[Dec(w,Enc(a,m, 1κ)) = m] = 1

– Instance-Revealing Correctness: For any security parameter κ and any
(a,m) it holds that:

Pr
Enc,Rev

[Rev(Enc(a,m, 1κ)) = a] = 1

Furthermore, for any c for which there is no a,m, κ such that Enc(a,m, 1κ) =
c it holds that Rev(c) = ⊥.
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– Extractability: For any PPT adversary A and polynomial p1(.), there exists
a PPT (black-box) straight-line extractor E and a polynomial function p2(.)
such that the following holds. For any security parameter κ, for all a of the
same and any m0 �= m1 of the same length |m0| = |m1|, if:

Pr
[

A(1κ, c) = b | b
$←− {0, 1}, c ← Enc(a,mb, 1κ)

]

≥ 1
2

+ p1(κ)

Then:
Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ p2(κ)

Given the above definition of ex-EIRWE, we prove the following theorem,
which states that there is no fully black-box construction IO from extended
EIRWE.

Theorem 32. Assume the existence of one-way functions and that NP �⊆
coAM. Then there exists no extended black-box construction of indistinguisha-
bility obfuscation from extractable instance-revealing witness encryption for any
PPT verification algorithm V.

Since extended EIRWE implies witness encryption as defined in Definition 4,
Theorem 30 trivially follows from Theorem32, and thus for the remainder of this
section we will focus on proving Theorem 32.

4.1 Overview of Proof Techniques

To prove Theorem 32, we will apply Lemma 19 for the idealized extended IRWE
model Θ (formally defined in Sect. 4.2) to prove that there is no black-box con-
struction of IO from any primitive P that can be oracle-fixed constructed (see
Definition 10) from Θ. In particular, we will do so for P that is the extended
EIRWE primitive. Our task is thus twofold: (1) to prove that P can be oracle-
fixed constructed from Θ and (2) to show a simulatable compilation procedure
that compiles out Θ from any IO construction. The first task is proven in Sect. 4.3
and the second task is proven in Sect. 4.4. By Lemma 19, this would imply the
separation result of IO from P and prove Theorem32.

Our oracle, which is more formally defined in Sect. 4.2, resembles an ideal-
ized version of a witness encryption scheme, which makes the construction of
extended EIRWE straightforward. As a result, the main challenge lies in show-
ing a simulatable compilation procedure for IO that satisfies Definition 16 in this
idealized model.

4.2 The Ideal Model

In this section, we define the distribution of our ideal randomized extended
oracle.
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Definition 33 (Random Instance-revealing Witness Encryption
Oracle). Let V be a universal circuit-evaluator Turing machine (as defined in
Definition 26) that takes as input (w, x) where x = (a,m) ∈ {0, 1}n and outputs
b ∈ {0, 1}. We define the following random instance-revealing witness encryption
(rIRWE) oracle Θ = (Enc,Rev,DecV) as follows. We specify the sub-oracle Θn

whose inputs are parameterized by n, and the actual oracle will be Θ = {Θn}n∈N.

– Enc: {0, 1}n �→ {0, 1}2n is a random injective function.
– Rev: {0, 1}2n �→ {0, 1}∗ ∪ ⊥ is a function that, given an input c ∈ {0, 1}2n,

would output the corresponding attribute a for which Enc(a,m) = c. If there
is no such attribute then it outputs ⊥ instead.

– DecV : {0, 1}s �→ {0, 1}n ∪ {⊥}: Given (w, c) ∈ {0, 1}s, Dec(w, c) allows us to
decrypt the ciphertext c and get x = (a,m) as long as the predicate test is
satisfied on (w, a). More formally, do as follow:
1. If � x such that Enc(x) = c, output ⊥. Otherwise, continue to the next

step.
2. Find x such that Enc(x) = c.
3. If VΘ(w, a) = 0 output ⊥. Otherwise, output x = (a,m).

We define a query-answer pair resulting from query q to subroutine T ∈
{Enc,Dec,Rev} with some answer β as (q �→ β)T . The oracle Θ provides the
subroutines for all inputs lengths but, for simplicity, and when n is clear from
the context, we use Θ = (Enc,Rev,DecV) to refer to Θn for a fixed n.

Remark 34. We note that since V is a universal circuit-evaluator, the number of
queries that it will ask (when we recursively unwrap all internal queries to Dec)
is at most a polynomial. This is due to the fact that the sizes of the queries that
V asks will be strictly less than the size of the inputs to V. In that respect, we
say that V has the property of being extended poly-query.

4.3 Witness Encryption Exists Relative to Θ

In this section, we show how to construct a semantically-secure extended
extractable IRWE for universal circuit-evaluator V relative to Θ =
(Enc,Rev,DecV). More formally, we will prove the following lemma.

Lemma 35. There exists a correct and subexponentially-secure oracle-fixed
implementation (Definition 10) of extended extractable instance-revealing witness
encryption in the ideal Θ oracle model.

We will in fact show how to construct a primitive (in the Θ oracle model) that
is simpler to prove the existence of and for which we argue that it is sufficient
to get the desired primitive of EIRWE. We give the definition of that primitive
followed by a construction.

Definition 36 (Extended Extractable One-way Witness Encryption
(ex-EOWE)). Let V be a universal circuit-evaluator Turing machine (as
defined in Definition 26) that takes an instance a and witness w and outputs
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a bit b ∈ {0, 1}. For any given security parameter κ, an extended extractable
one-way witness encryption scheme for V consists of the following PPT algo-
rithms P = (Enc,Rev,DecV) defined as follows:

– Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and
security parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

– Rev(c) : given ciphertext c returns the underlying attribute a ∈ {0, 1}∗.
– DecV(w, c) : given ciphertext c and “witness” string w, it outputs a message

m′ ∈ {0, 1}∗.

An extended extractable one-way witness encryption scheme satisfies the same
correctness properties as Definition 31 but the extractability property is replaced
with the following:

– Extractable Inversion: For any PPT adversary A and polynomial p1(.),
there exists a PPT (black-box) straight-line extractor E and a polynomial
function p2(.) such that the following holds. For any security parameter κ,
k = poly(κ), and for all a, if:

Pr
[

A(1κ, c) = m | m
$←− {0, 1}k, c ← Enc(a,m, 1κ)

]

≥ p1(κ)

Then:
Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ p2(κ)

Construction 37 (Extended Extractable One-way Witness Encryp-
tion). For any security parameter κ and oracle Θ sampled according to Def-
inition 33, we will implement an extended EOWE scheme P for the universal
circuit-evaluator V using Θ = (Enc,DecV) as follows:

– WEnc(a,m, 1κ) : Given security parameter 1κ, a ∈ {0, 1}∗, and message m ∈
{0, 1}n/2 where n = 2max(|a|, κ), output Enc(x) where x = (a,m).

– WDec(w, c) : Given witness w and ciphertext c, let x′ = DecV(w, c). If x′ �= ⊥,
parse as x′ = (a′,m′) and output m′. Otherwise, output ⊥.

Remark 38 (From one-wayness to Indistinguishability). We note that the prim-
itive ex-EOWE, which has one-way security, can be used to build an ex-
EIRWE, which is indistinguishability-based, through a simple application of the
Goldreich-Levin thoerem [40]. Namely, to encrypt a one-bit message b under
some attribute a, we would output the ciphertext c = (Enc(a, r1), r2, 〈r1, r2〉⊕b)
where r1, r2 are randomly sampled and 〈r1, r2〉 is the hardcore bit. To decrypt
a ciphertext c = (y1, r2, y3) we would run r1 = Dec(w, y1), find the hardcore bit
p = 〈r1, r2〉 then output b = p ⊕ y3. We obtain the desired indistinguishabil-
ity security since, by the hardcore-bit security of the original scheme, we have
(Enc(a, r1), r2, 〈r1, r2〉 ⊕ 0) ≈ (Enc(a, r1), r2, 〈r1, r2〉 ⊕ 1) for any fixed a.

Lemma 39. Construction 37 is a correct and subexponentially-secure oracle-
fixed implementation (Definition 10) of extended extractable one-way witness
encryption in the ideal Θ oracle model.
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Proof. To prove the security of this construction, we will show that if there exists
an adversary A against scheme P (in the Θ oracle model) that can invert an
encryption of a random message with non-negligible advantage then there exists
a (fixed) deterministic straight-line (non-rewinding) extractor E with access to
Θ = (Enc,Rev,DecV) that can find the witness for the underlying instance of
the challenge ciphertext.

Suppose A is an adversary in the inversion game with success probability ε.
Then the extractor E would works as follows: given a as input and acting as the
challenger for adversary A, it chooses m

$←− {0, 1}k uniformly at random then
runs AΘ(1κ, c∗) where c∗ ← WEnc(a,m, 1κ) is the challenge. Queries issued by
A are handled by E as follows:

– To answer any query Enc(x) asked by A, it forwards the query to the oracle
Θ and returns some answer c.

– To answer any query Rev(c) asked by A, it forwards the query to the oracle
Θ and returns some answer a.

– To answer any query DecV(w, c) asked by A, the extractor first issues a query
Rev(c) to get some answer a. If a �= ⊥, it would execute VΘ(w, a), forwarding
queries asked by V to Θ similar to how it does for A. Finally, it forwards
the query Dec(w, c) to Θ to get some answer x. If a = ⊥, it returns ⊥ to A
otherwise it returns x.

While handling the queries made by A, if a decryption query DecV(w, c∗) for the
challenge ciphertext is issued by A, the extractor will pass this query to Θ, and
if the result of the decryption is x �= ⊥ then the extractor will halt execution
and output w as the witness for instance x. Otherwise, if after completing the
execution of A, no such query was asked then the extractor outputs ⊥. We prove
the following lemma.

Lemma 40. For any PPT adversary A, instances a, if there exists a non-
negligible function ε(.) such that:

Pr
[

AΘ(1κ, c) = m | m
$←− {0, 1}k, c ← WEnc(a,m, 1κ)

]

≥ ε(κ) (1)

Then there exists a PPT straight-line extractor E such that:

Pr
[

EΘ,A(a) = w ∧ VΘ(w, a) = 1
] ≥ ε(κ) − negl(κ) (2)

Proof. Let A be an adversary satisfying Eq. (1) above and let AdvWin be the
event that A succeeds in the inversion game. Furthermore, let ExtWin be the
event that the extractor succeeds in extracting a witness (as in Eq. (2) above).
Observe that:

Pr
Θ,m

[ExtWin] ≥ Pr
Θ,m

[ExtWin ∧ AdvWin]

= 1 − Pr
Θ,m

[ExtWin ∨ AdvWin]

= 1 − Pr
Θ,m

[ExtWin ∧ AdvWin] − Pr
Θ,m

[AdvWin]
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Since Pr[AdvWin] ≥ ε for some non-negligible function ε, it suffices to show that
Pr[ExtWin ∧ AdvWin] is negligible. Note that, by our construction of extractor
E, this event is equivalent to saying that the adversary succeeds in the inversion
game but never asks a query of the form DecV(w, c∗) for which the answer is
x �= ⊥ and so the extractor fails to recover the witness. For simplicity of notation
define Win := ExtWin ∧ AdvWin.

We will show that, with overwhelming probability over the choice of oracle
Θ, the probability of Win happening is negligible. That is, we will prove the
following claim:

Claim. For any negligible function δ, PrΘ

[

Prm[Win] ≥ √
δ
]

≤ negl(κ).

Proof. Define Bad to be the event that A asks (directly or indirectly) a query
of the form DecV(w, c′) for some c′ �= c∗ for which it has not asked Enc(x) = c
previously. We have that:

Pr
Θ,m

[Win] ≤ Pr
Θ,m

[Win ∧ Bad] + Pr
Θ,m

[Bad]

The probability of Bad over the randomness of Θ is at most 1/2n as it is the
event that A hits an image of a sparse random injective function without asking
the function on the preimage beforehand. Thus, PrΘ,m[Bad] ≤ 1/2n.

It remains to show that PrΘ,m[Win∧Bad] is also negligible. We list all possible
queries that A could ask and argue that these queries do not help A in any way
without also forcing the extractor to win as well. Specifically, we show that for
any such A that satisfies the event (Win ∧ Bad), there exists another adversary
̂A that depends on A and also satisfies the same event but does not ask any
decryption queries (only encryption queries). This would then reduce to the
standard case of inverting a random injective function, which is known to be
hard. We define the adversary ̂A as follows. Upon executing A, it handles the
queries issued by A as follows:

– If A asks a query of the form Enc(x) then ̂A forwards the query to Θ to get
the answer.

– If A asks a query of the form Rev(c) then since Bad does not happen, it must
be the case that c = Enc(a,m) is an encryption that was previously asked by
A and therefore ̂A returns a as the answer.

– If A asks a query of the form Dec(w, c∗) then w must be a string for which
V(w, a∗) = 0 or otherwise the extractor wins, which contradicts that ExtWin

happens. If that is the case, since w is not a witness, ̂A would return ⊥ to A
after running VΘ(w, a∗) and answering its queries appropriately.

– If A asks a query of the form Dec(w, c′) for some c′ �= c∗ then, since Bad
does not happen, it must be the case that A has asked a (direct or indirect)
visible encryption query Enc(x′) = c′. Therefore, ̂A would have observed this
encryption query and can therefore run VΘ(w, a′) and return the appropriate
answer (x or ⊥) depending on the answer of V.
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Given that ̂A perfectly emulates A’s view, the only possibility that A could
win the inversion game is by asking Enc(x∗) = c∗ and hitting the challenge
ciphertext, which is a negligible probability over the randomness of the oracle.
By a standard averaging argument, we find that since PrΘ,m[Win ∧ Bad] ≤ δ(κ)
for some negligible δ then PrΘ[Prm[Win ∧ Bad] ≤ √

δ] ≥ 1 − √
δ, which yields

the result.

To conclude the proof of Lemma40, we can see that the probability that the
extractor wins is given by Pr[ExtWin] ≥ 1−Pr[ExtWin∧AdvWin]−Pr[AdvWin] ≥
ε(κ) − negl(κ) where ε is the non-negligible advantage of the adversary A.

It is clear that Construction 37 is a correct implementation. Furthermore, by
Lemma 40, it satisfies the extractability property. Thus, this concludes the proof
of Lemma 39.

Proof (of Lemma 35). The existence of extractable instance-revealing witness
encryption in the Θ oracle model follows from Lemma 39 and Remark 38.

4.4 Compiling Out Θ from IO

In this section, we show a simulatable compiler for compiling out Θ. We
adapt the approach outlined in Sect. 4.1 to the extended ideal IRWE oracle
Θ = (Enc,Rev,DecV) while making use of Lemma 18, which allows us to compile
out Θ in two phases: we first compile out part of Θ to get an approximately-
correct obfuscator ̂OR in the random oracle model (that produces an obfuscation
̂BR in the RO-model), and then use the previous result of [21] to compile out
the random oracle R and get an obfuscator O′ in the plain-model. Since we
are applying this lemma only a constant number of times (in fact, just twice),
security should still be preserved. Specifically, we will prove the following claim:

Lemma 41. Let R  Θ be a random oracle where “” denotes a sub-model
relationship (see Definition 15). Then the following holds:

– For any IO in the Θ ideal model, there exists a simulatable compiler with
correctness error ε < 1/200 for it that outputs a new obfuscator in the random
oracle R model.

– [21] For any IO in the random oracle R model, there exists a simulatable
compiler with correctness error ε < 1/200 for it that outputs a new obfuscator
in the plain model.

Proof. The second part of Lemma 41 follows directly by [21], and thus we focus
on proving the first part of the claim. Before we start describing the compilation
process, we present the following definition of canonical executions that is a
property of algorithms in this ideal model and dependent on the oracle being
removed.

Definition 42 (Canonical executions). Web define an oracle algorithm AΘ

relative to rIRWE to be in canonical form if before asking any DecV(w, c) query,
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A would first get a ← Rev(c) then run VΘ(w, a) on its own, making sure to
answer any queries of V using Θ. Furthermore, after asking a query DecV(w, c)
for which the returned answer is some message m �= ⊥, it would ask Enc(x)
where x = (a,m). Note that any oracle algorithm A can be easily modified into a
canonical form by increasing its query complexity by at most a polynomial factor
(since V is an extended poly-query algorithm).

Definition 43 (Query Types). For any (not necessarily canonical) oracle
algorithm A with access to a rIRWE oracle Θ, we call the queries that are asked
by A to Θ as direct queries and those queries that are asked by VΘ due to a call
to Dec as indirect queries. Furthermore, we say that a query is visible to A if
this query was issued by A and thus it knows the answer that is returned by Θ.
Conversely, we say a query is hidden from A if it is an indirect query that was
not explicitly issued by A (for example, A would have asked a DecV query which
prompted VΘ to ask its own queries and the answers returned to V will not be
visible to A). Note that, once we canonicalize A, all indirect queries will be made
visible since, by Definition 42, A will run VΘ before asking DecV queries and the
query-answer pairs generated by V will be revealed to A.

We now proceed to present the construction of the random-oracle model
obfuscator that, given an obfuscator in the Θ model, would compile out and emu-
late queries to Dec and Rev while forwarding any Enc queries to R. Throughout
this process, we assume that the obfuscators and the obfuscated circuits are all
canonicalized according to Definition 42.

The New Obfuscator ̂OR in the Random Oracle Model. Let R =
{Rn}n∈N be the (injective) random oracle where Rn : {0, 1}n → {0, 1}2n. Given
a δ-approximate obfuscator O = (iO,Ev) in the rIRWE oracle model, we con-
struct an (δ + ε)-approximate obfuscator ̂O = (̂iO, ̂Ev) in the random oracle
model.

Subroutine ̂iO
R
(C):

1. Emulation phase: Emulate iOΘ(C). Let TO be the transcript of this phase
and initialize QO := Q(TO) = ∅. For every query q asked by iOΘ(C), call
ρq ← EmulateCallR(QO, q) and add ρq to QO.

Note that, since iO is a canonical algorithm, there are no hidden queries
resulting from queries asked by V (via Dec queries) since we will always run
VΘ before asking/emulating a Dec query.

2. Learning phase: Set QB = ∅ to be the set of query-answer pairs learned
during this phase. Set m = 2
O/ε where 
O ≤ |iO| represents the number

of queries asked by iO. Choose t
$←− [m] uniformly at random then for i =

{1, ..., t}:

– Choose zi
$←− {0, 1}|C| uniformly at random

– Run EvΘ(B, zi). For every query q asked by EvΘ(B, zi), call and retrieve
ρq ← EmulateCallR(QO ∪ QB , q) then add ρq to QB .
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Algorithm 1. EmulateCall
Input: Query-answer set Q, query q
Oracle: Random Oracle R
Output: ρq a query-answer pair containing the answer of query q
Begin:
if q is a query of type Enc(x) then

Set ρq = (x �→ R(x))Enc

end
if q is a query of the form Rev(c) then

if ∃ (x �→ c)Enc ∈ Q where x = (a, m) then
Set ρq = (c �→ a)Rev

else
Set ρq = (c �→ ⊥)Rev

end

end
if q is a query of the form DecV(w, c) then

if ∃ (x �→ c)Enc ∈ Q then
Initialize QV = ∅ and emulate b ← VΘ(w, x)
for each query qV asked by V do

ρV ← EmulateCallR(Q ∪ QV, qV)
QV = QV ∪ ρV

end
if b = 1 then

Set ρq = ((w, c) �→ x)Dec

else
Set ρq = ((w, c) �→ ⊥)Dec

end

else
Set ρq = ((w, c) �→ ⊥)Dec

end

end
Return ρq

Similar to Step 1, since Ev is a canonical algorithm and Enc is a injective
function, with overwhelming probability, there will be no hidden queries as a
result of asking any Dec queries.

3. The output of the RO model obfuscation algorithm ̂iO
R
(C) will be ̂B =

(B,QB).

Subroutine ̂Ev
R
( ̂B, z): To evaluate ̂B = (B,QB) on a new random input z we

simply emulate EvΘ(B, z). For every query q asked by EvΘ(B, z), run and set
ρq = EmulateCallR(QB , q) then add ρq to QB .

The Running Time of ̂iO. We note that the running time of the new obfusca-
tor ̂iO remains polynomial time since we are emulating the original obfuscation
once followed by a polynomial number m of learning iterations. Furthermore,
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while we are indeed working with an extended oracle where the PPT V can
have oracle gates to subroutines of Θ, we emphasize that since V, which we are
executing during EmulateCall, is a universal circuit evaluator, its effective run-
ning time remains to be a strict polynomial in the size of V and so the issue of
exponential or infinite recursive calls is non-existent.

Proving Approximate Correctness. Consider two separate experiments
(real and ideal) that construct the random oracle model obfuscator exactly as
described above but differ when evaluating ̂B. Specifically, in the real experiment,
̂Ev

R
( ̂B, z) emulates EvΘ(B, z) on a random input z and answers any queries by

running QB , whereas in the ideal experiment, we execute ̂Ev
R
( ̂B, z) and answer

the queries of EvΘ(B, z) using the actual oracle Θ instead. In essence, in the real
experiment, we can think of the execution as Ev

̂Θ(B, z) where ̂Θ is the oracle
simulated by using QB and oracle R. We will compare the real experiment with
the ideal experiment and show that the statistical distance between these two
executions is at most ε. In order to achieve this, we will identify the events that
differentiate between the executions EvΘ(B, z) and Ev

̂Θ(B, z).
Let q be a new query that is being asked by Ev

̂Θ(B, z) and handled by calling
EmulateCallR(QB , q). The following are the cases that should be handled:

1. If q is a query of type Enc(x), then the answer to q will be distributed the
same in both experiments.

2. If q is a query of type Dec(w, c) or Rev(c) whose answer is determined by QB

in the real experiment then it is also determined by QO ∪ QB ⊇ QB in the
ideal experiment and the answers are distributed the same.

3. If q is of type Dec(w, c) or Rev(c) that is not determined by QO ∪ QB in
the ideal experiment then this means that we are attempting to decrypt
a ciphertext for which we have not encrypted before and we will therefore
answer it with ⊥ with overwhelming probability. In that case, q will also not
be determined by QB in the real experiment and we will answer it with ⊥.

4. Bad Event 1: Suppose q is of type Dec(w, c) that is not determined by QB in
the real experiment and yet is determined by QO∪QB in the ideal experiment
to be some answer x �= ⊥. This implies that the query-answer pair (x �→ c)Enc

is in QO\QB . That is, we are for the first time decrypting a ciphertext that was
encrypted in Step 1 because we failed to learn the underlying x for ciphertext
c during the learning phase of Step 2. In that case, in the real experiment,
the answer would be ⊥ since we do not know the corresponding message x
whereas in the ideal experiment it would use the correct answer from QO∪QB

and output x. However, we will show that this event is unlikely due to the
learning procedure.

5. Bad Event 2: Suppose q is of type Rev(c) that is not determined by QB in
the real experiment and yet is determined by QO∪QB in the ideal experiment.
This implies that the query-answer pair ((a,m) �→ c)Enc is in QO \ QB . That
is, we are for the first time attempting to reveal the attribute of a ciphertext
that was encrypted in Step 1 because we failed to learn the answer of this
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reveal query during the learning phase of Step 2. In that case, in the real
experiment, the answer would be ⊥ since we do not know the corresponding
attribute a whereas in the ideal experiment it would use the correct answer
from QO ∪QB and output a. However, we will show that this event is unlikely
due to the learning procedure.

For input x, let E(x) be the event that Case 4 or 5 happen. Assuming that
event E(x) does not happen, both experiments will proceed identically the same
and the output distributions of EvΘ(B, x) and Ev

̂Θ(B, x) will be statistically
close. More formally, the probability of correctness for ̂iO is:

Pr
x

[Ev
̂Θ(B, x) �= C(x)] = Pr

x
[Ev

̂Θ(B, x) �= C(x) ∧ ¬E(x)]

+ Pr
x

[Ev
̂Θ(B, x) �= C(x) ∧ E(x)]

≤ Pr
x

[Ev
̂Θ(B, x) �= C(x) ∧ ¬E(x)] + Pr

x
[E(x)]

By the approximate functionality of iO, we have that:

Pr
x

[iOΘ(C)(x) �= C(x)] = Pr
x

[EvΘ(B, x) �= C(x)] ≤ δ(n)

Therefore,

Pr
x

[Ev
̂Θ(B, x) �= C(x) ∧ ¬E(x)] = Pr

x
[EvΘ(B, x) �= C(x) ∧ ¬E(x)] ≤ δ

We are thus left to show that Pr[E(x)] ≤ ε. Since both experiments proceed the
same up until E happens, the probability of E happening is the same in both
worlds and we will thus choose to bound this bad event in the ideal world.

Claim. Prx[E(x)] ≤ ε.

Proof. For all i ∈ [t], let Q′
Bi

= QBi
∩ QO be the set of query-answer pairs gen-

erated by the i’th evaluation EvΘ(B, zi) during the learning phase (Step 2) and
are also generated during the obfuscation emulation phase (Step 1). In particu-
lar, Q′

Bi
would contain the query-answer pairs ((a,m) �→ c)Enc for encryptions

that were generated by the obfuscation and later discovered during the learning
phase. Note that, since the maximum number of learning iterations m > 
O

and Q′
Bi

⊆ Q′
Bi+1

, the number of learning iterations that would increase the
size of the set of learned obfuscation queries is at most 2
O since there are at
most 
O obfuscation ciphertexts that can be fully discovered during the learning
phase and at most 
O obfuscation ciphertexts that can be partially discovered
(just finding out the underlying attribute a) via Rev queries during the learning
phase.

We say t
$←− [m] is bad if it is the case that Q′

Bt
�= Q′

Bt+1
(i.e. t is an index

of a learning iteration that increases the size of the learned obfuscation queries).
This would imply that after t learning iterations in the ideal world, the final
evaluation Q′

̂B
:= Q′

Bt+1
would contain a new unlearned query-answer pair that

was in QO. Thus, given that m = 2
O/ε, the probability (over the selection of t)
that t is bad is at most 2
O/m < ε.
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Proving Security. To show that the resulting obfuscator is secure, it suffices
to show that the compilation process represented as the new obfuscator’s con-
struction is simulatable. We show a simulator S (with access to Θ) that works as
follows: given an obfuscated circuit B in the Θ ideal model, it runs the learning
procedure as shown in Step 2 of the new obfuscator ̂iO to learn the heavy queries
QB then outputs ̂B = (B,QB). Note that this distribution is statistically close
to the output of the real execution of ̂iO and, therefore, security follows.

Acknowledgements. We thank the anonymous reviewers of Crypto 2017 for their
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Abstract. Much of modern cryptography, starting from public-key
encryption and going beyond, is based on the hardness of structured
(mostly algebraic) problems like factoring, discrete log or finding short
lattice vectors. While structure is perhaps what enables advanced appli-
cations, it also puts the hardness of these problems in question. In par-
ticular, this structure often puts them in low complexity classes such as
NP ∩ coNP or statistical zero-knowledge (SZK).

Is this structure really necessary? For some cryptographic primitives,
such as one-way permutations and homomorphic encryption, we know
that the answer is yes—they imply hard problems in NP ∩ coNP and
SZK, respectively. In contrast, one-way functions do not imply such hard
problems, at least not by fully black-box reductions. Yet, for many basic
primitives such as public-key encryption, oblivious transfer, and func-
tional encryption, we do not have any answer.

We show that the above primitives, and many others, do not imply
hard problems in NP ∩ coNP or SZK via fully black-box reductions. In
fact, we first show that even the very powerful notion of Indistinguisha-
bility Obfuscation (IO) does not imply such hard problems, and then
deduce the same for a large class of primitives that can be constructed
from IO.

Keywords: Indistinguishability obfuscation · Statistical zero-
knowledge · NP ∩ coNP · Structured hardness · Collision-resistant
hashing

1 Introduction

The last four decades of research in cryptography has produced a host of fan-
tastic objects, starting from one-way functions and permutations to public-key
encryption [DH76,RSA78,GM82] and zero-knowledge proofs [GMR85] in the
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1980s, all the way to fully homomorphic encryption [RAD78,Gen09,BV11] and
indistinguishability obfuscation [BGI+01,GGH+13a] in the modern day.

The existence of all these objects requires at the very minimum that NP �
BPP, but that is hardly ever enough. While one-way functions (OWFs), the
most basic cryptographic object, does not seem to require much structure, as
we advance up the ranks, we seem to require that certain structured problems
are hard. For example, conjectured hard problems commonly used in cryptogra-
phy (especially the public-key kind), such as factoring, discrete logarithms, and
shortest (or closest) vectors on lattices all have considerable algebraic structure.
On the one hand, it is this structure that enables strong applications such as
public-key and homomorphic encryption. On the other hand, this structure is
also what puts their hardness in question, and is exactly what algorithms may
try to exploit in order to solve these problems. There is of course the fear that
this structure will (eventually, if not today) deem these problems easy. Or, as
Barak says more eloquently [Bar13]:

[. . . ] based on the currently well studied schemes, structure is strongly associated

with (and perhaps even implied by) public key cryptography. This is troubling

news, since it makes public key crypto somewhat of an “endangered species” that

could be wiped out by a surprising algorithmic advance. Therefore the question

of whether structure is inherently necessary for public key crypto is not only of

mathematical interest but also of practical importance as well.

