
Chapter 6
The g − 2 Experiments

6.1 Overview on the Principle of the Experiment

The main concepts and early results from the CERN muon storage ring experiment
have been summarized in [1]. There are a number of excellent reviews on this subject
and I am following in parts the ones of Combley, Farley and Picasso [2, 3] and of
Vernon Hughes [4]. See also the more recent overviews [5, 6]. Many details on the
experimental setup of the E821 experiment may be found in [7, 8], texts which were
also very helpful. New experiments are on the way: one at Fermilab (E989) [9–11]
in the US and another one at J-PARC (E34) [12–14] in Japan. While the Fermilab
experiment represents a major upgrade of the Brookhaven experiment operating with
ultra relativistic muons (as the later CERN experiments), the J-PARC experiment
is planned to use ultra cold muons and will be the first precise experiment using a
very different approach with rather different systematics.

The principle of the BNLmuon g − 2 experiment involves the study of the orbital
and spin motion of highly polarized muons in a magnetic storage ring. This method
has been applied in the last CERN experiment [15] already. The key improvements
of the BNL experiment include the very high intensity of the primary proton beam
from the proton storage ring AGS (Alternating Gradient Synchrotron), the injection
ofmuons instead of pions into the storage ring, and a super–ferric storage ringmagnet
[16].

The muon g − 2 experiment at Brookhaven works as illustrated in Fig. 6.1
[17–19]. Protons (mass about 1GeV, energy 24GeV) from the AGS hit a target
and produce pions (of mass about 140MeV). The pions are unstable and decay into
muons plus a neutrino where the muons carry spin and thus a magnetic moment
which is directed along the direction of the flight axis. The longitudinally polarized
muons from pion decay are then injected into a uniform magnetic field Bwhere they
travel in a circle. The ring is a doughnut–shaped structure with a diameter of 14m.
A picture of the BNL muon storage ring is shown in Fig. 6.2. In the horizontal plane
of the orbit the muons execute relativistic cyclotron motion with angular frequency
ωc. By the motion of the muon magnetic moment in the homogeneous magnetic field
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Fig. 6.1 The schematics of muon injection and storage in the g − 2 ring

Fig. 6.2 The Brookhaven National Laboratory muon storage ring. The ring has a radius of 7.112m,
the aperture of the beam pipe is 90mm, the field is 1.45T and the momentum of the muon is
pμ = 3.094GeV/c. Picture taken from the Muon g − 2 Collaboration Web Page http://www.g-2.
bnl.gov/ (Courtesy of Brookhaven National Laboratory)

the spin axis is changed in a particular way as described by the Larmor precession.
After each circle the muon’s spin axis changes by 12’ (arc seconds), while the muon
is traveling at the same momentum (see Fig. 3.1). The muon spin is precessing with
angular frequency ωs , which is slightly bigger than ωc by the difference angular
frequency ωa = ωs − ωc.

http://www.g-2.bnl.gov/
http://www.g-2.bnl.gov/
http://dx.doi.org/10.1007/978-3-319-63577-4_3
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ωc = eB

mμc γ
,

ωs = eB

mμc γ
+ e

mμc
aμ B ,

ωa = e

mμc
aμ B , (6.1)

where aμ = (gμ − 2)/2 is the muon anomaly and γ = 1/
√
1 − v2/c2 is the relativis-

tic Lorentz factor, v the muon velocity.1 In the experiment ωa and B are measured.
The muonmassmμ is obtained from an independent experiment on muonium, which
is a (μ+e−) bound system. Note that if the muon would just have its Dirac magnetic
moment g = 2 (tree level) the direction of the spin of the muon would not change at
all.

In order to retain the muons in the ring an electrostatic focusing system is needed.
In reality in addition to the magnetic field B an electric quadrupole field E in the
plane normal to the particle orbit is applied, which changes the angular frequency
according to the Thomas-Bargmann–Michel–Telegdi (BMT) equation

ωa = e

mμc

(
aμB −

[
aμ − 1

γ2 − 1

]
v × E
c2

)
. (6.2)

Interestingly, one has the possibility to choose γ such that aμ − 1/(γ2 − 1) = 0,
in which case ωa becomes independent of E. This is the so–called magic γ. The
muons are rather unstable and decay spontaneously after some time. When run-
ning at the magic energy the muons are highly relativistic, they travel almost at
the speed of light with energies of about Emagic = γmμc2 � 3.098GeV. This rather
high energy is dictated by the need of a large time dilatation on one hand and by
the requirement to minimize the precession frequency shift caused by the electric
quadrupole superimposed upon the uniform magnetic field. The magic γ-factor is
about γ = √

1 + 1/aμ = 29.3; the lifetime of a muon at rest is 2.19711 μs (micro
seconds), while in the ring it is 64.435µs (theory) [64.378µs (experiment)]). Thus,
with their lifetime being much larger than at rest, muons are circling in the ring many
times before they decay into a positron plus two neutrinos: μ+ → e+ + νe + ν̄μ.
Since parity is violated maximally in this weak decay there is a strong correlation
between the muon spin direction and the direction of emission of the positrons. The
differential decay rate for the muon in the rest frame is given by (see also (2.47) and
(6.57) below)

dΓ ±/Γ = N (Ee)

(
1 ± 2x − 1

3 − 2x
cos θ

)
dx d cos θ , (6.3)

in which Ee is the positron energy, x is Ee in units of the maximum energy mμ/2,
Γ the total decay width (4.38), N (Ee) is a normalization factor

1Formulas like (6.1) presented in this first overview will be derived below.

http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_4
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N (Ee) = 2x2(3 − 2x) ,

and θ the angle between the positronmomentum in themuon rest frame and themuon
spin direction. At tree level Γ = τ−1

μ = G2
μm

5
μ/192π

3. The μ+ decay spectrum is
peaked strongly for small θ due to the non–vanishing coefficient of cos θ

A(Ee) = 2x − 1

3 − 2x
,

which is called asymmetry factor and reflects the parity violation.
The positron is emitted along the spin axis of the muon as illustrated in Fig. 6.3.

The decay positrons are detected by 24 lead/scintillating fiber calorimeters spread
evenly around inside the muon storage ring. These counters measure the positron
energy and provide the direction of the muon spin. The number of decay positrons
with energy greater than Eth emitted at time t after muons are injected into the storage
ring is

N (t) = N0(Eth) exp

( −t

γτμ

)
[1 + A(Eth) sin(ωat + φ(Eth))] , (6.4)

where N0(Eth) is a normalization factor, τμ the muon life time (in the muon rest
frame), and A(Eth) is the asymmetry factor for positrons of energy E > Eth. A
typical example for the time structure from the BNL experiment is shown in Fig. 6.4.
As we see the exponential decay law for the decaying muons is modulated by the
g − 2 angular frequency. In this way the angular frequency ωa is neatly determined
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Fig. 6.3 Decay of μ+ and detection of the emitted e+ (PMT = Photomultiplier)
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Fig. 6.4 Distribution of counts versus time for the 3.6 billion decays in the 2001 negative muon
data–taking period Courtesy of the E821 collaboration. Reprinted with permission from [16].
Copyright (2007) by the American Physical Society

from the time distribution of the decay positrons observed with the electromagnetic
calorimeters [20–24].

The magnetic field is measured by Nuclear Magnetic Resonance (NMR) using a
standard probe of H2O [25]. This standard can be related to the magnetic moment of
a free proton by

B = �ωp

2μp
, (6.5)

where ωp is the Larmor spin precession angular velocity of a proton in water. Using
this, the frequency ωa from (6.4), (6.1) and μμ = (1 + aμ) e�/(2mμc), one obtains

aμ = R

λ − R
, (6.6)

where
R = ωa/ωp and λ = μμ/μp . (6.7)

The BNL experiment E-821 has determined

R̄ = ωa/ω̃p = 0.003 707 206 4(20) , (6.8)

where R̄, assuming CPT invariance, is the weighted average of the results obtained
separately for positive and negative muons, and ω̃p is the proton cyclotron frequency
in the average magnetic field along the storage ring. The quantity λ appears because
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the value of the muon mass mμ is needed, and also because the B field measurement
involves the proton mass mp. Measurements of the microwave spectrum of ground
state muonium (μ+e−) [26] at LAMPF at Los Alamos, in combination with the
theoretical prediction of theMuoniumhyperfine splittingΔν [27–29] (and references
therein), have provided the precise (new CODATA 2011 recommended) value [30]

μμ

μp
= λ = 3.183 345 107(84) (30 ppb) , (6.9)

which is to be used together with the E821 measurement of R to determine aμ via
(6.6). More details on the hyperfine structure of muonium will be given below in
Sect. 6.6.

