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Abstract This study examines the effect of undersampling on the detection of out-
liers in terms of the number of errors in embedded software development projects.
Our study aims at estimating the number of errors and the amount of effort in projects.
As outliers can adversely affect this estimation, they are excluded from many esti-
mation models. However, such outliers can be identified in practice once the projects
have been completed; therefore, they should not be excluded while constructing
models and estimating errors or effort. We have also attempted to detect outliers.
However, the accuracy of the classifications was not acceptable because of a small
number of outliers. This problem is referred to as data imbalance. To avoid this prob-
lem, we explore rebalancing methods using k-means cluster-based undersampling.
This method aims at improving the proportion of outliers that are correctly identi-
fied while maintaining the other classification performance metrics high. Evaluation
experiments were performed, and the results show that the proposed methods can
improve the accuracy of detecting outliers; however, they also classify too many
samples as outliers.
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1 Introduction

Thegrowth and expansionof our information-based society has resulted in an increas-
ing number of information products. In addition, the functionality of these products is
becoming evermore complex [6, 14]. Guaranteeing the quality of software is particu-
larly important because it relates to reliability. Therefore, it is increasingly important
for corporations that develop embedded software to implement efficient processes
while guaranteeing timely delivery, high quality, and low development costs [2, 12,
15, 16, 18–21]. Companies and divisions involved in developing of such software
focus on a variety of improvements, particularly in their processes. Estimating the
number of errors and the amount of effort is necessary for new software projects and
guaranteeing product quality is particularly important because the number of errors
is directly related to the product quality and the amount of effort is directly related
to cost, which affect the reputation of the corporation. Previously, we investigated
the estimation of total errors and effort using an artificial neural network (ANN) and
showed that ANN models are superior to regression analysis models for estimating
errors and effort in new projects [8, 9]. We proposed a method to estimate intervals
for the amount of effort using a support vector machine (SVM) and an ANN [7, 10].
These models were constructed with data that excluded outliers. The outliers can
be identified in practice once the projects have been completed. Hence, they should
not be excluded while constructing models and estimating effort. We attempted to
classify embedded software development projects based on verifying whether the
amount of efforts was an outlier using an ANN and SVM [11]. However, the accu-
racy of the classifications was not acceptable because of a small number of outliers.
This problem occurs in most machine learning methods and is referred to as data
imbalance. It exists in a broad range of experimental data [1, 22]. Data imbalance
occurs when one of the classes in a dataset has a very small number of samples
compared to the number of samples in other classes. When the number of instances
of the majority class exceeds that of the minority class by a significant amount, most
samples are classified into a class to which the majority samples belong. Therefore,
the number of the outliers is small, and they are classified as normal values. To avoid
this problem, we explored rebalancing methods in terms of errors using k-means
[5] cluster-based undersampling. Evaluation experiments were performed to com-
pare the classification accuracy using k-means undersampling with that of random
undersampling and no undersampling using ten-fold cross-validation.
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2 Related Work

2.1 Undersampling

Undersampling is one of the most common and straightforward strategies for han-
dling imbalanced datasets. Samples of the majority class are dropped to obtain a
balanced dataset. Simple undersampling randomly drops samples to generate a bal-
anced dataset.

2.2 Cost-Sensitive Learning

Unlike cost-insensitive learning, cost-sensitive learning is a type of learning that
considers misclassification costs [17]. Additionally, cost-sensitive learning imposes
different penalties for different misclassification errors. It aims at classifying samples
into a set of known classes with high accuracy. Cost-sensitive learning is a common
approach that solves the problem associated with imbalanced datasets.

2.2.1 Cost-Sensitive SVMs

SVMs have proven to be effective in many practical applications. However, the
application of SVMs has limitations when applied to the problem of learning from
imbalanced datasets. A cost-sensitive SVM,which assigns differentmisclassification
costs, is good solution to address the problem [3, 13]. Such an SVM is develped
using different error costs for the positive and negative classes, and can improve
classification accuracy for a small number of classes.

2.3 Our Contribution

The above algorithm has a certain level of classification accuracy for some imbal-
anced datasets; however, it cannot improve the accuracy for highly imbalanced
datasets. Therefore, in this research, we proposed a rebalancing method using k-
means cluster-based undersampling.
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3 Datasets and Outliers

3.1 Original Datasets

Using data from a large software company, the classification methods divide the
number of anticipated errors into normal values and outliers. The data consist of the
following features:

Class:
This indicates whether the total number of errors for an entire project is a normal
value or an outlier. Predicting this value is the objective of the classification.

