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Abstract. Log-structured merge tree decomposes a large database into
multiple parts: an in-writing part and several read-only ones. It achieves
high write throughput as well as low read latency. However, read requests
have to go through multiple structures to find the required data. In a
distributed database system, different parts of the LSM-tree are stored
distributedly. Data access issues extra network communications for a
server in the query layer to pull entries from the underlying storage layer.
This work proposes the precise data access strategy. A Bloom filter-based
structure is designed to test whether an element exists in the in-writing
part of the LSM-tree. A lease-based synchronization strategy is used to
maintain consistent copies of the Bloom filter on remote query servers.
Experiments show that the solution has 6x throughput improvement
over existing methods.
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1 Introduction

Log-Structured merge tree [5] organizes all data entries in multiple compo-
nents: a Memtable and several SSTables, following the notations used in [8].
The Memtable is a memory-based structure, optimizing for high write through-
put. The SSTable is a disk-based structure, offering large storage capacity and
servicing read requests only. Data in the Memtable are migrated into a SSTable
in batch. It has been widely adopted by distributed storage systems such as
BigTable [8], where the Memtable and SSTables are kept in the main memory
and distributed file system (e.g. GFS [7]) respectively.

Systems using log-structured storage offer excellent read/write performance
but lack some important features. Thus, some database systems (e.g. Megastore
[10] and Percolator [9]) choose to build a query layer upon these storage systems
to add SQL interface or transaction support. A node in the query layer interacts
with the underlying storage layer through network communication. A problem is
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that data access on a distributed LSM-tree issues many useless communications.
A read operation has to iterate over the Memtable and all SSTable until locate
the required data item. The dedicated item only exists in one structure and
accessing all other structures is useless.

This work targets at the distributed database system where Memtable, SSTa-
bles and query processing nodes (noted as p-node in the following) are deployed
on different servers and proposes an effective way to precisely locate the stor-
age structure for accessing. Before processing a read request, a p-node is able
to identify the right structure for reading without contacting the storage layer.
In summary, we make the following contributions: (1) a Bloom filter with low
maintaining and synchronization overhead is designed to encode data existence
for the Memtable; (2) a lease-based strategy is designed for p-nodes to main-
tain a copy of the Bloom filter of Memtable and ensure read consistency when
using the copy; (3) A data access algorithm is designed to support a p-node in
determining the right structure for data access.

2 Relate Works

[5] proposes the log-structured merge tree. The author exploits a multi-level
structure for large database storage. BigTable [8] extends such mechanism in
distributed system. It keeps the write-optimized index in main memory while
the read-only files in GFS [7]. Percolator [9] and Megastore [10] build their query
servers directly on the BigTable. Our work acts as a data access optimizations
between the query layer of a database system and the underlying storage layer.

Some other optimizations are also designed for log-structured storage. [8]
relies on data compaction to merge multiple SSTables together and reduce the
number of SSTable to be visited. Muhammad [12] does performance analysis
on the overhead of data compaction and proposes some improvements. bLSM-
tree [11] uses the Bloom filter [2] to reduce SSTable access, which is adopted
in [8]. In a different, our work is able to filter access to the Memtable. Besides,
our technique is designed for distributed system to reduce the network commu-
nications between the application servers and the storage layer.

3 Preliminary

Storage Model. A typical structure of a distributed log-structured storage
system is illustrated in Fig. 1, with a Memtable, several SSTables and p-nodes.
Memtable is the in-memory structure which services for data reads and
writes. To ensure durability, redo log entries [4] are forced into durable stor-
age for recovery purpose. Each write operation firstly flushes its redo log entries
into the disk, after which, its modifications are applied into the Memtable. Group
commit [3] is used to improve the disk utilization by combining multiple redo log
flushing in a disk write, because existing disk device only offers limited IOPS.



212 T. Zhu et al.

Query _nod nod _nod —pwrite
Layer [ prnoce j/,"( pnoce pnoce - -»read

write,

— -tead

| P
Slt_orage (MemTable T———b( SSTable1 }—b( SSTable2 }—b( SSTable3 j
ayer

Memory Storage Distributed File System

Fig. 1. Data storage and access on distributed LSM-tree

SSTable is the immutable structure where data is stored in lexicographic
order based on their primary key. The SSTable is generated by freezing an active
Memtable. The frozen Memtable is transferred into distributed file system and
becomes the SSTable. A new Memtable replaces the old one for servicing further
writes. As time goes by, there are several SSTables generated as illustrated in
Fig. 1, where SSTablel is the latest one and SStable3 is the oldest ones.

