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Abstract. Due to the large number of evaluations required, evolution-
ary robotics experiments are generally conducted in simulated environ-
ments. One way to increase the generality of a robot’s behavior is to
evolve it in multiple environments. These environment spaces can be
defined by the number of free parameters (f) and the number of vari-
ations each free parameter can take (n). Each environment space then
has nf individual environments. For a robot to be fit in the environment
space it must perform well in each of the nf environments. Thus the
number of environments grows exponentially as n and f are increased.
To mitigate the problem of having to evolve a robot in each environment
in the space we introduce the concept of ecological modularity. Ecological
modularity is here defined as the robot’s modularity with respect to free
parameters in its environment space. We show that if a robot is modular
along m of the free parameters in its environment space, it only needs
to be evolved in nf−m+1 environments to be fit in all of the nf envi-
ronments. This work thus presents a heretofore unknown relationship
between the modularity of an agent and its ability to generalize evolved
behaviors in new environments.

1 Introduction

One of the major challenges to evolutionary robotics in particular, and evolu-
tionary computation in general, is the relatively slow rate of convergence toward
acceptable solutions due to these algorithms’ stochastic elements. This challenge
is exacerbated when robust behavior is desired: In such cases robots must be
evolved in multiple environments until the robots exhibit the desired behavior
in all of them. However, because of catastrophic forgetting [8], it is not usually
possible to evolve robots in one environment, discard that environment, continue
evolving them in a different environment, and have them retain their ability to
succeed in the first environment. Thus, robots must be trained in some set of
static environments, or gradually exposed to a growing set of training environ-
ments over evolutionary time. [14] pointed out convergence time explodes in such
multiple-environment contexts because of the combinatorics of parametrically-
defined environments. Typically, a set of training environments is generated
before evolution commences by defining a number of free parameters f , which
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represent aspects of the environment that change from one to another. For each
of these free parameters, there are n possible settings. For example, given an
object in the environment, a free parameter could be the starting position of
that object. If the object may have different sizes as well as starting positions
in a given environment from taken for the total set of possible environments,
then f = 2. If there are two possible sizes, and two different starting positions,
then n = 2. [14] showed that if we wish evolved robots to succeed in all environ-
ments defined for a given f and n, then the robots will have to be evolved in nf

environments.

1.1 Robustness

Much work has been done to increase the robustness of evolved behavior in
robots. For instance, Jakobi [10] investigated the introduction of noise to guard
against evolutionary exploitation of any inaccuracies in the simulator used to the
evolve the behaviors. Lehman [12] demonstrated experiments in which explicit
selection pressure was exerted on robots to respond to their sensor input, thus
ensuring that evolved robots would behave differently when placed in different
environments where they could sense the changes. Bongard [2] demonstrated
that robots with ancestors that changed their body plans during their lifetimes
tended to be more robust than robots with fixed-morphology ancestors, because
the former lineages tended to experience wider ranges of sensorimotor experi-
ences than the latter lineages. However, these and similar works did not inves-
tigate the role that modularity might play in the evolution of robust behavior.
One exception is the work of Ellefsen et al. [6], in which an evolutionary cost
is placed on the synapses of disembodied neural networks trained to compute
logical functions. They had previously shown that such connection cost tends to
lead to the evolution of modular networks [5], and, in [6], this neural modularity
enabled evolved networks to rapidly adapt to new environments without losing
their ability to succeed in the original environments.

1.2 Modularity

Like robust behavior, the ubiquity of modularity in evolved systems has spawned
an active literature. Work in this area can be divided into investigations into the
evolution of modularity in disembodied systems and embodied systems, such as
robots.

Wagner [17] forwarded a theoretical argument that modularity evolves when
systems experience combinations of directional and stabilizing selection on dif-
ferent parts of their phenotypes. This was subsequently verified by experiments
using non-embodied data structures [13], neural networks [5,11], and models of
gene networks [7].

Investigations into the evolution of modularity in embodied systems begin
with Gruau [9], who employed an indirect genotype to phenotype mapping that
allowed for the construction of neural modules in a robot. Yamashita et al. [18]
demonstrated robots capable of learning independent motor primitives and then
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combining them in novel sequences. In [1,3], Bongard et al. showed how to evolve
structurally modular neural controllers for autonomous robots.