Since the spin precession frequency can be measured very well, the precision at
which g − 2 can be measured is essentially determined by the possibility to man-
ufacture a constant homogeneous magnetic field B and to determine its value very
precisely. An example of a field map from the BNL experiment is shown in Fig. 6.5.
Important but easier to achieve is the tuning to the magic energy. Possible deviations
may be corrected by adjusting the effective magnetic field appropriately.

In the following we will discuss various aspects mentioned in this brief overview
in more detail: beam dynamics, spin precession dynamics, some theory background
about the properties of the muon. This should shed somemore light on the muon spin
physics as it derives from the SM. A summary of the main experimental results and
two short addenda on the ground state hyperfine structure of muonium and on single
electron dynamics and the electron g − 2 will close this part on the experimental
principles.
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Fig. 6.5 Magnetic field profile. The contours are averaged over azimuth and interpolated using a
multi–pole expansion. The circle indicates the storage aperture. The contour lines are separated by
1ppm deviations from the central average Courtesy of the E821 collaboration [16]
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6.2 Particle Dynamics

The anomalous magnetic moment of both electrons and muons are measured by
observing the motion of charged particles in a type of Penning trap, which consists
of an electrical quadrupole field superimposed upon a uniform magnetic field. The
configurations used in these experiments have axial symmetry. The orbital motion
of charged particles in the storage ring may be discussed separately from the spin
motion because the forces associated with the anomalous magnetic moment are very
weak (aμ ≈ 1.16 × 10−3) in comparison to the forces of the charge of the particle
determining the orbital motion. The force F on a particle of charge e of velocity v in
fields E and B is given by the Lorentz force

F = dp
dt

= e (E + v × B) . (6.10)

In a uniform magnetic field B of magnitude B0 the particle with relativistic energy
E0 moves on a circle of radius

r0 = E0

ecB0
, E0 = γmc2 . (6.11)

Since we are interested in the dynamics of the muon beam in a ring, we consider a
cylindrically symmetric situation. The cylindrical coordinates: r = √

x2 + y2, θ, z
are the radial, azimuthal and vertical coordinates of the particle position as shown in
Fig. 6.6.

The relativistic equation of motion for the muon in the static cylindrical fields
B(r, z) and E(r, z) takes the form

x

z

r0

B0

x

y
θ⊗

Fig. 6.6 Coordinates for the beam dynamics. View at the beam end (left) x = r − r0 radial, z
vertical, with B field in −z direction; (x, z) = (0, 0) is the beam position, the negative muon beam
points into the plane. View from top (right) y is the direction along the beam
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d

dt
(mṙ) = mr θ̇2 − er θ̇Bz + eEr , (6.12)

d

dt
(mr2θ̇) = 0 , (6.13)

d

dt
(mż) = er θ̇Br + eEz . (6.14)

The general form of the electrostatic potential applied is

V (r, z) = V0

d2

[
r2 − 2r20 ln

r

r0
− r20 − 2z2

]
,

where r0 is the radius of the circle on which ∂V/∂r = 0. This potential is singular
along the symmetry axis except in the case r0 = 0. In the latter case

V (r, z) = V0

d2

(
r2 − 2z2

)
, (6.15)

which is the potential used in an electron trap. Here (r0, 0) and (0, z0) are the coor-
dinates of the plates and d2 = r20 + 2z20 (for a symmetric trap r0 = √

2z0).
In the muon g − 2 experiment r → x = r − r0 with |x | � r0 (see Fig. 6.6) and

weak focusing is implemented by a configuration of charged plates as shown in
Fig. 6.7. In order to get a pure quadrupole field one has to use hyperbolic plates
with end–caps z2 = z20 + x2/2 and z2 = 1

2 (x2 − x20 ) on the ring. While the CERN
experiment was using hyperbolic plates, the BNL one uses flat plates which produce
12– and 20–pole harmonics. The length of the electrodes is adjusted to suppress
the 12–pole mode leaving a 2% 20–pole admixture. The electric field produces a
restoring force in the vertical direction and a repulsive force in the radial direction:

E = (Er , Eθ, Ez) = (κx, 0,−κz) , (6.16)

where x = r − r0 and κ a positive constant. In order to keep the beam focused, the
restoring force of the vertical magnetic field must be stronger than the repulsive force

Fig. 6.7 Electric quadrupole
field E . The vertical
direction is z, the radial
x (x0 = √

2z0); V = V0/2 at
the plates

+V

−V

+V

−V

E E
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z
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of the electrical field in the radial direction:

0 <
eV0

d2
<

e2B2

8mc
. (6.17)

The radial force is

Fr = γmv2

r
− e

c
vBz + eEr , (6.18)

and since on the equilibrium orbit r = r0 and Er = 0 we have

γmv2

r0
= e

c
vBz . (6.19)

As r0 is large relative to the beam spread, we may expand r about r0:

1

r
= 1

r0 + x
� 1

r0

(
1 − x

r0

)
.

Therefore, using (6.19) we may write

Fx = Fr = −eβBz (1 − n)
x

r0
⇒ γmẍ = −(1 − n)

γmv2

r20
x , (6.20)

where β = v/c and n is the field index

n = κr0
βB0

, B0 = Bz . (6.21)

For the vertical motion we have

Fz = −eκz ⇒ γmz̈ = −eκz , (6.22)

and with ω0 = v/r0, using (6.19) and (6.21), the equations of motion take the form

ẍ + (1 − n)ω2
0 x = 0 ,

z̈ + eκ z = 0 , (6.23)

with the oscillatory solutions

x = A cos(
√
1 − n ω0 t) ,

z = B cos(
√
n ω0 t) . (6.24)
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We have used eκ = nω2
0 following from (6.21). The amplitudes depend on the

initial condition of the particle trajectory. This motion is called betatron oscilla-
tion. The betatron frequencies are ωyBO = √

n ωc and ωxBO = √
1 − n ωc where

ωc = ω0 = v/r0 is the cyclotron frequency. In the experiment a lattice of quadrupoles
is distributed along the ring. For the BNL experiment the lattice has a four–fold sym-
metry and the quadrupoles are covering 43%of the ring. The corresponding dynamics
has to be calculated taking into account the geometry of the configuration, but follows
the same principle.

The dynamics of an electron in a Penning trap and the principle of electron g − 2
experiments will be considered briefly in Sect. 6.7 at the end of this part of the book.

6.3 Magnetic Precession for Moving Particles

The precession of spinning particles inmagnetic fields is a classic subject investigated
long time ago [31]. Our exposition follows closely Bell’s lecture. In a magnetic field
B the polarization P of a particle changes according to

dP
dt

= g
e

2m
P × B ,

the component of P parallel to B remains constant, while the part of P perpendicular
to B rotates about B with angular frequency

ω = g
e

2m
B , (6.25)

the non–relativistic cyclotron frequency. This holds in the rest frame O of the particle.
For moving and even fast–moving particles we may get the motion in the laboratory
system O ′ by a Lorentz transformation. In a pure L–transformation xμ′ = Lμ

νx
ν

[xμ = (ct, x)] L has the form2

L =
(

γ −γ v
c−γ v

c 1 + (γ − 1)n n·
)

,

where n = v/v and γ = 1/
√
1 − v2/c2. For accelerated particles, the velocity is

changing and in the next moment the velocity is v′ = v + δv. In the laboratory frame
we thus have xμ′ = Lμ

ν(v)x
ν and xμ′′ = Lμ

ν(v
′)xν and expanding to linear order in

δv one obtains the motion as seen in the laboratory frame as

t ′′ = t ′ − δu′ · x′ ,
x′′ = x′ + δθ′ × x′ − u′t ′ , (6.26)

2L is a matrix operator acting on four–vectors. The · operation at the right of the spacial submatrix
means forming a scalar product with the spatial part of the vector on which L acts.
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with

u′ = γ

(
1 + γ − 1

v2
v v·

)
δv ,

δθ′ = γ − 1

v2
(δv × v) , (6.27)

which tells us that from the two pure boosts we got an infinitesimal transformation
which includes both a boost (pure if δθ′ = 0) and a rotation (pure if u′ = 0). The
transformation (6.26) is the infinitesimal law for transforming vectors in O ′ to vectors
in O ′′.

