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Abstract

The focus of this chapter is on gene families encoding enzymes of
phenylpropanoid pathway in common bean. The introductory section
contains a short overview of the phenylpropanoid pathway. Section 11.2
introduces major gene families encoding enzymes of this pathway in
common bean, soybean, and Arabidopsis in the current annotations of their
complete genome sequences (Phaseolus vulgaris v1.0, Glycine max
Wm82.a2.v1, and Arabidopsis thaliana TAIR10) deposited in Phytozome
10.2. For each of the 21 enzyme classes, their functional annotations were
based on the commonly used Pfam and KOG databases, while the number
of genes in each family was based on Phytozome and KEGG databases.
Section 11.3 describes cytochrome P450s involved in the phenylpropanoid
pathway with particular emphasis on ten families included in the general
(central) phenylpropanoid pathway, C4H (family CYP73A), in the
lignin/lignan branch, C3H (family CYP98A) and F5H (family CYP84A),
in the flavonoid/anthocyanin/proanthocyanidin branch, F3'H (family
CYP75B), F3'5'H (family CYP75A), and FNS (family CYP93B), and in
the isoflavonoid branch IFS (family CYP93C), 12'H (family CYPS8IE), FoH
(family CYP71D), and D6aH (family CYP93A). The availability of the
complete genome sequences enabled a thorough inventory of putative
P450 genes encoding enzymes of this metabolic pathway. The P450 gene
sequences from common bean were compared to homologs from
Arabidopsis and soybean and confirmed with the information published
for both soybean and common bean genomes. Cinnamate 4-hydroxylase
(C4H) is the first P450 enzyme in the phenylpropanoid pathway and is
described in detail in Sect. 11.4. It belongs to the relatively small CYP73A
gene family. Genome locations and gene structures including cis-
regulatory regions in 5'UTRs (5' regulatory sequences) are detailed for
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this family in common bean. In addition, the expression patterns of these
genes in different tissues (Phytozome 10.2) and syntenic relationships
(Plant Genome Duplication Database) between common bean and soybean
were examined. Finally, genes encoding the C4H enzyme in landrace
G19833 (Andean gene pool, Phytozome 10.2) and in cultivar OAC Rex
(Mesoamerican gene pool) were compared and searched for polymor-
phisms. These sequence differences can be used to develop C4H
gene-based marker(s) to explore the roles of these genes in various

processes such as lignin or anthocyanin biosynthesis.

Keywords
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In this chapter:

e Common names in plants: Arabidopsis (Ara-
bidopsis thaliana), soybean (Glycine max),
common bean (Phaseolus vulgaris)

e Chromosome-based locus (gene model)
identifier (Phytozome)

11.1 Introduction

As sessile organisms, plants produce numerous
secondary metabolites to overcome biotic and
abiotic stressors, to attract pollinators and
nitrogen-fixing microorganisms, and to commu-
nicate with other plants (Koes et al. 2005; Noel
et al. 2005; Moura et al. 2010; Agati et al. 2012,
2013; Baxter and Stewart 2013). Many of these
compounds are synthesized by the phenyl-
propanoid pathway, which is likely one of the
most studied pathways in plants. It is relatively
well understood and was extensively reviewed
(Goujon et al. 2003; Raes et al. 2003; Wang
2011; Falcone Ferreyra et al. 2012; Petrussa et al.
2013). Individual branches of the pathway have
been thoroughly characterized. Most of the
enzymes that catalyze individual steps of the
pathway have been identified, and the genes
coding for them have been isolated in a number
of plant species, including Arabidopsis and

soybean (Graham et al. 2008; Fraser and Chapple
2011).

The core (general or central) pathway consists
of three steps, including (1) the conversion of the
aromatic amino acid phenylalanine into trans-
cinnamic acid, which is catalyzed by phenylala-
nine ammonia-lyase (PAL); (2) the conversion of
trans-cinnamic acid into p-coumaric acid, cat-
alyzed by cinnamate 4-hydroxylase (C4H); and
(3) the transformation of p-coumaric acid into p-
coumaroyl-CoA, catalyzed by 4-coumarate:CoA
ligase (4CL). The compound p-coumaroyl-CoA
serves as a starting point for several branches of
the phenylpropanoid pathway leading to
biosynthesis of lignin, lignans, coumarins, stil-
benes, flavonoids, anthocyanin, condensed tan-
nins (proanthocyanidins), and isoflavonoids
(Vogt 2010; Cheynier et al. 2013). These prod-
ucts have important functions not only for plant
survival, growth, and development but they
could also be powerful supplements to the human
diet. For example, lignans, stilbenes, and iso-
flavonoids have been associated with the reduced
onset/development of certain chronic disease in
humans, including some forms of cancer and
heart diseases (Cassidy et al. 2000; Chen et al.
2006; Adlercreutz 2007; Xiao 2008; Brunetti
et al. 2013) (Fig. 11.1).