However, none of these approaches investigate the relationship between both
morphological and neurological modularity as a way to increase generalization.
That is, how the structure of the robot’s morphology and controller may interact
with the environment to reduce the minimum number of environments robots
must be evolved in to generalize across the entire environment space.

1.3 Morphological and Neurological Modularity

Modularity has shown to be important in evolution of networks and robots
because it helps the agent avoid catastrophic forgetting when presented with
a new environment [6]. Catastrophic forgetting is a problem when, in order to
learn a new task, an agent must forget what it previously learned [8].

However, most of the modularity research in robotics has focused on modu-
larity with respect to the controller of the robot. Most often the controller is a
neural network so network metrics are used. Most notably the Q-metric has been
used to define modularity in networks [15]. Q is a metric which measures the
fraction of edges which fall between within a group subtracted by the expected
fraction of edges within that group given a random network with the same degree
distribution. However, Q disregards many aspects of the morphology and con-
trol of robots which may be important in determining if the robot is made up
of actual useful modules.

More recent work has defined both neural and morphological modularity in
terms of the sensor-motor feedback loop [4]. It was shown that the number of
necessary training environments for robots that are morphologically and neuro-
logically modular in this manner grows less rapidly than the number of necessary
training environments in non-modular cases when the number of free parame-
ters, f , was held constant and the number of variations, n, was increased.

In this work, we build upon this research by holding n constant and increas-
ing f . Also, we continue to use those definitions of neurological and morpholog-
ical modularity and expand them by considering the robot’s interactions with
its environment space a property which we here term ‘ecological modularity’.

1.4 Ecological Modularity

We define the following terms and variables to be used throughout the paper:

– F - The set of free parameters in the system with cardinality f . Free para-
meters are the dimensions of the environment space which change.

– n - number of variations of each free parameter in F . Because we are only con-
sidering free parameters that vary, n ≥ 2. For simplicity, all free parameters
are assumed to have the same number of variations.
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– Discrete Environment Space - The set, E, comprised of all the possi-
ble combinations of free parameter variations. These are environment spaces
which can be discretized and organized into an f -dimensional hypercube with
nf hypervoxels each corresponding to one individual environment. Therefore
there are a total of nf environments in E. Each environment can therefore
be defined as a f -tuple consisting of the variations of each free parameter.

– Orthogonal Environments - Orthogonal environments are those in which
none of the variations of the free parameters are equal. Thus given two envi-
ronments e1 and e2, π

(j)
e1 �= π

(j)
e2 for all j in F . For example,

(
π
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1 , π

(2)
1 , . . . , π
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– Orthogonal Environments along a Subset of Free Parameters - Let
D ⊂ F . Then two environments, e1, e2, are orthogonal along D if for each
d ∈ D, π

(d)
e1 �= π

(d)
e2 .

– Modularity along U Free Parameters - Let U be a subset of F with
cardinality u. Let OU ⊂ E represent a subset of orthogonal environments
along U . A robot is said to be modular along U if, when the robot achieves
sufficient fitness in all u environments in OU , the robot will maintain its
fitness in the remaining environments where the variations along the F \U free
parameters remain fixed. We note 1 ≤ u ≤ f for every robot and environment
space.

– Ecological Modularity - Let M be a subset of F with cardinality m such
that M is the maximal subset of F a robot is modular with respect to. That
is the robot is modular with respect to every free parameter in M but none
of the free parameters in F \ M . Then ecological modularity is defined to be
the degree to which the robot is modular with respect to its environment,
m. Robots with m = f are said to be fully ecologically modular, robots with
1 > m > f are said to be partially ecologically modular, and robots with
m = 1 are said to be ecologically non-modular.

Using the definitions above, we claim the total number of environments nec-
essary for a robot to be evolved in is n(f−m+1). Meaning when we have a robot
which is fully ecologically modular (m = f) we only need to evolve the robot in
n mutually orthogonal environments, the easiest example of which is the ‘grand
diagonal’ of the hypercube representation of the environment space. When the
robot is ecologically non-modular (m = 1) we need to evolve the robot in all nf

environments. The term f −m+1 represents the number of free parameters the
robot is not modular with respect to.