Thus, a fundamental question in cryptography is what type of structure is neces-
sary for different primitives? Indeed, the answer to this question may be crucial
to our understanding of what are the minimal assumptions required to construct
these primitives. While there may be different ways of approaching this ques-
tion, one main approach, which is also taken in this work, has been through the
eyes of complexity theory. That is, we wish to understand which cryptographic
primitives require hardness in low (and so called structured) complexity classes
such as NP ∩ coNP, TFNP (the class of total NP search problems), or SZK (the
class of problems with statistical zero-knowledge proofs).

Aiming to answer this question, one line of research demonstrates that,
for some cryptographic primitives, hardness in structured complexity classes is
indeed necessary. The existence of one-way permutations (OWPs) requires a hard
problem in NP ∩ coNP [Bra79]; the same holds for restricted cases of public-key
encryption schemes satisfying specific structural properties (e.g. ciphertext cer-
tification) [Bra79,GG98]; homomorphic encryption schemes and non-interactive
computational private information retrieval schemes imply hard problems in
SZK [BL13,LV16]; and indistinguishability obfuscation schemes imply a hard
problem in PPAD ⊆ TFNP (assuming NP �⊆ ioBPP) [BPR15].

Yet, for many primitives such hardness is not known to be inherent. While
this is perhaps expected for OWFs, it is also the case for seemingly struc-
tured primitives such as collision-resistant hash functions, oblivious transfer,
and general public-key encryption schemes. Do these primitives require hardness
in structured complexity classes? Can we prove that they do or that they don’t?



698 N. Bitansky et al.

Black-Box Separations. Formalizing this question in a meaningful way requires
care. Indeed, it may be easy to formalize a statement of the form “the existence
of crypto primitive P implies hardness in a complexity class C”: one just needs
to show a reduction from breaking P to solving problems in C. However, it is not
clear how to prove statements of the form “the existence of crypto primitive P
does not imply hardness in a complexity class C”. For example, it is commonly
believed that NP∩ coNP does contain hard problems. So in a trivial logical sense
the existence of such problems is implied by any primitive P. Instead, we follow
the methodology of black-box separations, whose study in cryptography was pio-
neered by Impagliazzo and Rudich [IR89]. Faced with a similar problem of how to
show that a primitive P (OWFs) cannot be used to construct another primitive
P ′ (public-key encryption), they prove this cannot be shown through black-box
reductions—cryptography’s de facto technique for showing such implications.

A bit more elaborately, a fully black-box reduction [RTV04] of a primitive
(or, in our case, a problem) P ′ to a primitive P consists of a black-box construc-
tion and a black-box security reduction. The construction of P ′ from P does
not exploit the actual implementation of primitive P, but rather just its input-
output interface. The security reduction can use any adversary that breaks (or,
in our case, solves) P ′ to break P, and is oblivious to the implementation of the
adversary (as well as of that of P).

Following [IR89], there has been a rich study of black-box separations in
cryptography (see, e.g., [Rud91,Sim98,KST99,GKM+00,GT00,GMR01,BT03,
RTV04,HR04,GGKT05,Pas06,GMM07,BM09,HH09,BKSY11,DLMM11,
KSS11,GKLM12,DHT12,BBF13,Fis12,Pas13,BB15,HHRS15] and many oth-
ers). Most of this study has been devoted to establishing separations between
different cryptographic primitives. (In particular, the most relevant to us are the
recent works of Asharov and Segev [AS15,AS16] that study black-box separa-
tions for indistinguishability obfuscation, which we elaborate on below.) Some of
this study puts limitations on basing cryptographic primitives on NP-hardness
[GG98,AGGM06,MX10,HMX10,BL13,BB15,LV16].

Going back to our main question of which primitives require structured hard-
ness, we know the following.

– As described above, OWPs imply a hard problem in NP ∩ coNP [Bra79],
homomorphic encryption and PIR imply hard problems in SZK [BL13,LV16]
and IO (with OWFs) implies a hard problem in PPAD [BPR15] via black-box
reductions.

– On the flip side, we know that there are no black-box reductions from hard
problems in NP ∩ coNP to OWFs [BI87,Rud88], and from hard-on-average
problems in SZK to OWPs (corollary from [Ost91,OV08,HHRS15]).

For more advanced primitives, most notably (general) public-key encryption, we
do not have results in either direction. In fact, many existing constructions are
based on problems in NP ∩ coNP or SZK. We are thus left with (quite basic)
primitives at an unclear state; as far as we know, they may very well imply hard
problems in structured complexity classes, even by black-box reductions.
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1.1 Our Results

We revisit the relationship between two structured complexity classes, statistical
zero-knowledge (SZK) and NP ∩ coNP, and cryptographic primitives. In broad
strokes, we show that there are no fully black-box reductions of hard prob-
lems in these classes to any one of a variety of cryptographic primitives, includ-
ing (general) public-key encryption, oblivious transfer, deniable encryption, and
functional encryption. More generally, we separate SZK and NP ∩ coNP from
indistinguishability obfuscation (IO). Then, leveraging on the fact that IO can
be used to construct a wide variety of cryptographic primitives in a black-box
way, we derive corresponding separations for these primitives.1 One complexity-
theoretic corollary of this result is a separation between SZK and NP ∩ coNP
from the class PPAD [MP91] that captures the complexity of computing Nash
Equilibria.

On the positive side, we construct collision-resistant hash functions from a
strong form of SZK-hardness and IO. It was previously known [AS15] that IO
by itself does not imply collision-resistant hashing in a black-box way; we show
that it does if one adds SZK-hardness as a “catalyst”.
We now go into more detail on each of the results.

Statistical Zero-Knowledge and Cryptography. The notion of statistical zero-
knowledge proofs was introduced in the seminal work of Goldwasser et al.
[GMR85]. The class of promise problems with statistical zero-knowledge proofs
(SZK) can be characterized by several complete problems, such as statisti-
cal difference [SV03] and entropy difference [GV99]. SZK hardness is known
to follow from various number-theoretic problems that are commonly used
in cryptography, such as Discrete Logarithms [GK93], Quadratic Residuos-
ity [GMR85], Lattice Problems [GG98,MV03] as well as problems like Graph
Isomorphism [GMW91]. As mentioned, we also know that a handful of crypto-
graphic primitives such as homomorphic encryption [BL13], private information
retrieval [LV16] and rerandomizable encryption imply hardness in SZK. (On the
other hand, SZK ⊆ AM ∩ coAM [For89,AH91], and thus, SZK cannot contain
NP-hard problems, unless the polynomial hierarchy collapses [BHZ87].)

We ask more generally which cryptographic primitives can be shown to imply
such hardness, with the intuition that such primitives are structured in a certain
way. In particular, whereas one may not expect a seemingly unstructured object
like OWFs to imply such hardness, what can we say for instance about OWPs,
public-key encryption, or even IO (which has proven to be powerful enough to
yield almost any known cryptographic goal)?

We prove that none of these primitives imply such hardness through black-
box reductions.

1 More accurately, these primitives follow from IO and OWFs (OWFs), and accord-
ingly our separation addresses IO and OWFs in conjunction. The concept of a black-
box reduction from IO and OWF requires clarification and discussion. Here we will
follow the framework of Asharov and Segev [AS15]. We elaborate below.
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Theorem 1.1 (Informal). There is no fully black-box reduction of any (even
worst-case) hard problem in SZK to IO and OWPs.

Corollary 1.2 (from [SW14,Wat15], Informal). There is no such reduction
to (general) public-key encryption, oblivious transfer, deniable encryption, func-
tional encryption, or any other object that has a black-box reduction to IO and
OWPs.

We would like to elaborate a bit more on what a black-box construction
of a hard problem in SZK means. We shall focus on the characterization of
SZK by the statistical difference promise problem [SV03]. In this problem, an
instance is a pair of circuit samplers C0, C1 : {0, 1}n → {0, 1}m which induce
distributions C0 and C1 where the distribution Cb obtained by evaluating the
circuit Cb on a uniformly random input. The promise is that the statistical
distance s = Δ(C0,C1) of the corresponding distributions is either large (say,
s ≥ 2/3) or small (say, s ≤ 1/3). The problem, named SD1/3,2/3 (or just SD),
is to decide which is the case.

Let us look at a specific example of the construction of such a prob-
lem from rerandomizable encryption. In a (say, symmetric-key) rerandomiz-
able encryption scheme, on top of the usual encryption and decryption algo-
rithms (Enc,Dec) there is a ciphertext rerandomization algorithm ReRand that
can statistically refresh ciphertexts. Namely, for any ciphertext CT encrypt-
ing a bit b, ReRand(CT) produces a ciphertext that is statistically close to
a fresh encryption Encsk(b). This immediately gives rise to a hard statisti-
cal difference problem [BL13]: given a pair of ciphertexts (CT0,CT1), decide
whether the corresponding rerandomized distributions given by the circuits
(C0(·), C1(·)) := (ReRand(CT0; ·),ReRand(CT1; ·)) are statistically far or close.
Indeed, this corresponds to whether they encrypt the same bit or not, which is
hard to decide by the security of the encryption scheme.

A feature of this reduction of hard statistical difference instances to reran-
domizable encryption is that, similarly to most reductions in cryptography, it is
fully black-box [RTV04] in the sense that the circuits C0, C1 only make black-
box use of the encryption scheme’s algorithms, and can in fact be represented
as oracle-aided circuits (CReRand(·)

0 , C
ReRand(·)
1 ). Furthermore, “hardness” can be

shown by a black-box security proof that can use any decider for the problem in
a black-box way to break the underlying encryption scheme. More generally, one
can consider the statistical difference problem relative to different oracles imple-
menting different cryptographic primitives and ask when can hardness be shown
based on a black-box reduction. Theorem1.1 rules out such reductions relative
to IO and OWPs (and everything that follows from these in a fully black-box
way). For more details, see Sect. 1.2 and the full version.

NP ∩ coNP and Cryptography. Hard (on average) problems in NP ∩ coNP are
known to follow based on several number-theoretic problems in cryptography,
such as Discrete Log, Factoring and Lattice Problems [Has88,LLJS90,AR04].
As in the previous section for SZK, we are interested in understanding which
cryptographic primitives would imply such hardness, again with the intuition
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that this implies structure. For instance, it is known [Bra79] that any OWP
f : {0, 1}n → {0, 1}n implies a hard problem in NP ∩ coNP, e.g. given an index
i ∈ [n] and an image f(x) find the ith preimage bit xi. In contrast, Blum
and Impagliazzo [BI87] and Rudich [Rud88] proved that seemingly unstructured
objects like OWFs do not imply hardness in NP∩coNP by fully black-box reduc-
tions. In this context, a fully black-box reduction essentially means that the
non-deterministic verifiers only make black-box use of the OWF (or OWP in the
previous example) and the reduction establishing the hardness is also black-box
(in both the decider and the OWF).2

But what about more structured primitives such as public-key encryption,
oblivious transfer, or even IO? We rule out fully black-box reductions from OWFs
(or even injective OWFs) and IO to hard problems in NP ∩ coNP. Hence, also
for the other primitives, which can be constructed from IO (with OWFs) in a
fully black-box way.

Theorem 1.3 (Informal). There is no fully black-box reduction of any (even
worst-case) hard problem in NP ∩ coNP to IO and OWFs.

Corollary 1.4 (from [SW14,Wat15] Informal). There is no such reduction
to (general) public-key encryption, oblivious transfer, deniable encryption, func-
tional encryption, or any other object that has a black-box reduction to IO and
OWFs.

Our approach also gives a new (rather different) proof to the original separa-
tion between OWFs and NP∩coNP [BI87,Rud88]. For more details, see Sect. 1.2
and the full version.

We remark that unlike our result for SZK (which ruled out hard promise
problems), the above result only rules out hard languages in NP ∩ coNP. Indeed,
Even et al. [ESY84] demonstrated promise problems in NP ∩ coNP that are
NP-hard. Hence even the assumption P �= NP (let alone OWFs) gives us hard
promise problems in NP ∩ coNP. (See [Gol06] for further reading.)

Relation to the Work of Asharov and Segev. The flood of IO applications fol-
lowing, starting from [GGH+13b,SW14], has lead many to conjecture that IO
may be “complete for cryptography” (assuming also OWFs, or just NP �⊆ ioBBP
[KMN+14]). Nevertheless, some cryptographic goals could not be constructed
based on IO.

Asharov and Segev [AS15,AS16] were the first to initiate a formal study to
understand the limits of IO. Our separations for IO are based on their frame-
work [AS15]. We aim to draw the complexity-theoretic boundaries of IO. Indeed,
black-box separations from IO require some care, given that the typical use of

2 Roughly speaking, [BI87] rule out perfectly correct constructions, where the NP ∩
coNP structure is guaranteed for any implementation of the OWF oracle. In [Rud88],
this is generalized also to almost perfectly correct constructions that only work for
an overwhelming fraction of OWF oracles. We also rule out constructions that are
perfectly correct.
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IO makes non-black-box use of the circuits it obfuscates and thus any associated
cryptographic primitive such as OWFs. The Asharov-Segev framework consid-
ers obfuscators that take as input circuits with OWF (or OWP) gates. They
observe, most known IO-based constructions fall into this category. Thus, a sep-
aration in this model allows deriving the corresponding separations between SZK
or NP ∩ coNP and a wide variety of cryptographic primitives. See Sect. 1.2 for
more details.

In terms of results, they show that collision-resistant hashing and (domain
invariant) OWPs do not have black-box reductions to IO (and OWFs). Our
separation of IO and NP ∩ coNP is more general and implies their previous
result for OWPs (and gives a rather different proof for this fact). Their result
for collision-resistant hashing is not captured by our results (indeed collision-
resistance is not known to imply hardness in either SZK or NP∩ coNP). We also
stress that our separation of SZK from IO and OWPs does not follow from their
results; indeed, SZK-hardness is not known to imply collision-resistance.3

Indistinguishability Obfuscation: Perspective. Since the breakthrough of
[GGH+13b], the notion of IO has been extensively studied. While we already
understand that IO has far reaching implications, our understanding of how it
can be constructed and under what assumptions is still at an early stage. Indeed,
basing IO on solid foundations is one of cryptography’s greatest challenges today.
In this context, we stress that the results presented in this work hold regardless
of the state of existing candidates. In fact, even if it turned out that there is no
secure realization of IO, the separation of SZK and NP ∩ coNP from primitives
such as public-key encryption, which follow from IO, still holds. The expressive-
ness of IO (established in [GGH+13b,SW14] and onwards) allows us to prove
many separations in one shot. (Indeed, three years ago we would have probably
addressed each primitive separately.)

As for the search for candidates itself, while at this point candidates are
based on lattice-related problems that do break in SZK, our work suggests the
theoretical possibility that IO candidates may not require such structure. A
similar conclusion is true of course for the much more basic and long-studied
question of public-key encryption. Almost all known public-key encryption can-
didates rely on very algebraic assumptions (that do break in SZK or NP∩coNP).
Constructing public key encryption from less structured assumptions remains a
fascinating open question. While there has been initial steps trying to diverge
from such structure [Ale03,ABW10], there is yet a long way to go.

On TFNP vs. NP ∩ coNP. One of the corollaries of our result is a separation
between SZK and NP∩ coNP from the complexity class PPAD. PPAD, a subclass

3 We note that previous work [Ost91,OV08] does imply that constant-round
statistically-hiding commitments have a black-box reduction to any hard-on-average
SZK problem. However, [AS15] do not rule these out (but only collision-resistant
hashing). We also note that in any case, our result also rules out constructions of
worst-case hard SZK problems (rather than average-case hard problems).
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of total NP search problems called TFNP [MP91], was defined by Papadim-
itriou [Pap94] and has been shown to capture the complexity of computing Nash
equilibria [DGP06,CDT09]. It was recently shown [BPR15] that IO and injective
OWFs can be used (in a black-box way) to construct hard problems in PPAD.
Put together with our separation, we get that there is no black-box construction
of an SZK (resp. NP ∩ coNP) hard problem from PPAD-hardness.4

Given that TFNP, which contains PPAD, is commonly thought of as a search
version of NP∩coNP, it is interesting to note that the result shows that hardness
in NP ∩ coNP (of decisional problems) does not follow from hardness in TFNP
(aka, hardness of search problems) in a black-box way. Namely, there is no black-
box “search-to-decision reduction” between these classes.

The Positive Result: Collision-Resistant Hashing from Strong SZK-Hardness.
We end our paper with a positive result. While most of our focus has been on
showing that hardness in SZK and NP ∩ coNP does not follow from cryptogra-
phy, here we ask the “inverse question”, namely whether certain cryptographic
primitives can be built from other cryptographic primitives together with hard-
ness in certain structured complexity classes. Little is known in this direction
with the exception of the beautiful work of Ostrovsky [Ost91] which constructs
a OWF from average-case SZK-hardness, and the recent work of Applebaum
and Raykov [AR16] who showed that average-case hardness in the subclass
PRE ⊆ SRE ⊆ SZK of languages with a perfect randomized encoding gives
us collision-resistant hashing.

We construct collision-resistant hashing from a strong form of SZK-hardness
and IO. It was previously known [AS15] that IO by itself does not imply collision-
resistant hashing in a black-box way; we show that it does if one adds SZK-
hardness as a “catalyst”. Slightly more precisely, in the SZK-complete problem
SD1/3,2/3 is required to distinguish between distributions that are 1/3-close from
ones that are 2/3-far. We show that IO together with average-case hardness of
SD0,1 (a stronger assumption) implies collision-resistant hashing.

Theorem 1.5 (Informal). Assuming average-case hardness of SD0,1 and the
existence of IO, there is a collision-resistant hashing scheme.

Organization. Due to the paucity of space, most of the proofs are deferred to the
full version. We give an overview of the methodology and techniques used in the
following Sect. 1.2. The black-box separation between SZK and IO (plus OWPs)
is stated in Sect. 2. The separation between NP ∩ coNP and IO (plus injective
OWFs) is described in Sect. 3.

1.2 Overview of Techniques

We now give an overview of our approach and main ideas. We start by discussing
how to capture fully black-box constructions in the context of indistinguishabil-
4 We note that in concurrent and independent work, Rosen et al. [RSS16] show that

one-way functions do not have black-box reductions to PPAD-hardness, which com-
bined with [Ost91], also yields a separation between SZK and PPAD.
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ity obfuscation following [AS15]. We then recall the common methodology for
ruling out black-box constructions [IR89,RTV04,BBF13], and explain the main
ideas behind our impossibility results for SZK and NP ∩ coNP. In the last part
of this section, we outline the construction of collision-resistant hashing from
indistinguishability obfuscation and SZK-hardness and the main ideas behind it.

Indistinguishability Obfuscation and Black-Box Constructions. Traditionally,
when thinking about a black-box construction of one cryptographic primitive P ′

(e.g., a pseudo-random generator) from a primitive P (e.g., a one-way function),
we mean that all algorithms in the construction of P ′ invoke P as a black-box,
oblivious of its actual implementation. This is hardly the case in constructions
based on indistinguishability obfuscation where circuits that explicitly invoke
the primitive P may be obfuscated.

Nonetheless, as observed by Asharov and Segev [AS15], in almost all exist-
ing constructions, the code implementing P is used in a very restricted manner.
Typically, obfuscated circuits can be implemented as oracle aided circuits CP

that are completely black-box in P, where P is some low-level primitive, such as
a one-way function. Indeed, in most cases the circuits obfuscated are symmetric-
key primitives, such as puncturable pseudo-random functions [SW14], which can
be constructed in a black-box way from one-way functions (in some construc-
tions more structured low-level primitives may be used, like injective one-way
functions, or one-way permutations). Furthermore, in these constructions, the
obfuscator iO itself is also treated as a black-box.

Accordingly, almost all existing constructions based on indistinguishability
obfuscation can be cast into a model in which indistinguishability obfuscation
exists for oracle-aided circuits CP , where P is say a one-way function, and both P
and the obfuscator iO can only be accessed as black-boxes. On top of that, they
can be proven secure in this model by a black-box reduction that makes black-
box use of (P, iO) and any attacker against the constructed primitive P ′. Such
constructions where both the construction itself and the reduction are black-box
are called fully black-box constructions [RTV04]. Following Asharov and Segev
[AS15,AS16], we shall prove our results in this model, ruling out black-box con-
structions of hard problems in SZK and NP∩ coNP based on indistinguishability
obfuscation for oracle-aided circuits. Further details follow.

Ruling out Black-Box Reductions. We prove our results in the model described
above following the methodology of oracle separations (see e.g. [IR89,Sim98,
RTV04,HR04]). Concretely, to prove that there is no fully black-box construction
of a primitive P ′ from primitive P, we demonstrate oracles (Ψ,A) such that:

– relative to Ψ , there exists a construction CΨ
P realizing P that is secure in the

presence of A,
– but any construction CΨ

P′ realizing P ′ can be broken in the presence of A.

Indeed, if such oracles (Ψ,A) exist, then no efficient reduction will be able to
use (as a black-box) the attacker A against P ′ to break P (as the construction
of P is secure in the presence of A). In our case, we would like to apply this
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paradigm rule out black-box constructions of hard instances in either SZK or
NP∩coNP from a low-level primitive (e.g. a one-way function) indistinguishabil-
ity obfuscation for oracle-aided circuits. We next outline the main ideas behind
the construction and analysis of the oracles (Ψ,A) in each of the two cases.

Ruling out Black-Box Constructions of Hard SZK Problems. As explained in
the previous section, we focus on the characterization of SZK by its complete
problem: the statistical difference problem SD [SV03]. We demonstrate oracles
(Ψ,A) such that relative to Ψ there exist constructions of one-way permutations
(OWPs) and IO for circuits with OWP gates, and these constructions are secure
in the presence of A. At the same time, A will decide (in the worst-case) SDΨ .
Since SD is complete for SZK in a relativizing manner, deciding SDΨ suffices
to break SZKΨ . That is, A will decide all instances (CΨ

0 , CΨ
1 ) of circuit samplers

that only use the IO and OWPs realized by Ψ in a black-box manner. We next
explain how each of the two are constructed.

The construction of Ψ follows a general recipe suggested in [AS15,AS16]. The
oracle consists of three parts (f,O,Evalf,O) where:

1. f is a random permutation, realizing the one-way permutation primitive.
2. O is a random injective function, realizing the obfuscation algorithm. It takes

as input an oracle-aided circuit C(·) along with randomness r and outputs an
obfuscation ̂C = O(C, r).

3. EvalO,f realizes evaluation of obfuscated circuits. On input ( ̂C, x), it inverts O
to find (C, r), and outputs Cf (x). If ̂C is not in the image of O, it returns ⊥.

The above construction readily satisfies the syntactic (or “functionality”)
requirements of one-way permutations and indistinguishability obfuscation. Fur-
thermore, using standard techniques, it is not hard to show that relative to Ψ ,
the function f is one-way and O satisfies IO indistinguishability requirement.
The challenge is to now come up with an oracle A that, on one hand, will decide
SDΨ , but on the other, will not compromise the security of the latter primitives.

Recall that deciding SDΨ means that given two oracle-aided circuit samplers
(C0, C1) such that the statistical distance of the corresponding distributions
(CΨ

0 ,CΨ
1 ) is s = Δ(CΨ

0 ,CΨ
1 ) ∈ [0, 1

3 ] ∪ [23 , 1], the oracle A must decide in which
of the two intervals s lies, whereas if the promise is not satisfied and s ∈ (13 , 2

3 ),
there is no requirement whatsoever. With this in mind, a first naive attempt
would be the following. A will have unbounded access to Ψ , give a query (C0, C1),
it would compute s = Δ(C0,C1), and simply say whether s < 1

2 or s ≥ 1
2 . While

such an oracle would definitely decide SDΨ , it is not too hard to show that it is
simply too powerful, and would not only break IO and OWPs, but would, in fact,
allow solving any problem in NPΨ (or even in PPΨ ). Other naive attempts such
as refusing to answer outside the promise intervals, encounter a similar problem.

At high-level, the problem with such oracles is that solutions to hard problems
can be easily correlated with “tiny” differences in the statistical distance of the
two input circuits, whereas the above oracle may reflect tiny changes when the
statistical distance is close to some threshold (1/2 in the above example) on which
the oracle changes its behaviour. This motivates our actual definition of A as
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a noisy oracle that produces its answer, not according to some fixed threshold,
but according to a random threshold, chosen afresh for each and every query.
Concretely, the oracle, which we call StaDifΨ , for any query (C0, C1), chooses a
uniformly random threshold t ← (13 , 1

3 ), and answers accordingly:

StaDifΨ (C0, C1) =

{

Y if s ≥ t (far distributions)
N if s < t (similar distributions)

.

The main challenge in proving that the security of the IO and OWPs realized by
A is not compromised by this oracle is that StaDifΨ has the power to query Ψ
on exponentially many points in order to compute s. For instance, it may query
Ψ on the preimage of a OWP challenge f (x) or of a given obfuscation O(C, r).
The key observation behind the proof is that the oracle’s final answer still does
not reflect how Ψ behaves locally on random points.

Intuitively, choosing the threshold t at random, for each query (C0, C1), guar-
antees that with high probability t is “far” from the corresponding statistical
distance s = Δ(CΨ

0 , CΨ
1 ). Thus, changing the oracle Ψ on, say, a single input x,

such as the preimage of an OWP challenge f (x), should not significantly change
s and will not affect the oracle’s answer; that is, unless the circuits query Ψ on
x with high probability to begin with. We give a reduction showing that we can
always assume that (C0, C1) are “smooth”, in the sense that they do not make
any specific query to Ψ with too high probability.

Following this intuition, we are able to show that through such local changes
that go undetected by StaDifΨ , we can move to an ideal world where inverting
the OWP or breaking IO can be easily shown to be impossible. We refer the
reader to the full version for further details.

Ruling out Black-Box Constructions of Hard NP∩coNP Problems. As mentioned
earlier, a fully black-box construction of hard problems in NP∩ coNP is actually
known assuming one-way permutations (OWPs), and cannot be ruled out as
in the case of SZK. Instead, we rule out constructions from (non-surjective)
injective one-way functions (IOWFs) and IO for circuits with IOWF gates. This
generalizes several previous results by Blum and Impagliazzo [BI87] and Rudich
[Rud88], showing that OWFs do not give hardness in NP ∩ coNP, by Matsuda
and Matsuura [MM11], showing that IOWFs do not give OWPs (which are a
special case of hardness NP∩ coNP), and by Asharov and Segev [AS16], showing
that OWFs and IO for circuits with OWF gates do not give OWPs. In fact, our
approach yields a new (and rather different) proof for each one of these results.

We follow a similar methodology to one we used for the case of SZK. That is,
we would like to come up with oracles (Ψ,A) such that Ψ realizes IOWFs and
IO for circuits with IOWFs gates, which are both secure in the presence of A,
whereas black-box constructions of problems in NP∩coNP from these primitives
can be easily solved by A. By black-box constructions here we mean a pair of
efficient oracle-aided non-deterministic verifiers V

(·)
0 , V

(·)
1 that for every oracle Ψ

implementing IOWFs and IO, yield co-languages L
Ψ
, LΨ in NP ∩ coNP[Ψ ].
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The requirement that V0, V1 give a language in NP ∩ coNP for every oracle
implementing IOWFs and IO follows previous modeling [BI87],5 and aligns with
how we usually think about correctness of black-box constructions of crypto-
graphic primitives. For instance, the construction of public-key encryption from
trapdoor permutations is promised to be correct, for all oracles implementing
the trapdoor permutation. Similarly, the construction of hard NP ∩ coNP lan-
guages from one-way permutations, give an NP ∩ coNP language for any oracle
implementing a permutation.6

We stress that a construction where correctness is only guaranteed for par-
ticular (even if natural) oracles may definitely exist. This is for example the
case if we only consider implementations of IO similar to those presented above
in the context of SZK. Indeed, in that construction the implementation of IO
has an additional property—it allows identifying invalid obfuscations (the Eval
oracle would simply return ⊥ on such obfuscations). This “verifiability” prop-
erty coupled with the injectivity of obfuscators actually imply a hard problem in
NP ∩ coNP in a black-box way.7 Our separation thus leverages the fact that IO
need not necessarily be verifiable, and rules out constructions that are required
to be correct for any implementation of IO, even a non-verifiable one.

Accordingly, the oracles Ψ = (f,O,Evalf,O) that we consider are a tweaked
version of the oracles considered in the SZK case. Now f is a random injective
function that is expanding, rather than a permutation, the oracle O is defined
as before, and the oracle Evalf,O is defined as before for valid obfuscations ̂C ∈
Image(O) but is allowed to act arbitrarily for invalid obfuscations. As for A,
this time it is trivially implemented by an oracle DecideΨ that, given input x,
simply returns the unique bit b such that Vb(x) = 1, namely it just decides the
corresponding language LΨ .

In the results mentioned above [Rud88,MM11,AS16], it is actually shown
that any query to such an oracle can be completely simulated with a small
number of queries to Ψ .8 We do not show such a simulation process. Instead,
we take a different approach inspired by our proof for the SZK setting described
above. Roughly speaking, we show that somewhat similarly to our statistical
difference oracle StaDifΨ , the oracle DecideΨ is also rather robust to random local
changes. The main observation here is that for any fixed yes-instance x ∈ LΨ ,
tweaking Ψ at a random input into a new oracle Ψ ′, it is likely that x will still

5 Rudich [Rud88] also considered a slight relaxation of constructions that are correct
for an overwhelming fraction of oracles rather than all.

