
Chapter 3
Lepton Magnetic Moments: Basics

3.1 Equation of Motion for a Lepton in an External Field

For the measurement of the anomalous magnetic moment of a lepton we have to
investigate the motion of a relativistic point–particle of charge Q� e (e the positron
charge) and mass m� in an external electromagnetic field Aext

μ (x). The equation of
motion of a charged Dirac particle in an external field is given by (see (2.91))

(
i�γμ∂μ + Q�

e
c γ

μ(Aμ + Aext
μ (x)) − m�c

)
ψ�(x) = 0(

�gμν − (
1 − ξ−1

)
∂μ∂ν

)
Aν(x) = −Q�eψ̄�(x)γμψ�(x) .

(3.1)

What we are looking for is the solution of the Dirac equation with an external field
as a relativistic one–particle problem, neglecting the radiation field in a first step. We
thus are interested in a solution of the first of the above equations, which we may
write as

i�
∂ψ�

∂t
=
(

−c α
(

i�∇ − Q�

e

c
A
)

− Q� e Φ + β m�c2

)
ψ� , (3.2)

with β = γ0, α = γ0γ and Aμ ext = (Φ, A). For the interpretation of the solution
the non–relativistic limit plays an important role, because many relativistic problems
in QED may be most easily understood in terms of the non–relativistic problem as a
starting point, which usually is easier to solve. We will consider a lepton e−, μ− or
τ− with Q� = −1 in the following and drop the index �.

1. Non–relativistic limit

For studying the non–relativistic limit of the motion of a Dirac particle in an external
field it is helpful and more transparent to work in natural units.1 In order to get from

1The general rules of translation read: pμ → pμ, dμ(p) → �
−3dμ(p), m → mc, e →

e/(�c), eipx → ei px
� , spinors : u, v → u/

√
c, v/

√
c.
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the Dirac spinor ψ the two component Pauli spinors in the non–relativistic limit,
one has to perform an appropriate unitary transformation, called Foldy–Wouthuysen
transformation. Looking at the Dirac equation (3.2)

i�
∂ψ

∂t
= Hψ , H = c α

(
p − e

c
A
)

+ β mc2 + e Φ

with

β = γ0 =
(

1 0
0 −1

)
, α = γ0γ =

(
0 σ
σ 0

)
,

we note that H has the form

H = β mc2 + c O + e Φ

where [β, Φ] = 0 is commuting and {β,O} = 0 anti–commuting. In the absence of
an external field spin is a conserved quantity in the rest frame, i.e. the Dirac equation
must be equivalent to the Pauli equation. This fixes the unitary transformation to be
performed in the case Aext

μ = 0:

ψ′ = U ψ , H′ = U

(
H − i�

∂

∂t

)
U−1 = UHU−1 (3.3)

where the time–independence of U has been used, and we obtain

i�
∂ψ′

∂t
= H′ψ′ ; ψ′ =

(
ϕ′
0

)
, (3.4)

where ϕ′ is the Pauli spinor. In fact U is a Lorentz boost matrix

U = 1 cosh θ + n γ sinh θ = eθnγ (3.5)

with

n = p
|p| , θ = 1

2
arccosh

p0

mc
= arcsinh

|p|
mc

and we obtain, with p0 = √
p2 + m2c2,

H′ = cp0β ; [H′
,Σ] = 0 , Σ = α γ5 =

(
σ 0
0 σ

)
(3.6)
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where Σ is the spin operator. Actually, there exist two projection operators U one
to the upper and one to the lower components:

U+ψ =
(

ϕ′
0

)
, U−ψ =

(
0
χ

)
,

given by

U+ = (p0 + mc) 1 + pγ
√

2p0
√

p0 + mc
, U− = (p0 + mc) 1 − pγ

√
2p0

√
p0 + mc

.

For the spinors we have

U+u(p, r) =
√

2p0

c

(
U (r)

0

)
, U−v(p, r) =

√
2p0

c

(
0

V (r)

)

with U (r) and V (r) = iσ2U (r) the two component spinors in the rest system.
We now look at the lepton propagator. The Feynman propagator reads

iSFαβ(x − y) ≡ 〈0|T {ψα(x)ψ̄β(y)}|0〉
=
∫

d4 p

(2π)4

�p + mc

p2 − m2c2 + iε
e−ip(x−y)

where2

SFαβ(z; m2) = (
i�γμ∂μ + mc

)
ΔF(z; m2) = Θ(z0) S+(z) + Θ(−z0) S−(z)

with retarded positive frequency part represented by

Θ(z0) S+(z) =
∫

d4 p

(2π)4

c

2ωp

∑
r uα(p, r) ūβ(p, r)

p0 − ωp + i0
e−ipz

2The positive frequency part is given by

iS+
αβ(x − y) ≡ 〈0|ψα(x)ψ̄β(y)|0〉

= c
∑

r

∫
dμ(p) uα(p, r) ūβ(p, r) e−ip(x−y) =

∫
dμ(p) (�p + mc) e−ip(x−y)

and the negative frequency part by

− iS−
αβ(x − y) ≡ 〈0|ψ̄β(y)ψα(x)|0〉

= c
∑

r

∫
dμ(p) vα(p, r) v̄β(p, r) eip(x−y) =

∫
dμ(p) (�p − mc) eip(x−y) .

.
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and the advanced negative frequency part by

Θ(−z0) S−(z) = −
∫

d4 p

(2π)4

c

2ωp

∑
r vα(p, r) v̄β(p, r)

p0 − ωp + i0
eipz .

Using

∑

r

uα(p, r) ūβ(p, r) = 2ωp

c
U(p) γ+ U(p)

∑

r

vα(p, r) v̄β(p, r) = 2ωp

c
U(p) γ− U(p)

with

γ± = 1

2

(
1 ± γ0

) ; γ0γ± = ±γ± , γ+γ− = γ−γ+ = 0

the projection matrices for the upper and lower components, respectively. We thus
arrive at our final representation which allows one to perform a systematic expansion
in 1/c:

SF(x − y) =
∫

d4 p

(2π)4 e−ip(x−y) U(p )

(
γ+

p0 − ωp + i0
− γ−

p0 + ωp − i0

)
U(p ) . (3.7)

The 1/c–expansion simply follows by expanding the matrix U:

U(p ) = exp θ
p
|p|γ = exp θ

pγ

2mc
; θ =

∞∑

n=0

(−1)n

2n + 1

(
p2

m2c2

)n

.

The non–relativistic limit thus reads:

SF(x − y)NR =
∫

d4 p

(2π)4 e−ip(x−y)

⎛

⎝ γ+
p0 − (mc2 + p2

2m ) + i0
− γ−

p0 + (mc2 + p2

2m ) − i0

⎞

⎠

i.e.
SF(x − y) = SF(x − y)NR + O(1/c) .

2. Non–relativistic lepton with Aext
μ �= 0

Again we start from the Dirac equation (3.2). In order to get the non–relativistic
representation for small velocities we have to split off the phase of the Dirac field,
which is due to the rest energy of the lepton:
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ψ = ψ̂ e−i mc2

�
t with ψ̂ =

(
ϕ̂
χ̂

)
.

Consequently, the Dirac equation takes the form

i�
∂ψ̂

∂t
= (

H − mc2) ψ̂

and describes the coupled system of equations

(
i�

∂

∂t
− e Φ

)
ϕ̂ = c σ

(
p − e

c
A
)

χ̂

(
i�

∂

∂t
− e Φ + 2mc2

)
χ̂ = c σ

(
p − e

c
A
)

ϕ̂ .

For c → ∞ we obtain

χ̂ 
 1

2mc
σ
(

p − e

c
A
)

ϕ̂ + O(1/c2)

and hence
(

i�
∂

∂t
− e Φ

)
ϕ̂ 
 1

2m

(
σ
(

p − e

c
A
))2

ϕ̂ .

As p does not commute with A, we may use the relation

(σa)(σb) = ab + iσ (a × b)

to obtain

(
σ
(

p − e

c
A
))2 =

(
p − e

c
A
)2 − e�

c
σ · B ; B = rotA .

This leads us to the Pauli equation (W. Pauli 1927)

i�
∂ϕ̂

∂t
= Ĥ ϕ̂ =

(
1

2m

(
p − e

c
A
)2 + e Φ − e�

2mc
σ · B

)
ϕ̂ (3.8)

which up to the spin term is nothing but the non–relativistic Schrödinger equation.
The last term is the one this book is about: it has the form of a potential energy of a
magnetic dipole in an external field. In leading order in 1/c the lepton behaves as a
particle which has besides a charge also a magnetic moment

μ = e�

2mc
σ = e

mc
S ; S = � s = �

σ

2
(3.9)
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with S the angular momentum. For comparison: the orbital angular momentum reads

μorbital = Q

2M
L = gl

Q

2M
L ; L = r × p = −i� r × ∇ = �l

and thus the total magnetic moment is

μtotal = Q

2M
(gl L + gs S) = me

M
μB (gl l + gs s) (3.10)

where

μB = e�

2mec
(3.11)

is Bohr’s magneton. As a result for the electron: Q = −e, M = me, gl = −1 and
gs = −2. The last remarkable result is due to Dirac (1928) and tells us that the
gyromagnetic ratio ( e

mc ) is twice as large as the one from the orbital motion.
The Foldy–Wouthuysen transformation for arbitrary Aμ cannot be performed in

closed analytic form. However, the expansion in 1/c can be done in a systematic way
(see e.g. [1]) and yields the effective Hamiltonian

H′ = β

(

mc2 + (p − e
c A )2

2m
− p4

8m3c2

)

+ e Φ − β
e�

2mc
σ · B

− e�
2

8m2c2
divE − e�

4m2c2
σ ·

[(
E × p + i

2
rotE

)]

+O(1/c3) . (3.12)

The additional terms are p4

8m3c2 originating from the relativistic kinematics, e�
2

8m2c2 divE
is the Darwin term as a result of the fluctuations of the electrons position and

e�

4m2c2 σ · [(E × p + i
2 rotE)

]
is the spin–orbit interaction energy. The latter plays

an important role in setting up a muon storage ring in the g − 2 experiment (magic
energy tuning). As we will see, however, in such an experiment the muons are required
to be highly relativistic such that relativistic kinematics is required. The appropri-
ate modifications, the Bargmann–Michel–Telegdi equation [2], will be discussed in
Chap. 6.

3.2 Magnetic Moments and Electromagnetic Form Factors

3.2.1 Main Features: An Overview

Our particular interest is the motion of a lepton in an external field under consideration
of the full relativistic quantum behavior. It is controlled by the QED equations of
motion (3.1) with an external field added (3.2), specifically a constant magnetic field.

http://dx.doi.org/10.1007/978-3-319-63577-4_6
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For slowly varying fields the motion is essentially determined by the generalized
Pauli equation (3.12), which also serves as a basis for understanding the role of the
magnetic moment of a lepton on the classical level. As we will see, in the absence of
electrical fields E the quantum correction miraculously may be subsumed in a single
number the anomalous magnetic moment, which is the result of relativistic quantum
fluctuations, usually simply called radiative corrections (RC).

To study radiative corrections we have to extend the discussion of the preceding
section and consider the full QED interaction Lagrangian

LQED
int = −eψ̄γμψ Aμ (3.13)

in the case the photon field is part of the dynamics but has an external classical
component Aext

μ

Aμ → Aμ + Aext
μ . (3.14)

We are thus dealing with QED exhibiting an additional external field insertion “ver-
tex”:

⊗ = −ie γμ Ãext
μ .

Gauge invariance (2.89) requires that a gauge transformation of the external field

Aext
μ (x) → Aext

μ (x) − ∂μα(x) , (3.15)

for an arbitrary scalar classical field α(x), leaves physics invariant. The motion of
the lepton in the external field is described by a simultaneous expansion in the fine
structure constant α = e2

4π
and in the external field Aext

μ assuming the latter to be
weak

p1 p2

q
⊗ +

⊗
+ ⊗ + ⊗ ⊗ + · · ·

In the following we will use the more customary graphic representation

⊗ ⇒

of the external vertex, just as an amputated photon line at zero momentum.

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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The gyromagnetic ratio of the muon is defined by the ratio of the magnetic moment
which couples to the magnetic field in the Hamiltonian and the spin operator in units
of μ0 = e�/2mμc

μ = gμ
e�

2mμc
s ; gμ = 2 (1 + aμ) (3.16)

and as indicated has a tree level part, the Dirac moment g(0)
μ = 2 [3], and a higher

order part the muon anomaly or anomalous magnetic moment

aμ = 1

2
(gμ − 2) . (3.17)

In general, the anomalous magnetic moment of a lepton is related to the gyromagnetic
ratio by

a� = μ�/μB − 1 = 1

2
(g� − 2) (3.18)

where the precise value of the Bohr magneton is given by

μB = e�

2mec
= 5.788381804(39) × 10−11 MeVT−1 . (3.19)

Here T as a unit stands for 1 Tesla = 104 Gauss. It is the unit in which the magnetic
field B usually is given. In QED aμ may be calculated in perturbation theory by
considering the matrix element

M(x; p) = 〈μ−(p2, r2)| jμ
em(x)|μ−(p1, r1)〉

of the electromagnetic current for the scattering of an incoming muon μ−(p1, r1) of
momentum p1 and 3rd component of spin r1 to a muon μ−(p2, r2) of momentum
p2 and 3rd component of spin r2, in the classical limit of zero momentum transfer
q2 = (p2 − p1)

2 → 0. In momentum space, by virtue of space–time translational
invariance jμ

em(x) = eiPx jμ
em(0)e−iPx and the fact that the lepton states are eigenstates

of four–momentum e−iPx |μ−(pi , ri )〉 = e−ipi x |μ−(pi , ri )〉 (i = 1, 2), we find

M̃(q; p) =
∫

d4x e−iqx 〈μ−(p2, r2)| jμ
em(x)|μ−(p1, r1)〉

=
∫

d4x ei(p2−p1−q)x 〈μ−(p2, r2)| jμ
em(0)|μ−(p1, r1)〉

= (2π)4 δ(4)(q − p2 + p1) 〈μ−(p2, r2)| jμ
em(0)|μ−(p1, r1)〉 ,

proportional to the δ–function of four–momentum conservation. The T –matrix ele-
ment is then given by

〈μ−(p2)| jμ
em(0)|μ−(p1)〉 .
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In QED it has a relativistic covariant decomposition of the form

= (−ie) ū(p2)
[
γμFE(q2) + i

σμνqν

2mμ
FM(q2)

]
u(p1) ,

γ(q) μ(p2)

μ(p1) (3.20)

where q = p2 − p1 and u(p) denote the Dirac spinors. FE(q2) is the electric charge
or Dirac form factor and FM(q2) is the magnetic or Pauli form factor. Note that the
matrix σμν = i

2 [γμ, γν] represents the spin 1/2 angular momentum tensor. In the
static (classical) limit we have (see (2.210))

FE(0) = 1 , FM(0) = aμ , (3.21)

where the first relation is the charge renormalization condition (in units of the phys-
ical positron charge e, which by definition is taken out as a factor in (3.20)), while
the second relation is the finite prediction for aμ, in terms of the form factor FM the
calculation of which will be described below. The leading order (LO) contribution
(2.215) we have been calculating already in Sect. 2.6.3.

Note that in higher orders the form factors in general acquire an imaginary part.
One may write therefore an effective dipole moment Lagrangian with complex “cou-
pling”

LDM
eff = −1

2

{
ψ̄ σμν

[
Dμ

1 + γ5

2
+ D∗

μ

1 − γ5

2

]
ψ

}
Fμν (3.22)

with ψ the muon field and

Re Dμ = aμ
e

2mμ
, Im Dμ = dμ = ημ

2

e

2mμ
, (3.23)

(see (3.84) and (3.85) below). Thus the imaginary part of FM(0) corresponds to an
electric dipole moment. The latter is non–vanishing only if we have T violation. For
some more details we refer to Sect. 3.3.

As illustrated in Fig. 3.1, when polarized muons travel on a circular orbit in a
constant magnetic field, then aμ is responsible for the Larmor precession of the
direction of the spin of the muon, characterized by the angular frequency ωa . At the
magic energy of about ∼3.1 GeV, the latter is directly proportional to aμ:

ωa = e

m

[
aμB −

(
aμ − 1

γ2 − 1

)
β × E

]E∼3.1GeV

at “magic γ”


 e

m

[
aμB

]
. (3.24)

Electric quadrupole fields E are needed for focusing the beam and they affect the
precession frequency in general. γ = E/mμ = 1/

√
1 − β2 is the relativistic Lorentz

factor with β = v/c the velocity of the muon in units of the speed of light c. The magic

http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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Fig. 3.1 Spin precession in
the g − 2 ring (∼12◦/circle) ⇒

⇒

⇒
⇒

⇒
⇒

⇒
⇒

⇒μ

⇒spin
omentum

Storage
Ring

ωa = aμ
eB
mc

actual precession × 2

energy Emag = γmagmμ is the energy E for which 1
γ2

mag−1 = aμ. The existence of a

solution is due to the fact that aμ is a positive constant in competition with an energy
dependent factor of opposite sign (as γ ≥ 1). The second miracle, which is crucial
for the feasibility of the experiment, is the fact that γmag = √

(1 + aμ)/aμ 
 29.378
is large enough to provide the time dilatation factor for the unstable muon boosting
the life time τμ 
 2.197 × 10−6 s to τin flight = γ τμ 
 6.454 × 10−5 s, which allows
the muons, traveling at v/c = 0.99942 . . ., to be stored in a ring of reasonable size
(diameter ∼14 m).

This provided the basic setup for the g−2 experiments at the Muon Storage Rings
at CERN and at BNL as well as for the upcoming new experiment at Fermilab. The
oscillation frequency ωa can be measured very precisely. Also the precise tuning
to the magic energy is not the major problem. The most serious challenge is to
manufacture a precisely known constant magnetic field B (magnetic flux density), as
the latter directly enters the experimental extraction of aμ via (3.24). Of course one
also needs high enough statistics to get sharp values for the oscillation frequency.
The basic principle of the measurement of aμ is a measurement of the “anomalous”
frequency difference ωa = |ωa| = ωs − ωc, where ωs = gμ (e�/2mμ) B/� =
gμ/2 × e/mμ B is the muon spin–flip precession frequency in the applied magnetic
field and ωc = e/mμ B is the muon cyclotron frequency. Instead of eliminating the
magnetic field by measuring ωc, B is determined from proton Nuclear Magnetic
Resonance (NMR) measurements. This procedure requires the value of μμ/μp to
extract aμ from the data. Fortunately, a high precision value for this ratio is available
from the measurement of the hyperfine splitting (HFS) in muonium. One obtains3

aexp
μ = R̄

|μμ/μp| − R̄
, (3.25)

3E-821 has measured R̄ = ωa/ω̃p = 0.003 707 206 4(20) while using λ = μμ/μp =
3.18334539(10) from muonium HFS. The new CODATA 2011 recommended value is λ =
3.183345107(84), such that the updated aexp

μ = (11 659 208.9 ± 5.4 ± 3.3[6.3]) × 10−10.
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where R̄ = ωa/ω̄p and ω̄p = (e/m pc)〈B〉 is the free–proton NMR frequency corre-
sponding to the average magnetic field seen by the muons in their orbits in the storage
ring. We mention that for the electron a Penning trap is employed to measure ae rather
than a storage ring. The B field in this case can be eliminated via a measurement of
the cyclotron frequency. The CODATA group [4] recommends to use

aexp
μ = ge

2

ωa

ω̃p

mμ

me

μp

μe
(3.26)

as a representation in terms of precisely measured ratios which multiply the extremely
precisely measured electron ge value.4 Both representations derive from aμ = e

m B,
B = �ωP

2μP
and μμ = (1 + aμ)

e�

2mμc and μe = ge

2
e�

2mec used in the second form.
On the theory side, the crucial point is that a� is dimensionless, just a number, and

must vanish at tree level in any renormalizable theory. As an effective interaction it
would look like

δLAMM
eff = −δg

2

e

4m

{
ψ̄L(x) σμν Fμν(x) ψR(x) + ψ̄R(x) σμν Fμν(x) ψL(x)

}

(3.27)

where ψL and ψR are Dirac fields of negative (left–handed L) and positive (right–
handed R) chirality and Fμν = ∂μ Aν − ∂ν Aμ is the electromagnetic field strength
tensor. This Pauli term has dimension 5 (=2 × 3/2 for the two Dirac fields plus 1 for
the photon plus 1 for the derivative included in F) and thus would spoil renormal-
izability. In a renormalizable theory, however, aμ is a finite unambiguous prediction
of that theory. It is testing the rate of helicity flip transition and is one of the most
precisely measured electroweak observables. Of course the theoretical prediction
only may agree with the experimental result to the extend that we know the complete
theory of nature, within the experimental accuracy.

Before we start discussing the theoretical prediction for the magnetic moment
anomaly, we will specify the parameters which we will use for the numerical evalu-
ations below.

