
Geometric Methods in Physics. XXXV Workshop 2016

Trends in Mathematics, 269–280
c© 2018 Springer International Publishing

Complex Algebraic Geometry
Applied to Integrable Dynamics:
Concrete Examples and Open Problems

E. Previato

Mathematics Subject Classification (2010). Primary 34M15; Secondary 14H70.

Keywords.Differential algebra; theta functions; vector bundles; integrable par-
tial differential equations (PDEs).

WHAT IS. . . ?

In September 2002, the Notices of the American Mathematical Society launched
a new feature, published in each issue since then, with the following mission state-
ment: “This is the inaugural installment of the “WHAT IS. . . ?” column, which
carries short (one- or two-page), nontechnical articles aimed at graduate students.
Each article focuses on a single mathematical object, rather than a whole theory”1.

This is a very popular feature of the Notices, and since the School’s goal is
to introduce an area of research, I tailored my three lectures after it. The original
plan was to cover Elliptic and Hyperelliptic Theta Functions, and their general-
ization – Klein’s higher-genus sigma function – specifically to construct solutions
to integrable hierarchies such as the Toda Lattice [KMP]; introduce vector bun-
dles over curves and their moduli, with applications to algebraically completely
integrable Hamiltonian systems (ACIs) [Hi]; then bring the two topics together
through classical theorems of projective geometry, in recent applications, for ex-
ample, to random-matrix theory (Painlevé equations) [HaS]. As the lectures un-
folded, more detail was required and the three lectures reorganized as follows:
the first and second are concerned with aspects of elliptic/hyperelliptic curves in
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classical geometry, recently adapted to applications in integrability, in both the
contexts of PDE hierarchies and of ACIs. The final lecture covered the Kleinian
sigma function, concluding with Baker’s striking interpretation in projective ge-
ometry of the PDEs that characterize it: this is a tool that brings vector bundles
into integrability, but there was no time for specifics

1. Lecture I: What is an elliptic curve?

As Mumford says in [Mum1, Lect. I], “The beginning of the subject is the Amaz-
ing Synthesis, which surely overwhelmed each of us as graduate students”, and
which he illustrates by the three natures of curves: Algebra (finitely generated field
extensions of transcendence degree one over C); Geometry (subvarieties of projec-
tive space Pn, locally defined by n − 1 homogeneous polynomial equations with
independent differentials); Analysis (compact Riemann surfaces). I started with
the Analysis nature of the elliptic curve, the torus E = C/{n + mτ, n,m ∈ Z},
which becomes Algebra by virtue of the ODE satisfied by the Weierstrass ℘ func-
tion, the doubly periodic meromorphic function whose poles occur at the vertices
of the lattice with the smallest possible multiplicity, two. An introduction both
accessible and comprehensive, including a proof that the field K of meromorphic
functions on E is generated by ℘ and ℘′, can be found in [DuV].

Two remarks are relevant.

Remark 1. The role of the elliptic curve in integrability. The Korteweg–de Vries
(KdV) equation,

ut +
3

2
uux −

1

4
uxxx = 0

was proposed in the 19th century to model waves in a shallow canal (the value
of u(x, t) represents the height of the wave, the coordinate x the position in the
canal); it was therefore natural to make the ‘one-wave ansatz’, u(z, t) = v(x− ct),
c a constant, where the function v(z) should satisfy the ordinary differential equa-
tion −cv′ + 3

2vv
′ − 1

4v
′′′ = 0. By integrating twice, it was originally observed that

the general solution is then an elliptic function, v(x) = 2℘(z+α)+a (α, a two addi-
tional constants introduced by integration; when a assumes special values so that
the cubic polynomial defining the elliptic curve has repeated roots, the solution
becomes an elementary function, given in terms of exponentials or trigonomet-
ric/hyperbolic functions.) A modern example arises in statistical mechanics, as a
one-dimensional lattice with exponential (nearest-neighbor) interaction, the Toda
(differential-difference) system:

d2rn
dt2

= a[2 exp(−brn)− exp(−brn−1)− exp(−brn+1)],

where a, b are arbitrary constants and n is any integer. By the transformation:

r = −1

b
ln

(
1 +

f

a

)
,
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d2

dt2
ln

(
1 +

fn
a

)
= b(fn−1 + fn+1 − 2fn),

Toda [T] produced exact solutions, expressed algebraically in terms of (Jacobi)
elliptic functions,

fn =
(2kν)2

b

[
dn2

(
2K(νt− n

λ
)
)
− E

K

]
,

where ν is the frequency, λ the wavelength,K and E are complete elliptic integrals
of the first and second kind for the modulus k:

K =

∫ π/2

0

dθ√
1− k2 sin2 θ

, K =

∫ π/2

0

√
1− k2 sin2 θdθ;

the formula shows that the discrete evolution corresponds to the addition of a point
on the elliptic curve: the addition law is arguably the reason for the “unreasonable
effectiveness” of elliptic functions in dynamics.

Remark 2. Less famous than the Weierstrass equation, (℘′)2 = 4℘3 − g2℘ − g3,
two differential properties that characterize the ℘ function were forerunners of the
theory of integrable PDEs. On the one hand, I mention ℘′′ = 6℘2 − g2/2, because
the theory of the “higher-genus Kleinian function” σ [B, BEL], to which Lecture
III is devoted, and which generalizes the genus-one Weierstrass sigma function, is
centered on the search for a complete set of (partial, in higher genus) differential
equations satisfied by σ; complete in the sense of differential algebra, for example,
namely sets that are bases of differential ideals that define the differential rings of
the algebraic varieties where σ is defined. On the other hand, Baker, as pointed out
in [EE], wrote an equation for the σ function of a hyperelliptic curve of genus two,
using the “bilinear operator” that Hirota rediscovered independently and yields
the “Hirota form” of the Kadomtsev–Petviashvili (KP) equation (ut + 6uux +
uxxx)x + 3uyy = 0, namely

(DxDt +D4
x + 3D2

y)τ · τ = 0,

for w(x, y, t) = 2 ln∂2xτ(x, y, t), where two differentiations DuDv applied to τ · τ
signify

∂

∂u

∂

∂v

(
τ(u + v)τ(u − v)

)
|u=v

The Weierstrass equation thus provides the Algebra aspect of E, which Mum-
ford (loc. cit.) describes as “field extensions K ⊃ C, where K is finitely generated
and of transcendence 1 over C.” I then gave three versions of the Geometry nature
of an elliptic curve, all closely related to integrable systems, the third one less
known. Briefly: The first, as a smooth cubic in the plane, in Weierstrass normal
form, y2 = 4x3 − g2x − g3; The second, as the intersection of two quadrics in
3-dimensional projective space P3 – these embeddings are images under the di-
visor map for the linear series of 2∞ and 3∞ respectively, where ∞ is the point
[0, 0, 1] of the Weierstrass cubic in projective coordinates [x0, x1, x2] for which
x = x1/x0, y = x2/x0. These two projective models can be brought together by the
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third geometric representation, namely, the incidence correspondence I ⊂ C ×D∗

with a choice of origin for the group law [BKOR]. Here the points of the curve are
pairs (P, �), with P a point in a fixed conic C and � one of the two lines through P
that are tangents to another fixed conic D; C and D must be in general position,
and the limiting cases correspond to cubics that define rational curves. The model
provides a beautiful proof of the classical “Poncelet’s Porism Theorem”, very much
relevant to integrable dynamics, such as billiard or geodesic motion [P3].

2. Lecture II: Differential algebra

We now meet another, less known, nature of the elliptic curve.

2.1. Burchnall and Chaundy

A fourth nature of the elliptic curve emerged in the 20th century, in fact surpris-
ingly early. In [BC], the authors pose the following question: what is the structure
of a commutative subalgebra of the C-algebra of Ordinary Differential Operators
(ODOs) that is not of the form C[L], with L an ODO? We briefly recall the set-
ting: we choose to work in the formal one of the algebra of Pseudo Differential
Operators (ΨDOs), which is the most general, with the disadvantage that no con-
vergence is addressed; for more restrictive (and precise) functional restrictions, cf.
Sato’s work, e.g., [SS].

Definitions. (i) The ring of formal pseudodifferential operators Ψ is the set{ N∑
j=−∞

uj(x)∂
j , uj a formal power series

}
.

