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Abstract Quantum cryptography is a robust field of quantum computation and

quantum information that focuses on protecting data secrecy by using properties

of quantum-mechanical systems. Over the last few years, quantum cryptography has

evolved into an emergent high-tech market with companies capable of delivering off-

the-shelf products. This chapter introduces a succinct overview of some fundamental

concepts of quantum computation, quantum information protocols and their use on

the development of quantum cryptography protocols. Key concepts include quantum

key distribution, quantum secret sharing, quantum secure direct communication, and

deterministic secure quantum communication.

1 Introduction to Quantum Cryptography

Nowadays, computers are key resources in all branches of science, engineering, com-

merce, and business in general. Indeed, computer science and computer engineering

have pervaded every aspect of modern society. The complex relationship between

computer science and computer engineering includes the following aspects:

∙ Computer science provides the fundamental mathematical structures required to

build both specific- and general-purpose computers (automata theory) as well as

to quantify the amount of resources needed to execute an algorithm (complex-

ity theory). Computer science serves as a guide to understand and estimate the

capacities and limits of practical computers and algorithm design.
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∙ Open problems and engineering challenges faced at the development of computer

technology usually become a decisive resource to produce new scientific ques-

tions, among them the need to develop new abstract models of computers.

∙ Ultimately, information is processed, stored and transmitted by physical systems.

Indeed, theoretical computer science is a branch of mathematics but the actual

manufacture and behavior of tangible computers and communications systems is

fundamentally described by the laws of physics.

∙ Since the 1950s, the development of computer industry is based on transistor tech-

nology whose behavior, due to transistor size, has been largely described by clas-

sical physics.

The birth and evolution of quantum computation, the interdisciplinary scientific

and engineering field devoted to build information processing systems using the

quantum mechanical properties of Nature, is an example of the mutual fertilization

of computer science and computer technology described above:

∙ On the one hand, the idea of using quantum mechanical systems in order to simu-

late other quantum mechanical systems is the very theoretical foundation of quan-

tum computers as introduced by Feynman [1].

∙ On the other hand, current semiconductor-based transistors for computer technol-

ogy are now at the nano scale level. The state-of-the-art of transistor technology

has two important consequences for quantum computation: (a) the description and

dynamics of nano-transistors require quantum mechanics [2] and (b) the end of

Moore’s law beseeches new technologies for the computer industry, being quan-

tum computation a leading and most promising paradigm [3].

Physics and computer science have cross-fertilized each other for long time. For

example, in trying to quantify the minimum amount of energy required to perform a

computation, von Neumann [4] showed that “a minimum amount of energy required

per elementary decision of a two-way alternative and the elementary transmittal of

one unit of information” was close to kT, where k is Boltzmann’s constant and T is

the temperature of the system. Later on, Landauer studied the relationship between

energy consumption and reversible computation [5] and Bennet presented a formal

reversible version of a Universal Turing Machine [6]. Another famous side of this

cross-fertilization is the field of algorithms inspired in the mathematical description

of physical phenomena, e.g., simulated annealing [7] and percolation theory [8].

Quantum computation and quantum information are scientific and engineering

disciplines devoted to the development of novel quantum algorithms and quantum

information processing protocols and devices. Some key results in quantum com-

putation include the discovery of quantum teleportation [9, 10] which consists of

transmitting quantum information (originally contained in a qubit) via a quantum

channel, quantum dense coding [11, 12] which allows sending two classical bits

using only one qubit, quantum steganography [13–15] and quantum cryptography

[16–44].

Quantum cryptography is a robust field of science and engineering that evolved

in an emergent high-tech market with companies capable of delivering off-the-shelf
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products [45, 46]. Quantum cryptography protocols can be categorized into quan-

tum key distribution protocols (QKD) [16–18], quantum secret sharing protocols

(QSS) [19–22], quantum secure direct communication protocols (QSDC) [23–38]

and deterministic secure quantum communication protocols (DSQC) [39–44].

Let us now provide a succinct introduction to some fundamental concepts of quan-

tum computation needed to formally describe quantum cryptography protocols.

1.1 Concise Introduction to Preliminary Mathematics
and Fundamentals of Quantum Computation

Section 1.1 is based on [47, 48].

1.1.1 The Qubit

In classical computation, information is stored and manipulated in the form of bits.

The mathematical structure of a classical bit is rather simple. It suffices to define

two logical values, traditionally labelled as {0, 1} (i.e. a classical bit lives in a scalar

space) and to relate those values to two different and mutually exclusive outcomes

of a classical measurement.

In quantum computation, information is stored, manipulated and measured in the

form of qubits. A qubit is a physical entity described by the laws of quantum mechan-

ics. A qubit may be mathematically represented as a unit vector in a two-dimensional

Hilbert space |𝜓⟩ ∈ H 2 (for the purposes of this chapter, a Hilbert space is a com-

plex inner-product vector space, e.g., ℂn). A qubit |𝜓⟩ may be written in general

form as

|𝜓⟩ = 𝛼|p⟩ + 𝛽|q⟩ (1)

where 𝛼, 𝛽 ∈ ℂ, |𝛼|2 + |𝛽|2 = 1 and {|p⟩, |q⟩} is an arbitrary basis spanning H 2.

Note that a most important consequence of the vectorial nature of a qubit is the

possibility of writing it as a linear combination of elements of any basis (this is

known as the principle of superposition.)