Since the lowest order result for a� is proportional to α, obviously, the most
important basic parameter for calculating aμ is the fine structure constant α. It is
best determined now from the very recent extraordinary precise measurement of the
electron anomalous magnetic moment [4–7]

aexp
e = 0.001 159 652 180 76(27) [0.24 ppb] (3.28)

4The values are from the electron g − 2: ge = −2.002 319 304 361 53(53) [0.26 ppt], from E821
R̄ = ωa/ω̃p = 0.003 707 206 4(20) [0.54 ppm], from Muonium HFS experiments mμ/me =
206.768 2843(52) [25 ppb] and μp/μe = −0.001519270384(12) [8 ppb].
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which, confronted with its theoretical prediction as a series in α (see Sect. 3.2.2
below) determines [6, 8–11]

α−1(ae) = 137.035 999 1657(342) [0.25 ppb] .

This new value has an uncertainty 20 times smaller than any preceding independent
determination of α. We will use the updated value

α−1(ae) = 137.035 999 139(31) [0.25 ppb] , (3.29)

recommended by [4, 12], throughout in the calculation of aμ.
All QED contributions associated with diagrams with lepton–loops, where the

“internal” lepton has mass different from the mass of the external one, depend on
the corresponding mass ratio. These mass–dependent contributions differ for ae, aμ

and aτ , such that lepton universality is broken: ae �= aμ �= aτ . Lepton universality is
broken in any case by the difference in the masses and whatever depends on them.
Such mass–ratio dependent contributions start at two loops. For the evaluation of
these contributions precise values for the lepton masses are needed. We will use
the following values for the muon–electron and muon–tau mass ratios, and lepton
masses [4, 7, 12–14]

mμ/me = 206.768 2826 (46) , mμ/mτ = 0.059 4649 (54)

me = 0.510 998 9461(31) MeV , mμ = 105.658 3745 (24) MeV
mτ = 1776.82 (16) MeV .

(3.30)

Note that the primary determination of the electron and muon masses come from
measuring the ratio with respect to the mass of a nucleus and the masses are obtained
in atomic mass units (amu). The conversion factor to MeV is more uncertain than
the mass of the electron and muon in amu. The ratio of course does not suffer from
the uncertainty of the conversion factor.

Other physical constants which we will need later for evaluating the weak contri-
butions are the Fermi constant

Gμ = 1.1663787(6) × 10−5 GeV−2 , (3.31)

the weak mixing parameter5 (here defined by sin2 ΘW = 1 − M2
W /M2

Z )

sin2 ΘW = 0.22290(29) (3.32)

and the masses of the intermediate gauge bosons Z and W

MZ = 91.1876 ± 0.0021 GeV , MW = 80.385 ± 0.015 GeV . (3.33)

5The effective value sin2 Θeff = 0.23155(5) is determined from the vector to axialvector Z f f̄
coupling ratios in e+e− → f f̄ .
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For the Standard Model (SM) Higgs boson, recently discovered [15] by ATLAS [16]
and CMS [17] at the LHC at CERN, the mass has been measured to be [12]

m H = 125.09 ± 0.21 (syst) ± 0.11 (stat) GeV . (3.34)

We also mention here that virtual pion–pair production is an important contribution to
the photon vacuum polarization and actually yields the leading hadronic contribution
to the anomalous magnetic moment. For the dominating π+π− channel, the threshold
is at 2mπ with the pion mass given by

mπ± = 139.570 18 (35) MeV . (3.35)

There is also a small contribution from π0γ with threshold at mπ0 which has the value

mπ0 = 134.976 6 (6) MeV . (3.36)

Later we will also need the pion decay constant

Fπ 
 92.21(14) MeV . (3.37)

For the quark masses needed in some cases we use running current quark masses
in the MSscheme [12, 13] with renormalization scale parameter μ. For the light
quarks q = u, d, s we give mq = m̄q(μ = 2 GeV), for the heavier q = c, b the
values at the mass as a scale mq = m̄q(μ = m̄q) and for q = t the pole mass:

mu = 2.3+0.7
−0.5 MeV md = 4.8+0.7

−0.5 MeV ms = 95 ± 5 MeV
mc = 1.275 ± 0.025 GeV mb = 4.18 ± 0.03 GeV Mt = 173.21 ± 0.87 GeV .

(3.38)

Within the SM the MSmass of the top quark mt (mt ) essentially agrees with the pole
mass: mt (mt ) 
 Mt [18, 19].

This completes the list of the most relevant parameters and we may discuss the
various contributions in turn now. This also can be read as an update of [20].

The profile of the most important contributions may be outlined as follows:

(1) QED universal part:

The by far largest QED/SM contribution comes from the one–loop QED diagram [21]

: a(2)
e = a(2)

μ = a(2)
τ =

α

2π
(Schwinger 1948)

γ

� �

γ
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which we have calculated in Sect. 2.6.3, and which is universal for all charged lep-
tons. As it is customary we indicate the perturbative order in powers of e, i.e., a(n)

denotes an O(en) term, in spite of the fact that the perturbation expansion is usually
represented as an expansion in α = e2/4π. Typically, analytic results for higher
order terms may be expressed in terms of the Riemann zeta function

ζ(n) =
∞∑

k=1

1

kn
(3.39)

and of the polylogarithmic integrals6

Lin(x) = (−1)n−1

(n − 2)!
1∫

0

lnn−2(t) ln(1 − t x)

t
dt =

∞∑

k=1

xk

kn
, (3.40)

where Li2(x) is often referred to as the Spence function Sp(x) (see (2.208) in
Sect. 2.6.3 and [23] and references therein). Special ζ(n) values we will need are

ζ(2) = π2

6
, ζ(3) = 1.202 056 903 . . . , ζ(4) = π4

90
, ζ(5) = 1.036 927 755 . . . .

(3.41)
Also the constants

Lin(1) = ζ(n) , Lin(−1) = −[1 − 21−n] ζ(n)

a4 ≡ Li4

(
1

2

)
=

∞∑

n=1

1/(2nn4) = 0.517 479 061 674 . . . , (3.42)

related to polylogarithms, will be needed later for the evaluation of analytical results.
Since aμ is a number all QED contributions calculated in “one flavor QED”, with
just one species of lepton, which exhibits one physical mass scale only, equal to the
mass of the external lepton, are universal. The following universal contributions (one
flavor QED) are known:

• 2–loop diagrams [7 diagrams] with one type of fermion lines yield

a(4)
� =

[
197

144
+ π2

12
− π2

2
ln 2 + 3

4
ζ(3)

] (α

π

)2
. (3.43)

The first calculation performed by Karplus and Kroll (1950) [24] later was recalcu-
lated and corrected by Petermann (1957) [25] and, independently, by Sommerfield

6The appearance of transcendental numbers like ζ(n) and higher order polylogarithms Lin(x) or so
called harmonic sums is directly connected to the number of loops of a Feynman diagram. Typically,
2–loop results exhibit ζ(3) 3–loop ones ζ(5) etc. of increasing transcendentality [22].

http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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(1957) [26]. An instructive compact calculation based on the dispersion theoretic
approach is due to Terentev (1962) [27].
• 3–loop diagrams [72 diagrams] with common fermion lines

a(6)
� =

[
28259

5184
+ 17101

810
π2 − 298

9
π2 ln 2 + 139

18
ζ(3)

+100

3

{
Li4

(
1

2

)
+ 1

24
ln4 2 − 1

24
π2 ln2 2

}

− 239

2160
π4 + 83

72
π2ζ(3) − 215

24
ζ(5)

] (α

π

)3
(3.44)

This is the famous analytical result of Laporta and Remiddi (1996) [28], which
largely confirmed an earlier numerical result of Kinoshita [29]. For the evaluation of
(3.44) one needs the constants given in (3.41) and (3.42) before.
• 4–loop diagrams [891 diagrams] with common fermion lines so far have been
calculated by numerical methods mainly by Kinoshita and collaborators. The sta-
tus had been summarized by Kinoshita and Marciano (1990) [30] some time ago.
Since then, the result has been further improved by Kinoshita and his collaborators
(2002/2005/2007/2012/2014) [9, 10, 31–33]. They find

− 1.91298(84)
(α

π

)4
,

by improving earlier results. In a seminal paper Laporta [11] obtained the high
precision (quasi–exact) result

− 1.912 245 764 9 . . .
(α

π

)4
,

which agrees to 0.9σ with the previous result from [10] and we will use in the
following.

Recently, for the first time, the universal 5–loop result has been worked out in [10,
33–35]. An evaluation of all 12672 diagrams with the help of an automated code
generator yields the result

7.795(336)
(α

π

)5
.

The error is due to the statistical fluctuation in the Monte-Carlo integration of the
Feynman amplitudes by the VEGAS routine. With the new result for the universal
5–loop term the largest uncertainty in the prediction of ae has reduced by a factor of
4.5 from the previous one.
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Collecting the universal terms we have

auni
� = 0.5

(α

π

)
− 0.328 478 965 579 193 78 . . .

(α

π

)2

+1.181 241 456 587 . . .
(α

π

)3 − 1.912 245 764 9 . . .
(α

π

)4 + 7.795(336)
(α

π

)5

= 0.001 159 652 176 42(26)(4)[26] · · · (3.45)

for the one–flavor QED contribution. The three errors are from the error of α given
in (3.29) and from the numerical uncertainties of the α5 coefficients, respectively.

It is interesting to note that the first term a(2)
� 
 0.00116141 · · · contributes the

first three significant digits. Thus the anomalous magnetic moment of a lepton is an
effect of about 0.12%, g�/2 
 1.00116 · · · , but in spite of the fact that it is so small
we know ae and aμ more precisely than most other precision observables.

(2) QED mass dependent part:

Since fermions, as demanded by the SM,7 only interact via photons or other spin one
gauge bosons, mass dependent corrections only may show up at the two–loop level
via photon vacuum polarization effects. There are two different regimes for the mass
dependent effects [36, 37]:

• LIGHT internal masses give rise to potentially large logarithms of mass ratios
which get singular in the limit m light → 0

e

a(4)
μ (vap, e) =

[
1
3
ln

mμ

me
− 25

36
+ O

(
me

mμ

)] (α

π

)2
.

γ γμ

γ

Here we have a typical result for a light field which produces a large logarithm
ln mμ

me

 5.3, such that the first term ∼2.095 is large relative to a typical constant

second term −0.6944. Here8 the exact two–loop result is

a(4)
μ (vap, e) 
 1.094 258 3092(72)

(α

π

)2 = 5.90406006(4) × 10−6 .

The error is due to the uncertainty in the mass ratio (me/mμ).
The kind of leading short distance log contribution just discussed, which is related

to the UV behavior,9 in fact may be obtained from a renormalization group type
argument. In Sect. 2.6.5 (2.233) we have shown that if we replace in the one–loop
result α → α(mμ) we obtain

7Interactions are known to derive from a local gauge symmetry principle, which implies the structure
of gauge couplings, which must be of vector (V) or axial–vector (A) type.
8The leading terms shown yield 5.84199477 × 10−6.
9The muon mass mμ here serves as a UV cut–off, the electron mass as an IR cut–off, and the
relevant integral reads

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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aμ = 1

2

α

π

(
1 + 2

3

α

π
ln

mμ

me

)
, (3.46)

which reproduces precisely the leading term of the two–loop result. RG type argu-
ments, based on the related Callan–Symanzik (CS) equation approach, were further
developed and refined in [38, 39]. The CS equation is a differential equation which
quantifies the response of a quantity to a change of a physical mass like me rel-
ative to the renormalization scale which is mμ if we consider aμ. For the leading
me–dependence of aμ, neglecting all terms which behave like powers of me/mμ for
me → 0 at fixed mμ, the CS equation takes the simple homogeneous form

(
me

∂

∂me
+ β(α) α

∂

∂α

)
a(∞)

μ

(
mμ

me
,α

)
= 0 , (3.47)

where a(∞)
μ denotes the contribution to aμ from powers of logarithms ln mμ

me
and con-

stant terms and β(α) is the QED β–function. The latter governs the charge screening
of the electromagnetic charge, which will be discussed below. The charge is running
according to (resummed one-loop approximation)

α(μ) = α

1 − 2
3

α
π

ln μ
me

(3.48)

which in linear approximation yields (3.46).
We continue with the consideration of the other contributions. For comparison

we also give the result for the

• EQUAL internal masses case which yields a pure number and has been included
in the a(4)

� universal part (3.43) already:

μ
a(4)

μ (vap, μ) =
[
119
36

− π2

3

] (α

π

)2
.

γ γμ

γ

This no scale result shows another typical aspect of perturbative answers. There is
a rational term of size 3.3055... and a transcendental π2 term of very similar size
3.2899... but of opposite sign which yields as a sum a result which is only 0.5% of
the individual terms:

(Footnote 9 continued)
∫ mμ

me

dE

E
= ln

mμ

me
.

.
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a(4)
μ (vap,μ) 
 0.015 687 4219

(α

π

)2 = 8.464 13319 × 10−8 . (3.49)

• HEAVY internal masses decouple10 in the limit mheavy → ∞ and thus only yield
small power corrections

τ
a(4)

μ (vap, τ) =

[
1
45

(
mμ

mτ

)2

+ O

(
m4

μ

m4
τ

ln
mτ

mμ

)] (α

π

)2
.

γ γμ

γ

Note that “heavy physics” contributions, from mass scales M � mμ, typically are
proportional to m2

μ/M2. This means that besides the order in α there is an extra

suppression factor, e.g. O(α2) → Q(α2 m2
μ

M2 ) in our case. To unveil new heavy states
thus requires a corresponding high precision in theory and experiment. For the τ the
contribution is relatively tiny

a(4)
μ (vap, τ ) 
 0.000 078 079(14)

(α

π

)2 = 4.2127(8) × 10−10 ,

with error from the mass ratio (mμ/mτ ). However, at the level of accuracy reached
by the Brookhaven experiment (63 × 10−11), the contribution is non–negligible.

At the next higher order, in a(6) up to two internal closed fermion loops show
up. The photon vacuum polarization (VP) insertions into photon lines again yield
mass dependent effects if one or two of the μ loops of the universal contributions are
replaced by an electron or a τ . These contributions will be discussed in more detail in
Chap. 4. Here we just give the numerical results for the coefficients of

(
α
π

)3
[40–42]:

A
(6)
μ (vap, e) = 1.920 455 123(28) ,

A
(6)
μ (vap, τ) = −0.001 782 61(27) ,

A
(6)
μ (vap, e, τ) = 0.000 527 76(10) .

�2�1
μ

γ

Besides these photon self–energy corrections, a new kind of contributions are the
so called light–by–light scattering (LbL) insertions: closed fermion loops with four
photons attached. Light–by–light scattering γγ → γγ is a fermion–loop induced
process between real on–shell photons. There are 6 diagrams which follow from the
first one below, by permutation of the photon vertices on the external muon line:

10The decoupling–theorem 2.10 infers that in theories like QED or QCD, where couplings and
masses are independent parameters of the Lagrangian, a heavy particle of mass M decouples from
physics at lower scales E0 as E0/M for M → ∞.

http://dx.doi.org/10.1007/978-3-319-63577-4_4
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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plus the ones obtained by reversing the direction of the fermion loop. Remember that
closed fermion loops with three photons vanish by Furry’s theorem. Again, besides
the equal mass case m loop = mμ there are two different regimes [43, 44]:
• LIGHT internal masses also in this case give rise to potentially large logarithms of
mass ratios which get singular in the limit m light → 0

e
a(6)

μ (lbl, e) =
[
2
3
π2 ln

mμ

me
+

59
270

π4 − 3 ζ(3)

−10
3

π2 +
2
3
+ O

(
me

mμ
ln

mμ

me

)] (α

π

)3
.γ’s

μ

γ

This again is a light loop which yields an unexpectedly large contribution

a(6)
μ (lbl, e) 
 20.947 924 85(14)

(α

π

)3 = 2.625 351 01(2) × 10−7 ,

with error from the (me/mμ) mass ratio. Historically, it was calculated first numeri-
cally by Aldins et al. [45], after a 1.7 σ discrepancy with the CERN measurement [46]
in 1968 showed up.11

For comparison we also present the

• EQUAL internal masses case which yields a pure number which is included in the
a(6)

� universal part (3.44) already:

μ
a(6)

μ (lbl, μ) =
[
5
6

ζ(5) − 5
18

π2 ζ(3) − 41
540

π4 − 2
3
π2 ln2 2

+
2
3
ln4 2 + 16a4 − 4

3
ζ(3) − 24π2 ln 2 +

931
54

π2 +
5
9

] (α

π

)3
,γ’s

μ

γ

11The result of [45] was 2.30±0.14×10−7 pretty close to the “exact” answer above. The occurrence
of such large terms of course has a physical interpretation [47]. Firstly, the large logs ln(mμ/me)

are due to a logarithmic UV divergence in the limit mμ → ∞, i.e., mμ serves as a UV cut–
off, in conjunction with an IR singularity in the limit me → 0, i.e., me serves as an IR cut–off:∫ mμ

me

dE
E = ln mμ

me
. The integral is large because of the large range [me, mμ] and an integrand with

the property that it is contributing equally at all scales. Secondly, and this is the new point here,
there is an unusual π2 ∼ 10 factor in the coefficient of the large log. This enhancement arises
from the LbL scattering sub-diagram where the electron is moving in the field of an almost static
non–relativistic muon. A non–relativistic spin–flip interaction (required to contribute to aμ) gets
dressed by Coulomb interactions between muon and electron, which produces the large π2 factor.
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where a4 is the constant defined in (3.42). The single scale QED contribution is much
smaller

a(6)
μ (lbl,μ) 
 0.371005292

(α

π

)3 = 4.64971650 × 10−9 (3.50)

but is still a substantial contributions at the required level of accuracy.
• HEAVY internal masses again decouple in the limit mheavy → ∞ and thus only
yield small power correction

τ
a(6)

μ (lbl, τ) =

[[
3
2

ζ(3) − 19
16

] (
mμ

mτ

)2

+O

(
m4

μ

m4
τ

ln2
mτ

mμ

)] (α

π

)3
.

γ’s
μ

γ

As expected this heavy contribution is power suppressed yielding

a(6)
μ (lbl, τ ) 
 0.002 143 24(38)

(α

π

)3 = 2.686 07(48) × 10−11 ,

and therefore would play a significant role at a next level of precision experiments
only. Again the error is from the (mμ/mτ ) mass ratio.

We mention that except for the mixed term A(6)
μ (vap, e, τ ), which has been worked

out as a series expansion in the mass ratios [41, 42], all contributions are known
analytically in exact form [40, 43]12 up to 3 loops. At 4 loops only a few terms
are known analytically [49, 50]. Again the relevant 4–loop contributions have been
evaluated by numerical integration methods by Kinoshita and Nio [31, 51]. The
universal part is now superseded by Laporta’s high–precision result [11]. After earlier
estimates of the 5–loop term in [52–54], finally the pioneering complete 5-loop
calculation by Aoyama, Hayakawa, Kinoshita and Nio [51] has been completed
to contribute with A(10)

2 (mμ/me) = 663(20). A number of partial results based on
asymptotic expansion techniques have been obtained in [55]. More recent result have
been presented in [39, 50, 56–58]. Results largely confirm the numerical calculations.

Combining the universal and the mass dependent terms discussed so far we arrive
at the following QED result for aμ

aQED
μ = α

2π
+ 0.765 857 423(16)

(α

π

)2

+ 24.050 509 82(28)
(α

π

)3 + 130.8734(60)
(α

π

)4 + 751.917(932)
(α

π

)5
.

(3.51)

12Explicitly, the papers present expansions in the mass ratios; some result have been extended in [44]
and cross checked against the full analytic result in [48].
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Growing coefficients in the α/π expansion reflect the presence of large ln mμ

me



5.3 terms coming from electron loops. In spite of the strongly growing expansion
coefficients the convergence of the perturbation series is excellent

# n of loops Ci [(α/π)n] aQED
μ × 1011

1 + 0.5 116140973.242 (26)
2 + 0.765 857 423 (16) 413217.627 (9)
3 + 24.050 509 82 (28) 30141.9022 (4)
4 + 130.8734 (60) 380.990 (17)
5 + 751.917 (932) 5.0845 (63)
tot 116584718.859 (0.034)

because α/π is a truly small expansion parameter.
Now we have to address the question what happens beyond QED. What is mea-

sured in an experiment includes effects from the real world and we have to include
the contributions from all known particles and interactions such that from a possible
deviation between theory and experiment we may get a hint of the yet unknown
physics.

Going from QED of leptons to the SM the most important step is to include the
hadronic effects mediated by the quarks, which in the SM sit in families together
with the leptons and neutrinos. The latter being electrically neutral do not play any
role, in contrast to the charged quarks. The strong interaction effects are showing up
in particular through the hadronic structure of the photon via vacuum polarization
starting at O(α2) or light–by–light scattering starting at O(α3).

