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Preface

This volume (LNCS 10366) and its companion volume (LNCS 10367) contain the
proceedings of the first Asia-Pacific Web (APWeb) and Web-Age Information Man-
agement (WAIM) Joint Conference on Web and Big Data, called APWeb-WAIM. This
new joint conference aims to attract participants from different scientific communities as
well as from industry, and not merely from the Asia Pacific region, but also from other
continents. The objective is to enable the sharing and exchange of ideas, experiences,
and results in the areas of World Wide Web and big data, thus covering Web tech-
nologies, database systems, information management, software engineering, and big
data. The first APWeb-WAIM conference was held in Beijing during July 7-9, 2017.

As a new Asia-Pacific flagship conference focusing on research, development, and
applications in relation to Web information management, APWeb-WAIM builds on the
successes of APWeb and WAIM: APWeb was previously held in Beijing (1998), Hong
Kong (1999), Xi’an (2000), Changsha (2001), Xi’an (2003), Hangzhou (2004),
Shanghai (2005), Harbin (2006), Huangshan (2007), Shenyang (2008), Suzhou (2009),
Busan (2010), Beijing (2011), Kunming (2012), Sydney (2013), Changsha (2014),
Guangzhou (2015), and Suzhou (2016); and WAIM was held in Shanghai (2000),
Xi’an (2001), Beijing (2002), Chengdu (2003), Dalian (2004), Hangzhou (2005), Hong
Kong (2006), Huangshan (2007), Zhangjiajie (2008), Suzhou (2009), Jiuzhaigou
(2010), Wuhan (2011), Harbin (2012), Beidaihe (2013), Macau (2014), Qingdao
(2015), and Nanchang (2016). With the fast development of Web-related technologies,
we expect that APWeb-WAIM will become an increasingly popular forum that brings
together outstanding researchers and developers in the field of Web and big data from
around the world.

The high-quality program documented in these proceedings would not have been
possible without the authors who chose APWeb-WAIM for disseminating their find-
ings. Out of 240 submissions to the research track and 19 to the demonstration track,
the conference accepted 44 regular (18%), 32 short research papers, and ten demon-
strations. The contributed papers address a wide range of topics, such as spatial data
processing and data quality, graph data processing, data mining, privacy and semantic
analysis, text and log data management, social networks, data streams, query pro-
cessing and optimization, topic modeling, machine learning, recommender systems,
and distributed data processing.

The technical program also included keynotes by Profs. Sihem Amer-Yahia
(National Center for Scientific Research, CNRS, France), Masaru Kitsuregawa
(National Institute of Informatics, NII, Japan), and Mohamed Mokbel (University of
Minnesota, Twin Cities, USA) as well as tutorials by Prof. Reynold Cheng (The
University of Hong Kong, SAR China), Prof. Guoliang Li (Tsinghua University,
China), Prof. Arijit Khan (Nanyang Technological University, Singapore), and



VI Preface

Prof. Yu Zheng (Microsoft Research Asia, China). We are grateful to these distin-
guished scientists for their invaluable contributions to the conference program.

As a new joint conference, teamwork is particularly important for the success of
APWeb-WAIM. We are deeply thankful to the Program Committee members and the
external reviewers for lending their time and expertise to the conference. Special thanks
go to the local Organizing Committee led by Jun He, Yongxin Tong, and Shimin Chen.
Thanks also go to the workshop co-chairs (Matthias Renz, Shaoxu Song, and Yang-Sae
Moon), demo co-chairs (Sebastian Link, Shuo Shang, and Yoshiharu Ishikawa),
industry co-chairs (Chen Wang and Weining Qian), tutorial co-chairs (Andreas Ziifle
and Muhammad Aamir Cheema), sponsorship chair (Junjie Yao), proceedings
co-chairs (Xiang Lian and Xiaochun Yang), and publicity co-chairs (Hongzhi Yin, Lei
Zou, and Ce Zhang). Their efforts were essential to the success of the conference. Last
but not least, we wish to express our gratitude to the Webmaster (Zhao Cao) for all the
hard work and to our sponsors who generously supported the smooth running of the
conference.

We hope you enjoy the exciting program of APWeb-WAIM 2017 as documented in
these proceedings.

June 2017 Xiaoyong Du
Beng Chin Ooi

M. Tamer Ozsu

Bin Cui

Lei Chen

Christian S. Jensen

Cyrus Shahabi
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Keynotes



A Holistic View of Human Factors
in Crowdsourcing

Sihem Amer-Yahia

CNRS, University of Grenoble Alpes, Grenoble, France
sihem.amer-yahia@cnrs. fr

Abstract. For over 40 years, organization studies have examined human factors
in physical workplaces and their influence on the ability of an individual to
perform a task, or a set of tasks, alone or in collaboration with others. In a virtual
marketplace, the crowd is typically volatile, its arrival and departure asyn-
chronous, and its levels of attention and accuracy diverse. This has generated a
wealth of new research ranging from studying workers’ fatigue in task com-
pletion to examining the role of motivation in task assignment. I will review
such work and argue that we need a holistic view to take full advantage of
human factors such as skills, expected wage and motivation, in improving the
performance of a crowdsourcing platform.



Experience on XXX Health such as Earth
Health and Human Health Though Big Data

. 1,2
Masaru Kitsuregawa

! The University of Tokyo, Tokyo, Japan
2 National Institute of Informatics, Tokyo, Japan
kitsure@tkl.iis.u-tokyo.ac.jp

Abstract. We have been working in the area so called ‘Health’. In this talk, our
experiences on the problem solving for earth environmental health and human
health by big data system technologies are presented. We are wondering what
type of platform be suitable for societal health as a whole.



Thinking Spatial

Mohamed Mokbel

Department of Computer Science and Engineering, University of Minnesota
mokbel@umn.edu

Abstract. The need to manage and analyze spatial data is hampered by the lack
of specialized systems to support such data. System builders mostly build
general-purpose systems that are generic enough to handle any kind of attri-
butes. Whenever there is a pressing need for spatial data support, it is considered
as an afterthought problem that can be addressed by adding new data types,
extensions, or spatial cartridges to existing systems. This talk advocates for
dealing with spatial data as first class citizens, and for always thinking spatially
whenever it comes to system design. This is well justified by the proliferation of
location-based applications that are mainly relying on spatial data. The talk will
go through various system designs and show how they would be different if we
have designed them while thinking spatially. Examples of these systems include
data base systems, big data systems, recommender systems, social networks, and
crowd sourcing.
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Abstract. A heterogeneous information network (HIN) is a graph
model in which objects and edges are annotated with types. Large and
complex databases, such as YAGO and DBLP, can be modeled as HINs.
A fundamental problem in HINs is the computation of closeness, or rel-
evance, between two HIN objects. Relevance measures, such as PCRW,
PathSim, and HeteSim, can be used in various applications, including
information retrieval, entity resolution, and product recommendation.
These metrics are based on the use of meta-paths, essentially a sequence
of node classes and edge types between two nodes in a HIN. In this tuto-
rial, we will give a detailed review of meta-paths, as well as how they are
used to define relevance. In a large and complex HIN, retrieving meta
paths manually can be complex, expensive, and error-prone. Hence, we
will explore systematic methods for finding meta paths. In particular, we
will study a solution based on the Query-by-Example (QBE) paradigm,
which allows us to discover meta-paths in an effective and efficient man-
ner.

We further generalise the notion of meta path to “meta structure”,
which is a directed acyclic graph of object types with edge types con-
necting them. Meta structure, which is more expressive than the meta
path, can describe complex relationship between two HIN objects (e.g.,
two papers in DBLP share the same authors and topics). We will discuss
three relevance measures based on meta structure. Due to the compu-
tational complexity of these measures, we also study an algorithm with
data structures proposed to support their evaluation. Finally, we will
examine solutions for performing query recommendation based on meta-
paths. We will also discuss future research directions.

1 Background

Heterogeneous information networks (HINs), such as DBLP [5], YAGO [8], and
DBpedia [1], have recently received a lot of attention. These data sources, con-
taining a vast number of inter-related facts, facilitate the discovery of interesting
knowledge [4,6,7]. Figure 1(a) illustrates an HIN, which describes the relation-
ship among entities of different types (e.g., author, paper, venue and topic). For

© Springer International Publishing AG 2017
L. Chen et al. (Eds.): APWeb-WAIM 2017, Part I, LNCS 10366, pp. 3-7, 2017.
DOI: 10.1007/978-3-319-63579-8_1
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Fig. 1. HIN, meta paths, and meta structures.

example, Jiawei Han (ag) has written a VLDB paper (p22), which mentions the
topic “efficient” (t3).

Given two HIN objects a and b, the evaluation of their relevance is of fun-
damental importance. This quantifies the degree of closeness between a and b.
In Fig.1(a), Jian Pei (a;) and Jiawei Han (a2) have a high relevance score,
since they have both published papers with keyword “mining” in the same venue
(KDD). Relevance finds its applications in information retrieval, recommendation,
and clustering [9,10]: a researcher can retrieve papers that have high relevance in
terms of topics and venues in DBLP; in YAGO, relevance facilitates the extrac-
tion of actors who are close to a given director. As another example, in entity
resolution applications, duplicated HIN object pairs having high relevance scores
(e.g., two different objects in an HIN referring to the same real-world person)
can be identified and removed from the HIN.

Relevance Computation. In this tutorial, we will explore different ways of
computing the relevance between two graph objects, for instance, neighborhood-
based measures, such as common neighbors and Jaccard’s coefficient; graph-
theoretic measures based on random walks, such as Personalized PageRank and
SimRank. These measures do not consider object and edge type information
in an HIN. We will discuss the concept of meta paths [4,9]. A meta path is a
sequence of object types with edge types between them. Figure 1(b) illustrates
a meta path P;, which states that two authors (A; and As) are related by
their publications in the same venue (V). Another meta path Py says that two
authors have written papers containing the same topic (7). We will discuss
several meta-path-based relevance measures, including PathCount, PathSim, and
Path Constrained Random Walk (PCRW) [4,9]. These measures have been shown
to be better than those that do not consider object and edge type information.

We will further discuss meta structures, recently proposed in [3], to depict the
relationship of two graph objects. This is essentially a directed acyclic graph of
object and edge types. Figure 1(b) illustrates a meta structure S, which depicts
that two authors are relevant if they have published papers in the same venue,
and have also mentioned the same topic. A meta path (e.g., Py or Ps) is a special
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case of a meta structure. However, a meta path fails to capture such complex
relationship that can be conveniently expressed by a meta structure (e.g., S).
We will discuss how meta structures can be used to formulate three relevance
definitions, as well as their efficient calculation.

Meta Path Discovery. There are often a huge number of meta paths between
a pair of HIN objects. This can be very difficult, even for a domain expert,
to identify the right meta paths. We will discuss a meta path discovery algo-
rithm, recently proposed by [6], where users provide example instances of source
and target objects through a Query-by-Ezample paradigm, to derive meta paths
automatically. We will demonstrate a HIN search engine prototype based on this
algorithm.

Query Recommendation. We will study the use of meta paths in query rec-
ommendation, where queries are suggested to web search users based on their
previous query histories. As studied in [2], it is possible to use a knowledge
base (a HIN) and its related meta-paths to perform effective query recommen-
dation. The approach is especially useful to long-tail queries that rarely appear
in query logs.

2 Proposed Schedule

The following is our proposed schedule of the 90-min tutorial.

— Introduction (15 min). We will discuss the basic model of HIN, and dis-
cuss applications based on it, such as search, relevance computation, query
recommendation, and data integration (10 min). We will also introduce meta-
paths, a fundamental HIN analysis tool, and give an overview of the tutorial
(5min).

— Main contents (60 min). Next, we will introduce meta path, and how it
facilitates the computation of various relevance measures (10 min). We then
explain the process of discovering meta paths (15 min). We discuss a novel
query recommendation framework based on meta paths (15 min). We will also
present the meta structures, which is the latest development of meta paths
(15 min). We will demonstrate a HIN search engine prototype based on meta
paths (5min).

— Conclusions (15 min). We will conclude the tutorial and discuss future
directions (5min). The rest of the time will be dedicated to Q&A (10 min).

3 Intended Audience

The tutorial is designed for researchers interested in latest development in the
field of HINS, especially regarding meta-paths for novel applications. The HIN
search demonstration will be give insight to software practitioners for developing
recommendation facilities for HINs.
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Abstract. The widespread application of mobile positioning devices has
generated big trajectory data. Existing disk-based trajectory manage-
ment systems cannot provide scalable and low latency query services any
more. In view of that, we present TrajSpark, a distributed in-memory
system to consistently offer efficient management of trajectory data. Tra-
jSpark introduces a new abstraction called IndexTRDD to manage tra-
jectory segments, and exploits a global and local indexing mechanism to
accelerate trajectory queries. Furthermore, to alleviate the essential par-
titioning overhead, it adopts the time-decay model to monitor the change
of data distribution and updates the data-partition structure adaptively.
This model avoids repartitioning existing data when new batch of data
arrives. Extensive experiments of three types of trajectory queries on
both real and synthetic dataset demonstrate that the performance of
TrajSpark outperforms state-of-the-art systems.

Keywords: Big trajectory data - In-memory - Low latency query

1 Introduction

Recently, with the explosive development of positioning techniques and popular
use of intelligent electronic devices, trajectory data of MOs (Moving Objects)
has been accumulated rapidly in many applications, such as location-based ser-
vices (LBS) and geographical information systems (GIS). For example, DiDi!,
the largest one-stop consumer transportation platform in China, now has 1.5
million registered active drivers, and provides services for more than 300 million
passengers. The total length of all trajectories generated in this platform reaches
around 13 billion kilometers in 2015. Moreover, the volume of trajectory data
increases in a surging way. In March 2016, the number of trajectories generated
in one day has already exceeded 10 million. It is challenging to provide real-time
service over such data. However, as almost all of existing trajectory manage-
ment systems are disk-oriented (e.g., TrajStore [4], Clost [13], and Elite [18]),
they cannot support low latency query services upon big trajectory data.

! http://www.xiaojukeji.com/en/taxi.html.
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Recently, in-memory computing systems are a widely used to provide low
latency query services. For instance, Spark?, a distributed in-memory comput-
ing system, has been widely used. Spark provides a data abstraction called RDDs
(Resilient Distributed Datasets), to maintain a collection of objects that are par-
titioned across a cluster of machines. Users can manipulate RDDs conveniently
through a batch of predefined operations. However, Spark is lack of indexing
mechanism upon RDDs and needs to scan the whole dataset for a given query.
Recently, some Spark-based system prototypes have been proposed to process big
spatial data, including SpatialSpark [19], LocationSpark [14], GeoSpark [20] and
Simba [17]. Amongst them, SpatialSpark implements the spatial join query on
top of Spark, but it does not index RDDs. GeoSpark provides a new abstraction,
called SRDD, to represent spatial objects such as points and polygons. Although
it embeds a local index in each SRDD partition, global index is not supported.
LocationSpark proposes a solution to solve query skewness. In contrast of them,
Simba extends Spark SQL with native support to spatial operations. Meanwhile,
it introduces both global and local indexes over RDDs. However, these proto-
types view data as a set of spatial points and employ the point-based indexing
strategies. Such strategies decrease the trajectory query performance as points
of an MO need to be retrieved from different nodes and sorted to form a chrono-
logically ordered sequence [4]. Moreover, they are by nature designed to manage
a static dataset and cannot efficiently react to data distribution changes as data
increases. To handle a batch of new data, the whole dataset should be reparti-
tioned from scratch, which is quite computation costly.

Inspired by above observations, we design and implement TrajSpark (Trajec-
tory on Spark) system to support low-latency queries over big trajectory data.
TrajSpark proposes a new abstraction called IndexTRDD to manage trajecto-
ries as a set of trajectory segments. To accelerate query processing, it imports
the global and local indexing mechanism which embeds a local hash index in
each data partition and builds a global index over these partitions. Further-
more, TrajSpark tracts the change of data distribution by using a time decay
model to continuously support efficient management over the daily increasing
big trajectory data. Our main contributions can be summarized as follows:

— We first propose TrajSpark to mange the big trajectory data while existing
Spark-based systems only support a static big spatial dataset.

— We introduce IndexTRDD, an RDD of trajectory segments, to support effi-
cient data storage and management by incorporating a global and local index-
ing strategy.

— We monitor the change of data distribution by importing a time decay model
which alleviates the repartitioning overhead occurred in existing Spark-based
systems and gets a good partition result at the same time.

— We execute three types of trajectory queries on TrajSpark and conduct exten-
sive experiments to evaluate query performance. Experimental results demon-
strate the superiority of TrajSpark over other Spark-based systems.

2 http://spark.apache.org/.
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The rest of the paper is organized as follows. Section 2 reviews related works.
We give an overview of TrajSpark in Sect. 3, and detailed the system in Sects. 4
and 5. In Sect. 6, we introduce the implementation of three typical trajectory
queries in TrajSpark. Section7 provides an experimental study of our system.
Finally, we give a brief conclusion in Sect. 8.

2 Related Work

We review the work mostly related to our research in this section.

Centralized Trajectory Management Systems: There are many centralized
systems to manage trajectory data. PIST, an off-line system, supports indexes
over points. It first partitions data according to a spatial index, and then sup-
ports a temporal index in each partition [2]. SETI segments trajectories into
sub-trajectories with the guidance of a spatial index, and groups them into a
collection of spatial partitions [3]. It shows that supporting index over trajec-
tory segments is more efficient than indexing trajectory points. TrajStore not
only uses an I/0O cost model to dynamically segment trajectories, but also uses
clustering and compressing techniques to reduce storage overhead. But it only
supports range query [4]. These systems can not meet the requirement of big
data processing as they adopt the centralized architecture.

Disk-Based Distributed Spatial and Spatio-Temporal Data Manage-
ment Systems: Recently, some distributed disk-based systems have been pro-
posed to manage spatial data by utilizing the Hadoop® framework. Spatial-
Hadoop [5] pushes spatial data inside Hadoop core by adopting a layered
design and supports efficient spatial operations by employing a two-level index
structure. AQWA [1] is an improved version of SpatialHadoop by proposing
a workload-aware partition strategy which divides those frequently accessed
regions into more fine-grained subregions. There are also some systems particu-
larly designed for big spatio-temporal/trajectory data management. PRADASE
[10] and Clost [13] are directly built on top of Hadoop and accelerate queries
through a global spatio-temporal index. MD-HBase [11], RHBase [6] and GeMesa
[7] are built on top of distributed key/value stores, and they use space-fill curves
[6,11] and Geohash [7] algorithms to map spatio-temporal points into single-
dimension space separately. Different from above works, Elite [18] is built on top
of OpenStack® for big uncertain trajectorie. Nevertheless, all the above systems
are disk-based, and none of them can provide low latency query services.

Memory-Based Spatial Data Management Systems: SharkDB [16] pro-
poses a column-wise storage format to manage trajectory within main memory.
However, it is deployed on a big-memory machine and cannot scale out to the
distributed environment. Besides, some distributed in-memory spatial data man-
agement systems have been proposed. SpatialSpark [19] and GeoSpark [20] are

3 http://hadoop.apache.org/.
4 http://www.openstack.org/.
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two systems built on top of Spark. SpatialSpark is specifically designed for spa-
tial join queries. GeoSpark proposes a new RDD called SRDD to support typical
spatial queries. It supports a local index for each partition of SRDD. In com-
parison of GeoSpark, LocationSpark proposes a solution to solve query skewness
by using Bloom Filter [14]. Simba, built on top of Spark SQL, supports multi-
dimensional data queries [17]. Moreover, both a query optimizer which leverages
indexes and some spatial-aware optimizations are imported in Simba to improve
query efficiency. The above systems process spatial data as independent data
points, while trajectory data are usually viewed as a collection of time series.
Directly using these systems to process trajectories queries may sacrifice the
query efficiency. Moreover, these systems cannot scale well when a new batch of
data is imported to the system.

3 System Overview

The architecture of TrajSpark, as shown in Fig. 1, is composed of four layers:
(1) Apache Spark Layer, where regular operations and fault tolerance mecha-
nisms are supported by Apache Spark, (2) Trajectory Presentation Layer, where
a new abstraction called IndexTRDD is designed to support indexes over tra-
jectory data. (3) Assistant Data Layer, which monitors the change of data dis-
tribution and guides the partitioning of forthcoming data. A global index which
indexes partitions of IndexTRDD is maintained. (4) Query Processing Layer,
which processes trajectory queries in an efficient way by utilizing indexes.

— Apache Spark Layer: This layer is directly inherited from Apache Spark,
and the description of it is omitted in this paper.

— Trajectory Presentation Layer: In this layer, the trajectory segments that
are spatio-temporally close will be grouped into the same data partition. In
each partition, segments belonging to the same MO are depicted in a space-
efficient format. A new abstract called IndexTRDD is proposed to organize

Query Processing Layer h
SO-based ST-based KNN-based
Query Query Query )
it it
Trajectory Presentation Layer Assistant Data Layer
IndexTRDD Data Distribution Monitor
TrajectorY & Ind.exTRDD Index Manager
Operations Library
7
it ir
[ Apache Spark Layer ]

Fig. 1. System overview
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all those segments, and a rich operations library is provided to manipulate
trajectories and IndexTRDD. As the core of TrajSpark, we give a detailed
description in Sect. 4.

— Assistant Data Layer: A few statistics are maintained in this layer to record
the change of data distribution. This layer also maintains a global index which
indexes all partitions of IndexTRDD. This layer is detailed in Sect. 5.

— Query Processing Layer: We introduce the implementation of three typical
trajectory quires in this layer (detailed in Sect. 6).

4 Trajectory Presentation Layer

4.1 Trajectory Segment Presentation

Instead of storing trajectories as a time series directly, the raw trajectories gen-
erated from data sources are usually stored as GPS logs and each log record
corresponds to a trajectory point. The schema of such points can be viewed as
a table with the following form: (M OID, Location, Time, Ay, - -+, A,), where
MOID is the identification of an MO, Time and Location are the temporal and
spatial information. The rest attributes vary in different data sources. Although
it is simple to represent the trajectories as an RDD of points by directly loading
the raw data into Spark, it leads to a high storage overhead due to the limitation
of row-stores. Moreover, as analyzed in [4], trajectory segment based technologies
can improve the query efficiency more significantly than point based ones.

MOID [ Lon | Lat [Time[ A, [ A, MOID |Lcn Time Range | MBR
Lon] | ]_|at| | |Ti1lne|
100 114.31 (2532 0 32 1
41|
100 114.31 [2535] 13 [ 63| O
100 114.32 (2536 23 |42 | 2 11431 Fixed Bits
100 | 11432]2531] 31 [33] 1 0 Delta Length
Encodi .
101 | 11432 (2531 1 |33 1 1 feoding Encoding
1
(a) Raw Trajectory Data (b) Trajectory Storage Format

Fig. 2. Trajectory presentation

To covert raw data into trajectory segments, TrajSpark partitions points that
are spatio-temporally close into the same partition firstly (detailed in Sect.4.2).
Then, points of the same MO are sorted to form a trajectory segment and the
segment is packed into a space-efficient format as shown in Fig.2(a). In this
format, values of the same attribute are stored and compressed continuously. For
numberic attributes (such as time and location attribute), data are compressed
by delta encoding [4]. For an enum attribute (As in Fig. 2(b)), fixed bits length
encoding is used. For other attributes, such as the string, we simply use the gzip



16 Z. Zhang et al.

compression. Besides, we maintain other sketch data such as the MOID, Len
(length) and M BR (Minimum Bounding Rectangle) of the segment to achieve a
quick pruning for queries. Finally, data in each partition are changed to a set of
compressed trajectory objects, and the whole dataset is transformed to an RDD
of such objects (we call this RDD as TRDD).

4.2 Indexing for Trajectory Data

In the above section, we introduce how to transform the GPS logs into TRDD.
While TRDD only supports sequential scan for queries which is very expensive
as it needs to access the whole dataset. Hence, we need to support indexing
strategy to improve the query efficiency and at the same time without changing
the core of Spark. To overcome these challenges, we propose IndexTRDD which
changes the storage structure of TRDD by embedding a local hash index in each
partition, and get O(1) computation to retain the trajectory of a given MO.
Furthermore, we build a global index over data partitions of IndexTRDD to
prune irrelevant partitions. Figure 3 details the indexing mechanism which can
be divided into three phases: partitioning, local indexing, and global indexing.

Partitioning Local Indexing Global Indexing
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Local Index Range m | /
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Fig. 3. Indexing from raw data

Partitioning. In this phase, TrajSpark loads the raw dataset from disk into
memory as an RDD of trajectory points. This RDD needs to be repartitioned
according to the following three constraints: (1) Data Locality. Trajectory points
that are spatio-temporally close to each other should be assigned to the same
partition. (2) Load Balancing. All partitions should be roughly of the same size.
(3) Partition Size. Each partition should have a proper size so as to avoid memory
overflow. Spark provides two predefined partitioners for one-dimensional keys,
including range and hash partitioner. However, they cannot fit well for multi-
dimensional data such as trajectory. To address this problem, TrajSpark defines
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a new partitioner named STPartitioner which contains a spatial Quad tree
or k-d tree index. The spatial index can be learned from data distribution and
ensures that each leaf node contains the same amount of data. STPartitioner uses
the boundaries of those leaf nodes to partition points. Then, trajectory points
located in the same boundary are grouped together. Finally, due to the constraint
of partition size, TrajSpark splits points belonging to the same boundary into
a few data partitions according to MOID (in default) or time attribute, and
makes sure each partition satisfy the above constraints.

Local Indexing. After the partitioning phase, the dataset is still an RDD of
trajectory points. In this step, we transform the above RDD into TRDD by
grouping and packing such points firstly. Then, we add a local index at the head
of each partition which maps the MOID of each trajectory to its subscripts. We
call the combined data structure of index and trajectory array as TPartition. So
the whole dataset is transformed into an RDD of TPartitions, where the RDD
is IndexTRDD. Finally, we collect the ID (each partition of RDD has a unique
ID), the spatial and temporal ranges of each data partition (a TPartition object)
to construct the global index.

Global Indexing. The last phase is to build the global index gIndex over all
partitions. As shown in Fig.3, gIndex is a three-level hybrid index. Data is
divided by the level-0 coarse time ranges according to its temporal attribute
firstly. Each coarse time range corresponds with a level-1 spatial index which
is used by STPartitioner. To index partitions that belong to the same spatial
boundary, a level-2 BT-Tree is used. When TrajSpark is initialized with the first
batch of data, level-0 index contains only one value (the beginning timestamp
of that batch of data), and the level-1 spatial index is the same one used in
STPartitioner. The spatial and temporal information collected from all partitions
are used to construct the level-2 indexes. Each spatial range in level-1 index
corresponds with a level-2 index. TrajSpark keeps gIndexr in the memory of
master node and updates it when new data partitions arrive. Even for a big
trajectory dataset, the number of partitions is not very large (shown in Fig. 4(c)).
Thus, the global index can be easily fitted in the memory of master node.

5 Assistant Data Layer

5.1 Data Distribution Monitor

In real applications, new batches of data are appended on an hourly or daily
basis [1], and the data distribution changes accordingly. On one hand, a static
partitioning strategy results in unbalanced data partitions. On the other hand,
if we repartition the whole dataset (required in existing systems [14,17,19,20])
when each batch of data arrives, it leads to an expensive workload. Meanwhile,
it is worthless to repartition the old data, because new data are more valuable
than those old ones. So, when a new batch of data arrives, TrajSpark tries to
only partition this batch of data without touching existing data which differs
from the target of AQWA [1] who needs to repartition part of existing data.
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Moreover, TrajSpark focuses on long term data distribution changes and also
tries to alleviate the influence of temporal changes.

In the light of above considerations, TrajSpark adopts the time decay model
to depict the change of data distribution by giving the recent data a higher
weight. TrajSpark divides the whole spatial area into m * m fine-grained cells
and computes the data distribution by counting the number of points in each cell.
When a new batch of data arrives, TrajSpark maintains two matrices: Aczisting
and A, ., which separately record the distribution of data that have been loaded
in TrajSpark and the new one. After loading the new batch of data, Aczisting
decays weight by dividing « firstly (v is the decay factor, which gives older data
lower weights). Then, A, is added to Acgisting and set to zero. Observe that
after a batch of data is appended, A¢gisting changes accordingly. To better depict
the change of Acyisting, we use the notation Af,; ., to represent the spatial
distribution of data after n batches of data are appended.

To depict the adaptivity of our partitioning strategy, we define a new matrix
PA. (Partition with A) which is initialized with A2 . 4> and create the spatial
index of STPartitioner from PA, by partitioning the whole spatial area into
subregions with equal number of points. After the n-th batch of data is loaded,
if the difference between Af,; ., and PA. is larger than a given threshold, it
means that the distribution of recently loaded data has greatly changed, TrajS-
park updates the value of PA. with A7, ;.. and updates STPartitioner using
a new spatial index created from the new PA, to partition the incoming data. In
TrajSpark, we use the JSD distance to measure the difference between two data
distributions [12] (both the distribution matrices should be normalized before
computing). The lazy-update property of time decay model enables TrajSpark

to resist abrupt or temporary data distribution changes.

5.2 Index Manager

Index manager mainly supports the update and persistence of the gIndex. Two
cases will lead to the update of gIndex. The first is when the STPartitioner
updates its spatial index. At this case a new time range will be added to level-0
index, and the spatial index will be added to level-1 as its children. The second
case is when all partitions of the new data have been added to IndexTRDD,
the information of these partitions will be added to the level-2 index of gIndex.
The index manger stores gIndex in the memory of the master node. Besides,
TrajSpark also chooses to persist it into the file system (after its updating) and
has the option of loading it back from the disk. This enables TrajSpark to load
indexes back to the system even after system failure. It needs to mention that,
TrajSpark supports spatio-temporal operations for glndez, such as intersect,
overlap and so on, to find partitions satisfying the query constraints.

