
Representation Learning with Entity Topics
for Knowledge Graphs

Xin Ouyang1(B), Yan Yang1(B), Liang He1,2, Qin Chen1,
and Jiacheng Zhang1

1 Institute of Computer Applications, East China Normal University,
Shanghai, China

{xouyang,yyang,lhe9191,qchen,jchzhang}@ica.stc.sh.cn
2 Shanghai Engineering Research Center of Intelligent Service Robot,

Shanghai, China

Abstract. Knowledge representation learning which represents triples
as semantic embeddings has achieved tremendous success these years.
Recent work aims at integrating the information of triples with texts,
which has shown great advantages in alleviating the data sparsity prob-
lem. However, most of these methods are based on word-level informa-
tion such as co-occurrence in texts, while ignoring the latent semantics
of entities. In this paper, we propose an entity topic based representation
learning (ETRL) method, which enhances the triple representations with
the entity topics learned by the topic model. We evaluate our proposed
method knowledge graph completion task. The experimental results show
that our method outperforms most state-of-the-art methods. Specifically,
we achieve a maximum improvement of 7.9% in terms of hits@10.

Keywords: Knowledge representation · Entity topics · Topic model ·
Knowledge graph completion

1 Introduction

Knowledge Graphs (KGs) aim at storing the facts of the real world with (h, r, t)
triples, where h (or t) denotes the head (or tail) entity and r represents the
relation between entities. Large-scale KGs such as Freebase [1] have been widely
used in NLP tasks, including Question Answering (QA) [7]. However, with the
increasing of triple amounts, KGs often suffer from data sparseness and incom-
pleteness problems [11].

To alleviate these problems, Knowledge Representation Learning (KRL)
which learns low-dimensional semantic embeddings of entities and relations has
attracted extensive attention recently. Most of existing KRL methods learn the
semantic representations from triples and show good performance in knowledge
graph completion task. However, these methods cannot represent very well triples
that suffer from sparsity. For example, more than 20% entities in FB15k [2]
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are associated with less than 20 triples, which leads to poor entity representa-
tions and diminishes the KRL performance. Therefore, recent researches turn
to utilize the text information to enhance the performance of KRL [10,11]. In
particular, Xie et al. [11] proposed DKRL model, which explored convolutional
neural networks (CNN) for encoding entity descriptions. In [10], a TEKE model
was proposed to learn the co-occurrence word networks for entities based on the
Wikipedia pages. However, these methods only utilize the word-level informa-
tion, and cannot well capture the latent topics of entities which are assumed to
be useful to improve the KRL performance in this paper. For instance, “Agatha”
is a playwright as demonstrated in the triple and has the descriptions as shown
in Fig. 1. If a new entity “Joseph” has a description, namely “Joseph was an
American satirical novelist, short story writer and dramatist”, it is reason-
able to infer that “Joseph” is also a playwright since he has the common topics
like “writer” with “Agatha” and “dramatist” with “Playwright”.

( Agatha Christie, /people/person/profession, Playwright )

Dame Agatha Mary Clarissa Christie, DBE
was an English crime novelist, short story
writer, and playwright. She wrote the
world's longest-running drama, …

A playwright, also known as a dramatist,
is a person who writes dramatic literature
or drama. These works may be written
specifically to be performed by actors, ...

Fig. 1. Example of triple and entity descriptions.

Motivated by the potential of the latent topics for KRL, we propose an
entity topic based representation learning (ETRL) method in this paper. Specif-
ically, we first use entity descriptions from KGs for topic modeling, which shows
strong semantic correlations with entities. The Nonnegative Matrix Factoriza-
tion (NMF) model is applied to learn the topic representations of entities. We
propose our basic model (ETRL(basic)) that treats the obtained topic repre-
sentations as constants, and integrates them with the triple representations, and
then propose the advanced model (ETRL(adv)) that learns both topic and triple
representations simultaneously. The contributions of our works are as follows:

1. We propose two variants of ETRL models, which integrates the topic informa-
tion based on the entity descriptions with the triple structure for knowledge
representation learning.