(3) Hadronic VP effects:

Formally, these are the contributions obtained by replacing lepton–loops by quark–
loops (see Fig. 3.2), however, the quarks are strongly interacting via gluons as
described by the SU(3)color gauge theory QCD [59] (see Sect. 2.8). While electro-
magnetic and weak interactions are weak in the sense that they allow us to perform
perturbation expansions in the coupling constants, strong interactions are weak only
at high energies as inferred by the property of asymptotic freedom (anti–screening).13

At energies above about 2 GeV perturbative QCD (pQCD) may be applied as well. In
the regime of interest to us here, however, perturbative QCD fails. The strength of the
strong coupling “constant” increases dramatically as we approach lower energies.
This is firmly illustrated by Fig. 3.3, which shows a compilation of measured strong
coupling constants as a function of energy in comparison to perturbative QCD. The
latter seems to describes very well the running of αs down to 2 GeV. Fortunately the
leading order hadronic effects are vacuum polarization type corrections, which can

13Asymptotic freedom, discovered in 1973 by Politzer, Gross and Wilczek [60] (Nobel Prize 2004),
is one of the key properties of QCD and explains why at high enough energies one observes quasi–
free quarks, as in deep inelastic scattering (DIS) of electrons on protons. Thus, while quarks remain
imprisoned inside color neutral hadrons (quark confinement), at high enough energies (so called hard
subprocesses) the quark parton model (QPM) of free quarks may be a reasonable approximation,
which may be systematically improved by including the perturbative corrections.

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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Fig. 3.2 The hadronic analog of the lepton loops

Fig. 3.3 A compilation of
αs measurements in a plot
from Ref. [12]. The lowest
point shown is at the τ lepton
mass Mτ = 1.78 GeV where
αs(Mτ ) = 0.322 ± 0.030.
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be safely evaluated by exploiting causality (analyticity) and unitarity (optical theo-
rem) together with experimental low energy data. The imaginary part of the photon
self–energy function Π ′

γ(s) (see Sect. 2.6.1) is determined via the optical theorem
by the total cross section of hadron production in electron–positron annihilation:

σ(s)e+e−→γ∗→hadrons = 4π2α

s

1

π
Im Π

′had
γ (s) . (3.52)

The leading Hadronic Vacuum Polarization (HVP) contribution is represented by the
diagram Fig. 3.4, which has a representation as a dispersion integral

aμ = α

π

∫ ∞

0

ds

s

1

π
Im Π

′had
γ (s) K (s) , K (s) ≡

∫ 1

0
dx

x2(1 − x)

x2 + s
m2

μ
(1 − x)

. (3.53)

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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As a result the leading non–perturbative hadronic contributions ahad
μ can be obtained

in terms of Rγ(s) ≡ σ(0)(e+e− → γ∗ → hadrons)/ 4πα2

3s data via the dispersion inte-
gral:

ahad
μ =

(αmμ

3π

)2

⎛

⎜
⎜
⎝

E2
cut∫

m2
π0

ds
Rdata

γ (s) K̂ (s)

s2
+

∞∫

E2
cut

ds
RpQCD

γ (s) K̂ (s)

s2

⎞

⎟
⎟
⎠ , (3.54)

where the rescaled kernel function K̂ (s) = 3s/m2
μ K (s) is a smooth bounded func-

tion, increasing from 0.63... at s = 4m2
π to 1 as s → ∞. The 1/s2 enhancement

at low energy implies that the ρ → π+π− resonance is dominating the dispersion
integral (∼75%). Data can be used up to energies where γ − Z mixing comes into
play at about Ecut = 40 GeV. However, by the virtue of asymptotic freedom, per-
turbative Quantum Chromodynamics (see p. 145) (pQCD) gets the more reliable the
higher the energy and, in fact, it may be used safely in regions away from the flavor
thresholds, where resonances show up: ρ, ω, φ, the J/ψ series and the ϒ series. We
thus use perturbative QCD [61, 62] from 5.2 to 9.6 GeV and for the high energy tail
above 13 GeV, as recommended in [61–63].

Hadronic cross section measurements e+e− → hadrons at electron–positron stor-
age rings started in the early 1960’s and continued up to date. Since our analysis [64]
in 1995 data from MD1 [65], BES-II [66] and from CMD-2 [67] have lead to a sub-
stantial reduction in the hadronic uncertainties on ahad

μ . More recently, KLOE [68],
SND [69] and CMD-2 [70] published new measurements in the region below
1.4 GeV. My up–to–date evaluation of the leading order HVP yields [71–74]

ahad(1)
μ = (688.77 ± 3.38[688.07 ± 4.14]) × 10−10 . (3.55)

The result also includes τ -decay spectral data (the I=1 part corrected for isospin
breaking) in the range [0.63–0.96] GeV as estimated in [72] (see Chap. 5, Sect. 5.1.10).
Table 3.1 gives more details about the origin of contributions and errors from differ-
ent regions. A recent analysis [75] (also see [76, 77]) using the precise ππ scattering
data to constrain the low energy tail below 0.63 GeV (see (5.100) in Chap. 5) allows
one to improve the estimate to

ahad(1)
μ = (689.46 ± 3.25) × 10−10 . (3.56)

A list of data based evaluations by different groups is presented in Table 3.2. The list
documents the big efforts made by experiments within the past decade to provide
more and more accurate data, which are the indispensable input for controlling non-
perturbative strong interaction effects. Differences in errors come about mainly by
utilizing more “theory–driven” concepts: use of selected data sets only, extended use
of perturbative QCD in place of data [assuming local duality], sum rule methods, low

http://dx.doi.org/10.1007/978-3-319-63577-4_5
http://dx.doi.org/10.1007/978-3-319-63577-4_5
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Table 3.1 Contributions and errors from different energy ranges

Energy range ahad
μ × 1010 [in %] (error) ×1010 rel. err. (%) abs. err. (%)

ρ,ω (E < 2MK ) 541.25 [78.7%] (2.84) 0.5 47.6

2MK < E < 2 GeV 95.63 [13.9%] (2.77) 3.1 45.2

2 GeV < E < MJ/ψ 21.63 [3.1%] (0.93) 4.3 5.1

MJ/ψ < E <

5.2 GeV
20.34 [3.0%] (0.59) 2.9 2.1

5.2 GeV < E < Mϒ

pQCD
6.27 [0.9%] (0.01) 0.1 0.0

Mϒ < E < Ecut 0.98 [0.1%] (0.05) 5.2 0.0

Ecut < E pQCD 1.96 [0.3%] (0.00) 0.0 0.0

E < Ecut data 679.84 [98.8%] (4.11) 0.6 100

Total 688.07 [100%] (4.11) 0.6 100

energy effective methods [78]. Progress is essentially correlated with the availability
of new data from Novosibirsk (NSK) [69, 70, 79], Frascati (KLOE) [80–82], SLAC
(BaBar) [83] and Beijing (BES-III) [84].14 In the last 15 years e+e− cross–section
measurements have dramatically improved, from energy scans [69, 70, 79] (SCAN)
at Novosibirsk (NSK) and later, using the radiative return mechanism, measurements
via initial state radiation (ISR) at meson factories [80–84]. Still the most precise
ISR measurements from KLOE and BaBar are in conflict and the new, although
still somewhat less precise, ISR data from BES-III help to clarify this tension. The
BES-III result for aππ,LO

μ (0.6 − 0.9 GeV) is found to be in good agreement with
all KLOE values, while a 1.7 σ lower value is observed with respect to the BaBar
result. Other data recently collected, and published up to the end of 2014, include the
e+e− → 3(π+π−) data from CMD–3 [90], the e+e− → ωπ0 → π0π0γ from SND
[91] and several data sets collected by BaBar in the ISR mode15 [92–94]. These
data samples highly increase the available statistics for the annihilation channels
opening above 1 GeV and lead to significant improvements. Recent/preliminary
results also included are e+e− → π+π−π0 from Belle, e+e− → K +K − from
CMD-3, e+e− → K +K − from SND. The BES-III data sample is included in the
last four entries of the table.

Besides the true e+e− data measured by energy scans and the ISR method, the
I = 1 isovector part of e+e− → hadrons can be obtained in an alternative way
by using the precise vector spectral functions from hadronic τ–decays τ → ντ +
hadrons via an isospin rotation [95]. For the dominating ππ channel τ decay spectra

14The analysis [85] does not include exclusive data in a range from 1.43 to 2 GeV; therefore also the
important exclusive channels BaBar data are not included in that range. In [86–89] pQCD is used in
the extended ranges 1.8–3.7 GeV and above 5.0 GeV and in [87] KLOE data are not included. More
recently a reanalysis of the KLOE08 data were released as KLOE12 set, which was first included
in the evaluation [73].
15Including the p p̄, K +K −, KL KS, KL KSπ+π−, KS KSπ+π−, KS KS K +K − final states.
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Table 3.2 Some recent evaluations of ahad(1)
μ (in units 10−10). The Table illustrates the progress

since 2003, when precise data from Novosibirsk became available. Further progress has been possi-
ble with the data obtained by the ISR method at the φ-factory Daphne at Frascati (KLOE detector)
and the B-factory PEP-II at SLAC (BaBar detector) and with the BEPC storage ring at Beijing
(BES detector)

670 720

696.3 ± 7.2 e+e− Davier et al 03

711.0 ± 5.8 e+e− + τ Davier et al 03

694.8 ± 8.6 e+e− Ghozzi, Jegerlehner 03

684.6 ± 6.4 e+e− (the) Narison 03

699.6 ± 8.9 e+e− Ezhela et al 03

692.4 ± 6.4 e+e− (incl) Hagiwara et al 03

693.5 ± 5.9 e+e− Troconiz, Yndurain 04

701.8 ± 5.8 e+e− + τ Troconiz, Yndurain 04

690.9 ± 4.4 e+e− Eidelman, Davier 06

689.4 ± 4.6 e+e− (incl) Hagiwara et al 06

692.1 ± 5.6 e+e− Jegerlehner 06

705.3 ± 4.5 e+e− + τ Davier et al 09

692.3 ± 4.2 e+e− Davier et al 10

691.0 ± 4.6 e+e− + τ ∗ Jegerlehner, Szafron 11

694.4 ± 3.7 e+e− Hagiwara et al 11

687.7 ± 4.6 HLS global fit∗ Benayoun et al 12

693.2 ± 3.7 e+e− + τ ∗ Davier et al 10

681.2 ± 3.3 HLS best fit∗ Benayoun et al 15

685.8 ± 3.1 HLS global fit∗ Benayoun et al 15

692.6 ± 3.3 e+e− Davier et al 16

688.1 ± 4.1 e+e− Jegerlehner 16

689.5 ± 3.3 e+e− + τ ∗ Jegerlehner 17

[79]

[79]

[80]

[81]

[82]

[83]

[84]

[84]

[85]

[86]

[72]

[20]

[87]

[88, 89]

[73]

[90]

[91]

[73, 88]

[92]

[92]

[93]

[75]

(3.56)

have been measured by the ALEPH, OPAL, CLEO and Belle experiments [96–100].
After isospin violating corrections, due to photon radiation and the mass splitting
md − mu �= 0, have been applied, there remains an unexpectedly large discrepancy
between the e+e−- and the τ -based determinations of aμ [86–89], as may be seen
in Table 3.2. This τ versus e+e− data puzzle has been persisting for several years.
Possible explanations are so far unaccounted isospin breaking [101] or experimental
problems with the data. Since the e+e−-data are more directly related to what is
required in the dispersion integral, one usually advocates to use the e+e− data only.
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The puzzle at the end disappeared, after isospin breaking by γ−ρ0 mixing, missing in
the charged τ channel, has been accounted for [72]. The point is the correct modeling
of the Vector Meson Dominance (VMD) mechanism, which, by including ρ,ω,φ
as well results in the Hidden Local Symmetry (HLS) model parametrization of the
low energy data [73, 102] [up to including the φ resonance]. This a low effective
Lagrangian field theory approach, which includes the VMD model in accord with
low energy structure of QCD. A “HLS best fit” is obtained for the data configuration
NSK+KLOE10+KLOE12+BES-III+τ . The “HLS global fit” includes the BaBar ππ
spectrum as well. In Table 3.2 results including τ corrected for the γ −ρ0 mixing are
marked by the asterisk ∗. A comprehensive analysis of the hadronic effects will be
presented in Chap. 5, Sect. 5.1. See also the comments to Fig. 7.1.

At next-to-leading order (NLO), O(α3), diagrams of the type shown in Fig. 3.5a–c
have to be calculated, where the first diagram stands for a class of higher order
hadronic contributions obtained if one replaces in any of the first 6 two–loop dia-
grams of Fig. 4.2, one internal photon line by a dressed one. The relevant kernels
for the corresponding dispersion integrals have been calculated analytically in [103]
and appropriate series expansions were given in [104] (for earlier estimates see
[105, 106]). Based on my recent compilation of the e+e− data [74] I obtain

a(6)
μ (vap, had) = −99.27(0.87) × 10−11 ,

in accord with previous evaluations [95, 104, 106, 107] (see Table 5.7). The
errors include statistical and systematic errors added in quadrature. Very recently
the relevant next-to-next-to-leading order (NNLO), O(α4), hadronic contributions,
represented by diagrams of the type also shown in Fig. 3.5a–h, have been estimated
[108, 109]

h e h h hμ

γ(a) (b) (c)

(a) 3a (b) 3b (c) 3b (d) 3c

(e) 3c (f) 3c (g) 3b,lbl (h) 3d

Fig. 3.5 Higher order (HO) vacuum polarization contributions

http://dx.doi.org/10.1007/978-3-319-63577-4_5
http://dx.doi.org/10.1007/978-3-319-63577-4_7
http://dx.doi.org/10.1007/978-3-319-63577-4_4
http://dx.doi.org/10.1007/978-3-319-63577-4_5


3.2 Magnetic Moments and Electromagnetic Form Factors 189

Fig. 3.6 The spectrum of invariant γγ masses obtained with the Crystal Ball detector [110].
The three rather pronounced spikes seen are the γγ → pseudoscalar (PS) → γγ excitations:
PS =π0, η, η′

a(8)
μ (vap, had) = 12.21(0.10) × 10−11 ,

which amounts to a 10% reduction of the NLO HVP result.

(4) Hadronic LbL effects:

A much more problematic set of hadronic corrections are those related to hadronic
light–by–light scattering, which sets in only at order O(α3), fortunately. However,
we already know from the leptonic counterpart that this contribution could be dra-
matically enhanced. It was estimated for the first time in [105]. Even for real–photon
light–by–light scattering, perturbation theory is far from being able to describe real-
ity, as the reader may convince himself by a glance at Fig. 3.6, showing sharp spikes
of π0, η and η′ production, while pQCD predicts a smooth continuum.16 As a con-
tribution to the anomalous magnetic moment three of the four photons are virtual
and to be integrated over all four–momentum space, such that a direct experimen-
tal input for the non–perturbative dressed four–photon correlator is not available.
In this case one has to resort to the low energy effective descriptions of QCD like
Chiral Perturbation Theory (CHPT) extended to include vector–mesons. This Res-
onance Lagrangian Approach (RLA) is realizing vector-meson dominance ideas in
accord with the low energy structure of QCD [111]. Other effective theories are
the Extended Nambu-Jona-Lasinio (ENJL) model [112] (see also [113]) or the very

16The pion which gives the by far largest contribution is a quasi Goldstone boson. In the chiral
limit of vanishing light quark masses mu = md = ms = 0 pions and Kaons are true Goldstone
bosons which exist due to the spontaneous breakdown of the chiral U (N f )V ⊗ UA(N f ) (N f = 3)

symmetry, which is a non–perturbative phenomenon, absent in pQCD.
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similar HLS model [114, 115]; approaches more or less accepted as a framework for
the evaluation of the hadronic LbL effects. The amazing fact is that the interactions
involved in the hadronic LbL scattering process are the parity conserving QED and
QCD interactions while the process is dominated by the parity odd pseudoscalar
meson–exchanges. This means that the effective π0γγ interaction vertex exhibits
the parity violating γ5 coupling, which of course in γγ → π0 → γγ must appear
twice (an even number of times). The process indeed is associated with the parity
odd Wess-Zumino-Witten (WZW) effective interaction term

L(4) = − αNc

12πF0
εμνρσ Fμν Aρ∂σπ0 + · · · (3.57)

which reproduces the Adler-Bell-Jackiw (ABJ) anomaly and which plays a key role in
estimating the leading hadronic LbL contribution. F0 denotes the pion decay constant
Fπ in the chiral limit of massless light quarks (Fπ 
 92.4 MeV). The constant WZW
form factor yields a divergent result, applying a cut–off Λ one obtains the leading
term

a(6)
μ (lbl, π0) =

[
N2

c

48π2

m2
μ

F 2
π

ln2
Λ

mμ
+ · · ·

] (α

π

)3
π0, η, η′

μ

γ

with a universal coefficient C = N 2
c m2

μ/(48π2 F2
π ) [116]; in the VMD dressed cases

MV represents the cut–off Λ → MV .17

Based on refined effective field theory (EFT) models, two major efforts in eval-
uating the full aLbL

μ contribution were made by Hayakawa, Kinoshita and Sanda
(HKS 1995) [114], Bijnens, Pallante and Prades (BPP 1995) [112] and Hayakawa
and Kinoshita (HK 1998) [115] (see also Kinoshita, Nizic and Okamoto (KNO
1985) [106]). Although the details of the calculations are quite different, which
results in a different splitting of various contributions, the results are in good agree-
ment and essentially given by the π0-pole contribution, which was taken with the
wrong sign, however. In order to eliminate the cut–off dependence in separating long
distance (L.D.) and short distance (S.D.) physics, more recently it became favorable
to use quark–hadron duality, as it holds in the large–Nc limit of QCD [117, 118], for
modeling of the hadronic amplitudes [113]. The infinite series of narrow vector states
known to show up in the large Nc limit is then approximated by a suitable lowest
meson dominance (LMD+V) ansatz [119], assumed to be saturated by known low
lying physical states of appropriate quantum numbers. This approach was adopted
in a reanalysis by Knecht and Nyffeler (KN 2001) [116, 120–122] in 2001, in which
they discovered a sign mistake in the dominant π0, η, η′ exchange contribution, which

17Since the leading term is divergent and requires UV subtraction, we expect this term to drop
from the physical result, unless a physical cut–off tames the integral, like the physical ρ in effective
theories which implement the VMD mechanism.
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changed the central value by +167×10−11, a 2.8 σ shift, and which reduces a larger
discrepancy between theory and experiment. More recently Melnikov and Vainshtein
(MV 2004) [123] found additional problems in previous calculations, this time in the
short distance constraints (QCD/OPE) used in matching the high energy behavior of
the effective models used for the π0, η, η′ exchange contribution. Another important
change concerns the contributions from the axialvector exchanges which have been
modeled in [123] violating the Landau–Yang theorem. We will elaborate on this in
much more detail in Sect. 5.2.

We advocate to use consistently dressed form factors as inferred from the res-
onance Lagrangian approach. However, other effects which were first considered
in [123] must be taken into account: (i) the constraint on the twist four (1/q4)-term
in the OPE requires h2 = −10 GeV2 in the Knecht-Nyffeler form factor [120]:
δaμ 
 +5 ± 0 relative to h2 = 0, (ii) the contributions from the f1 and f ′

1 isoscalar
axial–vector mesons: δaμ 
 +6 ± 2 (using dressed photons, and implementing
the Landau–Yang condition), (iii) for the remaining effects, scalars ( f0) + dressed
π±, K ± loops + dressed quark loops: δaμ 
 −5 ± 13. Note that this last group of
terms have been evaluated in [112, 114] only. The splitting into the different terms
is model dependent and only the sum should be considered; the results read −5 ± 13
(BPP) and 5.2 ± 13.7 (HKS) and hence the contribution remains unclear.18 As an
estimate based on [112, 114, 120, 123, 124] we adopt π0, η, η′ [95 ± 12] + axial–
vector [8 ± 3] + scalar [−6 ± 1] + π, K loops [−20 ± 5] + quark loops [22 ± 4] +
tensor [1 ± 0] + NLO [3 ± 2] which yields

a(6)
μ (lbl, had) = (103 ± 29) × 10−11 .

The result differs little from the “agreed” value (105±26)×10−11 presented in [125]
and (116±39)×10−11 estimated in [20]. Both included a wrong, too large, Landau–
Yang theorem violating axial–vector contribution from [123], correcting for this we
obtain our reduced value relative to [20].

(5) Weak interaction corrections:

The last set of corrections are due to the weak interaction as described by the elec-
troweak SM. The weak corrections are those mediated by the weak currents which
couple to the heavy spin 1 gauge bosons, the charged W ± or the neutral “heavy
light” particle Z or by exchange of a Higgs particle H (see Fig. 3.7; masses are given
in (3.33), (3.34)). What is most interesting is the occurrence of the first diagram of
Fig. 3.7, which exhibits a non–Abelian triple gauge vertex and the corresponding
contribution provides a test of the Yang–Mills structure involved. It is of course not
surprising that the photon couples to the charged W boson the way it is dictated
by electromagnetic gauge invariance. In spite of the fact that the contribution is of
leading one–loop order, it is vastly suppressed by the fact that the corrections are
mediated by the exchange of very heavy states which makes them suppressed by

18We adopt the result of [112] as the sign has to be negative in any case (see [121]).

http://dx.doi.org/10.1007/978-3-319-63577-4_5
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Fig. 3.7 The leading weak
contributions to a�; diagrams
in the physical unitary gauge

W W

νμ Z H
μ

γ
(a) (b) (c)

O(2 α
π

m2
μ

M2 ) ∼ 5 × 10−9 for M of about 100 GeV. The gauge boson contributions

up to negligible terms of order O(
m2

μ

M2
W,Z

) are given by (the Higgs contribution is

negligible) [126]

a(2) EW
μ = [

5 + (−1 + 4 sin2 ΘW )2]
√

2Gμm2
μ

48π2

 (194.82 ± 0.02) × 10−11 .