Lignin biosynthesis is a two-step process.
First, monolignol is synthesized through a series
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Fig. 11.1 Cytochrome P450s involved in the phenyl-
propanoid pathway. The positions of ten enzymes and locus
(gene model) identifiers (https://phytozome.jgi.doe.gov/pz/
portal.html) in the pathway in common bean (blue),
soybean (red), and Arabidopsis (black) are indicated; 1.
Core phenylpropanoid pathway: cinnamate 4-hydroxylase
(C4H, CYP73A); 2. Lignin/lignans branch: coumarate
3-hydroxylase (C3H, CYP98A) and ferulic acid 5-hydroxy

of hydroxylations, O-methylations, and conver-
sions of side-chain carboxyl into p-coumaryl,
coniferyl, and sinapyl alcohols (Humphreys and
Chapple 2002; Boerjan et al. 2003; Vanholme
et al. 2010; Weng and Chaple 2010; Labeeuw
et al. 2015). A second step involves monolignol
polymerization by peroxidases (PER), laccases
(LAC), and dirigent proteins (DP). In a reversible
reaction, hydroxycinnamoyl-CoA:shikimate/
quinate hydroxycinnamoyltransferase (HCT) con-
verts p-coumaroyl-CoA and caffeoyl-CoA into
their corresponding shikimate/quinate esters,
which are then transformed by coumarate

lase (F5H, CYP84A); 3. Anthocyanins/condensed tannins
branch: flavonoid 3'-hydroxylase (F3'H, CYP75B), flavo-
noid 3',5"-hydroxylase (F3',5'H, CYP75A) and flavone
synthase (FNS, CYP93B); 4. Isoflavonoid branch: iso-
flavone synthase (IFS, CYP93C), isoflavone 2’-hydroxy-
lase (I2'H, CYP8IE), flavonoid 6-hydroxylase (F6H,
CYP71D), and 3,9-dihydroxypterocarpan 6a-monooxy
genase (D6aH, CYP93A)

3-hydroxylase (C3H) into their corresponding
caffeoyl esters (Schoch et al. 2001). Caffeoyl-CoA
O-methyltransferase ~ (CCoAOMT)  catalyzes
methylation of caffeoyl-CoA to generate feruloyl-
CoA. Cinnamoyl-CoA reductase (CCR) converts
hydroxycinnamoyl-CoA esters into their corre-
sponding aldehydes, and cinnamyl-alcohol dehy-
drogenase (CAD) catalyzes the conversion of
cinnamyl aldehydes into their corresponding
alcohols. Ferulic acid 5-hydroxylase (FSH) con-
verts ferulic acid into 5-hydroxyferulic acid. FSH
is also known as coniferaldehyde 5-hydroxylase
(CAldSH), since the enzyme preferably
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transforms coniferaldehyde and/or coniferyl alco-
hol into synapaldehyde and/or sinapyl alcohol,
respectively (Humphreys et al. 1999; Osakabe
et al. 1999). Caffeic acid O-methyltransferase
(COMT) converts 5-hydroxyconiferaldehyde
and/or 5-hydroxyconiferyl alcohol into sina-
paldehyde and/or sinapyl alcohol, respectively
(Osakabe et al. 1999; Parvathi et al. 2001; Zubieta
et al. 2002). COMT was previously thought to be
a bifunctional enzyme, methylating caffeic and
5-hydroxyferulic acids.

