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Abstract. Financial time series clustering finds application in forecast-
ing, noise reduction and enhanced index tracking. The central theme
in all the available clustering algorithms is the dissimilarity measure
employed by the algorithm. The dissimilarity measures, applicable in
financial domain, as used or suggested in past researches, are correla-
tion based dissimilarity measure, temporal correlation based dissimilarity
measure and dynamic time wrapping (DTW) based dissimilarity mea-
sure. One shortcoming of these dissimilarity measures is that they do not
take into account the lead or lag existing between the returns of different
stocks which changes with time. Mostly, such stocks with high value of
correlation at some lead or lag belong to the same cluster (or sector).
The present paper, proposes two new dissimilarity measures which show
superior clustering results as compared to past measures when compared
over 3 data sets comprising of 526 companies. abstract environment.
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1 Literature Review

In the last two decades a significant amount of work has been done on time
series clustering [7]. Financial Time series clustering is a subject that has also
gained lots of attention in the last decade [14]. It is an important area of research
that finds wide applications in noise reduction, forecasting and enhanced index
tracking [1]. A good forecast of future prices is desired by financial companies
especially the algorithmic trading firms. Index track funds are low cost funds
that closely track the returns of one particular index. In a typical financial
time series clustering procedure, each time series is considered as an individ-
ual object and inter-object dissimilarities are then calculated. Subsequent clus-
tering is done using one of the many clustering algorithms. Rosario [2] used a
well-known dissimilarity measure based on the Pearson’s correlation coefficient.
They then cluster the data set using single linkage hierarchical clustering. Saeed
[4] used symbolic representation for dimensionality reduction of financial time
series data, and then used longest common subsequence as similarity measure-
ment. Guan [5] proposed a similarity measure for time series clustering which
relied on the signs (positive or negative) of the logarithmic returns of the stock
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prices. It did not take into account the size of movement. Marti et al. [6] tried
to find answer to the question, what should be an appropriate length of a time
series for the clustering procedure. John et al. [8] proposed a shape based dissim-
ilarity for time series clustering which relied on the cross correlation coefficients.
This work comes closest to our approach, but still there is a significant difference
between the two approaches. While calculating their dissimilarity measure, they
do not break the time series into smaller segments. In the present approach, time
series are broken into smaller parts and then a different procedure is followed.
This is because lead – lag relationship between two time series may change over
time. Further, we propose another dissimilarity measure that gives similar or
better results as compared to the first dissimilarity measure proposed in the
present paper.

2 Preliminaries

In the present work, hierarchical clustering is used to form clusters from the
inter object dissimilarity matrix computed using a dissimilarity measure. Link-
age method is an important aspect of hierarchical clustering algorithm. In the
present work, we choose ‘single’ linkage and ‘ward’ linkage (implemented as
ward.D2 linkage in R ‘stats’ package) for our analysis. This is because ‘single’
linkage has been a preferred choice of researchers in financial time series clus-
tering papers, e.g., [2,3]. Ward linkage [10] was used for financial time series
clustering by Guan [5]. Details about pre-existing dissimilarity measures i.e.,
Correlation based dissimilarity measure (COR) and Temporal correlation based
dissimilarity measure (CORT) are given in the Appendix. Additionally, taking
inspiration from [16], lead/lag time between two time series XT and YT is defined
as the integer ‘k’ which maximizes cross correlation between the two time series.

3 Proposed Dissimilarity Measures

3.1 Cross-Correlation Type Dissimilarity Measure (CCT)

Given two time series XT and YT (each of length T), here the interest is in
finding a dissimilarity measure between them. Let ‘m’ be the maximum value of
lead or lag being taken into consideration for calculation of dissimilarity between
the two time series. We consider a segment of time series XT starting from ‘m+1’
and ending at ‘T-m-1’, and divide this segment into ‘n’ equal parts each of length
‘p’. Here, we conveniently choose ‘m’, ‘n’ and ‘p’ such that 2m+np+1 = T . This
is required to make sure that all the data points in time series are utilized for the
calculation of dissimilarity measure. Though it would still suffice if ‘2m+np+1’
is slightly less than T. Another couple of restrictions are that m ≤ p and p ≥ 15.
These restrictions have been imposed to avoid unwanted cross-correlations. Now,
with this background we define our CCT similarity measure which is given by
the following:

CCT =
1
n

×
n∑

l=1

max{CCTk(m + 1 + p × (l − 1)) | − m ≤ k ≤ m}, (1)
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where CCTk(i) is defined as follows

CCTk(i) =

∑i+p−1
j=i (xj+1 − xj)(yj+k+1 − yj+k)√∑i+p−1

j=i (xj+1 − xj)2
√∑i+p−1

j=i (yj+k+1 − yj+k)2
(2)

The value of CCTk is same as the correlation between returns of a segment of
time series Yt at a lead k with respect to a segment of time series Xt. The motiva-
tion behind this similarity measure is that similar financial time series would have
more sub-segments which are highly correlated with each other at some lead or
lag. Stock prices of similar assets in different exchanges exhibit such pattern. This
phenomena is perfectly captured by CCT similarity measure. Notice that value
of each of CCTk(i) lies in the interval [−1,1]. Hence, the value of CCT similarity
measure also lies in the interval [−1,1]. This similarity measure is then converted
into a dissimilarity measure using a function, which is given by:

φ(u) =
2

1 + e4×u
(3)

We choose to do our analysis with the above function as opposed to the func-
tion

√
2(1 − x) for conversion of similarity measure into dissimilarity measure.

Through our data experiments, we see that even this function gives similar results
as the function in Eq. 3. Though we have not given details of those experiments
in this paper. The dissimilarity measure thus obtained after conversion can be
used for clustering of financial time series data.

As an example for CCT similarity measure consider the two time series data
given in Table 1. Since the length of each time series is 37, one suitable choice for
‘p’, ‘n’ and ‘m’ may be 15, 2 and 3, respectively. In subsequent calculations it is
found that for the first segment of series 1 (i.e., 4th to 18th data point in Series 1)
the max CCTk(4) value is 0.57 which exists at k = 3. For the second segment (i.e.,
19th to 33rd data point in Series 1) the max CCTk(19) value is 0.27 which exists
at k = 0. Thus the value of CCT measure comes out to be 0.42.

Table 1. Hypothetical data set for two time series each of length 37.

S. no. Series 1 Series 2 S. no. Series 1 Series 2 S. no. Series 1 Series 2 S.no. Series 1 Series 2

1 0.81 0.15 11 0.96 0.96 21 0.58 0.68 31 0.13 0.47

2 0 0.76 12 0.69 0.36 22 0.2 0.83 32 0.23 0.14

3 0.92 0.01 13 0.05 0.7 23 0.69 0.01 33 0.75 0.98

4 0.94 0.1 14 0.85 0.66 24 0.76 0.01 34 0.63 0.85

5 0.97 0.56 15 0.55 0.37 25 0.77 0.44 35 0.29 0.36

6 0.77 0.88 16 0.65 0.07 26 0.13 0.01 36 0.33 0.55

7 0.26 0.91 17 0.39 0.63 27 0.89 0.05 37 0.65 0.39

8 0.68 0.05 18 0.32 0.35 28 0.78 0.61

9 0.13 0.26 19 0.7 0.79 29 0.95 0.69

10 0.82 0.5 20 0.39 0.13 30 0.56 0.13
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3.2 Cross-Correlation Type-II Dissimilarity Measure (CCT-II)

In another version of this dissimilarity measure, we ignore those intervals whose
‘maximum CCTk(i)’ value is less than a given threshold (denoted by ‘Thr’). We
mean that instead of the ‘maximum CCTk(i)’ value we put ‘0’, when that is less
than the threshold. Rest of the computations remains the same. The expression
for this similarity measure is as follows:

CCT-II =
1
n

×
n∑

l=1

(M(m+1+p× (l−1))×I[Thr,1](M(m+1+p× (l−1))) ) (4)

M(i) = max{CCTk(i) | − m ≤ k ≤ m} (5)

where CCTk(i) is same as defined in (3)

and I[Thr,1](x) denotes the indicator function of the set [Thr, 1].
This similarity measure is then converted into dissimilarity measure using

the function given in Eq. (3).
As an example, consider the time series data given in Table 1. We now com-

pute CCT-II similarity measure with the same set of values (as used for comput-
ing CCT similarity measure) i.e. p = 15, n = 2 and m = 3. The threshold value is
set as 0.50. Again it is noticed that max CCTk() values are 0.57 and 0.27. But
since 0.27 lies below the threshold thus it is replaced by 0. Thus, the value of
CCT-II similarity measure comes out to be 0.29.