6 We note that this issue does not come up for black-box constructions of SZK promise
problems, because the construction is allowed to yield instances that do not obey the
promise; there correctness is always guaranteed, and the only question is whether
the instances that do satisfy the promise are hard to decide.

7 E.g. the language of all valid obfuscations and indices i, such that the ith bit of the
obfuscated circuit is 1.

8 More accurately, this is the case for Rudich’s result for NP ∩ coNP, whereas for the
other results that rule out constructions of one-way permutations, one can simulate
an analog of Decide that inverts the permutation.
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be a yes-instance in LΨ ′
, as long as Ψ ′ is in our allowed family of oracles and

LΨ ′
is indeed in NP ∩ coNP[Ψ ′] (and the same is true for no-instances).

In slightly more detail, fixing a witness w such that V Ψ
1 (x,w) = 1, we can

show that since V1 makes a small number of oracle calls, with high probability
tweaking the oracle Ψ at a random place will not affect these oracle calls and
thus V Ψ ′

1 (x,w) = V Ψ
1 (x,w) = 1. Then, assuming LΨ ′

is guaranteed to be in
NP ∩ coNP, we can deduce that x must still a yes-instance (other witnesses
for this fact may be added or disappear, but this does not change the oracle’s
answer). In the body, we argue that indeed LΨ ′ ∈ NP ∩ coNP[Ψ ′], where we
strongly rely on the fact that arbitrary behavior of Eval is permitted on invalid
obfuscations.

Once again, we show that through local changes that go undetected by
DecideΨ , we can move to an ideal world where inverting the IOWF or break-
ing IO can be easily shown to be impossible. We refer the reader to Sect. 3 for
further details.

Implied Separations. As a result of the two separations discussed above, we
can rule out black-box constructions of hard problems in SZK or NP ∩ coNP
from various cryptographic primitives or complexity classes. This essentially
includes all primitives that have fully black-box constructions from OWPs (or
IOWFs) and IO for circuits with OWP (or IWOF) gates. This includes public-key
encryption, oblivious transfer, deniable encryption [SW14], functional encryp-
tion [Wat15], delegation, [BGL+15,CHJV15,KLW15], hard (on-average) PPAD
instances [BPR15], and more.

We note that there a few applications of IO that do not fall under this
characterization. For instance, the construction of IO for Turing machines from
IO-based succinct randomized encodings [BGL+15,CHJV15,KLW15] involves
obfuscating a circuit that itself outputs (smaller) obfuscated circuits. To capture
this, we would need to extend the above model to IO for circuits that can also
make IO oracle calls (on smaller circuits). Another example is the construction
of non-interactive witness indistinguishable proofs from IO [BP15]. There an
obfuscated circuit may get as input another obfuscated circuit and would have
to internally run it; furthermore, in this application, the code of the obfuscator
is used in a (non-black-box) ZAP. Extending the above model to account for
this type of IO applications is an interesting question that we leave for future
exploration.

The Positive Result: Collision-Resistance from IO and SZK-Hardness. We now
described the main ideas behind our construction of collision-resistant hash func-
tions. The starting point for the construction is the work of Ishai et al. [IKO05]
that shows how to construct collision-resistant hash functions from commit-
ments that are additively homomorphic (for simplicity, say over F2). The idea is
simple: we can hash � bits to m bits, where m is the size of a single bit commit-
ment and � can be arbitrarily longer, as follows. The hash key is a commitment
γ := (com(β1), . . . , com(β�)) to a random vector β ∈ F�

2, and hashing x ∈ F�
2,

is done by homomorphically computing a commitment to the inner product
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CRHγ(x) = com(〈β, x〉). Intuitively, the reason this works is that any collision in
CRHγ reveals a vector that is orthogonal to β and thus leaks information about
it and violating the hiding of the commitment.

At a high-level, we aim to mimic the above construction based on obfuscation.
As a key for the collision-resistant hash we can obfuscate a program Πβ associ-
ated with a random vector β that given x outputs a commitment com(〈β, x〉),
where the commitment is derandomized using a PRF.9 The obfuscation iO(Πβ)
can be thought of as the commitment to β, and evaluating this program at x,
corresponds to homomorphic evaluation. Despite the clear intuition behind this
construction, it is not clear how to prove its security based on IO. In fact, by the
work of Asharov and Segev [AS15], it cannot be proven based on a black-box
reduction as long as plain statistically-binding commitments are used, as these
can be constructed from OWPs in a fully black-box manner, and [AS15] rule
out black-box constructions of collision-resistant hashing from OWPs and IO
for circuits with OWP gates.

We show, however, that relying on a relaxed notion of perfectly-hiding com-
mitments, as well as subexponential hardness of IO and puncturable PRFs, the
construction can be proven secure. The perfect hiding of the commitment is
leveraged in a probabilistic IO argument [CLTV15] that involves a number of
hybrids larger than the overall number of commitments. We then observe that
these relaxed commitments follow from average-case hardness of the polar sta-
tistical difference problem SD0,1.10

2 One-Way Permutations, Indistinguishability
Obfuscation, and Hardness in SZK

In this section, we ask which cryptographic primitives imply hardness in the
class statistical zero-knowledge (SZK). Roughly speaking, we show that one-way
permutations (OWPs) and indistinguishability obfuscation (IO), for circuits with
OWP-gates, do not give rise to a black-box construction of hard problems in
SZK. This, in turn implies that many cryptographic primitives (e.g., public-key
encryption, functional encryption, and delegation), and hardness in certain low-
level complexity classes (e.g. PPAD), also do not yield black-box constructions
of hard problems in SZK.

We first motivate and define a framework of SZK relative to oracles, define
fully black-box constructions of hard SZK problems, and then move on to the
actual separation.

2.1 SZK and Statistical Difference

The notion of statistical zero-knowledge proofs was introduced in the semi-
nal work of Goldwasser et al. [GMR85]. The class of promise problems with
9 In the body, we describe a slightly more abstract construction where inner product

is replaced by an arbitrary 2-universal hash function.
10 Similar SZK-hardness is known to imply statistically-hiding commitments against

malicious receivers, but with a larger (constant) number of rounds [OV08].
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statistical zero-knowledge proofs (SZK) can be characterized by several complete
problems, such as statistical difference [SV03] and entropy difference [GV99] (see
also [Vad99] and references within). We shall focus on the characterization of SZK
by the statistical difference problem. Here an instance is a pair of circuit sam-
plers C0, C1 : {0, 1}n → {0, 1}m with the promise that the statistical distance
s = Δ(C0,C1) of the corresponding distributions is either large (say, s ≥ 2/3)
or small (say, s ≤ 1/3). The problem is to decide which is the case.

Hard Statistical Difference Problems from Cryptography: Motivation. SZK hard-
ness, and in particular hard statistical difference problems, are known to follow
from various number-theoretic and lattice problems that are commonly used
in cryptography, such as Decision Diffie-Hellman, Quadratic Residuosity, and
Learning with Errors. We ask more generally which cryptographic primitives
can be shown to imply such hardness, with the intuition that such primitives are
structured in a certain way. In particular, whereas one would not expect a com-
pletely unstructured object like one-way functions to imply such hardness, what
can we say for instance about public-key encryption, or even indistinguishabil-
ity obfuscation (which has proven to be structured enough to yield almost any
known cryptographic goal).

We prove that none of these primitives imply such hardness through the
natural class of black-box constructions and security reductions. To under-
stand what a black-box construction of a hard statistical difference problem
means, let us look at a specific example of the construction of such a prob-
lem from rerandomizable encryption. In a (say, symmetric-key) rerandomizable
encryption scheme, on top of the usual encryption and decryption algorithms
(Enc,Dec) there is a ciphertext rerandomization algorithm ReRand that can
statistically refresh ciphertexts. Namely, for any ciphertext CT encrypting a
bit b, ReRand(CT) produces a ciphertext that is statistically close to a fresh
encryption Enc(b). Note that this immediately gives rise to a hard statistical
difference problem: given a pair of ciphertexts (CT,CT′), decide whether the
corresponding rerandomized distributions given by the circuits (C0(·), C1(·)) :=
(ReRand(CT; ·),ReRand(CT′; ·)) are statistically far or close. Indeed, this corre-
sponds to whether they encrypt the same bit or not, which is hard to decide by
the security of the encryption scheme.

A feature of this construction of hard statistical difference instances is that,
similarly to most constructions in cryptography, it is fully black-box [RTV04]
in the sense that the circuits C0, C1 only make black-box use of the encryp-
tion scheme’s algorithms, and can in fact be represented as oracle-aided circuits
(CReRand(·)

0 , C
ReRand(·)
1 ). Furthermore, “hardness” can be shown by a black-box

reduction that can use any decider for the problem in a black-box way to break
the underlying encryption scheme. More generally, one can consider the sta-
tistical difference problem relative to different oracles implementing different
cryptographic primitives and ask when can hardness be shown based on a black-
box reduction. We will rule out such reductions relative to IO and OWPs (and
everything that follows from these in a fully black-box way).
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2.2 Fully Black-Box Constructions of Hard SD Problems from IO
and OWPs

We start by defining statistical difference problem relative to oracles. In the
following definition, for an oracle-aided (sampler) circuit C(·) with n-bit input
and an oracle Ψ , we denote by CΨ the output distribution CΨ (r) where r ←
{0, 1}n. For two distributions X and Y we denote their statistical distance by
Δ(X,Y).

Definition 2.1 (Statistical difference relative to oracles). For an oracle
Ψ , the statistical difference promise problem relative to Ψ , denoted as SDΨ =
(SDΨ

Y , SDΨ
N ), is given by

SDΨ
Y =

{

(C0, C1)
∣

∣

∣

∣

Δ(CΨ
0 ,CΨ

1 ) ≥ 2
3

}

,

SDΨ
N =

{

(C0, C1)
∣

∣

∣

∣

Δ(CΨ
0 ,CΨ

1 ) ≤ 1
3

}

.

We now formally define the class of constructions and reductions ruled out.
That is, fully black-box constructions of hard statistical distance problems from
OWPs and IO for OWP-aided circuits. The definition is similar in spirit to those
in [AS15,AS16], adapted to our context of SZK-hardness.

Definition 2.2. A fully black-box construction of a hard statistical dis-
tance problem from OWPs and IO for the class C of circuits with
OWP-gates consists of a collection of oracle-aided circuit pairs Π(·) =
{

Π
(·)
n =

{

(C(·)
0 , C

(·)
1 ) ∈ {0, 1}n×2

}}

n∈N

and a probabilistic oracle-aided reduc-

tion R that satisfy:

– Black-box security proof: There exist functions qR(·), εR(·) such that the
following holds. Let f be any distribution on permutations and let iO be any
distribution on functions such that ̂Cf ≡ Cf for any C(·) and r, where ̂C(·) :=
iO(C(·), r). Then for any probabilistic oracle-aided A that decides Π in the
worst-case, namely, for all n ∈ N

Pr
f,iO,A

[

Af,iO(C0, C1) = B for all
(C0, C1) ∈ Πn, B ∈ {Y,N}
such that (C0, C1) ∈ SDf,iO

B

]

= 1

the reduction breaks either f or iO, namely, for infinitely many n ∈ N either

Pr
x←{0,1}n

f,iO,A

[RA,f,iO(f(x)) = x
] ≥ εR(n),

or
∣

∣

∣

∣

Pr
[

ExpiO(f,iO),iO,C,RA(n) = 1
]

− 1
2

∣

∣

∣

∣

≥ εR(n),
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where in both R makes at most qR(n) queries to any of its oracles (A, f, iO),
and any query (C(·)

0 , C
(·)
1 ) it makes to A consists of circuits that also

make at most qR(n) queries to their oracles (f, iO). The random variable
ExpiO(f,iO),iO,C,RA(n) represents the reductions winning probability in the IO
security game relative to (f, iO).

We make several remarks about the definition:

– Correctness. Typically, we also require certain correctness from the black-
box construction. For instance, in the next section, we shall require that the
construction always satisfies the NP∩coNP structure. In the above definition,
the construction is allowed to yield instances (Cf,iO

0 , Cf,iO
1 ) that do not satisfy

the SZK promise; namely (Cf,iO
0 , Cf,iO

1 ) /∈ SDf,iO
Y ∪ SDf,iO

N . It is natural
to think of more stringent definitions that require that the corresponding
problem Πf,iO is non-trivial, in the sense that Πf,iO ∩ SDf,iO

Y �= ∅ and
Πf,iO ∩ SDf,iO

N �= ∅ (which is the case for known constructions of SZK
hardness from cryptographic primitives). Our impossibility is more general
and would, in particular, rule out such definitions as well.

– Worst-Case vs. Average-Case Hardness. In the above, we address worst-
case hardness, in the sense that the reduction R has to break the underlying
primitives only given a decider A that is always correct. One could further ask
whether IO and OWPs even imply average-case hardness in SZK (as do many
of the algebraic hardness assumptions in cryptography). Ruling out worst-
case hardness (as we will do shortly) in particular rules out such average-case
hardness as well.

– IO for Oracle-Aided Circuits. Following [AS15,AS16], we consider indis-
tinguishability obfuscation for oracle-aided circuits Cf that can make calls to
the one-way permutation oracle. This model captures constructions where IO
is applied to circuits that use pseudo-random generators, puncturable pseudo-
random functions, or injective one-way functions as all of those have fully
black-box constructions from one-way permutations (see further discussion
in [AS15]). This includes almost all known constructions from IO, includ-
ing public-key encryption, deniable encryption [SW14], functional encryp-
tion [Wat15], delegation [BGL+15,CHJV15,KLW15], and hard (on-average)
PPAD instances [BPR15]. Accordingly, separating SZK from IO and OWPs
in this model, results in a similar separation between SZK and any one of
these primitives.

We note that there a few applications though that do not fall under
this model. The first is in applications where the obfuscated circuit might
itself output (smaller) obfuscated circuit, for instance in the construction
of IO for Turing machines from IO-based succinct randomized encodings
[BGL+15,CHJV15,KLW15]. To capture such applications, one would have
to extend the model to also account for circuits with IO gates (and not only
OWP gates). A second example is the construction of non-interactive witness
indistinguishable proofs from IO [BP15]. There an obfuscated circuit may
get as input another obfuscated circuit and would have to internally run it;
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furthermore, in this application, the code of the obfuscator is used in a (non-
black-box) ZAP. Extending our results (and those of [AS15,AS16]) to these
models is an interesting question, left for future work.

– Security Loss. In the above definition the functions qR and εR capture
the security loss of the reduction. Most commonly in cryptography, the
query complexity is polynomial qR(n) = nO(1) and the probability of break-
ing the underlying primitive is inverse polynomial εR(n) = n−O(1). Our
lower-bounds will in-fact apply for exponential qR, ε−1

R . This allows captur-
ing also constructions that rely on subexponentially secure primitives (e.g.,
[BGL+15,CHJV15,KLW15,BPR15,BPW16]).

Ruling Out Fully Black-Box Constructions: A Road Map. Our main result in
this section is that a fully black-box construction of a hard statistical difference
problem from IO and OWPs does not exist. Furthermore, this holds even if the
latter primitives are exponentially secure.

Theorem 2.3. Any fully black-box construction of a statistical difference prob-
lem Π from OWPs and IO for circuits with OWP gates has an exponential
security loss: max(qR(n), ε−1

R (n)) ≥ Ω(2n/12).

The proof of the theorem follows a common methodology (applied for
instance in [HR04,HHRS15,AS15]). We exhibit two (distributions on) oracles
(Ψ,StaDifΨ ), where Ψ realizes OWPs and IO for circuits with OWP gates, and
StaDifΨ that decides SDΨ , the statistical difference problem relative to Ψ , in
the worst case. Since SD is complete for SZK in a relativizing manner, solving
SDΨ suffices to break SZKΨ . We then show that the primitives realized by Ψ
are (exponentially) secure even in the presence of StaDifΨ . Then viewing StaDif
as a worst-case decider A (as per Definition 2.2) directly implies Theorem 2.3,
ruling out fully black-box constructions with a subexponential security loss. We
defer the oracle description and the proof to the full version.

3 One-Way Functions, Indistinguishability Obfuscation,
and Hardness in NP ∩ coNP

In this section, we show that injective one-way functions (IOWFs) and indistin-
guishability obfuscation (IO), for circuits with IOWF-gates, do not give rise to
a black-box construction of hard problems in NP ∩ coNP. This can be seen as a
generalization of previous separations by Rudich [Rud88], showing that OWFs
do not give hardness in NP ∩ coNP, by Matsuda and Matsuura [MM11], show-
ing that IOWFs do not give one-way permutations (which are a special case of
hardness NP ∩ coNP), and by Asharov and Segev [AS16], showing that OWFs
and IO do not give one-way permutations. As in the previous section, the result
implies that many cryptographic primitives and hardness in PPAD, also do not
yield black-box constructions of hard problems in NP ∩ coNP.

We first define the framework of NP ∩ coNP relative to oracles, define fully
black-box constructions of hard NP ∩ coNP problems, and then move on to the
actual separation.
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3.1 NP ∩ coNP

Throughout, we shall canonically represent languages L ∈ NP ∩ coNP by their
corresponding non-deterministic poly-time verifiers V1, V0, where

L =
{

x ∈ {0, 1}� ∣

∣ ∃w : V1(x,w) = 1
}

,

L =
{

x ∈ {0, 1}� ∣

∣ ∃w : V0(x,w) = 1
}

= {0, 1}� \ L.

Hardness in NP ∩ coNP from Cryptography - Motivation. Hard (on average)
problems in NP ∩ coNP are known to follow based on certain number-theoretic
problems in cryptography, such as Discrete Log and Factoring. As in the pre-
vious section for SZK, we are interested in understanding which cryptographic
primitives would imply such hardness, again with the intuition that these should
be appropriately structured. For instance, it is known [Bra79] that any one-way
permutation f : {0, 1}n → {0, 1}n implies a hard problem in NP ∩ coNP, e.g.
given an index i ∈ [n] and an image f(x) find the i-th pre-image bit xi. In con-
trast, in his seminal work, Rudich [Rud88] proved that completely unstructured
objects like one-way functions cannot construct even worst-case hard instances
by fully black-box constructions. Here a fully black-box construction essentially
means that the non-deterministic verifiers only make black-box use of the OWF
(or OWP in the previous example) and the reduction establishing the hardness
is also black-box (in both the adversary and the OWF).

But what about more structured primitives such as public-key encryption,
oblivious transfer, or even indistinguishability obfuscation. Indeed, IO (plus
OWFs) has-been shown to imply hardness in PPAD and more generally in the
class TFNP of total search problems, which is often viewed as the search analog
of NP∩ coNP [MP91]. We will show, however, that fully black-box constructions
do not give rise to a hard problem in NP ∩ coNP from OWFs (or even injective
OWFs) and IO for circuits with OWF gates.

3.2 Fully Black-Box Constructions of Hardness in NP ∩ coNP from
IO and IOWFs

We start by defining NP ∩ coNP relative to oracles [Rud88]. This, in particular,
captures black-box constructions of such languages from cryptographic primi-
tives, such as one-way functions in [Rud88] or indistinguishability obfuscation,
which we will consider in this work.

Definition 3.1 (NP∩coNP relative to oracles ). Let S be a family of oracles
and let V

(·)
1 , V

(·)
0 be a pair of oracle-aided non-deterministic polynomial-time

verifiers. We say that V1, V0 define a collection of languages LS =
{

LΓ
∣

∣ Γ ∈ S
}

in NP ∩ coNP relative to S if for any Γ ∈ S, the machines V Γ
1 , V Γ

0 define a
language LΓ ∈ NPΓ ∩ coNPΓ . That is

LΓ =
{

x ∈ {0, 1}� ∣

∣ ∃w : V Γ
1 (x,w) = 1

}

,

L
Γ

=
{

x ∈ {0, 1}� ∣

∣ ∃w : V Γ
0 (x,w) = 1

}

= {0, 1}� \ L.
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We now formally define the class of constructions and reductions ruled out.
That is, fully black-box constructions of hard problems in NP ∩ coNP from injec-
tive one-way functions (IOWFs) and IO for IOWF-aided circuits. The definition
is similar in spirit to those in [AS15,AS16] and in the Sect. 2, adapted to the
context of NP ∩ coNP hardness.

Definition 3.2. A fully black-box construction of a hard NP ∩ coNP problem
L from IOWFs and IO for the class C of circuits with IOWF-gates is given
by two oracle aided poly-time machines (V0, V1) and a probabilistic oracle-aided
reduction R that satisfy:

1. Structure: Let S be the family of all oracles (f, iO) such that f is injective
and iO is a function such that ̂Cf ≡ Cf for any C(·) ∈ C, r, and ̂C(·) :=
iO(C, r). Then (V0, V1) define a language Lf,iO ∈ NPf,iO ∩ coNPf,iO relative
to any oracle (f, iO) ∈ S (as per Definition 3.1).

2. Black-box security proof: There exist functions qR(·), εR(·) such that the
following holds. Let (f, iO) be any distribution supported on the family S
defined above. Then for any probabilistic oracle-aided A that decides Lf,iO in
the worst-case, namely, for all n ∈ N

Pr
f,iO,A

[

Af,iO(x) = b for all
x ∈ {0, 1}n

, b ∈ {0, 1}
such that Vb(x) = 1

]

= 1

the reduction breaks either f or iO, namely, for infinitely many n ∈ N either

Pr
x←{0,1}n

f,iO,A

[RA,f,iO(f(x)) = x
] ≥ εR(n),

or
∣

∣

∣

∣

Pr
[

ExpiO(f,iO),iO,C,RA(n) = 1
]

− 1
2

∣

∣

∣

∣

≥ εR(n),

where in both R makes at most qR(n) queries to any of its oracles
(A, f, iO), and for any query x made to A, the non-deterministic ver-
ifiers V f,iO

0 (x), V f,iO
1 (x) make at most qR(n) queries to their oracles

(for any non-deterministic choice of a witness w). The random variable
ExpiO(f,iO),iO,C,RA(n) represents the reductions winning probability in the IO
security game relative to (f, iO).

Remark about Correct Structure. We note that here we explicitly do put a cor-
rectness requirement, which we refer to as structure; namely, that the construc-
tion yields a language in NP ∩ coNP for any implementation of OWPs and IO.
This is different from the setting from Definition 2.2 where we considered promise
problems and allowed the construction not to satisfy the promise occasionally.

Concretely, we require that V0, V1 give a language in NP ∩ coNP for every
oracle implementing IOWFs and IO. This follows the modeling of [BI87],11 and
11 Rudich [Rud88] also considered a slight relaxation of constructions that are correct

for an overwhelming fraction of oracles rather than all.
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aligns with how we usually think about correctness of black-box constructions of
cryptographic primitives. For instance, the construction of public-key encryption
from trapdoor permutations is promised to be correct, for all oracles implement-
ing the trapdoor permutation. Similarly, the construction of hard NP ∩ coNP
languages from one-way permutations, give an NP ∩ coNP language for any ora-
cle implementing a permutation.

We also note that as in Definition 2.2, our definition addresses worst-case
hardness, which makes our impossibility result stronger. See further discussion
after Definition 2.2.

Ruling out Fully Black-Box Constructions: A Road Map. Our main result in this
section is that fully black-box constructions of a hard NP ∩ coNP problem from
IO and IOWFs do not exist. Furthermore, this holds even if the latter primitives
are exponentially secure.

Theorem 3.3. Any fully black-box construction of an NP ∩ coNP problem L
from IOWFs and IO for circuits with IOWF gates has an exponential security
loss:

max(qR(n), ε−1
R (n)) ≥ Ω(2n/6)

The proof of the theorem follows a similar methodology to the proof of The-
orem 2.3. We exhibit two (distributions on) oracles (Ψ,DecideΨ ), where Ψ real-
izes IOWFs and IO for circuits with IOWF gates, and DecideΨ that decides
LΨ ∈ NPΨ ∩ coNPΨ in the worst case. We then show that the primitives realized
by Ψ are (exponentially) secure even in the presence of DecideΨ . Then viewing
Decide as a worst-case decider A (as per Definition 3.2) directly implies Theo-
rem 3.3, ruling out fully black-box constructions with a subexponential security
loss.

We defer the formal treatment to the full version.

4 Collision-Resistance from IO and SZK-Hardness

Asharov and Segev [AS15] showed that collision-resistant hashing cannot be con-
structed from (even subexponentially hard) indistinguishability obfuscation (IO)
and one-way permutations (OWPs) relying on common IO techniques. Slightly
more accurately, they rule out fully black-box constructions where (as in pre-
vious sections) IO is defined with respect to circuits with OWP oracle gates.
In this section, we show that, assuming IO and a strong form of SZK-hardness,
there is indeed a construction of collision-resistant hashing (CRH).

The High-Level Idea Behind the Construction. The starting point for our con-
struction is the work of Ishai et al. [IKO05] that shows how to construct collision-
resistant hash functions from commitments that are additively homomorphic (for
simplicity, say over F2). The idea is simple: we can hash � bits to m bits, where
m is the size of a single bit commitment and � can be arbitrarily longer, as fol-
lows. The hash key is a commitment γ := (com(β1), . . . , com(β�)) to a random
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vector β ∈ F�
2, and hashing x ∈ F�

2, is done by homomorphically computing a
commitment to the inner product CRHγ(x) = com(〈β, x〉).

This idea can, in fact, be abstracted to work with any commitment scheme
wherein given a commitment com(β) for a random key for a 2-universal hash
allows to homomorphically compute a commitment com(2UHβ(x)) to the hash
at any point x, so that the resulting commitment is compact in the sense that
it depends only on the size of 2UHβ(x) and not on the size of x. Intuitively,
the reason this works is that any collision in CRHγ implies a collision in the
underlying 2-universal hash 2UHβ , which leaks information about the hash key
β (concretely, any fixed x, x′ form a collision in a random hash function with
small probability) thereby violating the hiding of the commitment.

At a high-level, we aim to mimic the above construction based on obfuscation.
As a key for the collision-resistant hash we can obfuscate a program Πβ associ-
ated with a secret hash key β that given x outputs a commitment com(2UHβ(x)),
where the commitment is derandomized using a PRF. The obfuscation iO(Πβ)
can be thought of as the commitment to β, and evaluating this program at x,
corresponds to homomorphic evaluation. Despite the clear intuition behind this
construction, it is not clear how to prove its security based on IO. In fact, by
[AS15], it cannot be proven based on a black-box reduction as long as plain
statistically-binding commitments are used, as these can be constructed from
OWPs in a fully black-box manner.

We show, however, that relying on a relaxed notion of perfectly-hiding com-
mitments, as well as subexponential hardness of IO and puncturable PRFs, the
construction can be proven secure. The perfect hiding of the commitment is
leveraged in a probabilistic IO argument [CLTV15] that involves a number of
hybrids larger than the overall number of commitments. We then observe that
these relaxed commitments follow from appropriate average-case hardness of
SZK.12
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Abstract. In the conditional disclosure of secrets problem (Gertner
et al. J. Comput. Syst. Sci. 2000) Alice and Bob, who hold inputs x
and y respectively, wish to release a common secret s to Carol (who
knows both x and y) if and only if the input (x, y) satisfies some prede-
fined predicate f . Alice and Bob are allowed to send a single message to
Carol which may depend on their inputs and some joint randomness and
the goal is to minimize the communication complexity while providing
information-theoretic security.

Following Gay et al. (Crypto 2015), we study the communication com-
plexity of CDS protocols and derive the following positive and negative
results.

– (Closure): A CDS for f can be turned into a CDS for its comple-
ment f̄ with only a minor blow-up in complexity. More generally,
for a (possibly non-monotone) predicate h, we obtain a CDS for
h(f1, . . . , fm) whose cost is essentially linear in the formula size of h
and polynomial in the CDS complexity of fi.

– (Amplification): It is possible to reduce the privacy and correctness
error of a CDS from constant to 2−k with a multiplicative overhead
of O(k). Moreover, this overhead can be amortized over k-bit secrets.

– (Amortization): Every predicate f over n-bit inputs admits a CDS
for multi-bit secrets whose amortized communication complexity per
secret bit grows linearly with the input length n for sufficiently
long secrets. In contrast, the best known upper-bound for single-bit
secrets is exponential in n.

– (Lower-bounds): There exists a (non-explicit) predicate f over
n-bit inputs for which any perfect (single-bit) CDS requires com-
munication of at least Ω(n). This is an exponential improvement
over the previously known Ω(log n) lower-bound.

– (Separations): There exists an (explicit) predicate whose CDS com-
plexity is exponentially smaller than its randomized communication
complexity. This matches a lower-bound of Gay et al., and, com-
bined with another result of theirs, yields an exponential separation
between the communication complexity of linear CDS and non-linear

c© International Association for Cryptologic Research 2017
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CDS. This is the first provable gap between the communication com-
plexity of linear CDS (which captures most known protocols) and
non-linear CDS.

1 Introduction

Consider a pair of computationally-unbounded parties, Alice and Bob, each
holding an n-bit input, x and y respectively, to some public predicate f :
{0, 1}n × {0, 1}n → {0, 1}. Alice and Bob also hold a joint secret s ∈ {0, 1}
and have access to a joint source of randomness r

R← {0, 1}ρ. The parties wish to
disclose the secret s to a third party, Carol, if and only if the predicate f(x, y)
evaluates to 1. To this end, Alice (resp., Bob) should send to Carol a single
message a = a(x, s; r) (resp., b = b(y, s; r)). Based on the transcript (a, b) and
the inputs (x, y), Carol should be able to recover the secret s if and only if
f(x, y) = 1. (Note that Carol is assumed to know x and y.) That is, we require
two properties:

– Correctness: There exists a decoder algorithm Dec that recovers s from
(x, y, a, b) with high probability whenever (x, y) is a 1-input (i.e., f(x, y) = 1);

– Privacy: There exists a simulator Sim that, given a 0-input (x, y) (for which
the predicate evaluates to 0), samples the joint distribution of the transcript
(x, y, a, b) up to some small deviation error.

