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Foreword

To a modern reader, the prefix trans- can evoke a range of meanings, from the 
sublime to the mundane, depending on the context of its usage and the particular 
word that usually follows it. It is a powerful prefix that can create opposing mean-
ings (e.g., transform vs. transgress) and situate meanings depending on the user. 
For instance, the term “transcendental” colloquially connotes esoteric practices 
associated with Eastern religions, where as in mathematics it refers to a very specific 
type of number, one that is not algebraic. It also turns out that although specific 
transcendental numbers such as π and e are most often referred to and perceived of 
as exotic, as the term “transcendental” might suggest, there happen to be “as many” 
of these numbers as there are real numbers, i.e., there are infinitely many! Given the 
wide range of meanings possible, it is important to know that the prefix trans- comes 
from Latin transcendere meaning to climb over or beyond or across. With this 
meaning in mind, we can better grasp the term transdisciplinary, which is the topic 
of this book in reference to mathematics education.

The editors of the book, Jao and Radakovic, delve into the etymological aspects 
of the prefix trans- and clarify how this term is different from prefixes like inter- and 
multi- to provide clarity to the reader. Simply put, the difference between an inter-
disciplinary approach and a transdisciplinary approach is that the former typically 
involves (research) questions that can be approached via more than one discipline 
and the methods used to answer the question reveal links between the disciplines 
(e.g., mathematics and physics), whereas the latter suggests (research) questions 
that lie outside the disciplines with methods and answers (solutions) informing new 
discipline(s) and offering the possibility of unifying disciplines (e.g., the Human 
Genome Project). For instance, when we ask simple questions like “What is the 
cause of gravity?” or “What is the origin of matter?” the answers usually come in 
the form of theories from different disciplines which have devised their own methods 
for tackling such questions. These questions are also tackled outside the discipline 
of science, in the humanities and in religion. Thus, these types of questions cannot 
be appropriated by any discipline per se! An even simpler question is “What is a 
human being?” and this as we know is the enterprise not only of entire universities and 
religious organs but also that of business corporations and the marketing industry. 
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Other examples are found in issues that deal with sustainable development or with the 
environment, such as drilling for oil in wilderness areas, which require knowledge 
from many disciplines to even understand the nature of the questions that arise. 
Similarly, issues that arise in mathematics education can easily transcend disciplinary 
boundaries and lead to questions that can only be answered with transdisciplinary 
thinking. Such questions are as follows:

	1.	 What are the causes of inequity in mathematics classrooms, in schools, and in 
school systems?

	2.	 Can mathematics as a school subject accommodate indigenous views not 
subsumed under culture or ethno-labels?

The book takes into account such questions within mathematics education, its 
genesis and subsequent evolution, into a plurality of perspectives, of theories, and 
of research design that accommodate diverse groups of stakeholders, and the even-
tual transformation of these questions into transdisciplinary frameworks that require 
critical and postmodern modes of thinking. To ease the reader into this progression, 
the book is organized into five sections based on a cluster model of transdisciplinar-
ity, with chapters in each section that address questions requiring a particular mode 
of thinking. As a whole, the book makes an excellent case for moving beyond 
domain-specific thinking, particularly if the goal of mathematics education is to 
address issues that are important to all its different stakeholders.

Department of Mathematical Sciences	 Bharath Sriraman
University of Montana-Missoula,  
Missoula, MT, USA

Foreword
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Introduction: The Transdisciplinary  
Nature of Mathematics Education

Mathematics education has evolved from focusing on teaching and learning of 
disciplinary knowledge to a complex field bridging various disciplines and perspec-
tives. Within the field of mathematics education, there is a focus on multiple ways 
of knowing and experiencing mathematics including aboriginal and indigenous per-
spectives, queer theories, and diverse cultural and religious worldviews. Additionally, 
scholars investigate the relationship between mathematics and different disciplines, 
for example, mathematics and the arts (visual arts, music, literature) and mathemat-
ics and social sciences (including equity and social justice). The field also explores 
mathematics education in different contexts such as mathematics outside of the 
classroom, mathematics and social media, mathematics in the media, mathematics 
and movement, mathematics and gardens, and mathematics in popular culture. Each 
of the above topics also speaks to the multimodality of mathematics.

The goal of this book is to address the ways in which these various topics, 
perspectives, and ways of knowing are interconnected and how they inform math-
ematics education. In order to accomplish our goal, we are using the lens of trans-
disciplinarity since we believe that it encompasses the complexities within the field 
of mathematics education.

�What Is Transdisciplinarity?

Transdisciplinary research and theories embrace multiple perspectives and 
approaches. Consistent with its nature, definitions of transdisciplinarity are diverse 
and in flux (Klein, 2013). A common way to define transdisciplinarity is by outlin-
ing a progression from multidisciplinarity, through interdisciplinarity, to transdisci-
plinarity (Pohl, 2010). This progression often begins with an etymological exercise 
of analyzing the prefixes multi-, inter-, and trans-. Consistent with this exercise, 
multidisciplinarity hints at using multiple disciplines in a way that there are clear 
boundaries between them and without the goal of unifying the disciplines.
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Interdisciplinarity is a step beyond multidisciplinarity and brings together different 
approaches to address a common issue. Specifically, methods, techniques, and skills 
traditionally used in different disciplines are brought together. Also building upon 
conceptual, theoretical, and methodological orientations representative of various 
disciplines, transdisciplinarity shifts its goal and instead focuses on building a common 
conceptual framework informed by these foundations (Rosenfield, 1992).

For some researchers, the differences between interdisciplinarity and transdisci-
plinarity concern the participants involved and knowledge contributed (e.g., Klein, 
2008; Lawrence, 2004). While interdisciplinarity draws from experts across differ-
ent disciplines to produce “new and broad knowledge of a particular phenomenon” 
(Klein, 2008, p.S118), transdisciplinary research involves the contribution of 
knowledge from stakeholders at different levels (e.g., researchers and the public).

In a review of various definitions of transdisciplinarity, Pohl (2010) identified 
four recurring features: (1) a focus on socially relevant issues, (2) the transcendence 
and integration of disciplinary paradigms, (3) engaging in participatory research, 
and (4) a search for a unity of knowledge beyond disciplines. Pohl found that 
researchers chose to take up these four features in varying degrees, often only 
exhibiting a subset rather than all four.

Klein (2013) provides an organizational scheme that goes beyond identifying 
features of definitions. Instead, she analyzes underlying philosophical foundations 
(e.g., positivism) that inform these definitions of transdisciplinarity. Klein then pro-
duces “clusters” of words that are consistent with each worldview (e.g., unity of 
knowledge). According to Klein, there are five clusters of keywords. These clusters 
are shaped by cultural and historic developments, starting with interdisciplinary 
approaches in the 1960s and 1970s (e.g., Bruner, 1960; Piaget, 1970) followed by 
an anti-positivist (e.g., Feyerabend, 1975) and postmodern (e.g., Habermas, 1971) 
turn in research. Current societal problems (e.g., environmental and political) have 
also informed the clusters. In the next section, we elaborate on Klein’s five 
clusters.

�The Five Clusters of Transdisciplinarity

Klein (2013) describes the plurality of its definitions through the introduction of five 
clusters. Each of these clusters is informed by research programs that share similar 
philosophical outlooks and work within similar contexts and traditions. Keywords 
that describe these common perspectives are grouped to form a cluster. The clusters 
are “not air-tight categories, but they do reveal important differences in how [trans-
disciplinarity] is constructed” (p.189).

Informed by notions of interdisciplinarity as described earlier, the keywords used 
to describe Klein’s first cluster are integration, synthesis, interaction, holistic thinking, 
boundary crossing, boundary blurring, and transcendence. As the disciplinary lines 
blur, the goal of the intellectual activity is to create a unifying science. The unity of 
science is challenged by many worldviews. These worldviews challenge the “unity” 
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and “unifying” approaches and consider interplay, intersection, and interdependence 
as defining features of research. These perspectives inform Klein’s second cluster 
characterized by three pillars: complexity, multiple levels of reality, and the logic of 
included middle.

The third cluster shifts toward ethics by concentrating on collaborative problem-
oriented research for the “common good.” This cluster is characterized by the focus 
on “socially relevant issues, transcendence and integration of disciplinary para-
digms, conduct of participatory research, and the search for unity of knowledge” 
(Klein, 2013, p.193). The underlying principle of the third cluster is that research 
questions and practices should be framed by societal problems rather than by disci-
plines. The third cluster is characterized by participation, cooperation, collabora-
tion, partnering, networking, and mutual learning.

The fourth cluster frames transdisciplinarity in terms of three forms of knowl-
edge, system, target, and transformation knowledge (Pohl & Hadorn, 2008), which 
is similar to Habermas’ ideas about three domains of human knowledge, namely, 
technical, practical, and emancipatory (Habermas, 1971). An important feature of 
this cluster is a shift from technoscientific knowledge to transformational knowl-
edge, as well as the inclusion of perspectives that go beyond Western science and 
dominant worldviews (Klein, 2013).

Finally, the fifth cluster is characterized by the critical and postmodern turn and 
involves interrogation, critique, transgression, transformation, reconfiguring, refor-
mulating, and resituating. Consistent with the fifth cluster of meaning, Kellner 
(1995) discusses transdisciplinarity in the context of pushing boundaries of class, 
gender, race, ethnicity, and other identities. According to Klein (2013), “one of the 
transgressive purposes of transdisciplinarity, therefore, is to renounce the logic of 
instrumental reason by creating new participatory modes of knowledge, discourse, 
and institutional frameworks across all sectors of academic, private, and public life” 
(p.197).

�Transdisciplinarity and Mathematics Education

There are many themes within contemporary mathematics education research and 
practice. Some of them focus on developing disciplinary knowledge, for example, 
research focusing on the US Mathematics Common Core State Standards Initiative 
(Cobb & Jackson, 2011; Council of Chief State School Offices, 2010; Porter, 
McMaken, Hwang, & Yang, 2011) and research on proofs and reasoning (Hanna, 
2000; Reid, 2002). Other themes follow transdisciplinary perspectives and thus can 
be organized into all five of Klein’s (2013) clusters.

Within the domain of mathematics education, the first cluster focuses on inter-
disciplinary approaches, namely, the integration of mathematics with other fields. 
STEM (science, technology, engineering, and mathematics education) and more 
recently STEAM (where “A” stands for “the arts”) can be seen as interdisciplin-
ary. The second cluster can be exemplified in mathematics education research by 
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Davis and Simmt’s (2003) work on integrating complexity science into mathemat-
ics teaching practices through reconceptualizing teaching as a complex domain.

Mathematics education research that focuses on issues of sustainability, equity, 
or social justice belongs within the third cluster of transdisciplinarity. For example, 
Paige, Lloyd, and Chartres (2008) discuss mathematics and science education for 
preservice teachers through the sustainability lens. They assert that this teaching 
approach creates a more well-rounded curriculum and develops students’ thinking 
toward sociopolitical action. Equity, particularly culturally relevant curriculum, is 
another theme within the third cluster. Na’ilah Suad Nasir focuses on mathematics 
teaching and learning in the context of African American and other traditionally 
underrepresented students. In one of her works, Nasir discusses the intersection 
between goals, identity, and learning to examine the ways in which race, culture, 
and learning influence minority students’ experiences (Nasir, 2002).

The fourth cluster emphasizes indigenous and transformational knowledge. 
Ethnomathematics, critical mathematics education, and social justice (d’Ambrosio, 
1985; Skovsmose, 1994) are consistent with these themes. Finally, the focus on 
challenging mathematical representations, genderism, and queer perspectives is 
consistent with the fifth cluster of transdisciplinarity. For example, Esmonde (2011) 
questions genderism in mathematics education research and practice by moving 
away from the gender binary (i.e., “males” and “females” or “boys” and “girls”). 
She reviews literature on differences in achievement based on gender, particularly 
how these categories have been essentialized. Esmonde then suggests that extending 
beyond binary categories and providing a complex view of individuals’ identities 
are a more equitable approach to mathematics education research.

Klein’s five clusters provide a useful way of capturing different themes and 
approaches to transdisciplinarity. In order to provide a comprehensive look at 
transdisciplinarity, we found it useful to use Klein’s clusters as an organizing strategy 
for the chapters of this book, as elaborated on in the next section.

�Structure of the Book

In this book, we bring together 13 chapters that reflect themes in transdisciplinarity 
in mathematics education. The book is organized into five parts mirroring Klein’s 
five clusters.

Part I, “Interdisciplinary Approaches in Mathematics Education,” focuses on the 
integration of mathematics with other fields. In particular, we present chapters that 
highlight how mathematics concepts can be studied within different disciplinary 
contexts. In “Euclidean Exploration of Geometry in Islamic Art,” Zekeriya Karadag 
uses the Islamic star as an exemplar of how cultural and religious symbols can be 
explored in the mathematics classroom. Karadag also outlines a hypothetical 
instructional sequence of constructing the Islamic star with an aid of a dynamic 
geometry software (GeoGebra) in order to foster students’ geometric thinking. Song 
An, Daniel Tillman, and Lawrence Lesser describe how music supports mathematics 
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learning by surveying current literature and presenting various interdisciplinary 
activities highlighting mathematics and music in their chapter, “The Hidden 
Musicality of Math Class: A Transdisciplinary Approach to Mathematics Education.” 
Similar to music, children’s literature (e.g., picture books) serves as an accessible 
and relatable medium for the learning of mathematics. In “Using Children’s 
Literature to Enhance Math Instruction in K-8 Classrooms,” Melissa Luedtke and 
Karen Sorvaag speak to this by investigating how the use of children’s literature in 
mathematics instruction can help break down barriers to mathematics understand-
ing and increase student success. In summary, chapters in the first part underscore 
the value and importance of an interdisciplinary approach to mathematics education 
by exploring the connection between mathematics and other disciplines.

Part II, “Complexity, Difference and/in Mathematics Education,” starts with a 
premise that the goal of mathematics education is not to achieve a unified view of the 
curriculum but to acknowledge and honor the complexity, diversity, difference, and 
divergence of pedagogical approaches and mathematical representations. In 
“Complexity as a Discourse on School Mathematics Reform,” Brent Davis concen-
trates on educational research as a complex, transdisciplinary field. Through the lan-
guage of complexity theory, Davis describes the nature of mathematics teaching and 
learning and mathematics education research. Davis then describes how complexity is 
different from dominant paradigms in mathematics education research particularly 
evidence-based practice. Continuing to push participatory boundaries, Susan Jagger 
weaves together the multiple yet inextricably linked texts of philosophy and practice 
in garden-based learning, entwining poststructuralism and deconstruction with 
moments of early years and elementary mathematics learning in a school’s learning 
garden. In “Opening a Space of/for Curriculum: The Learning Garden as Context and 
Content for Difference in Mathematics Education,” Jagger traces the children’s 
organic and situated explorations of number and number operations, measurement, 
geometry, and probability and statistics in the garden, opening up a curricular space 
and a place for digging into mathematics concepts and processes.

In Part III, “Mathematics for the Common Good,” we present chapters posi-
tioned within the third cluster of meaning of transdisciplinarity. In the first chapter 
of this part, “Transdisciplinarity, Critical Mathematics Education, Eco-Justice, and 
the Politics to Come,” Nenad Radakovic, Travis Weiland, and Jesse Bazzul discuss 
how mathematics education can be situated in the context of the environmental 
discourse and how this relationship can be used to raise issues such as climate 
change. In “Using a Mathematics Cultural Resonance Approach for Building 
Capacity in the Mathematical Sciences for African American Communities,” 
Terrence Richard Blackman and John Belcher describe how to build the mathemat-
ics capacity of Black communities by creating opportunities for mathematics 
research, teaching, and learning that draws upon African American cultural 
resources. Finally, in “Still Warring After All These Years: Obstacles to a 
Transdisciplinary Resolution of the Math Wars,” Ilona Vashchyshyn and Egan 
Chernoff propose transdisciplinary thinking as a way of moving beyond the 
dichotomies of the “math wars” and explore obstacles to a meaningful, transdisci-
plinary, collaborative, and inclusive dialogue on the future of mathematics education 
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in North America. Each of the authors in Part III views transdisciplinarity through 
the lens of community engagement, democracy, and active citizenship.

Part IV, “Indigenous and Transformational Mathematical Knowledge,” uses the 
lens of the fourth cluster to raise equity and social issues in mathematics education. 
In their chapter, “Echoed Rememberings: Mathematics and Science Education as 
Reconciliation,” Dawn Wiseman and Lisa Lunney Borden examine how to create 
opportunities in schools and teacher education to center indigenous knowledges as a 
place from which learning emerges. Wiseman and Lunney Borden draw from proj-
ects using inquiry-based learning with aboriginal communities and a learning garden 
at a Canadian university to illustrate how valuing indigenous knowledges plays an 
important role in reconciliation. Gender issues within mathematics education have 
been a source of discussion for many years. There has been much research regarding 
issues of achievement, participation, identity, and attitudes. In “Gendered? Gender-
Neutral? Views of Gender and Mathematics Held by the Canadian General Public,” 
Jennifer Hall discusses findings from the Canadian site of a large-scale, international 
study of the general public’s views of gender and mathematics. The project surveyed 
adults on the street and in public places (e.g., grocery stores, community centers) 
about their views of gender and mathematics. Hall asserts that by understanding 
these views, we can better appreciate the broader cultural milieu in which mathematics 
teaching and learning take place.

In Part V, “Re-formulating, Re-presenting, and Re-defining Mathematical 
Knowledge and the Curricula,” authors explore the ways of erasing disciplinary 
boundaries by redefining what it means to know and do mathematics. The chapters 
outline two main strategies for achieving this reformulation, namely, embodiment 
and collaboration. Part V starts with Julie Nurnberger-Haag’s “Borrow, Trade, 
Regroup, or Unpack? Revealing How Instructional Metaphors Portray Base-Ten 
Number.” Here, Nurnberger-Haag revisits representations of base-ten arithmetic by 
introducing embodied metaphors for addition and subtraction and envisions the 
base-ten problem space as a series of moving pictures rather than the static photo-
graphic frames. Continuing on the theme of embodiment, in “Mathematics and 
Movement,” Susan Gerofsky shows how participation in mathematics can be wid-
ened by translating the language of algebra to movement and other embodied expe-
riences. Gerofsky also outlines a process of transdisciplinary collaboration between 
a mathematics educator and a dancer toward students’ conceptual understanding of 
mathematics. The theme of transdisciplinary collaboration continues in the final 
chapter of the book, “Examining the Development of a Transdisciplinary 
Collaboration,” in which Limin Jao, Melissa Proietti, and Marta Kobiela describe a 
successful teaching collaboration between a graffiti artist and a mathematics teacher 
in a grade eight mathematics class in an urban setting in Canada.

The authors presented in this book each share their unique perspectives on trans-
disciplinarity in mathematics education. By questioning, blurring, and erasing dis-
ciplinary boundaries, the book contributes to the inclusion of transdisciplinarity in 
mathematics education as well as the already rich discussion on transdisciplinarity 
in general. Although we have tried to offer diverse transdisciplinary perspectives 
and approaches, we acknowledge these chapters map out only contours of the field 
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of possibilities of interaction between transdisciplinarity and mathematics education. 
We hope that these possibilities will motivate the mathematics education community 
to include transdisciplinarity in their own research and practice.
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Chapter 1
Euclidean Exploration of Geometry  
in Islamic Art

Zekeriya Karadag

Abstract  This chapter presents Euclidean approach as a learning trajectory to cre-
ate a common artefact used in Islamic art. The Realistic Mathematics Education sets 
the theoretical framework for the learning trajectory in two stages, namely, horizon-
tal and vertical mathematization. The chapter provides a brief literature review to 
explain this framework and exemplify how one could apply the framework in a 
specific context, Islamic art. Although technology used in creating the artefact pro-
vides a number of tools to help learners, the chapter suggests following Euclidean 
approach rather than taking the activity as technology practice activity. The 
Euclidean approach fosters learners’ geometrical thinking by limiting their tools to 
an unmarked ruler and a compass. Then, the technology is employed for further 
explorations as stated in the vertical mathematization stage.

Keywords  Islamic art • Geometry in Islamic art • Euclidean approach in geometry 
• Geometric thinking • Islamic star

�Introduction

This chapter explores the geometry of Islamic artefacts as a tool of teaching geom-
etry that is situated in Islamic culture but whose relevance transcends cultural 
boundaries. Islamic art includes a number of figures that may help learners develop 
an interest in geometry. We suggest exploring geometry stemming from Islamic art 
through a process of reinvention and exploration rather than attempting to learn 
geometry axiomatically—that is, “as a pre-established deductive system” 
(Freudenthal, 1973, p. 132). Such an approach does not undervalue axiomatization, 
but rather views axiomatization as a higher level of mathematization, which may be 
considered part of vertical mathematization (Treffers, 1993).
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Traditional Islamic buildings, including masjids,1 provide opportunities for 
teachers and students to explore geometry in the ornaments decorating the interiors 
and exteriors of these buildings, particularly doors and walls. The ornaments are 
made up of a number of geometric objects, such as stars and polygons, and can also 
be found in other objects, such as carpets, rugs, and clothes. Scholars interested in 
the relationships between mathematics, including geometry, and art within the con-
text of Islamic tradition have accumulated quite a number of publications investigat-
ing how these two disciplines have been interwoven (Kharazmi, 2016; Lu and 
Demaine, 2016; Noori and Kiyanmehr, 2016).

The purpose of this chapter is to offer a link between the geometry situated in the 
ornaments decorating Islamic artefacts and learning geometry via the Euclidean 
approach. The chapter starts with the outline of the Realistic Mathematics Education 
(RME) framework (Freudenthal, 1973) created to motivate students learning math-
ematics. This is followed by providing the real-life context of the artefacts created 
in the Islamic world. The rest of the chapter presents a hypothetical learning activity 
of picking up a very specific geometric object, an Islamic star, which is commonly 
used in Islamic artefacts, to explain two dimensions—horizontal and vertical math-
ematization—of RME. For the horizontal mathematization process, we suggest cre-
ating the Islamic star in a digital environment, GeoGebra, using the Euclidean 
approach. In terms of vertical mathematization, we discuss how this context could 
be used to engage students in doing relatively advanced geometry.

�Realistic Mathematics Education (RME)

RME is a framework suggested by Freudenthal (1973) to design a learning activity 
or a set of activities to encourage learners to explore as well as possibly discover and 
reinvent mathematics situated in real life. Prior to discussing the RME framework, 
it is important to define some keywords, such as real world, mathematical world, 
horizontal mathematization, and vertical mathematization. Alongside with Kaput’s 
(1992) perspective in his influential paper, we use real life to denote the physical 
world where we could pick up a problem scenario and convert it to the mathematical 
world, which is a mathematically idealized world. For example, we may consider a 
door in the real world to exemplify rectangles although, in actuality, doors may not 
really be rectangular as we cannot ensure that the angles in the corners are truly 90° 
or the opposite sides are equal to each other. On the other hand, we could safely state 
that a rectangle in a mathematical world has 90-degree angles in the corners and its 
opposites are equal to each other because this hypothetical world is mathematically 
idealized and axiomatically constructed. The action of converting a case, a problem, 
or a scenario from the real world to the mathematical world refers to horizontal 
mathematization, while working on the scenario to delve into advanced mathemati-
cal topics in the mathematical world is known as vertical mathematization.

1 Masjid is a place to worship in Islamic tradition.
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The activities in RME could be problem-solving activities, such as looking for 
problems or posing problems, solving problems, and ultimately mathematizing any 
context that can be encountered in real life (Gravemeijer et al., 2000). Unlike teach-
ing mathematics through relations, the framework suggests starting with a real-life 
problem and translating it into the mathematical world. By converting real-life 
problems into the mathematical world, mathematization may help students under-
stand the problem and attempt to develop concepts, in contrast to the rote memori-
zation of mathematical facts.

Gravemeijer et al. (2000) conceptualized the characteristics of this mathematiza-
tion process as a set of the following cognitive activities:

•	 Generality: generalizing (looking for analogies, classifying, structuring)
•	 Certainty: reflecting, justifying, and proving (using a systematic approach, elab-

orating, testing conjectures, etc.)
•	 Exactness: modeling, symbolizing, and defining (limiting interpretations and 

validity)
•	 Brevity: symbolizing and schematizing (developing standard procedures and 

notations) (Gravemeijer et al., 2000, p. 236)

Consistent with this RME framework, learners should learn to create representa-
tions to understand and structure a problem or a case, generalize and conjecture the 
case in order to gain a better understanding of the mathematics behind it, and test 
and prove the conjectures to appropriate the case in the world of formal mathemat-
ics through formalization.

What really matters in this theory, in terms of the pedagogy of mathematics, is 
how to start mathematics instruction. Mathematics instruction should start with a 
problem leading to mathematics to be learned as opposed to starting with a defini-
tion, properties, examples, and problem sequence. In other words, rather than start-
ing with formal mathematics and axioms, teachers should “let people get familiar 
with some mathematical objects, and learn what to expect from them, before you 
start formalizing everything” (Lockhart, 2002, p. 20).

Today many would agree that the student should also learn mathematizing unmathematical 
(or insufficiently mathematical) matters, that is, to learn to organize it into a structure that 
is accessible to mathematical refinements. Grasping spatial gestalts as figures is mathema-
tizing space. Arranging the properties of a parallelogram such that a particular one pops up 
to base the others on it in order to arrive at a definition of parallelogram, that is mathematiz-
ing the conceptual field of the parallelogram. Arranging the geometrical theorems to get all 
of them from a few, that is mathematizing (or axiomatizing) geometry. Organizing this 
system by linguistic means is again mathematizing of a subject, now called formalizing. 
(Freudenthal, 1973, p. 133)

This quote makes two important points: the focus of the activity and the order of 
the organization of activities. The framework states that the activity should address 
horizontal mathematization—that is, mathematization of the unmathematical con-
text. For example, one should let elementary school students draw polygons, explore 
similarities and differences of the polygons, and classify them based on particular 
features (e.g., grouping quadrilaterals together). They could then be encouraged to 

1  Euclidean Exploration of Geometry in Islamic Art



6

explore quadrilaterals to identify further differences among quadrilaterals. Students 
should not be encouraged to memorize mathematical facts or the formal language of 
mathematics at this stage. Rather, they should be engaged in activities to understand 
the context or the problem and to possibly identify the differences between objects 
or cases within the problem, with the intention of uncovering their mathematical 
properties. There is no need to make mathematics complicated by starting to teach 
mathematics by imposing the formal language of mathematics. “Mathematics is not 
about erecting barriers between ourselves and our intuition, and making simple 
things complicated. Mathematics is about removing obstacles to our intuition, and 
keeping simple things simple” (Lockhart, 2002, p. 21). Once students develop an 
informal understanding of the object, it is easier and more meaningful to define it 
and set the properties in a formal language through vertical mathematization.

Regarding the order of organization of activities, the RME frameworks suggest 
starting from mathematization and moving to either axiomatization or formalization 
depending on the nature of the context. At the horizontal mathematization stage, for 
example, no formal language use or axiomatic organization is needed. The informal 
classification of the objects and the use of informal language are both acceptable for 
the sake of conceptual knowledge development. Referring back to the aforemen-
tioned hypothetical example, calling a rectangle a “four-sided figure with right cor-
ners” may be totally fine if pupils are able to discern them in a group of objects, such 
as rectangles, parallelograms, and other quadruples.

This could be a great starting point, and it is rather easy to build mathematical 
language later. Thus, the goal for teachers should be to organize mathematical activ-
ity in a manner that enables learners to mathematize the content and develop mean-
ing, which may not be necessarily supported by formal mathematics language and 
even with formal definitions and proofs. Lockhart (2002) suggests following the 
footprints of mathematicians while they learn mathematics by stating that “[n]o 
mathematician works this way. No mathematician has ever worked this way. This is 
a complete and utter misunderstanding of the mathematical enterprise” (p.  21). 
Consistent with the RME framework, Lockhart (2002) suggested starting a mathe-
matical topic by stating a problem and then moving mathematics underlying that 
problem rather than providing definitions, theorems, and proofs, as done in many 
mathematics courses.

None of the followers of RME have tried to diminish the importance of axiomat-
ization or formalization. Rather, they have suggested changing the place to intro-
duce them such that students follow the path of how mathematicians actually work 
and learn and that they convert mathematics learning to a business of reinventing 
mathematics, as has already been done thus far. Let us take Freudenthal’s and his 
successors’ view of mathematics as the closing statement of the framework before 
moving branches of mathematization: “New in Freudenthal’s views was not only 
that he wanted to incorporate everyday reality emphatically in mathematics educa-
tion, but especially also his fundamental idea to let that rich context of reality serve 
as a source for learning mathematics” (Treffers, 1993, p. 89).

Z. Karadag
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Treffers (1987) distinguished two mathematization processes, horizontal and 
vertical mathematization, in the context of the Wiskobas project.2 First, pupils were 
encouraged to explore problems collaboratively and to communicate on how to 
solve them. Following the exploration process, students were engaged in reflecting 
on the problems and formulating them to find solutions. The exploration process 
that engaged students in construction or the action is described as the horizontal 
mathematization, while the reflection process on their construction is accepted as 
the vertical mathematization.

In the case of horizontal mathematization, the classroom community develops informal, 
taken-as-shared ways of speaking, symbolizing, and reasoning as the students attempt to 
mathematize starting-point problems. By way of contrast, when these ways of describing 
become the subject of further mathematization, Treffer spoke of vertical mathematization. 
It is during the interplay of these two processes that symbolizations and symbol use are 
reinvented. In other words, symbol reinvention emerges as students engage in instructional 
activities in which they formalize their informal interpretations and solutions. The chal-
lenge for the designer (and the teacher) is to anticipate a developmental route for the class-
room community that culminates with the powerful use of conventional symbolizations. 
(Gravemeijer et al., p. 238)

I interpret these mathematization processes somewhat differently than Treffers 
suggested, although the main approach remains the same. The reason for this differ-
ence might be the difference in audience. They apply the framework among lower-
grade students, whereas I mostly consider high school and undergraduate students. 
I take horizontal mathematization as an exploration process to transfer real-life 
problems into the mathematical world, including the solution processes. These solu-
tion processes may include solving a certain type of problem or re-creating an orna-
ment through the Euclidean approach in the digital environment. The vertical 
mathematization, based on my interpretation, should lead learners to deepen their 
knowledge on the related topic. Learners could elaborate on the solutions to seek 
new approaches, pose problems to understand the effects of the variables or con-
stants of the problem, or even alter the problem for new explorations.

Islamic art offers a context for the exploration of geometry through ornaments. 
The exploration of geometry situated in Islamic art could be taken as the starting 
point of horizontal mathematization because these ornaments may encourage stu-
dents to describe the objects, identify the properties of objects, and define the objects 
if one is different than the other in some aspect. When students are ready to start 
abstraction, we may lead them to axiomatization and formalization. This second 
phase of mathematization is called vertical mathematization. However, it is good to 
remind the readers that the interpretation of horizontal and vertical mathematization 
could be slightly different; even Freudenthal and Treffers interpreted them differ-
ently (Treffers, 1993). In the following context, the horizontal mathematization is 
taken as a process to create ornaments through the Euclidean approach on a digital 
platform, GeoGebra, whereas vertical mathematization is considered a generalization 

2 More information about the Wiskobas project may be found in their article.
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process, which demands more mathematical thinking features, such as abstraction 
and formalization.

�Islamic Tradition in Art

Islamic art is used to denote artefacts created and influenced by the Islamic tradi-
tion. Although these artefacts are generally created in Islamic lands and by Muslim 
people, it is becoming quite difficult to make such a distinction in today’s global 
village. As demonstrated in the following sections, it is possible to see the Islamic 
art in non-Muslim countries as well as non-Islamic art in Islamic countries. The 
common aspect of these artefacts is the spirituality they deliver. Each tradition 
evolves with its own spirituality, and the artefacts under the influence of this specific 
tradition may reflect its own religious and ethnic perspective.

Islamic art is usually described as a phenomenon free of time, race, language, 
and geography, but it is an integration of all of these factors (Burckhardt, 2009). As 
Burckhardt (2009) explained, it might be quite challenging for an ordinary person—
even for a moderate person who has a certain amount of knowledge in art—to dis-
criminate art created in Maghreb (e.g., Morocco) from art created in India or art 
created in the twelfth century from art created in the eighteenth century. This is 
because the tradition and belief are integrated while creating art. The reasons for 
this may include the integrative power of Islam and the way people interpret Islamic 
rules and the Holy Book, the Qur’an. Indeed, Islam and Qur’an united people in 
such a way that people from different cultures create similar figures in their arte-
facts. In order to better understand the spirituality that Islamic art has and conveys, 
one should review the inspiration and intentions of those who made it. By looking 
at Islamic art from a broader perspective, Azzam (2013) suggested considering the 
objects in Islamic art as a language of symbolism and an interpretation of religion 
through contemplation:

On the level of metaphysics, traditional art aspires to the highest principles. It acts as a 
bridge or vehicle to transmit the realm of heaven into our physical world. This metaphysical 
inspiration cannot be fully explained in rational terms but has to be read and understood 
through the language of symbolism. Traditional art is a reminder of a higher state of being: 
it is an essential support for contemplation, and all traditional art forms should be perceived 
as symbols on earth of the archetypes that are in heaven. (Azzam, 2013, p. 8)

Consistent with the previous quote, the artists who worked on Islamic art reflected 
on their contemplation in their artefacts in an effort to represent heaven on earth. 
This approach is not surprising in Islamic tradition, because the Islamic scholars, 
including the Sufi followers, believe that every word stated in the Qur’an or by the 
Prophet Muhammed has two meanings: one that is revealed while the other is 
hidden.

The physical reality and the metaphysical principle underlying the reality are reflected in 
Islamic spirituality by the Divine names ‘Al-Batin’ and ‘Al-Zahir’ (the Hidden and the 
Revealed). These two Divine characteristics/ principles maintain the equilibrium of the 
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hidden and revealed character of Islamic art, which by extension has an impact on our 
physical and spiritual levels of being. The language of Islamic art is a contemplative one, 
and by nature contemplation is a spiritual activity. (Azzam, 2013, p. 9)

Thus, Islamic art is an integration of the physical reality and the metaphysical prin-
ciples through the artist’s own contemplation, such that it becomes a co-existence of 
both perspectives and even a co-development of them. In other words, the co-existence 
and integration with the support of contemplation lead to a co-development; thus, arte-
facts become timeless and free of physical factors such as race, language, and geogra-
phy. Critchlow’s (1976) arguments about the doctrine of unity may help us understand 
why the integration and coexistence in Islamic art are so important.

Islamic spirituality could not but develop a sacred art in conformity with its own revealed 
form as well as with its essence. The doctrine of unity which is central to the Islamic revela-
tion combined with nomadic spirituality which Islam made its own brought into being 
aniconic art wherein spiritual world was reflected in the sensible world not through various 
iconic forms but through geometry and rhythm, through arabesques and calligraphy which 
reflect directly the worlds above and ultimately the supernal sun of Divine Unity. (Critchlow, 
1976, p. 6)

Islamic art is an aniconic art because Islamic tradition states that nothing in the 
physical world could really be a true representation of “the worlds above,” such as 
heaven, as stated in the preceding quote. However, people always tend to interpret 
Allah’s word and implement their interpretations in their work. For example, an 
eight-cornered, eight-pointed star—a common figure used in Islamic art that sets 
the context for this chapter—might have emerged from the 17th verse of the Sure 
Calamity in the Qur’an: “And the angles will be on its sides, and eight will, that Day, 
bear the Throne of thy Lord above them.” (Translated by Yusuf Ali, n.d.). These 
words may have led people to assume that the heaven is a place with eight doors or 
eight walls, while the earth is a square—or rectangular—place by comparing 
Ka’ba’s four side walls. This assumption is aligned with Critchlow’s (1976) com-
ments, which indicate that Islamic art is usually employed to ennoble the word of 
God as revealed in the sacred book, the Holy Qur’an, in calligraphic forms sup-
ported by geometric and floral ornaments.

Some constructions start with four sides at the bottom and continue or end with 
eight walls on the next floor, illustrating a journey from earth to heaven, which 
could be interpreted as life (Fig. 1.7). Such an interpretation could lead us to con-
sider Islamic art as a synthesis and co-development of art and Sufism3 rather than a 
divine art created by God or allowed by Him for people to create. However, 
Burckhardt (2009) asserted that “no specific style could be described as being more 
or less ‘Islamic’ than any other; this is an example of the phenomenon of diversity 
in unity, or unity in diversity” (p. 125). This is particularly true because Islamic 
tradition rejects any type of iconism; no specific styles and no specific figures should 
be considered Islamic, although some may find connections in the divine inscriptions. 
Regardless of the reasons why people are encouraged to create this specific type of 

3 Encyclopedia Britannica defines Sufism as a belief and practice in which Muslims seek to find the 
truth of divine love and knowledge (https://global.britannica.com)

1  Euclidean Exploration of Geometry in Islamic Art
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art, we mathematics educators may still benefit from the existence of these artefacts 
for the sake of helping students engage in learning and doing mathematics.

One might conclude that Islamic art has its roots in the Divine inscriptions, and 
its development is influenced by interpretations of people from different cultures. 
The inclusion of various cultures, as well as other factors such as race, language, 
and geography, does not change the main elements of the art; rather, it helps create 
a unity in time. Geometry finds a place for itself to connect all these factors, create 
a balance among them, and avoid using iconic forms.

The spiritual life has to begin with submission, and the Islamic tradition teaches that with-
out submission there can be no true understanding; without discipline there can be no flow-
ering of the spirit which leads to true and essential knowledge. This is most evident in the 
relationship between the fundamental aspects of Islamic art which are geometry, islimi and 
calligraphy. Geometry is an objective manifestation of the principles of creation and forms 
the underlying framework for the visual expression of the path that leads from unity to 
multiplicity. (Azzam, 2013, p. 9)

�Islamic Star

A number of geometric objects, such as stars and polygons and even composite 
objects, are presented in Islamic art. In this sense, Islamic art provides a huge num-
ber of contexts that geometry teachers can engage their students to explore and work 
on them. The Euclidean construction of composite objects, such as those presented 
in Figs. 1.3, 1.5, and 1.6, could be very challenging, even for advanced high school 
students. In this chapter, the Islamic star will be used as a geometric object to 
illustrate the hypothetical learning activity because it is a common object used in 
Islamic art. The following pictures illustrate the context where places and artefacts 
include the Islamic star and Islamic art in general. The Islamic star is a regular 
eight-cornered star (Fig.  1.1). One could easily describe the star as the shape 
obtained by creating two overlapping squares; one square coupled with a second 
square rotated by 45° around its center of mass. The pictures originated in different 
places where the Islamic star is used and known.

The picture on the left of Fig. 1.1 is a plate I purchased in Spain, created by an 
artisan working in the area around Alhambra Palace. It shows not one Islamic star, 
but two Islamic stars together. Moreover, the octagon surrounding the Islamic star 
and another version of an eight-cornered star, but not an Islamic star, may inspire 
teachers and even students to create some other relational geometry problems. 
The picture on the right is a set of kumis4 designed in the form of an Islamic star by 
students at the Kazakhstan Abai University.

The Taj Mahal, an ivory-white marble mausoleum, constructed in Agra, India, 
in the seventeenth century (Fig. 1.2), was constructed for Mumtaz Mahal, the wife 
of Shah Jahan, the Mughal emperor of India. The picture in the upper left is a 

4 The set is designed as a gift for Professor Turan Yazgan, the head of the Organization of Research 
in Turkic World, and presented by A. Sadikov, the rector of Kazakhstan Abai University.
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picture of the Taj Mahal and its fabulous gardens. The picture in the upper right 
illustrates the inner view of the entrance and the gardens. What is important in this 
picture is the design of the Islamic star together with an altered version of the star 
on the grass ground of both sides of the pool. The picture in the bottom left was 
taken inside the main building to demonstrate a combination of star and cross. The 
picture on the bottom right is the picture of side building, whose towers are con-
structed with eight walls.

Fig. 1.1  Plate from Spain and set of kumis from Kazakhstan

Fig. 1.2  Taj Mahal, Agra, India

1  Euclidean Exploration of Geometry in Islamic Art
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I’timad-ud-Daulah is a tomb constructed for Mirza Ghiyas Beg (Mumtaz Mahal’s 
grandfather) and his wife, Asmat Begum. What is important for this tomb is its 
ornamentation (Fig. 1.3). A number of geometric designs have been depicted along 
the exterior. Not only Islamic star designs, but also a number of other designs bring-
ing various geometric figures together provide a wide range of geometry problems 
for those interested in them. Geometry teachers may encourage their students to 
look for contexts for geometry problems situated in their own environments, thereby 
engaging them in thinking about geometry during their daily lives, as opposed to 
considering geometry as a subject limited to the classroom only.

Figure 1.4 illustrates designs from two different locations in the Greater Toronto 
Area in Ontario, Canada. The pictures in the top part were taken in a masjid, the 
Sayeda Khadija Center, in Mississauga. The Islamic star on the left and octagon on 
the right, among other designs, are related to the context of this chapter.

The bottom pictures were taken at Aga Khan Center in Toronto. The one on the 
left is a miniature of a monument, decorated with geometric compositions; the one 
on the right is an Islamic star tile depicting two people facing each other.

Tiles are the most common elements used to decorate interior—and sometimes 
exterior—walls of the masjids in Turkey (Fig. 1.5). Given the number of masjids in 
Turkey, it is not surprising that the Turkish tile industry is one of the biggest one in 
the world. The tile in the upper right is a very common design that can be found in 
many masjids, whereas the one on the bottom left is rare—not because of its design, 
but because of its shape—as it decorates a cylindrical surface, which requires a 
specific skill to construct. Similarly, the one in the bottom right has a sphere whose 
surface is decorated with geometric figures. The picture in the upper right, repre-
senting many Islamic stars, is from Topkapi Palace, Istanbul, whereas the other 
pictures are from Hopa, Artvin (upper left), Kutahya (bottom right), and Bulancak, 
Giresun (bottom right).

Fig. 1.3  I’timad-ud-Daulah, Agra, India

Z. Karadag
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Sultan Salahuddin Abdul Aziz Mosque, a large mosque located in the city of 
Shah Alam in Malaysia, has various types of ornament designs decorating its inner 
walls and other places, such as its minbar and mihrab5 (Fig. 1.6). It is known as the 
Blue Mosque because of the colors of its dome, and it has the tallest minarets in the 
world (upper left). The two bottom-left pictures show the minbar of the mosque. 

5 The minbar and mihrab are where an Imam gives speeches and leads the worshipping ceremony, 
respectively.

Fig. 1.4  Masjid and Aga Khan Center, Toronto, Ontario, Canada

Fig. 1.5  Masjids and Topkapi Palace, Turkey

1  Euclidean Exploration of Geometry in Islamic Art
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The geometric objects surrounding the Islamic stars in these pictures have a unique 
look, and each of them could be used as a context for a geometry problem as it may 
be challenging to create a Euclidian construction of them. The other two pictures, in 
the upper middle and the left, are the pictures of minaret of the Sultan Abu Bakar 
Masjid located in Johor Bahru, Malaysia. What is interesting for this minaret is its 
design. The minaret has a square base at the bottom and an eight-sided prism at the 
top; it might be constructed to represent a journey (i.e., life) from earth—Ka’ba has 
four walls—to heaven—the place with eight walls, as previously mentioned.

Figure 1.7 presents a group of pictures from Putrajaya, Malaysia. The picture 
taken from a distance (upper left) is of the Masjid Putrajaya, which is located next 
to the artificial Putrajaya Lake. The other pictures are of the mihrab of the masjid 
(upper right) and ground design of the external part of the masjid. Each includes a 
representation of an Islamic star surrounded by other geometric objects.

In the following sections, I present two main approaches in learning and using 
geometry followed by the illustrations of horizontal and vertical mathematization in 
the context of Islamic star construction.

�Geometric Explorations of Islamic Art

Islamic art incorporates a number of ornaments and patterns and provides many 
examples for explorations in mathematics and geometry. This chapter looks at the 
artefacts of Islamic art from the perspective of Euclidean geometry. The goal is to 
re-create the Islamic star in the digital environment of GeoGebra by following the 
Euclidean approach. The Euclidean approach discerns between constructing and 

Fig. 1.6  Masjids, Shah Alam, and Johor Bahru, Malaysia
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drawing geometric objects. Constructing is the process of using geometric princi-
ples to create objects using only an unmarked ruler and a compass, whereas drawing 
objects involves measuring lengths, angles, and other properties of the geometric 
object in order to (re-)create it. In order to clarify the differences between these two 
approaches, I will describe the construction and drawing of the equilateral 
triangle.

A common approach in drawing an equilateral triangle involves using a ruler to 
draw the base of the triangle with a specified length of a and the end points A and 
B. One who already knows that each angle of an equilateral triangle should equal 
60° could use a protractor to measure and set the angles from each end, in the clock-
wise and the counter-clockwise directions, respectively. We can find the third point 
of the triangle, C, by finding the intersection point of the two rays produced by the 
construction of two angles, or we can measure the length of A and mark it on each 
ray.

The Euclidean approach, however, constrains students to using a compass and an 
unmarked ruler. We can draw a line segment with length a and end points A and 
B. We can then draw a circle whose center is A, passing through point B. After 
repeating the same procedure for a circle with center B, passing through A, we can 
mark one of the intersection points as the third point, C, of the equilateral triangle.

Constructing the geometric figure, we argue, has at least two advantages to the 
drawing method. The first one is that the creation of the equilateral triangle through 
constructions involves the principles of Euclidean geometry, whereas the drawing is 
based on drawing and measurement, meaning geometric thinking needs not to be 
evoked. The second advantage is that the follow-up activity (the next step) to the 
construction of the equilateral triangle can involve more complex construction 
methods that involve explorations of more general principles—that is, it involves 

Fig. 1.7  Masjid Putrajaya, Putrajaya, Malaysia
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vertical mathematization. Drawing other figures, on the other hand, does not neces-
sarily encourage learners to expand on their mathematical knowledge.

Constructing geometric figures is consistent with Lockhart’s (2002) claim that 
teachers should start geometry lessons with explorations and encourage their stu-
dents to improve their geometrical knowledge—mathematics in general—in each 
activity as well as to learn geometry through exploration rather than starting with 
theorems and axioms. Theorems and axioms should emerge from the justification of 
students’ constructions by asking questions such as: Does the method always work? 
What is the nature of the relationship between equilateral triangles and circles that 
makes the construction possible? How can we use the principle between the con-
struction to create other figures such as the square and the regular pentagon?

All these questions may engage students in vertical mathematization. What should 
the starting point be? Prior to working in an idealized mathematical world, what 
materials and scenarios could we use to engage learners in geometry? If we try to find 
an equilateral triangle in the real world, we might be disappointed because no actual 
triangle is perfectly equilateral, although it is quite possible to find a figure close to 
the equilateral triangle. Islamic art provides many examples of the real-life approxi-
mations of geometric shapes that may trigger students’ interest in geometry. The rest 
of the chapter presents a hypothetical learning activity involving the construction of 
the Islamic star, as presented in the preceding figures, using the Euclidean approach 
that could be considered an example of horizontal mathematization. Following this 
activity, another activity illustrating vertical mathematization is presented.

�Creating Islamic Star: Horizontal Mathematization

The RME theoretical framework conceptualizes the pedagogical perspectives of the 
chapter and serves as the guide to a hypothetical learning trajectory described 
herein. It has already been pointed out that the RME starts with horizontal mathe-
matization by analyzing a real-world example and converting it into the mathemati-
cal world. The real-life example for this chapter is the Islamic star, which can be 
seen practically worldwide and therefore serves as a common example for many 
people, including non-Muslims, because it is also used in some other traditions. One 
could also apply the procedures discussed here in another context by keeping in 
mind that learning geometry is the ultimate goal. In order to draw the figures, we 
can use dynamic geometry software, such as GeoGebra.

The first approach, as previously mentioned, is based on a measure-and-apply 
procedure and could easily be applied to drawing two squares, with one being 
rotated 45° around the centroid of the other and setting them as to coincide their 
centroids. Students who want to follow this procedure could draw a square using 
the ruler and protractor. They could first draw the line segment AB using the ruler 
and then add perpendicular lines on each end using the protractor. They could 
find the other two points of the square simply by measuring the length a from 
each end point, A and B.
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The big idea behind this approach is setting the second square such that the cen-
troids of both squares coincide. One possible procedure for setting the second 
square in its place would be to start finding the centroid of the square by intersecting 
the diagonals (Fig. 1.8).

It might not be a challenge to realize that the perpendicular lines to the sides of 
the square and passing through the centroid would also pass through the corners of 
the second square. After drawing the perpendicular lines, students could draw a 
circle, whose center is the centroid of the square and passing through the corners of 
the square (Fig. 1.9).

Fig. 1.8  Finding the 
centroid of the square

Fig. 1.9  Locating the 
corners of the second 
square
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The intersecting points of the perpendicular lines and the circle define the cor-
ners of the second square (Fig. 1.10).

The final step of this procedure is to remove all the unnecessary elements and 
leave the Islamic star alone (Fig. 1.11).

The second approach is the Euclidean approach, which requires more geometri-
cal thinking and knowledge in order to construct the figure. The challenge for this 
approach is to constrain students to using an unmarked ruler and compass only—
that is, they are able to draw only line segments and circles whose center and one 
point are known.

Figure 1.12 illustrates one possible starting point of drawing a line passing 
through two distinct points (upper left). Given that these two points are going to be 
the two points of the final construction, we need to construct a perpendicular line 
passing through either point A or point B. In order to construct the perpendicular 
line passing through point B, we should draw a circle centered at point B and passing 

Fig. 1.10  The squares of 
an Islamic star

Fig. 1.11  Islamic star

Z. Karadag



19

through point A such that point B becomes the midpoint of two distinct points, A 
and D (upper right). Two circles, one centered at A and passing through D and the 
other just the opposite, are drawn (bottom left). The line passing through points E 
and F, intersections of the circles, is perpendicular to line AB and passes through 
point B (bottom right).

It should now be easier to construct a square on the line segment AB (Fig. 1.13). 
First, the third point of the square should be identified by intersecting the perpendicular 
line—line EF in Fig. 1.12—and the circle, whose center is point B and whose radius is 

Fig. 1.12  Steps involved in the construction of a square

Fig. 1.13  Further steps in constructing a square
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the distance between A and B (upper left of Fig. 1.13). Following the procedure to find 
the third point, point G, of the square, students can locate the fourth point by simply 
constructing the circles whose centers are points A and G and that pass through points 
G and A, respectively; by intersecting them, we get point J (upper right). Thus, the 
square ABGJ appears in the bottom left of Fig. 1.13. In order to find the helping points 
to construct the second and rotated square of the Islamic star, students can use the cir-
cles drawn before. The intersection points M and K provide students with the chance 
to draw perpendicular bisectors of the sides of the square (bottom right).

The steps to construct the second and rotated square are illustrated in Fig. 1.14. 
The picture in the upper left illustrates the construction of the perpendicular bisec-
tors of the sides of the first square, while the picture in the upper right shows the 
circle, whose center is O—the point of intersection of the perpendicular bisectors—
and that passes through the corners of the first square. The intersection points of the 
circle and the perpendicular bisectors identify the corners of the second square (bot-
tom left). Finally, students can find the intersection points of two squares to identify 
the remaining points of the Islamic star (bottom right).

The Islamic star construction steps may help convince readers that this horizontal 
mathematization of the RME activity could be challenging, even for some advanced 
secondary students not familiar with constructing a geometric object by applying 
the Euclidean approach. However, readers might also understand that all of these 
steps actually stem from Euclidean geometry—that is, there is no need to reinvent 
the wheel. What students should do is separate the task into pieces, set the goals for 
each piece, and explore the possibilities to accomplish the task. Other procedures to 
construct the Islamic star may or may not employ Euclidean approaches.

The following section describes how I used this activity to engage my under-
graduate students enrolled in the geometry course in the elementary mathematics 
teacher education department in the vertical mathematization step. I aimed to help 

Fig. 1.14  Steps from square to Islamic star
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them further their geometry knowledge to make some generalizations—an impor-
tant dimension of mathematical thinking.

�Vertical Mathematization: How Can We Generalize This 
Construction?

I asked my students, preservice grade 5–8 teachers, to create composite geometry 
objects found in Islamic art, including but not limited to the Islamic star. The objects 
they constructed included a number of polygons and stars. It is easier to construct 
an Islamic star than a 10- or 12-pointed star using the Euclidean approach because 
creating pentagon is more challenging than creating a square as the basis of the 
construction. Still, it is a worthwhile task for those interested in engaging their stu-
dents in vertical mathematizing in this manner. I shifted my method for the second 
part in my course and encouraged my students to employ transformational geome-
try rather than following the Euclidean approach for the vertical mathematization. 
In this section, I describe a generalized version of the construction problem and 
leave the problem for the readers.

At this stage, the mathematical representation of the Islamic star is still our start-
ing point because we have already transferred it from the real world to the digital 
world by performing a good amount of geometrical analysis and discussion stem-
ming from the Euclidean approach. Given that the Islamic star is our starting point 
and we already assume that it is constructed by drawing two squares, one being 
rotated by 45° around the centroid of the other and superimposed on the first one 
(upper left in Fig. 1.15), we could start the vertical mathematization step by posing 
the following question:

Fig. 1.15  From Islamic star to n-pointed stars −1
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What if we rotate the square by 30° rather than by 45° around the centroid of the 
other and superimposed on the first one (upper right)?

An intuitive answer may come out immediately, as it did in my classroom: “Well, 
the figure becomes asymmetric!” It is not too difficult to make the figure symmetric. 
One could rotate the square in increments of 30°, superimposing each figure onto 
the original square (see the bottom left picture in Fig.  1.15). Further discussion 
involves explaining why only three new squares appear. We first discovered that, if 
the square is rotated 90°, then the rotated one completely covers the first one. 
Second, we all agreed that we divide this 90° by some number. For example, it was 
2 while constructing the Islamic star and became 3 in the case of the 12-pointed star. 
A third discovery followed a discussion of the question I asked: Why do we use a 
square? What if we use another polygon? What would be the overlapping angle if 
we use an n-gon rather than a square? For example, we could obtain a 20-pointed 
star if we take a pentagon, rotate it by 18°, 36°, and 54° around its centroid, and 
superimpose all four pentagons (bottom right).

We had a great discussion in the classroom exploring the relationships among 
these numbers. I gave the rest of the vertical mathematization as the assignment. 
The undergraduates were supposed to generalize the case by assuming that they had 
an n-sided polygon, the polygon was rotated by α° and its multiples around its cen-
troid, and all polygons were superimposed to get a final p-pointed star. The only 
variables they had were n, the number of sides of the initial polygon, and k, the 
number of divisions to get α for each rotation. The parameter p was also to be cal-
culated by using these variables. A case where n = 5, k = 4, and the maximum value 
of α = 72° to construct a 20-pointed star is illustrated in Fig. 1.16.

Fig. 1.16  From Islamic star to n-pointed stars −2
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�Conclusion

Geometry is usually delivered as a set of axioms disconnected from real life or as a 
course about the application of geometric measurement. However, it is rather chal-
lenging for students to develop a deep understanding of geometry if it is delivered 
as a course bounded by classroom walls and disconnected from real life as it is dif-
ficult to engage students’ learning that is decontextualized. Fortunately, the world 
around us is rich in geometric objects. The existence of such a rich environment 
motivated us to talk about learning geometry stemming from Islamic art using an 
unmarked ruler and compass only—that is, by following the Euclidean procedure.

The chapter suggested following the Euclidean procedure to encourage students 
to think geometrically. Regardless of the replication method employed, the process 
to pick up an ornament from Islamic art and work on it to replicate is referred as the 
horizontal mathematization of the RME framework. During this process, learners 
are engaged in the replication activity to become familiar with basic geometric 
objects and their properties without delving into some axioms and geometrical 
facts. The chapter presented one possible way as a hypothetical learning activity to 
follow the Euclidean approach and construct the Islamic star, which is widely seen 
in Islamic art. It is quite possible to develop some other approaches, which is fine. 
It is possible to work on a different artefact, which is also fine. As far as the ultimate 
goal is to encourage students to think geometrically and engage them in learning 
meaningful geometry, it is quite possible to find a number of artefacts and a number 
of procedures.

Similarly, the chapter suggested moving into transformational geometry in the 
vertical mathematization process rather than working on more complicated geomet-
ric objects. Although either is fine for the sake of vertical mathematization because 
learners should be engaged in more advanced topics or processes during this pro-
cess, introducing transformational geometry and encouraging learners to generalize 
the construction may open new windows. Learners may realize that mathematics, 
by assuming that the use of algebra refers to mathematics, and geometry are not 
distinct topics; rather, they are interconnected across many contexts.
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Abstract  This chapter surveys interdisciplinary pedagogy that emphasizes the 
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learning process within musical experiences. Both empirical research and interna-
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mathematics interdisciplinary lessons. Regarding the overview, the chapter discusses 
research studies that have investigated the mathematics present within music and 
the application of mathematics to improving musical composition and musical 
instrument design. Regarding the theoretical perspectives, the chapter discusses 
research studies that have investigated passive musical immersion as well as more 
active musical learning processes and their comparative impacts upon learners’ 
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This chapter will survey interdisciplinary pedagogy that emphasizes the connec-
tions between mathematics and music by contextualizing the mathematics learning 
process within musical experiences. Both empirical research and international 
practice have demonstrated a variety of opportunities for music-themed mathemat-
ics teaching methods to be developed and implemented across all grade levels, 
from kindergarten to college. This chapter, which summarizes the current state of 
research and practice for music-themed interdisciplinary mathematics education, 
is divided into three main sections: (1) the overview of connection between math-
ematics and music, (2) theoretical perspectives on music and mathematics learn-
ing, and (3) a description of pedagogical approaches appropriate for supporting 
music-mathematics interdisciplinary lessons. Regarding the overview, the chapter 
will discuss research studies that have investigated the mathematics present within 
music and the application of mathematics to improving musical composition and 
musical instrument design. Regarding the theoretical perspectives, the chapter will 
discuss research studies that have investigated passive musical immersion as well 
as more active musical learning processes and their comparative impacts upon 
learners’ mathematical cognitive processes and capabilities within informal learn-
ing settings. Regarding the pedagogical approaches, the chapter will present and 
evaluate the prevalent mathematics-music-integrated teaching strategies about how 
student-centered musical activities (i.e., listening and singing, composing and per-
forming, musical notating, and musical instrument design) can be utilized to teach 
specific mathematics topics.

�Connections Between Mathematics and Music: 
An Introduction

Mathematics and music have a strong connection and have each contributed to the 
other’s development. In this section, we present examples of how mathematics has 
played a significant role in acoustics, the mechanics of musical instruments, and 
music composition.

The Chinese bianzhong (literal meaning: bell set) illustrates mathematical 
sophistication in the construction of musical instruments. The bianzhong, a set of 
65 bells, was discovered in the late 1970s inside the ancient tomb of Zeng (430 
B.C.E.) in Hubei, China. This instrument was widely recognized as the first musi-
cal instrument that can play a range over five octaves (von Falkenhausen, 1993). 
The bianzhong has a weight of approximately 2.5 tons, and all of the bells are 
designed to be hung from a large wooden stand 36  feet wide by 9  feet tall. Its 
construction required an interdisciplinary team consisting of a partnership among 
musicians, mathematicians, and engineers (Lee & Shen, 1999). The bells increase 
in size, with the height of the smallest bell being around 8 inches whereas the 
length of the largest bell is more than 60 inches. Correspondingly, the bells’ 
weights range from 5.3 to 448.9 pounds. This pattern contributes to the acoustics 
of this musical instrument.
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Musicians and mathematicians continue to collaborate to improve musical 
instruments. One of the major breakthroughs for contemporary music production 
has been the extensive acceptance of equal temperament, a tuning method based 
on the computation of logarithms and differential equations in which every note 
in a chromatic scale has an identical frequency ratio that is artificially divided 
(Cho, 2003). By distributing inharmonic errors that exist within natural tempera-
ment instruments, the tunes across different instruments can be standardized; this 
technique thus enables musicians to change keys during their performances with-
out changing the instruments. Applications of the equal temperament theory led to 
the invention of the piano in 1709.

The design of the piano required intensive knowledge of geometry and mea-
surement as well as algebra (Ehrlich, 1990; Gordon, 1996). As an illustration of 
the application of geometry, cross stringing was a creative invention by Jean-
Henri Pape during the 1820s that significantly reduced the size of pianos by 
transforming string arrangements from a two-dimensional design to a three-
dimensional design. In some early versions of pianos, piano strings were 
arranged parallel to each other to avoid collisions during string vibrations. By 
utilizing the three-dimensional space, Pape arranged strings into two planes: 
Bass strings were secured from left to right, under and across the other strings 
that were secured from right to left. The theory and practice of action (transla-
tion of the motion of a piano key into the motion of a hammer that strikes the 
strings) was developed with the application of algebra. Because action serves as 
both engine and transmission, certain ratios of the movement distance between 
the key and the hammer have to be applied in order to create a series of lever 
systems that magnify the force generated from fingers pressing on keys into 
hammers striking the strings.

Another link between music and mathematics is the use of mathematical pat-
terns and geometric transformation in the process of musical composition. For 
example, repeating patterns have been found in almost all works of music, often 
contained within small sections or a whole movement, and growing patterns such 
as the Fibonacci sequence as well as geometric transformations such as transpo-
sitions and inversions have been massively used by both classical and present-
day composers (Beer, 1998; Loy, 2006). The application of mathematics to music 
includes algorithmic and computational approaches within musical scales 
(Krantz & Douthett, 2011), algebra within periodic rhythms and scales (Amiot & 
Sethares, 2011), topology of musical data (Sethares & Budney, 2014), logarithms 
and differential equations in equal temperament (Cho, 2003), and mathematical 
patterns within prominent pieces of classical music (Conklin, 2010). However, it 
should be noted that many of the links between music and mathematics are only 
deeply understood by music and mathematics specialists. Classroom mathemat-
ics teachers who lack familiarity with basic music theory may not have the back-
ground knowledge needed to implement music-math beyond the employment of 
a cover story with entertainment value, incorporating few—if any—pedagogical 
connections with the mathematics being taught (An, Tillman, Boren, & Wang, 
2014; An, Tillman, Shaheen, & Boren, 2014).
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�Music and Mathematics Learning: Theoretical Perspectives

Concerning achievement, empirical evidence has shown that learning about math 
and learning about music are mutually beneficial. For example, in a large-scale 
study involving a sample of more than 150,000 high school students, researchers 
found a statistically significant relationship between students’ music achievement 
and their academic success in the core subjects, especially mathematics (Gouzouasis, 
Guhn, & Kishor, 2007). The finding suggested that students with high mathematics 
achievement were predicted to have high music achievement and vice versa.

Multiple theoretical perspectives offer rationales for explaining the effectiveness 
of mathematics education that incorporates music or music-related experiences. In 
general, the educational theories that encourage music-mathematics instructional 
connections have two distinct dimensions, which vary in intensity depending upon 
the particular theory: (1) a focus on the role of music as a catalyst for boosting math-
ematics learners’ cognitive processes by being played as ambient background 
sounds during mathematics education and/or (2) a focus on the role of music as an 
educational resource for contextualizing the teaching and learning of mathematics 
into a meaningful and relatable medium. Along the first dimension, the Mozart 
effect theory (Rauscher, Shaw, & Ky, 1993) as well as several of its variations (e.g., 
Hui, 2006; Ivanov & Geake, 2003) have served as a general framework for illumi-
nating the impacts of both active music learning and passive music immersion on 
mathematics learners’ mathematical cognition capacities. Along the second dimen-
sion, mathematical motivation theory (e.g., Bursal & Paznokas, 2006; Geist, 2010) 
has been used to construct an understanding of the effects of placing children in 
music-contextualized learning environments as well as the impacts of employing a 
student-centered teaching approach that employs music-themed activities to develop 
students’ conceptual understanding in mathematics and encourage their positive 
dispositions toward mathematics learning.

�Music as a Catalyst for Mathematical Cognition

Among the many studies examining the quantifiable associations between music 
experiences and their effects on mathematical cognition, the Mozart effect study 
series (e.g., Rauscher et al., 1993; Rauscher, Shaw, & Ky, 1995; Rauscher et al., 
1997) was the most well-known as well as the most controversial research, with 
about 40 replicated trials involving more than 3,000 participants (Pietschnig, 
Voracek, & Formann, 2010). In the original research design, Rauscher and his col-
leagues conducted an experiment comparing three randomized groups: (1) listen-
ing to the target music (Mozart’s Sonata for Two Pianos in D Major, K.448), (2) 
listening to comparison music (generic relaxing music), and (3) listening to silence. 
Results from the study demonstrated that the participants in the Mozart music 
group significantly outperformed their peers on the spatial reasoning skills 
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sub-tests from the Stanford-Binet Intelligence Scale. Since the publication of the 
study’s results, replications have assessed revisions to the settings, music treat-
ment, and mathematics assessment tasks, accumulating in the process further evi-
dence that listening to Mozart’s music—compared to other music or silence—may 
advance participants’ mathematical cognition (Hui, 2006; Ivanov & Geake, 2003; 
Nantais & Schellenberg, 1999; Rauscher et al., 1995; Rauscher & Zupan, 2000). 
For example, Nantais and Schellenberg conducted experiments with the random 
assignment of two groups of participants; treatment group participants listened to 
both Mozart’s and Schubert’s music, while the comparison group sat in silence. 
Two mental visualization assessments, each with 17-item paper folding and cutting 
tasks, were assigned to the participants after the treatment of music, and the results 
demonstrated that treatment group students significantly improved their test scores 
compared to the silence group.

In addition to the laboratory experiments, researchers have investigated music 
learning experiences (e.g., taking piano lessons, playing an instrument in school 
band, and practicing vocal music) and their relationship to students’ mathematics 
achievement. In general, learning music and practicing music were positively cor-
related to students’ mathematics achievement, with students who had music-
related experiences demonstrating significantly higher mathematics achievement 
scores than their nonmusical peers. Similar patterns were identified across grade 
levels, including pre-K (Costa-Giomi, 1999; Rauscher & Zupan, 2000), elemen-
tary school (Haley, 2001), middle school (Whitehead, 2001), and high school 
(Cox & Stephens, 2006). A possible explanation for these consistent findings is 
that musical experiences can stimulate areas of the brain responsible for mathe-
matical reasoning. On a similar note, Spelke (2008) explained that activating the 
“musical zone” in the brain may also stimulate the working processes of the 
“mathematical zone.” In other words, within human brains, the areas responsible 
for processing cognitive functions for musical perception of melody, harmony, 
and rhythm have overlapping areas with those responsible for processing cogni-
tive functions for mathematical computation, such as geometrical visualization, 
numerical calculation, and estimation.

�Improving Mathematical Proficiency with Music

In an era of standards and accountability, students’ academic achievement—espe-
cially their scores on high-stakes standardized tests—has become overemphasized 
(Pinar, 2004; Slattery, 2006). Compared to the importance placed upon developing 
students’ procedural fluency and strategic competence in mathematics, many teach-
ers ignore the development of their students’ positive dispositions toward mathe-
matics (Kilpatrick, Swafford, & Findell, 2001). The role of emotion has been 
recognized as a crucial factor in learning mathematics, and the negative emotions of 
disengagement and anxiety are now understood as critical obstacles on the road to 
success with mathematics. Empirical studies have consistently found that students 

2  The Hidden Musicality of Math Class…



30

in all grade levels, from kindergarten through college, display negative dispositions 
toward mathematics—they may believe mathematics is not useful in real life or that 
learning mathematics is simply too difficult for them (Rameau & Louime, 2007). 
Compared to peers who display productive dispositions toward mathematics, math-
ematics learners with negative dispositions not only suffer from significantly higher 
levels of anxiety during mathematics learning but also exhibit a lack of confidence 
or motivation to learn and apply mathematics (Ashcraft, 2002; Geist, 2010). 
Consequently, researchers have found that students with negative mathematics dis-
positions often have lower mathematics achievement and also generally avoid tak-
ing advanced mathematics courses in high school and college, which culminates in 
their inability to choose any of the STEM-based careers requiring a background in 
mathematics and/or science (Sullivan, Mousley, & Zevenbergen, 2006).

Unlike other school subjects such as social studies and language arts, which are 
inherently grounded in meaningful contexts and/or real-life relations, mathematics 
as a subject is often structured apart from society and culture and is instead based 
upon a language that employs complex symbols and highly abstract concepts. The 
distinctive structure and content of mathematics education have resulted in the 
development of an accompanying pedagogy for this subject, which is vastly differ-
ent from other school subjects (Kilpatrick et al., 2001). Unfortunately, many school 
teachers, especially generalists who teach multiple subjects in elementary and 
middle schools, fail to offer student-appropriate methods when teaching mathe-
matics to the demographics they serve, and this “traditional” instruction model 
based on the teacher-centered approach has been identified as one of the key fac-
tors influencing students’ negative dispositions toward learning mathematics 
(Furner & Berman, 2005).

This “traditional” teacher-centered model of mathematics instruction is rec-
ognized as textbook content lecturing, overreliance on assigning drill problems, 
single correct answer grading, and consistent use of standardized multiple 
choice testing. The result is that students’ conceptual understanding and strate-
gic competencies are often ignored, while less important but more measurable 
metrics are pursued (Bursal & Paznokas, 2006; Geist, 2010). As an alternative 
to the “traditional” teacher-centered model, educational researchers have pro-
posed some common features found among more effective pedagogical methods 
for instructing mathematics education, including the use of open-ended prob-
lem-solving activities in which more than one correct answer is possible, simu-
lations including augmented and virtual reality, game-like challenges that make 
mathematics learning a friendly competition, and discovery-driven learning 
where students collect and analyze data to answer real-life contextualized ques-
tions that include such themes as finances and urban planning. All of these 
methods can provide opportunities to facilitate students’ communication among 
peers, connections between and across curriculum, and representation of math-
ematics in multiple ways (Bursal & Paznokas, 2006; Geist, 2010). Within this 
sphere, a music-integrated approach to mathematics has been identified as an 
effective method for teaching student-centered mathematics (Robertson & 
Lesser, 2013).
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Mathematics pedagogy that effectively uses the natural cognitive overlaps between 
music and mathematics offers students transdisciplinary opportunities to discover, rec-
ognize, analyze, and apply mathematics (An, Capraro, & Tillman, 2013). For teachers, 
music-themed mathematics activities can serve as meaningful and accessible contexts 
for transforming traditional mathematics pedagogy via entertainment elements (An & 
Tillman, 2014; Vinson, 2001). Music enables students to represent their mathematical 
ideas from a different perspective, which supports their learning as they pursue concep-
tual understanding via multiple cognitive and affective experiences (Gamwell, 2005). 
Specifically, findings showing positive impacts have accumulated across several stud-
ies investigating the effects of music-mathematics-integrated education, including (1) 
motivating students to undertake more challenging mathematics tasks (Chahine & 
Montiel, 2015), (2) engaging students in examining relationships among mathematical 
concepts (An, Tillman, Shaheen, & Boren, 2014), (3) creating a pleasant learning envi-
ronment for supporting team work (Robertson & Lesser, 2013), (4) providing a teach-
ing environment that minimizes language and culture barriers for English-language 
learners (Kalinec-Craig, 2015), (5) improving students’ academic achievement in 
mathematics (An & Tillman, 2015; Pinnock, 2015), and (6) developing teachers’ self-
efficacy for mathematics pedagogy (An, Tillman, & Paez, 2015; An et al., 2016).