2. We utilize projection matrices in ETRL to map topic and triple representa-
tions into a united semantic space.

3. We evaluate our models on knowledge graph completion task. The experi-
mental results show that our models outperforms most of the state-of-the-art
models.
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The outline of this paper is as follows. Section 2 elaborates the recent works
related to our works. Section 3 reveals the details of our method. Section 4 eval-
uates our models and analyzes the results. Section 5 concludes our works.

2 Related Works

In this section, we will introduce several works aiming at embedding the enti-
ties and relations into low-dimensional continuous vector space to address the
shortages of large-scale KGs mentioned above.

TransE [2], one of the most famous methods, has shown its advantages among
the methods proposed before. For each correct (h, r, t) triple, TransE regards that
h + r ≈ t, which means that the entity h is translated to the entity t through
the relation r. TransE defines the score function as shown in (1).

e(h, r, t) = ‖h + r − t‖22 (1)

However, it has issues in modeling the 1-N, N-1 and N-N relations [10]. There
are various methods proposed to address these issues and achieved better per-
formance than TransE, such as TransH [9], TransR [6], and KB2E [4].

The methods based on triples are suffering from data sparsity problem. There
are increasing methods fusing external text information and triple information
to alleviate this problem and enrich the semantic information of representations.
The model proposed by Zhong et al. [12] jointly learns the triple information
and text information from entity descriptions in word-level. DKRL [11] learns
text representations with deep learning method CNN. TEKE [10] memorizes
the words co-occurring in contexts of entities from wikipedia pages and then
constructs co-occurrence networks to bridge the KG and text-corpus. However,
most of these methods disregard the entity topics which contain strong semantic
relevance between entities. Although the state-of-the-art method TEKE [10] has
achieved some success in discovering entity topics for regarding co-occurrence
words as topics of entities, it is still limited by the performance of entity linking
tools and the completeness of external text-corpus.

3 Methodology

In this section, we will present our ETRL method. The structure of our method
is shown in Fig. 2. Firstly, we use entity descriptions in KGs as our text-
corpus and learn entity topic representations with NMF [5]. Then, we construct
ETRL(basic) model to incorporate topic embeddings into triple embeddings. In
addition, we build ETRL(adv) model to jointly learn two embeddings simulta-
neously. Finally, we train our models with Adagrad method.

3.1 Notations and Definitions

For a given KG, We denote E as the set of entities and R as the set of relations.
Meanwhile, E, R is the set of embeddings of E, R respectively. Then, we denote
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Fig. 2. The structure of ETRL(basic and adv).

T as the set of (h, r, t) triples in KG where h, t ∈ E and r ∈ R. T is also the
train set for our models. For a given text-corpus D, we denote W as the set of
words arising in D and denote ve as the topic embedding of entity e ∈ E. It is
noteworthy that all embeddings h, r, t,vh,vt ∈ R

k, where k is the embedding
vector size.

3.2 Topic Representation of Entities

We use entity descriptions as our text-corpus for it is much easier for us to
obtain entity descriptions, and most entities in KGs are associated with their
own descriptions which can be regarded as semantic supplements.

Considering about the performance, efficiency, and complexity of topic
models [8], we adopt NMF [5] to learn topic representations of entities. Regarding
each entity description as input document, NMF is defined as follows:

M = V S (2)

where M is the n×m word-frequency matrix of entities preprocessed from entity
descriptions, V is the matrix of entity topic representations while S is the matrix
of word topic representations.

We select Euclidean distance defined in (3) as the convergence criterion of
NMF to factorize matrix M into entity and word topic embeddings.

Lnmf =
n∑

i=1

m∑

j=1

‖Mi,j − vei
swj

�‖22 (3)

where Mi,j is the frequency of word wj appearing in the description of entity
ei, vei

and swj
are the topic embeddings of entity ei and word wj respectively.