Chalcone synthase (CHS) is the first enzyme
in the flavonoid/anthocyanin branch of the
phenylpropanoid pathway. It catalyzes the
biosynthesis of chalcone from one molecule of
p-coumaroyl-CoA with three molecules of
malonyl-CoA. This basic flavonoid structure is
then transformed by a set of various isomerases,
reductases, hydroxylases, Fe**/2-oxoglutarate-
dependent dioxygenases, and transferases into
different flavonoids, including flavanones, fla-
vones, flavonols, anthocyanins, and condensed
tannins (Winkel-Shirley 2001; Ralston et al.
2005; Ferrer et al. 2008; Saito et al. 2013). CHS
and chalcone isomerase (CHI) catalyze the
two-step condensation, producing a colorless
flavanone (naringenin), which is then oxidized
by flavanone 3-hydroxylase (F3H) into the col-
orless dihydroflavonol (dihydrokaempferol).
Subsequent hydroxylation of this compound (at
the 3’ or 5' position of the B-ring), catalyzed by
flavonoid 3'-hydroxylase (F3'H) and flavonoid
3'.5"-hydroxylase (F3'5'H), produces dihydro-
quercetin and dihydromyricetin. These two
enzymes (F3'H and F3'5'H) can also hydroxylate
flavanone (naringenin) to produce eriodictyol
and pentahydroxy-flavanone, which are then
hydroxylated by F3H into dihydroquercetin and
dihydromyricetin, respectively. The next step in
the pathway is the conversion of the three dihy-
droflavonols (dihydroquercetin, dihy-
drokaempferol, and dihydromyricetin). These
compounds can be transformed into flavonols
(kaempferol, quercetin, and myricetin) by flavo-
nol synthases (FLS). Dihydroflavonol
4-reductase (DFR) converts dihydroflavonols
into leucoanthocyanidins (colorless flavan-3,4-
diols: leucocyanidin, leucopelargonidin, and
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leucodelphinidin), which are then oxidized by
anthocyanin synthase [ANS, also known as leu-
coanthocyanidin dioxygenase (LDOX)] into
colored but unstable anthocyanidins [cyanidin
(red-magenta), pelargonidin (orange), and del-
phinidin (purple-mauve)]. Stable anthocyanins
(colored) are produced by glycosylation of
these compounds by the UDP-glucose:flavonoid
3-0-glucosyl transferases (UFGT). Some antho-
cyanins (cyanidin-3-glucoside and delphinidin-
3-glucoside) may be further methylated by
methyltransferases (MTs) to produce peonidin-3-
glucoside and petunidin- or malvidin-3-
glucoside, respectively.

Condensed tannins are synthesized through
two branches of the anthocyanin pathway. The
reduction of leucocyanidin to catechin (2,3-trans
flavan-3-ols) is catalyzed by leucoanthocyanidin
reductase (LAR), and the conversion of cyanidin
into epicatechin (2,3-cis flavan-3-ols) is driven
by anthocyanidin reductase (ANR). The subse-
quent steps catalyzed by polyphenol oxidases
and condensing enzymes possibly take place in
vacuoles.

Legume-specific isoflavonoids are produced
through two branches of the isoflavonoid path-
way having major reactions in common. The
branch leading to the isoflavone genistein uses
the same naringenin intermediate, which is syn-
thesized in the flavonoid/anthocyanin branch of
the phenylpropanoid pathway by a two-step
condensation catalyzed by CHS and CHI (com-
mon to majority of plants) (Lozovaya et al.
2007). On the other hand, isoflavone daidzein is
synthesized through the co-action of CHS and
legume-specific chalcone reductase (CHR),
yielding isoliquiritigenin (trihydroxychalcone),
which is then transformed into liquiritigenin
(dihydroxyflavanone), a core intermediate of this
branch of the isoflavonoid pathway (Austin and
Noel 2003). Isoflavone synthase [IFS, also
known as 2-hydroxyisoflavanone synthase
(2-HIS)] converts flavanone (naringenin or
isoliquiritigenin) into 2-hydroxyisoflavanones
(through an aryl migration of the aromatic
B-ring from C-2 to C-3 position and hydroxyla-
tion in position C-2) (Steele et al. 1999; Jung
et al. 2000), which are then dehydrated
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(formation of a double bond between C-2 and
C-3) to the corresponding isoflavones (genistein
and daidzein) by 2-hydroxyisoflavanone dehy-
dratase (HID) (Akashi et al. 2005; Shimamura
et al. 2007). They are further modified by
isoflavonoid-specific enzymes to produce major
phytoalexins, including medicarpin, biochanin A,
glyceollin, pisatin, and maackiain (Latunde-Dada
et al. 2001; Lozovaya et al. 2007; Artigot et al.
2013).

