
Fast Subsumption Between Rooted
Labeled Trees

Olivier Carloni(B)

Sem Spirit, Montpellier, France
semspirit.contact@gmail.com

http://www.semspirit.com/

Abstract. This paper presents two data structures designed to effi-
ciently query a set of rooted labeled trees (forest) defined in a language
based on a relational vocabulary Σ and provided with a set-theoretic
semantics and a subsumption relation matching the existential conjunc-
tive fragment of the description logic ALC. Given a tree query with q
nodes and a forest with n nodes, after showing the equivalence between
subsumption and homomorphism, an O(q · n) algorithm is proposed to
compute all homomorphisms/subsumptions from the query to the for-
est. Then, are presented the two search data structures for faster homo-
morphism/subsumption retrieval. The first one provides a query time
of O(q) for a structure size of O(2n); and the second one provides a
trade-off between the query time of O(k2 · q) and the structure size of
O(k2 · |Σ| · 2�n/k�), for a fixed integer k.

1 Introduction

The multiplication of data sources and the raise of data volumes have led to
the emergence of many efficient search data structures. The first approaches for-
merly introduced in [10,11] and still inspiring researchers, are the trie (or digital
tree) and the binary search tree, each of them providing query time in O(q) and
O(q·log n) for a storage size of O(n) and O(n·log n) where the query is a sequence
of q bits and the data set consists in n bit sequences of fixed size. Those two data
structures were the starting point for multidimensional range search data struc-
tures. Progressively, it emerged that to provide faster query time, the size of the
data structure needs to increase exponentially with the tuples dimension, leading
to the so-called curse of dimensionality. Thus, proposed search data structures
were efficient for a small dimension d: as kD-trees [2] (O(n1−1/d) time for O(n)
size), range-trees [3] (O(logd n) time for O(n logd−1 n) size), and quadtrees [7].
More recently, skip lists and quadtrees were combined to propose an innovative
data structure [6] that guarantees with some probability the correctness of the
query result set. Since tuples are closed to trees, similar issues have been raised
in the fields of hierarchical data management and graph theory. In particular,
an efficient method was introduced to query XML documents [4] or graphs [9]
with queries defined in the twig formalism that captures a small useful fragment
of the XML query language. Automata theory has also led to some innovative
c© Springer International Publishing AG 2017
G. Li et al. (Eds.): KSEM 2017, LNAI 10412, pp. 552–559, 2017.
DOI: 10.1007/978-3-319-63558-3 47

http://orcid.org/0000-0001-8742-0152

Fast Subsumption Between Rooted Labeled Trees 553

methods, as the one proposed in [8] that uses pushdown-automata to search a
rooted tree query pattern within a rooted data tree in a query time linear in the
given tree pattern.

The work presented here is also based on automata theory, with the difference
that our automata are word finite states automata. The main contribution of
the paper is the definition of two data structures, both used to store a forest of
n nodes whose trees are defined in a knowledge representation (KR) language
relying on a relational vocabulary Σ and equipped with a set-theoretic semantics
and a subsumption relation matching the existential conjunctive fragment of the
description logic ALC. The two data structures are supplied with an efficient
interrogation mechanism that complies with the semantics. Given a query of
size q, the first one provides O(q) query time for a size of O(2n); and the second
one makes possible a trade-off depending on k between a query time of O(k2 · q)
and a size of O(k2 · |Σ| · 2�n/k�). The paper is organized in three parts: the
first section presents the tree KR language, its concrete and abstract syntaxes
with the set-theoretic semantics and subsumption relation. Then, is introduced
the labeled tree homomorphism (shown equivalent to the subsumption) with a
linear time algorithm. The second section defines the notion of tour language
of a tree, and establishes the equivalence between tour language containment
and homomorphism/subsumption. Finally, the third section makes use of the
automata theory machinery to build the aforementioned data structures.

2 Trees, Subsumption and Homomorphism

2.1 Concrete Trees

Given a relational vocabulary Σ, the concrete representation of a labeled rooted
tree T (in short concrete tree or tree) defined on Σ is a tuple T = (N, r, s) where
N is the non-empty set of nodes, r ∈ N is the root and s : N × Σ → 2N is the
successor function between nodes of N . A node n ∈ N is a λ-successor of a node
p ∈ N iff n ∈ s(p, λ). The successor function s is defined such that the node r is
the root and s does not contain any cycle. |T | denotes the size in nodes of the
tree T and identity between trees is defined by means of tree isomorphism.