The main goal is to minimize the communication complexity of the protocol
which is taken to be the total bit-length of the messages a and b. (See Sect. 3 for
formal definitions.)

This form of Conditional Disclosure of Secrets (CDS) was introduced by
Gertner et al. [18] as a tool for adding data privacy to information-theoretically
private information retrieval (PIR) protocols [14] and was later used in the com-
putational setting as a light-weight alternative to zero-knowledge proofs (cf. [2]).
Apart from these applications, CDS plays a central role in the design of secret
sharing schemes for graph-based access structures (cf. [10,11,37]) and in the
context of attribute-based encryption [21,35]. In fact, CDS can be equivalently
formulated under any of these frameworks as discussed below.

Secret Sharing for Forbidden Graphs. CDS can also be viewed as a special form
of secret sharing for graph-based access structures (cf. [10,11,37]). Specifically,
consider a secret-sharing scheme whose parties are the nodes of a bipartite graph
G = (X ∪ Y,E) and a pair of parties (x, y) ∈ X × Y should be able to recover
the secret s if and only if they are connected by an edge. (It is also required that
singletons are not authorized, but other than that we do not require any pri-
vacy/correctness condition for other subsets of parties). Then, we can represent
the secret-sharing problem as the problem of realizing a CDS for the predicate
fG(x, y) = 1 ⇔ (x, y) ∈ E and vice-versa by setting the share of the x-th node
(resp., y-th node) to be the message a(x, s; r) (resp., b(y, s; r)). The commu-
nication complexity of the CDS protocol therefore corresponds to the size of
shares.
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Attribute-Based Encryption. CDS can be further viewed as a limited form of
private-key attribute-based encryption [21,35] which offers one-time information-
theoretic security. In such an encryption scheme both the decryption key ax of
a receiver and the ciphertext by of a sender are associated with some public
attributes x and y, respectively. The receiver should be able to decrypt the
plaintext m from the ciphertext by using the key ax only if the attributes x
and y “match” according to some predefined policy, i.e., satisfy some predicate
f(x, y). Using CDS for f , we can derive such a one-time secure scheme by letting
the decryption key be Alice’s message, ax = a(x, s; r), for a random secret s,
and taking the ciphertext to be Bob’s message by = b(y, s; r) together with a
padded-version of the message m⊕s. (Here we can think of (r, s) as the sender’s
private-key.) In fact, it was shown by Attrapadung [8] and Wee [38] that even in
the computational setting of public-key (multi-user) attribute-based encryption
(ABE), linear CDS schemes (in which the computation of Alice and Bob can
be written as a linear function in the secret an the randomness) form a central
ingredient. As a result, the ciphertext size and secret key of the ABE directly
depend on the communication complexity of the underlying CDS.

The Communication Complexity of CDS. In light of the above, it is interest-
ing to understand the communication complexity of CDS. Unfortunately, not
much is known. Gertner et al. [18] showed that any predicate f that can be
computed by a s-size Boolean formula admits a perfect linear CDS (with zero
correctness/privacy error) with communication complexity of O(s). This result
was extended by Ishai and Wee [26] to s-size (arithmetic) branching programs
and by Applebaum and Raykov [7] to s-size (arithmetic) span programs (though
in the latter case correctness is imperfect). Beimel et al. [9] proved that the CDS
complexity of the worst predicate f : {0, 1}n ×{0, 1}n → {0, 1} over n-bit inputs
is at most O(2n/2). A similar upper-bound was later established by Gay et al. [17]
for the case of linear CDS, where a matching (non-explicit) lower-bound follows
from the work of Mintz [31]. Very recently, Liu et al. [29] improved the worst-case
complexity of (non-linear) CDS to 2O(

√
n log n). Gay et al. [17] also initiated a

systematic treatment of the communication complexity of CDS and established
the first lower-bounds on the communication complexity of general CDS. Their
main result relates the CDS communication of a predicate f to its randomized
communication complexity. Roughly speaking, it is shown that a general CDS
for f must communicate at least Ω(log((R(f))) bits, and a linear CDS must
communicate at least Ω(

√
R(f)), where R(f) denotes the number of bits com-

municated in a randomized protocol that need to be exchanged between Alice
and Bob in order to compute f with constant error probability.1 This yields
(explicit) lower-bounds of Ω(log(n)) and Ω(

√
n), respectively, for concrete n-

bit predicates. Overall, for general CDS, there is an almost double-exponential

1 More precisely, R(f) can be replaced with the communication complexity of one-
message protocol from Alice to Bob plus the communication complexity of one-
message protocol from Bob to Alice.
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gap between the best known (logarithmic) lower-bound and the best known
(2O(

√
n log n)) upper bound.

2 Our Results

Following Gay et al. [17], we conduct a systematic study of the complexity of
CDS. Unlike previous works, we focus on manipulations and transformations of
various forms of CDS. Our approach yields several positive and negative results
regarding the complexity of CDS, and answers several open problems posed in
previous works. We proceed with a statement of our results.

2.1 Closure Properties

We begin by asking whether one can generally combine CDS for basic predicates
f1, . . . , fm into a CDS for a more complicated predicate h(f1, . . . , fm). Using
standard secret sharing techniques, one can derive such a transformation when
h is a monotone function (with overhead proportional to the monotone formula
size of h). However, these techniques fail to support non-monotone operations.
Our first observation asserts that linear CDS for f can be easily transformed
into a linear CDS for its complement f ≡ 1 − f . (A similar observation was
recently made by Ambrona et al. [4] in the related context of “linear predicate
encodings”.2)

Theorem 1 (Linear CDS is closed under complement). Suppose that f
has a linear CDS with randomness complexity of ρ and communication complexity
of t, then f has a linear CDS scheme with randomness complexity of t + ρ + 1
and communication complexity of 2(ρ + 1).

The theorem generalizes to arbitrary finite field F. (See Sect. 4.1.) Roughly speak-
ing, we rely on the following observation. It can be shown that, for a fixed input
(x, y), the parties jointly compute some linear operator Tx,y that has a high rank
whenever f(x, y) = 0, and low rank when f(x, y) = 1. We “reverse” the CDS by
essentially moving to the dual T ∗

x,y of Tx,y whose rank is high when f(x, y) = 1,
and low when f(x, y) = 0. One still has to find a way to distributively compute
the mapping T ∗

x,y. We solve this technicality by using a private simultaneous
message protocol (PSM) [15] that allows Alice and Bob to securely release an
image of T ∗

x,y to Carol without leaking any additional information.
Next, we show that a similar “reversing transformation” exists for general

(non-linear and imperfect) CDS protocols.

Theorem 2 (CDS is closed under complement). Suppose that f has a
CDS with randomness complexity of ρ and communication complexity of t and
privacy/correctness errors of 2−k. Then f ≡ 1 − f has a CDS scheme with
similar privacy/correctness errors and randomness/communication complexity
of O(k3ρ2t + k3ρ3).
2 We thank the anonymous referee for bringing out this result to our attention.
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Imitating the argument used for the case of linear CDS, we consider, for an
input (x, y) and secret s, the probability distribution Ds

x,y of the messages (a, b)
induced by the choice of the common random string. Observe that the distrib-
utions D0

x,y and D1
x,y are statistically far when f(x) = 1 (due to correctness),

and are statistically close when f(x, y) = 0 (due to privacy). Therefore, to prove
Theorem 2 we should somehow reverse statistical distance, i.e., construct a CDS
whose corresponding distributions E0

x,y and E1
x,y are close when D0

x,y and D1
x,y

are far, and vice versa. A classical result of Sahai and Vadhan [34] (building on
Okamoto [32]) provides such a reversing transformation for efficiently-samplable
distributions (represented by their sampling circuits). As in the case of linear
CDS, this transformation cannot be used directly since the resulting distribu-
tions do not “decompose” into an x-part and a y-part. Nevertheless, we can
derive a decomposable version of the reversing transformation by employing a
suitable PSM protocol. (See Sect. 4.2 for details.)

Theorems 1 and 2 can be used to prove stronger closure properties for CDS.
Indeed, exploiting the ability to combine CDS’s under AND/OR operations, we
can further show that CDS is “closed” under (non-monotone) formulas, i.e., one
can obtain a CDS for h(f1, . . . , fm) whose cost is essentially linear in the formula
size of h and polynomial in the CDS complexity of fi. (See Sect. 4.3 for details.)

2.2 Amplification

We move on to the study the robustness of CDS with respect to privacy and
correctness errors. Borrowing tools from Sahai and Vadhan [34], it can be shown
that CDS with constant correctness and privacy error of, say 1/3, can be boosted
into a CDS with an error of 2−k at the expense of increasing the communication
by a factor of O(k5). We show that in the context of CDS one can reduce the
overhead to O(k) and amortize it over long secrets.

Theorem 3 (Amplification). A CDS F for f which supports a single-bit
secret with privacy and correctness error of 1/3, can be transformed into a CDS
G for k-bit secrets with privacy and correctness error of 2−Ω(k) and communica-
tion/randomness complexity which are larger than those of F by a multiplicative
factor of O(k).

The proof relies on constant-rate ramp secret sharing schemes. (See Sect. 5.)

2.3 Amortizing CDS over Long Secrets

The above theorem suggests that there may be non-trivial savings when the
secrets are long. We show that this is indeed the case, partially resolving an
open question of Gay et al. [17].

Theorem 4 (Amortization over long secrets). Let f : {0, 1}n × {0, 1}n →
{0, 1} be a predicate. Then, for sufficiently large m, there exists a perfect lin-
ear CDS which supports m-bit secrets with total communication complexity of
O(nm).
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Recall that for a single-bit secret, the best known upper-bound for a general
predicate is O(2n/2) [9,17]. In contrast, Theorem 4 yields an amortized complex-
ity of O(n) per each bit of the secret. The constant in the big-O notation is not
too large (can be taken to be 12). Unfortunately, amortization kicks only when
the value of m is huge (double exponential in n). Achieving non-trivial savings
for shorter secrets is left as an interesting open problem.

The proof of Theorem 4 is inspired by a recent result of Potechin [33] regard-
ing amortized space complexity.3 Our proof consists of two main steps.

We begin with a batch-CDS scheme in which Alice holds a single input x, Bob
holds a single input y, and both parties hold 22

2n
secrets, one for each predicate

in Fn = {f : {0, 1}n × {0, 1}n → {0, 1}}. The scheme releases the secret sf if
and only if f evaluates to 1 on (x, y). Using a recursive construction, it is not
hard to realize such a CDS with communication complexity of O(n|Fn|).

Next, we use batch-CDS to get a CDS for a (single) predicate f and a vector
s of m = |Fn| secrets, which is indexed by predicates p ∈ Fn. We secret-share
each bit sp into two parts αp, βp and collectively release all αp’s via batch-CDS
(where αp is associated with the predicate p). Finally, we collectively release all
βp’s via batch-CDS where βp is associated with the predicate hp that outputs
1 on (x, y) if and only if h and the target function f agree on (x, y). The key-
observation is that αp and βp are released if only if f and p evaluates to 1. As a
result we get perfect privacy and semi-correctness: For 1-inputs (x, y), exactly
half of the secrets sp are released (the ones for which p evaluates to 1). The latter
property can be upgraded to perfect correctness by adding redundancy to the
secrets (via a simple pre-encoding). See Sect. 6 for full details.

2.4 Linear Lower-Bound

We change gears and move from upper-bounds to lower-bounds. Specifically, we
derive the first linear lower-bound on the communication complexity of general
CDS.

Theorem 5 (Lower-bound). There exists a predicate f : {0, 1}n × {0, 1}n →
{0, 1} for which any perfect (single-bit) CDS requires communication of at least
0.99n.

Previously the best known lower-bound for general CDS (due to [17]) was log-
arithmic in n. As noted by [17], an “insecure” realization of CDS requires a
single bit, and so Theorem 5 provides a rare example of a provable linear gap
in communication complexity between secure and insecure implementation of a
natural task. (As argued in [17], even super-constant gaps are typically out of
reach.)

3 In fact, Theorem 4 can be derived from Potechin’s theorem by extending the connec-
tion between space-limited computation and CDS to the setting of multiple secrets.
Instead, we present a self-contained proof which directly manipulates CDS and does
not go through other computational models. This proof is arguably simpler, more
instructive and yields (slightly) better amortized complexity.
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The proof of the lower-bound (given in Sect. 7) relies, again, on CDS manip-
ulations. Consider a generalized version of CDS where the parties wish to release
some Boolean function f(x, y, s) defined over x, y and the secret s. We show that
one can construct such a “generalized CDS” for a function f based on a stan-
dard CDS for a related predicate g : {0, 1}n × {0, 1}n → {0, 1}. In particular,
we use a standard CDS to release the value of s only if the residual function
f(x, y, ·) depends on s (i.e., g(x, y) = f(x, y, 0)⊕f(x, y, 1)). This way the output
f(x, y, s) can be always computed, either trivially, based on x, y alone, or based
on the additional knowledge of s, which is leaked when its value matters. More-
over, privacy is preserved since s is leaked only when its value matters, which
means that it can be derived anyway from f(x, y, s) and (x, y). We conclude
that a lower-bound on CDS follows from a lower-bound on generalized-CDS.
We then note that such a lower-bound essentially appears in the work of Feige
et al. [15]. Indeed, “generalized-CDS” can be equivalently viewed as a weakened
version of private simultaneous message protocols for which the lower-bound
of [15] applies.4

2.5 CDS vs. Linear CDS vs. Communication Complexity

Let us denote by CDS(f) the minimal communication complexity of CDS for f
with a single bit of secret and constant privacy/correctness error (say 0.1). We
define linCDS(f) similarly with respect to linear CDS protocols.

We re-visit the connection between CDS-complexity and randomized com-
munication complexity, and show that the former can be exponentially smaller
than the latter. Since linear CDS complexity is at least polynomial in the com-
munication complexity (linCDS(f) ≥ Ω(

√
R(f))), as shown by [17], we also

conclude that general CDS can have exponentially-smaller communication than
linear CDS.

Theorem 6 (Separation). There exists an (explicit) partial function f for
which (1) CDS(f) ≤ O(logR(f)) and (2) CDS(f) ≤ O(log linCDS(f)).

The first part of the theorem matches the lower-bound CDS(f) ≥ Ω(logR(f))
established by [17].5 The second part provides the first separation between linear
CDS and general (non-linear) CDS, resolving an open question of [17].

The proof of Theorem6 can be viewed as the communication complexity
analog of Aaronson’s [1] oracle separation between the complexity class SZK of
problems admitting statistical-zero knowledge proofs [19], and the class QMA
of problems admitting Quantum Merlin Arthur proofs. (See Sect. 8 for details.)

2.6 Discussion: The Big Picture

CDS vs. SZK. Our results highlight an important relation between conditional
disclosure of secrets to statistical-zero knowledge protocols. A CDS protocol
4 CDS, generalized CDS, and PSM, can be all captured under the framework of partial

garbling studied by Ishai and Wee [26].
5 The original lower-bound, which is stated for perfect CDS and for total functions,

readily generalizes to partial functions and imperfect CDS. See Appendix A.
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reduces the computation of f(x, y), to an estimation of the statistical distance
between a pair of “2-decomposable” distributions D0 = (a(x, 0; r), b(y, 0; r)) and
D1 = (a(x, 1; r), b(y, 1; r)), similarly to the way that languages that admit a sta-
tistical zero-knowledge proofs are reduced to the analogous problem of estimating
the statistical distance between a pair of efficiently-samplable distributions [34].
This simple insight has turned to be extremely useful for importing techniques
from the domain of SZK to the CDS world.

CDS: The Low-End of Information-Theoretic Protocols. Determining the com-
munication complexity of information-theoretic secure protocols is a fundamen-
tal research problem. Despite much efforts, we have very little understanding of
the communication complexity of simple cryptographic tasks, and for most mod-
els, there are exponentially-large gaps between the best known upper-bounds to
the best known lower-bounds. In an attempt to simplify the problem, one may
try to focus on the most basic settings with a minimal non-trivial number of
players (namely, 3) and the simplest possible communication pattern (e.g., single
message protocols). Indeed, in this minimal communication model, conditional
disclosure of secrets captures the notion of secret-sharing, just like private simul-
taneous message protocols (PSM) capture the notion of secure computation, and
zero-information Arthur-Merlin games (ZAM) [20] capture the notion of (non-
interactive) zero-knowledge. Of all three variants, CDS is the simplest one: For
any given predicate f the CDS communication of f is essentially upper-bounded
by its ZAM complexity which is upper-bounded by its PSM complexity [7].
Hence, CDS should be the easiest model for obtaining upper-bounds (protocols)
whereas PSM should be the easiest model for proving lower-bounds.

Our results, however, demonstrate that the current techniques for proving
PSM lower-bounds [15] also apply to the CDS model. The situation is even
worse, since, by Theorem 4, the amortized communication complexity of CDS is
indeed linear (per bit). We therefore conclude that proving a super-linear lower-
bound in the PSM model requires a method that fails to lower-bound the amor-
tized communication of CDS. Put differently, lower-bounds techniques which do
not distinguish between PSM complexity and amortized CDS complexity cannot
prove super-linear lower-bounds. This “barrier” provides a partial explanation
for the lack of strong (super-linear) lower-bounds for PSM. It will be interest-
ing to further formalize this argument and present some syntactic criteria that
determines whether a lower-bound technique is subject to the CDS barrier.

3 Preliminaries

Through the paper, real numbers are assumed to be rounded up when being
typecast into integers (log n always becomes �log n, for instance). The statistical
distance between two discrete random variables, X and Y , denoted by Δ(X;Y ) is
defined by Δ(X;Y ) := 1

2

∑
z |Pr[X = z] − Pr[Y = z]|. We will also use statistical

distance for probability distributions, where for a probability distribution D the
value Pr[D = z] is defined to be D(z).
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3.1 Conditional Disclosure of Secrets

We define the notion of Conditional Disclosure of Secrets [18].

Definition 1 (CDS). Let f : X×Y → {0, 1} be a predicate. Let F1 : X×S×R →
T1 and F2 : Y × S × R → T2 be deterministic encoding algorithms, where S is
the secret domain. Then, the pair (F1, F2) is a CDS scheme for f if the function
F (x, y, s, r) = (F1(x, s, r), F2(y, s, r)) that corresponds to the joint computation
of F1 and F2 on a common s and r, satisfies the following properties:

1. (δ-Correctness) There exists a deterministic algorithm Dec, called a decoder,
such that for every 1-input (x, y) of f and any secret s ∈ S we have that:

Pr
r

R←R
[Dec(x, y, F (x, y, s, r)) �= s] ≤ δ

2. (ε-Privacy) There exists a simulator Sim such that for every 0-input (x, y) of
f and any secret s ∈ S: it holds that

Δ
r

R←R
(Sim(x, y); F (x, y, s, r)) ≤ ε

The communication complexity of the CDS protocol is (log |T1| + log |T2|) and
its randomness complexity is log |R|. If δ and ε are zeros, such a CDS scheme
is called perfect.

By default, we let X = Y = {0, 1}n, S = {0, 1}s, R = {0, 1}ρ, T1 = {0, 1}t1 ,
and T2 = {0, 1}t2 for positive integers n, s, ρ, t1, and t2.

Linear CDS. We say that a CDS scheme (F1, F2) is linear over a finite field
F (or simply linear) if, for any fixed input (x, y), the functions F1(x, s, r) and
F2(y, s, r) are linear over F in the secret s and in the randomness r, where
the secret, randomness, and messages are all taken to be vectors over F, i.e.,
R = F

ρ, S = F
s, T1 = F

t1 and T2 = F
t2 . (By default, we think of F as the

binary field, though our results hold over general fields.) Such a linear CDS can
be canonically represented by a sequence of matrices (Mx)x∈X and (My)y∈Y

where Mx ∈ F
t1×(1+ρ) and My ∈ F

t2×(1+ρ) and F1(x, s, r) = Mx ·
(

s
r

)
and

F2(x, s, r) = My ·
(

s
r

)
. It is not hard to show that any linear CDS with non-trivial

privacy and correctness errors (smaller than 1) is actually perfect. Moreover, the
linearity of the senders also implies that the decoding function is linear in the
messages (cf. [17]).6

Definition 2. We denote by CDS(f) the least communication complexity of a
CDS protocol for f with 1

10 -correctness and 1
10 -privacy. linCDS(f) is defined anal-

ogously for linear CDS protocols.
6 One can further consider a seemingly weaker form of linearity in which only the

decoder is linear [17]. Indeed, our separation between linear CDS and standard CDS
applies to this setting as well.
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3.2 Private Simultaneous Message Protocols

We will also need the following model of information-theoretic non-interactive
secure computation that was introduced by [15], and was later named as Private
Simultaneous Message (PSM) protocols by [23].

Definition 3 (PSM). Let f : X × Y → Z be a function. We say that a pair
of deterministic encoding algorithms F1 : X × R → T1 and F2 : Y × R → T2

are PSM for f if the function F (x, y, r) = (F1(x, r), F2(y, r)) that corresponds
to the joint computation of F1 and F2 on a common r, satisfies the following
properties:

1. (δ-Correctness) There exists a deterministic algorithm Dec, called decoder,
such that for every input (x, y) we have that:

Pr
r

R←R
[Dec(F (x, y, r)) �= f(x, y)] ≤ δ.

2. (ε-Privacy) There exists a randomized algorithm (simulator) Sim such that
for any input (x, y) it holds that:

Δ
r

R←R
(Sim(f(x, y));F (x, y, r)) ≤ ε.

The communication complexity of the PSM protocol is defined as the total encod-
ing length (log |T1| + log |T2|), and the randomness complexity of the protocol is
defined as the length log |R| of the common randomness. If δ and ε are zeros,
such a PSM scheme is called perfect. The scheme is balanced [6] if the sim-
ulator maps the uniform distribution over Z to the uniform distribution over
T = T1 × T2 and the decoder maps the uniform distribution over T to the uni-
form distribution over Z.

3.3 Randomized Encoding and CDS Encoding

When talking about PSM protocols, we will use F (x, y, r) as abbreviation for
(F1(x, r), F2(y, r)), and analogously for CDS. When we do not need to explic-
itly argue about the common randomness, we will suppress it as an argument
to F – that is, we will use F (x, y) to denote the random variable produced
by F (x, y, r) for uniformly random r. Moreover, observe that the correctness
and privacy conditions of both PSM and CDS are phrased as properties of the
joint mapping F . One can therefore consider a non-decomposable CDS/PSM F
which respects privacy and correctness, but (possibly) fails to decompose into an
x-part and a y-part (i.e., some of its outputs depend both on x and y). In this
case, we can ignore the partition of the input into x, y and parse them as a
single argument w = (x, y). Following [6,24] we refer to this generalization of
PSM as randomized encoding of f , and to the generalized version of CDS as a
CDS-encoding of f . The notion of perfect and balanced PSM and perfect and
linear CDS carry naturally to this setting as well. These non-decomposable vari-
ants can be trivially realized (for PSM set F (x, y) = f(x, y) and for CDS take
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F (x, y, s) = f(x, y) ∧ s). Nevertheless, they offer a useful abstraction. In par-
ticular, we will use these non-decomposable notions as a useful stepping stone
towards obtaining a decomposable realization.

4 Closure Properties

In this section, we establish several closure properties of CDS. We begin with
closure under complement for linear CDS, then, extend the result to general
CDS, and finally, prove that general and linear CDS are closed under NC1

circuits (or equivalently under Boolean formulas).

4.1 Reversing Linear CDS

We begin by proving Theorem1 (restated here for the convenience of the reader).

Theorem 7 (Linear CDS is closed under complement). Let f be a func-
tion that has a linear CDS scheme F with randomness complexity of ρ field
elements and communication complexity of t field elements. Then, the comple-
ment function f ≡ 1−f has a linear CDS scheme with randomness complexity of
(t+ρ+1) field elements and communication complexity of 2(ρ+1) field elements.

Proof. Let F1, F2 be a linear CDS scheme for f with randomness complexity ρ
and total communication complexity t = t1 + t2, where t1 is the output length
of F1 and t2 is the output length of t2. Due to linearity, we can assume that
F1(x, s, c) and F2(y, s, c) are computed by applying matrices Mx and My to the

vector
(

s
c

)
, respectively. We parse Mx = (vx|Tx) and My = (vy|Ty), i.e., vx

(resp., vy) denotes the first column of Mx (resp., My), and Tx (resp., Ty) denotes
the remaining columns. In the following we fix x, y to be some inputs and let

v =
(

vx

vy

)
, T =

(
Tx

Ty

)
, M = (v|T ).

One can observe that due to the linearity of CDS, it holds that f(x, y) = 0
if and only if v ∈ colspan(T ). Indeed, the joint distribution of the messages,

M

(
s
c

)
, is uniform over the subspace Us = colspan(T ) + sv. If v ∈ colspan(T )

the subspace Us collapses to colspan(T ) regardless of the value of s (and so we
get perfect privacy), whereas for v /∈ colspan(T ), different secrets s �= s′ induce
disjoint subspaces Us and Us′ , and so the secret can be perfectly recovered.

Based on this observation, one can construct a non-decomposable CDS for
f (in which Alice and Bob are viewed as a single party) as follows. Compute a
random mask αT v (where α is a random vector), and output the masked secret
bit d = s+αT v together with the row vector γ = αT T . The decoding procedure
starts by finding a vector z such that v = Tz (such a vector always exists since
v ∈ colspan(T ) if f(x, y) = 0), and then outputs d−γz = s+αT v−(αT T )z = s.
Of course, the resulting scheme is not decomposable, however, we can fix this
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problem by letting Alice and Bob compute a PSM of it. We proceed with a
formal description.

We construct CDS scheme G = (G1, G2) for f as follows: Alice and Bob get
shared randomness q = (u,w,α1,α2), where u ∈ F, w ∈ F

ρ, and α1 ∈ F
t1 ,α2 ∈

F
t2 . Then they compute

G1(x, s, q) = (αT
1 Tx + wT ,αT

1 · vx + u + s)

and
G2(y, s, q) = (αT

2 Ty − wT ,αT
2 · vy − u).

The decoder on input (m1, b1) from Alice and (m2, b2) from Bob does the fol-
lowing: it finds a vector z such that v = Tz and outputs b1 + b2 − (m1 +m2) ·z.

We now prove that the pair (G1, G2) is a CDS for f starting with correctness.
Fix an input (x, y) for which f(x, y) = 0. Recall that in this case v ∈ colspan(T ),
and so the decoder can find z as required. It is not hard to verify that in this

case the decoding formula recovers the secret. Indeed, letting α =
(

α1

α2

)
, we

have

b1 + b2 − (m1 + m2) · z = s + αT · v − (αT · T ) · z = s + αT · v − αT · v = s.

We now turn to proving the perfect privacy of the protocol. Consider any
(x, y) such that f(x, y) = 1 and let M = (v|T ) be the joint linear mapping. To
prove privacy, it suffices to show that, for random α

R← F
t, the first entry of

the vector αT M is uniform conditioned on the other entries of the vector. To
see this, first observe that αT M is distributed uniformly subject to the linear
constraints αT M ·r = 0 induced by all vectors r in the Kernel of M . Therefore,
αT v is uniform conditioned on αT T if and only if all r’s in the Kernel of M
have 0 as their first entry. Indeed, if this is not the case, then v ∈ colspan(T ),
and so (x, y) cannot be 1-input of f .

Finally, observe that the protocol consumes (t + ρ + 1) field elements for the
joint randomness, and communicates a total number of 2ρ + 2 field elements. ��

4.2 Reversing General CDS

We continue by proving Theorem2 (restated below).

Theorem 8 (CDS is closed under complement). Suppose that f has a
CDS with randomness complexity of ρ and communication complexity of t and
privacy/correctness errors of 2−k. Then f ≡ 1 − f has a CDS scheme with
similar privacy/correctness errors and randomness/communication complexity
of O(k3ρ2t + k3ρ3).

We begin with the following reversing transformation of Sahai and
Vadhan [34, Corollary 4.18].
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Construction 9 (Statistical Distance Reversal). Let D0,D1 : Q → L be
a pair of functions where Q = {0, 1}ρ and L = {0, 1}t. For a parameter k, let
m = k3ρ2, and let H = {h : {0, 1}m × Qm × Lm → S} be a family of 2-universal
hash functions where S = {0, 1}(ρ+1)m−2(m/k)−k. The functions C0 and C1 take
an input (b, r, b′, r′, h, u) ∈

(
{0, 1}m × Qm

)2 × H × U , and output the tuple

(Db(r), b, h, z)

where Db(r) =: (Db1(r1), . . . , Dbm(rm)), and

z =

{
h(b, r,Db′

(r′)) for C0

u for C1
.

In the following, we denote by D0 (resp., D1, C0, C1) the probability distri-
butions induced by applying the function D0 (resp., D1, C0, C1) to a uniformly
chosen input.

Fact 10 (Corollary 4.18 in [34]). In the set-up of Construction 9, the follow-
ing holds for every parameter k.