Biosynthesis of lignin, flavonoids/
anthocyanins/proanthocyanidins, and
flavonoids is under complex regulation. The
expression of the lignin biosynthetic genes is
coordinately regulated by a number of tran-
scription factors. The majority of these genes
contain a common AC cis-element, which is
required for their expression in cells undergoing
lignification. NST1/2/3 (NAC secondary wall
thickening promoting factor 1/2/3) and
Myb26/Myb83 transcription factors act as master
switches to regulate biosynthesis of major sec-
ondary wall components, including cellulose,
xylan, and lignin in Arabidopsis (Zhong and Ye
2009; Zhao and Dixon 2011; Hao and Mohnen
2014; Yoon et al. 2015). In Arabidopsis flavo-
noid pathway, genes for early biosynthetic
enzymes (CHS, CHI, F3H, and F3'H) are regu-
lated by the three functionally redundant
R2R3-MYB transcription factors (MYBI1I,
MYBI12, and MYBI111), while the activation of
late biosynthetic genes is controlled by the
R2R3-MYB/bHLH/WD40 (MBW) complex
(Grotewold 2005; Hartman et al. 2005; Ramsey
and Glover 2005; Gonzalez et al. 2008; Gou
et al. 2011; Petrussa et al. 2013; Li et al. 2014;
Xu et al. 2014, 2015). Genes of legume-specific
isoflavonoid branch of phenylpropanoid pathway
are regulated by a different set of transcription
factors. For example, GmMYB176, a R1 MYB
transcription factor, regulates CHSS8 expression
and isoflavonoid synthesis in soybean (Yi et al.
2010a, b; Dhaubhadel 2011). The constitutive
over-expression of LjMYB14 was associated
with the activation of dozen of genes coding for
enzymes in the core phenylpropanoid pathway
and isoflavonoid branch in Lotus japonicus
(Shelton et al. 2012). At the same time, the
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expression of other transcription factors was
altered resulting in coordinated down-regulation
of the competing biosynthetic pathways.

Genes encoding the major enzymes of the
phenylpropanoid pathway have been identified in
a number of plant species (Tsai et al. 2006;
Tohge et al. 2007; Xu et al. 2009). In most
species, enzymes involved in the phenyl-
propanoid pathway are encoded by gene families
of various sizes. For example, plants’ CADs can
reduce various aldehydes, including those
expressed in response to pathogens (Barakat
et al. 2010; Miedes et al. 2014). The nine puta-
tive CAD genes that were identified in Ara-
bidopsis are split into three classes based on
protein phylogenetic analysis (Raes et al. 2003).
Using Southern hybridization of genomic DNA,
Ryder et al. (1987) identified six to eight CHS
genes in common bean, some of them tightly
clustered, which represented different loci, not
allelic variation. The soybean CHS gene family
consists of nine members (CHSI to CHS9), some
of which are clustered (Akada and Dube 1995;
Yi et al. 2010a). They share a high degree of
sequence similarity and play different roles in
plant development and interactions with envi-
ronment. Matsumura et al. (2005) mapped eight
CHS genes on five linkage groups (Al, A2, BI,
DIa, and K) in soybean. Duplicated CHSI gene
was associated with the suppressed seed coat
pigmentation in yellow soybean (Senda et al.
2002).

Gene families arise from interspecific
hybridization, polyploidization, and local dupli-
cation. Genome duplication results in biased
gene content (Freeling 2009) and non-random
divergence in gene expression (Casneuf et al.
2006; Wang et al. 2012, 2013). After a duplica-
tion event, the new gene copy (or the original
copy) can retain the same function (subfunc-
tionalization), undergo neo-functionalization, or
become non-functional (loss of function) (Lynch
and Conery 2000; Hanada et al. 2011; Barker
et al. 2012). Gene clusters formed by gene
duplication have been frequently found in
multigene families, including plant specialized
metabolism (Nutzmann and Osbourn 2014,
2015). For example, clusters encoding enzymes
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of all steps in lignin biosynthesis have been
identified in the Eucalyptus grandis EST libraries
(Harakava 2005). The authors also predicted
co-localization of several phenylpropanoid path-
way enzymes including PAL, C4H, 4CL, C3H,
and F5H on the endoplasmic reticulum
(ER) membrane. This may suggest the existence
of metabolons involving P450 multienzyme
complexes and channeling of pathway interme-
diates without their release into the general
metabolic pool (Hrazdina and Wagner 1985;
Winkel-Shirley 1999; Ralston and Yu 2006;
Bassard et al. 2012).