Incorporating dynamic auditory approaches in teaching, students could build 
knowledge cognitively, perceptually, and emotionally (Greene, 2001). However, 
music is an underused educational resource (An & Tillman, 2014) because teachers 
are required to pedagogically develop auditory resources into visual and tangible 
manipulatives for students to make sense of mathematics. In this chapter, we pro-
vide an overview of the empirical research studies conducted by An and his col-
leagues (An et al., 2013; An, Tillman, Shaheen, & Boren, 2014; An, Tillman, & 
Paez, 2015; An, Zhang, Flores et al., 2015). These studies examined music experi-
ences that occurred during mathematics lessons and were designed to support stu-
dents’ engagement with the topic as they actively manipulated objects, performed 
creatively, and applied their existing knowledge in the creation of connections 
among mathematical concepts. During the lessons, music-making and music-
sharing experiences enabled students to pursue their original interests along with 
their curiosity. At the affective domain, the aesthetic appreciation of music encour-
aged students’ mathematics learning behaviors by providing them a meaningful 
context for completing mathematical tasks. The learning experiences also offered 
students additional reinforcement of the mathematical concepts by letting them play 
and share musical works that they had created themselves and increased their effi-
cacy for undertaking further challenging learning tasks in mathematics.

�Teaching Mathematics Via Music: Pedagogical Approaches

Curriculum developers and lesson designers have proposed many ways for empha-
sizing the musical connections available when teaching mathematics. For example, 
Gelineau (2004) and Cornett (2007), in their books about teaching elementary 
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subjects through the arts, presented several interrelated ideas about the links between 
mathematics and music. In one of the author’s own previous activity books (An & 
Capraro, 2011), teachers were offered a suite of lessons that put mathematics topics 
within the context of music composition and musical instrument-designing activi-
ties. Subsequently, with a goal of investigating the possibility of pedagogical con-
nections between mathematics and music, An and colleagues conducted an empirical 
analysis of 78 teacher-generated music-mathematics-integrated lesson plans along 
with 152 elementary preservice teachers’ lesson plans, enabling the identification of 
56 different examples of connections between musical (music notating, singing, 
playing, composing, and instrument designing) and mathematical (number and 
operation, algebra, geometry, measurement, data analysis, and probability) content 
areas (An & Tillman, 2015; An, Tillman, & Paez, 2015; An et al., 2016). However, 
it was also determined that numerous misguided attempts at the contextualization of 
mathematics pedagogy within music-themed activities have occurred, and the poor 
implementation of this transdisciplinary concept can hinder the mathematics learn-
ing process. In other words, positive learning results in mathematics were only 
found in scenarios where the music-themed activities were pedagogically relevant 
to mathematics being taught and not merely serving as a “cover story.”

�Musical Notation and Fractions: An Example of Weak 
Pedagogical Integration

When asked “Are there any relationships between music and mathematics?,” many 
mathematics teachers will say “Yes”; however, when asked for examples, the most 
frequent answer is that “There are quarter notes in music.” Moreover, among the 
lesson plans and activities that can be implemented in classrooms, the music nota-
tion system (including musical notes and time signatures) has been used as one of 
the most popular activity themes for teaching mathematics, especially fractions (An 
& Tillman, 2014). Unfortunately, fractions are the only mathematics topic that 
musical notes are often used to address. As a typical instructional design based on 
teaching fractions connected with the musical notations of note values, one of the 
participating teachers proposed the following lesson plan:

The goal of my lesson is to help students understand how musical notes relate to fractions 
and clap a measure of music by assigning appropriate values to notes. In the lesson I will 
have [the] following steps: (1) present note names and their values and introduce lesson 
vocabulary such as whole note [4 beats], half note [2 beats], quarter note [1 beat], eighth 
note [1/2 beat], sixteenth note [1/4 beat]; (2) present a music note chart to demonstrate the 
values each note holds and students will be clapping along to gain understanding of the 
values of the notes in a measure; (3) discuss the value of different notes to help students 
“hear” the value of those notes, clap a 4-beat measure, a 2-beat measure, and a 1-beat mea-
sure and have students join in; (4) ask questions regarding the counting values of music 
notes (How many beats are in 1 whole note? How many beats are in 2 half notes?) and 
check and correct the student answers; and (5) on a scratch sheet of paper, in groups, stu-
dents will solve some math problems such as “two eighth notes equal to ______”, and “four 
quarter notes equal to ______.” (An, Tillman, & Paez, 2015, p. 16)
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In the example presented above, the teacher attempted to integrate music and 
mathematics by connecting musical notes and beats to the mathematics concept of 
fractions. This was a weak pedagogical integration, as music symbols—a highly 
concentrated code developed by composers for facilitating the written communica-
tion of music—were not properly connected to fractions. At the visual level, the 
symbols employed for different note values (Fig. 2.1) failed to demonstrate the pro-
portional relationships for fractions when compared with the traditional approach of 
conceptualizing fractions based on self-evident pictorial representations, such as 
area and length (Van de Valle, Karp, & Bay-Williams, 2010). At the auditory level, 
making non-recorded sounds from hand clapping based on different rhythms is a 
difficult way for students to comprehend the whole and partial relationships essen-
tial for learning fractions.

The limited working memory capacity that humans have for processing new 
knowledge can result in novel situations overloading cognitive capacity. According 
to cognitive load theory (Sweller, 2016), instructing fractions via associations with 
musical notation, such as reading and clapping music notes with different values, 
may increase students’ extraneous cognitive load, overwhelming their ability to pro-
cess the mathematics concepts they are supposed to be learning. In other words, 
introducing fractions through musical notations by claiming that, for example, the 
value of a black circle is half of that of a white circle of the same size, instead of 
helping pedagogically, might be counterproductive as the extraneous cognitive load 
can result in mathematics learners struggling with the lessons.

�Singing and Listening to Music in Mathematics Class: More 
Than Simply a Cover Story

Many math lessons across all content areas incorporate singing and playing music. 
The availability of the Internet during the past two decades has greatly increased 
access to relevant musical resources for supporting such activities, and the popu-
larity of video-sharing sites has especially intensified, with more than 7000 
archived educational resources in the format of songs for teaching mathematics 
and science being prepared by professional musicians, educators, and enterprising 
students (Crowther, 2012). Numerous mathematics-themed songs—both original 
music created by educators and popular melodies with new lyrics—are available 

Fig. 2.1  Example of fraction relationships represented within music notation presented by a math 
teacher participating in the study
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for teachers and ready to be used. Nevertheless, without the appropriate pedagogi-
cal structure, these music resources often only serve as cover stories providing 
entertainment in a mathematics class (An & Tillman, 2014). A typical instruc-
tional design that employs mathematics-themed songs without pedagogical devel-
opment usually has the following fundamental steps: (1) introduce and play a 
music video at the beginning of the class, (2) have a mathematics class without 
music connections, and (3) sing the song together as a summary exercise at the 
end of class (An & Tillman, 2014). Such a design may set up an environment and 
facilitate the memorization of a mathematics algorithm or formula, but it fails to 
present any authentic music connections for students to actively analyze or syn-
thesize mathematical knowledge.

In contrast, a number of mathematics and science education researchers (e.g., 
Crowther, Davis, Jenkins, & Breckler, 2015; Crowther, McFadden, Fleming, & 
Davis, 2016; Lesser, 2014; Lesser, 2015) have attempted to go beyond using 
songs as mere breaks to revive attention or build community during mathematics 
lessons. Informed by principles of the psychology of learning and some emerging 
scholarship on the use of songs in the STEM classroom, songs with lyrics based 
on mathematical concepts, terms, and formulas have been offered as supports for 
students seeking to understand several topics in mathematics. For example, Lesser 
(2014, 2015) examined mathematics-themed songs as tools to motivate underrep-
resented students learning middle school, high school, and college level mathe-
matics. According to his framework, an ideal mathematics-themed song would 
have six traits that collectively facilitate mathematics learning: “(1) aiding recall 
(of procedures, properties, definitions, digits of pi, etc.), (2) introducing concepts 
or terms, (3) reinforcing mathematical thinking processes (e.g., the Pólya’s (1945) 
four-step heuristic for problem solving), (4) connecting to history, (5) connecting 
to the real world, and (6) humanizing mathematics” (Lesser, 2015, pp. 158–159). 
Lesser (2015) describes how these six traits are satisfied by his lyrics in “American 
Pi,” which received an award from the National Museum of Mathematics. Its cho-
rus is as follows:

Find, find the value of π, starts 3.14159
A good ol’ fraction you may hope to define,
But the decimal never dies, never repeats or dies…. (Lesser, 2015, p. 166)

While a big part of the educational potential of a song is limited by the song 
itself, another part comes from how the instructor uses it. In other words, one 
instructor might just let students listen to an online recording of “American Pie,” 
while another instructor might have students sing along and then actively analyze 
and unpack all of the mathematical references in the lyrics, making connections to 
their curriculum (e.g., the 16-question sequence of Appendix 2 in Lesser (2015)). A 
teacher doing the latter would be using the lyrics as a central vehicle to familiarize, 
contextualize, and conceptualize the meaning of π in multiple memorable ways. A 
website created by Lesser (http://www.math.utep.edu/Faculty/lesser/Mathemusician.
html) provides songs for students to read or listen to as well as links to key articles 
and websites on the intersection of mathematics and music/songs.
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Educators may consider having students consolidate and help recall their knowl-
edge by writing their own songs or lyrics. Lyric writing is a transdisciplinary activ-
ity. As Davis (1985, p. xi) noted: “The best lyricists, whether they’re aware of it or 
not, are using elements of phonetics, linguistics, grammar, semantics, metrics, 
rhyme, rhythm, poetics, phonology, communications, sociology—and even the psy-
chology of verbal behavior.” Incorporating mathematical concepts further enriches 
the transdisciplinary experience.

�Music Composition and Playing: Awareness of Mathematical 
Patterns

Music composition activities offer students opportunities to compose, decompose, 
and recompose music. These activities can allow students to (1) explore and analyze 
algebraic patterns and proportional relationships, (2) make geometric transforma-
tions and use statistical methods to analyze data, (3) attempt to find multiple solu-
tions during problem solving, and (4) design and conduct experiments that explore 
probabilities (e.g., explore permutation and the combination of chords and melody 
development processes) in self-composed or professional music works. As an 
example of a unique musical notation system used to facilitate novice students in 
composing and playing their own music, a color-based graphical notation (An & 
Capraro, 2011; An, Ma, & Capraro, 2011) will be presented that signifies music by 
using colors, shapes, numbers, and letters to represent the music notes. For exam-
ple, the colors red, orange, yellow, green, turquoise, blue, and purple were used to 
represent the musical notes C(Do), D(Re), E(Mi), F(Fa), G(Sol), A(La), and B(Ti) 
(see Fig. 2.2). Based on this graphical notation system, elementary students com-
posed music by placing a group of color cards on their desks and playing color-
matched instruments, such as handbells and boomwhackers (a set of plastic tubes 
with the same diameter but different lengths). These activities enabled the students 
to examine mathematical patterns through both visual and auditory approaches 
while creating solutions to complex music-mathematics challenges. Two sample 
music composition activities are presented in the following paragraphs.

Composing for Pre-algebra Preparation  This activity was designed for upper 
elementary students as practices for algebra readiness. Students used variables to 
create their own music. Each music note (a colored square of paper) was assigned a 

Fig. 2.2  Color-based notation system and instruments from composition activities
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numerical value (see sample of values in Fig. 2.3), and participants composed a 
piece of music based on those values. For example, Do has a value of 1, Re has a 
value of 2, and Mi has a value of 3, so composing a music with five notes (Do, Do, 
Re, Re, Mi) would have a total value of 9. In one of the activities, participants were 
asked to compose a piece of music with 24 musical notes. In this music composition 
work, the sum of the musical value should equal 100 when adding the value of each 
musical note together (see sample mathematics arrangement and sample music 
composition in Fig.  2.3). After the participants finished their composition, they 
played their music using handbells. Unlike traditional drill questions, during which 
students give answers to rote questions such as 43 + 57 = __, this activity required 
students to use algebraic thinking while setting variables up as different arrange-
ments in order to obtain a sum of 100. Specifically, students needed to construct an 
equation with seven variables, such as 1a + 2b + 3c + 4d + 5e + 6f + 7 g = 100 (a, b, 
c, d, e, f, and g represent values for Do, Re, Mi, Fa, Sol, La, and Ti, respectively) and 
then figure out the number for each letter to balance this equation. Each student cre-
ated a different arrangement of colors while solving this problem and then played 
the different melody that they had composed as a celebration of their success at 
finding a valid solution. Students who finished fast had an opportunity to play their 
compositions and rearrange cards to generate a more “pleasing” melody. To vary the 
activities, teachers sometimes added more restrictions to the computational process 
or assigned altered values to each color in the activities, such as the use of only 16 
musical notes to compose music with a total value of 120.

Total value of the music: (1 × 4) + (2 × 1) + (3 × 3) + (4 × 4) + (5 × 7) + (6 × 1) 
+ (7 × 4) = 100.

Composing with Ordered Pairs  This activity was proposed and taught by one of 
the participating teachers in our previous study (An et al., 2016) for a group of fifth- 
and sixth-grade students. The designed lessons illustrated how upper elementary 
students (fourth and fifth grades) could perceive ordered pairs through visual 
representation during music composition and auditory representation during music 
playing by composing music within a Cartesian coordinate system in which the 
x-axis and the y-axis represent two simultaneous melodies. In this activity, Cartesian 
coordinates were used for students to represent harmonic intervals (i.e., a pair of 
notes with the same or different sounds) (see Fig. 2.4).

Several recent studies (An & Tillman, 2014; An, Tillman, & Paez, 2015) have 
indicated that many inquiry-based strategies for teaching mathematics can be imple-
mented within music composition activities. For example, when teaching numbers 
and operations, teachers can help students (1) conceptualize a base-eight numera-
tion system through music scales, (2) explore rational numbers through an analysis 

Fig. 2.3  One of the possible music compositions and computation solutions
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of existing or self-created music works, and (3) understand operation rules through 
the demonstration of chord variations. When teaching algebra, teachers can help 
students (1) identify ratios and proportions through an analysis of musical works, 
(2) find unknowns and missing values in music works, and (3) explore functions, 
sequence, and factors through music composition. When teaching geometry and 
measurement, teachers can help students (1) compose music through geometric 
transformations, including reflection and rotation, and (2) explore concepts about 
time through music composing and playing. When teaching probability and data 
analysis, teachers can help students (1) collect and analyze data based on music 
works, (2) develop statistical graphs based on music works, (3) conduct an analysis 
of events within musical compositions, and (4) explore combinations and permuta-
tions through chord and melody composition.

�Musical Instrument Design and Construction: Mathematics-
Embedded Tasks

By designing musical instruments on paper and then constructing the instrument 
with different materials, students can learn to understand principles of scientific 
inquiry and investigation as they formulate hypotheses about how changing the 
properties of an instrument will affect its sound and then test the hypotheses. 
Students have been offered opportunities to explore one-, two-, and three-
dimensional geometric concepts and relationships within different types of musical 
instruments (e.g., idiophones, membranophones, chordophones, and aerophones) 
and explored acoustical physics to understand how the patterns of shapes, 

Fig. 2.4  A sample composition displaying harmonic intervals within a coordinate system
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dimensions, and materials affect instrument sounds and tones. Specifically, empiri-
cal studies (An et al., 2013; An, Tillman, Boren, & Wang, 2014; An, Tillman, & 
Paez, 2015) demonstrated that musical instrument designing activities have pro-
vided students with opportunities to (1) use geometry and measurement concepts to 
construct different types of instruments; (2) fabricate musical instruments by using 
3D printers with a variety of plastic, metal, and hybrid materials; (3) apply knowl-
edge of sound production for basic acoustic instrument types to develop combina-
tions of vibrating strings, pipes, bells, membranes, and reeds that allow the 
manipulation of variables (e.g., length, size, volume, shape, material, and tension); 
(4) recognize the iterative process by which a set of simple musical instruments 
were designed to produce a palette of music “colors” (i.e., color-coordinated musi-
cal notes); (5) determine the impact of variable manipulation on the sound proper-
ties of pitch, tone timbre, loudness, and resonance time; and (6) test how the 
combinations of sound waves with patterns of regular or irregular pitch intervals can 
cause different feelings or emotions.

Algebra in Musical Instrument Design  Algebra is widely used during the musi-
cal instrument-making process, an example being that musical scales were devel-
oped based on proportional relationships. During the instrument-making process, 
string instruments such as guitars required that instrument designers calculate the 
position of frets on the finger board; likewise, wind instruments such as saxophones 
required designers to calculate the positions of finger keys, and percussive instru-
ments such as glockenspiels required designers to calculate the size of component 
pieces. One of the many activities wherein students can apply geometric sequencing 
is to design a glockenspiel by cutting and pasting tape or paper strips (see Fig. 2.5).

Using Geometric Sequences to Create a Glockenspiel  As a percussion instrument 
that was constructed with 24 tuned pieces of steel bars, the construction of a glock-
enspiel requires making a series of rectangles with the same width, although of 
different lengths, having a common ratio of 0.94. Teachers have directed students to 
design a glockenspiel by cutting and pasting paper strips based on this geometric 
progression. For example, An and Capraro (2011) introduced the following instruc-
tional steps to create a glockenspiel for fifth graders. Students can cut paper strips 

Fig. 2.5  The process of designing a glockenspiel through geometric progression
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by using a geometric sequence to compute the accurate length of each tape or paper 
piece, with the common ratio of approximately 0.94. Based on the paper glocken-
spiel that their students constructed, teachers can provide additional open-ended 
mathematics questions. For example, students can examine the total area of the 
glockenspiel pieces that they used in designing their instrument, and they also can 
explore the geometric sequence formula describing the length of each piece.

Linear Equations to Investigate Trumpet Tube Length  In an activity investigating 
the tube length changes in a trumpet, students needed to set up equations in order to 
figure out the volume of the vibrating air column inside the trumpet when a player 
is changing the pitch. As a wind instrument, the sound from a trumpet is produced 
by the players’ lip vibrations as well as the follow-up pressing of the piston valve, 
changing the length of the tube within the trumpet. A typical trumpet has three 
valves, and the length of the tube can be increased when players are pressing one or 
more of these valves with different combinations. Specifically, the instrument’s 
pitch will be lowered by (1) a major second interval when the first valve is pressed 
(9/8 longer than the original tube), (2) a minor second interval when the second 
valve is pressed (16/15 longer than the original tube), or (3) a minor third interval 
when the third valve is pressed (6/5 longer than the original tube) (see Fig. 2.6). 
Students set up equations based on this given information to calculate the length of 
tubes in different conditions when a specific valve was pressed. As An and Capraro 
(2011) proposed in their lesson designed for sixth-grade students:

Let’s suppose the tube length when no valve was pressed is 100 cm. For example, 
the press of the first valve will lower the instrument’s pitch by a major second inter-
val. Let’s represent the increased length of tube as x, yielding the following 
equation:

100 + x = 100 × (9/8)
x = 12.5 (cm)
So, the press of the first valve will increase the length of the tube by 12.5 cm.
Use the same method to create equations for the second valve (lowering a minor 

second interval), and the third valve (lowing a minor third interval). What are the 
equations for the second and the third valve? Discuss your equations with your 
classmates. (p. 67)

Fig. 2.6  Illustration of the changing tube length in a trumpet
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Geometry in Musical Instrument Design  Musical instrument design activities 
have provided links for associating geometry with music; many types of shapes 
have been used in the history of musical instrument design, and this process often 
involved combining different simple shapes to create irregular curves. In addition to 
investigating properties of shapes as well as their unique properties, by designing 
musical instruments, students have additional chances to apply geometric transfor-
mations and improve visualization skills.

Two guitar-themed activities (one for lower elementary grades and another for 
upper elementary grades) serve to illustrate how geometry has been contextual-
ized in music instrument design. In the Flying V guitar design activity (see 
Fig.  2.7), first-grade students played with triangles by making transformations 
such as translating, rotating, and resizing; they also worked with geometric 
concepts, such as obtuse triangles, isosceles triangles, and congruence. Specifically, 
students were directed to create two congruent triangles and then rotate one of the 
triangles and put the two sides (legs) together to create a V-shape figure as the 
guitar body. The same V shape was then resized at 1/3 scale to make the guitar 
head the smaller V shape, which was rotated for placement at the other end of the 
guitar neck opposite the guitar body. In the other activity, circles were employed 
as a geometrical shape for students to use as the basis for creating the outline of a 
classical guitar (see Fig. 2.8). An and Capraro (2011) presented this activity with 
the following instructional steps for fifth graders: (1) make four congruent circles 
tangent to each other and outline the edges of the two middle circles and the 
spaces; (2) find the symmetrical line and cut the line off; (3) regroup the two 
pieces by leaving an uneven, nonparallel space; and (4) redraw the outline and 
then all the sound holes with a smaller circle. In this classical guitar activity, stu-
dents investigated geometric concepts such as tangent circles, parallelism, and 
symmetry. In both guitar design activities, students explored the area and perim-
eter in the figures that they designed, and students were ready to conduct addi-
tional measurements based on real instruments.

Fig. 2.7  The basic steps 
for designing a Flying V 
guitar
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�Concluding Remarks

This chapter has provided a review and summary of research studies and activities 
identifying music-themed mathematics as a valid and worthwhile transdisciplinary 
pedagogy, which may, when well-implemented, promote both mathematics teach-
ing and learning. However, music is not a panacea for the ailments that plague direct 
mathematics instruction. Many of the existing resources and popular strategies for 
using music in mathematics teaching are primarily entertainment oriented, simply 
providing a cover story for mathematics word problems or playing background 
music instead of connecting with the mathematics content. Teachers can help reveal 
the inherent music-themed pedagogy of a math class. They can focus on musical 
resources that can truly assist in supporting instruction, which may develop stu-
dents’ understanding of the mathematical concepts with connections to music.

Teaching mathematics through music composition and musical instrument 
design is an application of constructivist learning because teachers need to direct 
students to engage in complex tasks and then facilitate students’ learning by trans-
forming difficult tasks into accessible, manageable tasks within students’ zone of 
proximal development (Vygotsky, 1978). Only when aspects of student-centered 
pedagogy are thoroughly implemented, such as proposing open-ended tasks for 
students to provide diverse answers or facilitating group discussion for students to 
exchange and evaluate their ideas, can students learn mathematics effectively 
(Schoenfeld, 2004). In our previous studies analyzing more than 200 teachers’ 
instructional designs (An & Tillman, 2014; An, Tillman, & Paez, 2015) and more 
than implementations of 80 lessons to students (An et al., 2013; An & Tillman, 
2015; An et al., 2016), we identified that effective mathematics learning only hap-
pened when students were cognitively engaged in participating with the mathe-
matics tasks by manipulating objects, performing activities, and applying the 
skills in generalized mathematical structures within arithmetic situations. Based 
on our collective research findings, the common feature among effective 
mathematics-music-integrated lessons is a mathematical process (Common Core 
State Standards Initiative, 2010; National Council of Teachers of Mathematics, 
2000) orientation in which teachers allowed students to (a) explore algebraic 

Fig. 2.8  The basic steps for designing a classical guitar
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patterns and geometric transformations as composing methods in planning 
rhythm, investigating intervals, and transferring chords; (b) apply statistical 
knowledge such as measurement and data analysis as mathematical tools for sup-
porting music analysis and creation processes; and (c) represent mathematical 
ideas through multiple representations, including singing, playing, composing, 
decomposing, and recomposing music works.

Music and mathematics are two intelligence domains of recognized importance 
in human learning, and using music to enhance students’ enjoyment and under-
standing of mathematics has been shown to help learners develop improved logical/
mathematical intelligence (Gardner, 1993). There is much potential in the integra-
tion of mathematics education and the arts; however, this potential has yet to be 
fully realized. Unfortunately, the pressure exerted by high-stakes standardized 
assessment has forced many creative teachers to involuntarily marginalize and 
ignore the arts, especially when teaching mathematics. Quantifiable standardization 
in education threatens to seriously harm the fundamental principles of liberal peda-
gogy and the ongoing quest for nurturing the next generation of innovative young 
minds (Pinar, 2004). As Slattery (2006) argued, curriculum should be a “kaleido-
scope” that opens the eyes, with the ultimate goal of teaching students how to gener-
ate critical and original thought. Without the arts, many colors and patterns are 
eliminated from the kaleidoscope’s viewscape, and the “complicated conversation” 
between students and teachers becomes limited. Teaching mathematics through 
music offers an opportunity to restore the kaleidoscopic nature of the curriculum.
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Abstract  The integration of math and literacy enriches student experience and 
increases the chances of successful math learning for students. Elementary-age stu-
dents typically spend hours each day building reading skills in literacy classes. 
Literacy skills that are emphasized in reading programs, including effective listen-
ing, comprehension, predicting, and questioning, are a logical fit with mathematics 
and help teachers and students dispel the myth that mathematics is a separate sub-
ject unrelated to other disciplines. Using children’s books to connect literacy skills 
to mathematics, a subject that often produces great anxiety in students, is a reason-
able and positive approach. Educational structures such as standardized testing and 
instruction that utilizes repetitive drill and practice as evidence of standards mastery 
contributes to this anxiety. Integration of math and literacy frees students to use 
knowledge they already possess in new applications. The use of children’s litera-
ture, therefore, can free students from boundaries that limit their confidence, moti-
vating them to see that success in mathematics is possible. Relevant children’s 
books also form connections between math and its application in the world. This 
helps students to understand that math goes beyond what they see in a math text-
book. How can the use of children’s literature in math instruction help break down 
barriers to math understanding and increase student success? Foundational studies, 
empirical research, and specific classroom examples are combined in this chapter to 
answer this question.

Keywords  Math and children’s books • Children’s literature in math • Story and 
math • Literacy and math • Math anxiety • Children’s book and motivation in math

mailto:mluedtke@smumn.edu
mailto:ksorvaag@smumn.edu


48

�Introduction

With the continued focus on academic achievement in math and science in schools, 
partially aimed at preparing learners to work in STEM fields, teachers must con-
sider a variety of alternative instructional approaches to meet the various needs of 
learners. Children’s literature can be a valuable tool in helping students understand 
math by placing math concepts in contextual settings. The alignment of meaning 
and context is essential when learning any new content, and most educators agree 
that learning should be based on meaningful understanding of concepts placed in a 
context of reality. In fact, the ideas of respected educational theorists in history set 
the foundation for this alignment (Barton & Heidema, 2002).

Vygotsky taught educators that cognitive, language, and social development 
require interactive dialogue where learners share experiences (Woolfolk, 2013). 
These experiences are often sensory and include concrete learning activities that are 
developmentally appropriate, as supported by Piaget’s work in stages of develop-
ment (Woolfolk, 2013). Bruner’s conclusions that learning should be active and 
engaging rather than passive (Barton & Heidema, 2002; Bruner, 1996) adds to this 
solid foundation that supports social, developmental, and active participation in the 
teaching and learning process. This social, developmental, and active approach 
helps students make meaning, and the use of narrative can be a tool that plays a part 
in that process (O’Neill, Pearson, & Pick, 2004). While instructional approaches 
that align with these ideas have been routinely applied in teaching literacy skills 
such as reading, speaking, and writing, they can also be effective in the instruction 
of math, where learners must build new knowledge based on previous understand-
ings in contextual settings (Columba, Kim, & Moe, 2005).

Before addressing how children’s literature can effectively enhance learning in a 
math classroom, it is important to identify how social, developmental, and active 
learning do or do not occur in literacy and math classrooms. Literacy and language 
are, historically, disciplines where social and active learning occur in educational 
settings. Students read and discuss, write and share, collaborate to make predic-
tions, and solve problems. They dialogue, debate, observe, and hypothesize 
(Columba et al., 2005; Schiro, 1997). Yet in math classrooms, such activities often 
do not occur. Instead, students may passively observe, while the teacher explains 
content and models practice and then work on problems individually. Some research 
criticizes such an approach (Burns, 2015; National Council of Teachers of 
Mathematics [NCTM], 2014), yet active and constructivist learning in math instruc-
tion, even at primary and intermediate grade levels where active learning may be 
present in other disciplines, exists only in pockets and isolated classrooms. It seems 
logical to consider that the positive benefits of using social, active learning in liter-
ary areas could be also applied to the teaching of math.

In elementary schools, students spend significant time engaged with literacy skills 
that build from prior knowledge. When reading and math meet, past learning in read-
ing can lead to new learning in math, giving students the freedom to use knowledge 
they already possess in one area to help make sense of new ideas in another. For 
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example, children who learn to use prediction skills to aid in comprehending a story 
can also use those skills to predict a reasonable answer in a math word problem. The 
integration of math and literacy, then, enriches student experience and increases the 
chances of successful math learning (Columba et al., 2005). Because understanding 
math is a constructive process, using skills already developed through literacy 
instruction can provide the foundation upon which math learning can be built (Barton 
& Heidema, 2002).

Children’s literature is one of many resources that can bridge the gap between a 
passive tradition in math learning and active participation and construction of 
knowledge for students (Columba et al., 2005), and studies support the idea that 
the integration of children’s literature with math content enhances a constructivist 
pedagogy (Capraro & Capraro, 2006; Elia, Van den Heuvel-Panhuizen, & 
Georgiou, 2010). In current practice, primary teachers frequently include chil-
dren’s literature in math instruction, often as an introduction to the lesson, but 
picture books and other literature can be used as more than merely an interesting 
opening to a lesson. It is also important to remember that children’s literature can 
be a valuable instructional tool for older, as well as younger, students. The use of 
children’s literature to help students see meaning in math can be strengthened 
through intentional planning and instruction and can benefit children of all ages. 
This natural teaming of literature and math begs the question, “How can the use of 
children’s literature in math instruction help break down barriers to math under-
standing and increase student success?”

�The Power of Story

To answer this question, one must first recognize the power that story has for human 
beings. The use of story can be a powerful learning and reflection tool, and this can 
be especially true in a classroom setting. Imagine an elementary classroom as stu-
dents come in shortly after recess and transition to the next learning block. Students 
are sitting on the floor around the teacher with bright eyes. Many cannot wait for the 
book the teacher holds to come alive in the classroom. As soon as the teacher lifts 
the book to introduce the title and show the cover, hands shoot up. Students want to 
share what they think the book will be about or what it reminds them of in their own 
lives. Some are so excited to share that they stretch their hand higher and higher. 
The energy and excitement builds as the new adventure unfolds.

Story has this kind of power. It invites the reader into a world where personal 
understanding, perspective, and experience matter. It draws on emotions and feel-
ings to capture the reader and brings a new sense of knowing that relates to other 
stories, experiences, or knowledge. A teacher who understands this kind of power 
can tap into it to create scenarios like the one described above in a variety of disci-
plinary settings. What if the start of a math class looked and felt like this? Story can 
take students there.
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According to Zazkis and Liljedahl (2009), storytelling supports memory, 
increases motivation, encourages engagement, and improves analytic skills.

One result of the development of language was the discovery that words can be used to 
evoke images in the minds of their hearers, and that these images can have as powerful 
emotional effects as reality might, and in some cases even more. (p. 15)

Capturing the attention and imagination of listeners is crucial, and in some situ-
ations, images can be used to promote direct math understanding. Connecting stu-
dents’ interests with story is a beginning step, and it can be the first step in 
motivating them to think about a math problem in a certain way. By piquing stu-
dents’ interests, the material presented may become more accessible. Students may 
also feel more relaxed because they are comfortable with story as a non-threatening 
means of delivering ideas. In a math classroom, the use of story also serves as a 
break in routine, further motivating students to ready their minds for mathematical 
thinking and learning (Zazkis & Lilijedahl, 2009). As students progress to practice 
and master a math concept, images in story can be a reflective base to which they 
can return as needed.

Stories can be “creative, suspenseful, imaginative, meaningful, poetic, humor-
ous, adventurous, vivid and colorful, mysterious, engaging, gripping, relaxing, 
touching, emotional, inspirational, conversational, easy to understand, and beauti-
fully written” (Columba et al., 2005, p. 2). When well chosen and well presented, 
literature moves the reader inside the story, making it easier to consider difficult and 
complex issues. In the process, the reader is allowed to recall positive memories of 
literary experiences that connect to life. They connect intellectually through famil-
iar memories that reach back to past emotions. Such experiences may include 
laughter and fun, further relaxing students to be open to learning (Flanagan, 2014). 
Because story is often a community process, sharing responses to stories can also 
contribute to a feeling of community and group cohesion, building on the benefits 
of social and active learning for students.

The use of story is a fundamental way for people to gain control of the world 
around them. Responding to story is not a conscious and deliberate activity; it is the 
way in which the mind naturally works (Wells, 1986, as cited in Columba et al., 
2005, p. 197). Narratives mirror life. They allow people to see a view of self that is 
presented in familiar as well as unfamiliar ways. Stories are not merely vessels for 
delivery of knowledge; they are intentionally chosen to achieve a specific purpose 
that goes beyond the acquisition of basic information (Columba et al., 2005). They 
do not present opportunities for finding the one, right answer. Instead, they greet 
students like an old friend who engages them in conversation. As a result, children’s 
responses to narratives are natural, not forced, and feelings are comfortable, not 
anxious. It is clear that the use of story is positive for students. But it can be an 
ignored resource when the content to be taught is not related specifically to literacy. 
Teachers must understand that the power of story is a natural tool that can be used 
in many subjects, including developing mathematical understanding and ways of 
thinking (Columba et al., 2005).
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�The Math and Literacy Link

To use the power of story effectively in math instruction, teachers must intentionally 
link math and literacy skills. Literacy skills emphasized in reading programs include 
effective listening, comprehension, predicting, and questioning (Gear, 2006). These 
skills are a logical fit with math and help teachers and students break down the myth 
that math is a separate subject unrelated to other disciplines (Bay-Williams & 
Martinie, 2004). The lessons learned from literacy instruction that apply to math are 
many. Students communicate orally and in writing. Teachers expect a variety of 
responses, even when the topic is the same. Vocabulary instruction is essential. 
Books provide students with common experiences that allow them to learn at a 
variety of levels. There can be a blend of whole class, small group, and individual 
work (Burns, 2015). These skills serve as a bridge as teachers move from reading to 
math. For example, in math, teachers often ask students to make estimates before 
problem-solving (predicting). Students write and discuss math ideas that can 
develop understanding (discourse). A variety of methods for solving one problem is 
encouraged (critical thinking). Students explain and present solutions to problems 
(problem-solving). Teachers use math vocabulary and explain thinking aloud and 
ask students to do the same (academic language). These are only some of the simi-
larities between approaches in literacy and math, and by using children’s books to 
stimulate math thinking and problem-solving, strategies that align between the two 
content areas can be used appropriately and effectively in both (Burns, 2015).

A key similarity in literacy and math is the importance of vocabulary develop-
ment. The purpose of developing vocabulary in literacy is to enhance comprehen-
sion and communication. This is important when meanings of words in story and 
math are the same, but even when the mathematical meaning of a word is different 
and specific to math, intentional vocabulary instruction is important (Burns, 2015). 
Consider the many words that have meanings specific to math. When first intro-
duced to these words, students will rely on their previous knowledge of the meaning 
of the word. For this reason, it is important for teachers to recognize the importance 
of prior knowledge in learning vocabulary and to be intentional about teaching the 
meaning of math words (Burns, 2015). For example, students who hear words such 
as difference, product, factor, power, face, remainder, dividend, times, compass, 
expression, positive, negative, improper, rational, irrational, and real may have 
existing contexts for these words. A student who views a product as something 
bought in a store may struggle to relate that word to the answer in a multiplication 
problem. It is the task of the teacher to convey that the purpose in learning the lan-
guage of math is to be able to communicate about mathematical ideas, just like 
words in reading are used to communicate ideas about life.

The connections between literacy and math in vocabulary development alone are 
worth making intentional instructional decisions (Burns, 2015). In literacy, students 
learn to break words apart into roots, prefixes, and suffixes. In math, the same should 
be done. The word circumference begins with circ. Asking students to name other 
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words that begin in the same way builds a bridge. Students reflect on the meaning 
of circle, circulation, circuit, circumnavigation, circumstances, and circumspect. 
When students learn that circ relates to something round, they have built connec-
tions among words that refer to math, social studies, science, and life. Children’s 
books can present the opportunity that leads to this learning. By asking students 
why the main character’s name in Sir Cumference and the Dragon of Pi 
(Neuschwander, 1999) is “Sir Cumference,” the door is opened to connecting the 
character with the feat he must accomplish to break the spell that changed his father 
to a dragon. The meaning of circumference as the distance around a circle is part of 
the story, is visual, and is the solution to the problem. Add in a little humor as to why 
circumference is “Sir Cumference” and pi is “pie” as the family has pie to celebrate, 
and students have two ways, story and math, to lock this content into memory and 
enjoy the process of learning.

Vocabulary instruction also applies in connecting children’s literature to the study 
of geometric shapes. A study completed by Skoumpourdi and Mpakopoulo (2011) 
showed that there are misconceptions as children learn about the attributes of two- and 
three-dimensional objects. When tangrams and geoboards are used by teachers to rep-
resent plane figures, students may think that the names of plane figures, such as square 
or rectangle, can be used to name solid shapes such as a cube or rectangular prism. 
They may understand that an object is a ball, a head, a pizza, or a table but are unable 
to name the three-dimensional mathematical term that aligns with each. In the study, 
The Prints, a book developed by the researchers that includes both story and math, was 
used to help alleviate this misconception (Skoumpourdi & Mpakopoulou, 2011). In 
this book, tangible objects such as a piece of wood or a tent are used to make prints on 
the ground that create a circular, triangular, or rectangular shape. The conclusions of 
the study showed that using the picture book for instruction shifted all students’ under-
standing so that each could correctly identify the print that a tangible object would 
make. Students were better able to understand that plane shapes are the result of a print 
made by a solid object but are not the object itself. By engaging with the book, stu-
dents helped the main character make discoveries while also learning math ideas.

In another study involving geometry, one group of middle school students was 
exposed to literature in addition to the textbook and regular instruction, while 
another group of students was given unstructured seatwork as the added factor in 
place of the literature addition (Capraro & Capraro, 2006). In this study, the chil-
dren’s book, Sir Cumference and the Dragon of Pi (Neuschwander, 1999), was used 
as a follow-up to instruction with one group of students. Students were asked to 
connect characters and events in the story to the content they had learned in the 
classroom. They developed understanding through investigation and discourse of 
geometry vocabulary as it related to the story. This occurred after, and in addition to, 
a hands-on experience and memorization experienced by both groups (Capraro & 
Capraro, 2006). Conclusions showed that students exposed to both the instruction 
and connection to literature performed significantly better on the posttest. Many 
students also reported that the book was a favorite part of the lesson.

The overlap between math vocabulary and everyday English vocabulary stresses 
the relationship between words and disciplines (Barton & Heidema, 2002). Direct 
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and intentional instruction about words that are integral to content has a dramatic 
effect on learning. As follow-up activities to reading children’s literature, students 
can be asked to list, group, and label words, especially in a second reading of a story 
that includes vocabulary. For example, students may do a geometry word and char-
acteristic sort after reading The Greedy Triangle (Burns, 2008a). Students may com-
plete a question/answer/relationship activity that asks them to make conceptual 
connections that lead to critical thinking. They may express math learning through 
the retelling of a story using a RAFT activity (role, audience, format, topic) where 
they consider their role as the writer, the audience, the format, and the topic. This 
strategy serves as a post-reading reflective exercise. Many other strategies designed 
as literacy skills that aid in comprehension, such as Write to Learn (using short, 
informal writing responses such journals or logs that help students think through 
key concepts or ideas) are also effective in making meaning in math (Barton & 
Heidema, 2002).

Considering the link between math and literacy is important for the reasons pre-
viously mentioned, but it also becomes important when considering the confidence 
of a teacher. Using literacy resources to teach ways of learning and knowing is often 
comfortable for elementary teachers who have experience teaching reading con-
cepts and skills. Teachers’ eyes light up when they find the perfect book to use as 
the basis for a literacy lesson, but many do not feel the same when teaching math 
(Burns, 2015). Along with other benefits, the pairing of a subject in which a teacher 
has confidence with one where there may be more doubt is a reasonable way to 
allow for teacher improvement in math instruction.

�Seeing and Experiencing Math Content

To set the stage for the natural union of story and math, it is important to form a 
positive vision of what effective math instruction looks like. That is, how do teach-
ers want students to experience math content? Traditional approaches to teaching 
math often involve symbols that can have no meaning to students when used in 
isolated mathematical problems that do not connect to student lives (Barton & 
Heidema, 2002).

To make meaning from math, students must grasp the big picture of the mathe-
matical concept or of the problem being presented. They must see the problem as a 
whole, a main idea, as they would see a plot in a story (Barton & Heidema, 2002). 
To provide this context, students can be offered opportunities to process what they 
are learning in a variety of ways, as well as a chance to reflect on what they have 
learned so that learning can be extended to new areas. An example would be allow-
ing students to sketch what they hear and see or to view pictures of the situation. 
Research shows that when using sensory systems such as colorful visuals, sounds, 
objects, smell, or taste, student attention is more focused (Gregory & Kaufeldt, 
2015). The use of a cartoon, a photograph, music, or a video can help students see 
the meaning in what is being learned. The brain is naturally curious, so providing 
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puzzles, mysteries, or other discrepant events promotes a desire for students to seek 
answers. The use of picture books to teach math does this by connecting text with 
illustration.

When deciding how students will experience math, teacher must determine how 
math concepts, both simple and complex, can be presented to readers of all levels in 
ways that allow them to make sense of what they are seeing and doing based on 
individual understanding (Columba et al., 2005; O’Neill, Pearson, & Pick 2004). 
Teachers must consider purpose, audience, structure, and standards when planning 
math instruction that is meaningful. It is also important to consider how math might 
be integrated with other subjects, as recommended by math experts (Columba et al., 
2005). Too often students learn a mathematical operation but fail to see where and 
how it should be used, and when math concepts are taught passively, rather than 
actively, students may not understand what the math means. Active learning in math 
is essential. Instruction should be child-centered, based on opportunities that allow 
children to learn at his or her personal level and to construct knowledge through 
engagement.

Providing students with opportunities to encounter math ideas in children’s lit-
erature can accomplish these important characteristics of effective math learning. In 
some cases, the book chosen focuses on the meaning, the intellectual point, of the 
math (Columba et al., 2005). The math is at the center of the book, and the story is 
the avenue for delivery. In these types of books, the math to be learned is explicit. 
An example of a book that is specifically written to teach math skills is Spaghetti 
and Meatballs for All (Burns, 2008b), a story presenting the problem of arranging 
tables to seat all the dinner guests. Students learn that a set of tables arranged in dif-
ferent ways will have the same area but different perimeters. Another example is 
The Greedy Triangle (Burns, 2008a), a story whose characters have names and char-
acteristics of geometric shapes. Both books were written by Marilyn Burns, a well-
known expert in math education in the United States. The stories present direct 
mathematical concepts and instruction and include pages titled “For Parents, 
Teachers, and Other Adults” that provide ideas for how the books can be used to 
teach the embedded math skills.

In some children’s books, the development of the story is at the forefront, and 
math instruction is secondary, like a passenger going along for the ride. In this case, 
content may be explicit or implicit in the story. For example, Sir Cumference and 
the Dragon of Pi: A Math Adventure (Neuschwander, 1999) combines humor, a 
story whose characters’ names are based on math vocabulary words, and a spell that 
must be broken, to teach children that the distance across the middle of a circle 
through the center fits around the outside of a circle three times and a little bit more. 
Characters’ names are Sir Cumference, Lady Di-ameter, Radius, Geo of Metry, and 
Sym Metry. Lines such as It’s also the dose, so be clever, or a dragon he will stay...
forever and a celebration with pie when the spell is broken appeal to the imagination 
of students. Another story, One Grain of Rice (Demi, 1997), introduces the doubling 
function in the tale of a village girl named Rani who outsmarts a cruel Raja by ask-
ing for a reward of one grain of rice to be doubled each day for 30 days. How much 
rice can Rani gain to help feed the people in her village when she is granted this 
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reward by the unknowing Raja? A pull-out visual on the final pages of the book 
depicts camels carrying the bushels of rice that result, a powerful illustration of the 
mathematical concept.

Occasionally, the math in a children’s book is invisible, with the teacher finding 
effective ways to make a connection between an excellent piece of literature and 
math. For example, a teacher might create an investigation that asks students to 
answer the question, “How big is Hagrid?” as they read Harry Potter and the 
Sorcerer’s Stone by J.K. Rowling (Bay-Williams & Martinie, 2004). In the novel, 
Hagrid is described as twice as tall and five times as wide as a usual person. This 
investigation asks students to think critically to first identify what a “usual person” 
looks like. The purpose for using the literature in cases like these is to connect a 
story that students are already familiar with to math, hopefully motivating them to 
become engaged with the math content. Another example is Snowflake Bentley 
(Martin, 1998), the story of Willie Bentley and his interest in the world around him. 
The story tells of his love for all forms of moisture—rain, ice crystals, and snow-
flakes. Willie finds that snowflakes are “masterpieces of design,” an idea that could 
lead a teacher to discuss weather or geometric shapes. An example of this type of 
story for younger children is A Little Bit of Winter (Stewart, 1998.) The story about 
the coming of winter as shared by Rabbit and Hedgehog includes quantity words 
such as a little bit, more, less, small, and big. Teachers of very young children might 
use it to teach words that show an amount or comparison words such as greater than 
or less than.

Choices made by a teacher to enhance math learning in any of these three ways 
are supported by research showing that pictures with representational function, 
rather than purely informational function, resulted in increased math statements 
during story discussions by participants (Elia et al., 2010). In other words, learning 
about the math while seeing it portrayed in the story provides students with a big 
picture of a math concept. Research also supports the idea that it is the teacher’s 
responsibility to help students connect informal math understanding, which can be 
presented through picture books and resulting discussions, with formal math con-
tent (Van den Huevel-Panhuizen, Van den Boogard, & Doig, 2009).

For example, a study conducted with fourth grade students integrating children’s 
literature into the instruction of long division showed an increased understanding of 
this math operation when children’s literature along with other methods that allowed 
students to see math was used in extended teaching or reteaching (Thomas & Feng, 
2015). Researchers evaluated student understanding without the use of children’s 
literature for a 2-week long division unit and then again during a 2-week unit using 
children’s literature. Only instruction and assessment connected to the algorithm 
were used to lead student learning to the first posttest, while in the second round of 
assessment, literature, and also manipulatives and graphic organizers related to the 
children’s literature, was added.

Whatever the approach, stories provide contexts for students that allow them to 
think critically, solve problems, and make connections to the world as they see and 
know it (Columba et al., 2005). Books can lead students to discover patterns and 
relationships, to reason, and to confront authentic problems through an inquiry 
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approach. Children’s literature provides opportunities for students to listen actively 
as they see math concepts humanized and as they confront abstract ideas brought to 
life through story.

When considering children’s books that contribute to understanding the mean-
ing of math, teachers must be careful to choose literature that is engaging to the 
reader, meets the purpose of the lesson, is age appropriate, and includes meaningful 
and relevant math concepts (Burns, 2015; Columba et al., 2005). Resources must 
be viewed as high quality from a literary perspective, and content presented must 
be mathematically sound in that it helps students learn to think and reason mathe-
matically. Books chosen may introduce the connection to math through an investi-
gation, a problem, or an exploration (Burns, 2015). Connections to national 
standards may be considered, or books may be chosen that align with reading com-
prehension strategies taught in literacy classes (Columba et al., 2005). When cho-
sen and used effectively, children’s literature provides “vehicles for math lessons in 
unique ways” that help students see the meaning in math and experience math 
content (Burns, 2015, p. 129).

�The Importance of Prior Knowledge

One of the unique ways that children’s literature can function in the classroom is by 
activating prior knowledge. Inadequate prior knowledge activation or prior knowl-
edge that is not organized and accessible to long-term memory can be a major obsta-
cle in math learning (Barton & Heidema, 2002). In math, students must develop 
organized constructs that help them understand and explain how concepts and pro-
cedures are related to one another. How information is organized and integrated in 
the mind (schema theory) promotes the activation of prior knowledge, an essential 
piece in meaning construction (Columba et al., 2005). By spiraling back to previous 
learning, concepts, words, and symbols can be developed and practiced. If students 
develop this structure related to the content, they will be able to recall and use prior 
knowledge quickly and effectively. Learning is goal oriented and links to old infor-
mation, so asking students to pre-activate thought prepares them for new learning 
(Barton & Heidema, 2002; Gregory & Kaufeldt, 2015).

The use of story as pre-learning can serve this purpose, because understanding 
narrative is based on past experience. When story is heard, existing knowledge is 
awakened, and new learning can be connected to that knowledge. If, on the other 
hand, connections do not occur, questions can be formed that can help bridge the 
gap between old and new learning as instruction continues (Barton & Heidema, 
2002). In this case, math is learned through the interaction between what students 
already know and what they can learn by reading children’s books that are carefully 
chosen. The role of the teacher in this process is facilitator, one who selects resources 
and prepares opportunities for learning (Columba et al., 2005). Teachers may choose 
to supplement the prior knowledge connection through literature by questioning, 
brainstorming, or previewing, as a story is introduced and read. This connection can 
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also be enhanced through interactive and reflective activities related to the literature 
being used (Barton & Heidema, 2002). Activities may include questions, sharing 
responses with peers, or more formal measures such as graphic organizers (Barton 
& Heidema, 2002; Gregory & Kaufeldt, 2015). Children’s literature can also be 
used after instruction to help students develop a strong understanding of math 
vocabulary and academic language (Capraro & Capraro, 2006). In these cases, stu-
dent references to the characters and plot in a story help form the long-term memo-
ries that will serve as prior knowledge in the future when math concepts are 
reviewed, sustained, and evaluated for mastery.

Students learn best when they connect new learning to existing knowledge and 
skills, and this is true also for teachers (Burns, 2015). By carrying what teachers 
already know about activating prior knowledge in reading instruction into the plan-
ning instruction in math, they, like students, also build learning in a new application. 
During reading instruction, teachers want students to read fluently, love reading, 
develop good word attack skills, and comprehend what they read. They hope stu-
dents will make predictions about what might come next in a story, retell a story in 
their own words, identify what is important and what is not as important in what 
they read, and experience shared reading through guided reading, independent read-
ing, and read alouds (Burns, 2015). Prior knowledge is the foundation for all of 
these literacy skills, for both students and teachers, and they can also be effectively 
applied to math.

Reading of picture books can stimulate mathematical thinking, and the inten-
tional choice to use literature recognizes that children possess a great deal of infor-
mal understanding of math even before math instruction occurs. Children’s books 
can serve as a springboard from this prior math knowledge to more formal levels of 
mathematical understanding. A study showing this connection used the picture 
book The Surprise (Van Ommen, 2003). The main character in the book is a thick 
wooly sheep who measures the thickness of his fleece, cuts his wool, and delivers it 
to another character, a poodle, for spinning. The sheep knits a jumper from the spun 
wool and gives it to a giraffe as a present. Throughout the story, the sheep graphs the 
data in this process. Children responding to the story discussed what the sheep is 
doing as the story progresses. Without any instruction, students understood that the 
sheep was measuring and keeping track of something and marking the results on a 
line plot, shown in the pictures in the book. The learning process in this case begins 
with prior knowledge about math that students already possess. Children had a gen-
eral notion of what the chart in the story showed and understood that the upward 
line represented an increase (Van den Huevel-Panhuizen et al., 2009).

While many books used for the purpose of activating prior knowledge are fiction, 
nonfiction books are also valuable instructional tools. The History of Counting 
(Schmandt-Besserat, 1999) introduces students to 20 years of research completed 
by an archeologist on the history of numbers and counting. The information inte-
grates math with social studies as it discusses the rise of cities, past cultures and 
how they adapted, and the modern decimal system. Questions are posed that stu-
dents will hopefully find intriguing: What did people do when there were no num-
bers? How did our current number system evolve from the system used in ancient 
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times in the Middle East? The combination of history and math, combined with the 
beautiful illustrations of Michael Hays, results in an appealing book that promotes 
critical thinking. As math and social studies are intertwined in the History of 
Counting, the primary purpose of nonfiction literature can be to intentionally inte-
grate subjects, helping students see that math is not isolated in the world. The book, 
MATH-terpieces: The Art of Problem-Solving (Tang, 2003), can be used to teach 
addition to younger students and problem-solving to older students, making it an 
appropriate choice for teaching math skills. But primarily, the book may be used as 
an introduction to art history. The novel, Shipwreck at the Bottom of the World: The 
Extraordinary True Story of Shackleton and the Endurance (Armstrong, 2000), 
presents the story of 27 men who set out to become the first team to cross Antarctica 
in 1921. While the opportunities for math instruction abound (estimation, measure-
ment, mapping, timelines), the focus of the activity might be helping students 
understand how math is used in exploration and connected to science and 
geography.

These resources, when read aloud, require children to listen in a different way. 
Students listen to the facts presented and assimilate them into what they already 
know about the subject addressed (Bay-Williams & Martinie, 2004). Prior knowl-
edge is, again, key to building new learning on existing knowledge. Authors of 
nonfiction books are sensitive to this and carefully consider how to present new 
information to make it accessible to children (Barton & Heidema, 2002). The use of 
literature to activate prior knowledge, then, can be effective for both primary and 
intermediate students and can include both fiction and nonfiction genres (Gregory & 
Kaufeldt, 2015).

�Student Motivation

While the use of children’s literature is an effective way to activate prior knowl-
edge, it may be even more important when considering student interest and motiva-
tion. Traditional math teaching that relies on teacher modeling followed by 
individual student work is often not motivating to students (NCTM, 2014). Multiple 
problems practiced in drill fashion may not pique the interest of students or hold 
their attention. The use of children’s literature, however, can eliminate some of the 
obstacles to motivation and heighten student interest in a variety of ways (Barton & 
Heidema, 2002).

For example, it is possible that the storyline in a children’s book can provide the 
foundation for an entire day’s lesson, focusing student attention on one story, one 
problem, and finding the solution to that problem. Students move from the often-
overwhelming task of completing many problems, a task that can seem to have no 
purpose in their minds except to complete an assignment, to solving one complex 
problem that is presented in the context of a story. This can be highly motivating. 
For example, after reading Spaghetti and Meatballs for All (Burns, 2008b), students 
may draw and calculate the perimeter and area of a set number of tables organized 
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in different configurations to find the arrangement that can seat the most people. As 
students complete this task, they compare their findings with other groups of stu-
dents, and patterns that emerge are shared. Through activity and discourse, students 
discover that no matter how the tables are arranged, the area is the same, but the 
perimeter, the relevant measure when considering where people will sit to solve the 
problem in the story, is different. In this type of mathematical instruction, students 
go through a process of drawing and calculating while considering a real-life situa-
tion they already understand, tables and people. Past knowledge is combined with 
knowledge gained in a socially interactive setting, making it much more likely that 
students will be motivated to both learn and remember the concept addressed.

Math problems paired with children’s literature are also often interdisciplinary, 
connecting to science, reading, social studies, or the arts. This can increase the 
chance that the story will appeal to student interests, which may in turn, increase 
student interest in the math. For example, The 39 Apartments of Ludwig van 
Beethoven (Winter, 2006) illustrates the use of simple machines to move pianos, the 
importance of neighborhood as community, and the artistic genius of Beethoven. 
Mathematically, the story focuses on the five legless pianos owned by Beethoven 
and the task of moving them by posing the question, How hard is it to move 5 legless 
pianos 39 times? As the story unfolds, the reader visualizes the pianos and the pages 
of Beethoven’s great works spread out over the floor of his apartment in the Vienna 
theater district. But when Beethoven forgets to pay the rent, he has to move. Because 
his second apartment is in a dangerous part of town, he moves again, and the pianos 
follow on a series of pulleys. A third apartment with a view of the Danube is aban-
doned because of neighbors’ complaints about noise, and a fourth apartment is in an 
attic. Through all of the moves, pianos are bought, left behind, and moved on pul-
leys and slides to make it possible for Beethoven to compose his great musical 
works for the world. Math, science, and the arts are integrated in telling the story of 
this great master, capturing a variety of student interests through one resource.

Such integration of disciplines helps teachers reach the whole child and elimi-
nates the separate compartments that can be created by teaching subjects in isola-
tion (Clements & Sarama, 2004). For example, plots in children’s books may align 
math with the study of faith and love in an immigrant family (The Keeping Quilt – 
Polacco, 2001), environmental issues and the conservation of natural resources 
(The Great Kapok Tree – Cherry, 1990), or Bernoulli’s principle and the flight of 
Charles Lindbergh (Flight: The Journey of Charles Lindbergh – Burleigh, 1997) 
(Columba et al., 2005). In these examples of literature, math may be the main focus 
of the book or math may be in an even partnership with an exceptionally strong 
piece of literature.

Integration of math with other topics also allows teachers to consider student 
interests that may be connected to gender, age, reading ability, ethnicity, religion, 
and experience with literature (Clements & Sarama, 2004; Columba et al., 2005). 
Teachers can intentionally seek to discover student interests and can have them in 
mind as choices in literature are made (Gregory & Kaufeldt, 2015; Willis, 2010). 
The teacher may be aware of books that students have already read and may choose 
resources that connect to those, or a teacher may reference materials previously or 
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currently used in another discipline and connect them to math. The selection and 
inclusion of quality literature that aligns with student interest is one way to create a 
motivating learning environment in a math classroom (Columba et al., 2005).

Using literature to present math content is also motivating in another way, in that 
through this process, students are allowed to determine responses and find meaning 
at an individual level (Columba et al., 2005). The triangle formed when the reader, 
the text, and the context for the content are all considered is important and unique 
to each student. Because children come from different backgrounds, they have dif-
ferent interests and abilities, and they have different levels of motivation. By care-
fully choosing appropriate literature, a teacher can consider these characteristics 
and differentiate for students. Teachers can also consider the aesthetic response to 
reading that students may have, whether they enjoy reading or being read to or 
whether reading is a struggle. Considering student interests also helps teachers 
make math relevant to student lives. Books involving math concepts can be chosen 
intentionally to make personal connections with the reader, providing opportunities 
for students to see themselves in the characters (Columba et al., 2005).

While closely related, recognizing student interests and understanding student 
motivation are two different things. Appealing to student interest is one thing, but 
considering how to get students to pay attention and engage in rigorous mathemati-
cal tasks is another (Gregory & Kaufeldt, 2015). The desire to want to learn is the 
energy that leads to engagement with both peers and content, which must be sus-
tained for learning to occur. When motivation is high, teachers and students together 
are able to create a learning environment that is built on habits of care, such as sup-
port, encouragement, listening, respect, and the ability to positively negotiate differ-
ences. These conditions, however, must be intentionally created and supported by 
teachers to be maintained. Teachers must understand that students often arrive at 
school with a well-developed self-image that is perceived by the student as compe-
tent, incompetent, or somewhere in between. A student’s feelings about the ability 
to succeed in school, either in general or in a particular subject, are well ingrained. 
Students who view themselves as incompetent math students are likely to have low 
motivation in math; therefore, it is crucial that these students see that success is pos-
sible for motivation to increase.

Planning instructional frameworks is also important when considering what will 
motivate students to learn. How a lesson is introduced or the format in which the 
math content is delivered is key to engaging students (Barton & Heidema, 2002). 
Literature can serve as the hook that grabs student attention or presents content in 
ways that vary from traditional formats. If students view themselves as unsuccessful 
in math, the use of story can build confidence by changing the focus and how they 
view the content. Children’s books can be effective in motivating children to think 
and reason mathematically. Books can stimulate imagination while also teaching 
important concepts and skills, thus motivating students to learn math, sometimes 
without them even being aware this is happening.

Studies support the idea that picture books and children’s literature can increase 
motivation in students. One study showed that picture books elicit mathematical 
utterances from the reader without prompting (Van den Huevel-Pahnuizen & Van 
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den Boogard, 2008). When books with limited text were used with kindergarten 
students in this study, students responded with mathematical observations that 
expressed how many toys were present or used the language all or everyone or none 
or nobody to describe the characters. Other student responses were spatially related 
and expressed with words such as here or there or one out or one in. This study 
showed that picture books can motivate students to respond with mathematical 
thinking even without the direct involvement of the teacher through instruction. The 
book alone provoked responses related to math.

At other times, however, the direct involvement of the teacher is important. In 
another study involving kindergarten students, children were invited to tell what 
was happening in a story by viewing illustrations before any text was read (Rathé 
Torbeyns, Hannula-Sormunen, & Vershchaffel, 2016). While student utterances did 
involve math, students were unable to see the larger picture of the mathematical 
concepts when asked to make predictions at quarter points throughout the book. 
This study shows that while it is not always possible for students to gain the knowl-
edge intended from a picture book alone (without intentional instruction and 
involvement from the teacher), the picture book did encourage student responses, 
demonstrating that students were motivated to interact with the text.

Beyond considering how lessons are introduced and what resources are used to 
present content in a math lesson, the method of instruction must also be considered. 
Active learning strategies, those that ask students to read, talk, and explore while 
making sense of their world, are naturally motivating to most students (Columba 
et al., 2005; Willis, 2010). Books stimulate and support conversations among stu-
dents, and conversations can build excitement for math (Burns, 2015). Gregory and 
Kaufeldt (2015) express this idea clearly when they state, “Brains don’t like to be 
bored” (p. 148). Boredom is a clear path to disengagement with content, and disen-
gagement negatively affects learning. According to Gregory and Kaufeldt, school, 
in some situations, is “the least responsive institution in today’s society” (p. 146), 
clinging to traditional methods of teaching that originated from factory model ideas 
instead of moving to a thinking model. This certainly can be true in math class-
rooms. Teachers must remember that children are thinkers. They are naturally curi-
ous and want to figure out their environments (Columba et al., 2005; Willis, 2010). 
A picture book used effectively can pique curiosity and focus student interest, pro-
viding an avenue for students to find meaning from content and allowing them to 
engage socially at various stages of development (Columba et al., 2005).

Since all information enters the brain as sensory input, the use of picture books 
in instruction provides several ways to encourage curiosity (Willis, 2010). Children 
listening to a well-read story hear animated reading that includes voices of charac-
ters, suspenseful pauses, creative word order used by authors, and color and art 
provided by illustrators. Well-constructed and presented stories that include math 
content can elicit positive responses in students and can help alleviate negative feel-
ings about the content. Students feel safe with story, and safety is a highly motivat-
ing condition.

The social interaction provided through discussion of literature is, by itself, moti-
vating to students (Columba et  al., 2005). The social aspects of learning: play, 
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dialogue, small group tasks, and whole class work, provide opportunities for 
multiple interactions for students (Columba et al., 2005; Young-Loveridge, 2004). 
While traditionally math is often taught in a line that runs only between teacher and 
student, when taught using methods that encourage discussion and social interac-
tion, a web of connections is created, increasing the chances that something will 
make sense to a student and improve math understanding. Math instructional 
choices that create such a network can benefit students by embracing the natural 
inclination students have to be social with their peers.

Not only does social interaction motivate students to learn, the use of children’s 
literature can also humanize math for children. The inclusion of story in a math les-
son challenges the stereotype of math as a noncreative, unimaginative, or cold sub-
ject. It builds on the positive reaction many children have to hearing or reading 
stories, providing the teacher with yet another way to communicate about math. 
Literature becomes the connecting agent among math content, student interest, and 
student background. Because story is personal to the student, the connection 
between story and math can motivate students to learn, building confidence, inter-
est, and enjoyment (Columba et al., 2005).

�Math Anxiety

There is no question that a well-constructed lesson relying on the use of children’s 
literature can be motivating to students, but it is important to recognize that the use 
of children’s literature can also reduce math anxiety, further increasing a student’s 
ability to learn. High levels of anxiety negatively affect student success in math on 
a regular basis. Math anxiety can be exacerbated by standardized testing and instruc-
tion based on repetitive drill and practice used to evidence mastery of standards. It 
can exist because of previous real or perceived failures in math learning. Working in 
isolation can reinforce the fear that a student cannot be successful, and this fear can 
inhibit math learning. Students enter math classrooms with a preformed mental dis-
position, some even perceiving that they are under threat (Gregory & Kaufeldt, 
2015). There is often a fixed mindset about one’s ability in math, and students may 
not believe that they have the potential to grow or be successful while learning math. 
Negative attitudes about learning math can decrease motivation, which, in turn, can 
seriously affect achievement. Even if students get off to a positive start in math, 
math anxiety can cause motivation to wane over time, either as students get into new 
content that confuses them or as they move from primary grades to intermediate 
grades when math content becomes more complex. Students who become discour-
aged may fight instructional choices that emphasize math understanding over rules 
that can be easily presented by the teacher, memorized, and applied. (Barton & 
Heidema, 2002). Students may seek the easiest way to conquer assignments, which 
often is the memorization of rules, out of fear that they are incapable of understanding 
math on their own.
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A way to reduce anxiety created by the fear of isolation is to remove the focus on 
the individual and instead, place the individual in a community where students con-
struct knowledge together. In a constructivist classroom that uses children’s litera-
ture as one means of instruction, the teacher is intentionally placing the students in 
the center of the picture, making them a prominent part of the learning experience 
(Willis, 2010). In such a positive collaborative environment, attentive listening and 
mutual respect abound, and building community is part of the daily routine. When 
students believe that they are part of a team of learners in a positive and supportive 
environment, anxiety is reduced. The use of children’s literature can contribute to 
such an environment. When reading together or responding to a book being read by 
a teacher, students are asked to collaborate, discussing the story and the math 
involved. Because the reader is the interpreter of story, there is room for multiple 
views and opportunities to recognize differences and build respect (Willis, 2010).

Working intentionally to reduce math anxiety is important to help reduce emo-
tions that can negatively affect math learning. There are few subjects that push 
“emotional buttons” the way math does (Willis, 2010). To be successful in math, 
competence is required in reasoning and abstract thinking, pattern and relationship 
recognition, and conceptual understanding. Students are asked to learn, use, and 
apply knowledge in new ways. Too often, these rigorous expectations are threaten-
ing to students. For teachers, the first step in reversing math negativity is to recog-
nize it. Some statistics report that one third or more of all students hate math, more 
than twice any other reported subject (Willis, 2010).

A key to helping teachers recognize that math anxiety exists and changing nega-
tive attitudes is to create an achievable challenge for students by differentiating for 
each student’s level of intellectual and emotional capacity (Willis, 2010). Connecting 
children’s literacy skills and math is just one of many ways to provide this achiev-
able challenge and, thus, help reduce anxiety in students. Integrating skills students 
have mastered in literacy to new applications in math eases insecurities. Students 
are able to use knowledge they already possess in new applications. Even a single 
strategy, such as using children’s literature to teach math, can help free students 
from boundaries that limit their confidence, motivating them to see that success in 
math is possible.

A study using literature to help reduce math anxiety brings all these points 
together. In the study conducted with eighth grade math students, researchers exam-
ined student learning that resulted from instruction with and without the inclusion 
of children’s literature (Green, 2013). In the study, both math achievement scores 
and math anxiety scores were analyzed. Results showed that there was a significant 
gain in math weekly scores and a significant decrease in math anxiety scores when 
pre- and posttests were compared.

There are many factors that likely contributed to these results. When relating 
math content to children’s literature, learning happens through integration of skills 
and subjects (Columba et al., 2005). There is less pressure created by timelines that 
expect students to complete large numbers of problems. Instead, lessons focus on 
one or two big ideas rather than trivializing content into 25 problems done in the 
same way, often seen by students as busy work. Through the context of children’s 
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literature, math makes more sense to the child, and the content can be adjusted to 
individual differences and interests, providing a rich context for the development of 
a wide range of skills. When literature includes active learning strategies, students 
learn in the safety of community. Repetition can help students master concepts, and 
while repeating problems in math may seem like drudgery to students, rereading a 
favorite book may not. Teacher questions during the reading of a book, a natural 
process when reading, can help students clarify understanding and build on the 
ideas of others.

Before children can love math, they have to be comfortable with it (Willis, 2010). 
Helping students reach that comfort level involves reducing or eliminating math 
anxiety by creating a learning environment where students see that successful learn-
ing in math is possible.

�Math Applications in the World

There are other advantages that emerge when moving students from known skills in 
reading to new applications in math. Children’s books provide opportunities for 
students to make connections, integrate ideas, and synthesize concepts. This kind of 
thinking enables them to connect mathematical concepts to life experiences (Van 
den Heuvel-Panhuizen, Van den Boogard, & Doig, 2009). It is difficult to expect 
students to be excited about learning anything that is not relevant in their lives and 
in the world. Connections between story and life can be natural for students and can 
help them see that something they are learning connects to someone’s life, so pos-
sibly it also connects to their own. Books can help students generalize novel, causal 
information from stories to the world and encourage them to look for similarities 
and non-similarities between the story and their own life. If a story is realistic, chil-
dren relate the story to what they know of life, and they are more likely to generalize 
problems and solutions to the problem presented (Walker, Gopnik, & Ganea, 2015).

Students often report that math is not relevant to their lives, so it is important for 
teachers to help students see that math is more than what they see in a math textbook 
(Bay-Williams & Martinie, 2004; Gregory & Kaufeldt, 2015). By connecting math 
to real-world experiences, students learn that they are consumers of math and that 
math is all around them and has value in their lives (Barton & Heidema, 2002; 
Gregory & Kaufeldt, 2015). When math is not seen as relevant and practical in life, 
dangerous results can follow. A 2005 Associated Press-America Online poll of 
1,000 adults in the United States revealed that 37% of respondents “hated” math in 
school (Willis, 2010, p. 5). This was more than twice the number who reported hat-
ing any other subject. In a random sampling of adults in an evaluation of math lit-
eracy, 71% could not calculate miles per gallon or determine a 10% tip for a lunch 
bill (Phillips, 2007, as cited in Willis, 2010). Myths about math ability still abound, 
perpetuating the idea that a person must be very intelligent to be good at math, that 
it is OK to be bad at math because most people are, or that math is not often used 
outside a math classroom (Willis, 2010). Some parents are not bothered when their 
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children struggle in math because they do not perceive that they are good at math 
either. An important role for a teacher is showing students that math is everywhere, 
that math counts, and that every child can be a successful math learner.