2 Methods

In this section we describe the structure of the environment spaces, robot design,
evolutionary algorithm, and experimental design.
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(a) M (b) NM

Fig. 1. The modular (1a) and non-modular (1b) robots’ morphology and control struc-
tures. The morphology consisted of fixed hinges (red squares), free hinges (large blue
circles), and sensor nodes (large beige circles). The networks are presented blown up
for each robot. They consisted of sensor (white circles), hidden (yellow circles), and
motor (blue circles) neurons. Motor neuron output controls the hinge joint at the base
of the node the motor neuron is in. Connections between layers were feed-forward and
feed-back. There are also recurrent connections for each hidden and motor neuron not
depicted. (Color figure online)

2.1 Robot Design

Robot Morphology. The robots were designed with a branching, hierarchi-
cal morphology. A tree structure was chosen because it is symmetric, can easily
be made modular/non-modular by fixing different branch hinges, and is eas-
ily expandable. Each tree consisted of one root node and two leaf nodes. The
root node was connected to a point in space by a hinge joint. The leaf nodes
were connected to the root node by hinge joints. Sensors were distance sensors
placed in the leaf nodes of the robot. When the robot was pointing at an object
they returned the distance to that object. When the robot was not pointing at
anything, the sensor values returned a default value of ten.

Each robot was composed of three cylinders, one root node and two leaf
nodes, of length one. The base of each leaf node was attached to the tip of the
root node. Robots were initially positioned such that the leaves were horizontally
rotated +45◦ and −45◦ with respect to the root node. In this paper we explored
two variations of robot morphology.

First is the modular morphology, M. In the modular morphology, the root
node of the robot is fixed while the leaf nodes of the robot are free to move. Each
leaf could rotate horizontally [−45◦,+45◦] with respect to its starting position.

Second is the non-modular morphology, NM. In the non-modular morpholo-
gies, the root of the robot is free to move while its leaf nodes are fixed. The root
could rotate horizontally [−120◦,+120◦].

Robots were simulated using Open Dynamics engine.

Robot Controllers. Robots were controlled by artificial neural networks. All
networks were layered networks with both feed-forward and feed-back synapses
as well as recurrent connections on both the hidden neurons and motor neurons.



100 C. Cappelle et al.

Different cognitive architectures were employed for robots with different mor-
phologies. Each of these architectures are reported in Fig. 1. For the modular
morphologies, each leaf node had a separate, self-contained network connecting
the leaf sensor to the motor neuron in the leaf (Fig. 1a). Each leaf network con-
sisted of the one sensor neuron, two hidden layers with four neurons each, and
the one motor neuron.

For the non-modular morphologies, the network connected the two leaf sensor
neurons to the one root motor neuron. This network consisted of the one sensor
neuron, two layers with eight hidden neurons each, and the one motor neuron
(Fig. 1b).

Sensor neurons could take values between [0, 10]. Hidden and motor neurons
could take values between [−1, 1]. Sensors could take any real valued number.
Neurons in the network were updated at each time step in the simulation. The
value of each neuron was determined by

y
(t)
i = tanh

⎛
⎝y

(t−1)
i +

∑
j∈J

wjiy
(t−1)
j

⎞
⎠ (1)

where yt
i denotes the i neuron’s new value at time step t. y

(t−1)
i denotes that

neurons value in the previous time step. wji denotes the weight of the synapse
connecting neuron j to neuron i.

2.2 Environmental Setup

Environments consisted of two clusters of cylinders set up on the left and right
of the robot such that on the first time step of simulation, the robot pointed at
the center of each cluster as shown in Fig. 2. Cylinders were organized on a line
segment perpendicular to the direction of the leaf nodes. Clusters were placed
such that the robot was initially pointing at their center. The diameter of each
cylinder was equal to the length of the line segment divided by the number of
cylinders in the cluster. A small constant value of ε = .1 was then added to the

Fig. 2. The starting point of the robots in simulation for each environment. The envi-
ronment space E2 = {e0, e1, e2, e3} is shown by the four left environments in the figure
and E3 = {e0, e1, . . . , e7} is shown by all eight environments which make up the figure.
The δ variable defines the initial distance of both clusters from the robot.
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diameters so there were no gaps between cylinders in the cluster. Thus, each
environment consisted of three free parameters:

– cL: The number of cylinders in the left cluster. cL ∈ {1, 2}.
– cR: The number of cylinders in the right cluster. cR ∈ {1, 2}.
– δ: The distance, in simulator units, the center point of each cluster is from

the tip of its corresponding sides leaf node of the robot. δ ∈ {4, 6}.

