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Abstract. This paper proposes a hardware design, implemented on an FPGA, for
a hybrid selective encryption and selective error correction coding scheme.
FPGA’s are used as implementation platforms in image processing, as its structure
exploits the temporal and spatial parallelism. The algorithm aims at implementing
security and reliability in which encryption and encoding are performed in a single
step using Bezier curve and Galois field GF (2m). The system aims at speeding up
the encryption and encoding operations without compromising either on security
or on error correcting capability by using selective encryption and selective
encoding. The coding for hybrid crypto-coding algorithm is carried out using
VHDL. The algorithm is simulated and synthesized using Xilinx ISE 10.1 soft-
ware. The algorithm is implemented on Spartan 3 FPGA device 3s1000fg676-5.
The proposed scheme reduces the hardware as modular arithmetic operations are
involved.

Keywords: Bezier curve � Galois field � Image � Encryption � Error
correction � FPGA

1 Introduction

In order to obtain a high throughput rate in Image processing, the algorithms are
implemented in Field Programmable Gate Array (FPGA), which is a reconfigurable
hardware. Implementing on FPGA provides low power cost effective solution and a
high data throughput.

Traditionally HDL languages such as VHDL and Verilog are used for implementing
on FPGA. In this paper, using VHDL an image is encrypted using the concept of
selective encryption that is based on Quartic Bezier Curve over Galois Field GF (2m).
Further the encrypted image is recovered from transmission errors using Low Density
Parity Check Codes (LDPC). The hybrid crypto-coding algorithm is implemented on
FPGA.

The following sections give a brief introduction to Bezier curves and Galois Field
based on which the encryption and the error recovery algorithm are constructed and
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implemented on FPGA. The Low Density Parity Check codes is also been discussed in
the following section.

A. FPGA Overview
An FPGA is made up of an array of programmable logic cells that are interconnected
using a network of interconnecting lines with switches amidst them. The reconfigurable
interconnects allows the logic cells to be interconnected, thereby configuring the logic
cells to perform the desired logical operations. Around the boundary of the chip, Input
Output Cells exist. These I/O cells provide an interface between the external pins of the
chip and the interconnecting lines. Indicating the logic function for each cell and for the
switches is termed as programming an FPGA.

B. Introduction to Bezier Curves
Bezier curves are a method of designing polynomial curve segments [1, 2], where the
shape of curves can be controlled using the control points. The control points (from P0
to Pn) of the Bezier curve determine the order ‘n’ of the curve. Bezier Curves can be
classified as linear Bezier curve, Quadratic Bezier curve, Cubic and Quartic Bezier
curves on the basis of the order ‘n’ [3].

• A Linear Bezier curve has n = 1 and its curve equation is given by Eq. (1)

BðtÞ ¼ ð1� tÞP0 þ tP1; t 2 ½0; 1� ð1Þ

where there are two control points P0 and P1. Linear Bezier curve represents an
interpolation between two points.

• A Quadratic Bezier curve has n = 2 and the curve Eq. (2) is given by

BðtÞ ¼ ð1� tÞ2P0 þ 2tð1� tÞP1 þ t2P2; t 2 ½0; 1� ð2Þ

where there are three control points P0, P1, and P2. The Quadratic Bezier curve
represents a linear interpolate of the control points from P0 to P1 and also P1 to P2.

• The cubic Bezier curve is given by Eq. (3)

BðtÞ ¼ ð1� tÞ3P0 þ 3tð1� tÞ2P1 þ 3ð1� tÞt2P2 þ t3P3; t 2 ½0; 1� ð3Þ

where P0 to P3 are its control points.
• The Quartic Bezier curve B(t) having 5 control points from P0 to P4 is given by

Eq. (4)

BðtÞ ¼ ð1� tÞ4P0 þ 4tð1� tÞ3P1 þ 6t2ð1� tÞ2P2 þ 4t3ð1� tÞP3 þ t4P4; t 2 ð0; 1Þ
ð4Þ