6 Query Processing Layer

Typical trajectory queries include SO (Single Object)-based query [8,10,13],
STR (Spatio-Temporal Range)-based [8,15,16] query and KNN (K Nearest
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Algorithm 1. SO-based query

Input: moid, tRange;

Output: one trajectory;

1: pids = glndex.intersect(tRange);

2: ts = IndexTRDD.PartitionPruningRDD(pids)
.getTraWithID(moid).mapValues(sub(tRange));

3: return ts.reduceByKey(merge).collect();

Neighbor)-based query [8,11,16]. In this section, we introduce how TrajSpark
efficiently processes these queries by utilizing indexes and the operation libraries.

6.1 SO-Based Query

An SO-based query retrieves the trajectory of a given MO by receiving two para-
meters: moid and tRange, where moid denotes the ID of an MO and tRange
is the temporal constraint. Spark expresses this query as an RDD filter action,
which requires scanning the whole dataset. TrajSpark can achieve better perfor-
mance by utilizing indexes. It leverages two observations: (1) The level-0 index
is sufficient to prune irrelevant partitions, and the level-2 index can find the par-
titions whose time ranges are intersected with tRange. (2) For each partition,
the trajectory of moid can be filtered quickly according to the local hash index.

Based on the above observations, Algorithm 1 introduces the detailed steps.
Firstly, TrajSpark traverses the global index to find data partitions whose time
ranges are intersected with the tRange (line 1). It needs to mention that, the
global index gIndex is a spatio-temporal index, and the input parameter for
intersect operation can also contain a spatial constraint. Next, IndexTRDD
calls a Spark API— PartitionPruningRDD, to mark required partitions. Then,
TrajSpark randomly accesses the trajectory in each partition according to the
given moid and finds the sub-trajectory located in the tRange (line 2). Finally,
all sub-trajectories of the given MO are merged into one. Note that TrajSpark
provides the merge function to merge two trajectory segments of the same MO.

6.2 STR-Based Query

An STR-based query retrieves trajectories within a spatio-temporal range. It
receives two parameters tRange and sRange. By utilizing the indexes, TrajS-
park can also achieve better performance than the filter operation of Spark.

Algorithm 2. STR-based query
Input: tRange, sRange;
Output: a set of trajectories;
1: pids = glndex.intersect(tRange, sRange);
2: ts = IndexTRDD.PartitionPruningRDD(pids)
ilter(tRange, sRange).mapValues(sub(tRange, SRange));
3: return ts.reduceByKey(merge).collect();
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Algorithm 3. KNN-based query
Input: IndexTRDD, disM;
Output: the k most similar trajectories to tr;
1: mbr = tr.M BR, tRange = tr.T'imeRange;
2: repeat
3:  pids = glndex.intersect(mbr, tRange);
4:  ts = IndexTRDD.PartitionPruningRDD (pids)
ilter(mbr, tRange).reduceBykey(merge);
mbr.expand(1l + «);
until (ts.size > k)
candidate=ts.collect();
return candidate.map(t —(disM(¢, tr),t)).sortByKey.top(k);

Algorithm 2 sketches basic steps to process such queries. At first, TrajSpark tra-
verses the global index to filter partitions that are intersected with the given
spatio-temporal range (line 1). Then, for each partition, TrajSpark filters candi-
dates whose spatial bounding box and temporal range are intersected with the
given spatio-temporal constraint. Furthermore, it finds a sub-trajectory which is
bounded by the spatio-temporal constraint for each candidate (line 2).

6.3 KNN-Based Query

There are many variations of KNN-based query, and we focus on finding top-k
trajectories who are most similar to the reference one. This kind of query is very
common in trajectory patten analysis, and we represent it with KINN (tr, disM).
Here, tr refers to the query reference, and disM refers to the distance/similarity
metric between trajectories (popular metrics such as Euclidean distance, DTW
and LCSS are supported in TrajSpark). The processing procedure is shown in
Algorithm 3. TrajSpark gets the MBR and time range of ¢r firstly (line 1). This is
because candidate results are spatio-temporally close to the reference, the using
of mbr and tRange facilitates the pruning of candidate. Then, TrajSpark filters
candidate partitions using the global index (line 3). After that, sub-trajectories
are further pruned and merged into complete trajectories (line 4). These tra-
jectories are the candidates of the final result. However, if the number of these
candidates is smaller than k, TrajSpark expands the region of mbr (the center
of mbr will not change, while the width and length become 1+ a (0 < a < 1)
times) and re-executes the spatio-temporal query until the number of candidates
is larger than k. Here, the default value of « is set to 0.2. Finally, TrajSpark
measures the similarity for those candidate trajectories and selects k smallest
ones as the final result.

7 Experiments

7.1 Experimental Setup

We evaluate the performance of TrajSpark in this section. All experiments are
conducted on a 12-node clustering running Spark 1.5.2 over Ubuntu 12.0.4. Each
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node is equipped with an 8 cores Intel E5335 2.0 GHz processor and 16 GB
memory. The Spark cluster is deployed in standalone mode.

Two trajectory datasets of Beijing taxis [9], including a real dataset and
a synthetic one, are used to evaluate the performance. The real one, gathered
by 13,007 taxis in 3 months (from October to December in 2013), has 2.5 bil-
lion records and comprises about 190 GB. Each record contains the following
attributes: taxi ID, time, longitude, latitude, speed and many other descriptive
information. To better show the scalability of TrajSpark, we generate the syn-
thetic dataset by extending the real one. In the synthetic one, every taxi reports
its location every five seconds when it is taken by passengers, and the number
of records is 18 billion comprising about 1.4 TB. It needs to mention that the
former dataset can be completely loaded into the distributed memory, while
the storage overhead of the latter one far exceeds the memory capability of our
cluster. Thus, only partial of the synthetic data can be loaded in memory.

We compute the MBR of the spatial range of Beijing and split the rectangle
into 1,000 1,000 cells where each cell covers an area of nearly 180 m * 180 m.
We compare the performance of TrajSpark with GeoSpark and Simba in terms of
query latency and scalability. The latency is represented by the average running
time of a few queries, and the scalability is evaluated when different amount of
data is loaded into those systems.

7.2 Performance of Data Appending

Firstly, we study the performance of data appending when batches of data are
loaded into those systems. Figure4(a) gives the running time when batches of
real dataset are appended (each batch comprises about 32G). In GeoSpark and
Simba, the time cost of appending a batch of data increases linearly as the
volume of existing data increases, because they should repartition both existing
and the new batch of data. While TrajSpark requires less time and the loading
time keeps steady with the increase of data volume. This is because TrajSpark
only needs to partition the new batch of data and also can reach balanced data
partitions. So, in real big data applications where the volume of data grows
rapidly, TrajSpark outperforms GeoSpark and Simba significantly.
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Next, we investigate the storage overhead of different systems using the real
dataset and show the results with the RDD size of loaded data in Fig.4(b).
TrajSpark has the lowest storage cost due to data compression, while Simba and
GeoSpark consume more storage space (about 2-3X), because they should store
both the original data and the index tree in each partition. Simba requires more
space consumption than GeoSpark since the temporal dimension is also used to
index data. We also evaluate the size of global index in these systems. Global
index is not supported in GeoSpark, so we only show the results of TrajSpark and
Simba. Figure4(c) indicates that both TrajSpark and Simba have small global
index storage overhead (in order of KB). The size of global index in TrajSpark
is so small that it can be easily fitted into the memory of the master node.
Moreover, there are fewer partitions in TrajSpark due to data compression, so
the size of global index in TrajSpark is only about 1/3 that of Simba.

7.3 Query Performance

We first examine the efficiency and scalability of SO-based query. The query
latency is represented by the average query time of 100 queries which retrieve
the whole history of the given MOs. We increase the volume of dataset by load-
ing the daily generated data. Figure5 demonstrates that TrajSpark is an order
of magnitude faster than Simba, and nearly two orders of magnitude faster
than GeoSpark, because GeoSpark needs to scan the whole dataset. Although
Simba can prune irrelevant partitions using the global index, it needs to tra-
verse all the content of the selected partitions. In contrast, TrajSpark not only
utilizes the global spatio-temporal index to prune partitions but also uses the
local hash index to support random access to trajectories. Note that these sys-
tems perform better on the real dataset than the synthetic one. This is mainly
because the real one can be completely loaded in memory, while only a small
part of the synthetic one can be loaded. So queries on the latter dataset require
extra I/O cost. Nevertheless, these systems still performs well on the synthetic
dataset due to the following reasons: (i) We persist data at the storage level of
“MEM_AND_DISK_SER”, so hot data can be cached in memory, (ii) By using
the global indexes, a huge amount unnecessary I/O costs can be avoided.
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Fig. 5. Performance of SO-based query
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Subsequently, we examine the impact of data size for the STR-based query.
Since the spatial area is a critical parameter for the query result due to the
unbalanced data distribution, we randomly select 100 areas as the spatial con-
straint for our queries, and each of these areas contains 20*20 cells. These queries
only select trajectories generated in the last week. Figure6(a) and (b) show the
performance of these algorithms. We can see that TrajSpark and Simba behave
steady, while the query latency of GeoSpark increases linearly. Without a global
index, GeoSpark needs to scan the whole dataset. While TrajSpark and Simba
utilize the global index to prune data partitions, and the number of data par-
titions to be scanned does not vary significantly since the query range has not
changed greatly. Moreover, both of the latter two systems use a local index to
prune trajectories in each partition. Consequently, TrajSpark and Simba are
about an order of magnitude faster than GeoSpark. Moreover, TrajSpark is 3-5
times faster than Simba, because it prunes candidates through the MBR and
time range of the trajectory. So it can find the result in O(log,,) (n is the length
of a segment) time as the segment is ordered. Differently, Simba needs to sort
points of the MO to restore the original segment which costs O(nlog,,).
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Fig. 6. Performance of STR-based query

Furthermore, we report the performance of our system on STR-based queries
under various spatio-temporal ranges. The spatial constraints are 10%, 1%, and
0.1% of the entire region. The temporal constraints are 100%, 50%, 10%, 5%
and 1% of the 3 months. As shown in Fig.6(c) and (d), a large spatial or tem-
poral range usually leads to a longer query latency. But the performance is not
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essentially linear to the query range, because the number of partitions to be
scanned and the amount of data to be accessed in each partition do not grow
in a linear way. For example, when the spatial-range is set to 0.01%, and the
temporal range increases from 1% to 100%, the query latency grows 30 times.
Similarly, when the temporal range is set to 1%, and the spatial range increases
from 0.01% to 10%, the query latency grows about 9 times.

Finally, we evaluate the performance of top-k similar trajectory query by
using the Euclidean distance as the similarity metric. In this experiment, the
trajectories of ten taxis from the same day are selected as the query reference.
Figure 7(a) and (b) shows the scalability of TrajSpark when different amount
of data is loaded into the system and the value of k is set to 10. TrajSpark is
two orders of magnitude faster than GeoSpark, and runs about 4-6x faster than
Simba. That is because TrajSpark and Simba prune data partitions with the
global index, while GeoSpark has no global index and needs to access all data
partitions. In comparison of Simba, TrajSpark does not need to sort the points
of each trajectory. This result is similar to that of STR-based query because the
core of this query is an iterative spatio-temporal query. Furthermore, we evaluate
the impact of the parameter k by varying it from 1 to 50. Figure 7(c) and (d)
show that the performance of these systems are not really affected by k. This
is due to the reason that when & = 1, data partitions which contain the most
similar result have already contain enough candidates for larger values of k.
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8 Conclusion

To process the massively increasing trajectory data and support near real-time
query services, this paper proposes a distributed in-memory system called TrajS-
park. This system is built on top of Spark, and proposes IndexTRDD structure
that incorporating a global and local indexing mechanism. Additionally, TrajS-
park utilizes the time-decaying model to monitor the change of data distribution
and enables the data-partition structure to adapt to data changes. We validate
the storage overhead, data loading and query latency of TrajSpark by exper-
iments on both real and synthetic datasets. Experimental results show that
TrajSpark outperforms existing systems in terms of scalability and efficiency.
For future work, we plan to support more complicated operations by utilizing
TrajSpark.
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Abstract. Micro-blogging services can track users’ geo-locations when
users check-in their places or use geo-tagging which implicitly reveals
locations. This “geo tracking” can help to find topics triggered by cer-
tain events in certain regions. However, discovering such topics is very
challenging because of the large amount of noisy messages (e.g. daily con-
versations). This paper proposes a method to model geographical topics,
which can filter out irrelevant words by different weights in the local and
global contexts. Our method is based on the Latent Dirichlet Allocation
(LDA) model but each word is generated from either a local or a global
topic distribution by its generation probabilities. We evaluated our model
with data collected from Weibo, which is currently the most popular
micro-blogging service for Chinese. The evaluation results demonstrate
that our method outperforms other baseline methods in several metrics
such as model perplexity, two kinds of entropies and KL-divergence of
discovered topics.

Keywords: Geolocation - Geographical topics -+ Topic modeling -
Latent Dirichlet Allocation

1 Introduction

Micro-blogging services including Twitter and Weibo have emerged as a medium
in spotlight for online users to share breaking news or interesting stories in their
lives and update their status anywhere and anytime in their daily lives. With the
advancement of positioning technology, the popularity of low-cost GPS chips and
wide availability of smart phones, large-scale crowd-generated social media data
with geographical records have become prevalent on the web and can also be
easily collected. Such textual data with geo-coordinates or geo-tagged locations
usually contain landmark information (e.g., scenic spots or famous restaurants)
or information on local events (e.g., movies, vocal concerts, exhibitions or sports
games), and hence, can provide us rich and interpretable semantics on different
locations. It is also possible to infer inherent geographic variability of topics
across various locations.

In recent years, a significant amount of research have been conducted on
addressing the questions of how the information is created and shared in different
© Springer International Publishing AG 2017
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geographic locations and how the spatial and linguistic characteristics of people
vary across regions. Among them, a considerable amount of studies have been
conducted on GPS-associated documents including organizing geo-tagged doc-
uments or photos and studying user movement for POI recommendation, user
prediction and time prediction. They try to address the following two needs.
The first is to discover different topics of interests those are coherent in geo-
graphical regions. For example, a city is usually formed by different functional
sub-regions, such as business area, residential area and entertainment area. The
second is to comparing the topics discovered across different geographical loca-
tions. For example, people would like to know where is the landmarks of the city
for tourists or which places they could go when they plan to go shopping or have
fun during the weekends.

However, the challenge is that the messages with geo-locations are mixed
with overwhelming noisy messages of daily chats or expressions of personal emo-
tions, which have little or no relations to the location context. For example, in
the city of Shanghai, Waitan is a famous waterfront and one of the most pop-
ular scenic spots for tourists. However, even in such a spot, Weibo are still full
of daily conversations and greetings such as ‘Good night’ or ‘Have a nice week-
end’, which has no local semantics. When taking all local posts into account,
the meaningfulness or concentrativeness of the discovered topics can be compro-
mised. Therefore, it is very difficult to discover meaningful geo-location topics
by existing methods such as inferring occurrences of words from local posts.

This paper proposes an effective method to handle noisy messages and model
geographical topics of different locations. The proposed method is based on the
Latent Dirichlet Allocation (LDA) [2] topic model. The intuitive idea is that,
for a noise specific location, the words used by users are different between (a)
daily conversations and (b) the description of the landmark or local events.
The former is relatively consistent across different locations, and denoted as
global context, while the latter, which is essentially helpful to identify the true
characteristics of the region or area, varies by sites and are denoted as local
contezt. Our method takes the local and global contexts into consideration, and
different from all existing models to reveal spatial topics, it models each word to
be generated from either its local or the global topic distribution by its estimated
probabilities. The proposed strategy is able to distinguish locally featured words
from noise and improve the quality of discovered topics.

Our evaluation based on two typical social media datasets. One is from
Weibo, which is a Chinese micro-blogging website. Akin to a hybrid of Twitter
and Facebook, it is one of the most popular sites in China, in use by well over
30% of Internet users, with a market penetration similar to the United States’
Twitter. The other is from Yelp, which publish crowd-sourced reviews about local
businesses, as well as the online reservation service and online food-delivery ser-
vice. Our model is evaluated with several metrics widely used in assessing topic
models, such as perplexity and KL-divergence, together two kinds of entropies,
topic entropy and location entropy to assess the concentrativeness of the discov-
ered topics. The evaluation results demonstrate that our method outperforms
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other baseline methods and show its superiority in information filtering and
geographical topic discovery.

2 Related Work

In this section we discuss some work related to our study, including geo-tagged
social media mining, topic modeling and local word detection.

Mobility or posting pattern mining with geo-tagged social media data become
a hot topic with the development of GPS technology. The activities of mobile
users are typically represented as follows: a user appears at a certain location
(with a pair of latitude and longitude coordinates), and leaves a post (e.g.,
Weibo or review), which is likely semantically related to the user and/or the
location [18]. The mining problem is usually formulated as finding various mobil-
ity or posting patterns from user activities, such as frequent patterns, periodic
behaviors, representative behaviors and activity recognition [3,7,13]. In litera-
ture, numerous methods have been proposed to extract such patterns from the
social media data. Representative works include stop and move detection, signif-
icant place extraction, frequent regular pattern discovery, transportation mode
recognition. However, these works mainly focus on the trajectory or posting pat-
terns, and seldom explore the contextual semantics of user-generated contents.

Topic modeling is a classic task to enable text analysis at a semantic level
and to discover hidden semantic structures in a text body. The most represen-
tative and widely used topic models are probabilistic latent semantic analysis
(pLSA) [1] and LDA [2]. Both are generative statistical models, and assume
that in a given dataset each document is associated with a topic distribution,
and each topic with a word distribution, the difference is that in LDA, the topic
distribution is assumed to have a Dirichlet prior, and in practice, this results
in more reasonable mixtures of topics in a document. Recently, in order to sup-
port location-aware information retrieval or to compare topics across geograph-
ical locations, there are many works in the area of geographical topic model-
ing [4,5,8,9,12,14-17,19,21-23]. For example, Yin et al. proposes and compares
three ways of modeling geographical topics, including a location-driven model,
a text-driven model, and a joint model called LGTA [14], which combines geo-
graphical clustering and topic modeling into one framework. In this model, the
coordinates in each document are drawn from a 2D Gaussian distribution and
the region is drawn from a Multinomial distribution over all regions. Hong et
al. models diversity in tweets based on topical diversity, geographical diversity,
and an interest distribution of the user [16]. Further, it takes the Markovian
nature of users’ locations into account and identifies topics based on location
and language. The spatial Topic (ST) Model for location recommendation has
been proposed by Hu and Ester recently to capture the correlation between
users’ movements and between user interests and the function of locations [18].
A hierarchical topic model which models regional variations of topics has been
presented by Ahmed et al., which combines distributions over locations, topics,
and over user characteristics, both in terms of location and in terms of their
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content preferences [20]. Unlike previous work, it automatically infers both the
hierarchical structure over content and over the size and position of geograph-
ical locations, and gains higher accuracy on location estimation from Tweets.
Although all the above works discover regions and geographical topics, they do
not consider the overwhelming noisy messages in user-generated contents, which
can have a major impact on the results.

Another line relevant to our research is local word detection. The general idea
is that when a location specific event of interest takes place, there can be a surge
in the volume of documents related to the event, and as a result, such a surge
of information can be utilized to identify location-characterized topics. Based
on the premise that local words should have concentrated spatial distributions
around their location centers, Backstrom et al. proposes a spatial variation model
for analyzing geographic distribution of terms in search engine query logs [6],
and this method has been used by Cheng et al. to decide whether a word is
local or not [12]. Meanwhile, Mathioudakis et al. uses spatial discrepancy to
detect spatial bursts, which identifies geographically focused information bursts,
attribute them to demographic factors and identify sets of descriptive keywords
[10]. In these work, whether the word is local or not is determined by a assigned
locality score. However, it is demonstrated by Wu et al. that this method can be
erroneous since it assumes one peak density distribution while many local words
can have multiple peaks [24]. Our work is different from the existing works in
that, word locality is not generated directly but evaluated by the generation
probability and is not associated with a static locality score, which means that
a word (e.g. car) can be both non-local for a majority of locations and also local
for a few particular locations (e.g. automobile 4 S shops).

3 Method

3.1 Local-Global LDA Model

In this section, we propose a novel topic model for geo-tagged social media texts
called LGLDA (Local-Global LDA Model), which combines noise filtering and
topic modeling into one framework. To begin with, we define the notations used
in this paper as listed in Table 1.

To discover geographical topics, the spatial structure of words should be
encoded. The words that are close in space are likely to be clustered into the
same geographical topic. However, in our dataset, the geographical distance of
two words cannot be calculated due to the loss of the exact geo coordinations,
but each peace of text is associated with a location tag, therefore if two words
come from texts with the same location tag, they are close, otherwise they are
distant. Furthermore, if the exact geo coordinations are assessable, the closeness
of any two words can be calculated by Euclidean distance, and our model can
be modified by assuming that geographical distribution of each region follows a
Gaussian distribution. Hence, the words that are close in space are more likely
to belong to the same region, so they are more likely to be clustered into the
same topic.
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Table 1. Notations used in the paper.

Notation | Description

0y Global topic distribution

0, Local topic distribution for location [
10} Word distribution for topic k

w Location relevence

Ze Latent topic

w Observed word

oy Multinomial distribution prior for 6;
oy Multinomial distribution prior for 64
I6) Multinomial distribution prior for ¢
¥ Binomial distribution prior for w

L Number of locations

D, Number of documents in location
Ny Number of words in document d

In our scenario, each geo-located document d is tagged with a location [, and
contains a set of words wy. A geographical topic z is a meaningful theme shared
by similar locations, and each location is associated with a topic distribution
p(z[l).

We formalize our model based on the following intuitions. Firstly, words close
in space are likely to be clustered into the same geographical topic. Therefore,
topics are generated from locations instead of individual documents. Secondly,
locally featured words have a more compact geographical scope. For example,
‘bravo’ is a word for a performer, so that it is more possible to be used at a
theater, a concert or a stadium rather than other places. On the contrary, noisy
words (e.g., happy, love, city) can have a much wider spatial range. However,
some words could be local for certain locations although these words are com-
monly used at many places. In our method, the role (local or non-local) of a
word is determined by its generation probabilities of its local and global seman-
tic contexts. Therefore, our model is named as Local-Global LDA model (or
LGLDA).

The graphical representation of our model is shown in Fig. 1. Shaded nodes
indicate observed variables or priors, while light ones represent latent variables.
In order to keep a small set of parameters for simplification, in our model there
are one shared set of topics with two different distributions 8; and 6, for the local
topics and the global topics, respectively. It might be interesting and reasonable
to utilize two kinds of ¢ for words’ local and global distributions corresponding
to the two topic distributions, and we would like to study it in our future work.

For a collection of L locations, geo-tagged by D documents, each contains
N words, the topic of each word can either be drawn from 6; or from 6,. Topic
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Fig. 1. Graphical representation of the proposed local-global LDA model.

L

assignment is denoted by z., and e(= [/g) indicates whether it is drawn from
the local or the global. Since micro-blog is length limited, it is likely to have
focused concept. Therefore, if a document is location relevant, each word in it
is more likely to be relevant. This relevance of each document is indicated by w,
with binomial distribution prior 7. Finally, the word distribution in K topics is
denoted by ¢. oy, ay, B are priors for §;, 6, and ¢, respectively.

In order to weight between local and global distributions, we add an addi-
tional parameter, named local-global weight ratio. Assume the local and global
topic distributions are 6; = [p;1,....p1,x] and 84 = [pg1, ..., Py, K] respectively,
topic assignment is drawn from a concatenated distribution 6 in Eq. (1).

A 1
0 = ——0ip(e = llw) ® ——0,p(e = g|lw)

T+l A+l )
_ [Apz,lp%) ApLipy pyapt pg,Kp%?)}
NI WEE T N D WA

When A is too large, the global word set is narrowed and ineffective for noise
filtering, while when A is too small, the size of local words is sparse and it fails
to discover meaningful topics. Therefore, an appropriate A is crucial. In our
experiment, it is optimized by estimating the model’s perplexity (as illustrated
in Fig.2 in Sect.4.4).

The generative process of our model is summarized in Algorithm 1.

3.2 Model Inference

Like most Bayesian models, collapsed Gibbs sampling was used for model infer-
ence. We present the conditional probability of its latent variables z, 0,0, ¢
and w for sampling. Details are omitted for limited space. It is assumed that
topic distributions 6;, 8, and word distribution ¢ of each topic k are drawn
from dirichlet distributions of their respective priors a;, oy and 3, while locality
relevance w are drawn from a binomial distribution with prior ~.
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Algorithm 1. Generative process of LGLDA model.
: for each I-th location do
Draw a Dirichlet distribution over all latent topics 6; ~ Dirichlet(ay).
end for
Draw a Dirichlet distribution over all latent topics 6, ~ Dirichlet(ayg).
for each k-th topic do
Draw a Dirichlet distribution over all words ¢ ~ Dirichlet(3).
end for
for each l-th location do
for each d-th Document do
Draw a Bernoulli distribution w ~ Dirichlet(7).
for each w-th word position do
Draw a topic from Multinominal distribution z. ~ Dirichlet(6;4).
Draw a word from Multinominal distribution w ~ Dirichlet(®).
end for
end for
: end for

e el el
IR s <

The conditional probability for sampling the topic assignment z, of each word
is computed in Eq. (2), where z.; = k and e; = k represent the assignments of
the ith word to topic k, and mark the word as local if kK = 1 otherwise non-local.
A = %H(/i =1) or /\il (kK = g). n_; .k represents the word count with locality
assignment k and topic assignment k£, and —¢ means not including the ¢th word.
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Consequently, the topic distribution of each location can be computed in

Eq. (3).
®) (1)
nyy o

p(zi = k|l;) = W
[0
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4 Evaluation

4.1 Dataset

In this section, we experimentally evaluate the effectiveness of the proposed
method. We report our experimental results on the following two real datasets.

The first come from Weibo [25] (all written in Chinese), which is a Chinese
micro-blogging website. Akin to a hybrid of Twitter and Facebook, it is one of
the most popular sites in China. Without loss of generality, we only focus on
messages in Shanghai (the largest city in China and one of the largest cities in
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the world by population) in 2015. Since most of the locations have been tagged
for only a few times, we only selected those locations with a considerable number
of posts within a pre-defined spatial range. The original data was preprocessed
by filtering out stop words, then nouns and verbs were extracted as valid words
with a Chinese POS (part-of-speech) tagger. Messages with less than three valid
words were eliminated.

Our second dataset is from Yelp, which publish crowd-sourced reviews about
local businesses, as well as the online reservation service and online food-delivery
service. This dataset is publicly available [26], which is collected from Phoenix,
which is a US city. In the Yelp dataset, each review has a location that is asso-
ciated with a unique pair of latitude and longitude coordinates and a business
name which is usually correspond to a restaurant, a hotel or an entertainment
area. In order to share the same time span with the Weibo dataset, only reviews
posted in 2015 is selected.

Some statistics about these two datasets are presented in Table 2.

Table 2. Dataset details

Description Weibo | Yelp
Total number of message | 252173 | 661833
Total number of location | 1088 43990
Average length of message | 110.32 | 33.30

4.2 Comparison Methods

We compare the proposed model LGLDA with the following other methods.

— TF-IDF with K-means clustering (or TF-IDF)
In this method, Weibos are firstly preprocessed and presented as tf-idf
weighted vectors and then aggregated by locations. Therefore, the feature
vector of each location is summed by all documents tagged with that loca-
tion. Finally, the feature vectors of each location are clustered by K-means.
The center of each cluster represents a topic, and the weight of each element
in the vector denotes the importance of the according keyword.

— LDA model with location aggregation (or LDA)
In this method, topic and word distributions are firstly calculated by stan-
dard LDA algorithm with all documents, without considering the geo-tagged
locations. After the global topics and word distribution in each topic are cal-
culated, they are then aggregated by location. The topic distribution of each
location is calculated as the average over all documents geo-tagged with that
location.

— Local LDA model (or LocalLDA)
This method is similar to those in previous works. The topics are generated
from locations instead of documents. If two words are from the same region,
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they are more likely to be clustered into the same topic. However, it is a
simplified scenario, usually, if two words are close to each other in space, they
are more likely to belong to the same region. In our dataset, the geographical
distance of two words cannot be calculated due to the loss of the exact geo
coordinations, but become a Boolean variable of whether they are tagged
with the same location. Different from LGLDA model, in LocalLDA, there
is only a local topic distribution, and all settings are kept the same with the
LGLDA model.

4.3 Quantitative Measures

In order to make a comparison between different methods, several quantitative
measures are used.

— Perplexity
Perplexity is used to evaluate the performance of topic modeling. Perplexity
is the standard metric to evaluate the predictive power and generalizability of
a topic model, and is monotonically decreasing with increasing likelihood of
the test data set. Hence, a lower perplexity score indicates stronger predictive
power.

ZdeD log p(wq) } (4)

2aep N

where D is the test collection and Ny is the length of document d.

— Location and Topic entropies
The average topic entropy of each location and the average location entropy
of each topic are used to measure the concentrativeness of discovered topics.
Each location should have a compact distribution on topics, while each topic
should concentrate on a small set of locations.

entTOpyto;mc = L Z ZP(Z) logp(l) (5)

perplexity(D) = exp{—

1
entropiocation = = 3 3 1 1og (Y ©)
K L

where p,(fl) and pl(k) are the estimated probabilities of topic k for location [

and location [ for topic k, respectively.

— KL-divergence
KL-divergence is used to measure the average distance of word distributions of
all pairs of topics. The larger the average KL-divergence is, the more distinct

the topics are.
( )

DxL(pillp;) Zpgk)log )7 (7)

where pgk) and pg-k) are the estimated probabilities of topic k for location 4

and location j respectively.
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4.4 Settings

In our experiments, the number of topics was set at K to 20 for all models
(including K-means), oy and oy to 0.1, 3 to 0.1, v and v, to 0.5 for all LDA-
based models empirically and were run for 500 iterations.