The availability of complete genome sequen-
ces enabled genome-wide analyses of the
phenylpropanoid pathway genes in several spe-
cies (Naoumkina et al. 2010). Shi et al. (2010)
identified 95 genes (ten gene families) associated
with phenylpropanoid pathway in Populus tri-
chocarpa and identified functional redundancy at
the transcript level for six lignin biosynthetic
genes [PAL, C4H, 4CL, HCT, CCoAOMT,
CAld5H (F5H)]. Using an in silico approach,
Costa et al. (2003) analyzed the organization and
function of phenylpropanoid pathway gene net-
work in Arabidopsis, while Lucheta et al. (2007)
focused on genes encoding key enzymes in the
flavonoid pathway in Citrus sinensis. Hamberger
et al. (2007) conducted genome-wide analysis of
phenylpropanoid pathway gene families in
poplar and compared them to homologs in Ara-
bidopsis and rice. The focus of these studies was
on the genes of the core pathway and the lignin
branch. To explore the evolution of phenyl-
propanoid pathway diversity, Tohge et al. (2013)
compared 65 gene families involved in the
pathway among 23 species, including Ara-
bidopsis and soybean. Another evolutionary
study was focusing on the isoflavonoid pathway
(Chu et al. 2014). The research examined nine
major isoflavonoid genes in seven plant species,
including Arabidopsis, soybean, and common
bean. Genes coding for PAL, C4H, 4CL, CHS,
and CHI were identified in all analyzed species,
while for CHR, IFS, IOMT (isoflavonoid O-
methyltransferase), and IFR (isoflavonoid
reductase) were confirmed to be legume-specific.
Divergent evolutionary patterns were observed
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among different gene copies of centrally located
branch-point enzymes (4CL, CHS, and CHI)
regardless of the level of polymorphism or the
evolutionary rate.

However, information about this important
pathway in common bean is still fragmentary. In
our previous study (Reinprecht et al. 2013), 35
phenylpropanoid pathway genes were cloned and
mapped in silico in common bean genome (an-
notation Phaseolus vulgaris v1.0). The work also
identified syntenic regions containing phenyl-
propanoid pathway genes in common bean and
soybean (annotation Glycine max v1.1) (Rein-
precht et al. 2013). In another study, 22
phenylpropanoid pathway genes have been
mapped in the Bat93 x Jalo EEP558 (a core
mapping resource for P. vulgaris) and OAC
Rex x SVM Taylor recombinant inbred line
(RIL) populations (Yadegari 2013). Currently,
work on identifying an association between these
genes and different seed phenolics in common
bean using an association mapping approach is
underway. Cytochrome P450 gene family
encodes several key enzymes in the phenyl-
propanoid pathway. Alber and Ehlting (2012)
reviewed P450s involved in lignin biosynthesis.
The availability of the complete common bean
genome sequence allowed Kumar et al. (2015) to
identify members of this gene family. The focus
of our work was to study gene families encoding
enzymes of phenylpropanoid pathway in com-
mon bean, using an in silico approach.

11.2 Gene Families Encoding
Enzymes of Phenylpropanoid
Pathway in Common Bean

Currently, complete genome sequences for 55
plant species, including common bean (Schmutz
et al. 2014; current annotation P. vulgaris v1.0),
are deposited in Phytozome 10.3 (a comparative
genomic database, available at http://phytozome.
jgi.doe.gov/pz/portal.html; accessed 16 Nov
2015; Goodstein et al. 2012). This allowed us to
study the complete gene families encoding
enzymes of phenylpropanoid pathway in com-
mon bean, thus extending our previous work
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(Reinprecht et al. 2013). In particular, we
examined their conservation and diversification
through comparative analyses with previously
sequenced soybean (Schmutz et al. 2010; current
annotation G. max Wm82.a2.vl) and Arabidop-
sis (The Arabidopsis Genome Initiative 2000;
Lamesch et al. 2012; current annotation Ara-
bidopsis thaliana TAIR10) genomes. The basic
information for the sequenced Arabidopsis, soy-
bean, and common bean genomes is presented in
Table 11.1.

