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Abstract. Due to advancements in domain of Information processing, huge
amount of data gets collected which varies according to different time intervals.
Structural models and Time-series models are used for analysing time series data.
Time series models are very efficient as compared to structural models because
modelling and predictions can be easily done. This paper gives a brief insight into
Auto-regressive Models (AR), Moving Average Models (MA), Autoregressive
Moving Average model (ARMA) and Autoregressive Integrated Moving
Average Model (ARIMA). This paper also helps to understand the characteristics
of the data which will be used for Time-series modelling.
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1 Introduction

Data analytics has been a major area of Interest in the industry since the past decade.
The amount of data will tend to grow 10-fold in upcoming few years having approximate
storage of about 50 zetabytes [1]. Due to advancements in domain of IoT (Internet of
Things), many devices send the data to central node or server for processing. These data
is being dumped at regular time intervals. Time series data is a collection of observations
that are sampled according to time. Some common examples of time series include the
hourly readings of air temperature, monitoring of a person’s heart rate, and daily closing
price of a particular companies stock.

Time series data are analysed in order to identify patterns in data which can be trends
or seasonal variations. Hence, understanding the time series mechanism helps to develop
a mathematical model which can explain the data in such a way that control, monitoring
and prediction can be done with ease. Structural models like regression models can also
be used for modelling time series data. But, these models are not necessarily associated
with time, for example stock price which varies according to time can be modelled as
change in inflation or unemployment rate using structural models like linear regression.
In time series model, there is no such concept of dependant or independent variable;
there is only one variable which is a model variable which varies according to different
periodic trends.
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The significance of time series modelling is that same data can be modelled with
different periodic trends which in case of structural model are tedious task. Also some
factors can be unobservable, hence excluded from regression analysis. In time series
analysis, each observation is somewhat dependent upon previous observation, and gets
influenced by more than one previous observation. Error term too gets influenced from
one observation to another. These influences are mapped using autocorrelation, which
is used to either model trend itself or to model the underlying mechanisms. To model
using time-series, four common models are being used which are Autoregressive Model
(AR), Moving Average Model (MA), Autoregressive Moving Average (ARMA) and
Autoregressive Integrated Moving Average (ARIMA). This paper highlights method‐
ologies of each of these time series models and describes their behaviour.

In Sect. 2 a brief review related to time series modelling is discussed. Section 3
focuses on methodologies which are used for analysing time series data. Section 4
highlights observations pertaining to time series modelling. Finally, in Sect. 5, conclu‐
sions and future work are discussed.

2 Related Work

In contrast to time series models, great amount of literature is witnessed in the field of
neural network approach [2–6]. However, these methods failed to identify the abnormal
patterns which can occur in data. Models based on Support Vector Machines (SVM)
and stochastic approaches are also utilized for modelling time series data [7, 8]. Genetic
Algorithms along with Neural Network are also being used [9–11]. These models were
unable to give effective analysis due to complex nature of data, noisy data and high
dimensionality of data. Therefore effective Time series models were needed.

The time series models helps to interpret hidden patterns of the data and helps in
analysis by fitting a model for forecasting [12, 18]. In this paper, not only time series
models are described but also all the way these models are being analysed is also being
showcased. But it will take plenty amount of time to any researcher to understand many
important concepts relative to time series models. This paper provides in depth knowl‐
edge of each of these concepts.

3 Time Series Modelling and Forecasting

Regression without lags fails to account for the relationships through time and overes‐
timates the relationship between dependant and independent variables. To overcome
this time series analysis needs to be done. The upcoming sub-sections will help to
understand the stationary and non-stationary data, white noise process, AR, MA,
ARMA, ARIMA models.

3.1 Stationarity

One of the important properties of time-series process is stationarity of data. So a
random process or a stochastic process is known to be stationary when its joint
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distribution doesn’t change over time. Time series data is stochastic or probabilistic
in nature because there is no accurate formula when prediction needs to be done. But
usually, time series data points are weakly stationary in nature i.e. those data-points
which have constant mean μ, constant variance σ2 and constant auto-covariance i.e.
Auto-covariance (Yt, Yt−1) = Auto-covariance (Yt−2, Yt−3) at regular periodic
intervals.

