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Abstract. In this paper, we propose a novel framework for RDF stream
processing named PRSP. Within this framework, the evaluation of C-
SPARQL queries on RDF streams can be reduced to the evaluation
of SPARQL queries on RDF graphs. We prove that the reduction is
sound and complete. With PRSP, we implement several engines to sup-
port C-SPARQL queries by employing current SPARQL query engines
such as Jena, gStore, and RDF-3X. The experiments show that PRSP
can still maintain the high performance by applying those engines in
RDF stream processing, although there are some slight differences among
them. Moreover, taking advantage of PRSP, we can process large-scale
RDF streams in a distributed context via distributed SPARQL engines,
such as gStoreD and TriAD. Besides, we can evaluate the performance
and correctness of existing SPARQL query engines in processing RDF
streams in a unified way, which amends the evaluation of them ranging
from static RDF data to dynamic RDF data.
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1 Introduction

RDF stream, as a new type of dataset, can model real-time and continuous
information in a wide range of applications, e.g. environmental monitoring and
smart cities [15,16]. RDF streams have played an increasingly important role in
many application domains such as sensors, feeds, and click streams [6]. SPARQL
is recommended by W3C as the standard query language for RDF data. Though
SPARQL engines are capable of querying integrated repositories and collecting
data from multiple sources [7], the large knowledge bases now accessible via
SPARQL are static, and knowledge evolution is not adequately supported.
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For RDF stream processing (RSP), there are many works by extending
SPARQL to support queryies over RDF streams such as C-SPARQL [4], EP-
SPARQL [2], CQELS [12], SPARQLstream [6] etc. Continuous SPARQL (C-
SPARQL) [4] extends SPARQL by adding window operators to manage RDF
streams. Event Processing SPARQL (EP-SPARQL) [2] extends SPARQL by
introducing ETALIS (a rule-based event language) to reason with events. Con-
tinuous Query Evaluation over Linked Streams (CQELS) [12] introduces three
operators, namely, window operator, relational operator, and streaming operator
to manage both RDF streams and RDF graphs. SPARQLstream [6] is an exten-
sion of SPARQL by introducing window-to-stream operators which are used to
convert a stream of windows into a stream of tuples to process RDF streams.
Besides, SPARQLstream can also provide the ontology-based streaming data
access service since sources link their data content to ontologies through S2O
mappings.

Though those existing languages can represent many expressive continuous
queries for RDF streams, there are a few prototype implementations for process-
ing RDF streams [11] (e.g., S4 [9], CQELS-Cloud [13], and WAVES [10]) due
to the complicacy of implementations and the requirement of highly efficiency
in query evaluation [16]. On the other hand, there are many popular and effi-
cient SPARQL query engines only supporting static RDF graphs such as Jena
[7], RDF-3X [17], gStore [20]. Since those continuous query languages extend
SPARQL by adding some extra operators to manage streams, it becomes an
interesting problem to employ current SPARQL query engines to evaluate con-
tinuous queries. Barbieri et al. [5] employs Apache Jena [7] (a SPARQL query
engine) to evaluate C-SPARQL queries in their implementation. Especially, those
popular distributed SPARQL query engines (e.g., TriAD [8], gStoreD [19]) for
large-scale RDF data could become very helpful to process large-scale RDF
streams, which is a big challenge so far [11,16].

In this work, we propose a novel framework for RDF stream processing named
PRSP, which is briefly introduced in [14], where the evaluation of continuous
queries on RDF streams can be reduced to the evaluation of SPARQL queries
on RDF graphs. For conveying our idea simply, we mainly discuss C-SPARQL
queries in this paper. We argue that our framework could also support most
of continuous query languages extending SPARQL, such as EP-SPARQL and
CQELS. Our major contributions are summarised as follows:

– We formalize a C-SPARQL query as a 5-tuple to ensure the soundness and
completeness of our reduction from the evaluation of C-SPARQL queries over
RDF streams to the evaluation of SPARQL queries over RDF data. Besides,
we present the semantics of C-SPARQL in a refined way.