Volume of newly added steps (Vnew):
This feature denotes the number of steps in the newly generated functions of the
target project.

Volume of modification (Vmodify):
This feature denotes the number of steps modified or added to existing functions
that were needed to use the target project.

Volume of the original project (Vsurvey):
This feature denotes the original number of steps in the modified functions and
the number of steps deleted from the functions.

Volume of reuse (Vreuse):
This feature denotes the number of steps in a function of which an external specifi-
cation is only confirmed and which are applied to the target project design without
confirming the internal content.

3.2 Determination of Outliers

This study examined the classification of outliers in terms of the number of errors
in a project. Fig. 1 shows the distribution of the number of errors, whereas Fig. 2 is
a boxplot of this metric. The lowest datum of the boxplot is 0, which is the lowest
possible number of errors in the projects and higher than 1.5 times the interquartile
range (IQR) of the lower quartile. The highest valid datum is within 1.5 times the IQR
of the upper quartile. The outliers are denoted by circles. Here, the values are spread
along the Y-axis to more clearly present the distribution of the outliers; however, the
Y-coordinate has no other meaning. Of the total of 1,419 data points, 143 are outliers.
Detailed values of the boxplot are listed in Table1.
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Fig. 1 Distribution of the total number of errors (in intervals of 500 errors)

Fig. 2 Boxplot of the number of errors

Table 1 Detailed information of the boxplot shown in Fig. 2

IQR Minimum Lower
quartile

Median Upper
quartile

Maximum

Values 189.0 0.0 35.0 86.0 224.0 507.5
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4 Classification Methods

The following classification methods were created to compare their accuracy:

• SVM without undersampling (SVM w/o).
• Cost-sensitive SVM without undersampling
(CSSVM).

• SVM with random undersampling (W/Random).
• SVM with k-means cluster-based undersampling
(W/n Clusters), where n is the number of clusters, which is varied from 2 to 15.

4.1 K-Means Cluster-Based Undersampling

The k-means clustering algorithm aims at finding the positions of clusters that mini-
mize the distance from the data points to k clusters. The algorithm is often presented
as a method that assigns samples to the nearest cluster by distance. The main steps
of k-means are to select the initial cluster centers, change the classification of the
data based on Euclidean distance and adjust the cluster centers according to the clas-
sification result. The clustering results are largely dependent on the initial cluster
assignment. In this research, the clustering algorithm is applied to undersampling.
The k-means cluster-based undersampling algorithm is shown in Algorithm 1.

Algorithm 1 Algorithm of K-Means Cluster-Based Undersampling
Require: L: majority class samples from a training set, S: minority class samples from a training

set, k: the number of clusters.
Ensure: Lu : under-sampled samples
1: Initialize Lu to empty-set
2: Use k-means clustering to form clusters on L denoted by Ci , where 1 < i ≤ k
3: for i = 1 to k do
4: Calculate the number of samples for all the clusters denoted by:

ni = |Ci |
|L| × |S|

, where |X | indicates the number of elements in X
5: Set T to ni elements selected randomly from Ci
6: Assign the union Lu and T to Lu
7: end for
8: return Lu
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5 Evaluation Experiment

5.1 Data Used in the Evaluation Experiment

To evaluate the performance of the proposed technique, we performed ten-fold cross-
validation on data from 1,419 real projects. The original data were randomly par-
titioned into 10 equally sized subsamples (each subsample having data from 141
or 142 projects). One of the subsamples was used as the validation data for testing
the model, while the remaining nine subsamples were used as training data. The
cross-validation process was repeated 10 times, with each of the 10 subsamples used
exactly once as validation data. An example of ten-fold cross-validation is shown in
Fig. 3.

5.2 Evaluation Criteria

This study focused on the imbalance problem wherein the minority class (outliers)
hasmuch lower precision and recall than themajority class (normal values).Accuracy
metrics place more weight on the majority class than on the minority class, which
makes it difficult for a classifier to perform well on the minority class.

By convention, the class label of the minority class is positive, whereas that
of the majority class is negative. The True Positive (TP) and True Negative (TN)
values, as summarized in Table2, denote the number of positive and negative samples

Fig. 3 Ten-fold cross-validation
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Table 2 Confusion matrix Predict positive Predict negative

Actual positive TP FN

Actual negative FP TN

that are correctly classified, while the False Positive (FP) and False Negative (FN)
values denote the numbers of samples incorrectly classified as positive and negative,
respectively.