C. Introduction to Galois Field
Evariste Galois is the inventor of Galois field. The number of elements is finite in GF
(pm). Some of the popular Forward Error Correcting codes like BCH Codes and Reed
Solomon codes use finite fields for the purpose of encoding and decoding [4]. In
cryptographic algorithms, the value of p is taken to be 2, and is represented as GF (2m).
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Every GF (2m) has a primitive polynomial of degree m, which a and its conjugates to
be its roots. From the primitive polynomial the elements of GF (2m) can be constructed.
The elements are {0, 1, a a2, a3… am−2}. Each element in GF (2m) can be represented
using m-bits. In coding theory and cryptographic algorithms, certain modular arith-
metic operations are performed on the elements of the Galois Field. The following
section shows the construction of the elements of the field and the arithmetic operations
performed on the field elements.

(i) Elements in GF (2m)

The elements of Galois field GF (24) is constructed using the primitive polynomial P
(x) = x4 + x + 1 and is shown in Table 1

(ii) Addition in GF (2m)

Galois field addition is explained with an example: The primitive polynomial of Galois
Field GF (24) is P(x) = x4 + x + 1. This primitive polynomial has a and its conjugates
as the roots.

According to Table 1, each element of GF (24) is represented using 4-binary bits.
Addition is performed using Bitwise XORing operation. For example:

a5 þ a5 ¼ ð0110Þþ ð0110Þ ¼ ð0000Þ ¼ 0 ¼ a0

a2 þ a5 ¼ ð0010Þþ ð0110Þ ¼ ð0100Þ ¼ 1 ¼ a1

There is a significant increase in the speed of addition, as there is no carry gener-
ation and carry propagation delay.

The addition table for the same is as shown in Table 2.

Table 1. Elements of GF (24)

Element Polynomial
representation

Binary
representation

0 0 (0000)

a0 1 (1000)

a1 X (0100)

a2 X2 (0010)

a3 X3 (0001)

a4 X + 1 (1100)

a5 X2 + X (0110)

a6 X2 + X3 (0011)

a7 1 + X + X3 (1101)

a8 1 + X2 (1010)

a9 X + X3 (0101)

a10 1 + X + X2 (1110)

a11 X + X2 + X3 (0111)

a12 1 + X + X2 + X3 (1111)

a13 1 + X2 + X3 (1011)

a14 1 + X3 (1001)

Table 2. Addition in GF (24)

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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(iii) Multiplication in GF (2m)

Modular multiplication is performed, by multiplying the polynomials and then per-
forming modular reduction on the product. Let a(x), b(x) be the polynomial repre-
sentation of two elements in GF (2m), whose product needs to be computed and g(x) be
the irreducible field generator polynomial, then modular multiplication is as illustrated
in the following example.

Example: If g(x) = 1 + X + X4, a(x) = 1 + X3, b(x) = 1 + X2

Then a(x) * b(x) = (1 + X3) * (1 + X) = (1 + X2 + X3 + X5)
Modular reduction of the above result is (1 + X2 + X3 + X5) mod

(1 + X + X4) = X3 + X + 1.
Table 3 is the modular multiplication performed on the elements of GF (24) using

the polynomial g(x) = 1 + X + X4

Another approach for performing modular multiplication, when the elements of the
field are represented in binary values are as explained below.

The Binary representation of g(x) = (X4 + X + 1) = (1101).
The modular multiplication in binary can be performed as illustrated in Table 3.
For example: If A = 9 and B = 9, then

AXB ¼ 9� 9 ¼ ð1001Þ � ð1001Þ ¼ ð1010001Þ
ð1010001Þmod ð1101Þ ¼ ð1011Þ ¼ 13

Table 3. Multiplication in GF (24)

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13
3 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2
4 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9
5 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6
6 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4
7 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11
8 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1
9 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14
10 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12
11 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3
12 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8
13 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7
14 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5
15 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10
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Further, exponential operation can be performed using GF (2m) as shown below.