The precession equation for accelerated moving particles is then obtained as fol-
lows: Let O ′ be the observer for whom the particle is momentarily at rest. If the
particle has no electric dipole moment, what we assume (see end of Sect. 3.3), an
electric field does not contribute to the precession and only serves to accelerate the
particle

δu′ = e

m
E′ δt ′ , (6.28)

while the magnetic field provides the precession

δP′ = −g
e

2m
B′ × P′ δt ′ . (6.29)

In the laboratory frame O ′ the observed polarization is P′ + δP′ where P′ = P is the
polarization of the particle in its rest frame O . The observer O ′′ by a boost from O
sees a polarization P′′ + δP′′ which differs by a rotation δθ′ from the previous one:
(note that momentarily P′′ = P′ = P)

δP′′ = δP′ + δθ′ × P , (6.30)

or

δP′′ = −g
e

2m
B′ × P δt ′ + (γ − 1)

v2
(δv × v) × P . (6.31)

The precession equation in the laboratory frame may be obtained by applying the
L–transformations of coordinates and fields to the lab frame:

δt ′ = γ

(
δt − v · δx

c2

)
= γ δt

(
1 − v2

c2

)
= 1

γ
δt ,

B′ = γ

(
B − v × E

c2

)
+ (1 − γ)

v2
v · Bv ,

E′ = γ (E + v × B) + (1 − γ)

v2
v · Ev , (6.32)

and one obtains

http://dx.doi.org/10.1007/978-3-319-63577-4_3
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dP
dt

= ωs × P , (6.33)

with

ωs = γ − 1

v2

dv
dt

× v − g
e

2m

(
B − v × E

c2
+ 1 − γ

γv2
v · Bv

)
. (6.34)

The first term, which explicitly depends on the acceleration, is called Thomas pre-
cession. The acceleration in the laboratory frame may be obtained in the same way
from (6.28) together with (6.27) and (6.32)

dv
dt

= e

γm
(E + v × B) − e

γmc2
v · Ev , (6.35)

which is just another form of the usual equation of motion3 (Lorentz force)

dp
dt

= d

dt
(γmv) = e (E + v × B) .

If one uses (6.35) to eliminate the explicit acceleration term from (6.34) together
with (v × B) × v = Bv2 − v · Bv and v × v = 0, one obtains

ωs = − e

γm

{
(1 + γa) B + (1 − γ)

v2
a v · Bv + γ

(
a + 1

γ + 1

)
E × v
c2

}
,

(6.36)
where a = g/2 − 1 is the anomaly term.

6.3.1 g − 2 Experiment and Magic Momentum

In the g − 2 experiment one works with purely transversal fields: v · E= v · B= 0.
Then using (v × E) × v = v2 E (when v · E = 0) and v2/c2 = (γ2 − 1)/γ2 the
equation of motion can be written

dv
dt

= ωc × v , ωc = − e

γm

(
B + γ2

γ2 − 1

E × v
c2

)
. (6.37)

3Note that d γ = γ3 v · dv/c2 and the equation of motion implies

v · d (γmv)
dt

= mγ3v · dv
dt

= e v · E ,

as v · (v × B) ≡ 0. This has been used in obtaining (6.35).
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The velocity v thus rotates, without change of magnitude, with the relativistic
cyclotron frequencyωc. The precession of the polarizationP, which is to be identified
with the muon spin Sμ, for purely transversal fields is then

ωa = ωs − ωc = − e

m

{
a B +

(
a − 1

γ2 − 1

)
E × v
c2

}
. (6.38)

This establishes the key formula formeasuring aμ, whichwe have used and discussed
earlier. It was found by Bargmann, Michel and Telegdi in 1959 [31] (see also [32] for
a recent reconsideration). Actually, the magnetic transversality condition v · B = 0
due to electrostatic focusing is not accurately satisfied (pitch correction) such that
the more general formula

ωa = − e

m

{
a B − a

(
γ

γ + 1

)
v · Bv
c2

+
(
a − 1

γ2 − 1

)
E × v
c2

}
, (6.39)

has to be used.
Since the anomalous magnetic moment for leptons is a very small quantity a ≈

1.166 × 10−3, electrons and muons in a pure magnetic field and initially polarized in
the direction ofmotion (P ∝ v) only very slowly develop a component of polarization
transverse to the direction of motion. The observation of this development provides a
sensitive measure of the small but theoretically very interesting anomalous magnetic
moment.

In the original muon g − 2 experiments only a B field was applied and in order
to give some stability to the beam the B was not quite uniform,4 and the particles
oscillate about an equilibrium orbit. As a result one of the main limitations of the
precision of those experiments was the difficulty to determine the effective averageB
to be used in calculating aμ from the observed oscillation frequencies. To avoid this,
in the latest CERN experiment, as later in the BNL experiment, the field B is chosen
as uniform as possible and focusing is provided by transverse electric quadrupole
fields. To minimize the effect of the electric fields on the precession of P, muons
with a special “magic” velocity are used so that the coefficient of the second term in
(6.37) is small:

aμ − 1

γ2 − 1
≈ 0 ,

corresponding to amuon energy of about 3.1GeV. This elegantmethod formeasuring
aμ was proposed by Bailey, Farley, Jöstlein, Picasso andWickens and realized as the
last CERNmuon g − 2 experiment and later adopted by the experiment at BNL. The
motion of the muons is characterized by the frequencies listed in Table6.1.

Two small, but important, corrections come from the effect of the electric focusing
field E on the spin precession ωa .

4Magnetic focusing using an inhomogeneous field Bz = B0 (r0/r)n , which by Maxwell’s equation
∇ × B = 0 implies Br � −n/r0 B0 z for r � r0, leads to identical betatron oscillation equations
(6.23) as electrostatic focusing.
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Table 6.1 Frequencies and time periods in the muon g − 2 experiment E821. The field index used
is n = 0.137. It is optimized to avoid unwanted resonances in the muon storage ring

Type νi = ωi/2π Expression Frequency (MHz) Period

Anomalous
precession

νa
eaμB
2πm 0.23 4.37µs

Cyclotron νc
v

2πr0
6.71 149ns

Horizontal
betatron

νx
√
1 − n νc 6.23 160ns

Vertical betatron νz
√
n νc 2.48 402ns

The first is the Radial Electric Field Correction, the change in ωa when the
momentum p deviates from the magic value p �= pm and hence p = βγm = pm +
Δp. In fact, the beam is not monoenergetic and the momentum tune has a small
uncertainty of about±0.5%. This effect can be corrected by a change in the effective
magnetic field [15] used in extracting aμ. In cylindrical coordinates Fig. 6.6 using
(v × E)z = −vy Ex = −vEr , as Ey = 0, we find aBz + (a − 1/(β2γ2)) v Er/c2 or,
with B0 = −Bz > 0,

B0 eff = B0

[
1 − β

Er

B0

(
1 − 1

aμβ2γ2

)]
≡ CE B0 . (6.40)

This directly translates into

Δωa

ωa
= CE � −2

βEr

B0

(
Δp

pm

)
. (6.41)

One may apply furthermore the relation Δp/pm = (1 − n) (xe/r0), where xe is the
equilibrium position of the particle relative to the center of the aperture of the ring.
For the BNL experiment typically

CE � 0.5 ppm . (6.42)

The second effect is the Vertical Pitch Correction arising from vertical betatron
oscillations [3, 33]. The focusing force due toE changes vz at the betatron oscillation
frequency ωp = ωzBO