The following eight criteria were used as performance measures for the classifi-
cation methods. The best value of these criteria is 1.0, whereas the worst is 0.0.

(1) Accuracy (ACC) is the proportion of the total number of predictions and
is calculated as the number of all correct predictions divided by the total
number of samples using the following equation:

ACC = TP + TN

TP + TN + FP + FN
. (1)

(2) Precision (PREC) is the proportion of correctly predicted positive cases. It
is calculated as the number of accurate positive predictions divided by the
total number of positive predictions using the following equation:

PREC = TP

TP + FP
. (2)

(3) Sensitivity (SN , recall, or TP rate) is the proportion of positive cases that
are correctly identified. It is calculated as the number of correct positive
predictions divided by the total number of positives using the following
equation:

SN = TP

TP + FN
. (3)

(4) Specificity (SP or TN rate) is defined as the proportion of negative cases
that are correctly classified and calculated as the number of correct negative
predictions divided by the total number of negatives using the following
equation (4):

SP = TN

TN + FP
. (4)

(5, 6, 7) The F-measure (Fβ) is the harmonic mean of precision and sensitivity. It
is calculated as a weighted (β) average of the precision and sensitivity as
follows:

Fβ = (1 + β2) × PREC × SN

β2 × PREC + SN
. (5)



Detecting Outliers in Terms of Errors in Embedded Software Development … 73

Table 3 Classification results obtained using the support vector machine without undersampling
(SVM w/o) Method

Predicted classes

Outliers Normal values

Actual classes Outliers 65 78

Normal values 16 1260

Table 4 Classification results obtained using the cost-sensitive SVM without undersampling
(CSSVM) Method

Predicted classes

Outliers Normal values

Actual classes Outliers 26 117

Normal values 0 1276

F-measures F0.5, F1, and F2 are commonly used. The larger β, the more
importance sensitivity has in the equation.

(8) The G-measure (G) is based on the sensitivity of both the positive and
negative classes, calculated as follows:

G = √
SN × SP. (6)

This paper aimed to detect all of outliers; however, there is a trade-off between
precision and sensitivity. In generally, precision improves at the expense of sensitivity
and sensitivity improves at the expense of precision [4]. Thus, improving SN , F2 and
G was importantwhilemaintaining the other classification performancemetrics high.

5.3 Results and Discussion

For each method described in Sect. 4, the confusion matrices of the experimental
results for all projects using ten-fold cross-validation are presented in Tables3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20. The values in the tables
represent the aggregate over 10 experiments. The results in the tables are summarized
in Figs. 4, 5, 6, and 7. High values in Figs. 4 and 5 mean high accuracy. In contrast,
low values in Figs. 6 and 7 suggest high accuracy.

Table20 summarizes the results of the criteria for all methods. The underlined
values indicate the best results. The top five methods for each criterion are indicated
in bold type. The results of the criteria for SVM w/o, CSSVM, W/Random and
W/14 Clusters appear in Fig. 8. The results of W/n Clusters except W/14 Clusters
are omitted because these show similar features.
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Table 5 Classification results obtained using the SVM with random undersampling (W/Random)
Method

Predicted classes

Outliers Normal values

Actual classes Outliers 115 28

Normal values 137 1139

Table 6 Classification results obtained using the W/2 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 131 12

Normal values 302 974

Table 7 Classification results obtained using the W/3 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 130 13

Normal values 309 967

Table 8 Classification results obtained using the W/4 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 136 7

Normal values 301 975

Table 9 Classification results obtained using the W/5 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 131 12

Normal values 310 966

Table 10 Classification results obtained using the W/6 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 133 10

Normal values 299 977
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Table 11 Classification results obtained using the W/7 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 137 6

Normal values 313 964

Table 12 Classification results obtained using the W/8 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 131 12

Normal values 312 964

Table 13 Classification results obtained using the W/9 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 133 10

Normal values 299 977

Table 14 Classification results obtained using the W/10 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 133 10

Normal values 311 965

Table 15 Classification results obtained using the W/11 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 132 11

Normal values 292 984

Table 16 Classification results obtained using the W/12 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 137 6

Normal values 306 970
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Table 17 Classification results obtained using the W/13 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 130 13

Normal values 299 977

Table 18 Classification results obtained using the W/14 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 134 9