2.2 Abstract Syntax

A string a is an abstract representation of a tree (in short abstract tree) defined on
the relational vocabulary Σ iff either a is the empty string, a = λX∅ or a = XY
where λ ∈ Σ, ∅ is a special symbol not in Σ and X,Y are abstract trees defined
on Σ. Let T = (NT , rT , sT) be a concrete tree, an abstract representation αT of
T is either the empty string if NT is a singleton; or else an abstract tree in the
form αT = λαu∅αV such that (1) u is one λ-successor subtree of rT ; and (2) V is
the concrete tree resulting from the removal of u among the λ-successor subtrees
of rT in T . Let a be an abstract tree defined on Σ, the concrete representation
γ(a) of a is the concrete tree γ(a) = (Na, ra, sa) such that: (1) if a = λx∅Y

554 O. Carloni

where x and Y are (possibly empty) abstract trees then γ(a) is the copy of
γ(Y) = (NY , rY , sY) such that ra = rY and γ(x) belongs to the λ-successor
subtrees of ra; else (2) if a is the empty string then Na = {ra} is a singleton and
sa is undefined for the root ra which is the unique node of γ(a).

Semantics. An interpretation structure I of a relational vocabulary Σ is a
tuple I = 〈D, i〉 where D is a non-empty set, called the domain and i is an
interpretation function that maps every (relational) symbol from Σ to a subset
of D × D; and every abstract tree a defined according to Σ to a subset of
D such that (1) if a is empty i(a) = D, else (2) if a = λx∅Y then i(a) =
i(Y)

⋂{o ∈ D|(o, o′) ∈ i(λ) and o′ ∈ i(x)} where Y and x are abstract trees
defined on Σ. This interpretation is equivalent to the one given to the existential
conjunctive fragment of the description logic ALC [1] (i.e. the fragment limited
to existential restriction and intersection operators). The equivalence is proven
by considering Σ as role names and by defining a bijective function f that
recursively translates an abstract tree a = λx∅Y into its equivalent ALC concept
definition f(a) = (∃λf(x)) � f(Y). Let a and b be abstract trees, we say that a
subsumes b (b is subsumed by a), written b � a (a 	 b), iff i(b) ⊆ i(a) for all
interpretation structures I = 〈D, i〉 of Σ.

2.3 Rooted Labeled Tree Homomorphism

A rooted labeled tree homomorphism h from a tree A into a tree B is a function
h : NA → NB from the nodes of A into the nodes of B that maps the roots
h(rA) = rB of the trees and preserves the successor function such that for all
λ ∈ Σ and n, p ∈ NA if n is a λ-successor of p in A then h(n) is a λ-successor of
h(p) in B. h(A) denotes the subtree in B that is the image of A by h.

Algorithm. As shown in [12], given a labeled graph with n nodes and a labeled
tree with m nodes, there is an algorithm that computes all homomorphisms from
the tree into the graph in O(mn) time. Restricting this problem to two trees A
and B, the set H = {h|h = A → B} of all homomorphisms from A to B can be
computed in time O(|A| · |B|) with the two following steps.

The first step consists in running the following procedure homs(a,A,X,B)
that returns the set {x ∈ X such that there is an homomorphism h = A → B
and h(a) = x}:

1. For all λ-successors ai of the node a in A, for any arbitrary symbol λ ∈ Σ
2. Cx,ai

← {xj of λ-successors of x}, for every x ∈ X
3. Xi ← ⋃

x∈E Cx,ai

4. let Ri be the result of homs(ai, A,Xi, B)
5. Dx,ai

← Cx,ai
∩ Ri, for every x ∈ X

6. X ← {x ∈ X such that Dx,ai
= ∅}

7. return X

Fast Subsumption Between Rooted Labeled Trees 555

The second step for enumerating all the homomorphisms h of H, consists in
keeping the Dx,ai

sets outside the function homs. Doing so, one can build each
homomorphism h by browsing recursively the structure Dx,ai

in order to select
an image h(a′

i) for each node a′
i of A fitting the one selected for its parent a′;

following a recursive traversal of A from its root to its leaves. More precisely,
h ∈ H is exhibited by choosing h(a) ∈ homs(a,A,X,B), then recursively: if
h(a′) = x and a′

i is a λ-successor of a′ then choose h(a′
i) ∈ Dx,a′

i
such that h(a′

i)
is a λ-successor of x.