The choice of {|p⟩, |q⟩} is often the orthonormal basis

{|0⟩, |1⟩}

known as the computational basis. In addition to the computational basis {|0⟩, |1⟩},

it is customary in quantum cryptography protocols to use the diagonal basis

{|+⟩, |−⟩}

defined as |+⟩ = (|0⟩ + |1⟩)∕
√
2 and |−⟩ = (|0⟩ − |1⟩)∕

√
2.
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1.1.2 Dirac Notation

The symbol |⋅⟩ is known as a ket. We can always represent kets |𝜓⟩ of H 2 as column

vectors by choosing a basis for H 2. For example, let H 2 = ℂ2 be a 2-dimensional

Hilbert space and let us choose the vector basis {|0⟩, |1⟩}, where

|0⟩ =
(
1
0

)

and |1⟩ =
(
0
1

)

(2)

Then, every element |𝜓⟩ ∈ H 2 can be written as

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ = 𝛼

(
1
0

)

+ 𝛽

(
0
1

)

=
(
𝛼

𝛽

)

, 𝛼, 𝛽 ∈ ℂ.

We can also define bras, which formally speaking are functionals (i.e. functions

of vector spaces into corresponding fields) and in practice can be thought of as row

vectors:

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ if and only if ⟨𝜓| = 𝛼

∗⟨0| + 𝛽

∗⟨1|

For example, let

|𝜓⟩ = i
√
2

(
1
0

)

+ 1
√
2

(
0
1

)

=
⎛
⎜
⎜
⎝

i
√
2
1
√
2

⎞
⎟
⎟
⎠

= i
√
2
|0⟩ + 1

√
2
|1⟩

The corresponding bra ⟨𝜓| is

⟨𝜓| = −i
√
2
(1, 0) + 1

√
2
(0, 1) = ( −i√

2
,

1
√
2
) = −i

√
2
⟨0| + 1

√
2
⟨1|

Thus, if H is an n-dimensional Hilbert space then the ket |𝜓⟩ ∈ H can be rep-

resented as an n-dimensional column vector, and its corresponding bra ⟨𝜓| ∈ H ∗

can be seen as an n-dimensional row vector; |𝜓⟩ ↔ ⟨𝜓| corresponds to transposition

and conjunction. Kets and bras are succinctly referred to as Dirac notation.

1.1.3 Inner and Outer Products

We can use Dirac notation to make calculations. For example, ⟨𝜙|𝜓⟩ is the usual

row-column matrix operator that computes the inner product in finite dimensional

vector spaces.

Let us take the representations of |0⟩ and |1⟩ given in Eq. (2). Note that |0⟩ ⟂
|1⟩ as well as the fact that both vectors have unitary norm. Consequently, the inner

product of |0⟩ and |1⟩ must be zero and the inner product of each vector with itself

must be equal to one:



Quantum Information Protocols for Cryptography 7

⟨0|1⟩ = (1, 0)
(
0
1

)

= (1 × 0 + 0 × 1) = 0 = (0 × 1 + 1 × 0) = (0, 1)
(
1
0

)

= ⟨1|0⟩

Moreover

⟨0|0⟩ = (1, 0)
(
1
0

)

= (1 × 1 + 0 × 0) = 1 = (0 × 0 + 1 × 1) = (0, 1)
(
0
1

)

= ⟨1|1⟩

We may also use kets and bras to create linear operators (i.e. linear functions

between vector spaces). Let |𝜓⟩, |a⟩ ∈ H1 and |𝜙⟩ ∈ H2 then the outer product is

the linear operator from H1 to H2 defined by

(|𝜙⟩⟨𝜓|)|a⟩ ≡ (⟨𝜓|a⟩)|𝜙⟩

As it may be expected, the summation of outer products is also a linear operator.

For example, let us define the Hadamard operator

̂H = 1
√
2
(|0⟩⟨0| + |0⟩⟨1| + |1⟩⟨0| − |1⟩⟨1|)

The action of ̂H on the ket |0⟩ is given by

̂H|𝜓⟩ = ( 1
√
2
|0⟩⟨0| + 1

√
2
|0⟩⟨1| + 1

√
2
|1⟩⟨0| − 1

√
2
|1⟩⟨1|)|0⟩

= ⟨0|0⟩
√
2
|0⟩ + ⟨1|0⟩

√
2
|0⟩ + ⟨0|0⟩

√
2
|1⟩ − ⟨1|0⟩

√
2
|1⟩

= 1
√
2
|0⟩ + 1

√
2
|1⟩

1.1.4 Quantum Measurements

In quantum mechanics, measurement is a non-trivial and highly counter-intuitive

process. Firstly, because measurement outcomes are probabilistic: regardless of the

carefulness in the preparation of a measurement procedure, the possible outcomes of

such measurement will be distributed according to a certain probability distribution.

Secondly, once a measurement has been performed, a quantum system is unavoidably

altered due to the interaction with the measurement apparatus. Consequently, for an

arbitrary quantum system, pre-measurement and post-measurement quantum states

are different in general. Thirdly, in order to perform a measurement it is needed to

define a set of measurement operators. This set of operators must fulfill a number of

rules that allows one to compute the actual probability distribution as well as post-

measurement quantum states.
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Quantum measurements are described by a set of measurement operators { ̂Mm}
where index m labels the different measurement outcomes. Measurement outcomes

correspond to values of observable, such as position, energy and momentum.

Let |𝜓⟩ be the state of the quantum system immediately before the measurement.