– We develop an adaptive framework named PRSP for processing RDF stream
by constructing four new modules, namely, query parser (to obtain para-
meters of windows and core patterns), trigger (to call queries and capture
windows periodically), data transformer (to transform RDF graphs from
RDF streams), and SPARQL API (to support various SPARQL endpoints
to process RDF streams).
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– We implement PRSP and evaluate on the YABench [11] by applying three
centralized SPARQL endpoints, namely, Jena, gStore, and RDF-3X and two
distributed SPARQL endpoints, namely, gStoreD and TriAD. The experi-
ments show that PRSP can still maintain the high performance of those
engines in RDF stream processing although there are some slight differences
among them. Besides, we investigate that, given a C-SPARQL query, the cor-
rectness of results is sensitive to its window size and step among those query
engines.

The remainder of this paper is structured as follows: the next section recalls
RDF stream and C-SPARQL. Section 3 defines our sound and complete for-
malization of C-SPARQL, and Sect. 4 designs our framework PRSP. Section 5
presents experiments and evaluations. Finally, we summarize our work in the
last section.

2 RDF Stream and C-SPARQL

In this section, we briefly recall RDF stream and C-SPARQL.

2.1 RDF Stream

Let I, B, and L be infinite sets of IRIs, blank nodes and literals, respectively.
A triple (s, p, o) ∈ (I ∪B) × I × (I ∪ B ∪L) is called an RDF triple. An RDF

graph is a finite set of RDF triples.
An RDF stream S is defined as an (possibly infinite) ordered sequence of

pairs which are quadruples, and each pair is made of an RDF triple (si, pi, oi)
and a timestamp τi (i ∈ Z, i.e., an integer) as follows:

S(t) = {〈si, pi, oi〉, τi) | t ≤ τi ≤ τi+1}. (1)

Note that S(t) is the prefix of S ending at t.

Example 1. Let us consider an RDF stream SSensor generated in the YABench
Benchmark [11]. It is associated with the temperature values from the environ-
mental monitoring sensors. Table 1 shows the pairs of SSensor.

In Table 1, every sensor is identified via its id, e.g., A1; every temperature
value is taken as an object; and the timestamp is represented as a 13-bit integer.

2.2 C-SPARQL

C-SPARQL (Continuous SPARQL) [4] extends SPARQL by adding new oper-
ators, namely, registration and windows, to support processing RDF streams.
For simplification, we mainly introduce the basic aspects of new operators. We
follow the formalization of C-SPARQL [4].
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Table 1. SSensor: an RDF stream of sensors

Subject (sub) Predicate (pre) Object (obj) Timestamp

. . . . . . . . . . . .

observation:A2-1 om-owl:observedProperty weather:AirTemperature 1483850233586

observation:A2-1 om-owl:procedure sensor:A2 1483850233586

observation:A2-1 om-owl:result measure:A2-1 1483850233586

measure:A2-1 om-owl:floatValue 73.0∧ ∧xsd:float 1483850233586

observation:A1-2 om-owl:observedProperty weather:AirTemperature 1483850237596

observation:A1-2 om-owl:procedure sensor:A1 1483850237596

observation:A1-2 om-owl:result measure:A1-2 1483850237596

measure:A1-2 om-owl:floatValue 69.0∧ ∧xsd:float 1483850237596

. . . . . . . . . . . .

Query registration C-SPARQL queries should be continuously registered to pro-
vide continuous querying services. It can be indicated in the following REGIS-
TRATION QUERY clause.

Registration → ’REGISTRATION QUERY’ QueryName
[’COMPUTED EVERY’ Number TimeUnit ] ’AS’ Query
TimeUnit → ’ms’ | ’s’ | ’m’ | ’h’ | ’d’

The optional COMPUTED EVERY clause identifies the frequency of the
update of the query. If it’s not been assigned, it depends on the system the
frequency of the query automatically computes. Every registered C-SPARQL
query yields continuous results whose type and form are similar to standard
SPARQL query. Apart from this, the output of C-SPARQL allows new RDF
streams through the following REGISTRATION STREAM clause.

Registration → ’REGISTRATION STREAM’ QueryName
[’COMPUTED EVERY’ Number TimeUnit ] ’AS’ Query

Window C-SPARQL does not process a whole RDF stream but its snapshots
every time. For this reason, C-SPARQL introduces the notion of window, storing
snapshots of RDF streams. Window can be defined via the FROM clause.