5 such that

ψ(t) = ψ0 sinωpt . (6.43)

The muon will follow a spiral path with pitch angle ψ (see Fig. 6.8) given by

5The pitch frequency here should not to be confused with the proton precession frequency ωp
appearing in (6.7).
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Fig. 6.8 Left frame for pitch correction. p lies always in the yz-plane. The pitch angle ψ between
p and the y-axis (beam direction) oscillates. The spin S then rotates about the x-axis through an
angle f ψ, where for electric focusing f = 1 + β2γa − γ−1; f = 1 at magic γ. Right frame for
EDM correction. As |E| � |E∗| = c|β × B|, ωEDM points along the x-axis while the unperturbed
ωa points in z-direction. δ = arctan ηβ

2a � η
2a

vz

v
= sinψ � ψ , (6.44)

and ωa is changed. Now v · B �= 0, which persists as an effect from the focusing field
also if running at the magic γ. The corresponding correction follows from (6.39), at
γ = γm . The motion vertical to the main plane implies

ωaz = e

m
a B0

[
1 −

(
γ

γ + 1

)
β2
z

]

= ωa

[
1 −

(
γ

γ + 1

)
β2 v2

z

v2

]
= ωa

[
1 −

(
γ − 1

γ

)
ψ2

]
, (6.45)

where ωa is the ideal (unperturbed) precession frequency. Similarly,

ωay = − e

m
a B0

[
1 −

(
γ

γ + 1

)
βzβy

]

= −ωa

[
1 −

(
γ

γ + 1

)
β2 vzvy

v2

]
= −ωa

[
1 −

(
γ − 1

γ

)
ψ

]
, (6.46)

where we used
vz

v
= sinψ � ψ ,

vy

v
= cosψ � 1 .

The component ofωa parallel to the tilted plane changes sign and in the time average
has no effect. The perpendicular component is
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ω⊥ = ωa = ωz cosψ − ωy sinψ � ωz − ωyψ , (6.47)

and hence

ω′
a = ωa (1 − CP) = ωa

(
1 − ψ2

2

)
. (6.48)

In the time average by (6.43) ψ 2 = 1
2ψ

2
0 and thus CP = 1

4ψ
2
0. This holds provided

ωa � ωp otherwise the correction reads [33]

CP = 1

4
ψ2
0 β2

(

1 − (aβγ)2
ω2

p

(ω2
a − ω2

p)

)

, (6.49)

with (aβγ)2 = 1/(βγ)2 at magic γ. For the BNL experiment the pitch corrections
is of the order

CP � 0.3 ppm . (6.50)

A third possible correction could be due to an EDMof the muon. If a large enough
electric dipole moment6

de = η e

2mc
S , (6.51)

(see (1.5), p. 34 in Sect. 2.1.2 and the discussion at the end of Sect. 3.3) would exist
the applied electric field E (which is vanishing at the equilibrium beam position)
and the motional electric field induced in the muon rest frame E∗ = γ β × B would
add an extra precession of the spin with a component along E and one about an axis
perpendicular to B:

ωa′ = ωa + ωEDM = ωa − η e

2mμ

(
E
c

+ β × B
)

, (6.52)

or
Δωa = −2dμ (β × B) − 2dμ E ,

which, for β ∼ 1 and dμ E ∼ 0, yields

ωa′ = B

√(
e

mμ
aμ

)2

+ (
2dμ

)2
. (6.53)

Note that η is the dimensionless constant equivalent of magnetic moment g-factors.
The result is that the plane of precession in no longer horizontal but tilted at an angle

6Remembering the normalization: themagnetic and electric dipolemoments are given byμ = g
2

e�
2mc

and d = η
2

e�
2mc , respectively.

http://dx.doi.org/10.1007/978-3-319-63577-4_1
http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_3
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δ ≡ arctan
ωEDM

ωa
= arctan

η β

2a
� η

2a
, (6.54)

and the precession frequency is increased by a factor

ω′
a = ωa

√
1 + δ2 . (6.55)

The tilt gives rise to an oscillating vertical component of the muon polarization,
and may be detected by recording separately the electrons which strike the counters
above and below the mid–plane of the ring. This measurement has been performed
in the last CERN experiment on g − 2, and has been repeated at BNL.

6.4 Theory: Production and Decay of Muons

For the (gμ − 2) experiments one needs polarized muons. Basic symmetries of the
weak interaction of the muons make it relatively easy to produce polarized muons.
What helps is the maximal parity violation of the charged current weak interactions,
mediated by the charged W± gauge bosons, which in its most pronounced form
manifests itself in the “non–existence” of right–handed neutrinos νR . What it means
more precisely is that right handed neutrinos are “sterile” in the sense that they do
not interact with any kinds of the gauge bosons, which we know are responsible for
electromagnetic (photon), weak (W - and Z -bosons) and strong (gluons) interactions
of matter. It means that their production rate in ordinary weak reactions is practically
zero which amounts to lepton number conservation for all practical purposes in
laboratory experiments.7

Pion productionmaybedone by shooting protons (accumulated in a proton storage
ring) on a target material where pions are the most abundant secondary particles. The
most effective pion production mechanism proceeds via decays of resonances. For
pions it is dominated by the Δ33 isobar (Δ33 → Nπ) [basic processes p + p →
p + n + π+ and p + n → p + p + π−]

p + (N , Z) → Δ∗ + X → “(N + 1, Z + 1 ∓ 1)” + π± ,

where the ratio σ(π+)/σ(π−) → 1 at high Z .8

7Only the recently established phenomenon of neutrino oscillations proves that lepton number in
fact is not a perfect quantum number. This requires that neutrinos must have tiny masses and this
requires that right–handed neutrinos (νR’s) must exist. In fact, the smallness of the neutrino masses
explains the strong suppression of lepton number violating effects.
8At Brookhaven the 24GeV proton beam extracted from the AGS with 60 × 1012 protons per AGS
cycle of 2.5 s impinges on a Nickel target of one interaction length and produces amongst other
debris–particles a large number of low energy pions. The pions are momentum selected and then
decay in a straight section where about one third of the pions decay into muons. The latter are
momentum selected once more before they are injected into the g − 2 storage ring.
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We now look more closely to the decay chain

π →μ + νμ

|−→ e + νe + νμ ,

producing the polarized muons which decay into electrons which carry along in their
direction of propagation the knowledge of the muon’s polarization (for a detailed
discussion see e.g. [34]).

(1) Pion decay:

The π− is a pseudoscalar bound state π− = (ūγ5d) of a d quark and a u antiquark
ū. The main decay channel is via the diagram:

W−π−

d

ū μ−

ν̄µ

π–decay
·

In this two–body decay of the charged spin zero pseudoscalar mesons the lepton
energy is fixed (monochromatic) and given by

E� =
√
m2

� + p2� = m2
π + m2

�

2mπ
, p� = m2

π − m2
�

2mπ
.

Here the relevant part of the Fermi type effective Lagrangian reads

Leff,int = −Gμ√
2
Vud

(
μ̄γα (1 − γ5) νμ

)
(ūγα (1 − γ5) d) + h.c. ,

where Gμ denotes the Fermi constant and Vud the first entry in the CKMmatrix. For
our purpose Vud ∼ 1. The transition matrix–element reads

T = out < μ−, ν̄μ|π− >in

= −i
Gμ√
2
Vud Fπ

(
ūμγ

α (1 − γ5) vνμ

)
pα ,

where we used the hadronic matrix–element

〈
0| d̄ γμγ5 u |π(p)

〉 .= iFπ pμ ,

which defines the pion decay constant Fπ . As we know the pion is a pseudoscalar
such that only the axial part of the weak charged V − A current couples to the pion.
By angular momentum conservation, as the π+ has spin 0 and the emitted neutrino is
left–handed ((1 − γ5)/2 projector) the μ+ must be left–handed as well. Going to the



6.4 Theory: Production and Decay of Muons 589

π+

μ+ νµL

CP↔ π−

μ− ν̄µR

π+

μ+ νµR

CP↔
� P

π−

μ− ν̄µL

� P
↗
↘

↖
↙C

Fig. 6.9 Pion decay is a parity violating weak decay where leptons of definite handedness are
produced depending on the given charge. CP is conserved while P and C are violated maximally
(unique handedness). μ− [μ+] is produced with positive [negative] helicity h = S · p/|p|. The
existing μ− and μ+ decays are related by a CP transformation. The decays obtained by C or P alone
are nonexistent in nature

π− not only particles have to be replaced by antiparticles (C) but also the helicities
have to be reversed (P), since a left–handed antineutrino (essentially) does not exist.
Note that the decay is possible only due to the non–zeromuonmass, which allows for
the necessary helicity flip of the muon. The handedness is opposite for the opposite
charge. This is illustrated in Fig. 6.9.