For the LGLDA model, the local-global weight ratio was determined by
model’s perplexity as shown in Fig.2. As can be seen, in the Weibo dataset,
with the gradually increasing value of A from 0.1 to 20, the perplexity descended
first and then ascended, and reached minimum at 0.6. Hence, 0.6 is the best value
for A for the Weibo dataset, and was used in our experiments. Performance on
the other two metrics also confirmed this selection.

In the Yelp dataset, A was determined with the same manner, and was finally
set at 0.8. The optimal value of A for the two dataset is quite close. In our future
work, we would experiment against more different kinds of dataset to investigate
whether the chosen value of A is a coincidence or it is decided by the intrinsic
properties of all user generated social media data.

Weil Yel|
6000 . eibo . 20 120 600 —— =P 3.0 3.0
i |
5500 ! 5500 !
| 1.8 1.8 5000 | 23 23
5000) A
4500 ! 2.0 20
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i s KL-divergence i A KL-divergence
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Local—global weight ratio A Local—global weight ratio A

Fig. 2. The impact of the value of local-global weight ratio A on model’s performance.

4.5 Results

In this section, we experimentally evaluate the effectiveness of the LGLDA
model, and compare it against the baseline methods.

Locality Score

In order to validate the effectiveness of our LGLDA model to distinguish between
local words and noise, we defined the locality score. The locality score is defined
as the ratio of the average probability of words generated from the local and the
global topic distribution, and it is calculated as in Eq. (8).

Zwed p(ze,'wa Cw = l)
- (8)
> weaP(Zew €w = g)

The locality score is a measurement of the relatedness of the messages to its
respective local context or semantics. The higher the score is, the more represen-
tative the message is of its tagged location. In order to illustrate the usefulness
of this measurement, we sorted all Weibos according to the locality score within

Locality(d) =
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Table 3. Examples of Weibo text with locality score sampled from location Waitan

Locality score | Weibo text

7.18 Cruising along Waitan while taking a close-up view of the
Oriental Pearl Tower is a worthwhile trip

0.91 Breakfast at Xitang, lunch at Hangzhou, dinner at Waitan.
What an incredible day on the run

0.02 To deal with a difficult customer in the afternoon, I'd have to
get up early to do data analysis

each location, and three Weibos were sampled from the collection with distin-
guishable locality score with location tagged ‘Waitan’ and shown in Table 3.

As we can see, the result is quite in accordance with our expectation. Weibo
with the highest score which includes several landmark names and location spe-
cific words is highly relevant, while the other two messages containing only few
or no location featured words are weakly related or irrelevant. Therefore, our
model has the ability to rank texts according to their location relevence.

Comparative Results with Baselines

In this section, we use the quantitative measures described in Sect. 4.3 to eval-
uate the performances and show the superiority of our LGLDA model. The
used quantitative measures include perplexity, KL-divergence and two kinds of
entropies: topic entropy and location entropy.

Table 4. Results of the comparative experiments

Dataset | Method Perplexity | Topic entropy | Location entropy | KL-divergence

Weibo |LDA 6904.11 2.9680 59.5100 2.2944
LocalLDA | 5679.95 1.5156 31.2292 1.5694
LGLDA 2357.94 |1.1998 24.2575 1.7494

Yelp LDA 6320.41 2.3669 44.9711 2.1769
LocalLDA | 4570.38 1.0965 20.8351 1.2330
LGLDA 2021.72 |0.5608 10.6569 2.2892

Table 4 gives the comparative results of our LGLDA model with other base-

lines. As we can see, both in the Weibo dataset and in the Yelp dataset, our
LGLDA model outperforms other baselines in almost all quantitative measures.
Although Weibo and Yelp have distinctive business purposes and target users in
different countries, while their datasets yield different statistic characteristics,
our model is more preferable in both scenarios.

The LGLDA model achieves much lower perplexity for the reason that it can
separate local and non-local words. Hence the words or the documents are better
classified and organized by topics. With noisy words filtered out and only location
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related words kept, the discovered topics are more distinct and representative of
the local semantics, which is reflected by the topic and location entropies.

In Table 4, in the Weibo dataset, the KL-divergence of our model is lower than
that of the original LDA model, and the reason may due to the location relevance
constraint. Since in the LDA model, all messages are unseparated according to

locations, the discovered topics can be formed by messages with different geo
tags. Further more, because all messages are deemed as useful, the structure of

the clusters discovered is different from the other LDA-based models.

Topic Comparison of Different Methods
In this section, we show the topics discovered by different methods with Weibo
and Yelp datasets.

In all the models, we set the number of topics at 20, and since to list all of
the keywords in each topic would have taken a lot of space while has little help
to gain an useful insight, we only showed the top three topics discovered in each
dataset here. The result is shown in Table 5.

Table 5. TOP3 topics discovered by Weibo and Yelp dataset

‘Weibo Yelp

TF-IDF LDA LocalLDA | LGLDA TF-IDF | LDA LocalLDA | LGLDA

‘Work, Love, Work, Work, Time, Food, Food, Food,

company, | feeling, mood, company, food, table, time, service,

mood, mate, love, mood, service, | minutes, | minutes, restau-

women, inside, children, phone, city | people, |server, |people, rant,

teacher teacher phone location |service | nice delicious,
menu

University, | Teacher, University, | University, | Food, Steak, Steak, Steak,

teacher, English, teacher, school, chicken, |restau- |dinner, dessert,

effort, school, library, library, service, |rant, table, bread,

mood, exam, school, teacher, menu, dessert, | restau- cheese,

paper culture birthday student love bread, rant, salad

meal server

Waitan, City, Waitan, Waitan, Hotel, Hotel, Hotel, Hotel,

city, night, | Waitan, hotel, Oriental stay, vegas, stay, time, | vegas,

Oriental Shanghai, | center, Pearl pool, casino, | vegas, casino,

Pearl Oriental Oriental Tower, desk, desk, night pool

Tower, Pearl Pearl Chenghuang | vegas night check

restaurant | Tower, Tower, Temple,

interna- financial Nanjing
tional Road,
Huangpu
River

In the Weibo dataset, the first topic (2nd row) is composed of words with

broader meanings, which can be viewed as noises, while the other two topics (3rd
row and 4th row) contain the semantics of education and tourist attractions.
As can be seen, keywords discovered by our LGLDA model achieve the best
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relevance while keywords by other methods include more or less noise (e.g. mood,
city, etc.). To further drill down the result, in our LGLDA model, Topicl together
with Topic4 accounts for 98.8% of global topic distribution and contains a large
amount of words, which is not related to any specific semantic locations. With
these noisy words filtered out, locations can be covered by fewer topics. For
example, for Oriental Pearl Tower, the weight of Topic3 in LGLDA is 0.933
compared with a mixed topic constitution discovered by LocalLDA (0.425 for
Topicl, 0.414 for Topic3 and 0.161 for all others).

The result of the Yelp dataset is in accordance with the Weibo dataset.
Firstly, the topics discovered by our LGLDA model are more distinct. The first
topic and the second topic discovered is separable, since the first concentrates on
the general aspect of meals or restaurants, while the second concentrates more
on the detailed kinds of foods or dishes. However, the topics discovered by other
models are more mixed up. Secondly, the keywords of topics discovered by our
LGLDA model contain less noises. In contrast, keywords in the topics of other
methods in more noisy (universal words may exist in different topics), therefore
have impaired the semantic distinctness of the topics discovered.

5 Conclusion

This paper proposes a method, which combines local word filtering and geo-
graphical topic modeling into one framework. The proposed LDA-based model
LGLDA can effectively distinguish between location related words and a variety
of noisy daily interests by properly choosing the local-global weight ratio para-
meter in the Bayesian model. Results on Weibo collection show the effectiveness
of our method over other baselines.

This initial work shows the potential for location-sensitive information
retrieval and opens up several interesting future directions. Firstly, we would
like to apply our models on other interesting data sources. For example, we can
mine interesting geographical topics from the tweets associated with user loca-
tions in Twitter. Second, we would like to compare the topics discovered as local
and global topics, and investigate the correlation between the topics discovered
and human mobility pattern disclosed by other datasets such as cellular signaling
and traffic sensor data.
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Abstract. The rapid development of mobile devices has stimulated the
popularity of spatial crowdsourcing. Various spatial crowdsourcing plat-
forms, such as Uber, gMission and Gigwalk, are becoming increasingly
important in our daily life. A core functionality of spatial crowdsourcing
platforms is to allocate tasks or make plans for workers to efficiently fin-
ish the published tasks. However, existing studies usually ignore the fact
that tasks may impose different skill requirements on workers, which may
lead to decreased numbers of accomplished tasks in real-world applica-
tions. In this work, we propose a practical problem called TOTP, Team-
Oriented Task Planning, which not only makes feasible plans for workers
but also satisfies the skill requirements of different tasks on workers. We
prove the NP-hardness of TOTP, and propose two greedy-based heuristic
algorithms to solve the TOTP problem. Evaluations on both synthetic
and real-world datasets verify the effectiveness and the efficiency of the
proposed algorithms.

Keywords: Spatial crowdsourcing - Task plan - Team formation

1 Introduction

With the rapid development of mobile and intelligent devices, spatial crowd-
sourcing platforms, such as Uber, gMission [3] and Gigwalk, are gaining increas-
ing popularity. Different from traditional crowdsourcing platforms, tasks pub-
lished on spatial crowdsourcing platforms require workers to travel to specific
locations to accomplish the tasks.

A fundamental issue in spatial crowdsourcing is the planning problem [12,14],
which refers to making traveling plans for workers to efficiently finish the pub-
lished tasks under constraints such as travel budgets and completion time. We
argue that such a problem formulation is impractical, because the tasks on real-
life spatial crowdsourcing platforms often come with various requirements. Con-
sequently, only workers with the desired skills are able to accomplish the corre-
sponding tasks. Imagine the following scenario. There is a spatial crowdsourcing
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platform which provides domestic services. Currently it has three tasks: the first
one needs cleaning and tutoring from 3:00 p.m. to 5:00 p.m.; the second requires
babysitting and cleaning from 4:00 p.m. to 6:00 p.m.; and the third needs cook-
ing from 6:00 p.m. to 7:00 p.m. There are also some workers on the platform:
Paul is skilled at cleaning and babysitting, David is good at cooking and Lucy is
skilled at tutoring. Note that it is non-trivial for a single worker, such as Paul or
David, to accomplish the requirement of the above tasks. It is also difficult for the
platform to make plans for the workers under the spatial and time constraints.

Existing solutions to the planning problems in spatial crowdsourcing do not
consider the skill requirements, spatial and time constrains simultaneously. In
the above scenario, existing studies will assign the first task to Paul, which will
not be completed. To jointly account for the skill requirements of tasks and the
spatial and time constraints, our key insight it to assign a team of workers to
fulfil all the requirements. We propose TOTP, a Team-Oriented Task Planning
problem to maximum the total satisfaction of the workers. Note that we use
skills to represent the specific requirements of tasks on workers. We illustrate
the motivation of TOTP with the following example. In this example, the skills
are denoted as {e1, - ,e4}.

Table 1. Basic information of tasks and workers in Example 1

Workers Tasks

No | Owning skills | Travel budget | No | Required skills | Capacity | Time period
wy | {e2,ea} 24 t1 | {e2,e3} 2 [5,6]

wa | {es} 20 ta | {e2} 2 [1,3]

ws | {es,es} 19 ts |{e2,ea} 1 [7,8]

wy | {e1,e2} 21 ta |{e1,e2,e3} 2 [2,4]

ws | {e1,es} 23

Table 2. Satisfaction between tasks and workers in Example 1

w1 | w2 | W3 | W | Ws
tv/1 |3 |2 |1 |5
22 |3 |2 |1 |4
t3/5 |2 |3 |4 |1
t4 4 |4 |2 |1 |6

Ezample 1. Suppose we have five workers w;—ws and four tasks t1—t4 on a spatial
crowdsourcing platform. The locations of the workers and the tasks are shown
in the 2D space in Fig. 1a. We use Euclidean distance in this example. Table 1
shows the attributes of the workers and the tasks. The skills of the workers
and the distances that he/she would like to travel are shown in the second
and third columns. The skill requirements of tasks on workers are shown in
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Fig. 1. Example 1

the fifth column. Capacity shows the maximum number of workers that can
participate in the corresponding task. The last column in Tablel shows the
completion time, which is the duration that the assigned worker needs to stay at
the task’s location. Table 2 shows the satisfaction of workers, which represents
the workers’ preferences on the tasks. The spatial crowdsourcing platform has to
make assignments between the workers and tasks such that the skill requirements
of tasks are satisfied and the total satisfaction is maximized. Figure 1b shows a
global task planing, i.e. {t1,¢3} for wy and {t4,t1} for way, respectively. Notice
that ¢; can be accomplished by a team of w; and ws.

Contributions. We propose a more realistic planning problem in spatial crowd-
sourcing called the Team-Oriented Task Planning problem (TOTP). As the
example indicates, the TOTP problem not only makes plans for each worker but
also attempts to satisfy the skill requirements of different tasks. To summarize,
our contributions are as follows.

— We identify TOTP, a new spatial crowdsourcing planning problem that
accounts for the skill requirements of tasks on workers.

— We prove that the TOTP problem is NP-hard.

— We propose two greedy algorithms to solve the TOTP problem, and analyze
the complexity of both algorithms.

— We verify the effectiveness and efficiency of the proposed algortihms through
extensive experiments on synthetic and real-world datasets.

In the rest of the paper, we review related work in Sect.2, formulate the
TOTP problem and prove its NP-hardness in Sect.3. Section4 presents our
algorithms on TOTP problem and Sect.5 show the experimental evaluations.
Finally we conclude this paper in Sect. 6.
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2 Related Work

Our TOTP problem is closely related to two categories of research: spatial crowd-
sourcing and team formation.

2.1 Spatial Crowdsourcing

The task assignment problem is fundamental in spatial crowdsourcing. Many
efforts aim to maximize the total number or total utility of tasks that are assigned
to workers in static scenarios [9,19]. Others study the conflict-aware spatial task
assignment problems [14,15,22]. Recently, the problem of online task assignment
in dynamic spatial crowdsourcing was first proposed by [21], and several variants
of online task assignment in dynamic scenarios were also studied in [16,17,20].
Other practical issues such as location privacy protection of workers have also
been explored [18]. In addition, [6] introduced the route planning problem for
a worker and attempt to maximize the number of complete tasks, while the
corresponding online version of [6] is investigated in [11]. [7] studies to assign
workers under the spatial and time constraints. [3] summarizes the challenges
and opportunities in spatial crowdsourcing. Despite the extensive research efforts
on task assignment in spatial crowdsourcing, they all assume simple and homoge-
nous tasks without considering the situations where the tasks are complex and
require a team of workers to finish.

2.2 Team Formation

The team formation problem is first proposed by Lappas et al. [10], which aims
to find the minimum cost team of experts according to the skills and relation-
ships of users in social networks. Notice that the team formation problem can
be reduced from typical NP-complete problems, indicating that the team for-
mation problem is NP-hard. [1] focuses on minimizing the maximum workload
when forming teams to cover the skills, and studies both the off-line and on-line
settings. [13] studies the team formation problem with capacity constraints on a
social network, and presents approximation algorithms with provable guarantees.
[2] studies the online team formation problem called the Balanced Social Task
Assignment problem, and proposes an online algorithm with provable guarantee.
In [8], based the skills of crowd workers, the authors study how to recommend k
teams for spatial crowdsourcing tasks. Furthermore, Cheng et al. also proposed
the issue of team-oriented task assignment in spatial crowdsourcing recently [5].
The above studies only focus on satisfying the skill requirements. They neither
consider the location information and travel budgets, nor address the problem
of how to make feasible plans for workers.

3 Problem Statement

In this section we formally define the Team-Oriented Task Planning (TOTP)
problem and prove that the problem is NP-hard. We assume E = <eqy, -+ ,e,>
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as a universe of m skills throughout this paper. Let T be a set of tasks. Each task
t has its own location [, that requires the assigned workers to travel to. The task
t’s skill requirement is represented by a subset of E: E; = {e1,---,eg,|}. We
also define a time interval [s!, st], which is the starting time and the ending time
of the corresponding task t. Note that the assigned workers need to stay at I,
during this time interval. In real-life applications, the number of workers to finish
a task is normally limited. Hence we define the task’s capacity ¢; as the maximum
number of workers allowed for the task. We define W as a set of workers. Each
worker w has his/her starting location [, a set of skills E,, = {e1, - ,e|p,|}
and a travel budget B,,, which represents the total travel cost that the worker
w would like to spend to accomplish the tasks, which can be money, distance or
time.

Definition 1 (Crowd Worker). A crowd worker (“worker” for short) is
denoted as w = <ly,, By, Byw>, where l,, is the starting location of worker w
in the 2D space, E,, is a set of skills that the worker is good at, and B, is the
travel budget that the worker w would like to spend to accomplish the tasks.

Definition 2 (Crowdsourced Task). A crowdsourced task (“task” for short)
is denoted as t = <li, Ey, Int, c;>, where ly is the location in the 2D space that
workers have to travel to, Ey is the task’s required skills, Int = [s!, s5] represents
the task’s time interval during which the task should be accomplished and c; is
the capacity of the task that limits the number of the workers assigned to the
task.

For each worker w, we define P, = {t¥,t¥,--- ’tﬁ}%\} as the plan of the arranged
tasks in time order. Suppose that ¢; and ¢;11 are two tasks in P, a plan is feasible
if there is no time conflict among the arranged tasks, and the workers can perform
ti+1 in time after finishing ¢;. To evaluate the travel cost between any two tasks,
such as t; and t;, we use cost(ly,, lt].) to represent the travel cost between ¢; and
t;. If a worker cannot perform the next task in time, the cost between these
two tasks will be co. Meanwhile, we define u(w,t) as the satisfaction between
task ¢ and worker w, and U(w) =}, cp u(w,t;) as worker w’s satisfaction on
P,,. Finally we give the definition of feasible plan and the Team-Oriented Task
Planning (TOTP) problem.

Definition 3 (Feasible Plan). A plan P, is feasible if and only if: sh <
ST VL <i < |Py| — 1.

Definition 4 (Team-Oriented Task Planning (TOTP) Problem). Given
a set of tasks T' = {t1,ta,- - ,t|7|} and a set of workers W = {wy,wa, -+, wjw|}
with their associated attributes, the Team-Oriented Task Planning (TOTP) prob-
lem is to find feasible plans A = U, {P,} for workers with the mazimum utility
cost: Utility(A) =, cw U(w;i), such that the following constraints are satis-
fied:

— Skill constraint: each required skill of the tasks is covered by the assigned
workers.
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~ Travel budget constraint: a worker’s total travel cost is under his/her travel
budget.

— Capacity constraint: the number of workers assigned to a task is lower than
the task’s capacity.

Theorem 1. The Team-Oriented Task Planning problem is NP-hard.

Proof. We prove that the Team-Oriented Task Planning problem is NP-hard
by reducing the knapsack problem, a well known NP-complete problem, to the
TOTP problem. An instance of the knapsack problem consists of a set of n items
{z1, - ,z,} where each item x; has its value v; > 0, weight m; > 0, and the
maximum weight M that the bag can carry. The decision version of the knapsack
problem asks whether there is a collection of items C' = {x4,,2s,, * ,Zs,}
such that Zle vs; = K and Zle ms, < M. We construct an instance of the
knapsack problem using an instance of the TOTP problem as follows (Table 3).

Table 3. Summary of symbol notations

Notation Description

w Worker

t Task

Ct Capacity of ¢

lw(ly) Location of w(or t)

T Set of tasks

w Set of workers

B Budget of w

E.(E:) Skill set of w(or t)
P, Plan of w
A=Uu{Sw} The total plan

u(t, w) Satification between ¢ and w
Uw) =D cp, u(w,t) w’s satification on P,

Utility(A) = >, cw U(w) | The total satification of A

— Let [W| =1, W = {w}, and B, = M.

— Let B, =FE,,YweWand VteT.

— Each item corresponds to a task in TOTP problem. u(w,t;) = % vi,Vl <
i < n and the capacities of all the tasks equal to 1.

— Let s§i<s§i+l,V1 <i<n.

— The travel cost of worker w and task ¢; is set as: cost(w,t;) =

The travel cost between two events is constructed as:

cost(lt;,1i;) = {

m;

2 -

mi+m;

1<i<j<n

+00 otherwise
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Thus, the problem is to decide if there is a feasible plan P, for w such that
> tep, ww,t;) = —K satisfying all the constraints. We can see that if the col-
lection exists, then the plan P, is feasible, and it satisfies that >, - p u(w,t;) =

K_ and the total travel cost is less than M. That is, if the plan P, exists,

max v;

then there is a collection C satisfying the constraints on the sum of values and
weights. 0

4 Algorithms of TOTP Problem

In this section, we present two greedy-based algorithms to solve the TOTP
problem.

4.1 Rarest Skill Priority Algorithm

We first present a greedy algorithm called the Rarest Skill Priority Algorithm.
The Rarest Skill Priority Algorithm recursively selects such skills that are
required by numbers of tasks but only few workers have such skills. We call
such skills rarest skill. The reason why we choose rarest skills in priority is to
avoid the case where the workers possessing the rare skills have been assigned
to other tasks and the tasks requiring these skills would never be accomplished.
The rarest skills are calculated by arg max.cpg %
workers or tasks own/require the rarest skill, we greedily make an assignment of
a pair of (worker, task) such that the utility gain is the largest. The utility gain
is defined in Eq. 1.

Then, if a number of

b
ratio(w,t) = M (1)
inc_cost(w, t)
where inc_cost(w,t) =
cost(ly, 1) P, =0
cost(ly, 1t) + cost(ly, lyw)
—cost(luy, liw) st < st
cost(lyw, 1t) + cost(ly, L, ) 2)
—cost(lyy, Ly, ) s;l < st sb < sii+1
COSt(lt"ulg ‘7lt) S;‘P“" < s}
o0 otherwise

Equation 1 defines the ratio between the satisfaction and the additional travel
cost. With a larger ratio(w, t), the task ¢ is more suitable for w since he/she has
a larger satisfaction and less travel cost. In Eq. 2, inc_cost(w, t) is the additional
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Algorithm 1. Rarest Skill Priority Algorithm
input : A set of workers W, a set of tasks 7" and their associated attributes
output: A = Uy{Pw}
1: H—10
2: for e,qre = argmaxecg % do
3: W’ra're = {wlerare € Ew}

4: Trare = {t|erare S Et}
5: for ti € Trare do
6: W = arg MaXwew,.o,.. ratio(w,t;)
7 H — (w,t;)
8: end for
9:  while H # () do
10: Pop (w,t) from H with the largest ratio
11: Add t to P, if {t} |J Pw is feasible and ¢ is not full of capacity
12: Et = Et — Ew
13: Update (w,t) in H for each t
14:  end while
15: end for
travel distance when inserting task ¢ to plan P, = {t¥, ¢¥, - - Py }. The details

of inc_cost(w, t) are shown in Eq. 2. If P,, is an empty set, the worker only needs
to travel to l; to perform the task. Otherwise, when the starting time of ¢ is
earlier than that of the first task of P,,, we can insert ¢ into P,, as the first task.
Hence the additional travel cost is cost(ly, ;) + cost(ls, 1} ) — cost(ly, 1} ). When
t’s time interval is between task ¢} and ¢, ; in P, (V1 <i < |P,| — 1), we insert
the task ¢ in-between and the worker needs to travel to [; after finishing task ¢;".
Thus the additional cost is cost(lyw, ;) +cost(l, lew, | ) — cost(lgw, ltéuﬂ). Finally, if
task t’s starting time is after the last task’s ending time, we define the additional
cost as cost(ltﬁ:m ).

Algorithm 1 shows the pseudo-code of the Rarest Skill Priority Algorithm.
Specifically, when making plans for the workers possessing the rarest skills, we
use a heap H to store the worker-task pair (w,t) with the largest ratio for each
task in a decreasing order. Then we can pop the pair on the top of H and add
it into the worker’s plan. In Algorithm 1, we first initialize the heap H (Line 1).
Then we find the rarest skill, and the set of workers W,,,.. and tasks T}4,. that
require/own the rarest skill (Lines 2—4). We traverse the set T} and add the
pair with the largest ratio (calculated by Eq.1) into the heap H for each task
(Lines 5-8), pop the pair (w, t) with the largest ratio in H, and add task ¢ to w’s
plan if it is feasible (Line 10). Afterwards, we update the skill requirement of ¢
to compute the next rarest skill. Because the additional travel cost of the pair
associated with w has changed, we need to update the pairs in H (Line 13) for
the next iteration. We pop the top pair with the largest ratio until H is empty,
and we continue the loop for finding the rarest skill and making assignments
(Lines 2-15).



Team-Oriented Task Planning in Spatial Crowdsourcing 49

Ezample 2. Back to Examplel, we first traverse the tasks ¢t; — t4 and work-
ers wi; — ws, and find that ey is the rarest skill. Then we make assignment
between W4re = {w1,ws} and Trgre = {t1,t2,t3,t4}. For each task ¢ in Tqpe,
we find the worker who has the largest ratio with him/her in W4, and push
the worker into the heap. In the first iteration, the ratios are shown in Table4.
We choose the pair with the largest ratio for each task and build the heap
H = {(wy,t1), (wq, t2), (w1,t3), (w1,t4)}. We pop the largest pair (wy,t3) with
the ratio 0.51 and add ¢3 to wi’s plan. Then we update the pair for t1,s,%4 in
H and finally in this iteration we get {(wi,t3),(w1,t1),(wa,t2),(wa,ts)}. In the
following iterations we repeat the process and finally we get {¢1,t3,t4} for wy,
{t1,t2} for wy and {t4} for w;.

Table 4. Ratios in the first iteration

t1 to i3 14
w1 | 0.33]0.34]0.51 | 0.49
wy [ 0.2810.350.50 | 0.20

Complexity Analysis. In the worst case, Algorithm 1 has to traverse all the
skills to cover the requirement. During each iteration, we traverse the rest of
skills to find the rarest skill whose time cost is O(|E|(|W|+ |T'|)). Then for each
task in W4 we spend O(|W||T'|) to find the (worker, task) pair with the largest
ratio. Searching through and updating the heap take about O(|]W||T"|). Thus the
time complexity of Algorithm 1 is O(|E|?(|W| + |T|) + |E||W||T]) in the worst
case, where |E| is the number of all skills. The memory cost of Algorithm 1 is
mainly to store the heap and the plans for workers, which is O(|W||T|).

4.2 Skill Cover and Utility Priority Algorithm

In this subsection, we present another solution to the TOTP problem, which
is called the Skill Cover and Utility Priority Algorithm. In the Skill Cover and
Utility Priority Algorithm, we first attempt to cover all the skills of a task like
the team formation problem. Specifically, for each task we attempt to form a
team to satisfy the skill requirement with a minimal team size. If the team size
is smaller than the capacity, in the second step we greedily assign the worker
with the largest satisfaction to the tasks. Finally we can obtain a team for the
task and satisfy the skill requirements of the tasks.

Algorithm 2 presents the details of the Skill Cover and Utility Priority Algo-
rithm. In lines 1-3, we first sort tasks in an increasing order of staring time and
initialize time,, for each worker, which records the available time of the worker.
Then we traverse the set of tasks. In line 6 we use function Dis(.) to compute
the total travel cost of the plan and pick up the set of workers W’ who can par-
ticipate in task t. In lines 7-11 we initialize the team g and choose the worker



50 D. Gao et al.

Algorithm 2. Skill Cover and Utility Priority Algorithm
input : A set of workers W, a set of tasks 7" and their associated attributes
output: A = Uy{Pw}

1: sort(T)

for w in W do
timey, =0

end for

for ¢t in T do
W' = {w|w € W and Dis(P, U {t}) < B,, and time,, < si}
g=190
while g cannot cover E; do

9: w = argmax ey {|E: N By}

10: g=g+{w}

11:  end while

12:  while |g| < ¢; do

13: W = argmaxXy,ew’—g u(w,t)

14: 9=g+{w}

15:  end while

16:  for w in g do

17: Add t to Py,

18: By, = By, — cost(w,t)
192 lw == lt

20: time, = 53

21: end for

22: end for

23: return A = U,{P,}

who has the most required skills and add him/her to team g. Then if the size
of g is smaller than ¢;, we add workers with the largest satisfaction to the team
until the task’s capacity is fully occupied. Finally, we update the workers’ plans,
budgets, current locations and time,, in lines 16-21 and continue the iteration
for the next task. Specifically, when the size of team ¢ is larger than c¢;, we
abandon the task and go on to the next task.

Ezample 3. Back to our Examplel. In the first step the tasks are sorted as
{to, t4,t1,t3}. For task to, ws has all the required skills. We add ws to team g
and at this time the team size is smaller than 2. Thus, ws is added to the team
for having the largest satisfaction for to. Then for ¢4, we find worker w4 who has
the most required skills and add wy into the team. Because w3 has participated
in t9, which conflicts with ¢4, we choose ws to cover the last skills. At last the
team size equals to t4’s capacity. For t; and t3, we run Algorithm 2 in a similar
way, and finally we get a team {wj,ws} for ¢; and {w;} for t3. The final result
is presented in Table5 and the total satisfaction is 20.

Complexity Analysis. For the two-step greedy algorithm, the time cost to sort
tasks and initialize the worker set is O(|T|In(|T|) 4+ |W|). Then we traverse each
task to find a feasible team. Forming team g in lines 8-15 takes O(|E||W]) in
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Table 5. Result of Example 1

Worker | w1 wWo w3 |ws |ws

Plan | {t1,ts}| {ta,ta}  {t2} | {ta} {t2}

the worst case. Finally updating the workers’ attributes takes O(|]W|). Therefore
the overall time cost of the algorithm is O(|T||E||W|+|T||W]). The major space
cost of Algorithm 2 is from storing the set W', T' and their associated attributes,
whose overall space cost is O(|W| + |T).

