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Abstract. With widely available large-scale network data, one hot topic
is how to adopt traditional classification algorithms to predict the most
probable labels of nodes in a partially labeled network. In this paper,
we propose a new algorithm called identifier based relational neighbor
classifier (IDRN) to solve the within-network multi-label classification
problem. We use the node identifiers in the egocentric networks as fea-
tures and propose a within-network classification model by incorporating
community structure information to predict the most probable classes for
unlabeled nodes. We demonstrate the effectiveness of our approach on
several publicly available datasets. On average, our approach can provide
Hamming score, Micro-F1 score and Macro-F1 score up to 14%, 21% and
14% higher than competing methods respectively in sparsely labeled net-
works. The experiment results show that our approach is quite efficient
and suitable for large-scale real-world classification tasks.

Keywords: Within-network classification · Node classification · Collec-
tive classification · Relational learning

1 Introduction

Massive networks exist in various real-world applications. These networks may
be only partially labeled due to their large size, and manual labeling can be
highly cost in real-world tasks. A critical problem is how to use the network
structure and other extra information to build better classifiers to predict labels
for the unlabelled nodes. Recently, much attention has been paid to this problem,
and various prediction algorithms over nodes have been proposed [19,22,25].

In this paper, we propose a within-network classifier which makes use of the
first-order Markov assumption that labels of each node are only dependent on
its neighbors and itself. Traditional relational classification algorithms, such as
WvRn [13] and SCRN [27] classifier, make statistical estimations of the labels
through statistics, class label propagation or relaxation labeling. From a differ-
ent viewpoint, many real-world networks display some useful phenomena, such as
clustering phenomenon [9] and scale-free phenomenon [2]. Most real-world net-
works show high clustering property or community structure, i.e., their nodes are
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organized into clusters which are also called communities [8,9]. The clustering
phenomenon indicates that the network can be divided into communities with
dense connections internally and sparse connections between them. In the dense
connected communities, the identifiers of neighbors may capture link patterns
between nodes. The scale-free phenomenon indicates the existence of nodes with
high degrees [2], and we regard that the identifiers of these high degree nodes can
also be useful to capture local patterns. By introducing the node identifiers as
fine-grained features, we propose identifier based relational neighbor classifier
(IDRN) by incorporating the first Markov assumption and community priors. As
well, we demonstrate the effectiveness of our algorithm on 10 public datasets.
In the experiments, our approach outperforms some recently proposed baseline
methods.

Our contributions are as follows. First, to the best of our knowledge, this is
the first time that node identifiers in the egocentric networks are used as features
to solve network based classification problem. Second, we utilize the community
priors to improve its performance in sparsely labeled networks. Finally, our app-
roach is very effective and easily to implement, which makes it quite applica-
ble for different real-world within-network classification tasks. The rest of the
paper is organized as follows. In the next section, we first review related work.
Section 3 describes our methods in detail. In Sect. 4, we show the experiment
results in different publicly available datasets. Section 5 gives the conclusion and
discussion.

2 Related Work

One of the recent focus in machine learning research is how to extend traditional
classification methods to classify nodes in network data, and a body of work for
this purpose has been proposed. Bhagat et al. [3] give a survey on the node
classification problem in networks. They divide the methods into two categories:
one uses the graph information as features and the other one propagate existing
labels via random walks. The relational neighbor (RN) classifier provides a sim-
ple but effective way to solve the node classification problems. Macskassy and
Provost [13] propose the weighted-vote relational neighbor (WvRN) classifier by
making predictions based on the class distribution of a certain node’s neighbors.
It works reasonably well for within-network classification and is recommended as
a baseline method for comparison. Wang and Sukthankar [27] propose a multi-
label relational neighbor classification algorithm by incorporating a class propa-
gated probability obtained from edge clustering. Macskassy et al. [14] also believe
that the very high cardinality categorical features of identifiers may cause the
obvious difficulty for classifier modeling. Thus there is very little work that has
incorporated node identifiers [14]. As we regard that node identifiers are also
useful features for node classification, our algorithm does not solely depend on
neighbors’ class labels but also incorporating local node identifiers as features
and community structure as priors.