The pion decay rate is given by

Γπ−→μ−ν̄μ
= G2

μ

8π
|Vud |2F2

π mπ m2
μ

(

1 − m2
μ

m2
π

)2

× (
1 + δQED

)
,

with CKM matrix–element Vud ∼ 1 and δQED the electromagnetic correction.

(2) Muon decay:

Muon decay μ− → e−ν̄eνμ is a three body decay

W−

e− ν̄e

μ−
νµ

μ–decay
·

The matrix element can be easily calculated. The relevant part of the effective
Lagrangian reads

Leff,int = −Gμ√
2

(ēγα (1 − γ5) νe)
(
ν̄μγα (1 − γ5) μ

) + h.c. ,
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μ+

e+
ν̄µR

νeL

μ−

e−
νµL

ν̄eR

Fig. 6.10 In μ− [μ+] decay the produced e− [e+] has negative [positive] helicity, respectively

and thus

T =out< e−, ν̄eνμ|μ− >in

= Gμ√
2

(
ūeγ

α (1 − γ5) vνe

) (
ūνμ

γα (1 − γ5) uμ

)
,

which proves that the μ− and the e− have both the same left–handed helicity [the
corresponding anti–particles are right–handed] in the massless approximation. This
implies the decay scheme Fig. 6.10 for the muon.

The positrons are thus emitted preferably in the direction of the muon spin, and
measuring the direction of the positronmomentumprovides the direction of themuon
spin.

After integrating out the two unobservable neutrinos, the polarized differential
decay probability to find an e± with energy between Ee and Ee + dEe emitted at an
angle between θ and θ + dθ reads (see also (2.47))

d2Γ

dEed cos θ
= G2

μ

12π3

pe
Eμ

{
Q2 (p0 p1) + 2 (Qp0) (Qp1) − (n0 p1)

(
Q2 − 2 (Qp1)

)}
, (6.56)

with p0 the muon momentum, p1 the positron/electron momentum, n0 the muon
polarization vector n20 = −1, n0 p0 = 0 (n0 = (0,Pμ) in the muon rest frame) where
Q = p0 − p1, Q2 = m2

μ + m2
e − 2 (p0 p1). For a polarized muon Pμ = |Pμ| = 1, in

practice Pμ < 1 describes the degree of polarization. As (n0 p1) is L-invariant, its
value is as given in the muon rest frame9: (n0 p1) = −Pμ

√
E2
e − me2 cos θ. The

asymmetry proportional to the coefficient of (np0)

A ∝
(
Q2 − 2 (Qp1)

)

Q2 (p0 p1) + 2 (Qp0) (Qp1)

9Note that the original electron phase space element dVe ≡ d3 p1
Ee

is L–invariant such that with

d3 p1 = −p2edpe d cos θ dϕ, after integrating over the azimuthal angle ϕ, giving a factor 2π,
and using pedpe = EedEe we infer that dVe → 2π

√
E2
e − m2

edEe d cos θ is independent of the
frame. While in the rest frame u0 p1 = −Pμp1 = −Pμ pe cos θ in the laboratory frame u0 =(
1, p0

E0−m

)
p0Pμ

m and thus u0 p1 = cos θμ
pμ

m

(
Ee − pμ p1x

E0−m

)
.

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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is also independent of the frame. In the muon rest frame, in terms of the fractional
positron/electron energy x = Ee/W and x0 = me/W whereW = max Ee = (m2

μ +
m2

e)/2mμ we have10

d2Γ ±

dx d cos θ
= G2

μm
5
μ

96π3

(

1 + m2
e

m2
μ

)4 √
x2 − x20

{
(3x − 2x2 − x20 ) ± Pμ

√
x2 − x20

(
2x − 1 − x0

me

mμ

)
cos θ

}
,

or neglecting the electron mass

d2Γ ±

dx d cos θ
= G2

μm
5
μ

192π3
x2

(
3 − 2x ± Pμ (2x − 1) cos θ

)
. (6.57)

Typically, theμ–decay spectrum is strongly peaked at small angles θ, the e± emission
angle between the e momentum pe and the muon polarization vector Pμ. The result
above holds in the approximation x0 = me/W ∼ 9.67 × 10−3 � 0.

Assuming unit polarization, the μ± decay spectrum may be written in the form
Eq. (6.3) discussed earlier or equivalently

W±(x, cos θ) dx d cos θ = τ−1
μ x2 (3 − 2x)

[
1 ± 2x − 1

3 − 2x
cos θ

]

= τ−1
μ

N (Ee)

2
[1 + A(Ee) cos θ] dx d cos θ ,

where

N (Ee) = 2x2(3 − 2x) ,

[∫ 1

0
dxN (x) = 1

]
, (6.58)

represents a normalizing spectrum and

A(Ee) = 2 x − 1

3 − 2 x
,

[∫ 1

0
dxN (x)A(x) = 1/3

]
, (6.59)

is the asymmetry which reflects the parity violation and strongly correlates the muon
spinwith the positronmomentumdirection. The asymmetry changes sign at x = 1/2.

Figure6.11 shows energy spectrum N (x)) as a function of x where the positron
energy from the normal μ±–decay is Ee = x × 52.83MeV. A(Ee) is the e± energy
dependent μ±–decay asymmetry, the degree of correlation between e± momentum
and μ± spin direction. For the μ− decay A(Ee) has the opposite sign. Also displayed
is the weightedμ+ decay asymmetry spectrum, the product of N and A2. The average
asymmetry is

10With Q2=m2
μ + m2

e − 2p0 p1, Qp0=m2
μ − p0 p1, Qp1=p0 p1 − m2

e , and p0 p1=mμEe, Ee =
xW, mμ = 2W the curly bracket of (6.56) reads {· · · } = 8W 4 x

[
(3 − 2x) + Pμ cos θ (2x − 1)

] +
O(m2

e/m
2
μ).
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Fig. 6.11 Number of decay positrons per unit energy (Michel spectrum) N (arbitrary units), value
of the asymmetry A, and relative yield N A2 (arbitrary units) as a function of the positron energy
in units of the maximal positron energy. The polarization is assumed to be unity. Events in the
shaded region E < Eth are not counted, since if all events are integrated the asymmetry gets largely
canceled. Left as seen in the muon rest frame. Right as seen in the laboratory frame

A =
∫ 1
0 dxN (x)A(x)
∫ 1
0 dxN (x)

= 1

3
; W (cos θ)

d cos θ
= 1

2
(1 + A cos θ) = 1

2

(
1 + 1

3
cos θ

)
.

What we see in the laboratory frame we obtain by the transformation (see [2])

E ′
e = γ (Ee + β pex ) ; p′

ex = γ (pex + βEe) , p′
ey = pey , p′

ez = pez ,

where γ = E/m and β = p/E when p′
μ = plabμ = (E, p, 0, 0) boosted along the

x–axis. Denoting θ′ the positron emission angle in the laboratory frame, where the
muon’s spin precesses relative to the momentum vector such that one can identify

cos θ′ → cos (ωa t + φ) ,

up to a phase φ. Adopting polar coordinates (x, θμ,ϕ) in the rest frame with pμ as
a x–axis and ϕ = 0 in the plane of the muon spin precession, then, if the spin is
at angle (ωa t) to the muon direction, then it is at angle θ (introduced above) with
respect to the positron direction. In terms of (θμ,ϕ)

cos θ = cos θμ cos(ωat) + sin θμ sin(ωat) cosϕ ,

and integrating over those positrons emitted within a region R in the muon rest frame
which can be detected in the laboratory frame we have

1

2π

∫

R
2τμ W (x, cos θ) dx d cos θ dϕ

= 1

2π

∫

R
2x2 (3 − 2x) + 2x2 (2x − 1)

[
cos θμ cos(ωa t) + sin θμ sin(ωa t) cosϕ

]
dx d cos θ dϕ .
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Integrating over ϕ the second term in the square bracket vanishes, while the first gets
a factor 2π, such that

N ′
e =

∫

x

∫

cos θ
2x2 (3 − 2x) dx d cos θ ; N ′

e A
′
e =

∫

x

∫

cos θ
2x2 (2x − 1) cos θ dx d cos θ .