Then, the probability that result m occurs is given by

p(m) = ⟨𝜓| ̂M†
m
̂Mm|𝜓⟩ (3)

and the post-measurement quantum state is

|𝜓⟩pm =
̂Mm|𝜓⟩

√

⟨𝜓| ̂M†
m ̂Mm|𝜓⟩

. (4)

Let us work out a simple example. Assume we have a polarized photon with asso-

ciated polarization orientations ‘horizontal’ and ‘vertical’. The horizontal polariza-

tion direction is denoted by |0⟩ and the vertical polarization direction is denoted by

|1⟩.
Thus, an arbitrary initial state for our photon can be described by the quantum

state |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, where 𝛼 and 𝛽 are complex numbers constrained by the

normalization condition |𝛼|2 + |𝛽|2 = 1 and {|0⟩, |1⟩} is the computational basis

spanning H 2.

Now, we construct two measurement operators ̂M0 = |0⟩⟨0| and ̂M1 = |1⟩⟨1| and

two measurement outcomes a0, a1. Then, the full observable used for measurement

in this experiment is ̂M = a0|0⟩⟨0| + a1|1⟩⟨1|. According to Eq. (3), the probabilities

of obtaining outcome a0 or outcome a1 are given by p(a0) = |𝛼|2 and p(a1) = |𝛽|2.

Corresponding post-measurement quantum states (Eq. (4)) are as follows: if outcome

= a0 then |𝜓⟩pm = |0⟩; if outcome = a1 then |𝜓⟩pm = |1⟩.
The following results shall be used in the next section:

1.1.5 Entanglement

Entanglement is a unique type of correlation shared between components of a quan-

tum system. Entangled quantum systems are often best used collectively, i.e. an opti-

mal use of entangled quantum systems for information storage and retrieval must

manipulate and measure those systems as a whole, rather than on an individual basis.

The concept of correlation is deeply rooted in every branch of science. A typical

and simple example is the following experiment: let us suppose we have two balls,

one white and one black, as well as two boxes. If we randomly put a ball in each box

and then close both boxes, we need to perform only one experiment, that is, to open

one box, in order to know which of the balls is in each box. In other words, by means

of one measurement, namely opening one box and seeing which ball was stored in

it, we obtain two pieces of information, namely the colour of the ball stored in both

boxes.
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The former experiment is an example of classical correlation. Quantum entangle-

ment is also a kind of correlation, but one that has been detected only in quantum

phenomena so far.

For example, consider the following 2-particle state:

|𝛹−⟩ =
|01⟩ − |10⟩

√
2

(5)

Clearly, |𝛹−⟩ lives in a four-dimensional Hilbert space. It can be seen, after some

calculations, that it is impossible to find quantum states |a⟩, |b⟩ ∈ H 2 such that

|a⟩⊗ |b⟩ = |𝛹−⟩, that is, |𝛹−⟩ is not a product state of |a⟩ and |b⟩. This is indeed

a criterion to determine whether a quantum state is entangled or not, whether it is

possible to express such a composite quantum state as a simple tensor product of

quantum subsystems.

Another example is the tripartite entangled GHZ state

|GHZ⟩ =
|000⟩ + |111⟩

√
2

(6)

Again, it is not possible to find three quantum states |a⟩, |b⟩, |c⟩ ∈ H 2 such that

|a⟩⊗ |b⟩⊗ |c⟩ = |GHZ⟩.

2 Quantum Key Distribution Protocols

The quantum key distribution protocols we shall review in this chapter are method-

ologies designed and implemented to produce and distribute private keys. The impor-

tance of (quantum) private keys is described in the following lines.

Cryptography is the branch of science and engineering devoted to the design and

implementation of techniques for secure communication, under the assumption that

a third party is interested in reading our messages. In other words, cryptography is

the science of keeping information secure [49]. Encryption is the process of trans-

forming plaintext (i.e. the actual message) into a ciphertext (i.e. a coded message) by

using a cryptosystem. Decryption is the inverse process, i.e. transforming a cipher-

text into a plain message. Cryptanalysis is the field focused on recovering the plain

text breaking the encryption method used to produce the ciphertext [49].

Modern cryptography has two types of encryption: symmetric key and asymmet-

ric key cryptosystems. Let us briefly describe each type.

∙ Symmetric key cryptosystems, also known as private key cryptosystems, are

encryption algorithms that use a single key for both encryption and decryption of

the ciphertext. In this field, algorithms for encryption and decryption are known

while the key must remain private, i.e. secret [50].
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∙ Asymmetric key cryptosystems use two keys: a public key and a private key, the

public key is used for encryption and the private key for decryption. These cryp-

tosystems work under the rationale of a safe with two keys: the key to lock the

safe is known by everybody but the key for opening is available to only one person

[49, 50].

Private key cryptosystems can be very powerful. For example, the cryptosystem

known as the one-time pad (also known as the Vernam cipher) can be proved to

be perfectly secured as long as the key is truly random, the length of the key is

equal to the size of the message and the key is only used once [50]. Other private

key cryptosystems include the Data Encryption Standard (DES) and the Advanced

Encryption Standard (AES) [49, 50].

One of the most sensible issues with private key cryptosystems is safe key distri-

bution, i.e. the process of establishing a private key between two users who cannot

use a perfectly secure communication channel [50]. For example, this situation may

arise if two users, who do not share secrete information a priori, need to contact each

other urgently. The issue is the fact that, if the channel used to distribute a private key

is governed by the laws of classical physics, then in principle any (classical) key can

be passively eavesdropped, i.e. without users becoming aware of this vulnerability

[50].