If we think of these symbols as acting on functions of x by multiplication and
differentiation: (u(x)∂)f(x) = u d

dxf , and formally integrate by parts:
∫
(uf) =

u
∫
f −

∫
(u′f), we can motivate the composition rules:

∂−1∂ = ∂∂−1 = 1, ∂u = u∂ + u′, ∂−1u = u∂−1 − u′∂−2 + u
′′
∂−3 − . . .

and easily check an extended Leibnitz rule for a function f and for A,B ∈ Ψ:

∂if · =
∞∑
j=0

(
i

j

)
(∂jf)∂i−j · , A ◦B =

∞∑
i=0

1

i!
∂̃iA ∗ ∂iB,

where ∂̃ is a partial differentiation w.r.t. the symbol ∂ and ∗ has the effect of
bringing all functions to the left and powers of ∂ to the right.

(ii) Ψ contains the subring D of differential operators A =
∑N

0 uj∂
j and we

denote by ( )+ the projection B+ =
∑N

0 uj∂
j where B =

∑N
−∞ uj∂

j . The much
studied Weyl algebra in two generators, C[p, q] with multiplication rule defined by
the commutator [p, q] = 1 can be viewed as a subring of D, namely the operators
with polynomial coefficients, by letting p = ∂ and q = x.
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(iii) The Burchnall–Chaundy (hereafter BC for short) problem asks to find
and classify all commutative subrings of D. If we denote by CD(L) the centralizer
in D of an element L ∈ D, we see that the polynomial ring C[L] is always contained
in CD(L). We also see that if L has order n > 0 then L can be brought to standard
form:

L = ∂n + un−2(x)∂
n−2 + un−3(x)∂

n−3 + · · ·+ u0(x)

by using change of variable and conjugation by a function, which are the only two
automorphisms of D; we shall always assume L to be in standard form, and define
a BC solution to be such an L for which CD(L) is not a polynomial ring C[M ],
M ∈ D. Notice that any translation in x : x 
→ x− a, transforms a BC solution L
into another solution La. We refer to this operation as the “x-flow”.

(iv) The rank of a subset of D is the greatest common divisor of the orders
of all the elements of D.

Now we can give two new models for the elliptic curve (for references and
more examples cf. [P2]):

The classical “Lamé operator” L = ∂2 − c℘(x), where c ∈ C is a constant, is
a BC solution iff c = n(n + 1) with n an integer greater than zero; if this is the
case, the centralizer CD(L) is the affine ring of a hyperelliptic curve of genus n,
given by an equation: μ2 = λ2n+1+ lower order, or an elliptic curve when n = 1.
A singular-cubic example is given by:

L = ∂2 − 2

x2
, B = ∂3 − 3

x2
∂ +

3

x3

which satisfy B2 ≡ L3.

In the Weyl algebra, define u = p3 + q2 + α, v = 1
2p, L = u2 + 4v, B =

u3 + 3(uv − vu); then C(L) = C[L,B] and B2 − L3 = −α, as shown in [Di].
By the assignment p = ∂, q = x we obtain L,B ∈ D of order 6,9, but notice
that the automorphism ∂ 
→ −x, x 
→ ∂ will turn the orders into 4,6. Again,
CD(L) = C[L,B], the affine ring of the curve μ2 = λ3 −α; in particular, L is a BC
solution, and the rank of this algebra is three, two, respectively.

It can be shown that centralizers CD(L) are maximal-commutative subalge-
bras of D. How large can they be? Not very: since their quotient fields are function
fields of one variable (cf. Th. 3), they are affine rings of curves, and in a formal
sense these are indeed spectral curves; the algebras that correspond to a fixed curve
make up the (generalized) Jacobian of that curve, and the x-flow is a holomorphic
vector field on it. We may (formally) view this as a “direct” spectral problem; the
“inverse” spectral problem allows us to reconstruct the coefficients of the operators
(in terms of theta functions) from the data of a point on the Jacobian. The x-flow
is tangent to the Abel image of the curve in its Jacobian, at a specific point. The
higher osculating flows form a sequence (essentially finite): x = t1, t2, . . . , ts, . . .
and the corresponding operators depend on these parameters in such a way as to
satisfy the KP hierarchy. The higher-rank algebras are still much of a mystery.
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In Ψ any (normalized) L has a unique nth root, n =ord L, of the form
L = ∂+u−1(x)∂

−1 +u−2(x)∂
−2+ · · · . By a dimension count based on the orders,

I. Schur showed that

Theorem 3. CD(L) = {
∑N

−∞ cjLj , cj ∈ C} ∩ D.