Table 6. Synthetic datasets

Notation | Value

[W| 1000,1500,2000,2500,3000
|| 250,500,750,1000,1250
mean 4,6,8,10,12

factor |0.5,1,2,4,8

|Ew| 3,6,9,12,15

|Ey| 5,10,15,20,25

5 Evaluation

In this section we conduct experiments on both synthetic and real-world datasets.
We use the dataset from gMission [4], a spatial crowdsourcing platform, as the
real-world dataset. In this dataset, we extract 1000 tasks, each of which is asso-
ciated with some descriptions introducing the details. Thus, the required skills
of the tasks can be extracted from the descriptions, and the worker’s skills are
learned from his/her history tasks. Table 6 shows the parameters of the synthetic
dataset, and the default values are shown in bold. In the synthetic dataset, the
numbers of workers |W| and tasks |T'| are set between 1000-3000 and 250-1250,
respectively. According to the real-world dataset, we let the capacities of workers
follow the normal distribution, with the mean between 4-12. In terms of travel
budget B,,, we define a parameter factor to vary the travel budget. Then we have
B, = minger cost(ly, ;) + minier COSt(lw’lt);maxtGT cost(lwle) factor, and we
vary factor from 0.5 to 8. Note that the moving distance of a worker is computed
in Euclidean distance and it can be easily extended to the road network distance
or other distance metrics. Both the numbers of workers’ skills |E,,| and tasks’
required skills |E:| follow the normal distribution and the means are between
3-15 and 5-20. In the real-world dataset, we still use By, = minger cost(l,, l;)+

minger cost(ly,li)+maxier cost(ly,li)
2

x factor as the budget of workers, because there
are no such parameters in the real-world dataset.
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Fig. 2. Results on varying |W/|, |T|, and mean.

We evaluate both the Skill Cover and Utility Priority Algorithm (Algo-
rithm 2), denoted as SCUP and the Rarest Skill Priority Algorithm (Algo-
rithm 1), denoted as RSP. We compare these algorithms in terms of utility, time
and memory. When comparing utility, we only compute the satisfaction of the
completed tasks, whose skills are completely satisfied.

Effect of |W|. Figure 2a to c present the results of varying |W| in the synthetic
dataset. The total utility obtained from SCUP is much larger than that from
RSP. The running time and the memory cost of both SCUP and RSP are small
but increase with |T¥|. The memory of SCUP is smaller than that of RSP, because
RSP needs to store the worker-task pairs in the heap.

Effect of |T|. Figure2d to f show the results of varying |T| in the synthetic
dataset. The utility of SCUP increases with |T|, and stables when |T'| reaches
1000. This is because the number of workers and the travel budget B, are
limited, so the workers cannot complete more tasks. The time cost of SCUP is
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Fig. 3. Results on varying factor, |Ey|, and |Ey|.

smaller than that of RSP, and the memory cost of SCUP is approximately equal
to that of RSP. Tt is because SCUP spends more time to update the heap and
traverse the tasks and workers to find the rarest skill.

Effect of mean. Figure 2g to i depict the results of varying mean in the synthetic
dataset. SCUP performs better than RSP not only in total utility but also in
time and memory cost. This is because increasing mean of capacity enables the
tasks to accept more workers. Later the number of workers and the workers’
travel budget become the bottlenecks for total utility in SCUP. As for the utility
of RSP, the increasing mean of capacities increases the possibility of tasks to be
accomplished.

Effect of factor. Figure3a to c¢ present the results of varying factor in the
synthetic dataset. The influence of factor on SCUP is stronger than that of
RSP (see Fig. 3c). It might be because RSP attempts to cover the rarest skills
first, which disperses the workers to different tasks. Thus the utility of RSP
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increases slowly at the beginning, and increases much faster when the travel
budget of workers becomes abundant.

Effect of|E,|. Figure 3d to f show the results of varying |E,| in the synthetic
dataset. When the workers possess more skills, the possibility of choosing workers
with satisfaction for tasks increases. SCUP spends less time to cover the required
skills, which results in decreased time cost. Conversely, RSP has to traverse more
skills for each worker, which leads to higher time cost.

Effect of |F;|. Figure 3g to i demonstrate the results of varying |E;| in the syn-
thetic dataset. When |E;| increases, the utility of both RSP and SCUP decreases
because more workers are needed to satisfy the skill requirements. Due to the
extra effort for searching workers to cover the skills, the time and the memory
cost also increase with |Ey|.
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Fig. 4. Results on real datasets.

Effect of |IV| in Real Dataset. Finally Fig. 4a to ¢ show the results of varying
|W] in the real-world dataset. When || increases, the utility of SCUP increases
fast at the beginning. When |W| reaches 2000, the utility stabilizes, since the
tasks are consumed. For RSP, the utility exhibits a similar but less dynamic
trend to SCUP. The memory costs of the two algorithms are approximately the
same. The time costs of both algorithms are small.

Summary. SCUP outperforms RSP in utility in various scenarios. One reason
is that when making an assignment between workers and tasks owning/requiring
the rarest skill, the tasks’ capacities are consumed but only few skills are sat-
isfied. Therefore some tasks’ skill requirements cannot be completely satisfied.
In contrast, SCUP attempts to cover the skills with a small team of workers,
which ensures that the task are actually accomplished. Furthermore, SCUP also
outperforms RSP in time and memory.

6 Conclusion

In this paper, we introduce Team-Oriented Task Planning (TOTP) problem, a
realistic planning problem in spatial crowdsourcing which attempts to assign
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workers to suitable tasks. Different from previous research, it also takes into
account the skill requirements of tasks on workers. We prove that TOTP is NP-
hard, and propose two heuristic algorithms to solve the TOTP problem. Finally
we conduct experiments on both synthetic and real-world datasets and verify
the effectiveness and the efficiency of the proposed algorithms.

Acknowledgment. This work is supported in part by the National Science Founda-
tion of China (NSFC) under Grant Nos. 61502021, 61328202, and 61532004, National
Grand Fundamental Research 973 Program of China under Grant 2012CB316200.

References

1. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Power
in unity: forming teams in large-scale community systems. In: CIKM, pp. 599-608
(2010)

2. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online
team formation in social networks. In: WWW, pp. 839-848 (2012)

3. Chen, L., Shahabi, C.: Spatial crowdsourcing: challenges and opportunities. IEEE
Data Eng. Bull. 39(4), 14-25 (2016)

4. Chen, Z., Fu, R., Zhao, Z., Liu, Z., Xia, L., Chen, L., Cheng, P., Cao, C.C., Tong,
Y., Zhang, C.J.: gMission: a general spatial crowdsourcing platform. Proc. VLDB
Endow. 7(13), 1629-1632 (2014)

5. Cheng, P., Lian, X., Chen, L., Han, J., Zhao, J.: Task assignment on multi-skill
oriented spatial crowdsourcing. IEEE Trans. Knowl. Data Eng. 28(8), 2201-2215
(2016)

6. Deng, D., Shahabi, C., Demiryurek, U.: Maximizing the number of worker’s self-
selected tasks in spatial crowdsourcing. In: GIS, pp. 314-323 (2013)

7. Deng, D., Shahabi, C., Zhu, L.: Task matching and scheduling for multiple workers
in spatial crowdsourcing. In: GIS, pp. 21:1-21:10 (2015)

8. Gao, D., Tong, Y., She, J., Song, T., Chen, L., Xu, K.: Top-k team recommendation
in spatial crowdsourcing. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds.)
WAIM 2016. LNCS, vol. 9658, pp. 191-204. Springer, Cham (2016). doi:10.1007/
978-3-319-39937-9_15

9. Kazemi, L., Shahabi, C.: Geocrowd: enabling query answering with spatial crowd-
sourcing. In: GIS, pp. 189-198 (2012)

10. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
SIGKDD, pp. 467-476 (2009)

11. Li, Y., Yiu, M.L., Xu, W.: Oriented online route recommendation for spatial crowd-
sourcing task workers. In: Claramunt, C., Schneider, M., Wong, R.C.-W., Xiong,
L., Loh, W.-K., Shahabi, C., Li, K.-J. (eds.) SSTD 2015. LNCS, vol. 9239, pp.
137-156. Springer, Cham (2015). doi:10.1007,/978-3-319-22363-6-8

12. Lu, E.H., Chen, C., Tseng, V.S.: Personalized trip recommendation with multiple
constraints by mining user check-in behaviors. In: GIS, pp. 209-218 (2012)

13. Majumder, A., Datta, S., Naidu, K.: Capacitated team formation problem on social
networks. In: SIGKDD, pp. 1005-1013 (2012)

14. She, J., Tong, Y., Chen, L.: Utility-aware social event-participant planning. In:
SIGMOD, pp. 1629-1643 (2015)


http://dx.doi.org/10.1007/978-3-319-39937-9_15
http://dx.doi.org/10.1007/978-3-319-39937-9_15
http://dx.doi.org/10.1007/978-3-319-22363-6_8

56

15.

16.

17.

18.

19.

20.

21.

22.

D. Gao et al.

She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrange-
ment. In: ICDE, pp. 735-746 (2015)

She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrange-
ment and its variant for online setting. IEEE Trans. Knowl. Data Eng. 28(9),
2281-2295 (2016)

Song, T., Tong, Y., Wang, L., She, J., Yao, B., Chen, L., Xu, K.: Trichromatic
online matching in real-time spatial crowdsourcing. In: ICDE, pp. 1009-1020 (2017)
To, H., Ghinita, G., Shahabi, C.: A framework for protecting worker location pri-
vacy in spatial crowdsourcing. Proc. VLDB Endow. 7(10), 919-930 (2014)

To, H., Shahabi, C., Kazemi, L.: A server-assigned spatial crowdsourcing frame-
work. ACM Trans. Spat. Algorithms Syst. 1(1), 2 (2015)

Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching
in real-time spatial data: experiments and analysis. Proc. VLDB Endow. 9(12),
1053-1064 (2016)

Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation
in spatial crowdsourcing. In: ICDE, pp. 49-60 (2016)

Tong, Y., She, J., Meng, R.: Bottleneck-aware arrangement over event-based social
networks: the max-min approach. World Wide Web: Internet Web Inf. Syst. 19(6),
1151-1177 (2016)



Negative Survey with Manual Selection:
A Case Study in Chinese Universities

Jianguo Wu', Jianwen Xiang', Dongdong Zhao'™, Huanhuan Li?,
Qing Xie', and Xiaoyi Hu'

' School of Computer Science and Technology,
Wuhan University of Technology, Wuhan, China
{jgwu, jwxiang, zdd, felixxqg, huxiaoyi}@whut. edu. cn
2 School of Computer Science, China University of Geosciences, Wuhan, China
julylhh@gmail. com

Abstract. Negative survey is a promising method which can protect personal
privacy while collecting sensitive data. Most of previous works focus on neg-
ative survey models with specific hypothesis, e.g., the probability of selecting
negative categories follows the uniform distribution or Gaussian distribution.
Moreover, as far as we know, negative survey is never conducted with manual
selection in real world. In this paper, we carry out such a negative survey and
find that the survey may not follow the previous hypothesis. And existing
reconstruction methods like NStoPS and NStoPS-I perform poorly on the survey
data. Therefore, we propose a method called NStoPS-MLE, which is based on
the maximum likelihood estimation, for reconstructing useful information from
the collected data. This method also uses background knowledge to enhance its
performance. Experimental results show that our method can get more accurate
aggregated results than previous methods.

Keywords: Privacy protection - Negative survey * Reconstruction method

1 Introduction

Nowadays, the rapid development of computer network and big data technologies
brings great convenience to people, but it also increases the risk of disclosing sensitive
data and personal privacy. Negative Survey [1, 2] is a promising privacy protection
technique. In a negative survey, participants are asked to answer a question by selecting
a category that they do NOT belong to (this kind of category is called negative
category). When the number of categories in a question is larger than 2, the privacy of
the participants can be protected because attackers cannot determine the real answer of
a participant. After collecting negative survey results, statistical results about popula-
tion distribution over different categories could be reconstructed by several methods.
Previous works about negative survey mainly focus on models with specific
hypotheses, e.g., the probability that participants select negative categories follows the
uniform distribution or Gaussian distribution. These models could be reasonable when
negative categories are selected by electronic devices instead of humans. However, in
some applications with high security requirements, participants need/want to manually

© Springer International Publishing AG 2017
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select a negative category as the answer, and they do not want to use electronic devices
because the security cannot be guaranteed. Therefore, we conduct a negative survey in
Wuhan University of Technology and China University of Geosciences, and the
answers are manually selected by participants. Based on the survey results, we have
several findings (as shown in Sect. 3.3). Moreover, we propose a method called
NStoPS-MLE to reconstruct useful aggregated results. To enhance the performance, the
proposed method uses background knowledge about the overall probabilities of
selecting negative categories. Experimental results show that NStoPS-MLE performs
better than NStoPS [1, 2] and NStoPS-I [5] on most of the questions.

2 Related Work

Negative survey is first proposed by Esponda [1, 2] in 2006. For example, in a positive
survey, the question is designed as follow:
What is the rank of your score in your class:

A.1-5 B.6-15 C.16-25 D.>267

In negative survey, this question is designed as follow:
Which is NOT the rank of your score in your class:

A.1-5 B.6-15 C.16-25 D.>267

If the rank of Alice’s score is 3, in positive survey, she should select A. But in
negative survey, she should select one answer among B, C and D at random.

Generally, assume that the number of categories in a question is ¢, the number of
participants is n, and Q is the reconstructed matrix composed by g;;, where g;; denotes
the probability that a participant, who actually belongs to the i™ category, selects the /™
category as negative category. The statistical results collected from negative survey is
r=(ry ... r.), where r; is the number of participants that select the i category as
negative category. Our goal is to reconstruct aggregated results ¢ = (¢;...7,) from
negative survey results, where #; denotes the number of participants that actually belong
to the i™ category. A theoretical model called NStoPS for reconstructing ¢ is: t = rQ ™
[1, 2].

Presently, there are some researches about negative survey. Typically, Bao et al.
pointed out in [5] that NStoPS would produce unreasonable negative values, and they
proposed two algorithms called NStoPS-I and NStoPS-II to handle negative values. Xie
et al. [4] proposed Gaussian negative survey, in which the probability that participants
select negative categories follows Gaussian distribution. Zhao et al. [6] suggested to
use background knowledge in reconstructing useful information from negative survey
results. Recently, Esponda et al. [3] proposed a personalized negative survey model,
which could meet different privacy requirements from users. Negative survey has been
applied to several scenarios. For example, in [7], Horey et al. employed negative survey
for collecting anonymous data in sensor networks. In 2012, Horey et al. [8] used
negative survey in collecting the location information of users. In [9], Liu et al. applied
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negative survey to the privacy protection of cloud data. Overall, previous researches
(e.g., [1, 2, 4-6]) mainly focus on uniform negative survey or Gaussian negative
survey, in which the probability that participants select negative categories is assumed
to follow the uniform distribution or Gaussian distribution. In their experiments, they
used electronic devices to simulate the negative selection.

3 Overview of the Survey

3.1 Survey Goal and Questionnaire Design

The main goal of our work is carrying out a realistic negative survey and finding its
characteristics. We conducted a survey in two universities. Our questionnaire has three
parts. The first part is an anonymous positive survey, we assume the statistical results
from this part is close to the truth, and we evaluate the reconstructed results from
negative survey based on the results from this part. The second part is a real-name
negative survey, and the third part is a real-name positive survey. The third part is
simply used to construct some background knowledge about the probabilities of
negative selection, and the background knowledge will be used in reconstructing
results from negative survey. The respondents can answer all surveys or part of them.

Our questions are sensitive issues about university students. Each part has 15
questions, but the questions in the negative survey are designed in a different form.
Several examples of questions are listed as follows: “how often do you skip class”,
“what’s the rank of your scores in your class”, “how often do you watch xanthic films”.
In our questionnaire, four questions have 3 categories, six questions have 4 categories,
and five questions have 5 categories. To avoid that the order of categories would affect
the choice of the respondents, we rearrange the order of categories in the second
survey. Because we finally analyze the collected data based on the content of each
category, for a convenience, we use “category A, B, C, D, E” in part 2 the same as in
part 1 and part 3 in the rest of this paper.

3.2 Data Statistics

We collect data by surveys online and offline. For online surveys, we program the
survey website, and participants are guided to the anonymous positive survey,
real-name negative survey and real-name positive survey in turn. The answers of
participants are automatically stored to the server database. For offline surveys, first, we
conduct the anonymous positive survey, and then, we conduct the two real-name
surveys. In the end, we collect 811 valid records (corresponds to 811 respondents) from
the anonymous positive survey, 550 valid records from the real-name negative survey,
and 528 valid records from the real-name positive survey.

The statistical results of each category for anonymous positive survey and
real-name negative survey are shown in Table 1. All these results are rounded to one
decimal place. The statistical results of the real-name positive survey are not presented
because we just use it to get Q in reconstruction.
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Table 1. Statistical results of the anonymous positive survey and real-name negative survey.

Anonymous positive survey | Real-name negative survey
A B C D E A B C D E
1 |455/49.3 32] 20 12.9| 8.5/40.4|38.2
2 |80.6/13.6 38| 2.0 10.5|14.0 15.3]60.2
3 123.1/333 |31.6/|12.1 35.5] 8.5[15.5/405
4 176.6|19.6 25] 14 9.1/10.2|17.5/63.3
5 |13.437.1 |39.8| 53/43(18.7 10.5| 5.3{25.8/39.6
6 323|428 |18.7| 3.1|3.1|17.1| 3.6(12.5|18.947.8
7 129.6/55.0 |11.0| 44 16.9| 5.8|13.8|63.5
8 140.0/54.6 54 242115.5/60.4
9 1919| 63 1.8 9.8125.6|64.5
10154375 |33.3| 85(53(25.1| 82| 9.8/16.0/40.9
11/94.8| 4.1 1.1 8.1/22.0/69.8
121948 3.8 1.3 6.9(48.5]44.5
13| 89565 |282| 3.5(/3.0/20.5| 7.3| 8.7/30.4|33.1
14| 6.0/184 |29.6(38.1/79(43.8| 5.6| 7.1/22.0/21.3
15| 58| 46 40.8|48.6 38.2138.0| 6.7|17.1

3.3 Survey Findings
Based on the collected survey data, we have the following findings:

(1) The probability that participants select negative categories might not follow the
uniform distribution or Gaussian distribution. We extract all valid records that have the
same identity (i.e., name) in the real-name negative survey and positive survey, and we
compare the answers of each participant in the two surveys. Finally, we can obtain a
matrix Q for each question, and Q(i, j) denotes the percentage of participants who select
the /™ category in real-name negative survey among those participants who select the i™
category in real-name positive survey. The Q(i, j) could represent (at least approximate
to) the probability that participants, who actually belong to the i category, select the /™
category in negative survey. We find that Q(i, j) might not follow the uniform or
Gaussian distribution, for example, as shown in Fig. 1, the distributions of Q(1, 1)~ Q
(1, 4) and Q(2, 1)~ Q(2, 4) are neither uniform nor Gaussian distribution.

Moreover, we find participants prefer to select negative categories that have
extreme values. For example, among the participants who select category A in the 3rd
question (see the example in Sect. 2) in real-name positive survey, about 57% of them
select D as negative category in negative survey while D has an extreme value. The
percentages of selecting B and C are about 14% and 18%, respectively. Note that there
are usually about 35 students in the classes where we conduct surveys.

(2) Typical reconstruction methods (i.e., NStoPS and NStoPS-I) perform poorly on the
collected data. As shown in Tables 3, 4 and 5, the accuracy of NStoPS and NStoPS-I
on several questions is low. For example, the errors of the results reconstructed by
NStoPS on the 2-7" questions are larger than 0.60. The errors of the results
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Fig. 1. The distributions of Q(1, 1)~Q(1, 4) and Q(2, 1)~ Q(2, 4).

reconstructed by NStoPS-I on the 2"d, 3rd, 6th, 14 questions are larger than 0.40, and
especially, the error is about 0.78 for the 14™ question. Those results are almost useless.

(3) Reconstructed results might not be better on the questions with less categories. For
example, the result on the 13t question (with 5 categories) is better than several results
on the questions with 3 categories or 4 categories (as shown in Table 6).

(4) There might be more unreasonable answers in negative surveys when participants
manually select negative categories. For example, we find some participants select the
same option for all questions and some participants write fake names in real-name
surveys. We regard these records as dirty data and remove them when reconstructing.
Moreover, there are some non-negative values in Q matrix for most of the questions
(e.g., the 1%, ond 3rd questions, see Table 2). The method of getting Q is showed in
Sect. 4.1. It indicates that some participants might have not followed the rule of
negative selection, i.e., they have selected a category they really belong to in negative
survey, therefore Q(i, i) in some matrices are not 0. Furthermore, we find that the
results reconstructed by the theoretical model (i.e., NStoPS) contain unreasonable
negative values for most of the questions.

Table 2. Matrices from the samples from the real-name negative and positive survey.

1st question 2nd question 3rd question
Q| 1013 0.09 041 0.37 0.07 0.12 0.17 0.64 0.11 0.12 0.18 0.59
0.11 0.1 0.3 049 0.24 0.08 0.04 0.64 025 0.07 02 048
1/3 1/3 0 1/3 1/3 1/3 0 1/3 0.53 0.11 0.06 0.3
1/3 1/3 1/3 0 1/3 1/3 1/3 0 0.7 0.06 0.12 0.12

4 Reconstruction Algorithm

In this section, a method called NStoPS-MLE is proposed for reconstructing useful
aggregated results from negative data.
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4.1 Using Background Knowledge

In real world, we usually have some background knowledge. Therefore, we try to use
part of Q as background knowledge to improve the accuracy of reconstructed results.

As we have conducted a real-name positive survey, we collect part information
about Q by randomly sampling a number of (e.g., 100 or 50) participants and comparing
their answers in the real-name negative survey and the real-name positive survey. For
example, for the 1% question, Q(1, 2) is set to the percentage of participants who select B
in the negative survey among the participants who select A in the real-name positive
survey. Except the part of QO we obtain, the remaining part is set as that in uniform
negative surveys, i.e., if i = j, then Q(i, j) = 0; otherwise, Q(, j) = 1/(c—1).

4.2 NStoPS-MLE

The probability that a panicipant actually belongs to the i™ category and selects the j™
category in negatlve survey 1s I x g;. Consequently, the probability that a participant
selects the /™ category in negatlve survey is:

N 7
Pj:Zi:IZX%‘j- (1)

Let p = (p;...p.), and in an event of the negative selection on the question in
negative survey: the probabilities that the 1°...c™ category is selected as a negative
category are p;...p., respectively. The negative selection event happens n times, and
the probability that the 1%...c™ categories are selected as negative categories ry...r.
times respectively, can be calculated as:

n' T Fe
Pr(rlp) = mpl‘ X ... X pr. (2)

It subjects to multinomial distribution. When reconstructing, we have the observed
results r = (r;...r.) but p = (p;...p.) remains unknown because ¢ is unknown. The
reconstruction can be formalized as:

|
~ n! . -
Puje = aArg maxy ————— Py X ... Xpr o 3

le gpeP {VI!X...X}’C! ! C} ()

Where P contains all feasible values of p. Because when ¢ is known, p can be calculated
from ¢, we have Pr(rlt) = Pr(r|p) and (3) can be converted to:

Ti
fmle = arg max{rl' X ... X I lHl 1 (Z} ln qﬁ) }

teT

= arg max{z;l r; X log (Zj:l 5 X qj',') }

teT
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Where T contains all feasible values of £. According to the definition of ¢, it has the
following constrains: Zf:l t;=n and 0<¢ <n. By the constrains, unreasonable
negative values can be avoided in reconstruction.

The steps of NStoPS-MLE are shown as follows. Firstly, we counts the total
number of participants by n =r; +r,+...4r.. Next, we revise the unreasonable
values of ¢g; in Q to 0, and scale the other values at the same row by
9ij = qij/ >_j-1..cj2i 95 Then we solves (4) with constrains i, #; = n and 0 <1; <n.

Finally, we can get f out. Note that, there are many methods can efficiently solve (4)
with constrains, like the interior point algorithm. When ¢ < 4 and n < 1000, it is
feasible in practice to enumerate every possible assignments of ¢ to find the best one
according to (4). In our experiments, we solve (4) by the built-in function called
fmincon in Matlab.

5 Experimental Results

In this section, we carry out several experiments on reconstructing aggregated results
by NStoPS-MLE, and compare it with NStoPS and NStoPS-I.

For each question, we make a list of categories, for which we will collect back-
ground knowledge. For each listed category, we randomly select 100 or 50 participants
from those who finished the real-name negative survey and positive survey. Table 3
shows the number of the sampled participants for each category in each question. Next,
we collect the values in Q from the records of the sampled participants. The remaining
part of Q is set according to that of uniform negative surveys. Finally, using the O, we

reconstruct aggregated results 1 from negative survey results, and we evaluate 1 by the

error formula 14/ | (7; — ti)2 [5].

We carry out the above experiment 30 times for each question, and the average
value of error is presented in Tables 4, 5 and 6. Note that, NStoPS and NStoPS-I are
executed with the matrix Q for uniform negative surveys. Tables 4, 5 and 6 shows the
results for the questions which have three, four and five categories respectively.

As shown in Tables 4, 5 and 6, NStoPS-MLE performs better than NStoPS over all
questions, and it performs better than NStoPS-I over most questions. NStoPS-MLE
performs worse than NStoPS-I only in the 1*!, 8" and 12" questions, because NStoPS-I
has already obtained very good results. Note that the effectiveness of the background
knowledge about Q is related to the accuracy of the results in the real-name positive
survey. However, the “real-name” rule may induce inexact background knowledge.

Table 3. The number of different categories we sample.

1 /2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12 |13 |14 |15

100|100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 O| O| O
100| 50100100 |100|100|100 100| O|100| O| O|100/100| O
0/100| 0O|100| 50| O O| O|100| O| 0/]100] 100|100
0| 0| 50, of 0| O O 0 01100 | 100
0| 0 0 0/ O

mog QW >
o
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Table 4. Errors for the questions which have 3 categories.

8 9 11 12

0.32089732 | 0.537624429 | 0.668872531 | 0.13349797
0.083677434 | 0.290930698 | 0.308991642 | 0.129740317
0.117258544 | 0.163318938 | 0.155915267 | 0.131531038

NStoPS
NStoPS-I
NStoPS-MLE

Table 5. Errors for the questions which have 4 categories.

1 2 3 4 7

0.417023068 | 1.071013116 | 0.646269694 | 1.133704834 | 1.113415734
0.126676882 | 0.421710766 | 0.40721515 | 0.362863376 | 0.292960686
0.164332104 | 0.261843698 | 0.238704758 | 0.185308482 | 0.241277358

15
0.477458566
0.37690809
0.23388729

NStoPS
NStoPS-1
NStoPS-MLE

Table 6. Errors for the questions which have 5 categories.

5 6 10 13

14

NStoPS
NStoPS-I
NStoPS-MLE

0.782076105
0.309181876
0.229283031

1.101897433
0.477232203
0.275135786

0.860045928
0.236083239
0.180742101

0.592824026
0.19853143
0.155891588

1.122504328
0.782297744
0.231061221

The results of NStoPS-MLE seem more stable than that of NStoPS-I, and all errors
for NStoPS-MLE are less than 0.276, but the errors of NStoPS-I in the 2™, 3™, 6™ and
14™ questions are larger than 0.40. Specifically, NStoPS-I has an error larger than 0.78
on the 14™ question, and that makes its result almost useless.

6 Conclusion and Future Work

In this paper, we present and analyze a real-world negative survey and obtain several
findings. Existing reconstruction methods like NStoPS and NStoPS-I perform poorly
on the data for several questions. Thus, we propose a method called NStoPS-MLE to
effectively reconstruct aggregated results from negative survey results. Experimental
results show that NStoPS-MLE using background knowledge performs better than
NStoPS and NStoPS-I over most of questions. The method in this paper could be used
in real-world negative survey.

In future work, we will try to carry out several surveys to investigate the influence
of the privacy degree of different categories on the utility of the collected data. And we
will try to use other background knowledge to enhance NStoPS-MLE.
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Images
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Abstract. Assessing the quality of sightseeing spots is a key challenge
to satisfy the diverse needs of tourists and discover new sightseeing
resources (spots). In this paper, we propose an element-oriented method
of landscape assessment that analyzes images available on image-sharing
web sites. The experimental results demonstrate that our method is supe-
rior to the existing ones based on low-level visual features and user behav-
ior analysis.

Keywords: Point of interests - Sightseeing value - Image processing

1 Introduction

The growing importance of tourism to the global economy has highlighted the
need for a reliable means of estimating the sightseeing value in order to exploit
and distribute resources to sightseeing spots in a rational manner [1-3,15,16].

As a user behavior based method, Zhuang et al. [1,4,5] discover obscure spots
with high sightseeing quality but low popularity. However, since their methods
rely on the analysis of users’ behaviors, the lack of social information for obscure
spots makes their solution not so flexible. The content-based method [13] tries to
find relationships between low-level visual features and sightseeing value. How-
ever, considering the wide variation in photographic skills and techniques of
tourists, the performance of this method is limited by its strong dependency on
photo quality.