1. If Δ(D0,D1) < 2−k then Δ(C0, C1) > 1 − 2−k.
2. If Δ(D0,D1) > 1 − 2−k, then Δ(C0, C1) < 2−k.

Fact 10 allows to transform a CDS F (x, y, s, r) = (F1(x, s; r), F2(y, s; r)) for
the function f , into a CDS encoding C for f . For inputs x, y and secret s, the CDS
encoding C samples a message from the distribution Cs

xy obtained by applying
Construction 9 to the distributions D0

xy = F (x, y, 0, r) and D1
xy = F (x, y, 1, r).

Unfortunately, the resulting CDS encoding is not decomposable since the
hash function is applied jointly to the x-th and y-th components of the distribu-
tions D0

xy and D1
xy. We fix the problem by using a PSM of h. Let us begin with

the following more general observation that shows that h can be safely replaced
with its randomized encoding.

Lemma 1. Under the set-up of Construction 9, for every h ∈ H let ĥ be a perfect
balanced randomized encoding of h with randomness space V and output space
Ŝ. The function E0 (resp., E1) is defined similarly to C0 (resp., C1) except that
the input is (b, r, b′, r′, h, v, ŝ) ∈

(
{0, 1}m × Qm

)2 × H × V × Ŝ and the output
is identical except for the z-part which is replaced by

ẑ =

{
ĥ(b, r,Db′

(r′); v) for E0

ŝ for E1
.

Then, the conclusion of Fact 10 holds for E0 and E1 as well. Namely, for every
parameter k,

1. if Δ(D0,D1) < 2−k then Δ(E0, E1) > 1 − 2−k;
2. if Δ(D0,D1) > 1 − 2−k, then Δ(E0, E1) < 2−k.
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Proof. Fix D0 and D1. We prove that Δ(E0, E1) = Δ(C0, C1) and conclude
the lemma from Fact 10. Indeed, consider the randomized mapping T which
maps a tuple (a, b, h, z) to (a, b, h,Sim(z)) where Sim is the simulator of the
encoding ĥ. Then, by the perfect privacy and the balanced property, T takes
C0 to E0 and C1 to E1. Since statistical distance can only decrease when the
same probabilistic process is applied to two random variables, it follows that
Δ(C0, C1) ≤ Δ(T (C0), T (C1)) = Δ(E0, E1). For the other direction, consider
the mapping T ′ which maps a tuple (a, b, h, ẑ) to (a, b, h,Dec(ẑ)) where Dec
is the decoder of the encoding. Then, by the perfect correctness and by the
balanced property, T takes E0 to C0 and E1 to C1. It follows that Δ(E0, E1) ≤
Δ(T ′(E0), T ′(E1)) = Δ(C0, C1), and the lemma follows. ��

We can now prove Theorem 8.

Proof (Proof of Theorem 8). Let F = (F1, F2) be a CDS for the function f with
randomness complexity ρ, communication t and privacy/correctness error of 2−k.
For inputs x, y and secret σ, the CDS for f will be based on the functions Eσ

defined in Lemma 1 where D0(r) = F (x, y, 0; r) and D1(r) = F (x, y, 1; r). In
particular, we will instantiate Lemma1 as follows.

Let

α = (b, r ,Db
xy(r)), where Db

xy(r) := (F (x, y, b1; r1), . . . , F (x, y, bm; rm))

be the input to the hash function h. Let n0 = m(1 + ρ + t) denote the length
of α. Observe that each bit of α depends either on x or on y but not in both
(since F is a CDS). Let A ⊂ [n0] denote the set of entries which depend on x
and let B = [n0]\A be its complement. Let n1 = (ρ+1)m−2m/k−k denote the
output length of the hash function family H. We implement H = {h} by using
Toeplitz matrices. That is, each function is defined by a binary Toeplitz matrix
M ∈ F

n1×n0
2 (in which each descending diagonal from left to right is constant)

and a vector w ∈ F
n1
2 , and h(α) = Mα+w. Let us further view the hash function

h(α) as a two-argument function h(αA, αB) and let

ĥ(αA, αB ; v) = (MAαA + w + v,MBαB − v),

where v ∈ F
n1
2 and MA (resp. MB) is the restriction of M to the columns in A

(resp., columns in B). It is not hard to verify that ĥ is a perfect balanced PSM
for h. (Indeed decoding is performed by adding Alice’s output to Bob’s output,
and simulation is done by splitting an output β of h into two random shares
c1, c2 ∈ F

n1
2 which satisfy c1 + c2 = β.)

Consider the randomized mapping Eσ
xy obtained from Lemma 1 instantiated

with Ds(r) = Ds
xy(r) = F (x, y, s; r) and the above choices of ĥ. We claim that

Eσ
xy is a CDS for f with privacy and correctness error of 2−k. To see this first

observe that, by construction, the output of Eσ
xy can be decomposed into an

x-component E1(x, σ) and a y-component E2(y, σ). (All the randomness that is
used as part of the input to E is consumed as part of the joint randomness of
the CDS.)



Conditional Disclosure of Secrets 741

To prove privacy, fix some 0-input (x, y) of f and note that f(x, y) = 1 and
therefore, by the correctness of the CDS F , it holds that Δ(D0

xy,D1
xy) > 1−2−k.

We conclude, by Lemma 1, that Δ(E0
xy, E1

xy) < 2−k and privacy holds. For
correctness, fix some 1-input (x, y) of f and note that f(x, y) = 0 and therefore,
by the privacy of the CDS F , it holds that Δ(D0

xy,D1
xy) < 2−k. We conclude,

by Lemma 1, that Δ(E0
xy, E1

xy) > 1 − 2−k and so correctness holds (by using
the optimal distinguisher as a decoder). Finally, since the description length of
h is n0 + 2n1 the randomness complexity of ĥ is n1 and the communication
complexity of ĥ is 2n1, the overall communication and randomness complexity
of the resulting CDS is O(k3ρ2t + k3ρ3). ��

4.3 Closure Under Formulas

Closure under formulas can be easily deduced from Theorems 7 and 8.

Theorem 11. Let g be a Boolean function over m binary inputs that can be
computed by a σ-size formula. Let f1, . . . , fm be m boolean functions over X ×Y
each having a CDS with t communication and randomness complexity, and 2−k

privacy and correctness errors. Then, the function h : X × Y → {0, 1} defined
by g(f1(x, y), . . . , fm(x, y)) has a CDS scheme with O(σk3t3) randomness and
communication complexity, and σ2−k privacy and correctness errors. Moreover,
in the case of linear CDS, the communication and randomness complexity are
only O(σt) and the resulting CDS is also linear.

Proof. Without loss of generality, assume that the formula g is composed of AND
and OR gates and all the negations are at the bottom (this can be achieved by
applying De Morgan’s laws) and are not counted towards the formula size. We
prove the theorem with an upper-bound of σ · Ck3t3 where C is the constant
hidden in the big-O notation in Theorem8 (the upper-bound on the communi-
cation/randomness complexity of the complement of a CDS).

The proof is by induction on σ. For σ = 1, the formula g is either fi(x, y) or
f i(x, y) for some i ∈ [m], in which case the claim follows either from our assump-
tion on the CDS for fi or from Theorem 8. To prove the induction step, consider
a σ-size formula g(f1, . . . , fm) of the form g1(f1, . . . , fm)�g2(f1, . . . , fm) where �
is either AND or OR, g1 and g2 are formulas of size σ1 and σ2, respectively, and
σ = σ1+σ2+1. For the case of an AND gate, we additively secret share the secret
s into random s1 and s2 subject to s1 + s2 = s and use a CDS for g1 with secret
s1 and for g2 for the secret s2. For the case of OR gate, use a CDS for g1 with
secret s and for g2 for the secret s. By the induction hypothesis, the communica-
tion and randomness complexity are at most σ1 ·Ck3t3+σ2 ·Ck3t3+1 ≤ σCk3t3,
and the privacy/correctness error grow to σ12−k + σ22−k ≤ σ2−k, as required.

The extension to the linear case follows by plugging the upper-bound from
Theorem 7 to the basis of the induction, and by noting that the construction
preserves linearity. ��
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5 Amplifying Correctness and Privacy of CDS

In this section we show how to simultaneously reduce the correctness and privacy
error of a CDS scheme F . Moreover, the transformation has only minor cost when
applied to long secrets.

Theorem 12. Let f : X × Y → {0, 1} be a predicate and let F be a CDS
for f which supports 1-bit secrets with correctness error δ0 = 0.1 and privacy
error ε0 = 0.1. Then, for every integer k there exists a CDS G for f with
k-bit secrets, privacy and correctness errors of 2−Ω(k). The communication
(resp., randomness) of G larger than those of F by a multiplicative factor of
O(k).

Proof. Let ε be some constant larger than ε0. Let E be a randomized mapping
that takes k-bit message s and O(k)-bit random string into an encoding c of
length m = Θ(k) with the following properties:

1. If one flips every bit of E(s) independently at random with probability δ0
then s can be recovered with probability 1 − exp(−Ω(k)).

2. For any pair of secrets s and s′ and any set T ⊂ [m] of size at most εm,
the T -restricted encoding of s is distributed identically to the T -restricted
encoding of s′, i.e., (E(s)i)i∈T ≡ (E(s′)i)i∈T .

That is, E can be viewed as a ramp secret-sharing scheme with 1-bit shares which
supports robust reconstruction.7 Such a scheme can be based on any linear error-
correcting code with good dual distance [13]. In particular, by using a random
linear code, we can support ε0 = δ0 = 0.1 or any other constants which satisfy
the inequality 1 − H2(δ0) > H2(ε0).

Given the CDS F = (F1, F2) we construct a new CDS G = (G1, G2) as
follows. Alice and Bob jointly map the secret s ∈ {0, 1}k to c = E(s; r0) (using
joint randomness r0). Then, for every i ∈ [m], Alice outputs F1(x, ci; ri) and Bob
outputs F2(y, ci; ri), where r1, . . . , rm are given as part of the shared randomness.

Let us analyze the correctness of the protocol. Fix some x, y for which
f(x, y) = 1. Consider the decoder which given (v1, . . . , vm) and x, y applies
the original decoder of F to each coordinate separately (with the same x, y),
and passes the result ĉ ∈ {0, 1}m to the decoding procedure of E, promised by
Property (1) above. By the correctness of F , each bit ĉi equals to ci with prob-
ability of at least 1 − δ0. Therefore, the decoder of E recovers c with all but
1 − exp(−Ω(k)) probability.

Consider the simulator which simply applies G to the secret s′ = 0k. Fix x
and y and a secret s. To upper-bound the statistical distance between G(x, y, s′)
and G(x, y, s), we need the following standard “coupling fact” (cf. [30, Lemma 5]
for a similar statement).
7 In a ramp secret sharing there may be a gap between the privacy bound (the number

of parties for which privacy hold) and the reconstruction bound (the number of
parties which can reconstruct the secret) and one does not care if there are sets of
size in between these bounds whose joint shares reveal partial information about the
secret.
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Fact 13. Any pair of distributions, (D0,D1) whose statistical distance is ε can
be coupled into a joint distribution (E0, E1, b) with the following properties:

1. The marginal distribution of E0 (resp., E1) is identical to D0 (resp., D1).
2. b is an indicator random variable which takes the value 1 with probability ε.
3. Conditioned on b = 0, the outcome of E0 equals to the outcome of E1.

Define the distributions D0 := F (x, y, 0) and D1 := F (x, y, 1), and let (E0, E1, b)
be the coupled version of D0,D1 derived from Fact 13. Let c = E(s) and c′ =
E(s′). Then,

G(x, y, s) = (E1
c1 , . . . , E

m
cm),

and
G(x, y, s′) = (E1

c′
1
, . . . , Em

c′
m

),

where for each i ∈ [m] the tuple (Ei
0, E

i
1, b

i) is sampled jointly and independently
from all other tuples. Let T = {i ∈ [m] : bi �= 0}. Then, it holds that

Δ(G(x, y, s);G(x, y, s′)) ≤ Δ((T, (Ei
ci)i∈T ); (T, (Ei

c′
i
)i∈T ))

≤ Pr[|T | > εm] ≤ exp(−Ω(k)),

where the first inequality follows from Fact 13, the second inequality follows from
the second property of E and the last inequality follows from a Chernoff bound
(recalling that ε − ε′ > 0 is a constant and m = Θ(k)). The theorem follows. ��

Remark 1 (Optimization). The polarization lemma of Sahai and Vadhan [34]
provides an amplification procedure which works for a wider range of parame-
ters. Specifically, their transformation can be applied as long as the initial cor-
rectness and privacy errors satisfy the relation δ20 > ε0. (Some evidence suggest
that this condition is, in fact, necessary for any amplification procedure [22].)
Unfortunately, the communication overhead in their reduction is polynomially
larger than ours and does not amortize over long secrets. It is not hard to com-
bine the two approaches and get the best of both worlds. In particular, given
a CDS with constant correctness and privacy errors which satisfy δ20 > ε0, use
the polarization lemma with constant security parameter k0 to reduce the errors
below the threshold needed for Theorem 12, and then use the theorem to effi-
ciently reduce the errors below 2−k. The resulting transformation has the same
asymptotic tradeoff between communication, error, and secret length, and can be
used for a wider range of parameters. (This, in particular, yields the statement
of Theorem 3 in the introduction in which δ0 and ε0 are taken to be 1/3.)

Remark 2 (Preserving efficiency). Theorem 12 preserves efficiency (of the CDS
senders and decoder) as long as the encoding E, and its decoding algorithm are
efficient. This can be guaranteed by replacing the random linear codes (for which
decoding is not know to be efficient) with an Algebraic Geometric Codes (as sug-
gested in [13]; see also Claim 4.1 in [25] and [12,16]). This modification requires
to start with smaller (yet constant) error probabilities δ0, ε0. As in Remark 1, this
limitation can be easily waived. First use the inefficient transformation (based
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on random binary codes) with constant amplification k0 = O(1) to reduce the
privacy/correctness error below the required threshold, and then use the efficient
amplification procedure (based on Algebraic Geometric Codes).

6 Amortizing the Communication for Long Secrets

In this section we show that, for sufficiently long secrets, the amortized commu-
nication cost of CDS for n-bit predicates is O(n) bits per each bit of the secret.
As explained in the introduction, in order to prove this result we first amortize
CDS over many different predicates (applied to the same input (x, y)). We refer
to this version of CDS as batch-CDS, formally defined below.

Definition 4 (batch-CDS). Let F = (f1, . . . , fm) be an m-tuple of predicates
over the domain X × Y. Let F1 : X × Sm × R → T1 and F2 : Y × Sm × R → T2

be deterministic encoding algorithms, where S is the secret domain (by default
{0, 1}). Then, the pair (F1, F2) is a batch-CDS scheme for F if the function
F (x, y, s, r) = (F1(x, s, r), F2(y, s, r)), that corresponds to the joint computation
of F1 and F2 on a common s and r, satisfies the following properties:

1. (Perfect correctness)8 There exists a deterministic algorithm Dec, called a
decoder, such that for every i ∈ [m], every 1-input (x, y) of fi and every
vector of secrets s ∈ Sm, we have that:

Pr
r

R←R
[Dec(i, x, y, F (x, y, s, r)) = si] = 1.

2. (Perfect privacy) There exists a simulator Sim such that for every input (x, y)
and every vector of secrets s ∈ Sm, the following distributions are identical

Sim(x, y, ŝ) and F (x, y, s, r),

where r
R← R and ŝ is an m-long vector whose i-th component equals to si if

fi(x, y) = 1, and ⊥ otherwise.

The communication complexity of the CDS protocol is (log |T1| + log |T2|).

In the following, we let Fn denote the 22
2n

-tuple which contains all predicates
f : {0, 1}n ×{0, 1}n → {0, 1} defined over pairs of n-bit inputs (sorted according
to some arbitrary order).

Lemma 2. Fn-batch CDS can be implemented with communication complexity
of 3|Fn|. Moreover the protocol is linear.

8 For simplicity, we consider only perfectly correct and perfectly private batch-CDS,
though the definition can be generalized to the imperfect case as well.
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Proof. The proof is by induction on n. For n = 1, it is not hard to verify that any
predicate f : {0, 1} × {0, 1} → {0, 1} admits a CDS with a total communication
complexity of at most 2 bits. Indeed, there are 16 such predicates, out of which,
six are trivial in the sense that the value of f depends only in the inputs of one
of the parties (and so they admit a CDS with 1 bit of communication), and the
other ten predicates correspond, up to local renaming of the inputs, to AND,
OR, and XOR, which admit simple linear 2-bit CDS as follows. For AND, Alice
and Bob send s · x + r and r · y; for OR, they send x · s and y · s; and, for XOR,
they send s+x·r1+(1−x)r2 and y ·r2+(1−y)r1 (where r and (r1, r2) are shared
random bits and addition/multiplication are over the binary field). It follows,
that F1-batch CDS can be implemented with total communication of at most
2|F1|. (In fact, this bound can be improved by exploiting the batch mode.)

Before proving the induction step. Let us make few observations. For (α, β) ∈
{0, 1}2, consider the mapping φα,β : Fn+1 → Fn which maps a function f ∈ Fn+1

to the function g ∈ Fn obtained by restricting f to xn+1 = α and yn+1 = β. The
mapping φα,β is onto, and is D-to-1 where D = |Fn+1|/|Fn|. We can therefore
define a mapping Tα,β(f) which maps f ∈ Fn+1 to (g, i) ∈ Fn × [D] such that f
is the i-th preimage of g under φα,β with respect to some fixed order on Fn+1.
By construction, for every fixed (α, β), the mapping Tα,β is one-to-one.

We can now prove the induction step; That is, we construct Fn+1-batch CDS
based on D copies of Fn-batch CDS. Given input x ∈ {0, 1}n+1 for Alice, y ∈
{0, 1}n+1 for Bob, and joint secrets (sf )f∈Fn+1 , the parties proceed as follows.

1. Alice and Bob use D copies of Fn-batch CDS with inputs x′ = (x1, . . . , xn)
and y′ = (y1, . . . , yn). In the i-th copy, for every predicate g ∈ Fn, a ran-
dom secret rg,i ∈ {0, 1} is being used. (The rg,i’s are taken from the joint
randomness of Alice and Bob.)

2. For every f ∈ Fn+1 and (α, β) ∈ {0, 1}2, Alice and Bob release the value
σf,α,β = sf + rg,i where (g, i) = Tα,β(f) iff the last bits of their inputs, xn+1

and yn+1, are equal to α and β, respectively. This step is implemented as
follows. For each f , Alice sends a pair of bits

cf,0 = σf,xn+1,0 + r′
f,0, and cf,1 = σf,xn+1,1 + r′

f,1,

and Bob sends r′
f,yn+1

where r′
f,0, r

′
f,1 are taken from the joint randomness.

The decoding procedure is simple. If the input (x, y) ∈ {0, 1}n+1 × {0, 1}n+1

satisfies f ∈ Fn+1, the decoder does the following: (1) Computes (g, i) =
Txn+1,yn+1(f) and retrieves the value of rg,i which is released by the batch-
CDS since g(x′, y′) = f(x, y) = 1; (2) Collects the values cf,xn+1 and r′

f,yn+1

sent during the second step, and recovers the value of sf by computing
cf,xn+1 − r′

f,yn+1
− rg,i.

In addition, it is not hard to verify that perfect privacy holds. Indeed, sup-
pose that (x, y) ∈ {0, 1}n+1 × {0, 1}n+1 does not satisfy f . Then, the only sf -
dependent value which is released is sf ⊕ rg,i where g is the restriction of f to
(xn+1, yn+1). However, since (x, y) fails to satisfy f , its prefix does not satisfy
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g and therefore rg,i remains hidden from the receiver. Formally, we can per-
fectly simulate the view of the receiver as follows. First simulate the first step
using D calls to the simulator of Fn-batch CDS with random secrets rg,i. Then
simulate the second step by sampling, for each f , three values cf,0, cf,1 and r′

which are uniform if f(x, y) = 0, and, if f(x, y) = 1, satisfy the linear constraint
sf = cf,xn+1 − r′

f,yn+1
− rg,i where (g, i) = Tα,β(f).

Finally the communication complexity equals to the complexity of D copies
of batch CDS for Fn (communicated in the first step) plus 3|Fn+1| bits (commu-
nicated at the second step). Therefore, by the induction hypothesis, the overall
communication, is 3|Fn+1|+3Dn|Fn|. Recalling that D = |Fn+1|/|Fn|, we derive
an upper-bound of 3(n + 1)|Fn+1|, as required. ��

We use Lemma 2 to amortize the complexity of CDS over long secrets.

Theorem 14. Let f : {0, 1}n × {0, 1}n → {0, 1} be a predicate. Then, for m =
|Fn|/2 = 22

2n
/2, there exists a perfect linear CDS which supports m-bit secrets

with total communication complexity of 12 nm.

The case of longer secrets of length m > |Fn|/2 (as in Theorem 4) can be treated
by partitioning the secret to |Fn|/2-size blocks and applying the CDS for each
block separately. The overall communication complexity is upper-bounded by
13 nm.

Proof. Given a vector S of m = |Fn|/2 secrets, we duplicate each secret twice
and index the secrets by predicates p ∈ Fn such that sp = sp̄ (i.e., a predicate
and its complement index the same secret). On inputs x, y, Alice and Bob make
two calls to Fn-batch CDS (with the same inputs x, y). In the first call the secret
associated with a predicate p ∈ Fn is a random values rp. In the second call,
for every predicate h ∈ Fn, we release the secret sp ⊕ rp where p is the unique
predicate for which p = f + h + 1 (where addition is over the binary field).

Correctness. Suppose that f(x, y) = 1. Recall that each of the original
secrets Si appears in two copies (sp, sp̄) for some predicate p. Since one of these
copies is satisfied by (x, y), it suffices to show that, whenever p(x, y) = 1, the
secret sp can be recovered. Indeed, for such a predicate p, the value rp is released
by the first batch-CDS, and the value sp ⊕ rp is released by the second batch-
CDS. The latter follows by noting that the predicate h which satisfies p = f+h+1
is also satisfied, since h(x, y) = p(x, y) + f(x, y) + 1 = 1. It follows that sp can
be recovered for every p which is satisfied by (x, y), as required.

Privacy. Suppose that f(x, y) = 0. We show that all the “virtual secrets”
sp remain perfectly hidden in this case. Indeed, for h and p which satisfy p =
f + h + 1, it holds that, whenever f(x, y) = 0, either h(x, y) = 0 or p(x, y) = 0,
and therefore, for any p, either rp or sp ⊕ rp are released, but never both.

Finally, using Lemma 2, the total communication complexity of the protocol
is 2 · 3 · n · |Fn| = 12nm, as claimed. ��
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7 A Linear Lower Bound on CDS

Here we show that the lower bound on the communication complexity of PSM
protocols proven in [15] can be extended to apply for CDS as well. We do this
by showing how to use CDS protocols to construct PSM protocols that are only
required to hide a certain small pre-specified set of input bits (as opposed to the
whole input). We define this notion of PSM below.

Definition 5 (b-bit PSM). Consider a function f : (W × X ) × Y → Z, with
log |W| ≥ b for some b > 0. We say that a pair of deterministic encoding algo-
rithms F1 : W × X × R → T1 and F2 : Y × R → T2 constitute a b-bit PSM for
f if the function F ((w, x), y, r) = (F1(w, x, r), F2(y, r)) satisfies the following
properties:

1. (δ-Correctness): There exists a deterministic algorithm Dec, called the
decoder, such that for every input ((w, x), y) we have that:

Pr
r

R←R
[Dec(F ((w, x), y, r)) �= f((w, x), y)] ≤ δ.

2. (b-bit ε-Privacy): There exists a randomized algorithm Sim such that for any
input ((w, x), y) it holds that:

Δ
r

R←R
(Sim(f((w, x), y), x, y);F ((w, x), y, r)) ≤ ε.

The communication complexity of the protocol is defined as the total encod-
ing length (log |T1| + log |T2|), and the randomness complexity of the protocol
is defined as log |R|.

By default, the above sets are to be taken to be W = {0, 1}b, X = Y = {0, 1}n,
Z = {0, 1}, R = {0, 1}ρ, T1 = {0, 1}t1 , and T2 = {0, 1}t2 for some positive
integers b, n, ρ, t1, and t2.

Lemma 3 (CDS to 1-bit PSM). If every Boolean function on X × Y has a
CDS protocol with communication complexity t, then every Boolean function on
({0, 1} × X ) × Y has a 1-bit PSM protocol with communication complexity (t +
1 + log |X | + log |Y|), with the same correctness and privacy guarantees.

Proof. Suppose we want to construct a 1-bit PSM protocol for a function f :
({0, 1} × X ) × Y → {0, 1}. Let (G1, G2,DecCDS) be a CDS protocol for the
function g(x, y) = f((0, x), y) ⊕ f((1, x), y) with communication complexity t.

We use this to construct our 1-bit PSM protocol (F1, F2,Dec) for f . Let s
be a bit from the common randomness. F1 is now defined as F1((w, x), (s, r)) =
(G1(x, s, r), w ⊕ s, x), and F2 is defined as F2(y, (s, r)) = (G2(y, s, r), y).

Dec, on input ((g1, w ⊕ s, x), (g2, y)), works by first checking whether given
x and y, the value of f still depends on w. If not, it simply computes f using x
and y. If it does depend on w, this implies that f((0, x), y) �= f((1, x), y), and
g(x, y) = 1, and so DecCDS(x, y, g1, g2) outputs s, which can be used to retrieve
w from (w ⊕ s), and now the whole input is known and f can be computed.
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This argues correctness, and the error here is at most that in the CDS protocol.
The communication is also seen to be at most (t + log |X | + log |Y| + 1).

Let SimCDS be the simulator for the CDS protocol for g. The simulator
Sim(f((w, x), y), x, y) works by first checking whether f((0, x), y) = f((1, x), y).
If it isn’t, then the value of w is determined by x, y, and the value of f and,
knowing w, Sim can compute F1 and F2 by itself, thus simulating them per-
fectly. If not, this implies that g(x, y) = 0. In this case, Sim first computes
(g∗

1 , g
∗
2) ← SimCDS(x, y), picks a random bit s∗, and outputs ((g∗

1 , s
∗, x), (g∗

2 , y)).
The simulation error is:

Δ(Sim(f((w, x), y), x, y);F (x, y, c))
= Δ((SimCDS(x, y), s∗, x, y); (G(x, y, s), w ⊕ s, x, y))
= Δ((SimCDS(x, y), s∗); (G(x, y, s), w ⊕ s))

Note that here s∗ and (w ⊕ s) have the same marginal distribution, which
is the uniform distribution over {0, 1}. Also, SimCDS(x, y) is independent of s∗.
Writing out the expansion of Δ in terms of differences in probabilities and using
Bayes’ Theorem along with the above observation gives us the following:

Δ((SimCDS(x, y), s∗); (G(x, y, s), w ⊕ s))

=
1
2

∑

m∈T1×T2,b∈{0,1}

∣∣∣ Pr[(SimCDS(x, y), s∗) = (m, b)]

− Pr[(G(x, y, s), w ⊕ s) = (m, b)]
∣∣
∣

=
1
2

∑

m∈T1×T2,b∈{0,1}

∣∣∣ Pr[s∗ = b] Pr[SimCDS(x, y) = m]

− Pr[w ⊕ s = b] Pr[G(x, y, b ⊕ w) = m]
∣∣∣

=
1
2

∑

b∈{0,1}

1
2

∑

m∈T1×T2

∣∣∣ Pr[SimCDS(x, y) = m] − Pr[G(x, y, b ⊕ w) = m]
∣∣∣

=
1
2

[Δ(SimCDS(x, y);G(x, y, 0)) + Δ(SimCDS(x, y);G(x, y, 1))]

By the ε-privacy of the CDS scheme (since the value of g(x, y) is 0), each
summand in the right-hand side above is at most ε. Hence the total simulation
error is at most ε. ��

In [15] it was shown that there exists a Boolean function on {0, 1}n ×{0, 1}n

such that any perfect 1-bit PSM for it requires at least 2.99n bits of commu-
nication. Using Lemma 3 along with this lower bound, we have the following
theorem.

Theorem 15. There is a Boolean function on {0, 1}n × {0, 1}n such that any
perfect CDS protocol for it has communication complexity at least 0.99n.
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We can generalise the above approach to construct b-bit PSM protocols for
larger values of b as follows.

Lemma 4 (CDS to b-bit PSM). If every Boolean function on X ×Y has a CDS
protocol with communication complexity t then, for any b > 0, every Boolean
function on ({0, 1}b × X ) × Y has a b-bit PSM protocol with communication
complexity (22

b

(t + 1) + log |X | + log |Y|), with the same correctness guarantee
and with privacy that is degraded by a factor of 22

b

.

Proof (Proof sketch). The idea behind the construction is that the function
fx,y(w) = f((w, x), y), where w is b bits long, can be one of only 22

b

func-
tions – call this set of functions H = {hi}. For each of these hi’s, we define
a function gi(x, y) that indicates whether fx,y ≡ hi. Note that once the PSM
decoder knows x and y, the information that the value of f reveals to it about
w is exactly fx,y(w), which is the same as hi(w) if gi(x, y) = 1.

In our construction, first we have F1 reveal x and F2 reveal y. Now we wish
to, for each i, reveal hi(w) if and only if gi(x, y) = 1. To do this, for each i, we
choose a random bit si from the common randomness, reveal hi(w) ⊕ si, and
run the CDS protocol for gi with si as the secret.