For within-network classification problem, a large number of algorithms for
generating node features have been proposed. Unsupervised feature learning
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approaches typically exploit the spectral properties of various matrix represen-
tations of graphs. To capture different affiliations of nodes in a network, Tang
and Liu [23] propose the SocioDim algorithm framework to extract latent social
dimensions based on the top-d eigenvectors of the modularity matrix, and then
utilize these features for discriminative learning. Using the same feature learning
framework, Tang and Liu [24] also propose an algorithm to learn dense features
from the d-smallest eigenvectors of the normalized graph Laplacian. Ahmed
et al. [1] propose an algorithm to find low-dimensional embeddings of a large
graph through matrix factorization. However, the objective of the matrix factor-
ization may not capture the global network structure information. To overcome
this problem, Tang et al. [22] propose the LINE model to preserve the first-order
and the second-order proximities of nodes in networks. Perozzi et al. [20] present
DeepWalk which uses the SkipGram language model [12] for learning latent rep-
resentations of nodes in a network by considering a set of short truncated random
walks. Grover and Leskovec [10] define a flexible notion of a node’s neighborhood
by random walk sampling, and they propose node2vec algorithm by maximizing
the likelihood of preserving network neighborhoods of nodes. Nandanwar and
Murty [19] also propose a novel structural neighborhood-based classifier by ran-
dom walks, while emphasizing the role of medium degree nodes in classification.
As the algorithms based on the features generated by heuristic methods such
as random walks or matrix factorization often have high time complexity, thus
they may not easily be applied to large-scale real-world networks. To be more
effective in node classification, in both training and prediction phrases we extract
community prior and identifier features of each node in linear time, which makes
our algorithm much faster.

Several real-world network based applications boost their performances by
obtaining extra data. McDowell and Aha [16] find that accuracy of node classi-
fication may be increased by including extra attributes of neighboring nodes as
features for each node. In their algorithms, the neighbors must contains extra
attributes such as textual contents of web pages. Rayana and Akoglu [21] propose
a framework to detect suspicious users and reviews in a user-product bipartite
review network which accepts prior knowledge on the class distribution esti-
mated from metadata. To address the problem of query classification, Bian and
Chang [4] propose a label propagation method to automatically generate query
class labels for unlabeled queries from click-based search logs. With the help of
the large amount of automatically labeled queries, the performance of the clas-
sifiers has been greatly improved. To predict the relevance issue between queries
and documents, Jiang et al. [11] and Yin et al. [28] propose a vector propagation
algorithm on the click graph to learn vector representations for both queries and
documents in the same term space. Experiments on search logs demonstrate the
effectiveness and scalability of the proposed method. As it is hard to find useful
extra attributes in many real-world networks, our approach only depends on the
structural information in partially labeled networks.
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3 Methodology

In this section, as a within-network classification task, we focus on performing
multi-label node classification in networks, where each node can be assigned to
multiple labels and only a few nodes have already been labeled. We first present
our problem formulation, and then show our algorithm in details.

3.1 Problem Formulation

The multi-label node classification we addressed here is related to the within-
network classification problem: estimating labels for the unlabeled nodes in par-
tially labeled networks. Given a partially labeled undirected network G = {V, E},
in which a set of nodes V = {1, · · · , nmax} are connected with edge e(i, j) ∈ E ,
and L = {l1, · · · , lmax} is the label set for nodes.