Bringing the real world into a math classroom is a teacher’s responsibility (Willis, 
2010). One way to accomplish this is by aligning children’s literature with practical 
math concepts that can be applied in life. A plethora of literary resources exist that 
can help teachers accomplish this goal. Books about topics including geometry, 
measurement, quantities, fractions, integers, number systems, mathematicians are 
everywhere. Whatever math a teacher is teaching, there are undoubtedly a variety of 
children’s books that can be used to introduce, instruct, apply, or review that con-
cept. Finding these materials is easy; however, when the decision is made to incor-
porate children’s literature into a math lesson, it is important for teachers to evaluate 
the learning that results from this choice.

�Evaluating Math Instruction that Includes Children’s 
Literature

The research discussed in this chapter supports the use of children’s literature in 
math instruction, and numerous math lesson plans include children’s literature as a 
strategy for teaching math. But how can a teacher be confident that literature 
enhances math learning in the classroom?

To answer this question, it is important to consider research that has been con-
ducted on the evaluation of children’s books. Generally, this research states that 
using low-quality books, or using any book ineffectively, can negatively affect stu-
dent learning (Flevares & Schiff, 2014), resulting in instruction that does not engage 
or motivate students. To avoid such negative results, teachers can consider using 
tested criteria for the selection of children’s literature that is supported through 
years of research. The progression of such criteria has developed from the work of 
Shiro (1997), who identified eleven specific evaluative criteria, to the work of 
Hellwig, Monroe, and Jacobs (2000), who narrowed the criteria to five. Hunsader 
(2004) believed important points from Shiro’s work were lost in this simplification 
and increased the list to six, adding specific detail to each criterion. Nesmith and 
Cooper (2010) extended Hunsader’s work, considering the possibility that multiple 
interpretations can affect how literature is scored against these criteria, even when a 
detailed rubric is provided.

Today, the five criteria established by Hellwig, Monroe, and Jacobs (accuracy, 
visual and verbal appeal, connections, audience, and the “wow” factor) are com-
monly accepted as a good starting point. The first criterion of accuracy is ensuring 
that the book is accurate in its representation of the mathematical concepts. Another 
important component to consider is whether there is visual and verbal appeal. This 
includes how inviting the illustrations and cover art are, as well as whether or not the 
story keeps the reader engaged. Stories that are too repetitive or do not have that 
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element of surprise may not hold the readers’ interests. Connections from the math 
to the real world or from the math to a reader’s experience are another way to evalu-
ate the book. Teachers need to look for books that have authentic connections and 
draw on the interest and experience of the readers in order to keep them engaged.

This also becomes important when considering the audience for the book. There 
should be layers of complexity in the book so that multiple readings will expose the 
reader to deeper levels of understanding (Hellwig et al., 2000). It is also necessary 
to consider the gender and culture of the audience to ensure it has broad appeal. 
Finally, the “wow” factor is a quality that cannot be ignored. Books with this crite-
rion will so strongly capture the attention of the reader that the reader becomes 
excited about investigating the ideas further. Books with the “wow” factor represent 
the mathematical concept in a unique way that most audiences have never consid-
ered. Most books will not address all five criteria, but using them can assist a teacher 
in determining the most effective book for the concept to be taught. Research con-
tinues on this topic, but it is clear that while past research can help teachers effec-
tively adopt children’s literature in a classroom setting, it is up to the professional 
practices of a teacher to determine that learning in math is truly enhanced by the 
addition of children’s literature.

A classroom teacher whose main concern is the learning of the students in his 
or her care must take responsibility for instructional choices made. Those 
choices should be informed by research but should also include a teacher’s pro-
fessional knowledge of best practices and how those practices directly affect 
students. As with any instructional choice, a teacher must be prepared to analyze 
results that verify learning has been enhanced through the alignment of math 
and literacy. In this process, it is essential for a teacher to support decisions with 
evidence of improved student learning. We have created a set of guiding ques-
tion for self-reflection (see Table  3.1) that can help a teacher to intentionally 
work toward this goal.

As shown in Table 3.1, the starting point in the effective use of children’s litera-
ture is the identification of purpose, and this may very well be the most critical step. 
Table 3.1 is a tool that can support teachers with the intentional development of 
lessons using children’s literature. The table provides a structure for lesson develop-
ment that helps a teacher consider the possible benefits and challenges that might 
come along with the integration of children’s literature and math. It provides ques-
tions to consider before planning a lesson and also identifies key statements that 
may help a teacher choose a book that will support mathematical learning and 
development. Using such a tool guides the teacher through a reflective process, 
which can result in highly effective learning opportunities for students. This tool 
offers an opportunity to pause and consider the potential benefits and/or challenges 
that using a new resource may provide. By choosing children’s literature that 
includes math content, a teacher is deciding that the book chosen will help students 
feel more comfortable in learning math, understand academic language, compre-
hend math concepts, see how math exists in the world, or serve another purpose that 
the teacher has identified. The book becomes a teaching tool that helps a teacher 
meet an intended goal.
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Table 3.1  Guiding questions for teacher self-reflection on the use of children’s books in math 
instruction

Teacher actions Guiding questions Possible responses

Step 1:
Initial reflection

Why am I 
considering adding 
children’s literature 
to math instruction?
What is my purpose 
is adding a 
children’s book to 
this specific math 
lesson?

I believe the book will help develop vocabulary 
and academic language.
I believe the book will motivate students to learn 
this math concept.
I believe the book will help reduce math anxiety.
I believe the book will help students master the 
math content or skill.
I believe the book will help students connect this 
math skill to a real-world application.

Step 2: Defining end 
goals

What do I expect to 
see that will tell me 
that the use of the 
book has caused 
learning to occur?
How will I know I 
have met the goals I 
set when including 
this book in this 
lesson?

Students are able to correctly use the academic 
language as it relates to the book.
Students are engaged with the book, participate 
in dialogue with peers, ask questions, and offer 
responses to teacher questions about the book.
Students are relaxed as the story is read and 
respond to teacher prompts.
Students are able to demonstrate mastery of the 
math concept and explain the connection 
between the concept and the story. Students 
respond to one or two survey questions on an 
assignment that ask them to rate the 
effectiveness of the book in helping them 
understand the math concept.
Students can give an example that connects the 
math content in the story to how it is used in the 
world.

Step 3: Choosing 
assessment tools

How will I measure 
the learning I expect 
to see?
How will I know 
that what I expected 
to see has, indeed, 
occurred?

Take notes on the use of academic language in 
teacher-observed peer conversations and/or 
written responses to journal prompts.
Record observations of student body language, 
eye contact, questions being asked, and on- or 
off-task behavior.
Observe student interactions, and create journal 
prompts that address students’ comfort level in 
the class and with the content.
Create assignments asking students to draw 
diagrams and pictures and write explanations of 
math concepts on exit cards, to provide correct 
responses to practice problems, and to 
participate in oral conferences that explain the 
math concept as it connects to the story. Include 
survey questions that relate to the use of the 
book.
Ask students to write a book reflection, retell the 
story (including the math), respond to teacher 
questions about the math in the story, and define 
a situation that connects the math understanding 
in the story to a new situation.

(continued)
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But it is not enough for teachers to believe that using literature will improve math 
instruction. Evidence must show that this is true or not true. Whatever the initial 
purpose for choosing a children’s book, the results must be measured to verify that 
learning has been enhanced by the use of literature as an instructional tool. This is 
done through assessment best practices, identifying specific criteria and then creat-
ing assessments that measure both individual and whole class mastery of the identi-
fied criteria. Data must be gathered, analyzed, interpreted, and evaluated to inform 
future instructional decisions. The assessment process defined by these steps is 
important for teachers in all subjects. Good teaching does not just happen on its 
own; it is intentionally planned and concretely measured. This is not different when 
considering the place children’s literature holds in the instruction of math.

�Conclusion

When teachers are intentional about choosing children’s literature, using it effec-
tively in math instruction, and analyzing the results, student learning can be posi-
tively affected. Yet, it is important to remember that while the effective use of 
children’s literature can enhance math instruction, it is only one strategy in helping 
students succeed in math. The inclusion of literature does not take the place of 
manipulatives and hands-on activities that help students see math, of teacher model-
ing that guides math processes, of word walls and other literacy tools that aid in 

Table 3.1  (continued)

Teacher actions Guiding questions Possible responses

Step 4: Documenting 
results to meet 
student needs and 
inform future 
choices

How will I document 
the data that results 
from my assessment 
process?
What conclusions 
can I draw from this 
process to inform 
future instructional 
choices?

To record results from all assessments used, 
create a whole class chart listing individual 
student names on the left and tools used to 
gather information on the top. Use key words 
and symbols to record notes from each 
assessment tool that show mastery of identified 
vocabulary and academic language and math 
skills. Include teacher anecdotal notes from 
observations and conferences, student scores on 
assignments, and key words from survey 
responses for future reference.
Such a chart provides a snapshot of math 
understanding for each individual student as well 
as the whole class. From this information, a 
teacher can form flexible groups for the future 
instruction based on students’ levels of success 
with the math concept or skill.
From the compiled data resulting from the use of 
a variety of assessment tools, a teacher can 
determine both the math understanding of 
students and the effectiveness of children’s 
literature used to enhance that understanding.
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understanding the academic language of math, or of the practice required to help 
students reinforce new understanding. A complete math program uses every effec-
tive tool available to help students succeed in math, and children’s literature can be 
one of these, a tool that, when used in conjunction with other best practices, can 
greatly improve the chances that a student will succeed in learning math.

Children’s literature provides a powerful opportunity to share knowledge with 
students and foster unique learning experiences (Columba et al., 2005). Topics in 
this chapter have emphasized the power of story, the intentional alignment of liter-
acy and math skills, and the importance of helping students “see” math. Considering 
prior knowledge, reducing math anxiety, and appealing to student interests have 
been presented as ways to increase student motivation, thus creating a positive 
learning environment for students. Helping students see that math is not a separate 
or isolated subject, but one that can be seen everywhere in the world, can greatly 
improve the chances that students will view math as a relevant subject worthy of 
their time and efforts. All of these objectives can be partially achieved through the 
use of children’s literature in a math classroom. By understanding the math con-
cepts to be taught, the books used to teach them, and the children who will be expe-
riencing the instruction, teachers can greatly improve student learning in math 
(Clements & Sarama, 2004; Columba et al., 2005).
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Chapter 4
Complexity as a Discourse on School 
Mathematics Reform

Brent Davis

Abstract  This writing begins with a brief introduction of complexity thinking, 
coupled to a survey of some of the disparate ways that it has been taken up within 
mathematics education. That review is embedded in a report on a teaching experi-
ment that was developed around the topic of exponentiation, and that report is in 
turn used to highlight three elements that may be critical to school mathematics 
reform. Firstly, complexity is viewed in curricular terms for how it might affect the 
content of school mathematics. Secondly, complexity is presented as a discourse on 
learning, which might influence how topics and experiences are formatted for stu-
dents. Thirdly, complexity is interpreted as a source of pragmatic advice for those 
tasked with working in the complex space of teaching mathematics.

Keywords  Complexity thinking • School mathematics • Mathematics curriculum

One of the most common criticisms of contemporary school mathematics is that its 
contents are out of step with the times. The curriculum, it is argued, comprises many 
facts and skills that have become all but useless, while it ignores a host of concepts 
and competencies that have emerged as indispensible. Often the problem is attrib-
uted to a system that is prone to accumulation and that cannot jettison its history. 
Programs of study have thus become not-always-coherent mixes of topics drawn 
from ancient traditions, skills imagined necessary for a citizen of the modern (read: 
industry-based, consumption-driven) world, necessary preparations for postsecond-
ary study, and ragtag collections of other topics that were seen to add some prag-
matic value at one time or another over the past few centuries – all carried along by 
a momentum of habit and familiarity. Somewhat ironically, a domain that has not 
been particularly influential in these evolutions is mathematics itself. As a result, 
few current curricula have any substantial content that is reflective of developments 
in mathematics over the past few centuries.
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Oriented by a deep concern for this situation, I am currently involved in a longi-
tudinal investigation of “changing the culture of mathematics teaching at the school 
level.” Through this design-based inquiry, a group of university researchers has 
teamed with the staff of a school in a 7-year commitment to work together in trans-
forming how mathematics is seen and engaged.

The project has three foci, distilled from preliminary discussions with the 
teacher-participants:

•	 Mathematics curriculum – e.g., what mathematics is important to teach? Is that 
the same as what is in the curriculum? Where did that curriculum come from?

•	 Individual understanding – e.g., how does understanding of a concept develop? 
Is there a “best” way to structure/sequence teaching to support robust conceptual 
development? Are individuals’ understandings necessarily unique, or is there a 
way of nudging learners to “true” interpretations of concepts?

•	 Social process – e.g., how do groups support/frustrate the development of indi-
vidual understanding? How does individual understanding support/frustrate the 
work of groups?

At first blush, the range of topics represented in these clusters of questions may 
seem to be so broad as to disable inquiry. In truth, even as one of the principal 
researchers, I was at first taken aback with the full range of concerns raised by the 
research partners. However, while these three clusters of questions might seem on 
the surface to be focused on disparate matters, “inside” them there is a uniting 
theme: complexity.

More precisely, each of these clusters of issues concerns a category of emergent 
phenomena. That is, each points to a form or agent that obeys an evolutionary 
dynamic and that arises in and transforms through the interactions of other forms 
and agents. That realization helped to shift the principal focus from the three clus-
ters of questions above to a single unifying theme. In the process, as is reported 
below, a space was opened both to move toward productive and pragmatic responses 
to the questions posed and to make meaningful strides toward the grander intention 
of the project.

�What Is “Complexity” within Mathematics Education?

Before getting into some of the specifics of those developments, it is important to 
situate the intended meaning of complexity. Unfortunately, there is no unified or 
straightforward definition of the word. Indeed, most commentaries on complexity 
research begin with the observation that there is no singular meaning of complexity, 
principally because researchers tend to define it in terms of their particular research 
foci. One thus finds quite focused-and-technical definitions in such fields as math-
ematics and software engineering, more-indistinct-but-operational meanings in 
chemistry and biology, and quite flexible interpretations in the social sciences (cf. 
Mitchell, 2009).
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Within mathematics education, the range of interpretations of complexity is 
almost as divergent as it is across all academic discourses. This variety can in part 
be attributed to the way that mathematics education straddles two very different 
domains. On one side, mathematics offers precise definitions and strategies. On the 
other side, education cannot afford such precision, as it sits at the nexus of disciplin-
ary knowledge, social engineering, and other cultural enterprises. Conceptions of 
complexity among mathematics education researchers thus vary from the precise to 
the vague, depending on how and where the notion is taken up.

However, diverse interpretations do collect around a few key qualities. In par-
ticular, complex systems adapt and are thus distinguishable from complicated (i.e., 
mechanical) systems that may be composed of many interacting components and 
which can be described and predicted using laws of classical physics. A complex 
system comprises many interacting agents – and those agents, in turn, may comprise 
many interacting subagents – presenting the possibility of global behaviors that are 
rooted in but not reducible to the actions or qualities of the constituting agents. In 
other words, a complex system is better described by using Darwinian dynamics 
than Newtonian mechanics.

Complexity research only cohered as a discernible movement in the physical and 
information sciences in the middle of that twentieth century, with the social sciences 
and humanities joining in its development in more recent decades. To a much lesser 
(but noticeably accelerating) extent, complex systems research has been embraced 
by educationists whose interests extend across such levels of phenomena as genom-
ics, neurological process, subjective understanding, interpersonal dynamics, math-
ematical modeling, cultural evolution, and global ecology. As discussed elsewhere 
(Davis & Simmt, 2014, 2016), these topics can be seen across three strands of inter-
est among mathematics education researchers – namely:

•	 Regarding the contents of curriculum, complexity as a disciplinary discourse – 
i.e., as a digitally enabled, modeling-based branch of mathematics

•	 Regarding beliefs on learning, complexity as a theoretical discourse – i.e., as the 
study of learning systems, affording insight into the structures of knowledge 
domains, the social dynamics of knowledge production, and the intricacies of 
individual sense-making

•	 Regarding pedagogical strategies, complexity as a pragmatic discourse – i.e., as 
a means to nurture emergent possibility, with advice on how to design tasks, 
structure interactions, etc.

For the most part, to my reading, researchers in mathematics education have 
tended to treat these issues singularly. That is perhaps not surprising, since each 
represents a significant departure from entrenched, commonsense beliefs. However, 
as I attempt to illustrate in the example I turn to presently, there may be great trans-
formative potential in treating these considerations as necessary simultaneities.

Importantly, the resonance between these three strands of interest among math-
ematics education researchers and the three foci of the project (mentioned earlier) 
are not accidental. Engaging with teachers about such matters is, I believe, integral 
to bringing possibilities afforded by complexity thinking to the realities experienced 
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by teachers. This thought has oriented much of my own research efforts over the 
past several years, particularly around efforts to co-design and co-teach units of 
study with teachers in our design-based research study. To that end, in the following 
account, I endeavor to highlight how complexity can serve, simultaneously, as a 
theory of curriculum, learning, and pedagogy.

�A Teaching Experiment on Exponentiation

As already noted, for centuries, the basics of school mathematics tend to be con-
strued as addition, subtraction, multiplication, and division. Notably, these opera-
tions are “basic” not because they are foundational to mathematics knowledge, but 
because they were vital to a newly industrialized and market-driven economy a few 
hundred years ago. It is easy to see why computational competence would be useful 
to a citizen of that era and to ours as well. If anything, the need has been amplified 
in our number-dense world. However, it is not clear that these four operations are a 
sufficient set of basics today, given that some of the most pressing issues – such as 
population growth, the rise of greenhouse gases, ocean acidification, decline in spe-
cies diversity, cultural change, increases in debt, and so on – have strongly exponen-
tial characters. More descriptively, these sorts of pressing issues are instances of 
complexity, evidenced in part by their potentials for rapid change and 
unpredictability.

Understandings and appreciations of the volatility of prediction have become 
rather commonplace, evidenced in the way the “butterfly effect” has captured the 
collective imagination. However, while awareness of this popular trope might sug-
gest that complexivist sensibilities have gained traction, it might also indicate lim-
ited understanding of the actual mechanisms at work inside complex dynamical 
systems. The butterfly effect is most often stated in terms of a system’s sensitivity to 
initial conditions, but what really matters is the power of iteration to amplify or 
dampen. That is, the butterfly effect – like any complex dynamic – only makes sense 
within a frame of exponentiation.

I mentioned that thought in a social conversation with an eighth-grade teacher in 
Calgary, and she promptly challenged me to design and teach a brief unit in which 
exponentiation was treated as a useful interpretive tool rather than a site for sym-
bolic manipulations. The major impetus for the work was thus professional curios-
ity rather than a predefined research intention. (Appropriate ethical clearances and 
permissions were secured.) She generously offered a week of lessons, and a few 
weeks later, I found myself in her regular-stream class of 32 students. Not wanting 
to interrupt established routines much, I mimicked the teacher’s structures of fre-
quent full-group discussion, modulated with small-group work. No individual seat-
work and no deliberate homework were assigned during the week. That decision 
was made for several reasons. Firstly, the brevity of the project made it difficult for 
me to get to know the students and communicate expectations in ways that made 

B. Davis



79

me confident such emphases would be effective. Secondly, and closely related, a 
driving intention of the unit was to trouble the conflation of “mathematics” and 
“computation” – and, to my mind, individual seatwork and homework presented 
risks of pressing those two constructs together. Thirdly, as a champion of collective 
sense-making, I am personally much more comfortable in settings where learners 
have ample opportunity to express their thinking, to challenge one another, and to 
openly speculate.

The outline of lesson topics for that week is presented in Table  4.1. A more 
detailed, general overview of the classroom activities has been presented elsewhere 
(Davis, 2015), and so only summary descriptions are offered here.

The unit’s opening task was an invitation to create images of exponential 
change. Students were instructed on drawing grid-based images of sequential dou-
bling – starting by outlining a single square, then doubling the figure to enclose 
two squares, and so on, to the limits of their sheets of paper. T-tables were incorpo-
rated into the activity to record quantities and make number patterns more appar-
ent, and students were then tasked with creating similar images and tables for bases 
of 3–9. They were encouraged to do Web searches and together generated a rich 
range of associated figures that included images of exponential growth/decay and 
exponential curves.

On the second day, students were asked to compare exponentiation to addition and 
multiplication. Earlier in the school year, the class had created poster-sized lattices 
for addition, subtraction, multiplication, and division on xy-coordinate grids. On 
these charts, values on the x-axis served, respectively, as augend, subtrahend, multi-
plier, and dividend; values on the on the y-axis as addend, minuend, multiplicand, 
and divisor; and corresponding positions on the grid as locations for sums, differ-
ences, products, and quotients. Figure 4.1 presents small portions of these lattices.

Table 4.1  An overview of a weeklong unit on exponentiation

Day Focus Activities

Monday Images of exponentiation Drawing pictures of exponential change
Web searches (“exponentiation,” “exponential 
growth,” “powers of two,” and related terms)

Tuesday Exponentiation lattice Collectively assembling a lattice
Looking for patterns
Contrasts to addition and multiplication lattices

Wednesday Analogies to other binary 
operations

Symbolism and vocabulary
Noting similarities between addition and 
multiplication, and extending these to 
exponentiation

Thursday Exploring the validity of 
those analogies

Justifying and questioning
Thinking about the structure of mathematics and 
mathematical ideas

Friday Consolidation and 
examples

Other illustrations of exponentiation
Instances of exponentiation in the world we 
inhabit
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In the earlier unit, these devices proved to be powerful tools for noticing pat-
terns and, in the process, interpreting identity elements, commutativity, and other 
concepts and properties. We imagined a chart for exponentiation might serve sim-
ilar purposes and began the second class with the construction of an exponentia-
tion lattice spanning values of −10 to +10 on both axes – that is, covering the 
range of −10−10 to 1010. A core portion of the exponentiation lattice is presented in 
Fig. 4.2.

The collective analysis of the result began by examining the first quadrant. 
Students compared its patterns to those in the addition and multiplication lattices, 
posted nearby. Three observations were immediately noted. First, students remarked 
on the “steeper and crazy-steeper” increases in values as one moves away from the 
origin, contrasted with the “flattening” feel of the addition lattice and the “gentler 
rising” of the multiplication lattice. Second, it was noted that the exponentiation 
chart “doesn’t fold over like adding and multiplying” – that is, whereas the addition 
and multiplication lattices are symmetric about the line y = x, the exponentiation 
lattice is not. Third, “the diagonal of one table is the 2-row of the next.” That is, just 
as the values along the y = x diagonal of the addition lattice correspond to those of 
the y = 2 row of the multiplication lattice, so the values along the y = x diagonal of 
the multiplication lattice correspond to those of the y = 2 row of the exponentiation 
lattice. Discussions touched on such topics as commutativity and other symmetries, 
the mathematics of rapid change, logarithms, imaginary numbers, and mathematical 
notations (see Davis, 2015, for a more complete account on how discussions of 
these observations unfolded).

The third session dealt with analogies between exponentiation and the operations 
of addition and multiplication. Prompted by the problems encountered with xx the 
previous day, we began by noting that the symbolism for exponentiation might 
obscure the relationship to other operations. To highlight similarities to “2 + 3” and 
“2 × 3,” we proposed “2 ↑ 3,” which is one of several accepted notations (Cajori, 
2007). The resulting set of pairs

x + x = 2x.
x × x = x2.
x ↑ x = xx.
seemed to satisfy the desire for parallel representations that had emerged the day 

before.

Fig. 4.1  Core portions of the addition, subtraction, multiplication, and division lattices generated 
earlier in the school year
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We set up the day’s task with a version of Table 4.2 (below), which was an exten-
sion of a chart they had done earlier in the year comparing properties of addition to 
properties of multiplication. We reminded them of that detail to get things started 
and then invited suggestions for completing the row labeled “commutative 
property.”

The main point of this activity was to deepen understandings of exponentiation. 
A second purpose was to support understandings of the relationship among con-
cepts, based on a vital difference between topics studied at elementary and second-
ary levels. Whereas almost all the concepts encountered at the elementary level can 
be interpreted in terms of (i.e., are analogical to) objects and actions in the physical 
world, the analogies for concepts at the secondary level are mostly mathematical 
objects (see Hofstadter & Sander, 2013). Making analogies, then, is both a mecha-
nism for extending mathematical insight and a window into the structure of mathe-
matics knowledge.

Before setting the students to work on their own, we indicated that they should 
not worry about the last column, as we had already planned that for the focus of the 
fourth session. The rest of the class was devoted to filling in blank cells, an effort 
that began in small groups and that ended in whole-group negotiations of accept-
able, parallel phrasings for each entry (see the second row in Table 4.3). Notably, the 
final three rows of the chart were additions proposed by the students themselves.

The fourth session was devoted to exploring the truth or falsity of the conjectures 
from the day before. Students worked in small groups and focused on speculations 
of their choosing. They also made free use of the Internet to help them in their delib-
erations. Topics in the follow-up discussion included a problem with the speculation 
on inverse values (i.e., that for every a there is a ↓a such that a ↑ (↓a) = 1), because 
the exponentiation grid suggested a ↑ 0 = 1 (for all a ≠ 0). If the speculation were 
true, it would mean that the exponentiative inverse of every number would be 0, 
which most felt to be nonsensical  – in addition to rendering the speculation on 
“operating on the opposite” similarly troublesome. We elected to leave these discus-
sions unsettled, suggesting that our simple analogies might be misleading. We also 
suggested that further studies in high school would shed some light on a few of the 
details – a point that was supported by topics that came up in students’ Web searches, 
including logarithms, imaginary and complex number systems, and tetration.

The final session was devoted to review and consolidation. We framed the ses-
sion by developing the table presented in Table 4.4, through which we suggested 
that the geometric image best fitted to addition is the line, to multiplication is a 
rectangle, and to exponentiation is a fractal. That thought was tied in to a “fractal 
card” activity (Simmt & Davis, 1998) that the students had undertaken earlier in the 
school year.

The balance of the lesson was given to conducting searches and looking across 
instances of exponential growth and decay (e.g., creating fractal cards, population 
growth, species decline, greenhouse gas increase, technology evolution), framed by 
Charles and Ray Eames’ (1977) film, Powers of Ten and Cary and Michael Huang’s 
(2012) interactive Prezi, The Scale of the Universe. Exponential growth curves 
emerged to be a uniting image across these explorations and also proved useful as a 
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recap on the week as they linked back to the images and grid developed on Monday 
and Tuesday.

�Complexity as a Disciplinary Discourse: Moving 
from Computation to Modeling

Revisiting the three ways that complexity has been taken up by mathematics educa-
tion researchers, I would assert that the above teaching episode is an instantiation of 
those diverse but complementary perspectives on the discourse:

•	 Complexity as a theory of curriculum – specifically, in this case, an examination 
of the mathematics of rapid change, which is vital for appreciating the dynamics 
involved in complex modeling; more generally, approaching mathematics as a 
means to model experiences and phenomena

•	 Complexity as a theory of learning – using principles of complexity to interpret 
individual sense-making, collective knowledge production, and mathematics 
itself as responsive, adaptive systems that require disequilibration, interactivity, 
and other conditions of emergence (see Davis & Sumara, 2006)

•	 Complexity as a theory of pedagogy – used, for example, to inform the distri-
bution of tasks across the collective, to balance redundancy and specialization 
of agents, and to blend emergent possibilities with preconceived intentions 
(Davis & Simmt, 2003)

Fig. 4.2  A core portion of the exponentiation lattice
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Each of these points merits considerable elaboration. However, given constraints 
on space, I focus on the first, with the suggestion that school mathematics might be 
reconstrued in terms of modeling rather than the currently dominant computation-
heavy emphasis. Repeating an assertion made earlier, as I hope is illustrated with 
the account of the teaching experiment, all three elements must occur 
simultaneously – and so I acknowledge the artificiality of focusing on the first point. 
(The citations included in the second and third points provide detailed discussions 
of those elements.)

Table 4.2  The blank speculation table

Topic/property

How it looks 
for addition 
(x + y)

How it looks for 
multiplication (x × y)

Speculation for 
exponentiation (x ↑ y) T/F

Commutative 
property
Reverse operation
Identity element
Inverse values

Table 4.3  Conjectures for exponentiation based on analogies to addition and multiplication

Topic/property
How it looks for 
addition (x + y)

How it looks for 
multiplication 
(x × y)

Speculation for 
exponentiation 
(x ↑ y) T/F

Commutative 
property

a + b = b + a a × b = b × a a ↑ b = b ↑ a False:
2↑3 ≠ 3↑2

Reverse 
operation

Subtraction (−) Division (÷) De-exponentiation 
(↓)

Identity 
element

0 … as in 
a + 0 = 0 + a = a

1 … as in 
a × 1 = 1 × a = a

1? … since a ↑ 
1 = a … although 
1 ↑ a = 1

Inverse values Additive inverse of 
a is
0 – a, or –a;
a + (−a) = 0

Multiplicative 
inverse of a is 1 ÷ 
a, or 

1

a
; a × 

1

a
 = 

1

Exponentiative 
inverse of a is 1 ↓ 
a, or ↓a; a ↑ 
(↓a) = 1

Operating on 
the opposite

Subtraction can be 
done by adding the 
[additive] inverse:
a – b = a + (−b)

Division can be 
done by 
multiplying the 
[multiplicative] 
inverse:
a ÷ b = a × 

1

b

De-exponentiation 
must be doable by 
exponentiating the 
[exponentiative] 
inverse:
a ↓ b = a ↑ (↓b)

“Next” 
operation

A repeated addition 
is a multiplication

A repeated 
multiplication is an 
exponentiation

A repeated 
exponentiation 
must be a … 
something

“Next” set of 
numbers

When you allow 
subtraction, you 
need signed 
numbers

When you allow 
division, you need 
rational numbers

When you allow 
de-exponentiation, 
you need another 
set of numbers
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This suggestion is, of course, anchored to a conviction that being mathematically 
competent is about being able to interpret and simulate real-life situations with 
mathematical constructs. It was in this spirit that exponentiation was studied in the 
reported classroom episode. While some calculations were involved, computation 
was always a means to an end. It was a tool within the modeling activity.

To elaborate, a “model” is a representation – a description, an image, a copy – 
which is intended to highlight vital, defining attributes of some phenomenon. Most 
often, a model is a simplification, one that is useful as a tool for understanding. A 
“mathematical model” is thus a description of a phenomenon using mathematical 
constructs. Examples abound and range from the mundane to the enormously com-
plex. On the more familiar end of the spectrum, every act of counting or measuring 
is an act of mathematical modeling – that is, of representing a situation in terms of 
an appropriate number system. At the more complex end of the spectrum, mathe-
matical models are used in the natural sciences (e.g., physics, chemistry, biology, 
geology, meteorology, astronomy), engineering, and the social sciences (e.g., eco-
nomics, psychology, political science, sociology) to interpret, explain, and predict 
phenomena that arise in the interactions of many, many interacting agents.

In this sense, the discipline of mathematics has always been about modeling – 
although this core emphasis has often been obscured by the computational demands 
of some models. In particular, prior to rapid and inexpensive computing, the mod-
eling of systems was largely focused on those dynamics that could be studied 
through differential linear equations. Poincaré was notable among those who 
examined nonlinear dynamical systems, doing so from a theoretical perspective 
(Bell, 1937). The computational power of digital technologies in the second half of 
the twentieth century was necessary for the investigation of dynamical systems 
began to flourish. Computing power brought about possibility of doing “experi-
mental mathematics” (Borwein & Devlin, 2008) and numerical analysis, triggering 
a rebirth of the modeling of nonlinear dynamical systems. Importantly, digital 
computing provided not only a means of computing extremely large data sets and 
iterating functions through hundreds of thousands of repetitions, it also provided 

Table 4.4  Some geometric analogies to arithmetic operations

Operation Principal visual metaphors
Common applications/interpretations 
(using whole number values)

2 + 4 Combining of sets or lengths along 1 
dimension
Can be consistently represented in linear 
form

2 × 4 Sets of sets or array/area generated by 
crossing dimensions
Can often be represented as a rectangle

2 ↑ 4 Sets of sets of sets (etc.) or 
multidimensional form
Representable in a fractalesque, recursively 
generated and/or branching image
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means for converting numerical data to visual representations, enabling the genera-
tion of new insights and, consequently, new forms of mathematics (Mitchell, 2009).

It might be tempting to characterize the ever-growing gap between the research 
mathematics and school mathematics in terms of the contrast between the emphasis 
on modeling in the former and the emphasis on computation in the latter. That dis-
tinction would be unfair, however. Every topic in school mathematics was originally 
selected for its power to model, and this detail helps to explain the traditional peda-
gogical emphasis has been on rote application. In the first public schools, learners 
were being trained not to model, but to apply established mathematical models, and 
to do so efficiently and effectively. Routinized, repetitive instruction that does not 
allow for much divergent thinking is arguably the best way to do that.

In other words, schooling’s emphasis on computation was a once-fitting educa-
tional emphasis, aimed at exploiting mathematics’ capacities to model critical ele-
ments of one’s world. However, circumstances and sensibilities have changed, along 
with the needs of a mathematically literate citizen. But so too have the affordances 
of the world in which we live, such as access to data, computational speed, and 
spatio-visual interfaces. Such evolutions were behind Lesh’s (2010) assertion that 
complexity has emerged as “an important topic to be included in any mathematics 
curriculum that claims to be preparing students for full participation in a technology-
based age of information” (p. 563).

To be clear on the point of this writing, the suggestion is not that study of com-
plex systems is new, but that the mathematics of complexity could represent a 
significant shift from traditional emphases on computation to a new emphasis on 
(complex) modeling – and, in that shift, possibly nudge school mathematics closer 
to its parent discipline. As Stewart (1989) has reported, mathematicians have long 
seen their work in terms of modeling. Just as significantly, they were perfectly 
aware when they were using linear approximations and other reductions in order 
to avoid computational intractability. Lecturers and texts followed suit in omitting 
nonlinear accounts; hence generations of students were exposed to over-simpli-
fied, linearized versions of natural phenomena. In other words, non-complex 
mathematics prevailed in public schools not because it was ideal but because it lent 
itself to calculations that could be done by hand. The power of digital technologies 
has not just opened up new vistas of calculation, they have triggered epistemic 
shifts as they contribute to redefinitions of what counts as possible and what is 
expressible, and this insight has been engaged by many mathematics education 
researchers (e.g., English, 2011; Hoyles & Noss, 2008; Moreno-Armella, Hegedus, 
& Kaput, 2008).

Notable in this the movement toward recasting school mathematics in terms of 
modeling is the seminal work of Papert (e.g., 1980), particularly his development 
of the Logo programming language in the late 1970s. The language was designed 
to be usable by young novices and advanced experts alike. It enabled users to 
solve problems using a mobile robot, the “Logo turtle,” and eventually a simu-
lated turtle on the computer screen. While not intended explicitly for the study of 
complexity, Logo lent itself to recursive programming and was thus easily used 
to generate fractal-like images and to explore applications dynamically – opening 
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the door to more complexity-specific topics. To that end, different developers 
have since offered Logo-based platforms that are explicitly intended to explore 
complex systems (and other) applications. For example, StarLogo (lead designer, 
M.  Resnick; http://education.mit.edu/starlogo/) and NetLogo (lead designer, 
U. Wilensky; http://ccl.northwestern.edu/netlogo/). Both platforms were devel-
oped in the 1990s and extended Papert’s original Logo program by presenting the 
possibility of multiple, interacting agents (turtles). This feature renders the appli-
cations useful for simulating ranges of complex phenomena. Both StarLogo and 
NetLogo include extensive online libraries of already-programmed simulations 
of familiar phenomena (e.g., flocking birds, traffic jams, disease spread, and pop-
ulation dynamics) and less-familiar applications in a variety of domains such as 
economics, biology, physics, chemistry, neurology, and psychology. At the same 
time, the platforms preserve the simplicity of programming that distinguished the 
original Logo (e.g., utilizing switches, sliders, choosers, inputs, and other inter-
face elements), making them accessible for even young learners. Other visual 
programming languages have been developed that are particularly appropriate to 
students (e.g., Scratch, http://scratch.mit.edu, and ToonTalk, http://www.toon-
talk.com).

Over the past few decades, hundreds of speculative essays and research reports 
(see, e.g., http://ccl.northwestern.edu/netlogo/references.shtml) have been pub-
lished on these and other multi-turtle programs. Regarding matters of potential 
innovations for school mathematics, in addition to well-developed resources, there 
have been extensive discussions, and there exists a substantial empirical basis for 
moving forward on the selection and development of curriculum content that is fit-
ted to themes of complexity. Not surprisingly, then, with the ready access to compu-
tational and imaging technologies in most school classrooms, some (e.g., Jacobson 
& Wilensky 2006) have advocated for the inclusion of such topics as computer-
based modeling and simulation languages, including networked collaborative simu-
lations (see Kaput Center for Research and Innovation in STEM Education, http://
www.kaputcenter.umassd.edu). In this vein, complexity is understood as a digitally 
enabled, modeling-based branch of mathematics that opens spaces (particularly in 
secondary and tertiary education) for new themes such as recursive functions, frac-
tal geometry, and modeling of complex phenomena with mathematical tools such as 
iteration, cobwebbing, and phase diagrams.

The shift in sensibility from linearity to complexity is more important than the 
development of the computational competencies necessary for modeling. The very 
role of mathematics in one’s life is transformed through this shift in curriculum 
emphasis. As Lesh (2010) described, “whereas the entire traditional K–14 mathe-
matics curriculum can be characterized as a step-by-step line of march toward the 
study of single, solvable, differentiable functions, the world beyond schools con-
tains scarcely a few situations of single actor–single outcome variety” (p.  564). 
Extending this thought, Lesh highlighted that questions and topics in complexity 
and data management are not only made more accessible in K-14 settings through 
digital technologies, but current tools have also made it possible to render some key 
principles comprehensible to young learners in manners that complement tradi-
tional curriculum emphases.

B. Davis
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Despite the growing research base and the compelling arguments, however, few 
contemporary programs of study in school mathematics have heeded such admoni-
tions for change. It is perhaps for this reason that many mathematics education 
researchers have focused on familiar topic areas (such as those just mentioned; see 
Davis & Simmt, 2016, for other examples) as means to incorporate studies of 
complexity into school mathematics. Discussions of and research into possible 
sites of integration have spanned all grade levels and several content areas, and 
proponents have tended to advocate for complexity content but in a less calcula-
tion-dependent format.

�Closing Remarks

For many mathematics educators, complexity thinking might seem like a Pandora’s 
box. If the field were to open it and take up the topic seriously, an array to world-
changing possibilities would impose themselves. Complexity thinking challenges 
many of the deeply engrained, commonsensical assumptions on how humans think 
and learn. It interrupts much of the orthodoxy on group process and collective knowl-
edge. And, in particular, as a curriculum topic, there is no straightforward way to fit 
complex modeling into the mold of contemporary school mathematics. It transcends 
procedures with its invitation to experiment; it demands precision, but in the service 
of playful possibility; it is rooted in computation but off-loads most of that work onto 
digital technologies; it requires facility with symbol manipulation, but that manipu-
lation is more for description than deriving solutions. In other words, merely consid-
ering complex modeling as a possible topic for today’s classrooms forces a rethinking 
of not just what is being taught, but why some topics maintain such prominence and 
how topics might be formatted to engage learners meaningfully and effectively.

Indeed, as the example of exponentiation might be used to illustrate, if complex-
ity were to be seriously considered as a curriculum topic, it would compel reexami-
nation of the very foundations of school mathematics. Not only must the “basics” be 
available for interrogation and revision, emphases of computation-heavy and 
symbol-based processes would have to be complemented with modeling-rich and 
spatial-based possibilities. Importantly, this is not an either-or situation. Taking up 
modeling as a focus of school mathematics does not negate computation and sym-
bolic manipulation, but such a shift does reposition them as means rather than ends.

It will be interesting to see if and when the culture of school mathematics is able 
to move in the direction of complexity thinking. The discourse itself suggests that, 
while a sudden and dramatic shift could happen at any time, it is more likely that the 
grander system will find ways to maintain its current emphases for some time lon-
ger. Caught in a tangle of popular expectation, deep-rooted practice, entrenched 
curricula, uninterrogated beliefs, and lucrative publishing and testing industries, 
school mathematics is an exemplar of a complex unity. This insight, more than any 
other, is the one that sustains my interest. Sooner or later, a well-situated wing 
flapping will trigger that moment of exponential change through a cascade of trans-
formations that pull school mathematics into a new era.

4  Complexity as a Discourse on School Mathematics Reform
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Chapter 5
Opening a Space of/for Curriculum: 
The Learning Garden as Context and Content 
for Difference in Mathematics Education

Susan Jagger

Abstract  The late Ted Aoki playfully identified curriculum as a “weasel word,” one 
that eludes definition, its slipperiness not allowing for it to be pinned down to any 
one universal meaning (Aoki, 1993). Instead, curriculum is inclusive of all learning 
contents and contexts; it extends and interacts rhizomatically and without boundar-
ies. The curricular space, that rich space for learning and of learning, is similarly 
unbounded and endlessly open and interactive. This openness pushes beyond the 
four walls of the classroom, disrupting and dismantling the very structure of modern 
understandings of a curriculum that is framed by disciplines and disciplinary spaces. 
The learning garden grows a space, a space beyond, for such multidisciplinary 
curricular possibilities. As both content and context, the garden allows for difference 
to be recognized and realized in the planned and lived curriculum of learners of all 
ages, and this is particularly true for early years and elementary school students. 
This paper weaves together the multiple yet inextricably linked garden-based cur-
ricular moments of early years and elementary mathematics learning in the garden. 
Drawing on a participatory research study with elementary school students on their 
experience of their urban school garden and through shared curricular vignettes, it 
traces children’s organic and situated explorations of number sense and numeration, 
measurement, geometry and spatial sense, patterns and algebra, and data manage-
ment and probability in the garden, opening up a space and a place for digging into 
mathematics concepts and processes and into curriculum itself.

Keywords  Curriculum • Elementary education • Mathematics • School garden • 
Transdisciplinarity

An information- and technology-based society requires individuals who are able to think 
critically about complex issues, analyze and adapt to new situations, solve problems of 
various kinds, and communicate their thinking effectively. The study of mathematics equips 
students with knowledge, skills, and habits of mind that are essential for successful and 
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rewarding participation in such a society. To learn mathematics in a way that will serve 
them well throughout their lives, students need classroom experiences that help them to 
develop mathematical understanding; learn important facts, skills, and procedures; develop 
the ability to apply these procedures; and acquire a positive attitude towards mathematics. 
(Ontario Ministry of Education, 2005, p. 3)

. . .

The above statement from the Ontario Ministry of Education puts forth a purpose 
for mathematics, and for mathematics education, that is focused on a society that is 
founded on and values information and technology. Mathematics learners need to be 
able to apply what they have learned in the classroom to participate successfully in 
such a society. While this is certainly important in purpose for both students and 
educators of mathematics, we must also open up this guiding statement beyond 
information and technology, and beyond our social community. Indeed many of the 
complex issues and new situations that we are now, and will be, challenged by 
extend beyond our social networks and permeate deeply within our much broader 
and inherently interconnected environmental communities and, along with informa-
tional and technological concerns, present us with ecological problems of various 
kinds. In order to recognize the rhizomatic expanse of our communities, the entan-
gled network of organic threads that quietly connect and support us, and realize our 
membership within those relations, we must release from structural rigidity our cur-
riculum and instruction and invite into our teaching situated knowledge and under-
standings, multidisciplinary contents, and organic contexts. We need to unravel the 
web of assemblages that coalesce around the mathematics curriculum and its teach-
ing and learning in order to understand the materiality of its pedagogical ecologies 
and formations.

�Taking Learning Outside

Being in the garden is always fun because 
Being in the classroom is so boring.

—John Cena1

The long history of outdoor learning has seen a revival in recent decades as edu-
cators are realizing and responding to children’s increasingly limited time spent in 
the natural world and subsequent lack of relationship that children have with the 
environment characterized by nature-deficit disorder (Louv, 2005). Outdoor and 
environmental learning’s roots can be traced back hundreds of years to the calls 
from Rousseau, Froebel, Pestalozzi, and Montessori, to name a few, to situate 
teaching and learning in children’s natural everyday and authentic experiences in 
the world beyond the classroom. To Rousseau, children’s lived experiences and 
interactions with their environments are central in their learning: “we begin to 

1 To ensure confidentiality, all names of participants and places were changed to pseudonyms and 
participants chose their own pseudonyms.
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instruct ourselves when we begin to live” (1911/1966, p.  42). Wilbur Jackman’s 
Nature Study for Common Schools (1891) formalized these calls and encouraged 
taking school children outside to learn across disciplines through first-hand explora-
tions of the natural world. It was the beginning of a holistic and place-based educa-
tional movement bringing the learner into intimate and emotional contact with 
nature. At the same time, Dewey (1902/1966) espoused the centrality of experience 
in learning and the importance of recognizing those experiences within the curricu-
lum. Nature study was prevalent in early childhood and elementary education well 
into the 1920s until it was eventually overshadowed by the rigorous rise of a struc-
tured and “modernist” education in the 1940s and 1950s. With exceptions in due 
course, this culture of progress and accountability has since dominated education 
and in turn directed teaching and learning into standardized models of curriculum 
and instruction with quantifiable and easily ranked outcomes. This has particularly 
been the case across the disciplines of mathematics and mathematics education.

Mathematics education can be released from the bounding structure of schooling 
through the active embrace of the natural environment and the actualization of 
organic learning experiences in its curriculum and instruction. The context of the 
outdoor environment can support the development of mathematical content knowl-
edge by supplementing theory with experience. Learning outdoors is a sensual 
experience; children are invited to touch, see, hear, smell, and sometimes taste ele-
ments of the environment, and these stimulations can enhance and enrich knowl-
edge and understandings of mathematics processes and products. By engaging 
mathematically in everyday situations and settings, learners can become more aware 
of mathematics in the world and disposed to viewing their environment through a 
mathematical lens. Learning about mathematics in the outdoors allows children to 
find a variability of solutions to problems that would otherwise be more challenging 
and use strategies that would less efficient in another setting. The everyday and 
known materials and experiences of the outdoors can be the starting off point for 
questioning, wondering, and exploring mathematical ideas that can then be trans-
ferred into other contexts and abstracted (Pratt, 2011).

Mathematics education can benefit from the principles of outdoor and environ-
mental learning that is becoming an increasingly common approach in K–12 educa-
tion, and one setting that is being embraced by many elementary and secondary 
schools, particularly in urban areas, is the school garden (Cutter-Mackenzie, 2009; 
Ozer, 2007; Williams & Brown, 2012). The school garden presents to the learner the 
living metaphors of garden as environment, garden as community, and garden as 
transformation (Gaylie, 2009). Together, these organically infuse theory with prac-
tice in garden-based ecologies of teaching and learning whose assemblages are 
found in the experience of nature. Garden as environment, community, and transfor-
mation at once supports the development of environmental understandings and the 
fostering of respectful interactions with place and with each other as well as the 
deep changes in students through garden-based learning (Gaylie, 2009).

School gardening projects and pedagogies have provided a wide range of bene-
fits to the learner, the school, and the community. Participation in school gardening 
can be a way for students to learn about their place on many levels and across many 
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systems in a way that can add curricular value and redefine their relationships with 
the environment. School gardens can provide students and other members of the 
school community with a pleasing place for learning within a natural setting. 
Through urban development, transformation of rural areas into suburban sprawl, 
and fears of physical and personal dangers, many children have lost access to tradi-
tional free play environments such as wild spaces, forts, and fields (Malone & 
Tranter, 2003). School gardens open a much needed space for children to enjoy, 
appreciate, and contemplate nature and reconnect with and find comfort in the natu-
ral environment (Bradley, 1995; Carrier, 2009; Rahm, 2002). Children’s learning 
related to school gardens has spanned disciplinary boundaries and uprooted curricu-
lum organizations and orientations. Teachers at schools with gardens have been able 
to include outdoor learning opportunities in their planning across the curriculum. 
Garden-based learning has helped to develop children’s science and environmental 
knowledge, skills, and attitudes as well as language, art, geography, gardening, and 
cooking skills (Alexander, North, & Hendren, 1995; Carrier, 2009; Cronin-Jones, 
2000; Mayer-Smith, Bartosh, & Peterat, 2007; Miller, 2007; Morgan, Hamilton, 
Bentley, & Myrie, 2009; Skelly & Bradley, 2007). In addition to gains in traditional 
academic understandings and skills, children can develop positive social and affec-
tive learning and development. School gardens can open up unique learning oppor-
tunities for collaborative meaning making with peers, community members, and the 
environment that would not have been realized within the four walls of the tradi-
tional classroom (Alexander et  al., 1995; Evergreen, 2000; Mayer-Smith et  al., 
2007; Morgan et  al., 2009; Rahm, 2002). Through school gardening and related 
environmental understandings and attitudes, children can develop an environmental 
ethic and responsibility and be motivated to respect and take care of others in their 
environmental community (Carrier, 2009; Morgan et al., 2007; Skelly & Bradley, 
2007). This paper extends existing research on school gardening and mathematics 
learning (see, e.g., Civil, 2007; Clarkson, 2010) as it shares the botanical experience 
of mathematics of urban elementary school students.

The following four stories share some of the “curricular moments” realized by 
teaching and learning about and in the school garden, of the content and context of 
the garden, the organic spaces grown for mathematical thinking, acting, and being 
outside of the disciplinary walls of the elementary school classroom. The stories 
stem from a year-long participatory research project done at City Public School, an 
urban elementary school in Ontario with well-established school learning gardens 
and several dedicated teachers regularly bringing garden-based curriculum and ped-
agogy into their teaching. The stories are created composite narratives2 that weave 
together direct quotes from participating children and events documented in obser-
vational field notes and activity artifacts with fictional text to present the essence of 
the experience and are invitations to explore and perhaps expand perceptions to 
reconceptions of possibilities for mathematics education and for curriculum.

2 Composite narratives bring together the themes, experiences, and context of the research space(s) 
into a story that invites the reader into the place of inquiry. Fictional elements (e.g., characters, set-
tings, events) are woven together with actual individuals and occurrences into a narrative reflective 
of the research (see Dawson, 2007; McRobbie & Tobin, 1995; Tippins, Tobin, & Nichols, 1995).
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�Planting Seeds

I made the flower bed on the other side of the garden, 
we made the flower beds.

—Awesome Blue

Mathematical processes can be seen as the processes through which students acquire and 
apply mathematical knowledge and skills. These processes are interconnected …. The 
mathematical processes cannot be separated from the knowledge and skills that students 
acquire throughout the year. Students must problem solve, communicate, reason, reflect, 
and so on, as they develop the knowledge, the understanding of concepts, and skills required 
in all the strands in every grade. (Ontario Ministry of Education, 2005, p. 11)

. . .

The grade six students had some work to do in the garden. Following the winter 
weather and the spring thaw, the raised garden beds were a bit worse for wear and 
needed to be repaired. Some of the wooden slats framing the beds had separated 
from each other and become damaged and needed replacing. A small group of 
students joined April, the garden coordinator, outside to do the repair work.

—“Thank you so much for volunteering to help me out with fixing up the raised beds,” said 
April to the grade six students. “After winter and playground wear and tear, we need to 
rejoin some slats together. Some we’ll need to replace because they have begun to rot. Some 
are just broken.”

—“Cool. We can do that,” said The Cool Guy.

—“Yeah, we know how to build raised beds. I remember when we made those beds. And 
the beds on the other side of the garden. We even made the bricks to make that bed with,” 
recalled Awesome Blue.

—“That’s right! That was an awesome field trip to the brick works. OK, let’s fix these 
borders. I want to use the drill,” said B4.

B4 and The Cool Guy set to work on fixing the weakened frames by reattaching 
the wooden slats. The Cool Guy held together the slats while using the long bolts 
and the drill B4 carefully joined them together.

Awesome Blue and Lara worked with April to measure and cut replacement 
slats.

—“Well, the pieces of wood that we have are 4 x 4 by 10 feet. Four inches by four inches,” 
said April.

—“OK. Is the bed the length of one piece of wood?” asked Lara.

—“It looks like it,” said Awesome Blue. “Can you please hold the end of the measuring tape 
for me?” Awesome Blue walked the length of the bed and measured it.

—“It’s 300 cm. How many feet is that?”

—“A ruler is about a foot long, and it has 30 cm on it. So 10 rulers would be 300 cm. 10 x 
30, right?” said Lara. “We don’t need to cut anything then.”
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The girls removed the broken slat and put the new slat in its place. Awesome 
Blue then walked the width of the bed and measured it to be 150 cm.

—“So we need one piece of wood for the length and then half of a piece of wood for the 
width,” said Lara.

—“Let’s double check before cutting, and look as well at how the slats fit together to make 
the frame,” reminded April.

—“OK, the bed measures 300 cm by 150 cm,” thought Awesome Blue aloud. “The old slats 
don’t all go to the edge though. Each side is made up of a slat lengthwise and then the end 
of the other slat. Can you measure the end of the piece of wood?”

—“It is 4 inches, that is what April told us, and…” says Lara, measuring the end of the piece 
of wood, “that is about 10 cm.”

—“So, for the long side of the bed, we’ll need a piece of wood that is 300 cm minus 10 cm 
for the end of the other piece. 290 cm. And for the shorter side, we’ll need 150 cm minus 10 
cm, so 140 cm,” calculated Awesome Blue. “Right?”

Lara and Awesome Blue looked at April.

—“That sounds right to me. Let’s measure those lengths and get the wood cut,” said April.

—“And good luck getting the drill away from B4 and The Cool Guy!” laughed Lara.

. . .

In this curricular story, the garden afforded a context for practical problem solv-
ing. The grade six students needed to fix the garden bed and to do that they had to 
determine the length of wood to cut. This seemingly simple action required students 
to actively apply their understandings and skills from across strands of mathemat-
ics. Awesome Blue and Lara drew on their measurement skills as they worked with 
and between different nonstandard (i.e., ruler lengths) and standard units of length 
(i.e., inches and feet) and systems of measurement (i.e., metric centimeters and 
imperial inches). To convert units, they applied their number sense and knowledge 
of number operations as they multiplied to get all measurements in centimeters and 
thus allow for measurements to be related. Furthermore, Lara applied her own way 
of converting between feet and centimeters by beginning with the nonstandard unit 
of a ruler length and then applying her understanding that a ruler length was 1 foot 
and had about 30 centimeters to calculate that a 10 foot length was equal to 300 
centimeters. This garden-based problem solving has also been realized by elemen-
tary school students using measurement and geometry content knowledge and 
related process skills to plan for the watering of their garden during a time of drought 
(Clarkson, 2010). Students have also used proportion and data management to set 
up a healthy worm bin to make an organic fertilizer for their garden (Clarkson, 
2010). The use of mathematics to complete an authentic and situated task, rather 
than solve a textbook question, can allow for students to make connections to place 
and reconnections between abstract and concrete applied mathematics and view and 
be in the world mathematically.
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These grade six students had a unique relationship with this part of their school 
garden: they helped to actually build the foundation and the beds themselves when 
they were in the fourth grade. This long-standing connection, as well as their regular 
class visits to the garden, made a well-known and personally relevant context for 
learning and applying mathematics concepts and skills. The care and upkeep of the 
garden opened curricular moments for learning in mathematics and across subject 
areas that were intrinsically motivated—the students cared for their garden—rather 
than simply because they were assigned by their teacher. These moments in the 
familiar space of the garden parallel, and it can even be said that they are, those same 
situations where students, and then adults, will be bringing together and applying 
knowledge and skills from across disciplinary boundaries to work with and hope-
fully solve real and situated problems, issues, and concerns in the environment.

�Growing Food for Mathematical Thought

There are these plants that taste really, really good.
—Vintage Beef

Measurement concepts and skills are directly applicable to the world in which students live. 
Many of these concepts are also developed in other subject areas, such as science, social 
studies, and physical education. (Ontario Ministry of Education, 2005, p. 9)

. . .

The garden was full of life and ready for a harvest of herbs and vegetables. 
Thea’s grade three class had been learning about healthy living and healthy eating, 
and Thea decided that it was a good time for her students to have a farm-to-table, 
garden-to-classroom, meal. She took a group of students down to the garden in front 
of the school.

—“There are a lot of plants that are ready to harvest. In fact, except for a few ingredients, 
we will be able to pick our snack today. We’ll be making tabbouleh. How many of you have 
had tabbouleh before?” asked Thea.

Several students raised their hands.

—“My dad makes it,” Vintage Beef said, “It is soooooo good!”

Bautista looked a little hesitant. He had never heard of tabbouleh before and 
wasn’t too sure about vegetables in general.

—“Bautista, can you work with Vintage Beef and Alice to pick lots of sour leaf3 and 
parsley? We’ll need about three cups of leaves,” asked Thea. “Mighty Robot and Marinda, 
would you please pick a nice bunch of mint? Brett, you and I will pick some cherry toma-
toes. There are lots of bright red ripe ones that will be perfect for our tabbouleh.”

3 Sorrel was commonly, and interchangeably, identified as sour leaf by students and teachers.
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Bautista followed Vintage Beef and Alice to the patches of sour leaf and parsley. 
Vintage Beef immediately started to pick and eat sour leaves. Together, the three 
students filled a bowl with sour leaf and curly and flat leaf parsley and then rejoined 
Ms. D and the other students to head back into class to make the tabbouleh.

—“Before we do anything, we all need to wash our hands. Then I will get Alice and Brett 
to fill the sink to wash our tomatoes and greens. Marinda, will you please give the mint and 
lemon balm a good cleaning?” asked Thea.

Vintage Beef and Bautista joined Thea at the big work table where she was 
unpacking some other ingredients and a set of measuring cups and spoons.

—“Here is my recipe, but we are going to double it so there is enough for everyone to have 
some for snack.”

1 cup cooked quinoa, 1 ½ cups parsley + sorrel mix, 1 cup tomatoes, 5 green 
onions, 2 tablespoons mint, ¼ cup olive oil, ¼ cup lemon juice, ¾ teaspoon salt, ¼ 
teaspoon pepper

—“I can do that. My dad cooks with me at home,” said Vintage Beef. “The quinoa and 
tomatoes are easy. Doubling one cup makes two cups. And 5 green onions plus 5 green 
onions is 10 green onions.”

—“And 2 tablespoons of mint doubled is 4 tablespoons,” figured Bautista.

Vintage Beef next drew some circles and divided them each into four parts.

—“OK, so if each of these parts is ¼, the two quarters is the same as half of the circle. So 
we need ½ cup of olive oil and ½ cup of lemon juice and ½ teaspoon of pepper.”

—“If we double the parsley and sorrel, we need 2 cups and 2 half cups. And two halves 
make a whole. So that is 3 cups altogether,” added Bautista. “But what about the ¾ tea-
spoons of salt?”

—“We’ll just double the ¾ like everything else. So 3 parts plus 3 parts is 6 parts. Four parts 
make one whole, and then there are two parts left. And 2 quarters is one half. So we need 
one whole and one half teaspoon of salt.”

Thea got out a big bowl for the tabbouleh and a small bowl to mix together the 
dressing.

—“Thank you, Vintage Beef and Bautista, for doubling our recipe. Mighty Robot and Brett, 
can you help me with the dressing?” asked Thea. “The rest of you can chop the green onions 
and tear the greens and mint into pieces. Then you can go ahead and start measuring out 
those ingredients into the big bowl. Here is some cooked quinoa to add.”

Working together, the grade threes chopped and carefully measured the ingredi-
ents of the tabbouleh. Mighty Robot poured the dressing over the salad and Marinda 
gave it a careful stir and scooped spoonfuls onto everyone’s plate.

—“Let’s eat!” said Vintage Beef.

Bautista was a little hesitant. He did like the sour leaf on its own but all of those 
tomatoes, he wasn’t sure how much he liked tomatoes. To his surprise, he really 
liked the tabbouleh, so much so that he asked for another spoon of the salad.
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And he got a piece of paper to write down the recipe. He wanted to teach his 
mom how to make it.

. . .

Food is a shared way of including the garden and garden-based pedagogy across 
the curriculum while also meeting provincial curricular requirements. Thea’s stu-
dents’ study of food included cooking and, inherent to this, mathematics content 
(e.g., number sense, measurement) and process skills (e.g., counting, weighing). 
Along with engaging students in tasks rich in mathematics concepts and skills 
applications, food explorations are directly related to grade three curriculum expec-
tations in science [e.g., “assess ways in which plants have an impact on society and 
the environment, and ways in which human activity has an impact on plants and 
plant habitats” (Ontario Ministry of Education, 2007, p.  70)] and social studies 
[e.g., “compare ways of life among specific groups in Canada around the beginning 
of the nineteenth century, and describe some changes between that era and the pres-
ent day” (Ontario Ministry of Education, 2013, p. 86)]. Cooking also opened up 
learning opportunities related to healthy living and character education.

Many have highlighted the need for issues of food, food security and insecurity, 
and health to be infused throughout the curriculum (see, e.g., Gaylie, 2011; Williams 
& Brown, 2012) to support sustainability and well-being on many levels—personal, 
social, cultural, economic, and ecological. As content and context for the study of 
food, the school garden provides important opportunities for students and teachers to 
reconnect with what they eat through sensory experiences of food; students smelled, 
touched, and tasted the fruits, vegetables, and herbs grown in the garden. Studies have 
suggested that active participation in gardening can increase the likelihood that chil-
dren willingly eat more vegetables (see, e.g., Parmer, Salisbury-Glennon, Shannon, 
& Struempler, 2009). Students were also able to realize and reconnect to the path that 
their food took, from seed to plant to meal; they were a part of the physical foodway 
of the produce produced in the garden as they planted seeds, transplanted seedlings, 
tended to the growing plants, and prepared and ate food from the garden.

The garden, and harvesting and cooking with its produce, opens up a bridge 
between academic mathematics and everyday mathematics (Civil, 2007). School 
gardening is a unique pedagogical approach that grows in the space in-between out-
of-school learning and classroom curriculum and instruction. Much garden learning 
comes forth through apprenticeship and contextualized exploration. Teaching and 
learning in the school garden often (and perhaps should more often) take root in 
students’ experiences, interests, and wonderings; teachable moments pop up and 
can bloom in the garden. Mathematics in out-of-school learning tends to be hidden 
despite its ever-presence in everyday situations (Civil, 2007). Here, opportunities 
for math exploration can be overlooked and those teachable moments in mathemat-
ics missed. The garden’s curricular and pedagogical richness allows for students 
and teachers to dig into those moments and uproot the hidden math of the garden, 
making explicit the implicit.
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�Nurturing Mathematical Inquiry

I let it sit in the sunshine… 
I watered it and I always kept an eye on it 
and I let it have free air.

—Ruby

One of the central themes in mathematics is the study of patterns and relationships. This 
study requires students to recognize, describe, and generalize patterns and to build mathe-
matical models to simulate the behaviour of real-world phenomena that exhibit observable 
patterns. (Ontario Ministry of Education, 2005, p. 9)

. . .

Alex’s kindergarten class had been learning about spring and the changes that 
happen to plants and animals when seasons change. The children had been growing 
beans from a seed in only a moist paper towel in a plastic freezer bag. The beans had 
sprouted and Ruby asked Alex how big the beans would get if they were taken out 
of the plastic bags and planted.

—“Let’s find out,” said Alex. “What do you think these little beans need to grow tall and 
strong?”

—“Milk! My mum says I have to drink milk to be strong and have strong bones,” called out 
Clint.

—“But you’re not a plant, Clint,” said Ruby. “Plants need sunlight and water and love.”

—“Maybe milk will help to grow Clint’s bean plant tall and strong. Why don’t you try that, 
Clint? And Ruby, you make sure that your plant has sunlight and water and love.”

Determined to grow the tallest bean plant, Ruby set to work. She filled a small 
pot with soil and carefully planted her bean plant into a hole she made with her 
finger. She gently pressed the soil down around the bean—she had seen her grand-
father do this when he planted seeds in his garden in the springtime—making sure 
to not break the delicate young sprout. Ruby then watered the plant and placed the 
pot on the windowsill of the classroom. Each day she checked on her growing bean 
plant, and when she felt that the soil was getting dry, she watered it. Using the col-
ored cubes, Ruby measured how tall her bean plant was by counting up the cubes 
and then recording its height on her clipboard.

When a few weeks had passed, the children were excited to find out whose bean 
plant was the tallest. Ruby’s plant was second tallest in the class. Only Omar’s bean 
plant was taller.

—“How did you get the bean plant to be so tall, Ruby? What sorts of things did you do to 
help it grow?” asked Alex.

—“I let it sit in the sunshine in the pot. I watered it and I always let it have free air.”
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—“OK, so sunshine and water and free air. Is this fresh air?”

—“Yes, fresh clean air.”

—“Yes! How about you, Omar? What did you do?” asked Alex.

—“Water and sunshine, too,” said Omar.

—“Clint, tell me about your bean plant. How did your plant do?”

—“It didn’t grow very tall. I kept it in my cubby and put milk on it.”

—“Why do you think it didn’t grow very tall?” questioned Alex.

—“Well, my cubby is kind of small. There isn’t much room to grow. And it is not by the 
window so there is no sunshine. I don’t think the milk helped it to grow like it helps me to 
grow,” said Clint.

—“Maybe the more sunshine and water a plant gets, the taller it grows,” predicted Ruby.

—“That sounds like a good conclusion, Ruby,” said Alex.

—“I’ll bet if I used soy milk my bean plant would grow,” Clint thought aloud.

. . .

The kindergartners’ exploration of plant growth and growth rates and plants’ 
needs was an organic bringing together of the curricular disciplines of science and 
mathematics through an inquiry-based approach. Inquiry-based teaching and learn-
ing opens up the learning experience and process to the learner as they are invited to 
work with ideas, concepts, and understandings in a way similar to the thinking and 
working of scientists and mathematicians (Artigue & Blomhøj, 2013). Entangled 
with and in the rhizomatic roots from which nature study is grounded, inquiry-based 
learning can be formally traced, as can nature study, back to Dewey and his consid-
eration of the interaction and change of elements of an environment in relation to 
each other. He described inquiry as “the controlled or directed transformation of an 
indeterminate situation into one that is as determinate in its constituent distinctions 
and relations as to convert the elements of the original situation into a unified whole” 
(Dewey, 1938, p. 108). With a foundational rooting in the inherent relations and 
connectedness of contextual elements, inquiry brings the learner into this interplay 
in which their reflective and recursive exploration of interacting elements allows for 
their own reflective and recursive learning. Inquiry can open up the curriculum to a 
multiplicity of engagements and explorations.

Alex opened up his kindergarten students’ learning experience and allowed 
Ruby’s initial wondering about how big their bean seedlings would grow when they 
were planted to guide their inquiry. His questioning and openness to possibility in 
the activity’s unfolding invited his students to draw from their prior knowledge from 
school and from home. Here, we see Ruby and Clint both making connections to 
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what they already know about requirements for healthy growth as Ruby shares that 
plants need sunlight, water, and care, and Clint recalls that milk helps people to 
grow strong. Ruby further follows her grandfather’s careful gardening as she gently 
plants her bean seedling like she has seen him do in his garden in the spring. The 
students’ academic understandings together with their everyday knowledge helped 
to inform their inquiry.

Like the grade threes and their cooking, the mathematics that the kindergarten 
students explored and applied as they grew their bean plants—measurement, data 
collection and management, number sense and numeration, and patterns and rela-
tions—was “situated, dilemma-driven” (Lave, 1992) and personally motivated. 
Students wanted to grow the tallest plants and, to do so, had to determine how to 
ensure the needs of the growing plant were best met. Mathematics was inherent in 
this component of the students’ inquiry process. Students were actively applying the 
number sense and measurement understandings and skills as they measured and 
compared heights of their bean plants [“demonstrate an understanding of numbers, 
using concrete materials to explore and investigate counting, quantity, and number 
relationships,” “measure, using non-standard units of the same size, and compare 
objects, materials, and spaces in terms of their lengths…” (Ontario Ministry of 
Education, 2016, p. 181)]. Also in their exploration of plant growth and factors to 
supporting growth, students used data displays and interpretation in their inquiry to 
determine the optimal growing conditions for the bean plants [“collect, organize, 
display, and interpret data to solve problems and to communicate information…” 
(Ontario Ministry of Education, 2016, p. 182). The mathematics that was inherent 
to the students’ exploration allowed them to find answers to their wonderings and 
nurture and grow their mathematical knowledge and skills while enriching their 
understanding of plants.

�Exploring Curricular Diversity

If you, like, learn about it, 
you know what it needs, 
what stuff helps it grow.

– John Cena

The related topics of data management and probability are highly relevant to everyday life. 
Graphs and statistics bombard the public in advertising, opinion polls, population trends, 
reliability estimates, descriptions of discoveries by scientists, and estimates of health risks, 
to name just a few. (Ontario Ministry of Education, 2005, p. 9)

. . .

The raised beds in front of City Public School needed to be thinned as they were 
becoming overgrown with sweet grass (Hierochloe odorata). Sweet grass is a plant 
native to North America and has many traditional uses by Aboriginal peoples. The 
grass is one of the four sacred medicines used ceremonially and spiritually; the 
others are cedar, sage, and tobacco. Sweet grass represents the hair of Mother 
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Earth, and when it is braided, its three strands symbolize the love, honesty, and 
kindness of the earth. The sweet grass at City was going to be thinned out and 
shared with a neighboring school community that wished to add sweet grass to 
their own school garden.

Sidney used this gardening opportunity to bring together mathematics and sci-
ence with hands on gardening as her grade six students looked at the biodiversity of 
species in the raised beds using a study of quadrats. The students gathered by the 
native plant garden in front of the school.

—“We’ve been studying biodiversity in science and today we’ll start to look at the biodiver-
sity in our native plant garden,” introduced Sidney. “Let’s work together in groups of four 
and use quadrats that we learned about last class to divide up the garden. With your groups, 
I would like you to plan and record how you will collect data in your biodiversity study and 
then do your study. Then you’ll need to analyze your data. What does it tell you about the 
biodiversity of this garden? Remember that biodiversity includes the number of different 
species and the number of individuals of those species. When we put out data together, 
we’ll have a good idea of the diversity of species in the garden. I have brought out a lot of 
materials and some identification guides for you to use. OK, let’s see how diverse our native 
garden is.”

Dynamite and his group had a look through the materials and chose a magnifying 
glass, 4 m loop of rope, 4 tagged pegs, a measuring tape, sheets of graph paper, 
pencils, and a camera. Using the pegs and loop of rope, they marked a 1 meter 
square of the garden to explore.

—“We used the graph paper last class when we learned about quadrats to figure out percent-
ages. We can imagine that our square is a 10 x 10 grid and mark the squares on graph paper 
with different plants,” suggested Dynamite.