This shows that the quotient field of CD(L) is a function field of one variable;
indeed, a B which commutes with Lmust satisfy an algebraic equation f(L,B) = 0
(identically in x). In the case that the algebra can be generated by two elements
L, B, the curve has a plane model, where L, B can be viewed as affine coordinates
x, y. I offered a little-known algorithm for computing the equation of the curve, the
“differential resultant” ([BP, P1]). Since the algebra C[L,B] has no zero-divisors,
it can be viewed as the affine ring C[X,Y ]/(h) of a plane curve, with h(X,Y ) an
irreducible polynomial. The BC curve = {(λ, μ) | L,B have a joint eigenfunction
Ly = λy, By = μy} is included in the curve Spec C[L,B] and since the latter is
irreducible, they must coincide; this shows in particular that the BC polynomial
is some power of an irreducible polynomial h : f(λ, μ) = hr1 . In addition, each
point of the spectral curve has a solution space: this gives a vector bundle over the
curve. More precisely, let r2 = rank C[L,B], and r3 = dimV(λ,μ) where V(λ,μ) is the
vector space of common eigenfunctions at any smooth point (λ, μ) of the BC curve.
Then r1 = r2 = r3. Moreover, this integer is the order of G = gcd(L − λ,B − μ),
the operator (found by the Euclidean algorithm) of highest order for which a
factorization holds, B − μ = T1G, L− λ = T2G.

In theory, higher-rank algebras are classified by vector bundles over curves
[Mul], but there is no explicit dictionary between the vector bundles and the
coefficients of the operators; a recent paper [BZ] completed the result in [PW],
covering the genus-one case of the spectral curve.

Lastly, we introduce the KP deformations, following [SS].

Definitions. (i) In Ψ, it is possible to conjugate any L = ∂+u−1(x)∂
−1+ · · · into ∂

by a K ∈ Ψ, K = 1+v−1(x)∂
−1+· · · , determined up to elements of C[∂] = CD(∂).

From now on we assume that K−1LK = ∂.
(ii) We define a formal Baker function for L as the element of the module of

formal eigenfunctions such that Lψ = zψ; notice that ψ = Kexz.

The KP hierarchy is determined by the Lax equations (∂n = ∂/∂tn),

∂nL = [Bn,L] := BnL− LBn,

where Bn = (Ln)+. Motivated by an algebraic conjugation,

∂exλ = λexλ, Lψ = λψ, ψ =Wexλ,

W∂W−1Wexλ = λWexλ, W = 1 +

∞∑
1

wn∂
−n

set: L =W∂W−1, then the KP hierarchy is given by the Sato equations:

∂nW W−1 = −(L)n− = (L)n+ − (L)n.
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The “inverse spectral construction”, which holds for any number of vari-
ables and yields explicit, exact solutions to the KP equations, is largely due to
Krichever [Kr]:

Inverse spectral problem. The following choices: (i) A Riemann surfaceX of genus
g; (ii) A point ∞ ∈ X ; (iii) A local parameter λ−1 near ∞; (iv) A generic divisor
P1 + · · ·+ Pg = D (the condition is that h0(P1 + · · ·+ Pg −∞) = 0, equivalently,
there are no meromorphic functions on X with a zero at ∞ and poles bounded by
P1 + · · ·+ Pg); determine uniquely a function ψ(t, P ), the “Baker–Akhiezer (BA)
function,” such that near ∞, ψ ∼ exp(

∑
i≥1 tiλ

i)(1 +
∑
ξi(t)λ

−i) and at finite
points P of the curve, ψ has poles bounded by D and is analytic elsewhere.

For such a ψ there exist unique operators Kj such that Kjψ = ∂tjψ and
these operators are a solution to the KP hierarchy, in particular Lψ = λψ gives
L ∈ Ψ as above. All statements are local in t. Explicitly,

ψ(t) = e
(
∑

i≥1 ti(
∫ P
P0

ηi−ci)) ·
ϑ(A(P ) +

∑
i≥1 Uiti + δ)ϑ(A(∞) + δ −A(D))

ϑ(A(P ) + δ −A(D))ϑ(A(∞) +
∑

i≥1 Uiti + δ)
,

where δ is Riemann’s constant so that ϑ(A(P )+δ−A(D)) vanishes for P = Pj , j =
1, . . . , g; ηi are suitably normalized meromorphic differentials; Ui ∈ Cg are suitable
vectors that make ψ into a function of P independent of the path of integration;
ci ∈ C are constants that normalize ψ as above.