According to a theory proposed in environmental psychology, when people
experience a landscape, information is derived through senses, organized, and
interpreted by human perception [6]. In this way, a mental model [7] has been
devised in which human perception is affected by three aspects: biological factors,
cultural factors and individual factors. On the basis of [8], we have proposed
three environmental psychology based criteria for sightseeing quality estimation
by analyzing social images [15,16]. These criteria for landscape assessment are
based on low-level visual features of images shot around the spot. The assessment
method [15,16] is still depends on the image quality. However, the quality of
© Springer International Publishing AG 2017
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‘social images’ varies, and many do not satisfy such conditions. In addition,
because obscure spots are not well known, there are not enough high-quality
images of them that could be used for analysis.

To find a relationship between sightseeing value and landscape elements, in
this paper, we propose an element-oriented method that assesses the landscape
of a given spot by considering its individual elements. To improve our previous
method [15,16], we extract the landscape elements contained in sightseeing spots
and assess the landscape by analyzing them instead of low-level image features.
In addition, we also propose a richness-based spot assessment method by taking
the richness of the landscape into consideration.

2 Landscape Assessment

2.1 Overview

The input data of our method are sightseeing spots with social images, and the
output data are corresponding landscape assessment scores and rankings. As a
preliminary process, the data preprocessing obtains representative landscapes
image groups and extracts the landscape elements. After that, we estimate the
coherence and the visual scale per spot from the images. Then we integrated
these two criteria based on the concept of richness in order to rank the spots.

2.2 Data Pre-processing

Filtering. At first, it is needed to filter out the noise social images. Another
goal of filtering is to identify the corresponding image groups for scenes at a
sightseeing spot that would be interesting to tourists.

Landscape images of scenes that would be of the same interest to tourists
tend to be very similar. We use DBCSAN [17] to cluster the images per each
spot. The output of this process consists of several image groups, which are
supposed to correspond to the scenes of a spot.

Element Extraction. To calculate criteria on landscape elements, we extract
elements in the data preparation process after filtering the data. By utilizing
the method proposed in [14], our implementation considers only eight of these
object classes: building, grass, tree, sky, mountain, water, flower, and road. Con-
nected regions having the same label are treated as an element in the landscape.
The extracted landscape elements are used in the element-oriented landscape
assessment.

2.3 Assessment Criteria

As an improvement of our previous work, we assess the landscape of a spot with
two criteria: (1) coherence and (2) visual scale.
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Coherence. According to the research [8], coherence relates to the unity of a
scene; it is enhanced by the degree of repetition of colors and textures. On the
basis of this definition of unity and coherence, we use patterns as an indicator
of the sightseeing value. The patterns are recurrences of a certain composition
of color and texture. The color-based pattern calculation is performed in both
an intra-element and inter-element way.

(A) Intra-element Coherence of Color is to find the repeated color com-
positions contained in elements. The details are as follows.

Step 1 (Griding and Clustering): Each element is divided into blocks of 15x 15
pixels, and an HSV space-based color histogram representing each block is
calculated. Here, a color-based pattern is a repetition of color histogram fea-
tures contained in an element. The mean-shift method [9] is used to cluster all
similar color histograms into groups. In that case, each element is represented
by rows of numbers corresponding to the clusters of the color histogram.

Step 2 (Sequence Compression and Comparison): The sequence pattern min-
ing method is adapted on the basis of the definition of coherence so that it
can find the patterns inside each element. Since the repetition of a single color
feature does not convey much information as far as human perception goes,
continuous regions of one color should be excluded from consideration. There-
fore, the color-based pattern calculation uses sequence compression wherein
adjacent groups having the same numbers are compressed into one group;
this reduces redundancy and time complexity.

Step 3 (Finding matched parts): Suppose the element e; is represented by
rows t;(¢ = 1,...m) and its corresponding compressed sequence is ¢;. We
discover the frequent pattern si(k = 1,...,n.) in the compressed sequences.
Then, we decompress and compare these patterns to refine them. For two
patterns s; , sj respectively appearing in rows ¢; and ¢; (also t; and t;),
their similarity is defined as follows.

llens(si k) — len(s; k)]l
[len(t;) — len(t;)||

Sim(sik, sjk) =1 — (1)
where, len;(s; ) denotes the length of s; ;, in the original (uncompress) row,
and len(t;) is the length of ¢;. In this procedure, only the original pairs with
high similarity for each matched pattern can be marked as repetitions patterns
Si,i = 1,...,71.

We calculate the color intra-element repetition score as follows.

m leni(sin) o1 Rep(sk) @)
= len(ty) Size(e;)

In this formula, Rep(s;, s;) produces a repetition score pattern s;. The repe-
tition score for the an element e; is calculated by summing the repetition scores
of patterns and normalizing it by Size(e;), which is the number of sequence
numbers contained in element e;.

Rep(si) =0 Repintra(ei) =
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(B) Inter-element Coherence of Color. For the inter-element pattern cal-
culation for color, inspired by the research [15], we calculate the color coherence
at the level of the overall image Repinter_coior(img). Considering the potentially
large number of elements contained in an image and the sequence numbers con-
tained in each element, comparisons between elements tend to have high time
complexity. Therefore, we take the image as a whole and do the calculation in a
similar way as the element-based calculation.

Considering both the inter-element and intra-element repetition put impor-
tant emphasis on the coherence, we combine these two scores as follows to cal-
culate the color coherence score.

COherencecolor (ng) = Z Repintra,color (61) X Repinter,color (ng) (3)

Coherence of Texture. We consider the repeated textures as the repeated
or similar patterns in an element. We represent each pattern by using the local
binary pattern (LBP) features [10], which is a traditional feature for texture,
and perform the same steps as in the color-based pattern calculation.

C’oherenceteztwe (ng) = Z Repintra,texture (61) X Repinter,texture ('ng) (4)

Considering that both color and texture are important for the coherence
calculation, we define Co(img) as the coherence for an image img as follows.

Co(img) = Coherenceiepture(img) x Coherence oor(img) (5)

Visual Scale. The visual scale is defined as a perceptual unit that reflects
the openness, depth, and roominess apparent in a landscape [8]. Since both
openness and depth are important determiners of the visual scale of a landscape,
we calculate values, op(i) and dp(7), for them and use the harmonic value in the
visual-scale score Vi(img) for image img. As the way of quantifying openness
and depth, we use the GIST [11] based method.

Vi(img) = i 2 i (6)

pGmg) + limg)

2.4 Scene Assessment

The criteria mentioned above apply to one image. A method to combine all the
scores calculated for the whole image set of the scene I (I = {imgi,...,img,};
the image clusters obtained in the data pre-processing) is thus used.

Because of the individual differences in quality between images, for each
criteria ¢ € {coherence, visual-scale}, we assume that the scores calculated by
the criteria function C'f(img) € {Co(img), Vi(img)} from the image set I are
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normally distributed and take the highest likelihood value in a 95% confidence
interval. The value of a spot I; is denoted as LV, (I;). Besides the criteria score for
each image, the diversity of photographers is an important consideration when
combining scores because the more people who take photos whose values are
close to the most likely value, the more likely the highest likelihood is reliable.
Therefore, we calculate the overall value OS.(I;) for spot I; by multiplying the
LV.(I;) and the fraction of photographers in the 95% confidence interval:

Numy;,

OSC(L) = L‘/C(IZ) X <1+Numau

> .1 € {1..|I|}, ¢ € {coherence,visual-scale}

(7)
where Num;, is the number of photographers in the 95% confidence interval
and Numg;; denotes the total number of photographers.

We assume that these two criteria have a large impact on the sightseeing
value and calculate the combined sightseeing estimation score Score(l;) as the
product of overall values for each criteria score.

Score(I HOS , ¢ € {coherence, visual-scale} (8)

2.5 Richness-Based Spot Assessment

On the basis of the research [8], richness is defined as the volume of landscape in
sightseeing spots. The image set for a certain sightseeing spot is clustered into
image groups, which are treated as the corresponding images for the landscape.

For each image groups g;, we calculate the proportion of groups of size n; in
the whole image set g; for sightseeing spot I; and calculate richness-based scores
as follows. In this sense, a landscape scene which has a large number of photos
is indicative of the whole sightseeing spot.

Scoremchnese 7 Z = X SCO’I"B(gj) (9)

3 Experimental Evaluation

We compared our method with three baseline methods and the evaluation metric
is nDCG [12].

3.1 Dataset

As the experimental data, we collected images of 16 spots from Flickr by keyword
based search. The images contained a balance between high-quality spots abun-
dant in natural and cultural elements and low-quality spots that mainly consist
of modern architecture so that the experimental data would be unbiased.
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To obtain the ground truth, we recruited eight subjects to label each candi-
date spot in terms of its coherence and visual scale. A five-point scale ranging
from 1 for very low value to 5 for very high value was used, and we regarded the
average of all the subjects’ labels as the ground truth for a spot. Table 1 shows
the labeling results and details of our data set.

Table 1. Ground truth: average assessment scores by subjects

Avg. score Tennryuji |Ninnaji Kinkakuji |Shisendo Fushimiji |Hanami Kyoto Daigoji
Temple Temple Temple Temple Street Station Temple

# of photos 1k 1k 1k 0.4k 1k 1k 1k 1k

# of groups 2 1 2 1 3 2 2 1

Coherence 2.875 2.875 2.75 3.125 3.375 2.5 2.25 2.5

Visual scale 3.375 3 3.25 2.625 2.375 2.75 2.375 3.5

Sightseeing value|4.33 3.17 4 4.17 4.5 3.17 2.33 4

Avg. score Tai Lake Jinji Lake Tiger Hill Suzhou Humble Shantang Guangian Sekizan

Museum Garden Street Street Temple

# of photos 1k 0.2k 1k 0.4k 1k 1k 0.3k 0.3k

# of groups 1 1 1 1 1 2 1 1

Coherence 2.625 4.25 3.375 2.25 3.125 2.5 2 3.5

Visual scale 3.75 4.75 3.875 2.375 3.125 2.75 2 2

Sightseeing value|2.83 3.83 3.67 4.17 4.33 3.67 1.67 3.67

3.2 Evaluation of Coherence and Visual Scale Criteria

Figure 1 compares the two kinds of criteria scores with the corresponding ground
truth, respectively. Despite the low popularity and small number of images, three
obscure spots (Sekizan Temple, Daigoji Temple and Shisen-do) are scored quite
accurately, as accurately as the other spots.

Coherence. As shown in Fig.1, Jinji Lake obtains the highest ground truth
coherence score and highest score from our element-oriented method. It seems
that the existence of color and texture repetitions for the same kinds of element
(e.g., the orderly arrangements of rock pitons) leads to the element-oriented
method giving a higher coherence score to Jinji Lake.

The correlation coefficient for Fig. 1 is 0.8193, and the nDCG score for the
element-oriented coherence calculation is 0.9722. The overall ranking result,
which takes the intra-element factor into consideration, indicates that this
method closely matches the human perception of coherence.
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Fig. 1. Comparison with ground truth for coherence and visual scale.
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Visual Scale. In the results shown in Fig. 1, the calculated visual-scale scores
for Jinji Lake and Tai Lake are clearly different from those of the other spots.
The common feature of Jinji Lake and Tai Lake is that most images of them
show a wide open vista. Compared with the spots that occupy a small amount
of space, spots that have large amounts of space provide a stronger experience of
wide-open vistas, in line with the definition of visual scale [8] in environmental
psychology. The correlation coefficient for Fig. 1 is 0.5919, and the nDCG score
for the visual-scale calculation is 0.9407.

3.3 Evaluation of Spot Ranking

Three baseline methods were implemented in this comparison.

— User-rating method: Here, we calculated the average scores of users’ ratings
on TripAdvisor (http://www.tripadvisor.com/) as assessment scores.

— NSED method: Proposed in [13], NSED is used to examine the relationship
between low-level visual features and perceived naturalness.

— Low-feature based method: Our previous method estimates the sightseeing
value by utilizing low-level visual features such as overall tone and photo
quality.

The nDCG scores for Low-feature based method, Element-oriented method,
User-rating method and NSED method are 0.9277, 0.9381, 0.8376 and 0.9195.

According to the result, the element-oriented method was more accurate than
the three baseline methods. The user-rating method, a classic method of the
user-behavior approach, is considered to be too inflexible for sightseeing value
estimations because scores given by users are affected by both the sightseeing
quality and the popularity of a spot. Based on the idea that naturalness tends
to have an irregular shape, the NSED method also achieves quite high accuracy
in terms of naturalness. However, not only naturalness but also the composition
of artificial and natural elements affects the sightseeing value judged by humans.
Compared with the NSED method, our method considers factors involved in a
sightseeing estimation more comprehensively, in order to satisfy the sightseeing
needs of tourists.

The element-oriented assessment outperformed our previous low-feature-
based assessments. Note that human perception of coherence is affected by not
only the overall color composition but also the relative relationship between
element features, which means that the element-oriented method is more sophis-
ticated than a low-feature based method. In addition, in combination with the
concept of richness, our method makes the estimation results closer to human
perception.

4 Conclusion

We propose an element-oriented method to assess sightseeing value by analyzing
social images. Experimental results showed that our method tends to assign a
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high score to spots with beautiful scenery, wide fields of vision and obvious color
tendencies, which are all typical features of good sightseeing spots. In future
work, more criteria will be incorporated in our method.
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Abstract. In this paper, we study the problem of assessing the quality
of co-reference tuples extracted from multiple low-quality data sources
and finding true values from them. It is a critical part of an effective data
integration solution. In order to solve this problem, we first propose a
model to specify the tuple quality. Then we present a framework to infer
the tuple quality based on the concept of quality predicates. In particular,
we propose an algorithm underlying the framework to find true values
for each attribute. Last, we have conducted extensive experiments on
real-life data to verify the effectiveness and efficiency of our methods.

Keywords: Data fusion - Data cleaning * Predicates

1 Introduction

Web data grow at an unprecedented pace following the increasing number of data
sources, and people get opportunities to access a wide variety of information and
viewpoints from multiple individual sources. Although where to find answers is
not troublesome anymore, it remains a big challenge on how to sift true answers
from multiple low-quality data sources [7].

Consider a person named Mary shown in Table 1. We collected four tuples
for Mary from four sources. Tuple t; is collected from D;. Apparently, there are
conflicts among the four tuples and we need to resolve conflicts among different
salaries and affiliations.

Existing data fusion methods [2,5,6,8] more or less take a voting approach,
i.e., accumulating votes from various sources for each value on the same object
and selecting the value with the highest vote. However, an inherent limitation of
this model is that it is not able to find multiple true values, and it has to depend
on a certain relationship among sources to work. Unlike existing methods which
make the assumption that only one true value exists, in this paper, we aim to
solve the same problem under a more relaxed assumption: multiple true values
may exist, and propose a framework to find such true values. In particular, we
have made the following contributions:

© Springer International Publishing AG 2017
L. Chen et al. (Eds.): APWeb-WAIM 2017, Part I, LNCS 10366, pp. 74-81, 2017.
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— We propose a novel data quality model which integrates several data quality
criteria and we drop out the common assumption in previous work.

— We propose the concept of quality predicates to differentiate true values from
false values, which is able to work when there exist multiple true values from
data sources.

— For a certain tuple, we propose an algorithm to infer its quality vectors based
on its quality predicate(s). The time complexity of finding top-k true values
in our method outperforms other rule-based methods.

— We experimentally verify the effectiveness and efficiency of our methods using
two real datasets.

The remainder of this paper is organized as follows. Section 2 formally defines
the quality model. Section 3 presents the algorithm to infer the quality vectors
and find true values. Section 4 reports the experiments and we conclude at Sect. 5.

Table 1. Entity instance person for Mary

Name | Salary | Research area Affiliation |Publication
t1:|Mary | 142k |Data integration, data cleaning| Amazon Data integration
to: | Mary | 120k |Data cleaning Google null
t3:| Mary | 88k Knowledge management AT&T Labs| A diagnostic tool for data errors
tq: | Mary |88k Information retrieve null null

2 DModel for Tuple Quality

In this section, we will introduce a model to specify the tuple quality.

2.1 Quality Predicates

There have been much work in assessing the tuple quality from plenty of semantic
facets such as consistency [4], currency [3] and accuracy [1]. In this paper, we
propose three types of quality predicates to evaluate tuple quality.

Priority. A Priority relationship denotes the relationship defined on attributes.
If a set of values of one attribute is messy or impure, it is hard to find true values.
However, if attribute values are pure i.e. most sources provide the same value,
it is easy to find true values. In our model, we use Shannon entropy to calculate
purity. For an attribute A;: H(A;) = — ), . x p(x)logy p(z), where X is the set
of the classes of values in A; (null is not a class), and p(z) is the proportion of
the number of z to the number of values from A;. Besides, for the values of the
same attribute, the higher the proportion of null values is, the harder the values
are to acquire. We use p,,(A;) to represent the proportion of null values for A4;.

Definition 1 (Priority predicate). For attributes A; and A;, if 1H(Ai) <

—pn(Ai)
H(A;)

Top.(Ap) We define a priority predicate Prior(A;, A;).
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By Definition 1, a priority relationship is a total order on A = (A, ..., 4;). Let
Pyeore(A;) = %. Assuming Pscore(A1) < ... < Pscore(Ay), for any two adja-
cent Pscore(A;) < Pscore(A;j), we can define a priority predicate Prior(A;, A;).

Example 1. In Table1, we can define three priority predicates: Prior(Salary,
Research Area), Prior(Salary, Publication) and Prior(Publication, Affiliation).

Status. A status relationship is the relationship among the values of the same
attribute. The quality of an attribute value changes along with that attribute
value.

Definition 2 (Status predicate). A status predicate Stat(A;) is in the form

(Vti,th)(P(tl(.Ak),tgAk)) A @(ti, t;)) representing that the values of A; satisfying
a certain condition are worse than the others.

A status predicate ¢ is defines on two tuples (it is less likely that a predicate
that involves more tuples in real life), and it checks whether tl(.A") and t§Ak)
satisfy the condition defined by P. We then introduce the predicates we use.

For numberic values, we define Pj(v1,vs) (Pa(v1,v2)) to denote vy is bigger
(less) than v,. For string typed values, we define P3(v1,v2) (Py(v1,v2)) to denote
vy is longer (shorter) than vy. We also define Ps(v1,v2) (Ps(v1,v2)) to represent
vy is more (less) detailed than v in term of their information entropy.

Note that ¢ in status predicates is a condition that ¢; and ¢; must comply. We
define ¢(t;,t;) = f1 (tEA’"),t;A"‘)) A A fl(tEA"),tﬁA”)) where f;(v1,v9) is either
V1 = Vg OF V1 # Vs.

Example 2. In Table 1, a tuple with a higher salary is of better quality. Hence,
we can define ¢4 : Stat(Salary) = (Vt,;,th)(Bt(tgsalary),t§salaFY))) to represent a
tuple with lower salary is of lower quality.

Interaction. Interaction is the relationship among values of different attributes
in one tuple. For example, in Table 1, some values are null, which indicates they
are of low quality.

Definition 3 (Interaction predicate). An interaction predicate Inters(Ay, ..., A;)
represents that when a tuple satisfies condition §, its values of attribute A1, ..., A
are of low quality.

For an interaction predicate, § = (Vt;)(Pl(t2™,¢1) A ... A P/(ti, ¢;)) where
P!(v,c) can be any predefined predicate. For interaction predicate, we add four
more predicates.

For the values of string type, we define Pr(v,c) and Ps(v,c) to represent vy
contains or not contains c¢. For both numberic values, we define Py(v,c) and
P,0(v, ¢) to represent v; is equal or not equal to c.

The second argument c is in the range of the dataset. ¢ usually represents a
single word or a punctuation. In addition, no matter what schema a instance has,
we can define a universal interaction predciate s : Inter(vm(&(é"”,nuu))(Ai)
for every attribute.
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3 Deducing Tuple Quality

In this section, we present an algorithm to deduce the quality vectors of tuples
by quality predicates. Quality vectors are a n-ary vector representing the quality
of a tuple, where the real number in each dimension represents the quality of
corresponding attribute value in the tuple.

Our method to find true values is based on the voting approach and assumes
that multiple true values exist. For each attribute, if the attribute is labeled as
“multi-valued”, we will return all the attribute values with non-negative values
in quality vectors. If the attribute is labeled as “time-sensitive”, we will return
the attribute value with the highest value in quality vectors.

The runtime of our algorithm has the square relation with the size of the
tuples. Finding top-k candidates is a polynomial problem after deducing quality
vectors, while it is NP-hard in a chase-like algorithm [1].

Applying Quality Predicates. Priority predicates are used for distinguishing
the quality of two similar attribute values by the quality of another attribute
value. Hence we apply a priority predicate Prior(A;, A;) for two tuples ¢; and

(4;) (4;) (A7) (Ad)

A A
t2 when qtl = qtz and qt1 > qtz (45) 3& té J)a

. In this case, if only t; we

consider t(lAj ) is of better quality than téAj ). Because priority relationship is a
total order relationship on all attributes, we can sort priority predicates by their
Pscore of the first attribute in descending order and traverse them in sequence.

Status predicates are used for distinguishing the values in different status. We
apply them in the comparison between two tuples i.e. we extract all distinct pairs
of tuples and apply status predicates on them. During the comparison between
t1 and to, if they satisfy a status predicate Stat(Ay) = (th,vtg)(P(ngk), téA’“)) A
o(t1,t2)), we decrease n from qt(f"“).

The interaction predicate is defined on w.r.t. a single tuple. For a interaction
predicate Inters(Aq, ..., A;), if a tuple ¢, satiesfies §, we decrease n from qlg?)
where A = (44, ..., 4;).

Influence Factor. When applying quality predicates, we need to change the
values in the corresponding quality vectors. We use the word “influence factor”
to represent the degree that the quality vectors being changed. For simplicity, we
set all influence factors when applying status predicates and interaction predicate
to the same value, and set influence factors to 1 when applying priority predicates
because that is enough to distinguish two different facts of equal quality. We will
discuss the influence of different 7 in Sect. 4.

Execution Order. When applying quality predicates, is different applying order
leads to a different result? The answer to this question is affirmative. Status pred-
icates and interaction predicates act on the attribute values that are immutable.
Therefore, they can be applied without disturbing each other. However, prior-
ity predicates act on the variable value of quality vectors. Therefore, priority
predicates should be applied in the last after we inferred quality vectors.
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Algorithm 1. Deducing the quality vectors of tuples

1 function DTQ (M);
Input : a specification M = (D, e, I, Pp, Ps, Pr)
Output: the quality vectors Q of I
I. < PARTITION(I, €);
Q — 0
for I, € I. do

2

3

4

5 Qe; — INIT(I, );

6 for ps € Ps do

7 for (¢i,t;) € I, do

8 | APPLYSTAT(ti, 15,05, Qe );
9 end
10 end
11 for ¢; € Pr do
12 for t; € I, do
13 | APPLYINTER(t:, @i, Qe,);
14 end
15 end
16 for . € TorPsORT(Pp) do
17 for I € SOrRTBYCLASS(I,;) do
18 for (ti,tj) €I do

19 | APPLYPRIOR(ts, 15, pe, Qe,);
20 end
21 end
22 end
23 Q—QuUQ;
24 end

25 return Q;

Algorithm. We now present the main driver of DTQ. Given M, it first partitions
I, into I, = (I, ..., Ic,) by entity set e = (e, ...eq). For each I.,, it initializes
an empty |Ic,| x n quality matriz Qe, = (qt,, .-, qy,;, ), Where n presents the
number of attributes and each row in Q., represents a quality vector of a tuple.
Then it starts to apply status predicates to deduce quality vectors. Assuming
s = Stat(Ay), APPLYSTAT will subtract n from qt(jl’“) if tz(-A’“) and tg.A’“) satisfy
ps. Next, DTQ applies interaction predicates to further update Q.,. It traverses
each tuple of I.,. Assuming ¢; = Inters(A, ..., Ay), If ¢; satisfies condition d,

then APPLYINTER will substracts 7 from q(A), where A = (Ay, ..., Ag). Finally,

it applies priority predicates. Assuming . = Prior(Ay, Ag), if tgAz) = t§A2),

APPLYPRIOR will make the comparison between tl(.Al) and tS-Al) and plus 1 to

gfb) of the tuple with greater value on A;. Notice that before extracting pairs
of tuples, it first sorts I, in ascending order by the quality of As and groups I,
by the quality of As. We use I to denote a group of tuples that have the same

value on As.
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4 Experimental Study

Using both real-life data and synthetic data, we conducted three sets of exper-
iments to evaluate: (1) the effectiveness of algorithm DTQ on the real dataset,
compared with the algorithms of [2,8]; (2) the relationship between the trust-
worthiness of sources and recall; and (3) the influence of »;

Experimental Setting. We used two real-life datasets' (Book and Flight). In
our experiment, we used FOIL to discover the quality predicates. We manually
filtered the predicates of low quality. For all datasets, we set n = 15 and € = 0.1.

We implemented the following, all in C#: (1) DTQ; (2) TRUTHFINDER [§];
and (3) a truth discovery algorithm SiM [2]. All experiments were conducted
on a 64 bit Windows Intel Core(TM) i5-3470 CPU with 16 GB of memory and
1000 GB of storage. Each experiment was repeated 5 times and the average is
reported.

Exp-1: Effectiveness of DTQ. Using real life data Book and Flight we evalu-
ated the effectiveness of DTQ compared with SiM [2] and TRUTHFINDER [8].

Precision of truth ﬁnding Recall and precision as data sources added
00 < 100

- - -recall

P
o= o
Precision

—— precision

Book Flight
Datasets

Fig. 1. Results of truth finding. Fig. 2. Applying DTQ on Book.

We tested how many true values were correctly derived by DTQ. As shown
in Fig. 1, according to the gold standard, DTQ achieved 90% precision while Sim
achieved 89% precision and TRUTHFINDER achieved 85% of precision on Book.

We also ran DTQ on Flight to further verify its effectiveness. In Fig.1, DTQ
get the highest precision on all datasets. In [6], 16 methods including 1 base-
line methods, 4 web-link based methods, 3 IR based methods, 7 bayesian based
methods and AccuCoPry were used to find true values on Flight. Among them,
AccuCopPyY get the highest precision of 96.0%. However, DTQ get a higher pre-
cision than AccuCoPry. It also can be seen from Fig. 1 that DTQ worked well on
Book and Flight.

Exp-2: Trustworthiness of Sources. Using real life data Book and Flight, we

applied DTQ to calculate the trustworthiness of each data source and sort data
sources by their quality in descending order. For a data source D;, we calculate

1 All datasets can be download from http://lunadong.com/fusionDataSets.htm.
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the trustworthiness of it as \; = >, ., d(q¢)/|D;l, where t is the tuple pertaining
to D; and | D;]| is the size of D;. By the rank of data sources, we evaluated (a) the
change of recall and precision as data sources added; and (b) the distribution of
the trustworthiness of data sources.

Recall. As shown in Figs. 2 and 3, we tested the recall as data sources added. In
the experiments, we used preference model dj,(u) = u™ + ...+ u™ to convert a
vector to a real number. From the figures, the recall is definitely monotonically
increasing as data sources added. All datasets show that true values lie in a few
datasets. The curve in Fig. 3 is not as steep and smooth as that in Fig. 2 because
the number of data sources is small and we only used a few quality predicates to
distinguish the trustworthiness of data sources. In conclusion, by scoring data
sources, we can use a small amount of data sources to get a same or even better
result. Last, an effective rank of data sources verifies the effectiveness of DTQ.

Precision. Figures 2 and 3 also report the precision of DTQ as data sources added.
The change of precision is not definitely monotonically increasing. Before the
recall reaches the peak, adding more data sources means a larger precision, and
the figure of precision during this phase is similar to that of recall. After recall
remains stable, more data sources mean more noises, thus the precision may
start to shock. In practice, if we can use a small amount of data sources to get
a high recall, we can then use a small amount of data sources to get a good
precision.

ces added Precision under different influence factors

n as data sour

0 0

5 . .

o s .

o © ---recall £ —Book g,
—precision ——Flight

A .

#Sources of Flight Influence factor #Sources of Book

Fig. 3. Applying DTQ Fig. 4. n may affect the Fig. 5. n affects the conver-
on Flight. precision of DTQ. gence rate of recall.

Exp-3: Influence Factor 7. Intuitively, we should not choose an extremely
small value because we use it to filter tuples and a tiny value will not have
an effect. We evaluated integer n from two aspects and we set n for all quality
predicates the same value for simplicity.

Influence on Precision. We first tested the influence of different size of n on
the precision of DTQ using Book and Flight. As shown in Fig.4, we ran DTQ
when 7 in the range of 1 to 100. For Book, when 7 = 1, the precision is only
59%. When 1 < n < 15, the precision has a slight wobble. When n > 15, the
precision remains 91%. For Flight, the size of 1 does not influence the result of
DTQ. From observation, we found that whether 1 has an influence depends on
quality predicates. In practice, this situation is common and there are always
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imperfect quality predicates. Hence, we need to avoid a very large n as well as
an extraordinary small 1. We set n = 15 for all our experiments.

Influence on Recall. We then tested the influence of different n in interaction
predicates on the recall of DTQ on Book. As shown in Fig.5, we executed DTQ
and recorded the recall when ¢ = 10, 30, 100, 200, 1000 separately. We found that
with the increase in 7), the convergence rate of recall is getting slow, which means
we need more data sources to achieve an equal result.

5 Conclusion

This paper studied how to the estimate tuple quality and find true values among
multiple low-quality data sources. We measured tuple quality by three types of
quality predicates including priority predicates, status predicates and interaction
predicates. These quality predicates are in a simple form and can be found auto-
matically by existing methods. By the quality model, we can assess the quality
of attribute values and the quality of tuple, and thereby find the true values via
quality vectors.