In Fig. 1, to read an entry with key k, a p-node has to go through the 1st
Memtable, 2nd SSTable, 3rd SSTable... until seeing the data with k as its key.
In addition, Memtable and SSTables are distributedly stored. Hence, a p-node
has to issue many remote data access via the network.

Precise Data Access is to let a p-node determine visiting either the Memtable
or one SSTable without contacting the underlying storage servers. Let Memtable
be m and its owned key set be K,,, = {k}*, k3", ... }; SSTable be s and its owned
key set be s = {k{, k5, ... }. Given a query key k, a p-node is required to answer
whether k € IC,,, or k € I, stands. It is easy to answer whether k € g by caching
the Bloom filter of SSTable on p-nodes (as discussed in Sect. 2). But, answering
whether k£ € K, is of much more difficulties. Hence, we aim at determining
whether Memtable access is necessary for a read operation. There is no essential
difference between one SSTable or multiple. We assume there only one SSTable
in the following.

The kernel problem is to answer whether a remote evolving set contains a
typical element or not. An intuitive solution is to maintain a Bloom filter for the
Memtable as well, and synchronize the structure to multiple p-nodes. However,
there are two difficulties here. Firstly, since the Memtable is stored in remote,
its Bloom filter has to be synchronized to p-nodes through network. But the
Bloom filter is of large size. Direct synchronization tends to exhaust the network
bandwidth. Secondly, as the Memtable services data writes, it is evolving over
the time, a copy of its Bloom filter on a p-node may not remain the same with
the source one after synchronization. Potential difference between the primary
Bloom filter and its copies tends to lead to inconsistency read. Understanding
these difficulties, we present solutions in the following sections.

4 Entry Existence

Figure 2 illustrates how to maintain and synchronize a Bloom filter (B,,) for
the Memtable. When data writes happen on the Memtable, redo log entries
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Fig. 2. The Bloom filter maintenance and synchronization

are prepared. Before flushing a group of redo entries into disk, updates on B,
are generated from redo entries based on the policy in Sect.4. These updates
act as the modification log entries for the B, (short for bf-logs). To reduce
synchronization cost, B,, is not directly sent to p-nodes, instead bf-logs are
transported to p-nodes and a copy of B,, on a p-node catches up with the source
by applying (replaying) the identical bf-logs.

Maintenance. The Memtable can be probably changed by the following types
of operations: insert, update and delete. Considering an entry e with key k:

1. Update operation modifies an existing record entry e. (i) If k ¢ ,,, then
e is newly created in the Memtable. A bf-log is generated for k, which adds
existence of k into B,,; (ii) If k¥ € K,,, then a previous operation has added k
into IC,,, and handled its update on 5,,, the current one does nothing.

2. Delete operation is treated as special update, which adds an deleted flag
for k. A read operation checks whether the entry is deleted via the flag.

3. Insert operation writes an non-existing record entry e into the Memtable.
(i) If k ¢ Ky, then k ¢ IC; must also stand. To read e, a p-node can easily find
k ¢ Ks by checking B, and e can only be found on the Memtable. The p-node
can infer the fact without querying ,,,. Thus, there is no necessity in modifying
B, when inserting e into Memtable. (ii) If £ € IC,,,, this means the entry must
be tagged with a deleted flag, its bits in ,,, should be already processed by one
previous delete operation. Therefore, we do not need to modify B, again.

In summary, B, is only modified when an entry is newly created on the
Memtable by a update or delete operation.

Data Access based on B,,. Considering the query ¢(k) in Definition 1, we
denote b, (bs) is 1 when all hashing bits of the key k are 1 in the (copy of)
B, (Bs) respectively. Temporarily, we assume there is no false positive in the
Bloom filter. Based on the maintaining policy of B,,, we locate an entry using
the following rules.

(1) If b,, = 0 and by = 0, then e is either non-existing or newly inserted into
Memtable. A p-node will access Memtable.

(2) If by, = 0 and bs = 1, then e never receives any modification after it is
written into the SSTable. A p-node will directly access the SSTable.

(3) If by, =1 and bs = 1, e is stored on SSTable at first and then get modified.
A p-node should visit the Memtable to read the entry.
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(4) by, = 1 and by = 0 is not possible under the maintaining policy for B,,.
It only appears when B,, sees a false positive. In that case, it actually has
b = 0 and bs = 0. Hence, a p-node takes the Memtable as the destination.

As the Bloom filter contains false positives. An entry may not exists in Memtable
or SSTable even if B,, or B confirms its existence respectively. When the entry
is not returned by the first access, a p-node access the rest structure to handle
any potential false positive.