3.2 Objective Formulation

In a within-network single-label classification scenario, let Yi be the class label
variable of node i, which can be assigned to one categorical value c ∈ L. Let Gi

denote the information node i known about the whole graph, and let P (Yi =
c|Gi) be the probability that node i is assigned to the class label c. The relational
neighbor (RN) classifier is first proposed by Macskassy and Provost [13], and
in the relational learning context we can get the probability P (Yi = c|Gi) by
making the first order Markov assumption [13]:

P (Yi = c|Gi) = P (Yi = c|Ni), (1)

where Ni is the set of nodes that are adjacent to node i. Taking advantage of
the Markov assumption, Macskassy and Provost [13] proposed the weighted-vote
relational neighbor (WvRN) classifier whose class membership probability can
be defined as follows:

P (Yi = c|Gi) = P (Yi = c|Ni) =
1
Z

∑

j∈Ni

wi,j × P (Yj = c|Nj), (2)

where Z is a normalizer and wi,j represents the weight between i and j.

IDRN Classifier. As shown in Eq. 2, traditional relational neighbor classi-
fiers, such as WvRN [13], only use the class labels in neighborhood as features.
However, as we will show, by taking the identifiers in each node’s egocentric net-
work as features, the classifier often performs much better than most baseline
algorithms.

In our algorithm, the node identifiers, i.e., unique symbols for individual
nodes, are extracted as features for learning and inference. With the first order
Markov assumption, we can simplify Gi = GNi

= XNi
= {x|x ∈ Ni} ∪ {i}
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as a feature vector of all identifiers in node i’s egocentric graph GNi
. The ego-

centric network GNi
of node i is the subgraph of node i’s first-order zone [15].

Aside from just considering neighbors’ identifiers, our approach also includes
the identifier of node i itself, with the assumption that both the identifiers of
node i’s neighbors and itself can provide meaningful representations for its class
label. For example, if node i (ID = 1) connects with three other nodes where
ID = 2, 3, 5 respectively, then its feature vector XNi

of node i will be [1, 2, 3, 5].
Eq. 2 can be simplified as follows:

P (Yi = c|Gi) = P (Yi = c|GNi
) = P (Yi = c|XNi

). (3)

By taking the strong independent assumption of naive Bayes, we can simplify
P (Yi = c|XNi

) in Eq. 3 as the following equation:

P (Yi = c|XNi
) =

P (Yi = c)P (XNi
|Yi = c)

P (XNi
)

∝ P (Yi = c)P (XNi
|Yi = c)

∝ P (Yi = c)
∏

k∈XNi

P (k|Yi = c),

(4)

where the last step drops all values independent of Yi.

Multi-label Classification. Traditional ways of addressing multi-label classi-
fication problem is to transform it into a one-vs-rest learning problem [23,27].
When training IDRN classifier, for each node i with a set of true labels Ti, we
transform it into a set of single-label data points, i.e., {〈XNi

, c〉|c ∈ Ti}. After
that, we use naive Bayes training framework to estimate the class prior P (Yi = c)
and the conditional probability P (k|Yi = c) in Eq. 4.

Algorithm 1 shows how to train IDRN to get the maximal likelihood esti-
mations (MLE) for the class prior P (Yi = c) and conditional probability
P (k|Yi = c), i.e., θ̂c = P (Yi = c) and θ̂kc = P (k|Yi = c). As it has been
suggested that multinomial naive Bayes classifier usually performs better than
Bernoulli naive Bayes model in various real-world practices [26], we take the
multinomial approach here. Suppose we observe N data points in the training
dataset. Let Nc be the number of occurrences in class c and let Nkc be the num-
ber of occurrences of feature k and class c. In the first 2 lines, we initialize the
counting values of N , Nc and Nkc. After that, we transform each node i with a
multi-label set Ti into a set of single-label data points and use the multinomial
naive Bayes framework to count the values of N , Nc and Nkc as shown from line
3 to line 12 in Algorithm 1. After that, we can get the estimated probabilities,
i.e., θ̂c = P (Yi = c) and θ̂kc = P (k|Yi = c), for all classes and features.