3.2 White Noise

A random process which has expectancy or mean, variance at any time as a constant
and auto-covariance is 0. It implies that each observation is uncorrelated with other
observations in the sequence (Fig. 1).

Fig. 1. White noise process [18].

The Ljung-Box statistics [13], which tests the “overall” randomness based on a
number of lags, is a standard approach to determine whether the data points exhibit white
noise property. Hence if white noise occurs in data, then there is no significance of doing
time series modelling or estimation over such data.

3.3 Moving Average Model (MA)

Time series data at time interval t is given as yt, where yt which is current value at time
t is considered as linear combination of different white noise processes ut. The model
can be represented as follows:

yt = ut + 𝜃1ut−1 + 𝜃2ut−2 +⋯ + 𝜃qut−q (1)

Where,
θ1, θ2, …, θq are parameters which are estimated using maximum likelihood function.

Lag operator L used to represent same data for previous period.
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For example,

ut−1 = Lut and ut−2 = Lut−1

Therefore,

ut−2 = L2ut

The lag operator is used to make a representation of MA series much better as esti‐
mation interpretation becomes much easier. Hence equation is given by:

yt =

q∑

i=1

Li𝜃iut (2)

3.4 Auto Regressive Model (AR)

The AR model depends on the past values and error terms.

yt = ∅1yt−1 + ∅2yt−2 +⋯ + ∅pyt−p + 𝜇t (3)

Where,
𝜇t is a error term given as white noise and p is a lag term.
In terms of Lag operator AR model can be represented as:

yt =
∑q

i=1
∅iL

i

i
yt + 𝜇t (4)

Stationarity condition matters a lot in AR estimation. Non stationary series has a
non-declining effect in AR estimation which is undesirable in time series modelling.

3.5 Auto Regressive Moving Average Model (ARMA)

ARMA (p, q) is the process which combines AR series as well as MA series. Mathe‐
matically, it can be represented as:

yt = ∅1yt−1 +⋯ + ∅pyt−p + 𝜽1ut−1 + 𝜽2ut−2 +⋯ + 𝜽qut−q + ut (5)

The ARMA (p, q) process is detected by plotting correlogram of Auto Correlation
Function (ACF) and Partial Auto Correlation Function (PACF) against lags, which
shows declining curve as lag increases in both ACF and PACF cases as shown in
Fig. 2 below:
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Fig. 2. The ACF and PACF correlogram for ARMA model.

As shown in Fig. 2. The coefficients of acf and pacf values go to negative axis when
the coefficient or residual term comes out to be negative.

Box Jenkins Approach for ARMA Model
Box and Jenkins [14] suggested that differencing non-stationary series one or more times
can achieve stationarity. Doing so leads to an ARIMA model, with the “I” standing for
“Integrated”. The approach consists of three main stages which are:

1. Identification.
2. Estimation and
3. Diagnostic checking.

In first stage, the orders of the model are determined. We plot correlogram of ACF
and PACF to identify the lag values. In second stage, parameters ∅ and θ are estimated.
The parameters are estimated using Ordinary Least squares [15] and maximum likeli‐
hood function [16]. The third stage checks whether the model fit is good. On the other
hand, the residual diagnostics, checks whether the residuals have a certain correlation.

Information Criteria for ARMA (p, q) Model Selection
The information criteria for ARMA (p, q) model helps to determine the order of the time
series based on Residual Sum of Square (RSS) [17]. The model which gives minimum
RSS for value of p and q is best suitable model. When more number of lags are added
the one which gives less RSS is best model. But when numbers of lags are added the
RSS goes down. Hence, penalty term is considered while finding suitable model which
is given as:

min(f (RSS) + penalty term) (6)

Thus adding extra terms will also add penalty while finding the p and q. The standard
methods which are used for computing information criteria are:

• Akaike’s Information Criteria (AIC).
• Schwarz’s Bayesian Information Criteria (SBIC).
• Hannon Quinn Criteria (HQIC).
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Where,

AIC = ln
(
�̂�2) + 2k

T
,

SBIC = ln
(
�̂�2) + k

T
ln (T),

HQIC = ln
(
�̂�2) + 2k

T
ln (ln (T))

Where,

�̂�2 =
RSS

T
, k = p + q + 1, and T = Sample size.