The correctness is preserved because whenever the CDS for the “correct”
value of i is correct, our protocol is correct.

The simulator, given x, y and f((w, x), y), first outputs x and y. It then finds
the i′ such that gi′(x, y) = 1. For every other i, it publishes a random s∗

i and the
output of the CDS simulator for the function gi with inputs x, y and secret 0. For
i′, it publishes (f((w, x), y) ⊕ s∗

i′) for a random s∗
i′ and the messages of the CDS

protocol for gi′ with inputs x, y and secret s∗
i′ . Privacy error goes from ε to 22

b

ε
because of arguments similar to those in the proof of Lemma 3 being applied to
each invocation of the CDS protocol, all of which are mutually independent. ��

8 Separating CDS and Insecure Communication

Here we show an explicit function whose randomized communication complexity
is much higher than its CDS communication complexity. For simplicity, assume
that n below is a power of 2; the statements made here can be shown to be true
for a general n along the same lines.

Definition 6 (Communication Complexity). Consider a function f : X ×
Y → Z. A protocol between two parties (with shared randomness) who are given
inputs x ∈ X and y ∈ Y, respectively, is said to compute f if for every (x, y) ∈
X ×Y, the parties arrive at the correct value of f at the end of it with probability
at least 2/3.

The communication cost of a protocol is the most number of bits exchanged
by the parties over all possible inputs and all values of shared randomness. The
Randomized Communication Complexity of f , denoted R(f), is the least com-
munication cost of any protocol computing f .
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Gay et al. [17] showed that if a function has a CDS protocol with commu-
nication complexity t then, roughly, logR(f) ≤ 2t. Moreover, this upper-bound
can be achieved by a one-way communication protocol (in which only one party
sends a message). We show that this bound is optimal (up to constant factors)
by exhibiting a function that has a CDS protocol with low communication, but
has high randomized communication complexity (even for fully interactive pro-
tocols).9 Towards this, we first introduce the following problem.

Definition 7 (The Collision Problem). The Collision Problem (Coln) is a
promise problem defined over a subset of {0, 1}n log n as follows. For an input
x ∈ {0, 1}n log n, divide x into n blocks of log n bits each. Each such x can now
be used to define a function fx : {0, 1}log n → {0, 1}log n, where fx(i) is the ith

block of x (when i is interpreted as an integer in [n]). Coln(x) is defined to be 1
if fx is a permutation, 0 if fx is 2-to-1, and is undefined otherwise.

We use the above problem in conjunction with Sherstov’s Pattern Matrix
method [36] for proving communication complexity lower bounds. We define the
following function that corresponds to what would be called a “pattern matrix”
of Coln.

Definition 8. The promise problem PColn : {0, 1}4n log n × [4]n log n → {0, 1} is
defined as follows. On an input (x, y), first divide x into n log n blocks of size
4 bits each. From the ith block, select the bit xi,yi

that is specified by the ith

coordinate of y (which is an element of {1, 2, 3, 4}) to get the string xy of length
n log n. The output of the function is Coln(xy).

The pattern matrix method gives us a way to lower bound the randomized
communication complexity of a function constructed in this manner using lower
bounds on the approximate degree (denoted by deg and which we do not define
here) of the underlying function. We use known results to derive the following
Corollary 1.

Corollary 1. R(PColn) = R(PColn) ≥ Ω(n1/3)

Proof. It follows from [36] that R(PColn) ≥ Ω(deg(Coln)). Combined with the
fact that deg(Coln) ≥ Ω(n1/3) (which follows from [3,27]), we derive the corol-
lary. ��

Next we show that PColn has a very efficient CDS protocol.

Lemma 5. There is a CDS protocol for PColn with 1
3 -completeness, perfect pri-

vacy, and communication complexity O(log n).

In order to prove this lemma, we will need the following simple lemma which
shows how to simulate messages generated by applying a PSM protocol to a set
of inputs that are distributed jointly. It says that these can be simulated by
sampling the corresponding distribution over the function outputs and running
the PSM simulator on these sampled outputs.
9 In fact, our separation holds even for quantum communication complexity – see [36]

for relevant definitions and explanations.
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Lemma 6. Consider any function f : X ×Y → Z, and a PSM protocol (F1, F2)
for it with ε-privacy realized by a simulator Sim. For any integer k > 0 and any
joint distribution (X,Y ) over (X ×Y)k, let Z be the distribution over Zk obtained
by sampling (x, y) = ((x1, y1), . . . , (xk, yk)) from (X,Y ) and then computing
(f(x1, y1), . . . , f(xk, yk)). Then,

Δ ((Sim(z1), . . . ,Sim(zk)) ; (F (x1, y1), . . . , F (xk, yk))) ≤ kε,

where (x, y) ← (X,Y ), z ← Z. In particular, if the PSM is perfect, the above
statistical distance is zero.

The proof (which is standard) appears in the full version [5]. We can now prove
Lemma 5.

Proof (Proof of Lemma 5). Given input (x, y) ∈ {0, 1}4n log n×[4]n log n and secret
bit s, the idea behind the CDS protocol is to convey through the messages a
uniformly random element from the range of fxy

if s = 1, and a uniformly random
element from {0, 1}log n if s = 0. If PColn(x, y) = 0, fxy

is a permutation, and
hence the distributions in the two cases are identical. If PColn(x, y) = 1, fxy

’s
range covers only half the co-domain and so the two cases can be distinguished.

We now construct a CDS protocol (F1, F2) that functions as above. Let G =
(G1, G2) be the perfect PSM protocol for the finite function ind : {0, 1}4 × [4] →
{0, 1} that takes (a, b) as input and outputs the bit in a that is pointed to by b. Let
DecPSM be a perfect decoder for G. The CDS protocol (F1, F2) works as follows.

– First an index i ∈ [n] is sampled from the common randomness. (In the case
of s = 1, fxy

(i) is the information that will be output jointly by F1 and F2.)
– Note that the value fxy

(i) consists of log n bits, each of which is encoded
by 4 bits in x and a value in [4] in y – let the relevant parts of x and y

be (x1
i , . . . , x

log n
i ) and (y1

i , . . . , ylog n
i ) respectively, where xj

i ∈ {0, 1}4 and
yj

i ∈ [4].
– If s = 1, for each j ∈ [log n], F1 outputs gj

1 = G1(x
j
i , rj), and F2 outputs

gj
2 = G2(y

j
i , rj), where rj is from the common randomness.

– If s = 0, for each j ∈ [log n], F1 outputs gj
1 = G1(wj , rj), and F2 outputs

gj
2 = G2(y

j
i , rj), where each wj is chosen at random from {0, 1}4.

The CDS decoding procedure Dec works as follows.

– Input: (x, y, (g11 , . . . , g
log n
1 ), (g12 , . . . , g

log n
2 )).

– For each j ∈ [log n], compute zj ← DecPSM(gj
1, g

j
2) to get the string z.

– If there exists an i such that fxy
(i) = z, output 1, else output 0.

If PColn(x, y) = 1, fxy
is 2-to-1. By the perfect correctness of the PSM

protocol, if s = 1, z = fxy
(i) for the i chosen by (F1, F2), and so Dec always

outputs 1. If s = 0, z is a random string in {0, 1}log n, and Dec outputs 0 exactly
when z falls outside the range of fxy

; this happens with probability 1/2 as fxy

is 2-to-1, and Dec outputs 1 otherwise.
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This gives only 1
2 -correctness but this error is only one-sided, and so by

repeating the protocol once more and checking whether z lies in the range of fxy

both times, this error can be reduced, giving 1
4 -correctness. This repetition does

not degrade privacy which, as shown below, is perfect.
If PColn(x, y) = 0, fxy

is a permutation. The output of F1 and F2 is simulated
as follows using SimPSM, the simulator for the perfect PSM protocol used above.
Our simulator Sim, given (x, y) as input, first picks random bits z∗

1 , . . . , z∗
log n. It

then outputs (SimPSM(z∗
1), . . . ,SimPSM(z∗

log n)).
The simulation error is:

Δ((SimPSM(z∗
1), . . . ,SimPSM(z∗

log n)); ((g11 , g
1
2), . . . , (g

log n
1 , glog n

2 )))

where the (gj
1, g

j
2)’s are the PSM messages in the protocol description.

First we consider the case s = 1. Recall that the (gj
1, g

j
2)’s are computed by

first selecting i ∈ [n] at random and computing the PSM messages for ind(xj
i , y

j
i ),

which is the jth bit of fxy
(i). As the range of fxy

is uniform over {0, 1}log n, over
the randomness of i each ind(xj

i , y
j
i ) is a uniformly random bit independent of

all the other ind(xj′
i , yj′

i )’s. Thus, (ind(x1
i , y

1
i ), . . . , ind(xlog n

i , ylog n
i )) is distributed

the same as (z∗
1 , . . . , z∗

log n), and so by Lemma 6, the above simulation error is
zero as we are using a perfect PSM protocol.

Similarly, when s = 0, the (gj
1, g

j
2)’s are computed by first selecting i ∈

[n] at random and computing the PSM messages for ind(wj , yj
i ) for uniformly

random w1, . . . , wj ∈ {0, 1}4. So again each ind(wj , yj
i ) is a uniformly random

bit independent of all the other ind(wj′
, yj′

i )’s, and by Lemma 6, the simulation
error is again zero.

The PSM for each bit of z is for a finite-sized function and its communication
complexity is some constant, so the total communication is Θ(log n). ��

Gay et al. [17] showed the following relationships between the randomized
communication complexity of a Boolean function and the complexity of general
and linear CDS protocols for it with single-bit secrets. While they originally
showed these for perfect protocols, we extend their proof to work for imperfect
ones in Appendix A.

Theorem 16 [17]. For any (partial or total) Boolean function f ,

CDS(f) ≥ 1
2

logR(f) and linCDS(f) ≥ 1
10

√
R(f)

The following corollary of Lemma 5 and Corollary 1 shows that the above
bound on CDS in general is tight up to constant factors.

Corollary 2. There exists a partial Boolean function f such that:

CDS(f) ≤ O(logR(f))

Following from Corollary 2 and Theorem 16, the next corollary says that there
are functions for which general CDS protocols can do much better than linear
CDS protocols.
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Corollary 3. There exists a partial Boolean function f such that:

CDS(f) ≤ O(log linCDS(f))

Remark 3. In fact, [17] showed that Theorem 16 holds even for “weakly-linear”
CDS protocols in which only the decoding process is assumed to be linear (and
the senders are allowed to be non-linear). Corollary 3 therefore generalizes to
this case as well.
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A Communication Complexity and Imperfect CDS
Protocols

In this section, we extend the relationships between CDS and randomised com-
munication complexity shown by Gay et al. [17] to include imperfect CDS proto-
cols. We prove the following theorem. (The terms involved are defined in Sects. 3
and 8.)

Theorem 17. For any (partial or total) Boolean function f ,

CDS(f) ≥ 1
2

logR(f)

linCDS(f) ≥ 1
10

√
R(f)

Recall that CDS(f) is the least communication complexity of any CDS pro-
tocol for f with {0, 1} as the secret domain that has 1

10 correctness and privacy.
And that linCDS(f) is the same, but for linear protocols. We will prove Theo-
rem 17 using the following more general lemma that we prove afterward.

Lemma 7. Consider any function f : X × Y → {0, 1}. Suppose f has a
CDS protocol (F1, F2,Dec) with 1

10 -correctness and 1
10 -privacy, with domains

as follows: F1 : X × {0, 1} × R → T1, F2 : X × {0, 1} × R → T2, and
Dec : X × Y × T1 × T2 → {0, 1}. Let H be any superset of all possible func-
tions {h : T1 × T2 → {0, 1}} that Dec(x, y, ·, ·) could possibly be for any x ∈ X
and y ∈ Y. Then,

R(f) ≤ 100 log |H| (log |T1| + log |T2|)
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Proof (Proof of Theorem 17). A lower bound for a CDS protocol for f with 1
10

correctness and privacy can be obtained by taking H to be the set of all possible
functions from T1 × T2 → {0, 1}. There are 2|T1||T2| of these. We then have from
Lemma 7:

R(f) ≤ 100 |T1| |T2| (log |T1| + log |T2|)
=⇒ logR(f) ≤ log 100 + (log |T1| + log |T2|) + log(log |T1| + log |T2|)

≤ 2(log |T1| + log |T2|)

This is true for any such CDS protocol. Note that (log |T1| + log |T2|) is the
communication complexity of the CDS protocol in question. So this implies that
logR(f) ≤ 2CDS(f).

The lower bound on linCDS(f) is similarly obtained by taking H to be the
set of all linear functions over vectors spaces that may be contained in T1 × T2,
as linear CDS protocols always have linear reconstruction. In this case, T1 and
T2 would have to be of the form F

t1 and F
t2 for some t1, t2, and H would

then contain F
t1+t2 = |T1| |T2| functions. Lemma7 now immediately gives us the

following:

R(f) ≤ 100(log |T1| + log |T2|)2

=⇒
√

R(f) ≤ 10 · linCDS(f)

��

Proof (Proof of Lemma 7). Given a CDS protocol (F1, F2,Dec) as in the hypoth-
esis, we construct a single message protocol (with shared randomness) for parties
A, who is given an x ∈ X , and B, who is given a y ∈ Y, to compute f(x, y) as
follows.

– For an integer N that shall be determined later, the shared randomness is
used to sample N random bits s1, . . . , sN , and also r1, . . . , rN ∈ R.

– For each i ∈ [N ], A computes and sends ai = F1(x, si, ri) to B.
– For each i ∈ [N ], B computes, in order, bi = F2(y, si, ri) and, for each h ∈ H,

sh
i = h(ai, bi).

– If there is an h ∈ H such that for more than 3/4 values of i ∈ [N ], sh
i = si,

then B decides that f(x, y) = 1, else 0.

If f(x, y) = 1, by the 1
10 -correctness of the CDS protocol, we know that there

exists an h∗ ∈ H, namely Dec(x, y, ·, ·), such that Pr[h∗(ai, bi) = si] ≥ 9/10. By
the Chernoff bound, the probability that the communication protocol is wrong
in this case can be bounded as follows:

Pr
[∣∣∣

{
i : sh∗

i = si

}∣∣∣ ≤ 3
4
N

]
≤ e−N/80

If f(x, y) = 0, by the 1
10 -privacy of the CDS protocol and the triangle inequal-

ity, the statistical distance between the distributions F (x, y, 0) and F (x, y, 1) is
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at most 2/10. This implies that for any function h, if si is chosen at random,
Pr[h(ai, bi) = si] ≤ 6/10. Using the union bound and the Chernoff bound, in
order, the probability that the communication protocol is wrong in this case can
be bounded as follows:

Pr
[
∃h ∈ H :

∣∣{i : sh
i = si

}∣∣ ≥ 3
4
N

]
≤ |H|Pr

[∣∣{i : sh
i = si

}∣∣ ≥ 3
4
N

]

≤ |H| e−N/80

So if N is chosen to be, say, (100 log |H|), the error probability in both cases
would be much less than 1/3, and this would be a valid communication protocol
computing f .

The total communication involved is N log |T1| ≤ 100 log |H| (log |T1| +
log |T2|), as required. ��
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Abstract. We present new protocols for conditional disclosure of secrets
(CDS), where two parties want to disclose a secret to a third party if and
only if their respective inputs satisfy some predicate.

– For general predicates P : [N ] × [N ] → {0, 1}, we present two
protocols that achieve o(N1/2) communication: the first achieves
O(N1/3) communication and the second achieves sub-polynomial

2O(
√
logN log logN) = No(1) communication.

– As a corollary, we obtain improved share complexity for forbidden
graph access structures. Namely, for every graph on N vertices, there
is a secret-sharing scheme for N parties in which each pair of par-
ties can reconstruct the secret if and only if the corresponding ver-
tices in G are connected, and where each party gets a share of size
2O(
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logN log logN) = No(1).
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munication complexity Õ(N1/2). Indeed, this is essentially the best that
all prior techniques could hope to achieve as they were limited to so-called
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“linear reconstruction” barrier in settings related to secret sharing. To
obtain these results, we draw upon techniques for non-linear reconstruc-
tion developed in the context of information-theoretic private informa-
tion retrieval.
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1 Introduction

We revisit a fundamental question in the foundations of cryptography: What
is the communication overhead of privacy in computation? This question has
been considered in several different models and settings (see, e.g., [CK91,OS08,
ACC+14,DPP14]). In this work, we address this question in two, arguably mini-
malistic, models for communication in the setting of information-theoretic secu-
rity, namely the conditional disclosure of secrets (CDS) model [GIKM00] and
the private simultaneous messages (PSM) model [FKN94,IK97], with a focus on
the former.

Conditional Disclosure of Secrets (CDS). Two-party conditional disclosure of
secrets (CDS) [GIKM00] (c.f. Fig. 1) is a generalization of secret sharing [Sha79,
ISN89]: two parties want to disclose a secret to a third party if and only if their
respective inputs satisfy some fixed predicate P : [N ]× [N ] → {0, 1}. Concretely,
Alice holds x, Bob holds y and in addition, they both hold a secret μ ∈ {0, 1}
(along with some additional private randomness w). Charlie knows both x and
y but not μ; Alice and Bob want to disclose μ to Charlie iff P(x, y) = 1. How
many bits do Alice and Bob need to communicate to Charlie?

This is a very simple and natural model where non-private computation
requires very little communication (just a single bit), whereas the best upper
bound for private computation is exponential. Indeed, in the non-private set-
ting, Alice or Bob can send μ to Charlie, upon which Charlie computes P(x, y)
and decides whether to output μ or ⊥. This trivial protocol with one-bit com-
munication is not private because Charlie learns μ even when the predicate is
false. In contrast, in the private setting, we have a big gap between upper and
lower-bounds. The best upper bound we have for CDS for general predicates
P requires that Alice and Bob each transmits O(N1/2) bits [BIKK14,GKW15],
and the best known lower bound is Ω(log N) [GKW15,AARV17]. A central open
problem is to narrow this gap, namely:

Do there exist CDS protocols for general predicates P : [N ] × [N ] → {0, 1}
with o(N1/2) communication?

Fig. 1. Pictorial representation of CDS and PSM.
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In this work, we address this question in the affirmative, giving two pro-
tocols with o(N1/2) communication, including one with sub-polynomial No(1)

communication. Before describing our results in more detail, we need to place
this question in a broader context.

First, the existing exponential gap between upper and lower bounds for CDS
is analogous to a long-standing open question in information-theoretic cryp-
tography, namely, the study of secret-sharing schemes for general access struc-
tures [ISN89]. For general secret-sharing schemes, the best upper bounds on the
(individual) share size are exponential in the number of parties n, namely 2Θ(n),
whereas the best lower bounds are nearly linear [Csi97], namely Ω(n/ log n) (see
Beimel’s survey [Bei11] for more details).

It turns out that we do have a more nuanced understanding of this gap,
both for CDS and for secret-sharing. This understanding comes from looking
at the complexity of the “reconstruction function”: in CDS, this refers to the
function that Charlie computes on Alice’s and Bob’s messages to recover μ, and
in secret-sharing, the function used to recover the secret from the shares, and by
complexity, we refer to the degree of the reconstruction function when expressed
as a multivariate polynomial in its inputs, namely Alice’s and Bob’s messages
or the shares.

On the Importance of Reconstruction Degree. Most known CDS and secret-
sharing schemes have linear reconstruction functions (which is necessary for
some applications), and for linear reconstruction, the existing upper bounds for
both CDS and secret-sharing are essentially optimal [BGP95,RPRC16,GKW15].
Therefore, to narrow the exponential gap between upper and lower bounds for
CDS, we need to turn to general, non-linear reconstruction functions, as will be
the case for our new CDS protocols.

Starting from the work of Beimel and Ishai, we know of a few specific (artifi-
cial) access structures with non-linear secret sharing schemes (which are unlikely
to have efficient linear secret sharing schemes) [BI01,VV15]. More recently,
[AARV17] showed a specific (contrived) predicate with a non-linear CDS scheme
that is exponentially more efficient than the best linear CDS scheme. Unfortu-
nately, none of these works yield any techniques that work with general predicates.

Henceforth, instead of referring to general predicates, we will focus on a
specific predicate INDEXn where Alice holds a vector D ∈ {0, 1}n, Bob holds
an index i ∈ [n] and the predicate is D, i �→ Di, namely the i-th bit of D; that
is, Charlie learns the secret μ iff Di = 1. It is easy to see that we can derive a
CDS protocol for the class of general predicates P : [N ] × [N ] → {0, 1} – which
we denote by ALLN – from one for INDEXN , by considering the truth table
of the predicate as the database and the input to the predicate as the index.
Via this connection, our central open problem reduces to constructing CDS for
INDEXn with o(

√
n) communication. The best known CDS protocol for INDEX

(regardless of the reconstruction degree) has communication O(
√

n); and this
protocol indeed has linear reconstruction, for which there is a matching lower
bound. More generally, Gay et al. [GKW15] show that any CDS for INDEXn

with degree k reconstruction requires communication Ω(n
1

k+1 ).
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1.1 Our Results and Techniques

The main results of this work are two CDS protocols for INDEXn achieving
o(

√
n) communication via non-linear reconstruction, namely:

– a CDS protocol with O(n1/3) communication with quadratic reconstruction,
which is optimal;

– a CDS protocol with 2O(
√

log n log log n) = no(1) with general reconstruction.

These immediately imply CDS protocols for general predicates ALLN with
O(N1/3) communication and quadratic reconstruction, and 2O(

√
log N log log N) =

No(1) and general reconstruction. Our CDS protocols also yield similar improve-
ments for secret-sharing schemes for the so-called “forbidden graph access struc-
tures” [SS97] via a generic transformation in [BIKK14]; in particular, we present
the first schemes that achieve o(

√
N) share sizes for graphs on N nodes. Over-

all, this is first work to break the “linear reconstruction” barrier for general
predicates in settings related to secret sharing.

To obtain these results, we draw upon techniques for non-linear recon-
struction developed in the context of information-theoretic private infor-
mation retrieval (PIR) [CKGS98,WY05,Yek08,Efr09,DGY11,BIKO12,DG15].
Our O(n1/3) protocol exploits partial derivatives of polynomials, whereas our
2O(

√
log n log log n) uses matching vector families [Gro00], first invented in the con-

text of explicit Ramsey graph constructions. While techniques from PIR have
been used to improve communication complexity for information-theoretic cryp-
tography e.g. [BIKK14], we do not know of any work that uses these techniques
to improve communication complexity beyond the “linear reconstruction” bar-
rier as we do.

Along the way, we also present new CDS protocols for low-degree polynomials
(testing whether the polynomial evaluates to non-zero), along with an applica-
tion to a new attribute-based encryption (ABE) scheme [SW05,GPSW06] for
quadratic functions.

Finally, we show protocols in the stronger private simultaneous messages
(PSM) model with optimal communication-degree tradeoffs. We summarize our
CDS and PSM protocols in Fig. 2, and describe our results in more detail in the
sequel.

1.2 Our CDS Protocols

As mentioned earlier, our CDS protocols draw upon techniques for non-linear
reconstruction developed in the context of information-theoretic PIR. Our start-
ing point is a recent work of Beimel, Ishai, Kumaresan and Kushilevitz (BIKK)
[BIKK14], showing how to use PIR to improve PSM and information-theoretic
two-party computation in several different models. While BIKK applies general
transformations to variants of PIR, our constructions exploit the techniques used
in a PIR in a more non-black-box manner, and along the way, we improve upon
and simplify some of the constructions in BIKK. For this reason, we will first
provide an overview of our CDS protocols without referring to PIR, and then
explain the connection to PIR after.
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Fig. 2. Summary of upper and lower bounds of INDEXn for CDS and PSM, where
Alice holds D ∈ {0, 1}n and Bob holds i ∈ [n], and the columns correspond to the num-
ber of bits sent by Alice and by Bob, along with the complexity of the reconstruction
function.

CDS for INDEX. Recall that in CDS for INDEXn, Alice holds D ∈ {0, 1}n, Bob
holds i ∈ [n] and μ ∈ {0, 1}, and Charlie should learn μ iff Di = 1. Intuitively, the
protocol proceeds by having Charlie “securely compute” μDi, so that if Di = 0,
Charlie learns nothing about μ. To do this, we will relate μDi to some function
FD,i(·), which would form part of the construction function.

Our protocols have the following high-level structure:

– Alice and Bob share randomness b, c.
– Bob deterministically encodes i ∈ [n] as a vector ui ∈ {0, 1}� and sends

m1
B := μui + b;

– We construct a function FD,i such that

μDi = FD,i(μui + b) + 〈ui,yD,b〉 (1)

where yD,b ∈ {0, 1}� is completely determined given D,b and 〈·, ·〉 corre-
sponds to inner product. Note that Charlie can compute FD,i(μui +b) given
D, i, μui + b.

– In order for Charlie to also “securely” compute 〈ui,yD,b〉, Alice sends m1
A :=

yD,b + c and Bob sends m2
B := 〈ui, c〉.

– Charlie can now compute μDi (and thus μ) given D, i, (m1
A,m1

B ,m2
B) by

computing
FD,i(m1

B) − 〈ui,m1
A〉 + m2

B .

Note that the total communication is O(�), whereas the complexity of recon-
struction is dominated by that of computing FD,i. Privacy follows fairly readily
from the fact that the joint distribution of (m1

A,m1
B) is uniformly random, and

that m2
B is completely determined given (m1

A,m1
B) and μDi along with D, i.

Realizing ui and FD,i. We sketch how to realize the encodings i �→ ui and FD,i

by drawing upon 2-server PIR protocols from the literature (respectively [WY05]
and [DG15]):
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– Our CDS with O(n1/3) communication uses degree 3 polynomials. Roughly

speaking, we encode i ∈ [n] as ui ∈ F
O(n1/3)
2 (i.e., � = O(n1/3)) and D as a

vectorp ∈ F
O(n)
2 so thatDi = 〈p,ui ⊗ui ⊗ui〉. Then, FD,i is (roughly) defined

to be

FD,i(µui + b) = 〈p, (µui + b) ⊗ (µui + b) ⊗ ui〉 + 〈p, (µui + b) ⊗ ui ⊗ (µui + b)〉
+ 〈p,ui ⊗ (µui + b) ⊗ (µui + b)〉

This means

FD,i(µui + b) = 3µ〈p,ui ⊗ ui ⊗ ui〉
+ 2µ(〈p,ui ⊗ ui ⊗ b〉 + 〈p,ui ⊗ b ⊗ ui〉 + 〈p,b ⊗ ui ⊗ ui〉)
︸ ︷︷ ︸

=0

+ 〈p,ui ⊗ b ⊗ b〉 + 〈p,b ⊗ ui ⊗ b〉 + 〈p,b ⊗ b ⊗ ui〉
︸ ︷︷ ︸

=〈ui,yD,b〉

= µDi + 〈ui,yD,b〉

where in the last equality, we use the fact that we are working over F2. Using
this technique, we can in fact obtain communication-efficient CDS for degree
3 polynomials. Using an additional balancing technique, we can also obtain
optimal trade-offs between the length of Alice’s and Bob’s messages.

– Our CDS with 2O(
√

log n log log n) communication uses a matching vector family,
namely a collection of vectors {(vi,ui)}i∈[n] such that all vectors ui,vi ∈ Z

�
6

where � = 2O(
√

log n log log n) and:

〈vi,ui〉 = 0,

〈vi,uj〉 ∈ {1, 3, 4} for i 
= j.

Here, the inner product computations are done mod 6. Such a matching vector
family was originally constructed by Grolmusz [Gro00] and improved by Dvir
et al. [DGY11]. We omit precise description of FD,i but note that it is closely
related to the functions G,G′ defined in Sect. 4 (which are the same as those
used in [DG15]).
In particular, the PIR in [DG15] matches the following high level description:
The user’s queries are ui+b and b, the servers’ answers are vectors HD(ui+b)
and HD(b) such that

〈HD(ui + b),ui〉 − 〈HD(b),ui〉 = Di. (2)

We observe that the following relation also holds:

〈HD(μui + b),ui〉
︸ ︷︷ ︸

FD,i(μui+b)

−〈HD(b)
︸ ︷︷ ︸

yD,b

,ui〉 = μDi. (3)

from which we may derive FD,i. This technique can be further generalized to
construction a CDS from any 2-server PIR with linear reconstruction.
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Relation to PIR. A 2-server PIR protocol allows a user who holds an index
i ∈ [n] to retrieve an arbitrary bit Di from a database D ∈ {0, 1}n which is held
by 2 servers, while hiding the index i from each individual server:

– The user wants to learn Di instead of μDi, and again, Di is written as
an expression related to the same function FD,i, but the expression itself
is different. (Roughly speaking, this is analogous to the difference between
Eqs. 2 and 3 above).

– Bob’s message μui + b corresponds roughly to the user’s query to the first
server; note that Bob’s message perfectly hides the index i.

– In PIR, one difficulty lies in jointly computing the quantity corresponding to
FD,i(μui +b) because no single party knows D and i, whereas this is easy in
CDS. In PIR, computing the quantity corresponding to 〈ui,yD,b〉 is easy as
the server can send yD,b to the user; in PIR, Alice cannot send yD,b as is to
Charlie as it would leak information about b and thus μ.