Quantum key distribution protocols use properties of quantum mechanical sys-

tems in order to significantly enhance the security of key distribution channels. Let

us now introduce the BB84 and E91 quantum key distribution protocols.

2.1 BB84

In 1984, Charles Bennett and Gilles Brassard [16] proposed a quantum key distribu-

tion protocol known as BB84. The key idea of BB84 is to produce a key by encoding

bits in qubits that are taken from a set composed by the union of the computational

and diagonal bases, i.e. a set of four non-orthogonal quantum states. Proofs of the

security of BB84 against attacks of eavesdropping strategies have been presented in

[51, 52].

Let us suppose the following setting: two people, usually referred to as Alice and

Bob, want to create a key for encoding a message. The key, to be shared by Alice

and Bob, must be random and secret. There is a third character in this scenario: Eve,

an eavesdropper. The conflict in this story is: Alice and Bob’s key need their key to

be secret and Eve will do anything in her power to reveal at least some portions of

the key. Note that the purpose of BB84 is to produce a key, i.e. actual encoded data

transmission is not part of the BB84.
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In the following lines, we present the BB84 protocol step by step. Hereinafter, we

assume that:

(a) Alice has a source of individual photons as well as the experimental equipment

and expertise to manipulate the polarization of her photons. Moreover, she has access

to a source of random bits.

(b) There is a channel available to Alice and Bob that they can use to send quantum

states (e.g., an optical fiber.)

(c) Bob has the experimental facilities and expertise required to measure quantum

states using different bases.

(d) Finally, Alice and Bob have a classical channel (e.g., a telephone line) that may

or may not be a secure line, it does not really matter.

The BB84 protocol is composed of the following steps [53]:

1. Alice starts by generating two sets of random bits A = {a1, a2,… an} and B =
{b1, b2,… bn}

2. Alice uses the set of random bits A to select the vector basis with which she will

prepare the initial polarization state of her photons, according to the following

criterion: Alice will read one bit at a time from set A and, depending on her

reading (either 0 or 1), she will choose the computational basis (+) or the diagonal

basis (×) to prepare her photons. In computational terms, this step would be more

or less equivalent to variable initialization.

For instance, let us suppose that A = {0, 1, 0, 0, 1, 0, 1, 1, 1, 0} and that Alice has

chosen the following criterion: if 0 then use the computational basis; if 1 then use

the diagonal basis. Then, Alice would initialize her qubits using the following list:

(+, ×, +, +, ×, +, ×, ×, ×, +).

3. So far, Alice has a random list of vector space bases (+, ×) to initialize her pho-

tons. Now, Alice must randomly choose one vector from each basis to prepare the

polarization initial state of each photon. To do so, Alice will use the elements of

set B according to the following function:

initial polarization state =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

|0⟩ (or |1⟩) if (+, 0)
|1⟩( or |0⟩) if (+, 1)
|+⟩( or |−⟩) if (×, 0)
|−⟩( or |+⟩) if (×, 1)

Following the example presented in the previous step, let us suppose that B =
{1, 0, 1, 0, 1, 0, 0, 1, 0, 1} and that Alice’s list for preparing the initial polarization

state of her photons is (+, ×, +, +, ×, +, ×, ×, ×, +). Moreover, let us suppose

that she has decided to prepare her photons according to the following
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initial polarization state =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

|0⟩ if +, 1)
|1⟩ if +, 0)
|+⟩ if ×, 0)
|−⟩ if (×, 1)

Then, her photons will have the following initial polarization states:

{|0⟩, |+⟩, |0⟩, |1⟩, |−⟩, |1⟩, |+⟩, |−⟩, |+⟩, |0⟩}

4. Alice sends her qubit sequence (step 3) to Bob via the quantum channel they both

have access to. This step is Eve’s chance to extract information from the quantum

channel. We now describe two strategies that Eve may try to follow, together with

an explanation of why such strategies would fail:

a. To perfectly copy photon polarization states on the fly. Eve may try to design

a device D
̂U(|𝜓⟩i|0⟩) = |𝜓⟩i|𝜓⟩

to allow her to perform the following operation:

̂U(|𝜓⟩i|0⟩) = |𝜓⟩i|𝜓⟩

where ̂U must be a unitary operator (this is a requisite imposed by the math-

ematical structure of quantum mechanics), |𝜓⟩i is the polarization state of

photon i and |0⟩ is the initial state of a qubit (e.g., the polarization state of a

photon contained in the device). In this strategy, Eve intends to copy quan-

tum states as photon travel along the quantum channel, it is not her intention

to perturb the photons sent by Alice in any sense.

The no-cloning theorem [54, 55], a most remarkable and counter-intuitive

result of quantum mechanics, prevents the realization of a device that makes

clones, i.e. perfect copies, of arbitrary quantum states. In other words, the

no-cloning theorem makes Eve’s device DU impossible to create.

b. To measure photon polarization states followed by preparing new photons

for Bob. In this case, Eve intercepts photon i and measures its polarization

state. Moreover and based on the information extracted from photon i, Eve

prepares a new photon and sends it to Bob.

In order to measure photon i, Eve must choose a basis to build the corre-

sponding measurement operators. Eve may know that Alice has prepared

her qubits using the computational and diagonal bases, but she does not

know the order in which bases were picked, hence she does not know for

sure which measurement operators she must use in order to extract informa-

tion from the photon sequence; in fact, Eve can only guess which basis she

should use for measuring each photon.