Normal values 289 987

Table 19 Classification results obtained using the W/15 clusters method

Predicted classes

Outliers Normal values

Actual classes Outliers 134 9

Normal values 321 955

Table 20 Accuracy comparison for all methods

ACC PREC SN SP F0.5 F1 F2 G

SVM w/o 0.9338 0.8025 0.4545 0.9875 0.6959 0.5804 0.4977 0.6700

CSSVM 0.9175 1.000 0.1818 1.0000 0.5263 0.3077 0.2174 0.4264

W/Random 0.8837 0.4563 0.8042 0.8926 0.4996 0.5823 0.6978 0.8473

W/2 Clusters 0.7787 0.3025 0.9161 0.7633 0.3493 0.4549 0.6517 0.8362

W/3 Clusters 0.7731 0.2961 0.9091 0.7578 0.3423 0.4467 0.6429 0.8300

W/4 Clusters 0.7829 0.3112 0.9510 0.7641 0.3596 0.4690 0.6739 0.8525

W/5 Clusters 0.7731 0.2971 0.9161 0.7571 0.3435 0.4486 0.6466 0.8328

W/6 Clusters 0.7822 0.3079 0.9301 0.7657 0.3554 0.4626 0.6624 0.8439

W/7 Clusters 0.7759 0.3051 0.9580 0.7555 0.3533 0.4628 0.6709 0.8508

W/8 Clusters 0.7717 0.2957 0.9161 0.7555 0.3420 0.4471 0.6453 0.8319

W/9 Clusters 0.7822 0.3079 0.9301 0.7657 0.3554 0.4626 0.6624 0.8439

W/10 Clusters 0.7738 0.2995 0.9301 0.7563 0.3465 0.4532 0.6545 0.8387

W/11 Clusters 0.7865 0.3113 0.9231 0.7712 0.3589 0.4656 0.6627 0.8437

W/12 Clusters 0.7801 0.3093 0.9580 0.7602 0.3577 0.4676 0.6749 0.8534

W/13 Clusters 0.7801 0.3030 0.9091 0.7657 0.3497 0.4545 0.6494 0.8343

W/14 Clusters 0.7900 0.3168 0.9371 0.7735 0.3651 0.4735 0.6734 0.8514

W/15 Clusters 0.7674 0.2945 0.9371 0.7484 0.3413 0.4482 0.6524 0.8375
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Fig. 4 Number of TP for methods

Fig. 5 Number of TN for methods

Fig. 6 Number of FP for methods

The SVM w/o method shows the best ACC; however it is second worst with
respect to SN . This is because most outliers are classified into a class of normal
values (the majority class) specified in Table3, which is a common problem with
imbalanced datasets.

The CSSVM method obtains a perfect result for PREC; however, it obtains the
worst result for SN . This is because the method imposes heavier costs for misclas-
sifying outliers and can reduce FP. At the same time, it increases FN . The results
indicate that CSSVM can accurately detect some outliers; however it overlooks most
outliers. In other words, the outliers predicted by CSSVM must be actual outliers;
however, only a few outliers are detected by it.
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Fig. 7 Number of FN for methods

Fig. 8 Accuracy comparison of four methods

The results of the methods with undersampling show similar results. They have
higher SN , F2 and G but lower PREC than those of the methods without undersam-
pling. TheW/Randoms method obtains higher PREC than those of the methods with
k-means cluster-based undersampling. In contrast, the W/n Clusters methods have
better results in terms of SN . In addition, the classification criteria accuracy depends
on the number of clusters, and all results of the W/14 Clusters method are within the
top five. These results show that the proposed methods can improve the accuracy of
detecting outliers; however they tend to classify too many samples as outliers.

6 Conclusion

This research examined the ability of undersampling to detect outliers in terms of
the number of errors in embedded software development projects. The undersam-
pling method was based on the k-means clustering algorithm. The method aimed at
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improving the proportion of outliers that were correctly identified while maintaining
the other classification performance metrics high.

Evaluation experiments were conducted to compare the prediction accuracy of the
methods with k-means undersampling, random undersampling and without under-
sampling using ten-fold cross-validation.

The results indicated that the methods with undersampling have higher sensitivity
and lower precision than those of the methods without undersampling. The results
further indicated that the proposed methods improved the accuracy of detecting
outliers but classified too many samples as outliers.

In future research, we plan to investigate the following:

1. We plan to apply the oversampling method to improve the accuracy of precision,
while keeping sensitivity high.

2. We intend to consider other methods to detect outliers.
3. More data are needed to further support our research. In particular, data for

projects that include outliers are essential for improving the models.
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