1.3 Our PSM Protocols

We consider the 2-party Private Simultaneous Message (PSM) model [FKN94]
(c.f. Fig. 1): Alice holds x, Bob holds y and they both share some private ran-
domness. Each of them sends a message to Charlie, upon which Charlie should
learn P(x, y) for some public function P but otherwise learns nothing else about
x, y. While the inputs involved in a computation (namely x and y) are not hid-
den in the CDS setting, they are in PSM and thus this is a harder model to
design protocols in.

The state of the art in known constructions is as follows: (i) For information-
theoretic security, the length of both Alice’s message and Bob’s message are both
quadratic in the size of the branching program representation of f [FKN94,
IK00,IK02]; this holds for both the Boolean and arithmetic settings. (ii) For
computational security, the length of Alice’s and Bob’s messages are optimal
up to a multiplicative overhead by the security parameter; this is the celebrated
Yao’s garbled circuits and requires only one-way functions.

In this work, we describe such a protocol for the class of multi-variate polyno-
mials of total degree k, where Alice holds a degree-d polynomial p in n variables,
Bob holds an input x ∈ F

n
q and Charlie learns p(x) and nothing else. In our pro-

tocol, Alice sends O(nk) bits and Bob sends O(kn) bits. This gives us a protocol
for INDEX with degree-k reconstruction with the same communication profile,
which is nearly optimal (up to the factor of k in Bob’s communication). We refer
the reader to Fig. 2 for details.

We also give a PSM for degree 4 polynomials, where the polynomial p (over
GF (2)) is public, Alice and Bob hold x ∈ {0, 1}n and y ∈ {0, 1}n respectively,
and Charlie gets p(x,y). This in turn gives a simpler and more direct O(

√
N)

PSM for the predicate ALLN , first shown in [BIKK14], along with an explicit
bound on the degree of reconstruction. In ALLN , there is a public predicate P,
Alice and Bob hold x and y respectively, and Charlie gets P(x,y).
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1.4 Discussion

Additional Related Work. We mention some additional related works.

Secret Sharing. The complexity of secret sharing for graph-based access struc-
tures was extensively studied in a setting where the edges of the graph represent
the only minimal authorized sets, that is, any set of parties that does not contain
an edge should learn nothing about the secret. The notion of forbidden graph
access structures we study, originally introduced in [SS97], can be viewed as a
natural “promise version” of this question, where one is only concerned about
sets of size 2. The best upper bound for the total share size for every graph
access structure is O(N2/ log N) [Bub86,BSGV96,EP97] whereas the best lower
bounds are (i) Ω(N log N) for general secret-sharing schemes [vD95,BSSV97,
Csi05] and (ii) Ω(N3/2) for linear secret-sharing schemes [BGP95].

Attribute-Based Encryption. Attribute-based encryption (ABE) [SW05,
GPSW06] is a new paradigm for public-key encryption that enables fine-grained
access control for encrypted data. In attribute-based encryption, ciphertexts are
associated with descriptive values x in addition to a plaintext, secret keys are
associated with values y, and a secret key decrypts the ciphertext if and only if
P(x, y) = 1 for some boolean predicate P. Note that x and y are public given
the respective ciphertext and secret key. The security requirement for attribute-
based encryption enforces resilience to collusion attacks, namely any group of
users holding secret keys for different values learns nothing about the plaintext
if none of them is individually authorized to decrypt the ciphertext.

In [Wat09], Waters introduced the powerful dual system encryption method-
ology for building adaptively secure IBE in bilinear groups; this has since
been extended to obtain adaptively secure ABE for a large class of predicates
[LW10,LOS+10,OT10,LW11,Lew12,OT12]. In recent works [Att14,Wee14]
(with extensions in [CGW15]), Attrapadung and Wee presented a unifying frame-
work for the design and analysis of dual system ABE schemes, which decouples
the predicate P from the security proof. Specifically, the latter work puts forth
the notion of predicate encoding, a private-key, one-time, information-theoretic
primitive similar to conditional disclosure of secrets, and provides a compiler
from predicate encoding for a predicate P into an ABE for the same predicate
using the dual system encryption methodology. Moreover, the parameters in the
predicate encoding scheme and in CDS correspond naturally to ciphertext and
key sizes in the ABE. In particular, Alice’s message corresponds to the cipher-
text, and Bob’s message to the secret key. These applications do require linear
construction over Zq, where q is the order of the underlying bilinear group. Note
that while the parameters for ABE schemes coming from predicate encodings are
not necessarily the best known parameters, they do match the state-of-the-art
in terms of ciphertext and secret key sizes for many predicates such as inner
product, index, and read-once formula.

Open Problems. We conclude with a number of open problems:

– Two questions related to CDS for INDEXn: (i) can we realize degree 2 recon-
struction and communication (ccA, ccB) = (1,

√
n) (this would yield the full
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(n/t2, t) trade-off for all t); (ii) how about total communication O(n1/4) and
degree 3 reconstruction, and more generally,O(n

1
k+1 ) and degree k reconstruc-

tion for k ≥ 3?
– Broadcast encryption schemes for n parties with O(n1/3) ciphertext and secret

key sizes from bilinear maps, by possibly exploiting our CDS for INDEXn

with quadratic reconstruction.
– PSM for ALLN with o(

√
N) total communication.

– Secret-sharing for general graph access structures with N3/2 total share size,
or even N1+o(1) total share size? A natural starting point would be to extend
the connection between CDS and secret-sharing for forbidden graph access
structures in [BIKK14] to that of general graph access structures.

Organization. We present our CDS protocols in Sects. 3 and 4, along with
applications to secret-sharing and ABE in Sects. 4.2 and 3.4. We present our
PSM protocols in Sect. 5. In Sect. A, we present further extensions (both upper
and lower bounds) to a relaxation of PSM with a one-sided security guarantee.

2 Preliminaries

Notations. We denote by s ←r S the fact that s is picked uniformly at random
from a finite set S or from a distribution. Throughout this paper, we denote by
log the logarithm of base 2.

2.1 Conditional Disclosure of Secrets

We recall the notion of conditional disclosure of secrets (CDS), c.f., Fig. 2. The
definition we give here is for two parties Alice and Bob and a referee Charlie,
where Alice and Bob share randomness w and want to conditionally disclose a
secret α to Charlie. The general notion of conditional disclosure of secrets has first
been investigated in [GIKM00]. Two-party CDS is closely related to the notions of
predicate encoding [Wee14,CGW15] and pairing encoding [Att14]; in particular,
the latter two notions imply two-party CDS with linear reconstruction.

Definition 2.1 (conditional disclosure of secrets (CDS) [GIKM00]). Fix
a predicate P : X × Y → {0, 1}. An (ccA, ccB)-conditional disclosure of secrets
(CDS) protocol for P is a triplet of deterministic functions (A,B,C)

A : X × W × D → {0, 1}ccA , B : Y × W × D → {0, 1}ccB ,

C : X × Y × {0, 1}ccA × {0, 1}ccB → D

satisfying the following properties:

(reconstruction.) For all (x, y) ∈ X ×Y such that P(x, y) = 1, for all w ∈ W ,
and for all α ∈ D :

C(x, y,A(x,w, α),B(y, w, α)) = α



Conditional Disclosure of Secrets via Non-linear Reconstruction 767

(privacy.) For all (x, y) ∈ X × Y such that P(x, y) = 0, and for all C∗ :
{0, 1}ccA × {0, 1}ccB → D ,

Pr
w←W ,α←rD

[

C∗(A(x,w, α),B(y, w, α)
)

= α
]

≤ 1
|D |

Note that the formulation of privacy above with uniformly random secrets is
equivalent to standard indistinguishability-based formulations.

A useful measure for the complexity of a CDS is the complexity of recon-
struction as a function of the outputs of A,B, as captured by the function C,
with (x, y) hard-wired.

Definition 2.2 (C -reconstruction). Given a set C of functions from
{0, 1}ccA × {0, 1}ccB to D , we say that a CDS (A,B,C) admits C -reconstruction
if for all (x, y) such that P(x, y) = 1, C(x, y, ·, ·) ∈ C .

Two examples of C of interest are:

– Call is the set of all functions from {0, 1}ccA × {0, 1}ccB → D ; that is, we
do not place any restriction on the complexity of reconstruction. Note that
|Call| = |D |2ccA+ccB .

– Clin is the set of all linear functions over Z2 from {0, 1}ccA×{0, 1}ccB → D ; that
is, we require the reconstruction to be linear as a function of the outputs of A
and B as bit strings (but may depend arbitrarily on x, y). This is the analogue
of linear reconstruction in linear secret sharing schemes and is a requirement
for the applications to attribute-based encryption [Wee14,Att14,CGW15].
Note that |Clinear| ≤ |D |ccA+ccB for |D | ≥ 2.

Remark 2.3. Note that while looking at C , we consider C(x, y, ·, ·), which has
(x, y) hard-wired, and takes an input of total length ccA + ccB. In particular, it
could be that C runs in time linear in |x| = |y| = n, and yet ccA = ccB = O(log n)
so C has “exponential” complexity w.r.t. ccA + ccB.

Definition 2.4 (linear CDS). We say that a CDS (A,B,C) is linear if it
admits Clin-reconstruction.

2.2 Private Simultaneous Message

Definition 2.5 (private simultaneous message (PSM)). Fix a functional-
ity f : X ×Y → D . An (ccA, ccB)-private simultaneous message (PSM) protocol
for f is a triplet of deterministic functions (A,B,C)

A : X × W → {0, 1}ccA , B : Y × W → {0, 1}ccB , C : {0, 1}ccA × {0, 1}ccB → D

satisfying the following properties:

(reconstruction.) For all (x, y) ∈ X × Y :

C(A(x,w),B(y, w)) = f(x, y)

(privacy.) There exists a randomized simulator S, such that for any (x, y) ∈
X × Y the joint distribution (A(x,w),B(y, w)) is perfectly indistinguish-
able from S(f(x, y)), where the distributions are taken over w ← W and
the coin tosses of S.
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2.3 Predicates and Reductions

Predicates. We consider the following predicates:

– Index INDEXn: X := {0, 1}n,Y := [n] and

PINDEX(D, i) = 1 iff Di = 1

Here, Di denotes the i’th coordinate of D. Note that we can also interpret D
as the characteristic vector of a subset of [n].

– Multi-linear Polynomials MPOLYk
n1,...,nk

: X := F
n1···nk
q ,Y := F

n1
q × · · · ×

F
nk
q and

PMPOLY(p, (x1, . . . ,xk)) = 1 iff 〈p,x1 ⊗ · · · ⊗ xk〉 
= 0

This captures homogeneous multi-linear polynomials of total degree k in n1 +
· · · + nk variables over Fq; concretely, the variables are encoded as k vectors
x1, . . . ,xk, each monomial is a product of k variables one from each of the
k vectors, and p is the vector of coefficients. In addition, our protocols work
with inhomogeneous multi-linear polynomials as well. Simply observe that
any (even non-homogeneous) multi-linear polynomial p in n variables of total
degree at most k is captured by the class MPOLYk

n+1,...,n+1.
1

– All (“worst”) functions ALLN : a fixed function F : [N ] × [N ] → {0, 1},X =
Y := [N ]

PALL(x, y) = F (x, y)

Reductions. We have the following reductions from prior works:

– MPOLYk
n1,...,nk

⇒ INDEXn1···nk
. On input D ∈ {0, 1}n, i ∈ [n] where

n =
∏k

j=1 nj , we map i to (ei1 , . . . , eik
) so that ei = ei1 ⊗ · · · ⊗ eik

and D to
p; this way, 〈p, ei1 ⊗ · · · ⊗ eik

〉 = 〈D, ei〉 = Di.
– INDEXN ⇒ ALLN . Fix F : [N ] × [N ] → {0, 1}. We use the “truth table”

reduction that maps (x, y) ∈ [N ] × [N ] to F (x, ·) ∈ {0, 1}N , y ∈ [N ].

2.4 Secret Sharing

Secret Sharing for Forbidden Graph Access Structure on N Parties. Consider a
graph G = (V,E), where |V | = N . Each vertex denotes a party. The sets that
can reconstruct the secret are: (1) all sets of 3 or more parties, (2) all pairs of
parties that correspond to vertexes that are not adjacent. The access structure
is called forbidden graph as each edge indicates a pair of parties who can not
jointly reconstruct the secret.

1 There are two reasons why we work with multi-linear polynomials with the ten-
sor product notation: first, it yields a cleaner and more efficient reduction for
MPOLYk

n1,...,nk
⇒ INDEXn1···nk (saving a factor of k), and second, it is eas-

ier to work with for our CDS schemes in Sects. 3.1 and 3.2.
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Secret Sharing for Forbidden Bipartite Graph Access Structure on 2N Parties.
Consider a graph G = (L,R,E) where |L| = |R| = N . Each vertex denotes a
party. The sets that can reconstruct the secret are: (1) all pairs of parties that
correspond to vertexes from the same side of the graph; (2) all pairs of parties
that correspond to vertexes from different sides that are not adjacent.

Secret Sharing from PSM and CDS. As shown in [BIKK14, Sect. 7], a PSM
scheme for ALLN where Alice and Bob sends at most � = �(N) bits yields
secret-sharing schemes for every forbidden bipartite graph access structure on
2N nodes where the share size is O(�) bits. This further implies secret sharing
schemes for every forbidden graph access structure on 2N nodes where the share
size is O(� log N) bits [BIKK14, Sect. J]. The technique can be generalized to
a transformation from a CDS scheme – a weaker object – to a secret sharing
scheme for forbidden graph structures.

Theorem 2.6 [BIKK14]. A CDS scheme for ALLN+1 where Alice and Bob
sends at most � = �(N) bits yields secret sharing schemes for forbidden bipartite
graph access structure on 2N nodes.

Proof. Given any bipartite graph G = (L,R,E), let (A,B,C) be a CDS for
predicate P : [N + 1] × [N + 1] → {0, 1} such that

P(i, j) =

{

1, if i, j ≤ N and (i, j) /∈ E,

0, otherwise.

Let α ∈ D denotes the secret. We construct a secret sharing scheme for G
by dealing with the two types of authorized sets. First, the secret is shared
among each side with Shamir’s 2-out-of-N threshold secret sharing. Next, sample
random w ← W , let the i-th party on the left hold A(i, w, α), let the j-th party
on the right hold B(j, w, α).

Correctness is straight-forward: 2 parties on the same side can reconstruct
the secret from Shamir’s 2-out-of-N threshold secret sharing; the i-th party on
the left and the j-th party on the right can reconstruct the secret using the
reconstruction function of CDS for ALLn+1 if (i, j) /∈ E. Privacy follows from
the following:

– If (i, j) ∈ E, the i-th party on the left and the j-th party on the right hold
A(i, w, α), B(j, w, α), whose joint distribution is independent from secret α
by the definition of CDS.

– The i-party on the left holds A(i, w, α). By the definition of CDS, A(i, w, α),
B(N + 1, w, α) jointly leak no information about secret α. ��

3 CDS for Degree-2 and 3 Polynomials with Applications
to INDEX and ABE

In this section, we present CDS for the class of multi-linear polynomials
MPOLYk

n1,...,nk
of degree k = 2, 3 in Sects. 3.1 and 3.2, along with applica-

tions to INDEXn and ABE in Sects. 3.3 and 3.4.
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3.1 Degree-2 Polynomials MPOLY2
n1,n2

over Fq

Recall that in MPOLY2
n1,n2

over Fq, Alice holds p ∈ F
n1n2
q , Bob holds (x1,x2) ∈

F
n1
q × F

n2
q and μ ∈ Fq, and Charlie learns μ iff 〈p,x1 ⊗ x2〉 
= 0. (In Sect. B, we

present a protocol for the “negated” setting where Charlie learns μ iff 〈p,x1 ⊗
x2〉 = 0).

Protocol Overview. The shared randomness comprises (b, c) ∈ F
n1
q × F

n2
q . Bob

sends m1
B := μx1 +b. Now, Charlie knows p,x1,x2, μx1 +b, and could compute

〈p, (μx1 + b) ⊗ x2〉 = μ〈p,x1 ⊗ x2〉 + 〈p,b ⊗ x2〉
︸ ︷︷ ︸

〈p′
b,x2〉

where p′
b ∈ F

n2
q depends on p and b. In order for Charlie to compute 〈p′

b,x2〉,
and thus μ〈p,x ⊗ x〉, the following needs to be done:

– Alice sends m1
A := p′

b + c,
– Bob sends m2

B := 〈c,x2〉
Now Charlie can recover 〈p′

b,x2〉 = 〈m1
A,x2〉−m2

B . Concretely, Charlie recovers
μ using

μ〈p,x1 ⊗ x2〉 = 〈p,m1
B ⊗ x2〉 + m2

B − 〈m1
A,x2〉

This protocol is described in detail in Fig. 3.

Fig. 3. The CDS protocol for degree-2 polynomials with (ccA, ccB) = (n2 log q, (n1 +
1) log q).
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Theorem 3.1 (CDS for MPOLY2
n1,n2

). There is a CDS protocol for degree-
2 polynomials over Fq (shown in Fig. 3) where Alice sends n2 elements of Fq,
Bob sends n1 +1 elements of Fq and Charlie applies an Fq-linear reconstruction
function.

Proof. Correctness is straight-forward and follows from the computation above.
Namely,

〈p,m1
B ⊗ x2〉 + m2

B − 〈m1
A,x2〉 = 〈p, (μx1 + b) ⊗ x2〉 + 〈c,x2〉 − 〈p′

b + c,x2〉
= μ〈p,x1 ⊗ x2〉 + 〈p,b ⊗ x2〉 − 〈p′

b,x2〉
= μ〈p,x1 ⊗ x2〉

since, by definition of p′
b, 〈p,b ⊗ x2〉 = 〈p′

b,x2〉.
It is also easy to see that the degree of reconstruction is 1. Privacy follows

from the following observations:

– The joint distribution of m1
B and m1

A is uniformly random, since we are using
(b, c) as one-time pads; and

– m2
B = μ〈p,x ⊗ x2〉 − 〈p,m1

B ⊗ x2〉 + 〈m1
A,x2〉

Putting the two together, we can simulate m1
A,m1

B and m2
B given just x1,x2,p,

μ〈p,x1 ⊗ x2〉. This finishes the proof. ��
The total communication is ccA = n2 elements of Fq and ccB = n1 + 1

elements of Fq for a total of n1 + n2 + 1. We will use this generalization later
in this section to design a CDS protocol for the INDEX functionality with a
general communication tradeoff between Alice and Bob.

3.2 Degree 3 Polynomials MPOLY3
n1,n2,n3

over F2

In MPOLY3
n1,n2,n3

over F2, Alice holds p ∈ F
n1n2n3
2 , Bob holds (x1,x2,x3) ∈

F
n1
2 × F

n2
2 × F

n3
2 and μ ∈ F2, and Charlie learns μ iff 〈p,x1 ⊗ x2 ⊗ x3〉 
= 0. In

contrast to Sect. 3.1, we can only handle polynomials over F2 here, yet this will
be sufficient for our CDS protocol for INDEX in Sect. 3.3.

Protocol Overview. The shared randomness comprises (b1,b2,b3, c) ∈ F
n1
2 ×

F
n2
2 × F

n3
2 × F

n1+n2+n3
2 . Bob sends m1

B := μx1 + b1. Now, Charlie knows
p,x1,x2,x3, μx1 + b1, μx2 + b2, μx3 + b3, and could compute

〈p, (μx1 + b1) ⊗ (μx2 + b2) ⊗ x3〉 + 〈p, (μx1 + b1) ⊗ x2 ⊗ (μx3 + b3)〉
+ 〈p,x1 ⊗ (μx2 + b2) ⊗ (μx3 + b3)〉

= 3μ2〈p,x1 ⊗ x2 ⊗ x3〉
+ 2μ(〈p,b1 ⊗ x2 ⊗ x3〉 + 〈p,x1 ⊗ b2 ⊗ x3〉 + 〈p,x1 ⊗ x2 ⊗ b3〉)
+ 〈p,b1 ⊗ b2 ⊗ x3〉 + 〈p,b1 ⊗ x2 ⊗ b3〉 + 〈p,x1 ⊗ b2 ⊗ b3〉

︸ ︷︷ ︸

〈p′
b1,b2,b3

,x1‖x2‖x3〉

= μ〈p,x1 ⊗ x2 ⊗ x3〉 + 〈p′
b1,b2,b3

,x1‖x2‖x3〉 (4)

where in the last equality, we use the fact that we are working over F2.
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Fig. 4. The CDS protocol for degree-3 polynomials. with (ccA, ccB) = (n1 + n2 +
n3, n1 + n2 + n3 + 1).

As in the degree-2 case, Alice then sends m1
A := p′

b1,b2,b3
+ c and Bob

also sends m4
B := 〈c,x1‖x2‖x3〉. From these, Charlie can recover 〈p′

b1,b2,b3
,

x1‖x2‖x3〉 and thus μ〈p,x1⊗x2⊗x3〉. Thus, he recovers μ if and only if 〈p,x1⊗
x2 ⊗ x3〉 
= 0. This protocol is described in detail in Fig. 4.

Theorem 3.2 (CDS for MPOLY3
n1,n2,n3

). There is a CDS protocol for
degree-3 polynomials over F2 (shown in Fig. 4) where Alice sends n1 + n2 + n3

bits Bob sends n1+n2+n3+1 bits, and Charlie applies a degree-2 reconstruction
function (over F2).

Proof. Correctness is straight-forward and follows from the computation above.
Namely, from (4), we know that

〈p,m1
B ⊗ m2

B ⊗ x3 + m1
B ⊗ x2 ⊗ m3

B + x1 ⊗ m2
B ⊗ m3

B〉
= μ〈p,x1 ⊗ x2 ⊗ x3〉 + 〈p′

b1,b2,b3
,x1‖x2‖x3〉
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Charlie computes

〈p,m1
B ⊗ m2

B ⊗ x3 + m1
B ⊗ x2 ⊗ m3

B + x1 ⊗ m2
B ⊗ m3

B〉
+ m4

B − 〈m1
A,x1‖x2‖x3〉

= μ〈p,x1 ⊗ x2 ⊗ x3〉 + 〈p′
b1,b2,b3

,x1‖x2‖x3〉
+ 〈c,x1‖x2‖x3〉 − 〈p′

b1,b2,b3
+ c,x1‖x2‖x3〉

= μ〈p,x1 ⊗ x2 ⊗ x3〉
It is also easy to see that Alice sends n1 + n2 + n3 bits in total, Bob sends

n1 + n2 + n3 + 1 bits, and that the degree of reconstruction is 2.
Privacy follows from the following observations:

– The joint distribution of m1
B ,m2

B ,m3
B and m1

A is uniformly random, since
we are using (b1,b2,b3, c) as one-time pads;

– The last bit of Bob’s message, namely m4
B , is uniquely defined given m1

A,
m1

B ,m2
B ,m3

B and μ〈p,x1 ⊗ x2 ⊗ x3〉. In particular,

m4
B = 〈c,x1‖x2‖x3〉

= 〈m1
A,x1‖x2‖x3〉 − 〈p′

b1,b2,b3
,x1‖x2‖x3〉

= 〈m1
A,x1‖x2‖x3〉 + μ〈p,x1 ⊗ x2 ⊗ x3〉

− 〈p,m1
B ⊗ m2

B ⊗ x3 + m1
B ⊗ x2 ⊗ m3

B + x1 ⊗ m2
B ⊗ m3

B〉
Putting the two together, we can simulate m1

A,m1
B ,m2

B ,m3
B ,m4

B given just
x1,x2,x3,p and μ〈p,x1 ⊗ x2 ⊗ x3〉. ��
Remark 3.3 (Beyond degree 3). For degree d, the above approach yields commu-
nication complexity O(nd−2), which is no better than O(n�d/2�) for d ≥ 4. To
get to O(nd−3) with the above approach, we would want to pick a field and a in
the field such that dad−1 
= 0, (d − 1)ad−2, (d − 2)ad−3 = 0. This is impossible
since ad−2 = (d − 1)ad−2 − a · (d − 2)ad−3 = 0.

3.3 CDS for INDEXn

Recall that in INDEXn, Alice holds D ∈ {0, 1}n, Bob holds i ∈ [n] and μ ∈ Fq,
and Charlie learns μ iff Di = 1. We obtain several CDS protocols for INDEXn

by combining the reductions in Sect. 2.3 and our CDS protocols from Sects. 3.1
and 3.2.

Theorem 3.4. There are CDS protocols for INDEXn with:

– (ccA, ccB) = (�n/t�, t + 1) and degree-1 reconstruction, for 1 ≤ t ≤ n; and
– (ccA, ccB) = (�n/t2�, 3t + 1) and degree-2 reconstruction, for 1 ≤ t ≤ n1/3.

As a corollary, we obtain a CDS for INDEXn with total communication O(n1/2)
and degree-1 reconstruction, and one with total communication O(n1/3) and
degree-2 reconstruction.
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We note that the first bullet was already shown in prior works [GKW15], but
we provide an alternative, more algebraic construction here.

Proof. The first bullet follows readily from combining the MPOLY2
n/t,t ⇒

INDEXn reduction in Sect. 2.3 with our CDS for MPOLY2
n/t,t in Theorem 3.1.

This immediately yields a CDS for INDEXn with (ccA, ccB) = (n/t, t + 1) and
degree-1 reconstruction.

For the second bullet, we start by observing that combining the
MPOLY3

t,t,t ⇒ INDEXt3 reduction in Sect. 2.3 with our CDS for MPOLY3
t,t,t

in Theorem 3.2. This immediately yields a CDS for INDEXt3 with (ccA, ccB) =
(3t, 3t + 1) and degree-2 reconstruction.

To go from INDEXt3 to INDEXn, fix any t ∈ [n1/3] and run n
t3 copies of

CDS for INDEXt3 . That is,

– Alice breaks up D into n/t3 databases D1, . . . ,Dn/t3 ∈ {0, 1}t3 , and runs
n/t3 copies of CDS for INDEXt3 , each of which incurs O(t) communication.

– Bob parses his input i ∈ [n] as (j, i′) ∈ [n/t3] × [t3] so that Dj
i′ = Di. Then,

Bob just needs to send a message for the CDS corresponding to Dj and with
input i′ ∈ [t3]. This means that Bob only sends 3t + 1 bits.

Altogether, Alice sends n
t3 · 3t bits and Bob sends 3t + 1 bits. ��

Remark 3.5 (balancing communication in CDS). The idea of constructing a CDS
for INDEXn from n/t copies of CDS for INDEXt works well on any CDS proto-
col for INDEX. It’s also implicitly used in the previous (ccA, ccB) = (n/t, t+1)
CDS for INDEXn (e.g. [GKW15]). In general, a CDS protocols for INDEXn

with communication complexity (ccA, ccB) implies CDS protocols for INDEXn

with communication communication (cc′
A, cc′

B) = (�n
t �ccA(t), ccB(t)) for any

t ∈ [n].

3.4 Attribute-Based Encryption for Degree-2 Polynomials

We obtain a new ABE scheme for degree-2 polynomials, by essentially combining
the framework of Chen, Gay and Wee (CGW) [CGW15] with our CDS schemes
for MPOLY2

n1,n2
. In the ABE, ciphertexts are associated p ∈ F

n1n2
q , secret keys

with (x1,x2) ∈ F
n1
q ×F

n2
q , and decryption is possible whenever 〈p,x1 ⊗x2〉 
= 0.

We obtain an adaptively secure ABE under the standard k-linear assumption
in prime-order bilinear groups, where ciphertext contains O(n2) group elements,
and the secret key contains O(n1) group elements. This achieves a quadratic
savings over the naive approach of encoding degree-2 polynomials as an inner
product, where the total ciphertext and secret key size will be O(n1n2) group
elements.

Formally, the CGW framework requires CDS with additional structure (e.g.
Alice’s and Bob’s messages are linear in the shared randomness), which our
schemes do satisfy with some straight-forward modifications. In the ABE scheme,
the master public key, secret key and ciphertext are of the form:
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mpk :=
(

g1, gb1 , gc1 , e(g1, g1)α
)

ctp :=
(

gs
1, g

s(p′
b+c)

1 , e(g1, g1)αs · m
)

skx1,x2 :=
(

gr
1, gαx1+rb

1 , g
〈c,x2〉r
1

)

(5)

where p′
b is defined as in Fig. 3. Decryption relies on the fact that

s · (〈p, (αx1 + rb) ⊗ x2〉 + 〈c,x2〉r) − 〈s(p′
b + c)〉 · r = αs · 〈p,x1 ⊗ x2〉

4 CDS for INDEX from Matching Vector Families

Recall that in INDEXn, Alice holds D ∈ {0, 1}n, Bob holds i ∈ [n] and μ ∈
Fq, and Charlie learns μ iff Di = 1. In this section, we will construct a CDS
protocol for INDEXn with communication complexity 2O(

√
log n log log n). The

key tool in the construction is matching vector families first constructed by
Grolmusz [Gro00] and introduced to cryptography in the context of PIR [Yek08,
Efr09,DGY11,DG15].

Lemma 4.1 (Matching vector family [Gro00]). For every sufficiently large
n ∈ N, there exists a collection of vectors {(vi,ui)}i∈[n] such that ui,vi ∈ Z

�
6

where � = 2O(
√

log n log log n) = no(1) and:

〈vi,ui〉 = 0,

〈vi,uj〉 ∈ {1, 3, 4} for i 
= j.

Moreover, the collection of vectors is computable in time poly(n).