In future, we would like to explore how the trustworthiness of data sources
affect the accuracy of the true values.
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Abstract. Given a graph, can we minimize the spread of an entity (such
as a meme or a virus) while maintaining the graph’s community structure
(defined as groups of nodes with denser intra-connectivity than inter-
connectivity)? At first glance, these two objectives seem at odds with
each other. To minimize dissemination, nodes or links are often deleted
to reduce the graph’s connectivity. These deletions can (and often do)
destroy the graph’s community structure, which is an important con-
struct in real-world settings (e.g., communities promote trust among
their members). We utilize rewiring of links to achieve both objectives.
Examples of rewiring in real life are prevalent, such as purchasing prod-
ucts from a new farm since the local farm has signs of mad cow dis-
ease; getting information from a new source after a disaster since your
usual source is no longer available, etc. Our community-aware approach,
called constrCRlink (short for Constraint Community Relink), preserves
(on average) 98.6% of the efficacy of the best community-agnostic link-
deletion approach (namely, NetMelt™), but changes the original commu-
nity structure of the graph by only 4.5%. In contrast, NetMelt"™ changes
13.6% of the original community structure.

Keywords: Dissemination control in graph - Community structure -
Graph mining

1 Introduction

We address the following problem: given a graph G,' can the dissemination of
an entity (such as a meme or a virus) be minimized on G while maintaining G’s

1 We use the following similar terms in this paper: graph and network, vertex and
node, edge and link.
© Springer International Publishing AG 2017
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community structure (where nodes within a community have dense connectivity
amongst each other, but they have sparse connectivity with others outside their
community)? The problem of controlling an entity’s spread on a graph has been
studied extensively recently [3,5,13,17,19-21], but (to the best of our knowl-
edge) no one has investigated this problem under the constraint of maintaining
the graph’s community structure as much as possible. Preserving communities in
a graph is an important problem in many real-world applications, e.g., individ-
uals trust members of their communities more than non-members because their
interactions are more embedded (due to higher link density between members of
a community than to outsiders) [2].

The epidemic tipping point (i.e., whether a dissemination will die out or
not) depends on two factors: (a) the entity’s strength and (b) the graph’s path
capacity [3,17]. We assume that we cannot modify the entity’s strength and
focus on manipulating the graph’s path capacity. However, instead of deleting
nodes or links (which affect the graph’s community structure), we investigate
algorithms that rewire links in order to minimize dissemination and minimize
change to the community structure of the original (i.e., unperturbed) graph.
We quantify minimizing dissemination by the drop in the largest (in module)
eigenvalue of the adjacency matriz; and measure the amount of change to the
community structure of the original (i.e., unperturbed) graph by the variation
of information, an entropy-based distance function. Thus we focus on solving a
realizable problem - namely, how can we efficiently rewire a set of K edges that
effectively contain dissemination and maintain community structure.

To solve the aforementioned problem, we present the CRlink algorithm (short
for Community Relink), which rewires edges in the graph that lead to the largest
drop in the leading eigenvalue of the adjacency matrix by choosing the relink-to
edge with the smallest eigenscore within a given community. Furthermore, we
present the constrCRlink algorithm (short for Constraint Community Relink),
which is based on CRlink but the rewiring of the edges is based on node-degree
constraints. Experiments on a range of different graphs demonstrate the effi-
ciency and effectiveness of CRlink and constrCRlink. The main contributions
of the paper are summarized as: (1) We introduce the problem of minimizing
dissemination while preserving community structure on graphs. (2) We propose
two efficient and effective algorithms for the aforementioned problem - namely,
CRlink and constrCRlink. (3) Experimental results on various real graphs show
that CRlink and constrCRlink algorithms efficaciously solve in the aforemen-
tioned problem.

The rest of paper is organized as follows. Section 2 formally defines the edge
rewire manipulation and the new problem of minimizing dissemination on a
graph while maintaining the graph’s community structure. Section 3 proposes
algorithms to solve the problem. Section4 presents our experiments. Section 5
reviews related works. The paper concludes in Sect. 6.
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2 Problem Definition

Table 1 lists the symbols used throughout the paper. We represent an undirected
unweighted graph by its adjacency matrix, which is denoted by bold upper-case
letter A. Bold lower-case letter ¢ stands for the community-assignment vector
of nodes. The greek letters ¢ and ¥ are the sets of deleted and added edges in
the rewiring process, respectively. The leading eigenvalue of A is A. The bold
lower-case letters u and v denote the left and right eigenvectors corresponding
to A, respectively.

Table 1. Symbols used in the paper.

Symbol | Definition and description

A The adjacency matrix of a graph
A(i,7) | The (4,7)'™" element of A

c Community-assignment vector of nodes
c(7) Community assignment of node ¢

g Set of deleted edges in rewiring process
v Set of added edges in rewiring process
A The leading eigenvalue of A

u, v The left eigenvector and right eigenvector corresponding to A
n The number of nodes in graph

m The number of edges in graph

K The edge budget

Definition 1 (Edge Rewiring). Given an undirected edge e:src,end), an
edge rewiring on e is a two-step operation: (1) delete e and (2) add a new edge
é where é is either (src,des) or (end, des), where des # src # end.

Given the above definition, it is useful to further define two types of edges
and three kinds of nodes that participate in the edge rewiring operation. They
are: the rewire-from edge (denoted by rf) is the deleted edge in the rewiring
operation, as in edge e:(src,end) in Fig.1. The rewire-to edge (denoted by
rt) is the newly added edge in the rewiring operation, as in edge é:(src, des) in
Fig. 1. The source node (denoted by src) is the node which is an endpoint in
both the rf and rt edges, as in the node src in Fig. 1. The end node (denoted
by end) is the rewire-from node, which appears only in the rf edge, as in the
node end in Fig. 1. The destination node (denoted by des) is the rewire-to
node, which appears only in the rt edge, as in the node des in Fig. 1.

In order to design an algorithm for minimizing dissemination while preserv-
ing community structure, we need to quantify how we measure the decrease
in dissemination and the preservation of community structure. For the former,
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des des
/
<
/ Relink @%
/ o— = ‘\
/D
sre end sre end
rf edge

Fig. 1. Example of an edge relink. Edge (src, end) is deleted and node src is relinked
to node des. The edge between src and des is a new edge in the graph.

Chakrabarti et al. [3] and Prakash et al. [17] show that the dissemination process
disappears in a graph if the strength of the entity (measured by the ratio of its
birth rate « over its death rate () is less than one over the leading eigenvalue
A of A-e., a/f < 1/A. In other words, A is the only graph-based parameter
that determines the tipping point of the dissemination process. The larger the
A, the smaller the dissemination threshold for the entity to spread out. Thus, an
ideal strategy for minimizing dissemination on a graph is to minimize the lead-
g eigenvalue A; or alternatively mazimize the drop in the leading eigenvalue
A. Tong et al. [20] estimate the effects of edge removal on A via an eigenscore
function. Specifically, they define the eigenscore of an edge e:(7, j) as the product
of the i-th and j-th elements of the left and right eigenvectors corresponding to
A. We use the eigenscore function to select the rf-type edges to be deleted and
rt-type edges to be added. An rf-type edge has the largest eigenscore in the
graph. An rt-type edge has the smallest eigenscore in the graph. Together these
two identify the edge whose rewiring will result in the largest decrease in A. In
addition, we need a way of quantifying how much the community structure of
a graph changes as its edges are manipulated. Among the many ways of mea-
suring this quantity, we select the variation of information V(c,¢) [9]. V(c, &)
is a symmetric entropy-based distance function. It measures the “robustness”
of a community structure to perturbations in the adjacency matrix. The formal
definition of V(c, ¢€) is given in Sect.4.1. The value of ‘{é;;) is between 0 (no
change) to 1 (complete change), inclusive.

Finding the set of K edges whose deletion maximizes the drop in A is an
NP-hard problem [20]. The most effective approximate edge-deletion algorithm
to maximize the drop in A recomputes the eigenscores of edges after each edge
deletion. This approximate algorithm, called NetMelt™, is an improved version of
NetMelt [20]. Edge rewiring, is a combination of edge deletion and edge addition.
Under the same budget K, the best case for edge rewiring is to choose K edges
of type rf to delete as in NetMelt™, which leads to maximizing the drop in .
However, with edge rewiring, there are also K edges of type rt that need to be
added. These edge additions lead to an increase in A. Hence, the drop in A under
edge rewiring is always less than the drop under edge deletion. That is, it is
impossible to maximize the drop in A with edge relinkage, whose edge additions
are required to minimize V (c, €).

With above analysis, we look for edges that produce a large drop in the A
and a small value of V(c, €&). Thus, the problem is formally defined as follows:
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Problem 1. Given a graph A and an integer (budget) K, output a set of Ky
edges of type rf to be deleted from A and a set of K, new edges of type rt to be
added to A, which produce a large drop in A and a small value of V(c,&). The
budget K is equal to Kq and K, < Kg.

Note that there may be no associated rt-type edge added for a given rf-
type edge deleted (i.e., K, < Kg). In the following section, we introduce two
algorithms to solve Problem 1.

3 Proposed Algorithms

3.1 Proposed Algorithm: Community Relink (CRlink)

To get the largest drop in A with edge rewiring (see Definition 1), one can delete
K, edges of type rf with the highest eigenscores and add K, previously non-
existent edges of type rt with the lowest eigenscores. We name this simple strat-
egy GRlink (short for Global Relink). Thus, GRIink repeatedly deletes the edge
with the highest eigenscore in the graph and adds the edge with the lowest
eigenscore from one of the endpoints of the deleted edge to any node in the
graph. However, the motivation for edge rewiring (i.e., deletion of an existing
edge followed addition of a new edge) is to maintain the graph’s community
structure. The key issue is which previously non-existent edges of type rt are
suitable for addition. GRIink chooses the rt edge with the smallest eigenscore
in the whole graph. From the community structure perspective, edge rewiring
among all nodes in the graph may completely change the community structure
because it may decrease the connections among nodes within a community while
increasing the connections across communities, which can lead to different out-
comes for community assignments. Thus, we implement edge rewiring within a
community based on the following considerations:

— Both endpoints of most rf edges are in the same community (i.e., most rf
edges are “non-bridges”). The average non-bridge edges ratio is over 80% in
the datasets used in this paper.

— Edge rewiring in the same community is more effective for maintaining com-
munity structure than edge rewiring throughout the whole graph.

— In real applications, it is more realizable for an individual to connect to
another individual who is in the same community (due to higher trust between
community members).

Algorithm 1 describes the Community Relink (CRlink) algorithm. In each
loop of CRIink, it first chooses the rf edge with the highest eigenscore to delete
and then finds the suitable rt candidate edges whose des node is in the same
community with src node. Finally, it selects the best rt edge with the lowest
eigenscore among these candidates to add. In some loops of CRlink, there may
be no associated rt edge for an rf edge due to the within community constraint.
Nonetheless, CRlink deletes the rf edges in these loops. Thus, K, < K in the
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Algorithm 1. Community Relink (a.k.a. CRlink)

1 Input:Adjacency matrix A, budget K, community vector c;
2 Output: K, deleted edges of type rf indexed by set @, and a corresponding K, added edges
of type rt indexed by set ¥ (K, < Kq = K);

3 Initialize @ and ¥ to the empty set;

4 for t =0 to K do

5 compute the leading eigenvalue \ of A;

6 compute the corresponding eigenvectors: u and v;
7 score(e;;)=u(i)v(j) for i,5 =1,2,...,n;

8 find ege; = €;; = argmade,; score(eij), where e;; ¢ @ and e;; ¢ V;
9 add the edge ege; into @;
10 for k =1 ton do
11 if c(z) == c(k)&&A[i, k] == 0 then
12 L score(é;),) = u(z)v(k);
13 if ¢(j) == c(k)&&A[j, k] == 0 then

14 L score(éy,) = u(j)v(k);

15 if ¢;;, Ué;, == 0 then

16 L €add = null and do not update A

17 else

18 find é,4qq = argmin(éikUéj_k)score(é;k U] éj‘k)7
19 where é&;, U é;, ¢ ¥;

20 add the new edge é,44 to ¥;

21 update added (rt) edges in A;

CRlink algorithm. Note that newly added edges in former steps can not be re-
deleted in later steps, as well as newly deleted edges can not be re-added. Thus
in Step 8 of Algorithm1, e;; ¢ ¥ avoids the re-deletion of newly added edges.
Step 16 and 21 do not update the deleted (rf) edges in A, which guarantees
that newly deleted edges will not be re-added.

3.2 Proposed Algorithm: Constraint Community Relink
(constrCRIlink)

CRlink rewires edges by deleting the edges of type rf with the largest eigenscores
and adding the within community edges of type rt with the smallest eigenscores.
In this work, we further consider the node degree of des when choosing the
rt edge to add. An intuitive way is to constrain the degree of des node in
edge rewiring within community. Adding an edge to a node with small degree
impacts the community structure more than adding an edge to a node with large
degree. With such consideration, we present the Constraint Community Relink
(or constrCRlink) algorithm based on CRlink. In each iteration of constrCRIlink,
it chooses the rf edge with the highest eigenscore to delete; and rewires one of
the endpoints to the corresponding lowest eigenscore rt edge with a small degree
des node. Similar to CRlink, K, < K4 in constrCRlink. We only need to change
Step 11 and Step 13 in Algorithm 1 to get the algorithm for constrCRIlink:

~ Step 11: if c(i) == c(k) && A[i,k] == 0 && dj, < p then ...
— Step 13: if c(y) == c(k) && A[j, k] == 0 && di, < p then ...
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p is a small value parameter for degree constraint and dj denotes the degree of
node k. constrCRlink does not consider the special case where the two endpoints
are in different communities. This decision is due to two reasons. First, most of
the edges in a given graph are non-bridge edges (i.e., with the two endpoints in
the same community). Thus, the case where the two endpoints are in different
communities has little influence and so constrCRlink ignores it. Second, there
are a few deleted edges with two endpoints in different communities. This leads
to a more stable community structure since edges across communities are deleted
while edges within communities are added.

3.3 Algorithm Complexity Analysis

Lemma 1. The time complezities of CRlink and constrCRlink are O(K (m+n)).
The space costs of CRlink and constrCRlink are O(n?).

Proof. In CRlink and constrCRlink, Steps 5 and 6 take O(m + n) by Lanczos
algorithm [12]. Steps 7 and 8 cost O(m). The loop from Steps 10 to 14 takes
O(n). Step 18 costs O(n). Over K iterations, the algorithm takes O(K(m +n +
m +n+n)) time. Thus, the time complexities of CRlink and constrCRlink are
O(K(m + n). In many real graphs, m ~ nlogn.

In terms of space, we first need O(m) to store the original graph A. It
costs O(1) and O(2n) to store the largest eigenvalue and its associated eigen-
vectors, respectively. In Step 7, it costs O(m) to store the eigenscores of all
edges. Moreover, in the worst case, we need an additional O((g) —m) to store
the eigenscores of non-existing edges. The storage of deleted edges and added
edges take O(K). Therefore, the total space cost of CRlink and constrCRlink are
O(m+1+2n+m+ (3) —m+K) ~ O(m+n+n?+K). Since n® > m >n > K,
the total space cost of CRlink and constrCRIink is O(n?) in the worst case. [

4 Experiments

4.1 Experimental Setup

Datasets. Table 2 lists the graphs used in our experiment. All of them are trans-
formed to undirected and unweighted graphs. We use the following six different
types of graphs to evaluate our algorithms:?> Facebook user-postings (FB):
We use two graphs of this type. Each node represents a Facebook user. An edge
between two users means a “posting” event between them. Twitter re-tweet
(T'T): We use two graphs of this type. A node is a Twitter account. There is an
edge between two accounts if a re-tweet event happens between them. Yahoo!
Instant Messenger (YIM): A node is a Yahoo! IM user. An edge indicates a
communication between two users. Oregon Autonomous System (OG): A
node represents an autonomous system. An edge is a connection inferred from

2 Most of our datasets are available at https://snap.stanford.edu/data/.
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the Oregon route-views. Weibo re-tweet (Weibo): A node denotes a Sina-
Weibo user. There is an edge between two users if a re-tweet event happens
between them. Collaboration Network of ArXiv (CA): Nodes represent
scientists, edges represent collaborations (i.e., co-authoring a paper).

Table 2. Datasets used in our experiments. We use the Louvain method [1] to find
communities. The number of communities is computed automatically by the method.

Dataset | # of nodes (n) | # of edges (m) | # of communities
FB-1 | 27,168 26,231 2,154

FB-2 29,557 29,497 1,865

TT-1 25,843 28,124 2,983

TT-2 39,546 45,149 3,920

YIM 50,576 79,219 2,867

oG 7,352 15,665 38

Weibo | 34,866 37,849 4,786

CA 5,243 14,484 392

Evaluation Metrics. We consider performances on both the decrease in the
leading eigenvalue A and the change in the community structure V(c, &). Given
the original graph A and the perturbed graph A, we have the two evaluation
measures: (a) Drop in the leading eigenvalue: We define the percent drop
in the leading eigenvalue \ as:

100 x (A —X)

A )
where ) is the leading eigenvalue of A. The higher the AA%, the better the
performance. (b) Change in the community structure: We use the variation

of information V(c,&) [9] between the community structures of A and A since
it has all the properties of a proper distance measure. V(X Y') is defined as:

P(z,y)
Zsz P()

AX% =

VX, Y)=HX|Y)+HY|X) = ZP(z y) log

where H(X|Y) and H(Y|X) are conditional entropies. P(x,y) = ngy/n, P(z) =
ng/n and P(y) = ny/n, where z and y are the community assignments in c
and ¢, respectively. ng, is the number of nodes which belong to community x
in ¢ and community y in €. In addition, we normalized V (¢, &) by 1/logn since
logn is the maximum value of V(c,&). The lower the V(c,€), the better the
performance (i.e., the more the original community structure is preserved). To
find communities, we use the Louvain method [1] due to its good performance
in both efficacy and efficiency. The choice of community discovery algorithm is
orthogonal to our work.
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Comparison Methods. We compare the results of six methods: (1) GRlink:
edge rewiring, rt edges selected from the whole graph based on eigenscore com-
putation. (2) CRlink: edge rewiring, rt edges chosen from within a community
based on eigenscore computation. (3) constrCRlink: edge rewiring, rt edges
selected from within a community based on eigenscore computation and degree
constraint p=1. (4) NetMelt: edge deletion, deleted edges selected based on
eigenscore computation. (5) NetMelt': edge deletion, an improved version of
NetMelt, which re-computes the eigenscore after each edge deletion. (6) Rand-
Melt: edge deletion, deleted edges are chosen randomly. We run RandMelt 100
times and report the average results.

4.2 Experimental Results and Dicussions

Performance w.r.t. AA% and V' (c, ¢&). First, we evaluate the effectiveness of
the different methods, in terms of AA% and V (c, €), across various edge budgets
K. Figure 2 shows that constrCRlink performs well in terms of AX% (it is close
to NetMelt™, which solely optimizes for AA%) and has the smallest V(c,&).
CRIink also has good performances in both AA% and V (¢, &). So, our algorithms
not only have strong impact in containing dissemination but also maintaining
community structure. In addition, as discussed in Sect. 3.1, GRlink has a large
value in V'(c, €), i.e., it performs badly in preserving community structure.

Table 3. Results of AX% and V(c,&) with a fixed budget P = 100 x £ ~ 8%. con-
strCRlink preserves on average 98.6% of NetMelt™’s efficacy in AA%; and it performs
much better in V(c, €).

Dataset | Metric | RandMelt | NetMelt | NetMeltT | GRlink | CRlink | constrC Rlink
FB-1 AX% 2.5228 42.118 64.842 63.024 |63.132 |63.324
V(c,&)| 0.1239 0.1319 0.1511 0.2682 | 0.0510 | 0.0483
FB-2 AX% 4.7317 28.568 60.312 58.521 | 58.798 | 58.902
V(c,&)| 0.1530 0.1390 0.1741 0.2974 | 0.0587 | 0.0552
TT-1 A% 17.803 43.277 68.820 66.946 | 67.257 | 67.592
V(c,&)| 0.1648 0.1519 0.1780 0.2694 | 0.0461 | 0.0463
TT-2 A% 10.161 42.744 75.985 74.396 | 74.428 |'74.549
V(c,&)| 0.2073 0.1856 0.2242 0.3425 | 0.0538 | 0.0515
YIM A% 14.022 27.282 68.413 66.765 | 57.914 |67.636
V(c,&)| 0.1148 0.0612 0.0649 0.2288 | 0.0454 | 0.0452
oG AX% | 12.001 32.288 39.227 38.979 | 38.875 |38.476
V(c,&) | 0.1609 0.1649 0.1370 0.2701 | 0.0582 | 0.0544
Weibo | AA% | 12.489 25.037 43.639 43.193 |43.382 |43.417
V(c,&) | 0.1446 0.1056 0.1091 0.2659 | 0.0422 | 0.0381
CA A% 8.3240 16.429 47.832 47.031 |35.081 |47.808
V(c,&)| 0.1114 0.0541 0.0518 0.1033 | 0.0274 | 0.0274
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Fig. 2. (Best viewed in color.) AA% and V (c, &) vs. budget K across different graphs.
constrCRIlink’s AM% closely shadows that of NetMelt* across various graphs (the first
and second rows); but its V(c, &) is the smallest (the third and fourth rows). (Note:
the x-axes are in different scales due to different graph sizes.) (Color figure online)

Besides, Table 3 lists the AA% and V(c, €) results of different methods with
a fixed budget P = 100 x % ~ 8% across various graphs. The take-away points
from this table are: (1) On average, constrCRlink preserves 98.6% of NetMeltt’s
efficacy in term of AA%. (2) On average, constrCRlink changes the community
structure by 4.5%, while NetMelt™ changes it by 13.6%. In other words, Net-
Melt™ changes the graph’s community structure on average about 3 times more
than constrCRIlink. (3) As expected, V(c, &) of GRlink is the largest among all
methods because it is agnostic of a node’s community structure when it performs
edge rewiring.

There are two seemingly counter-intuitive phenomena in Fig. 2 and Table 3.
One is that CRlink seems to not be as good as constrCRlink in AX%, even
though CRlink has more choices for adding edges. These two methods use dif-
ferent strategies to manipulate the network structure, which result in very dif-
ferent eigenscores. The smallest eigenscore of an edge after constrCRlink can be
less than the smallest eigenscore of an edge after CRlink. The same argument
holds when contrasting GRlink with constrCRlink. The other counter-intuitive
phenomenon is that when more edges are modified, V(c,&) of most methods
increase as expected, but those of CRlink and constrCRIlink keep decreasing.
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The reason for this is because edge-deletion methods and GRlink tend to change
the community structure more as the edge budget increases, which lead to an
increase in the community variation of information. However, CRlink and con-
strCRlink rewire edges within communities. This (often) makes the community
structure more stable as the edge budget increases, which leads to a decrease in
the community variation of information.

Greatest Community Component Visualization. To clearly show the dif-
ferences in the community structure change across different methods, we extract
the Greatest Community Component (GCC, which is the community with the
maximum number of nodes among all communities) of the original FB-1 graph
and the perturbed FB-1 graphs. For better visualization, we use K = 1300 (i.e.,
P =~ 5%). Figure 3 shows that after applying CRlink and constrCRlink, the GCCs
of their (respective) perturbed graphs are similar to the original GCC. After
applying GRlink and NetMeltt, the GCCs of their (respective) perturbed graphs
are different from the original GCC (with many nodes having been assigned to
other communities). Therefore, from the visualization perspective, CRlink and
constrCRlink perform well in maintaining the community structure.

% a T @

Fig. 3. (Best viewed in color.) GCC visualizations of the original/unperturbed graph
and the perturbed graphs. (1), (2), (3), (4), (5) and (6) represent the GCCs of the
original FB-1 graph, the graph after GRlink, the graph after CRlink, the graph after
constrCRlink, the graph after NetMelt, and the graph after NetMelt™, respectively.
GCCs of the graph after CRlink (3) and the graph after constrCRlink (4) are the most
similar to the original FB-1 graph’s GCC (1). (Color figure online)
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Simulation of Virus Propagation. We evaluate the effectiveness of our algo-
rithms in terms of minimizing the infected population. Specifically, we simulate
the SIS (Susceptible-Infected-Susceptible) model [16] of virus propagation. Due
to space limitation, we only report the results on the FB-1 graph. The results
on the other graphs are similar. In this experiment, we set the budget K to
2000 and the virus strength s to 0.25. Figure 4 reports the relationship between
the rate of infected population and the time step. All results are average val-
ues of 100 runs. Obviously, the lower the rate, the better the performance in
minimizing dissemination. It can be seen that the infected rate of constrCRlink
is close to NetMeltt’s infected rate. This means that constrCRlink, as desired,
has similar performance to NetMelt™ in dissemination minimization. As shown
in the previous sections, constrCRlink maintains the community structure of the
original /unperturbed graph while NetMelt™ does not.

1_

o FB-1 Nttt
. | NetMelt
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: | NetMelt"
.% 0.1 _li CRink
g o CRIink
3 !\ --—--- constrCRIink
o !
001}
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1E-3 Sl -
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Fig. 4. (Best viewed in color.) Comparison of the infected population under the SIS
model. Our methods, CRlink and constrCRlink, have similar infected rates in the pop-
ulation to NetMelt*. (Color figure online)

5 Related Works

The relevant literature for our work can be categorized into two parts: controlling
entity dissemination and analyzing community structure.

Controlling Entity Dissemination. The dynamic processes on large graphs
like blogs and propagations [8,11] are closely related to entity propagation. For
the entity dissemination control, Chakrabarti et al. [3] and Prakash et al. [17]
prove that the only graph-based parameter determining the epidemic threshold



A Community-Aware Approach to Minimizing Dissemination in Graphs 97

is the leading eigenvalue of the adjacency matrix of graph. Tong et al. [20] intro-
duce the NetMelt algorithm, which minimizes the dissemination on a graph by
deleting edges with the largest eigenscore associated with the leading eigenvalue
(see Sect.2 for the definition of eigenscore). Le et al. [13] show that NetMelt
performs poorly on graphs with small eigen-gaps (like many social graphs) and
introduce MET (short for Multiple Eigenvalues Tracking) to overcome the small
eigen-gap problem. Chan et al. [4] track multiple eigenvalues for the purpose of
measuring graph robustness. Kuhlman et al. [10] study contagion blocking in
graphs via edge deletion. Saha et al. [19] developed GreedyWalk approximation
algorithms for reducing the spectral radius by removing the minimum cost set of
edges or nodes. To the best of our knowledge, no previous work has investigated
edge relinkage in order to minimize dissemination while maintaining community
structure.

Analyzing Community Structure. Besides entity dissemination control, we
try to minimize the change in the graph’s community structure after pertur-
bation. Many efforts have been devoted to community structure detection and
analysis. The past literatures [1,6,7,18] propose several effective methods to
detect communities in real-world graphs. Leskovec et al. [14] investigate a range
of community detection methods in order to understand the difference in their
performances. Nematzadeh et al. [15] investigate the impact of community struc-
ture on information diffusion with the linear threshold model. Karrer et al. [9]
study the significance of community structure by measuring its robustness to
small perturbations in graph structure. Motivated by this last work, we use the
difference in community assignment of each node to quantify the abilities of the
different algorithms in preserving the graph’s community structure.

6 Conclusion

We present the problem of minimizing dissemination in a population (that is
represented as a complex network) while maintaining its community structure
(where community is defined as a group of individuals with more links between
them than to outside members). Due to the poor performance of edge deletions in
preserving community structure, we introduce the edge-rewiring framework and
two algorithms: CRIlink and constrCRlink. CRlink tends to rewire edges within
a community; constrCRlink improves CRlink’s performance by adding node-
degree constraint to rewired edges. Our experimental results on several real-world
graphs show that CRlink and constrCRlink preserve most of the efficacy (more
than 98.6%) of NetMelt* in dissemination minimization. Besides, CRlink and
constrCRIink perform much better in preserving community structure (only 4.5%
change) than other methods like NetMelt™ (with 13.6% change). Furthermore,
we investigate the reasons for the different performances of our algorithms.
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Abstract. Graph pattern matching (GPM) is an important operation
on graph computation. Most existing work assumes that query graph or
data graph is static, which is contrary to the fact that graphs in real
life are intrinsically dynamic. Therefore, in this paper, we propose a new
problem of Time-Constrained Graph Pattern Matching (TCGPM) in a
large temporal graph. Different from traditional work, our work deals
with temporal graphs rather than a series of snapshots. Besides, the
query graph in TCGPM contains two types of time constraints which
are helpful for finding more useful subgraphs. To address the problem
of TCGPM, a baseline method and an improved method are proposed.
Besides, to further improve the efficiency, two pruning rules are proposed.
The improved method runs several orders of magnitude faster than the
baseline method. The effectiveness of TCGPM is several orders of mag-
nitude better than that of GPM. Extensive experiments on three real
and semi-real datasets demonstrate high performance of our proposed
methods.

1 Introduction

Graph pattern matching (GPM) plays a significant role in many fields, such as
information retrieval [1], community detecting [2] and biology [3]. The develop-
ment of GPM undergoes three periods. Firstly, a lot of researchers investigate the
problem of querying static graph pattern in static graphs [4-9]. However, graphs
in real life are inherently dynamic. Therefore, a lot of efforts have been made in
querying static graph pattern in dynamic graphs [10,11]. Recently, to discover
more interesting patterns, there exists a few work about querying dynamic graph
pattern in dynamic graphs [12].

However, there exist following issues in the traditional work: (1) The dynamic
graph is often modeled as a series of static snapshots. However, many com-
plex events in real life cannot be treated as a series of points, such as spread
of epidemics, information diffusion, and so on [13]. A series of snapshots can-
not illustrate all temporal information and a part of information is missing.
(2) The traditional solutions often offer users exponential number of matched
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subgraphs [14]. It is daunting for users to inspect all matched subgraphs and
find what they really want.

To solve the first issue, we focus on studying temporal graphs. Edges and
vertices in a temporal graph exist during a period of time. Temporal graphs
can show more information than a series of snapshots. For example, we can
clearly see the phenomenon in a temporal graph that event “fever” is during the
event “flue”. The phenomenon is important for therapy. However, it cannot be
illustrated by a series of snapshots.

