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Abstract. The embodied mammalian brain evolved to adapt to an only
partially known and knowable world. The adaptive labeling of the world
is critically dependent on the neocortex which in turn is modulated by
a range of subcortical systems such as the thalamus, ventral striatum
and the amygdala. A particular case in point is the learning paradigm
of classical conditioning where acquired representations of states of the
world such as sounds and visual features are associated with predefined
discrete behavioral responses such as eye blinks and freezing. Learning
progresses in a very specific order, where the animal first identifies the
features of the task that are predictive of a motivational state and then
forms the association of the current sensory state with a particular action
and shapes this action to the specific contingency. This adaptive feature
selection has both attentional and memory components, i.e. a behav-
iorally relevant state must be detected while its representation must be
stabilized to allow its interfacing to output systems. Here we present a
computational model of the neocortical systems that underlie this fea-
ture detection process and its state dependent modulation mediated by
the amygdala and its downstream target, the nucleus basalis of Meyn-
ert. Specifically, we analyze how amygdala driven cholinergic modula-
tion these mechanisms through computational modeling and present a
framework for rapid learning of behaviorally relevant perceptual repre-
sentations.

1 Introduction

In the last years we have been a significant increase in the literature regarding
topics the topics of artificial intelligence, supervised learning and reinforcement
learning.

This increase is clearly due to the finding of workarounds to the limiting com-
putational cost of certain algorithms, principally represented by shared weights
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through convolutions that reduce the parameter spaces and increased generali-
sation on deeper networks.

In this sense, the field of machine learning is rapidly increasing the number of
tasks that can be learned with combinations of algorithms from mainly reinforce-
ment learning, recurrent neural networks and deep networks, as soon as there
is enough computational power, time and data. Of special interest for robotics
could be reinforcement learning algorithms, which allow virtual or real agents to
learn action policies according to the current inputs. These algorithms have been
recently used for playing atari games with better than human performance, sim-
ulating multi-agent interactions in solving foraging tasks, coordinating for goals
and solving a wide range of tasks that require not just optimal action selection
but also memory aided decision making (see [2] for critical review). All this being
achieved within the last two years makes one wonder why we are still unable to
apply this to real robots performing in real world tasks, but just in simulations.
The answer is not really unknown to anyone: training times are extremely big
and require lots of failures to converge into good performance, sometimes even
better than humans. While time could eventually not be a mandatory problem,
the current ability of robots to recover from failure is scarce, while some failures
can be unrecoverable by themselves. Additionally, these algorithms require to be
trained on the agent that will be performing the action at any moment.

The critical point, then, is that we need both robots able to recover from
failure, like an animal that falls can stand up again, and algorithms that allow
them to anticipate and avoid critical failure, as a child would learn to avoid
a hot frying pan after the first burning contact. Learning in this conditions
becomes hard, as you want to minimize the number of exposures or samples
of that same event, going against the current trend of learning by having more
and better data: in a critical failure event, you can’t afford gathering more data
and you might want to favor overfitting. Psychology theories on classical con-
ditioning and its subsequent neuro-anatomical studies have provided insights
of the circuitry behind this fast and drastic behavior. First, our bodies have
reactive feedback systems that avoid additional harm once an aversive stimuli
(unconditioned stimuli or US) is sensed. These systems have evolved through
millions of generations and species to what we can find today in animals. On
top of this, a precisely designed architecture learns to associate predictive cues
to perfectly-timed reactions that will, eventually, avoid to sense the US again.
The anatomy behind this behavior has been located numerous times in the cere-
bellum and has been extensively studied [1]. Finally, the most important point
relies on acquiring accurate, stable representations of the events that predict the
aversive USs. This suggests that the anticipatory behavior needs to be acquired
in two steps: an initial fine tuning of the perceptions to detect cues predictive
of aversive events, and then the precise association of these events with antici-
patory, pre-defined actions. Several studies have highlighted that fear responses
(mainly startles and fear-related neuromodulators release) are associated to the
CS before the anticipatory response is correctly anticipated while neocortical
neurons change their preferred responding stimuli both after CS-US pairing and
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after pairing with neuromodulators like acetylcholine (ACh). We will revise what
are the changes provoked in the cortical substrate by this neuromodulator and
analyize how this neuromodulation can become relevant for quickly redefining
perceptual representations and eventually to stabilize anticipatory behavior.