In multi-label prediction phrase, the goal is to find the most probable classes
for each unlabeled node. Since most methods yield a ranking of labels rather
than an exact assignment, a threshold is often required. To avoid the affection
of introducing a threshold, we assign s most probable classes to a node, where
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s is the number of labels assigned to the node originally. Unfortunately a naive
implementation of Eq. 4 may fail due to numerical underflow, the value of P (Yi =
c|XNi

) is proportional to the following equation:

P (Yi = c|XNi
) ∝ log P (Yi = c) +

∑

k∈XNi

log P (k|Yi = c). (5)

Defining bc = log P (Yi = c) +
∑

k∈XNi
log P (k|Yi = c) and using log-sum-exp

trick [18], we get the precise probability P (Yi = c|XNi
) for each class label c as

follows:

P (Yi = c|XNi
) =

e(bc−B)

∑
c∈L e(bc−B)

, (6)

where B = maxc bc. Finally, to classify unlabeled nodes i, we can use the Eq. 6
to assign s most probable classes to it.

Algorithm 1. Training the Identifier based relational neighbor classifier.
Input: Graph G = {V, E}, the labeled nodes V ′ and the class label set L.
Output: The MLE for each class c’s prior θ̂c and the MLE for conditional

probability θ̂kc.
1 N := 0;
2 Nc := 0 and Nkc := 0, ∀c ∈ L and ∀k ∈ V.
3 for i ∈ V ′ do
4 C = Ti; // Get the true label set C of node i.
5 for c ∈ C do
6 for k ∈ XNi do
7 N := N + 1;
8 Nc := Nc + 1;
9 Nkc := Nkc + 1;

10 end

11 end

12 end
13 for c ∈ L do

14 θ̂c := Nc
N

;
15 for k ∈ V do

16 θ̂kc := Nkc+1
N+|V | ; // Corresponding to Laplace adding-one smoothing.

17 end

18 end

19 return θ̂c and θ̂kc, ∀c ∈ L and ∀k ∈ V .

Community Priors. Community detection is one of the most popular top-
ics of network science, and a large number of algorithms have been proposed
recently [7,8]. It is believed that nodes in communities share common proper-
ties or play similar roles. Grover and Leskovec [10] also regard that nodes from
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the same community should share similar representations. The availability of
such pre-detected community structure allows us to classify nodes more pre-
cisely especially with insufficient training data. Given the community partition
of a certain network, we can estimate the probability P (Yi = c|Ci) for each class
c through the empirical counts and adding-one smoothing technique, where Ci

indicates the community that node i belongs to. Then, we can define the prob-
ability P (Yi = c|XNi

) in Eq. 3 as follows:

P (Yi = c|XNi
, Ci) =

P (Yi = c|Ci)P (XNi
|Yi = c, Ci)

P (XNi
|Ci)

, (7)

where P (XNi
|Ci) refers to the conditional probability of the event XNi

occurring
given that node i belongs to community Ci. Obviously, given the knowledge of
Ci will not influence the probability of the event XNi

occurring, thus we can
assume that P (XNi

|Ci) = P (XNi
) and P (XNi

|Y = c, Ci) = P (XNi
|Y = c). So

Eq. 7 can be simplified as follows:

P (Yi = c|XNi
, Ci)

=
P (Yi = c|Ci)P (XNi

|Yi = c)
P (XNi

)
∝ P (Yi = c|Ci)P (XNi

|Yi = c)

∝ log P (Yi = c|Ci) +
∑

k∈XNi

log P (k|Yi = c).

(8)

As shown in Eq. 8, we assume that different communities have different priors
rather than sharing the same global prior P (Yi = c). To extract communities
in networks, we choose the Louvain algorithm [5] in this paper which has been
shown as one of the best performing algorithms.

3.3 Efficiency

Suppose that the largest node degree of the given network G = {V, E} is K.
In the training phrase, as shown in Algorithm 1, the time complexity from line
1 to line 12 is about O(K × |L| × |V|), and the time complexity from line 13
to line 18 is O(|L| × |V|). So the total time complexity of the training phrase
is O(K × |L| × |V|). Obviously, it is quite simple to implement this training
procedure. In the training phrase, the time complexity of each node is linear
with respect to the product of the number of its degree and the size of class
label set |L|.