FromStrClause → ’FROM’ [’NAMED’]’STREAM’ StreamIRI ’[RANGE’
Window’]’
Window → LogicalWindow | PhysicalWindow
LogicalWindow → Number TimeUnit WindowOverlap
WindowOverlap → ’STEP’ Number TimeUnit | ’TUMBLING’
PhysicalWindow → ’TRIPLES’ Number
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Note that windows depend upon two parameters, namely, the window size
(RANGE: the maximal time-interval of RDF stream quadruples) and the window
step (STEP: the frequency of updates of windows).

Example 2. Let QSensor denote a C-SPARQL query SensorQuery shown in the
table:

REGISTER QUERY SensorQuery AS
PREFIX om-owl: 〈http://knoesis.wright.edu/ssw/ont/sensor-observation.
owl#〉
PREFIX weather: 〈http://knoesis.wright.edu/ssw/ont/weather.owl#〉
SELECT ?sensor ?obs ?value
FROM STREAM SensorStreams [ RANGE 5s STEP 4s ]
WHERE { ?obs observedProperty AirTemperature ;

om-owl:procedure ?sensor ;
om-owl:result [om-owl:floatValue ?value] . }

Thus SensorQuery is registered. And the window size of QSensor is 5 s and
the window step of QSensor is 4 s. Besides, the WHERE clause together with the
SELECT clause is the core part of SensorQuery.

Analogously, the semantics of C-SPARQL is defined in terms of sets of so-
called mappings which are simply total functions μ : V → U on some finite set
V ′ of variables. Formally, let Q be a C-SPARQL query, S an RDF stream, and
t a time (taken as the initial time). We can use [[Q]]S(t) to denote the semantics
of Q over S at t (where S(t): the prefix of S ending at t) defined via both its
indicated window [4] and the core patterns as SPARQL patterns [18].

Furthermore, let k be a natural number. We use [[Q]]S(t,k) to denote the
semantics of Q over the k-th window of S starting at t. Intuitively, [[Q]]S(t,k) is
a local semantics restricted on a window. In other words, [[Q]]S(t,k) is a subset
of [[Q]]S(t). In this sense, [[Q]]S(t,0) denotes the semantics of Q over the initial
window starting at t.

In Examples 1 and 2, consider an initial time t = 1483850232556. We have
[[QSensor]]SSensor(t,0) = {μ0} and [[QSensor]]SSensor(t,1) = {μ1}, where μ0 and μ1 are
shown in Table 2.

Table 2. RSensor: The results of the example.

No ?sensor ?obs ?value

µ0 sensor:A2 observation:A2-1 73.0∧ ∧xsd:float

µ1 sensor:A1 observation:A1-2 69.0∧ ∧xsd:float
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3 From C-SPARQL to SPARQL

In this section, we present a formal specification of C-SPARQL query and then
reduce the evaluation of C-SPARQL query to the evaluation of SPARQL query
equivalently.

3.1 Formal Specification of C-SPARQL Query

In Sect. 2.2, it can be seen that through adding new production, i.e., windows
(including the window size, i.e., RANGE, and the frequency of updates of win-
dows, i.e., STEP), registration and so on, to the standard grammar of SPARQL
to extend into C-SPARQL in order to process RDF streams.

Definition 1. Formally, a C-SPARQL query Q can be taken as a 5-tuple of the
form:

Q = [Req, S,w, s, ρ(Q)] (2)

where

– Req: the registration;
– S: the RDF stream registered;
– w: RANGE, i.e., the window size;
– s: STEP, i.e., the updating time of windows;
– ρ(Q): a SPARQL query.

For convenience, let Q be a C-SPARQL query. We use Req(Q), S(Q), w(Q),
s(Q), and ρ(Q) to denote the registration, the RDF stream registered, RANGE,
STEP, and the SPARQL query of Q, respectively. Now, we consider an example:

Example 3. Consider the SensorQuery QSensor in Example 2. Based on Eq. (2),
we can find:

– Req(QSensor) = REGISTER QUERYSensorQueryAS;
– S(QSensor) = SensorStreams;
– w(QSensor) = 5s;
– s(QSensor) = 4s;
– ρ(QSensor) is a SPARQL query as follows:

PREFIX om-owl: 〈http://knoesis.wright.edu/ssw/ont/sensor-observation.
owl#〉
PREFIX weather: 〈http://knoesis.wright.edu/ssw/ont/weather.owl#〉
SELECT ?sensor ?obs ?value
WHERE { ?obs observedProperty AirTemperature ;

om-owl:procedure ?sensor ;
om-owl:result [om-owl:floatValue ?value] . }
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By comparing Example 3 with Example 2, we have the following observations:

Remark 1. Comparing SPARQL, C-SPARQL has some slight differences.