Subsumption and Homomorphism Equivalence. Let a and b be two
abstract trees, a subsumes b iff there exists an homomorphism h = γ(a) → γ(b)
between their respective concrete representations γ(a) and γ(b). This can be
shown by recurrence. When a is empty, it is obvious. Then by using the recursive
definitions of subsomption/homomorphism we prove that: given a λ symbol of
a and its corresponding node n (which is a λ-successor of some other) in γ(a),
there is a symbol in b equal to λ establishing the subsumption (so far) iff its
corresponding node n′ in γ(b) (which is a λ-successor of some other) is a valid
image for n, establishing the homomorphism (so far).

3 Tour Language of a Tree

3.1 Automata Induced by a Tree

INFA (resp IDFA). Given an alphabet Σ, an incomplete NFA or INFA (resp.
incomplete DFA or IDFA) is a tuple A = (Q,Σ, δ, q0, F) where Q is the set
of states, δ the transition function δ : Q × Σ → 2Q (which may not be total)
(resp. δ : Q × Σ → Q), q0 the initial state and F the final states set. Let δ∗

be the function such that given a word w = λw′ with λ ∈ Σ δ∗(x,w) = δ(x, λ)
when w′ = ε or otherwise δ∗(x,w) =

⋃{δ∗(x′, w′)|x′ ∈ δ(x, λ)} (resp. δ∗(x,w) =
δ∗(δ(x, λ), w′)). An INFA (resp. IDFA) A accepts a word w if δ∗(x,w) ∩ F =
∅ (resp. δ∗(x,w) ∈ F) in a time O(|w|.|A|2) (resp. O(|w|)) and the language
recognized by A is the set LA of all words accepted by A. The notation of δ∗ is
extended to allow δ∗ to take a set X ⊆ Q as parameter such that δ∗(X,w) =⋃{δ∗(x′, w)|x′ ∈ X}.

Tours, Tour Language and Tour Automaton. A word t is a tour of a tree
T = (N, r, s) if t is a finite string and (1) either t is empty, (2) either t = λt′∅t′′

such that t′′ is a tour of T and t′ is a tour of a subtree of T starting at one of
the λ-successors of the root r of T . The tour language LT of a tree T is the set
of all tours of T . A tour t of a tree T is said to be eulerian iff γ(t) is isomorphic
to T . An abstract representation αT of a tree T is an eulerian tour. Given a tree
T = (N, r, s), let infa(T) = (Q,Σ′, δ, q0, F) be the INFA induced by T as the
INFA defined on the alphabet Σ′ = Σ ∪ {∅} such that Q = N , q0 = r, F = {r}
and δ(x, λ) = X ′ and δ(x′, ∅) = {x} for all x′ ∈ X ′ iff s(x, λ) = X ′. Tour
language recognition: Given a tree T = (N, r, s), the INFA infa(T) recognizes
the tour language LT of T .

556 O. Carloni

3.2 Tour Languages, Containment and Homomorphism

By showing that a tour language LT of a concrete tree T is equal to the set of
every abstract tree t for which an homomorphism exists from γ(t) to T , it can
be established for two trees T1 and T2 that (1) there exists an homomorphism
h = T1→T2 iff the language containment LT1 ⊆ LT2 holds; and (2) given an
eulerian tour e of T1, e ∈ LT2 iff LT1 ⊆ LT2 .