(3.58)

The error comes from the uncertainty in sin2 ΘW [see (3.32)].
Electroweak two–loop calculations started 1992 with Kukhto et al [127], who

observed potentially large terms proportional to ∼G F m2
μ

α
π

ln MZ
mμ

enhanced by a large
logarithm. The most important diagrams are triangle fermion–loops:

a(4) EW
μ ([f ]) �

√
2Gμm2

μ

16π2

α

π
2T3fNcfQ2

f

[
3 ln

M2
Z

m2
f ′

+ Cf

]
γ Z

f

μ

γ

where T3 f is the 3rd component of the weak isospin, Q f the charge and Ncf the
color factor, 1 for leptons, 3 for quarks. The mass m f ′ is mμ if m f < mμ and m f

if m f > mμ, and Ce = 5/2, Cμ = 11/6 − 8/9 π2, Cτ = −6 [127]. Note that
triangle fermion–loops cannot contribute in QED due to Furry’s theorem. However,
the weak interactions are parity violating and if one of the three vector vertices
V μ = γμ is replaced by an axial vertex Aμ = γμγ5 one gets a non–vanishing
contribution. This is what happens if we replace one of the photons by a “heavy
light” particle Z . However, these diagrams are responsible for the Adler-Bell-Jackiw
anomaly [128] which is leading to a violation of axial current conservation and
would spoil renormalizability. The anomalous terms must cancel and in the SM this
happens by lepton quark duality: leptons and quarks have to live in families and for
each family

∑
f Ncf Q2

f T3 f = 0, which is the anomaly cancellation condition in the
SU(3)c ⊗SU(2)L ⊗U (1)Y gauge theory. This is again one of the amazing facts, that
at the present level of precision one starts to be sensitive to the anomaly cancellation
mechanism. This anomaly cancellation leads to substantial cancellations between
the individual fermion contributions. The original results therefore get rectified by
taking into account the family structure of SM fermions [129–131].
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For more sophisticated analyses we refer to [129, 130, 132] which was corrected
and refined in [131, 133]. Including subleading effects yields −5.0 × 10−11 for the
first two families. The 3rd family of fermions including the heavy top quark can
be treated in perturbation theory and was worked out to be −8.2 × 10−11 in [134].
Subleading fermion loops contribute −5.3 × 10−11. There are many more diagrams
contributing, in particular the calculation of the bosonic contributions (1678 dia-
grams) is a formidable task and has been performed 1996 by Czarnecki, Krause
and Marciano as an expansion in (mμ/MV )2 and (MV /m H )2 [135]. Later complete
calculations, valid also for lighter Higgs masses, were performed [136, 137], which
confirmed the previous result −22.3 × 10−11. The 2–loop result reads19

a(4) EW
μ = −41(1) × 10−11 .

The complete weak contribution may be summarized by [133]

aEW
μ =

√
2Gμ m2

μ

16π2

{
5

3
+ 1

3
(1 − 4 sin2 ΘW )2 − α

π
[155.5(4)(2)]

}

= (154 ± 1[had] ± 0.4[mH, mt, 3 − loop]) × 10−11 (3.59)

with errors from triangle quark–loops. For the Higgs we use the recent LHC observa-
tion m H 
 125.1 ± 0.3 GeV. The 3–loop effect has been estimated tobe small [131,
133] (see (4.124)).

This closes our overview of the various contributions to the anomalous magnetic
moment of the muon. More details about the higher order QED corrections as well
as the weak and strong interaction corrections will be discussed in detail in the next
Chap. 4. First we give a brief account of the status of the theory in comparison to the
experiments. We will consider the electron and the muon in turn.

3.2.2 The Anomalous Magnetic Moment of the Electron

The electron magnetic moment anomaly likely is the experimentally most precisely
known quantity. For almost 20 years the value was based on the extraordinary precise
measurements of electron and positron anomalous magnetic moments

19The authors of [127] reported
a(4) EW
μ = −42 × 10−11

for what they thought was the leading correction, which is very close to the complete weak two–loop
corrections, however, this coincidence looks to be a mere accident. Nevertheless, the sign and the
order of magnitude turned out to be correct.

http://dx.doi.org/10.1007/978-3-319-63577-4_4
http://dx.doi.org/10.1007/978-3-319-63577-4_4
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aexp
e− = 0.001 159 652 188 4(43),

aexp
e+ = 0.001 159 652 187 9(43), (3.60)

by Van Dyck et al. (1987) [138]. The experiment used the ion trap technique, which
has made it possible to study a single electron with extreme precision.20 The result
impressively confirms the conservation of CPT: ae+ = ae− . Being a basic prediction
of any QFT, CPT symmetry will be assumed to hold in the following. This allows
us to average the electron and positron values with the result [14]

ae = μe/μB − 1 = (ge − 2)/2 = 1.159 652 1883(42) × 10−3 . (3.61)

The relative standard uncertainty is 3.62 ppb. A big step forward has been achieved
more recently by Gabrielse et al. [5, 6, 139] in an experiment at Harvard University
using a one–electron quantum cyclotron. The new result is

ae = 1.159 652 180 73(28)[0.24 ppb] × 10−3 , (3.62)

with an accuracy nearly 15 times better than (3.61) and shifting down the central
value of ae by 1.8 standard deviations.

The measurements of ae not only played a key role in the history of precision
tests of QED in particular, and of QFT concepts in general, today we may use
the anomalous magnetic moment of the electron to get the most precise indirect
measurement of the fine structure constant α. This possibility of course hangs on our
ability to pin down the theoretical prediction with very high accuracy. Indeed ae is
much saver to predict reliably than aμ. The reason is that non–perturbative hadronic
effects as well as the sensitivity to unknown physics beyond the SM are suppressed
by the large factor m2

μ/m2
e 
 42 753 in comparison to aμ. This suppression has to be

put into perspective with the 2250 times higher precision with which we know ae.
We thus can say that effectively ae is a factor 19 less sensitive to model dependent
physics than aμ.

The reason why it is so interesting to have such a precise measurement of ae of
course is that it can be calculated with comparable accuracy in theory. The prediction
is given by a perturbation expansion of the form

ae =
N∑

n=1

Cn(α/π)n , (3.63)

20The ion trap technique was introduced and developed by Paul and Dehmelt, whom was awarded
the Nobel Prize in 1989. The ion traps utilize electrical quadrupole fields obtained with hyperboloid
shaped electrodes. The Paul trap works with dynamical trapping using r.f. voltage, the Penning trap
used by Dehmelt works with d.c. voltage and a magnetic field in z-direction.
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with terms up to five loops, N = 5, under consideration. The experimental precision
of ae requires the knowledge of the coefficients with accuracies δC2 ∼ 5 × 10−8,
δC3 ∼ 2 × 10−5, δC4 ∼ 1 × 10−2 and δC5 ∼ 4. Actually, Aoyama, Hayakawa,
Kinoshita and Nio [10, 33] not long ago achieved remarkable progress in calculat-
ing missing four– and five–loop QED contributions. Besides the leading universal
C5 term, which we already included in (3.45), also so far missing mass–dependent
μ and τ lepton contributions have been evaluated. Concerning the mass–dependent
contributions, the situation for the electron is quite different from the muon. Since
the electron is the lightest of the leptons a potentially large “light internal loop”
contribution is absent. For ae the muon is a heavy particle mμ � me and its contri-
bution is of the type “heavy internal loops” which is suppressed by an extra power of
m2

e/m2
μ. In fact the μ–loops tend to decouple and therefore only yield small terms.

We may evaluate them by just replacing mμ → me and mτ → mμ in the formula for
the τ–loop contributions to aμ. Corrections due to internal μ–loops are suppressed
as O(2α/π m2

e/m2
μ) 
 1.1 × 10−7 relative to the leading term and the τ–loops

practically play no role at all.
Collecting the results we have21

aQED
e = auni

e + ae(μ) + ae(τ ) + ae(μ, τ ) (3.64)

with universal term given by (3.45) and

ae(μ) = 5.197 386 76(26) × 10−7
(α

π

)2 − 7.373 941 70(27) × 10−6
(α

π

)3

+ 9.161 970 703(373) × 10−4
(α

π

)4 − 0.00382(39) × 10−6
(α

π

)5

ae(τ ) = 1.83798(33) × 10−9
(α

π

)2 − 6.5830(11) × 10−8
(α

π

)3

+7.429 24(118) × 10−6
(α

π

)4

ae(μ, τ ) = 0.190982(34) × 10−12
(α

π

)3 + 7.4687(28) × 10−7
(α

π

)4
.

21The order α3 terms are given by two parts which cancel partly

A(6)
2 (me/mμ) = −7.373 941 70(27) × 10−6

= −2.17684018(10) × 10−5
∣
∣∣
μ−vap

+ 1.439446007(72) × 10−5
∣
∣∣
μ−lbl

A(6)
2 (me/mτ ) = −6.5830(11) × 10−8

= −1.16744(20) × 10−7
∣∣
∣
τ−vap

+ 0.50914(9) × 10−7
∣∣
∣
τ−lbl

.

The errors are due to the errors in the mass ratios. They are completely negligible in comparison to
the other errors.
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Altogether the perturbative expansion for the QED prediction of ae is given by

aQED
e = α

2π
− 0.328 478 444 002 54(33)

(α

π

)2

+ 1.181 234 016 816(11)
(α

π

)3

− 1.91134(182)
(α

π

)4

+ 7.791(580)
(α

π

)5
. (3.65)

The improvement of the coefficient C4 and knowing C5 now are important for the
precise determination of α from aexp

e below. For our accurate value for the fine
structure constant (3.29), which has been determined by matching the SM prediction
of ae below with aexp

e , we obtain

aQED
e = auni

� + 0.00000000000268 = 0.00115965217910(26)(0)(4)[26] , (3.66)

which shows that the QED part of the SM prediction of ae is overwhelmingly dom-
inated by the universal part (3.45).

What still is missing are the hadronic and weak contributions, which both are
substantially reduced relative to aμ. One should note that these contributions do
not scale by the (me/mμ)

2 factor as one could naively guess. Estimates yield ahad
e =

1.697(12)×10−12 and aweak
e = 0.030×10−12, respectively [74].22 With the improved

experimental result for ae and the improved QED calculations available, the hadronic
contribution now start to be significant, however, unlike in ahad

μ for the muon, ahad
e

is known with sufficient accuracy and is not the limiting factor here. As a result ae

essentially only depends on perturbative QED, while hadronic, weak and new physics
(NP) contributions are suppressed by (me/M)2, where M is a weak, hadronic or new
physics scale. As a consequence ae at this level of accuracy is theoretically well
under control (almost a pure QED object) and therefore is an excellent observable
for extracting αQED based on the SM prediction

aSM
e = aQED

e [Eq. (3.65)] + 1.721(12) × 10−12 (hadronic & weak) . (3.67)

22The precise procedure of evaluating the hadronic contributions will be discussed extensively
in Chap. 5 for the muon, for which the effects are much more sizable. As expected, corresponding
calculations for the electron give small contributions only. We find ahad, LO

e = 1.8465(121)×10−12

for the leading HVP contribution, ahad, NLO
e = −0.2210(14) × 10−12 for the next to leading and

ahad, NNLO
e = 0.0279(2) × 10−12 for the next-to-next leading order [108]. For the hadronic light–

by–light scattering contribution we estimate ahad,LbL
e = 0.037(5) × 10−12. An early relatively

accurate evaluation a(4)
e (vap, had) = 1.884(41) × 10−12 for the leading term has been obtained in

1995 [64] and illustrates the progress since.

http://dx.doi.org/10.1007/978-3-319-63577-4_5
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We now compare this result with the very recent extraordinary precise measure-
ment of the electron anomalous magnetic moment [6]

aexp
e = 0.001 159 652 180 73(28) (3.68)

which yields

α−1(ae) = 137.035 999 1547(331)(0)(27)(14)[333] ,

which is close [55 → 39 in 10−9] to the value (3.29) [10] given earlier. If one adopts
the CODATA recommended value aexp

e = 0.001 159 652 180 76(27) as an input one
obtains

α−1(ae) = 137.035 999 1512(320)(0)(27)(14)[321] . (3.69)

The first error is the experimental one of aexp
e , the second and third are the numer-

ical uncertainties of the α4 and α5 terms, respectively. The last one is the hadronic
uncertainty, which is completely negligible. This is now the by far most precise
determination of α and we will use the recommended variant (3.29) throughout in
the calculation of aμ, below.

A different strategy is to use ae for a precision test of QED. For a theoretical
prediction of ae we then need the best determinations of α which do not depend on
ae. They are [140–142]23

α−1(Cs06) = 137.03600000(110)[8.0 ppb] , (3.70)

α−1(Rb11) = 137.035999037(91)[0.66 ppb] , (3.71)

and have been determined by atomic interferometry. The new much improved value
(3.71) is obtained from the measurement of h/mRb, combined with the very precisely
known Rydberg constant and the new value for mRb/me [10, 142].

In terms of α(Cs06) one gets ae = 0.00115965217359(929) which agrees well
with the experimental value aexp

e − athe
e = 7.14(9.30) × 10−12; With the new value

α(Rb11) the prediction is ae = 0.00115965218172(77), again in good agreement
with experiment: aexp

e − athe
e = −0.99(0.82) × 10−12. The error is completely dom-

inated by the error of the input value of α used. The precision reached is close
to become interesting for testing new physics scenarios [150, 151]. The following
Table 3.3 collects the typical contributions to ae evaluated in terms of Eqs. (3.70)
and (3.71). The new results [10] imply that the theory error is reduced by almost a
factor 5. In spite of the fact that the best non–ae determinations of α also improved by

23The results rely upon a number of other experimental quantities. One is the measured Rydberg con-
stant [143], others are the Cesium (Cs) and Rubidium (Rb) masses in atomic mass units (amu) [144]
and the electron mass in amu [145–147]. The �/MCs needed comes from an optical measurement
of the Cs D1 line [140, 148] and the preliminary recoil shift in an atom interferometer [149], while
�/MRb comes from a measurement of an atom recoil of a Rb atom in an optical lattice [140].
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Table 3.3 Contributions to ae(h/M) in units 10−6. The three errors given in the universal con-
tribution come from the experimental uncertainty in α, from the α4 term and from the α5 term,
respectively

Contribution α(h/MCs06) α(h/MRb11)

Universal 1159.652 169 15(929)(0)(4) 1159.652 177 28(77)(0)(4)

μ–loops 0.000 002 738 (0) 0.000 002 738 (0)

τ–loops 0.000 000 009 (0) 0.000 000 009 (0)

Hadronic 0.000 001 690 (13) 0.000 001 690 (13)

Weak 0.000 000 030 (0) 0.000 000 030 (0)

Theory 1159.652 173 59(929) 1159.652 181 72(77)

Experiment 1159.652 180 73 (28) 1159.652 180 73 (28)

aexp
e − athe

e 7.14(9.30) × 10−12 −0.99(0.82) × 10−12

a factor 10 the error is still dominated by the uncertainty of α−1(Rb11). An improve-
ment by a factor 10 would allow a much more stringent test of QED, and therefore

would be very important. At present, assuming that
∣∣∣ΔaNew Physics

e

∣∣∣ 
 m2
e/Λ

2 where

Λ approximates the scale of “New Physics”, the agreement between α−1(ae) and
α−1(Rb11) probes the scale Λ <∼ O(400 GeV). To access the much more interesting
range of Λ ∼ O(1 TeV) would require primarily a substantially more precise α.
The tenth order QED calculations by Aoyama, Hayakawa, Kinoshita and Nio mark
a new milestone in accuracy and in complexity of theoretical predictions in quantum
field theory. They put g-2 calculations on a much safer basis for what concerns the
perturbative part. Still, independent cross checks of both the O(α4) and the O(α5)

QED calculations are highly desirable, even though we have no doubts that the new
results are reliable. Important semi-analytic cross checks so far confirm the numer-
ical calculations [50, 57]. The new quasi–analytic O(α4) result by Laporta [11] is
certainly a milestone in consolidating the QED part aQED

e .
As a summary, we note that with

aexp
e − athe

e = −0.99(0.82) × 10−12 , (3.72)

theory and experiment are in excellent agreement. We know that the sensitivity to new
physics is reduced by (mμ/me)

2 · δaexp
e /δaexp

μ 
 19 relative to aμ. Nevertheless, one
has to keep in mind that ae is suffering less from hadronic uncertainties and thus may
provide a safer test. One should also keep in mind that experiments determining ae on
the one hand and aμ on the other hand are very different with different systematics.
While ae is determined in a ultra cold environment aμ has been determined with ultra
relativistic (magic γ) muons so far. Presently, the ae prediction is limited by the, by a
factor δα(Rb11)/δα(ae) 
 5.3 less precise, α available. Combining all uncertainties
aμ is about a factor 43 more sensitive to new physics at present.
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Table 3.4 QED contributions to aμ in units 10−6

Term Universal e–loops τ–loops e × τ–loops

a(4) −1.772 305 06 (0) 5.904 060 07 (4) 0.000 421 28 (8) −
a(6) 0.014 804 20 (0) 0.286 603 69 (0) 0.000 004 52 (0) 0.000 006 61 (0)

a(8) −0.000 055 67 (0) 0.003 862 64 (18) 0.000 001 23 (0) 0.000 001 83 (0)

a(10) 0.000 000 62 (4) 0.000 050 19 (6) −0.000 000 01 (0) 0.000 000 14 (0)

Recently, the possible non-perturbative QED effect of order α5 of the positronium
exchange γ∗ → [e+e−]bound state → γ∗, in the virtual photon line of the LO diagram
of the electron g − 2, was pointed out in [152, 153], but has been shown to be absent
as an additional contribution [153–156], in accord with earlier studies [157, 158].

3.2.3 The Anomalous Magnetic Moment of the Muon

The muon magnetic moment anomaly is defined by

aμ = 1

2
(gμ − 2) = μμ

e�/2mμ
− 1 , (3.73)

where gμ = 2μμ/(e�/2mμ) is the g–factor and μμ the magnetic moment of the
muon. The different higher order QED contributions are collected in Table 3.4. We
thus arrive at a QED prediction of aμ given by

aQED
μ = 116 584 718.859(0.026)(0.009)(0.017)(0.006)[0.034] × 10−11 (3.74)

where the first error is the uncertainty of α in (3.29), the second one combines in
quadrature the uncertainties due to the errors in the mass ratios (3.30), the third and
fourth are the numerical uncertainties of the O(α4) and O(α5) terms, respectively.
With the spectacular progress achieved with the calculation of the complete O(α5)

term [10, 51] the error is essentially given by the input error of α[ae] in spite of the
fact that this error has been reduced as well due to the O(α5) result on ae.

The following Table 3.5 collects the typical contributions to aμ evaluated in terms
of α (3.29) determined via ae.

The world average experimental muon magnetic anomaly, dominated by the very
precise BNL result, is now [7, 159]

aexp
μ = 1.16592091(63) × 10−3 (3.75)

(relative uncertainty 5.4 × 10−7), which confronts the SM prediction

athe
μ = 1.16591783(35) × 10−3 . (3.76)
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Table 3.5 The various types of contributions to aμ in units 10−6, ordered according to their size
(L.O. lowest order, H.O. higher order, LbL light–by–light). The gray band shows the present exper-
imental result with its uncertainty. The hatched overlay illustrates the expected uncertainty (for
the same central value) which will be reached in the coming years.“Theory τ” shows the result
from [88] where τ–data have been taken into account, before taking into care of ρ0 − γ mixing.
This result is outdated. The LbL result’s history is also shown. Results are from: 1995 [112, 114,
115], 2001 [KN] [120], 2003 [MV] [123], and 2015 [JN] [20, 74, 125]

Figure 3.8 illustrates the sensitivity to various contributions and how it developed
in history. The high sensitivity of aμ to physics from not too high scales M above
mμ, which is scaling like (mμ/M)2, and the more than one order of magnitude
improvement of the experimental accuracy has brought many SM effects into the
focus of the interest. Not only are we testing now the 4–loop QED contribution,
higher order HVP effects, the infamous hadronic LbL contribution and the weak
loops, we are reaching or limiting possible New Physics at a level of sensitivity
which caused and still causes a lot of excitement. “New Physics” is displayed in the
figure as the ppm deviation of

aexp
μ − athe

μ = (306 ± 72) × 10−11 , (3.77)

which is 4.3 σ. We note that the theory error is now smaller than the experimental
one. It is fully dominated by the uncertainty of the hadronic low energy cross section
data, which determine the hadronic vacuum polarization and, partially, from the
uncertainty of the hadronic light–by–light scattering contribution.