– The registration of C-SPARQL query ensures the continuous recall of C-
SPARQL query periodically. However, SPARQL query does not support such
a continuous mechanism for recalling query. So we need to design an extra
trigger to provide the mechanism (discussed later, see the next section).

– C-SPARQL can support RDF streams but SPARQL cannot due to the
timestamp of tuples of RDF streams. We note that the timestamp of quadru-
ples in a window of an RDF stream can be ignored. In this sense, SPARQL can
characterize the core pattern of C-SPARQL in a window of an RDF stream.

– C-SPARQL query consists of RDF streams which are to be processed. Indeed,
C-SPARQL query processes periodical windows of RDF streams and windows
can be stored in the present RDF dataset which can be evaluated by SPARQL
queries.

Based on discussions above, window is an important notion in transforming
C-SPARQL to SPARQL.

Let k be a natural number. A k-th (logical) window, denoted by
W(S,w, s, t, k), for an RDF stream S, a window size (RANGE) w, an updating
time of windows (STEP) s, and an initial time t are a collection of quadruples
defined as follows:

W(S,w, s, t, k) = {(〈s, p, o〉, τ) ∈ S | t + ks − w ≤ τ ≤ t + ks}. (3)

Intuitively, a window is a snapshot of a stream. Accordingly, when k = 0, it
is the initial window.

For instance, in Example 3, the initial window W(SSensor, 5s, 4s, 148385
0232556, 0) is shown in Table 3 and the first window W(SSensor, 5s, 4s, 148385023
2556, 1) is shown in Table 4:

Table 3. W0: The initial window of SSensor starting at t

Subject Predicate Object Timestamp

observation:A2-1 om-owl:observedProperty weather:AirTemperature 1483850233586

observation:A2-1 om-owl:procedure sensor:A2 1483850233586

observation:A2-1 om-owl:result measure:A2-1 1483850233586

measure:A2-1 om-owl:floatValue 73.0∧ ∧xsd:float 1483850233586

The C-SPARQL query evaluation on a stream can be reduced to the evalu-
ation on windows. Then we can have the following:

Lemma 1. Let Q be a C-SPARQL query. For any RDF stream S and any initial
time t, if S is registered in Q then for any natural number k, [[Q]]S(t,k) = [[Q]]Wk

,
where Wk = W(S,w, s, t, k).
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Table 4. W1: The 1st window of SSensor starting at t

Subject Predicate Object Timestamp

observation:A1-2 om-owl:observedProperty weather:AirTemperature 1483850237596

observation:A1-2 om-owl:procedure sensor:A1 1483850237596

observation:A1-2 om-owl:result measure:A1-2 1483850237596

measure:A1-2 om-owl:floatValue 69.0∧ ∧xsd:float 1483850237596

Proof (Skecth). We mainly discuss the function of RANGE. This equation holds
since the evaluation of C-SPARQL queries is only restricted in those tuples
of RDF streams within RANGE from those queries, which are already in the
window W by definition.

Let W be a window. We use G(W) to denote the collection of RDF triples
in W. In this sense, G(W) is an RDF graph by removing the timestamp of
quadruples. As a result, we can reduce the evaluation of C-SPARQL queries on
a window to the evaluation of SPARQL queries on an RDF graph generated
from that window by removing timestamp.

The following property shows that the reduction from one of window from
an RDF stream to its RDF graph is equivalent.

Lemma 2. Let Q be a C-SPARQL query. For any RDF stream S and any initial
time t, if S is registered in Q then for any natural number k, [[Q]]Wk

= [[ρ(Q)]]G(t),
where Wk = W(S,w, s, t, k) and G(t, k) = G(Wk).