The motivation behind this dissimilarity measure is that often the stock
prices are weakly correlated to each other at some lead or lag. This may be due
to a general trend followed by all stocks or it may be a spurious relation. This
leads to error while clustering the data set using CCT dissimilarity measure.
This noise can be removed by not considering the value of cross-correlations
whose value is less than a given threshold.

In order to apply CCT-II measure of dissimilarity between two time series
we need to fix the threshold value beforehand. The threshold value obviously
lies in the interval (0, 1). Additionally, it can’t be close to 0 as then there would
remain very little difference between the values of CCT and CCT-II dissimilarity
measures. It can’t be close to 1 as then most of the information regarding the
behavior of two time series would be ignored and hence will not be considered
in the evaluation of the final expression of CCT-II dissimilarity measure. Thus,
threshold value should be kept close to 0.5. For this work we have chosen the
range for the threshold to be [0.35, 0.65]. If a test data set is available then it can
be used to find the optimal value of threshold. If test data set is not available,
then choose threshold value as any random value in the range [0.35, 0.65].

The time complexity of CCT and CCT-II dissimilarity measure is O(pmn).
Calculation of CCTk(i) value requires O(p) computations, as we are calculating
cross-correlation value at lead ‘k’ between two time series segments each of length
‘p’. Since we need to evaluate this expression for all k such that −m ≤ k ≤ m,
thus it takes O(pm) time to evaluate ‘max{CCTk(i) | − m ≤ k ≤ m}’. This
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process is repeated ‘n’ times thus, CCT dissimilarity measure is of O(pmn) time
complexity. Similarly, it can be argued that CCT-II dissimilarity measure is of
O(pmn) time complexity. This time complexity is better than time complexity
of Dynamic Time Wraping dissimilarity measure, which takes O(T 2) time [15] to
find its final expression, where T is the length of time series. Since ‘np+2m+1’
is equal to T or slightly less than T, thus, this time complexity is equivalent to
O(n2p2). This time complexity is clearly greater than O(pmn) as m ≤ p. Lower
time complexity of proposed measures enable its computations to be carried out
faster.

4 Experiments and Analysis

Experiments are conducted on 3 data sets one by one. Each data set consists of
‘End of Day’ (EOD) stock prices of some companies. Figure 1 depicts the format
of data sets used for the experiments in the present paper. While clustering, each
time series associated with a company is considered as an individual object. Inter
object dissimilarities are then calculated with each of the 4 measures i.e., COR,
CORT, CCT, CCT-II. A dissimilarity matrix is thus created, which is used for
further analysis. Single linkage hierarchical clustering and Ward linkage hierar-
chical clustering are then employed to create the corresponding dendograms (see
Fig. 2). The dendogram then can be cut at any level to form desired number of
clusters of the data set.

Fig. 1. EOD stock prices of the companies.

A cluster evaluation measure is then used to compare the clustering results
obtained through the different dissimilarity measures. The present paper uses
the cluster evaluation measure defined in [9,16]. This cluster evaluation measure
lies in the range [0,1]. Higher value of cluster evaluation measure corresponds to
better clustering results.

Here, we discuss results corresponding to each data set in a different sub-
section. R version 3.1.1 was used for preparation of all the figures presented in
this paper. Since the number of data points in all time series in all the exper-
iments is 2014, hence the parameter values of ‘n’, ‘p’ and ‘m’ are taken to be
18,100 and 100 respectively in all the experiments mentioned below. In these
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(a) Dissimilarity Measure: COR (b) Dissimilarity Measure: CORT

(c) Dissimilarity Measure: CCT (d) Dissimilarity Measure: CCT-II

Fig. 2. The above figures give dendograms corresponding to different dissimilarity mea-
sures. Ward linkage hierarchical clustering has been used for forming the dendograms.
Each object in the clusters is represented by a number whose unit’s place indicate it’s
true cluster value.

experiments, the threshold value for the CCT-II measure concerning Indian com-
panies (the first data set) is taken to be higher as compared with the compa-
nies traded in USA (the second and third data set). This is because prices of
the Indian companies tend to show more noise or spurious cross-correlations as
compared to prices of American companies. Thus, threshold value for the first
data set is taken to be 0.65 and threshold value for the second & third data set
is taken to be 0.35.