From the variables described above, we can categorize each environment as
a 3-tuple (δ, cL, cR).

We can generate environment spaces by restricting which parameters are free
and which are fixed. In this manner we generate two different environment spaces
we are interested in:

– E2 = (δ = 4, cL = ∗, cR = ∗)
– E3 = (δ = ∗, cL = ∗, cR = ∗)

where ∗ indicates that parameter is free to vary. From this we see E2 is a 2 × 2
environment space with four total environments and E3 is a 2 × 2 × 2 environ-
ment space with eight total environments.

We can then enumerate individual environments by the corresponding tuples
parameter values. For example, we let e(0,0,0) represent an environment that
consists of the first variation of each parameter, namely e(0,0,0) = e0 = (δ = 4,
cL = 1, cR = 1). Thus e(1,1,1) = e7 = (δ = 6, cL = 2, cr = 2) and so on for each
environment. All of the environments considered in this work are presented in
Fig. 2.

2.3 Physical Implementation

The robot was also made in out of Legos as shown in Fig. 3. While the physical
implementation can move and respond in the same manner as the simulation, it
is still in development so no evolution was performed using the physical robot.

Fig. 3. Physical robot made out of Legos. Can represent the M or NM robot by
fixing/freeing motors.
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2.4 Evolutionary Setup

The goal of the robot was to point towards clusters containing an even number
of cylinders and away from clusters containing an odd number of cylinders. This
was implemented using a simple counting method detailed in Eq. (4).

The fitness scores of each sensor for each time step, (sL(t), sR(t)), were then
summed and normalized with respect to the environment so the overall fitness
was in [0, 1] for each environment in the space (Eq. 3).

The fitness scores of each individual environment were then sorted from low-
est to highest (worst to best) and a weighted average was performed mean-
ing the overall fitness of the entire environment space also in the range [0, 1]
(Eq. 2). Weighting was performed by the geometric sequence wi = 1/(2i) for
i = {1, 2, . . . , ‖O‖ − 1} where O is subset of the environment space considered.
In order to make the weights sum to one, the last weight was set equal to the
second to last weight. The other weighting schemes considered were a mean aver-
age and simply taking the worst individual environment fitness as the fitness for
the whole environment set. Both converged more slowly than method we use.

Overall Fitness =
∑

i∈||O||
wi fit(e(i)) (2)

fit(ei) =
1

normalize(ei)

T∑
t=T/2

sL(t) + sR(t) (3)

s{L,R}(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if the sensor is pointing at
an even cluster at time t

0 if the sensor is not pointing at
an object at time t

−1 if the sensor is pointing at
an odd cluster at time t

(4)

Evolution was performed using Age Fitness Pareto Optimization (AFPO)
with a population size of 50 [16]. AFPO is a multi-objective optimization method
using a genome’s age and fitness as objectives. Mutations occurred by way chang-
ing synapse values in the neural network. If a synapse was chosen for mutation,
a new weight was drawn from a random Gaussian value with mean equal to
the previous weight and standard deviation equal to the absolute value of the
previous weight. This mutation operator is employed because it allows weights
near zero to mutate very slightly, while large-magnitude weights can be mutated
in a single step over a much broader range. A mutation rate was chosen such
that the expected number of synapses mutated each step was one.

2.5 Experimental Setup

Robots were evolved in a subset, O, of the total environment space, E. O was
designated as the training set. When the best robot in the population achieved
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a certain fitness threshold for each environment in O, evolution was halted and
the best robot was then tested in the remaining unseen environments, E \ O.
We chose a fitness value of 0.9 as the threshold. We performed 30 trials for each
experiment.