By Lemmas 1 and 2, we can conclude the main result of this paper:

Theorem 1. Let Q be a C-SPARQL query. For any RDF stream S and any
initial time t, if S is registered in Q then for any k = 0, 1, 2, . . ., [[Q]]S(t,k) =
[[ρ(Q)]]G(t,k), where G(t, k) = G(Wk).

In Examples 1 and 3, considering an initial time t = 1483850232556, we have
that [[ρ(QSensor)]]G(W0) = {μ0} and [[ρ(QSensor)]]G(W1) = {μ1}, where μ0 and μ1

are already stated in Table 2. Clearly, [[QSensor]]Wk
= [[ρ(QSensor)]]G(t,k) (k = 0, 1).

That is, [[QSensor]]SSensor(t,k) = [[ρ(QSensor)]]G(t,k) (k = 0, 1).
Theorem 1 ensures that the evaluation problem of C-SPARQL queries over

RDF streams can be equivalent to the evaluation problem of SPARQL queries
over RDF graphs. Moreover, Theorem 1 can show that the evaluation problem
of C-SPARQL has the same computational complexity as SPARQL [4].

4 A Framework for RDF Stream Processing

In this section, we introduce PRSP, an adaptive framework for processing RDF
stream.

The framework of PRSP is shown in Fig. 1, which contains four main mod-
ules: query parser, trigger, data transformer, and SPARQL API. We give a
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Fig. 1. The framework of PRSP

detailed description about the framework below. Both C-SPARQL queries and
RDF streams as the input of PRSP, they are transformed by query parser mod-
ule and data transformer module, respectively. And the output of query parser
can be of immediate use or can be processed by trigger module, which is to
call SPARQL queries and produce window selector periodically. After that, data
transformer module generates RDF graphs periodically via the input of RDF
streams and window selector. Meanwhile, SPARQL API module is capable of
getting RDF graphs and SPARQL queries obtained from the former modules as
inputs and producing the final results. PRSP is an adaptive framework for RDF
stream processing since it can apply various SPARQL query engines to process
RDF stream. And the right box, consisting of any SPARQL query engine, is
used as a black box to evaluate RDF graphs.

Query Parser. The query parser module replies on the information captured
by Denotational Graph (i.e., D-Graph) [5] which is defined as a view on the
O-Graph [18], to obtain parameters of windows and core patterns from the
input, i.e., continuous query (Q). The output of this module is the 5-tuple (i.e.,
Req, S,w, s, ρ(Q)) of a Q defined in Sect. 3, and they can be addressed in trigger
module.

Trigger. The 5-tuple (i.e., Req, S,w, s, ρ(Q)) of a C-SPARQL (Q) is as the input
of the trigger module which is to call SPARQL queries (ρ(Q)) and produce
window selector (S,w, s, t) periodically. Let t0 be an initial time. In Sect. 3, for
any k = 0, 1, . . ., we have t = t0 + ks. And let k denote the k-th window of RDF
stream S starting at t0 over Q and the update frequency of SPARQL queries ρ(Q)
parsing from query parser module. The window selector (S,w, s, t) is captured
by data transformer module, and SPARQL query is pushed into SPARQL API
to be executed in a query engine.

Data Transformer. Via Esper or another DSMS, the data transformer module
transforms RDF streams S specified in continuous query Q to capture snapshots
based on the window selector (S,w, s, t) obtained from query parser module, and
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then convert to RDF graphs by means of removing timestamps of quadruples in
windows. Therefore, it can be to generate RDF graphs periodically, and submit
to SPARQL API to process.

SPARQL API. Our proposed adaptive framework for RDF stream processing
(PRSP) is designed an unified interface for running various SPARQL query
engines. In the current version of PRSP, we have only deployed five SPARQL
engines, including three centralized engines, Jena, RDF-3X and gStore, and two
distributed engines, gStoreD and TriAD. Those SPARQL query engines are rel-
atively high-performance or newer. And we believe that it is easy and conve-
nient to apply other SPARQL query engines. Through SPARQL API, both RDF
graphs G(t, k) and SPARQL query ρ(Q) as the input of PRSP, it will output the
continuous and real-time query results that users need. Because the most systems
are considered scientific prototypes and work in progress, there is no doubt that
they can’t support all capabilities and querying services. For instance, gStoreD
merely provide query model of BGP (basic graph pattern), and can’t support
the operators of filter and so on.