—“OK,” said Adam. “How will we collect data? Let me write it down. We’ve already mea-
sured and marked our quadrat with the rope. Maybe we should first figure out how many 
different plants there are.”

—“Don’t forget animals and mushrooms. The fungus among us,” laughed Dynamite.

The students looked at their garden square and found that about one third of the 
square was covered with sweet grass.

—“Almost all of the rest is just soil. Except for a dandelion and maybe a strawberry, I think 
that is what this is,” said Adam.

—“So, we need one square on the graph for dandelion,” said Dynamite, “two for the straw-
berry, and 33 and one-third for sweet grass. And the rest blank. Let’s take a picture of our 
square so we remember what it looks like and we can ask Sidney if this is a strawberry 
plant.”

—“Class, it is getting close to lunch,” noted Sidney. “I think everyone has figured out how 
many different types of species are in their quadrats. Purple Roses, could you share with us 
what plants you found and the percentages that each covered?”

—“Sure. Our group had lots of sweet grass, about 95%. And we had about 2% dandelion 
and 3% another one that we didn’t know,” said Purple Roses, pointed to the unknown plant.
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—“OK, so mostly sweet grass. Laura, what about your group? Did you have mostly sweet 
grass as well?” asked Sidney.

—“No, we had just under half sweet grass, 47%, 7% clover, 2% of the same unknown plant 
that Purple Roses had, 4% of another unknown, 8% twigs, and 32% soil. It was more 
diverse than Purple Roses’ square,” shared Laura.

—“Ours was one third sweet grass, 1% dandelion, and 2% strawberry, we think,” said 
Dynamite. “And the rest was just bare soil. We had the same number of species as Purple 
Roses’ group. But way less sweet grass.”

—“I agree,” said Sidney. “Let’s leave our quadrats marked through lunch and we will come 
out this afternoon to do our counts of the individual species.”

—“Our square might not have as many species as Laura’s group but at least we don’t have 
as much sweet grass as Purple Roses’ group. That will take forever to count!” laughed 
Adam.

. . .

The biodiversity study of one of the school garden beds presented a realization 
of the weaving together of mathematical strands. The students’ application of math-
ematical understandings and process skills related to number sense and numeration 
and data management were essential to their examination of garden biodiversity. 
Students initially organized their data and recorded their observations in a 10x10 
grid that was a scale representation of their one square metre garden quadrat [“col-
lect and organize discrete or continuous primary data and secondary data and dis-
play the data using charts and graphs...” (Ontario Ministry of Education, 2005, 
p.  88)]. Recognizing that the 10x10 grid presented 100 squares, they were then 
easily able to interpret their data in terms of percent coverage of each species in the 
garden, which [“demonstrate an understanding of relationships between percent, 
ratio, and unit rate” (Ontario Ministry of Education, 2005, p. 88) and “read, describe, 
and interpret data, and explain relationships between sets of data” (Ontario Ministry 
of Education, 2005, p. 95)]. Content areas in mathematics always and inherently 
inform each other in understandings and applications.

Stemming from the practical need to thin and desire to share the sweet grass that 
was dominating the native plant garden, curricular boundaries between mathematics, 
science, and social studies were blended as the diversity of species was explored. 
The grade six students were able to apply their knowledge of the prescribed sci-
ence curriculum, [“demonstrate an understanding of biodiversity as the variety of 
life on earth…,” “describe ways in which biodiversity within species is important 
for maintaining the resilience of those species,” and “describe ways in which bio-
diversity within and among communities is important for maintaining the resil-
ience of these communities” (Ontario Ministry of Education, 2007, p.  114)] 
through their engagement with and in the learning garden context. The study also 
drew from understandings of indigenous cultures and knowledge as students 
restored balance in the garden and gifted plants (here, the culturally significant 
sweet grass) to other school communities and their learning gardens [“assess con-
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tributions to Canadian identity made by various groups and by various features of 
Canadian communities and features” (Ontario Ministry of Education, 2013, 
p. 118)]. In the grade six students’ biodiversity study, the garden provided a cur-
ricular context for realizing the rhizomatic relation of mathematics, science, and 
social studies knowledge and skills.

Mathematics in the learning garden supported students’ care for the garden and 
the garden’s health. By viewing the garden through a mathematical lens, students 
were able to recognize the dominance of one species, the broadly spreading sweet 
grass, and how this dominance impacted the diversity of the garden. They saw how 
the spread of the sweet grass made it difficult for other plants to obtain food, water, 
sunlight, and space, and that this influenced the health of the garden. The students 
took positive action by removing and sharing some of the sweet grass plants with 
another school and their learning garden. The application of mathematics knowl-
edge and skills, along with science and social studies understandings, allowed the 
grade six students to engage with an authentic and situated exploration of biodiver-
sity. This garden experience is a starting point for further thinking and learning 
about and taking action to plant, grow, and nurture diversity and ecological health 
and well-being in other contexts.

�The Garden as an Opening of Curriculum

I think it’s in our curriculum or something 
to go outside and garden or stuff.

– Cherry

Although no overall or specific expectations explicitly address environmental education, in 
each of the strands the learning context could be used to foster in students the development 
of environmental understanding (e.g., problems relating to climate or waste management 
could be the focus of problem solving). In addition, the mathematical processes (e.g., problem 
solving, connecting) address skills that can be used to support the development of environ-
mental literacy. (Ontario Ministry of Education, 2011, p. 18)

. . .

The time spent learning in the school garden was time spent in a space both 
outside of and within the overlapping space of difference of many structural 
contexts. Learning about the garden, in the garden, and with the garden grows 
curriculum well beyond the binding of prescribed learning outcomes, the siloing of 
disciplines, and the confining structures of school and schooling. It was outside of 
the structure of the classroom: the four walls, the desks and chairs, and the rules and 
routines. The movement from the classroom made room for the class to open 
another space for experiencing the curriculum. And here, the curriculum that was 
experienced was outside, outside of the framing boundaries of the structured and 
prescribed curriculum. Mathematics, along with science, social studies, and liter-
acy, blurred into a decentered curriculum that recentered on the centrality of the 
sensuous experience of place within the context of the learning garden. As such, 
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“the garden [became] part of the curriculum and a vehicle through which academic 
content [was] elaborated” (Richardson, 2011, p. 117). Sights, smells, and sounds 
of the garden framed the experience rather than the exclusive direction of the 
prescribed and disciplinary objectives. Students and teachers were able to work 
with and in the structure of the prescribed curriculum while at the same time extend-
ing beyond, disrupting the disciplinary curricular framework. Their learning and 
teaching met curricular requirements in mathematics, science, and social studies, 
but did so through organic and inherently multidisciplinary ideas. This was a differ-
ent way of knowing the garden, of knowing place, and of knowing home and one 
that opened up the impossibility of a curricular metanarrative, a single and unques-
tioned structure for teaching and learning, and the possibility of a multiplicity of 
narratives and experiences of and in place of lived meanings. Aoki (1993) reflected 
on this curricular multiplicity, noting that “it is time not to reject but to decenter the 
modernist-laden curricular landscape and to replace it with the C&C landscape that 
accommodates lived meanings, thereby legitimating thoughtful everyday narra-
tives” (p. 263). It is a call for the recognition of both the lived curriculum and the 
curriculum-as-plan, for an upsetting of the dominance of curriculum-as-plan to 
allow for the acknowledgment of the lived curriculum that quietly persists, and that 
is unspoken, always and already there.

Curriculum is a “weasel word” (Aoki, 1993). It eludes definition and its slipperi-
ness does not allow it to be pinned down. It instead plays in and out of content and 
contexts. It climbs above, burrows below, and navigates around structural borders. 
It tangles threads so carefully and meticulously separated. So rather than struggle to 
restrain the weasel’s movement, let us instead embrace the ease and fluidity with 
which it moves. Let us marvel in how it twists and turns and ties together those 
seemingly separate disciplines. Let us allow the weasel to guide us in play with and 
in the open and interactive rhizomatic network of organic transdisciplinary possi-
bilities of difference in teaching and learning.

. . .

Mathematics is a powerful learning tool. As students identify relationships between 
mathematical concepts and everyday situations and make connections between mathemat-
ics and other subjects, they develop the ability to use mathematics to extend and apply their 
knowledge in other curriculum areas, including science, music, and language. (Ontario 
Ministry of Education, 2005, p. 3)
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Chapter 6
Transdisciplinarity, Critical Mathematics 
Education, Eco-justice, and the Politics 
to Come
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Abstract  This chapter proposes a vision of transdisciplinary mathematics educa-
tion that takes into account the sociopolitical nature of mathematics education and 
approaches to sustainability that go beyond the savior status of mathematics. In the 
three sections of the chapter, we discuss transdisciplinarity by positioning mathe-
matics as equal partner with other disciplines and worldviews, argue that mathemat-
ics and mathematics education should be also viewed as perpetrators in the 
sustainability and social justice discourse, and explore transdisciplinary mathemat-
ics education for sustainability in pedagogical settings. Finally, we offer a list of 
possible discussion questions for educators considering the topic of food waste.
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tion, critical math education

The goal of this chapter is to put forth a vision of mathematics education for sustain-
ability that acknowledges the sociopolitical turn in mathematics education, under-
scores the importance of resisting the neoliberal tendency of mainstream 
interdisciplinary approaches such as STEM, and goes beyond the savior status of 
mathematics education in addressing contemporary issues and crises. The authors 
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(Jesse, Nenad, and Travis) come from different backgrounds: Jesse is a science and 
environmental educator, Nenad is a mathematics educator whose primary research 
goal evolved from the advancement of students’ disciplinary knowledge to activism 
and social justice, and Travis is interested in the intersection of critical and statistical 
literacies in the K–12 setting.

This chapter includes three sections. In the first section, we stress the importance 
of transdisciplinarity as well as dethroning mathematics and mathematics educa-
tion, making them equal partners with other disciplines in the discussion of sustain-
ability. We also underscore the importance of taking a sociopolitical turn in 
mathematics education (Gutiérrez, 2013). In the second section, we talk about the 
importance of moving away from the savior status of mathematics in relation to 
environmental problems, instead shifting toward an understanding of the ways that 
mathematics has played the role of perpetrator in environmental crimes. Finally, 
we move toward pedagogical considerations by envisioning what mathematics 
education for sustainability could look like in practice.

�Transdisciplinarity, Sustainability, and Mathematics 
Education

A transdisciplinary mathematics perspective is a necessary requirement if any kind 
of robust, widespread environmental education agenda is to take shape in schools 
across the globe, quite simply because all aspects of living in the world involve 
interconnectedness on a scale educators are only beginning to understand. Achieving 
any kind of transdisciplinarity related to sustainability, eco-justice, and environ-
mental education means entangling politics, eco-justice, ethics, and mathematics 
education together in a way such that educators would have to be irresponsible and/
or very uninformed to try and untangle them. Sadly, STEM education has unequivo-
cally placed short-term economic gain over the needs of the vast majority of human 
and nonhuman communities (Pierce, 2012, 2015); therefore, it comes as no surprise 
that it is difficult, both practically and politically, to begin with mathematics educa-
tion and then move toward transdisciplinary (although we try!). The route to inte-
gration, interaction, and recombination is altogether different depending on where 
an educational community chooses to begin, its philosophical/cultural outlook, and 
its ethical and political values—in other words, sociopolitical context and subjectiv-
ity matter (Bazzul, 2016). If mathematics is colloquially considered by many as the 
“queen of the sciences,” its flattening-out may provoke “a loud fall from epistemic 
grace.” More importantly, however, making mathematics and mathematics educa-
tion one equal partner among many ways of doing and knowing will be highly 
productive as the discipline assumes a primary place in the scope of human activity 
that works to make the world a more ecologically and socially just place. Like other 
disciplines, mathematics education is undergoing a sociopolitical turn (Gutiérrez, 
2013). According to Gutiérrez, the sociopolitical turn in mathematics education 
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entails positioning social struggles (e.g., against white supremacy and global eco-
nomic hegemony) and systemic configurations of power—what Hardt and Negri 
(2009) call Empire—at the center of pedagogy and research. Gutiérrez (2013) cap-
tured the revolutionary spirit of this turn when she declared that “any resistance to 
the sociopolitical turn is a form of hegemony” (p. 22).

It may be easier for an outsider to the mathematics education community to see 
this. For example, the life sciences, and consequently science education, are embod-
ied in the body politic through institutions such as schooling and public health as 
well as the integration of biology into daily life through popular media (Rabinow & 
Rose, 2006). For the sciences, a turn toward embracing multiple ways of viewing 
the material world may be easier simply because both politics (the institutions that 
give science its legitimacy) and materiality (the substrate for all scientific knowl-
edge) are a little bit closer and their relations slightly more visible. Since mathemat-
ics and mathematics education have traditionally been tied to abstraction, refocus of 
math education toward addressing unjust material conditions in the form of environ-
mental education—and away from career preparation and depoliticized knowl-
edge—will likely be more noticeable. The turning of mathematics curricula and 
pedagogy toward politics, such as the politicization of finance, risk, and big data, 
will be a strategic site of engagement, where the power of quantification will be 
turned from the service of hegemonic power toward meeting the needs of 
communities.

To this end, “the queen” (mathematics) will have to put itself level with other 
disciplines and, in many cases, defer to other disciplines. In mathematics educa-
tion research, environmental education seems not to be taken too seriously, save 
the work of a few scholars (e.g., Barwell, 2013; Renert, 2011, Renert & Davis 
2012; Sriraman & Knott, 2009). Educators can begin a criticism of mathematics 
education like Lynn White (1996) did in the essay “The Historical Roots of Our 
Ecological Crisis” simply by admitting that certain assumptions (e.g., that humans 
are separate and superior to nature) and institutions of power have allowed educa-
tional institutions to be complicit with the destruction of our shared world. Yet one 
of White’s not-so-subtle points is that the plethora of already existing myths that 
hold meaning for us can be combined and retold to suit life better, rather than 
blindly following ideologies and belief systems only known to exacerbate the eco-
logical problems faced by communities exposed to environmental destruction and 
inequality. The same is true for educational life, especially for the indigenous theo-
ries, philosophies, and narratives that have existed in many places for millennia 
(McGregor, 2005). Indigenous knowledges and eco-justice have much in common, 
as they both have at their center the notions of relationality, dependence, and inter-
sectionality. They also stress the relationship between the natural world, values, 
meaning, and the politics of existence. Thus, given the way knowledge systems are 
constructed, their resulting social and ecological consequences matter (Deloria & 
Wildcat, 2001).

Humans have irreversibly altered Earth’s geology and ecosystems, which is man-
ifesting itself in the sixth mass extinction (species extinction rate being 100 to 1000 
times higher than normal). This has prompted a proposal to call this new epoch the 
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Anthropocene (Lewis & Maslin, 2015). What makes the declaration of the 
Anthropocene by scientists most relevant to the dissolution of disciplinary boundar-
ies in mathematics education is the blurring of the nature/culture divide; notably, 
this blurring is coming from the side of science. Events once thought to be histori-
cal, cultural, and political, such as the eradication of indigenous peoples by 
Europeans in places like North America or the refinement of postwar production, 
can now also be seen as events that permanently mark Earth’s geological and biodi-
versity record or, more provocatively, as geological and biological events. 
Transdisciplinarity is needed to meet the demands of the Anthropocene (Lloro-
Bidart, 2015). As Latour (2004) noted, for too long have fields like science been 
kept from politics and politics and the social world kept from the study of science.

Like many others, we feel that mathematics and mathematics education should 
also not be kept from engaging politics and the social world (Frankenstein, 1994; 
Gutiérrez, 2013; Gutstein & Peterson, 2013; Wager & Stinson, 2012), ecology, or 
the study of nature. In this way, we endeavor to think about what a transdisciplinary 
way of relating entails and then provide some examples of how environmental and 
mathematics education can be brought together in the hopes of fostering deeper 
connection and care for our shared world. To think ecologically is also to think in a 
transdisciplinary way that involves relationships molded by strong historical forces 
that must constantly be negotiated.

As many environmental educators have pointed out, social inequality and radical 
change cannot be delivered through statements like “more should be done” or “I 
need to change my habits” (Henderson & Hursh, 2014; McKenzie, 2012). 
Mathematics education that covers the curriculum to meet the needs of unjust labor 
and commodity markets of a globalized world is more than short-sighted; it is, col-
lectively speaking, morally and ethically reprehensible. We are wary of seeing 
transdisciplinary environmental education initiatives within fields like mathematics 
education leave traditional curriculum and pedagogy untransformed. Traditional 
curricula and pedagogy prepare students to exist uncritically in a world governed by 
racial, sex/gender, and economic hierarchies rather than care for and produce a sus-
tainable world in common.

Our intention is not to argue for a form of sustainability or environmental educa-
tion that is “correct,” as there are many currents in environmental education to con-
sider (naturalist, feminist, bioregionalist, holistic, etc.) (Sauvé, 2005). However, we 
recognize that an eco-literate mathematics education requires different knowledge 
systems—and different social activist movements—speaking with each other for 
the betterment of the planet. Fostering transdisciplinarity and entangling eco-
literacy in mathematics education will likely involve a revolution in values that will 
require educators to question authority and boundaries. Environmental educator 
Marcia McKenzie (2009) emphasized that transgressing boundaries or limits is not 
about exploding past them (if only it were that easy!), but mostly about illuminating 
limits. For McKenzie, borderland pedagogies are vital for transdisciplinary and 
critical work in education. Of course, environmental and eco-mathematics educa-
tion will take place under the constraints of strong corporate and governmental 
political forces that want to push/force the marketization of schooling. Therefore, it 
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is important to exercise a certain degree of caution concerning what sustainability 
or environmental education entails (Jickling & Wals, 2008). In other words, does 
our use of terms like sustainability allow us to enter into disagreement or implement 
radical new practices of what this could entail? If not, are educators engaging in 
sustainability education for “Big Brother” (Jickling, 2001; Jickling & Wals, 2008)? 
To engage in sustainability education, as Orr (2004) asserted, communities will 
need to define what exactly they want to sustain.

�Mathematics and Environmental Sustainability: 
Understanding and Accepting the Perpetrator Status

There is an understandable impulse for mathematics educators (particularly those 
whose work is centered around the notion of social justice) to embed sustainability 
into mathematics education research and practice. After all, mathematics is seen as 
a lens through which the extent of the ecological damage can be observed and 
potentially addressed. As Barwell (2013) pointed out, mathematics helps us under-
stand climate science in the form of description, prediction, and communication. 
Renert’s (2011) ideas complement Barwell’s by further noting that the communica-
tion element of climate mathematics requires a sophisticated understanding of ratio-
nal numbers as well as large quantities.

However, mathematics (together with science and technology) is not just the 
judge of the state of our climate and potential environmental hazards; it is also the 
perpetrator of the hazards (Beck 2009). Furthermore, Barwell (2013), d’Ambrosio 
(2010), and Skovsmose (1994) pointed out that mathematics as a discipline is also 
responsible for climate change, as mathematics has enabled the economic–indus-
trial–scientific–political system that led to anthropogenic climate change. Industrial 
revolution(s), fossil fuel technology, financial risk management, and stock market 
(hedge funds) systems would not be possible without the mathematical apparatus. 
As d’Ambrosio (2010) wrote, we have a responsibility, as mathematics educators, 
“to question the role of mathematics and mathematics education in arriving at the 
present global predicaments of mankind [sic]” (p. 51).

The idea that the action of mathematicians can be ethically questionable has not 
escaped the mathematical mainstream. For example, the American Mathematical 
Society (AMS), the leading body for professional mathematicians in the United 
States, has recognized in its own ethical guidelines that:

[w]hen mathematical work may affect the public health, safety or general welfare, it is the 
responsibility of mathematicians to disclose the implications of their work to their employ-
ers and to the public, if necessary. Should this bring retaliation, the Society will examine the 
ways in which it may want to help the "whistle-blower”, particularly when the disclosure 
has been made to the Society. (AMS, 2001, para. 13)

So it appears that even the mathematical establishment recognizes that mathematics 
does not happen in the Platonic vacuum and that there may be some unethical con-
sequences of mathematicians’ work. It is important to note that the AMS’s ethical 
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guidelines do not imply that mathematicians should not be involved in such work; 
rather, they simply state that any implications should be disclosed. It is questionable 
whether, based on the reading of the guidelines, most members of the mathematics 
research community would feel responsible for contributing to the current environ-
mental crisis.

Can we actually understand to what extent mathematics as a discipline (or poten-
tially mathematics as a community of practice) can be held responsible for the cur-
rent state of the planet? Van de Poel, Nihlen Fahlquist, Doorn, Zwart, and Royakkers 
(2012) outlined conditions under which an agent may be held morally responsible 
by focusing specifically on climate change. One of the conditions is causality: We 
can hold mathematics responsible for the environmental woes if we can establish 
the causal link between the content and the methods of the mathematical practice 
and the current state of our planet. A possible way to establish causality is to argue 
that mathematics as practiced has created unsustainable conditions that enabled the 
emergence of the Anthropocene through the mathematical models that brought us 
everything from coal power plants to the internal combustion engine. Another con-
dition is knowledge. It is possible to claim that mathematicians working on the 
models may not be aware of how they may be used by, for example, the fossil fuel 
industry. However, to paraphrase Van de Poel et al. (2012), mathematicians have a 
duty to know and research how the models may be applied.

As educators and researchers proceed to take a closer look into the existing lit-
erature on mathematics education and sustainability, they have to be careful of the 
narratives that describe mathematics as part of the solution to the problem of sus-
tainability and climate change as well as accept mathematics as one of the culprits 
of climate change. As educators, we realize that this is not an easy task because the 
focus of the mathematics education reforms has been on making students develop a 
productive disposition toward mathematics, which includes that mathematics is 
simply a worthwhile enterprise.

�Sustainability in Mathematics Education

Sustainability is not a major topic in mathematics education research and practice. 
However, researchers who have written about sustainability (e.g., Barwell, 2013; 
Renert, 2011; Sriraman & Knott, 2009) recognize that sustainability should be more 
than just the context for enriching mathematical instruction. One possible approach 
to sustainability education is to identify the mathematical concepts necessary for 
understanding sustainability and use it to educate others about the planet. For exam-
ple, Renert (2011) called for an understanding of large numbers and ratios, and 
Sriraman and Knott (2009) offered an empirical study of preservice teachers as they 
make sense of the amount of waste generated in the United States through the math-
ematical concepts of rate, proportion, and ratio. In addition to their calculations, 
preservice teachers in the study were also urged to think critically about their esti-
mates. The authors concluded that, through critical thinking about estimates, 
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“[pre-service teachers] begin thinking about solutions to problems brought about by 
the new found awareness of the threat to our planet because of over-population and 
overuse of natural resources” (p. 220).

The idea that students will gain environmental awareness through the logical and 
mathematical analysis of an environmental problems has been challenged by the 
work of Kahan et  al. (2012), in which the statistical analysis of a representative 
sample of American adults (n = 1540) suggested that a person’s perceptions about 
climate change do not depend on the individual’s level of scientific literacy and 
numeracy, but on their cultural worldviews. For example, among the individuals 
who could be described as hierarchical individualists, many perceived climate 
change risk was actually significantly negatively correlated with the individuals’ 
scientific literacy and numeracy. The study, widely cited, casts a doubt on the notion 
that ecological awareness can be increased simply through mathematical instruc-
tion. The study is also consistent with Levinson, Kent, Pratt, Kapadia, and Yogui’s 
(2012) claim that individual risk estimates are informed by values, experiences, 
personal and social commitments, as well as representations.

�Transformation in the School Curriculum

When discussing the idea of bringing issues from environmental studies and sustain-
ability into the mathematics curriculum, we are not simply talking about creating a 
bridge or collaborating between mathematics and science. There also needs to be an 
element of activism and criticality. Criticality in the context of sustainability refers 
to interrogating discourses, institutions, as well as social and economic structures to 
identify and problematize those creating unsustainable conditions and, in turn, envi-
sion how to transform these structures for a more just and sustainable world. A key 
element of criticality is not only to use mathematics to read and write the world 
(Gutstein, 2006) but also to see and interrogate the formatting power of mathematics 
(Skovsmose, 1994) and its responsibility in creating issues of injustice, such as sus-
tainability issues like climate change (Barwell, 2013) and food waste.

An example of the formatting power of mathematical models that directly affects 
the lived realities of students are those used to determine what annual income will 
represent the poverty level for families in the U.S. (for details, see U.S.  Census 
Bureau, 2015). Such models are also used to determine cutoffs based on the percent 
of the poverty level that families’ annual income needs to be below for their children 
to qualify for free or reduced lunch at school. These models become realized 
abstractions (Skovsmose, 1994) that construct our reality, determining who does 
or does not have to pay for lunch at school. In this way, mathematical models have 
very real power over which children receive or do not receive lunch at schools. 
Mathematically determined poverty thresholds have much further reaching impor-
tance than merely determining who gets free or reduced cost lunch. These thresholds 
are also often used to create groups as an operationalization of socioeconomic status in 
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complex statistical analyses meant to shape policy and funding that have far-reaching 
implications for “who gets what” in their various communities and settings.

Presenting such models as the poverty threshold, and the power it has in shaping 
reality, would be important for both students and teachers to experience in their own 
mathematics education. This also relates to sustainability in a number of ways. For 
one, it relates to the sustaining of human life by providing nutrition for children in 
need. Also other issues of ecological sustainability emerge as the production, trans-
portation, refrigeration, and disposal of food waste involved in providing free and 
reduced lunch to children in need also require the use of fossil fuels, deforestation 
of arable land for agriculture, water pollution from farmland runoff, and loss of land 
to waste disposal, to name just a few considerations. These issues also connect 
directly to climate change. For example, the use of fossil fuels to produce, transport, 
and refrigerate food creates greenhouse gases, as does the decomposition of food 
waste in landfills. Advanced mathematical models are also used heavily in climate 
change science, which Barwell (2013) discussed in detail related to mathematics 
education. These interconnections also point to another aspect of sustainability: 
When thinking of ecosystems and ecology, everything is interconnected. This inter-
connectedness brings a complexity to considering such issues as no clear boundar-
ies exist to delineate them from one another.

Complexity is in fact an important consideration in creating transdisciplinary 
mathematics education and sustainable ecological practices in communities. It also 
provides some promise for change because, with everything being interconnected in 
complex webs of relationships, a change in a single node or relationship can have a 
rippling effect through other nodes and relationships. In this way, small changes can 
have widespread effects in ways that are not easily predictable (Hamilton & Pfaff, 
2014; Renert, 2011; Renert & Davis, 2012). It is crucial that students and teachers 
are aware of the complex nature of sustainability and our ecosystems. This also 
makes the task of investigating issues of sustainability in the mathematics class-
room inherently difficult, messy, and time-consuming. However, at the same time, 
if framed the right way, such interconnectedness can also be used to show the agency 
students and teachers have to effect change for a more just and sustainable future.

Such complexity is also another reason why we need to break down disciplinary 
boundaries and blur the lines between subject areas, which can be strong in the 
K–12 curriculum, to tackle the complex issues many communities are facing. Very 
dangerous events are unfolding that impact the health of our planet and the survival 
of human and other-than-human life, such as climate change, environmental pollu-
tion, water contamination, food shortages and waste, ozone depletion, and ocean 
acidification. These issues are further compounded by misinformation campaigns 
and the misdirection of the public by corporations, special interest groups, and poli-
ticians more interested in personal gains than social goods. This can be seen front 
and center in today’s American context, with the dramatic shift in political direction 
after the last presidential election; indeed, the agency tasked with protecting the 
environment, the United States Environmental Protection Agency (US EPA), is now 
run by someone who has attempted to dismantle it in the past and has historically 
been an advocate for companies and special interest groups opposed to the EPA’s 
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very mission (Lipton & Davenport, 2017). Dealing with such large-scale environ-
mental sustainability issues requires not only awareness but also activism in order 
to work to alleviate such issues as well as critique their causes.

According to the US EPA’s (n.d.) webpage, “sustainability isn’t part of our 
work—it’s a guiding influence for all of our work.” In a similar direction, sustain-
ability should not be just an inserted unit or a project in a unit or topic in mathemat-
ics education; it should be a guiding influence for all our work in mathematics 
education. As a note, when we originally wrote this chapter, it was during the wan-
ing days of the Obama administration, and despite changes in the leadership to the 
US EPA, we stand in support of those faithful employees of that agency that still 
fight for the mission of environmental sustainability. An important question to again 
come back to here is what are we fighting to sustain? As we shift to discussing pos-
sibilities for practice for a transdisciplinary approach to mathematics and environ-
mental/sustainability education, this should be a constant open question for dialogue 
as no single right answer exists. Instead, it needs to be an open question constantly 
considered and negotiated by the local and global communities, all of which are 
interrelated and affected by environmental issues.

It is important to point out that making a shift toward a transdisciplinary approach 
is not like flipping a light switch. It may not be possible to go directly from a tradi-
tional mathematics perspective to transformation where sustainability is intertwined 
and inseparable from mathematics education, making it not just part of our work, 
but also the guiding influence. It requires a transition. And this transitioning involves 
recognizing that mathematics is not neutral, nor should it be seen or taught as an 
isolated discipline. As discussed earlier, such a shift is beginning to occur with the 
sociopolitical turn (Gutiérrez, 2013). However, much more work is needed for such 
a transition. To try and relate what we have been discussing in terms of mathematics 
education and sustainability to the classroom, some examples would be helpful.

�Possibilities in Classroom Practice

The goal of this section is to provide some examples of how sustainability could be 
integrated as a guiding influence into the mathematics curriculum threaded around 
a common issue—namely, food waste. We are choosing to use food waste as an 
issue for several reasons. First, food is something that students can relate to because 
everyone needs it to survive and, generally, students have some interest in foods 
they like. Food is also tied to different contextual considerations, such as culture, 
geographical contexts, flows of global capital, and socioeconomic status, all of 
which are important issues to consider in critical mathematics education 
(Frankenstein, 2009; Skovsmose, 1994; Wager & Stinson, 2012). Furthermore, food 
is something that is visible and relevant in schools. A frequently heard lament of 
school teachers in the United States is on the waste of food they have seen in their 
school cafeterias, with students throwing away entire uneaten lunches. At the same 
time, programs are in place to provide students with free or reduced lunches at 
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American schools because so many students come from homes that cannot provide 
the basic nutrition children need to be healthy.

Food is also a complex system that includes issues of production, transportation, 
cost, ethics, and environmental impact in both its production and disposal. All of 
these issues are deeply intertwined in economic, social, historical, and cultural con-
cerns as well (Stuart, 2009). Such complex ecological and sustainability issues are 
ostensibly considered as part of science in the American K–12 educational setting 
(NGSS Lead States, 2013). For example, the NGSS includes human impacts on 
Earth systems and global climate change as part of the disciplinary core ideas to be 
taught in the science curriculum. Sustainability issues stretch well beyond science 
and the strict, inadequate disciplinary boundaries in K–12 schools and are important 
to consider in the context of mathematics education and other fields, such as visual 
and language arts (Renert, 2011; Renert & Davis, 2012).

For our example about food waste, we draw on the work of Frankenstein (2009, 
2011), who often talks about how she attempts to present her students with real real-
life examples of mathematics that are also outrageously horrible, yet represent the 
lived reality for millions of people. An example is presenting students with figures 
on the proportion of the federal budget spent on national defense and past, present, 
and future wars (Frankenstein, 1994). According to Frankenstein (2009, p. 114), 
“real real-life mathematical problems occur in broad contexts, integrated with other 
knowledge of the world.” They are not just calculation problems dressed up with 
words and a meaningless context. They are problems that allow students to make 
sense of the social world around them and the political context in which they are 
situated. Part of her rationale for presenting such examples is because “part of strug-
gling to change our world in the direction of more justice is knowing how to clearly 
and powerfully communicate the outrageousness” (Frankenstein, 2011, p. 10).

We consider the issue of food waste in school cafeterias as a real real-world 
problem situated in students’ daily reality and drawing upon other knowledge of the 
world outside of mathematics. Drawing from this notion, an initial step to spark 
awareness and draw students’ interest into exploring, investigating, and acting upon 
issues of sustainability could begin by presenting them with some outrageous fig-
ures and statistics around food waste. The issue of food waste is also intimately 
connected to the issue of climate change, which we focused on earlier, for a number 
of reasons, including fossil fuel costs from producing, distributing, refrigerating, 
and disposing of food; greenhouse gas production by decomposing food waste; 
methane production by cattle due to demand for beef; and deforestation for clearing 
arable land for farming.

To begin our food waste example, consider the following: The US EPA (2014) 
estimated that the amount of municipal solid waste in 2010—that is, food waste 
from both retail and consumer sources—was 98,940,000,000 pounds. To put that 
into perspective for students, if we assume the average school bus without students 
weighs around 17,000 pounds (this value varies greatly, which is why we are using 
a conservative assumed measure here), Americans throw away approximately 
5,820,000 school busses worth of trash a year. To help students develop a sense of 
the quantity, if we also assume that a school bus is about 30  feet long, the total 
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equates to an end-to-end train of busses 174,600,000 feet long (5,820,000 school 
busses × 30  feet per bus), or 33,068  miles long (174600,000  feet long or 
33,068 miles), or long enough to go around the Earth 1.33 times (33,068 miles long 
compared to the approximate circumference of the Earth of 24,901 miles). There is 
a significant amount of quantitative reasoning involved in such measurement con-
versions that help to also provide a clearer picture of the immensity of the figure.

Another way to put 98,940,000,000 pounds of municipal solid waste into per-
spective for students would be to consider the amount of waste per person in the 
United States per year: 319.9 pounds (U.S. EPA, 2014). To hit the point home, a 
teacher could physically present students with that amount of trash, perhaps from 
their own school dumpster, so they can visually see and experience that amount of 
waste, rather than just considering it as an abstract number. This is only considering 
solid food waste; if all postharvest food losses are considered, the US Department 
of Agriculture puts that figure at 133 billion pounds or 31% of all harvested food 
was lost in 2010 (Buzby, Wells, Axtman, & Mickey, 2009). That is approximately 
7,823,529 school busses worth (133,000,000,000 pounds of harvested food waste 
compared to the average school bus weight of 17,000 pounds) or 431 pounds per 
person in the United States per year (133,000,000,000 pounds of harvested food 
waste per 308,745,538 people, the population of the United States in 2010 accord-
ing to the US Census Bureau [2010]).

We have shown the calculations involved in each of the changes in the perspec-
tive we have presented to emphasize the significant amount of unit conversion and 
proportional reasoning used in just this small example, which could be incorpo-
rated into the mathematics classroom targeting key topics in mathematics (National 
Council of Teachers of Mathematics [NCTM], 2000; National Governors 
Association Center for Best Practices [NGA Center] & Council of Chief State 
School Officers [CCSSO], 2010). Furthermore, such experiences could make such 
a quantity of waste seem outrageous to students, which acts to raise awareness and 
hopefully students’ interest, while simultaneously presenting students with experi-
ences seeing the power of mathematics to view the world.

Part of awareness is to destabilize and problematize the “sustainability” of soci-
ety’s current path, or the status quo, to begin to work toward transforming society 
and mathematics education toward a more just and sustainable future. Awareness is 
but one component though. Even if we are aware of the outrageously unsustainable 
practices around us, it does not mean we act to do anything about it. As Kahan et al. 
(2012) found in their survey, numeracy can actually be negatively correlated with 
individuals’ perceived risk of climate issues. Furthermore, in taking an approach to 
foster awareness by presenting outrageous real real-life examples, a fine line must 
also be tread carefully so as not to stray into fear and despair. Some scientists take 
the shock and awe route to awareness, in turn sending out messages of fear and 
despair, as if no one individual’s work or change could ever turn around such large, 
complex issues to prevent ecological disaster (Renert, 2011; Renert & Davis, 2012). 
It is important to avoid such apocalyptic and defeatist rhetoric, which can lead stu-
dents to take up positions that there is no hope, so why bother, or that problems are 
too large for anyone to handle or resolve.
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One way to balance such a line is to also present ways that individuals have the 
agency to transform their own context in an effort to mediate current ecological 
trends. Spurning outrage in students will hopefully result in motivating or precipi-
tating students’ desire to investigate such issues themselves, beginning in a local 
setting, such as students’ own school or local community. A teacher could initially 
begin by starting a discussion with students to open a space for them to discuss their 
reactions to being presented with such outrageous figures of the amount of food 
waste in the United States. These questions could also be used to connect this issue 
more to the lives of students by having them reflect upon what such figures mean for 
their community. In the Appendix, we have provided some possible initial discus-
sion questions to help teachers introduce the issues of food waste.

After having a discussion with students, a next step would be to begin to investi-
gate ways to transform their own communities to be more sustainable. Initially, 
students could come up with their own issues they want to investigate in their school 
cafeteria, such as just how much food is thrown away each day? What type of food 
is being thrown away? Are certain types of food more likely to be thrown away than 
others? How could the amount of food waste be reduced? What seem to be the 
major causes of food being thrown away at school? Where does food waste from our 
school go? What are the influences of such food waste on the community and envi-
ronment? These are all questions that may spark students’ interest in investigating 
and critiquing food waste in their own school. Such questions could then drive 
investigations in which students consider how they would collect data to investigate 
or answer those questions. These investigations could then be followed by analyz-
ing the data statistically or using mathematical modeling, followed by interpreting 
such models and analyses relative to the questions posed. Such mathematical pro-
cesses are important components of the mathematics curriculum (NCTM, 2000; 
NGA Center & CCSSO, 2010) and, as shown with our example, can be taught in 
real real-world problems and contexts rather than in terms of abstract algorithms 
and calculations or contrived or fictitious contexts (Frankenstein, 2009).

Still, merely investigating and critiquing issues do not necessarily lead to change. 
Change requires action and transformation. Fostering awareness and investigating 
issues related to food waste only create the potential for change. We would argue, 
though, that awareness increases the potential for change more than if students are 
not aware or given opportunities to explore and critique such critical sustainability 
issues. Providing students with an open space in which to investigate sustainability 
issues important to them and related to their daily lives in the mathematics classroom 
is a first step in fostering students’ agency to investigate such issues on their own.

Students need to feel empowered to effect change or transform current condi-
tions for a better and more sustainable future (Hamilton & Pfaff, 2014). For exam-
ple, Donnay (2013) reported on how post-secondary level mathematics students 
were interested in exploring the idea of their cafeterias going tray-free. By comparing 
the weight of food waste on a day the cafeteria used trays versus a day they did not, 
students estimated the cafeteria could reduce food waste by 4600 pounds per year 
by going tray-free. The students also created surveys to survey the student body in 
order to help determine how to gain students’ buy-in for such a move. As a result of 
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the action of students in their mathematics class, within 2 years the college’s cafete-
rias went tray-free. Though this example played out at the college level, Donnay 
(2013) reported that much of the mathematics content (e.g., linear functions, pro-
portions, unit conversion) was applicable to the K–12 mathematics curriculum 
(NCTM, 2000; NGA Center & CCSSO, 2010). This example also highlights how 
the post-secondary level could also be a powerful setting for the transformation of 
mathematics education because it is where future classroom teachers are educated. 
There is, after all, a bit of a chicken-or-egg paradox in where to start a transforma-
tion in education: with teachers or with students? Teachers play a large role in shap-
ing the mathematics curriculum that students experience (Remillard & Heck, 2014). 
Realistically, to effect change, educators must work at all levels of the system: stu-
dents, teachers, teacher educators, administrators, and policymakers. After all, edu-
cation is a complex system, just like our planet’s ecosystem.

�Conclusion

There are no certainties, guarantees, cure-alls, or quick fixes in doing transdisci-
plinary work for justice and sustainability. What we have tried to do in this chapter 
is question and problematize the predominant direction mathematics education has 
been taking in terms of its isolation from other disciplines. If educators continue to 
treat mathematics as an isolated, politically neutral subject, how can they expect 
students to see the power of mathematics to not only investigate important and 
meaningful issues but also change such issues for a more just and sustainable world? 
We hope that this work provokes further discussion, which is desperately needed to 
transform the educational reality we see unfolding before our eyes. We have also 
tried to move beyond critique and problematization by providing some possibilities 
for moving forward in hopes that others will take up this charge. We hope other 
researchers, teacher educators, and teachers may find such possibilities as a starting 
point to consider how they can move toward a transdisciplinary mathematics educa-
tion for sustainability in their own settings and contexts. One guarantee that can be 
made is that if those who exercise power do not change, this planet will no longer 
be able to sustain us. Change needs to happen, and transdisciplinary mathematics 
education can and should be part of that process.

�Appendix: Possible Discussion Questions for Teachers

	 1.	 How important is food in your daily routine?
	 2.	 How much food would you estimate you throw away on a weekly basis?
	 3.	 What factors contribute to you throwing food away?
	 4.	 How much food would you estimate is being thrown away in the cafeteria in 

your school each day?
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	 5.	 Does food being wasted at your school bother you?
	 6.	 What factors do you think contribute to food being wasted at your school?
	 7.	 How do you think mathematization might play a role in contributing to the food 

wasted at your school?
	 8.	 How might mathematization be used to help reduce the food wasted at your 

school?
	 9.	 What might you do to better understand the issues of food waste at your school?
	10.	 What mathematics do you think would be involved in investigating the issue of 

food waste at your school?
	11.	 How might you engage your students in investigating the issue of food waste at 

your school connected to your mathematics curriculum?
	12.	 What are the ethical issues of the food waste/consumption in your 

community?
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Chapter 7
Using a Mathematics Cultural Resonance 
Approach for Building Capacity 
in the Mathematical Sciences for African 
American Communities

Terrence Richard Blackman and John Belcher

Abstract  The underrepresentation of African Americans in the mathematical sci-
ences in post-secondary education and in professional settings has been well docu-
mented. This state of affairs has persisted despite multiple and varied efforts over 
the years to address the concern. We assert that defining efforts around closing 
achievement gaps and/or through making moral arguments, such as has often been 
the case, is insufficient for compelling the levels of commitment and action needed 
to address meaningfully issues that contribute to the seeming intractability of Black 
underrepresentation in the mathematical sciences. The equity and access issues at 
play are embedded in the histories of oppression and devaluation faced by Black 
people in this nation.

In this chapter, we introduce a mathematics cultural resonance framework 
(MCRF) to inform mathematics teaching, learning, and knowledge production in 
ways that affirm and draw upon African American cultural resources. We argue for 
strategies that link mathematics pedagogy with active mathematics research and 
with the mathematical sciences knowledge, practices, and dispositions embedded 
within African, African American, and/or other African Diasporic cultural tradi-
tions. We posit that culturally resonant approaches facilitate African Americans 
developing robust mathematics identities and maintain that these approaches pro-
vide ripe opportunities for producing new, groundbreaking mathematics knowl-
edge, thereby benefiting the mathematics community (and society) as a whole. In 
considering implications for using an MCRF to build the mathematics capacity of 
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African American communities, we describe in relative detail our work in the West 
Ocala community of Ocala, Florida.

Keywords  Cultural resonance • Black communities • Mathematics practices • 
Knowledge production • Cultural traditions • Black mathematicians

�Preliminaries

We write this chapter from the perspective of Black (African American) cultural-
racial membership. As a writing convention, we use Black and African American 
interchangeably, knowing that these two labels are not technically synonymous. 
When we refer to “the” Black community or “the” African American community 
or Black/African American mathematicians, we are speaking about Black people 
from Africa and/or the African Diaspora who reside in the United States. We rec-
ognize that there is no monolithic Black community or monolithic African 
American culture, though we write, generally, about African American culture and 
African American/Black communities rather than making attempts to qualify 
these characterizations throughout this chapter. Further, as Black mathematics 
professionals ourselves and as an expression of an alignment of our racial, cul-
tural, and mathematics identities, where appropriate, we write in terms of “our” 
communities and “our” histories, traditions, and culture, rather than making third 
person, object references.

Though we recognize that the primary audience of this publication is, more than 
likely, the mathematics education academic community, we write with members of 
our African American communities in mind, who might not necessarily be in aca-
demia but who, nonetheless, have a stake in and a claim to issues, such as under-
representation in the mathematical sciences, which have serious implications for the 
vitality of these communities. We hope for, aspire towards and intend a broadened 
conversation and to engaged participation, including through efforts defined and led 
by members of African American communities to build the mathematics capacity of 
these communities.

�Beyond Closing Gaps

Our motivations for articulating the vision for building mathematics capacity of our 
communities extend beyond aims to close gaps of one sort or another between 
African Americans and our White American and/or Asian American counterparts. 
We are guided by questions of what it takes to repair and to prepare our communi-
ties. We are guided by considerations of what it will take to compel action toward 
revitalizing our communities, action toward thriving, not surviving.

T.R. Blackman and J. Belcher



127

We think of our forebears who built institutions, communities, and even towns in 
this country, despite having been born to enslavement and having endured brutal 
oppression. We relate to Murrell’s contextual framing for White teachers teaching 
Black children to consider:

where you might be now if your ancestors had been denied access to education, or barred 
from entering a commonwealth, and denied citizenship and basic rights by the govern-
ment? Where might you be if your ancestors were publicly flogged every thirty days until 
they left the state (as they did in Oregon in 1857) or denied citizenship by the United States 
Supreme Court, stating that they had no rights that either persons or governments were 
bound to respect? Or you might ask where you would be if your grandparents attended 
schools in a region of the country where state governments preferred to have no quality 
public schools rather than have quality public schools that served you, your family, and 
your kin? (Murrell, 2002, p. 30)

Clearly any approach toward effectively addressing educational and professional 
inequities must be informed by considerations of African American history and cul-
tural traditions. We think about the requisite infrastructures for building the mathe-
matics capacity of Black communities and how knowing our histories and traditions 
reminds us that we’ve done this type of building before and that the more important 
gap to close is the gap that separates us from our cultural richness.

�More of the Same (Kind of) Data

The underrepresentation of African Americans in the mathematical sciences in post-
secondary education as well as in professional settings has been well documented. 
Though African Americans constitute approximately 12% of the United States pop-
ulation, at the college and university level, 5.7% bachelor’s degrees in mathematics 
and statistics are awarded to Blacks. In graduate school, African Americans are 
approximately 2.9% of master’s degree recipients and 2.0% of PhD recipients.

There are an estimated 300 living African American mathematicians in the 
United States (Walker, 2014). For context, according to the American Mathematical 
Society (AMS) website, “there are over 35,800 individual members of the four lead-
ing professional mathematical sciences societies in the U.S.” (AMS, n.d.) a number 
which, of course, excludes those mathematicians who don’t belong to any of these 
societies. As far as we have been able to determine, it is still the case that “You Can 
Count on One Hand all the Black Mathematics Professors at the Highest-Ranking 
American Universities,” which was the title of an article that appeared in the Journal 
of Blacks in Higher Education (Winter, 1998–99).

These data tell a familiar and persisting, year-to-year tale of an unacceptable 
state of affairs regarding diversity in the mathematical sciences. This begs the ques-
tion, however, of unacceptable for whom? Hopefully, this persisting state of affairs 
becomes unacceptable to more and more of us, at levels visceral enough to feel 
urgent enough to compel needed responses.
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�Unexcavated Stereotypes About Black People and Mathematics

After Benjamin Banneker showed his almanacs containing complicated trigono-
metric calculations to then Secretary of State Thomas Jefferson, Jefferson commu-
nicated his conclusion to colleagues that Banneker must have received assistance 
from Whites, going so far as to say that “I have not yet found one of them [Blacks] 
that could solve the geometric problems of Euclid” (as cited in JBHE, 1998). In 
1916, Lewis Terman, writing of Black people and other non-White racial-ethnic 
groups in his book The Measurement of Intelligence, in which he introduced the 
Stanford-Binet IQ test he created, stated that, “They cannot master abstractions but 
they can often be made into efficient workers.”

The editors of the book Black Mathematicians and Their Works took an approach 
of countering stereotypes about Black people’s lack of capacity for abstract thought 
by showing the works of Black people demonstrating this ability at the highest lev-
els. Included in this volume is a reprint of an April 1952 Negro History Bulletin 
editorial, “Science and Mathematics”:

…It has been assumed that Negroes have special talents along the lines of the arts, but that 
they are inherently weak in science and mathematics. Upon this assumption are based the 
watered-down programs of science and mathematics that frequently are offered to Negro 
students on all levels of instruction…The idea of Negroes having minds that would become 
‘confused by figures’ is similar to an idea in earlier generations that Negroes would not 
make good factory workers. The ‘hum of the machinery would put them to sleep,’ it was 
said. Thousands of Negroes employed at machines in war-expanded industry enjoyed the 
inflated salaries, delivered the goods and did their sleeping at home. The whole idea proved 
to be a myth and not a matter of a racial trait at all. (Newell, Gipson, Rich, & Stubblefield, 
1980, p. 305)

Black people have had long histories of “making a way out of no way,” as the 
African American expression goes, in confronting and overcoming stereotypes 
about our capacities, whether these stereotypes be about our abilities to work in 
factories, or serve as officers in the military, or be quarterbacks (Shanahan, 2014, 
p. 3), or play baseball, or to be elected officials (without chaos such as portrayed 
in D. W. Griffith’s racially demeaning film The Birth of a Nation). As the African 
American authors of this chapter, informed by our lived experience, we view dis-
mantling and excavating stereotypes about our capacity for abstract thought, as a 
final frontier of sorts for Black people. We continue to witness, without surprise, 
manifestations of the survival of these stereotypes. We experience their durability 
in the self-doubts we ourselves have internalized, triggered when we find our-
selves in mathematics spaces that feel unwelcoming. We know that stereotypical 
perceptions and portrayals that have persisted and been perpetuated, oftentimes by 
design, for hundreds of years don’t magically disappear, even with the best of 
intentions and pledges to do the right thing because it’s the right, moral, socially 
just thing to do. Changing curricula, changing pedagogy, or making rallying calls 
to close achievement gaps or opportunity gaps is insufficient for compelling the 
education community, the mathematics community, the society at large, and Black 
people ourselves to examine and take action at the depth of levels needed to 
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address meaningfully issues that contribute to the seeming intractability of Black 
underrepresentation in the mathematical sciences. This requires intentional, sus-
tained effort, not at the branch, twig, or flower petals levels but, rather, at the levels 
of the trunk and the roots.

�Introducing a Mathematics Cultural Resonance Framework

We introduce a mathematics cultural resonance framework (MCRF) to inform 
mathematics knowledge production and pedagogy in ways that affirm and draw 
upon African American cultural resources. We are intentional in speaking specifi-
cally about a “mathematics” cultural resonance framework, instead of discussing a 
culturally resonant framework more generally, even though the same principles 
apply, we believe. The status of the mathematical sciences as an epitomization of 
abstract thought has bearing on how we shape and view our overall intellectual 
identities as Black people.

Along with considerations about developing culturally resonant intellectual 
identities, there are additional factors that speak to the value for Black communi-
ties of a mathematics cultural resonance framework informed through lenses of 
African American culture(s). The mathematical sciences are integral to our every-
day lives. Further, given the prestige attached to having expertise in using the tools 
of mathematics, concentrating this prestige in the hands of a subset of the popula-
tion limits the types of mathematics that are valued, pursued, and developed 
(Herzig, 2004). In today’s world, access to mathematics learning at the highest 
levels and to active participation in setting and pursuing mathematical sciences 
research agendas are inextricably linked to the economic and political empower-
ment and overall vitality and quality of life of African American communities. We 
can’t afford to operate on the fringe and/or in the primary capacity as consumers. 
Nor can the contributions of those from the community of Black mathematicians 
remain invisible, under-recognized, and unheralded. Without active, visible par-
ticipation in the practices of mathematics, including its knowledge production, not 
only will achievement and opportunity gaps persist, but our communities will not 
be assured that the practices and research agendas of the mathematics community 
at large meaningfully align with the needs of African American communities or 
with the assets of our communities, including the cultural capital of our histories 
and varied knowledge traditions.

�The Mathematics and Physics of Resonance

Our combined research interests and work over the years align with the importance 
we place upon maintaining strong links between mathematics teaching, learning, 
and knowledge production dimensions while being mindful of cultural and 
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socioeconomic considerations. Terrence is a mathematician specializing in number 
theory. Specifically, he studies the discrete spectrum and the eigenfunctions of the 
Laplacian for a special class of arithmetic surfaces of fundamental interest in math-
ematics and physics. Concomitantly, he has pursued a mathematics education 
research agenda grounded in identifying and addressing issues impeding the mean-
ingful participation of Black people in the mathematical sciences. Based upon his 
backgrounds in drumming and mathematics, John has for many years investigated 
relationships between music and mathematics. Among his areas of focus are the 
various ways that pulses can be grouped and subdivided and that rhythmic patterns 
can be sequenced and layered and organized. He has made significant use of math-
ematical “tools” and concepts in these investigations, which have included compos-
ing music based upon mathematics structures (Belcher, 2006). As a drummer/
composer/“rhythmologist,” he has worked in a variety of educational, therapeutic, 
and performance settings.

In 2012, we decided to develop and pursue a collaborative research agenda 
(Belcher & Blackman, 2013) organized around the question “Can one hear the 
shape of a drum?,” posed by mathematician Mark Kac (Kac, 1966). Essentially, Kac 
asks in an intuitive manner if one can identify the specific shape of a vibrating mem-
brane (such as a drumhead) given the knowledge of all the frequencies at which the 
membrane vibrates. We have found that various points of entry to the question and 
various twists to the question suggest many possibilities for interesting collabora-
tions, such as our own, and provide multiple opportunities for engaging mathemat-
ics learners of all levels around a deep and very active research area (Belcher & 
Blackman, 2013).

The phenomenon of resonance is at the heart of this research. A resonant fre-
quency is the frequency at which an object tends to vibrate “naturally,” in the 
absence of some external force being applied to the object. When an external force 
is applied at a frequency equal to the resonant frequency, the effect is magnified. A 
familiar example is pushing a person in a playground swing in time with the reso-
nant frequency making the swing go higher and higher with minimal effort. Indeed, 
if the pushes occur at a faster of slower rate than the rate at which the swing makes 
its arcs, then the motion of the swing is disrupted.

The resonance phenomenon can also be observed when you vibrate a taut string 
at different frequencies. At most of the frequencies applied, nothing remarkable 
occurs. However, at resonant frequencies, the amplitude of the string’s response 
increases dramatically and different patterns occur, according to the particular reso-
nant frequency.

The resonance that occurs in drums (two-dimensional membranes) is an extrapo-
lation of what happens with strings, which are considered to be one-dimensional in 
an abstract mathematical sense. An impressive display of resonance in two-
dimensional objects can be seen in so-called Chladni patterns. These emerge when 
you sprinkle sand (or powder) on metal plates of various shapes and sizes and 
vibrate them at their resonant frequencies.1 Figure 7.1 shows images of Chladni pat-
terns produced on equipment in our community-based office/lab space.

1 Chladni patterns are named in honor of late eighteenth-/early nineteenth-century musician-phys-
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It is an exhilarating, awe-inspiring experience to witness particles on a Chladni 
plate become excited and move into beautiful, largely unpredictable patterns when 
you find a resonant frequency – non-resonant frequencies leave the particles unaf-
fected. Any object that vibrates, be it a string, a drumhead, or an atom, has resonant 
frequencies. Information about an object can be gleaned from knowledge of these 
frequencies.

It was actually during one of our conversations about our investigations into the 
mathematics and physics of resonance that we recognized the aptness of resonance 
as an illuminating frame for engaging individuals and communities (broadly 
defined) around mathematics teaching, learning, and knowledge production. We are 
all familiar with the palpable feeling that accompanies an encounter with an idea or 
experience that strikes us in a particular way. We feel excited. We feel moved 
(e-motion). In the noted conversation, as we, the authors, considered ways of more 

icist Ernst Chladni who made drawings of the figures created when he used his violin bow to excite 
a metal plate sprinkled with sand.

Fig. 7.1  Chladni patterns with the frequencies that generated them on a square plate (24 cm sides) 
and a circular plate (24 cm diameter)
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effectively activating the untapped potential that exists in our Black communities, 
we recognized the critical importance of finding words and actions that resonate 
with the members of these communities, with the culture(s) and histories of these 
communities. We recognized the critical importance of approaches, of words, and of 
actions that resonate with the social, cultural, racial identities of Black people. We 
began to envision and imagine the potential for transformative impact both with 
respect to how African Americans have positive engagement with mathematics and 
with respect to how the discipline of mathematics – its practice and its knowledge 
base in today’s world – might be affected by contributions of Black people who 
access more fully our cultural assets and resources.

�Envisioning and Imagining the Contours of an MCRF

We articulate the contours of a mathematics cultural resonance framework by 
describing how we envision its expression through the lenses of African American 
culture. In describing our framework through these lenses, we do not intend to 
convey a message that this MCRF is designed exclusively for Black culture. We 
posit that mathematics as it is practiced in academic settings has already been 
operating within an MCRF, experienced predominately through the lenses of 
European cultures. Our position aligns with arguments made against long-held 
claims that mathematics is a neutral, acultural discipline (D’Ambrosio, 2001; 
Nasir, Hand, & Taylor, 2008; Powell & Frankenstein, 1997). We are intentional 
about exploring an MCRF at the level of granularity and specificity we have cho-
sen, i.e., what it might look like operating through African American cultural 
lenses. Extracting and distilling generalizable MCRF core principles, particularly 
principles generalizable to diverse communities that have experienced underrepre-
sentation and marginalization, require having meaningful participation of individ-
uals from these communities.

The MCRF shares core principles with various other frameworks that consider 
racial, social, and cultural factors in seeking to address issues of equity and access 
in the mathematical sciences. We inform our MCRF with culturally relevant/
responsive pedagogy2 (Ladson-Billings, 1995) and African-centered pedagogy3 
(Murrell, 2002). We draw upon what we characterize as an expanded success/bril-
liance of Black children in mathematics framework, which aims to create counter-
narratives to the deficit-based depictions of African American students, their 

2 According to Ladson-Billings (1995), culturally relevant pedagogy is a pedagogical practice “that 
not only addresses student achievement but also helps students to accept and affirm their cultural 
identity while developing critical perspectives that challenge inequities that schools (and other 
institutions) perpetuate” (p. 469).
3 Murrell (2002) describes African-Centered Pedagogy as a synthesis of five relevant frameworks: 
learning communities or communities of learning, culturally responsive or culturally relevant 
teaching, teaching for understanding, situated learning, and cultural and racial identity 
development.
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families, and communities. The expanded success/brilliance framework calls for 
“embrac[ing] the cultural backgrounds and knowledge that Black learners bring to 
their school and classroom contexts” (Leonard & Martin, 2013, p. xvi). Walker’s 
research and framing approaches used to investigate the cultivation of African 
American mathematics excellence and identity4 (Walker, 2014) provide further key 
influence to our MCRF.

In our work to date shaping an MCRF, we have identified the following set of 
organizing/design principles:

•	 A different take on mathematics pedagogy: intentional teaching and learning of 
mathematics practices

•	 Using African American cultural resources to inform mathematics teaching, 
learning, and knowledge production

•	 Diversity as a means and not an end
•	 Expanded definitions of mathematics success
•	 Creating intentional culturally resonant mathematics spaces

�A Different Take on Mathematics Pedagogy: Intentional 
Teaching and Learning of Mathematics Practices

Typically, discussions on mathematics education focus on mathematics content. 
Pedagogical considerations and efforts are directed toward how to more effectively 
teach and learn the subject matter. Thinking about mathematics as the primary ideas 
that lend themselves to presentation in conventional mathematics texts makes invis-
ible the cultural dimensions of mathematics practices.

In our MCRF approach, we highlight the importance of distinguishing 
between the content of mathematics as a discipline and the practice of mathe-
matics as a profession. Included among the skills and activities required of prac-
ticing mathematicians are developing and pursuing research agendas, writing 
mathematics papers, presenting mathematics talks, acquiring mathematics 
knowledge (staying current within one’s area of focus), and, in general, partici-
pation in the local and broader mathematical communities. These skills and 
activities, among others, contribute to the development of robust mathematics 
identities (Herzig, 2004).

This skill-activity set stands in glaring contrast to what students of mathematics 
typically experience at the graduate school level (Herzig, 2004), much less at K-12 
and undergraduate levels. As it turns out, a focus on the practices of mathematicians, 
on mathematics as a “community of practice” (Lave & Wenger, 1998; Wenger, 

4 “What has emerged as a key factor in the success of high achievers and mathematicians alike is 
the important role that out-of-school experiences and relationships, many rooted in specific cul-
tural and social contexts, have played in their mathematics knowledge development and socializa-
tion” (Walker, 2012).
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2009), reveals the cultural dimensions of mathematics (Burton, 1998; Nasir et al., 
2008). In summarizing her interview-based study of 70 research mathematicians 
focused on how they “come to know” mathematics, Burton (1998) observed that 
the mathematics practices of the study participants were “highly varied, from one 
to another, and personally and culturally dominated” (p.  140). We believe that 
prominent consideration of cultural features of mathematics practices will clarify 
the transformational opportunities arising from meaningful African American par-
ticipation in the discipline.

One example of an African American community of mathematics practice is the 
Conference for African American Researchers in the Mathematical Sciences 
(CAARMS). The organization, co-founded in 1995 by Bill Massey and other col-
leagues, was formed “to highlight current research by African-American research-
ers and graduate students in mathematics, strengthen the mathematical sciences by 
encouraging increased participation of African Americans and members of other 
underrepresented groups, facilitate working relations among them, and provide 
assistance to them in cultivating their careers” (CAARMS website). Massey has 
characterized his CAARMS’ and other mentoring efforts as producing new col-
leagues “rather than waiting around to see” (Kenschaft, 2005, p. 194) if they would 
emerge. As attendees of CAARMS conferences over the years, we contend that 
what distinguishes the CAARMS community is something much more than the 
melanin content of the participants. Greater significance comes from participants 
having shared histories of navigating (attempting to navigate) the challenging tra-
jectories through the stages of becoming a mathematician and having a fruitful 
mathematics career while Black.

�Using African American Cultural Resources to Inform 
Mathematics Teaching, Learning, and Knowledge Production

What are the implications for mathematics teaching, learning, and knowledge pro-
duction if these activities occur in ways aligned with values and features of African 
American culture? As alluded to above, it can seem unnatural to think about math-
ematics in a cultural context unless consideration is given to mathematics as a com-
munity of practice (more accurately, as communities of practice). Without doing so, 
one might wonder what is cultural about long division, adding and subtracting frac-
tions, or finding a derivative? To begin to envision and imagine MCRF implications 
in the context of African American culture, it is helpful to unpack what we mean 
when we speak of “African American culture.”

We almost want to say there is some sense of “you know it when you see it.” You 
know it when you feel it. We share some impressionistic thoughts. To get a feel for 
African American culture, spend time in Black churches, including hearing (and 
participating in the call and response of) the sermon, singing the hymns, and eating 
food prepared by the Church Sisters; hang out in a Black barbershop and a Black 
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beauty salon for a few hours; observe Black girls jumping rope or playing hand 
games; listen to some Miles Davis and Nina Simone and Billie Holiday and Betty 
Carter and John Coltrane and Duke Ellington and Sun Ra and Mahalia Jackson and 
the Last Poets and Aretha Franklin and Jimmi Hendrix and the Fisk Jubilee Singers 
and McCoy Tyner and Gladys Knight and the Pips and Smokey Robinson and James 
Brown and Ray Charles and Charley Pride; read and/or listen to some speeches by 
Dr. Martin Luther King, Jr. and Fannie Lou Hamer and Malcolm X and Frederick 
Douglass and Michelle Obama and Rev. Garden C. Taylor and Sojourner Truth, 
etc.; talk to some Black (great)grandmothers and (great)grandfathers over a meal 
prepared by said (great)grandmother, begun with a few minutes or so “grace”; go to 
a soul food restaurant and an Ital restaurant and a backyard barbecue; do a review of 
Black handshakes (including ways of “slappin’ five”) over the past few decades; 
attend a CAARMS (Conference for African American Researchers in the 
Mathematical Sciences) and/or a NSBE (National Society of Black Engineers) and/
or a NOBCCE (National Organization for the Professional Advancement of Black 
Chemists and Chemical Engineers) and/or a NSBP (National Society of Black 
Physicists) conference; read about George Washington Carver and Benjamin 
Banneker and Thomas Fuller and Katherine Johnson and Percy Julian and James 
Edward West and Charles Drew; read about “the Black Wall Street” and about the 
more than sixty townships founded and settled by African Americans between 1865 
and 1915 (Brown, 2015); etc.

Henry Louis Gates, Jr. stated in a 2007 Mother Jones interview, “You know, there 
are 35 million black people in this country and there are 35 million ways to be 
black” (Hochschild, Baptiste, Patterson, & Corn, 2007). Along with Professor 
Gates, we recognize the impossibility of the task of defining African American cul-
ture in any way that fully, accurately addresses the multidimensionality of and vari-
ability within African American people and the communities of which we are a part. 
Our impressionistic strokes in the previous paragraph, if anything, underscore this 
reality. At the same time, we imagine that such a collection of experiences, if under-
gone by someone not Black, would disabuse any notions of deficits of creativity, 
innovation, imagination, intellectual capacity, and/or “grit” within African American 
communities, hence revealing the inherent shortcomings of deficit-based approaches 
to addressing the underrepresentation of African Americans in the mathematical 
sciences. For fellow African Americans, contemplating sets of experiences such as 
the above serves as a reminder of the richness of the wellsprings of cultural resources 
from which we might draw in order to participate more meaningfully in what 
remains an inadequately explored frontier for us. We maintain that an MCRF 
approach provides affirming frames for accessing our cultural resources in mathe-
matics settings.

With caveats to avoid perceptions of monolithic characterizations of African 
Americans in mind, we believe that it can make sense to speak of African American 
cultural patterns. Murrell (2002) refers to “a set of enduring cultural patterns in the 
African American community” that emerges from a “continuous historical struggle 
for full citizenship and literacy” (p. 31). This set builds upon and/or merges with 
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cultural features traceable back (primarily) to West African societies. One such cul-
tural pattern described by Murrell that pertains to education is intergenerational 
communication and teaching. Another is “the inseparability of education from all 
other aspects of social and cultural life” (p. 31); education is viewed as “the process 
of becoming a capable and full participant in the intellectual, cultural, spiritual, and 
political life of the community” (p. 32). Jones and Campbell (2011) employ the 
time, rhythm, improvisation, orality, and spirituality (TRIOS) framework to repre-
sent “the critical elements of the cultural psychology of African Americans.” 
According to Jones and Campbell, these elements “provide the means by which 
African Americans employed African cultural origins in their adaptations to the 
context of slavery and dehumanization” (p. 10).

Considering the above frames and models, as refrain we speculate on implica-
tions for African American participation in the mathematical sciences – in mathe-
matics teaching, learning, and knowledge production – if we, as African Americans, 
draw and build upon cultural patterns and elements in practicing mathematics. 
Powerful examples abound of how Black people have drawn upon a cultural value 
attribute such as improvisation to push boundaries and to be at the cutting edge of 
the arts and of sports. We, the authors, in this nascent stage of our own mathematics 
research informed by MCRF principles, have experienced sessions that have felt 
like playing jazz. Grids, diagrams, music symbols, and mathematics symbols have 
served as notation for motifs to be played on an assortment of instruments – pencil 
and paper, marker and whiteboard, drums, wave generator, and oscilloscope. In 
these moments, we have fallen into exchanges of ideas that have felt like explora-
tions of rhythm and melody played across disciplinary boundaries (what boundar-
ies?). Mathematicians often speak of beauty and elegance in mathematics. We, the 
authors, have experienced moments of beauty and elegance in our exchanges. We 
have also experienced moments that have caused one or the other of us to exclaim, 
“That was funky!” (as James Brown might say).

�Diversity as a Means and Not an End

Though the data reflecting underrepresentation of African Americans within the 
mathematics community remain troubling, we observe that having the diversity dis-
course driven primarily by these data has been ineffective in leading toward sub-
stantive changes to status quo practices. We have come to believe that diversity by 
the numbers arguments will not compel the quality of action required for transfor-
mative impact. Indeed, increasingly, we have come to view diversity as a means and 
not an end. Our work and life experiences have pushed us to think of strategies that 
address diversity challenges and opportunities along the way of achieving compel-
ling, transformative aims that resist being packaged as diversity for diversity’s sake. 
In the case of mathematics, we are unconvinced about the efficacy of moral argu-
ments, of arguments about fairness and about social justice, at least insofar as pro-
viding rationale to others to change systems and structures that currently suit them 
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perfectly fine. Similarly, diversity by the numbers doesn’t serve our communities 
well either. Just as closing achievement gaps doesn’t really lead to rallying cries for 
inspired action, correspondingly, an aim to produce more PhDs from our African 
American communities can feel uninspiring, unless tethered to matters that resonate 
more deeply in these communities. Consequently, much of our work has been orga-
nized around building the mathematics capacity of African American communities. 
What does this look like? What does it look like for a Black community to have 
mathematics capacity?

As mathematics practitioners, we also are excited and motivated by the potential 
for transforming mathematics knowledge production. We believe that diversifying 
the knowledge traditions from which mathematicians draw to inform the mathemat-
ics body of knowledge might lead to breakthroughs in how we produce mathematics 
as well as breakthroughs in mathematics content, including the potential for new 
areas of mathematics. Wilson (as cited in Herzig, 2004) notes the instability and 
vulnerability of natural, social, and economic systems that fail to diversify. The 
mathematics enterprise is likely enriched by opportunities to draw upon an expanded 
range of thought provided by a more diversely composed mathematics community 
(Herzig, 2004).