Lightweight Synchronization. A p-node synchronize the remote B, to its
local by pulling bf-logs from the Memtable server and replaying these entries.
As discussed above, only a small part of operations generate bf-logs, the number
of bf-logs is much smaller than that of redo log entries. It means that the bf-log
synchronization has lower network overhead than the log replication [6].

Each bf-log is indexed by a monotonically increasing serial number. The
Memtable server keeps the newest bf-logs in a circular buffer. A p-node pulls
bf-logs from the remote by sending the largest serial number N ever received.
The Memtable server replies with all bf-logs whose serial number is bigger than
N. As the circular buffer has limited memory, new bf-logs may overwrite the
oldest ones. The B,, is sent to a p-node when some required bf-logs are missing.

5 Consistence

A copy of B,, on a p-node may fall behind the primary one. As a result, a p-node
may miss some newly committed entries and suffer from inconsistent read. We
present a lease-based solution and use Fig. 3 to explain the design.

Group Commit. The Memtable commits write operations with following steps:
(1) Generation. Redo entries are buffered in memory. They are flushed into the
disk in a fixed period, called the group interval, e.g. from ts(g1) to ts(g2). (2)
Start phase begins at a time ¢5(g,) with a group of redo entries formed. Then,
bf-logs are generated and applied into B,,, e.g. from ts(g1) to ty,(g1). (3) Write
phase begins at a time ¢,,(g,). The write thread is writing redo entries into the
disk, e.g. from t,(g1) to ty(g1), which generally several milliseconds to finish
under the hard disk driver. (4) Publish phase begins at a time t,(g,) after
the write thread has finished disk writing. Data modifications of the group are
applied into the Memtable, e.g. from t,(g1) to te(g1). After that, the group ends
at a time t.(gz).

Invariance. Both B,, and the Memtable keep invariant during a period. Con-
sidering two successive groups g1 and go, B,, is invariant from ¢,,(g1) to ts(g2)
and Memtable is invariant from t.(g1) to ¢,(g2). With the temporary invariance
of Memtable and B,,, a lease-based mechanism can be designed to ensure the
read consistency when a p-node uses a copy of B,, in data access.

Lease Definition. A lease L, is a contract given by the Memtable server and
held by each p-node. It contains an invariant Bloom filter B/, (a version of B,,
at some time) and a expiration time t,, and guarantees that for each entry in



Precise Data Access on Distributed Log-Structured Merge-Tree 215

the Memtable, its bits are correctly set in B], based on the maintaining policy
before t, is reached. It is safe for a p-node to use B, before ¢, is reached.

Lease Design. A lease can begin after a group has updated B, i.e. t,(g.),
and end before the next group begin to publish, i.e. t,(gy+1). For example, L;
can last from t,,(g1) to t,(g2) and B), is the version of B,, at ¢, (g1).

Correctness. Between t,,(g1) and t,(g2), the Memtable has two versions while
B;,, includes all bf-logs from g¢; and all previous ended groups. (1) Before t,(g1),
the Memtable mg contains data entries committed by all groups end in prior
to g1. It is safe to use B!, because all bf-logs generated by these groups have
been applied in B/,,. On the other hand, B/, also contains bf-logs from g;. Though
data entries created by gy are not included in mg at present, a p-node would still
be directed to the Memtable when reading them. Such reading can be viewed
as a false positive and does not lead to consistency problem. (2) After t,(g1),
the Memtable m; contains data entries committed by g; and all previous ended
groups. Now B/, is the exact structure for m;.

Two successive leases have overlap in the time-line. A new lease is available
for acquisition before the in-using one is going to be expired. In the overlap, both
their B,,, work correctly in accessing Memtable. The proof is straightforward.

Lease Implementation. A lease L, is generated at the time ¢, (g, ), containing
the current largest bf-log serial number N and the expiration time t,. Its B],
is created by replaying all bf-logs whose serial number is small than N. The
t; can be any time before the next group publishes, i.e. t,(gz+1). However, the
timestamp is not known in advance, but can be inferred by adding the current
time, the group interval and disk writing time together (e.g. Ly in Fig. 3). Local
processing time, e.g. from t5(g,) to t,(gs), is ignored as it is very short. Group
interval can be given by system configuration. Disk write time can be estimated
from the time used for previous groups.

Commit Wait. Since ¢, is inferred, it can be smaller or bigger than t,(gz+1)-
(1) If ty > ty(guot1), the Memtable should not allow g,+1 to publish its content.
Otherwise, inconsistent read may happen since L, is not expired now. As a
result, the publish phase of g,41 is blocked until ¢, is reached. It is called as
commit wait. To avoid commit wait, we prefer to use the lower bound of the
estimated disk write time in determining the ¢,.