5 Experiments and Evaluations

5.1 Experimental Setup

Implementations and Running Environment. All centralized experiments,
including exploiting Jena, RDF-3X and gStore to process RDF streams, were
carried out on a machine running Ubuntu 14.04.5 LTS, which has 4 CPUs with
6 cores (E5-4607) and 64 GB memory. And a cluster of 5 machines (1 master and
4 workers) with the same performance as the former were used for distributed
experiments. All query systems, including three centralized engines (Jena, RDF-
3X, and gStore) and two distributed systems (TriAD and gStoreD), are SPARQL
query engines for subgraph matching.

Dataset and Continuous Queries. For evaluation, we utilized YABench RSP
benchmark [11], which provided a real world dataset describing different water
temperatures captured by sensors spread throughout the underground water
pipeline systems. In our experiments, we perform tumbling windows with a 5-
seconds-window which slides every 5 s, and sliding windows with a 5-seconds-
window which slides every 4 s. The experiments were carried out under five
different input loads (i.e., s= 500/1000/1500/2000/2500 sensors) for windows
using the query template QSensor. The complexity of the scenarios was in the
ascending order, from the least complex configuration (s = 500 sensors) that
loaded roughly 42,000 triples to the most complex configuration (s = 2500 sen-
sors) that injected more than 210,000 triples. For comparison, consider that
different SPARQL query engines have different capabilities, and some systems
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can not support complex queries (e.g., filter operator, aggregation operator), so
the experiments chose a BGP query template QSensor with four triple patterns.

5.2 Performance Analysis

When processing RDF streams, it can be considered as three procedures: triples
load time (TLT ), query response time(QRT ), and engine execution time (EET ).
TLT indicates the total time of RDF graphs obtained from data transformer
module loading to SPARQL query engines. QRT denotes the registered query
response time. EET means the total execution time of a SPARQL engine while
processing all windows, containing TLT and QRT. We evaluate performance in
terms of average time of the three procedures from the whole streams whose
duration set at 30 s, respectively.

Figures 2, 3 and 4 compare the different systems within PRSP under the
five scenarios, and corresponding the three processes (TLT, QRT, and EET )
are depicted in Fig. 5(a)–(d), respectively. For most of the cases, all processes
increase varying degrees with the increase in the amount of RDF dataset in
windows, but there are slightly different. In addition to gStore, the centralized
SPARQL query engines outperform the distributed engines by orders of mag-
nitude under the lower load owing to the unnecessary for centralized systems
to communicate with other nodes. Moreover, the gaps among the three proce-
dures between gStoreD and TriAD decrease slightly along with the increase of
the dataset, because they are designed to handle large datasets. It also reveals
when the input load ranges from s = 500 sensors to s = 1000 sensors (i.e., the
lower load), RDF-3X has a better performance than Jena and gStore, whereas
Jena outperforms both RDF-3X and gStore under the higher load (i.e., s = 2500
sensors). TriAD is superior to gStoreD under the five scenarios. Besides that,
the TLT of both gStore and gStoreD occupy a large rate of EET, resulting in
their lower efficiency for processing RDF streams.
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Fig. 2. Triples load time in different scenarios within PRSP
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Fig. 3. Query response time in different scenarios within PRSP
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Fig. 4. Execution time in different scenarios within PRSP

Jena stores its data in main memory and its schema takes the strategy space
for time. Resource URIs and simple literal values are stored directly in the state-
ment table in Jean. RDF-3X stores everything in a clustered B+ − Tree. And
triples, sorted in lexicographical order, can be compressed well, which makes
them efficiently scan and fast lookup if prefix is known. TriAD combines join-
ahead pruning by using a novel form of RDF graph summarization with a
locality-based, horizontal partitioning of RDF triples into a grid-like, i.e., dis-
tributed index structure. But both gStore and gStoreD parse the RDF graphs
to construct indexes, i.e., V S ∗ tree, which consumes more time, in order to get
results faster.
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Fig. 5. RDF stream for processing time within PRSP

To assess the scalability performances between the two distributed engines
(i.e., gStoreD and TriAD), the experimentation is based on four different set-
ups by increasing the number of nodes: 2 nodes, 3 nodes, 4 nodes, and 5 nodes.
The graph in Fig. 6(d) indicates the engines execution time for the windows over
RDF streams for different number of nodes under s = 1000 sensors. Owing to
the lack of available and ready-to-use distributed RSP engines, we just compare
the two distributed systems. It is noticeable that until the two engines with 5
nodes in distribution model, the EET reduces along with the increase of the
nodes. It implies the communication of the master with slaves with fewer nodes
occupies a large rate of EET.