Let us then suppose that Eve randomly chooses to use the computational

basis or the diagonal basis to measure photon polarization states. Of course,
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Table 1 Probabilities and post-measurement quantum states |0⟩, |1⟩, |+⟩, |−⟩ and measurement

operators |0⟩⟨0|, |1⟩⟨1|
Qubit Measurement

operator

p(0) |𝜓⟩0pm Measurement

operator

p(1) |𝜓⟩1pm

|0⟩ ̂M0 = |0⟩⟨0| 1 |0⟩ ̂M1 = |1⟩⟨1| 0 ∄
|1⟩ ̂M0 = |0⟩⟨0| 0 ∄ ̂M1 = |1⟩⟨1| 1 |1⟩
|+⟩ ̂M0 = |0⟩⟨0| 1∕2 |0⟩ ̂M1 = |1⟩⟨1| 1∕2 |1⟩
|−⟩ ̂M0 = |0⟩⟨0| 1∕2 |0⟩ ̂M1 = |1⟩⟨1| 1∕2 |1⟩

Table 2 Probabilities and post-measurement quantum states |0⟩, |1⟩, |+⟩, |−⟩ and measurement

operators |+⟩⟨+|, |−⟩⟨−|
Qubit Measurement

operator

p(+) |𝜓⟩0pm Measurement

operator

p(−) |𝜓⟩1pm

|0⟩ ̂M+ = |+⟩⟨+| 1∕2 |+⟩ ̂M− = |−⟩⟨−| 1∕2 |−⟩
|1⟩ ̂M+ = |+⟩⟨+| 1∕2 |+⟩ ̂M− = |−⟩⟨−| 1∕2 |−⟩
|+⟩ ̂M+ = |+⟩⟨+| 1 |+⟩ ̂M− = |−⟩⟨−| 0 ∄
|−⟩ ̂M+ = |+⟩⟨+| 0 ∄ ̂M− = |−⟩⟨−| 1 |−⟩

Eve will make right choices sometimes and will be wrong some other times.

Let us analyze both cases:

i. Right choice of measurement operators. For example, let us suppose

that the polarization state of photon i is |1⟩ and that Eve has chosen the

computational basis {|0⟩, |1⟩} to produce { ̂M0, ̂M1}. Hence, the proba-

bility of measuring outcome 0 is 1, i.e. p(0) = 1, and the corresponding

post-measurement state is |0⟩, i.e. |𝜓⟩0pm = |0⟩, (please see Table 1).

After learning that the polarization of photon i is |0⟩, Eve prepares a

new photon i′ and sends it to Bob. Since Eve has sent to Bob the same

quantum state that Alice prepared, her eavesdropping will go unnoticed

(Table 2).

ii. Wrong choice of measurement operators. For example, Eve chooses the

diagonal basis {|+⟩, |−⟩} to measure photon j whose polarization state

is |0⟩. Then, according to the rules of quantum mechanics, the probabil-

ity of having |+⟩ as post-measurement quantum state is 1∕2 and, corre-

spondingly, the probability of having |−⟩ as post-measurement quantum

state is also 1∕2. Here, Eve faces two problems: she has not extracted

any information from photon j and the photon that she will prepare and

send to Bob will be different from the photon sent by Alice, hence there

is room for detecting her eavesdropping activity (remember that BB84 is

about safely creating a private key, not about transmitting any message

between Alice and Bob, so detecting Eve’s activity does not jeopardize

the message itself, it only renders the key unusable.)
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So, if Eve randomly chooses between the computational basis and the diagonal

basis to measure photon polarization states, it is reasonable to expect that she will

be successful only half of the time, hence her chances of making a mistake are

high (50%), an unacceptable scenario for a professional spy.

5. Let us now describe Bob’s activities. Bob knows that Alice has prepared her

qubits using either the computational basis or the diagonal basis but, just like

Eve, he does not know the order in which Alice chose between those vector bases.

So, Bob randomly selects the vector basis he will use to produce the correspond-

ing measurement operators (i.e. he randomly chooses {|0⟩, |1⟩} or {|+⟩, |−⟩})

and measures the polarization states of the photons he receives at his end. The

result of this procedure will be a listC composed of ordered pairs (basis,outcome)

where basis is either + or × and outcome is either 0 or 1.

6. Once the full photon sequence has been processed as described above, Alice and

Bob use a classical channel (a telephone line or e-mail, for instance) to tell each

other the sequence of basis they use to initialize and measure photon polarization

states, respectively. Alice and Bob will discard those outcomes that correspond

to disagreements of initialization and measurement bases (for instance, if Alice

used {|0⟩, |1⟩} to prepare photon i and Bob used basis {|+⟩, |−⟩} to measure the

same photon i) and will keep the remaining outcomes. Let us label the remaining

bit sequences os Alice and Bob as RA and RB, respectively.

Assuming no interference on the quantum channel, RA and RB must be identical,

that is, Alice and Bob have succeeded at producing a private key K(= RA = RB.)

However, it is reasonable to assume some discrepancies between RA and RB due

to errors in transmission and/or Eve’s activity. In this case, Alice and Bob may

follow error correction and privacy amplification procedures in order to produce

two identical bit strings R′

A and R′

B, that is, the private key K(= RA = RB) they

needed to generate.

A succinct example of BB84 is presented on Table 3.