Note that in NMF, for all ei ∈ E and wj ∈ W we have vei
≥ 0 and swj

≥ 0. We
pre-train the NMF and obtain the entity topic representations in store for triple
representation learning.
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3.3 Joint Representation Learning of Triples and Topics

The most important step is to map both entity topic and triple representations
into same semantic vector space. Therefore, we propose ETRL(basic) which inte-
grates two representations in training while treats the topic representations as
constants. Then, we propose ETRL(adv) which learns the representations from
both topic and triple information inspired by DKRL [11].

We present projection matrices to the alignment of topic and triple represen-
tations. Besides, these matrices can help models learn useful topic information
and discard useless one automatically in training.

For head and tail, we directly project entity topic embeddings into the space
of triples as follows:

h⊥ = vhMe + h (4)

t⊥ = vtMe + t (5)

where vh (or vt) is the entity topic embedding of head (or tail), h and t are the
original entity representations in (1), and Me is the k × k projection matrix.

To strengthen the capability of representing complex relations, we average
the head and tail topic representations as relation topic representations vr. Then
we define r⊥ as follows:

r⊥ = vrMr + r (6)

where Mr is the k×k projection matrix. It is worth noting that, for complex rela-
tions, different head-tail pairs may have different vr to affect r⊥, thus improving
the variousness and robustness of relation representations.

Then we replace h, r, t in (1) with h⊥, r⊥, t⊥ and redefine the score function
for both two models as follows:

e⊥(h, r, t) = ‖h⊥ + r⊥ − t⊥‖22 (7)

3.4 Loss Optimization and Training

ETRL(basic). To force the scores of correct triples as close as possible to zero
and make the wrong’s as far as possible, we define the loss function in (8).

Ls =
∑

(h,r,t)∈T

∑

(h′,r′,t′)∈T ′
max(γ + e⊥(h, r, t) − e⊥(h′, r′, t′), 0) (8)

where max(·, 0) is hinge loss, T is the train set consisting correct triples while
T ′ is the set of negative samples denoted in (9).

T ′ = {(h′, r, t)|h′ ∈ E} ∪ {(h, r′, t)|r′ ∈ R} ∪ {(h, r, t′)|t′ ∈ E} (9)

where h′, r′ and t′ are selected by a certain probability to satisfy ∀(h, r, t) ∈ T ′,
(h, r, t) /∈ T . We follow the’bern’ method mentioned in TransH [9] to select the
negative samples.
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ETRL(adv). Inspired by the works of DKRL [11], we propose an advanced
model to jointly learn both the topic and triple representations. The loss function
is defined in (10).

La = Ls + Lnmf (10)

where we optimize triple loss (8) and topic loss (3) simultaneously.

Training. We adopt Adagrad in the optimization for a better performance than
SGD. In order to accelerate the speed of convergence, we initialize the entities
and relations with the vectors produced by TransE and initialize the projection
matrices as identify matrices.

4 Experiments

In this section, we will evaluate our models on knowledge graph completion task.
Then we analyze results comparing with other state-of-the-art methods.

4.1 Datasets and Experiment Settings

Datasets. In this paper, we adopt FB15k dataset extracted from Freebase [1] as
experimental dataset. FB15k is first proposed by the authors of TransE [2] and
is widely used in KRL methods. The statistics of FB15k are listed in Table 1.

Table 1. Statistics of dataset.

Dataset Entity Relation Train Valid Test

FB15k 14,951 1,345 483,142 50,000 59,071

Text-Corpus. We extract the English entity descriptions from the latest Free-
base Dump [3] in FB15k as our text-corpus. The average number of words in each
entity description is 124. Then we filter out the stop words, connect phrases which
contain the entity names and remove the suffixes of the words in text-corpus.

Experiment Settings. We train our two models and set the best hyperparame-
ters as follows: the number of iterations iter = 1000, embeddings size and topic
numbers k = 100, margin γ = 2 and the learning rate scaling factor ε = 1×10−7

by experience. We select TransE and two state-of-the-art methods, TEKE and
DKRL as our baseline. We also compare our models to other methods such as
TransH and TransR.