As we notice, the enhanced sensitivity to “heavy” physics is somehow good news
and bad news at the same time: the sensitivity to “New Physics” we are always
hunting for at the end is enhanced due to

aNP
� ∼

(
m�

MNP

)2
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aμ in units 10−11

10−3 10−1 101 103 105 107 109
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169140027102 19681976
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SM uncertainty
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Fig. 3.8 History of the muon g − 2 experiments and the sensitivity to various contributions. The
increase in precision with the BNL g − 2 experiment is shown as a blue vertical band. New Physics
is illustrated by the deviation (aexp

μ −athe
μ )/aexp

μ . The left orange vertical band shows the sensitivity
band which will be reached with the upcoming muon g − 2 experiment at Fermilab [160]. Arrows
point to what is limiting theory precision presently: the Hadronic Vacuum Polarization (HVP) and
Hadronic Light-by-Light (HLbL) contributions

by the mentioned mass ratio square, but at the same time also scale dependent SM
effects are dramatically enhanced, and the hadronic ones are not easy to estimate
with the desired precision.

The perspectives for future developments will be discussed at the end of Chap. 7.
After this summary of the current status of aμ and ae, we will now go on and

present basic techniques and tools used in calculating the various effects, before we
are going to present a more detailed account of the individual contributions in the
next chapter.

3.3 Structure of the Electromagnetic Vertex in the SM

Here we want to discuss the lepton moments beyond QED in the more general context
of the SM, in which parity P as well as CP are broken by the weak interactions. We
again start from the relevant matrix element of the electromagnetic current between
lepton states

http://dx.doi.org/10.1007/978-3-319-63577-4_7
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iΓ μ
γ��(p1, p2; r1, r2) = 〈�−(p2, r2)| jμ

em(0)|�−(p1, r1)〉 = iū(p2, r2)Π
μ
γ��u(p1, r1)

(3.78)

and look for the additional form factors showing up if P and C are violated. Again
q = p2 − p1 is the momentum transfer. u(p1, r1) is the Dirac spinor, the wave
function of the incoming lepton, with momentum p1 and 3rd component of spin
r1(= ± 1

2 ), and ū = u+γ0 is the adjoint spinor representing the wave function of
the outgoing lepton. Π

μ
γ�� is a Hermitian 4 × 4 matrix in spinor space and a Lorentz

four–vector.
Besides the Dirac matrix γμ we have two further independent four–vectors, the

momenta p1 and p2 or linear combinations of them. It is convenient to choose the
orthogonal vectors P = p1 + p2 and q = p2 − p1 (with Pq = 0). The general
covariant decomposition for on–shell leptons in the SM then may be written in the
form

Π
μ
γ�� = γμ A1 + Pμ

2m
A2 + qμ

2m
A3 + γμγ5 A4 + qμ

2m
γ5 A5 + i

Pμ

2m
γ5 A6 (3.79)

where the scalar amplitudes Ai (p1, p2) are functions of the scalar products p2
1, p2

2
and p1 p2. Since the lepton is on the mass shell p2

1 = p2
2 = m2 and using q2 =

2m2 −2p1 p2, the dimensionless amplitudes depend on the single kinematic variable
q2 and on all the parameters of the theory: the fine structure constant α = e2/4π and
all physical particle masses. We will simply write Ai = Ai (q2) in the following.

When writing (3.79) we already have made use of the Gordon identities

iσμνqν = −Pμ + 2mγμ , iσμν Pν = −qμ ,

iσμνqνγ5 = −Pμγ5 , iσμν Pνγ5 = −qμγ5 + 2mγμγ5 ,
(3.80)

which hold if sandwiched between the spinors like ū(p2) · · · u(p1). In QED due to
parity conservation the terms proportional to γ5 are absent.

The electromagnetic current still is conserved:

∂μ jμ
em = 0 . (3.81)

On a formal level, this may be considered as a trivial consequence of the inhomoge-
neous Maxwell equation (see [161] for a manifestly gauge invariant formulation in
the SM)

∂μFμν = −e jν
em with Fμν = ∂μ Aν − ∂ν Aμ

since ∂ν∂μFμν = −e ∂ν jν
em ≡ 0 as ∂ν∂μ is symmetric in μ ↔ ν while Fμν is

antisymmetric. As a consequence we must have qμū2Π
μ
γ��u1 = 0. By the Dirac

equations � pi ui = mui (i = 1, 2) we have ū2 � qu1 = 0, while ū2 � qγ5u1 =
−2mū2γ5u1, furthermore, q P = 0 while keeping q2 �= 0 at first. Hence current
conservation requires A3 = 0 and A5 = −4m2/q2 A4 such that we remain with four
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physical form factors24

ū2Π
μ
γ��u1 = ū2

(
γμ A1 + Pμ

2m
A2 +

(
γμ − 2mqμ

q2

)
γ5 A4 + i

Pμ

2m
γ5 A6

)
u1 .

This shows that the two amplitudes A3 and A6 are redundant for physics, however,
they show up in actual calculations at intermediate steps and/or for contributions
from individual Feynman diagrams. By virtue of the Gordon decomposition

ū(p2)
Pμ

2m
u(p1) ≡ ū(p2)

(
γμ − i

σμνqν

2m

)
u(p1)

we finally obtain for the form factor

Π
μ
γ�� = γμFE(q2) +

(
γμ − 2mqμ

q2

)
γ5 FA + iσμν qν

2m
FM(q2) + σμν qν

2m
γ5 FD(q2)

(3.82)

With FE = A1 + A2 the electric charge form factor, normalized by charge renor-
malization to FE(0) = 1, FA = A4 the anapole moment [162–166] which is P
violating and vanishing at q2 = 0: FA(0) = 0. The magnetic form factor is
FM = −A2 which yields the anomalous magnetic moment as a� = FM(0). The
last term with FD = A6 represents the CP violating electric dipole moment (EDM)

d� = − FD(0)

2m
. (3.83)

Note that (3.82) is the most general Lorentz covariant answer, which takes into
account current conservation (3.81) and the on–shell conditions for the leptons (Dirac
equation for the spinors).

In the SM at the tree level FE(q2) = 1, while Fi(q2) = 0 for (i = M, A, D).
The anomalous magnetic moment a� is a dimensionless quantity, just a number,

and corresponds to an effective interaction term

δLAMM
eff = −e�a�

4m�

ψ̄(x) σμν ψ(x) Fμν(x) , (3.84)

with classical low energy limit

−δLAMM
eff ⇒ Hm 
 e�a�

2m�

σB ,

24In the SM the proper definition of the form factors is highly non–trivial. The conventional definition
of the photon field has to be replaced by one which satisfies Maxwell’s equations to all orders. This
has been investigated extensively in [161]. Since we are interested only in the form factors in the
classical limit here, we need not go further into this discussion.
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written as a Hamiltonian in 2–spinor space à la Pauli. Note that a term (3.84), if
present in the fundamental Lagrangian, would spoil renormalizability of the theory
and contribute to Fi(q2) (i=M,D) at the tree level. In addition it is not SU(2)L gauge
invariant, because gauge invariance only allows minimal couplings via the covariant
derivative: vector and/or axial–vector terms. The emergence of an anomalous mag-
netic moment term in the SM is a consequence of the symmetry breaking by the
Higgs mechanism,25 which provides the mass to the physical particles and allows
for helicity flip processes like the anomalous magnetic moment transitions. In any
renormalizable theory the anomalous magnetic moment term must vanish at tree
level, which also means that there is no free parameter associated with it. It is thus a
finite prediction of the theory to all orders of the perturbation expansion.

The EDM term only can be non–vanishing if both parity P and time–reversal T
are violated [167, 168]. It corresponds to an effective interaction

δLEDM
eff = −d�

2
ψ̄(x) i σμνγ5 ψ(x) Fμν(x) , (3.85)

which in the non–relativistic limit becomes

− δLEDM
eff ⇒ He 
 −d� σE , (3.86)

again written as a Hamiltonian in 2–spinor space. Again a term (3.85) is non–
renormalizable and it is not SU(2)L gauge invariant and thus can be there only
because the symmetry is broken in the Higgs phase. In the framework of a QFT
where CPT is conserved T violation directly corresponds to CP violation, which
is small (0.3 %) in the light particle sector and can come in at second order at
best [169].26 This is the reason why the EDM is so much smaller than its magnetic
counter part. The experimental limit for the electron is |de| < 1.6 × 10−27 e · cm at
90% C.L. [171]. The direct test for the muon gave dμ = 3.7 ± 3.4 × 10−19 e · cm at
90% C.L. [172]. New much more precise experiments for dμ are under discus-

25Often the jargon spontaneously broken gauge symmetry (or the like) is used for the Higgs mech-
anism. The formal similarity to true spontaneous symmetry breaking, like in the Goldstone model,
which requires the existence of physical zero mass Goldstone bosons, only shows up on an unphys-
ical state space which is including the Higgs ghosts (would be Goldstone bosons). In fact it is
the discrete Z2 symmetry H ↔ −H of the physical Higgs field (in the unitary gauge) which is
spontaneously broken. This also explains the absence of physical Goldstone bosons.
26CP-violation in the SM arises from the complex phase δ in the CKM matrix, which enters the
interactions of the quarks with the W ± gauge bosons. The magnitude in the 3 family SM is given
by the Jarlskog invariant [170]

J = cos θ1 cos θ2 cos θ3 sin2 θ1 sin θ2 sin θ3 sin δ = (2.88 ± 0.33) × 10−5 (3.87)

where the θi are the 3 mixing angles and δ is the phase in the CKM matrix. Note that J is very
small. In addition, only diagrams with at least one quark–loop with at least four CC vertices can
give a contribution. This requires 3–loop diagrams exhibiting four virtual W –boson lines inside.
Such contributions are highly suppressed. Expected CP violation in the neutrino mixing matrix are
expected to yield even much smaller effects.
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sion [173]. Theory expects d the
e ∼ 10−28 e · cm [169], 10 times smaller than the

present limit. For a theoretical review I refer to [174] or [35]. If we assume that
ημ ∼ (mμ/me)

2 ηe (see (1.5)), i.e., η� scales like heavy particle (X) effects in
δa�(X) ∝ (m�/MX )2, as they do in many new physics scenarios, we expect that
dμ ∼ (mμ/me) de, and thus dμ ∼ 3.2 × 10−25 e · cm. This is too small to affect the
extraction of aμ, for example, as we will see.

3.4 Dipole Moments in the Non–Relativistic Limit

Here we are interested in the non–relativistic limits of the effective dipole moment
interaction terms (3.84)

δLAMM
eff = −e�a�

4m�

ψ̄(x) σμν ψ(x) Fμν(x) ,

and (3.85)

δLEDM
eff = −d�

2
ψ̄(x) i σμνγ5 ψ(x) Fμν(x) ,

when the electron is moving in a classical external field described by Fext
μν . The

relevant expansion may be easily worked out as follows: since the antisymmetric
electromagnetic field strength tensor Fμν exhibits the magnetic field in the spatial
components Fik : Bl = 1

2 εikl Fik and the electric field in the mixed time–space part:
Ei = F0i , we have to work out σμν for the corresponding components:

σik = i

2

(
γiγk − γkγi

)

= i

2

((
0 σi

−σi 0

)(
0 σk

−σk 0

)
−
(

0 σk

−σk 0

)(
0 σi

−σi 0

))

= − i

2

( [σi ,σk] 0
0 [σi ,σk]

)
= εikl

(
σl 0
0 σl

)

σ0iγ5 = i

2

(
γ0γi − γiγ0

)
γ5

= i

2

((
1 0
0 −1

)(
0 σi

−σi 0

)
−
(

0 σi

−σi 0

)(
1 0
0 −1

))
γ5

= i

(
0 σi

σi 0

)(
0 1
1 0

)
= i

(
σi 0
0 σi

)

.

Note that the γ5 here is crucial to make the matrix block diagonal, because, only block
diagonal terms contribute to the leading order in the non–relativistic expansion, as
we will see now.

http://dx.doi.org/10.1007/978-3-319-63577-4_1


206 3 Lepton Magnetic Moments: Basics

In the rest frame of the electron the spinors have the form

u(p, r) = 1
√

p0 + m
( �p + m) ũ(0, r) 
 ũ(0, r)

with

ũ(0, r) =
(

U (r)

0

)
, U

(
1

2

)
=
(

1

0

)
, U

(
−1

2

)
=
(

0

1

)
.

We first work out the magnetic dipole term

ū2σ
μνu1 Fμν 
 (U T (r2), 0) σμν

(
U (r1)

0

)
Fμν

= (U T (r2), 0) σik

(
U (r1)

0

)
Fik

= εikl(U T (r2), 0)

(
σl 0
0 σl

)(
U (r1)

0

)
Fik

= 2U T (r2) σ U (r1) B = 2(σ)r2,r1 B .

The other non–diagonal terms do not contribute in this static limit. Similarly, for the
electric dipole term

ū2σ
μνγ5u1 Fμν 
 (U T (r2), 0) σμνγ5

(
U (r1)

0

)
Fμν

= 2 (U T (r2), 0) σ0iγ5

(
U (r1)

0

)
F0i

= 2i(U T (r2), 0)

(
σi 0
0 σi

)(
U (r1)

0

)
F0i

= 2iU T (r2) σ U (r1) E = 2i(σ)r2,r1 E .

In the low energy expansion matrix elements of the form v̄2Γi u1 or ū2Γiv1 pick out
off–diagonal 2×2 sub–matrices mediating electron–positron creation or annihilation
processes, which have thresholds

√
s ≥ 2m and thus are genuinely relativistic effects.

The leading terms are the known classical low energy effective terms

−δLAMM
eff ⇒ Hm 
 e�a�

2m�

σB ,

and

−δLEDM
eff ⇒ He 
 −d� σE ,

written as 2 × 2 matrix Hamiltonian, as given before.
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3.5 Projection Technique

Especially the calculations of the anomalous magnetic moment in higher orders
require most efficient techniques to perform such calculations. As we have seen in
Chap. 2 the straightforward calculation of the electromagnetic form factors turns out
to be quite non–trivial at the one–loop level already. In particular the occurrence
of higher order tensor integrals (up to second rank) makes such calculations rather
tedious. Here we outline a projection operator technique which appears to be a
much more clever set up for such calculations. Calculations turn out to simplify
considerably as we will see.

The tensor integrals showing up in the direct evaluation of the Feynman integrals
may be handled in a different way, which allows us to deal directly with the individual
amplitudes appearing in the covariant decomposition (3.79). With the matrix element
of the form (3.78) we may construct projection operators Pμi such that the amplitudes
Ai are given by the trace

Ai = Tr
{
PμiΠ

μ
γ��

}
. (3.88)

Since we assume parity P and CP symmetry here (QED) and we have to form a
scalar amplitude, a projection operator has to be of a form like (3.79) but with
different coefficients which have to be chosen such that the individual amplitudes
are obtained. An additional point we have to take into account is the following: since
we are working on the physical mass shell (off–shell there would be many more
amplitudes), we have to enforce that contributions to Π

μ
γ�� of the form δΠ

μ
γ�� = · · ·

( � p1 − m) + ( � p2 − m) · · · give vanishing contribution as ū2δΠ
μ
γ��u1 = 0. This is

enforced by applying the projection matrices �p1 +m from the right and �p2 +m from
the left, respectively, such that the general form of the projector of interest reads

P = ( �p1 + m)

(
γμc1 + Pμ

2m
c2 + qμ

2m
c3 + γμγ5c4 + qμ

2m
γ5c5 − i

Pμ

2m
γ5c6

)
( �p2 + m) .

(3.89)
It indeed yields

Tr
{
PμδΠ

μ
γ��

}
= 0

for arbitrary values of the constants ci , because ( �p2 + m)( �p2 − m) = p2
2 − m2 = 0

if we set p2
2 = m2 and making use of the cyclicity of the trace, similarly, ( �p1 − m)

( � p1 + m) = p2
1 − m2 = 0 if we set p2

1 = m2. In order to find the appropriate
sets of constants which allow us to project to the individual amplitudes we compute
Tr PμΠ

μ
γ�� and obtain

Tr
{
PμΠ

μ
γ��

}
=

6∑

i=1

gi Ai (3.90)

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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∑6
i=1 gi Ai = A1

[
c1(2ds − 4s + 8m2) + c2(−2s + 8m2)

]

+ A2
[
c1(−2s + 8m2) + c2(−4s + 1/2s2m−2 + 8m2)

]

+ A3
[
c3(2s − 1/2s2m−2)

]

+ A4
[
c4(2ds − 8dm2 − 4s + 8m2) + c5(2s)

]

+ A5
[
c4(−2s) + c5(1/2s2m−2)

]

+ A6
[
c6(2s − 1/2s2m−2)

]

where s = q2. We observe, firstly, that each of the amplitudes A3 and A6 does
not mix with any other amplitude and hence may be projected out in a trivial way
setting c3 = 1 or c6 = 1, respectively, with all others zero in (3.89). Secondly,
the parity violating amplitudes Ai i = 4, 5, 6 do not interfere of course with the
parity conserving ones Ai i = 1, 2, 3 which are the only ones present in QED. To
disentangle A1 and A2 we have to choose c1/c2 such that the coefficient of A2 or
the one of A1 is vanishing, and correspondingly for A4 and A5. The coefficient of
the projected amplitude Ai has to be normalized to unity, such that the requested
projector yields (3.88).

Thus, Pi is obtained by choosing c j such that gi = 1 and g j = 0 for all j �= i . The
following table lists the non–zero coefficients required for the corresponding projec-
tor:

P1 : c1 = c2
s − 4m2

4m2
c2 = 1

(d−2) f1(d)

2m2

s(s − 4m2)

P2 : c2 = c1
(d − 2)s + 4m2

s − 4m2
c1 = 1

(d−2) f1(d)

2m2

s(s − 4m2)

P3 : c3 = 1

f1(d)
2m2

s(s−4m2)

P4 : c4 = c5
s

4m2
c5 = 1

(d−2) f1(d)

2m2

s(s − 4m2)

P5 : c5 = −c4
(d − 2)(s − 4m2) − 4m2

s
c4 = 1

(d−2) f1(d)

2m2

s(s − 4m2)

P6 : c6 = −i
1

f1(d)
2m2

s(s−4m2)

with f1(d) we denote f (d)/ f (d = 4) where f (d)
.= Tr 1 = 2(d/2) (limd→4 f (d) =

4). As discussed in Sect. 2.4.2, p. 68 physics is not affected by the way f (d = 4) = 4
is extrapolated to d �= 4, provided one sticks to a given convention, like setting
f (d) = 4 for arbitrary d which means we may take f1(d) = 1 everywhere as a
convention. For the amplitudes we are interested in the following we have

Pμ
1 = 1

2 f1(d)(d − 2)
( �p1 + m)

(
γμ + 4m2

s(s − 4m2)

Pμ

2m

)
( �p2 + m) ,

Pμ
2 = 2m2/s

f1(d)(d − 2)(s − 4m2)
( �p1 + m)

(
γμ + (d − 2)s + 4m2

(s − 4m2)

Pμ

2m

)
( �p2 + m),

Pμ
3 = 1

f1(d)

2m2/s

(s − 4m2)
( �p1 + m)

(
qμ

2m

)
( �p2 + m) . (3.91)

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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All projectors are of the form

Pμ
i = ( �p1 + m) Λ

μ
i (p2, p1) ( �p2 + m) , (3.92)

for example, in the projector for A2 taking f1(d) = 1 we have

Λ
μ
2 (p2, p1) = 2m2

(d − 2) s(s − 4m2)

(
γμ + (d − 2) s + 4m2

(s − 4m2)

Pμ

2m

)
. (3.93)

This projector we will need later for calculating higher order contributions to the
anomalous magnetic moment in an efficient manner.