5.3 Correctness Analysis

In our experiments, we validated the correctness of the output from our frame-
work PRSP over the five SPARQL query engines, by means of oracle metrics
from YABench RSP benchmark. The oracle tests and verifies the effectiveness
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(a) Precision over tumbling window
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(b) Recall over tumbling window
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(c) F-measure over tumbling window
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Fig. 6. (a–c), the correctness for PRSP, and (d) the scalability performance between
gStoreD and TriAD under s = 1000 sensors

(i.e., correct and incorrect) of the output from SPARQL query engines by mea-
suring the precision, recall, and f-measure score (i.e., the weighted harmonic
mean of precision and recall) which reflecting the overall index. And the correct-
ness analysis help us to find out which system is better to process RDF streams.
Table 5 and Fig. 6(a)–(c) illustrate the results of precision, recall and f-measure
scores from the experiments under the five load scenarios within PRSP. Along
with more input loads for windows, most of them enjoy lower recalls with rel-
atively high accuracy. We can observe that gStore succeeds to maintain 100%
precision even though under higher load (i.e., s = 2500 sensors), but achieves
lower recall. Generally, as we can see that recall scores are lower than precisions
for all the five SPARQL query engines, and the values drop down dramatically
when the engines are put under larger loads. Since every SPARQL query engine
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only can process a certain amount of data at a given time, which leads to lower
recall scores under higher load.

In summary, our experiments show that different query engines in processing
RDF streams exhibit different performance, and their correctness in answering
is severely sensitive to the window sizes and steps to be selected.

6 Conclusions

In this paper, we present a novel framework for processing RDF streams by
reducing RDF streams to RDF data. Taking advantage of the reduction, our
framework can ideally support the most SPARQL endpoints including those
under construction. Besides, our framework can be used to evaluate the perfor-
mance and correctness of existing SPARQL query engines in processing RDF
streams in a unified way, which amends the evaluation of them ranging from
static RDF graphs to dynamic RDF streams. We also find that the efficiency
of evaluations over RDF streams could influence the correctness of querying
slightly different to RDF data. In the future work, we will adapt more query
engines for RDF data, such as a redesign of database architecture [1] in order
to take advantage of modern hardware and a compressed bit-matrix structure
BitMat [3] for storing huge RDF graphs.

Table 5. Precision/recall/F-measure results

Jena RDF-3X gStore gStoreD TriAD

Sensor = 500 Precision 92.3% 97.2% 100% 100% 97.9%

Recall 94.4% 96.1% 92.6% 63.1% 96.9%

F-Measure 95.8% 96.7% 96.1% 83.4% 97.4%

Sensor = 1000 Precision 92.2% 91.2% 100% 62.1% 96.2%

Recall 86.2% 84.3% 76.3% 55.3% 83.9%

F-Measure 89.2% 87.4% 85.1% 55.1% 90.8%

Sensor = 1500 Precision 89.2% 90.3% 100% 59.1% 91.3%

Recall 81.7% 80.3% 70.7% 54.9% 82.5%

F-Measure 85.2% 85.0% 81.2% 52.8% 85.6%

Sensor = 2000 Precision 84.9% 88.6% 100% 55.2% 90.3%

Recall 76.0% 78.9% 68.6% 44.8% 69.1%

F-Measure 80.2% 82.1% 71.5% 48.4% 81.3%

Sensor = 2500 Precision 81.7% 83.9% 100% 54.6% 88.6%

Recall 71.9% 78.8% 56.5% 44.5% 60.6%

F-Measure 76.5% 80.9% 69.2% 45.9% 71.5%
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