2 Neocortex and Acetylcholine

Acetylcholine (ACh) is a neuromodulator that mediates the detection, selec-
tion and further processing of stimuli [5] in the neocortex. ACh is typically
associated with attention and synaptic plasticity [6]. The main source of cor-
tical acetylcholine is the Nucleus Basalis of Meynert (NBM) in the basal fore-
brain. Cholinergic neurons in the NBM receive their main excitatory projections
from the amygdala and from ascending activating systems. The amygdala is
known to be involved in building associations that are key for fear conditioning.
While projections from the ascending activating systems are generally related
to bottom-up mechanisms for maintaining arousal and wakfulness, other excita-
tory projections from prefrontal and insular cortex convey top-down control of
acetylcholine release. The principal targets of cholinergic afferents from the NBM
are in the neocortex. These projection preserve a topological organization with
the cortex and the amygdala. Cholinergic modulation of the neocortex depends
principally on two distinct cholinergic receptor types: metabotropic Muscarinic
and ionotropic Nicotinic receptors. The activation of muscarinic receptors in
the neocortex of the rat has a fast, global excitatory effect on both excita-
tory and inhibitory neurons. In contrast, binding with nicotinic receptors have a
slower disinhibitory response on the neural substrate. Hence, the global effects
of acetylcholine in a population of cortical neurons must depend on the balance
and distribution of these two opponent types of cholinergic receptors. Here we
will investigate this relationship in the context of sensory processing in classical
conditioning. In particular, we will investigate the role of the differential drive of
cortical interneurons by acetylcholine on the behavioral state dependent gating
and representation of sensory states.

2.1 Two Degrees of Multistability in the Neocortex are Mediated
by Inhibitory Interneurons

The complex structure of the neocortex is comprised by 80% excitatory and
20% inhibitory neurons organized in six differentiable layers. Among the 20%
of inhibitory interneurons, two major interneuron subtypes are inmunoreactive
to either Parvalbumin or Somatostatin [5], but not the other, accounting for
most of the GABAergic interneurons accross cortical layers. These two interneu-
ron subtypes are also different in terms of dendritic arborization (e.g. basket
cells, Martinotti cells, chandelier cells), spiking patterns (e.g. fast spiking, regu-
lar spiking). PV expressing (+) interneurons (PVi+) in the neocortex have fast
spiking dynamics where basket cells are the classical example. SST expressing
interneurons (SSTi+) instead have more regular spiking dynamics and broader
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Fig. 1. Anatomical model of conditioning and cholinergic modulation. An auditory
stimulus is pre-processed in the auditory pathway through Superior Olive (SO), Infe-
rior Colliculus (IC) and the Medial Geniculate Nucleus of the thalamus (MGN) until it
reaches the primary auditory cortex (A1). Our model of a small fraction of the cortex
(top-right) is composed of 3 cell populations, one excitatory containing 80% of the
cells and 2 inhibitory containing the remaining 20%. These inhibitory populations cor-
respond to the PVi+ and SSTi+ responsive inhibitory interneurons. Both inhibitory
populations receive excitatory input principally from the excitatory population, com-
posed of pyramidal cells. Finally, they project back to it with inhibitory connections.
Moreover, unconditioned stimuli (US), indicative of surprising or aversive events are
relayed through the Nucleus Tractus Solitarius (NTS) to the Amygdala (Am). The
amygdala, in turn, uses cortical information to predict future USs. Either the predic-
tions or the US itself stimulate the Nucleus Basalis of Meynert. The NBM releases
ACh in the neocortex and the amygdala (Am), therefore promoting the acquisition
of new sensory features and its predictive component. Finally, the amygdala, which is
receiving contextual information in the typical form of a conditioned stimulus (CS),
predictive of the US, learns the association between the cortical predictive components
of and the NBM stimulation, facilitating future learning events, now cued by the CS.

arborizations usually in the form of Martinotti and chandelier cells. Together
with the less studied interneurons expressing Serotonin, these 3 inmunochemi-
cally separable interneuron classes account for the majority of the GABAergic
neurons in the neocortex [4].