The model which gives the less value of AIC is best model.

3.6 ARIMA Model

The AR, MA, ARMA models cannot handle non-stationarity that is the series that has
trend. In stationary series, the model reverts around its mean value. To make non-
stationary series into stationary, we difference it i.e. taking the difference of the series
with its own lag. Differencing will give the series leads to a new set of values with
constant mean and constant variance. Example,

As shown in table above ∇𝐲 = yt − yt−1 is first order difference, and ∇2
𝐲 is a second

order difference, which gives constant mean and 0 or constant variance. Thus differ‐
encing ARMA model makes it integrated, which gives its name ARIMA. It can be
represented as ARIMA (p, q, r) (Table 1),

Table 1. First order differencing and second order differencing.

𝐲
𝐭

∇𝐲 ∇2
𝐲

25
16 9 2
9 7 2
4 5

Where,
p = number of AR terms, q = order of differencing and r = number of MA terms.
Also, ARIMA can be represented AR, MA and ARMA model ARIMA(1,0,0) gives

AR(1) model, ARIMA(0,0,1) gives MA(1) model and ARIMA(1,0,1) gives ARMA(1,1)
model where only differencing is 0.

The main query which arises is to determine the order of differencing. It can be given
by observing the following characteristics:

1. Positive auto-correlation at higher lags will need higher order differencing.
2. Zero or negative auto-correlation for first order itself then no differencing is needed.
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3. The optimal order of differencing is the one whose prediction gives less value for
RMSE (root mean square error) or MAE (Mean Absolute error).

4 Observations

In time series modelling, depending upon characteristics of periodic patterns, predictions
are done. Different trends will lead to different periodic patterns which can be classified
as hourly, daily, weekly, monthly data. The goal is to find the appropriate statistical
relationship of the given series with its own past values. We build the model in training
data, and test it on new dataset (holdout) to check whether predicted values match the
actual values. Thus, accuracy is computed by computing forecast errors which can be
represented as:

Forecast error = Actual value − Predicted value.

Accuracy can be computed using mean square error (MSE). The model which gives
less MSE for Holdout sample is good model for prediction.

The brief behaviours of white noise AR, MA, ARMA and ARIMA for time-series
data are shown in Table 2 below:

Table 2. Behaviour of time series models

Model Characteristic PACF
correlogram

ACF correlogram Data
Characteristic

White noise Cannot be used for Time series
modelling

No spikes No spikes Random in nature

AR(p) 1. yt depends on its own past values
2. P is computed using PACF
function

Spikes till pth lag
then cuts off to
zero

Spikes then
decays to zero

Data should be
stationary in
nature

MA(q) 1. yt depends on error term which
follows a white noise process
2. q is computed using ACF
function

Spikes then
decays to zero

Spikes till pth lag
then cuts off to
zero

Data should be
stationary in
nature

ARMA (p, q) 1. ARMA = AR+MA
2. Value of p and q are determined
using AIC criteria

Spikes then
decays to zero

Spikes then
decays to zero

Data should be
stationary in
nature

ARIMA (p, d, q) 1. Data is made stationary by
differencing it
2. Box-Jenkins approach is used to
determine model

Spikes then
decays to zero

Spikes then
decays to zero

Data should be
non-stationary in
nature

5 Conclusion

Thus, while doing time series analysis, the data should not be a white noise process or
random in nature. Thus only stationary or non-stationary will lead to identification of
proper periodic pattern which can be used to determine appropriate forecasting model.
The accuracy of forecasting is determined using Root mean square error or Mean Abso‐
lute error.
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As a part of future work, major focus will be put upon understanding multivariate
time series analysis. Also, forecasting over white-noise process can be done by using
unsupervised algorithms like Neural Networks. But, it is very complex in nature. Hence,
further part of research will be emphasized upon using semi-supervised algorithm like
Support Vector Regression.
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