4.1 Indian Data Set

The EOD stock prices of the companies listed in Table 2, form the first data set
of our experiments. The time-span of the prices is from 5th August 2008 till 2nd
May 2016. This data set can be originally clustered into 3 clusters as indicated
in Table 2. Dendograms obtained on this data set using Ward linkage hierar-
chical clustering are shown in Fig. 2. Table 3 gives cluster evaluation measure
corresponding to different representations (number of clusters formed through
dendogram) and different dissimilarity measures. Amongst all the dendograms
shown in the Fig. 2, the best result is seen in Fig. 2 (d). Figure 2(d) shows den-
dogram formed using CCT-II dissimilarity measure. Cluster evaluation measure
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Table 2. The name of the companies whose stock prices are part of the Indian data
set. These companies can be divided into 3 broad categories.

Cluster 1 Cluster 2 Cluster 3

Top Private Banks in India Top Oil Companies in India Top Public Banks in India

Name Symbol Name Symbol Name Symbol

HDFC 1.1 Indian Oil Corp. Ltd. 2.1 SBI 3.01

ICICI 1.2 ONGC 2.2 Bank of Baroda 3.02

AXIS 1.3 Bharat Petroleum 2.3 PNB 3.03

Kotak Mahindra Bank

Ltd.

1.4 Essar oil Ltd. 2.4 IDBI Bank Ltd. 3.04

Indusind Bank Ltd. 1.5 Cairn India Ltd. 2.5 Central Bank of India 3.05

Yes Bank Ltd. 1.6 Hindustan Petroleum

Corp. Ltd.

2.6 Canara Bank 3.06

The Federal Bank Ltd. 1.7 Aban offshore Ltd. 2.7 Union Bank of India 3.07

Karur Vysya Bank Ltd. 1.8 Hindustan Oil exploraion

company Ltd.

2.8 Bank Of India 3.08

South Indian Bank Ltd. 1.9 Mangalore Refinery &

Petrochemicals Ltd.

2.9 Syndicate Bank 3.09

Indian Bank 3.10

Table 3. Cluster evaluation measure for the different dissimilarity measures. This table
corresponds to the Indian data set. ‘Number of Clusters’ represent the number of clus-
ters formed using the dendogram. Higher the measure the closer is the representation
to the true clusters. ‘COR’, ‘CORT’, ‘CCT’ and ‘CCT-II’ stand for correlation based
dissimilarity measure, temporal correlation based dissimilarity measure, first proposed
measure and second proposed measure respectively.

Cluster evaluation measure

Number of clusters COR CORT CCT CCT-II

2 0.56 0.59 0.78 0.74

3 0.56 0.58 0.71 0.86

4 0.57 0.56 0.82 0.79

verifies that the clusters obtained through the proposed measures are better than
the pre-existing measures. Cluster evaluation measure is consistently higher for
the proposed measures, irrespective of how many clusters we form out of the
dendograms.

Clustering results obtained on first data set using Single linkage hierarchical
clustering also verify the superiority of CCT and CCT-II measures. In this case
also, Cluster evaluation measure values for CCT and CCT-II measures are higher
than the COR and CORT dissimilarity measures.

4.2 S&P500 Data Set

The EOD stock prices of the companies listed in S&P500 index form the second
data set. These companies are traded in USA. The time span of the prices for
this data set is from 12th September 2008 till 23rd august 2016. The companies
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whose prices were not available for the complete time span under consideration,
were removed from the data sets. This data set can be originally clustered into
10 clusters, where each cluster represents the sector of the company.

In the experiment associated with this data set, Cluster evaluation measure
values are given in Tables 4 and 5. The threshold value is taken to be 0.35 for
CCT-II measure in this experiment. In the case of ward linkage (as seen in
Table 4) CCT and CCT-II measures clearly give better results as compared to
COR and CORT dissimilarity measures. In the case of single linkage (as seen in
Table 5), all measures give similar results.

Table 4. Cluster evaluation measure corresponding to different dissimilarity measures
and number of clusters. Ward linkage hierarchical clustering has been used for clustering
the datasets. This table corresponds to the S&P500 data set which can be originally
divided into 10 clusters.

Cluster evaluation measure

Number of clusters COR CORT CCT CCT-II

9 0.23 0.24 0.69 0.65

10 0.23 0.24 0.69 0.70

11 0.23 0.24 0.69 0.68

Table 5. Cluster evaluation measure corresponding to different dissimilarity measures
and number of clusters. Single linkage hierarchical clustering has been used for cluster-
ing the datasets. This table corresponds to the S&P500 data set which can be originally
divided into 10 clusters.