In conclusion, the general (algebro-geometric) solution of KP is:

u(t) = 2∂2x logϑ

(∑
j≥1

tjUj +A(P ) + δ

)
+ const.

Most strikingly, Novikov conjectured that a theta function which satisfies the KP
hierarchy arises from a Jacobian, and this was shown to be true, thus settling the
“Shottky Problem” [BD].

To conclude the lecture on differential algebra, I mentioned a second major
still largely open problem: what is the answer to the Burchnall–Chaundy question
if we consider the algebra of Partial Differential Operators (PDOs)? Is there an
analog of the spectral curve, such as, in two variables, a surface, and are its equa-
tions given by a differential resultant? Much work has been done, but concrete
results are scarce, and the answer to simple questions is not known; for example,
given that the multivariate resultant, a multivariate polynomial, vanishes identi-
cally when evaluated on a set of PDOs that have a common eigenfunction (cf. [KP]
for a precise formulation and references), is the differential resultant independent
of the differential variables? This is what happens in the ODO case, where the
resultant if the equation of the spectral curve.

3. Lecture III: The Kleinian sigma function

Why switch from theta, which yields exact KP solutions, to sigma? I offer three rea-
sons, of which the previous leads to the next: Modular invariance, thus a stronger
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relationship with the Jacobian (briefly put, in the following sense: the symplectic
group Sp(2g,Z) acts in the standard way [Mum2, II.5, (5.3)] on the two variables
of ϑ, the Abelian variable z ∈ Cg and the period lattice Λ; the action produces a
multiplicative non-zero factor, whereas σ is invariant); an explicit transliteration
between meromorphic and transcendental functions; More useful formulas for so-
lutions of integrable equations, since meromorphic functions lend themselves more
clearly to a qualitative analysis.

Recall the definition of the Weierstrass sigma function (genus one):

℘(u) = − d2

du2
lnσ(u), (℘′)2 = 4℘3 − g2℘− g3

Recall σ is an odd function (ϑ is even), with expansion:

σ(u) = u− 1

240
g2u

5 − 1

840
g3u

7 − · · · .

Klein defined σ for two variables, then for any hyperelliptic curve, and for a trigonal
curve [KS].

The sigma function for a hyperelliptic curve X of genus g ≥ 2 defined in the
affine plane by:

y2 = f(x) := x2g+1 + λ2gx
2g + · · ·+ λ0

(where λj ’s are generic complex numbers so that X , completed by ∞ at infinity,
is smooth), is easy to define, because there is an explicit basis of differentials of
the first kind:

ωi :=
xi−1dx

2y
(i = 1, . . . , g),

and differentials of the second kind,

ηi :=
1

2y

2g−j∑
k=j

(k + 1− j)λk+1+jx
kdx, (j = 1, . . . , g)

so that when taking the periods around a symplectic homology basis {αi, βj},

1 ≤ i, j ≤ g, the matrices ω =

[
ω′

ω′′

]
where

ω′ =
1

2

[∮
αj

ωi

]
, ω′′ =

1

2

[∮
βj

ωi

]
,

η′ =
1

2

[∮
αj

ηi

]
, η′′ =

1

2

[∮
βj

ηi

]
,

satisfy the generalized Legendre relation

M

(
0 −1g
1g 0

)
MT =

ıπ

2

(
0 −1g
1g 0

)
, (1)
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where M =

(
ω′ ω′′

η′ η′′

)
. We let Λ be the lattice in Cg spanned by the column

vectors of 2ω′ and 2ω′′. The Jacobian variety of X is identified with Cg/Λ. We
let κ be the projection Cg → Cg/Λ. For a non-negative integer k, we define the

Abel map from the kth symmetric product SymkX of the curve X to Cg by first
choosing any (suitable) path of integration2:

w : SymkX → Cg, w((x1, y1), . . . , (xk, yk)) =

k∑
i=1

∫ (xi,yi)

∞

⎛⎜⎝ω1

...
ωg

⎞⎟⎠ .