What is the range R in (x, cos θ) space which gets mapped to the positrons detected
in the laboratory frame? In the laboratory frame the positron energy in units of
W ≈ mμ/2 takes values

x ′
L = x γμ

(
1 + cos θμ

)
, x ′

T = x sin θμ ,

where x ′
L is the positron momentum along the boost direction and x ′

T the one trans-
verse to it. A threshold energy in the laboratory system fixes a lower bound for
x ′2

L + x ′2
T = x ′2

th such that

x2 γ2
μ

(
1 + cos θμ

)2 + x2 sin2 θμ ≥ x ′2
th

together with x ≤ 1. Since γμ � 1 we may neglect the transversal term and get

cos θμ ≥ x ′th/xγμ − 1 .

For cos θ = 1 = x ′
th/xminγμ − 1 thus 1 ≥ x ≥ b/2 where b = x ′

th/γμ. Thus with∫ 1
b/x d cos θ = 2 − b/x and

∫ 1
b/x cos θ d cos θ = b/x − b2/2x2 and integrating

∫ 1
b/2

dx · · · we obtain

N ′
e =

[
2 − 5b

3
+ b3

4
− b4

24

]
; N ′

e A
′
e =

[
b

3
− b3

4
+ b4

12

]
,

where b/2 ≤ 1. If we substitute b = 2xth and drop an overall factor 2/3we obtain [1]

N ′
e = (xth − 1)2

(
3 + xth − x2th

) ; N ′
e A

′
e = xth (2xth + 1) (xth − 1)2 . (6.60)

The above result may be obtained as an integral I (xth) = ∫ 1
xth
dx · · · by taking the

derivative −dI (xth)/dxth which yields

A(E) = Pμ
1 + x ′ − 8x

′2

4x ′2 − 5x ′ − 5
; N (E) ∝ (x ′ − 1)(4x

′2 − 5x ′ − 5)
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with x ′ = E/Emax, E the positron’s laboratory energy and Emax = 3.098GeV. These
equations correspond to the laboratory frame versions of (6.58) and (6.59).11 Again,
the positron number oscillation with time as a function of positron energy reads

N (t, E) = N0(E) e−t/γτ [1 + A(E) cos(ωat + φ(E))] ,

which we have plotted in the right panel of Fig. 6.11. The phase φ comes from the
initial spin polarization of the muons. By plotting the number of decay positrons
observed as a function of time, one may extract ωa by fitting the data to the simple 5–
parameter function (6.62) below.Since thedeterminationofωa is basedon thenumber
of counts, there is a statistical uncertainty on ωa . In fitting N0, τ , ωa and φ from
N (t), data–fitting statistics implies that the statistical error on ωa is approximately
[1]

δωa

ωa
≈

√
2

ωa γτ A〈P〉√N
. (6.61)

The factor 1/
√
N is statistical error of the data sample, the factor 1/A is obvious

from N−1δN/δωa ∝ A and the factor 1/ωaγτ accounts for improvement of the
accuracy with the number of oscillations per decay–time ωat/

t
γτ

= ωaγτ . Also the

average degree of the polarization 〈P〉 matters of course.The factor of
√
2 comes

from the strong correlation between the phase φ and the frequency ωa . Since both
A and N depend on the energy-threshold and since one wishes to minimize the
statistical uncertainty of ωa , the energy-threshold is chosen such that the product
N A2 is maximized. Then counting all positrons above a threshold energy Eth the
oscillation profile reads

N (t, Eth) = N0(Eth) e
−t/γτ [1 + A(Eth) cos (ωa t + φ(Eth))] , (6.62)

with (using (6.60))

A(Eth) = Pμ
xth (2xth − 1)

3 + xth − x2th
; N (Eth) ∝ (xth − 1)2(3 + xth − x2th) .

Figure6.12 shows that the “figure of merit” N A2 has a maximum at xth ≈ 0.65,
which corresponds to about 2GeV. Equation (6.62) represents the actual time struc-
ture which is confronted with the experimental data to extract the Larmor precession
angular frequency ωa .

11Note that, this is not what one gets by writing (6.56) in terms of laboratory system variables. It
is rather a matter of how the geometrical acceptance of the decay positrons/electrons is affected by
boosting the system.
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Fig. 6.12 Optimizing the
quality N A2(Eth) by an
appropriate choice of the
laboratory energy threshold
Eth above which
positrons/electrons are
registered (see [1])

6.5 Muon g − 2 Results

First a historical note: before the E821 experiment at Brookhaven the last of a series
of measurement of the anomalous g-factor aμ = (gμ − 2)/2 at CERNwas published
about 30 years earlier. At that time aμ had been measured for muons of both charges
in the Muon Storage Ring at CERN. The two results,

aμ− = 1165937(12) × 10−9 ,

aμ+ = 1165911(11) × 10−9 , (6.63)

are in good agreement with each other, and combine to give a mean

aμ = 1165924.0(8.5)10−9 [7 ppm] , (6.64)

which was very close to the theoretical prediction 1165921.0(8.3)10−9 at that time.
The measurements thus confirmed the remarkable QED calculation plus hadronic
contribution, and served as a precise verification of the CPT theorem for muons.

Measured in the experiments is the ratio R = ωa/ωp of the muon precession
frequency ωa = ωs − ωc and the proton precession frequency ωp, which together
with the ratio of themagneticmoment of themuon to the one of the protonλ = μμ/μp

determines the anomalous magnetic moment as

aμ = R

λ − R
. (6.65)

The CERN determination of aμ utilized the value λ = 3.1833437(23).
The BNL muon g − 2 experiment has been able to improve and perfect the

method of the last CERN experiments in several respects and was able to achieve
an impressive 14–fold improvement in precision. The measurements are Rμ− =
0.0037072083(26) and Rμ+ = 0.0037072048(25) the differencebeingΔR = (3.5 ±
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Table 6.2 Summary of CERN and E821 results

Experiment Year Polarity aμ × 1010 Precision [ppm] References

CERN I 1961 μ+ 11450000 (220000) 4300 [35]

CERN II 1962–1968 μ+ 11661600 (3100) 270 [36]

CERN III 1974–1976 μ+ 11659100 (110) 10 [15]

CERN III 1975–1976 μ− 11659360 (120) 10 [15]

BNL 1997 μ+ 11659251 (150) 13 [20]

BNL 1998 μ+ 11659191 (59) 5 [21]

BNL 1999 μ+ 11659202 (15) 1.3 [22]

BNL 2000 μ+ 11659204 (9) 0.73 [23]

BNL 2001 μ− 11659214 (9) 0.72 [24]

Average 11659208.0 (6.3) 0.54 [24]

3.4) × 10−9. Together with the updated muon-to-proton magnetic ratio12 λ =
3.183345107(84) [37] one obtains the new values

aμ− = 11659215(8)(3) × 10−10 ,

aμ+ = 11659204(6)(5) × 10−10 . (6.66)

Assuming CPT symmetry, as valid in any QFT, and taking into account corre-
lations between systematic errors between the various data sets the new average
R = 0.0037072064(20) is obtained. From this result together with the updated λ
(6.9) one obtains the new average value

aμ = 11659209.1(5.4)(3.3)[6.3] × 10−10 , (6.67)

with a relative uncertainty of 0.54 ppm [16]. Where two uncertainties are given the
first is statistical and the second systematic, otherwise the total error is given where
statistical and systematic errors have been added in quadrature. In Table6.2 all results
from CERN and E821 are collected. The new average is completely dominated by
the BNL results. The individual measurements are shown also in Fig. 6.13. The
comparison with the theoretical result is devoted to the next section. The achieved
improvement and a comparison of the sensitivity to various kinds of physics effects
has been shown earlier in Fig. 3.8 at the end of Sect. 3.2.1.