Forest and Tour Language Union. Given a tree T and a forest B, h is an
homomorphism h = T→B from T into B iff there exists a tree U ∈ B such
that h is an homomorphism h = T→U from T to U . The tour language LB of
a forest B is the union of the tour languages LT of all the trees T ∈ B in the
forest. We extend the definition of infa to forests: given a forest B, the INFA
infa(B) recognizing the tour language LB of the forest B contains an initial
state q0 and the INFAs infa(Ti) with initial states qi0 of the trees Ti ∈ B such
that there is in infa(B) a λ-transition from q0 to a state x iff there is in infa(Ti)
a λ-transition from qi0 to this state x. Given a forest B and a tree T , there exists
an homomorphism h = T→B iff LT ⊆ LB .

4 Search Data Structures

Given a forest B and a tree T with abstract syntax t, we have: t ∈ LB iff
LT ⊆ LB iff there exists an homomorphism h = T→B. Thus, the automaton
infa(B) accepts t iff there is an homomorphism h = T→B. However checking for
an homomorphism by using infa(B) as well as the algorithm given in Sect. 2.3
is done in a time that strongly depends in the size |B| of the forest. The main
benefit of the two following search data structures is to decrease this dependency
by reducing the non-determinism when testing membership in infa(B).

4.1 Complete Determinization

The INFA infa(B) is determinized into an IDFA idfa(B) with the so-called
powerset construction algorithm presented in [13]. Let infa(B) = (QN , Σ, δN , q0,
FN) be the INFA for the forest B, the IDFA idfa(B) = (QD, Σ, δD,X0, FD)
equivalent to infa(B) is such that (1) X0 = {q0} and X0 ∈ QD, (2) if λ ∈ Σ
and X ∈ QD then δD(X,λ) = {y|x ∈ X and y ∈ δN (x, λ)} and δD(X,λ) ∈ QD;
and finally (3) for all X ∈ QD, X is an accepting state (X ∈ FD) in idfa(B)
iff at least one of its member x is an accepting state (x ∈ FN) in infa(B). The
size of idfa(B) is |idfa(B)| = O(2|B|).

Homomorphism Test. Given a forest B and a tree A = (N, r, s) with abstract
syntax (or eulerian tour) a, there is an homomorphism h = A → B iff a is
accepted by idfa(B). Checking if such an homomorphism h exists is done in
time O(|A|).

Fast Subsumption Between Rooted Labeled Trees 557

Homomorphisms Reconstruction. Given an abstract representation a = αA

of a tree A, let fA be the function that maps an index 0 ≤ i ≤ |a|−1 of a symbol
a[i] in a with its corresponding node in A. fA is not injective, thus one node
x from A may have several antecedents indices and f−1

A (x) is a set. Let ga be
the bijective function that maps an index 0 ≤ i ≤ |a| − 1 of a symbol in a with
the state δ∗(q0, a[0, i]) of the run reached by the word a[0, i]. Now, μA is the
function mapping each node x of A with a state μA(x) of the run such that
μA(x) = ga(ix) where ix is the largest index in f−1

A (x). Thus, μA(x) is the state
of the run that recognizes in a the symbol at the farthest position ix (from the
start of the string) and that corresponds to the node x = fA(ix). Each state
s of the idfa(B) reached by a string w represents a set of nodes n(s) from B
in bijection with the set S of states reached in infa(B) by w. Let ωs be the
function partitionning the nodes of n(s) according to their parents such that for
a state s in idfa(B) and a node x in B, ωs(x) = n(s) ∩ Sx where Sx is the set of
successors of x. Let π be the function returning the parent node p = π(x) in B
of any given successor node x of p in B. The set of homomorphisms H from A
into B can be reconstructed with the following procedure.

Initialisation Step. Let x = fA(|a| − 1) be the node in A corresponding to the
last symbol in a leading to the accept state in AB . Every node x′ of the domain
dom(ωs) of ωs where s = μA(x) is an image of x according to an homomorphism
from A to B. Thus we add in H as many partial homomorphisms h as there
exist nodes x′ ∈ dom(ωs) such that h(x) = x′. These partial homomorphisms
will be completed by the following loop until they become full homomorphisms
from A to B. Let H′ be an empty set. At each step, the following loop generates
a new set H′ containing further completed copies of the homomorphisms in H;
and at the end of the step: H′ replaces H.