In the prediction phrase, suppose node i contains n neighbors. It takes O(n+
1) time to find its identifier vector XNi

. Given the knowledge of i’s community
membership Ci, in Eqs. 5 and 8, it only takes O(1) time to get the values of
P (Yi = c|Ci) and P (Yi = c), respectively. As it takes O(1) time to get the value
of P (k|Yi = c), for a given class label c the time complexities of Eqs. 5 and 8
both are O(n). Thus for a given node, the total complexity of predicting the
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probability scores on all labels L is O(|L| × n) even we consider predicting the
precise probabilities in Eq. 6. For each class label prediction, it takes O(n) time
which is linear to its neighbor size. Furthermore, the prediction process can be
greatly sped-up by building an inverted index of node identifiers, as the identifier
features of each class label can be sparse.

4 Experiments

In this section, we first introduce the dataset and the evaluation metrics. After
that, we conduct several experiments to show the effectiveness of our algorithm.
Code to reproduce our results will be available at the authors’ website1.

4.1 Dataset

The task is to predict the labels for the remaining nodes. We use the following
publicly available datasets described below.

Amazon. The dataset contains a subset of books from the amazon co-
purchasing network data extracted by Nandanwar and Murty [19]. For each
book, the dataset provides a list of other similar books, which is used to
build a network. Genre of the books gives a natural categorization, and the
categories are used as class labels in our experiment.

CoRA. It contains a collection of research articles in computer science domain
with predefined research topic labels which are used as the ground-truth labels
for each node.

IMDb. The graph contains a subset of English movies from IMDb2, and the
links indicate the relevant movie pairs based on the top 5 billed stars [19].
Genre of the movies gives a natural class categorization, and the categories
are used as class labels.

PubMed. The dataset contains publications from PubMed database, and each
publication is assigned to one of three diabetes classes. So it is a single-label
dataset in our learning problem.

Wikipedia. The network data is a dump of Wikipedia pages from different
areas of computer science. After crawling, Nandanwar and Murty [19] choose
16 top level category pages, and recursively crawled subcategories up to a
depth of 3. The top level categories are used as class labels.

Youtube. A subset of Youtube users with interest grouping information is used
in our experiment. The graph contains the relationships between users and
the user nodes are assigned to multiple interest groups.

Blogcatalog and Flickr. These datasets are social networks, and each node
is labeled by at least one category. The categories can be used as the ground-
truth of each node for evaluation in multi-label classification task.

1 https://github.com/yeqi-adrs/IDRN.
2 http://www.imdb.com/interfaces.

https://github.com/yeqi-adrs/IDRN
http://www.imdb.com/interfaces
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PPI. It is a protein-protein interaction (PPI) network for Homo Sapiens. The
labels of nodes represent the bilolgical states.

POS. This is a co-occurrence network of words appearing in the Wikipedia
dump. The node labels represent Part-of-Speech (POS) tags of each word.

The Amazon, CoRA, IMDb, PubMed, Wikipedia and Youtube
datasets are made available by Nandanwar and Murty [19]. The Blogcatalog
and Flickr datasets are provided by Tang and Liu [23], and the PPI and POS
datasets are provided by Grover and Leskovec [10]. The statistics of the datasets
are summarized in Table 1.

Table 1. Summary of undirected networks used for multi-label classification.

Dataset #Nodes #Edges #Classes Average Category #Edges
#Nodes

Amazon 83742 190097 30 1.546 2.270

CoRA 24519 92207 10 1.004 3.782

IMDb 19359 362079 21 2.301 18.703

PubMed 19717 44324 3 1.000 2.248

Wikipedia 35633 495388 16 1.312 13.903

Youtube 22693 96361 47 1.707 4.246

Blogcatalog 10312 333983 39 1.404 32.387

Flickr 80513 5899882 195 1.338 73.278

PPI 3890 37845 50 1.707 9.804

POS 4777 92295 40 1.417 19.320

4.2 Evaluation Metrics

In this part, we explain the details of the evaluation metrics: Hamming score,
Micro-F1 score and Macro-F1 score which have also widely been used in many
other multi-label within-network classification tasks [19,23,27]. Given node i,
let Ti be the true label set and Pi be the predicted label set, then we have the
following scores:

Definition 1. Hamming Score =
∑|V|

i=1
|Ti∩Pi|
|Ti∪Pi| ,

Definition 2. Micro-F1 Score = 2
∑|V|

i=1 |Ti∩Pi|
∑|V|

i=1 |Ti|+
∑|V|

i=1 |Pi|
,

Definition 3. Macro-F1 Score = 1
|L|

∑|L|
j=1

2
∑

i∈Lj
|Ti∩Pi|

∑
i∈Lj

|Ti|+
∑

i∈Lj
|Pi| ,

where |L| is the number of classes and Lj is the set of nodes in class j.
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Baseline Methods. In this paper, we focus on comparing our work with the
state-of-the-art approaches. To validate the performance of our approach, we
compare our algorithms against a number of baseline algorithms. In this paper,
we use IDRN to denote our approach with the global priori and use IDRNc to
denote the algorithm with different community priors. All the baseline algorithms
are summarized as follows:

– WvRN [13]: The Weighted-vote Relational Neighbor is a simple but surpris-
ingly good relational classifier. Given the neighbors Ni of node i, the WvRN
estimates i’s classification probability P (y|i) of class label y with the weighted
mean of its neighbors as mentioned above. As WvRN algorithm is not very
complex, we implement it in Java programming language by ourselves.

– SocioDim [23]: This method is based on the SocioDim framework which gen-
erates a representation in d dimension space from the top-d eigenvectors of
the modularity matrix of the network, and the eigenvectors encode the infor-
mation about the community partitions of the network. The implementation
of SocioDim in Matlab is available on the author’s web-site3. As the authors
preferred in their study, we set the number of social dimensions as 500.

– DeepWalk [20]: DeepWalk generalizes recent advancements in language mod-
eling from sequences of words to nodes [17]. It uses local information obtained
from truncated random walks to learn latent dense representations by treating
random walks as the equivalent of sentences. The implementation of Deep-
Walk in Python has already been published by the authors4.

– LINE [22]: LINE algorithm proposes an approach to embed networks into
low-dimensional vector spaces by preserving both the first-order and second -
order proximities in networks. The implementation of LINE in C++ has
already been published by the authors5. To enhance the performance of this
algorithm, we set embedding dimensions as 256 (i.e., 128 dimensions for the
first-order proximities and 128 dimensions for the second -order proximities)
in LINE algorithm as preferred in its implementation.

– SNBC [19]: To classify a node, SNBC takes a structured random walk from
the given node and makes a decision based on how nodes in the respective
kth-level neighborhood are labeled. The implementation of SNBC in Matlab
has already been published by the authors6.

– node2vec [10]: It also takes a similar approach with DeepWalk which gen-
eralizes recent advancements in language modeling from sequences of words
to nodes. With a flexible neighborhood sampling strategy, node2vec learns a
mapping of nodes to a low-dimensional feature space that maximizes the like-
lihood of preserving network neighborhoods of nodes. The implementation of
node2vec in Python is available on the authors’ web-site7.

3 http://leitang.net/social dimension.html.
4 https://github.com/phanein/deepwalk.
5 https://github.com/tangjianpku/LINE.
6 https://github.com/sharadnandanwar/snbc.
7 https://github.com/aditya-grover/node2vec.

http://leitang.net/social_dimension.html
https://github.com/phanein/deepwalk
https://github.com/tangjianpku/LINE
https://github.com/sharadnandanwar/snbc
https://github.com/aditya-grover/node2vec
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Table 2. Experiment comparisons of baselines, IDRN and IDRNc by the metrics of
Hamming score, Micro-F1 score and Macro-F1 score with 10% nodes labeled for training.