The following two sections are addenda, one on the determination of λ in (6.65)
and the other a sketch of the electron g − 2 measurement technique.

12This value is replacing λ = 3.18334539(10) used in [24].

http://dx.doi.org/10.1007/978-3-319-63577-4_3
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Fig. 6.13 Results for the individual E821 measurements, together with the new world average and
the theoretical prediction. The CERN result is shown together with the theoretical prediction by
Kinoshita et al. 1985, at about the time when the E821 project was proposed. The dotted vertical
bars indicate the theory values quoted by the experiments

6.6 Ground State Hyperfine Structure of Muonium

The hyperfine and Zeeman levels of 2S 1
2
ground state Muonium are shown in

Fig. 6.14. The energy levels are described by the Hamiltonian

H = h Δν Iμ · J − μ
μ
B g′

μ Iμ · B + μe
B gJ J · B , (6.68)

where Iμ is themuon spin operator, J is the electron total angularmomentumoperator
andB is the external staticmagnetic field. The total angularmomentum isF = J + Iμ.

Microwave transitions ν12 and ν34 are measured in a strong magnetic field B of
1.6T. Also this experiment uses the parity violating correlation of the direction of
the muon spin and the positron emission of μ–decay.

The hyperfine splitting (HFS) and the muon magnetic moment are determined
from ν12 and ν34.

ν12 = −μμB + Δν

2

[
1 + x −

√
1 + x2

]
,

ν34 = +μμB + Δν

2

[
1 − x +

√
1 + x2

]
, (6.69)
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Fig. 6.14 Muonium ground
state hyperfine structure
Zeeman splitting (Breit-Rabi
energy level diagram). At
high fields the transitions ν12
and ν34 are essentially muon
spin flip transitions

where x = (gJμ
e
B + g′

μμ
μ
B) B/(hΔν) is proportional to the magnetic field strength

B.13 The latest experiment at LAMPF at Los Alamos has measured these level
splittings very accurately. The Larmor relation, 2μp B = hνp, and NMR is used to
determine B in terms of the free proton precession frequency νp and the proton
magnetic moment μp. Using (6.69) and the measured transition frequencies ν12 and
ν34 both Δν and μμ/μp can be determined.

Note that the sum of (6.69) equals to the zero field splitting Δν ≡ ΔνHFS inde-
pendent of the field B, while for high fields the difference measures the magnetic
moment μμ:

Δν = ν12 + ν34 ,

μμB = ν34 − ν12 − Δν
(√

1 + x2 − x
)

≈ ν34 − ν12 − Δν

2x
, (x � 1) .

The magnetic moment was measured to be

μμ/μp = 3.183 345 24(37) (120 ppb) ,

which translates into a muon–electron mass ratio

mμ/me =
(gμ

2

) (
μp

μμ

) (
μe
B

μp

)
= 206.768 276(24) (120 ppb) ,

13The gyromagnetic ratios of the bound electron and muon differ from the free ones by the binding
corrections [38]

gJ = ge

(
1 − α2

3
+ α2

2

me

mμ
+ α3

4π

)
, g′

μ = gμ

(
1 − α2

3
+ α2

2

me

mμ

)
.

.



6.6 Ground State Hyperfine Structure of Muonium 599

when using gμ = 2 (1 + aμ) with aμ = 11 659 208.0(6.3) × 10−10 and μp/μ
e
B =

1.521 032 206(15) × 10−3 [30]. The measured value of the zero field HFS is

Δνexp = 4 463 302 765(53) Hz (12 ppb) ,

in good agreement with the theoretical prediction [27, 28, 30, 39–41]

Δν the = 16

3
c R∞ α2 me

mμ

(
1 + me

mμ

)−3 (
1 + δF(α,me/mμ)

)

= 4 463 302 905(272) Hz (61 ppb) ,

where the error is mainly due to the uncertainty in mμ/me. The correction δF
(α,me/mμ) depends weakly on α and me/mμ,

R∞ = 10 973 731.568 525(37) m−1

is the Rydberg constant α2mec/2h [30]. A combined result was used to determine
(6.9) used in the determination of aμ (see also [42]).

6.7 Single Electron Dynamics and the Electron g − 2

The basic principle of a muon g − 2 experiment is in many respects very similar to
the one of electron g − 2 experiments, although the scale of the experiment is very
different and the electron g − 2 experiment uses atomic spectroscopy type methods
to determine the frequencies. The particle dynamics considered in Sect. 6.2 applies to
the single electron or single ion Penning trap shown in Fig. 6.15. Electron motion in
a hyperboloid Penning trap in the axial (vertical) direction is a harmonic oscillation

z(t) = A cos(ωz t) ,

with
ωz = 2

√
eV0/md2 ,

(see (6.15)). In the radial direction it is an epicycloid motion with

x(t) = +ρm cos(ωmt) + ρc cos(ω
′
ct) ,

y(t) = −ρm sin(ωmt) − ρc sin(ω
′
ct) .

Here

ω′
c = ω+ = 1

2
(ωc +

√
ω2
c − 2ω2

z ) � ωc
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Fig. 6.15 Electron motion in a hyperbolic Penning trap Courtesy of G. Werth, Mainz [43]

is the perturbed cyclotron frequency and

ωm = ω− = 1

2
(ωc −

√
ω2
c − 2ω2

z ) = ωc − ω′
c

themagnetron frequency. The frequencies are related by ω2
c = ω2+ + ω2− + ω2

z . Typi-
cal values for a positron in a magnetic field B = 3T,U = 10V and d = 3.3mm are
νc = 48GHz, νz = 64MHz, νm = 12 kHz depending on the field strengths deter-
mined by B, U and d.

The observation of the splitting of the spin states requires a coupling of the
cyclotron and spin motion of the trapped electron to the axial oscillation, which
is realized by an extremely weak magnetic bottle modifying the uniform magnetic
field by an inhomogeneous component (Dehmelt et al. [44]) (see Fig. 6.16). The latter
is imposed by a ferromagnetic ring electrode, such that
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Fig. 6.16 Left schematic of the geonium apparatus (Dehmelt et al. [44]). Hyperbolic end caps and
ring electrodes trap the electron axially while coupling the driven harmonic motion to an external
LC circuit tuned to drive the axial frequency. Radial trapping of the electron is produced by the
strong magnetic field from a superconducting solenoid. Right frequency shift in the axial resonance
signal at ≈60MHz. The signal–to–noise ratio of this ≈8Hz wide line corresponds to a frequency
resolution of 10ppb. Reprinted with permission from [44]. Copyright (2007) by the American
Physical Society

B = B0 + B2 z
2 + · · · , (6.70)

which imposes a force

F = ms ge μB grad B = ms ge μB B2 z

on the magnetic moment. Because of the cylindrical symmetry the force is linear in
first order and themotion remains harmonic. The force adds or subtracts a component
depending on ms = ±1/2 and thus changes the axial frequency by

Δωz = ge μB
B2

meωz
, (6.71)

as shown in Fig. 6.16.
For a trap working at a temperature of T = 4◦ K the thermic energy is E = kT =

3.45 × 10−4 eV. The trapped electron occupies low quantum states, the cyclotron
(n = 0, 1, 2, . . .) and spin (ms = ±1/2) energy levels,

E(n,ms) =
(
n + 1

2

)
�ω′

c + ge

2
�ωc ms − h

2
δ

(
n + 1

2
+ ms

)2

, (6.72)

for νc = 84GHz thus �ωc = 3.47 × 10−4 eV which implies nc = 0, 1 such that QM
is at work (the axial motion corresponds to nz � 1000 and hence is classical).