Reconstruction Loop. Loop until H and H′ become identical such that, for every
homomorphism h ∈ H and every node x ∈ A where h(x) = x′: (1) if x is a
successor of p in A then we add in H′ a copy h′ of h such that h′(p) is set to
the unique parent node π(x′) of x′ in B; (2) if y is a λ-successor of x in A then
for all node y′ ∈ ωs(x′) where s = μA(y) we add in H a copy h′ of h such that
h′(y) = y′.

Reconstruction Time. If π and ω are precomputed maps using a dichotomic
method (as BST) to search the unique parent π(x) or the children set ω(x) of
a given node x in B, then the search in the maps is performed in O(log |B|).
Since, the idfa(B) accepts a = αA in time O(|A|) and at most O(|A|) lookups
are done in π and ω maps in order to build each homomorphism of H; then
supposing that there are K homomorphisms to be returned, the reconstruction
time is O(K.|A|. log |B|).

4.2 Trade Off Between Space and Time

As shown in [5], given an integer k, an INFA of size n and an input word of
size w, there exists a data-structure that provides a trade-off between its size of

558 O. Carloni

O(k2·|Σ|·2�n/k�) and the time O(w·k2) needed to simulate the INFA on the input
word. This data-structure is an array storing k equal sized arbitrary partitions
of the INFA such that inside each partition the simulation is deterministic. The
remaining non-determinism occurs when multiple partitions have to be combined
to compute the next step during an INFA simulation. Let Xi be k arbitrary
subsets of size at most �n/k� partitionning the n states of the INFA infa(B)
of the forest B. Each subsets Yi ⊆ Xi, within each subset Xi, are indexed by
integers from 0 to 2�n/k�. Let D be a function such that D : [0, k − 1] × [0, k −
1] × Σ × [0, 2�n/k�] → [0, 2�n/k�]. An argument (i, j, λ, xi) of D is composed of
two values 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ k − 1 identifying two subsets Xi and
Xj of the partition, a symbol λ ∈ Σ and the integer 0 ≤ xi ≤ 2�n/k� − 1
indexing the subset Yi of Xi. The value D(i, j, λ, xi) ∈ [0, 2�n/k�] is an integer
indexing a subset Yj of Xj such that a state s belongs to Yj iff s belongs to
Xj and there is a state in Yi that transitions to s on input symbol λ. Let a
be an abstract tree and b a sequence of k bits bi. For the initialisation, Xi0

is the partition subset containing the initial state of infa(B) and all bits of
the sequence b are set to zero excepted the bit whose index corresponds to this
initial state. Let p = 0 be the position of the symbol a[p] currently read in a.
Each integer value D(i, j, a[p], b) is the index of a subset of the states of the set Xj

that can be reached by a transition on a[p] from a state in the set Yi identified
by the sequence b as a subset of the set Xi. Let Z be the set of all integer
values D(i, j, a[p], b) for every pair i, j ∈ [0, k − 1] and let z be the result of the
OR bitwise binary operation of all the indices in Z. Now, z is the bit sequence
indexing the unique subset Yj of the set of states Xj reachable in infa(B) by
the substring a[0, p] of a. If p < |a|−1 then increment p, set the sequence b equal
to z and start again this procedure. Otherwise p = |a|−1: in this case, the string
a has been read till the end and the simulation is finished. If Yj contains at least
one accepting states from infa(B) then a is accepted, otherwise it is rejected.
The space required is the size for storing the function D which is at most the
cardinal of [0, k − 1] × [0, k − 1] × Σ × [0, 2�n/k�], and thus O(k2 · |Σ| · 2�n/k�).
For fixed p, λ = a[p] and b, each step of the simulation that reads a symbol of a
checks the value D(i, j, λ, b) for all (i, j) ∈ [0, k − 1] × [0, k − 1]. Thus each step
takes time O(k2), and since there are as many steps as |a| symbols in a then the
total simulation time is O(|a| · k2), which is equal to O(|A| · k2) where A is the
concrete representation of a.