Metric Network WvRN SocioDim DeepWalk LINE SNBC node2vec IDRN IDRNc

Hamming Score (%) Amazon 33.76 38.36 31.79 40.55 59.00 49.18 68.97 72.25

Youtube 22.82 31.94 36.63 33.90 35.06 33.86 42.19 44.03

CoRA 55.83 63.02 71.37 65.50 66.75 72.66 77.80 77.95

IMDb 33.59 22.21 33.12 30.39 30.18 32.97 26.96 26.89

Pubmed 50.32 65.68 77.40 68.31 79.22 79.02 80.13 80.92

Wikipedia 45.10 65.29 71.10 68.812 68.78 70.69 75.38 73.58

Flickr 21.37 29.67 28.73 30.96 24.20 30.65 28.22 33.12

Blogcatalog 17.89 27.04 25.63 25.32 22.40 27.46 31.87 31.05

PPI 6.28 8.61 8.14 9.27 7.97 8.88 19.80 20.95

POS 23.05 21.06 31.40 38.24 37.73 34.59 43.92 44.16

Average 31.00 37.28 41.53 41.12 43.12 43.99 49.52 50.49

Micro-F1 (%) Amazon 34.86 39.62 33.06 42.42 59.79 50.55 69.60 73.04

Youtube 27.81 36.40 40.73 38.01 39.67 38.35 47.94 49.17

CoRA 55.85 63.00 71.36 65.47 66.78 72.66 77.80 77.96

IMDb 42.62 29.99 41.82 39.89 39.53 42.36 36.29 36.29

Pubmed 50.32 65.68 77.40 68.31 79.22 79.02 80.13 80.92

Wikipedia 48.51 66.95 72.19 70.21 70.68 72.07 76.85 75.25

Flickr 25.40 32.91 31.66 34.03 27.60 33.76 31.86 36.55

Blogcatalog 20.50 28.86 27.29 27.45 24.66 29.41 34.25 33.56

PPI 18.41 12.29 11.52 13.16 11.32 12.80 24.92 25.73

POS 26.04 24.42 35.98 42.70 41.99 39.09 47.70 48.23

Average 35.03 40.01 44.30 44.16 46.12 47.00 52.73 53.67

Macro-F1 (%) Amazon 32.00 35.95 21.64 37.52 56.84 45.85 66.39 70.64

Youtube 18.17 34.19 33.92 33.47 32.07 32.60 40.71 42.59

CoRA 43.16 56.82 62.68 59.07 55.68 64.79 72.10 72.20

IMDb 18.89 18.77 18.22 18.83 17.45 18.46 26.61 27.06

Pubmed 41.57 64.85 75.92 66.66 77.16 77.50 71.20 79.89

Wikipedia 45.58 58.93 62.29 62.17 61.99 64.90 70.04 69.39

Flickr 15.54 18.28 17.13 21.80 7.36 18.46 13.71 21.56

Blogcatalog 11.47 18.88 14.65 15.52 8.29 17.16 17.44 16.76

PPI 7.35 10.59 9.61 10.82 8.27 11.27 21.67 22.00

POS 3.91 6.05 8.26 8.93 5.92 8.61 13.49 14.29

Average 23.76 32.33 32.43 33.47 33.10 35.96 41.33 43.63

We obtain 128 dimension embeddings for a node using DeepWalk and
node2Vec as preferred in the algorithms. After getting the embedding vectors for
each node, we use these embeddings further in classification. In the multi-label
classification experiment, each node is assigned to one or more class labels. We
assign s most probable classes to the node using these decision values, where s
is equal to the number of labels assigned to the node originally. Specifically, for
all vector representation models (i.e., SocioDim, DeepWalk, LINE, SNBC and
node2vec), we use a one-vs-rest logistic regression implemented by LibLinear [6]
to return the most probable labels as described in prior work [20,23,27].
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4.3 Performances of Classifiers

In this part, we study the performances of within-network classifiers in different
datasets respectively. As some baseline algorithms are just designed for undi-
rected or unweighted graphs, we just transform all the graphs to undirected and
unweighted ones for a fair comparison.

First, to study the performance of different algorithms on a sparsely labeled
network, we show results obtained by using 10% nodes for training and the left
90% nodes for testing. The process has been repeated 10 times, and we report
the average scores over different datasets.