We denote the image by Wk. Let T = ω′−1ω′′. The theta function on Cg with
“modulus” T and characteristics Ta+ b for a, b ∈ Cg is given by

ϑ

[
a
b

]
(z;T) =

∑
n∈Zg

exp

[
2πi

{
1

2
t(n+ a)T(n+ a) + t(n+ a)(z + b)

}]
.

The σ-function, an analytic function on the space Cg and a theta-series having
modular invariance of a given weight with respect to M, is given by the formula

σ(u) = γ0 exp

{
−1

2
tuη′ω′−1

u

}
ϑ

[
δ′′

δ′

](
1

2
ω′−1

u ; T
)
,

where δ′ and δ′′ are half-integer characteristics giving the vector of Riemann con-
stants with basepoint at ∞ and γ0 is a non-zero constant. Computing γ0 is again
possible because the curve is hyperelliptic: the result is based on a normalization,
thus it is achieved by expanding the function at ∞ as a power series in the Abelian
variables:

γ0 =
ε4

ϑ(0;T)

g∏
r=1

√
P ′(ar)

4
√
f ′(ar)

1∏
k<l

√
ek − el

.

Since this constant plays no role in this paper, we have retained the slightly dif-
ferent notation of [BEL], where the curve is written as

y2 =

2g+1∑
i=0

λix
i = λ2g+1

2g+1∏
k=1

(x− ek) = 4P (x)Q(x)

with:

P (x) =

g∏
i=1

(x− ai), Q(x) = (x − b)

g∏
i=1

(x− bi),

for the homology basis whose loops correspond to the branch cuts beginning at ai
and ending at bi, with an additional one beginning at a = ∞ and ending at b. The
fourth root of unity ε4 is difficult to compute, but clearly does not depend on the
moduli of the curve, since it is a discrete parameter and σ depends holomorphically
on the moduli parameters. In genus one, the formula reduces to Weierstrass’ σ,

2The results presented are independent of the particular choice.
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and in that case this root of unity is related to the eight root of unity appearing
in the functional equation of ϑ under the action of the congruence subgroup

Γ :=

([
a b
c d

]
|ad− bc = 1, cd even

)
,

which is calculated in [Mum2, Vol. I, II.5] and involves the Jacobi symbol [Mum2,
Vol. I, I.7, Th. 7.1].

The σ-function vanishes to the first order on κ−1(Wg−1). The Kleinian ℘ and
ζ functions are defined by

℘ij = − ∂2

∂ui∂uj
log σ(u), ζi =

∂

∂ui
log σ(u).

I concluded returning full circle to Mumford’s vision, but now for surfaces:
indeed, Baker generalized Weierstrass’ equation to cut out the Kummer surface in
P3, the linear series of |2Θ|, where Θ is the canonical theta divisor for a curve of
genus two (hence also, up to translation, the zero locus of σ). This is Analysis turn-
ing into Geometry; Algebra is the field of meromorphic functions of the Kummer
surface, but for surfaces the perfect synthesis no longer holds, since two surfaces
may have isomorphic fields without being isomorphic, such as P2 and P1 × P1.

The Kummer surface is the image of the |2Θ|-divisor map Jac(X) → P3,
using the basis 1, ℘11, ℘12, ℘22, and a quartic in these coordinates:

det

⎡⎢⎢⎣
−λ0 1

2λ1 2℘11 −2℘12
1
2λ1 −(λ2 + 4℘11)

1
2λ3 + 2℘12 2℘22

2℘11
1
2λ3 + 2℘12 −(λ4 + 4℘22) 2

−2℘12 2℘22 2 0

⎤⎥⎥⎦ = 0

is an algebraic differential equation that holds identically exactly on the Kummer
surface.

This was generalized to all hyperelliptic Kummer varieties in [BÉ], and to

trigonal Kummer varieties in [BLÉ]. For non-hyperelliptic curves, the Kummer
variety is the singular locus of a projective model for the moduli space of rank-two,
trivial-determinant vector bundles over X , a key ingredient in the construction of
Hitchin-type ACIs [vGP]. This is one more area of intense study centered on the
role of σ function in integrability.
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