5 Conclusion

The KR language presented in this paper provides concrete and abstract syntaxes
for labeled rooted trees defined according to a relational vocabulary Σ. On the
one hand, the abstract syntax is provided with a set-theoretic semantics and
a subsumption relation matching the existential conjunctive fragment of the
description logic ALC. On the other hand, a notion of homomorphism is defined
between concrete trees with a linear time algorithm; and shown to be equivalent
to subsumption. Moreover, given a tree T with abstract syntax t and a forest

Fast Subsumption Between Rooted Labeled Trees 559

B, there is an homomorphism from T to B: (1) iff T subsumes a tree in B;
and (2) iff t belongs to the set LB of all tours of B. Making use of automata
theory, the membership t ∈ LB can be checked by running on input string t
the automata infa(B) that recognizes the tour language LB . The first data
structure proposed in this paper is obtained by determinizing infa(B) into a
deterministic automaton of size at most O(2|B|) that reads t in time O(|t|). If t
is accepted and K homomorphisms from T to B have to be returned, they can be
reconstructed from the run in time O(K · |T | · log |B|). If the determinization can
not be total (e.g. because of space limitations), it is possible to build a second
data structure of size O(k2 · |Σ| · 2�|B|/k�) that simulates in time O(k2 · |t|) a run
of the automaton infa(B) on input string t; providing a trade-off between time
and size depending on the parameter k.

References

1. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Staab, S., Studer,
R. (eds.) Handbook on Ontologies. IHIS, pp. 21–43. Springer, Heidelberg (2009).
doi:10.1007/978-3-540-92673-3 1

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

3. Bentley, J.L.: Decomposable searching problems. Inf. Process. Lett. 8(5), 244–251
(1979)

4. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins. In: Proceedings of the
2002 ACM SIGMOD International Conference on Management of Data, SIGMOD
2002. ACM Press (2002)

5. Eppstein, D.: Are there small machines which can efficiently match regular expres-
sions? (Krishnaswami) (2010). https://cstheory.stackexchange.com/questions/11
32/are-there-small-machines-which-can-efficiently-match-regular-expressions/1273
#1273

6. Eppstein, D., Goodrich, M.T., Sun, J.Z.: Skip quadtrees: dynamic data structures
for multidimensional point sets. Int. J. Comput. Geom. Appl. 18(01n02), 131–160
(2008)

7. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite
keys. Acta Inform. 4(1), 1–9 (1974)

8. Flouri, T., Janoušek, J., Melichar, B., Iliopoulos, C.S., Pissis, S.P.: Tree template
matching in ranked ordered trees by pushdown automata. In: Bouchou-Markhoff,
B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol.
6807, pp. 273–281. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22256-6 25

9. Gou, G., Chirkova, R.: Efficient algorithms for exact ranked twig-pattern matching
over graphs. In: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008. ACM Press (2008)

10. Knuth, D.E.: Optimum binary search trees. Acta Inform. 1(1), 14–25 (1971)
11. McClellan, M.T., Minker, J., Knuth, D.E.: The art of computer programming, vol.

3: sorting and searching. Math. Comput. 28(128), 1175 (1974)
12. Mugnier, M.-L.: On generalization/specialization for conceptual graphs. J. Exp.

Theor. Artif. Intell. 7(3), 325–344 (1995)
13. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.

Dev. 3(2), 114–125 (1959)

http://dx.doi.org/10.1007/978-3-540-92673-3_1
https://cstheory.stackexchange.com/questions/1132/are-there-small-machines-which-can-efficiently-match-regular-expressions/1273#1273
https://cstheory.stackexchange.com/questions/1132/are-there-small-machines-which-can-efficiently-match-regular-expressions/1273#1273
https://cstheory.stackexchange.com/questions/1132/are-there-small-machines-which-can-efficiently-match-regular-expressions/1273#1273
http://dx.doi.org/10.1007/978-3-642-22256-6_25

	Fast Subsumption Between Rooted Labeled Trees
	1 Introduction
	2 Trees, Subsumption and Homomorphism
	2.1 Concrete Trees
	2.2 Abstract Syntax
	2.3 Rooted Labeled Tree Homomorphism

	3 Tour Language of a Tree
	3.1 Automata Induced by a Tree
	3.2 Tour Languages, Containment and Homomorphism

	4 Search Data Structures
	4.1 Complete Determinization
	4.2 Trade Off Between Space and Time

	5 Conclusion
	References