Table 2 shows the average Hamming score, Macro-F1 score, and Micro-F1

score for multi-label classification results in the datasets. Numbers in bold show
the best algorithms in each metric of different datasets. As shown in the table,
in most of the cases, IDRN and IDRNc algorithms improve the metrics over the
existing baselines. For example, in the Amazon network, IDRNc outperforms
all baselines by at least 22.46%, 22.16% and 24.28% with respect to Hamming
score, Macro-F1 score, and Micro-F1 score respectively. Our model with com-
munity priors, i.e., IDRNc often performs better than IDRN with global prior.
For the three metrics, IDRN and IDRNc perform consistently better than other
algorithms in the 10 datasets except for IMDb, Flickr and Blogcatalog. Take
IMDb dataset for an example, we observe that Hamming score and Micro-F1

score got by IDRNc are worse than those got by some baseline algorithm, such
as node2vec and WvRN, however Macro-F1 score got by IDRNc is the best. As
Macro-F1 score computes an average over classes while Hamming and Micro-F1

scores get the average over all testing nodes, the result may indicate that our
algorithms get more accurate results over different classes in the imbalanced
IMDb dataset. To show the results more clearly, we also get the average vali-
dation scores for each algorithm in these datasets which are shown in the last
lines of the three metrics in Table 2. On average our approach can provide Ham-
ming score, Micro-F1 score and Macro-F1 score up to 14%, 21% and 14% higher
than competing methods, respectively. The results indicate that our IDRN with
community priors outperforms almost all baseline methods when networks are
sparsely labeled.

Second, we show the performances of the classification algorithms of different
training fractions. When training a classifier, we randomly sample a portion of
the labeled nodes as the training data and the rest as the test. For all the
datasets, we randomly sample 10% to 90% of the nodes as the training samples,
and use the left nodes for testing. The process has been repeated 5 times, and
we report the averaged scores. Due to limitation in space, we just summarize
the results of 3 datasets for Hamming scores, Micro-F1 scores and Macro-F1

scores in Fig. 1. Here we can make similar observations with the conclusion given
in Table 2. As shown in Fig. 1, IDRN and IDRNc perform consistently better
than other algorithms in these 3 datasets in Fig. 1. In fact, nearly in all the 10
datasets, our approaches outperform all the baseline methods significantly. When
the networks are sparsely labeled (i.e., with 10% or 20% labeled data), IDRNc

outperforms slightly better than IDRN. However, when more nodes are labeled,
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Fig. 1. Performance evaluation of Hamming scores, Micro-F1 scores and Macro-F1

scores on varying the amount of labeled data used for training. The x axis denotes the
fraction of labeled data, and the y axis denotes the Hamming scores, Micro-F1 scores
and Macro-F1 scores, respectively.

IDRN usually outperforms IDRNc. As we see that the posterior in Eq. 3 is a
combination of prior and likelihood, the results may indicate that the community
prior of a given node corresponds to a strong prior, while the global prior is a
weak one. The strong prior will improve the performance of IDRN when the
training datasets are small, while the opposite conclusion holds for training on
large datasets.

5 Conclusion and Discussion

In this paper, we propose a novel approach for node classification, which com-
bines local node identifiers and community priors to solve the multi-label node
classification problem. In the algorithm, we use the node identifiers in the egocen-
tric networks as features and propose a within-network classification model by
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incorporating community structure information. Empirical evaluation confirms
that our proposed algorithm is capable of handling high dimensional identifier
features and achieves better performance in real-world networks. We demon-
strate the effectiveness of our approach on several publicly available datasets.
When networks are sparsely labeled, on average our approach can provide Ham-
ming score, Micro-F1 score and Macro-F1 score up to 14%, 21% and 14% higher
than competing methods, respectively. Moreover, our method is quite practi-
cal and efficient, since it only requires the features extracted from the network
structure without any extra data which makes it suitable for different real-world
within-network classification tasks.
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parts of the data processing and experiments.
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