Table 3 Example of the BB84 protocol in action

Alice’s bits 1 1 0 1 0 0 1 1 1 0 0 1

Alice’s bases + + × + × + × + × + × ×
Alice’s qubits |0⟩ |0⟩ |+⟩ |0⟩ |+⟩ |1⟩ |−⟩ |0⟩ |−⟩ |1⟩ |+⟩ |−⟩
Eve’s bases + × + + × × + × + + + +

Eve’s

measurements

|0⟩ |+⟩ |1⟩ |0⟩ |+⟩ |0⟩ |0⟩ |+⟩ |1⟩ |1⟩ |1⟩ |0⟩

Bob’s bases × + + + × × × + + + + ×
Bob’s

measurements

|+⟩ |0⟩ |1⟩ |0⟩ |+⟩ |−⟩ |+⟩ |1⟩ |1⟩ |1⟩ |1⟩ |+⟩

Bob’s bits 1 1 0 1 0 1 0 0 0 0 0 0

Selection ∙ ∙ ∙ ∙ ∙ ∙ ∙
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2.2 E91

In 1991, Ekert [17] proposed a quantum key distribution protocol based on Bell states

and known as E91. Bell states, presented in Eqs. (7a–7d), constitute a widely used

set of entangled states

|𝛷+⟩ = 1
√
2
(|00⟩ + |11⟩) (7a)

|𝛷−⟩ = 1
√
2
(|00⟩ − |11⟩) (7b)

|𝛹+⟩ = 1
√
2
(|01⟩ + |10⟩) (7c)

|𝛹−⟩ = 1
√
2
(|01⟩ − |10⟩) (7d)

When Alice holds the first particle and Bob holds the second particle, this implies

that the measurement results of Alice and Bob are completely correlated with each

other when they used one of two bases (+, ×) to measure the state. Eve has no infor-

mation about the particles (qubits) hold by Alice and Bob, due to the two particles

are in entangled state and Eve cannot reach the two particles in the same time. To

transmit the whole key, Alice and Bob generate a large numbers of Bell states and

measure each particle in separate way. E91 is composed of the following steps:

1. Alice generates a sequence of Bell states.

2. Alice randomly selects a subset of this sequence and applies the Hadamard trans-

formation on the first particle for each pair when the corresponding bit string is

‘1’.

3. Alice sends the sequence of second qubits to Bob and holds the sequence of first

qubits.

4. Alice tells Bob the bits of string and which qubits are selected.

5. Bob applies the Hadamard transformation on the selected qubits where the bit

string is ‘1’.

6. Both Alice and Bob measure the selected qubits with same bases and delete the

bits which are of different bases and the remaining bits are called shifted key.

Then they check the exiting of Eve by estimate the error-rate of choosing a subset

of the sifted key. If the bits are differing, they abort the protocol.

7. Finally, by performing error correction Alice and Bob obtain the secret key.

Without performing Hadamard transformation on the first qubit (which is equivalent

to transforming + into ×, Eve could easily attack the protocol via intercept-resend

attack.
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3 Quantum Secret Sharing Protocols (QSS)

Secret sharing, as one of the most important branches in cryptography, is a technique

developed to distribute a secret message to several parties so that no participant can

access and read the secret message without the collaboration of other parties. To

further illustrate the observations, imagine Alice holding a secret message and want

to gain access for both Bob and Charlie. She knows that one of them is dishonest and

she does not know which the honest one is. So, Alice cannot send the secret message

directly to both of them, because the dishonest one will steal the information, but

she knows that if Bob and Charlie carry out it together, the honest one will keep the

dishonest one from doing any damage.

Quantum secret sharing (QSS) firstly proposed by Hillery et al. [19] in 1999,

namely Hillery’s protocol. It’s based on three-particle quantum entangled states and

the classical secret sharing protocol presented by Shamir [56] in 1979. Then, Anders

Karlsson et al. [20] presented a new QSS protocol based on entangled two-photon

states. Thereafter, several QSS protocols have been proposed, for example, but not

limited, [19, 20].

Herein, we shed the light to QSS protocol in [19]. This protocol uses Greenberger-

Horne-Zeilinger (GHZ) three-particle states. Supposing that there are three partici-

pants Alice, Bob and Charlie, each of them in possession of one particle of the GHZ

state presented in Eq. (8)

|𝛹⟩ =
|000⟩ + |111⟩

√
2

(8)

All participants randomly choose to measure their own particles using directions x
or y. Then they communicate with each other to declare which direction they used in

measurement process, without announcing their measurement results. By combining

the measurement results of Alice and Bob, they can determine the measurement

result of Charlie. This allows Charlie to build up a joint key with Alice and Bob,

which can be used to send the secret message. The directions of particles x and y are

defined as follows:

|x±⟩ =
|0⟩ ± |1⟩

√
2

(9a)

|y±⟩ =
|0⟩ ± i|1⟩

√
2

(9b)

If Alice and Bob perform their measurement in the x direction and they want to get

information about Charlie’s particle. The GHZ state can be written as

|𝛹⟩ =
(|x+⟩a|x+⟩b + |x−⟩a|x−⟩b)(|0⟩c + |1⟩c) + (|x+⟩a|x−⟩b + |x−⟩a|x+⟩b)(|0⟩c − |1⟩c)

2
√
2

(10)
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From Eq. (10), if Alice and Bob have the same result of measurement, then they

conclude that Charlie have the state
|0⟩c+|1⟩c√

2
, otherwise he have the state

|0⟩c−|1⟩c√
2

.

Similarly, Bob and Charlie can determine the quantum state of Alice by combining

their results of measurement. Generally, no one of the three participants can deter-

mine the quantum state of each other without combining their results.