3 Results

The first environment space explored was E2, the 2×2 environment space where
only cL and cR were varied. The training set of the robots was O2,2 = {e0, e3}.
In E2, O2,2 represents the grand diagonal of the space. Figure 4a shows that
M was able to achieve sufficient fitness in the entirety of E2 when the robot
achieved sufficient fitness in O2,2. Figure 4b shows that NM was not able to
achieve sufficient fitness in all environments of E2. The robot was not above the
fitness threshold in any unseen environment for any trial.

(a) Modular robot in E2 (b) Non-modular robot in E2

Fig. 4. Average fitness scores for M (4a) and NM (4b) robots in E2 with training
set O2,2 = {e0, e3}. O2,2 is represented by the blue outlines around the environments.
(Color figure online)

The second environment space we explored was E3, the 2 × 2 × 2 environment
space where cL, cR and δ were free parameters. For this environment space, the
training set was O3,4 = {e0, e3, e4, e7}. This training set represents diagonal
sub-spaces of environments for each value of δ. The M robot was able to be
sufficiently fit in the whole space while only being evolved in the environments in
O3,4 (Fig. 5a). The NM robot was not able to achieve sufficient fitness in the rest
of E3 after achieving sufficient fitness in O3,4 (Fig. 5b). We also evolved the M
robot in E3 using a different training subset. For this experiment, O3,2 = {e0, e7}
which is the grand diagonal of E3. Results presented in Fig. 6 show the M was
not able to be sufficiently fit.
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(a) M robot in E3 (b) NM robot in E3

Fig. 5. Average fitness scores for M (a) and NM (b) robots in E3 with training set
O3,4 = {e0, e3, e4, e7}. O3,4 is represented by the blue outlines around the environments.
(Color figure online)

Fig. 6. The M robot evolved with training set O3,2 = {e0, e7}. We see that the robot
does not achieve adequate fitness when only evolved in O3,2.

(a) Modular Robot (b) Non-modular Robot

Fig. 7. Sensor values of the left and right distance sensors for randomly chosen M and
NM robots evolved in training set O2,2 = {e0, e3}. We see that the modular robot can
move one leaf node without affecting the sensor value of the other arm. In contrast the
non-modular robot cannot.
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4 Discussion and Conclusion

When a robot with ecological modularity is presented with a new environment,
it is able to break down that environment along M , the free parameters it is
modular with respect to. The robot then can recognize this new environment
as a combination of percepts it has seen before and act accordingly. This means
the robot only needs to be evolved in a subset of the whole environment space.
Specifically, the minimal size of this subset is nf−m+1.

As the ecological modularity in the robot increases, it is able to break down
more free parameters in the environment space. This is shown by the fact the M
robot can achieve fitness at or above 0.9 in environments it has not seen before
while the NM robot cannot as seen in Figs. 4 and 5.

We claim that in both the E2 and E3 environment spaces the M robot has
m = 2 while the NM robot has m = 1. This is because the robot can break down
its environment because it is able to move its sensors independently (Fig. 7a).
The NM robot cannot break down its environment into left and right percepts
because it is morphologically and neurologically non-modular (Fig. 7b). When
it senses a new percept on the right it fundamentally changes how it views its
environment even if the percept on the left remains constant. Therefore, in the
E2 environment space m = 2 for M and m = 1 for NM.

Neither the M nor NM robots are modular with respect to δ. This is shown
by the fact that they cannot be simply trained along the diagonal of E3 to be
sufficiently fit in the whole space (Figs. 5 and 6). Therefore, in the E3 environ-
ment space m = 2 for M and m = 1 for NM. We hypothesize that if a robot
was able to categorize the clusters independently of distance then, in E3, the
robot would have m = 3 and only n3−3+1 = n environments would be necessary.

In this paper we introduced the concept of ecological modularity and showed
that robots which are ecological modular can be sufficiently fit in an entire envi-
ronment space even though they are only evolved in a subset of its environments.
Robots that are not morphologically modular cannot move without changing
their entire perception of their environment and thus cannot break down their
environment into familiar percepts. Similarly, ecologically non-modular robots
cannot view the varying environments in terms of unfamiliar combination of
familiar percepts because they cannot sense their world in a manner which breaks
down the environment into individual percepts.

In future work we would like to investigate whether ecological modularity can
be discovered by evolution instead of from human construction of these robots.
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