Cluster evaluation measure

Number of clusters COR CORT CCT CCT-II

9 0.18 0.18 0.21 0.21

10 0.18 0.18 0.21 0.21

11 0.18 0.18 0.21 0.21

Table 6. Cluster evaluation measure for the different dissimilarity measures. ‘Number
of Clusters’ represent the number of clusters formed using the dendogram. Higher value
corresponds to better clustering results. This table corresponds to the DJIA data set
which can be originally divided into 8 clusters.

Cluster evaluation measure

Number of clusters COR CORT CCT CCT-II

7 0.39 0.39 0.67 0.54

8 0.40 0.43 0.65 0.56

9 0.42 0.43 0.66 0.58
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4.3 DJIA Data Set

The EOD stock prices of the companies listed in Dow Jones Industrial Average
index form the third data set of our experiments. The time span of the prices
for this data set is from 12th September 2008 till 23rd august 2016. This data
can be originally clustered into 8 clusters. Here, the threshold value is taken to
be 0.35 for CCT-II measure.

As can be seen in Table 6, the proposed measures show better or similar
results as compared to pre-existing measures when hierarchical clustering is done
using Ward linkage. In the case, when clustering is done using Single linkage
hierarchical clustering for this data set, the proposed measures give similar or
slightly inferior results as compared to COR & CORT measures. Though in this
case also, maximum value of cluster evaluation measure (amongst all possible
number of clusters) is seen corresponding to CCT measure.

Now, we discuss some of the directions in which future work could be carried
out related to this research paper. Determination of optimal values of threshold,
n, p and m could be carried out in future. Also, optimal function for conversion
of similarity measure into dissimilarity measure needs to be determined.

5 Conclusion

Financial time series clustering is an important area of research and finds wide
applications in noise reduction, forecasting and index tracking. In this paper, two
new dissimilarity measures have been proposed for financial time series cluster-
ing. These dissimilarity measures are used to cluster time series belonging to 3
data sets. One data set consists of EOD stock prices of 28 Indian companies. The
second data set consists of EOD stock prices of 468 companies listed in S&P500
Index. The third data set consists of EOD stock prices of companies listed in
Dow Jones Industrial Average Index. Overall, the data sets consist of 526 com-
panies which is a fairly large number. Clustering is done and it is shown that
our proposed dissimilarity measures outperform existing dissimilarity measures.

Acknowledgments. Kartikay Gupta was supported by Teaching Assistantship Grant
by Ministry of Human Resource Development, India.

A Appendix

A.1 Correlation Based Dissimilarity Measure (COR)

A simple dissimilarity measure for time series clustering is based on Pearson’s
correlation factor between time series XT and YT given by

COR(XT , YT ) =
∑T

t=1(Xt − mX)(Yt − mY )√∑T
t=1(Xt − mX)2

√∑T
t=1(Yt − mY )2
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where mX and mY are the average values of the time series XT and YT respec-
tively. The dissimilarity measure is then given by

DissimilarityCOR(XT , YT ) =
√

2(1 − COR(XT , YT ))

For more information regarding this distance measure, one may refer to [9].

A.2 Temporal Correlation Based Dissimilarity Measure (CORT)

As introduced by Douzal [12], the similarity between two time series is evaluated
using first order temporal correlation coefficient [13] given by,

CORT (XT , YT ) =
∑T−1

t=1 (Xt+1 − Xt)(Yt+1 − Yt)√∑T−1
t=1 (Xt+1 − Xt)2

√∑T−1
t=1 (Yt+1 − Yt)2

The dissimilarity proposed by Douzal [12] modulates the ‘dissimilarity value’
between XT and YT using the coefficient CORT (XT , YT ). Specifically, it is
defined as follows.

DissimilarityCORT (XT , YT ) = φk[CORT (XT , YT )] × Dissimilarity(XT , YT )

where φk is an adaptive function given by,

φk(u) =
2

1 + eku
, k ≥ 0 (6)

and Dissimilarity(XT , YT ) refers to dissimilarity value computed using any of
the available dissimilarity measures like Euclidean, DTW etc. In this paper,
we choose DTW as the preferred dissimilarity measure. This is because DTW
effectively takes into account slight shape distortions while calculating its dis-
similarity measure value. For more details regarding DTW, readers are referred
to [9,11].
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