Now, what happens if the participants choose to measure their own particles in

any direction without announcing their measurement basis. In other words, how to

determine whether the participant’s measurements are correlated or not. The answer

is, all participant’s particles must be measured in the same direction. For example,

if both Bob and Charlie measure their particles in the x direction. Alice must also

measure her particle in x direction. Otherwise, she gains no information from her

result. Therefore, all the three participants must announce their measurements basis

to each other to decide whether measurement basis to keep or which to discard.

4 Quantum Secure Direct Communication Protocols (QSDC)

Quantum secure direct communication (QSDC) protocols differ from QKD, QSS

and DSQC protocols as a secret message in QSDC protocols is transmitted by the

quantum channel directly without having to share a private key between two legiti-

mate users beforehand. There are three requirements should be satisfied in any secure

QSDC protocol:

1. Before the sender (Alice) and the receiver (Bob) communicate to encode their

secret message on the quantum states, they can detect the exiting of the eaves-

dropper (Eve).

2. Bob can read the secret message directly without establishing additional classical

channels with Alice to exchange the secret key and ensure the security of the

protocol.

3. In any type of attacks performed by Eve, no any useful information stolen about

the transmitted secret message.

In 2002, Beige et al. [23] proposed the first QSDC protocol based on the exchange

of single photons and each photon transmits one bit of the secret message. In the

same year, Boström et al. [24] presented a ping-pong QSDC scheme based on EPR

pairs. In 2003, Deng and Long [25] introduced a two-step QSDC scheme based on

dense coding operations. In 2004, Deng and Long [26] introduced another QSDC

protocol based on a sequence of single photons. Then, several QSDC protocols are

proposed to carry the secret message based on single photons and entangled parti-

cles through a quantum channel. In the literature, there are several QSDC protocols

utilized entangled particles in their internal structure such as EPR pairs [27, 28],

Greenberger-Horne-Zeilinger (GHZ) [29], cluster states [30], W states [31] and 𝜒-

type states [32]. EPR pairs are more easily prepared and therefore widely used. In

fact, single photons have several advantages that lead to the development of quan-

tum communication protocols such as flexible implementation, high efficiency as
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well as simple operations. In 2004, Deng and Long [26] developed a QSDC scheme

by using batches of single photons, which serves as quantum one-time pad cryptosys-

tem. In 2006, Wang et al. [33] proposed a QSDC scheme based on order rearrange-

ment of single photons, in which all single photons are used to encode the secret

message except those used for eavesdropping check. In the same year, Li et al. [34]

presented a deterministic QSDC scheme by using a sequence of single photons. In

2010, Quan et al. [35] proposed a one-way DQSDC scheme by using a sequence

of single photons. In 2013, Chang et al. [36] proposed quantum secure direct com-

munication and authentication protocol with single photons and XOR operation. In

2015, Zhao [37] proposed two quantum secure communication protocols based on

single photon sequence and the XOR operation. Also, in the same year, Xin et al.

[38] proposed a quantum authentication protocol based on Hash function and Bell

states. Hereinafter, we introduce examples of these protocols.

4.1 QSDC Deng-Long Protocol

As mentioned above, quantum communication protocols based on single photons

are easier to implement than quantum protocols based on entangled states. Therefore,

Deng and Long presented a QSDC protocol [26] based on QKD idea. In this protocol,

Alice shares with Bob a sequence of single photon states, then Alice encodes the

secret message and transmits the photon states to Bob. The detailed steps of QSDC

Deng-Long protocol is given below:

1. Bob generates a sequence S of single photons in one of the four polarized states

|0⟩, |1⟩, |+⟩ = 1
√
2
(|0⟩ + |1⟩), |−⟩ = 1

√
2
(|0⟩ − |1⟩) which the polarized states |0⟩

and |+⟩ represent the binary value 0, the polarized states |1⟩ and |−⟩ represent

the binary value 1 and sends these sequence S to Alice. To check the security of

the protocol, Bob selects a subset group of photons in sequence S and tells Alice

the positions of the selected group. Alice measures the photons in the selected

group using the same basis and compares the results of measurement with Bob.

If their results are the same, there is no attack and the quantum channel is secure,

otherwise, the connection is not secure and they abort from the quantum channel.

2. To encode the secret message, Alice performs the unitary transformation U0 and

U1 which represent binary values 0 and 1, respectively on each photon in the

selected positions according to the secret message. where

U0 = |0⟩⟨0| + |0⟩⟨0| =
[
1 0
0 1

]

= I (11a)

U1 = |0⟩⟨1| − |1⟩⟨0| =
[
0 1
−1 0

]

= i𝜎Y (11b)
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3. Alice sends the result of the sequence S to Bob. Bob knows the initial state of

photon polarization and the selected positions, due to the sequence is generated by

her. Then Bob measure each photon in the selected positions by the original basis

and deduce the secret message from the unitary transformation Alice applied on

the selected photons.

4.2 QSDC Deng Protocol

Deng et al. [25] presented a two-step QSDC protocol, which the first QSDC pro-

tocol based on Bell states. In this protocol, Alice generates a sequence of entan-

gled particles all in |𝛷⟩+ state. Alice separates the sequence of particles into two

subsequences. The first subsequence called the message-carrier and labels it as SA.