57 ¼ ð5� 5� 5� 5� 5� 5� 5ÞGFð24Þ
¼ ð2� 2� 2� 5ÞGFð24Þ
¼ ð4� 10ÞGFð24Þ
¼ 14

D. Low Density Parity Check Codes (LDPC)
Low density parity check codes fall into the category of linear block codes and is one of
the popular error correcting codes, when data is transmitted over a noisy channel. The
density of one’s is smaller compared to that of zeros in LDPC [14]. There can be a
regular or an irregular Parity matrix defined for an LDPC code. If the Parity matrix has a
uniform row and column weight, then it is a Regular parity matrix P [16]. Every row and
every column of the Regular Parity matrix has exactly the same number of elements.
These conditions ensure that the parity matrix P has uniform row and column weights
forming a Regular LDPC code. The Parity matrix P that does not adhere to the property
of having uniform row and column weight forms an Irregular Parity matrix [16].

2 Related Work

The work on “Joint AES algorithm and LDPC codes” [5] by CP Gupta et al. discusses
on achieving Security and error correction in a single step as, AES is secured and also
LDPC codes retains full error correction capability. But, in symmetric key cryp-
tosystems the two parties who are communicating need to share the secret key prior to
the start of the transaction.

The authors of “Joint Encryption and Error Correction Technical Research Applied
an Efficient Turbo Code” [6] Jianbin Yao et al., is effective in terms of security and
reliability. But the system has not been verified for many attacks. The image recovery is
achieved after several iterations.

The authors of “Implementation of High Security Cryptographic System with
Improved Error Correction and Detection Rate using FPGA” [7] have discussed on
achieving 100% Error detection, encryption scheme is effective and bandwidth is
improved. But, the encryption and decryption delays increase as the input data is
increased from 4-bits to 8-bits.

The proposed algorithm is on combining selective encryption and selective
encoding to obtain an secured error free data. The encryption algorithm is a public key
cryptosystem, where in encryption [8] and decryption [8] operations are performed
with a pair of mathematically related keys [9, 10] based on the Galois Field GF (pm). In
performing, Selective Encoding the complexity of the hardware is simplified, a better
performance of the decoder is achieved even when output is zero. Further there is a
reduction in the area as the Hardware used is XOR gates. The algorithm uses, K-P
modulo-additions for decoding, where K being the length of the information digits and
P is the number of non zero digits of the Parity matrix.
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The following Sect. 3 discusses on the proposed system, Sect. 4 is on results and
discussion. Section 5 discusses the conclusion arrived for the proposed system.

3 Proposed Work

The structure of the proposed encryption and encoding scheme is as shown in Fig. 1.
Security is achieved using the encryption algorithm as discussed in [20].
For correcting the errors, the modified Low density parity check codes have been

explained in [21].

A secured error free image can be obtained as explained according the following
algorithm:

• The control points, of the n-order Bezier curve and the m-order finite field are
shared between the sender and the receiver before the start of the transaction.
Generate the Bezier image from the n-order Bezier curve. This image has the same
size as that of the data image. The data image is concealed in the Bezier image as
shown in the Fig. 2, and is denoted as I. This image I is further selectively
encrypted as explained in the following section.

Fig. 1. Encryption and encoding scheme
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• Selective Encryption:
The Selected Pixel values of the aggregated image I is exponentially raised to the
power of me, over GF (2m) as given by the relation (5)

C1 ¼ ðIÞme

mod GFð2mÞ: ð5Þ

I is the selected pixel values of the concealed image. The order of the finite field ‘m’
is the secret key and the public key is ‘e’. Only pixel values greater than the threshold
value are encrypted resulting in selective encryption. The 2m digits which are
selectively encrypted are selectively encoded as explained in the following section.