In order to understand how different inhibitory populations affect the dynam-
ics of the network we realized a series of computational simulations changing the
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axonal range and the gain of the inhibitory neurons. We used rate based leaky
linear units, defined by:

xj(t) =
∑

i

Wijxi(t− 1) (1)

Where xj and xi are the post-synaptic and pre-synaptic neurons and W is
the a connectivity matrix representing the conductance between each neuron in
the population. The connectivity matrix W is constructed following a pseudo-
random rule based on exponential distance, where the probability of forming a
connection (Cij) between two neurons xi and xj separated by a distance dij is
given by:

P (Cij |dij) = ce−bdij (2)

Figure 2a shows how the parameters of the distance rule affect the stability
of the network. Low ranges of inhibition decrease the number of stable modes
as seen in the left and bottom edges. Figure 2 shows how the decrease in size
of the network (i.e. lowering the number of observed neurons from the simu-
lation) reduce the number of unstable modes (real eigenvalues > 0) until the
critical point of zero. At this point the observed subnetwork is completely stable
(Fig. 2b). In contrast, when we have 2 populations, one with double the range of
the first, while modifying the gain the neural activity is compressed, highlight-
ing some perceptions and inhibiting some others (Fig. 2c), although there are no
direct effects in the stability of the network.

All together, the modulation of the proportions between both inhibitory pop-
ulations could provide a mechanism to increase or uncover the number of stable
points in the network, while temporarily compressing signals, in favor of less
common sensory representations. If we considered that the equilibrium points
in a neocortical population correspond to the stable representations that the
network has learned, we could find the modulation of the different inhibitory
populations convenient for escaping local minima and finding more relevant equi-
librium points. Conveniently, ACh seems to be a neuromodulator intrinsically
related with the regulation of inhibitory activity, although probably not the
only one.

2.2 Acetylcholine Can Drive Towards Metastable States

Recent work has shown how PVi+ preferentially express the M1 muscarinic
acetylcholine receptor (mAChR), while SSTi+ express the nicotinic acetylcholine
receptors (nAChR) [3]. Both receptors are greatly involved in depolarizing both
excitatory and inhibitory cells, mAChR having a faster response and nAChR
being slower, globally disinhibiting the excitatory population of the neocortex
after ACh release, through inhibition of PV+ cells. Together with the changes
in network stability reported in the previous section, this evidence suggests a
general role for acetylcholine in the regulation of both gain and stability in the
neocortex. From the one side, we have shown that the modulation of short- and
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Fig. 2. Characterization of cortical inhibition. Figure A visualizes the number of stable
eigenvalues (< 0) found in function of the parameters of the distance rule. B shows
the decrease in the number of eigenvalues when studying the stability of reduced por-
tions of the network. C shows how inhibtion affects the excitatory dynamics, this is
how biasing the inhibition synaptic gains towards decreased global inhibition (SST),
strongly reduces the firing rate of the most active neuron, compressing the data and
allowing to see better other stimuli.

long-range inhibitory populations affects the stability of a neural network. From
the other side, ACh neuromodulation rapidly makes unstabilizes local attrac-
tors, to later stabilise them. This can also be understood as a mechanism that
dynamically unstabilizes the attractor state from local to global features, with
a potential role in context switching. This could then further increase learning
speed by setting the brain in an unstable state that promotes switching from
pre-learned attractor states to new potential representations.

3 Conclusions and Future Work

In this study we tested this hypothesis by analysing how the stability of a linear
neural network is affected by different kinds of inhibition. We further discuss how
this mechanism can affect learning speed in critical situations where acetylcholine
is typically released, i.e. during dangerous or surprising events. In this paper we
have introduced a preliminary analysis of the role of cholinergic modulation of
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the inhibitory substrate of the neocortex. We have found that the modulation
produced by acetylcholine favors the exploration of the perceptual space by
compressing the neural signals and opening more equilibria to encapsulate novel
perceptions.

We argue that this mechanisms is key for speeding up learning, as it switches
between two behavior-state dependent modes: the more frequent, stable mode
that provides a coherent representation of the word, and a rare, unstable mode
that rapidly embeds new perceptions or even knowledge during critical events.
Moreover, physiological experiments show acetylcholine release not only in fearful
events, but also in the presence of unexpected rewarding or aversive stimuli and
during sustained attention. The conclusions presented in this short dissertation
support that the mechanisms for switching between stable, exploitative mind
states and more exploratory states would be useful to maintain attentive states
and respond to surprising, unexpected events.

The inclusion of this mechanisms in robotic or other artificial agents, will
provide the substrate for autonomous learning, by allowing to detect future
potential dangers or errors with enough time to react or stop. Following studies
will aim to test the presented hypothesis in a computational model of cholinergic-
based learning in a robotic platform.
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