The second subsequence called the checking and labels it as SB. At first Alice and

Bob agree that classical bits 00, 01, 10 and 11 correspond to the four Bell states

|𝛹⟩+, |𝛹⟩−, |𝛷⟩+, |𝛷⟩−, respectively. Then, Alice sends the sequence SB to Bob. To

check the security of the established quantum channel, Bob selects randomly a sub-

set of photons in the sequence SB and measures this selected group by one of the

two basis (Z and X). Thus, Bob communicates with Alice via a classical channel to

tells here the positions of photons in the selected group. Then, Alice measures the

corresponding photons in sequence SA using the same basis. Alice’s result is then

compared with Bob’s result via the classical channel. If two results are completely

opposite, there is no attack performed by Eve, otherwise Eve performed attack and

they must abort the connection. After that Alice encodes her secret message by apply-

ing unitary transformations (𝜎I , 𝜎z, 𝜎x, 𝜎iy) on their own particles in the selected posi-

tions to transform the Bell state to another Bell state (see Table 4) according to the

encoded secret message and sends the result sequence SA to Bob. Then Bob extract

the secret message from the Bell states in the selected position utilizing Bell mea-

surements.

where,

𝜎I = |0⟩⟨0| + |1⟩⟨1| =
[
1 0
0 1

]

(12a)

Table 4 The relationship between the initial Bell states and the final Bell states

𝜎I 𝜎X 𝜎Z i𝜎Y
|𝛷+⟩ |𝛷+⟩ |𝛹+⟩ |𝛷−⟩ |𝛹−⟩

|𝛷−⟩ |𝛷−⟩ |𝛹−⟩ |𝛷+⟩ |𝛹+⟩

|𝛹+⟩ |𝛹+⟩ |𝛷+⟩ |𝛹−⟩ |𝛷−⟩

|𝛹−⟩ |𝛹−⟩ |𝛷−⟩ |𝛹+⟩ |𝛷+⟩
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𝜎X = |0⟩⟨1| + |1⟩⟨0| =
[
0 1
1 0

]

(12b)

𝜎Z = |0⟩⟨0| − |1⟩⟨1| =
[
1 0
0 −1

]

(12c)

i𝜎Y = |0⟩⟨1| − |1⟩⟨0| =
[
0 1
−1 0

]

= 𝜎Z𝜎X (12d)

5 Deterministic Secure Quantum Communication Protocols (DSQC)

The deterministic secure quantum communication (DSQC) protocols are designed

to obtain deterministic information, not random information. It is similar to QKD

protocols which at first generate a key to encrypt the secret message. In DSQC, Bob

can extract the secret message by using for each transmitted qubit at least an addi-

tional classical bit. So the classical channels are needed besides the DSQC protocols.

In 2004, Cai and Li [56] presented a DSQC protocol based on single qubit in a mixed

state and its security based on the security of BB84 protocol. In 2005, Gao et al. [39]

proposed a DSQC protocol based on GHZ states and entanglement swapping. In

2006, Shaari et al. [40] presented a two-way deterministic protocol using six mutu-

ally unbiased states in the Poincare sphere which the information are encoded by

not-flip or flip operations on the states. Also, in the same year, Li et al. [41] pre-

sented two DSQC protocols, one based on d-dimensional single-photon states and

the other based on pure entangled states which single-photon measurements are only

used for the two participants in these two protocols. In 2012, Huang et al. [42] pro-

posed two DSQC protocols with collective detection, one is a DSQC network and

the other is a two-party DSQC scheme. Finally, in 2015, Yan et al. [43] presented a

controlled DSQC protocol based on three-particle GHZ state in X-basis.

Let us now describe one of these DSQC protocols in details. Huang et al. [42] pre-

sented a two-party DSQC protocol using single photons with collective detection. In

this protocol, Alice and Bob perform single-photon measurements on their photons

and communicate via classical channel to exchange a certain classical information

bits. This protocol based on collective detection strategy, which is used to detect any

attack on the quantum protocol after the whole process of qubit transmission and

reduces the cost of protocol realization.

At first in this protocol, Alice and Bob share a sequence of single photons, and

then Alice encodes the message using two unitary operations then encrypts the

encoded states using a tilt-adjustable phase plate. After receiving Bob the sequence

of photons from Alice via quantum channel, he can decode the message with the

help of transmitted classical information bits via classical channel. The steps of this

protocol can be described as follows:
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1. Bob prepares a sequence of single photons all in the state |+⟩ and sends the

sequence to Alice.

2. After receiving the sequence, Alice generates a random string M with length

equal to the number of elements in Bob’s sequence of states S.

3. Alice apply on the photon sequence S a phase shift 𝜓i ∈ {0, 𝜋∕2, 𝜋, 3𝜋∕2} to

encode 00, 01, 10 and 11, respectively.

4. Alice randomly chooses some polarized photons in sequence S as decoy states

and performs unitary transformation 𝜎i and 𝜎z on the polarized photons in selected

positions, then Alice sends the sequence to Bob.

5. To check eavesdropping via classical channel:

∙ At first Alice tells Bob the positions of decoy photons and the corresponding

values of M for each decoy particle.

∙ Then Bob measures each decoy photon using {|+⟩, |−⟩, |s⟩, |t⟩} to obtain cor-

responding values, where |s⟩ = |0⟩+i|1⟩
√
2

and |t⟩ = |0⟩−i|1⟩
√
2

∙ Bob estimates the error rate and decides whether they abort the protocol; oth-

erwise, they go to the next step.

6. Bob measures each photon in the sequence with measurement basis {|+⟩, |−⟩,
|s⟩, |t⟩} to reveal the encoded secret message M.

The main advantage of this protocol is that Alice and Bob can utilize all transferred

polarized photons to transmit the secret message, except for the ones used for eaves-

dropping check.
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