• Data Reliability using Selective Encoding:
The Data Reliability is achieved by the construction of LDPC codes based on
n-order Bezier Curve over Galois Field GF (2m) [13, 15] to obtain full error cor-
recting capability. LDPC codes have a better performance when combined with
Galois Field [17, 18]. Non-Binary LDPC codes is a better choice when more
number of errors needs to be corrected [13, 19]. The data that needs to be selectively
encoded is the selectively encrypted 2m digits. If this 2m digits of selectively
encrypted data has two consecutive digits data (i) and data (i + 1) to be the same,
then the first digit data (i) is replaced with a zero. This process continues till all the
2m digits of data have been checked for repetition with its adjacent value. This
selected data denoted as Cs has zeros when adjacent values are the same. This
selected data Cs is encoded, by performing modular multiplication of Cs and the
Generator matrix G.

Fig. 2. Decryption and decoding scheme
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• Validation at transmitter:
The selectively encoded data CE is converted to CE1 after validation.
Mean of P1, P2, Pn−1 is computed, where P1, P2,
Pn−1 are the control points on the curve. P0 and Pn are the starting point and the
ending point of the n-order Bezier curve respectively.

D ¼ ðxt; ytÞ ¼ ðPn � meanÞ
Pn � P0

ð6Þ

Defined over the order ‘m’ of the Galois field. This value of D, as shown in Eq. (6)
is used for the purpose of validation.

CE1 ¼ D
CE

mod GFð2mÞ ð7Þ

Where CE1 as shown in Eq. (7), is the 2m+1 digits of cipher text and CE is the
selectively encoded value.

Decryption with Decoding embedded:
Figure 2 shows the Decryption of the cipher text with a decoder embedded to retrieve
the plain text.

The receiver upon receiving every 2m+1 digits of cipher text of an image, checks for
the authentication of the data using the value of D, calculated using the control points.
After checking for validation, the modified LDPC decoder makes the received data to
be error free. The error free data is exponentially raised to (m−1)d over GF (2m), with
‘d’ being the private key. These exponentially raised pixel values are algebraically
combined with the Bezier image by the receiver to obtain the data image.

• Validation at receiver: The receiver calculates the selectively encoded value using
Eq. (8).

CE ¼ D
CE1

mod GFð2mÞ ð8Þ

where CE1 is the 2m+1 digits of cipher text and CE is the selectively encoded value.
The value of D is used for the purpose of validation. The value of D is derived from
the control points of the chosen n-order Bezier curve. If the value of D is not known
to the receiver, then the erroneous information cannot be corrected, thereby
preserving the security of the information.

• Selective decoding:
After validation is performed, the received vector R contains checksum which is 2m

digits and the erroneous pixel values which is 2m digits. The decoder corrects the
image from the received erroneous image and makes it error free. To achieve this,
the FEC codes are applied. In LDPC, each row of the encoded image has 2m+1 digits
of data that is given as input to the decoder. Syndrome is calculated by the decoder
to determine the position of errors in the received information. The syndrome S is a
modular multiplication of the Received data R and the parity check matrix H. If the
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Syndrome S is Zero, then the received vector is error free else, the decoder deter-
mines the location of the error. The error location is determined by referring to the
Parity Check matrix H. The erroneous data is corrected using the appropriate
checksum. After correcting the errors, the consecutive zeros will be replaced by the
right most non zero pixel value.

• Selective Decryption:
The Error free image V is selectively decrypted using the following logarithmic
equation, to obtain the concealed image I, as shown in Eq. (9).

I ¼ ðVÞðm�1Þd mod GFð2mÞ ð9Þ

where ‘m−1’ is the inverse of the secret key and the private key for decryption is ‘d’.
In public key cryptosystem, the pairs of keys used for encryption and decryption are
related mathematically. The relation between the public key e, that is used for
encryption and the private key d that is used for decryption is given by Eq. (10)

meðm�1Þd ¼ 1 mod GFð2m � 1Þ ð10Þ

• Data Revealing:
The original image is embedded in the Bezier image. This concealed image is
selectively encrypted, and after error recovery, the same is selectively decrypted.
After selective decryption, the original image is retrieved from the concealed image.