The amplitudes Ai at one–loop are now given by the integrals

Ai = e2
∫

ddk

(2π)d

fi (k)

((p2 − k)2 − m2)((p1 − k)2 − m2)(k2)
(3.94)

with

f1(k) = (4m2 − 2s) − 4k P + (d − 4) k2 + 2(kq)2

s
− 2(k P)2

(s − 4m2)

f2(k) = − 8m2

s − 4m2

(
k P + k2 + (d − 1)

(k P)2

(s − 4m2)
− (kq)2

s

)

f3(k) = 8m2

s
kq

(
1 − (d − 2)

k P

(s − 4m2)

)
. (3.95)

Again we use the relations 2k P = 2 [k2]− [(p1 − k)2 − m2]− [(p2 − k)2 − m2] and
2kq = [(p1 − k)2 − m2]− [(p2 − k)2 − m2] when it is possible to cancel against the
scalar propagators 1

(1)
, 1

(2)
and 1

(3)
where (1)

.= (p1 −k)2 −m2, (2)
.= (p2 −k)2 −m2,

(3)
.= k2:

f1(k) = (4m2 − 2s) + (d − 8) (3) + 2 (1) + 2 (2)

+ (kq)

s
[(1) − (2)] − (k P)

(s − 4m2)
[2 (3) − (1) − (2)]

f2(k) = − 4m2

s − 4m2

(
4 (3) − (1) − (2)

+ (d − 1)
(k P)

(s − 4m2)
[2 (3) − (1) − (2)] − (kq)

s
[(1) − (2)]

)

f3(k) = 4m2

s
[(1) − (2)]

(
1 − (d − 2)

k P

(s − 4m2)

)
. (3.96)

We observe that besides the first term in f1 which yields a true vertex correction
(three point function) all other terms have at least one scalar propagator (1), (2)
or (3) in the numerator which cancels against one of the denominators and hence
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only yields a much simpler two point function. In particular fi i = 2, 3 are com-
pletely given by two point functions and the remaining k dependence in the numer-
ator is at most linear (first rank tensor) and only in combination of two point func-
tions. This is a dramatic simplification in comparison to the most frequently applied
direct method presented before. With

∫
k

1
(1)(2)(3)

= −C0,
∫

k
1

(1)(2)
= B0(m, m; s),

∫
k

1
(1)(3)

= ∫
k

1
(2)(3)

= B0(0, m; m2),
∫

k
kμ

(1)(3)
= pμ

1
A0(m)

2m2 ,
∫

k
kμ

(2)(3)
= pμ

2
A0(m)

2m2 ,
∫

k
kμ

(1)(2)
= 0,

∫
k

1
(1)

= ∫
k

1
(3)

= −A0(m) and
∫

k
1

(3)
= 0 we easily find

A1 = e2

16π2

{
(2s − 4m2) C0(mγ, m, m)

− 3 B0(m, m; s) + 4 B0(0, m; m2) − 2

}

A2 = e2

16π2

{ −4m2

s − 4m2

(
B0(m, m; s) − B0(0, m; m2)

)}

A3 = 0 (3.97)

in agreement with (2.204).

For our main goal of calculating the muon anomaly aμ = FM(0) = −A2(0) we
may work out the classical limit s = q2 → 0

aμ = lim
q2→0

Tr
{
( �p1 + m) Λ

μ
2 (p2, p1) ( �p2 + m) Πμ(P, q)

}
(3.98)

explicitly. Because of the singular factor 1/q2 in front of the projector Λ2 (3.93) we
are required to expand the amplitude Πμ(P, q) to first order for small q,

Πμ(P, q) 
 Πμ(P, 0) + qν ∂

∂qν
Πμ(P, q)

∣∣
q=0 ≡ Vμ(p) + qν Tνμ(p) , (3.99)

where for q = 0 we have p = P/2 = p1. Other factors of q come from expanding
the other factors in the trace by setting p2 = (P + q)/2 and p1 = (P − q)/2 and
performing an expansion in q = p2 − p1 for fixed P = p2 + p1. We note that due
to the on–shell condition p2

2 = p2
1 = m2 we have Pq = 2pq + q2 = 0. The only

relevant qμ dependence left are the terms linear and quadratic in q, proportional to qμ

and qμqν . Since the trace under consideration projects to a scalar, we may average
the residual q dependence over all spatial directions without changing the result.
Since P and q are two independent and orthogonal vectors, averaging is relative to
the direction of P . For the linear term we have

qμ ≡
∫

dΩ(P, q)

4π
qμ = 0 (3.100)

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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because the integrand is an odd function, while

qμqν ≡
∫

dΩ(P, q)

4π
qμqν = αgμν + β

Pμ Pν

P2

must be a second rank tensor in P . Since Pq = 0, the contraction with Pμ is
vanishing, which requires

β = −α .

The other possible contraction with gμν yields q2:

∫
dΩ(P, q)

4π
q2 = q2

∫
dΩ(P, q)

4π
= q2 = α d + β = (d − 1) α

and hence

α = q2

(d − 1)

or

qμqν = q2

(d − 1)

(
gμν − Pμ Pν

P2

)
. (3.101)

Using these averages we may work out the limit which yields

aμ = 1

8 (d − 2)(d − 1) m
Tr

{
( �p + m) [γμ, γν] ( �p + m) Tνμ(p)

}
(3.102)

+ 1

4 (d − 1) m2
Tr

{[
m2 γμ − (d − 1) m pμ − d �p pμ

]
Vμ(p)

}∣∣
p2=m2

as a master formula for the calculation of aμ [103]. The form of the first term is
obtained upon anti–symmetrization in the indices [μν]. The amplitudes Vμ(p) and
Tνμ(p) depend on one on–shell momentum p, only, and thus the problem reduces to
the calculation of on–shell self–energy type diagrams shown in Fig. 3.9.

In Tνμ the extra vertex is generated by taking the derivative of the internal muon
propagators

∂

∂qν

i

�p− �k∓ �q/2 − m

∣∣∣
∣
q=0

= ∓1

2

i

�p− �k − m
(−i γν)

i

�p− �k − m
.

Usually, writing the fermion propagators in terms of scalar propagators

i

�pi− �k − m
= i ( �pi− �k + m)

(pi − k)2 − m2
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Πμ(P, q) = ; Vμ(p) =

Tνμ(p) = −

p − q/2p + q/2

μ q

pp

μ 0

p p

μ 0 0 ν

p p

μ
0

ν
0

Fig. 3.9 To calculate aμ one only needs the on–shell vertex Vμ(p) = Πμ(P, q)|q=0 and its μ ↔ ν

anti–symmetrized derivative Tνμ = ∂
∂qν Πμ(P, q)|q=0 at zero momentum transfer. Illustrated here

for the lowest order diagram; the dotted line may be a photon or a heavy “photon” as needed in the
dispersive approach to be discussed below

as done in (2.203), only the expansion of the numerators contributes to Tνμ, while
expanding the product of the two scalar propagators

1

(p2 − k)2 − m2

1

(p1 − k)2 − m2
= 1

((p − k)2 − m2)2
+ Q(q2)

gives no contribution linear in q, as the linear terms coming from the individual prop-
agators cancel in the product. Looking at (2.203), for the lowest order contribution
we thus have to calculate the trace (3.102) with

Vμ → vμ = γρ ( �p− �k + m) γμ ( �p− �k + m) γρ

Tνμ → tνμ = 1

2
γρ

(
γν γμ ( �p− �k + m) − ( �p− �k + m) γμγν

)
γρ .

The trace yields

2k2

(
1

d − 1
− 1

)
− 4kp + (2kp)2

2m2

(
d − 1 − 1

d − 1

)

which is to be integrated as in (2.203). The result is (see Sect. 2.6.3 p. 116)

aμ = e2

16π2

2

3

{
B0(0, m; m2) − B0(m, m; 0) + 1

} = α

π

1

2

as it should be. Note that the result differs in structure from (3.97) because inte-
gration and taking the limit is interchanged. Since we are working throughout with
dimensional regularization, it is crucial to take the dimension d generic until after
integration. In particular setting d = 4 in the master formula (3.102) would lead to
a wrong constant term in the above calculation. In fact, the constant term would just
be absent.

http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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The projection technique just outlined provides an efficient tool for calculat-
ing individual on–shell amplitudes directly. One question may be addressed here,
however. The muon is an unstable particle and mass and width are defined via the
resonance pole in the complex p2–plane. In this case the projection technique as
presented above has its limitation. However, the muon width is so many orders of
magnitude smaller than the muon mass, that at the level of accuracy which is of any
practical interest, this is not a matter of worry, i.e. the muon as a quasi stable particle
may be safely approximated to be stable in calculations of aμ.

3.6 Properties of the Form Factors

We again consider the interaction of a lepton in an external field: the relevant T –
matrix element is

T f i = eJ μ
f i Ãext

μ (q) (3.103)

with

J μ
f i = ū2Γ

μu1 = 〈 f | jμ
em(0)|i〉 = 〈�−(p2)| jμ

em(0)|�−(p1)〉 . (3.104)

By the crossing property we have the following channels:

• Elastic �− scattering: s = q2 = (p2 − p1)
2 ≤ 0

• Elastic �+ scattering: s = q2 = (p1 − p2)
2 ≤ 0

• Annihilation (or pair–creation) channel: s = q2 = (p1 + p2)
2 ≥ 4m2

�

The domain 0 < s < 4m2
� is unphysical. A look at the unitarity condition

i
{
T ∗

i f − T f i
} =

∑∫

n
(2π)4 δ(4)(Pn − Pi ) T ∗

n f Tni , (3.105)

which derives from (2.96), (2.103), taking 〈 f |S+S|i〉 and using (3.128) below, tells
us that for s < 4m2

� there is no physical state |n〉 allowed by energy and momentum
conservation and thus

T f i = T ∗
i f for s < 4m2

� , (3.106)

which means that the current matrix element is Hermitian. As the electromagnetic
potential Aext

μ (x) is real its Fourier transform satisfies

Ãext
μ (−q) = Ã∗ ext

μ (q) (3.107)

and hence
J μ

f i = J μ∗
i f for s < 4m2

� . (3.108)

http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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If we interchange initial and final state the four–vectors p1 and p2 are inter-
changed such that q changes sign: q → −q. The unitarity relation for the form
factor decomposition of ū2 Π

μ
γ�� u1 (3.82) thus reads (ui = u(pi , ri ))

ū2

(
γμ FE(q2) + [γμ − 2mqμ

q2 ]γ5 FA + iσμν qν

2m
FM(q2) + σμν qν

2m
γ5 FD

)
u1

=
{

ū1

(
γμ FE(q2) + [γμ + 2mqμ

q2 ]γ5 FA − iσμν qν

2m
FM(q2) − σμν qν

2m
γ5 FD

)
u2

}∗

= u+
2

(
γμ+ F∗

E (q2) + γ+
5 [γμ+ + 2mqμ

q2 ]F∗
A + iσμν+ qν

2m
F∗

M(q2) − γ+
5 σμν+ qν

2m
F∗

D

)
ū+

1

= ū2

(
γμ F∗

E (q2) + [γμ − 2mqμ

q2 ]γ5 F∗
A + iσμν qν

2m
F∗

M(q2) + σμν qν

2m
γ5 F∗

D

)
u1 .

The last equality follows using u+
2 = ū2γ

0, ū+
1 = γ0u1, γ+

5 = γ5, γ0γ5γ
0 =

−γ5, γ0γμ+γ0 = γμ and γ0σμν+γ0 = σμν . Unitarity thus implies that the form
factors are real

Im F(s)i = 0 for s < 4m2
e (3.109)

below the threshold of pair production s = 4m2
e . For s ≥ 4m2

e the form factors are
complex; they are analytic in the complex s–plane with a cut along the positive axis
starting at s = 4m2

e (see Fig. 3.10). In the annihilation channel (p− = p2, p+ = −p1)

〈0| jμ
em(0)|p−, p+〉 =

∑∫

n
〈0| jμ

em(0)|n〉〈n|p−, p+〉 , (3.110)

where the lowest state |n〉 contributing to the sum is an e+e− state at threshold:
E+ = E− = me and p+ = p− = 0 such that s = 4m2

e . Because of the causal iε–
prescription in the time–ordered Green functions the imaginary parts of the analytic
amplitudes change sign when s → s∗ and hence

Fi (s
∗) = F∗

i (s) , (3.111)

which is the Schwarz reflection principle.

3.7 Dispersion Relations

Causality together with unitarity imply analyticity of the form factors in the complex
s–plane except for the cut along the positive real axis starting at s ≥ 4m2

� . Cauchy’s
integral theorem tells us that the contour integral, for the contour C shown in Fig. 3.10,
satisfies

Fi (s) = 1

2πi

∮

C

ds ′F(s ′)
s ′ − s

. (3.112)
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Fig. 3.10 Analyticity
domain and Cauchy contour
C for the lepton form factor
(vacuum polarization). C is a
circle of radius R with a cut
along the positive real axis
for s > s0 = 4m2 where m is
the mass of the lightest
particles which can be
pair–produced

Im s

Re s

C
R

|
s0

Since F∗(s) = F(s∗) the contribution along the cut may be written as

lim
ε→0

(F(s + iε) − F(s − iε)) = 2 i Im F(s) ; s real , s > 0

and hence for R → ∞

F(s) = lim
ε→0

F(s + iε) = 1

π
lim
ε→0

∞∫

4m2

ds ′ Im F(s ′)
s ′ − s − iε

+ C∞ .

In all cases where F(s) falls off sufficiently rapidly as |s| → ∞ the boundary term
C∞ vanishes and the integral converges. This may be checked order by order in
perturbation theory. In this case the “un–subtracted” dispersion relation (DR)

F(s) = 1

π
lim
ε→0

∞∫

4m2

ds ′ Im F(s ′)
s ′ − s − iε

(3.113)

uniquely determines the function by its imaginary part. A technique based on DRs
is frequently used for the calculation of Feynman integrals, because the calculation
of the imaginary part is simpler in general. The real part which actually is the object
to be calculated is given by the principal value (P) integral

Re F(s) = 1

π
P
∞∫

4m2

ds ′ Im F(s ′)
s ′ − s

, (3.114)

which is also known under the name Hilbert transform.
For our form factors the fall off condition is satisfied for the Pauli form factor

FM but not for the Dirac form factor FE. In the latter case the fall off condition is
not satisfied because FE(0) = 1 (charge renormalization condition = subtraction
condition). However, performing a subtraction of FE(0) in (3.113), one finds that
(FE(s) − FE(0))/s satisfies the “subtracted” dispersion relations
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F(s) − F(0)

s
= 1

π
lim
ε→0

∞∫

4m2

ds ′ Im F(s ′)
s ′(s ′ − s − iε)

, (3.115)

which exhibits one additional power of s ′ in the denominator and hence improves
the damping of the integrand at large s ′ by one additional power. Order by order in
perturbation theory the integral (3.115) is convergent for the Dirac form factor. A
very similar relation is satisfied by the vacuum polarization amplitude which we will
discuss in the following section.

3.7.1 Dispersion Relations and the Vacuum Polarization

Dispersion relations play an important role for taking into account the photon propa-
gator contributions. The related photon self–energy, obtained from the photon prop-
agator by the amputation of the external photon lines, is given by the correlator of
two electromagnetic currents and may be interpreted as vacuum polarization for the
following reason: as we have seen in Sect. 2.6.3 charge renormalization in QED,
according to (2.212), is caused solely by the photon self–energy correction; the fun-
damental electromagnetic fine structure constant α in fact is a function of the energy
scale α → α(E) of a process due to charge screening. The latter is a result of the
fact that a naked charge is surrounded by a cloud of virtual particle–antiparticle pairs
(dipoles mostly) which line up in the field of the central charge and such lead to a
vacuum polarization which screens the central charge. This is illustrated in Fig. 3.11.
From long distances (classical charge) one thus sees less charge than if one comes
closer, such that one sees an increasing charge with increasing energy. Figure 3.12
shows the usual diagrammatic representation of a vacuum polarization effect.

Fig. 3.11 Vacuum
polarization causing charge
screening by virtual pair
creation and re–annihilation.
The effective charge seen by
a test charge at distance
r = �/E (E the collision
energy) is given by the
charge inside the ball of
radius r
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Fig. 3.12 Feynman diagram
describing the vacuum
polarization in muon
scattering

γ virtual

pairs

γ

μ− μ−

μ− μ−

γ∗ → e+e−, μ+μ−, τ+τ−, uū, dd̄, · · · → γ∗

As discussed in Sect. 2.6.1 the vacuum polarization affects the photon propagator
in that the full or dressed propagator is given by the geometrical progression of self–
energy insertions −iΠγ(q2). The corresponding Dyson summation implies that the
free propagator is replaced by the dressed one

iDμν
γ (q) = −igμν

q2 + iε
→ iD

′μν
γ (q) = −igμν

q2 + Πγ(q2) + iε
(3.116)

modulo unphysical gauge dependent terms. By U (1)em gauge invariance the photon
remains massless and hence we have Πγ(q2) = Πγ(0)+q2 Π ′

γ(q
2) with Πγ(0) ≡ 0.

As a result we obtain

iD
′μν
γ (q) = −igμν

q2 (1 + Π ′
γ(q

2))
+ gauge terms (3.117)

where the “gauge terms” will not contribute to gauge invariant physical quantities,
and need not be considered further.

Including a factor e2 and considering the renormalized propagator (wave function
renormalization factor Zγ) we have

i e2 D
′μν
γ (q) = −igμν e2 Zγ

q2
(
1 + Π ′

γ(q
2)
) + gauge terms (3.118)

which in effect means that the charge has to be replaced by a running charge

e2 → e2(q2) = e2 Zγ

1 + Π ′
γ(q

2)
. (3.119)

The wave function renormalization factor Zγ is fixed by the condition that at q2 → 0
one obtains the classical charge (charge renormalization in the Thomson limit; see
also (2.170)). Thus the renormalized charge is

e2 → e2(q2) = e2

1 + (Π ′
γ(q

2) − Π ′
γ(0))

(3.120)

http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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where the lowest order diagram in perturbation theory which contributes to Π ′
γ(q

2) is

:= − (q2 gμν − qμqν)Π′
γ(q

2)
γ γf̄

f

and describes the virtual creation and re–absorption of fermion pairs γ∗→e+e−,

μ+μ−, τ+τ−, uū, dd̄, · · ·→ γ∗ , In terms of the fine structure constant α = e2

4π
(3.120) reads27

α(q2) = α

1 − Δα
; Δα = −Re

(
Π ′

γ(q
2) − Π ′

γ(0)
)

. (3.121)

The various contributions to the shift in the fine structure constant come from the
leptons (lep = e, μ and τ ) the 5 light quarks (u, d, s, c, and b and the corresponding
hadrons = had) and from the top quark:

Δα = Δαlep + Δ(5)αhad + Δαtop + · · · (3.122)

Also W –pairs contribute at q2 > M2
W . While the other contributions can be calculated

order by order in perturbation theory the hadronic contribution Δ(5)αhad exhibits low
energy strong interaction effects and hence cannot be calculated by perturbative
means. Here the dispersion relations play a key role. This will be discussed in detail
in Sect. 5.1.7.

The leptonic contributions are calculable in perturbation theory. Using our result
(2.176) for the renormalized photon self–energy, at leading order the free lepton
loops yield

Δαlep(q2) =
= ∑

�=e,μ,τ

α
3π

[
− 5

3 − y� + (1 + y�

2 )
√

1 − y� ln
(
|
√

1−y�+1√
1−y�−1

|
)]

= ∑

�=e,μ,τ

α
3π

[
− 8

3 + β2
� + 1

2β�(3 − β2
� ) ln

(
| 1+β�

1−β�
|
)]

= ∑

�=e,μ,τ

α
3π

[
ln
(|q2|/m2

�

) − 5
3 + O

(
m2

�/q2
)]

for |q2| � m2
�


 0.03142 for q2 = M2
Z

(3.123)

where y� = 4m2
�/q2 and β� = √

1 − y� are the lepton velocities. The two–loop QED
contribution

27Later, in particular when discussing hadronic resonance contributions, we will also use a complex
definition of the effective fine structure constant by including the imaginary part on the r.h.s of
(3.121) as well.

http://dx.doi.org/10.1007/978-3-319-63577-4_5
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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γ
γ γ

γ+ +

has been calculated long time ago [175, 176]. Defining the conformal variable (2.182)
(see Sect. 2.6.1)

q2 → ξ =
√

1 − y − 1√
1 − y + 1

; y = 4m2

q2
= − 4ξ

(1 − ξ)2
,

we may write the single fermion contribution to two loops for spacelike q2 < 0
(0 ≤ ξ ≤ 1) as (in this from provided by M. Kalmykov)

Δ(1)α(q2) = α

4π

[
−20

9
+ 16

3

ξ

(1 − ξ)2
− 4

3

(1 + ξ)(1 − 4ξ + ξ2)

(1 − ξ)3
ln ξ

]
,

Δ(2)α(q2) = α2

(4π)2

{
−10

3
+ 104

3

ξ

(1 − ξ)2
+ 16ζ3

(
1 − 4

ξ2

(1 − ξ)4

)

−16

3

1 − 4ξ + ξ2

(1 − ξ)4
[ln(1 − ξ) + 2 ln(1 + ξ)] ln ξ

[
(1 + ξ2) ln ξ − 2(1 − ξ2)

]

+8

3
ξ

2 + 7ξ − 22ξ2 + 6ξ3

(1 − ξ)4
ln2 ξ − 4

(1 + ξ)(1 − ξ)(1 − 8ξ + ξ2)

(1 − ξ)3
ln ξ

+32

3

(1 − 4ξ + ξ2)

(1 − ξ)4
[Li2 (ξ) + 2Li2 (−ξ)]

[
1 − ξ2 − 2

(
1 + ξ2

)
ln ξ

]

+32
(1 − 4ξ + ξ2)

(1 − ξ)4
(1 + ξ2) [Li3 (ξ) + 2Li3 (−ξ)]

}
, (3.124)

The analytical continuation to q2 > 4m2 (−1 ≤ ξ ≤ 0) can be obtained using
m2 → m2 − i ε, i.e.

ξ =
√

1 − 4m2

q2 + iε − 1
√

1 − 4m2

q2 + iε + 1
≡ ξ + iε ; ln ξ = ln |ξ| + i π .