4.2 Knowledge Graph Completion

The task of knowledge graph completion (also called link prediction) aims at
completing the triples which have missing components. For instance, given a
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triple (h, r, t) where head entity h is missing, the model firstly fill all entities
e ∈ E as candidate entities in the triple and then compute the score of triple
(e, r, t) for each entity. Finally, it ranks the scores of candidate entities and
completes the triple with the entity e which has the lowest score.

Two evaluation metrics [2] are adopted in this task: mean rank (MR) and
hits@10. The former means the average rank of the correct one in the list of
candidates while the latter means the rate of correct one ranked in the top 10.
We also follow the two settings as “Raw” and “Filter” mentioned in TransE [2].

Entity Prediction Results. We remove the head and tail entities respectively
of triples in test set and compute MR and hits@10. Then we take the average
MR of heads and tails as the final results. The results listed in Table 2 show that
our models especially ETRL(adv) outperform all the baseline except the mean
rank(filter). By comparing with other experimental results listed in Table 2 we
find that:

1. All evaluation metrics of our models are better than baselines which shows
that the rich semantic information in entity topics can improve the perfor-
mance. Furthermore, our models could be treated as the topic supplement for
TransE and achieve 28.6% improvement than TransE in terms of hits@10.

2. Because TransR has more projection matrices [6], mean rank(filter) of TransR
is better than our models. This shows that it is necessary to adopt more
projection matrices for the learning of entities and relations.

3. The performance of ETRL(adv) is better than ETRL(basic). We can infer
that joint models are more suitable for incorporating topic and triple embed-
dings with more smoothy influence.

Table 2. Entity prediction results on FB15k.

Metrics Mean Rank Hits@10

Raw Filter Raw Filter

TransE 243 125 34.9 47.1

TransH 212 87 45.7 64.4

TransR 198 77 48.2 68.7

DKRL(CNN) 200 113 44.3 57.6

DKRL(CNN) + TransE 181 91 49.6 67.4

TEKE TransE 233 79 43.5 67.6

ETRL(basic) 174 90 54.8 74.8

ETRL(adv) 170 83 60.3 75.5

Complex Relation Modeling Problem. Complex relation modeling prob-
lem, which leads to low performance in modeling 1-N, N-1 and N-N relations,
is one of the most important problems in KRL. According to the unbalance of
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the ratio of head to tail, researchers divide relations into 1-1, 1-N, N-1 and N-N
relations where the latter three are called complex relations. We test the ability
of modeling complex relations of our models. The results listed in Table 3 show
our models outperform others in modeling 1-N, N-1 and N-N relations. Based
on the results, we believe that with the addition of projection matrices both on
entities and relations, our models can have advantages in handling the complex
relation modeling problem.

Table 3. Entity prediction for complex relation problem on FB15k.

Metrics Hits@10

1-1 1-N N-1 N-N

TransE 43.7 42.7 42.5 48.6

TransH 66.2 63.7 56.0 65.9

TransR 79.0 63.3 62.3 70.7

TEKE TransE 47.6 61.2 63.8 76.5

ETRL(basic) 63.1 66.5 63.1 77.4

ETRL(adv) 62.5 65.0 67.1 78.8

5 Conclusion and Future Work

In this paper, to make full use of entity topic information in entity descriptions,
we propose ETRL model using NMF to learn entity topic embeddings and map-
ping both topic and triple embeddings into same semantic space with projection
matrices. Experimental results show that our models outperform most state-of-
the-art methods which enhancing KRL with external text information. How-
ever, there also are some deficiencies to be solved in our future works. To lower
the error brought by entity topic information, we will extend our models with
more projection matrices to overcome the complex relations problem inspired
by TransR [6]. We will extend our models to other state-of-the-art triple based
representation models and try to improve the performance of them.
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