In fact this is not quite true: Gabrielse has shown that in Dehmelt’s experiment
at 4◦ K, because of the spread in the thermic spectrum, still many higher states are
populated and, in a field of a few Tesla, only at about T = 0.1◦ K one reaches the
ground state [45]. The third term in (6.72) is the leading relativistic correction of
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Fig. 6.17 Lowest electron
quantum states in a Penning
trap

n = 2

n = 1

n = 0
ωc

ωs

ωa

+ 1
2

− 1
2

+ 1
2

− 1
2

+ 1
2

− 1
2

ms

size δ/νc ≡ hνc/(mc2) ≈ 10−9 [46], too small to be important at the present level
of accuracy of the experiments. The radiation damping is

dE

dt
= −γ̂E , γ̂ = e2ω2

6πε0mc3
, (6.73)

and with α�c = e2/(4πε0) = 1.44MeVfm one has γ̂c = 1.75 s−1. The spontaneous
damping by radiation is then γ̂z � γ̂c/106 � 0.15 per day. The g − 2 follows from
the spin level splitting Fig. 6.17

ΔE = ge μB B = ge

2
�ωc ≡ �ωs , (6.74)

such that

ae ≡ ge − 2

2
= ωs − ωc

ωc
≡ ωa

ωc
. (6.75)

From the spin Larmor precession frequency �ωs = me ge μB B (μB the Bohr magne-
ton) and the calibration of the magnetic field by the cyclotron frequency of a single
ion in the Penning trap �ωc = qion/Mion B one obtains

ge = 2
ωs

ωc

qion
e

me

Mion
, (6.76)

or if ge is assumed to be known one may determine the electron mass very precisely.
The most precise determination was obtained from g-factor experiments on 12C5+
and 16C7+ [47] with a cylindrical cryogenic double Penning trap in a magnetic field
of 3.8 T [working at frequencies νc = 25MHz, νz = 1MHz, νm = 16 kHz].

The Harvard electron g − 2 experiment [48, 49] performs spectroscopy of a sin-
gle electron in the lowest cyclotron and spin levels in a cylindrical Penning trap
(see Fig. 6.18). The problem of a harmonic Penning trap is that it is a cavity and
hence allows only certain electromagnetic frequencies. The damping by sponta-
neous emission affects the cyclotron frequency in a way which is not fully under
control. The cylindrical trap which exhibits plenty of higher harmonics solves this
problem as it can be operated at well selected frequencies. Working frequencies are
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Fig. 6.18 Cylindrical
Penning trap cavity used to
confine a single electron and
inhibit spontaneous
emission. Reprinted with
permission from [48].
Copyright (2008) by the
American Physical Society,
http://dx.doi.org/10.1103/
PhysRevLett.100.120801
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νs ≈ νc ≈ 149GHz, νz ≈ 200MHz, νm ≈ 134kHz. For the first time it was possi-
ble to work with the lowest quantum states of (6.72) (see Fig. 6.17) in the determi-
nation of ge − 2. The result has been discussed in Sect. 3.2.2.

6.8 The Upcoming Experiments: What Is New?

A new more precise experiment has to improve on the ingredients of (6.6) which
more explicitly reads

aμ = ωa/ω̃p

μμ/μp − ωa/ω̃p
, (6.77)

where ωa is the muon spin precession frequency and ω̃p the proton cyclotron fre-
quency in the average magnetic field seen by the muons. Both frequencies will be
provided by the newmuon g − 2 experiments. One ingredient, theμμ/μp ratio,which
has been obtained with the muonium HFS experiment at LAMPF, will be limited at
120ppb.

The Fermilab experiment [9–11] will improve the present error of aμ from 540 to
140ppb by a more precise determination of ωa/ωp. The principle of the experiment
is the same as described earlier in this chapter. The improvements concern

• ωa : one of the main issues at BNL was the limited statistics. At Fermilab highly
intense shots of polarized 3.094GeV/c muons will be available (21 times BNL),
which will turn the formerly statistics dominated measurement into a systematics
dominated one. The final data sample will include 1.5 × 1011 events in the final fit.
This will give δωa(statistics) = 110 ppb. The background from hadronic decays
is eliminated as all pions decay and protons are removed from the muon beam
before injection into the storage ring. Further improvements include:

– new injection and kicker system (the frequency at BNL was disturbingly close
to the second harmonic of ωa , which affected the BNL analysis).

– Improved systematics to 70ppb concerning pileup, gain and energy scale sta-
bility and muon losses.

– Improved correction for electric field andpitch, better control of the beamprofile.

http://dx.doi.org/10.1103/PhysRevLett.100.120801
http://dx.doi.org/10.1103/PhysRevLett.100.120801
http://dx.doi.org/10.1007/978-3-319-63577-4_3
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Fig. 6.19 Ultra-cold muon generation beam line and muon storage for the E34 experiment at
J-PARC. Courtesy of the J-PARC g-2 Collaboration

• ωp : better homogeneity and control/calibration of the homogeneous magnetic
field i.e. improved ω̃p at the 70ppb level (factor 2 improvement over BNL).

The J-PARC experiment [12–14] planned to work with ultra cold muons repre-
sents a novel approach. Slow polarized muons are injected again into a homogeneous
magnetic field filling a cylindrical trap free of any electrical fields. Thus the basic
precession equation (6.2) again reduces to the simple ωa = e

mμc
aμ B form. The

size of the trap is almost a table top experiment. There is no electric beam focus-
ing, meaning that muons need be injected at zero transverse momentum. The slow
muons are living much shorter, by close to the factor γmagic/γcold ≈ 10 relative to the
magic γ type experiments. However, muons are moving in a much smaller device.
Smaller magnet fields intrinsically are more uniform. The principle is illustrated in
Figs. 6.19 and 6.20. Data acquisition takes place within the small trap volume. The
positron/electron number count again will be fitted to a function of the form (6.62).
However, the completely different setup as a small low energy experiment implies
rather different parameters in (6.62) and correspondingly in (6.61). On the one hand
ωa will be bigger because a bigger magnetic field will be applied, on the other hand
γmagic ≈ 30 → γcold ≈ 3 such that γτ appears reduced by a factor about 10 and is
much smaller now. Also the degree of polarization expected to be about 50% (com-
paring to the expected 97% with E989) affects the statistical precision. The size
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Fig. 6.20 Left magnet with storage ring and 3-dimensional spiral injection. Right Silicon tracker
for positron detection. Courtesy of the J-PARC g-2 Collaboration. Private communication by
T. Mibe

Table 6.3 Comparison of main parameters for the Fermilab and J-PARC g − 2 experiments. The
parameters of the Fermilab experiment are identical with the ones of the Brookhaven experiment
(except from the statistics: BNL registered about 3.6 × 109 events, and had A = 0.3)

Parameter Fermilab E989 J-PARC E34

Muon lab energy 3.098GeV 300MeV

Radius 7.11m 33.3cm

Cyclotron period 149.1ns 7.4ns

Lifetime, γτ 64.4µs 6.6µs

Effective asymmetry A 0.4 0.4

Beam polarization 0.97 0.50

Magnetic field 1.45T 3.0T

Precession frequency ωa 1.43MHz 2.96MHz

Events in final fit 1.8 × 1011 8.1 × 1011

Statistical goal 140ppb 400ppb

of the effective asymmetry may be tuned to be comparable. In a first step the E34
experiment attempts to reach the precision of the BNL experiment. In Table6.3 we
compare the main parameters between the Fermilab/Brookhaven and the J-PARC
experiments. While the E989 experiment is expected to substantiate the present 3 to
4 σ deviation as a new physics effect, the E43 experiment in a first step will scruti-
nize possible unaccounted systematic effects in the comparison between theory and
experiment. We should keep in mind that the basic BMT equation (6.2) does not
include possible higher order real photon radiation effects14 which are very different
for ultra relativistic and ultra cold muons.

14What I mean is that, as in Sect. 6.3, one solves the Dirac equation in en external field (the first
of the QED field Eq. (3.1) with zero radiation field Aμ(x) ≡ 0) rather than the coupled QED field
equations.

http://dx.doi.org/10.1007/978-3-319-63577-4_3
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