In the unphysical region 0 < q2 < 4m2 (ξ = eiϕ) one may use the parametrization
(setting ϕ = 2τ ):

ξ = exp(i 2τ ) ,
q2

4m2
= sin2 τ , ln ξ = i 2τ ,

http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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to obtain

Δα(1)(s) = α

4π

{
− 20

9
+ 4

3

τ cos τ

sin3 τ

(
1 + 2 sin2 τ

)
− 4

3

1

sin2 τ

}
,

Δα(2)(s) = α2

(4π)2

{
16

[
2Cl3 (2τ ) + 4Cl3 (π − 2τ ) + ζ3

] [
1 − 1

4 sin4 τ

]

+ 16

3

[
Cl2 (2τ ) − 2Cl2 (π − 2τ )

][
8τ

[
1 − 1

4 sin4 τ

]
− cos τ (1 + 2 sin2 τ )

sin3 τ

]

+ 32

3

[
ln (2 sin τ ) + 2 ln (2 cos τ )

][
2τ2

[
1 − 1

4 sin4 τ

]
− τ cos τ (1 + 2 sin2 τ )

sin3 τ

]

− 10

3
+ 4

τ cos τ (3 + 2 sin2 τ )

sin3 τ
− 26

3

1

sin2 τ
+ 14

3

τ2

sin4 τ
+ 16

3

τ2

sin2 τ
− 32τ2

}
. (3.125)

The Clausen function is defined by Cln (ϕ) = Im Lin
(
eiϕ

) = ∑∞
m=1

sin(m ϕ)

mn . The
gluonic perturbative QCD correction is given by the same formulas multiplied by
the color factor Nc = 3 and the SU(3) Casimir coefficient CF = 4/3 [177].

For α = 137.036, me = 0.510998902, mμ105.658357, mτ = 1776.99 we get

Δα(MZ ) × 104 e μ τ e + μ + τ

1–loop 174.34669 91.78436 48.05954 314.19059
2–loop 0.379829 0.235999 0.160339 0.7761677

Thus the leading contribution is affected by small electromagnetic corrections
only in the next to leading order. For large q2 the leptonic contribution is actually
known to three loops [178] at which it takes the value

Δαleptons(M2
Z ) 
 314.98 × 10−4. (3.126)

As already mentioned, in contrast, the corresponding free quark loop contribution
gets substantially modified by low energy strong interaction effects, which cannot be
calculated reliably by perturbative QCD. The evaluation of the hadronic contribution
will be discussed later.

Vacuum polarization effects are large when large scale changes are involved (large
logarithms) and because of the large number of light fermionic degrees of freedom
(see (2.181)) as we infer from the asymptotic form in perturbation theory

Δαpert(q2) 
 α

3π

∑

f

Q2
f Ncf

(

ln
|q2|
m2

f

− 5

3

)

; |q2| � m2
f . (3.127)

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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Fig. 3.13 Shift of the
effective fine structure
constant Δα as a function of
the energy scale in the
space–like region q2 < 0
(E = −√−q2). The vertical
bars at selected points
indicate the uncertainty

Figure 3.13 illustrates the running of the effective charges at lower energies in the
space–like region.28 Typical values are Δα(5 GeV) ∼ 3% and Δα(MZ ) ∼ 6%,
where about ∼50% of the contribution comes from leptons and about ∼50% from
hadrons. Note the sharp increase of the screening correction at relatively low energies.

The vacuum polarization may be described alternatively as the vacuum expecta-
tion value of the time ordered product of two electromagnetic currents, which follows
by amputation of the external photon lines of the photon propagator: at one loop order

→ ⊗ ⊗ .

One may represent the current correlator as a Källen–Lehmann representation [181]
in terms of spectral densities. To this end, let us consider first the Fourier transform
of the vacuum expectation value of the product of two currents. Using translation
invariance and inserting a complete set of states n of momentum pn ,29 satisfying the
completeness relation

∫
d4 pn

(2π)3

∑∫

n
|n〉〈n| = 1 (3.128)

28A direct measurement is difficult because of the normalizing process involved in any measurement
which itself depends on the effective charge. Measurements of the evolution of the electromagnetic
coupling are possible in any case with an offset energy scale and results have been presented in [179]
(see also [180]).
29Note that the intermediate states are multi–particle states, in general, and the completeness integral
includes an integration over p0

n , since pn is not on the mass shell p0
n �= √

m2
n + p2

n . In general, in
addition to a possible discrete part of the spectrum we are dealing with a continuum of states.
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where
∫∑

n includes, for fixed total momentum pn , integration over the phase space
available to particles of all possible intermediate physical states |n〉, we have

i
∫

d4x eiqx 〈0| jμ(x) jν(0)|0〉 = i
∫

d4 pn

(2π)3

∫
d4x ei(q−pn)x

∑∫

n
〈0| jμ(0)|n〉〈n| jν(0)|0〉

= i
∫

d4 pn

(2π)3

∑∫

n
(2π)4 δ(4)(q − pn)〈0| jμ(0)|n〉〈n| jν(0)|0〉

= i 2π
∑∫

n
〈0| jμ(0)|n〉〈n| jν(0)|0〉∣∣pn=q .

Key ingredient of the representation we are looking for is the spectral function
tensor ρμν(q) defined by

ρμν(q)
.=
∑∫

n
〈0| jμ(0)|n〉〈n| jν(0)|0〉|pn=q . (3.129)

Taking into account that q is the momentum of a physical state (spectral condition
q2 ≥ 0, q0 ≥ 0), the relativistic covariant decomposition may be written as

ρμν(q) = Θ(q0)Θ(q2)
{[

qμqν − q2 gμν
]
ρ1(q

2) + qμqνρ0(q
2)
}

(3.130)

and current conservation ∂μ jμ = 0 ⇔ qμρ
μν = 0 implies ρ0 ≡ 0, which is

the transversality condition. For non–conserved currents, like the ones of the weak
interactions, a longitudinal component ρ0 exists in addition to the transversal one ρ1.
Note that Θ(p2) may be represented as

Θ(q2) =
∞∫

0

dm2δ(q2 − m2)

and therefore we may write

i
∫

d4x eiqx 〈0| jμ(x) jν(0)|0〉 (3.131)

=
∞∫

0

dm2
{[

m2gμν − qμqν
]
ρ1(m

2) − qμqνρ0(m
2)
} (

−2πiΘ(q0)δ(q2 − m2)

)
,

which is the Källen–Lehmann representation for the positive frequency part of the
current correlator. The latter, according to (2.141), is twice the imaginary part of the
corresponding time–ordered current correlation function

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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i
∫

d4x eiqx 〈0|T jμ(x) jν(0)|0〉 (3.132)

=
∞∫

0

dm2
{[

m2gμν − qμqν
]
ρ1(m

2) − qμqνρ0(m
2)
} (

1

q2 − m2 + iε

)

constrained to positive q0.
In our case, for the conserved electromagnetic current, only the transversal ampli-

tude is present: thus ρ0 ≡ 0 and we denote ρ1 by ρ, simply.30 Thus, formally, in
Fourier space we have

i
∫

d4x eiqx 〈0|T jμ
em(x) jν

em(0)|0〉 =
∞∫

0

dm2 ρ(m2)
(
m2 gμν − qμqν

) 1

q2 − m2 + iε

= − (
q2gμν − qμqν

)
Π̂ ′

γ(q
2) (3.133)

where Π̂ ′
γ(q

2) up to a factor e2 is the photon vacuum polarization function intro-
duced before (see (2.159) and (2.160)):

Π ′
γ(q

2) = e2Π̂ ′
γ(q

2) . (3.134)

With this bridge to the photon self–energy function Π ′
γ we can get its imaginary part

by substituting
1

q2 − m2 + iε
→ −π i δ(q2 − m2)

in (3.133), which if constrained to positive q0 yields back half of (3.131) with ρ0 = 0.
Thus contracting (3.131) with 2Θ(q0)gμν and dividing by gμν(q2 gμν −qμqν) = 3q2

we obtain

2Θ(q0) Im Π̂ ′
γ(q

2) = Θ(q0) 2π ρ(q2) (3.135)

= − 1

3q2
2π

∑∫

n
〈0| jμ

em(0)|n〉〈n| jμ em(0)|0〉∣∣pn=q .

Again causality implies analyticity and the validity of a dispersion relation. In
fact the electromagnetic current correlator exhibits a logarithmic UV singularity and
thus requires one subtraction such that from (3.133) we find

30In the case of a conserved current, where ρ0 ≡ 0, we may formally derive that ρ1(s) is real and
positive ρ1(s) ≥ 0. To this end we consider the element ρ00

ρ00(q)=
∑∫

n
〈0| j0(0)|n〉〈n| j0(0)|0〉

∣∣
∣
q=pn

=
∑∫

n
|〈0| j0(0)|n〉|2q=pn

≥ 0 = Θ(q0) Θ(q2) q2 ρ1(q
2)

from which the statement follows.

http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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Π ′
γ(q

2) − Π ′
γ(0) = q2

π

∞∫

0

ds
Im Π ′

γ(s)

s (s − q2 − iε)
. (3.136)

Unitarity (3.105) implies the optical theorem, which is obtained from this relation
in the limit of elastic forward scattering | f 〉 → |i〉 where

2Im Tii =
∑∫

n
(2π)4 δ(4)(Pn − Pi ) |Tni |2 . (3.137)

which tells us that the imaginary part of the photon propagator is proportional to the
total cross section σtot(e+e− → γ∗ → anything) (“anything” means any possible
state). The precise relationship reads (see Sect. 5.1.5)

Im Π̂ ′
γ(s) = 1

12π
R(s) (3.138)

Im Π ′
γ(s) = e2 Im Π̂ ′

γ(s) = α

3
R(s) = α s

4π |α(s)|2 σtot(e
+e− → γ∗ → anything)

where

R(s) = σtot/
4π|α(s)|2

3s
. (3.139)

The normalization factor is the point cross section (tree level) σμμ(e+e− → γ∗ →
μ+μ−) in the limit s � 4m2

μ. Taking into account the mass effects the R(s) which
corresponds to the production of a lepton pair reads

R�(s) =
√

1 − 4m2
�

s

(
1 + 2m2

�

s

)
, (� = e,μ, τ ) (3.140)

which may be read of from the imaginary part given in (2.179). This result provides an
alternative way to calculate the renormalized vacuum polarization function (2.176),
namely, via the DR (3.136) which now takes the form

Π
′�
γ ren(q

2) = αq2

3π

∫ ∞

4m2
�

ds
R�(s)

s(s − q2 − iε)
(3.141)

yielding the vacuum polarization due to a lepton–loop.
In contrast to the leptonic part, the hadronic contribution cannot be calculated

analytically as a perturbative series, but it can be expressed in terms of the cross
section of the reaction e+e− → hadrons, which is known from experiments. Via

Rhad(s) = σ(e+e− → hadrons)/
4π|α(s)|2

3s
. (3.142)

http://dx.doi.org/10.1007/978-3-319-63577-4_5
http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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we obtain the relevant hadronic vacuum polarization

Π
′had
γ ren(q

2) = αq2

3π

∫ ∞

4m2
π

ds
Rhad(s)

s(s − q2 − iε)
. (3.143)

Thus, including the five quarks u, d, s, c and b subject to non-perturbative QCD
effects, we may evaluate

Δ(5)αhad(q
2) = −Π

′had
γ ren(q

2) = −αq2

3π

∫ ∞

4m2
π

ds
Rhad(s)

s(s − q2 − iε)
, (3.144)

by utilizing experimental e+e−–data up to energies where γ − Z mixing comes into
play, at about 20 GeV, and for the high energy tail we may use perturbative QCD by
the virtue of asymptotic freedom. Note that real and imaginary parts are obtained by
the identity

1

s − q2 − iε
= P

s − q2
+ i π δ(s − q2)

where P denotes the finite part prescription

P
∫ ∞

4m2
π

ds
Rhad(s)

s(s − q2 − iε)
= lim

ε→0

{∫ q2−ε

4m2
π

ds
Rhad(s)

s(s − q2)
+
∫ ∞

q2+ε

ds
Rhad(s)

s(s − q2)

}

and the imaginary part is indeed given by Im Π
′had
γ ren(q

2) = α
3 Rhad(q2), with the low

energy α as a factor, as claimed before. Corresponding relations hold for the leptonic
and as well as other contributions.

At low energies, where the final state necessarily consists of two pions, the
cross section is given by the square of the electromagnetic form factor of the pion
(undressed from VP effects),

Rhad(s) = 1

4

(
1 − 4m2

π

s

) 3
2

|F (0)
π (s)|2 , s < 9 m2

π , (3.145)

which directly follows from the corresponding imaginary part (2.259) of the photon
vacuum polarization. There are three differences between the pionic loop integral
and those belonging to the lepton loops:

• the masses are different
• the spins are different
• the pion is composite – the Standard Model leptons are elementary

The compositeness manifests itself in the occurrence of the form factor Fπ(s), which
generates an enhancement: at the ρ peak, |Fπ(s)|2 reaches values about 45, while the
quark parton model would give about 7. The remaining difference in the expressions
for the quantities R�(s) and Rh(s) in (3.140) and (3.145), respectively, originates

http://dx.doi.org/10.1007/978-3-319-63577-4_2


226 3 Lepton Magnetic Moments: Basics

in the fact that the leptons carry spin 1
2 , while the spin of the pion vanishes. Near

threshold, the angular momentum barrier suppresses the function Rh(s) by three
powers of momentum, while R�(s) is proportional to the first power. The suppression
largely compensates the enhancement by the form factor – by far the most important
property is the mass.

3.8 Dispersive Calculation of Feynman Diagrams

Dispersion relations (DR) may be used to calculate Feynman integrals in a way
different from the Feynman parametric approach described in Sect. 2.5. The reason
is simply because the imaginary part of an amplitude in general is much easier to
calculate than the amplitude itself, which then follows from the imaginary part by a
one–fold integral. The imaginary part in principle may be obtained by the unitarity
relation of the form (3.105) which translate into Cutkosky rules [182], which may be
obtained using Veltman’s [183] largest time equation in coordinate space. The latter
make use of the splitting of the Feynman propagator into real and imaginary part
(2.141) and contributes to the imaginary part of a Feynman integral if the substitution

1

p2 − m2 + iε
→ −π i δ(p2 − m2)

replacing a virtual particle (un–cut line) by a physical state (cut line) is made for an
odd number of propagators, and provided the corresponding state is physical, i.e.,
is admissible by energy–momentum conservation and all other physical conserva-
tion laws (charge, lepton number etc.). With a diagram we may associate a specific
physical channel by specifying which external lines are in–coming and which are
out–going. For a given channel then the imaginary part of the diagram is given by
cutting internal lines of the diagram between the in–coming and the out–going lines
in all possible ways into two disconnected parts. A cut contributes if the cut lines
can be viewed as external lines of a real physical subprocess. On the right hand side
of the cut the amplitude has to be taken complex conjugate, since the out–going
state produced by the cut on the left hand side becomes the in–coming state on the
right hand side. Due to the many extra δ–functions (on–shell conditions) part of the
integrations become phase space integrations, which in general are easier to do. As a
rule, the complexity is reduced from n–loop to a n −1–loop problem, on the expense
that the last integration, a dispersion integral, still has to be done. A very instructive
non–trivial example has been presented by Terentev [27] for the complete two–loop
calculation of g − 2 in QED.

Cut diagrams in conjunction with DRs play a fundamental role also beyond being
just a technical trick for calculating Feynman integrals. They not only play a key role
for the evaluation of non–perturbative hadronic effects but allows one to calculate
numerically or sometimes analytically all kinds of VP effects in higher order diagrams
as we will see. Before we discuss this in more detail, let us summarize the key
ingredients of the method, which we have considered before, once more:

http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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Fig. 3.14 Optical theorem
for scattering and
propagation =

∑
n

2 Im

A, p1

B, p2

A, p1

B, p2

=
∑
n

2 Im
A, p A, p

❏ Optical theorem implied by unitarity: maybe most familiar is its application
to scattering processes: the imaginary part of the forward scattering amplitude of an
elastic process A + B → A + B is proportional to the sum over all possible final
states A + B → “anything” (see Fig. 3.14)

Im Tforward (A + B → A + B) =
√

λ
(
s, m2

1, m2
2

)
σtot (A + B → anything)

for the photon propagator it implies

ImΠ ′
γ(s) = α s

4π|α(s)|2 σtot(e
+e− → anything)

which we have been proving in the last section already.
❏ Analyticity, implied by causality, may be expressed in form of a so–called

(subtracted) dispersion relation

Π ′
γ(k

2) − Π ′
γ(0) = k2

π

∞∫

0

ds
ImΠ ′

γ(s)

s (s − k2 − iε)
. (3.146)

The latter, together with the optical theorem, directly implies the validity of (3.143).
Note that its validity is based on general principles and holds beyond perturbation
theory. It is the basis of all non–perturbative evaluations of hadronic vacuum polar-
ization effects in terms of experimental data. But more than that.

Within the context of calculating g − 2 in the SM the maybe most important
application of DRs concerns the vacuum polarization contribution related to diagrams
of the type

X
μ

γ

γ γ
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where the “blob” is the full photon propagator, including all kinds of contributions as
predicted by the SM and maybe additional yet unknown contributions from physics
beyond the SM. The vacuum polarization amplitude satisfies a dispersion relation
(3.136) and the spectral function is given by (3.139).

The contribution to the anomalous magnetic moment from graphs of the photon
vacuum polarization type shown above can be obtained in a straightforward way as
follows: The physics wise relevant gμν–term of the full photon propagator, carrying
loop momentum k, reads

−igμν

k2 (1 + Π ′
γ(k

2))

 −igμν

k2

(
1 − Π ′

γ(k
2) + (

Π ′
γ(k

2)
)2 − · · ·

)
(3.147)

and the renormalized photon self–energy may be written as

− Π ′
γ ren(k

2)

k2
=

∞∫

0

ds

s

1

π
Im Π ′

γ(s)
1

k2 − s
. (3.148)

Note that the only k dependence under the convolution integral shows up in the last
factor. Thus, the free photon propagator in the one–loop vertex graph discussed in
Sect. 2.6.3 in the next higher order is replaced by

−igμν/k2 → −igμν/(k
2 − s)

which is the exchange of a photon of mass square s. The result afterward has to
be convoluted with the imaginary part of the photon vacuum polarization. In a first
step we have to calculate the contribution from the massive photon which may be
calculated exactly as in the massless case. As discussed above FM(0) most simply
may be calculated using the projection method directly at q2 = 0. The result is [184,
185]31

K (2)
μ (s) ≡ a(2) heavy γ

μ = α

π

1∫

0

dx
x2 (1 − x)

x2 + (s/m2
μ)(1 − x)

, (3.149)

which is the second order contribution to aμ from an exchange of a photon with
square mass s. Note that for s = 0 we get the known Schwinger result.

31Replacing the heavy vector exchange by a heavy scalar exchange leads to the substitution

x2 (1 − x) (vector) → x2 (1 − x/2) (scalar)

in the numerator of (3.149).

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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Utilizing this result and (3.148), the contribution from the “blob” to g − 2 reads

a(X)
μ = 1

π

∞∫

0

ds

s
Im Π

′(X)
γ (s) K (2)

μ (s) . (3.150)

If we exchange integrations and evaluating the DR we arrive at

a(X)
μ = α

π

1∫

0

dx (1 − x)

∞∫

0

ds

s

1

π
Im Π

′(X)
γ (s)

x2

x2 + (s/m2
μ)(1 − x)

= α

π

1∫

0

dx (1 − x)
[
−Π

′(X)
γ (sx )

]
(3.151)

where

sx = − x2

1 − x
m2

μ .

The last simple representation in terms of Π
′(X)
γ (sx ) follows using

x2

x2 + (s/m2
μ)(1 − x)

= −sx
1

s − sx
.

In this context a convenient one–fold integral representation of the VP func-
tion is (2.177)

Π
′�
γ ren

(
−x2

1 − x
m2

μ

)

= −α

π

1∫

0

dz 2z (1 − z) ln

(

1 + x2

1 − x

m2
μ

m2
�

z (1 − z)

)

, (3.152)

which together with (3.151) leads to a two–fold integral representation of the VP
contribution by lepton loops at two–loop order.

This kind of dispersion integral representation can be generalized to higher order
and sequential VP insertions corresponding to the powers of Π ′(k2) in (3.147).

Denoting ρ(s)=ImΠ ′
γ ren(s)/π we may write (3.148) in the form −Π ′

γ ren(k
2)=

∞∫

0

ds
s

ρ(s) k2

k2−s such that the n–th term of the propagator expansion (3.147) is given by

(
−Π ′

γ ren(k2)
)n

/k2 = 1

k2

n∏

i=1

∞∫

0

dsi

si
ρ(si )

k2

k2 − si

=
n∑

j=1

∞∫

0

ds j

s j
ρ(s j )

1

k2 − s j

∏

i �= j

∞∫

0

dsi

si
ρ(si )

s j

s j − si
,

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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where we have been applying the partial fraction decomposition

1

k2

n∏

i=1

k2

k2 − si
=

n∑

k=1

1

k2 − s j

∏

i �= j

s j

s j − si
.