4 Results and Discussion

The proposed hybrid crypto-coding algorithm is coded in MATLAB and also in
VHDL.

The image considered for experimental purpose is lena.jpg which is of size
256 � 256 pixels.

The results are obtained are using Quartic Bezier curve and Galois field GF (28).
The results are discussed for an encrypted image that is affected with White

Gaussian Noise having SNR = 0.5 dB
The following Fig. 3 is a snapshot of the data image, the encrypted image, the

received erroneous image and the decrypted image from MATLAB.

Fig. 3. (a) Original image (b) Encrypted image (c) Received image (d) Decrypted image
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From Fig. 3, it can be observed that the received image which has been encrypted
and transmitted has been modified due to the presence of Gaussian noise. This modified
image has non-zero syndrome values from S1 to S256. Only the authenticated user can
correct these modified pixel values. After the valid authentication check the errors have
been eliminated using the decoding algorithm. It can be seen that the Decrypted image
is same as the original image. 39,322 modified pixel values have been detected and
corrected using the proposed algorithm.

The coding for hybrid crypto-coding algorithm is also carried out in VHDL,
simulated and synthesized using the Xilinx ISE. The algorithm is implemented on
FPGA Spartan 3 3s400ft256-5. The synthesis results obtained are shown in Fig. 4.

Figure 4 shows the hardware utilized when implemented on FPGA Spartan 3
3s400ft256-5. The timing summary indicates that 58% of the time is used for logic and
41% is used for routing.

The Fig. 5 shows the sample snapshot of the simulation results for combined
selective encryption and selective encoding for an 8 � 8 pixel value of the original
image using ModelSim.

Figure 5 shows that the crypto-coding algorithm is successful, as the encrypted data
is made error free and then decrypted by the receiver.

# ROMs 256x256-bit ROM 2
# Multipliers                                          8x8-bit multiplier                                   5
Adders/Subtractors                                   8-bit adder                                           1
# Registers Flip-Flops 10
# Latches 3-bit latch 45
# Decoders                                1-of-256 decoder 14

Device utilization summary: Selected Device: 3s400ft256-5 
Number of Slices 48 out of   3584 1%
Number of Slice Flip Flops 70 out of   7168 0%
Number of 4 input LUTs 86 out of   7168 1%
Number of IOs 147
Number of bonded IOBs 46 out of    173 84%
IOB Flip Flops 20
Number of GCLKs 3 out of 8 37%

Timing Summary:
Minimum period: 3.003ns (Maximum Frequency: 332.967MHz)
Maximum output required time after clock: 6.141ns
Total 3.003ns (1.760ns logic, 1.243ns route) (58.6% logic, 41.4% route)

Fig. 4. Advanced HDL synthesis report
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5 Conclusion

This paper, establishes theworking of combiningSelectiveEncryption and selectiveError
Correction using modified LDPC with Bezier curve and Galois field GF (pm). The Bezier
curve points generated with the Galois field is the parity matrix P. This Parity matrix P is
used for the construction of the generatormatrixG and parity checkmatrixH. The original
data image is concealed in the Bezier image by taking the aggregate of the pixel values.
The pixel values of the concealed image above a certain threshold value are only
encrypted. Thus Selective encryption is performed on the concealed image. Further, the
proposed algorithm uses Selective Encoding, where in the repeating consecutive pixel
values of the image are replaced by zeros.Using this approach, it is possible to encode only
a few non-zero pixel values. The Encoding and Decoding involves modular arithmetic
operations. The proposed decoder can handle BER = 1200/2048. The crypto-coding is
done using one hot state encoding in VHDL and implemented on FPGA.

Fig. 5. Modelsim results of crypto-coding
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