We speculate and assert that drawing upon ways that time, space, pattern, and 
arrangement are explored and manipulated within African, African American, and 
other African Diasporic cultural traditions – such as music, dance, visual arts, textile 
patterns, etc. – provides ripe possibilities for producing new, groundbreaking math-
ematics knowledge. Thus far, much of the research and educational focus has been 
on making cultural connections as part of a pedagogical approach while neglecting 
the potential for transformative impact on mathematics knowledge production. As 
one illustration of what a cultural impetus for mathematics thought and knowledge 
production looks like, recent Fields Medal recipient Manjul Bhargava attributes the 
greater part of his development as a mathematician to his childhood introduction to 
and subsequent continued involvement with Sanskrit poetry and Indian classical 
music (he is a master tabla player) (Klarreich, 2014). With respect to African/
African Diasporic cultural traditions, ironically but unsurprisingly, there are non-
Black researchers who have recognized the mathematical richness of Black arts and 
cultural traditions and have built significant bodies of research work around this. 
Unfortunately, many from the Black community have been so conditioned to having 
our cultural contributions overlooked, neglected, and/or relegated to “less than” sta-
tus that we walk past gold mines of groundbreaking possibilities accessible to us. 
We maintain that this is one of the outcomes that arise when “the types of mathe-
matics that are valued and pursued” are dictated through a small subset of available 
cultural frames of reference (Herzig, 2004, p. 174). As noted in various places in 
this chapter, in our own work, we seek to draw from the largely untapped mathemat-
ics knowledge production potential of African and African Diasporic music tradi-
tions. For example, in various African cultures, there are no separate words for 
music, dance, poetry, and song, each of which is experienced as dynamic expres-
sions of related patterns and forms (Nketia, 1974). What in the West may seem to be 
disparate activities are perceived as related aspects of one and the same thing in 
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these African societies. It is highly likely that very powerful mathematics ideas are 
embedded in the cultural weave and its manifold expression of underlying struc-
tures. For example, African/African Diasporic drummers understand “two-ness” (or 
“n-ness”) on intellectual, emotional, and kinesthetic levels by virtue of the manner 
in which cycles and subdivisions of pulses (based on 2 or on n) are manipulated in 
rhythmic patterns. We speculate that, similarly, transformations and iteration-
recursion are embodied in the drumming structures, in the coordination of multiple 
complex ensemble parts, and in the strategies employed in improvisation. A further 
example of the potential that exists in using an MCRF approach drawing upon 
African/African Diasporic cultural traditions has presented itself in our (the authors) 
own spectral geometry research agenda. A significant body of spectral geometry 
research has been generated and informed by the question “Can one hear the shape 
of a drum?” Referencing African and African American drum traditions, one is led 
naturally to a question such as “Can one hear a family of drums?”

�Expanded Definitions of Mathematics Success

In describing factors that influence or contribute to the successful math experiences 
of African American students, Russell (2013) categorizes what she refers to as 
“micro-” and “macro-”environmental factors. The “micro-”background refers to a 
student’s present background, which is brought to mathematics educational set-
tings. Micro-factors influence the mathematical achievement of all students. 
However, as Russell (2013) asserts, Black students also bring to mathematics edu-
cation settings what she characterizes as “their macro milieu  – the mathematics 
experiences, learning and achievement associated with the adults and peers in their 
networks as well as all the generations that precede them” (p.  297). Echoing 
Murrell’s contextual framing noted earlier, included in the macro-milieu are “the 
ramifications and circumstances of 300 years of deliberate educational, political and 
social actions taken to systematically deny Blacks to fully participate in the study of 
and access to mathematics” (p. 297).

Martin (2006) considers the “ways [in which] mathematics learning, participa-
tion, and the struggle for mathematics literacy [can] be conceptualized as racial-
ized forms of experience  – that is, as experiences where race and the meanings 
constructed around race become highly salient” (p. 198). In sharing narratives from 
African American parents advocating for quality mathematics education for their 
children, Martin highlights “specific instances in [the parents’] mathematical histo-
ries where race played a lasting and prominent role” (p. 223). For example, some 
of the parents related how they had drawn conclusions and internalized beliefs 
about Black inferiority in mathematics because their mathematics teachers had 
been almost exclusively White. In the words of one parent, “I saw people that were 
not Black as my teachers. So that made me self-consciously come on with the 
thought that… White people are smarter than us. That’s why most of my teachers 
are White” (p. 210).
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Martin (2009) contends that it is fundamentally important for mathematics edu-
cators to develop “awareness that classroom practices influence the construction of 
academic and mathematical identities and that these identities are co-constructed 
with students’ racial identities” (p. 299). According to Martin (2006), mathematical 
identity “encompasses an individual’s self understanding in the context of doing 
mathematics” (p. 206).

McGee (2015) has developed a Fragile and Robust Mathematical Identity 
Framework that “explores the interplay of mathematical and racial identity in the 
experiences of Black college students” (p. 601). She notes that as students strive to 
achieve mathematics success in racialized environments, including “proving one’s 
mathematical talents,” “repeated negative racialized experiences can produce 
unhealthy consequences, even while academic scores remain high” (McGee, 2015, 
p. 603). McGee and Martin (2011) conclude that Black students “must make mean-
ing, on their own terms, for being Black in the context of doing mathematics and for 
what counts as success” (p. 47).

Speaking to conditions in the professional mathematics community, Walker 
(2014) observes that “Black mathematicians across generations… although they are 
convinced that mathematics as a discipline is a worthwhile endeavor… acknowl-
edge that practices and structures within the broader mathematics community do 
not necessarily support or invite Blacks into the field” (p. 145). “[A]ssumptions and 
discourses about intellectual ability and merit… rooted in historic and pervasive 
narratives about Black achievement” (p.  100) contribute to a “spotlight effect” 
which triggers self-doubts and/or hypervigilance about how one presents oneself 
(such as dress, such as whether or not to ask a question out of concern that it will be 
taken as an indication of lack of competence).

What does success look like for Black students throughout their student careers? 
What does success look like for Black people who are mathematics professionals? 
What does mathematics success look like for African American communities? Of 
course, we neither intend nor are able to answer these questions definitively in this 
chapter. However, they are generative questions that inform and motivate our effort 
to shape and articulate an MCRF. As we reflect on our personal experiences, we 
know what one can wind up sacrificing in order to function within settings that are 
recognized or felt to be unwelcoming. The ability to navigate through “culturally 
dissonant” environments is a needed competency for African Americans. We assert 
that among the criteria for determining success is that one’s cultural, racial, social 
identities remain robustly intact as one develops a mathematics identity aligned 
with these more fundamental identities.

�Creating Intentional Culturally Resonant Mathematics Spaces

Walker (2012), in considering how mathematics identities are developed, notes the 
importance of taking into account experiences that occur across in-school and out-
of-school “spaces,” including spaces that, along with mathematical meaning, have 
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social and cultural significance, as well. This is consistent with a paradigm that 
recognizes that all knowledge systems, including mathematics, are experienced and 
processed through frames of reference provided by our overall social and cultural 
lives (Nasir et al., 2008). Walker (2012) suggests that “we move from these some-
times ‘inadvertent’ spaces that foster development for individuals to creating and 
examining ‘intentional’ spaces that contribute in strong ways to mathematics social-
ization and talent development…[and that] reflect the bridging of out-of-school and 
in-school networks, relationships, and practices” (p. 68). The existence and prolif-
eration of such intentionally created spaces are critically important for achieving the 
transformative potential of culturally resonant mathematics teaching, learning, and 
knowledge production.

The Algebra Project and its youth-driven offshoot the Young People’s Project 
(YPP) provide examples of intentionally creating teaching and learning spaces that 
draw from and “leverage students’ everyday social and cultural knowledge” (Nasir 
et al., 2008, p. 213) to deepen mathematical understanding and develop resonant 
mathematics identities. The Algebra Project uses a five-step curricular process to 
enable students to use their own language and intuitive representations to make 
robust links between concrete experiences and formal, abstract mathematics repre-
sentations (Moses & Cobb, 2001). What drives the Algebra Project is a goal of 
“empower[ing] the target population to demand access to literacy for everyone” 
(Moses & Cobb, 2001, p. 19). A primary aim of YPP is “to train, employ, and sup-
port …high school students to become Math Literacy Workers [who]… begin their 
journey by teaching math to elementary students in their neighborhoods and eventu-
ally become engaged citizens prepared to make a difference in their own lives, in the 
lives of others in their communities, and ultimately in this country” (YPP, n.d.-a). 
YPP, among other methods, uses “mathematically rich games” to “create a cultural 
context in which mathematics emerges naturally from students’ experience” (YPP, 
n.d.-b, para. 1). As an example of mathematical richness, in the Flagway Game™, 
students navigate a course of paths based on the Mobius function.

As we consider an MCRF, we imagine further transformative possibilities for the 
mathematical sciences that might emerge from African Americans having greater 
opportunities to practice mathematics in welcoming, culturally affirming spaces 
(physical, social, psychological). We imagine mathematical spaces created with 
even more intention to harness and engage cultural resources than has typically been 
the case, particularly with respect to mathematics knowledge production. For exam-
ple, we envision efforts to encourage, facilitate, structure, and/or support collabora-
tions between Black mathematical sciences practitioners and Black artists (including 
artists from Africa and the African Diaspora) and between Black mathematical sci-
ences practitioners and practitioners of various other African/African Diasporic cul-
tural traditions, such as games.5 We imagine and envision (infra)structures, such as 

5 Kyule (2016), in describing bao, a variant of the mancala group of African board games (Kyule 
2016), writes: “Bao is not a game of chance and victory is never a function of luck; rather, foresight 
is the key to winning the bao. It requires considerable calculative strategy and is completely depen-
dent on one’s ability to reason and analyze. According to de Voogt (1995), the speed of the game 
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cultural resonance-focused institutes and centers that help to make “the net” work 
more effectively.6 We contend that ripe and rich opportunities for intentionally creat-
ing such culturally resonant mathematics spaces exist in efforts to build the mathe-
matics capacity of African American communities.

�Building the STEM7 Capacity of African American 
Communities: The WORASI Story (As Told by John Belcher)

We have been engaged in an endeavor to build the mathematics and science capacity 
of the predominately African American West Ocala community in Ocala, Florida. 
Because this work has been key to our process for defining and developing an 
MCRF, we describe in relative detail our work to date in this community. We believe 
that the West Ocala and Roots and STEM Initiative (WORASI) ultimately can serve 
as a model for how approaches based on an MCRF might be employed to build the 
STEM capacity of other African American communities.

WORASI is a community-based effort that emerged out of a partnership involv-
ing the Greater Ocala Community Development Corporation (GOCDC), Medgar 
Evers College, the Second Bethlehem Baptist Association, the Howard Academy 
Community Center, and other organizations and institutions with a stake in a healthy 
vibrant future for the West Ocala community. The Greater Ocala Community 
Development Corporation is coordinating the West Ocala Roots and STEM Initiative 
as part of its mission to “establish a culture of excellence and self-sufficiency…in 
the areas of employment, housing, entrepreneurism, and community development” 
(The Greater Ocala Community Development Corporation, n.d., para. 1). STEM 
provides powerful lenses for identifying additional opportunities to have meaning-
ful impact in these areas, given the vital importance of STEM capacity to the quality 
of life in and to the economic, political, and social well-being of communities, par-
ticularly communities of color. Further, embracing STEM capacity building as a 
community-based effort presents opportunities to develop a model based upon the 
rich histories and cultural traditions of West Ocala.

means advanced players must make complicated and highly strategic moves in quick succession, 
and bao masters are renowned for being able to think tactically up to seven moves ahead” (p. 98).
6 Oftentimes, networks exist nominally  – without thoughtful, planful consideration about what 
resources exist within the network (i.e., what types of skills, expertise, materials, etc.), how these 
resources can be accessed, and, generally, how the network “talks to itself” in a more distributed, 
ongoing fashion. More often than not, the “net” is in place; missing are connection mechanisms 
and strategies for making the net work.
7 Though we have written in the chapter about mathematics, the “mathematical sciences,” and build-
ing “mathematics capacity,” the work described in this section has been discussed and organized 
with members of the West Ocala community as an effort to build “STEM capacity,” more gener-
ally. For accuracy’s sake, we maintain that characterization in describing the West Ocala initiative. 
Nonetheless, we feel that the effort effectively illustrates MCRF principles.
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The seeds for the West Ocala Roots and STEM Initiative were sown during my 
visits to Ocala, Florida, where my dad has resided since the early 2000s. During 
visits with my dad and stepmother as they dealt with the ordeal of my stepmother’s 
terminal cancer, I would accompany my dad to the gym that he typically attended 6 
days per week. I observed that my dad’s gym activity not only kept him physically 
strong but emotionally strong and supported as well. Having this community of sup-
port and genuine played a major role in enabling my dad to move through that very 
trying, painful, difficult period of the illness and passing of his wife. One of the key 
members of the gym community of support was Jimmi Griffin.8

Across several gym visits, Mr. Griffin and I had conversations about our respec-
tive professional interests and experiences. We spoke about my investigations 
over the years exploring connections between music and mathematics and how 
this related to my work at TERC, a science and mathematics education research 
institution, where, at the time, I co-coordinated a STEM and Boys of Color effort. 
We discussed Mr. Griffin’s work in the West Ocala community, particularly 
through his role as President of the Greater Ocala Community Development 
Corporation and his experiences over the years focused on the political and eco-
nomic empowerment of communities of color. We began to consider what it would 
look like to use STEM lenses to frame and bring additional tools to the economic 
development and community revitalization and empowerment of Black communi-
ties, such as West Ocala. What would those types of lenses and tools bring to the 
work in which Mr. Griffin and colleagues at GOCDC were engaged in the West 
Ocala community? Based on this early dialogue, we then considered how to 
expand the conversation to involve others in determining collaboration possibili-
ties. We met with Henry DeGeneste, the Chair of the GOCDC Board of Directors, 
a meeting that resulted in further expanding the conversation to include various 
individuals who had a history of West Ocala community organizing and advocacy 
over the years.

In parallel with the early dialogue with Mr. Griffin and Mr. DeGeneste, I had 
multiple and extended conversations with my dad about how the envisioned West 
Ocala work linked with the responsibility/charge that I felt to build upon our family 
histories and legacy, including (1) my dad’s pioneering experiences as the first 
Black department head at City College, a prestigious Baltimore high school, as the 
Coordinator of the National Education Association’s newly formed (at the time) 
Urban Services Division, and as principal of Carver Vocational Technical High 
School, which received visits from a number of international delegations during his 
tenure; (2) the legacy of my grandfather Smith, the first Black varsity athlete (foot-
ball) at what is now Michigan State University and head football coach and assistant 
athletic director at Hampton Institute (now Hampton University) for many years; 
(3) the achievements of my grandfather Belcher, high school principal and one of 
the first African Americans to receive a masters’ degree from the University of 

8 At the time of our meeting, Jimmi Griffin was the President of the Greater Ocala Community 
Development Corporation (GOCDC). He played a linchpin role in the work of organizing and 
facilitating the WORASI effort. Sadly, Jimmi Griffin passed away on February 12, 2017.
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Michigan School of Education; (4) the experiences and achievements of my mother, 
Mildred Smith Belcher, and her groundbreaking work as an educator using dance, 
theater, and sports as media for empowering students; and (4) my own education 
pioneering experiences, beginning as a 5-year-old, my age when I entered the school 
I attended as the first “Negro” student in the school’s history. Recognizing the links 
of the West Ocala work to our family’s histories and traditions, my dad contributed 
$15,000 to the emerging effort. These funds were used in part to purchase conga 
drums, a djembe, an oscilloscope, a wave generator, and a mechanical wave driver, 
along with other supplies. The equipment was intended for use in demonstrating 
natural frequencies of strings, Chladni patterns, harmonic rhythm (typically called 
“polyrhythm”), and Lissajous figures, among other ideas, and resonance phenom-
ena embedded within the shape of the drum collaboration.

Terrence, Mr. Griffin, and I co-facilitated a 2-day meeting at the Howard 
Academy Community Center in January 2014 with a group of West Ocala com-
munity stakeholders. We chose to hold the meeting at the Howard Academy 
Community Center given its historical significance in the West Ocala communi-
ty.9 In fact, an aspect of the motivation for undertaking this effort in West Ocala 
and for taking the approach that we took was the recognition that many residents, 
particularly, the youth, had lost touch with the powerful history of that commu-
nity, a history of achievements which were not very well reflected in the commu-
nity present day.

A key aim of the early conversations, meetings, and presentations was to develop 
some shared language and a shared vision of what it would mean to build the STEM 
capacity of the West Ocala community in ways that had value to residents of the 
community. Terrence and I were intentional in making sure that building community 
capacity, linked meaningfully to other community efforts, remained at the forefront 
in defining how we proceeded with and built this initiative. In other words, the work 
wasn’t focused on what programs we could bring to schools. It wasn’t about devel-
oping new school curricula or about creating alternative schools. It wasn’t limited 
to thinking about classroom-based teaching and learning of mathematics and sci-
ence. The default conversations about mathematics and science typically go to what 
can be done with children in schools and/or afterschool and summer programs 
geared toward helping students to become more successful in their school experi-
ences. Mr. Griffin, Terrence, and I envisioned harkening back to the earlier, trail-
blazing days of the community,10 when residents were innovating; were breaking 
ground; were building the community; were establishing schools, businesses, 

9 Howard Academy was the first school for Black students in Marion County. The original building 
was destroyed by a fire in 1887 (City of Ocala, n.d.). In the 1980s, the school stopped serving 
students as a result of desegregation. Recently, it reopened as a community center.
10 “The major outlines of the African American freedom struggle in Florida emerged in the early 
moments of Reconstruction in Marion County. A Bureau of Refugees, Freedmen, and Abandoned 
Lands agent, Jacob A. Remley, observed that African Americans in that rural county were organiz-
ing themselves ‘for religious worship [and] the mutual relief of one another in sickness and pecuni-
ary distress’” (Ortiz, 2005, p. 9).

7  Using a Mathematics Cultural Resonance Approach for Building Capacity…



144

churches, and other institutions; and were making history11 (Figs.  7.2 and 7.3). 
We considered the type and quality of aims and visions that motivated and sustained 
those achievements. At the same time, though we had our own ideas that compelled 
us to take action, we agreed that it was important in the early stages of the West 
Ocala effort to develop a shared vision with community members and not impose a 
fully fleshed out imported vision.

In the months that followed, we held meetings and presentations/demonstrations 
in various locations in West Ocala, making prominent use of the drums and scien-
tific equipment, when and where possible. The primary aims of these events were to 
provide opportunities for participants to experience links among STEM, African/
African Diasporic cultural traditions, and the history of the West Ocala community. 
In addition, we aimed to shape collaborative efforts that respected and built upon 
previous and current community-based efforts focused on community empower-
ment and revitalization. We discussed envisioned work honoring, acknowledging, 
and showing value for the earlier efforts and emphasized that the dynamic was not 
meant to be one where some outsider comes in with the latest and greatest idea, as 

11 In 1891, Mr. Gadsden, along with several partners, organized the Metropolitan Realty and 
Investment Company. It was the first African American corporation to be granted a charter by the 
State of Florida. By 1914, Black residents in West Ocala were said to be some of the most prosper-
ous in the South (City of Ocala: West Ocala History).

Fig. 7.2  Founders of Metropolitan Realty and Investment Corporation, the first African American 
corporation to be granted a charter by the State of Florida (West Ocala Vision and Community 
Plan, 2011)
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if nothing had been attempted or accomplished before. Rather, we needed West 
Ocala community stakeholders to help figure out how to get to synergy – to combine 
efforts and to meaningfully collaborate.

�Clarifying What It Means to Build STEM Capacity

We held some presentations and demonstrations at a few community centers. In 
each event, we were struck by the level of engagement of the young people who 
participated. At a presentation at Howard Academy Community Center, we pre-
sented to a group of about 50 young people ranging in age from 5 to approximately 
16–17  years old. We presented mathematically and musically related activities. 
Because of the frames provided by our early conversations with stakeholders, we 
were able to use these presentation experiences to help provide insight into what it 
might mean to build STEM capacity in the West Ocala community.

One of the activities we presented involved my playing a pattern on a drum and 
asking participants to determine how many times I struck the drum. Though we 
asked the question, “How many times did I strike the drum?” our true interest was 
in the strategies used to come up with an answer. “How would you solve the prob-
lem?” “What strategy did you use?” Not just, “what number did you get?” At one 
point, the youngest person in the room, a 5-year-old, volunteered to give his 
answer. He described a strategy that involved recognizing that I played a pattern 
that repeated a few times, followed by me striking the drum some extra beats at 
the end. To arrive at an answer, he counted the number of beats in the repeating 

Fig. 7.3  In 1925, Dr. Hughes opened the American National Thrift Association Hospital, which 
was the only facility to treat African Americans for hundreds of miles (West Ocala Vision and 
Community Plan, 2011)
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pattern, multiplying that by the number of repetitions and adding the extra beats 
at the end. His sophisticated strategy for solving the problem clearly demon-
strated his capacity for complex mathematics thought. Again, as we reflected on 
the experience, we recognized that community capacity around STEM would 
mean that community resources would be available and employed to nurture this 
child’s talent, to put him in touch with individuals to mentor him and to guide his 
development over time. In so doing, there would be emphasis on individuals 
being ambassadors of the community as their talents develop and flourish, com-
municating messages that extend beyond personal glory and achievement. This 
type of emphasis, through showing how these talents benefit and advance the 
community, would help develop the capacity of the community.

Along with the clarity that emerged about compelling means for building com-
munity STEM capacity focused on the development of young people in ways that 
extend beyond success in their classrooms, we also began to consider the implica-
tions of building STEM capacity for the kinds of STEM-related, STEM-driven busi-
nesses that would benefit the community. We considered STEM-involved ways of 
equipping/empowering adults in their various roles as caregivers and as citizens. As 
we considered possibilities, we determined that involving community members in 
asset inventorying and needs assessment activities would be critical in shaping plans 
for moving forward.

�Community Assets

In one of our early meetings, as we discussed the history of West Ocala and con-
sidered questions about building the STEM capacity of the West Ocala community, 
one of the participants shared that Daphne Smith, the first African American 
woman mathematics PhD recipient from the Massachusetts Institute of Technology 
(MIT), hailed from Ocala. The participant related how Dr. Smith had excelled both 
academically and athletically in high school. The various meetings and presenta-
tions turned out to be effective forums for identifying examples of individuals 
connected with the West Ocala community, who powerfully represented the types 
of community assets and resources in place and potentially available in developing 
a visible STEM presence in that community and in building and/or activating 
STEM capacity.

Over time, we have been able to identify various resources within the West 
Ocala community potentially available for building the STEM capacity of this 
community. Among the potential resources is an abandoned building that sits on 
GOCDC property behind its headquarters. GOCDC leadership has taken some 
initial steps in pursuing plans to convert this building into a WORASI STEM 
Cultural Resonance Center.
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�WORASI STEM Cultural Resonance Center

Among the envisioned activities to occur in the WORASI STEM Cultural Resonance 
Center are research activities open and visible to the community, presentations-
demonstrations, lectures, performances (which integrate arts and STEM disci-
plines), and a variety of education activities. Envisioned education activities include 
(1) rhythm, mathematics, and technology percussion ensembles, (2) math circles, 
(3) coding, and (4) learning about the rich history of the West Ocala community. We 
have discussed plans for GOCDC housing a server to be managed through the 
Center. As envisioned, such a server will provide opportunities to host websites and 
to provide cloud services in support of collaborative activities among WORASI 
partners and other organizations and individuals involved in building the STEM 
capacity of West Ocala. We anticipate that these types of services and activities will 
motivate the need/opportunity for training residents from the community in skills 
such as website design and maintenance and in managing the server, thereby con-
tributing further to STEM capacity building.

�Moving Forward

The WORASI effort is a work and story in progress and in process. This effort, in 
all its complexity and moving parts, remains key in achieving our aims for under-
standing and using cultural resonance to build the mathematics capacity of African 
American communities.

�Summary and Conclusion

In this chapter, we propose a mathematics cultural resonance framework (MCRF) to 
inform mathematics teaching, learning, and knowledge production in ways that affirm 
and draw upon African American cultural traditions and resources. We argue that defin-
ing efforts around closing achievement gaps and/or through making moral arguments, 
such as has often been the case, is insufficient for compelling the levels of commitment 
and response needed to address meaningfully issues that contribute to the seeming 
intractability of Black underrepresentation in the mathematical sciences. The equity 
and access issues at play are embedded in the histories of oppression and devaluation 
faced by Black people in this nation. We assert that culturally resonant approaches have 
the potential to generate transformative patterns of thought and activity that facilitate 
African Americans developing robust mathematics identities required for meaningful 
participation in mathematics. Further, we maintain that these approaches provide ripe 
opportunities for producing new, groundbreaking mathematics knowledge, thereby 
benefiting the mathematics community (and society) as a whole.
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Through work in the West Ocala community of Ocala, Florida, we have begun to 
investigate implications for using an MCRF to build the mathematics capacity of 
African American communities. The value to African American communities of 
having “mathematics capacity” extend far beyond considerations that typically go 
by default to programs limited to helping students to become more successful in 
their school experiences.

Overall, we view this chapter as an introduction to a framework we believe 
supports making some novel connections of “the dots” crucial for achieving the 
meaningful participation of African Americans in the mathematical sciences. Our 
eyes are on the prizes to come from the actual work that arises from the frame 
(alluding to our earlier note on “making the net work”), step by step, step by leap.
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Chapter 8
Still Warring After All These Years:  
Obstacles to a Transdisciplinary Resolution 
of the Math Wars

Ilona I. Vashchyshyn and Egan J. Chernoff

Abstract  Faced with the complex issues of modern society, a growing number of 
individuals and organizations have embraced a transdisciplinary approach in the 
attempt to resolve such issues in an ethical, socially responsible way. Such an 
approach may even prove to be effective in mediating (if not resolving) the math 
wars, a long-standing, value-laden debate about what (mathematics) children should 
learn in the twenty-first century and how they should learn it. However, although the 
math wars have evolved into a conflict involving a wide variety of individuals and 
groups representing various interests and disciplines, we argue that for this issue, 
transdisciplinarity is still out of reach. In particular, in reviewing the evolution of the 
math wars in the United States and in Canada through a transdisciplinary lens, we 
find that one major obstacle is the reluctance, and sometimes outright refusal, to 
step outside disciplinary constraints to engage in dialogue and collaboration with 
diverse stakeholders. We contend that if the attitude of opposition is maintained, we 
should expect a long and bitter war indeed.

Keywords  Canada • Hacker • Math wars • PISA • Transdisciplinarity

Math is math. What could there possibly be to fight about? (Schoenfeld, 2004, p. 254)

The problems of modern society are increasingly complex and interdependent 
and hence increasingly less isolated to particular disciplines (Thompson Klein, 
2004). Faced with such issues, both individuals and organizations have recently 
started to turn to transdisciplinarity in attempts at reaching resolutions in an ethical, 
socially responsible way, stepping outside the constraints of disciplines to seek 
insight from multiple stakeholders both inside and outside of the academic com-
munity (Bernstein, 2015; Gibbs, 2015). The transdisciplinary approach has been 
invoked in attempts to tackle issues as diverse as aging, childcare, health care, 
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nutrition, sustainable development, and urban land and waste management (Gibbs, 
2015; Thompson Klein, 2004). However, we contend that it has yet to be applied in 
a meaningful way to the long-standing and seemingly intractable debate commonly 
referred to as the math wars, a term used to describe a collection of disparate yet 
related debates centered on the teaching and learning of mathematics waged on the 
battlefields of staff rooms, coffee shops, scholarly research journals, newspapers, 
radio programs, television, online forums, Facebook, and Twitter (to name only a 
few) and seeming to have left no one without opinions, concerns, and fears related 
to recent changes in the teaching of mathematics in the schools (Russell & Chernoff, 
2016). The issue, which on the surface level is concerned with the questions of what 
(mathematics) children should learn in order to succeed in the twenty-first century 
and how they should learn it, is certainly complex and value-laden, for it involves a 
multitude of divergent perspectives not only about appropriate curricula, pedagogy, 
and resources but also about what mathematics content is valuable, which 
skills will be important in an increasingly technological society, the purposes and 
goals of (mathematics) education, and so on. (We use the parentheses to emphasize 
that questions about the value, purpose, and goals of mathematics education are 
deeply intertwined with questions about the value, purpose, and goals of education 
in general.) As such, perhaps it is unsurprising that various discipline-based 
approaches—for example, and as we will see, that which led to the rise (and fall) 
of the “new math” movement in the 1960s—have thus far been unsuccessful in 
resolving the three-pronged question of what mathematics children should learn in 
school, how they should learn it, and why. After all, the values, perspectives, and 
experiences of actors within particular disciplines may not represent those of the 
community at large.

Although it may be unlikely that the issue will ever be fully resolved to the satis-
faction of any interested party, we contend that a transdisciplinary approach to 
mediating the conflict may prove to be more effective. Such an approach would 
focus on the problem and its consequences, rather than its definition or categoriza-
tion within a particular discipline; moreover, it would involve bringing together as 
many participants as possible who have a stake in the issue in the effort to negotiate 
a resolution (Gibbs, 2015; Maguire, 2015). Those interested in the teaching and 
learning of mathematics represent a wide and growing variety of disciplines and 
stakeholders, ranging from mathematicians, mathematics educators, and psycholo-
gists to parents, policymakers, and economists. However, although it is easier today 
than ever before to reach out to groups and individuals outside of one’s disciplinary 
domain, many of the actors embroiled in the debate have proven to be reluctant to 
engage in dialogue and collaboration with other stakeholders and representatives 
from “outside” disciplines. Perhaps even more worrying than disengagement is a 
rhetoric that positions some as “experts” and others as “non-experts” in matters of 
mathematics education, which alienates a majority of the population who has an 
interest and a stake in children’s education and only further entrenches the conflict. 
We contend that if this attitude of opposition is maintained, we should expect a long 
and bitter war indeed.
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In this chapter, we review the evolution of the math wars and the obstacles to 
resolution through a transdisciplinary lens, focusing on recent developments in 
Canada, as the American and international side of the story has been detailed else-
where (e.g., Schoenfeld, 2004; Kilpatrick, 2012). We begin with an overview of 
transdisciplinarity and a discussion of why the math wars is an issue that may lend 
itself well to mediation through a transdisciplinary approach.

�A Complex Issue, a Complex Solution

The notion of transdisciplinarity, according to Bernstein (2015), appears to have 
originated in the 1970s, emerging in response to unsuccessful attempts of “closed 
system, discipline-based approaches to solve complex social problems” (Gibbs, 
2015b, p. 152). By its nature and its recent origins, a variety of definitions of trans-
disciplinarity exist; we draw our understanding of the notion from Bernstein (2015), 
Thompson Klein (2004, 2010), Maasen, Lengwiler, & Guggenheim (2006), and 
Nicolescu (2005). In contrast to multidisciplinarity (collected inputs from several 
disciplines without synthesis) and interdisciplinarity (collected inputs from several 
disciplines aimed at transfer and synthesis of knowledge and methods), transdisci-
plinarity challenges and transcends the framework of disciplinary thinking, 
rejecting the separation and distribution of topics into disciplines and aiming for 
overarching synthesis (Bernstein, 2015; Thompson Klein, 2010). The correspond-
ing image is often one of going “beyond boundaries.” As Thompson Klein (2004) 
explains, transdisciplinarity is not a new discipline or a “superdiscipline”; rather, 
it is “the science and art of discovering bridges between different areas of knowl-
edge and different beings” (Thompson Klein, 2004, p.  516), involving work 
that “creatively re-imagines the disciplines and the possibilities for combining 
them” (Bernstein, 2015, p. 7). Nicolescu (2005) and other scholars (e.g., Maguire, 
2015) are also careful to point out that disciplinarity and transdisciplinarity are not 
opposed or antagonist but rather complementary—indeed, the latter cannot exist 
without the former.

However, disciplinary approaches to tackling many of today’s highly complex 
social problems have often proved to be problematic (Gibbs, 2015). As such, 
transdisciplinarity reemerged in the 1990s as a new approach to tackling such 
issues, which range from those in the areas of sustainability, science, health care, and 
technology, to policy, childcare, and education (to name a few; see Bernstein, 2015; 
Gibbs, 2015; Thompson Klein, 2004). In general, problems that may benefit from a 
transdisciplinary perspective tend toward those that are complex, contextual, het-
erogeneous, value-laden, and involving multiple stakeholders (Bernstein, 2015; 
Gibbs, 2015; Thompson Klein, 2004). Transdisciplinarity may lend itself well to 
attempts to solve such many dimensional issues because of its commitment to break-
ing free of “reductionist and mechanistic assumptions about the way things are 
related and systems operate” (Thompson Klein, 2004, p. 517) and transcending the 
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either-or, dichotomous mentality that underlies many of today’s issues (Bernstein, 2015). 
Necessarily—and herein lies one of the distinguishing aspects of the transdisci-
plinary approach to tackling complex issues—transdisciplinarity requires an 
“engagement with difference across cultural, social and cognitive contexts” 
(Maguire, 2015, p.  168) and consequently involves meaningful stakeholder and 
community involvement, including those from outside the academic community 
who have an interest in resolving the problem and for whom the outcome will be 
impactful (Bernstein, 2015; Gibbs, 2015; Thompson Klein, 2004; Maguire, 2015).

Although at first glance the math wars may appear to be a disciplinary conflict, 
upon consideration of the above, it becomes clear that the issue may benefit from 
being viewed through a transdisciplinary perspective. Certainly, the issue is com-
plex and value-laden: as suggested in the introduction of this chapter and as will 
become clear shortly, at the deepest level, the math wars involve diverse and some-
times conflicting views about the value and purpose of mathematics education in the 
twenty-first century and of education in general. Moreover, the act of teaching 
mathematics is itself “value-full”: As Bishop (1999/2008) wrote, “rather than think-
ing of mathematics teaching as just teaching mathematics to students, we are also 
teaching students through mathematics. They are learning values through how they 
are being taught” (p. 236). In line with this reasoning, the expressions “standard 
algorithm” and “basic skills,” may mean different things to different people. If the 
notion of “standard” is meaningful only in relation to a particular culture or context, 
an important question arises: Whose mathematics should be learned (and, conse-
quently, valued)? Very quickly, it becomes clear that seemingly pragmatic questions 
about teaching strategies, curricula, resources, and so on are also ethical consider-
ations with real consequences for the formation of students’ identity construction, 
values, and self-esteem and for society as a whole. The issue also clearly involves a 
wide range of stakeholders (including children, parents, business and industry lead-
ers, mathematics educators, and mathematicians, to name a few), for everyone has a 
stake in education: The children of today, armed with the knowledge, skills, and 
values they (partly) develop in school, will shape the world of tomorrow. It is criti-
cal, therefore, that their education serves them well.

Note that although fields such as ethnomathematics reveal an increased desire for 
dialogue between the field of mathematics education and other disciplines, such 
interdisciplinary approaches still rely on a framework of disciplinary research and, 
as such, are still constrained to certain methodologies and problem definitions. 
Although increased interdisciplinarity is a positive development, the approach may 
still prove to be too limiting when the aim is to resolve an issue as complex as the 
math wars, for as Maasen et al. (2006) write, “disciplines restrict and shut out cer-
tain persons (extra-scientific actors) from becoming part of knowledge production 
and also certain problems from becoming the focus of research” (p. 395). A trans-
disciplinary approach, on the other hand, would focus on the problem at hand and 
its consequences, rather than its definition or categorization (compartmentalization) 
within a particular discipline. In attempting to mediate the math wars, a transdisci-
plinary approach would lay bare and examine commonly held assumptions about 
the value and purpose of mathematics in the twenty-first century that are often hid-
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den when a disciplinary lens is adopted. Necessarily, it would involve bringing 
together multiple stakeholders into a process of negotiation and collaboration, inte-
grating disciplinary, institutional, and community resources in the attempt to resolve 
the question of what (mathematics) children should learn, how they should learn it, 
and—perhaps most importantly—why. 

As the saying goes, though, some things are easier said than done. In the next sections, 
we review the math wars through a transdisciplinary lens. As we will see, the barrier 
to dialogue and collaboration seems to lie less in technology or lack of opportunity—
new communication channels have made it easier than ever to engage in dialogue 
with diverse groups and individuals—but rather in a disciplinary mindset.

�The Math Wars: An Abbreviated History

Different authors suggest different points in time as representing the beginning of 
the math wars, but generally, it is agreed that the conflict first emerged (in North 
America) in the United States, with its roots in another “crisis”: the successful 1957 
launch of Sputnik by the Soviet Union, an important victory in the space race. 
Caught off guard (read: humiliated) and anxious about Soviet threats of world dom-
ination, the scientific community on both sides of the Atlantic was spurred into 
action (Kilpatrick, 2012; Schoenfeld, 2004). An especially noteworthy event in the 
(pre-)history of the math wars was a 2-week seminar organized by the Organization 
for European Economic Cooperation (OEEC, now the Organization for Economic 
Cooperation and Development, OECD) held in 1959 in Asnières-sur-Oise, France, 
which addressed various proposals for “modernizing” school mathematics curricula, 
the teaching of mathematics, and the preparation of teachers (Kilpatrick, 2012). 
(Already, we see an integration of concerns about mathematics education and economics, 
a diversification of the group of stakeholders in mathematics education.) The ses-
sion on new thinking in mathematics was led by French mathematician Jean 
Dieudonné, who recommended that students entering university should be at least 
somewhat familiar with the logical deduction, the axiomatic method, and the “new 
language” of sets, mappings, groups, and vector spaces that mathematics had 
acquired in the twentieth century (Kilpatrick, 2012). Efforts soon began in many 
OECD countries, including in the United States and in Canada, to reform or “mod-
ernize” school mathematics to align with some of the recommendations proposed at 
the seminar.

For a detailed account of the developments in this era, we direct the reader to 
Schoenfeld (2004) and Kilpatrick (2012); for the present purpose—and we admit 
that we are painting with broad strokes—it suffices to say that the movement 
rather quickly crashed and burned. By Schoenfeld’s account, “in a reaction to what 
were seen as the excesses of the new math” (many critiques pointed to premature 
abstraction and formalism, arguing that these were not serving the needs of the 
majority of learners), “the nation’s mathematics classrooms went ‘back to basics’,” 
where the term “basics” encompassed content, procedures, and pedagogy (2004, 
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p. 257–58). Again, Canada followed on the heels of the United States in rejecting many 
aspects of the new math movement that had at one time seemed so promising.

Unsurprisingly, with “back to basics” being the theme of the 1970s, studies in the 
1980s revealed that American students showed little aptitude for problem solving 
(Schoenfeld, 2004). In terms of ideology, the pendulum consequently swung the 
other way in this decade, but this time, the reform movement was spearheaded by 
mathematics educators rather than by mathematicians. The National Council of 
Teachers of Mathematics (NCTM) published several influential reports during the 
1980s, but it was the NCTM Curriculum and Evaluation Standards for School 
Mathematics (1989), with its focus on mathematical processes—problem solving, 
communication, reasoning, and connections—that sowed the seeds for the present 
battle. Advocating an active view of the learning process and challenging the “con-
tent-oriented” view of mathematics that had until then predominated in schooling, 
the Standards called for decreased emphasis on memorization and rote practice 
(Herrera & Owens, 2001). During the coming years, different groups—including 
the Western and Northern Canadian Protocol (WNCP) (see Russell & Chernoff, 
2016)—would produce different materials influenced by or “in the spirit of the 
Standards,” some of them dubious, others of high quality but nevertheless unfamiliar 
and inaccessible to parents, and most of whom had experienced only “traditional” 
mathematics instruction (Schoenfeld, 2004). Perhaps because of their unfamiliarity, 
new texts and strategies were soon (and still often are) caricatured as the new-new 
math (Herrera & Owens, 2001).

With the benefit of hindsight and the lens of transdisciplinarity, it is easy to see 
that one of the major flaws of the new math movement was a disciplinary mindset: 
Spearheaded by mathematicians concerned about the knowledge that students 
needed to be prepared for university-level mathematics and by policymakers who 
associated mathematical prowess with economic success, hastily enforced curricula 
were accompanied by insufficient professional development for teachers and lim-
ited concern for pedagogy and relevance. Perhaps some believed that the math 
would teach itself. Clearly, we have learned a great deal since then, and a tremen-
dous amount of research in mathematics education is dedicated to the matter of how 
to teach, rather than simply what to teach. And yet, debates about the teaching and 
learning of mathematics have only become more inflamed since the publication of 
the Standards, with the internet serving to democratize and expand the discussion—
at least, in the sense that virtually anyone is now easily able to publish and publicize 
their opinion on the matter. Parents and other interested parties in the United States 
and in Canada have even formed organizations with catchy names such as 
Mathematically Correct (United States), Mathematically Sane (United States), 
and WISE Math (Western Initiative for Strengthening Education in Math; Canada) 
to build support for their cause. These organizations have been very active, creat-
ing websites and petitions, appealing to their local governments, and even organizing 
rallies; in some cases, supporters number in the thousands. Meanwhile, the contro-
versy has been extensively reported on (and at least in part perpetuated by) in popu-
lar media.
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�Who, What, How, and Why

At this point, before picking up the story in Canada, we pause to identify the major 
players in the math wars, as well as the main points of contention. Interestingly, 
although the conflict has swelled, the themes have remained remarkably consistent 
throughout the years. On the other hand, the adversaries in the conflict (if we choose 
to soldier on with the martial terminology) have greatly diversified. Although the 
math wars are often described as being divided into two “camps”—namely, tradi-
tional and reformist—an alternative way to view the controversy is as a conflict 
involving a large and growing number of disciplines and groups of stakeholders. No 
longer are questions related to the teaching and learning mathematics considered to 
be solely within the realm of expertise of mathematicians and teachers; such ques-
tions are also addressed by researchers in a range of disciplines (e.g., mathematics 
education, psychology, cognitive neuroscience, ethnology, policy, and economics). 
As for the stakeholders, besides the students themselves, they include parents, poli-
cymakers, and industry leaders. Of course, as is the case with national politics, the 
views of any particular individual involved in the debate are nuanced and are not 
always easily classified as representing a particular discipline or group of stakehold-
ers; moreover, despite surface differences, common goals and values can often be 
identified. In Schoenfeld’s words, “each [camp] can be considered a confederation 
of strange bedfellows” (2004, p. 281), despite the neat storyline of two dichotomous 
parties that emerges in the media (see Herbel-Eisenmann et al., 2016) or the story-
line of disjoint disciplines and stakeholders that we present. However, as it is impos-
sible to analyze each unique perspective in the math wars, we must inevitably paint 
the picture with some broad strokes. The reader should keep this caveat in mind as 
we continue the discussion.

One of the main points of disagreement between various disciplines and groups 
is curriculum. As noted above, curricula in North America before the 1980s were 
largely based on content, detailing specific facts and skills that students should 
learn. Following on the heels of the “new math” curricula of the 1960s, which infa-
mously attempted to incorporate modern mathematics content such as aspects of set 
theory and modular arithmetic on the recommendation of influential twentieth cen-
tury mathematicians, the NCTM Standards (1989) were radical in that they chal-
lenged the “content-oriented” view of mathematics, recommending that curricula 
focus instead on mathematical processes (Schoenfeld, 2004). While mathematics 
teachers, mathematics education researchers, and others advocates of process-based 
curricula argue that they allow teachers to make room for more relevant mathemat-
ics and to focus on fostering problem-solving skills, several mathematicians and 
others have spoken out over the years to assert that they represent “a lowering of real 
standards” (Schoenfeld, 2004, p. 267) in an artificial attempt to raise success rates 
(e.g., Klein & Rosen, 1996). In recent years, many parents have aligned with this 
perspective, advocating content-focused curricula (in Canada, this movement is 
spearheaded by the public initiative known as WISE Math, which counts more than 
1380 signatures on its website calling for increased focus on “standard” algorithms, 
memorization of facts, and practice of basic mathematical procedures).
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The second main point of contention in the math wars is the question of peda-
gogy. Based on an ever-growing body of research in mathematics education, many 
researchers in mathematics education in North America today advocate a child-cen-
tered view of the learning process and an approach to teaching that gives students 
opportunities to discover mathematical concepts and procedures on their own and in 
cooperation with their peers. Such research recommends a decreased emphasis on 
“rote practice, rote memorization of rules, teaching by telling, relying on outside 
authority (teacher or an answer key), memorizing rules and algorithms, manipulating 
symbols, [and] memorizing facts and relationships” (Schoenfeld, 2004, p. 267–68). 
On the other hand, parents, mathematicians, and some teachers who criticize the 
notion of “discovery learning” (a blanket term for more child-centered approaches 
and views of the learning process) typically hold the opposing point of view, namely, 
that the emphasis in school mathematics should be on individual, rote practice aimed 
at mastery of basic mathematical facts and conventional algorithms. These are 
viewed as a foundation upon which understanding can be built, as opposed to a prod-
uct of understanding. It is not the case that these views are wholly incompatible: as 
McGarvey and McFeetors (2015) note, the debate often lies in the order in which 
mastery of basic arithmetic, conceptual understanding, and problem solving should 
be achieved and on the degree of emphasis that each receives.

Other oft-debated issues in the math wars include technology and resources. 
Calculators (technology) or no calculators (technology) in the classroom? Should 
textbook use be minimized so as to discourage students from relying on outside 
authorities, rather than on their own reasoning? On a deeper level—beneath debates 
about particular content, curricula, and resources—the conflict is really one of con-
flicting values and beliefs about the goals and purposes of mathematics education. 
Who gets to learn mathematics? Whose mathematics should be learned? Why learn 
mathematics at all? And as Ron Ferguson wrote, “There is nothing quite so violent 
as a war based on differences in faith” (as cited in Roitman, 1999, p. 130). Perhaps 
this is why, despite the fact that there appears to be a “large middle ground” 
(Schoenfeld, 2004, p. 281), the issue has thus far proved to be intractable.

Different authors have proposed different frameworks for organizing beliefs 
about mathematics education. To give one example, Paul Ernest proposed a typol-
ogy of five ideologies: old humanist, technological pragmatist, industrial trainer, 
progressive educator, and public educator (see Ernest, 1991 for more details). It is 
easy to see how different ideologies may lead to conflicting views about mathemat-
ics curricula, teaching strategies, resources, and so on: for example, while an old 
humanist (who believes in maintaining the abstract and rigorous nature of mathe-
matics) may feel that that the circle theorems should be learned by all students 
because of their inherent value as mathematical abstractions, a technological 
pragmatist (who primarily promotes knowledge and skills that are useful in the 
workplace and contributes to economic growth) may feel that they are an unnecessary 
topic in the high school curriculum because they are not directly useful in “real life.” 
Moreover, even individuals who may be characterized as holding the same ideology 
may disagree on fundamental aspects of the teaching and learning mathematics. 
As an example, consider the technological pragmatist ideology, which advocates 
an emphasis on studying knowledge and skills that are relevant to the workplace. 
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The immediate question is, what knowledge and skills are useful in the twenty-first 
century workplace? Different answers to this question—and there are many, related 
to one’s disciplinary background and values—will lead to different views on appro-
priate curricula for the twenty-first century. To add to the complexity, “individual 
educators are not located wholly, exclusively, or unproblematically within one of 
these ideologies” (Povey, 2003, p. 57). (We add that it is unlikely that any individual 
implicated in the math wars can be located exclusively within one of the ideologies 
described above.)

Unfortunately, although questions about value and purpose are foundational to 
the math wars and, as such, need to be confronted directly if the conflict is to be 
mediated, they seem to be tackled far less often within any discipline or among 
any group of stakeholders than the question of how and what mathematics should be 
taught. Every now and then, however, it does happen that someone (be it a mathe-
matics educator, a mathematician, or, most recently and notoriously, a political sci-
entist by the name of Andrew Hacker, whose case we will examine in a later section) 
dares to confront these issues directly, typically within the context of a critique of 
the teaching of mathematics in the primary and secondary schools. As we will see, 
such overt criticisms of the status quo often cause mathematics educators, mathe-
maticians, and mathematics enthusiasts alike to either scramble for cover or to take 
the offensive.

This should not be surprising. As mathematics educators, it is too easy take for 
granted our affinity for mathematics, our ability to “see” mathematics and its value 
in a variety of situations in our daily lives, and our belief that studying mathematics 
is inherently a rewarding and worthwhile pursuit. However, it is precisely this bias, 
coupled with the complexity and seeming intractability of the value-laden conflict 
that is the math wars, that suggests that the issue may best be mediated from a 
transdisciplinary perspective. And yet, although a disciplinary mindset was partly to 
blame for the “new math” debacle of the 1960s, the disciplinary mindset continues 
prevail in public discussions about mathematics education today. We pick up the 
story again in Canada.

�The Canadian Math Wars

Although popular discussion about the teaching and learning of mathematics in 
Canada has tended to parallel that of the United States, the “Canadian math wars” 
really came into force in the 2010s, which saw the 2011 release of Michael 
Zwaagstra’s Frontier Center for Public Policy (FCPP) report entitled “Math 
Instruction that Makes Sense: Defending Traditional Math Education.” The report 
sparked widespread public debate about the state of mathematics teaching in Canada 
and thrust into the media the initiative known as WISE Math, a coalition of mathe-
maticians, parents, and other individuals dedicated to lobbying for changes in math-
ematics curricula and instruction (in particular, for increased focus on “standard” 
algorithms, memorization of facts, and practice of basic mathematical procedures). 
Since then, WISE Math has continued to gain support; as of June 2017, its website 
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counts more than 1405 signatures supporting the initiative and has inspired other 
petitions around the country. Strangely, although WISE Math has been actively 
advocating its cause in the media and has repeatedly requested meetings with 
provincial Ministers of Education, invitations for discussion with provincial math-
ematics teacher associations have either not been extended by either party or have 
not been well-received. Generally speaking, the lack of engagement with/of math-
ematics teacher associations, who in theory represent the teaching and learning of 
mathematics in each of their respective provinces, is a curious gap in the debate. 
(Worthy of note: Several years ago, the British Columbia Association of 
Mathematics Teachers [BCAMT] did release a brochure for parents in response to 
some “frequently asked questions” (BCAMT, n.d.).

The next major development in the Canadian math wars occurred in December 
2013, which saw the release of the 2012 PISA results (Brochu, Deussing, Houme, 
& Chuy, 2013). According to the results of this OECD assessment, Canadian stu-
dents achieved strong results in each of the three processes assessed by PISA, but 
the media and many policymakers focused on Canada’s ranking relative to other 
countries, which had decreased by three spots from the previous cycle (McGarvey 
& McFeetors, 2015). Not shying away from hyperbole, notable newspapers such as 
The Globe and Mail announced that Canada was doing no less than “failing to effec-
tively teach [its] students math” (Editorial, 2013, par. 1), and, memorably, CEO and 
president of the Canadian Council of Chief Executives John Manley declared that 
the results were “a national emergency” (as cited in Editorial, 2013, par. 3). As 
McGarvey and McFeetors (2015) write, public outcry was unprecedented: “Petitions 
were launched in three provinces [Alberta, British Columbia, and Ontario] and 
thousands of people petitioned for a ‘back to the basics’ approach to teaching” 
(p. 116), denouncing inquiry-based, “discovery” curricula. But the war hasn’t only 
been waged online: For instance, on April 12, 2014, nearly 200 people attended a 
rally at the Alberta Legislature to protest Alberta’s new math curriculum, carrying 
signs such as “Drills 4 Skills,” “Fundamentals First,” and “Give Us Education, Not 
Fads” (Editorial, 2014; Wong, 2014). The group included parents, some current and 
former teachers, and even former University of Alberta Faculty of Engineering dean 
Ken Porteous, who contended that he had studied “a good deal of mathematics” and 
that “there’s really nothing to discover” (Editorial, 2014, par. 5). Again, provincial 
mathematics associations were curiously absent from the debate, as were mathe-
matics education researchers. Is it possible that the debate has simply escaped the 
radar of our ivory towers? The expansive media coverage of the math wars alone 
suggests that this cannot be the case.

Spurred on by the PISA powder keg (i.e., the release of the 2012 PISA results), 
at least 70 newspaper articles on mathematics education were written in Canada 
between September 2013 and August 2014 alone (Herbel-Eisenmann et al., 2016), 
including a 44-part series organized by journalist David Staples in the Edmonton 
Journal entitled “The Great Canadian Math Debate” with titles such as “‘This new 
math is stealing their confidence and their dreams’—educators speaks out against 
new fuzzy math curriculum” (Staples, 2013). The number of comments on some of 
these articles numbers in the hundreds. Who was contributing, either directly or 
indirectly, to this heated public discussion? A brief analysis of the 98 articles about 
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mathematics education published between September 2, 2013 and April 6, 2016 in 
three Canadian newspapers—The National Post (14 articles), Edmonton Journal 
(37 articles), and The Globe and Mail (57 articles)—proves to be revealing.

Perhaps unsurprisingly, given the public nature of their office, education minis-
ters and other politicians (such as their spokespeople) were quoted or mentioned in 
a majority of the articles (57 out of 98). Most often, the ministers were quoted as 
defending current curriculum or practices and, in some cases, promising improve-
ments or announcing changes; in other cases, opposition party leaders and other 
members are quoted as criticizing government actions or inactions on certain mat-
ters related to mathematics education (e.g., Staples, 2014c, March 8). As even a 
cursory examination of these articles reveals, provincial—and in some cases, 
national—politics have become deeply entangled with the math wars, adding 
another layer of complexity to the issue.

Surely, the next most prolific contributors to the discussion about mathematics 
education would have been mathematics teachers or mathematics education 
researchers… alas, this was not the case. Mathematicians were quoted in 35 of the 
articles, critiquing “discovery math” and demanding a return to “basics” in almost 
each instance. It is worth noting, however, that in these 35 articles, University of 
Winnipeg mathematician Anna Stokke was mentioned or quoted in 24 of them, hav-
ing contributed five of these herself. Stokke, a cofounder of WISE Math and self-
proclaimed “numeracy advocate” who advocates greater emphasis on basic skills 
and standard algorithms in mathematics education, minimizing calculator use in 
math classes, and 50% representation of “professional mathematicians, and scien-
tists from disciplines that use mathematics regularly […] on committees that shape 
and make decisions about overall content and the general methodology of mathe-
matics teaching” (among other objectives; see Mission Statement, n.d.), has given 
over 80 interviews on the topic of mathematics education (Anna Stokke, n.d.). 
Fellow WISE Math cofounder and University of Manitoba mathematician Robert 
Craigen, whose views on mathematics education reform parallel those of Stokke, 
was quoted or mentioned in 14 of 35 the articles, having written one of these himself. 
Another frequently cited mathematician is John Mighton (5 articles, 1 of which is 
written by Mighton), founder of the JUMP Math, an innovative curriculum and 
training program for teachers. Parents were the next group who contributed or were 
consulted most often, quoted or mentioned (by name) in 29 articles; one article 
included more than 50 parent comments reprinted from a petition started by medical 
doctor and parent Nhung Tran-Davies (Staples, 2014a, January 27). Nhung 
Tran-Davies herself was mentioned or quoted in 24 of these articles (having written 
four among them), an overwhelming majority. Comments from or references to 
parents typically express their own or their children’s frustration the new math cur-
riculum, their increased use of private learning programs (e.g., Kumon), and their 
desire to see a greater focus in classrooms on mastery of “basic skills” (e.g., 
Alphonso & Maki, 2014, January 7; Staples, 2013, December 23, 2014a, January 
27; Tran-Davies, 2014, March 24).

Mathematics education researchers were consulted or mentioned in only 15 out 
of the 98 articles. Three of the articles were contributed by mathematics education 
researchers (see Bruce, 2013; Friesen, 2014; Wood, 2014), and out of the 15 arti-
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cles, 10 mentioned Canadian researchers. In the three articles contributed directly 
by mathematics education researchers, the authors attempt to elucidate the educa-
tional research that has led to curriculum changes and denounce the oversimplifica-
tion of the issues at hand (e.g., Bruce, 2013). In typical cases, however, they were 
mentioned only in passing, such as in Bennett (2014, par. 8), where Marian Small is 
described only as a proponent of the “Discovery Learning” ideology and a “pur-
veyor of Nelson mathematics problem-solving books.” Among the reporters in this 
sample of articles who chose to reach out to mathematics education researchers, 
only one (Erin Anderssen of the Globe and Mail) appears to have had a sincere 
interest in elucidating current research in the field (e.g., Anderssen, 2014); many 
others, it seems, have only asked researchers to comment in a cursory attempt 
to provide some “balance” to heavily skewed reports (e.g., MacDonald, 2015). 
Non-mathematics education researchers were consulted or mentioned in nearly the 
same number of articles as mathematics education researchers, 14 out of 98; they 
represented the disciplines of psychology, cognitive neuroscience, psychiatry, 
biology, and engineering. Retired University of Alberta engineering professor 
Ken Porteous, a staunch critic of the “discovery approach” and the “new math,” was 
quoted in 8 of the articles. Other individuals and groups given voice to in the 98 
articles include elementary or secondary mathematics teachers (9 articles), mathe-
matics coaches and consultants (4 articles), and students (1 article). Although teach-
ers were not frequent contributors to the public conversation, those who did choose 
to comment tended to express frustration with the new curriculum and a desire to 
return to a focus on basic skills (e.g., Staples, 2013, December 23); in a few cases, 
teachers allege that they are reluctant to speak out against curriculum changes for 
fear of losing their job (e.g., Alphonso & Maki, 2014). Somewhat surprisingly, a 
representative from a provincial mathematics teachers’ association is mentioned 
only once (see Casey, 2015, where Paul Alves, former president of the Ontario 
Association for Mathematics Education, discusses how mathematics teachers are 
using alternative teaching strategies to increase student engagement while acknowl-
edging the need for lecture and practice).

What is to be made of this brief head count? One possible interpretation is 
that mathematics education researchers are simply not being invited to participate 
in the conversation. There is undoubtedly some truth to his, and, as such, poor journal-
ism may indeed contribute to the gap. In some cases, those who choose to comment are 
given considerably less space to do so: to give a representative example, in 
Macdonald (2015), Stokke’s quotes add up to 110 words—not counting the discussion 
of her C. D. Howe Institute report, which is the focus of the majority of the article—
while Ann Kajander (Lakehead University) is given only 34 words near the end of the 
article. Moreover, many of the articles (inadvertently or otherwise) have advanced 
the storyline that mathematics education research is unreliable, untrustworthy, or 
even deliberately misleading; on the other hand, cognitive science research is more 
often positioned as being more trustworthy and rigorous (Herbel-Eisenmann et al., 
2016). Case in point: in a 2015 National Post article criticizing discovery learning, 
Philip Sullivan suggests that “decades of classroom research has not been able to rid 
itself of uncontrolled influences, making the work unreliable and fruitless,” then 
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calls on cognitive psychology research to explain why discovery learning is “infe-
rior to direct instruction” (par. 3). The article goes on to suggest that mathematics 
educators knowingly “contradict 20 years of research” by critiquing rote practice in 
the math classroom and have been “sharply criticized for ignoring the insights 
afforded by cognitive science research” (par. 4–5).

Besides psychology and cognitive neuroscience researchers, often, it is parents 
and mathematicians who are positioned as having the necessary expertise to make 
decisions about mathematics education and as having children’s best interests at 
heart: Tran-Davies, for example, is described as an “earnest, honest and dedicated 
education crusader” (Staples, 2014d, March 12); in another article, Staples notes 
that Stokke “has a PH.D. [sic] in math unlike any of the government consultants 
who wrote the discovery/inquiry math curriculum” (2014e, April 22, par. 8). In a 
2014 article, Tran-Davies lists those whom the signatories of her petition purport-
edly respect, recognizing teachers, the past, parents, and “the experts: the mathema-
ticians, engineers, computer scientists, accountants, among many others whose 
successful careers are built upon the deeper understanding and application of math-
ematics” (par. 8). Mathematics education researchers do not make her list. Teachers’ 
expertise is also sometimes downplayed: in Bennett (2014, par. 10), for instance, 
Richard Dunne—creator of the textbook series Math Makes Sense—is described as 
“a teacher and math consultant rather than a mathematician” (emphasis ours) whose 
early version of the series “proved popular with teachers who were non-specialists, 
but was resisted by many university based mathematicians.” Faced with this hostile 
climate, where their expertise is either completely overlooked or mocked with refer-
ences to “edu-crats” (Wente, 2014) or “education gurus” (McParland, 2014), it is 
understandable why mathematics education researchers would be reluctant to join 
the conversation.

However, the onus cannot be entirely on the media. If mathematicians Anna 
Stokke and Robert Craigen have become the voices of mathematics education in 
Canada, it is due at least in part to their persistence—Stokke alone has contributed 
at least a dozen articles advancing her position to various newspapers and has 
eagerly participated in a far greater number of print and radio interviews. Surely, 
researchers in the field of mathematics education who read such articles in popular 
media can easily spot misrepresentations and misunderstandings, such as the 
assumption that “discovery math” represents a curriculum and pedagogy that is 
uniformly adopted by all educators in classrooms across Canada or that new 
curricula advocate unassisted discovery (e.g., Hopper, 2014; Mighton, 2013). 
Moreover, mathematics education researchers are in a strong position to interpret 
educational research and to speak to the advantages, disadvantages, and contextual 
aspects of various pedagogical approaches. It is somewhat surprising, then, that 
many choose to ignore the opportunity to engage in public dialogue. The unin-
tended, but real consequence is that, as Staples wrote (speaking about parents who 
support “discovery math”), their “continued near silence will speak volumes” 
(2014b, March 2). This silence can be interpreted in any number of ways, but surely 
it contributes to the misunderstanding and distrust of mathematics education 
research, as well as the lack of consultation by reporters, parents, politicians, and 
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other groups. Indeed, the message is loud and clear—from the perspective of the 
public, mathematics education researchers are, ironically, not interested in a 
dialogue about the teaching and learning of mathematics and, as they say, if you’re 
not part of the solution….

�Meanwhile, in the United States…

One might view the tremendous expansion of interest in the teaching and learning 
of mathematics as evidence of the transcendence of disciplinary boundaries or at 
least of a multidisciplinary character to the effort to improve the teaching and learn-
ing of mathematics in North America. However, this notion does not seem to accu-
rately describe this effort, for despite the lack of synthesis (Bernstein, 2015), 
multidisciplinarity as an approach still suggests harmony and appreciation for alter-
native points of view—in other words, the belief that a topic or a problem resolution 
will be enriched by bringing together several disciplines and stakeholders 
(Nicolescu, 2005). On the contrary, as the previous discussion suggests, not only do 
the various actors embroiled in this issue seem to be interested in maintaining 
boundaries, they sometimes reveal blatant contempt for alternative perspectives, 
claiming for a particular discipline or group the question of how to teach mathemat-
ics and what mathematics to teach. (Recall Tran-Davies, March 24, 2014, who 
positions representatives of STEM fields, such as mathematicians and engineers, as 
the experts in the matter of mathematics education by association with mathematics, 
rather than mathematics education researchers; certain mathematicians, such as 
Stokke and Craigen, have also advanced this point of view.) We have seen that in 
many cases, mathematics educators have chosen to simply disengage from the math 
wars, maintaining a firm disconnect between the various disciplines and stakehold-
ers interested in the teaching and learning of mathematics. However, there are 
exceptions. For this example, we move outside of Canada to the United States 
(which is not to say that enthusiasts of the teaching and learning of mathematics 
here in Canada were not following the controversy with interest).

In 2012, a political scientist and self-proclaimed nonmathematician named 
Andrew Hacker from Queens College in New York entered the math wars with guns 
blazing when he published the now notorious article entitled “Is Algebra Necessary?” 
in The New York Times. In the article, Hacker raised concerns about the fact that a 
high percentage of students in the United States were failing to complete their high 
school education, qualify for entrance into college or university, and/or complete 
their tertiary studies, citing the requirement to study higher-level mathematics 
courses such as algebra, geometry, and calculus as a primary reason. In other words, 
Hacker transcended the debate about how to teach mathematics to ask why and to 
question the oft-unquestioned role of higher-level mathematics as a gatekeeper and 
its use in fields such as medicine as “a hoop, a badge, a totem to impress outsiders 
and elevate a profession’s status” (par. 21). Hacker also challenged the popular 
assumption that, beyond basic numeracy, probability, and statistics, mathematics is 
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very useful in the “real world” of the workplace, extending his doubt even to so-
called STEM (science, technology, engineering, and mathematics) fields. Much tech-
nical training occurs after hiring, argued Hacker; more useful, in his view, would be 
development of quantitative literacy, “citizen statistics” (familiarizing students “with 
the kinds of numbers that describe and delineate our personal and public lives,” par. 
24), and even history and philosophy of mathematics at the university level.

Although a controversial point of view, it should be noted that Hacker is not the 
first to advance it: see, for example, Dudley (1997) and Smith (1989). To give 
another example, mathematician Paul Lockhart lamented in his oft-cited (by math-
ematics educators, no less!) “A Mathematician’s Lament” that “people […] are 
apparently under the gross misconception that mathematics is somehow useful to 
society!” (2002, p. 7). “Do you think carpenters are out there using trigonometry? 
How many adults remember how to divide fractions, or solve a quadratic equation? 
[…] I don’t see how it’s doing society any good,” wrote Lockhart, “to have its mem-
bers walking around with vague memories of algebraic formulas and geometric 
diagrams, and clear memories of hating them” (p. 7). Lockhart, too, criticized the 
practice of making higher-level mathematics a mandatory subject in high school. 
However, it seems that the sections of Lockhart’s lament that are most often cited 
are those that deal with the “heartbreaking beauty” (2002, p. 25) of mathematics, 
rather than the more controversial passages that challenge the educational system 
(here’s one that we have yet to see on a poster: “TRIGONOMETRY. Two weeks of 
content are stretched to semester length by masturbatory definitional runarounds” 
[p. 25]). Hacker was arguably less poetic, but for that, his position was less likely to 
get buried between the lines.

Curiously, despite the “earthquake” that Hacker’s article caused (Baker, 2013, 
p. 34), few mathematics educators came forth to publicly discuss the issues raised 
within. Mathematicians like Evelyn Lamb, who wrote a popular response to Hacker 
in Scientific American (2012) defending higher-level mathematics and its manda-
tory status, seemed to be more open to discussion. However, Patrick Honner, a 
mathematics teacher and a frequent speaker, and presenter on mathematics and 
teaching, as well as a contributor to the New York Times himself, did provide a 
response on his personal blog. The critique focused on Hacker’s choice of an exam-
ple problem for a hypothetical “citizen statistics” course, arguing that the problem 
was really algebraic in nature and thus not only antithetical to (what Honner took to 
be) Hacker’s main argument but also seemingly offering a reason to dismiss 
Hacker’s other concerns altogether (e.g., about the role of mathematics as gate-
keeper). Honner ended the post-contending that “discussions […] about what we 
are teaching, why we are teaching, and how we are teaching […] should be led by 
people who really understand what’s going on” (2012). In the comments section of 
the post, Honner added that Hacker is “another non-expert framing and driving 
dialogue in education,” alluding to a “larger public smear campaign against teach-
ers, schools, and public education in general.”

History repeated itself in February 2016, when Hacker published another article 
in the New York Times titled “The Wrong Way to Teach Math” in advance of the 
publication of his book, The Math Myth and Other STEM Delusions. Again, Hacker 
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criticized the mandatory status of advanced mathematics such as calculus in high 
school, arguing that the focus in school mathematics should be on “quantitative lit-
eracy.” Again, mathematician Evelyn Lamb (2016) published a response to Hacker 
that was widely circulated among the mathematics education community, citing 
some mutual concerns and offering critiques of his arguments. Keith Devlin, also a 
mathematician, did the same, quick to point out that “Hacker is not a mathemati-
cian. He is a retired college professor of political science, who has taught some 
courses in mathematics to non-majors” (2016, par. 7). Kevin Knudson, yet another 
mathematician, also criticized Hacker for venturing into a discipline where he is not 
an “expert” (2016, par. 3). By comparison (again), mathematics educators were 
relatively silent, at least in the popular media. Again, disciplinary lines were firmly 
defended, dividing “experts” from “non-experts.”

Whether Hacker was being taken more seriously this time around or—if we are 
more optimistic—because the mathematics education community has become more 
open-minded and willing to entertain “outside” points of view that challenge the 
status quo in the last 4 years, a debate was held at the National Museum of 
Mathematics (MoMath) in New York on May 10, 2016, between Andrew Hacker 
and James Tanton, the latter a mathematics educator, consultant, and the 
Mathematical Association of America’s “mathematician-at-large.” (The MAA 
describes itself on its website as a “professional society that focuses on mathematics 
accessible at the undergraduate level,” with interests ranging from curriculum, 
research, and professional development to public policy and public appreciation.) 
Moderated by John Ewing—former Executive Director of the American 
Mathematical Society, an MAA partner, and current President of Math for America 
(a nonprofit organization with a mission of promoting recruitment and retention of 
high-quality mathematics teachers in New York City)—the debate centered around 
Hacker’s question of why students are required to take a “one size for all,” “full 
menu” of mathematics courses throughout their high school years. Tanton, arguing 
for mandatory mathematics courses, argued that people were “missing the point of 
what current high school mathematics is actually about” (National Museum of 
Mathematics, n.d., par. 2). This public debate seemed to be a positive step in the 
math wars conflict: As Ewing remarked during his introductory remarks—inadver-
tently aligning himself with a transdisciplinary perspective—“I believe that finding 
answers to hard questions is best done through open public discussion” (as quoted 
by Wees, 2016). As it was the year 2016, several participants tweeted during the 
debate, allowing many others to follow and participate in the conversation online. 
Based on our following of the event, a majority of the #MoMathEdTalk tweets were 
authored by mathematics teachers.

As often happens with these kinds of debates, both sides likely left feeling that 
they had won. For instance, among the most shared and liked quotations on the 
#MoMathEdTalk page on Twitter was Tanton’s call, “Let’s trust teachers.” Whatever 
the original context, the line could easily be interpreted as a slight against Hacker’s 
credentials and was undoubtedly shared by many in this spirit. Indeed, shortly after 
the debate, Honner (flashback) published an opinion piece on the Math for America 
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website asking, bluntly this time, “Why are we listening to Andrew Hacker?” (2016, 
par. 4). Elaborating, he wrote:

Andrew Hacker isn’t an expert on mathematics. And he isn’t an expert on math teaching, 
either. […] The fact that Andrew Hacker has such an outsized and undeserved role in steer-
ing this conversation is itself one of our problems: we aren’t listening to the right people. 
(par. 5–6)

Understanding and addressing the real, substantial, and complex issues facing math 
education today depends on hearing from those who understand them best. If we want 
productive dialogue about how to move mathematics education forward […] Let’s start by 
listening to teachers. (par. 9)

Such rhetoric is clearly problematic and antithetical to a transdisciplinary 
approach to mediating the math wars conflict. Although it is certainly reasonable, 
necessary even, to closely examine and critique Hacker’s argument—and here, 
Hacker represents all those “outside” of the mathematics education community who 
are concerned about the teaching and learning of mathematics—the argument must 
be judged on its merit, rather than its source. Not only is this a necessity of a trans-
disciplinary mindset, it is a foundation of good reasoning (and research). On the 
other hand, resorting to ad hominem attacks and positioning some individuals or 
groups as “experts” and others as “non-experts”—thereby alienating a majority of 
the population who has a stake in children’s education—only further entrenches the 
conflict and prevents a necessary open dialogue about the purpose and goals of 
teaching and learning mathematics in the twenty-first century. (And lest we paint 
Hacker as a blameless hero, we should note that he, too, is prone to drawing divi-
sions, branding research mathematicians as privileged and powerful, and domineer-
ing “mandarins”—an allusion to ancient China’s caste and their “complacency and 
privilege”—who “seek to dictate how a crucial realm of knowledge will be defined, 
taught, and studied at every level” (Hacker, 2016b, March 12, par. 2).)