Acquisition. In each synchronization, a p-node pulls a lease and bf-logs whose
serial numbers are in (N1, No] from the Memtable server (N; the largest serial
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Fig. 3. Group commit and lease management
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number ever received, N> is the one specified by the lease). Synchronization is
required when the lease is going to expire soon. Typically, a p-node tries to
acquire a new lease when the in-using one will be expired in 400 us.

A p-node checks whether the Bloom filter is usable by confirming that the
current time is smaller than the expiration time of the lease. A problem is the
time deviation between servers. PTP [1] can be used to synchronize server clocks,
which achieves less than 50 us under a local area network. A p-node infers the
time of a remote server by adding its local time with the largest deviation.

6 Experiment

The experiments use 15 servers, equipped with two 2.00 GHz 6-Core processors,
192 GB DRAM, connected by 1 GB switch. The Memtable is stored on a server,
the SSTable is shareded over 3 servers. The rest deploy p-nodes. All experiments
use the YCSB benchmark with 1 million records in the database. 95% records
are stored in the SSTable, and records are accessed in uniform distribution. The
workload contains unlimited read requests and 10 K writes per second. Three
methods are evaluated and compared. (1) NDA is the basic access method in
LSM-tree. (2) BDA maintains Bloom filter of SSTable to prone useless SSTable
access. (3) PDA is the method presented in this work. Performance are evaluated
by read operations processed per second (ops).

Concurrency. Figure 4 shows the performance of different methods by varying
the number of clients connected with the system. Overall, PDA has the best
performance under all cases. It reaches about 1100k ops when 450 clients are
used, which is about 6 times that of the NDA or BDA. The performance of
NDA and BDA increases with more clients are simulated, but stabilizes once
the Memtable server is overloaded. They easily make the Memtable server be
performance bottleneck since they have to access the Memtable for every request.
On the other hand, performance of PDA improves all the time and does not
witness bottleneck from Memtable access. Secondly, NDA and BDA share similar
performance because the SSTable is well merged and cached on each p-node.
Reducing SSTable access does not contributes to performance.

Scalability. Figure5 evaluates performance by varying the number of p-nodes
connected with storage servers. By deploying more p-nodes, the synchroniza-
tion overhead of PDA is increased. But PDA still shows linear scalability with
respect to the number of p-nodes used. The overhead introduced by Bloom filter
maintenance and synchronization is negligible compared with those unnecessary
Memtable access eliminated by PDA. On the other hand, BDA and NDA achieve
their peak performance when about 10 p-nodes are deployed. They are severely
influenced by the mass useless Memtable access. NDA and BDA still show similar
performance due to the same reason discussed in above.

Synchronization Overhead. Figure 6 shows the synchronization time and fre-
quency by varying the group interval. It always takes about 200 us for a p-node
to extend a new lease. The time used is relatively very short compared with the
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group interval. Secondly, when Memtable flushes one group of redo entires per
2ms, each p-nodes issues about 700 synchronizations per second. Synchroniza-
tion frequency decreases because a p-node gets a longer lease. An exception is
when 1 ms group interval is used. When using a short group interval, many small
groups are formed. Writing small groups increases the average disk write time
because HDD favors large sequential writes. As a result, the disk write time is
increased, making each p-node receive a longer lease again.

Storage Distribution. Figure7 shows the performance by varying the per-
centage of records stored in the Memtable. When about 50% records should be
read from Memtable, PDA achieves about 300k ops. With the percentage goes
down, the performance keeps increasing. In comparison, both NDA and BDA
are not sensitive to the parameter. Given a record who has its lasted version in
the Memtable, PDA process in the same with the others. Thus, when the per-
centage of these records increases, the performance of PDA get closer to that of
NDA/BDA. But it still shows about 200% improvement even when 50% records
should be read from Memtable. In real deployment, Memtable does not contain
a large percent of records.

Skewed Access Distribution. Figure 8 shows the performance under a skewed
access distribution. In YCSB, request parameters are generated under a Zipfian
distribution, which uses 6 to adjust the skewness. When 6 = 0.9, PDA achieves
about 187k ops while NDA/BDA is about 128k ops. PDA has about 1.46x
improvements. It is because most records read are also get updated under a very
skewed workload. With 6 goes down, performance of PDA increases.
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7 Conclusion

This work presents the precise data access mechanism for distributed LSM-
tree style storage. By maintaining low overhead structures among servers, our
design can reduce unnecessary remote Memtable access significantly. Extensive
experiments have shown that our solution improves the performance a lot.
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