Such a collection of vectors is known in the literature as a matching vector
family ; the statement above corresponds to the special case where the underlying
modulus is 6. Our CDS for INDEXn uses the above matching vector family in
a way similar to the 2-server PIR in [DG15].

4.1 CDS for INDEXn with no(1) communication

Protocol Overview. The shared randomness consists of (b, c, c′) ∈ Z
�
6 ×Z

�
3 ×Z3.

Following [DG15], we consider the following functions G,G′ : {0, 1} → Z3 (which
depend on both inputs i and D and randomness b) given by2

G(t) :=
∑

j∈[n]

Dj · (−1)〈tui+b,vj〉, G′(t) :=
∑

j∈[n]

〈ui,vj〉 · Dj · (−1)〈tui+b,vj〉

(6)

2 Note that the sums in G,G′ are performed over Z3, whereas the computation in the
exponents of −1 are performed over Z2. This means that we will treat elements of
Z6 (as used in the matching vector family) as elements of Z2 and Z3.
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Fig. 5. The 2O(
√
logn log logn)-bit CDS protocol for INDEXn using matching vector

families.

where Dj is the jth entry of the vector D. Our protocol crucially exploits the
identity

(2μ − 1)G′(0) − (2μ − 1)G(0) − G(μ) + G′(μ) = μ · Di · (−1)〈b,vi〉 (7)

which relies on both the properties of the matching vector family and the struc-
ture of the underlying ring Z3 (we defer the proof to the end of this section).
To compute the left hand side of Eq. 7, namely (2μ − 1)G′(0) − (2μ − 1)G(0) −
G(μ) + G′(μ) (and therefore recover μ if Di = 1), we observe that

– Bob sends m1
B := μui + b to Charlie.

– Charlie knows i,D and μui +b and could therefore compute G(μ) and G′(μ).
– Alice can compute G(0) =

∑

j Dj(−1)〈b,vj〉 since it does not depend on i.
Alice then sends m1

A = (2μ − 1)G(0) − c′.
– We can write G′(0) =

∑

j〈ui,vj〉Dj(−1)〈b,vj〉 as

〈ui,
∑

j

vjDj(−1)〈b,vj〉〉

Alice would send m2
A := c + (2μ − 1)

∑

j vjDj(−1)〈b,vj〉 and Bob would
send m2

B := 〈ui, c〉 + c′. Note that we have (2μ − 1)G′(0) − (2μ − 1)G(0) =
−m1

A + 〈ui,m2
A〉 − m2

B .
– Charlie outputs 1 if (2μ − 1)G′(0) − (2μ − 1)G(0) − G(μ) + G′(μ) 
= 0, and 0

otherwise.

Theorem 4.2. There is a CDS protocol for INDEXn (given in Fig. 5) with
ccA, ccB = 2O(

√
log n log log n).
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Analysis. Correctness is straight-forward. It is also easy to see that the total
communication complexity is O(�) = 2O(

√
log n log log n). Privacy follows from the

following observations:

– the joint distribution of m1
B,m1

A,m2
A is uniformly random, since we are using

(b, c, c′) as one-time pads;
– when Di = 0, we have (2μ− 1)G′(0)− (2μ− 1)G(0)−G(μ)+G′(μ) = 0. This

means that m2
B = 〈ui,m2

A〉 − m1
A − G(μ) + G′(μ). Recall that G(μ), G′(μ)

can in turn be computed from D, i,m1
B .

Putting these together, we can simulate m1
A,m2

A,m1
B ,m2

B given just D, i when
Di = 0.

Completing the Proof. It remains to prove the identity described in (7). Fix
i ∈ [n],D ∈ {0, 1}n and b ∈ Z

�
6. For σ ∈ {0, 1, 3, 4}, we define

Sσ := {j : 〈ui,vj〉 = σ} ⊆ [n]

cσ :=
∑

j∈Sσ

Dj(−1)〈b,vj〉 ∈ Z3

We can then rewrite G(t), G′(t) as

G(t) =
∑

σ

( ∑

j∈Sσ

Dj(−1)〈b,vj〉) · (−1)tσ

G′(t) =
∑

σ

σ
( ∑

j∈Sσ

Dj(−1)〈b,vj〉) · (−1)tσ

and thus

G(t) = c0 + c1(−1)t + c3(−1)3t + c4(−1)4t, G′(t) = c1(−1)t + c4(−1)4t

This means ⎡

⎢

⎢

⎣

G(0)
G′(0)
G(1)
G′(1)

⎤

⎥

⎥

⎦
=

⎡

⎢

⎢

⎣

1 1 1 1
1 1

1 −1 −1 1
−1 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

c0

c1

c3

c4

⎤

⎥

⎥

⎦
(8)

It is then easy to see that

G(0) − G′(0) = c0 + c3

G(1) − G′(1) = c0 − c3

G(μ) − G′(μ) = c0 + (1 − 2μ)c3

Therefore,

(G(μ) − G′(μ)) − (1 − 2μ)(G(0) − G′(0)) = 2μ · c0 = −μ · c0

The identity in (7) then follows readily from the fact that c0 = Di · (−1)〈b,vi〉.
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Comparison with Dvir and Gopi. Dvir and Gopi considered the ring Z6[X]/(X6−
1) which has a generator X, but we use Z3 and −1 as suggested there-in. The def-
initions of G(t), G(t′), c0, c1, c3, c4 are the same as those in DG, and the relation
in (8) is a simplification of that in DG.

Remark 4.3 (From PIR to CDS). In Sect. 1.2, we informally construct a CDS
for INDEXn from any 2-server PIR scheme whose reconstruction function has
good structure (as in formula (2)). We claimed that [DG15] has similar structure
so that the construction is possible.

Let ũi := (ui‖1), ṽj := (vj‖ − 1), b̃ := (b‖0). Define HD(y) =
∑

j ṽj · Dj ·
(−1)〈y,ṽj〉, then 〈HD(tũi + b̃), ũi〉 =

∑

j(〈vj ,ui〉 − 1) · Dj · (−1)〈tui+b,vj〉−t =
(G′(t) − G(t)) · (−1)−t. Finally,

〈HD(ũi + b̃), ũi〉−〈HD(b̃), ũi〉 = −G′(t)+ G(t)+ G′(0)− G(0)=Dj · (−1)〈b,vi〉,

which is similar to the property mentioned in Sect. 1.2.

4.2 Applications to ALLN and Secret-Sharing

Corollary 1. There exist CDS schemes for ALLN with ccA = ccB =
2O(

√
log N log log N).

Corollary 2. There are secret sharing schemes for forbidden graph access struc-
tures on N nodes where the share size for each node is 2O(

√
log N log log N) bits and

total share size is N · 2O(
√

log N log log N) = N1+o(1).

Combining Theorem 4.2 and reduction for INDEXN ⇒ ALLN in Sect. 2.3
yields Corollary 1 immediately. Further combining Corollary 1 with the construc-
tion of secret sharing schemes for forbidden graph access structures from CDS
for ALL (Theorem 2.6) yields Corollary 2.

5 PSM for Polynomials with Applications to INDEX

5.1 Degree-k Polynomials MPOLYk
n1,...,nk

We start with a PSM protocol for degree-k polynomials, which is “essentially
optimal” in the sense that the communication complexity is roughly the same as
that for sending the inputs in the clear. Our protocol uses the standard “random
shift” technique in information-theoretic cryptography, but to the best of our
knowledge, the protocol has not appeared in the literature.

Warm-up. Suppose Alice holds multi-variate polynomial p in n variables over
Fq of total degree at most k, Bob holds an input x ∈ F

n
q , and we want Charlie

to learn p(x) and nothing else. Here is a simple protocol:

– the shared randomness is w ∈ F
n
q along with a random polynomial g of total

degree k;
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– Alice sends (x′, u) := (x + w, g(x + w)); Bob sends the polynomial h where
h(y) := p(y − w) + g(y); Charlie outputs h(x′) − u.

Correctness is straight-forward. Privacy follows readily from the fact that we can
simulate the view of Charlie given p(x) by picking a random x′, h and outputting
(x′, h(x′) − f(x)), h. Alice only sends a polynomial, thus her communication
complexity ccA matches the information lower bound.

This warm-up PSM relies on the fact that for any degree-k polynomial p(x),
after shifting the input by a vector w, the resulting polynomial p(x − w) is
still a degree-k polynomial. This is not true for homogeneous polynomial (e.g.
MPOLYk

n1,...,nk
). Therefore, when we apply the technique from this warm-

up PSM to MPOLYk
n1,...,nk

, the one-time pad polynomial g is chosen from
a class larger than MPOLYk

n1,...,nk
. A näıve solution is to sample random n-

variate degree-k polynomial g. This makes Alice’s message (≥ (n1+...+nk+1)k

k!
bits) much longer than her input (

∏

j nj bits). In order to overcome this difficult
and preserve close-to-optimal communication complexity, we sample g from a
more subtle polynomial class.

Functionality. The functionality MPOLYk
n1,...,nk

is defined as: Alice holds
a homogeneous multi-linear polynomial p ∈ F

n1...nk
q and Bob holds x :=

(x1, . . . ,xk) ∈ F
n1
q ⊗ . . . ⊗ F

nk
q . Charlie learns p(x) := 〈p,x1 ⊗ . . . ⊗ xk〉.

Protocol Overview. The shared randomness comprises b = (b1, . . . ,bk) ∈ F
n1
q ×

. . . × F
nk
q and a random polynomial g. Bob sends m1

B := x + b and Alice sends
a polynomial h such that h(y) := 〈p, (y1 − b1) ⊗ . . . ⊗ (yk − bk)〉 + g(y). Now
Charlie knows, x + b, h, and can compute

h(x + b) = 〈p,x1 ⊗ . . . ⊗ xk〉 + g(x + b).

Charlie could learns f(x) if Bob sends m2
B := g(x + b).

When we compose homogeneous polynomial p(y) := 〈p,y1 ⊗ . . . ⊗ yk〉 with
an input shift, the resulting polynomial 〈p, (y1 − b1) ⊗ . . . ⊗ (yk − bk)〉 is not
homogeneous. Let y1‖1 denote the vector obtained by padding constant 1 at the
end of y. There exists p′

b1,...,bk
∈ F

(n1+1)...(nk+1)
q such that

〈p, (y1 − b1) ⊗ . . . ⊗ (yk − bk)〉 = 〈p′
b1,...,bk

, (y1‖1) ⊗ . . . ⊗ (yk‖1)〉.
Therefore, to hide polynomial 〈p, (y1 − b1) ⊗ . . . ⊗ (yk − bk)〉 using a one-time
pad, Alice pick a random polynomial g that

g(x) := 〈g, (y1‖1) ⊗ . . . ⊗ (yk‖1)〉, (9)

where g ∈ F
(n1+1)...(nk+1)
q .

Theorem 5.1. There is a PSM protocol for degree k polynomials over Fq (shown
in Fig. 6) where Alice sends

∏

j(nj + 1) elements of Fq, Bob sends
∑

j nj +
1 elements of Fq and Charlie applies a degree-(k + 1) reconstruction function
over Fq.
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Fig. 6. The PSM protocol for degree-k polynomials with (ccA, ccB) = (
∏

j(nj +
1) log q, (

∑

j nj + 1) log q).

Proof. The correctness is straight-forward, as

h(m1
B) − m2

B = h(x + b) − g(x + b) = 〈p,x1 ⊗ . . . ⊗ xk〉.

It takes
∏

j(nj + 1) elements of Fq to encode a non-homogeneous degree-k poly-
nomial over Fq. Thus the communication complexity is ccA =

∏

j(nj + 1) · log q,
ccB = (

∑

j nj + 1) log q. Privacy follows from the following observations:

– the joint distribution of m1
B, h is uniformly random, since we are using (b, g)

as one-time pads;
– we have m2

B = h(mB) − f(x).

Putting the two together, we can simulate h,m1
B ,m2

B given just f(x). The recon-
struction is of degree k + 1. ��

Generalization. The technique of this PSM protocol (shown in Fig. 6) can be
generalized to the following functionality: Alice holds f ∈ F , Bob holds x ∈ X
and Charlie learns f(x) ∈ D , where F is a public set of functions from finite
group X to finite group D satisfying

– Closure under group operation: for any f, f ′ ∈ F , the function f + f ′,
defined as (f + f ′)(x) = f(x) + f ′(x), is in F as well;

– Closure under input shift: for any f ∈ F , s ∈ X , the function fs, defined
as fs(x) = f(x − s), is also in F .

The resulting PSM has nearly optimal communication complexity, ccA = log |F |
which matches information theoretical lower bound and ccB = log |X | + log |D |
which is higher than the optimal by at most log |D |.
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Inner Product. The inner product problem, where Alice and Bod hold x,y ∈ F
n
p

respectively and Charlie learns 〈x,y〉, is an alias of MPOLY1
n. Thus there is an

efficient PSM protocol for inner product.

Corollary 3. There exists a PSM protocol for inner product with ccA = ccB =
n + 1 and degree-2 reconstruction.

5.2 Degree-4 Functions

Here, we present a PSM for degree 4 functions with linear communication, which
we then use to derive a PSM for ALLN in the next section.

Functionality. There is a fixed public function p ∈ F
n4

q . Alice holds x1,x2 ∈ F
n
q

and Bob holds y1,y2 ∈ F
n
q . Charlie learns 〈p,x1 ⊗ x2 ⊗ y1 ⊗ y2〉.

Protocol Overview. Alice sends x1 + b1,x2 + b2, Bob sends y1 + c1,y2 + c2.
Then Charlie can computes

〈p, (x1 + b1) ⊗ (x2 + b2) ⊗ (y1 + c1) ⊗ (y2 + c2)〉
= 〈p, (x1 + b1) ⊗ (x2 + b2) ⊗ (y1 ⊗ c2 + c1 ⊗ y2 + c1 ⊗ c2)〉

︸ ︷︷ ︸

affine in y1‖y2

+ 〈p, (x1 ⊗ b2 + b1 ⊗ x2 + b1 ⊗ b2) ⊗ y1 ⊗ y2〉
︸ ︷︷ ︸

affine in x1‖x2

+ 〈p,x1 ⊗ x2 ⊗ y1 ⊗ y2〉
= 〈p′

b1,b2,c1,c2,x1,x2
,y1‖y2‖1〉 + 〈p′′

b1,b2,c1,c2,y1,y2
,x1‖x2‖1〉

+ 〈p,x1 ⊗ x2 ⊗ y1 ⊗ y2〉 (10)

The key insight is that the two terms that are linear in either in x1‖x2 or y1‖y2

and can be computed using a PSM for inner product with O(n) communication.

Theorem 5.2. This is a PSM protocol for degree-4 functions over Fq (shown
in Fig. 7) where both Alice and Bob send (4n + 3) elements of Fq and Charlie
applies a degree-4 reconstruction function over Fq.

Proof. Correctness is straight-forward from Eq. (10), as

〈p,m1
A ⊗ m2

A ⊗ m1
B ⊗ m2

B〉 − a

= 〈p,m1
A ⊗ m2

A ⊗ m1
B ⊗ m2

B〉
− 〈p′

b1,b2,c1,c2,x1,x2
,y1‖y2‖1〉 − 〈p′

b1,b2,c1,c2,y1,y2
,x1‖x2‖1〉

= 〈p,x1 ⊗ x2 ⊗ y1 ⊗ y2〉.
Privacy follows from the following observations:

– the joint distribution of m1
A,m2

A,m1
B ,m2

B is uniformly random, since we are
using (b1,b2, c1, c2) as one-time pads;
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– a is determined by p,m1
A,m2

A,m1
B ,m2

B and 〈p,x1 ⊗ x2 ⊗ y1 ⊗ y2〉 as a =
〈p,m1

A ⊗ m2
A ⊗ m1

B ⊗ m2
B〉 − 〈p,x1 ⊗ x2 ⊗ y1 ⊗ y2〉. The messages in the

underlying PSM for inner product can be simulated given just a.

Putting the two together, we can simulate Charlie’s view, consisting of m1
A,m2

A,
m1

B ,m2
B and the messages in PSM for inner product, given 〈p,x1⊗x2⊗y1⊗y2〉.

The reconstruction is of degree 4. Communication complexity is ccA = ccB =
(4n + 3) log q, each party sends 2n elements as one-time pads of its input, and
2n + 3 elements for computing the inner product. ��

5.3 Applications to INDEXn and ALLN

Theorem 5.3. For any integer k ≥ 1, there are PSM protocols for INDEXn

with: (ccA, ccB) = (O(n), k · n1/k + 1) and degree-(k + 1) reconstruction.

Note that setting k = 1 and k = log n yields the folklore constructions
described in Fig. 2.

Proof. It follows from combining the MPOLYk
n1/k,...,n1/k ⇒ INDEXn reduc-

tion in Sect. 2.3 with our PSM for MPOLYk in Theorem 5.1. This immediately
yields a PSM for INDEXn with (ccA, ccB) = ((�n1/k� + 1)k, k�n1/k� + 1) and
degree-(k + 1) reconstruction.

ccA(n) ≤ (�n1/k� + 1)k ≤ (n1/k + 2)k = n + 2kn1−1/k + . . . = O(n) ��

Theorem 5.4. There are PSM protocols for ALLN with: (ccA, ccB) =
(
√

N,
√

N) and degree-4 reconstruction.

Note that such PSM protocols were already shown in [BIKK14] via the use
of a 4-server PIR; our construction is simpler, and we provide an explicit bound
on the complexity of reconstruction.

Proof. The predicate ALLN can be reduced to degree-4 function problem
defined in Fig. 7.

– p ∈ F
N2

2 is the true table of the fixed function F , such that for any x, y ∈ [N ],
〈p, ex ⊗ ey〉 = F (x, y)

– Alice holds x1 := ei1 ∈ F

√
N

2 ,x2 := ei2 ∈ F

√
N

2 such that ei1 ⊗ ei2 = ex.
– Bob holds y1 := ei1 ∈ F

√
N

2 ,y2 := ei2 ∈ F

√
N

2 such that ei1 ⊗ ei2 = ey.

Under such reduction, 〈p,x1 ⊗x2 ⊗y1 ⊗y2〉 = 〈p, ex ⊗ ey〉 = F (x, y). Com-
bining with the PSM protocol for degree-4 function in Sect. 5.2, there are PSM
protocols for ALLN with (ccA, ccB) = O(

√
N,

√
N) and degree-4 reconstruction.

��
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Fig. 7. The PSM protocol for degree-4 functions with ccA = ccB = (4n + 3) log q.

A PSM with One-Sided Privacy (1/2-PSM)

A.1 Private Simultaneous Message with One-Sided Privacy

Definition A.1 (private simultaneous message with one-sided privacy
(1/2-PSM)). Fix a functionality f : X ×Y → D . An (ccA, ccB)-private simul-
taneous message with one-sided privacy (1/2-PSM) protocol for functionality f
is a triplet of deterministic functions (A,B,C)

A : X × W → {0, 1}ccA , B : Y × W → {0, 1}ccB , C : X × {0, 1}ccA × {0, 1}ccB → D

satisfying the following properties:

(reconstruction.) For all (x, y) ∈ X × Y :

C(x,A(x,w),B(y, w)) = f(x, y)

(one-sided privacy.) There exists a randomized simulator S, such that for
any (x, y) ∈ X ×Y the joint distribution (A(x,w),B(y, w)) is perfectly indis-
tinguishable from S(x, f(x, y)), where the distributions are taken over random-
ness w ← W and the coin tosses of S.
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A.2 Degree 2 Polynomials

For degree-2 polynomials, we show a 1/2-PSM protocol where Alice and Bob
both communicate O(n) bits.

Functionality. Alice holds p∈F
n2

p , Bob holds x∈F
n
p and Charlie learns 〈p,x⊗x〉.

Protocol Overview. The shared randomness comprises (b, b′, c) ∈ F
n
p × Fp × F

n
p .

Bob sends m1
B = x + b. Now, Charlie knows p and x + b, and could compute

〈p, (x + b) ⊗ (x + b)〉
= 〈p,x ⊗ x〉 + 〈p,b ⊗ x〉 + 〈p,x ⊗ b〉

︸ ︷︷ ︸

〈p′
b,x〉

+ 〈p,b ⊗ b〉
︸ ︷︷ ︸

c′

where c′ := 〈p,b ⊗ b〉 and p′
b ∈ F

n
2 depends on p and b.

In a nutshell, now, Alice and Bob run a PSM protocol to compute the linear
function 〈p′

b,x〉 + c′ where Alice has p′
b and c′ whereas Bob has x. Since there

is such a protocol where Alice and Bob both send n + 1 bits, the total com-
munication complexity for Alice is O(n), and that for Bob is O(n) as well. The
degree of reconstruction is 2, which follows from the fact that Charlie computes
the bilinear form described above and the fact that the PSM protocol for linear
functions has degree 2.

Concretely, Alice sends m1
A = p′

b + c,m2
A = 〈m1

A,b〉 − c′ − b′, Bob sends
m2

B = 〈c,x〉 + b′. Charlie recover 〈p,x ⊗ x〉 by

〈p,x ⊗ x〉 = 〈p, (x + b) ⊗ (x + b)〉 − 〈p′
b + c,x + b〉 + 〈p′

b + c,b〉 + 〈c,x〉 − c′

= 〈p,m1
B ⊗ m1

B〉 − 〈m1
A,m1

B〉 + m2
A + m2

B

Theorem A.2. There is a PSM protocol with one-sided privacy for n-variable
quadratic polynomial over Fq, where Alice and Bob each sends n+1 elements of
Fq, Charlie applies a reconstruction function of degree-2.

Proof. Correctness is straight-forward.
Privacy follows from the following observations:

– the joint distribution of m1
B ,m2

B ,m1
A is uniformly random, since we are using

(b, b′, c) as one-time pads;
– we have m2

A = 〈p,x ⊗ x〉 − 〈p,m1
B ⊗ m1

B〉 + 〈m1
A,m1

B〉 − m2
B.

Putting the two together, we can simulate m1
B ,m2

B ,m1
A,m2

A given just
p, 〈p,x ⊗ x〉. ��

A degree-k polynomial 〈p,x⊗ . . .⊗x〉 can be naturally reduced to a degree-2
polynomial with O(n�k/2�) variables:

〈p, x ⊗ . . . ⊗ x
︸ ︷︷ ︸

viewed as size-O(n�k/2�) input

⊗ x ⊗ . . . ⊗ x
︸ ︷︷ ︸

viewed as size-O(n�k/2�) input

〉.

Corollary 4. There is a PSM protocol with one-sided privacy for n-variable
degree-k polynomial over Fq, where Alice and Bob each sends O(n�k/2�) elements
of Fq, Charlie applies a reconstruction function of degree-2.
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A.3 One-Side PSM Lower Bounds for INDEXn

In this section, we present lower bounds on both ccA and ccB . Let mA =
A(D,w) ∈ F

�A
q ,mB = B(i,w) ∈ F

�B
q denote the messages sent by Alice and

Bob respectively. Here �A = ccA/ log q, �B = ccB/ log q.

Theorem A.3. In any one-sided PSM protocol for INDEXn with a linear
reconstruction function over Fq, Bob’s communication complexity ccB ≥ n − 2.

Proof. The reconstruction function can be written as

C(D,mA,mB) = 〈aD,mA〉 + 〈bD,mB〉 + c.

Based on this one-sided PSM, a 2-server PIR can be constructed:

– The client choose random w ∈ W . The first query is w.
Receive 1-bit response 〈aD,A(D,w)〉.

– The second query is mB = B(i,w).
Receive 1-bit response 〈bD,mB〉.

– The client recovers Di using Di = 〈aD,mA〉 + 〈bD,B(D,w)〉 + c.

The correctness of the 2-server PIR is a direct corollary from the correctness
of one-sided PSM (A,B,C). Privacy follows from the following two observations:

– The first query is fresh randomness w, which is independent from i.
– The second query is one-sided PSM message mB = B(i,w). Consider the zero

database 0, by the privacy of one-sided PSM protocol, the joint distribution
of A(0,w),B(i,w) is independent from i.

In a 2-server 1-round information-theoretic PIR scheme, if the servers’
responses are 1-bit, then the queries to each server must be at least n − 2 bit
[BFG06]. Therefore, ccB ≥ n − 2 and log |W | ≥ n − 2. ��
Theorem A.4. In any one-sided PSM protocol for INDEXn with a lin-
ear reconstruction function over Fq, Bob’s communication complexity ccB ≥
O(n1/k) log q.

Proof. In order to prove a lower bound of Alice’s communication complexity, we
construct a PSM for INDEXn problem based on a one-sided PSM scheme for
the same problem.

The reconstruction function C is a degree-k polynomial. By the correctness
guarantee,

C(A(D,w),B(i,w)) = Di

for any D, i,w. Define a degree-k polynomial pD,w as

pD,w(y) = C(A(D,w),y).

Then a PSM scheme for INDEXn is to let Alice compute pD,w, let Bob
compute y = B(i,w), then let Charlie learn TD,w(y) using the PSM scheme
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for polynomial. In such PSM scheme, Bob’s communication complexity is no
more than (ccB + 1) log |Fq|, Alice’s communication complexity is no more than
(ccB +1)k · log |Fq|. Then by the communication complexity lower bound of PSM
protocol for INDEXn,

(ccB + 1)k · log q ≥ n · log q. ��
Theorem A.4 proves an Ω(n1/k) lower bound of Bob’s communication com-

plexity in one-sided PSM for INDEXn, it matches the O(n1/k) upper bound of
PSM INDEXn (Theorem 5.3).

The proof of Theorem A.4 only uses the fact that the reconstruction function
is a degree-k polynomial on Bob’s message. It doesn’t use the privacy guarantee
of one-sided PSM for INDEXn that Bob’s message hides index i.

B CDS for Degree-2 Polynomials ¬MPOLY2
n1,n2

In this section, we describe a CDS protocol for ¬MPOLY2
n1,n2

. Alice holds
degree-2 polynomial p ∈ F

n1n2
q , Bob holds (x1,x2) ∈ F

n1
q × F

n2
q and secret

μ ∈ Fq and Charlie learns μ if and only if 〈p,x1 ⊗ x2〉 = 0. This predicate is a
negation of the predicate in CDS for MPOLY2

n1,n2
.

Theorem B.1. There is a CDS protocol for ¬MPOLY2
n1,n2

over Fq (given in
Fig. 8) where Alice sends n2 elements of Fq, Bob sends n1 + 1 elements of Fq

and Charlie applies an Fq-linear reconstruction function.

Proof. Charlie’s output equals

〈p,m1
B ⊗ x2〉 + m2

B − 〈m1
A,x2〉

= 〈p, (ax1 + b) ⊗ x2〉 + μ + 〈c,x2〉 − 〈p′
b + c,x2〉

= a〈p,x1 ⊗ x2〉 + μ

When 〈p,x1 ⊗ x2〉 = 0, Charlie’s output equals μ. This proves correctness.
Privacy follows from the following observations:

– the joint distribution of m1
B ,m1

A is uniformly random, since we are using
(b, c) as one-time pads;

– we have

m2
B = a〈p,x1 ⊗ x2〉 + μ − 〈p,m1

B ⊗ x2〉 + 〈m1
A,x2〉

when 〈p,x1⊗x2〉 
= 0, the distribution of m2
B is uniformly random conditional

on m1
B ,m1

A, since a acts as a one-time pad.

Putting the two together, the joint distribution of m1
A,m1

B ,m2
B is uniformly

random when 〈p,x1 ⊗ x2〉 
= 0. ��
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Fig. 8. The CDS protocol for degree-2 polynomials with (ccA, ccB) = (n2 log q, (n1 +
1) log q).

Connection with CDS for MPOLY2
n1,n2

. On closer examination, the CDS for
MPOLY2

n1,n2
(given in Fig. 3) allows Charlie to learn μ · PMPOLY(p, (x1,x2))

using a linear reconstruction function, where PMPOLY denotes the predicate
defined in Sect. 2.3. Upon this protocol that computes μ · PMPOLY(p, (x1,x2)),
we can construct a CDS protocol for ¬MPOLY2

n1,n2

Concretely, Fig. 3 is a protocol for following functionality: Alice holds degree-
2 polynomial p ∈ F

n1n2
q , Bob holds (x1,x2) ∈ F

n1
q × F

n2
q and secret μ ∈ Fq,

Charlie holds p,x1,x2 and learns μ · PMPOLY(p, (x1,x2)). The reconstruction
functionality is linear in Fq. Assume Bob deviates from the protocol: whenever he
is supposed use secret μ, he feed the protocol with a random value a ∈ Fq picked
from the random string: he also shift his message so that the value recovered by
Charlie is shifted by μ (it’s possible as Charlie applies a linear reconstruction).
As the result, Charlie learns a ·PMPOLY(p, (x1,x2)) + μ. This is exactly a CDS
for ¬MPOLY2

n1,n2
. Charlie recovers μ if PMPOLY(p, (x1,x2)) = 0, and Charlie

recovers a random value otherwise.
This explains the similarity between the CDS for MPOLY2

n1,n2
(given in

Fig. 3) and the CDS for ¬MPOLY2
n1,n2

(given in Fig. 8). Similar transformation
can be applied to CDS for MPOLY3

n1,n2,n3
over F2, the resulting CDS for

¬MPOLY3
n1,n2,n3

over F2 has communication complexity ccA = n1 + n2 + n3,
ccB = n1 + n2 + n3 + 1 and a degree-2 reconstruction function.
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