�Concluding Remarks

Our goal is not to lay the blame on any individual, group, or discipline for the 
perpetuation of the conflict—this has already been done far too often and has proved 
to be fruitless many times over. However, the above discussion does suggest that 
disciplinary approaches to resolving the math wars are unlikely to see success. 
A broader approach, one that recognizes and takes seriously the perspectives, val-
ues, and experiences of all who are interested and have a stake in mathematics 
education—including those outside of academia and beyond the disciplines 
traditionally charged with the responsibility for this issue—may prove to be more 
effective. Transdisciplinarity, which has already seen some success in tackling com-
plex, value-laden issues in the modern world, offers itself as a promising candidate 
because of its attempt to transcend reductionist and dichotomous mentalities 
(such as the idea that mathematics educators and educational policymakers must 
choose between a “traditional” and a “discovery” approach) and its commitment to 
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meaningful stakeholder and community involvement. Unfortunately, as the many 
examples of dichotomous, adversarial attitudes on all sides of the debate suggest, 
transdisciplinarity remains far out of reach. In our view, so long as those who are 
involved in the debate continue to approach the issue from within disciplinary silos 
and continue to dismiss “outsiders” based on a lack of certain credentials, the math 
wars will only continue to rage on. Unfortunately, to paraphrase Schoenfeld (2004), 
this means that we will continue to see injury caused to innocent parties: children, 
who deserve to be well served by mathematics education.

Fortunately—as the countless signals (online discussions, articles, books, peti-
tions, protests, and so on) emitted by various groups clearly indicate—all sides of 
the conflict, perhaps with a few exceptions, are interested in seeing the math wars 
resolved. Part of the issue certainly lies in misunderstandings of educational research 
and curriculum recommendations (e.g., the assumption that emphasizing problem 
solving must come at the expense of procedural fluency, or that “discovery math” is 
a coherent program that is, or should be, uniformly applied in each and every 
classroom), which suggests that wider dissemination of information by mathemat-
ics educators and educational policymakers is required. This is not to say that the 
process will be easy or even welcomed. As discussed earlier, researchers in the field 
of mathematics education are faced with a climate that is hostile to educational 
research, which is often represented as being untrustworthy and unreliable in the 
popular media even as its results and recommendations are frequently misinter-
preted. A separate analysis would be useful in shedding more light on this issue (see 
Herbel-Eisenmann et al., 2016, for some discussion), but we feel that it is reason-
able to speculate that a major reason is that mathematics education researchers are 
simply not making enough of an effort to communicate their research beyond the 
disciplinary boundaries of the mathematics education community—beyond research 
conferences, beyond closed- and even open-access journals, beyond books such 
as the one in your hands… perhaps in part because they face a distrustful, hostile 
public and fear misinterpretation and overgeneralization of results. We can see that 
a vicious cycle of disengagement, distrust, and hostility is likely at play, and this 
cycle must be broken. Herbel-Eisenmann et al. (2016) make several suggestions for 
establishing stronger relationships between mathematics education researchers and 
other stakeholders, as well as for using additional communication mechanisms and 
nontraditional outlets, such as social media, to communicate with broader audiences 
who have an interest and a stake in mathematics education.

However, they also stress that communication between mathematics educators 
and other researchers and stakeholders should not only be “one way” (i.e., deliver-
ing messages) but rather reciprocal (Herbel-Eisenmann et al., 2016). And if mean-
ingful dialogue and collaboration are to be achieved in conversations about the 
teaching and learning of mathematics, simply bringing people together, whether 
virtually or physically, is not enough: all interested parties must strive to step beyond 
disciplinary boundaries and to view the math wars as only one component of the 
larger, transdisciplinary questions of the purposes and goals of education in the 
twenty-first century, which can only be tackled collectively. “Outside,” “non-expert” 
perspectives cannot be taken for granted; neither can the bias inherited from a disci-
plinary connection. Such an effort will demand lateral, creative, and collective 
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thinking and undoubtedly some discomfort—namely, the “pain inherent in aban-
doning one’s intellectual comfort zone by working outside one’s home discipline 
and engaging in new modes of thinking and taking action” (Bernstein, 2015, p. 11). 
Perhaps it is ironic, then, that this call to action is bound within this book.
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Chapter 9
Echoed Rememberings: Considering 
Mathematics and Science as Reconciliation

Dawn Wiseman and Lisa Lunney Borden

Abstract  The editors of this volume have challenged us to consider the concept of 
transdisciplinarity within our own practices of teaching and learning. We begin by 
positioning transdisciplinarity as an instance of echoed rememberings, ideas 
Indigenous peoples have not forgotten. We suggest that such rememberings open up 
possibilities for transversing, transgressing and transcending what mathematics and 
science teaching and learning might be, in ways that welcome life and living back 
into mathematics and science through projects such as Show Me Your Math in Nova 
Scotia and the Indigenous Teaching and Learning Gardens at the University of 
Alberta. These illustrative examples suggest how we might create opportunities in 
K-12 and teacher education to centre Indigenous understandings as places from 
which learning emerges and provide a means for moving towards reconciliation.

Keywords  Remembering • Indigenous ways of knowing, being and doing • 
Mathematics • Science • K-12 • Teacher education

This chapter considers what it might mean and look like to consider mathematics 
and science teaching and learning as reconciliation in the Canadian context through 
the lens of transdisciplinarity. We explore the term as a way of transversing, trans-
gressing and transcending in order to break out of silos of disciplinary understand-
ing and bringing livingness to teaching and learning in mathematics and science. 
At the same time, we remember to remember that words such as transdisciplinarity 
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are likely only echoed rememberings of ideas Indigenous1 peoples have not forgotten. 
As a way of illustrating what we mean, we share experiences from our own work 
and those of colleagues in other areas of Canada, before using them to question the 
lens of transdisciplinarity once again.

As is appropriate to the contexts in which we work, we begin by acknowledging 
the teachings, time, wisdom and humour of the Blackfoot, Sioux, Mohawk and 
Mi’kmaw2 Elders we work and have worked alongside. As is appropriate to the places 
in which and people with whom we teach and learn, we begin with a story that involves 
both of us. It was originally shared in Dawn’s dissertation (Wiseman, 2016).

. . .
In late 2013, we attended a week-long workshop examining the research possi-

bilities of engaging with First Nations, Inuit and Métis communities regarding the 
relationships between wisdom traditions and mathematics teaching and learning. 
Participants were university-based researchers, Elders, students, and educators both 
Indigenous2 and settler. We have known a number of the participants for many years. 
On the first day of our meetings, a tenured Indigenous colleague who we have known 
for almost two decades expressed a sense of frustration with ruttishness, how we 
seem to need to start over every time we meet. Our colleague feels a sense of urgency 
related, it seems, to the realities of supporting communities in meeting the priorities 
they set for themselves and how these priorities are sometimes complicated by ongo-
ing tensions around engaging with mathematics in the community. However, as the 
week progressed and people shared stories of work undertaken in  local places, it 
became clear that we were neither starting over nor stuck in a rut; that in fact, we 
were all in our own ways and places caught up in acts of living with our relations in 
the communities in which we find ourselves and in their engagements with mathe-
matics. Because our work is complex, we sometimes find ourselves in recognizable, 
familiar places that, if left unexamined, might be mistaken for the same place we 
have found ourselves in on previous occasions and hence the worry of “starting over” 
again and again. Instead, while we discovered we stood in a recognizable, familiar 
place, we were not in exactly the same spot starting over because since our last meet-
ing, we have been engaged in generating understandings. At the same time, we also 
realized that something was missing in our work that could connect understanding 
where we had come from and what we had learned in the intervening period; some-
thing to ground us in our relations that allows us to both see and read through (Ihde, 
1996, 1998) to sustaining “patterns we might hang our hats on” (Little Bear, 2012) 
and in turn sustain those patterns. Within the context of the academy, this role is in 
some ways taken up by academic journals, but academic journals have some diffi-

1 Within the Canadian context, there are three large grouping of Indigenous peoples  – First 
Nations, Métis and Inuit – each that consists of multiple distinct nations and/or communities. The 
currently accepted term for referring to First Nations, Métis and Inuit as a collective is Indigenous 
(Vowel, 2016).
2 Throughout this article, Mi’kmaq is used as a noun and can be either singular or plural. Mi’kmaw 
is used as an adjective. While the rules for creating adjectival forms of words in Mi’kmaq are con-
siderably more complex, it has been agreed by a working group on Mi’kmaw language learning 
that, when writing in English, these conventions will be used.
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culty accounting for ways of knowing, being and doing beyond the Western. As such, 
in this case, the chosen means of making that connection was ceremony and a math-
ematics bundle which will travel with one of our colleagues and return to us – and 
those who come after us – to tell stories of mathematics in different places. What we 
came to is ceremony and ritual as a means of returning, remembering, renewing and 
re/creating in a recursive manner.

. . .

�Positioning Ourselves

As white women who work alongside Indigenous people, peoples and communities, 
it is always necessary to position ourselves in the work. Absolon and Willett (2005) 
underline how “Identifying, at the outset, the location from which the voice of the 
researcher emanates is an Aboriginal way of ensuring that those who study, write, and 
participate in knowledge creation are accountable for their own positionality” (p. 97). 
While neither of us is Indigenous, we have both lived and worked alongside Indigenous 
people, peoples and communities for over 40 years combined. This experience leads 
us to approach teaching, learning and research in ways deeply informed by under-
standings developed in the places where we live and work.

Lisa’s work began in 1995, with a mathematics teaching position in a Mi’kmaw 
school in We’koqma’q, Cape Breton, Nova Scotia. During 10 years in We’koqma’q, 
she immersed herself in the community well beyond the school walls and developed 
a functional use of the Mi’kmaw language. Dawn’s work began in 1993, when she 
was invited to develop a science camp for young Indigenous people by her long-
time mentor Corinne Mount Pleasant-Jetté, a member of the Tuscarora Nation from 
Ohsweken, Ontario, and – at the time – a professor in the Faculty of Engineering 
and Computer Science at Concordia University (Montréal, Québec). For the next 
16 years, they worked together supporting K-12 mathematics teaching and learning 
for Indigenous children and youth. It was through this work that we met and have 
had the opportunity to collaborate for over 15 years.

In returning to the academy to explore the complexities of what we have learned 
in community about teaching and learning mathematics and science, each of us has 
questioned if it is our place to do such work. We have asked ourselves the questions 
Kovach (2005) says challenge non-Indigenous people in contexts such as our own, 
“Am I creating space or taking space?” (p. 26). The intention is always the first, but 
the second is potential. Seeking advice from community members, each of us has 
been reminded – with some humour – that the relationships we have engaged in 
over the years come with obligations. As Kovach (2009) writes,

Indigenous methodologies, by their nature, evoke collective responsibility… Specific 
responsibilities will depend upon the particular relationship. They may include guidance, 
direction, and evaluation. They may include conversation, support, and collegiality. 
Responsibility implies knowledge and action. It seeks to genuinely serve others, and is 
inseparable from respect and reciprocity. (p. 178)
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People have shared language, culture and ways of knowing, being and doing with 
us; what we share here is a means of honouring those gifts. One manner in which 
we do so is by attending to Stewart-Harawira’s (2005) call for paying serious attention 
to “the possibilities inherent in indigenous ontologies” (p. 34) within the academy. 
As such, we both base research in Indigenist research methodologies, as a means of 
decolonizing research (Denzin, 2005). The approach “research[es] back to power” 
(Smith, 2005, p. 90) and holds a “purposeful agenda for transforming the institution 
of research, the deep underlying structures and taken-for-granted ways of organizing, 
conducting, and disseminating research and knowledge” (p.88).

�Positioning Transdisciplinarity as an Instance of Echoed 
Remembering

As white academics who work alongside Indigenous people, peoples and communi-
ties, it is always necessary to position and question the frameworks within which we 
are asked to work. The editors of this volume have asked us to consider transdisci-
plinarity in mathematics education. As we have noted in other places (Lunney 
Borden & Wiseman, 2016), while we each have disciplinary specialties in mathe-
matics and science, we are more interested in teaching and learning through inter-
esting questions and problems located in places with which learners have some 
relationship and from which mathematics and science (engineering, art, technology, 
etc.) may emerge. The sensibilities we bring to our work tend to push against bound-
aries of Western ways of knowing, being and doing that artificially construct silos of 
knowledge, defining clear boundaries of belonging that break down kinship and 
otherwise lead to “epistemic closure” (Rabaka, 2010, p. 13). Thus, we also question 
ideas and terminology generally used and/or accepted within the academy such as 
STEM (Lunney Borden & Wiseman, 2016), theory and methodology (Lunney 
Borden, 2010; Lunney Borden & Wagner, 2013; Wiseman, 2016). In this question-
ing, our fundamental focus is on how such terms are situated and constructed, how 
they limit or create space for action and whether they have a place in the contexts in 
which and for the people with whom we work. Thus, in preparing this chapter, we 
begun by considering transdisciplinarity as a construct emergent from Western 
ways of knowing, being and doing, to determine whether it is actually useful in 
describing our work.

We begin in this manner because our work suggests that recently emergent 
academic terms used to encompass and describe the complexity of living, learning 
and being in the world still exist in Indigenous languages and thought and that such 
academic terms are “echoed rememberings” (Wiseman, 2009, p.  4) of concepts, 
ideas and ways of being Indigenous people and peoples have not forgotten. Thus, 
research that identifies processes active in the world and names them in English – or 
other European languages – is not a process of discovery but of remembering ideas 
that Western “epistemic closure” (Rabaka, 2010, p. 13) has forgotten or repressed. 
In popular culture the process is referred to as Columbusing, a word that “labels acts 
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of cultural reappropriation, typically of something already known to minority cultures, 
much as Columbus ‘discovered’ America despite the indigenous (sic) peoples 
already living there” (Zimmer & Solomon, 2015, p. 85). For us, these ideas that are 
presented as innovations within the academy resonate with learnings we have had 
within communities; our commitment to those communities compels us to remember 
that such ideas may have longer histories and complex relations.

Transdisciplinarity is a term that evokes such remembering. The literature claims 
it as an approach to breaking down disciplinary barriers, addressing complex problems 
through multiple perspectives and examining knowledge production and dissemina-
tion more holistically (Berstein, 2015; Pohl, 2010). Berstein (2015) argues that 
transdisciplinarity forces:

considerations [that] require researchers not only to admit to their own subjectivity but to 
foreground questions about the ethics of studying populations where a power differential 
exists between the investigator and the subject of research. This has resulted in research that 
transcends standard interpretive social science and becomes transdisciplinary in that it 
brings in the subjects of research participating in the research on an equal footing with the 
investigators. (Section 2, paragraph 2)

As presented above, the concept of transdisciplinarity shares some alignment 
with Indigenous research methodologies (Kovach, 2009; Smith, 1999). However, 
whereas transdisciplinarity is fairly new term (Berstein 2015), the ideas contained 
within Indigenous methodologies are rooted in very old, community-accepted ways 
of engaging with one another that extend to the kinship and relations that sustain life 
and livingness. Erica Violet Lee (2016) terms such livingness “epistemic life giving” 
and points to the work of Métis scholar Zoe Todd (2016) who explores our deeply 
entwined bondedness with fish, beavers and long-dead ancestors now present in 
petroleum.

Epistemic life-giving emerges from and in practices we have come to know in 
Indigenous communities under multiple names – such as mawikinumatimk in Mi’kmaq 
(Lunney Borden, 2010; Lunney Borden & Wagner, 2013) and kiskanowapâhkêwin 
(Lunney Borden & Wiseman, 2016) or miyo wichitowin (Donald, 2013) in Cree – and 
we wonder if such livingness, or at least the potential for it, is present in transdiscipli-
narity. In considering this question, Rabaka’s (2010) work is helpful. He reminds us 
that transdisciplinarity is rooted in “transgress[ing], transcend[ing] and transvers[ing]” 
(p. 13) generally accepted frameworks, to counteract epistemic closure, thus opening 
up the possibility for epistemic life-giving (Lee, 2016).

In this paper, we attempt to transgress, transcend and transverse accepted notions 
of mathematics and science teaching and learning to listen for and remember what 
land teaches. So, rather than throwing away the word transdisciplinarity, we choose 
to make it live within our work to transcend the boundaries of Western and 
Indigenous ways of knowing to find alignments, moments of resonance and places 
for complex conversations, as well as to demonstrate how Indigenous ways of 
knowing, being and doing can inform a transdisciplinary approach to mathematics 
and science education. At the same time, we remain uneasy and uncomfortable with 
the term transdisciplinarity, but we tend to find that such uneasiness and discomfort 
can be generative and fruitful.
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�Remembering to Remember

As white women born into and primarily raised in Western ways of knowing, being 
and doing, in our work alongside Indigenous people, peoples and communities, we 
have learned that remembering and, more importantly, remembering to remember 
are essential to living. Remembering to remember is the antithesis of repression 
which Taubman (2007) explains as “the occurrence of a psychic event that is doubly 
forgotten” (p. 4), something that is so traumatic or so deeply denied that we have 
forgotten we forgot it. Tewa scholar Cajete (1999) argues that those of us grounded 
in Western thought and worldview frequently suffer from a surfeit of repression and 
that our school systems reflect that unfortunate abundance and that, in fact, they 
work to (re)produce it.

Examining E.  O. Wilson’s concept of biophilia, or affinity for nature, Cajete 
(1999) contends that instead of nurturing young people’s curiosity and wonder 
about the world and introducing them to it through relationship, schools and curri-
cula (re)produce biophobia, or fear of the natural world, by abstracting content from 
lived experience, people from nature and learning from community, in a sense 
abstracting all relationship and subjectivity from experience and focusing solely on 
a (false) objective view. He says, this hidden curriculum leads students to perceive 
themselves not as a “microcosm of the macrocosm” (Cajete, 2006, p.  249) but 
instead as distinctly separate and apart from the rest of creation and thus able to 
control it only through knowledge and expertise, control of nature being one of the 
key, but largely unconscious, “epistemological underpinnings” (Cajete, 1999, 
p. 190) of Western institutions. The concept of control runs throughout the curricu-
lum but is most obviously manifested in the teaching of science and mathematics 
from a Western perspective which he suggests is “the single most powerful para-
digm of modern Western culture” (Cajete, 1999, p. 188).

Cajete (1999) links our current ecological predicament in terms of climate 
change to forgetting what we have forgotten. He writes that “Once people break 
these cycles of remembering, they begin to forget and start doing the kinds of things 
that have led to the ecological crisis we are currently experiencing” (p. 197), a crisis 
that has the potential to end life as we know it. Similar thinking has been presented 
by Brazilian scholar D’Ambrosio (2015) who argues that Western knowledge has 
failed us with respect to finding solutions to some of the world’s most complex 
problems such as climate change. D’Ambrosio uses the metaphor of the “epistemo-
logical cage” (p.  23) that continuously reproduces “academic sameness” (p.  23) 
writing that:

Traditional knowledge is like a birdcage. Birds living in the cage are fed by what is in the 
cage, they fly only in the space of the cage, they see and feel only what the wires of the cage 
allow. The birds in the cage communicate among themselves in a language proper to those 
that live in the cage, they breed and procreate, they repeat themselves. (p. 23)

He underlines that “We need new ideas, new approaches, to face the problems 
affecting the world. Our generation and our approaches are not producing the global 
changes to avoid total disaster” (p.  24). He calls for greater creativity and a 
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transcending of boundaries between knowledge systems so that we might escape 
the epistemological cage to explore different solutions to the world’s most critical 
problems. His call for transcendence emphasizes a means of reconnecting with the 
world through “really real situations” (p. 27) in mathematics education. The impor-
tance of relationship within this process is inferred, but not explicit, and this is 
where we need to return to Indigenous critiques of Western ways of knowing, being 
and doing.

Cajete (1999) strongly implies that deep conceptions of relationship once existed 
in Western ways of knowing, being and doing but have been forgotten in the logical 
rationalism of Newtonian-Cartesian conceptions of the world. Moreover, he sug-
gests Western forgetting has been a somewhat deliberate, or at least predictable, 
outcome of breaking “cycles of remembering” (p. 197), and that “when something 
no longer exists in your perceptual memory, it no longer matters” (2006, p. 255). 
Papachese Cree scholar Donald (2009) similarly acknowledges that “Indigenous 
peoples today [do not] hold exclusive copyright on this [relational and intercon-
nected] view of the world” (p. 439). While Donald locates the source of forgetting 
in the “homogenizing processes of modernity and colonialism” (p. 440), these pro-
cesses are closely related to Newtonian-Cartesian logical rationalism in their 
attempts to separate, enclose and abstract rather than to relate, open up and create 
(Doolittle, Lunney Borden, & Wiseman, 2011). Cajete (1999) contrasts Western 
epistemic closure and the forgetting it engenders with Indigenous peoples’ practices 
of “remember[ing] to remember” (p. 197) relationships through language, stories, 
art and ceremony. Blackfoot Elder and scholar, Leroy Little Bear (2012), firmly 
roots epistemic life-giving with remembering to remember in his description of the 
flux, the chaos that in Blackfoot thinking underlies all of creation. Within the flux 
there are regular patterns “you can hang your hat on” – places where living is pos-
sible – that are maintained through deliberate and careful renewal of relationships 
taken up via ceremony (Little Bear, 2000; Wilson, 2008). Doll (1993) also looks to 
these patterns and, like Little Bear, considers that ritual plays a significant role in 
their ongoing renewal and recreation.

While we are uneasy claiming any connection to Little Bear’s (2012) ceremony, 
we find ways of being and doing within the teaching and learning that might be akin 
to Doll’s (1993) ritual, ways to acknowledge and enact our responsibility for, obli-
gation to and complicitness in the relationships, processes and places of our work. 
These rituals remind us of the importance of transversing, transgressing and tran-
scending the privileging of Western ways of knowing, being and doing. Such ritual 
has tended to fall outside the boundaries of the academy via epistemic closure and/
or “epistemic apartheid” which Rabaka (2010) describes as “the process of institu-
tional racism … academic racial colonization and conceptual quarantining of 
knowledge, anti-imperial thought, and/or radical political praxis produced and pre-
sented by non-white...intellectual activists” (p. 11) and hence our opening story of 
the mathematics bundle.

Given the significance of bundles to community continuity and life (e.g. Crowshoe 
& Manneschmidt, 2002), the decision to create a bundle was not entered into lightly. 
There was much discussion within the gathered group, with much support and guidance 
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from Elders who had previous experience with bundles. It is not our place to tell the 
deeper story of the bundle; we are not the bundle keepers. While we contributed to 
the ceremony and the bundle, and in many ways it has brought a renewed energy 
and urgency to our personal and collective work, we acknowledge we neither have 
the authority nor teachings to share anything further. At the same time, we share the 
story of the bundle because it reminds us of the importance of returning, renewing 
and re/creating in an ongoing fashion. It connects us to the importance of ceremony 
and ritual in our work and brings epistemic life-giving to it by grounding us in our 
relationships and remembering to remember.

Such remembering to remember is at the heart of the Truth and Reconciliation 
Commission of Canada’s [TRC] (Truth and Reconciliation Commission of Canada, 
2015) 94 Calls to Action that focus on establishing renewed relationships between 
settler and Indigenous people in Canada to “restore what must be restored, repair 
what must be repaired, and return what must be returned” (p. 6).

�Positioning and Problematizing Reconciliation

Canada’s residential school system perpetuated an act of cultural genocide on 
Indigenous peoples, the effects of which are still significantly impacting First 
Nations, Inuit and Métis communities today (TRC, 2015). In 2015, the TRC stated 
that the ultimate goal of reconciliation is “to transform Canadian society so that our 
children and grandchildren can live together in dignity, peace, and prosperity on 
these lands we now share” (p. 8). The TRC names the education system as having 
an essential role in repairing the damages caused by residential schools and thus 
obligates educators at all levels to consider their roles as agents of “unlearning colo-
nialism” (D. Donald, personal communication, December 21, 2016).

We recognize that the TRC (2015) and its recommendations are not unproblem-
atic. The commissioners also recognized the difficulty of the idea of reconciliation 
within their final report, noting that:

To some people, reconciliation is the re-establishment of a conciliatory state. However, this 
is a state that many Aboriginal people assert never has existed between Aboriginal and non-
Aboriginal people. To others, reconciliation, in the context of Indian residential schools, is 
similar to dealing with a situation of family violence. It’s about coming to terms with events 
of the past in a manner that overcomes conflict and establishes a respectful and healthy 
relationship among people, going forward. It is in the latter context that the Truth and 
Reconciliation Commission of Canada has approached the question of reconciliation. (p. 6)

We equally recognize that these multiple conceptions of reconciliation exist and 
circulate together in the same space; that they speak to each other and have con-
versations that complexify the context in which we work. Reconciliation goes hand 
in hand with decolonization or at least “unlearning colonialism” (D. Donald, per-
sonal communication, December 21, 2016); reconciliation can never be complete 
without undoing systemic power structures defined by settler governments at mul-
tiple levels. All of this is to say that we acknowledge the work is complex and there 

D. Wiseman and L. Lunney Borden



183

is often a fear of doing things incorrectly, yet at the same time, we simply cannot 
continue as we have been – something must change.

In fact, Elders with whom we have relationships have reminded and continue to 
remind us of the importance of acting differently and being creative as a means of 
rethinking and reworking relationships between Indigenous and settler peoples. In 
this instance, we think in particular of Blackfoot Elder Narcisse Blood who once 
told Dawn that, “The worst thing to do is nothing, and just go with the same, eh. … 
You know, status quo” (in Wiseman, 2016, p. 107). And so, we remember to be 
creative, to do things differently, to listen to what land teaches us, to honour ideas 
rooted in Indigenous languages and to engage with epistemic life-giving that is both 
emergent from and embedded in all our relations. We thus choose to make the path 
of reconciliation while walking it; but, we understand that the creation of such a 
path is also caught up in transversing, transgressing and transcending the status quo. 
And so, we share some stories of our own.

�Stories of Transdisciplinarity: Transversing, Transgressing 
and Transcending the Status Quo

The following stories emerge from collective and collaborative projects where 
many people – Elders, K-12 students, pre- and in-service teachers, graduate students, 
faculty members and school and post-secondary staff  – come together to learn 
together. They are drawn from Lisa’s experiences with the Show Me Your Math 
Project in Nova Scotia, a programme that invites Aboriginal students to explore the 
mathematics in their own community heritage, and Dawn’s experiences with the 
Indigenous Teaching and Learning Gardens at the University of Alberta (UA) and 
a similar, developing project at McGill University. Because the projects are collec-
tive, the understandings and thinking we share below emerge from those collective 
endeavours, all the people who have been involved in the projects inform and walk 
alongside us in this writing.

�Transversing

We see transversing as cutting across boundaries; both those boundaries that define 
curriculum content, and the boundaries that separate school and community. We each 
begin in our disciplinary specialties of mathematics and science, typically with the goal 
of supporting greater equity for Indigenous students, yet we have long been aware that 
these disciplinary boundaries are artificially imposed and often create barriers that 
cause fragmentation in understanding. Our work has shown us that when we begin 
with ideas and places where learning can emerge and stay open to what emerges, the 
learning transverses many boundaries both within and outside the classroom.
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Show Me Your Math is a programme that emerged from conversations with 
Mi’kmaw Elders (Wagner & Lunney Borden, 2015) and was inspired by a particular 
moment where the late Dianne Toney, a quill box maker from We’koqma’q, 
explained that to make a ring for her circular box top, she would measure three 
times across the circular top and add a thumb width to ensure a perfect ring with just 
a little overlap. This knowledge had been passed to her through Elders and is rooted 
in a community notion of tepiaq (enough) which implies you take only what you 
need and do not have waste. While Dianne’s story provides a clear entry point to 
help students learn the mathematical concept of π, knowledge of π alone is insuffi-
cient to make a quill box. When you begin to think about making a quill box, a 
multitude of questions emerge: What materials do you use to make the top? How do 
you gather these materials appropriately? What is the best time of year to gather 
them? How do you make that wooden strip that will be used for the ring? What type 
of tree does the strip come from? How do you make strips of wood from a section 
of a tree? How do you gather quills from a porcupine? Which quills do you use? 
And so on. There are many interconnected processes that must be understood to 
create a quill box, and the interconnected nature of inquiring into a phenomenon is 
what took the Show Me Your Math projects into a direction that focused much more 
on a holistic inquiry leading to the mawkina’masultinej (let’s learn together) 
projects.

One such project focused on creating canoe paddles. While the project involved 
a need to measure and design, to apply fractions and decimals and to work with 
concepts of symmetry, the learning that emerged from this project cut across many 
curricular boundaries and learning contexts. The project was inspired by a video of 
Mi’kmaw guide Todd Labrador making a traditional birch bark canoe (Levangie, 
2012). Although there was insufficient time and resources to make a canoe a conver-
sation Lisa had with an outdoor education colleague and a subsequent conversation 
with the Mi’kmaw language teacher at the school resulted in a decision to make 
paddles instead. These two individuals worked with the math teacher and the build-
ing technology teacher to bring this project to life. The four educators  – two 
Mi’kmaw and two non-Indigenous – brought together their respective knowledges 
to begin to restore the knowledge of paddle making that nearly 500 years of coloni-
zation had eroded. Questions emerged about how paddle design related to the types 
of paddles that were used in various places and for various purposes. Questions 
about the design of these paddles and their relationship to water flow prompted Lisa 
to call upon Dawn to investigate some potential science connections that might be 
built into the unit. Each new idea seemed to spark yet another new idea and another 
new line of inquiry.

The building technology teacher, a Mi’kmaw Elder, who provided the space and 
support for the paddle making, also provided the students with a connection to their 
own community history. He brought in binders filled with old newspaper clippings 
that his mother had collected over the years. These clippings told stories of Mi’kma’ki, 
stories of canoe races as part of the annual Mi’kmaw summer games, and stories of 
the canoe trip from Cape Breton to Montreal for Expo ‘67. As students worked on 
shaving and sanding their paddles, they also learned about paddling as part of their 
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community heritage. One of these newspaper clippings recounted a canoe race win 
that involved many men from the community, most of whom were grandfathers of 
students in the class, and that story proved to be the inspiration for a grandfathers’ 
lunch. Five Elders attended the lunch, and they shared stories with the students as 
they examined the finished paddles the students had created. There was laughter and 
remembering, and there was great pride in the eyes of both the students and the 
Elders. The Elders explained that they had not had such opportunities when they 
were young and had only learned to paddle as adults when they could afford to pur-
chase a canoe. This remembering highlighted the damaging impact of colonization 
and demonstrated how the policies and practices of settler governments systemati-
cally eroded traditional knowledges. As these Mi’kmaw youth and Elders came 
together to share stories of paddling and paddle making, stories emerged that spoke 
back to some of these colonizing practices in simple yet profound ways and in their 
speaking began the process of remembering and restoring knowledge.

The examples of making quill boxes and canoe paddles both began as ways to 
connect with mathematical knowledge, yet both practices show how the learning 
can cut across many content areas and beyond the walls of the school into the com-
munity. In fact, if the learning had been limited to only the mathematics, much 
would have remained lost. Wagner and Lunney Borden (2012) have seen similar 
examples of cutting across boundaries in other Show Me Your Math projects and 
have noted the value in the programme is rooted in the wholeness that is maintained 
in the programme. When we resist the temptations to stay within school defined 
boundaries, we find that there are many learning opportunities and many ways to cut 
across disciplines and contexts. Simply put, once you begin one thing, you find all 
of these other things living there.

�Transgressing

That such livingness resides in the places and topics of teaching requires some 
means of transgressing taken-for-granted ideas about what and how teachers teach 
within schools and some means of breaking (or breaking out of) the ruttish epis-
temic closure of curriculum-as-plan (Aoki, 2005) into the deep relationships of 
epistemic livingness (Lee, 2016; Todd, 2016). One such instance was facilitated by 
the Indigenous Teaching and Learning Gardens at the UA.

The Gardens were developed in response to provincial/territorial mandates to 
integrate Indigenous perspectives across K-12 curricula (e.g. Alberta Learning, 
2002) and call from the Association of Deans of Canadian Education (ADCE) 
(Archibald, Lundy, Reynolds, & Williams, 2010) to develop “comprehensive 
teacher candidate and faculty programs that create meaningful opportunities for 
learning about and practicing Aboriginal pedagogies and ways of knowing” (p. 6). 
The gardens were created by undergraduate students in one of the secondary science 
curriculum and instruction courses working with graduate students, an Elder and 
faculty members. The Gardens have subsequently been taken up in other courses as 
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a location for exploring the ways in which Indigenous and Western ways of know-
ing, being and doing might circulate together in teaching and learning. Within a 
grant focused on teacher education, a special topics course involving the Gardens 
was developed and offered.

Engaging Aboriginal Perspectives in Mathematics and Science was a cross-
listed, graduate/undergraduate, elementary/secondary course offered in spring 
2013. The class was evenly split between pre- and in-service teachers, graduate and 
undergraduate students and elementary and secondary specialists. There were sev-
eral Indigenous students in the class, both undergraduate and graduate. The in-
service teachers had 2–20  years of teaching experience. Some of them worked 
primarily with Indigenous K-12 students; others did not. The teachers working with 
Indigenous students were not necessarily Indigenous themselves.

The course was designed such that the place and land were emphasized through-
out. One full class focused on explicit discussion and consideration of place and 
land (Barsh & Marlor, 2003; Hermes, 2005; Watson & Huntingdon, 2008), connec-
tion of land to language and understanding and how conceptions of place and land 
might be taken up within mathematics and science teaching and learning. One of the 
course assignments also focused on place. It asked students to identify a personally 
meaningful place, explain why it was meaningful to them and then spend time 
reflecting on course readings, discussions and activities in that place in an ongoing 
manner as a means of considering their own thinking and learning in relation to each 
class. Many of the classes occurred at least partially outside the classroom in the 
Gardens or the Edmonton River Valley. These places came to have their own voices 
in the course, telling stories about many things (Wiseman, Onuczko, & Glanfield, 
2015) including mathematics, science and how Indigenous and Western ways of 
knowing, being and doing might circulate together to have conversations about 
teaching and learning. Over the course of the term, engagement with place and land 
supported the transversing of disciplinary boundaries with students in the course 
often considering mathematics and science alongside each other. Time with place 
and in land also began to break down, or transgress, notions the pre- and in-service 
teachers had taken-for-granted for a long time.

Karen (pseudonym), a non-Indigenous teacher, chose to reflect in her local 
neighbourhood, an urban community in which she taught at a public school where 
the majority of students are Indigenous. One evening she came across two different 
types of trees whose upper roots were exposed to view. She was taken with how, in 
the entanglement of roots, she could not tell which roots belonged to what tree but 
how both trees were thriving in the middle of the city. In this moment the roots 
spoke to her about the neighbourhood, her school and her students in a deeply peda-
gogical manner:

I came into Indigenous Perspectives in Science and Mathematics hoping to build stronger 
relationships with my students, particularly in such logic-based and concrete subjects [math-
ematics and science], subjects that held limited appeal for my students unless we were 
engaged in a game or an experiment. While I believe I have certainly reached that goal, it has 
not been in the superficial way that I realize now I had expected. Instead I have replaced my 
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mere hope of engaging my students a little more than before with a hope and an aim to allow 
my students to have their stories told, to recognize their own roots so to speak. My students’ 
lives are not just made up of one tree. Their stories are instead the roots, tangled together so 
that they cannot be recognized as one or the other. They exist in both Western and Indigenous 
worlds, both essential to their being, and neither can be ignored or invalidated with ignoring 
and dismissing some part of the child. (Karen, Final reflection, May 23, 2013)

In our final class together, we challenged the students to consider what they had 
come to understand during the course and apply it to the existing programme of 
studies for mathematics and/or science. Given a suggestion by one of the co-
instructors, Dwayne Donald, in the first class of the term (field notes, May 7, 2013), 
we asked them to take seriously what we had learned together, even if they were still 
struggling with some of the ideas, and think about what curriculum looks like when 
connected to land. We suggested they might use Dwayne’s ideas of what a curricu-
lum of berries or buffalo might look like and what this curriculum might say about 
currently accepted practices in mathematics and/or science teaching and learning. 
To make the task manageable within the available time, we asked them to choose a 
range of grades from either 1–3, 4–6, 7–9 or 9–12. One group took on the idea of 
berries from grades 7–9 and began with the existing science programs. Very quickly, 
however, they were also looking at the mathematics program and pulling up the 
social studies and language arts programmes on a computer, again transgressing 
disciplinary boundaries. Somewhere in the process, one of the students – a vice-
principal with many years of teaching experience – said loud enough for everyone 
to hear, “We even plan wrong!” (field notes, May 25, 2013). Her interjection led to 
some discussion of what she meant. She spoke about how in connecting to land 
through thinking about berries they had realized how quickly the science curriculum-
as-plan was inadequate to the kind of understanding they wanted students to develop. 
While their final plan got at most of the prescribed outcomes in the science pro-
gramme, in thinking about berries, they identified overarching themes connecting to 
health and food and then discussed how ideas about health and food are prescribed 
by both worldview and political systems, how everyone in the group had stories and 
experiences of berries that learning could emerge from and how the mathematics 
emerged in their plan organically, “always growing” and there to “pick” like the 
berries (field notes, May 25, 2013). They transgressed not only disciplinary bound-
aries but accepted ways of and rules about planning to think about teaching in a 
manner that opened their eyes to new possibilities for teaching and learning.

�Transcending

What we find in our practice is that such transversing and transgressing seem neces-
sary to thinking about how Western and Indigenous ways of knowing, being and 
doing might circulate together in mathematics and science teaching and learning 
(not that we think of the subjects as singular disciplinary silos anymore). We wonder if, 
in fact, transversing and transgressing are necessary to moving towards transcending 
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or being able to move beyond current conceptions of what it means to teach math-
ematics and science towards something more amenable to reconciliation.

This wondering arises not solely from our own work but also from the work of 
colleagues engaged in similar thinking in different parts of the country. One such 
example comes from the work of Jim Kreuger, a science and mathematics specialist 
for Kivalliq School Operations in Nunavut. Jim points to how moving science 
teaching and learning onto the land  – transversing and transgressing generally 
accepted notions of where and how learning occurs – allows for transcending the 
notion of teacher:

It, it taps into something that’s in all of us I think, for some of us maybe it’s harder to find 
but, you take people out on to the land and you camp for four, five, six days, and you just 
treat people differently. A whole different social dynamic develops, and the teacher/learner 
dichotomy is gone. We all become learners. We all become teachers. And at a science camp 
you can see students teaching teachers how to light a Coleman3 lamp, you can see students 
teaching Elders how to use a GPS, Elders teaching students how to drum dance, Elders 
teaching teachers how to cache meat, and teachers teaching, you know, everyone how to, 
what, how to exit a kayak –everyone teaches. It’s just sharing, it’s natural. (In Wiseman, 
2016, p. 281)

Jim also underlines how such transcendence requires letting go of generally received 
notions about lesson planning and structure:

Like I say, it’s pretty hard to mess up a land-based activity, unless you get way too focused 
and anal about plans and objectives and goals–because if you truly value the land and the 
environment the weather is part of that, and it changes, and you have to adapt. And then the 
Elders are always telling us, you know, ‘We’re not doing that, we’re doing this’. Like a bliz-
zard will produce snow, that means the lesson is now snow, it’s not caribou. And, so as long 
as you are able to be flexible and receptive I guess to the lessons that present themselves. 
And sometimes that means letting go of something that you planned, or sometimes adjust-
ing it, and doing it in a different way. Yeah, I think you can, for people who are really up 
tight and not flexible it can be very frustrating. But, ... but if you’re patient and you listen, I 
think you’ll hear what needs to be done. (In Wiseman, 2016, p. 283)

In our work, and the work of our colleagues, we recognize transcending in these 
practices that break down notions of what it means to teach – like planning and 
authority – but not necessarily of what it means to learn or come to understand in a 
deep, contextualized manner. As such, we consider how much transcending is about 
letting go of control to attend to and learn from what is present instead of what is 
prescribed. In our own work with in-service and pre-service teachers, we have seen 
that letting go is one of the greatest challenges they experience. Pressures such as 
curriculum-as-plan, student information systems for recording outcomes, student 
performance on standardized assessments and other systemic pressures all seem to 
work towards replicating existing school structures and repressing the memory that 
there are other ways to engage in teaching. One glimmer of hope we have noticed is 
that when teachers engage in the kinds of work we have described, it helps them to 
see other ways of engaging students in learning experiences. “It taps into something 

3 A Coleman lamp is a propane powered, portable light and heat source used for camping and land-
based living.
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that’s in all of us” (J. Kreuger in Wiseman, 2016, p. 281) and helps them to remember 
there are other ways of teaching and being together in learning with their students. 
The challenge is how to ensure that these teachers remember to remember these 
experiences so that they can continue to create opportunities to transverse, trans-
gress and transcend the dominant ways of knowing, being and doing in schools and 
move towards ways that might further the goals of reconciliation.

�Transcending Transdisciplinarity

In the work we have described, we recognize glimpses of healing, of centring 
Indigenous ways of knowing, being and doing and of letting go of prescribed notions 
of mathematics and science teaching to see what emerges for and in learning; experi-
ences that seem to provide space for the reclaiming, restoring and returning that are 
foundational to reconciliation (TRC, 2015). We also recognize that these glimpses – 
while promising beginnings – are only beginnings and not yet a whole story. 
The work continues to be fraught with tension because it pushes back against colo-
nizing systems that try to reproduce themselves instead of entering into conversa-
tions about what else might be. Still, we remember that these tensions are to be 
expected and may even be generative, because limited beginnings have a way of 
growing, unless repressed. To paraphrase Thomas King (2003), once you’ve heard a 
story you can’t say you didn’t know. And so, we look for ways of remembering to 
remember in order to transcend the status quo (N. Blood, in Wiseman, 2016).

Remembering to remember allows us to transverse by cutting across contexts, 
ways of knowing, being and doing and opening up spaces for multiple voices in 
teaching and learning, in science and mathematics. Remembering to remember 
allows us to transgress by breaking away from the expected and creating new ways 
of planning for learning. Remembering to remember allows us to transcend by let-
ting go of control and allowing learning to emerge in meaningful contexts and inter-
esting questions. Such remembering allows us as educators to move beyond the 
imposition of solely Western ideas about school and schooling so that we can get to 
a place where we might begin to unlearn colonialism and begin to repair, restore and 
return as a means of moving towards reconciliation.

These ideas seem connected to the idea of transdisciplinarity, but we wonder if 
we make this connection as white women. And this remembrance brings us back to 
our questioning of the term transdisciplinarity. It is useful and workable in the 
senses that we have described in this chapter, but we continue to wonder if it belongs 
in our work or if it is too much of a Western construct. The canoe paddles, the ber-
ries and the buffalo live and emerge in the places and from the land in which we 
teach, and so we suspect there is a better word (or words) than transdisciplinarity to 
describe the work we have shared – words that also come from the land and the 
places in which we teach and likely transcend the notion of transdisciplinarity. 
While we have not as yet heard or learned the word(s), we hold onto the idea that 
they might exist because we understand that what we describe is only an echoed 
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remembering of things Indigenous people have not forgotten. It is perhaps the place 
where we need to be in order to begin the reconciliation process – and so there is 
still much work to be done, because the worst thing would be to do nothing and just 
go with the same (N. Blood in Wiseman, 2016).
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Chapter 10
Gendered? Gender-Neutral? Views of Gender 
and Mathematics Held by the Canadian 
General Public

Jennifer Hall

Abstract  By investigating the general public’s views, we can better understand the 
cultural milieu in which mathematics teaching and learning take place. In this study, 
part of an international research project, I investigated the Canadian general public’s 
views of gender and mathematics. Using a brief survey, people on the street and in 
public spaces in four demographically diverse locations in the Canadian province of 
Ontario were asked their views on the topic. The findings suggest reasons to be both 
cautiously optimistic and concerned. While the most common response to the ques-
tions examined typically was to see no gender difference, more participants held a 
gendered view (typically privileging boys) than a gender-neutral view. Interestingly, 
no age group-related differences occurred in response patterns, but gender-related 
differences in response patterns were evident.

Keywords  Mathematics education • Gender • General public • Beliefs/views

�Introduction

Investigating the general public’s views about mathematics is essential in order to 
garner an understanding of the social milieu in which mathematics teaching and 
learning occur. Unfortunately, as argued by Leder and Forgasz (2010), “attempts to 
measure directly the general public’s views about mathematics, its teaching and its 
impact on careers are rare” (p. 329). While several studies exist regarding people’s 
views of mathematics, these studies are often conducted with select populations, 
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such as elementary, secondary and tertiary students (e.g. Hall, 2013; Mendick, 
Epstein, & Moreau, 2007; Morge, 2006; Towers, Takeuchi, Hall, & Martin, 2015). 
Only in a few known studies have researchers investigated this topic with the gen-
eral public, defined as “ordinary people, especially all the people who are not mem-
bers of a particular organization or who do not have any special type of knowledge” 
(The general public, 2016). For example, researchers in the United Kingdom (Lim, 
1999; Lim & Ernest, 1999, 2000) explored the general public’s images of and opin-
ions about mathematics, in a project involving approximately 550 participants ages 
17 and above. Overall, the most negative views of mathematics were found in the 
youngest group of participants (17–20 years of age) and in university students who 
were not mathematics majors. Encouragingly, the majority of participants disagreed 
with the stereotype that mathematics is a male domain. However, the majority of the 
participants also agreed that mathematics is a difficult subject, only for a select few. 
Lim and Ernest concluded that the adults’ views were primarily influenced by their 
school mathematics experiences. More recent research (Lucas & Fugitt, 2009), con-
ducted with more than 1,300 participants in the rural Midwestern United States, 
explored the general public’s views of mathematics education. The study’s partici-
pants tended to hold traditional views, criticizing today’s practices as lacking 
emphasis on “the basics” and being too focused on technology. Overall, mathemat-
ics was seen by the participants as being very important to success in postsecondary 
education, future careers and everyday life.

Due to concerns about a lack of research in this domain, Leder and Forgasz initi-
ated research in Australia that investigated the general public’s views of mathemat-
ics, with a particular focus on gender and mathematics (reported in such publications 
as Forgasz & Leder, 2011; Forgasz, Leder, & Gómez-Chacón, 2012; Forgasz, Leder, 
& Tan, 2014; and Leder & Forgasz, 2010, 2011). Using a brief survey, initially con-
ducted on the street and later via Facebook, Leder and Forgasz gathered data from 
both Australian and international participants. In order to expand the research inter-
nationally, a team of researchers was assembled to collect street-level data in a vari-
ety of countries. Specifically, street-level data were collected in Australia, Canada, 
South Korea, Spain and the United Kingdom.1 The total number of street-level par-
ticipants in each country is shown in Table 10.1.

1 These are the countries in which volunteers agreed to collect data.

Table 10.1  Number of 
street-level participants in 
each participating country

Country Number of participants

Australia 799
Canada 204
South Korea 318
Spain 636
United 
Kingdom

  61
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In this chapter, I discuss findings from my analysis of the street-level data 
collected in Canada as part of this large international research project.

�Context

The data collection for the Canadian sample took place in the province of Ontario, 
which is located in Central Canada and contains nearly 40% of the country’s population 
(Statistics Canada, 2015a). In Canada, education falls under the purview of individual 
provinces and territories (i.e. no national curriculum exists). Ontario’s mathematics cur-
riculum (Ontario Ministry of Education, 2005a, 2005b, 2007) addresses a wide variety 
of mathematical topics in each grade level, and emphasis is placed on diversity in both 
teaching practices and assessment types. The use of mathematical tools is encouraged, 
both in class and on large-scale provincial assessments of mathematics. Fundamentally, 
the Ontario mathematics curriculum is based on the belief that “all students can learn 
mathematics and deserve the opportunity to do so” (2005a, p. 3).

Ontario students are required to participate in large-scale provincial assessments 
of mathematics in Grades 3, 6 and 9. These assessments are created and conducted 
by the Education Quality and Accountability Office (EQAO). The EQAO assess-
ments involve a variety of question types and address the provincial curriculum. My 
analysis (Hall, 2012) of five years of EQAO data showed that no statistically signifi-
cant gender differences existed at any grade level in terms of mathematics achieve-
ment. In contrast, as demonstrated by my analysis of data from the questionnaires 
that accompany the assessments, gender differences existed with regard to affective 
factors. Namely, across all grade levels and across the five years of data examined, 
a statistically significantly higher percentage of boys, compared to girls, reported 
liking mathematics and being good at it.

In Ontario, students are required to take three mathematics courses during high 
school, between Grade 9 and Grade 12 (Ontario Ministry of Education, 2016). At 
the Grade 12 level, when most students have completed their required mathematics 
courses, boys have a higher proportion of mathematics courses in their timetables 
than girls do (Hall, 2012). Additionally, boys are the majority of students in five of 
the six Grade 12 mathematics courses offered (Hall, 2012). These gender differ-
ences persist at the university level, where women are the minority in mathematical 
fields from the bachelor’s to doctoral degree level. Notably, the proportion of women 
in mathematical fields of study at the bachelor’s and master’s degree levels has been 
declining since the early 1990s (Statistics Canada, 2010a, 2010b, 2015b, 2015c).

�Theoretical Framework

This study was guided by a social constructivist and feminist epistemological 
stance, in which gender is viewed as being socially constructed, as well as histori-
cally and culturally situated. As suggested by Simon (1995), “we construct our 
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knowledge of our world from our perceptions and experiences, which are 
themselves mediated through our previous knowledge. Learning is the process by 
which human beings adapt to their experiential world” (p.  115). This learning 
process applies to learning mathematics itself, learning ideas about mathematics 
(e.g. stereotypes about mathematics and mathematicians) and learning about gen-
der. My views are consistent with Howard and Hollander’s (1997) definition of 
gender as “the culturally determined behaviors and personality characteristics that 
are associated with, but not determined by, biological sex” (p.  11, as cited in 
Glasser & Smith, 2008, p. 346). In this definition, the roles that the broader soci-
ety and culture play in policing behaviours presumed to be “gender-appropriate” 
are highlighted, which is particularly relevant in mathematics, a field historically 
viewed as a male domain.

In alignment with scholars such as Butler (1990, 1999) and Fausto-Sterling 
(2000), I view both gender and sex as performative social constructions that fall on 
a spectrum, rather than into binary categories. That said, I support the lead research-
ers’ decision to offer “boys” and “girls” as responses and “men” and “women” as 
coding categories – both in terms of a pragmatic decision and in terms of reflecting 
current society, in which binaried representations and categorizations are the norm. 
Gender tends to be a particularly salient aspect of schooling (e.g. grouping students 
by gender, girls’ and boys’ teams). While there have been some recent shifts in 
societal perceptions of gender, our world is still very much gender binaried in most 
settings. Thus, by having binary categories in the gender-related questions on the 
survey and analysing the data by binary groups (i.e. men and women), I am reflect-
ing the current cultural milieu in which the participants live. I recognize, however, 
that in so doing, I may be excluding and/or misrepresenting those individuals whose 
gender identities do not align with binary categories.

�Methodology

As this research is part of a larger, international project instigated by Helen Forgasz 
and Gilah Leder of Australia, the data collection instrument and methods of data 
collection followed the guidance of the principal investigators. In the subsequent 
sections, I begin by describing the data collection instrument and process of data 
collection. Then, I provide demographic information about the study’s participants. 
I conclude by discussing the methods by which the data were analysed.

�Data Collection Instrument

Data were collected using a survey, designed by Forgasz and Leder, comprised of 
14 questions. Of the 14 questions, two addressed the participant’s school mathe-
matics experiences (i.e. liking mathematics and perceiving themselves as good at 
mathematics), three addressed mathematics education generally and the remaining 
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nine questions focused on gender and mathematics (or related fields). The three 
“general” mathematics education questions addressed (1) whether participants 
thought the teaching of mathematics had changed since they were in school, (2) 
whether participants thought students should study mathematics when it was no 
longer compulsory and (3) whether participants thought studying mathematics was 
important for getting a job.

The nine gender-focused questions addressed the participants’ views of who was 
better in mathematics, girls or boys – both their own stance and their perceptions of 
teachers’ and parents’ views. Participants were also asked to reflect on whether 
there had been a change over time in terms of who was better at mathematics, girls 
or boys, and whether it was more important for girls or boys to study mathematics. 
The other gender-focused questions addressed the participants’ views of boys’ and 
girls’ suitability for jobs in mathematics-related fields (science and the computer 
industry) and abilities with mathematical tools (computers and calculators). All of 
the gender-focused questions were worded with “girls or boys” at the end of the 
question (e.g. “Who do teachers believe are better at mathematics, girls or boys?”). 
Note that this ordering disrupts the commonly used ordering of “boys and/or girls”, 
which unconsciously privileges boys. In the reporting of findings from this study, I 
consciously use varied orders when discussing gendered groups, as, like Thorne 
(1993) in her landmark book, Gender Play: Girls and Boys in School, I want “both 
genders to be fully in view” (p. 8).

In addition to the 14 topical survey questions, demographic information about 
the participant’s gender, age (under 20, 20 to 39, 40 to 59 and 60 and older) and 
home language (English or another language) was collected. Participants had to be 
at least 18 years of age (i.e. adults under Canadian law) to take part in the study. In 
addition to responding to the provided questions, participants were offered the 
chance at the end of the survey to provide further comments.

�Data Collection

Data were collected in the Canadian province of Ontario between December of 
2012 and August of 2013. Four locations were selected based on their varied demo-
graphic make-up, herein referred to by the pseudonyms of Rochester, Thomasville, 
Upton and Smithburg. To increase the ease of following the findings, I have created 
pseudonyms that begin with the same letter as each location’s demographic classifi-
cation (e.g. Rochester  =  rural). Information about each location is shown in 
Table 10.2.

Table 10.2  Demographic information about the data collection sites

Rochester Thomasville Smithburg Upton

Classification Rural Town Suburban Urban
Part of Ontario Southwestern Central Eastern Eastern
Population 3,000 25,000 110,000 900,000
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Data collection took place in grocery stores in Rochester and Smithburg, in a com-
munity centre in Thomasville and on a downtown street in Upton. In each location, 
permission to conduct the research was obtained from the appropriate individuals (e.g. 
store managers), in addition to the Research Ethics Board permission granted by the 
Australian and Canadian universities associated with the research. In Thomasville, the 
initial data collection site, I collected the data by myself, which resulted in an ineffi-
cient process (seven hours to complete approximately 50 surveys). That is, while I was 
speaking to a participant, many other potential participants went by. Thus, for the 
other three sites, I was assisted by a friend or family member in order to make the data 
collection process more efficient; in each instance, the requisite number of surveys 
[~50, the minimum number deemed acceptable for chi-square analyses, as per Muijs’ 
(2004) recommendations] was collected in two hours. We are all young women, so it 
could be construed that having a woman asking questions about gender and mathe-
matics (a field that has historically been dominated by men) may bias the participants’ 
responses. However, Schaeffer, Dykema and Maynard’s (2010) findings from their 
review of several studies indicated that gender-related effects of the interviewer on the 
participants’ responses are typically minimal or nonexistent. Indeed, when collecting 
data, we did not feel as though the participants “held back” or otherwise altered their 
responses because they were being interviewed by a woman about gender and math-
ematics (e.g. explicitly sexist comments, in boys’/men’s favour, were provided).

In each location, data collection occurred on the weekend or on a public holiday, 
in an attempt to maximize the number and diversity of passersby. Passersby who 
appeared to be in a hurry, who had small children with them and/or who were wear-
ing headphones were not approached, after initial rejections from these populations 
and/or difficulty when conducting the survey (in the case of participants with small 
children). In each instance, the interviewer would approach a passerby, introduce 
herself and ask if the person would be willing to take part in a brief survey. Participants 
were then asked if they agreed to be audiotaped; if not, answers were recorded on a 
hard copy of the survey. In nearly all cases, participants agreed to be audiotaped, 
particularly upon learning that the purpose of audiotaping was to assist in the quality 
of data collected and subsequently analysed. Participants were also assured by the 
fact that I would be the only person to access the audio tapes. Prior to being asked the 
gender-related questions, participants were informed that, although the questions 
were worded in a binary manner (i.e. girls or boys), they were welcome to answer as 
they wished (e.g. “They are equal”). If participants inquired further about the research 
project, a handout was provided with more information, including a description of 
the larger project and contact information for the lead researchers, Forgasz and Leder. 
The majority of participants did not receive a handout.

�Participants

In total, 204 people participated in this research project: 52 from Rochester, 53 from 
Thomasville, 50 from Smithburg and 49 from Upton. In most cases, participants 
took part in the interviews individually. The exceptions occurred in cases such as a 
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couple or parents with an adult child agreeing to participate. In total, 17 pairs and 
two trios completed the interviews, resulting in 40 of the 203 participants (19.6%) 
completing the survey in a nonindividual situation. In these cases, I attempted to 
alter the order in which the participants responded, to get a better sense of each 
participant’s individual views, particularly if I noticed a trend of the second respon-
dent simply agreeing with the first respondent’s answers, rather than voicing a 
unique opinion and/or explanation.

In each location, more women than men took part, although the participants were 
more gender-balanced in Upton and Smithburg (55.1% and 52.0% women, respec-
tively) than in Rochester and Thomasville (67.3% and 62.3% women, respectively). 
Overall, 59.3% of the participants were women.

Interesting variations in age distribution occurred across the data collection sites, 
as depicted in Table 10.3 (Percentages apply to each row).

Understandably, few participants in the “under 20” (i.e. 18–19 years of age) age 
group were involved in the study. Besides the small age range, we may have missed 
approaching potential participants due to our perceptions of their age: If we thought 
that a passerby appeared younger than 18 years of age, we would not approach her/
him. The high proportion of participants aged 20–39  in Thomasville may be 
explained by the number of families with children who use the community centre 
(the data collection site), while the high proportion of participants aged 20–39 in 
Upton may be explained by the proximity of the street (the data collection site) to 
postsecondary institutions and neighbourhoods where many young adults live.

With regard to linguistic diversity, great variations occurred across the locations, 
reflecting their demographic characteristics. In Rochester, a rural town of 3,000 peo-
ple with very little ethnic diversity, only 4 of the 52 participants (7.7%) reported 
speaking a language other than English at home. In contrast, in Thomasville, a larger 
and rapidly expanding town (current population of 24,000 people; the population has 
doubled in the past five years) located within commuting distance of a large, diverse 
city, 11 of the 53 participants (20.8%) reported speaking a non-English language at 
home. Notably, in these two locations, both of which are located in Central/
Southwestern Ontario, a wide variety of languages (e.g. German, Tagalog) was 
reported. In contrast, most of the participants in Upton and Smithburg who reported 
speaking a non-English language at home spoke French. In Upton, 14 of the 49 par-
ticipants (28.6%) reported speaking a language other than English at home, compared 
to 33 of the 50 participants (66.0%) in Smithburg. These findings are not surprising, 
given that both centres are located in Eastern Ontario (Smithburg is east of Upton), 
and the primarily French-speaking province of Quebec is located east of Ontario.

Table 10.3  Participants in each location, by age group

Age group
Under 20 20–39 40–59 60 and older

Rochester 7.7% 28.8% 25.0% 38.5%
Thomasville 0.0% 49.1% 20.8% 30.2%
Smithburg 0.0% 26.0% 40.0% 34.0%
Upton 0.0% 67.3% 18.4% 14.3%
All participants 1.5% 43.1% 26.0% 29.4%
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�Data Analysis

Using the audio or written recordings, the participants’ responses to the questions 
were coded using categories (e.g. “boys”, “girls”, “same”, “don’t know” and 
“depends” for the gender-focused questions) provided by the lead researchers, in 
order to allow for international comparisons. These data were analysed using 
descriptive statistics (e.g. counts, percentages). Due to the low number of “don’t 
know” and “depends” responses, these categories were combined into a single 
“unsure/ambivalent” category.

Chi-square tests for independence were performed in order to determine if there 
were statistically significant differences (at the α = 0.05 level) in the ways that par-
ticipants’ responses were distributed by gender and age group across the response 
categories. Since there were only three participants in the “under 20” age category, 
this category was combined with the “20–39” age category, thus resulting in an 
“18–39” age category. This combined category was used in the chi-square analyses 
by age group. Hence, the age group categories used in the analysis were “18–39”, 
“40–59” and “60 or older”.

If participants provided further explanation for their responses, these comments 
were transcribed and analysed using emergent coding. That is, the responses for 
each question were examined through multiple readings to obtain a sense of the 
data, and then categories were created and used to code the responses.

�Findings

For the purposes of this chapter, I focus on the two questions about the participants’ 
school experiences, in order to provide a clearer profile of those who took part in the 
research, and the five questions that specifically related to gender and mathematics 
(as opposed to mathematics education in general, electronic tools or related careers, 
such as being a scientist). Findings are presented for each selected question in the 
following sections.

�Q2: When you were at school, did you like learning 
mathematics?

Just over half of the participants (54.4%) reported that they enjoyed learning 
mathematics while they were in school, compared to 33.3% who reported dislik-
ing mathematics. Only 12.3% of the respondents reported feeling ambivalent 
toward mathematics. Unsurprisingly, the explanations provided for positive or 
negative feelings toward mathematics often related to how strong or weak the 
participants felt that they were in mathematics. Other reasons provided for liking 
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mathematics included finding the subject interesting and “real world” applicable, 
as well as appreciating the logic, order and “black and white” nature (i.e. only one 
right answer) of mathematics. One participant (P41, Upton, man, 18–39) outlined 
his fascination with finding mathematics in the real world thusly: “I found them 
[mathematical concepts] amazing and loved that they weren’t just made up but 
also noticeable in nature”. Participants who disliked mathematics described it as 
being boring, reported having poor teachers and labelled themselves as “language 
people”. One participant (P38, Rochester, woman, 18–39) expressed her distaste 
by simply exclaiming, “Math is dumb!” Those who reported being ambivalent 
toward mathematics often provided an explanation that related to different feel-
ings for different types of mathematics. For example, one participant (P10, 
Thomasville, woman, 60 or older) stated, “I enjoyed geometry and stuff, but I 
didn’t enjoy algebra”.

Chi-square analyses of the responses to this question revealed statistically sig-
nificant differences in the response distributions by gender (χ2 = 11.708, p = 0.003) 
but not by age group (χ2  =  2.117, p  =  0.714). In Table  10.4, the spread of the 
responses by the gender of the participants is shown.

As shown in Table 10.4, the men who participated in the study reported holding 
far more positive views of mathematics than did the women who participated in the 
study. More than two-thirds of men reported liking mathematics as students, com-
pared to less than half of the women. While similar percentages of women and men 
reported feeling ambivalent, nearly twice as many women as men reported disliking 
mathematics as students. Such findings are not surprising, given the wealth of litera-
ture (e.g. Hall, 2012; Lupart, Cannon, & Telfer, 2004) reporting gender differences 
in boys’/men’s favour with regard to feelings toward mathematics.

�Q3: Were you good at mathematics?

As discussed, reports of liking mathematics were often linked to reports of being 
good at mathematics. Consequently, it follows that a similar proportion of partici-
pants (52.9%) reported being good at mathematics. However, participants who 
felt they were average or not good at mathematics were more evenly distributed 
(20.1% and 27.0%, respectively) than the “dislike” or “ambivalent” responses to 
the prior question. Explanations for being good at mathematics primarily related 
to school grades, although a few participants provided other evidence, such as 
working in a mathematics-focused field, being in gifted classes and understanding 
mathematics quickly.

Table 10.4  Response distribution by gender for Q2

Group Like Dislike Ambivalent

Men 68.7% 21.7% 9.6%
Women 44.6% 41.3% 14.0%
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Chi-square analyses of the responses to this question again revealed statistically 
significant differences in the response distributions by gender (χ2  =  18.063, 
p < 0.001) but not by age group (χ2 = 4.837, p = 0.304). Given the links between 
liking mathematics and perceiving oneself to be good at mathematics, this finding is 
not surprising. In Table 10.5, the spread of the responses by the gender of the par-
ticipants is shown.

As shown in Table 10.5, the vast majority (nearly 70%) of the men in the study 
felt that they had been strong mathematics students. The remaining men were dis-
tributed fairly evenly between “weak” and “average”, with the fewest number of 
respondents reporting that they were weak students. This distribution was in stark 
contrast to the responses from women: Nearly as many women reported being weak 
students as being strong students (approximately two-fifths in both cases). While 
these claims were often substantiated by reports of poor mathematics marks or 
placement in “low” streams (e.g. “basic”, “workplace”) of mathematics classes, it is 
possible that the men in the study may have over-reported their abilities in the sub-
ject area. Reports of boys’ and men’s overconfidence in mathematics are plentiful in 
the extant literature (e.g. Bench, Lench, Liew, Miner, & Flores, 2015; Dahlbom, 
Jakobsson, Jakobsson, & Kotsadam, 2011; Sadker & Sadker, 1994).

�Q6: Who are better at mathematics, girls or boys?

Encouragingly, the most common response (37.3%) was that there were no gender 
differences in mathematics ability. However, this response was only slightly more 
common than believing that boys are better at mathematics (31.9%). Although a 
substantial proportion of participants reported that girls are better at mathematics 
(20.6%), these responses were only two-thirds the number of those who selected 
boys. In total, over half of the participants held some sort of gendered stance for this 
question. Few participants (10.3%) reported holding an unsure or ambivalent stance 
on this topic.

Participants who claimed that there were no gender differences tended to provide 
an explanation relating to the notion of everyone being equally capable at mathe-
matics. For instance, one participant argued, “Men and women are equal and have 
the same brain power” (P51, Thomasville, woman, 18–39). Explanations for girls’ 
mathematical superiority often related to girls being stronger students overall, 
whereas explanations for boys’ mathematical superiority tended to relate to innate 
ability (“mathematical nature”). An example of a comment about the latter is: “I 
think men have more of a capacity to take that in – math – They’re probably better 

Table 10.5  Response distribution by gender for Q3

Group Strong Weak Average

Men 69.9% 13.3% 16.9%
Women 41.3% 36.4% 22.3%
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than females” (P2, Smithburg, man, 60 or older). Related, the stereotypical notion 
of girls being better at language arts and boys being better at mathematics was 
discussed.

Chi-square analyses of the responses to this question revealed no statistically 
significant differences in the response distributions by gender (χ2 = 3.037, p = 0.386) 
or age group (χ2 = 11.402, p = 0.077). Thus, regardless of gender or age group, sub-
stantial proportions (approximately 20–40%) of the respondents reported (a) a 
gender-neutral view, (b) a view of girls as superior or (c) a view of boys as superior, 
compared to very few participants with an unsure or ambivalent viewpoint.

�Q7: Do you think this has changed over time?

Participants’ views were quite mixed (40.2% agreed and 44.6% disagreed), which 
may perhaps be indicative of different interpretations of the question. Less than one-
sixth (15.2%) of the participants reported being unsure or ambivalent about this 
question. Of the participants who either agreed or disagreed, some participants’ 
explanations appeared to indicate that they thought the question referred to ability, 
whereas others’ explanations indicated understanding the question as referring to 
achievement. In the former cases, participants would explain that girls and boys 
have always been equally capable of doing mathematics but that societal factors 
may have held girls back (e.g. sexist teachers, stereotypes). For example, one par-
ticipant posited that:

It’s not a problem about whether or not boys are better at math than girls; it’s a problem of 
whether or not boys are encouraged to be better at math than girls. So, I hesitate to say that, 
yeah, it has changed. I think what has changed is the perception. Definitely, it’s okay now 
for girls to be good at math and sciences, whereas perhaps 30 years ago, back when I was 
in high school, it wasn’t necessarily perceived that way. If you were a girl and good in math 
or sciences, you were some kind of grind2 and you weren’t going to get yourself a husband. 
[Laughter] (P16, Upton, man, 40-59, emphasis in original)

In the case of achievement differences, participants stated that boys used to do better 
at mathematics but that girls now do equally as well (or, in some cases, better), since 
they have more opportunities. Participants’ discussions often related to the greater 
proportion of women enrolled in higher education now, compared to in the past: 
“Girls are encouraged to take math more than they used to just because of the job 
situation and they’re allowed to go on to university, so they get to take math more” 
(P37, Smithburg, woman, 40–59).

Chi-square analyses of the responses to this question revealed no statistically 
significant differences in the response distributions by gender (χ2 = 1.384, p = 0.709) 
or age group (χ2 = 9.962 p = 0.126). Thus, the responses for these subgroups were 
distributed similarly across the response categories, with large proportions of 

2 According to Urban Dictionary (www.urbandictionary.com), the term “grind” is slang typically 
used to refer to a group of lesbians.
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respondents (approximately 40% in each case) selecting “agree” or “disagree”. As 
discussed, these mixed views are arguably more related to different interpretations 
of the question (ability vs. achievement) than differences in views.

�Q8: Who do parents believe are better at mathematics,  
girls or boys?

While the participants’ views of parents’ beliefs about gender and mathematics were 
quite mixed, the most common response was to purport that parents believe that boys 
are better than girls at mathematics (30.9%). These participants argued that parents 
held these views because they believed the stereotypes about gender and mathematics. 
Nearly as many participants (27.9%) argued that parents held gender-neutral views of 
their children and mathematics. As with the previous question, the least common gen-
dered view was that parents believed that girls were better at mathematics (21.1%). 
Again similar to the previous question, one-fifth (20.1%) of the participants reported 
being unsure or ambivalent about this question. These participants often explained 
that they either did not have children or that their children were adults.

Such personal “evidence” was often provided, like the following elaboration on 
an “unsure” response: “My family is all girls, so there was no comparison group” 
(P44, Upton, woman, 18–39). This comment implies that if there had been boys in 
the participant’s family, she would have been able to answer the question about 
parents’ views in general. This type of extrapolation, from a specific personal exam-
ple (e.g. family, experience in school) to the entire population, was commonly seen 
for the explanations for the answers to many of the questions in this study, indicat-
ing flawed logic (i.e. anecdotal evidence presented as scientific evidence) on the part 
of many participants. Across all the questions in the survey, very few participants 
referred to having read/heard about the topic from a broader, more scientific source, 
such as a news broadcast or article. Paulos (1988) argues that such reasoning is 
indicative of innumeracy, as “innumerate people characteristically have a strong 
tendency to personalize – to be misled by their own experiences” (p. 6).

Chi-square analyses of the responses to this question revealed statistically sig-
nificant differences in the response distributions by gender (χ2 = 11.778, p = 0.008) 
but not by age group (χ2  =  1.330, p  =  0.970). In Table  10.6, the spread of the 
responses by the gender of the participants is shown.

As evidenced by the data in Table 10.6, approximately the same proportion of 
men felt that parents held gendered views in favour of girls or in favour of boys. 
This is a very different distribution from the responses from women, where nearly 

Table 10.6  Response distribution by gender for Q8

Group Girls Boys Same Unsure or ambivalent

Men 30.1% 34.9% 18.1% 16.9%
Women 14.9% 28.1% 34.7% 22.3%
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twice as many felt that parents held gendered views in boys’ favour compared to 
girls’ favour. Notably, for both women and men, more people selected a gendered 
view in boys’ favour rather than girls’ favour. Another interesting comparison 
occurs for the “same” responses: More than one-third of women participants thought 
that parents held gender-neutral views, whereas less than one-fifth of men partici-
pants reported this stance.