In order to settle the second issue, we design two types of time constraints
in the query graph to reduce the number of matched subgraphs drastically. The
first type of time constraint is directed against a single object. For example, we
want to find an old classmate who worked at Google for a few years around
2006-2008. The second type of time constraint is directed against the temporal
relation among several objects. ALLEN [15] divides the temporal relation into
13 categories which are shown in Table 1.

Table 1. Presentation of ALLEN’s 13 temporal relations

Relation Relation Figure Relation Relation Figure

Code Hlustration Code Ilustration

1 t1 before to 8 to before t;
t

2 t1 overlaps to 9 t2 overlaps t1
3 t1 starts to 10 ty starts ty
4 t1 finishes to 11 to finishes ¢
5 t1 meets to 12 to meets t1
6 t1 contains ts 13 to contains 1
7 t1 equals to

In this paper, we propose a new problem of querying time-constrained graph
pattern in a temporal graph. We utilize an example in Fig.1 to illustrate the
problem.

Example 1. Figure 1(b) shows a biology network. A vertex represents a pro-
tein and an edge denotes protein-protein interaction. Each edge is associated
with a list of time intervals denoted as (s1, f1), (s2, f2), ..., (Sn, fn) where (s;, f;)
denotes that interaction starts at time s; and finishes at time f;. If a biologist
wants to know if there exists a dynamic module [16] in Fig. 1(b) and the dynamic
module is described as follows: (1) The module consists of three proteins, i.e.,
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[2:10]
t, equals t .

(8,9)

1,5 before ty.

(a) Query Graph Pattern (b) Data Graph (c) Matched Subgraph

Fig. 1. An example of querying time-constrained graph pattern in a temporal graph

A, B and C. (2) The interaction between A and B exists during time 1 to 5.
The interaction between A and C exists during time 1 to 5. The interaction
between B and C' exists during time 2 to 10. (3) The time of AB equals that of
AC and the time of AB should be earlier than that of BC. Figure 1(a) shows
the dynamic module. The matched subgraph of Fig.1(a) is shown in Fig.1(c)
(computing process is discussed in Sect. 4).

Querying time-constrained graph pattern in a temporal graph is not an easy
work. As we all know, graph pattern matching is typically defined in terms of
subgraph isomorphism which is a NP-hard problem [17]. Besides, taking time
constraints into consideration slow down the process drastically. For example,
there exists a graph consisting of m nodes and each edge contains n time intervals
on average. There may exist mx(m-1) edges. Therefore, there can be N
temporal subgraphs to be checked (the definition of the temporal subgraph is
shown in Sect. 3).

In all, the contributions of this paper can be summarized as follows:

— We propose a new problem, i.e., time-constrained graph pattern matching
in a large temporal graph. To the best of our knowledge, we are the first to
study the problem.

— We propose a baseline algorithm to solve the problem. To improve the effi-
ciency, an improved algorithm is proposed. Besides, two pruning rules are
proposed to improve efficiency. The improved algorithm runs several orders
of magnitude faster than the baseline algorithm.

— We have carried out a large number of experiments based on three real and
semi-real datasets to evaluate the effectiveness and efficiency of our solutions.
Experimental results show the high performance of proposed algorithms.

Organization: The rest of the paper is organized as follows. Section 2 reviews
related work. In Sect. 3, we introduce several basic concepts and define the prob-
lem formally. Details of algorithms are described in Sect. 4. In Sect. 5, we conduct
a series of experiments to evaluate the effectiveness and efficiency of proposed
methods. Finally, Sect. 6 concludes the paper in brief.
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2 Related Work

In this section, we discuss related work on temporal graphs and graph pattern
matching.

Temporal Graphs: Recently, a lot of researchers investigate temporal graphs
deeply. Huang et al. find minimum spanning trees in a temporal graph [18]. Yang
et al. study how to find k dense temporal subgraphs in a temporal graph [19].
Various types of temporal paths are defined to study temporal graphs [20-22].
However, no work queries time-constrained subgraphs in a temporal graph.

Graph Pattern Matching: The problem of querying static graph in static
graphs has two lines. One line is subgraph isomorphism which is a NP-hard
problem [17]. Recently, Lee et al. [23] re-implement five state-of-the-art subgraph
isomorphism algorithms and compare them based on real-life data. However,
isomorphism-based graph pattern matching is too strict to find useful patterns.
Besides, it is prohibitively expensive when it is applied in large scale graphs.
Another line of graph pattern matching is graph simulation [24,25]. Currently,
Fan et al. [2] propose a revision of the notion of graph pattern matching, i.e.,
bounded graph simulation, which overcomes issues in subgraph isomorphism.
However, all of work mentioned above cannot solve our problem because both
query graph and data graph are static in their work.

In order to solve more practical problems, a lot of researchers investigate
deeply on querying static graph in dynamic graphs. These work can be divided
into two categories: transactional query and single graph query. In transactional
query [26,27], there exist a graph dataset where old graphs can be deleted and
new graphs can be added. Yuan et al. [28] propose a one-pass algorithm to
update graph indices. In single graph query, nodes and edges in the data graph
can be deleted or added. Fan et al. [11] develop incremental algorithms to quickly
find results by revising old results. However, none of these work can solve our
problem because the query graphs in these work are static.

Recently, a few work focuses on querying dynamic patterns in a dynamic
graph. Song et al. [12] aim to find an event pattern over graph stream. However,
their work models the dynamic graph as a series of snapshots, which causes the
loss of temporal information. Besides, the query pattern only considers partial
order constraint on the time of edges [12]. Hence, the algorithms in their work
cannot solve our problem.

3 Preliminaries

Temporal Data Graph: Given a directed labeled graph G = (V,E,L), V is
a set of vertices, F is a set of edges, L is a label function that assigns labels to
vertices and edges. Each edge in E is in the form of (u,v, T) where u,v € V and
T denotes a set of time intervals such that (s1, f1), (s2, f2),- -, (Sn, fn) Where s;
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is starting time of a time interval and f; is finishing time of a time interval (All
algorithms can be used for undirected graphs and each edge in an undirected
graph can be seen as a bidirectional edge).

Time-Constrained Query Pattern: A time-constrained query graph @ =
(Vs Eq, Lq, Ty, T'S,) is also a directed graph, V; is a set of vertices, E, C V, x V,
L, is a label function, T, and T'S, denote two types of time constraints. The
first type of time constraint 7;, aims at limiting time for a single edge. If there
exists a time constraint (e;,[, h) in T, it means that starting time of e; cannot
be earlier than [ and finishing time of e; cannot be later than h. For example,
a user wants to find an old friend who worked at a company around 2003-
2008 years where 2003 year is a lower bound and 2008 year is an upper bound.
Another time constraint 7T'S, is the constraint on temporal relations between
edge e; and edge e;. For example, a user wants to go to vs from v; through v
by flight. There exist hidden time constraints on temporal relationship in this
query. The finishing time of the flight v; v, must be earlier than the starting time
of the flight vovs. ALLEN [15] divides temporal relationship into thirteen types.
Table 1 illustrates these thirteen widely used relationships [29]. T'S, is a matrix
where T'S,[i][j] is a relation code (Table 1) limited for the temporal relationship
between i-th edge and j-th edge.
In the following context, several basic concepts are introduced.

Definition 1. Subgraph Isomorphism [23]: Given a query graph Q =
(V,E,L), a subgraph g = (V',E', L") in the data graph G, a subgraph isomor-
phism is a bijective function f: V. —>V' such that:

(1) Yu eV, L(u) € L'(f(u)).
(2) Y(ui,uj) € E if and only if (f(w),f(u;)) € E' and L(u;,u;) =
L'(f (us), f(uy)).

Definition 2. Temporal Subgraph: Given a temporal data graph G =
(V,E, L), a temporal subgraph is a directed labeled graph g = (Vi, Ey, Ly) where
Vi CV, L is a label function and E; is a set of edges. Each edge in Ey is
in the form of (u,v,t) where u,v € V; and t is a time interval. VY(u,v,t) €
E;,3(u,v,T) € E andt e T.

Definition 3. Temporal Subgraph Isomorphism: Given a query graph Q =
(Vys Eq, Ly, Ty, TSy), a temporal subgraph g = (Vi, Ey, L), a temporal subgraph
isomorphism is a bijective function M: Vo —>V; such that:

(1) Yu € Vg, Ly(u) C Ly(M(u)).

(2) Y(u;,v;) € Eq if and only if (M(u;), M(v;),t;) € E; and Lg(u;,v;) =
Lt(M(ui), M(Ui),ti).

(8) Y(ei,lishi) € Ty(e; = (us,v;)), I(M(u;), M(v;),t;) € Ey and t;.s > 1; and
t;.f < h; where s is starting time and f is finishing time.

(4) V(M (us), M(v;),t;), (M (u;), M(vj),t;) € Ey, the temporal relationship
between t; and t; is T'S[i][j].
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4 Algorithms

The definitions of formal problem have been proposed in previous section. This
section shows details of solutions. We firstly introduce a baseline method, i.e.,
Time-Constrained Graph Pattern Matching based on Vertex mapping (TCGPM-
V). Then, another method, i.e., Time-Constrained Graph Pattern Matching
based on Edge mapping (TCGPM-E) is proposed to improve the efficiency.
Besides, two pruning rules are proposed to further improve the efficiency.

4.1 TCGPM-V Algorithm

Before discussing details of TCGPM-V | we firstly define a complete vertex map-
ping set formally.

Definition 4. A Complete Vertex Mapping Set: Given a query graph QQ =
(Vs Eq, Ly, T, TS,) and a data graph G = (V, E, L), a complete vertex mapping
set S, C V, xV such that:

(1) For any two elements (vi,v;), (vj,v}) € Sy, if vi # vj, v # v},
(2) Yv; € Vg if and only if I(v;,v)) € S,.

(b) Possible Temporal Subgraphs

Fig. 2. Process of graph pattern matching based on vertex mapping

Algorithm TCGPM-V can be divided into two steps. The first step, using
depth-first tree search, aims to find all complete vertex mapping sets. The sec-
ond step enumerates all possible temporal subgraphs and finds correct temporal
subgraphs. We utilize Fig.2 to illustrate the process of TCGPM-V. Given a



106 Y. Xu et al.

query graph (Fig.1(a)) and a data graph (Fig.1(b)), it firstly enumerates all
complete vertex mapping sets, i.e., {(4, A1), (B, B1), (C,C1)},{(A4, A1), (B, By),
(C,C9)}L{(A, Ay), (B, B2), (C,Ch)} and {(A, A1), (B, B2),(C,C3)} (shown in
Fig.2(a)). Then, it generates all possible temporal subgraphs shown in Fig. 2(b).
The complete vertex mapping sets {(A, A1), (B, B1),(C,C1)} and {(A4, A;),
(B, Bs),(C,C4)} cannot generate correct temporal subgraphs because there
exists no edge between A; and C;. My — My are generated by {(4, 4;), (B, By),
(C,C3)}. Ms and Ms are generated by {(A, A1), (B, Bs),(C,C2)}. Only M,
meets the time constraints in Fig.1(a) and finally M;j is returned shown in
Fig. 1(c). M, M3, M5 and Mg cannot meet the constraint that t4p equals tac.
M, cannot meet the constraint that ¢ 4p is before tgc.

4.2 TCGPM-E Algorithm

In previous years, most of studies about subgraph pattern matching were based
on vertex mapping. Previous work tried to reduce the number of recursive calls
to improve the efficiency. According to in-depth comparison of subgraph isomor-
phism algorithms [23], we know that signature-pruning is very important for
subgraph isomorphism. A temporal edge in a query graph has more signatures
than a vertex. The signatures of a temporal edge e can be divided into three
types including temporal signature, semantic signature and topology signature:

— Temporal signature is in the form of (e, l, h) where [ denotes time lower bound
of e and h denotes time upper bound of e.

— Semantic signature is in the form of (I5,l;) where I, represents the labels of
source node and [; denotes the labels of target node.

— A temporal edge has two types of topology signatures. The first type of topol-
ogy signature is the number of neighbor edges |N,,| where each edge has a
common node with the temporal edge. Another topology signature is the
number of shared nodes |Ng|. A shared node is a node shared by two edges
in N,.

We propose an improved algorithm T"CG P M-FE based on temporal edge map-
ping. To further improve the efficiency of improved algorithms, we decompose
a large data graph into a set of small subgraphs and search the query graph in
these small subgraphs. The whole process of TCGPM-FE is illustrated as follows:
(1) Selecting an edge in the query graph according to a ranking function. (2)
Finding the diameter r of the query graph centered at selected edge. (3) Find-
ing all mapping edges M, of selected edge e. (4) Decomposing the data graph
into |M,| subgraphs. Each subgraph is centered at an edge in M, and diame-
ter of each subgraph is r. (5) Performing subgraph isomorphism based on edge
mapping in each subgraph. (6) Enumerating matched temporal subgraphs.

(1) Ranking Function: To improve the efficiency of the algorithm, it is nec-
essary to minimize the number of components |M,| which is associated with the
selected edge in the query graph. The more mappings the selected edge has, the
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(5,6), (8,10)

tag before tzc azliey 213
tpc overlaps tcp

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a) Query Graph (b) Data Graph

Fig. 3. Example of query and data graphs

more components can be obtained. Hence, it is necessary to find the edge which
has less mappings. The ranking function of an edge e is defined as follows:

f(e) — max — tmin G (1)
| N
where h is the time upper bound of e, [ is the time lower bound of e, hy,q, =
|[Eg| |Eg|
max( Y. hi)y lmin = main( > 1;), freq(ls,l:) is the number of edges in the data
i=1 i=1

graph which have the same semantic signature with e, |Eg| is the number of edges
in data graph and |N,| is the number of adjacent edges of e. An edge with lowest
value is selected. Intuitively, if the interval between [ and h is narrower, then less
edges may meet the temporal requirements. Besides, e has less mappings if less
edges have the same semantic features with e. Finally, the more adjacent edges
e has, the less mappings e may have [23].

6-2 4
Let’s take Fig. 3 as an examplleo. _T;he2value ofeapis fleap) = # = 2%.
The value of epc is f(epc) = i;ﬁ = ?Tle' The value of ecp is f(ecp) =

11 -7
11— 2
1

X . .
12— 2%. Finally, egc is selected.

(2) Graph Diameter: A line of a graph refers a sequence of edges where
adjacent edges must have a common vertex. Given an edge eg as the center of
a graph, a longest line starting from eq is eg, e1,€2,...,¢;—1,¢; (if n # m, then
€n # €m), then the diameter of a graph centered at eq is .

Let’s look at the query graph in Fig. 3. If eg¢ is set as the center edge, then
the longest line is egc, ecp or epe, eap. Hence, the diameter of the query graph
is 1.

(3) Edge Mappings: Given an edge e; in the query graph, if an edge e; in the
data graph is the mapping of e;, it must meet all following requirements:
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— e.ls = e;.ls and e;.ly = ej.l;.

— There exists at least one time interval (s, f) in time list of e; where s is later
than time lower bound of e; and f is earlier than time upper bound of e;.

— |ej.Ny| = |e;.Nyp| and |e;.Ng| > |e;.Ng|.

In Fig. 3, only ep, ¢, is a mapping of epc.

(4) Decomposition: A component can be obtained by the following process:
Given a mapping edge e; and diameter r of a query graph, e; is firstly put into
an empty edge set S;. Secondly, putting all adjacent edges of edges in S; into
S; and repeating it r times. Then, a component S; is obtained. Repeating the
process |M,| times and |M,| components are obtained.

For example, given a mapping edge ep, ¢, and diameter 1, we finally obtain
the component {eg,c,, €A, By, €0, Dy €CLEy s ECL Dy }-

(5) Subgraph Isomorphism Based on Edge Mapping: Edge mapping is
used in the improved algorithm. We firstly define a complete edge mapping set.

Definition 5. A Complete Edge Mapping Set: Given a query graph Q =
(Vs Eq, Lg, Ty, TSy) and a data graph G = (V,E, L), a complete edge mapping
set Se € By x E must meet the following requirements:

(1) For any two elements (e;,€}), (ej,€;) € Se, if e; # e;, then e} # €.
(2) Ye; € E, if and only if I(e;, €}) € Se.

Algorithm 1. RecursiveMapE

Data: a query patten Q = (Vg, Eq, Lq, Ty, T'Sq), a data graph G = (V, E, L) and
a partial edge mapping set Se
Result: a set of complete edge mapping sets

1 if Se is a complete edge mapping set then
2 ‘ Output(S.);

3 else

4 e= NextUnmatchedEdge(Q, Se);

5 compute a set of mappings E for e;

6 for each edge ¢’ in E do

7 put (e, €’) into Se;

8 if IsFeasible(Se,€’,e) then

9 L RecursiveMapE(Q, G, Se);
10 remove (e, e’) from Se;

Algorithm 1 shows the pseudo-code of subgraph isomorphism based on edge
mapping. Firstly, it checks if S, is a complete edge mapping set (line 1). If S, is a
complete edge mapping set, S, is returned (line 2). Otherwise, it needs to extend



Time-Constrained Graph Pattern Matching in a Large Temporal Graph 109

the partial edge mapping set (lines 4-10). Function NextUnmatchedEdge finds
a query edge which is not in S, (line 4). NextUnmatchedEdge has two rules for
finding next edge: (1) The next edge must be an edge connected with a mapped
edge which is proved to be efficient [4]. (2) It picks up an edge in query graph
according to the ranking function. In line 5, E is a set of mapping edges for e. It
extends S, by adding each possible mapping pairs (e, e’) (line 7). After adding a
mapping pair, it is necessary to check if a partial edge mapping set is feasible (line
8). If S, is feasible, it invokes RecursiveMapE to extend S, until S, becomes a
complete edge mapping set (line 9). The function IsFeasible contains four rules
for each added edge mapping pair (e,e’) such that: (1) V(ej,e}) € Se,ej.v =
eV = e}.vt = e vs. (2) Y(ey, e;) € Se,ej.0p = e.vy = e}.vt = €. (3)
V(ej,e;-) € Se, €0, = evy <= e;-.vs = . (4) V(ej,e;-) € Se, €05 = evy <=

e;-.vs = €’.v; where vy is source node and v, is target node.

(6) Pruning Rules: After obtaining all complete edge mapping sets, it needs to
enumerate all possible temporal subgraphs. The time complexity of enumeration
is |T,|Fal % | R| where |E,| is the number of edges in the query pattern, |T,| is the
average number of time intervals of an edge and |R| is the number of complete
edge mapping sets. There are two ways of improving the efficiency. The first way
is reducing |R| and the second way is reducing |T,| (|E,| is decided by users).

Pruning 1: Given a query pattern Q = (V;, By, Ly, T,,TS,) and a complete
edge mapping set S, V(e;, €;), (¢j, €}) € Se, if there are not two time intervals ¢,/
and t.; that the temporal relation between tc; and e/ is T'S, [i][], then S, can
be eliminated. For example, in Fig. 3, {(eap,€ea,B,), (eBc,eB,c,), (ecp,€cyD,)}
is a complete edge mapping set. However, there are not two time intervals ¢z, ¢,
and tc, p, that tp, ¢, overlaps tc, p,. Hence, this complete edge mapping set can
be eliminated.

Pruning 2: Given a query pattern Q= (Vy, By, Ly, T;,TS;) and a complete
edge mapping set Se, V(e;, €), (€5, €}) € S, if there exists no time interval ¢,
that t., has T'S,[4][j] temporal relatlon with ¢/, then f.; can be eliminated. For
example, in Fig. 3, {(ean,ea,B,), (eBc,eB,c,), (ecD, eclpl)} is a complete edge
mapping set. The time interval (5,6) of e, ¢, can be eliminated because there
exists no time interval ¢t¢, p, that (5,6) overlaps t¢, p, -

Algorithm 2 shows the pseudo-code of TCGPM-E. At first, it selects an edge
e in query graph according to the ranking function (line 1). Then, it computes
the diameter r of query graph centered at selected edge e by BFS (breadth-first-
search) and mappings of e (line 2). For each mapping edge e; of e, it extracts a
component g from the data graph G by BFS (line 4). Then, the first mapping
pair (e, e;) is put into the partial edge mapping set S, (lines 6-7). All complete
edge mapping sets R, in the subgraph g are computed by invoking function
RecursiveMapE (line 8). Pruningl is used to reduce the number of complete
edge mapping sets (line 9). Lines 10-17 show the process of generating all correct
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Algorithm 2. TCGPM-E
Data: a query patten Q = (Vg, Eq, Lq, Ty, T'S,) and a data graph G = (V, E, L)
Result: a set of temporal subgraphs

1 select a query edge e with lowest ranking value;

2 compute the query graph diameter r centered at e and the mapping set M. of e;
3 for each e; € M. do

4 g = GenComponent(e;,r, G);

5 if the size of g is larger than @ then

6 Se = @;

7 put (e, e;) into Se;

8 Ry = RecursiveMapE(Q, g, Se);

9 reduce the number of complete edge mapping sets |Rgy| by pruning 1;
10 for each complete edge mapping set Se € Ry do
11 reduce average time intervals T, by pruning 2;
12 while exist new temporal subgraphs E: do
13 for each edge eq € Eq, (eq,e;) € Se do
14 select a time interval te; from the time intervals list of ey;
15 put (e;,te;) into E;
16 if E: satisfies all time constraints then
17 L Output(E:);

temporal subgraphs. Lines 13-15 enumerate all possible temporal subgraphs
w.r.t. a complete edge mapping set S.. If a temporal subgraph E; meets all time
constraints, F; is returned (lines 16-17).

5 Experiments

In this section, we experimentally evaluate effectiveness and efficiency of pro-
posed algorithms. All algorithms are implemented using java in a Linux machine
with 96 CPU, 2.60 GHz, 1T RAM. We use two real datasets named Contact!,
SEQ? and a semi-real dataset named Patents®. Patents dataset does not have
temporal information. In order to keep the real temporal distribution, we trans-
fer the temporal information of dataset SEQ to dataset Patents. All results are
average value based on three runs (Table 2).

5.1 Effectiveness

At first, we evaluate the effectiveness of Time-Constrained Graph Pattern Match-
ing (TCGPM). Let’s look at the Fig. 4. If a lady works at a company in zone one

! http://www.sociopatterns.org/datasets.
2 https://gtfsrt.api.translink.com.au.
3 https:/ /snap.stanford.edu/data/cit- Patents.html.


http://www.sociopatterns.org/datasets
https://gtfsrt.api.translink.com.au
https://snap.stanford.edu/data/cit-Patents.html

Time-Constrained Graph Pattern Matching in a Large Temporal Graph 111

Table 2. Datasets

Dataset Contact | SEQ Patents
Num. of vertices 327 12,654 | 3,774,768
Num. of static edges 5,818 15,522 |16,518,948
Num. of temporal edges | 188,508 | 701,585 | 746,556,059

Avg. time intervals 32 45 45
Num. of labels 9 23 421
Jone ID_"1" Stop ID="1270" Stop ID="631"

Zone ID="1" Zone ID="1"

(17:56.|17:57) (8:36)8:41)
Stop ID="736" Stop ID="736"
. Zone ID="3" Zone ID="3"
Zone ID="3 (15:10, 15:23 (18:09, 18:20

Stop ID="1271" Stop ID="730"
Zone ID="2" Zone ID="2"

Q Ml M2

Zone ID="2"

Fig. 4. Illustration of useless matched temporal subgraphs

and she needs to have dinner with a friend in zone two after work. After dinner,
she has to go home in zone three. Hence, she queries a traffic patten shown in Q.
Both M; and Mj are returned by traditional solutions in GPM (Graph Pattern
Matching) [23]. M7 is not a correct result because the time of edge (1270, 1271)
is later than that of edge (1271, 736). When the lady arrives at stop 1271, she is
too late to go to stop 736. M5 is not a good choice for the lady because she could
not be off duty at 8:36 a.m. When constraints on temporal relation between two
edges are considered, M is not returned by TCGPM. When constraints on the
time of a single edge can be considered, M, is not returned by TCGPM . Hence,
TCGPM can filter out a lot of useless subgraph so that users can inspect results
and find what they really want quickly. To quantify effectiveness of solutions, we
define the following performance metric:

Temporal Edge Coverage (TEC): A temporal edge is an edge attached with
one time interval. Temporal edge coverage not only considers the number of tem-
poral edges in returned temporal subgraphs, it also considers frequency of each
temporal edge in returned subgraphs. Given a data graph G = {Vg, Eq, La}
and a set of returned temporal subgraphs {M;, Ms, ..., M,}, TEC is defined as:

|Eg|

TEC =Y |Ey,|/ Y le:iT] (2)
j=1 i=1

where |Eyy; | is the number of temporal edges in M; and |e;.T'| is the number of
time intervals of edge e; in the data graph. The challenge is to keep TEC as low
as possible.
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(a) Contact (b) SEQ (c) Patents

Fig. 5. TEC evaluation

Figure 5 shows TEC of traditional solution GPM [23] and proposed solutions
TCGPM-V, TCGPM-E based on datasets Contact, SEQ and Patents. We
vary the query graph size from 2 to 4. As we can see, TEC of GPM is several
orders of magnitude larger than that of TCGPM-E and TCGPM-V. A lot
of irrelevant temporal edges are included because GPM does not consider the
temporal constraints. TEC of TCGPM-F is the same with that of TCGPM-V
because TCGPM-FE offer users the same results with TCGPM-V.

5.2 Efficiency

In this subsection, we mainly evaluate (1) efficiency of proposed algorithm by
comparing it with previous algorithms; (2) the effect of parameters on efficiency;
(3) efficiency of proposed pruning rules.

A lot of traditional algorithms, i.e., Ullman [30], VF2 [4] and GraphQL [5],
can be used to discover all complete vertex mapping sets. Hence, we re-implement
three traditional algorithms in the baseline method and compare them with the
improved method TCGPM-E. VF2 is used in TCGPM-F, GraphQL is used in
TCGPM-G and Ullman is used in TCGPM-U.

Figure 6(a)—(c) show the performance in Contact, SEQ, Patents datasets
respectively. The proposed method TCGPM-E runs several orders of magni-
tude faster than other algorithms. Then, we analyze the effect of several para-
meters, i.e., average time intervals of an edge, number of labels and data graph
size (the number of edges in the data graph). Figure 6(d) shows that when aver-
age time intervals of an edge becomes larger, the runtime of algorithms increases
because the time complexity of generating all temporal subgraphs is | T, |/e! x| R
where |T,| is average time intervals. Figure 6(e) depicts that increasing number
of labels leads to decreasing of runtime because when the data graph size is fixed,
the number of labels is larger, there exist less mappings. Figure 6(f) demonstrates
that the larger the data graph size is, the longer the runtime is.

Figure 6(g)—(i) illustrate the efficiency of pruning rules. Pruningx denotes
that both Pruningl and Pruning2 are used. We can see clearly that both
Pruningl and Pruning2 can save much runtime. Besides, when two prun-
ing rules are used simultaneously, the performance is better. In Fig.6(i),
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Fig. 6. Efficiency evaluation of proposed algorithms

the performance of pruning rules is not obvious due to semi-log coordinates
system. When query graph size is four, Pruning* can save about 30% of run-
time.

6 Conclusion

In this paper, we propose the new problem, time-constrained graph pattern
matching in a temporal graph. We propose two algorithms, TCGPM-V and
TCGPM-E. Besides, we design two pruning rules. Extensive experiments
demonstrate the high performance of proposed solutions. Due to large volumes
of temporal graph data, we will study disk representation in the future work.
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Abstract. Real world graphs typically exhibit power law degrees, and
many of them are directed graphs. The growing scale of such graphs has
made efficient execution of graph computation very challenging. Reduc-
ing graph size to fit in memory, for example by using the technique of
lossless compression, is crucial in cutting the cost of large scale graph
computation. Unfortunately, literature work on graph compression still
suffers from issues including low compression ration and high decompres-
sion overhead. To address the above issue, in this paper, we propose a
novel compression approach. The basic idea of our graph compression is
to first cluster graph adjacency matrix via graph structure information,
and then represent the clustered matrix by lists of encoded numbers.
Our extensive evaluation on real data sets validates the tradeoff between
space cost saving and graph computation time, and verifies the advan-
tages of our work over state of art SlashBurn [1,2] and Ligra+ [3].

Keywords: Compression + Graph clustering - Graph computation algo-
rithms

1 Introduction

Graphs are becoming increasingly important for numerous applications, ranging
across the domains of World Wide Web, social networks, bioinformatics, com-
puter security and many others. Such real world graphs typically exhibit power
law degrees, and many graphs are directed, such as Web graph and Twitter social
graph. Given the real world directed graphs, the growing scale of such graphs has
made efficient execution of graph computation very challenging. Some previous
work (e.g., PowerGraph [4], Ligra [5], Trinity [6]) fit large graphs in distrib-
uted shared memory. However, such systems require a terabyte of memory and
expensive cost to maintain distributed computers. Reducing graph size to fit in
memory, e.g., by lossless compression, is crucial in cutting the cost of large-scale
graph computation and thus motivates our work in this paper.

Literature work typically adopted two following techniques. (1) Compression
of adjacency lists when graphs are represented as adjacency lists. For example,
© Springer International Publishing AG 2017
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recent work Ligra+ [3] adopts the widely used encoding schemes (such as byte
coding, run-length byte coding and nibble coding) over adjacency lists for smaller
graph size. (2) Compression of adjacency matrix when graphs are represented as
adjacency matrix. This technique (e.g., adopted by SlashBurn [1,2]) frequently
exploit graph clustering algorithms to compress graphs.