We observe that the integration over the loop momentum k of the one–loop muon
vertex proceeds exactly as before, with the photon replaced by a single heavy photon
of mass s j . Thus, the contribution to aμ reads

a(X)
μ = α

π

1∫

0

dx (1 − x)

n∑

j=1

∞∫

0

ds j

s j
ρ(s j )

−sx

s j − sx

∏

i �= j

∞∫

0

dsi

si
ρ(si )

s j

s j − si

= α

π

1∫

0

dx (1 − x)

⎛

⎝
n∏

k=1

1∫

0

dsk

sk
ρ(sk)

⎞

⎠ sx

⎛

⎝
n∑

j=1

1

sx − s j

∏

i �= j

s j

s j − si

⎞

⎠ .

Under the integral, to the last factor, we may apply the above partial fraction decom-
position backward

n∑

j=1

1

sx − s j

∏

i �= j

s j

s j − si
= 1

sx

n∏

i=1

sx

sx − si

which proves that the si –integrals factorize and we find [186]

a(X)
μ = α

π

1∫

0

dx (1 − x)

⎛

⎝
∞∫

0

ds

s
ρ(s)

−sx

s − sx

⎞

⎠

n

= α

π

1∫

0

dx (1 − x)
(−Π ′

γ ren(sx)
)n

(3.153)

We are thus able to write formally the result for the one–loop muon vertex when we
replace the free photon propagator by the full transverse propagator as [187]

a(X)
μ = α

π

1∫

0

dx (1 − x)

(
1

1 + Π ′
γ ren(sx )

)

= 1

π

1∫

0

dx (1 − x) α(sx ) , (3.154)
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which according to (3.120) is equivalent to the contribution of a free photon interact-
ing with dressed charge (effective fine structure constant). However, since Π ′

γ ren(k
2)

is negative and grows logarithmically with k2 the full photon propagator develops a so
called Landau pole where the effective fine structure constant becomes infinite. Thus
resumming the perturbation expansion under integrals may produce a problem and
one better resorts to the order by order approach, by expanding the full propagator
into its geometrical progression. Nevertheless (3.154) is a very useful bookkeep-
ing device, collecting effects from different contributions and different orders. In
particular if we expand the 1PI photon self–energy into order by order contributions

Π ′
γ ren(k

2) = Π
′(2)
γ ren(k

2) + Π
′(4)
γ ren(k

2) + · · ·

and also write ρ = ρ(2) + ρ(4) + · · · for the spectral densities.
Coming back to the single VP insertion formula (3.151) we may use (3.152) as

well as the second form given in (2.177) which reads

Π
′�
γ ren

(
q2/m2

) = −α

π

q2

m2

1∫

0

dt
ρ2(t)

q2

m2 − 4/(1 − t2)
, (3.155)

with32

ρ2(t) = t2 (1 − t2/3)

1 − t2
, (3.156)

and we may write

a(X)
μ =

(α

π

)2
1∫

0

dx (1 − x)

1∫

0

dt
ρ2(t)

Wt (x)
, (3.157)

where

1/Wt (x) = q2

m2

1
q2

m2 − 4
1−t2

∣∣∣
∣∣

q2

m2 =− x2
1−x

m2
μ

m2

and hence

Wt (x) = 1 + 4m2

(1 − t2) m2
μ

1 − x

x2
. (3.158)

32We adopt the notation of Kinoshita [186] and mention that the densities ρ(t) used here are not to
be confused with the ρ(s) used just before, although they are corresponding to each other.

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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If n equal loops are inserted we have

a(X)
μ = α

π

1∫

0

dx (1 − x)

⎛

⎝α

π

1∫

0

dt
ρ(t)

Wt (x)

⎞

⎠

n

(3.159)

according to the factorization theorem demonstrated before. This formula is suitable
for calculating the contribution to the lepton anomalous magnetic moment once the
spectral function ρ(t) is known. For the one–loop 1PI self–energy we have ρ2(t)
given by (3.156) and the corresponding density for the two–loop case reads [175,
176, 188]

ρ4(t) = 2t

3 (1 − t2)

{
(3 − t2) (1 + t2)

2

(
Li2 (1) + ln

1 + t

2
ln

1 + t

1 − t

+ 2

(
Li2

(
1 − t

1 + t

)
+ Li2

(
1 + t

2

)
− Li2

(
1 − t

2

))
− 4 Li2 (t) + Li2

(
t2
))

+
(

11

16
(3 − t2) (1 + t2) + 1

4
t4 − 3

2
t (3 − t2)

)
ln

1 + t

1 − t

+ t (3 − t2)

(
3 ln

1 + t

2
− 2 ln t

)
+ 3

8
t (5 − 3t2)

}
. (3.160)

The corresponding result for the three–loop photon self–energy has been calculated
in [189]. For four–loops an approximate result is available [190]. Generally, the
contribution to aμ which follow from the lowest order lepton (�) vertex diagram by
modifying the photon propagator with l electron loops of order 2i , m muon loops of
order 2 j and n tau loops of order 2k is given by

a� =
(α

π

)(1+il+ jm+kn)
1∫

0

dx (1 − x)

⎛

⎜
⎝

1∫

0

dt1
ρ2i (t1)

1 + 4
1−t2

1

1−x
x2

(
me
m�

)2

⎞

⎟
⎠

l

·
⎛

⎜
⎝

1∫

0

dt2
ρ2 j (t2)

1 + 4
1−t2

2

1−x
x2

(
mμ

m�

)2

⎞

⎟
⎠

m

·
⎛

⎜
⎝

1∫

0

dt3
ρ2k(t3)

1 + 4
1−t2

3

1−x
x2

(
mτ

m�

)2

⎞

⎟
⎠

n

.

(3.161)

The same kind of approach works for the calculation of diagrams with VP inser-
tions not only for the lowest order vertex. For any group of diagrams we may calculate
in place of the true QED contribution the one obtained in massive QED with a photon
of mass

√
s, and then convolute the result with the desired density of the photon VP

analogous to (3.150) where (3.149) gets replaced by a different more complicated
kernel function (see e.g. [103, 191] and below). It also should be noted that the rep-
resentation presented here only involve integration over finite intervals ([0,1]) and
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hence are particularly suited for numerical integration of higher order contributions
when analytic results are not available.

The formalism developed here also is the key tool to evaluate the hadronic con-
tributions, for which perturbation theory fails because of the strong interactions. In
this case we represent Im Π

′ had
γ (s) via (3.139) in terms of

σhad(s) = σ(e+e− → hadrons)

where

σhad(s) = 4π2 |α(s)|2
α s

1

π
Im Π

′ had
γ (s) (3.162)

or in terms of the cross section ratio R(s) defined by (3.139) where both σhad(s) or
equivalently Rhad(s) will be taken from experiment, since they are not yet calculable
reliably from first principles at present.

Starting point is the basic integral representation (from (3.150) using (3.139))

ahad
μ = α

π

∞∫

0

ds

s

1∫

0

dx
x2 (1 − x)

x2 + (1 − x) s/m2
μ

α

3π
R(s) . (3.163)

If we first integrate over x we find the well known standard representation

ahad
μ = α

3π

∞∫

0

ds

s
K (2)

μ (s) R(s) (3.164)

as an integral along the cut of the vacuum polarization amplitude in the time–like
region, while an interchange of the order of integrations yields the analog of (3.151):
an integral over the hadronic shift of the fine structure constant (3.121) in the space–
like domain [192]:

ahad
μ = α

π

1∫

0

dx (1 − x) Δα(5)
had

(−Q2(x)
)

(3.165)

where Q2(x) ≡ x2

1−x m2
μ is the space–like square momentum–transfer or

x = Q2

2m2
μ

⎛

⎝

√

1 + 4m2
μ

Q2
− 1

⎞

⎠ .

In Fig. 3.15 we display the integrand of the representation (3.165) Alternatively, by
writing (1 − x) = − 1

2
d

dx (1 − x)2 and performing a partial integration in (3.165) one
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Fig. 3.15 The integrand of the vacuum polarization representation (3.165) as a function of x and
as a function of the energy scale Q. As we see the integrand is strongly peaked as a function of Q
at about 330 MeV. Π(Q2) data come from [197]. The dashed lines mark the error band from the
experimental data

finds

ahad
μ = α2

6π2
m2

μ

1∫

0

dx x (2 − x)
(
D(Q2(x))/Q2(x)

)
(3.166)

where D(Q2) is the Adler–function [193] defined as a derivative of the shift of the
fine structure constant

D(−s) = −(12π2) s
dΠ ′

γ (s)

ds
= 3π

α
s

d

ds
Δαhad(s) . (3.167)

The Adler–function is represented by

D(Q2) = Q2

(∫ ∞

4m2
π

R(s)

(s + Q2)2
ds

)

(3.168)

in terms of R(s), i.e., in the case of hadrons it can be evaluated in terms of experimen-
tal e+e−–data. The Adler–function is discussed in [194] and in Fig. 5.18 a comparison
between theory and experiment is shown. The Adler–function is an excellent monitor
for checking where pQCD works in the Euclidean region (see also [71]), and, in prin-
ciple, it allows one to calculate ahad

μ relying more on pQCD and less on e+e−–data,
in a well controllable manner. The advantage of this method at present is limited by
the inaccuracies of the quark masses, in particular of the charm mass [195, 196]. The
integrand of the representation (3.166) is displayed in Fig. 3.16.

It is interesting to note that the representation (3.165) as well as (3.166) requires
the hadronic vacuum polarization function in the spacelike region, which is the
appropriate representation for ab initio calculations in the non-perturbative lattice

http://dx.doi.org/10.1007/978-3-319-63577-4_5
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Fig. 3.16 The integrand of the Adler function representation (3.166) as a function of x and as a
function of the energy scale Q. The right–hand panel shows that the integrand is sharply peaked
as a function of Q at a rather low scale (∼150 MeV). Adler function data come from [198]. The
dashed lines mark the error band from the experimental data

QCD approach.33 The lattice QCD approach and results will be discussed in Sect. 5.3
of Chap. 5.

The Adler-function D(Q2) is bounded asymptotically by perturbative QCD:
D(Q2) → Nc

∑
f Q2

f , with Q f the quark charges and Nc = 3 the color factor,
up to perturbative corrections, which asymptotically vanish because of asymptotic
freedom which implies αs(Q2) → 0 as Q2 → ∞ (see [194]). Obviously, then
D(Q2)/Q2 is a positive monotonically decreasing function34 bounded by

D(Q2)

Q2
=
∫ ∞

4m2
π

R(s)

(s + Q2)2
ds < P̄1 ≡

∫ ∞

4m2
π

R(s)

s2
ds = D(Q2)

Q2

∣∣∣∣
Q2=0

, (3.169)

the slope of the vacuum polarization function at zero momentum square. Obviously
the slope D(Q2)/Q2 is finite for Q2 → 0, which shows that the integrand of the
representation (3.166) is well behaved as x → 0.

33A new approach to evaluate the leading hadronic corrections to the muon g-2 attempts to evaluate
Δαhad(t) directly in the spacelike region from Bhabha scattering data [199] or from the simpler
process of μ−e− → μ−e− scattering (a high energy muon beam on a low Z nuclear target) [200].
Direct experimental Δαhad(t) data would also provide a direct comparison with corresponding
LQCD results.
34Note that while

(
D(Q2)/Q2

)′ = −2

(∫ ∞

4m2
π

R(s)

(s + Q2)3 ds

)

< 0 ,

the Adler function itself is not monotonic as

(
D(Q2)cut

)′ =
(∫ scut

4m2
π

(s − Q2) R(s)

(s + Q2)3 ds

)

,

which always has a zero if scut is finite, and for scut = ∞ it has zero because R(s) is increasing
with s. The “experimental” Adler function has a maximum in the 30 GeV region.

http://dx.doi.org/10.1007/978-3-319-63577-4_5
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Note that alternatively, using (3.167) we may write

P̄1 = −3π

α

d

ds
Δαhad(s)|s=−Q2,Q2→0 . (3.170)

Therefore, (3.168) together with (3.166) yields a bound (see also [113])

ahad
μ <

α2

6π2
m2

μ

2

3
P̄1 . (3.171)

The integral over a compilation of R(s)–data, discussed in detail later in Chap. 5,
yields P̄1 = 11.83(8) GeV−2 and hence

ahad
μ < 791(5) × 10−10 . (3.172)

As we will see an evaluation of (3.164) yields a value substantially lower: ahad
μ 


688.1 ± 4.1 × 10−10.
Actually, we may write (3.164) in the form

ahad
μ =

(α mμ

3π

)2
∞∫

0

ds

s2
K̂ (s) R(s) (3.173)

where

K̂ (s) = 3s

m2
μ

K (2)
μ (s) , (3.174)

in which K̂ (s) is a bounded monotonically increasing function, with K̂ (4m2
π) 
 0.63

increasing to 1 at s → ∞. Setting K̂ (s) = 1 we obtain the bound presented above.
A lower bound then is obtained by setting K̂ (s) = K̂ (4m2

π) ≈ 0.63, which implies
ahad

μ > 498(3) × 10−10 again a very rough bound only, but a true bound.
The bound (3.171) can be improved by a moment expansion of the kernel as

advocated in Ref. [201] and analyzed in detail in [202].
The best checks is to compare lattice results in terms of the Adler function as

it enters in the representation (3.166) as advocated in [195] and actually performed
in [203, 204] recently. An up-to-date evaluation of the “experimental” Adler function
is available via the link [198].

3.9 ζ–Values, Polylogarithms and Related Special
Functions

For later reference we list some transcendental constants and definitions of special
functions which are encountered in higher order Feynman graph calculations. Typi-

http://dx.doi.org/10.1007/978-3-319-63577-4_5
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cally analytic results for the mass independent universal lepton g − 2 contributions
are of the form of sums of terms exhibiting rational numbers as coefficients of tran-
scendental objects. The most frequent such object are the Riemann zeta function

ζ(n) =
∞∑

k=1

1

kn
(3.175)

and the polylogarithmic integrals

Lin(x) = (−1)n−1

(n − 2)!
∫ 1

0

lnn−2(t) ln(1 − xt)

t
dt =

∞∑

k=1

xk

kn
, (3.176)

where the dilogarithm Li2(x) is often referred to as the Spence function which we
encountered in Sect. 2.6.3 (2.208). The series representation holds for |x | ≤ 1. The
dilogarithm is an analytic function with the same cut as the logarithm. Useful relations
are

Sp(x) = −Sp(1 − x) + π2

6
− ln x ln(1 − x),

Sp(x) = −Sp

(
1

x

)
− π2

6
− 1

2
ln2(−x),

Sp(x) = −Sp(−x) + 1

2
Sp(x2) . (3.177)

Special values are:

Sp(0) = 0 , Sp(1) = π2

6
, Sp(−1) = −π2

12
, Sp

(
1

2

)
= π2

12
− 1

2
(ln 2)2 .

(3.178)
Special ζ(n) values we will need are

ζ(2) = π2

6
, ζ(3) = 1.202 056 903 . . . , ζ(4) = π4

90
, ζ(5) = 1.036 927 755 . . . .

(3.179)
Also the constants

Lin(1) = ζ(n) , Lin(−1) = −[1 − 21−n] ζ(n),

a4 ≡ Li4(
1

2
) =

∞∑

n=1

1/(2nn4) = 0.517 479 061 674 . . . , (3.180)

related to polylogarithms, will be needed for the evaluation of analytical results. A
generalization are the Nielsen integrals

http://dx.doi.org/10.1007/978-3-319-63577-4_2
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Sn,p(x) = (−1)n+p−1

(n − 1)!p!
∫ 1

0

lnn−1(t) lnp(1 − xt)

t
dt , (3.181)

which have representations as sums of the type

S1,2(x) =
∞∑

2

xk

k2
S1(k − 1) ; S2,2(x) =

∞∑

2

xk

k3
S1(k − 1) ,

where

S1(k) =
k∑

1

1

l

is a harmonic sum. And higher sums are obtained by the recurrences

d

dx
Sn,p(x) = 1

x
Sn−1,p(x) ;

∫ x

0

Sn,p(t)

t
dt = Sn+1,p(x) .

The general harmonic series are defined by [205]

Sm(n) =
n∑

i=1

1

im
; S−m(n) =

n∑

i=1

(−1)i

im
, (3.182)

in which m > 0. Higher harmonic series are defined by the recurrences

Sm, j1,..., jp (n) =
n∑

i=1

1

im
S j1,..., jp (i) ; S−m, j1,..., jp (n) =

n∑

i=1

(−1)i

im
S j1,..., jp (i) , (3.183)

where again m > 0. The m and the ji are referred to as the indices of the harmonic
series. Hence, for example

S1,−5,3(n) =
n∑

i=1

1

i

i∑

j=1

(−1) j

j5

j∑

k=1

1

k3
. (3.184)

Basic transcendental constants of increasing transcendental weight are (examples
we will find in Chap. 4)

{
[S1(∞), ln(2)] ; ζ2; ζ3; Li4(1/2); (ζ5, Li5(1/2)) ; [Li6(1/2), S−5,−1(∞)

] ;
[
ζ7, Li7(1/2), S−5,1,1(∞), S5,−1,−1(∞)

] ; . . .

}
(3.185)

http://dx.doi.org/10.1007/978-3-319-63577-4_4
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where S... = S...(∞). The numerical values have been calculated in [205]:

Li4(1/2) = 0.51747906167389938633

Li5(1/2) = 0.50840057924226870746

Li6(1/2) = 0.50409539780398855069

Li7(1/2) = 0.50201456332470849457

S−5,−1(∞) = 0.98744142640329971377

−S−5,1,1(∞) = 0.95296007575629860341

S5,−1,−1(∞) = 1.02912126296432453422 . (3.186)

The harmonic polylogarithms (HPL) H (a1, . . . , ak; x) are functions of one vari-
able x labeled by a vector a = (a1, . . . , ak). The dimension k of the vector a is called
the weight of the HPL [206]. Given the functions

f1(x) = 1

1 − x
; f0(x) = 1

x
; f−1(x) = 1

1 + x
, (3.187)

the HPLs are defined recursively through integration of these functions. For weight
one we have

H(1; x) =
x∫

0

f1(t) dt =
x∫

0

1

1 − t
dt = − log(1 − x)

H(0; x) = log(x)

H(−1; x) =
x∫

0

f−1(t) dt =
x∫

0

1

1 + t
dt = log(1 + x), (3.188)

and for higher weights

H(n0; x) = 1

n! logn x ; H(a, a1,...,k; x) =
x∫

0

fa(t)H(a1,...,k; t) dt , (3.189)

where we used the notations ni = i, . . . , i︸ ︷︷ ︸
n

, and a1,...,k = a1, . . . , ak .

Examples are,

H(0, 0, 1, 1; x) = S2,2(x) ; H(−1, 0, 0, 1; x) =
∫ x

0

dz

1 + z
Li3(z) .
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The formula for the derivative of the HPLs follows directly from their definition

d

dx
H(a, a1,...,k; x) = fa(x)H(a1,...,k; x) . (3.190)

An elliptic integral is defined as any function f which can be expressed in the
form [207]

f (x) =
∫ x

c
R
(

t,
√

P(t)
)

dt

where R is a rational function of its two arguments, P is a polynomial of degree 3 or
4 with no repeated roots, and c is a constant. In general, integrals in this form cannot
be expressed in terms of elementary functions. Exceptions to this general rule are
when P has repeated roots, or when R(x, y) contains no odd powers of y. However,
with the appropriate reduction formula, every elliptic integral can be brought into a
form that involves integrals over rational functions and the three canonical forms, the
elliptic integrals of the first, second and third kind. The incomplete elliptic integral
of the first kind F is defined as

F(ϕ; m) =
∫ ϕ

0

dθ
√

1 − m sin2 θ
=
∫ x=sin ϕ

0

dt
√(

1 − t2
) (

1 − mt2
) .

The incomplete elliptic integral of the second kind E may be defined as

E(ϕ; m) =
∫ ϕ

0
dθ

√
1 − m sin2 θ =

∫ x=sin ϕ

0

√
1 − mt2

√
1 − t2

dt .

The incomplete elliptic integral of the third kind Π is defined by

Π(n;ϕ | m) =
∫ ϕ

0

1

1 − n sin2 θ

dθ
√

1 − m sin2 θ
=
∫ x=sin ϕ

0

1

1 − nt2
dt

√(
1 − t2

) (
1 − mt2

) ,

where m = sin2 α is a parameter. For ϕ = π/2 and x = 1 we obtain the complete
elliptic integrals.

The simplest diagram leading to an elliptic integral is the scalar massive triple line

graph (sunrise diagram) , which plays a role in the self–energy of the ω
vector meson which decays predominantly via ω → π+π−π0 (see also [208]). In the
context of dimensional regularization and ε–expansion various types of generalized
and Appell hypergeometric functions show up [209–213]. For further reading see
e.g. [214–217] and references therein.
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