�Q9: Who do teachers believe are better at mathematics,  
girls or boys?

In contrast to perceptions of parents, the most common perception of teachers was 
that they held gender-neutral views of their students and mathematics (33.8%). 
Participants explained that teachers would have more knowledge about this topic than 
the “average person”, plus they would have exposure to many children doing mathe-
matics, so would form a less biased view than parents (who, the participants argued, 
may base their opinions solely on their own children – which, as mentioned, was 
indeed the case for some of the participants in the study). As one participant (P46, 
Smithburg, man, 40–59) suggested, “Teachers don’t pick a side… They’re neutral… 
They’re always looking to help somebody who’s struggling”. Perceptions of teachers 
holding gendered views were fairly equally distributed: 18.6% of participants reported 
boys, compared to 20.1% reporting girls. Explanations provided were similar to those 
discussed with regard to being better at mathematics in general, such as arguments 
about boys’ “natural” abilities with mathematics and girls’ preferences for language 
arts. A large proportion of the participants (27.5%) reported being unsure about teach-
ers’ feelings. These participants typically explained that they had no contact with 
teachers at the present time, either because they did not have school-aged children or 
because they did not know any teachers personally. Such responses are again indica-
tive of participants extrapolating their personal experiences to make a general claim.

Chi-square analyses of the responses to this question revealed no statistically 
significant differences in the response distributions by gender (χ2 = 1.427, p = 0.699) 
or age group (χ2 = 7.352, p = 0.290). Hence, the most common perception, regard-
less of gender or age group, was to believe that teachers hold gender-neutral views 
of children’s mathematics abilities. However, substantial proportions argued that 
teachers held gendered views, with responses fairly evenly distributed between 
“girls” and “boys” responses (approximately 20% for each category).

�Q11: Is it more important for girls or boys to study mathematics?

Of all the questions regarding gender and mathematics, this question had the most 
consistency in the participants’ responses: 94.6% of the participants argued that it 
was equally important for boys and girls to study mathematics, an encouraging 
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finding. In fact, many participants were incredulous that the survey would even 
include such a question. Only 2.5% of participants reported a gendered stance (0.5% 
for girls; 2.0% for boys). Additionally, only 3.0% reported being unsure or ambiva-
lent toward this question. The overwhelmingly most common explanation provided 
was that everyone needs to know mathematics – for school, everyday life and future 
occupations. Some participants also discussed how mathematics was helpful to 
thinking in a more general sense: “Studying and learning math helps develop think-
ing and reasoning processes that contribute to the overall ability to make decisions” 
(P52, Townsville, woman, 20–39).

Chi-square analyses of the responses to this question revealed no statistically 
significant differences in the response distributions by gender (χ2  =  2.311, 
p = 0.510) or age group (χ2 = 5.741, p = 0.453). Thus, the vast majority of respon-
dents argued that it was equally important for girls and boys to study mathematics, 
a heartening finding.

�Conclusions

The findings from my analysis of data from over 200 participants from the Canadian 
province of Ontario suggest that gendered views of mathematics (and of others’ 
views of mathematics) tend to be the norm. Although “no difference” was typically 
the modal category for the questions examined, the combination of “girls” and 
“boys” categories (i.e. the gendered responses) was almost always a higher propor-
tion. The only question for which the majority of participants reported holding a 
gender-neutral view (rather than a gendered view) addressed the importance of 
studying mathematics, for girls and boys. For the questions regarding superiority in 
mathematics, more participants held a gendered view (i.e. selecting either boys or 
girls as their response) than a gender-neutral view. In most cases involving gendered 
views, more participants selected boys than girls, indicating a more favourable view 
of boys and mathematics. This finding suggests that gender stereotypes regarding 
mathematics persist, even in a very gender-equitable society like Ontario, wherein 
equity is inscribed in the mathematics curriculum.

Similar outcomes occurred in a study in the United Kingdom, where Lim and 
Ernest (1999) found that 20% of their participants subscribed to the stereotype 
that mathematics is a male domain. Additionally, in the responses to this question-
naire by Canadian Facebook participants (35 participants, of whom 62.9% were 
women, which is a similar gender distribution to my sample) in this international 
gender and mathematics study (Forgasz et al., 2014), response patterns emerged 
that were similar to those found with my street-level sample. The modal response 
for the Facebook participants was to report a gender-neutral view of girls’ and 
boys’ mathematics abilities, but of the gendered responses, more participants 
selected “boys”. For the questions about parents and teachers, the Facebook 
responses had the same modal categories (“boys” and “same”, respectively) as the 
street-level sample, although the Facebook sample had a far lower proportion of 
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the participants who reported holding gender-neutral perceptions of parents’ 
views (12.5%, compared to 27.9% in the street-level sample) and who selected 
“girls” as the response for their perception of teachers’ views (8.3%, compared to 
20.1% in the street-level sample). Encouragingly, the vast majority of participants 
in both the Facebook (91.7%) and street-level (94.6%) Canadian samples pur-
ported that it was equally important for boys and girls to study mathematics.

When considering the findings by the gender of the participants, statistically 
significant differences in response distribution only occurred for one of the 
gender-focused questions, regarding the participants’ perceptions of parents’ 
views. In this instance, women participants tended to hold gender-neutral percep-
tions of parents’ views, while men participants tended to think that parents held 
gendered views (approximately balanced between “boys” and “girls” responses). 
However, when considering gendered views, twice as many women claimed that 
parents favoured boys compared to those who thought that parents favoured girls 
when considering mathematics ability. While it is encouraging that, for the other 
gender-related questions (general views of ability, views of changes over time, 
perceptions of teachers’ views and the importance of studying mathematics), men 
and women responded in similar ways, the general response patterns were still 
troubling, as discussed above. Slightly different patterns were found with Lim and 
Ernest’s (1999) participants, where the men tended to believe that men are better 
at mathematics while women tended to hold a gender-neutral view of women’s 
and men’s abilities. However, it is important to note that these participants were 
discussing views of adults, while my participants were discussing views of chil-
dren, which may have altered the response patterns.

Notably, there were no statistically significant differences in response distribu-
tion by age group for any of the gender-related questions examined. This was a 
somewhat surprising finding, given my assumption (and hope) that subsequent 
generations would become progressively more gender-neutral in their views. 
However, this assumption/hope is not necessarily supported by research: General 
research about gendered views provides conflicting results, with some studies sup-
porting my assumption, while others challenge it (Leder & Forgasz, 2011). Varied 
patterns of age-related views have also been found in studies about gender and 
mathematics. For instance, in Lim and Ernest’s (1999) research, the youngest (17–
20 years old) and oldest (50 and older) participants tended to hold less gender-
egalitarian views than those in the middle age groups. In an early report (Leder & 
Forgasz, 2010) on the Australian portion of the large international research project 
of which my research was a part (i.e. the street-level data), none of the seven ques-
tions examined (two questions about the participant’s experiences with school 
mathematics and five questions about gender and mathematics) had any statisti-
cally significant differences in response distribution by age group. However, with 
a larger Australian sample (689, compared to 203 in the early report), including 
respondents from Facebook, age-related differences in response patterns were 
found to be present for several questions. Leder and Forgasz (2011) compared 
“younger” (under 40) and “older” (40 and over) participants’ responses, which is a 
different strategy than I employed when making age-based comparisons. 
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Nonetheless, of the same questions examined, age-related differences were found 
with regard to the response distributions for the general question about gendered 
abilities, the question regarding perceptions of teachers’ views and the question 
regarding perceptions of parents’ views but not for the question regarding the 
importance of studying mathematics. Leder and Forgasz (2011) found that, while 
the younger participants believed that “parents and teachers were more likely to be 
more egalitarian, they themselves hold more strongly than those in the older group 
to the traditional gender-stereotyped view that boys are more suited to and more 
successful in mathematics than girls” (p. 453), a troubling finding.

The findings from this Canadian research project, while somewhat encouraging, 
should also raise concerns for those involved in mathematics education. Since the 
majority of the adults surveyed tended to hold gendered views (with more of these 
gendered views favourable toward boys than girls), these messages are ostensibly 
being disseminated to young people, particularly by their parents. Additionally, 
even in a volunteer-based study like this, which arguably leads to positively skewed 
results, one-third of the respondents  – particularly women  – reported disliking 
mathematics and not doing well in mathematics as students. It is very likely that 
such negative views and experiences may impact the mathematical interactions that 
these adults have with children in their lives. In another research project (Hall, 
2013), I found that children’s views of mathematics are indeed impacted by their 
parents’ views of the subject matter, a finding that is supported by prior research 
(e.g. Jacobs & Bleeker, 2004; Tiedemann, 2000). Thus, targeting parents’ under-
standings of gender and mathematics, by both the educational system and the media 
(in which mathematics education researchers can play a key role, in both cases), in 
both cases, should be a focus. More generally, parents, teachers and – particularly in 
today’s technology-focused world – media all play key socializing roles in chil-
dren’s lives (Arnon, Shamai, & Ilatov, 2008; Roberts & Foehr, 2004), so it is impor-
tant that mathematics educators strive to target the messages that are being 
disseminated to children about gender and mathematics so that all children are 
exposed to positive, gender-neutral messages that encourage positive relationships 
with mathematics and participation at non-mandatory levels of study.

�Looking Ahead

As elaborated earlier, I do not view gender as a binary construct. However, I adhered 
to the lead researchers’ decision to offer binaried options for response and coding 
categories, for pragmatic reasons, and to reflect a society that continues to be very 
binaried, particularly in school settings. During data collection, only one participant 
(representing less than 0.5% of the sample) challenged the “girls or boys” wording 
of the questions. This participant (P16, Upton, man, 40–59) argued that “I think it’s 
a more nuanced – Your survey seems to be binary, and I think it’s a lot more nuanced 
than that”. He suggested that the survey’s wording should be changed to better 
reflect this complexity. During the interview, I agreed with this participant that “it” 
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(meaning gender) is indeed not a binary and that it is more nuanced than the “girls 
or boys” options suggest. However, at the time, I was not sure how a survey of the 
general public on such a topic could be constructed without including binary options 
as prompts.

Since completing this project, I have spent time pondering what a non-binary 
“gender and mathematics” survey written for the general public might look like. 
Guidance is provided by GLTBQIA organizations for wording “gender” questions 
(i.e. questions about the participant’s gender identity) on surveys (e.g. Kellerman 
2016; Miller & Weingarten, 2005), but, to my knowledge, no suggestions exist – 
particularly within mathematics education – regarding writing survey questions 
about gender. After discussing this topic with a colleague, we have come up with 
ideas for a parallel survey to the one used in the research reported here. In this 
proposed survey, all of the questions will be reworded to allow participants com-
plete freedom (without any priming) in their responses regarding gender and 
mathematics. None of the questions will be worded in such a way that binary 
categories (i.e. “girls” and “boys”) will be mentioned. For instance, rather than 
asking “Who are better at mathematics, girls or boys?”, we would ask “Do you 
think that there are any gender differences in mathematics ability? Please explain”. 
Using the latter wording, participants would have the freedom to address the same 
topic in a less-guided manner. Certainly, rewording some of the questions is chal-
lenging, but we think, with some creativity, parallels can be found for all the sur-
vey’s existing questions.

We believe that conducting such a survey has great potential for shifting the man-
ner in which “gender issues” research in mathematics education is conducted, mov-
ing away from the rarely questioned binaries and other issues that are seen in most 
research of this type. Indeed, analyses of general education publications (Glasser & 
Smith, 2008) and mathematics education publications (Damarin & Erchick, 2010) 
highlight common issues: a lack of operational definitions for “sex” and “gender” 
provided by researchers and the problematic use of these (and related) terms inter-
changeably. As I have discussed elsewhere (Hall, 2014), I have become particularly 
cognizant of these issues and strive to write in a manner that aligns with my views 
about gender (e.g. avoiding “sex” language). Thus, in this reconceptualised survey, 
we will particularly focus on the language choices provided by the participants in 
the absence of any examples of “gender” language. Due to the revised wording of 
the questions, we anticipate that much richer data will be collected, as not only will 
gendered views be shared, similar to those attained in the current version of the 
survey, but we will also gain insight into the general public’s use of gendered lan-
guage when discussing mathematics. Our hope is that this proposed research project 
will instigate a shift and provide a challenge to the manner in which much “gender 
issues” research is conducted in mathematics education. While the way forward is 
uncharted territory, it is also an exciting prospect for a field with a long history.
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This chapter builds on a paper presented at the 38th Conference of the International Group for 
the Psychology of Mathematics Education (PME 38) and the 36th Conference of the North 
American Chapter of the Psychology of Mathematics Education (PME-NA 36).
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Chapter 11
Borrow, Trade, Regroup, or Unpack? 
Revealing How Instructional Metaphors 
Portray Base-Ten Number

Julie Nurnberger-Haag

Abstract  This chapter uses embodied cognition to reveal unintended consequences 
for learning due to the processes that students enact with manipulatives. Base-ten 
block manipulatives and terms educators used for whole number arithmetic and 
place value are examples of ubiquitous “hands-on” instructional and assessment 
practices. Yet, the theoretical perspectives used to research this learning have not 
considered how students’ actual physical movements represent intended ideas of 
arithmetic. The students whom educational researchers serve need us to better 
understand these practices in order to select and improve the design of such tools. 
Thus, this chapter examines how the language that educators use in combination 
with manipulatives influences students’ understanding of addition and subtraction. 
This is the focus of the chapter for at least two reasons. First, it is crucial for elemen-
tary students to build procedural fluency and conceptual understanding of the base-
ten number system. Second, these specific examples reveal the broader implications 
for any manipulative-based learning experiences for any topic across preK-16+ 
mathematics. Due to the physical motions students make during “hands-on” learn-
ing, it is critical to investigate these common practices through a lens of embodied 
mathematics learning. That is, research must attend to implications of how students 
move during instruction with “hands-on” materials as well as any metaphors educa-
tors orally express that imply motions even when students do not put their hands on 
materials.
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The intentions of a tool are what it does. A hammer intends to strike, …a lever intends to 
lift. They are what it is made for. … Sometimes in doing what you intend, you also do what 
the knife intends, without knowing.

― Philip Pullman

The words and materials that educators choose to use to teach arithmetic are 
instructional tools intended to foster learning. Research is needed to understand 
how student learning outcomes with such tools reflect educators’ intentions as well 
as how students’ experiences and learning reveal unintended consequences. As the 
quote above implies, the focus of this chapter is to show that instructional tools 
used for base-ten number concepts, while in some ways accomplish the intended 
goals, may actually cut like a knife, that is, interfere with intended learning in ways 
and for reasons that until now have been unexplored. The goal of this chapter is to 
spark recognition of issues with using such tools through the lens of embodied 
cognition.

To understand the intended and unintended results of instruction with base-ten 
materials, the chapter first considers the intended learning, that is, base-ten number 
structure and meanings of addition and subtraction. Then some common instruc-
tional tools that educators have used to accomplish these ends will be shared before 
discussing how empirical and theoretical perspectives of embodied cognition can be 
used to posit potential unintended consequences of the ways students experience 
base-ten number with such tools.

�Base-Ten Number Operations and Structure

The structure of the Hindu-Arabic or base-ten number system requires conceptual 
structures that are difficult for elementary students to develop. Using the position of 
numbers to represent different units of quantity where 0 represents none of a given 
unit was a significant societal advancement (West, Griesbach, Taylor, & Taylor, 
1982). When children first learn to write numerals, they are unaware of this posi-
tional system. They simply understand that if a person means the quantity orally 
said as “twenty-six,” they know it should be written as 26 (Fuson, 1992). This is not 
much different from knowing that if their name is Sara, they write it as S-a-r-a 
before understanding phonics. Consequently, when students begin writing larger 
numbers, they often write one hundred twenty-six, for example, as 10026 
(Labinowicz, 1985). This written symbol reflects a logical understanding that they 
composed the quantities 100 and 26, but does not reflect the positional nature of the 
established written nomenclature.

It is only those with mathematically developed perspectives who see the base-ten 
number structure in the numeral 126 or 342, for example. Although many adults in 
the United States consider addition and subtraction to be basic math, consider the 
complexity of the mathematics underlying the base-ten number system:

•	 The system uses ten digits (0 through 9).
•	 The position of the digit determines its value (3 in 342 is different than 3 in 234).
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•	 The face value of a digit is multiplied by its place value to determine its complete 
value (e.g., in 342, the face value of 3 is 3, so its complete value is 3 times its 
place value of 100, or 300 is its complete value).

•	 The system is multiplicative and additive (342 = 3 × 100 + 4 × 10 + 2).
•	 Each place value is ten times greater or less than the next.
•	 Each place value is determined by a power of base ten (e.g., 104).

This system is built upon and can only be fully understood by grasping all of these 
complexities. Yet, elementary students are expected to develop toward this full 
understanding long before they have even been introduced to multiplication or 
exponents, let alone mastered such topics. Due to the exponential structure of the 
base-ten number system, instructional practices that help students experience this 
structure are essential.

To accomplish this, many educators and researchers have investigated processes 
to help students restructure their conceptions of numbers as singular objects to see 
the units of quantities as higher-level units (Verschaffel, Greer, & Corte 2007). The 
units that can be expressed as powers of ten such as tens units, hundreds units, thou-
sands units are composite units (Steffe & Cobb, 1988). In other words, drawing on 
psychological ideas of categorization, these are higher-level units, in that they are 
superordinate units in relation to a basic level unit (Rosch, Mervis, Gray, Johnson, 
& Boyes-Braem, 1976). In this case the basic level units are the ones. Different 
researchers have used a myriad of terms and labels for levels of base-ten thinking 
(Sarama & Clements, 2009). Consequently, I explain generally here the ways stu-
dents think about numbers as they develop base-ten number understanding and 
emphasize the units students think about or see at each level that differs from the 
way adults may see these units. Students first think about quantities as values of 
single objects or ones units, although the students themselves at this point do not use 
a word like “ones,” because this is a term that only becomes necessary as part of the 
larger base-ten place value system (Labinowicz, 1985). As adults who understand 
the place value system, however, it can be helpful to characterize students’ thinking 
at this level as thinking only of the ones units. Through instruction, students begin 
to group quantities for efficiency and organization (e.g., counting 26 objects col-
lectively by two as 2-4-6, etc.) but still think of the individual singles or ones units. 
Students can also learn to group objects into sets of ten, and additional ones such as 
two groups of 10 objects and 6 additional objects are 26 objects. Adults, however, 
often overestimate this ability to group, seeing it through their adult perspective as 
2 tens units and 6 ones units. The students, however, need extensive time to develop 
that way of viewing hierarchical units to see the group itself as a unit the way adults 
may see as “a ten.” What students first see in the same scenario are simply 10 
objects, 10 objects, and 6 more objects. Even if students are able to parrot the lan-
guage of “tens” at appropriate times, this does not mean they really think in terms 
of both the ten units and 10 ones units.

Students, who conceptually understand this positional place value system, can 
think flexibly about units to solve problems. Some examples of combinations of 
units for the number 342 can be thought about as:
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	(a)	 342 ones
	(b)	 300 ones and 40 ones and 2 ones
	(c)	 3 hundreds units, 4 tens units, and 2 ones units (positional place value)
	(d)	 3 hundreds units, 3 tens unit, and 12 ones
	(e)	 34 tens and 2 ones

These ways portray just a few of the many ways these quantities can be composed 
and decomposed. Whereas both (a) and (b) use single units of thought as the item to 
be counted, (c), (d), and (e) all coordinate multiple levels of units. Formal positional 
place value is reflected in the (c) way of thinking about 342, yet example (d) shows 
how students should think of 342, if they need to subtract a number with more than 
2 in the ones place using a traditional algorithm. The ability to think of such quanti-
ties structured as the ways shown in example (e) would mean they would not need 
to algorithmically divide 342 by 10 or use a memorized rule to move the decimal.

�Base-Ten Manipulatives

To help students learn the culturally determined structure of the base-ten number 
system, many manipulative tools have been developed and are commonly used in 
schools. Some authors working within the tradition of radical constructivism sug-
gest that the students should not be required to use manipulatives (Kamii, Lewis, & 
Kirkland 2001), whereas others suggest students can use such available tools as one 
of many student-determined ways to solve problems, which they consider consis-
tent with constructivist approaches (Carpenter, Fennema, Franke, Levi, & Empson, 
1999). In contrast, others claim such tools are crucial to learning (Fuson & Briars, 
1990). These debates largely stem from and reflect differing theoretical perspectives 
of learning applied to issues of using manipulatives in general. In contrast, this 
chapter focuses on revealing the intended and unintended ways that specific manip-
ulatives influence how students and teachers represent mathematical ideas.

The multiple materials used for teaching base-ten concepts can be categorized as 
ungrouped or pre-grouped and proportional or nonproportional models (Reys, 
Lindquist, Lambdin, & Smith, 2014; Van de Walle, Karp & Bay-Williams, 2010). 
Ungrouped or groupable models are individual objects (e.g., blocks, beans, sticks, 
and straws) that could be grouped in sets of ten but are not yet grouped and nothing 
inherent in the material structures that they be grouped this way (Fraivillig, 2017; 
Reys et al., 2014). Educators commonly use these ungrouped models during calen-
dar math (Fraivillig, 2017). Even the phrasing of the standard 1.NBT.2a of the US 
Common Core State Standards for Mathematics implies proficiency with such 
ungrouped materials which are a learning goal by stating that “10 can be thought of 
as a bundle of ten ones — called a ‘ten’” (National Governors Association Center 
for Best Practices, & Council of Chief State School Officers, 2010, para. 1). Here I 
claim that this is an example of an instructional metaphor for how students will 
learn (bundling ungrouped materials) conflated with the intended mathematics 
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(understanding tens units as composed of or containing 10 ones), because the 
intended learning is not that students know the particular context of a bundle but 
place value units.

The term pre-grouped models refer to how these individual models were pre-
pared for instruction. For example, someone has already grouped some of these 
materials into sets of 10 for students to use during instruction along with the 
ungrouped items (Reys et al., 2014). Pre-grouped items could also refer to blocks 
that manufacturers molded to represent base-ten structure, such as blocks that are 
commonly referred to as “base-ten blocks” (Reys et al., 2014). Thus, these base-ten 
blocks might be more specifically referred to as prestructured, rather than simply 
grouped. Since this chapter will later show that “group” is an instructional meta-
phor, in the rest of the chapter, such materials will be referred to as prestructured.

The representations most researchers, teachers, and even national educational 
assessments (e.g., Warfield & Meier 2007) mean when referring to “base-ten blocks” 
are the specific most common type, which are Dienes blocks. The blocks were 
named after Zoltan Dienes, the mathematician who created them to help students 
represent arithmetic in multiple bases, including base ten (Web Minder, 2014). 
These blocks consist of a single cube to represent ones units, a fused stick in which 
etched lines indicate 10 single units, a fused block of ten of these ten sticks, as well 
as a cube with etchings intended to represent one-thousand units. In other words, 
these blocks by design intend to provide physical representations of multiple units 
at once. A single hundreds block (1 hundreds unit) is typically scored to show 100 
ones unit blocks, and this scoring is done in such a way to be equivalent to 10 tens 
unit blocks. Although it should be noted that only the 600 squares etched on each 
face of a thousand cube are visible, so students typically misunderstand the intent 
that this cube actually contains 1000 cubes, rather than 600 (Labinowicz, 1985).

Elon Kohlberg, another professor with a PhD in mathematics, developed a com-
mercial base-ten block manipulative called Digi-Blocks after using rocks in con-
tainers to help his nephew understand the base-ten number system (Digi-Block Inc., 
2017a). The ones unit of Digi-Blocks are the only solid blocks. Each larger place 
value is a container that is proportional to the original unit and can hold exactly ten 
of them (Digi-Block Inc., 2017b), such that all the larger place values are simply 
containers or holders until filled with the smaller place value blocks. This means 
that a collection of 10 units fits inside the ten container. Then, once students collect 
and fill 10 ten holders, they can pack them into the hundred container and then fol-
low the same pattern for the thousand container. Such blocks or ten frames that 
students can fill provide feedback signaling students when to make a new group of 
ten (Fraivillig, 2017). When completely separated, this tool might be considered 
unstructured; however, the structure of the containers requires that the only group-
ing that can occur is in nested sets of ten, so in effect, this tool might be considered 
prestructured, which they are when they are full.

All of these materials discussed thus far are considered proportional models in 
that an adult or child knowledgeable about base-ten structure might see or build 
progressively higher place value units with smaller units contained within each 
higher unit (Reys et al., 2014). Regardless of the type of proportional manipulative 

11  Borrow, Trade, Regroup, or Unpack? Revealing How Instructional…



220

used, even if students can name the block as instructed such as “one hundred,” this 
does not mean that the child understands or sees this block as representing a single 
unit of hundreds (Labinowicz, 1985). During an extended period of time, students 
simply see this hundred block as a convenient fusion of 100 individual blocks 
(Labinowicz, 1985). For as Labinowicz stated “we see what we understand” (1985, 
p.301).

The proportional Dienes block brand seems to be universally seen as equivalent 
to the generic term “base-ten block,” yet Digi-Blocks are also base-ten block manip-
ulatives. Thus, for clarity in this chapter, the term multiunit blocks (MUBs) will refer 
to the class of proportional blocks that include Dienes blocks, Digi-Blocks, and any 
other similar materials that prestructure single units and higher-order composite 
units.

Examples of nonproportional models are colored counters (i.e., each color repre-
sents a different unit value), coins, or abacuses (Reys et al., 2014). Mathematically 
proficient students and adults need to work with nonproportional models that require 
trading values, because they need to understand, for example, that a single hundred-
dollar bill could be traded for ten 10 dollar bills. Such nonproportional models of 
quantities, however, cannot model the idea of groupings of groupings, composite 
units, or containment. It is widely accepted that such nonproportional models, which 
are not a focus of this chapter, are more abstract and should only come after students 
gain a conception of quantity through proportional models (Reys et al., 2014).

�“Hands-On” Learning with MUBs

To set the stage for the investigation of “hands-on” learning experiences with the 
most common MUB, consider what you see when looking at Fig. 11.1 and how this 
is influenced by what you understand about mathematics that a novice does not. 
Figure 11.1a shows a Dienes block representation of 1040 on a workspace for a 
problem (purposefully withheld from the reader at the moment). In Fig. 11.1b, pay 
attention to the student’s movement and what it models or represents about arithme-
tic. What is the students’ hand doing? Do you agree that the hand removes, takes 
out, or takes away one-thousand cube? What does this physical movement represent 
arithmetically?

Physical manipulatives are a common way to support students to learn 
intended or targeted ideas. Such materials have been acknowledged as metaphors, 
microworlds, or models of abstract mathematical ideas (Nesher, 1989; Pimm, 1981). 
Moreover, student use of such manipulative materials has been referred to for 
decades as “hands-on” learning. Paradoxically, research and practice have not 
attended to what students’ hands mathematically represent during “hands-on” 
learning such as the questions I raised in relation to Fig. 11.1. Thus far, research 
about what happens during learning experiences with such materials has focused on 
the visual arrangements of the blocks after students move blocks. In other words, 
these student movements have been treated as a necessary step to get the physical 
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arrangements to visually represent numerical quantities. However, this is a static 
perspective of students’ entire experience. This implies students’ experiences con-
sist of a compilation of still-frame photos. Research must use a video approach 
(both literally and metaphorically) to view students’ experiences in order to under-
stand the actual process and potential causes of learning outcomes. To reveal what 
has gone unnoticed about the processes, I will focus on what happens between each 
resulting photo. That is, within a dynamic process of solving a problem with MUBs, 
I ignore the commonly portrayed resulting photos readers might expect to see in 
order to attend to students’ physical motions that moved the blocks and what those 
motions (and seeing the blocks move) arithmetically represent. To provide justifica-
tion as to why prior still-frame perspectives have limited the field’s understanding 
of the learning process and why new perspectives are needed, research on how 
physical motions influence cognition and evoke metaphorical concepts will be dis-
cussed before examining cases of how students move particular types of MUBs.

�Embodied Cognitive Perspectives

Embodied cognition encompasses a variety of research foci such as investigations 
of how existing ideas are grounded in prior physical experiences with the world, 
how real-time interactions with the world influence cognition, and how verbally 
expressed metaphors reveal embodied bases of cognition (Glenberg, 2010). 

Fig. 11.1  Quantity 1040 modeled with Dienes blocks (a) before student’s hand moves the one-
thousand cube in (b)

11  Borrow, Trade, Regroup, or Unpack? Revealing How Instructional…



222

According to embodied cognitive perspectives, physical motions evoke concepts 
even if the language used does not communicate this idea (Antle, 2013; Goldin-
Meadow, Cook, & Mitchell, 2009). Much research has been conducted with adults 
that supports the claim that the influence of human movements on thinking is more 
than a developmental stage of childhood. For example, Antle (2013) found that 
adults who watched images of humans with inequitable resources were more likely 
to not only notice the inequity (abstract imbalance of resources) but also express a 
desire to correct the imbalance, if while watching the images they had to work to 
keep their whole body physically balanced on a platform compared to those who 
rotated a joystick (Antle, 2013). In other words, the physical motions of balancing 
influenced people’s concepts to see the same images with different meaning.

Another implication of the Antle (2013) study is evidence that the consistency 
between concepts and motions matters, in this case, consistency of the underlying 
concepts of balance and imbalance in an abstract metaphorical sense with people’s 
physical movements. In another study the physical motion of adults moving objects 
from one bowl to another that was away from them or toward them evoked the 
underlying idea of away and toward, which affected their comprehension of literal 
and metaphorical written sentences (Glenberg & Kaschak, 2002).

All of these examples provide evidence that how humans move influences how 
they think. Moreover, these studies also evince the importance of consistency of 
physical motions with the intended ideas or concepts. Additional examples have 
emerged that show consistency of physical motions matter for third- to sixth-grade 
students learning mathematics (Goldin-Meadow et  al., 2009; Nurnberger-Haag, 
2015). That is, that students’ physical motions serve a metaphorical purpose, and 
sometimes their motions led them to verbally express this metaphor. Specifically, in 
Goldin-Meadow and colleagues when the students were taught to put two fingers of 
one hand on the two addends of an equation that should be simplified and point one 
finger of the other hand to the relevant number on the other side of the equation, this 
evoked for the students the concept of putting together two addends (Goldin-
Meadow et al., 2009). Moreover, those who were most successful articulated this 
metaphor verbally as “grouping.” The students who were in another condition who 
made the same motion with irrelevant numbers did not do as well and did not ver-
bally express this grouping idea even though the motion was the same (Goldin-
Meadow et al., 2009). Thus, the relationship of the movements with mathematical 
objects, such as written symbols, also matters.

Such research suggests that the areas of arithmetic in which educators already 
use “hands-on” instructional metaphors, such as MUBs, warrant research with 
embodied perspectives of cognition. Analyses of how students move MUBs are 
needed in order to understand how their motions may be influencing their thinking 
and consequently their learning. The idea of grouping is a necessary but insufficient 
aspect of understanding base-ten arithmetic. Consequently, results about grouping 
numerical symbols in prior studies (e.g., Goldin-Meadow et al., 2009) suggest that 
analyses of the ways that students group manipulative materials would provide criti-
cal insights about student understanding of base-ten arithmetic.

First, let us consider the common ways such materials have been viewed and 
then show what has been previously overlooked. For example, the action of substi-
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tuting blocks with the equivalent value (e.g., 1 ten block for 10 ones) is often referred 
to as “a trade,” and the blocks that are fairly traded are usually circled within the 
static problem diagrams (e.g., Fuson & Briars, 1990; Labinowicz, 1985). Where 
these blocks that were traded came from and the four separate motions required for 
students to perform each trade have not been attended to in theory or in the drawn 
representations of the block arrangements shown in researcher nor teacher publica-
tions. Such still-frame perspectives limit what can be noticed about students physi-
cally moving tools to represent arithmetic. Just as it is already commonly understood 
in mathematics education that research on social interactions in classrooms must be 
captured with video cameras rather than photographs, investigations of “hands-on” 
learning experiences must also use these same methods. Given these perspectives 
on how movement influences cognition, what follows is the analysis of students’ 
movements of two prestructured proportional MUB blocks (i.e., Dienes blocks and 
Digi-Blocks). This will be followed by a brief discussion of embodied perspectives 
on metaphors in relation to the instructional metaphors educators (including educa-
tional researchers) orally express.

�Analysis of MUBs from Embodied Perspectives

In a different publication, I used the term model-movements to refer to the ways that 
students and educators typically move their bodies or physical materials due to the 
affordances and constraints of those models (Nurnberger-Haag, 2015), so this term 
will be used to describe movements with MUBs. For educators familiar with ele-
mentary mathematics, Dienes blocks as classroom materials may be as commonly 
accepted as any other tools such as chairs whose purpose and function no longer 
require effortful attention. Thus, in order to see something so common from a new 
perspective, it is often necessary to hide aspects of a context that reinforce existing 
understandings. Consequently, to focus on how the physical and visual experiences 
represent ideas, let’s imagine for a moment that classroom instruction with these 
blocks occurred without oral language or sign language. What do students’ physical 
model-movements represent about arithmetic? Due to their model-movements, 
what might we hypothesize students would verbally express if teachers did not 
insert their own language to this process?

MUBs that Require Trading  If proportional models like Dienes blocks or non-
proportional models are used, students must physically trade one place value unit 
for a different unit in order to calculate with these materials. Next, I trouble what 
these trading requirements could conceptually mean or mathematically represent in 
order to reveal potential reasons that such materials may fail to support student 
learning of conceptual structures in intended ways.

Trading Model-Movement Model-Unintended Operations  Trading and equivalence 
are key themes in mathematics, particularly for solving equations; however, in this 
context of multi-digit calculation and place value, trading is an unnecessary meta-
phor. Trading is actually composed of physical giving and taking movements that a 
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student needs to consider together as an abstracted fair trade. Based on research 
about how physical movements subconsciously influence human thinking (Glenberg 
& Kaschak, 2002), even if students agree that they completed a fair trade, the stu-
dents’ physical model-movements of putting in (add) quantities and then taking out 
(subtract) quantities likely activate ideas of addition and subtraction at unintended 
times that may interfere with learning.

Revisit Fig. 11.1, which shows a student taking a thousand block away from a 
representation of the quantity 1040. This model-movement could be representing 
the subtraction problem 1040 – 1000, because taking something away is one way to 
model subtraction. An educator might also recognize such movements as the first 
step of processes with Dienes blocks to trade 1 thousand for 10 hundreds; however, 
the physical model-movement to perform this first step of a trade is the same as 
students’ movement to subtract 1000. Regardless of how an educator might intend 
that students see or think about the action as part of a trade, students’ actual motions 
model taking away or removing. In other words, students’ physical model-
movements with Dienes blocks model subtraction operations even when unin-
tended. In Fig. 11.1b, notice also the collection of extra blocks, which is where the 
student is moving the thousand cube to. This student was actually demonstrating a 
first step of the problem 1040–463.

Table 11.1 explains student model-movements to calculate 1040 – 463 with 
Dienes blocks using the trade-first left-to-right subtraction algorithm Fuson and 
Briars (1990) used and subsequently found in elementary textbooks (e.g., The 
University of Chicago School Mathematics Project, 2012). Although in practice I 
encourage students to use methods that make sense to them, for space and illustra-
tive purposes, this chapter explains the problem using the particular algorithm 
Fuson and Briars (1990) indicated students find more beneficial than a traditional 
algorithm. The second column of Table 11.1 shows each action and quantity using 
numerical expressions to illustrate the unintended arithmetic similar to the method 
Vig, Murray, and Star (2014) used to illustrate how a chip model represents addition 
and subtraction of negative numbers.

In order to trade 10, students may not be able to instantly grab 10 and only 10 of 
a certain sized unit block. This means students may have more than four separate 
movements in order to prepare objects for trading (count out and gather each set of 
10). To focus attention on how all students would move to trade, the table focuses 
on the four main trading actions for the sake of argument.

Note the processes needed to enact a single trading metaphor require at least four 
separate movements (see Table 11.1). Each of these movements is indistinguishable 
from how students move to represent intended operations. In the rightmost column 
of Table 11.1, notice that more of the student’s movements represent unintended 
operations of both addition and subtraction in unintended situations than intended 
subtractions. I hypothesize that such unintended operations could interfere with 
elementary student learning of whole number operations as prior research had found 
for older students learning integer operations. For example, this interference was 
found with fifth- and sixth-grade students using color-coded counters to represent 
positive and negative numbers (Nurnberger-Haag, 2015). Students who experienced 
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Table 11.1  Descriptions of Dienes block model-movements to reveal unintended and intended 
operations, using example of 1040-463

Verbal 
description of 
movements

Numerical representation 
of model-movements in 
each space

Operation 
model-
movement 
meaning

Pedagogical 
intent

Model-
movement 
operation match

Take away 1 
thousand cube

1040 – 1000 = 40 Subtract First quarter 
of trading 
action

Unintended

Put thousand 
cube with 
blocks external 
to problem

E + 1000 Add Second 
quarter of 
trading action

Unintended

Take 10 
hundred blocks 
away from 
external blocks

(E + 1000) – 1000 Subtract Third quarter 
of trading 
action

Unintended

Put 10 hundred 
blocks with 
problem blocks

40 + 1000 = 1040 Add Fourth quarter 
of trading 
action

Unintended

Take 1 hundred 
block away 
from problem 
blocks

1040 – 100 = 940 Subtract First quarter 
of trading 
action

Unintended

Put 1 hundred 
block with 
external blocks

E + 100 Add Second 
quarter of 
trading action

Unintended

Take 10 ten 
sticks away 
from external 
blocks

(E + 100) – 100 Subtract Third quarter 
of trading 
action

Unintended

Put 10 ten 
sticks with 
problem blocks

940 + 100 = 1040 Add Fourth quarter 
of trading 
action

Unintended

Take away 1 
ten stick from 
problem blocks

1040 – 10 = 1030 Subtract First quarter 
of trading 
action

Unintended

Put 1 ten stick 
with external 
blocks

E + 10 Add Second 
quarter of 
trading action

Unintended

Take away 10 
single blocks 
from the 
external blocks

(E + 10) – 10 Subtract Third quarter 
of trading 
action

Unintended

Put 10 single 
blocks with 
problem blocks

1030 + 10 = 1040 Add Fourth quarter 
of trading 
action

Unintended

Take away 4 
hundred blocks

1040 – 400 = 640 Subtract Subtract Intended

(continued)
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integer instruction with counters compared to a number line model did worse on 
problems for which they had to put in extra counters (addition model-movement) in 
order to subtract as the problem required, compared to those problems that did not 
require these unintended addition operations (Nurnberger-Haag, 2015). Moreover, 
there are at least two other related problems this trading constraint of the materials 
creates that have potentially unintended consequences: opening a closed system and 
failing to model base-ten ideas of containment.

Trading Violates Closed System  If students solve a sum of 14 and 28, for example, 
there are many ways students could conceptually use ones units or a combination of 
ones and tens units as promoted with Number Talks (Parrish 2011). All of these 
ways of thinking allow students to think about combining the quantities 28 and 14 
within a closed system of those quantities. The physical limitations of Dienes blocks 
or any other materials that require an exchange of ten of one thing for another pose 
another potential issue that may impact students’ conceptual structures. These 
blocks require students to treat a given arithmetic task as an open system, which is 
inconsistent with base-ten ideas. When students use Dienes blocks, they must intro-
duce additional blocks from outside the system of the given problem, in other words 
open the system to include extra blocks that do not directly model the problem. 
These extra blocks are irrelevant to the arithmetic problem at hand but necessitated 
by the particular instructional metaphors. In other words, the trading model-move-
ments students must enact open the system to include this trading zone of extra 
blocks. In this way, it creates an “otherness” that is unnecessary and potentially 
confusing (similar to Table 11.1 columns 1 and 2). That is, students need to leave the 
block representation of the problem at hand to go to this other source of blocks that 
becomes conflated with the blocks intended to represent the problem. For example, 
to use Dienes blocks to calculate 28 plus 14, after collecting 2 tens, 8 ones, 1 ten, 
and 4 ones or 42 total ones, students temporarily reduce the quantity modeled in the 
problem space from 42 to 32. Students remove ten of these ones from the quantity 
being considered and go to a trading pool of blocks external to the quantity to get 
this “other” ten to exchange. This means a student works with a total unintended 
quantity of 52 ones during the course of solving the intended problem (42 from the 
original system and 10 additional from the external stash of blocks). Research on 
consistency of movements with cognition (Glenberg & Kaschak, 2002; Goldin-
Meadow et al., 2009) would suggest that it may be counterproductive for students to 

Table 11.1  (continued)

Verbal 
description of 
movements

Numerical representation 
of model-movements in 
each space

Operation 
model-
movement 
meaning

Pedagogical 
intent

Model-
movement 
operation match

Take away 6 
ten sticks

640 – 60 = 580 Subtract Subtract Intended

Take away 3 
single blocks

580 – 3 = 577 Subtract Subtract Intended

Note: E = the unknown value of blocks represented in the extraneous or external trading zone
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imply that one has to externally trade some other values with the values in the prob-
lem to which we want students to attend. Do students mathematically categorize in 
their mind and distinguish between the blocks meant to represent the problem and 
the extra blocks that serve only as a repository to make trading blocks possible? 
From psychological perspectives, is the additional cognitive load useful or a source 
of interference?

In contrast, the Digi-Blocks support students to combine 28 blocks (which they 
could represent as two containers of 10 blocks and 8 additional blocks) with one 
container of 10 blocks and 4 additional blocks. The 42 total blocks remain together 
as part of a closed system. The only external objects students bring to the problem 
system are containers to organize or structure the single quantities into units of ten. 
Thus, these containers serve an organizing function, not a block in of itself. The 
higher-level unit of tens does not exist without the basic level unit; adding a con-
tainer is not the same as adding the thing it holds. This differs from changing the 
number of blocks in the problem system in the ways Dienes blocks require. Such 
comparisons of affordances and constraints of these various materials warrant 
investigation for the potential intended learning and, with respect to Dienes blocks, 
unintended interferences of learning.

Trading Fails to Connote Containment  At least one other unintended consequence 
of proportional materials such as Dienes blocks that require opening what should be 
a closed system is that they fail to model the successive containment of units of the 
base-ten number system. It is crucial that students develop understanding of the same 
quantity in terms of different sized units (Steffe & Cobb, 1988). In regard to linear or 
other forms of measurement, it is more productive for a person to understand that 1 
kilometer contains 1000 meters than needing to think that 1 kilometer must be traded 
for 1000 meters. This idea is equally important for thinking about base-ten number 
units. The learning objective is not for students to think that 1 one-thousand unit must 
be traded for 1000 ones or 10 hundreds units rather that each unit contains those 
values. Some MUBs can model this containment idea such as Digi-Blocks, although 
modern Dienes blocks do not. So if a sum of ones were 42 units, for example, math-
ematically knowledgeable people can see this same quantity of 42 using different 
ways of categorizing or decomposing the units: 42 individual ones, containing 4 tens 
and 2 ones, 3 tens and 12 ones, and many other ways.

Theoretically, metaphors that support ideas of containment should better support 
student learning, because ideas of containment reflect the intended mathematical 
ideas in ways that also build on innate cognitive mechanisms. Research on how 
people learn and think about categories has identified base level and superordinate 
as well as subordinate categories (Rosch et al., 1976). Mathematically, place value 
units are categories with a base level (ones units), superordinate levels (tens, hun-
dreds, etc.), and subordinate levels (tenths, hundreds, etc.). Research supports the 
claim that humans think of categories metaphorically as though they are containers 
(Boot & Pecher, 2011; Johnson, 1987). Consequently, it is important to consider 
how metaphors could influence learning of a category-based topic such as base-ten 
arithmetic structure. This should lead us to test how materials that encourage stu-
dents to move in ways that put in and remove objects from containers or physically 
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build structures of contained or nested quantities might afford building conceptual 
understandings of category units. Thus far I identified the ways students move and 
see physical materials used for base-ten number that do and do not support these 
ideas as well as metaphors educators orally express. These theoretical analyses war-
rant studies that use a range of methods from psychology-based experiments to 
investigations of classroom-based instruction.

�Deconstructing Orally Expressed Instructional Metaphors

In the previous section, I asked the reader to suspend knowledge of the reality of 
classrooms to ignore student and educator use of language in order to focus on what 
students’ movements would physically represent (i.e., metaphors they might physi-
cally enact with various tools). Now consider the real classrooms in which teachers 
and textbooks use language to explain what they intend students perceive. Consider 
whether and how the metaphorical meaning students may experience by physically 
moving those tools relate to the following discussion of the terms textbooks and 
educators use orally and aurally. Educators (including educational researchers) have 
recognized and discussed the use of analogy and metaphor to teach content areas 
including mathematics (English, 2013; Pimm, 1981). Yet, to my knowledge, the 
particular terms for base-ten arithmetic have not been discussed as metaphors in 
prior work, so I analyze them here in terms of their intended and unintended map-
pings to addition and subtraction operations. Several terms have been used such as 
carry, borrow, trade, group, ungroup, regroup, pack, and unpack (Digi-Block Inc., 
2017c; My Math, 2013; SRA Concepts, 2013; The University of Chicago School 
Mathematics Project, 2012). Elsewhere detailed mappings will illustrate how each 
of these terms maps from source to target in intended and unintended ways. Due to 
space and for clarity of the general framing of this chapter on instructional meta-
phors, the following focuses on revealing the primary issues with such metaphors.

Carry and Borrow  When people use the terms carry and borrow in the context of 
addition and subtraction calculations, unlike the rest of the terms analyzed here, people 
may not think of the typical meanings of the terms carry or borrow. That is, due to the 
specific mathematical context in which adults previously practiced the terms, when 
adding, they may associate carry as meaning literally to inscribe a 1 or 2 as needed to 
the left of a place value or, when subtracting, borrow as meaning to cross out, reduce, 
and place a 1 next to the ones digit. If, when using these terms in this context, people 
only associate it with that particular meaning instead of other or original metaphorical 
meanings of the terms carry and borrow, then these would be considered “dead meta-
phors” (Lakoff & Johnson, 2003/1980). In other words, what began as metaphors to 
facilitate understanding between adults of a known idea to an unfamiliar idea adults 
now think of as having a literal meaning (Lakoff & Johnson, 2003/1980). Due to these 
extensive experiences, even if adults conceive of these terms as names for literal algo-
rithmic procedures, whether students novice to base-ten arithmetic expect these carry 
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and borrow terms to help them learn arithmetic using the meanings they already under-
stand warrants research. Consequently, this theoretical analysis deconstructs the mean-
ing of carry and borrow to trouble these instructional metaphors.

Carry means “to transfer from one place (as a column) to another” (Carry, 2017). 
The meaning of carry implies that the position of the same item is simply trans-
ferred or moved. Yet, carry fails to connote the intended mathematical idea that 
students should conceive of a carried value as a different unit. In the case of adding, 
for example, a written notation of a 1 may be procedurally transferred; however, 
once moved, it becomes ten times the value.

Moreover, the term borrow fails to reflect conceptual meaning and procedures. 
Borrow means “to receive with the implied or expressed intention of returning the 
same or an equivalent” (Borrow, 2017). Thus, this term is a misnomer because when 
teachers or other adults say “borrow from the tens place,” for example, there is never 
an intention of returning the equivalent value of ones back to tens. The term or 
phrase gifting or taking might more accurately reflect this written mathematical 
procedure. Yet none of these terms reflect the intended mathematical ideas or proce-
dures of converting a large composite unit into ten times the next smaller unit.

Furthermore, the pair of terms carry and borrow are meant to represent processes 
for addition and subtraction, respectively. Given that addition and subtraction are 
inverse operations, an effective instructional metaphorical pair would likely com-
municate the inverse relationship. However, using the definitions above, it is clear 
that the term to borrow is not the inverse of to carry.

Trade  Given that the terms carry and borrow were in use long before the term 
trade became part of school mathematics, were it not because of the popularity of 
Dienes blocks and some research using these terms because of these blocks (e.g., 
Fuson & Briars, 1990), then we should have seen the term arise much earlier. For as 
Labinowicz (1985) explained, with prestructured materials such as Dienes blocks, 
students can only decompose blocks “indirectly by trading” (p.  273). This term 
“trade” like “bundle” referred to earlier has been treated as though it describes or is 
the conceptual and literal meaning of an arithmetic process (e.g., Fuson, 1990; 
Saxton and Cakir 2006), which this analysis aims to reveal is really an instructional 
metaphor that fails to reflect the processes.

Although the physical actions the verbal metaphor trade implies are consistent 
with how to physically use the Dienes block material, this term is inconsistent with 
ideas of base-ten numbers or even written procedures. Even if students do not use 
the physical Dienes blocks, if an educator were to use the term “trade” verbally with 
written symbols, it is important to consider the limitations of this verbal metaphor. 
The idea of trading one set of values for another is crucial in mathematics; however, 
the term trade fails to communicate the hierarchical structure or nesting of units and 
composite units. Consequently, next let’s deconstruct the meaning of this verbal 
metaphor.

The vernacular term trade means “the act of exchanging one thing for another” 
(Trade, 2017). This idea of trading implies some degree of perceived equivalence, 
in that children, for example, might trade different numbers of valued treasures 
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based on their perceived values (e.g., three trading cards for one necklace). The term 
trading, however, gives no indication of a change in level of these units, which is an 
essential characteristic of the base-ten number system. An educator could encour-
age students to articulate the units they are trading to compensate for this limitation 
of the term (e.g., trade 10 ones for 1 ten). Yet, consider that even for the written 
procedures, moving 10 ones in the ones place to 1 ten in the tens place does not 
convey the meaning of trade in either the childhood or commercial sense. In order 
for arithmetic operations to reflect the denoted meaning of trade, the ones and tens 
values would need to switch places. An exchange or transaction in life means each 
person has something different than before, which does not occur arithmetically. In 
the algorithm, the reason 10 ones are changed into 1 tens unit is because a ten con-
tains 10 ones.

Educators use the term trade to refer to both directions of processes, meaning the 
term does not reveal if one is converting a unit into the next higher-level or lower-
level unit. The verbal metaphor fails to represent the direction of the intended action 
and thus fails to reflect the inverse nature of addition and subtraction operations.

Grouping Metaphors  One basis of the Hindu-Arabic number system is grouping 
by ten. Thus, terms related to the idea of grouping might seem to be productive 
verbal metaphors to communicate base-ten number structure. Unlike the other terms 
discussed here that have single forms, educators use multiple variations of the term 
group as metaphors for the arithmetic processes: group, regroup, and ungroup. Let 
us compare each of the terms used in practice to how they may or may not facilitate 
the base-ten number structure with various manipulatives and then summarize these 
as related collection of terms.

Group  The meaning of “to group” that would be most common for students would 
be “to combine in a group” (Group, 2017). Although putting objects together into 
groups of ten is necessary to build base-ten structure, this is insufficient. Successive 
groupings of those groupings are required (Labinowicz, 1985).

Regroup  Decades ago, standards and textbooks classified problems as addition or 
subtraction with and without borrowing or carrying and then shifted to classifying 
such problems simply with the new term regrouping, as in “the student will subtract 
two-digit numbers with regrouping.” Given the critiques of the terms carry and bor-
row shared earlier, the change to a “grouping” metaphor may more accurately rep-
resent the underlying arithmetic ideas, but let us deconstruct the term regroup. The 
prefix “re” means “again.” Thus, regroup means “to form into a group again” or in 
practice “to form into a new grouping” (Group, 2017). This term could represent 
well the mathematical actions of regrouping a quantity such as 8 into 4 and 4 and 
then 3 and 5. Similarly, the quantity 14 can be grouped as 7 and 7 for a doubles 
strategy or 10 ones and 4 more ones. These examples, I argue, reflect meanings of 
the term regroup that are consistent with mathematical ideas. These groupings, 
however, are different arrangements within the same unit size or level. The idea of 
regrouping or to form into a new grouping fails to connote constructing superordi-
nate or subordinate units. When students obtain 10 groups of tens either strictly with 
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written symbols in an algorithm, with popsicle stick bundles, or some other materi-
als such as Dienes blocks, some textbooks tell them they need to “regroup” into one 
hundred (e.g., My Math, 2013). This could simply mean to change the group size 
for efficiency as when counting by twos or fives, so this term “regroup” may not 
support the intended learning goal of reorganizing student thinking to a higher-order 
unit.

Another issue with the term regroup is that it is used for both addition and sub-
traction. Thus, to regroup does not indicate to students whether to make a quantity 
into a larger or smaller unit. Consequently, it cannot support the idea of inverse 
operations.

Ungroup  The terms group and ungroup when used together could convey the 
inverse nature of how to move materials such as straws, sticks, and individual blocks 
to do and undo or put together and take apart. In other words, the pair of terms group 
and ungroup could connote the inverse operations of addition and subtraction.

Summaries of Grouping Metaphors  All of these variations of groupings could 
support expanded notation algorithms or student thinking and invented strategies 
about individual units or ones. Consequently, this may be a useful initial verbal 
metaphor. A related phrase that may better, albeit awkwardly, describe the hierarchi-
cal structure of base-ten number system would be “groups of groups” (Labinowicz, 
1985, p.273). Yet, in practice, such uses seem to be rare; instead educators who 
express metaphors of grouping use terms that reflect a single-level unit or moving 
from one type of grouping to another, rather than the building of higher-order units.

Pack and Unpack  Some classic problems, such as the candy-packing problem in 
which students are given a task to pack candy into boxes that hold ten candies and 
then into shipping boxes that hold ten of each box (Heuser, 2005), have been used 
in practice and in research. The terms pack or unpack, however, seem to have been 
used only when this literal meaning of packing motions applied to the problem 
context. Yet, the term pack may be a potentially powerful verbal metaphor for 
abstract base-ten number structure, because it could promote the idea of units con-
tained within other units. When researchers such as Kamii have provided diagrams 
to encourage researchers and educators to think of individual units as a collection, 
they draw a loop around the collection of individual units to refer to that ring as the 
new collection or container (Kamii, 1986). Although such researchers have not 
invoked the term packing in these scenarios, the ideas are about containment. 
Consider that the term pack at a minimum implies the idea of multiple objects con-
tained within some other type of object that serves as a container. Once a student has 
20 ones (single objects), for example, the student has two full containers of 10 ones, 
the containers of which are the composite unit “2 tens.”

Consequently, I claim that the term pack is not a synonym for other terms used 
as instructional metaphors for base-ten number. Notice that these definitions of pack 
and unpack refer to multiple levels of objects at once. These are the objects and a 
unit that contains those objects (container). Other terms such as borrow, trade, or 
group connote only working within the same level categories, so they do not com-
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municate the idea or need for higher-level units or superordinate categories. At least 
in theory, the terms pack and unpack better reflect this nested unit structure of the 
base-ten number system.

Definitions of to pack include “to fill completely” and “to put items into a con-
tainer” (Pack, 2017a, 2017b). This meaning of pack can serve as an instructional 
metaphor for teaching base-ten structure using Digi-Blocks (Digi-Block Inc., 
2017c). Consider arithmetically that ones units cannot form “a ten” until the idea of 
a ten unit is completely filled. The number system involves this ten structure that 
students must learn when and how to fill or pack each successively higher unit if and 
only if completely filled. The container represents the idea of a different unit.

The definition of the term unpack makes even more explicit the need for a con-
tainer: “to remove the contents of” or “to remove or undo from packing or a con-
tainer” (Unpack, 2017). Such an analysis of the instructional metaphors pack and 
unpack opens many questions for future research. For example, how might verbally 
describing arithmetic processes with the pedagogical metaphors pack and unpack 
support students to think about each place value as being contained within succes-
sively larger place values by a factor of 10, irrespective of whether students physi-
cally pack objects to model quantities?

�Conclusions

Intended and unintended meanings of many common instructional metaphors for 
base-ten arithmetic have been analyzed in this chapter, both those that might be 
evoked through students’ physical motions and those that educators verbally 
express. The following concludes by summarizing the single metaphors analyzed 
here as a hypothetical exercise and then discusses potential issues with mixing these 
metaphors, which reflects potential issues of real classroom instruction.

�Single Metaphors

The metaphors discussed are all tools used with the intent to facilitate students’ 
conceptual and procedural development of base-ten number. Regardless of the form 
in which the metaphors might be evoked, whether verbal, visual, or physically 
enacted, some metaphors insufficiently map to the targeted base-ten number struc-
ture, whereas others contradicted or were inconsistent with this structure. Thus, 
most of these tools may be ineffective for the intended job. Group, regroup, and 
ungroup are in theory insufficient metaphors in that they addressed part but not all 
of the essential ideas of base-ten numbers. Whereas, materials that promote physical 
motions or oral terms such as carry, borrow, or trade promote several unintended 
meanings that are inconsistent with what educators intend students learn.

In particular, the pervasive trade metaphor may serve the unintended function of 
the knife in the quote that began this chapter. Even if educators avoid trade as a verbal 
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metaphor in favor of a variation of the term group, the materials educators provide 
such as Dienes blocks would still encourage students to experience arithmetic by 
physically enacting a trading metaphor. Whether verbal metaphors or enacted model-
movements, trading violates the intended mathematical ideas and procedures, poten-
tially distracting, interrupting, or causing inconsistencies when students experience 
these metaphors during instruction. This analysis revealed that one primary issue is 
that when students trade blocks for multi-digit calculations to model the intended 
operation (e.g., taking away blocks to model subtraction problems), their model-
movements actually represent a greater number of contradictory addition and sub-
traction operations. These unintended inconsistencies between the model-movements 
and mathematics may interfere with learning base-ten number, because Nurnberger-
Haag (2015) empirically found the same interference when students learning integer 
operations with chips had to put in or add chips when such addition operations were 
unintended operations.

The theoretical analysis in this chapter suggests that empirical investigation is 
needed to test the assertions that the materials that would encourage physical model-
movements most consistent with the targeted mathematical ideas are materials that 
afford packing and unpacking groups of groups of ten and verbal metaphors that reflect 
these packing model-movements. For decades, methods textbooks for elementary 
mathematics have mentioned packing objects (Reys et al., 2014; Van de Walle et al., 
2010), but aside from Labinowicz (1985) who recommended that grouping objects 
should come before Dienes blocks, such approaches were suggested simply as one of 
many potential groupable manipulatives that educators could offer students. This is 
understandable since the physical motions students enact to use these materials had 
largely been ignored, which this analysis used embodied cognition to reveal. The 
enacted and verbal metaphors pack/unpack reflect inverse operations consistent with 
addition and subtraction. Materials that encourage packing and the verbal terms 
pack/unpack maintain a closed system that reflects containment of multiple unit levels 
(i.e., within the given quantity of the problem, there are enough hundreds, tens, or ones 
to subtract or add whatever is needed without opening the system to an external source 
of blocks to find these sufficient quantities). Moreover, when students take away or put 
in blocks with these tools that promote a packing metaphor, each student motion repre-
sents intended arithmetic operations. Thus, bringing embodied cognition and other dis-
ciplinary perspectives to bear on the problem of how typical tools foster students’ 
base-ten number understanding and how to design and choose better tools could help 
the field notice when pedagogical practices cut like a knife, in favor of tools that better 
serve the intended job.

�Limited Metaphors Limit Conceptual Categories

Lest someone might argue that the limitations of verbal metaphors described here 
may not be crucial, consider that research from embodied perspectives has shown 
that oral terms that have a basis in prior physical motions prime those same ideas by 
neurally reactivating much of the pathways of those movements (see Kontra, 
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Goldin-Meadow, & Beilock, 2012). Moreover, evidence from cognitive research 
that does not draw on embodied perspectives has shown that terms adults use influ-
ence both what children notice and do not notice in environmental stimuli leading 
to changes in how children categorize concepts (Plunkett, Hu, & Cohen, 2008). 
Such evidence indicates that the words educators use for base-ten number would 
likely influence how students’ concepts are structured. Consequently, research that 
investigates these nuances of verbal instructional metaphors is warranted.

�Mixing Metaphors

A single metaphor or representation will provide certain information and lack others 
(Johnson, 1987/1990). The response to limitations of representations in mathematics 
education has been to promote multiple representations as beneficial for learning 
(Goldin, 2003). In the United States, the use of multiple models is encouraged rather 
than making sure that students have a deep understanding of a single model, which 
should lead us to recognize that metaphors may be mixed. An example of mixing 
metaphors during instruction could be an educator who verbally expresses a group-
ing metaphor yet encourages students to physically enact a trading metaphor with 
Dienes blocks. Investigations are needed to test intended and unintended outcomes 
of mixing metaphors during instruction. There is evidence that mixing valid but 
incongruent metaphors interferes with comprehension of concepts even when adults 
already understood each metaphor and the target concepts (Gentner, Bowdle, Wolff, 
& Boronat, 2001). Consequently, how mixing metaphors influences children’s think-
ing when learning and developing complex concepts of base-ten number structure is 
a crucial understanding for the field to investigate. Although multiple metaphors may 
be needed over time, because no metaphor can fully convey targeted ideas, questions 
for research include which metaphors should be used, in what ways, in what 
sequences, and how to connect these meanings for robust concept development.

�Call for Transdisciplinary Research

Research that transcends disciplinary boundaries is needed to understand the effects 
of single instructional metaphors used for base-ten arithmetic as well as how mixing 
particular metaphors influence student experiences and learning. One approach 
could be for multiple studies each from divergent individual disciplinary perspec-
tives to be conducted and encourage researchers across disciplinary boundaries to 
learn from and compile this collective knowledge rather than citing primarily within 
particular disciplines. Moreover, studies that merge perspectives within individual 
designs could be conducted to reflect transdisciplinary contributions to apply their 
current perspectives to the study of this problem of how to help elementary students 
develop understanding of base-ten number structure and operations.
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Chapter 12
Mathematics and Movement

Susan Gerofsky

Abstract  The author introduces aspects of the problematic around the idea of 
mathematics teaching learning through an integration of movement (dance, gesture) 
with other instructional modes. There is a discussion of working at various scales 
and using a variety of movement types. Through three examples from her collabora-
tive, transdisciplinary research, the author suggests design principles for working 
across and among disciplines to create new and surprising spaces for research and 
pedagogy integrating mathematics and movement.

Keywords  Mathematics learning • Movement • Dance • Gesture • Pedagogy • 
Embodiment • Scale • Integration • Graphs • Number theory • Geometry

I research embodied mathematics learning, via gesture, movement, dance, and 
voice. When I tell people about my research, I encounter two quite different imme-
diate responses. The first response is one of disbelief and incomprehension. For 
many, including some mathematics educators, the very nature of mathematics is to 
be radically disembodied and static. Mathematics is treated as an activity of mind 
disconnected from the body, physical objects, and movement. The goal of increas-
ingly sophisticated mathematics education is seen, in this view, to be ‘pure abstract 
cognition’, entirely cut off from contextual features of human life (emotion, social 
interaction, physicality) and the material world (the greater-than-human natural 
world, sensory ways of knowing, environments and objects). This view of mathe-
matics, based on Platonic and Cartesian philosophies of a mind-body split, has been 
the basis for many practices in mathematics pedagogy for over 100  years (see 
Gerofsky, 2016, for further elaboration on this).

Most people who have been through school anywhere in the world have been 
enculturated through mathematical experiences based on disembodiment and 
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prohibition of movement. In (stereo)typical secondary school mathematics classes, 
students sit still and silent in rows of individual desks and receive lectures from 
teachers, moving only eyes and fingers as they copy down notes, do textbook exer-
cises and worksheets, and ‘pay careful attention’ (Boaler, 2014). Classrooms are 
typically bare and grey, without colourful displays of student work and with mini-
mal sensory input. The implicit message embedded in this pedagogy (and under-
stood by students) is that mathematics learning comprises silent, rather monastic 
individual work and contemplation, engaging the mind, in isolation from the body, 
senses, social interactions, and movement. This is in stark contrast to students’ 
experiences in other secondary school classes like language arts, social studies, sci-
ence, and any of the fine, performing, or practical arts, where classrooms typically 
display current student work and include interactive activities like discussions, proj-
ect work, debates, and dramatic and ‘maker’ activities as a well-established part of 
pedagogy.

Elementary school mathematics is more likely to include physical materials, 
manipulatives, colour, and social and physical activities, but, nonetheless, even 
mathematics in the early years is affected by assumption of a Cartesian/Platonic 
dualism. The younger the learners are, the more acceptable it is to include sensory 
experiences, physicality, movement, and manipulatives as part of mathematics 
learning. However, as students move from kindergarten and primary school into the 
upper years of elementary education and secondary school, physicality in mathe-
matics learning is considered increasingly unacceptable. Embodied math learning is 
fine for ‘the little ones’, but for older learners, it is considered coarse, primitive, and 
babyish. Increased mathematical sophistication is implicitly associated with 
decreased physicality – with the stereotype of solely mental, abstract, disembodied, 
and static modalities for learning. Many mathematics educators who make these 
kinds of assumptions even feel embarrassment at the idea of incorporating any kind 
of physicality in their teaching, and if the teacher begins with negative feelings 
about using a particular pedagogical intervention, there is little likelihood of that 
intervention being successfully adopted.

The second, contrasting initial response I encounter on the topic of embodied 
mathematics usually comes from people who are fearful of mathematics or unsure 
about their knowledge of the subject (often teachers whose interests lie elsewhere). 
This second response is a kind of gleeful assertion that all we need to do now is have 
students move around, dance, or make gestures, and we will have finished with 
mathematics instruction. Neither of these two responses is particularly helpful in 
terms of developing embodied ways of teaching and learning mathematics through 
movement. The first response assumes that bodily movement is childish and embar-
rassing and has no place in upper levels of mathematics and the second that moving 
one’s body in random ways might substitute for learning mathematics.

What I am advocating is something different from both of these: first, that bodily 
movement, gesture, voice, and sensory experiences are necessary experiential com-
ponents in developing new mathematical ideas at any age or level and, second, that 
embodied pedagogical experiences in mathematics need to be thoughtfully designed 
and folded into teaching if they are to help students learn about new mathematical 
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relationships and ideas. My research and experience support an integration of move-
ment and sensory experiences, along with metaphors, drawings, and diagrams, 
explanations, and mathematical problem explorations to help learners build robust 
mathematical conceptualizations. What is more, these various modalities can ide-
ally inform one another, so that one might move back and forth among movement, 
gesture, explanation, written definitions and solutions, diagrams, and physical 
materials, in a social, emotionally engaged, embodied, multimodal, and multifac-
eted exploration of mathematical ideas.

A number of recent studies analyse research mathematicians’ use of gesture and 
movement in their own ideation and communication in mathematics (e.g. Sinclair & 
Tabaghi, 2010; Soto-Johnson, Hancock, & Oehrtman, 2016), and other studies doc-
ument undergraduate mathematics students’ embodied gesture and movement in 
understanding and explaining mathematical relationships (e.g. Nemirovsky, 
Rasmussen, Sweeney, & Wawro, 2012; Yoon, Thomas, & Dreyfus, 2011). These 
offer clear evidence that mathematics, gesture, and movement are not only helpful 
for young children but are used spontaneously and in an integrated way by sophis-
ticated learners and research mathematicians as they develop and communicate 
mathematical understandings. Other researchers in embodied mathematics have 
approached the idea of designing kinesthetic activities to support specific areas of 
mathematics learning (Abrahamson & Trninic, 2015; Nurnberger-Haag, 2015; 
Wright, 2001), focusing on mathematical topics including proportionality, the num-
ber line and integers, order of operations, and physical relationships like distance, 
time, and velocity. There is room for a great deal more work in this area as many of 
the ‘big ideas’ of mathematics, particularly those typically included in the second-
ary and post-secondary curriculum, have not been considered from the point of view 
of integrating an embodied pedagogy.

In this chapter, I will discuss several projects highlighting different aspects of 
design with mathematics and movement as transdisciplinary phenomena. Each of 
these projects has a collaborative element across the disciplines of mathematics and 
dance, and each involves transdisciplinary negotiations that open up new spaces for 
both mathematics and dance. The effects of transdisciplinary work, over time, and 
with openness to surprise and learning, can be to create unexpected, fruitful new 
practices and ideas that would never have arisen without this collaboration.

The three projects I will highlight here (Graphs & Gestures, number theory 
dances, and the geometry of longsword locks) are some of the math and movement 
and dance collaborations I have been involved with (Gerofsky, 2013). There are oth-
ers working in this area too, and any account of mathematics and movement must 
acknowledge the important contributions of Schaffer, Stern, and Kim (2016) who 
have been working with mathematical ideas in their professional dance company 
and producing mathematics and movement curricular materials for many years. 
Schaffer, who has expertise both as a mathematician and a modern dancer, is a regu-
lar contributor to the Bridges Math and Art conference (see, e.g., Schaffer 2014, 
2015) and continues to push the mathematical boundaries of math/dance.

Work in the pedagogy of mathematics and movement more generally includes 
work on the scale of bodily movement and mathematical noticing (Knoll, Landry, 

12  Mathematics and Movement



242

Taylor, Carreiro, & Gerofsky, 2015; Noble, Nemirovsky, Wright, & Tierney, 2001), 
small-scale hand movements and with dynamic computer displays as part of math-
ematics learning (Abrahamson, Lee, Negrete, & Gutiérrez, 2014; Gerofsky, Savage, 
& Maclean, 2009; Sinclair & Pimm, 2014), and studies of unconsciously produced 
speech-accompanying gesture as a way to understand learners’ and teachers’ 
meaning-making in mathematics (Alibali & Nathan, 2012; Arzarello, Paola, Robutti, 
& Sabena, 2009; Goldin-Meadow, Cook, & Mitchell 2009). Other related work on 
embodied mathematics includes studies of multisensory mathematics (e.g. Rains, 
Kelly, & Durham, 2008) and mathematics with learners with sensory impairments 
(Figueiras & Arcavi, 2014; Healy & Fernandes, 2011; Zebehazy & Wilton, 2014). 
There is also a flourishing of theoretical works that question the nature of embodied 
knowing in more fundamental philosophical ways (for some examples, see 
Arzarello, 2006; De Freitas & Ferrara, 2015; De Freitas & Sinclair, 2013; Edwards 
2003; Lakoff & Núñez, 2000; Radford, 2009; Thom & Roth, 2011). All this work is 
relatively new, mutually enriching, entangled, and still unsettled – that is to say, this 
is a productive new area of scholarship and praxis – but this chapter will focus only 
on transdisciplinary collaborative work on mathematics and dance and bodily 
movement. Interested readers may want to follow up with further exploration of the 
burgeoning field of embodied mathematics learning more generally as well.