Unfortunately, the two approaches above still suffers from issues to compress
real work directed graphs. For example, the technique of compressing adjacency
lists including Ligra+ is frequently with a low compression ratio, when com-
pared with the compression of adjacency matrix. Alternatively, the clustering
techniques, frequently used by compression of adjacency matrix, are known to
perform not very well on real world directed graphs due to no good cut of
such graphs. Finally, many compression techniques including both Ligra+ and
SlashBurn could compromise graph computation efficiency, due to nontrivial
decompression overhead.

To address the above issue, in this paper, we propose a novel compression
algorithm on real world directed graphs. The proposed approach can be intu-
itively treated as a hybrid of the two approaches above: we first perform an
effective clustering algorithm and then represent the resulting adjacency matrix
by lists of encoded numbers. In this way, our approach has the chance to greatly
reduce the graph size.

We make the following contributions to enable our work. (1) The proposed
clustering algorithm leverages real world graph structure information (indegrees,
outdegrees and sibling neighbors) to permute graph vertices for high space cost
saving. (2) Our scheme to encode the clustered graphs can greatly optimize
graph computation (e.g., Breadth-First-Traversal: BFS) efficiency with no or
trivial decompression overhead. Thus, the proposed graph compression does not
compromise graph computation time. (&) Our extensive experiment on real data
sets studies the tradeoff between space cost saving and graph computation time,
and verifies the advantages of our work over state of arts SlashBurn and Ligra—+.
For example, when compared with SlashBurn on a real data set Amazon graph,
our work uses 35.77% fewer nonempty blocks (when both SlashBurn and our
work uses the same approach to encode nonempty blocks for fairness), and
4.79x faster time of running BFS. When compared with Ligra+, our scheme
can achieve 20.24% less space cost saving and 8.24x higher speedup ratio to run
the BFS algorithm on an example graph data set.

The rest of the paper is organized as follows. We first give the problem defini-
tion and encoding scheme in Sect. 2, and next present the clustering algorithm in
Sect. 3. After that, Sect. 4 evaluates our approach, and Sect. 5 reviews literature
work. Finally Sect. 6 concludes the paper.

2 Problem Definition and Encoding Scheme

In this section, we first give the problem definition (Sect.2.1), and present the
scheme to encode adjacency matrices (Sect. 2.2).
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2.1 Problem Definition

Given a directed graph G, we model it as an asymmetric binary matrix M. The
binary element e; ; in the i-th row and j-th column indicates whether or not
there exists a directed edge from the i-th vertex to j-th vertex (where ¢ and j
denote vertex IDs). When dividing the matrix M to blocks of b x b elements, we
determine whether a block is empty or not. Specifically, if the b x b elements in
a block are all zeros, we say that the block is empty and otherwise non-empty.
Now we can implicitly measure graph space cost by counting those nonempty
blocks, denoted by B(M).

Our basic idea is to permute matrix rows and columns (i.e., re-ordering vertex
IDs), such that the 1-elements in the permuted matrix is co-clustered. Thus, we
have chance to minimize B(M) and reduce graph space cost.

O 0123456738 O 012345678 Dpiectory Lists of Integer Pairs
ofo of1 of1 1]o ofo ofo ofo of1 1[1 ofo] —*—~ A \
@/ ® 1loololoo|1 1ol @/ O 1]oo0lool10]lo1]o |:|(<4,14>
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& @ 3l0o 0lo olo 0lo 0lo| @ @ 3|1 .0J0 o]0 0]1 01 |:| P N ey IN PPN
4|0 of1 ofo ofo 1|0 4|0 ofo ofo ofo oo 2 2 -
@ 50 0/0 0|1 0[0 0f0 500 0{0 01 0[0 o]0
Oosooooooo1oO O 6[0 ofo ofo ofo ofo |:|
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Fig. 1. Permutation of graph vertices: (a-b) directed graph and adjacency matrix before
permutation, (c-d) directed graph and adjacency matrix after permutation, (e) repre-
sentation of the permuted graphs by lists of encoded numbers.

Ezample 1. Figure1(a) gives a directed graph. Figure 1(b) shows the associated
binary matrix with B(M) = 10 non-empty blocks (we divide the matrix into
2 x 2 elements). After permuting the graph we will have the resulting graph and
associated matrix in Fig. 1(c-d). Now we have B(M) = 7 non-empty blocks in
Fig. 1(d).

Problem 1. Given a directed graph G and associated matrix M, we want to find
a permutation of vertex IDs w : V' — [n] with the objective to minimize the
count B(M) after the permutation.

Note that Problem 1 is NP-hard (see [7]) and no efficient solution can solve it
with polynomial time. Consider that real world graphs follow power-law degree
distributions with few ‘hub’ nodes having very high degrees and majority of the
nodes having low degrees. Traditional clustering approaches, such as spectral
clustering [8], co-clustering [9], cross-associations [10], and shingle-ordering [11],
do not work well on such real work graphs due to no good cuts.



Effcient Compression on Real World Directed Graphs 119

2.2 Graph Representation by Encoding Non-empty Blocks

When a directed graph is represented as a binary matrix above, we encode those
nonempty blocks (consisting of b x b elements) into lists of integers. Specially,
we first use a directory to maintain the matrix row IDs. Each element in the
directory (i.e., an associated matrix row ID) refers to a list of integers to encode
such non-empty blocks. For example, in Fig. 1(b), since we divide the matrix
into 2 x 2 blocks, each element in the directory contains two row IDs when the
each of such IDs is with at least one non-empty block. Since the row IDs 6 and
7 are with the all empty blocks, the directory does not contain the row IDs 6
and 7. Thus, among the 9 row IDs (from 0 to 8), we have totally four elements
in the directory: {0,1}, {2,3}, {4,5} and {8}.

Next, to encode a non-empty block, we use two numbers. The 1st number is
the left-most column ID of such a block. Next by treating the binary elements
inside the block as the binary form of an integer, we can use the integer number
to represent the whole block. For example, for the left nonempty block in the
row IDs 0 and 1, its left-most column ID is 4; the 2 X 2 = 4 binary elements 1110
are encoded to be an integer 14. Thus, we use an integer pair {4, 14} to encode
the block. Similar situation holds for other non-empty blocks. Figure 1(d) gives
the directory and lists of integer pairs to encode the graph in Fig. 1(c).

Note that we might adopt an alternative approach to compress nonempty
blocks. For example, SlashBurn adopted gZip to compress nonempty blocks.
However, our encoding scheme above offers the obvious benefit: the decoding
overhead from the encoded numbers to original binary elements is trivial, when
compared with the gZip decompression. Our experiments will verify the benefit
when compared with other encoding and compression approaches.

It is not hard to find that the space cost of such encoded lists also depends
upon B(M). Thus, the next section we will present the permutation algorithm.

3 Graph Clustering

We first highlight the solution overview (Sect.3.1), and next give the algorithm
details (Sect.3.2).

3.1 Solution Overview

In order to understand the proposed clustering algorithm of the permutation of
graph vertices, we first give two observations of real world graph structure. First
let us consider the hub vertices with high in-degrees in real world directed graphs.
Due to the power-law in-degree distributions in such graphs, few hub vertices are
with a large amount of in-coming edges (e.g., a lot of spoke fans in Twitter social
network), indicating very high in-degrees; yet the majority of vertices have low
in-degrees. Given the hub and spoke vertices, we give the following observation.

Observation 1. For two hub vertices pointed by a large amount of spoke neigh-
bors, it is not rare that such hub vertices share many common spoke neighbors.
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spoke1 spokes spoke9 spoke16

Fig. 2. Hubs and spokes

Intuitively, if the similarity of such spokes is high, we would like to permute
the hub vertices together in the matriz columns. Meanwhile, if two spoke neigh-
bors share common hubs (for example, due to the similar interest in social net-
works). The similarity of such spokes is high and we also place such spokes
together in the matriz rows. In Fig. 2, huby and hubs share 8 incoming neigh-
bors spoke; ...spokeg, and spoke ...spokeg share the outgoing neighbors hub, and
hub2.

We next consider the hubs with high out-degrees. Real world directed graphs
also follow power-law out-degree distribution, i.e., few hub vertices are with a
very large amount of spoke neighbors (a.k.a very high out-degrees) and the
majority of vertices are with low out-degrees. We again give the following
observation.

Observation 2. For two hub vertices with high out-degrees, if they share many
spoke neighbors, we would like to place the hub vertices together in the matrix
rows. Meanwhile, if two spoke vertices share many incoming hub neighbors,
we similarly place the spoke vertices together in the matriz columns. In Fig. 2,
hubs and huby share 8 outgoing neighbors spokey...spokeis, and spokey...spokeig
share the incoming neighbors hubs and huby.

For illustration, Fig.3(a-b) visualize the matrices M before and after per-
mutation (we will soon present the permutation algorithm in the next section).
In the matrices, each row (resp. column) indicates a source vertex (resp. desti-
nation vertex). If there is a directed edge from source i to destination j (where
1<14,7 <V), we plot a point in the coordination (i, 7).

In Fig. 3(a), the points are randomly distributed in the matrix before permu-
tation. Instead after permutation, we follow the above observations to purposely
co-cluster the points in the following areas, as shown in Fig. 3(b). Specially, ()
for the hubs with high in-degrees (i.e., a large amount of in-coming spoke neigh-
bors), we purposely permute such hubs and spokes together in the matrix to
make sure the points w.r.t such hubs and spokes to be co-clustered in the verti-
cal zones; (i7) for the hubs with high out-degrees (i.e., a large amount of out-going
spoke neighbors), we again co-cluster the points w.r.t such hubs and spokes in
the horizonal zone; and (#4) for those vertices with both high in-degrees and
high out-degrees, we co-cluster the associated points in the top-left zone. Since
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Fig. 3. Visualization of Wiki-Vote graph (from left to right): (a-b) the matrices before
and after permutation, (c) the matrix after permutation by setting a different parameter
value.

all points are co-clustered in the three zones above, no other points are in the
rest of the matrix. Thus, we have chance to minimize the count of non-empty
blocks B(M).

3.2 Algorithm Detail

In this section, we give the algorithm detail to permute graph vertex IDs,
such that the points are co-clustered in the associated zones. Our algorithm
will output a list P of vertices, such that the i-th vertex in the list P (with
0 < <|V|—1) will be re-assigned with the new vertex ID 4. It means that the
i-th vertex in P, though with the original ID 4’, will be re-ordered from the old
ID ¢’ to a new ID .

In the algorithm, suppose that the list P has already been added by ¢ items
(i.e., old vertex IDs) then the key question is which vertex should be selected from
the remaining (|V| —4+ 1) IDs. To this end, we leverage the two observations in
Sect. 2.1: (i) the power-law distribution of vertex degrees and (4) the similarity of
vertices (measured by common neighbors), to design the permutation algorithm.
On the overall, the algorithm first selects a set of candidate vertices based on
vertex degrees (either in-degrees or out-degrees), and next use common neighbor
information to finalize the vertex selection among the candidate vertices.

Candidate Selection: Algorithm 1 leverages degree information to select k
candidate vertices from the vertex set S. First, we choose the top-k highest
in-degree and out-degree vertices, respectively (lines 1-2). Such vertices are in-
degree and out-degree hubs, i.e., L;y and L,q. After that, we perform the union
and intersection on L;; and L,q, and have two corresponding sets L, and Ln.
If the cardinality |L,| is smaller than k, we have at most k vertices which
are still unprocessed. We then simply return such vertices as candidates (line
4). Otherwise, if we have |L,| == k, such vertices are those with the top-k in-
degrees and out-degrees, and line 5 also returns such k vertices (line 5). Finally
given |L.,| > k, we have some or none of vertices in L;q which appear in L,q.
Thus, we first choose Ln (line 7) and next select the top-k’ highest in-degree
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Algorithm 1. Select (Directed Graph G, Vertex Set .S, Number k)

Input: Vertex set S, parameter k

Output: Candidate vertices set

L;q < vertex IDs in S with the top-k highest in-degrees in G;
Lyq < vertex IDs in S with the top-k highest out-degrees in Gj
Lrn < LiaM Loa, L + Lig U Loa;

if |Ly| < k then return L ;

else if |L,| == k then return L ;

else

©0 N0 WN -

k' —k—|Lnl;
select the nodes T'C (L, — L) with top-k’ highest in-degrees or out-degrees;
return L U T},

or out-degree vertices among the vertices (L, — Ln) (line 8) together as the
candidates (line 9).

Common Neighbors: Beside the power law degree distribution, common
neighbor information is also important to our algorithm. The basic idea is to
find those vertices sharing with high number of common neighbors.

Algorithm 2 gives the detail to unify the selection of both candidate vertices
and common neighbors. First line 3 selects the at most k£ candidate vertices C
(see Algorithm 1); line 4 adds all in-neighbors and out-neighbors of C' to a new
set N. Next, for each pairwise members u # v € N, we find their common
neighbors Nbr(u,v), and add the number | Nbr(u, v)| of such common neighbors
(as a value) and the pairs (u,v) (as a key) to a key-value pair list L (line 6).
By sorting the pair list L (line 7), we then select the key (u,v) with the highest
|Nbr(u,v)| and add k vertices to P, if such vertices are not inside P (lines 8-11).
After that, in case that ent’(<k) vertices are selected by the steps above, we can
still select the remaining (k — ent’) vertices from the previously selected vertices
C' to make sure that k vertices are added to P (lines 12-14). We repeat the
above steps until all vertices have been selected to P (lines 2-15).

In the algorithm above, the running time depends upon the number of mem-
bers in N (see line 6). Thus, we can limit the number of members m € N,
for example by requiring that m at least has two (in- and out-) neighbors. In
addition, the number k is an important parameter in the algorithm above. The
tuning of k involves the tradeoff between the compression quality and running
time. Figure 3(b-c) visualizes two matrices when setting k¥ = 1 and k = 0.005n,
respectively. It is not hard to find that Fig. 3(b) is with a higher point density
than Fig. 3(c). A larger k could speedup the running time of Algorithm 2, but at
cost of higher compression ratio.

4 Evaluation

4.1 Experimental Setting

Table 1 lists five real world directed graphs used in our experiment. The data
sets are collected by Stanford Large Network Dataset Collection (SNAP) [12].
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Algorithm 2. Permute (Graph G = {V, E'}, Number k)

Input: Graph G = (V, E), parameter k
Output: Permutation of vertex list

1 initiate an empty list P and empty set S; S «— V; ent «— 0;
2 while cnt < |V| do
3 C « select(G, S, k); N «— C; cnt’ = 0;
4 foreach ¢ € C do {N «— (Nbri,(c) U Nbrout(c))};
5 initiate an empty key-val pair list L;
6 find the common neighbors Nbr(u, v) of pairwise members u # v € N, and add the
(key «— (u,v),val «— |Nbr(u,v)|) pairs to list L;
7 sort the key-val pair list L by descending order of values;
8 for (i = 0;i < k&&i <—L—;) do
9 select the key (u,v) from the i-th pair from L;
10 if uw ¢ P then {add u to P; remove u from S; i + +; cnt’ + +1};
11 if v ¢ P then { add v to P; remove v from S; i + +; cnt’ + + };
12 if cnt’ < k then
13 select (k — cnt’) vertices from C, add them to P, remove them to S;
14 ent’ — k;
15 | cnt — cnt + cnt’;
Table 1. Statistics of the real data sets
Name Node Edge Description
Amazon0302 262,111 | 1,234,877 | Amazon product co-purchasing network

from March 2 2003
soc-Slashdot0811 | 77,360 905,468 | Slashdot social network from November

2008

soc-Epinionsl 75,879 508,837 | Who-trusts-whom network of
Epinions.com

Wiki-Vote 7,115 103,689 | Wikipedia who-votes-on-whom network

p2p-Guntella05 8,846 31,839 | Gnutella peer to peer network from
August 5 2002

Given the data sets, we evaluate the performance of our scheme to answer the
following questions:

— @1: How well does our scheme perform when compared with other graph
re-ordering approaches?

— @2: How well is our scheme comparable to other graph compression
approaches?

— @3: How fast our scheme can perform graph computation with no or partial
graph decompression?

In order to answer the questions above, we use the following performance
metrics.

(1) Given a graph’s adjacency matrix, we divide it into blocks of b x b elements.
Each block consists of at most bx b elements. Thus, the number of non-empty
blocks measures the density of the adjacency matrix. A smaller number of
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non-empty blocks means a better re-ordering algorithm and thus leads to
less space cost.

(2) We follow the previous work [1,2] and encode the graph adjacency matrix
into binary bits, and define a cost function by assuming that a compres-
sion method achieves the information theoretic lower bound. After that, we
compute the bits per edge, which is computed by (i) the totally required
bits using information-theoretic coding methods against (ii) the number of
edges. This metric measures how many bits are used to store a single edge
on average. A smaller amount of bits per edge indicates less space cost used
to encode a graph.

(3) We measure the used space cost of a compressed graph when maintained on
disk. In addition, the compression ratio, measured by the ratio of used space
cost before and after a graph compression approach is adopted, is also used
to measure the goodness of a graph compression approach.

(4) Finally we are interested in the speedup ratio of a graph computation algo-
rithm which is computed by the running time of performing graph compu-
tation over original graphs against the time over compressed graphs. The
speedup ratio is helpful to understand (i) the benefit of reduced 1/O cost
(due to smaller graph size by compression) to speedup the graph compu-
tation and (ii) the introduced decompression overhead if any. We use the
Breadth-first search (BFS)-based graph traversal algorithm and Dijkstra-
based shortest paths as the two examples of the graph computation. In
case that decompression is required, the running time needs to include both
decompression time and graph computation time.

Based on the above metrics, we mainly compare our scheme with other re-
ordering algorithms, plus another graph compression approach Ligra+.

— Natural. Natural reordering of graph vertices means the original adjacency
matrix. For some graphs, the natural reordering provides high locality among
consecutive vertices.

— Degree Sort. The reordering is based on the decreasing degrees of graph ver-
tices.

— SlashBurn [1,2] is the most similar to our work. Note that SlashBurn is orig-
inally designed for undirected graphs. In order to make sure that SlashBurn
works for directed graphs, we have to adapt the asymmetric matrices asso-
ciated with directed graphs by redundantly adding extra rows (or columns)
with respect to source vertices (or destination vertices) in the directed graphs.
Then the elements associated with such extra rows (or columns) are all 0-
elements. Now with the adapted matrices, we next adopt SlashBurn to reorder
such matrices.

— Ligra [5] and Ligra+ [3]. Ligra+ also adopts a graph reordering approach.
However, differing from SlashBurn and our work, it improves locality by
assigning neighbor IDs close to vertex ID [13]. After that, it sorts edges and
encodes the difference. It is useful to understand how our work and SlashBurn
is comparable to other graph compression approaches such as Ligra+. Note
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that Ligra and Ligra+ leverage multicore parallel functionality to greatly
speedup graph computation and compression/decompression.

We implement our approach by GCC, and evaluate all experiments on a
Linux workstation with 6 cores of Xeon 2.60 GHz CPU, 64 GB RAM and 1TB
SATA disk. Our algorithm expects to select the top-k degree vertices with similar
sibling relationship during each iteration. Following the poke game, we name our
algorithm Ace_Up.

Slashdot

2 4 6
nz = 516575

Wiki-Vote

P2P-Gnutella

Node total degree

Amazon

1 2
nz=1234877 40f

Fig. 4. (a) Degree distribution, and four reordering algorithms: (b) Natural (¢) Degree
sort (d) SlashBurn (e) Ace Up

4.2 Comparison of Reordering Algorithms

In this section, we compare the proposed algorithm with three other re-ordering
approaches including Nature, Degree sort and SlashBurn.

To capture the overall degree distribution, Fig.4(a) plots the degrees of five
used data sets. The x-axis represents vertex degrees (here a vertex degree means
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the sum of in-degree and out-degree of a vertex), and the y-axis is the frequency
of those vertices with the associated degree. In general, all of the directed graphs
follow very skewed degree distribution.

Given such directed graphs, we plot the adjacency matrices after the vertex
IDs of such graphs are re-ordered by four algorithms as shown in Fig. 4(b-e). In
all five data sets, our scheme is always with the least area to plot the points asso-
ciated with the graphs and thus the least amount of nonempty blocks. Natural
reordering instead requires the maximum number of nonempty blocks. Degree
sort reordering uses fewer amount of blocks, because the upper-left area of the
adjacency matrix is more dense than the Nature approach. Our scheme can
achieve better result than SlashBurn. It is mainly because SlashBurn works only
on symmetric matrices (i.e., undirected graphs) and we have to add redundant
rows (or columns) for directed graphs. Thus, after performing SlashBurn on such
matrices, the resulting matrices, as shown in Fig. 4(d), are with equal number of
rows and columns. Instead, in Fig. 4(e), the resulting matrices generated by our
scheme are with different number of rows and columns (which can be recognized
by the x and y axis). Such result indicates that our scheme is very effectively
adapted to directed graphs.

Space Cost(MB)
Compression Ratio

Number of Nonempty Blocks(*10~4)

Fig.5. From left to right: (a) nonempty blocks (b) bits per edge (c) space cost (d)
compression ratio

Figure 5 directly measures the number of nonempty blocks, bits per edge and
used space cost of four schemes. For the two metrics such as nonempty blocks
and bits per edge, our scheme Ace _Up performs best. For example, Ace_Up uses
63.07% and 35.77% fewer non-empty blocks than Nature and SlashBurn, respec-
tively; in terms of bits per edge, Ace_Up again uses up to 41.96% and 16.54%
fewer bits than Natural and SlashBurn, respectively. Note that for the used space
cost, SlashBurn uses gZip to compress each non-empty blocks and thus leads to
the least space cost. Instead, we use integer pairs to encode nonempty blocks
(see Sect. 2.2). Our scheme can achieve less space cost than Ligra+ but sightedly
higher space cost than SlashBurn. In case that our scheme Ace_Up and Slash-
Burn both adopt the same compression approach (either gZip or the encoding
approach), Ace _Up can use less space cost than SlashBurn. Nevertheless, we will
show soon that the gZip-based SlashBurn will incur much higher running time
for BF'S traversal than our scheme.

Finally, Fig.5(d) measures the compression ratio of four schemes. In this
figure, after we use SlashBurn on directed graphs, we next use gZip and the
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encoding scheme in Sect. 2.2 to compress non-empty blocks. Thus, we have two
version of SlashBurn, namely SlashBurn-gZip and SlashBurn-encode. Now it is
clear that Ace Up leads to a higher compression ratio than SlashBurn-encode,
though lower than SlashBurn-gZip. Among these algorithms, Ligra+ shows the
smallest compression ratio.

4.3 Graph Computation Speedup Ratio

In this section, we measure the speedup ratio of two graph computation algo-
rithms (BFS traversal and Dijkstra-based shortest paths). The ratio is computed
by the running time used by the computation on original graphs and the time
on compressed graphs. In terms of Ligra+, we measure the ratio by the run-
ning time of Ligra (i.e., the graph computation engine without adopting graph
compression technique) and the time of Ligra+. A larger ratio indicates faster
computation on compressed graphs and otherwise slower computation.

3 SlashBurn Ligra+ &8 Aces Up

[ SlashBurn Ligrat &= Aces Up
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Fig. 6. (a) Speed up ration of BFS (left); (b) speed up ratio of Dijkstra

In Fig.6, Ace_Up is with much higher speedup ratios than both SlashBurn
and Ligra+. For example, to perform BFS on Amazon data set, Ace _Up is with
4.42x and 8.24x higher speedup ratio than SlashBurn and Ligra+, respectively.
It is because of the non-trivial decompression overhead caused by SlashBurn and
Ligra+. In particular, both SlashBurn and Ligra+ are with the speedup ratios
smaller than 1.0, indicating that the decompression overhead compromises the
reduced I/O overhead (due to smaller space cost of compressed graphs). Instead,
our scheme Ace Up is based on the encoded integers and the decoding time from
encoded integer numbers to binary bits is trivial.

Note that though with a speedup ratio smaller than 1.0, the absolute running
time of Ligra+ is much smaller than our scheme Ace_Up. It is mainly caused
by the parallel computation engine and parallel decompression offered by the
excellent system design of Ligra and Ligra+.

4.4 Effect of Parameter b

Finally we are interested in how the parameter b affects the performance of our
scheme in terms of space cost and graph computation. In Table2, we vary b
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Table 2. Space cost and computation time of various b

Nonempty blocks Compression ratio BF'S traversal time

b=16 b=32 b=64 b=16 |b=32|b=64 b=16 b=32 b=64
Amazon 290, 265 |241,936 200,442 |2.3080 [3.4179|3.3471|0.4136 0.1909 0.2168
Slashdot 189,085 125,058 | 67,491 3.2482 |3.5617|3.8467/0.035883 0.02215 0.02302

soc-Epinions | 101,036 | 62,596 | 33,446 |2.9418 |3.5995/3.1143|0.030643 |0.02015 0.02277

Wiki-Vote 21,169 8,406 2,573 [6.09144|5.37683.3831|3.280E—05|2.642E—-05|2.59E—-05

p2p-Gnutella| 12,859 8,154 3,398 [2.06967|2.51902.1411|2.918E—-05|2.542E—-05|2.47TE—-05

by 16, 32 and 64, and divide graph adjacency matrices into b x b blocks. It is
obvious that the parameter b will affect the number of nonempty blocks and bits
per edge. On the overall, a bigger b leads to fewer amount of nonempty blocks
and bits per edge. However, in terms of graph computation time (in this table,
we give BFS traversal time only. Due to space limit of the table, we do not give
the running time of Dijkstra algorithm), a larger b, for example b = 64, does not
necessarily leads to smaller running time. It is because a larger b means more
elements appearing in a block. Thus, we have to spend more time to lookup a
specific edge which is encoded by the block (due to more elements).

5 Related Work

Graph Compression: Graphs are typically represented by adjacency lists and
adjacency matrices, though they are implemented by various file formats to
store graphs. When a graph is maintained by adjacency lists of sorted vertex
IDs, some previous work [14,15] compressed the lists by difference of vertex IDs.
The WebGraph [15] compresses the graph by representing adjacent nodes by the
small difference to previous value, instead of original large IDs. Since the large
IDs require more space (i.e., word length), the maintenance of small difference
of continuous IDs can save space cost. [16] improve the framework of WebGraph
by proposing a different ordering [16]. Still following the similar idea to maintain
the differences between consecutive IDs, Ligra+ optimizes the previous works by
much more complex coding schemes such as the run-length encoded byte coding
scheme.

Some work represents a graph by a matrix instead of adjacency lists. GBase
[17] and SlashBurn [1,2] are based on graph adjacency matrixes. They divide the
matrices into blocks of matrix elements. Consider that the adjacency matrix of
a real work graph is usually very sparse. SlashBurn can co-cluster the elements
together more densely inside the adjacency matrix. The basic idea of SlashBurn
[1] is to remove the vertices of highest degree and next to find a giant connected
component (GCC) in rest of the graph to repeat this process. After clustering the
matrix and dividing the matrix into element of blocks, SlashBurn adopts gZip
to compress such blocks for less space cost. SlashBurn works well on power-law
graphs. However, SlashBurn suffers from some limitation. First, it works only
on undirected graphs and cannot be directly used to compress directed graphs.
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Moreover, gZip is known as a heavy-level compression approach, and the decom-
pression overhead of gZip is non-trivial. Since we cannot directly perform graph
computation on compressed graphs, we have to spend non-trivial decompression
overhead before graph computation works on originally uncompressed graphs.

Some work proposes graph storage format to maintain sparse matrices, such
as Compressed Sparse Blocks (CSB) [18]. It is essentially the same as Com-
pressed Sparse Row (CSR) [19] and allows vector multiplication in parallel. It
uses simple tuple to representation to store a matrix as row index, column index
and the nonzero value. In addition, when maintaining only those graphs without
edge weights, the CSR in PrefEdge [20] maintains two components (row index
and column index) but with no element values. In addition, some works such
as [21] consider graph compression as a matrix factorization problem. Graph
computation can be directly performed on such factorized matrices. However,
the factorization incurs information loss.

Graph Computation: There are two storage styles when storing a data set,
one is to store in main memory and another is in external memory. So the
optimization of computation can lay on reduce the querying time on graph or
optimize on I/O-efficiency.

When graphs are compressed, we frequently have to recover original graphs
by decompression. Non-trivial decompression overhead could compromise the
I/0 reduction achieved by the reduced space cost when compressed graphs are
on disk. Few work in literature has studied the optimization of computation effi-
ciency on compressed graphs. For example, by translating many graph compu-
tation by matrix operations, Pegasus [22] can benefit from the less I/O overhead
caused by the smaller size of graphs on disk when the graph is compressed (as
shown in GBase [17] and SlashBurn [1,2]). However, after the graph is loaded
from disk to main memory, decompression is still needed before graph compu-
tation. As shown in Pegasus, sparse matrix-vector (spMV) multiplication that
is frequently used by many graph computation. Some previous work [23,24]
has explored the problem of running algorithms on compressed inputs in spMV
context. Though with some promising results, such previous work only studied
the specific spMV computation and it cannot be comfortably extended to other
matrix computation (for example matrix eigenvalue decomposition), which could
be used by some graph computation.

Fan et al. [25] gives a framework for query-preserving graph compression.
It proposes two compression methods preserving reachability queries and pat-
tern matching queries, based on bounded simulation. Though such queries can
be performed directly on compressed graphs, due to a lossy compression, it is
unknown whether or not other queries expect the reachability can performed
well on the compressed graphs.

6 Conclusion and Future Work

Given real world directed graphs, we study the problem to permute graph
vertices in order to minimize the amount of nonempty blocks. The proposed
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algorithm leverages graph structure information (e.g., in-degrees, out-degrees,
and sibling neighbors) to re-order vertex IDs for the permutation. We perform
extensive experiments on real world directed graphs and show that our work
can outperform the state of art SlashBurn in terms of space cost saving and
graph computation time. As future work, we continue to study the performance
of graph compression. For example, we are interested in how modern hardware
(such as multicore computers and clustered machines) can speedup graph com-
pression and decompression.
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