�The Graphs & Gestures Project

The Graphs & Gestures project started with an observation from my own experi-
ences teaching my secondary math classes about the graphs of mathematical func-
tions. I noticed that when my students and I used a gesture to represent the horizontal 
line y = 4, my gesture was considerably lower in relation to my body than the ges-
tures of many of my students. I began to wonder why this might be so and to specu-
late about where different people imagined the x- and y-axes in relation to their own 
bodies. For example, did some people imagine the crossing point of x- and y-axes 
(the ‘origin’) to be at their navel, while others pictured it at their nose? Did some 
track the shape of the graph from left to right or right to left, while others used two 
hands to emphasize symmetrical patterns? What difference might these individual 
variations in gesture mean in terms of mathematical understanding – if they meant 
anything? What significance might they possibly have for mathematics teaching and 
learning?

From these small observations, questions and ‘hunches’ (Bavelas, 1987) have 
grown a larger research project into ways of incorporating elicited gestures, whole-
body movement, objects, vocalization, metaphors, narrative, and imagery, inte-
grated with short episodes of direct instruction, in the teaching and learning of 
mathematical functions and their graphs, a topic central to several years of second-
ary school precalculus algebra curricula worldwide. A fuller description of the prog-
ress of Graphs & Gestures can be found in Gerofsky (2016), and research findings 
emerging from the original hunch and other questions that followed on from it are 
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available in a number of publications, including Gerofsky (2010, 2011a, 2011b). 
For the purposes of this chapter, I will describe the particular ways that mathematics 
and movement/dance have developed as part of this project and how a transdisci-
plinary collaboration between a mathematics educator and dance choreographer/
arts educator made possible new questions and opened up new spaces in both fields.

�The Project

Graphs & Gestures began with two initial pilot projects that undertook basic 
research into students’ and teachers’ gestures describing the graphs of mathematical 
functions. One of the key findings of the pilot projects in Graphs & Gestures was 
that learners who were ranked by their teachers as ‘top’ mathematics students (in 
terms of their depth of mathematical understanding) were also the ones who tended 
to place the origin lower against their bodies (at heart, navel, or hip level), to use 
larger gestures that engaged their spines and the core of their bodies, and to bend 
their knees, rise to their toes, and put themselves off their centre of balance in ges-
turing the graphs. Students who were ranked by their teachers as ‘average students’ 
(who worked hard but depended on rote learning rather than deep mathematical 
understanding) were more likely to gesture the graphs higher, with the origin at 
throat or nose level, and to use smaller gestures of just hand and arm, treating a 
finger like a pencil. These patterns in the data have been analysed in Gerofsky 
(2010) using theoretical constructs from gesture theory in terms of an in-depth iden-
tification and experience with the graph (character viewpoint or CVP) vs. an arms-
length third-person experience of the graph (observer viewpoint or OVP) (see 
McNeill, 1992). These findings led to several iterations of pedagogical design 
experiments (Cobb, Confrey, DiSessa, Lehrer, & Schauble, 2003) with secondary 
and upper elementary school math classes. The overarching idea of these design 
experiments was to help all students in a class take up embodied, imaginative, meta-
phorical, and narrative approaches that the ‘top’ students were already using spon-
taneously to understand graphs.

I enlisted the collaboration of a research colleague in education, Kathryn Ricketts, 
who also has a distinguished international career as a modern dancer and choreog-
rapher. My collaborative work with Ricketts with school classes over the past 10 
years has generally comprised five or six one hour videotaped class sessions with 
students and teachers over the course of 6 months (i.e. one session per month), plus 
pre- and post-tests, and focus group and individual interviews with students. We 
have worked with a wide variety of classes of students, including those categorized 
as gifted, average, reluctant learners, dyslexic, and blind or visually impaired. Our 
work has taken us to secondary and elementary schools in Vancouver and North 
Vancouver, BC; Regina, Saskatchewan; and Torino, Italy. Our collaboration over 
the past 10 years has created new spaces for mathematics through movement in 
ways that neither of us could have foreseen at the start.
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�Contributions from the Field of Dance

Rickett’s extensive understanding of bodies in motion from her knowledge as a 
dancer helped me to be able to observe and name features of movement in the pilot 
study videotapes that I might not otherwise have noticed and later to work on incor-
porating them into our collaboratively planned design experiment lessons. Some of 
the insights we have arrived at together about the qualities of bodily movement that 
are most effective in supporting mathematics learning are summarized in Gerofsky 
and Ricketts (2014). In our work together on the project, Ricketts was able to notice 
qualities of physical movement and engagement that I would not have seen if work-
ing alone. For example, she identified movement of the body core and spine, chang-
ing levels, moving across the centre line of the body, moving off the vertical, and 
locomotion around the space as effective movement modalities that stimulate math-
ematical noticing, especially when contrasted to static poses, or movement of limbs 
and extremities alone.

Ricketts has a great deal of experience in working with groups of untrained danc-
ers in community workshops (including multi-age groups, people with disabilities, 
and people from multicultural backgrounds dancing together). Her knowledge from 
this work in dance was key to designing and leading highly effective warm-ups with 
classes of mathematics students to prepare them for the specific work we would be 
doing with mathematics and movement. As a choreographer in dance theatre, she 
was aware of physical aspects of a warm-up, including body alignment, warming up 
large muscle groups, mobilizing joints, warming up the cardiovascular system, 
engaging voice, and ‘warming down’ to achieve calm and centred movement. Her 
work with community groups had developed her expertise in using familiar meta-
phors, vocalizations, and movements to help people feel comfortable with undertak-
ing whole-body movement in mathematics learning. For example, she uses sports 
metaphors (throwing and catching a ball, arriving at home plate), images from pop-
ular culture (‘Ninja point’), and everyday actions (looking over each shoulder to see 
‘who’s there?’) to build a movement repertoire that students feel comfortable with. 
In our work together, there has never been a problem with students feeling embar-
rassed or awkward about combining bodily movement and mathematics learning. It 
is helpful as well that Ricketts brings an atmosphere of respect and acceptance and 
a relaxed but highly enthusiastic attitude towards movement to her work with 
groups – in contrast with those ‘traditional’ mathematics educators who might begin 
from a feeling of embarrassment to be moving at all in a math class.

Ricketts is also expert in working with objects and props as components of per-
formative dance theatre, and her focus on ‘thing theory’ (the phenomenology of 
everyday material life and the way that objects speak to us through their very mate-
riality) (Ricketts, 2011; Brown, 2004) informed our choices of objects to use in our 
experimental classes with students. For example, we have used pleasingly coloured 
lengths of wide sewing elastic, stretched across the room, to represent the x-axis; a 
beautiful brass plumb bob for a slow-motion tug-of-war in our absolute value olym-
pics; and smooth gold and silver cardboard discs (originally designed as bakery 

S. Gerofsky



245

cake trays) to help learners use both hands and their body core to gesture the shapes 
of graphs. Rickett’s knowledge of the importance of aesthetically pleasing, evoca-
tive, and sensual objects as tools to support learning informed our choices, and 
helped engage learners in the experiential, movement-oriented math learning 
activities.

�Contributions from the Field of Mathematics Education

My own contributions as a mathematics educator kept our work connected with 
goals in mathematics learning and mathematics curriculum. Throughout the project, 
I have always been aware of the aims and pressures that mathematics teachers feel 
in terms of enculturating learners in the knowledge, methods, and traditions of 
mathematics as a field and its articulation into grade-level goals in school mathe-
matics curricula. If our work with movement were not helping to support mathemat-
ics learning towards these goals, it would not be seen as useful for the school 
mathematics education community.

So my role has often been to say “not that, but this” in terms of the mathemat-
ics – in other words, to keep our collaborative work focused on the goals of in-depth 
understanding of topics important to the learning of mathematics at the secondary 
level and particularly to the understanding of aspects of the graphs of mathematical 
functions. Over the years, I have selected particular aspects of this learning that we 
wanted to highlight: in some years, the graphs of polynomial functions, their roots, 
slopes, and maximum/minimum points (extrema) and in others, the graphs of abso-
lute value functions (or the absolute value graphs of other functions) and the con-
cept of absolute value; maximum/minimum regions of quadratic functions; and, at 
present, transformations of function graphs. For each of these aspects or topics, 
different kinds of movement, voice, props, and learning activities would help draw 
students’ attention to salient features of the graphs. Part of my role was to keep our 
focus on those salient features and to ensure that we helped learners notice these.

It has also been part of my role in our collaboration to keep the mathematical 
work moving forward in ways that reflected the project’s pedagogical intentions. 
We take care to sequence lessons, building on past experiences and making connec-
tions between different kinds of activities in aid of building a broader and deeper 
understanding of the mathematical topic at hand. It is also my responsibility to 
introduce mathematical terminology and to teach very brief (5–10  min) ‘typical 
math lessons’ where helpful and necessary in the course of our design experiments. 
I also design and carry out assessments of learning (including pretest/post-test and 
group written and oral content tests) to support analysis and evaluation of the effects 
of the design experiments.

Throughout the planning and carrying out of these design experiments, there is a 
constant need to keep clear what we want to represent mathematically via embodied 
movement, and this responsibility has been mine. For example, at an early stage, we 
began to move in the direction of representing covariation of the x and y variables in 
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mathematical functions, as others in this area have done (viz. Noble, Nemirovsky, 
Wright & Tierney 2001; Jackiw & Sinclair 2009) and as I have done in other embod-
ied mathematics projects using devices like Etch-a-Sketches (Gerofsky & Marchand 
2006). However, the mathematical aims of Graphs & Gestures have been to repre-
sent graphs holistically, through movement and metaphor, in contrast to a covaria-
tion approach, which splits the behaviours of x and y elements. It was important for 
me to step in before we had gone too far in a direction we did not really want to take 
and to say, “not that, but this” to keep our mathematical intentions clear.

Similarly, it has been important for me, as the mathematics educator on the 
research team, to decide when further exploration or exploration is needed as when 
senior elementary students asked why absolute value had any importance or was 
worth learning. Before we could move forward with exploring the behaviour of the 
absolute value of functions, we had to be able to work with more basic activities, 
narratives, images, and metaphors that would help learners make sense of the pur-
poses of absolute value functions. I see it as my role to keep the connections with 
mathematical meaning-making clear, even when taking a different path might result 
in a particularly interesting result from a dance or movement point of view.

�Transdisciplinary Surprises and Discoveries

Collaborations are always more than the sum of their parts, and while arts educator/
choreographer and mathematics educator each contributed ideas and practices from 
our respective fields, we were also surprised and delighted by discoveries that could 
only happen by working together across disciplines. Both of us became attuned to 
one another’s interests and concerns and began to notice ways that movement and 
mathematics learning worked (or didn’t work) together. Some of our surprises 
included the following:

•	 Cognition lives in the body-mind, not in the mind separated from the body; 
embodied experiences and abstract concepts nourish and inform one another in a 
continual oscillation. We watched students use bodily experiences (and memo-
ries of those experiences) as cognitive resources, or ‘experiences to think with’, 
as they developed, and later reconstructed sophisticated mathematical ideas. 
Learners need and deserve embodied, mindful experiences to think and act with 
as they are introduced to new patterns and relationships in mathematics.

•	 Visceral experiences  – those that involve the body core, internal organs, and 
spine – are far more salient and easy to notice and attend to than physical experi-
ences that only involve peripheral parts of the body (e.g. only fingers and hands). 
One cannot ignore movements and sensations that affect the core of the body. If 
educators want learners to notice features of graphs (e.g. slope, symmetry, inter-
sections with axes or other lines, reflections, or continuity and discontinuity), it 
is far more effective to stimulate attentiveness through visceral movements that 
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engage the body fully, rather than just by looking at a diagram or tracing its shape 
with a finger alone.

•	 ‘Sonification’ is as important as visualization, and vocalization of sounds that 
originate and resonate within the body is far more effective in mathematical 
noticing than sounds created by an external source (e.g. the midi function on a 
computer). At a number of points in the project, we tried working with machine-
generated sounds through game systems platforms like Kinect (in collaboration 
with computer science colleagues), but we kept returning to the sheer visceral 
power of the human voice. As with movement of the body core, the engagement 
of voice to create mathematical representations of slope, intercepts, maximum/
minimum points, and other mathematical features made it far easier to be atten-
tive to these features.

•	 ‘Kinesthetic playfulness’ is a prerequisite for imaginative exploration of new 
mathematical ideas – and it works counter to many of the perfectionist traditions 
of both mathematics and dance. We discovered that both our fields have a poten-
tial bias towards ‘flawless’ performance, correct moves or answers, and a poten-
tially stultifying seriousness arising from fears of being wrong and vulnerable. 
These fearful, perfectionist tendencies can prevent learners from taking on new 
ideas and experimenting with them in a generative, improvisational mode. By 
fostering a kinesthetically playful atmosphere in the classroom where learners 
can feel free to try out new, movement-oriented experiments to explore mathe-
matical ideas, we can work against rigidity and encourage creative, more flexible 
approaches. These are complemented by eventual arrival at certainties and rigor-
ous proofs and definitions, but certainty and rigor arise from extensive experi-
ence and ought not to be imposed before learners have the chance to play and 
experiment.

•	 Movements and gestures can help learners enter into the discipline (and let the 
discipline enter into them). When mathematics lives only in textbooks, notes, 
and lectures, it is easy to hold the discipline at arm’s length and treat it as some-
thing external and superfluous. However, when mathematics is available to be 
explored as part of one’s own body, it becomes necessary to ‘let it in’ and/or to 
‘enter into’ the disciplinary field. Learners who identified with mathematics in 
this way were consistently better able to develop better in-depth understandings 
than those who held mathematics ‘at arm’s length’.

The Graphs & Gestures project has opened up new spaces primarily within 
mathematics education (and to a lesser extent within dance). The other two exam-
ples I describe offer new spaces to mathematics, to math education, and to dance 
itself.
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�Chase’s Number Theory Dances

I have collaborated in a different way with another internationally known modern 
dancer based in British Columbia, Sarah Chase. Our collaboration began when we 
were introduced by mutual friends who knew we were both interested in ‘dancing 
mathematics’. For Chase, mathematics has been a medium for generating new 
dances and dance practices; for me, collaborations with Chase’s work has offered 
the means for exploring new embodied understandings and dynamic representations 
of aspects of mathematics.

When I met Chase, she had already developed some of her number theory dances. 
These were based on the idea of representing several cycles simultaneously with 
different parts of the body – for example, the cycles of moon, sun, and earth that 
govern the tides, or the cycles of 12 animals, 5 elements, and yin-yang that govern 
the 60-year Chinese lunar horoscope calendar. Chase ‘uses her body as a calcula-
tor’, marking places in space and time by dancing cyclic patterns of different peri-
ods – periods that coincide only when all the cycles have repeated many times. The 
effect is quite astonishing, as when she dances the combinatorics of 11 different 
movements with one arm, 13 movements with the other arm, and 7 distinct move-
ments with legs and feet. It takes 11 × 13 × 7 = 1001 moves to complete all the 
cycles simultaneously, with many interesting combinations of movements occur-
ring throughout the 45-minute dance as every element meets every other element of 
each of the cycles. This dance, A Thousand and One, takes a tremendous concentra-
tion and engagement to achieve, and some of the sequencing must become auto-
mated or be undertaken at the unconscious level, as the conscious mind cannot 
process the combinations fast enough. Amplifying that effect, Chase accompanies 
this dance with the dancer undertaking improvised storytelling, in the spirit of the 
traditional tales of A Thousand and One Nights (Byatt & Burton 2004). The result-
ing dance and stories are fascinating explorations of embodied mathematical com-
binatorics and moving meditations (see Dickinson, 2014).

Working with Chase and seeing her mathematically inspired dances, I wondered 
whether a simpler version of her number theory dances might be helpful to mathe-
matics learners in elementary and secondary school learning about factorization, 
least common multiple (LCM) and greatest common factor (GCF), prime, relatively 
prime numbers, and other related ideas in number theory. Chase had workshopped 
a pared-down version of these combinatoric dances with community non-
professional dancers and shared a two-against-three pattern (one side of the body 
doing a pattern with a sequence of two and the other a sequence of three, which 
takes six combinations to complete). We talked about using other number combina-
tions as well, including different pairs of numbers that are relatively prime (e.g. 5 
and 6 or 8 and 9) and pairs that are not relatively prime because they share a factor 
(e.g. 4 and 6 or 9 and 12). Could learners experiment with their bodies to see where 
the patterns started to repeat – and could they work out how to predict this? Could 
learners in pairs or threes document which combinations of movements were and 
weren’t enacted with particular pairs of numbers? Could they make sense of, and 
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explain, why some pairs (n,m) went through all possible combinations and repeated 
only after n x m moves while others ‘skipped’ some possible combinations and 
ended after fewer moves?

These embodied mathematical explorations connected with work a group of us 
had been doing representing factorization and relatively prime numbers using spiro-
graphs, musical rhythms, and circle/modular diagrams and polygons (Gerofsky, 
Gomez, Rappaport, & Toussaint, 2009). Chase’s whole-body, highly engaging 
mathematics in movement offered a different way of approaching this topic that 
allowed ‘learners to enter into the discipline and the discipline to enter the learners’ 
in a way that drawing diagrams and working with physical tools like the Spirograph 
did not, although work at these different scales and levels of physical involvement 
were complementary in interesting educational ways (Knoll, Landry, Taylor, 
Carreiro, & Gerofsky 2015). The deeply involving dance/movement approach at a 
large, full-body scale has promise of working synergistically with medium-scale 
body-mind engagement of clapping, singing, or playing musical rhythms, using a 
large spirograph (viz. Sayers, 2013) and drawing circle/modular diagrams, perhaps 
at large scale with sidewalk chalk outdoors, so that the positions could be ‘hopped’ 
or locomoted. From a mathematics education point of view, it seemed that an effec-
tive pedagogical approach could bring together all these arts-infused representa-
tions (dance, musical rhythms, aesthetically pleasing spirographic star patterns, 
circle modular representations, and polygons), along with some more ‘traditional’ 
direct instruction and exercises where these would be helpful.

At time of writing, Chase has experimented with using simpler versions of the 
number theory dances with some young mathematics learners that she tutors, and I 
have piloted workshops using aspects of this integrated arts-based approach with 
groups of experienced mathematics teachers and teacher candidates, with promising 
results. Chase and I have also collaborated on a short film about the relationship 
between combinatorics and her number theory dances (Gerofsky & Chase, 2013). 
Next steps may include a full-scale design experiment working with senior elemen-
tary students on factorization, LCM, and GCF – and/or with undergraduate mathe-
matics students on ‘necklace’ and ‘bracelet’ combinatoric patterns in university-level 
mathematics (see Wolfram Mathworld, n.d.).

Chase’s dances originated from her interest and inspiration from mathematics 
and the combinatorial patterns observable in tides, horoscopes, and stories. 
Mathematics was part of generating these dances. In turn, the dances are inspiring 
new modalities of mathematics pedagogy, based in dance and movement (and pos-
sibly combining with music and graphic arts) to generate new ways that learners can 
understand and be inspired by mathematics. New spaces open up in all these areas – 
dance, mathematics education, and possibly even in mathematics as a field – through 
these transdisciplinary collaborations. We cannot predict all the effects of these col-
laborations but experience surprise and delight as new possibilities appear over 
long-term work together.
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�The Geometry of Longsword Locks

The third example comes from a form of traditional dance that I have been involved 
with for years: Morris dancing and, the related form, longsword dance (Allsop, 
1996). Morris dance is a traditional ritual dance form from England going back 
more than 600 years, and longsword dance, which likely reached England with the 
Vikings around 800 CE, is a tradition often performed by Morris dance groups or 
‘sides’, together with mummers plays and associated dance and song traditions.

Longsword dances are performed by six or more dancers, each carrying a fairly 
rigid ‘sword’ made of wood or metal about the dimensions of a metre stick. 
Throughout most of the dance, the dancers are joined into a ring, holding the hilt of 
their own sword and the (blunt) point of their neighbour’s. A distinctive feature of 
longsword dancing is the formation of ‘locks’, or woven stick patterns in the form 
of polygonal stars, double polygons, and other geometric shapes. These shapes are 
formed quickly by the dancers through what I have named a ‘physical algorithm’ of 
dance moves; the lock is displayed to the audience and then quickly dismantled as 
the dance continues.

I was curious to explore these longsword lock formations from the point of view 
of geometry and mathematical thinking, with mathematics education in mind. 
Thinking in terms of variance and invariance, scale, algorithms, and angles, I asked 
questions like the following:

•	 Is there a minimum and/or a maximum number of swords that can be used to 
make a lock due to mathematical and/or physical constraints?

•	 Is there an upper and/or lower limitation to the size of the angles formed? If so, 
why?

•	 Is it easier to make these locks individually, on a small scale (with coffee stir 
sticks), or as a group, on a large scale, through the physical algorithms of the 
dance? What might account for the differences in these two kinds of physical 
processes?

•	 How could one generalize the physical algorithms that produce different kinds of 
longsword locks? Could these be represented algebraically?

•	 What is the minimal number of crossings the swords must have to hold the lock 
in place?

•	 Are there new possible locks that have not yet been discovered? Could a mathe-
matical analysis help to produce new (and beautiful) lock shapes for the dance?

•	 How might the geometry of longsword locks connect with other areas of math-
ematics like knot theory and abstract algebra?

To move this exploration forward, I led an experimental longsword lock work-
shop at the Banff International Research Centre in 2009, and later that year, my 
Morris side led a demonstration and workshop on longsword locks at the Bridges 
Math and Art conference (Gerofsky, 2009). Participants made small locks with 
wooden stir sticks and then learned to make large-scale locks through the physical 
algorithms of the dance. We addressed some of the questions posed above and 
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created a 31-sword star the size (and weight) of a large gate, conjecturing that, with 
more dancers and sticks, we could likely go to a number larger than 31.

For the Bridges workshop, my Morris side created a new dance that featured 
every kind of longsword lock we knew of, including some that we learned from 
Allsop (1996). This new dance then became the impetus for two short films on 
mathematics and art, the first directed by McCague (McCague & Gerofsky, 2013) 
for a subsequent Bridges conference and the second directed by Hart (2014) as part 
of the Simons Foundation Mathematical Impressions short film series. Hart’s film 
references a related mathematical paper on the geometry of tensegrity frameworks 
(aka ‘popsicle stick bombs’) (Whiteley, 1989). Hart issues a call to research math-
ematicians to take up some of the unanswered questions about the geometry of 
longsword locks and to explore the limits of these physical algorithms and their 
algebraic representations.

I have used the films and the activity of creating longsword locks in workshops 
with experienced and preservice mathematics teachers and with classes of second-
ary school mathematics students, as an example of thinking mathematically using 
small- and large-scale, individual, and collective mathematical experimentation. 
This transdisciplinary work has opened up space for exploration of new mathemat-
ics at the research level, new pedagogical resources and approaches for teaching 
geometry, reasoning and problem-solving, and new dances, by focusing on catego-
rizing and representing whole classes of different types of geometric figures (and 
possibly discovering new ones).

�Conclusions

In the three examples discussed above, transdisciplinary work involving movement/
dance, mathematics, and mathematics education has generated unexpected new 
forms and spaces for development in all three fields. These spaces begin with curi-
osity and a willingness to collaborate among people who have a firm commitment 
to and grounding in their own particular discipline. To develop further, there must 
also be an openness and attentiveness to unexpected, surprising results, a willing-
ness to follow up on emergent ideas and new directions that present themselves, and 
the energy to take up something still somewhat undefined and unproven.

A precondition to these kinds of productive collaborations is a radical openness 
to move beyond unexamined cultural commonplaces like the Platonic/Cartesian 
assumption of a mind-body split, and the assumption that mathematics is or should 
be a solely mental, nonphysical activity. Once these deep-seated cultural assump-
tions become open to questioning, there is space created for meaningful, potentially 
beneficial transdisciplinary innovations.
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Abstract  The urban arts play a significant role in the lives of many of today’s youth 
and may thus be a powerful vehicle for students to engage in and with mathematics. 
The Urban Arts Project (UAP) aims to incorporate the urban arts across all curricu-
lar subjects in one secondary school in Eastern Canada. A key feature of the project 
is to bring in artists to partner with school teachers in designing and delivering les-
sons that integrate urban arts. In this paper, we describe the case of one urban street 
artist and one mathematics teacher and the development of their collaboration to 
teach two interdisciplinary units of study. Although both the artist and teacher artic-
ulated initial hesitations to work across disciplinary boundaries and to collaborate, 
interview data suggest that by the end of the collaboration, both members had devel-
oped mutual respect, an important component in a successful collaboration. In the 
paper, we describe three factors that were important in supporting the development 
of this mutual respect: (a) opportunities for the artist to watch the teacher teach prior 
to the unit, (b) a pivotal moment where the artist’s respect for the teacher was made 
explicit, and (c) an artist-teacher liaison who was able to help facilitate collabora-
tion between the artist and teacher. Given the success of this transdisciplinary col-
laboration, we encourage (mathematics) educators to think more broadly about 
opportunities and options for collaboration. By extending beyond disciplinary 
boundaries, collaborators can learn and benefit from varied and diverse 
perspectives.
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In this chapter, we describe the case of one urban graffiti street artist and one math-
ematics teacher and the development of their collaboration to teach two transdisci-
plinary units of study. This collaboration is part of a larger project aimed at 
incorporating the urban arts into Central High School1 located in a large city in 
Eastern Canada. Historically, the school struggles with low academic performance 
(less than half of the senior class graduated in 2014) and high student absenteeism 
rates. Many of the students require considerable pedagogic support as the majority 
of students have been identified with having learning disabilities. Central High 
School is the first recorded attempt at incorporating the urban arts across all curricu-
lar subjects, in order to attempt to increase student engagement. The decision to 
become an urban arts school was first taken by the school’s administration when 
students were noticeably attending after-school programs which were focused 
around the urban arts, including a graffiti club, a rhyme writing and production 
program, and a street dance program. The move toward including the urban arts as 
a learning tool is being supported by a tripartite research effort called the Urban Arts 
Project (UAP)2 which attempts to bridge the gaps between school, community, and 
university hoping to develop best practices for a sustainable school model.

The goal of the project is to draw upon students’ interests in the urban arts within 
subject area courses to increase their motivation and engagement within their 
coursework. A key feature of the project is to bring in artists to partner with school 
teachers in designing and delivering lessons that integrate urban arts. By bringing in 
artists, teachers were able to draw upon their experiences to create projects more 
authentic to the practices and techniques of the urban arts. However, such an 
approach relies also heavily on developing a collaboration that bridges across disci-
plines and cultures to reach common goals and shared understandings. We aim to 
describe factors that appeared to support this unlikely collaboration to be success-
ful. We first explain what urban arts entails and why the urban arts, and in particular 
graffiti, is a rich, yet understudied, context for transdisciplinary education. We then 
highlight what the research literature suggests about successful collaboration  – 
aspects we drew upon within our analysis of the collaboration.

�The Urban Arts

The urban arts include a range of aesthetic practices that are closely tied to, but also 
extend beyond, the aesthetic forms and values of hip-hop culture. These forms include 
rapping, DJing, breakdancing and other hip-hop dance forms, and graffiti but also more 
recent forms such as hip-hop theater, photography, journalism, and fashion (Chang, 

1 The names of the school, teacher, and urban artist have been replaced with pseudonyms.
2 This research stems from the SSHRC-funded study, “The urban arts as tool for transforming a 
disadvantaged high-school: Building partnership synergy between school, university, and com-
munity artists” (SSHRC Partnership Development Grant: principal investigator Bronwen Low, 
co-investigators Mindy Carter, Elizabeth Wood, and Claudia Mitchell).
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2007). Current research trends in hip-hop education show the positive potential out-
comes with regard to students’ participation and engagement in after-school activities 
as well as individual classrooms (Emdin, 2010; Hill, 2009; Low, 2011; Morrell & 
Duncan-Andrade, 2008). According to Emdin (2010), participation and engagement 
are identified with communication and cooperation (Duit & Treagust, 2003), values 
which are intrinsically linked to foundational principles of graffiti culture.

Although the field of hip-hop education has grown and become increasingly recog-
nized as contributing to student engagement and learning as valid and sound in educa-
tional practice (Emdin, 2009; Hall & Diaz, 2007; Hill, 2009; Hill & Petchauer, 2013; 
Low, 2011; Morrell & Duncan-Andrade, 2008), studies of graffiti and street art as 
tools to reach students and build on their level of classroom- and school-wide engage-
ment are practically nonexistent. While there has been research on hip-hop music 
successfully being used as a method of teaching, there is a minimal amount of research 
documenting the pedagogical potential of graffiti and street art culture as pedagogi-
cally sound tools and only a few programs which exist formally and incorporate these 
visual arts methodically. Yet the visual urban arts are just as viable as hip-hop music 
as options to reach students and to validate their knowledge and experience in a formal 
setting given the interest that many students express about the culture.

When graffiti first came to the public’s attention, as documented in the American 
mass media in the 1970s and 1980s, the people participating in the culture were 
young, marginalized Americans who used their ingenuity, creativity, and talent to 
create a space for themselves and declare their presence in an undeniably bold man-
ner. In a society where they had little or no expressive outlets available and were 
faced with grim futures of low-paying jobs, unemployment, or the probability of 
ending up involved in street gang life, graffiti became an outlet (Austin, 2001; 
Castleman, 1982; Ferrell, 1993; Powers, 1999). Graffiti gave these emerging artists 
and young activists the opportunity to become kings and queens of their own domain 
and claim or reclaim space without having the economic potential to buy it.

The graffiti writers who pioneered the movement did so at an enormous risk to 
themselves, including threat of legal action and physical harm, and long-term dam-
ages to health as spray paint is toxic and carcinogenic. Historically, graffiti culture 
valued the mentorship of younger writers with the older crew members; respect was 
something which was earned over time and certain rules of conduct were almost 
universally followed by those participating in the culture. The concept of ownership 
and belonging is pivotal in graffiti culture as the majority of writers belong to a crew 
and associate their work to it (Powers, 1999; Wimsat-Upksi, 1994). Respect within 
the graffiti community is given to those who get the most exposure, the ones who 
get up the most. Gaining recognition and notoriety, particularly from within the 
community of writers, is sought after; those who are the best artists will often gain 
the most visibility and have the longest careers. Historically speaking, before the 
days of increased accessibility through the Internet, the only way for younger writ-
ers to learn techniques and improve their skill was to be mentored by older, more 
experienced writers. This kind of mentorship and eventual collaboration in painting 
was a cornerstone in the development of graffiti culture and a way in which tradi-
tions and knowledge were passed down.
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Graffiti culture has since changed and evolved under heavy media exposure and 
the notable support and financial backing from art collectors and marketing compa-
nies. However, at the root of what has developed into current graffiti and street art 
culture are the values and expectations upon which these cultures were founded 
such as respect, freedom of expression, empowerment, a sense of belonging and 
accomplishment, as well as recognition and pride. These values can be linked to 
attributes of positive, collaborative learning spaces including cooperative learning, 
mentorship, and community. It follows that collaboration parallels the values of the 
urban arts culture. Thus, a project bringing together urban artists and school teach-
ers to foster transdisciplinary collaborations may yield positive potential 
outcomes.

�Collaboration

Collaboration is commonly defined as a mutually beneficial relationship with mem-
bers sharing responsibility to work toward a common goal (e.g., Chrislip & Larson, 
1994; Friend & Cook, 1990). Teacher collaboration can have many benefits. These 
include teacher change (Bolam, McMahon, Stoll, Thomas, & Wallace, 2005; 
Clement & Vandenberghe, 2000), teacher motivation (Calderhead & Gates, 1993), 
improved school climate (Gable & Manning, 1997; Park, Oliver, Johnson, Graham, 
& Oppong, 2007), and student academic success (Goddard, Goddard, & Tschannen-
Moran, 2007; Vescio, Ross, & Adams, 2008).

Collaboration extending beyond disciplinary boundaries may yield additional 
advantages. Effective cross-disciplinary collaborations occur when members are 
able to draw on each other’s strengths to achieve a shared goal (Dooner, Mandzuk, 
& Clifton 2008). Research describes three forms of cross-disciplinary collabora-
tions: multidisciplinary, interdisciplinary, and transdisciplinary. Multidisciplinary 
collaborations involve members working independently but across disciplinary 
boundaries (Mallon & Bunton 2005). By contrast, in interdisciplinary collabora-
tions, members work jointly but from each of their respective disciplinary perspec-
tives (Rosenfield 1992). Similar to interdisciplinary collaborations, members of a 
transdisciplinary collaboration also work jointly but use a shared conceptual frame-
work that draws together discipline-specific theories, concepts, and approaches 
(Slatin, Galizzi, Melillo, Mawn, & Phase In Healthcare Team, 2004). The shared 
framework found in transdisciplinary collaborations provides a mutually con-
structed basis for collaboration drawing on the knowledge and perspectives of all 
members of the group. Thus, while still reaping the benefits of other cross-
disciplinary collaborations (e.g., bringing together collaborators from different 
fields with varied experiences and expertise), transdisciplinary collaborations both 
inherently acknowledge the contributions of all members and develop a sense of 
positive interdependence.

While the benefits may be numerous and worthwhile, collaboration has its fair 
share of challenges as well. Welch (1998) describes four categories of challenges 
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for collaboration: (1) conceptual, rigid definitions that members hold for their roles 
in the collaborative process; (2) pragmatic, logistical considerations including time 
and resources; (3) attitudinal, beliefs and expectations that members bring to the 
collaboration; and (4) professional, interpersonal and communication skills required 
to work with other members. For transdisciplinary collaborations, conceptual and 
attitudinal challenges may be particularly challenging as members may hold varied 
disciplinary norms for collaboration. Additionally, for many teachers who are used 
to autonomy, collaboration can be a struggle. Yet, breaking down the professional 
norms of isolation and collaborating with colleagues can yield many positive 
outcomes.

Trust and respect are necessary components of any strong collaboration 
(Bronstein, 2003; Marlow, Kyed, & Connors, 2005; Russell, 2002), and positive 
personal relationships are the first step toward a trusting collaboration (Jao & 
McDougall, 2016; Tschannen-Moran, 2001). Productive collaborations take time to 
develop (Marlow et al., 2005), yet this time is important as it provides an opportu-
nity for the group to develop a shared history and culture (Selznick, 1992). When a 
member recognizes what is important to another member, a more trusting relation-
ship is forged (Marlow et al., 2005). This is important because research has shown 
that a trusting school climate results in more positive student academic achievement 
(e.g., Goddard, Tschannen-Moran, & Hoy 2001; Uline, Miller, & Tschannen-
Moran, 1998). Additionally, trust is essential for individuals to share their thoughts, 
feelings, or ideas (Tschannen-Moran, 2001). Collaboration requires an investment 
of time and energy as well as a willingness for collaborators to share responsibility 
and rewards and to give up a certain amount of one’s autonomy. Thus, without a 
level of trust and respect, individuals tend not to take the risk and fully commit to a 
collaborative process (Mattessich & Monsey, 1992; McLaughlin & Talbert, 2006).

In addition to developing a sense of trust, time is required to develop a shared 
familiarity with the context. Researchers assert that a shared base understanding of 
the teaching context can focus collaborative efforts (Buysse, Sparkman, & Wesley, 
2003; Wenger, 1998). Thus, in school-based transdisciplinary collaborations, it is 
important for members who are not teachers to develop a familiarity with the teach-
ing context. In what follows, we highlight the types of challenges that the secondary 
mathematics teacher and artist experienced and how a foundation of trust and 
mutual respect contributed to the emergence of their collaboration.

�The Context of the Transdisciplinary Collaboration

This chapter focuses on the collaboration between a secondary mathematics teacher, 
Anthony, and an urban street artist, Koopa. As a teacher at Central High School, 
Anthony was aware of the Urban Arts Project and chose to be an active member of 
the project. As a member of the local urban artist community, Koopa was approached 
(to which he readily agreed) to be part of the project. Anthony and Koopa collabo-
rated on two units of study for the two grade 8 mathematics classes at the school: (1) 
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Geometry: Dilatations and similar figures and (2) Geometry: Regular polygons and 
surface area of three-dimensional objects. In the first unit, the students learned the 
targeted mathematics concept and saw its applications in art through mural making. 
For the culminating task for this unit, students drew and enlarged an image of their 
choice using a designated scale factor. Students demonstrated their mathematical 
knowledge by first calculating the dimensions of the enlarged image before creating 
their final piece of art. In the second unit, the students developed their fluency in 
measuring surface area of three-dimensional objects that they decorated. After see-
ing preconstructed models of the objects, the students were provided with the nets 
of the objects, which they first decorated and calculated the surface area, before 
constructing the three-dimensional form. Anthony and Koopa’s collaboration 
spanned approximately 3 months. This included a week of planning prior to imple-
menting the first unit of study and 3 weeks for each unit of study. There were 
approximately 5 weeks between the units of study comprising of school holidays, 
midyear exams, and some planning for the second unit of study.

We conducted artist and teacher interviews throughout the collaboration.  
Pre-interview were conducted prior to the commencement of the first unit of study 
to find out background information about Anthony and Koopa, any previous experi-
ences with collaboration and/or the urban arts, and their expectations and goals for 
the collaboration. A mid-collaboration interview was conducted between the two 
units of study to have Anthony and Koopa reflect on the process thus far and set 
additional goals for the remainder of the collaboration. A third set of interviews was 
conducted at the end of the collaboration, serving as a final reflection of the collabo-
ration.3 To analyze the interviews, we identified comments made by Anthony and 
Koopa where they discussed the collaboration. Through an iterative process, we 
then categorized those comments into themes related to their perspectives on the 
collaboration. Finally, we corroborated our analysis of the interview with field notes 
of classroom observations and planning meetings.

The collaboration between Anthony and Koopa made an appropriate case for this 
study given that both were passionate about the potential to work on the project and 
about their professions; yet, as we describe later, they both entered the project with 
reservations about collaborating. Although this was Anthony’s first year teaching at 
Central High School, he had already taught for 9 years. Initially certified to teach 
physical education, Anthony felt comfortable teaching secondary level mathematics 
having taken mathematics content courses as his electives during his teaching 
degree. Anthony started his teaching career at a school with similar student demo-
graphics as Central High School. Subsequently, Anthony taught in two alternative 
schools (the first for students with severe behavior difficulties) before returning 
back to traditional public school contexts. Prior to assuming his position at Central 
High School, he taught at an elementary school in an affluent community. He was 
keen to take a position at Central High School where he said, “I’m at home again” 
(A1). Having grown up in a community similar to that of Central High School, 

3 In the following sections, participant quotes are referred to by participant name and the interview 
number (e.g., A1: Anthony, pre-interview).
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Anthony says that he can appreciate the challenges and experiences of students at 
Central High School. Additionally, although only in his first year at the school, 
Anthony already felt a connection to his students as he said that, “Every class that I 
teach has at least one younger sibling of a student I’ve taught in the past in the alter-
native schools” (A1). Anthony’s dedication to his students at Central High School 
stemmed from his personal commitment to the profession. He explained, “I became 
a teacher to take people from the fringes of society, from the lower socioeconomic 
echelons of society and, through education, bring them closer to the middle” (A1). 
His drive to excel as a mathematics teacher is a result of the challenges that he faced 
as a mathematics student:

I had a lot of struggles with math myself in early high school and late elementary school. 
And what used to frustrate me is that a lot of my math teachers (strong math students them-
selves) couldn’t put themselves in the shoes of a person who doesn’t get the material [snaps 
fingers] right away...there’s a lot of empathy lacking. (A1)

Thus, Anthony was keen to engage in the Central High School community, where, 
historically, students have struggled academically and seemed to be disengaged 
from their academic experience.

Although Koopa had been a graffiti writer since he was a teenager, he had not 
made art his professional focus until just 5 years prior to the start of the collabora-
tion. Koopa described his early experiences in the urban arts community as one of 
apprenticeship: “I was always like, the younger guy growing up with guys four or 
five years older than me that were really good (at graffiti). So they kind of appren-
ticed me in” (K1). After completing undergraduate degrees in English and Art, 
Koopa went into business. During his time owning a successful company, Koopa 
still painted. As a true artist, Koopa spoke to how art, although not his priority, was 
still an important part of his life: “You can't stop it. All of these years of painting on 
the side. Just doing it for myself. I do these really cool canvases and then nobody 
would see them. They'd just be in my house, in my room” (K1). Slightly removed 
from the graffiti scene, Koopa was unaware that younger artists whom he had men-
tored were now finding international recognition. After being told of one mentee’s 
success, Koopa found himself both shocked with how much the graffiti world had 
changed and questioning his personal choices. “[H]e’s making $40 000 a canvas? 
Man, why didn't I go for that when I had the chance? Why did I go into English?...I 
was still doing art and graffiti on the side, but I wasn't looking at the professional 
side of where things were changing” (K1). Koopa continued by describing how this 
changed the direction of his life by saying:

When I saw that kid. Man, then I starting watching him a little bit...And I was looking at 
him like, “Man, I made the wrong decision. I shouldn't have listened to my dad and went 
with my gut.” I’m 34 or something at the time and I’m like, if I don’t try now, I’m going to 
be one of those guys who has lots of money sitting around with some boring average life 
doing my job, going on vacation twice a year and cycle, rinse, repeat, over and over and 
over and over. And I just didn’t want that anymore. I didn’t want all the stuff I had. I had a 
big TV and $5000 leather couch imported from Italy. I didn’t want any of that anymore. It 
didn’t mean anything. I was like, if I don’t try it, I’m going to be that old man regretting it. 
(K1)
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Afterward, Koopa sold his business and decided to turn his professional focus 
toward his art. In addition to staying true to his roots in street graffiti culture, Koopa 
has found commercial success creating art for major international corporations. 
Koopa’s artwork has been (and continues to be) seen in galleries and outdoor spaces 
across Canada and the United States.

�The Development of the Transdisciplinary Collaboration

Initially, Koopa and Anthony showed openness to the project but also articulated 
hesitations to work across disciplinary boundaries and to collaborate. These hesita-
tions created conceptual and attitudinal challenges (Welch, 1998) to building a suc-
cessful collaboration. As described previously, one important aspect for overcoming 
such challenges and creating productive collaboration is to have mutual respect. Our 
analysis of the interview data showed that by the end of the collaboration, Anthony 
and Koopa had developed mutual respect for one another, and this mutual respect 
appeared to serve an important role in facilitating their transdisciplinary collabora-
tion. We found that three factors were important in supporting the development of 
mutual respect: (a) opportunities for the artist to watch the teacher teach prior to the 
unit, (b) a pivotal moment where the artist’s respect for the teacher was made 
explicit, and (c) an artist-teacher liaison who was able to help facilitate collabora-
tion between the artist and teacher. In what follows, we first describe Koopa and 
Anthony’s initial impressions and then illustrate how these three features helped to 
shift those initial impressions.

�Initial Impressions

�Initial Impressions About the Urban Arts and the Urban Arts 
Project

Before the start of the instructional unit, both Anthony and Koopa believed that the 
urban arts could be a meaningful way to increase student engagement in the math-
ematics classroom. For Anthony, he saw that his students had an interest in the 
urban arts. In addition to engaging with the urban arts outside of the school, students 
had enthusiastically participated in various extracurricular activities at the school 
within the urban arts. Thus, Anthony felt that there would be positive outcomes if he 
were able to bring the urban arts into his classroom, including that students would 
“enjoy math more” (A1). For Koopa, his beliefs came from his personal experi-
ences. Drawing from his own negative experiences as a mathematics student, Koopa 
hypothesized that he would have enjoyed mathematics more “if I had some cool 
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street artist from like France come in like, and I’m like 14 years old and he’s like 
look math isn’t all just numbers and boring it’s actually a little fun sometimes” (K1).

Although neither Anthony nor Koopa part of the inception of the UAP, both were 
committed to it. Anthony described that the project was intriguing and that he was 
willing to engage in integrating the urban arts into his teaching. He made this clear 
even in his interview for the position saying that he told the principal that he was 
“more than open” (A1) to the project. Koopa saw the UAP as an opportunity to give 
back to the community and to help at-risk youth. In addition, Koopa explained that 
he was committed to the project because of the respect that he had for Melissa, the 
liaison. In particular, he was inspired, “just seeing the amount of work and time that 
she puts in” (K1).

�Initial Hesitations to Participate in the Urban Arts Project

Hesitations About Working in a New Domain  Although both Anthony and 
Koopa were committed to the project, each entered with reservations. They both 
entered the collaboration confident within their own domain (mathematics teaching 
and the urban arts, respectively) but uncertain about their potential to contribute to 
the other.

For Anthony, his hesitation with the urban arts meant that he was uncertain 
whether he could meaningfully integrate it into his mathematics teaching. He 
described that his challenge would be “to make sure that I make [the integration] 
relevant, and meaningful and that I connect the two (mathematics and the urban 
arts). So that would be the challenge, as I said, to make it kind of smooth and 
streamlined” (A1). He related this to an overall teaching goal: “I want them to see 
that various aspects of their life are not as siloed as they like to think they are…So 
math isn’t over here and hip hop isn’t over there…There are elements of math in hip 
hop” (A1). Anthony’s uncertainty of how to meaningfully integrate was perhaps 
linked to his lack of experience with integrating mathematics and art. When asked 
about previous experiences combining the urban arts into his teaching, Anthony 
responded that he had done “very little” (A1) integration of the two. Moreover, he 
admitted that previous experiences were relatively superficial, stating that his 
attempts were “in hackneyed, played out ways…sort of paying it lip service but…
not really integrating it” (A1). To illustrate, he gave an example of a word problem 
that used an art context: “…So and so buys a certain number of hip hop records and 
his uncle gives him seven, then he buys three more every month and how many does 
he have at the end of a certain number of months” (A1). While Anthony believed 
that this approach was “better than doing nothing” (A1), he admitted that he strug-
gled to find possibilities for meaningful integration of the urban arts and 
mathematics.

While enthusiastic to lend his support to the project, Koopa also entered unsure 
of his role in a mathematics class. As previously mentioned, Koopa had negative 
experiences as a mathematics student and described that his lack of mathematics 
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content knowledge might hinder his ability to meaningfully contribute to the proj-
ect: “[I’m] terrible at math so when [Melissa] was telling me math class I was like I 
don’t know man if I’m even gonna be any good, to do the kids any good” (K1). Only 
considering his strengths within disciplinary boundaries, Koopa continued to 
explain that he felt that he would only be able to contribute as “the artist” and was 
skeptical of his role within a mathematics context saying, “Sure, like I can draw but 
that’s about as far as I am willing to pretend” (K1). Koopa perceived that disciplines 
were discrete describing himself to be in a “different world” than mathematics.

Although Koopa felt disconnected to mathematics, he was able to identify math-
ematics within the artistic process of mural making:

You like I know the grid system and that stuff. The grid system is like if I have ten boxes 
you know ten squares or whatever and I draw a circle on there I get another grid on a larger 
scale like say on the wall, and that’s a hundred. So I have to multiply that image by ten and 
match every box where the image is, like each line, so if there is like three lines in the corner 
and it’s one box up there I know that’s the ten boxes in the corner and that line there. (K1)

In his description, Koopa highlighted the use of a grid system and scaling to pro-
duce a larger image. Moreover, Koopa recognized the mathematics in the unit that 
the students would be engaged in, explaining “...it’s drawing. It’s ratios. It’s propor-
tions” (K1). Although Koopa acknowledged these topics, “It is math” (K1), he 
retained his perspective of being from a “different world” stating “I don’t use it as 
math” (K1).

Hesitations to Collaborate  Anthony was also apprehensive of the collaborative 
component of the UAP. He attributed this to “a very negative experience” (A1) that 
he had collaborating with another teacher early in his teaching career. Although the 
intent was to have Anthony and his colleague team teach lessons, Anthony believed 
that the other teacher lacked the necessary content knowledge to teach the material. 
Anthony found himself teaching his colleague the material prior to each lesson and 
grew to resent the situation and his colleague. Additionally, differing teaching styles 
hindered the collaboration. Anthony said of the situation, “We had to go back to the 
drawing board a number of times. It went from co-teaching to, ‘Okay, you know 
what, I’ll handle the academics and you handle the classroom management’” (A1). 
Rather than co-teaching and sharing responsibilities in the classroom, the two teach-
ers took on separate roles and limited their interaction. Anthony also described that 
the relationship lacked “trust.” This was especially evident after Anthony disagreed 
with his colleague’s classroom management style. Anthony said of this, “I was 
afraid for the children” (A1). Anthony also felt that this collaboration “had no 
impact on (students’) academic results” (A1). Anthony summarized this experience 
as such: “I didn’t leave (the experience) with a very comfortable feeling” (A1). With 
seemingly no positive outcomes from this collaboration, it is understandable that 
Anthony was skeptical of collaboration as part of the UAP.

In addition to this, Anthony voiced his concerns about the time necessary for col-
laboration. Anthony elaborated on this by stating “That’s probably why a lot of us 
don’t collaborate with each other more often. It’s very difficult to find time in the 
day to do it” (A1). Additionally, Anthony acknowledged that over time, teachers 
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tend to become isolated after spending many years honing their preferred teaching 
methods. Perhaps also partly reflecting on his previous negative experience with 
collaboration, Anthony admitted to having some resistance to change and being able 
to adapt his teaching approach to complement another individual’s approach: “A lot 
of us have been teaching for long enough that we have things, kind of, set up in a 
certain way where it’s very comfortable and…for better or worse we’re comfortable 
doing what we’re doing” (A1). To this end, Anthony believed that teacher collabora-
tion was especially challenging as ego can play a factor in hindering these 
relationships:

There’s a lot of pride that has to be put aside. And each teacher is used to being the authority 
in their classroom, each teacher is used to having all of the answers in their classroom, each 
teacher is used to always being right and being able to punish the person who is not right. 
And so these two, kind of, working together … it can be difficult, right? (A1)

Yet, when asked if he believed that collaborating with another teacher would be 
different than collaborating with an artist, Anthony said, “Yes…If I’m collaborating 
with an artist…it’s very clear that I’m out of my depth and that I need them” (A1). 
Thus, while Anthony discussed some resistance to the process and adapting his 
teaching approach, given the context in which he felt less comfortable (urban arts), 
Anthony acknowledged that the collaborating artist had skills and expertise that he 
himself was lacking necessary for the integration to be successful. He believed that 
the artist would also have similar feelings about an artist-artist collaboration versus 
an artist-teacher collaboration. Anthony shared that he felt that an artist would 
appreciate the pedagogical expertise that the teacher would bring to the 
collaboration.

Similarly, Koopa believed that he would bring a different skill set to the collabo-
ration stating that his “approach will be different” (K1). He attributed this difference 
to not being a mathematics teacher. Returning back to his sentiment that mathemat-
ics and the arts are different, Koopa said: “One of the things that I don’t like about 
math is that it’s so exact and there is no freedom to it” (K1). He continued by 
describing how as a result he believed that Anthony, as a mathematics teacher, 
would probably follow routine procedures in his instructional approach. Koopa 
spoke of his prior perceptions of mathematics teachers in general: “[A math teacher] 
has a set format. He has this planned out. Like, he probably taught that class ten 
times already, ten different years, ten different schools, ten different venues. You 
know and like his formula works every time” (K1). Koopa thus believed that his 
approach (as an artist) would be different than Anthony’s (as a mathematics teacher). 
Additionally, with the traditional impression that classroom teachers are authorita-
tive figures, Koopa claimed that he would be able to connect with students saying 
“I’m not as authoritative as he is you know?…But when you get down to the level 
of a 13 year old they respond to you a little better because like, I can let the fart jokes 
slide” (K1).
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�Keys to the Success of the Collaboration: Developing Mutual 
Respect

�Developing Impressions That Countered Past Experiences

Prior to meeting Anthony, Koopa expected all mathematics teachers to be similar to 
his own teachers, which he described as being “some boring guy up there explaining 
(mathematics) to me” (K1). Thus, he was pleasantly surprised after observing 
Anthony teach for the first time. Koopa described his initial impression of Anthony: 
“This math teacher seems really cool and hip and fun. He seems likeable to the kids. 
But he's a rare case. Somebody's been working 20 years in the school system, he'd 
be burnt out. They don't care” (K1). With initial hesitations related to his negative 
impressions of mathematics, mathematics classrooms, and mathematics teachers, 
Koopa was hesitant about how much he would enjoy working in a mathematics 
context. Yet, his positive impression of Anthony shows that Koopa may have had a 
more optimistic attitude about this collaboration even saying “[Anthony’s] so ener-
getic and so fun, you know I want to take his class…Like this guy made me be like, 
‘Shit maybe I want to take math again’” (K1).

In addition to watching Anthony teach, we set up an initial meeting for Koopa 
and Anthony to get to know each other as individuals. This proved to be fruitful as 
Koopa described his positive impressions of Anthony:

[J]ust hanging out with that guy was like you could see how like he could keep a class’ 
attention…You know but like I’m pretty sure he has a good success rate with his students 
that guy like wherever he goes. Because he has a good attitude. (K1)

Koopa’s comments show the positive impact of members spending time with one 
another early in the collaboration to get to know each other. We assert that these 
opportunities were an important component leading to the success of the collabora-
tion of Anthony and Koopa. In addition to becoming comfortable in each other’s 
presence and approach to working with students, it was critical for both to value the 
students and each other’s expertise and commitment to the project. Through this, 
Anthony and Koopa developed the mutual respect necessary to work together as 
true partners. Next, we describe how Anthony and Koopa further developed this 
mutual respect through a pivotal moment that cemented their collaboration.

�Making Respect Explicit: A Pivotal Moment

A key moment in developing Anthony and Koopa’s mutual respect was when Koopa 
publically vocalized his respect for Anthony during class time. After two classes of 
sparse successes in engaging the students to work on their projects, Koopa had 
developed a heightened respect and sense of appreciation for not only the teaching 
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profession but for Anthony in particular, as his energy and humor never seemed to 
dim in the face of students who resisted. In an unprovoked response to speaking to 
a classroom of students, at least half of whom had heads on desks, Koopa became 
visibly frustrated and addressed the students as a whole, commenting on their lack 
of understanding of how lucky they were that their teacher cared so much about 
their success. Addressing the class, he stated:

When I was growing up... you have a teacher here who cares, my teachers never cared. This 
guy cares take that to heart. Anything you learn here is to help you, it’s not for him he knows 
this, it’s not for me - I paint giant buildings, but it’s up to you. Take what you can get out of 
this. (paraphrased from field notes)

This moment was pivotal for the working collaboration and relationship that 
Anthony and Koopa shared and allowed an increased awareness for the importance 
of having a mutually existing respect between two individuals who were both simi-
lar and different in many ways. From Koopa’s perspective, the moment arose 
because he had become increasingly frustrated with how the students were acting in 
Anthony’s class. Students were sleeping and talking during class, and for Koopa, 
this was unacceptable. As he described in his second interview, “Kids were like just 
really getting unruly and I’d passed the point of like being understanding” (K2). 
Koopa felt that he needed to support Anthony because no one else was. He reflected, 
“I was just fed up, you know. Like Anthony’s still like laughing it up and like mak-
ing jokes and dealing with it but nobody’s sticking up for him, you know” (K2). 
Koopa’s frustration with the student’s treatment of their teacher was notably differ-
ent from the way in which he had first envisioned himself and his role within this 
classroom context. In the pre-interview, Koopa described the way he imagined 
reacting to students who were disengaged, with disengagement himself:

You know if he doesn’t wanna learn, I’m not gonna make him learn. Like I’m ok with you 
sittin’ there just don’t bother anybody else. You don’t wanna pay attention? Don’t. I’ll 
encourage you not to pay attention. If you’re not gonna get anything out of this, and you 
think your time is better off reading Of Mice and Men, I’ll let you sit in class and com-
pletely ignore me. (K1)

For Anthony, this moment was important because it was in this moment that he 
saw that Koopa had developed an appreciation for him. In a very public way, Koopa 
showed his support and mutual respect by defending Anthony. As Anthony reflected:

I know Koopa was surprised. He seemed to be someone who was very turned off by the idea 
of even being in the math classroom in the first place. I kept a lot of things to myself, but I 
was very unsure on how this was actually going to play out. And that’s a good thing. And 
he has a lot more respect for what I do for a living. And has told that. He blasted them (the 
students). “You don't understand what most math teachers are like. You don't understand 
what I had when I was your age…” It was awesome. I was like, “I didn't pay him to say that. 
Thank you though.” It was totally off the cuff too, because he was actually getting annoyed. 
(A2)

Anthony’s reaction to that moment was notable given his understanding of how 
Koopa initially perceived him.
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As previously discussed, respect is an integral component of the graffiti/urban 
arts culture/community. As a member of that community, Koopa deeply valued the 
notion of respect, and this came out in both interviews and classroom interactions. 
For example, during an interview, in recounting his frustration toward the students’ 
behavior toward Anthony, Koopa said:

So it was like one or two times like I sort of like told everybody all right, be quiet right now, 
I’ve got to tell you something, you know. And like this guy (Anthony) right here cares about 
you. For you guys to be sitting in class talking is totally disrespectful. Whatever term you 
want to use that to relate to but dis me on the street, disrespectful, the same thing. You’re 
being disrespectful to this guy and you’re going to learn in life and a lot of you probably 
even know this now that it’s really hard to find people that care about you in life and this 
guy does so give him your attention, all right? And I’m not just saying that because I’m 
here. I’m like I came from New York to do this for you too, you know. Like think this is a 
cakewalk for me? I’d rather be home with my family doing life, you know, but I’m here 
because I know this is important. So like please, just this guy cares. Give him some respect 
because you’re not going to find people like this, you know (bold added for emphasis). (K2)

As evidenced by Koopa defending Anthony to the students and voicing his appre-
ciation for the effort put forth by Anthony in his teaching, it is clear that Koopa 
respected Anthony. Being core to Koopa’s perspective, this respect helped to cement 
Koopa’s buy-in to the collaboration.

The relationship was able to grow from Koopa’s respect for Anthony’s hard work 
and dedication to his students, which tipped the balance in his proclivity to identify 
with the disengaged students who did not care about mathematics. This also enabled 
the development of a united teaching front between Anthony and Koopa, both play-
ing to each other’s strengths and being able to respond the strengths and interests of 
the students’ learning.

�Facilitating Collaboration: The Role of the Liaison (Written 
from the Perspective of the Liaison)

The transdisciplinary collaboration of Anthony and Koopa brought together two 
individuals from two disciplines (mathematics education and the urban arts, respec-
tively). A liaison, Melissa, proved to be critical in supporting and mitigate the chal-
lenges of this transdisciplinary collaboration, thereby leading to its success. In this 
section, we present the experiences and attributes that positively contribute to 
Melissa’s role as liaison and the considerations and challenges that she faced in her 
role. We have chosen to present this section written from Melissa’s perspective 
(thus, written in first person) to provide a personal narrative to highlight the signifi-
cant and complex role played by the liaison to support the success of the transdisci-
plinary collaboration of Anthony and Koopa.

***
What do mathematics and graffiti have in common? Why are we even asking the 

question? These were questions I (Melissa – the liaison) had been asking myself 
since the first day we introduced graffiti writer turned street artist Koopa to secondary 
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mathematics teacher Anthony. Being a liaison between the artist and the teacher 
meant that a certain amount of knowledge and level of comfort was required to be 
able to help move the project forward. In addition to having facilitated graffiti proj-
ects for over 10 years, I have also been offering a graffiti-based program at the 
school. Thus, I felt as though I had the necessary background knowledge to under-
stand the needs of the students as well as the timelines required for completing art 
projects.

Selecting an artist for a mathematics class was the first challenge, given that the 
students at our school typically struggle a great deal with mathematics, and it has 
represented a serious barrier for student success. The most success experienced at 
the school has been when the focus was on the students. The artist needed to be 
someone who could not only speak from the experience of having accomplished his 
or her professional art practices using mathematics concepts but someone who the 
students would relate to. As an artist coming from a graffiti background, Koopa had 
not only faced similar challenges to our students but also could understand the value 
of mentorship and of encouraging youth to gain the confidence and voice found in 
practicing art freely. Koopa had also been chosen for this project because of his past 
success in relating to the students he had worked with in the school. His manner of 
speaking with the students, informal but still clearly in control, and his never-ending 
stories seemed to pique the interest of the students in a previous large-scale mural 
project he had completed a year earlier with a group of students in an art class. 
Moreover, I knew we needed to have buy-in from the artist and teacher for what we 
were attempting. Both Koopa and Anthony agreed that incorporating art into a 
mathematics class would probably help increase student engagement and general 
interest.

However, what I had not carefully considered in selecting the artist was the rela-
tionship they would have to the subject matter and to the teacher. After the first 
interactions, I began to worry that Koopa might not have respect for the teaching 
profession and that his past negative experiences with school mathematics would 
outweigh his desire and ability to help the students succeed. Respect, particularly as 
documented in the history of the urban arts, is something earned through honest 
commitment to one’s practice. The negative experiences of Koopa’s past confirmed 
the truth of the old saying “those who can’t do teach.” Koopa asserted he was there 
to make mathematics interesting, a self-declared hater of mathematics, having only 
negative memories of his high school mathematics teachers in particular; he and 
Anthony thus made an unlikely pair.

After nearly a decade of experience working through graffiti in different school 
and community projects, one of the most important factors for success has been the 
matching of artists with the participants. Younger children in elementary school 
need a different kind of interaction than high school students or senior citizens; 
interests and life experiences always need to be considered and respected before any 
kind of collaboration can ensue. In my experience, what is often prevalent in graffiti 
writers’ attitudes about school is that their past has been so negative they do not 
want to have the one thing they have had positive experiences with (graffiti) be 
associated with or available through a school system which is negative, oppressive, 
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and domineering. Koopa was no exception; however he was able to see the bigger 
picture in what we were trying to accomplish through this project.

An important factor in this situation is that I have been successful in selecting 
and integrating artists into school settings, which are beneficial for both the students 
and the adults involved. Koopa echoed this sentiment in the pre-interview before the 
project began:

More schools need to be like that but I think what’s different, I mean besides the fact that 
she (Melissa) chose me to teach it, it’s more like the people you bring. They have to be 
effective. Cuz you can’t just grab any old street artist and throw ‘em in this environment and 
think that’s gonna work. It’s not you know? She’s, Melissa’s really selective of who she 
brings in, she’s made great choices you know? (K1)

Having put full confidence in Koopa to try something so different, I was nervous 
about the curricular material given that I have little understanding of most mathe-
matics concepts myself. Trying to understand how arts could be integrated into this 
unit, I also took some time to consult with a mathematics education PhD colleague 
of mine, furthering the importance of collaboration in this project. The phrase “It 
takes a village” started to feel very pertinent as this kind of project took buy-in from 
a cross section of adults before the kids were even introduced into the equation. 
After understanding the concept of dilations, I realized that ratios is something 
which graffiti writers need to understand well, given they sketch endlessly in their 
black books before putting up their pieces large scale. Once we agreed on the art 
project, and knowing how long art projects generally take to advance, we settled on 
an alphabet which the students would use and be able to reproduce themselves, 
increasing their ownership over the letters and putting the emphasis on their ability 
to scale the measurements properly.

Once the content was agreed upon, the first class happened, and I became aware 
of how foreign the traditional classroom was for Koopa. The circumstances were 
quite different from his prior experience at the school, which involved taking a 
selected group of five students out of their art class for 2 months time to work on 
developing and producing a mural (Proietti, 2015). For the artist-teacher collabora-
tion with Anthony, the two were going to be working with the entire class together 
every day for the entire unit, which meant classroom management and concept 
learning were now the focus, differing from the mural project described earlier, in 
which the art process/product was the objective.

There were definite growing pains in the first class, going from associating with 
the students to now being the teacher. Koopa was unprepared for how the difference 
would affect him; he dressed differently, read out of the textbook for most of the 
class, and had less jokes and casual remarks than usual. Given the importance of the 
role of the mentor and understanding how important personal relationships with our 
students are, I thought it best to check in with Koopa as soon as the class was over. 
In a little informal debrief session on a bench in the hallway, Koopa was visibly 
flustered and stated, “That was rough.” We talked about what was difficult and why. 
He expressed his level of discomfort being in front of the class, at which point we 
discussed how he could fulfill his teaching role while still staying true to his identity, 
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which the students seemed to connect better with. It seemed like, along with every 
other aspects of this project, the knowledge sharing, mentorship, and collaboration 
between us as colleagues were what truly enabled the actual curriculum delivery 
possible. Koopa reflected in an interview midway through the project about how the 
development of the project was happening.

So Melissa thought it would be good to like show them a little bit of my website once a day 
and show them how things relate to what we’re doing. So you know, like the first time that 
we put that into theory I brought in a little sketch of a turtle that I did on a building that I 
drew and I drew the grid system on it and then I pulled up my website the actual two storey 
building I painted it on and I could show them from here to here, how did I do that. By using 
that formula we learned this week, you know. So just this like few classes that we did that 
gave them a better grasp of like this is not a waste of my time, you know. (K2)

�Conclusion

The case of Anthony and Koopa illustrates the positive potential of extending 
beyond disciplinary boundaries to form a transdisciplinary collaboration. With the 
support of Melissa (a liaison), Anthony (a mathematics educator) and Koopa (an 
urban street artist) came together in the Urban Arts Project with the common goal to 
support generally disengaged and academically struggling students at Central High 
School. Grounded in trust and mutual respect, each member allowed the other to 
bring in their personal and disciplinary approaches to the collaboration. Through 
their joint work, Anthony and Koopa developed a shared conceptual framework 
(Slaton et al., 2004) that consisted of (a) goals for supporting students’ success, both 
artistically and mathematically, (b) a pedagogical approach that drew together wis-
dom about street art (e.g., lettering, work ethic, etc.) and knowledge of geometric 
procedures, and (c) an approach to co-teaching that drew upon their disciplinary 
knowledge. It is this shared framework that identifies Anthony and Koopa’s trans-
disciplinary collaboration (Slatin et al., 2004).

Several factors suggested that this transdisciplinary collaboration was success-
ful. The increased respect, as evidenced by the interviews, was an important indica-
tion that Koopa and Anthony valued the collaboration. Moreover, students seemed 
to enjoy the interdisciplinary units and attendance in class increased. Anthony and 
Koopa noted that there was a noticeable increase in student engagement and auton-
omy. Mathematics learning seemed to be enhanced as there was an improvement in 
students’ mathematics achievement, as evidenced by their performance on summa-
tive assignments.

We do not naively assume that any transdisciplinary collaboration will be suc-
cessful. As evidenced by early comments from both Anthony and Koopa, members 
may enter the collaboration with assumptions and hesitations developed from previ-
ous experiences. For the collaboration of Anthony and Koopa, we assert that mutual 
respect was a critical component to support the success of their collaboration. 
Bringing previous negative experiences as a mathematics student, Koopa had doubts 
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about working with a mathematics teacher. Coming from the urban arts culture, 
where respect is of utmost importance, Koopa’s early lack of respect for mathemat-
ics teachers hindered his full commitment to the project. Yet, an opportunity to see 
Anthony teach prior to the interdisciplinary unit showed Koopa that this mathemat-
ics teacher was animated, engaged, and dedicated to his students. Koopa respected 
Anthony for his approach and continued on with the collaboration with a new found 
commitment. However, this success was also due in large part to the work of the 
liaison in selecting an artist that would pair well with the teacher and students. 
Although not intentional, the liaison selected an artist whose personality comple-
mented the teacher and whose previous hated mathematics experiences differed sig-
nificantly from the teaching approach of the teacher.

For Anthony, his skepticism of the benefits of a collaboration (resulting from a 
previous negative collaborative experience) made it difficult for him to trust Koopa 
in the early phases of the collaborative process. Through the pivotal moment, in 
recognizing Koopa’s commitment to the project and respect for Anthony as a 
teacher, Anthony cemented his trust in his partner, and the collaboration could begin 
to flourish (Mattessich & Monsey, 1992; McLaughlin & Talbert, 2006). This pivotal 
moment and the effect it had on the collaboration highlight the power of collabora-
tions that happen authentically. We acknowledge that this pivotal moment occurred 
organically and in no way did we prompt the events to unfold. Yet, we humbly sug-
gest that the liaison’s (Melissa’s) thoughtful selection of a passionate and commit-
ted artist encouraged a respectful collaboration to emerge. We also assert that this 
was a moment of true serendipity and may very well have had the profound effect 
on both Anthony and Koopa due to the spontaneity of the exchange. At a time when 
both members were still tentatively moving forward with the collaboration, the sin-
cere emotion of the moment spoke volumes and forged a relationship with trust 
(Tschannen-Moran, 2001). Additionally, this moment also suggests the importance 
of having spaces where partners can articulate their respect for one another.

As Anthony and Koopa’s collaboration occurred within a classroom context, the 
students also played a role in the collaboration. In the pivotal moment, while 
Koopa’s remarks had a profound impact on Anthony, the students in the classroom 
were in fact Koopa’s intended audience. Pedagogically, it seemed that Koopa’s 
focus was to set expectations for students’ participation, both showing his role in the 
classroom and explicitly articulating his expectations and norms for participation to 
all stakeholders (both his collaborator and the students). We encourage teachers and 
collaborators to make clear to students their expectations for how they should inter-
act with each partner resulting in a common understanding for all.

Happening over a relatively short timespan, this transdisciplinary collaboration 
faced a challenge of not having ample time to forge a comfort with each other and 
the context (Marlow et al., 2005). In addition to playing a key role in selecting the 
artist, through purposeful interventions, the liaison provided suggestions for how to 
shape the roles of the teacher and artist to increase their comfort when co-teaching 
(e.g., by suggesting that Koopa show a bit of his artwork at the start of each class). 
The liaison’s expertise with the culture of graffiti and with the culture of the school 
helped her navigate how she supported the artist and teacher. However, in addition, 
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drawing upon additional supports (such as her PhD mathematics education col-
league) was important for the liaison to further her understanding in order to help 
support the planning between the artist and teacher. Our study not only shows the 
importance of a liaison in facilitating transdisciplinary collaboration but also con-
siderations for how the liaison approaches his or her role.

While collaboration may have its challenges, its potential to yield positive out-
comes cannot be ignored. As such, collaborative models for professional develop-
ment are becoming more and more common in education contexts, for example, 
peer coaching (Hargreaves & Dawe, 1990; Jao, 2013; Showers & Joyce, 1996), 
co-teaching (Cook & Friend, 1995; Friend, Cook, Hurley-Chamberlain, & 
Shamberger, 2010), and professional learning communities (DuFour & Eaker, 2005; 
Stoll, Bolam, McMahon, Wallace, & Thomas, 2006). In these initiatives, teachers 
typically collaborate with other members of the education community (e.g., princi-
pals, consultants, education researchers, other teachers). In contrast, as part of the 
Urban Arts Project, teachers were partnered with members of the urban arts com-
munity to integrate the urban arts into their teaching. Given the success of this 
transdisciplinary collaboration, we encourage (mathematics) educators to think 
more broadly about opportunities and options for collaboration. By extending 
beyond disciplinary boundaries, collaborators can learn and benefit from varied and 
diverse perspectives.
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