Genome annotations for common bean (Sch-
mutz et al. 2014), soybean (Schmutz et al. 2010),
and Arabidopsis (The Arabidopsis Genome Ini-
tiative 2000) were obtained from Phytozome
10.2 (Goodstein et al. 2012). For each gene,
identifiers and descriptions for all Pfam (Protein
families), KEGG (Kyoto Encyclopedia of Genes
and Genomes), GO (Gene Ontology), PAN-
THER (Protein ANalysis THrough Evolutionary
Relationships), and KOG (EuKaryotic Ortholo-
gous Groups) classifications assigned to this
gene can be found.

Table 11.2 contains the list and the number of
putative genes in each of the major gene families
encoding enzymes of the phenylpropanoid path-
way in common bean, soybean, and Arabidopsis
in the current annotations of their complete
genome sequences (P. vulgaris v1.0, G. max
Wm82.a2.vl, and A. thaliana TAIR10) depos-
ited in Phytozome. For each of the 21 enzyme
classes, their functional annotations were based
on the Pfam and KOG databases (commonly
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used), while the number of genes in each family
was based on Phytozome and KEGG databases.
For example, with the KOG0222 search, four
phenylalanine ammonia-lyase (PAL,
EC:4.3.1.24) genes were identified in Arabidop-
sis, eight PAL genes were identified in soybean,
and six PAL genes were found in common bean
(Table 11.2). Several large gene families are
involved in phenylpropanoid pathway, including
the cytochrome P450 family.

11.3 The Role of Cytochrome P450

Superfamily

in Phenylpropanoid Pathway
11.3.1 Cytochrome P450
Cytochromes P450 (CYPs) are ubiquitous
monooxygenase enzymes involved in the oxida-
tion of various substrates using oxygen and
NADPH. Plant P450s play vital roles in meta-
bolism and detoxification (Mizutani and Ohta
2010; Hamberger and Back 2013). They catalyze
reactions in both primary metabolism and sec-
ondary metabolism and are involved in the
biosynthesis of various metabolites, including
fatty acids, sterols, hormones, phenylpropanoids,
terpenoids, and signaling molecules. Chemical
diversity across plant species is well correlated
with the heterogeneity of the P450s (Mizutani
and Sato 2011; Mizutani 2012; Sezutsu et al.
2013). They contain a heme cofactor, which

Table 11.1 Basic information for the sequenced genomes of A. thaliana, G. max, and P. vulgaris

Species Genome

Version Size (Mb)/

chromosomes

Arabidopsis thaliana TAIR10 135/5
(Arabidopsis or thale
cress)
Glycine max (soybean) Wmg2.a2. | 978/20

vl
Phaseolus vulgaris v1.0 521/11

(common bean)

Protein coding Data Reference
loci retrieval
27,416 TAIR? The Arabidopsis
Genome
Initiative (2000)
56,044 JGI° Schmutz et al. (2010)
27,197 JGI Schmutz et al. (2014)

*TAIR, The Arabidopsis Information Resource [available at ftp://ftp.arabidopsis.org/home/tair/Genes/ (accessed 15

June 2015)]

"JGI, DOE Joint Genome Institute [available at http://phytozome.jgi.doe.gov/pz/portal.html (accessed 15 June 2015)]


http://phytozome.jgi.doe.gov/pz/portal.html
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Table 11.2 (continued)

Number of genes

Gene family

P. vulgaris

v1.0

G. max Wm82.

a2.vl

A. thaliana
TAIR10

Functional annotation®

Enzyme class (EC)

EC:5—Isomerases

12

PF02431 Chalcone-flavanone isomerase

20. Isomerases class 5.5.1

20.1

K01859 Chalcone isomerase (CHI) EC:5.5.1.6

EC:6—Ligases

93 48

45

PF00501 AMP-binding enzyme

21. Ligases class 6.2.1

53 30
8/9

29
6/7

KOG1176 Acyl-CoA synthetase

16/14

K019044-Coumarate-CoA ligase (4CL) EC:6.2.1.12

21.1

NA not available

“Phytozome 10.2 (http://phytozome.jgi.doe.gov/pz/portal.html), where PF, Pfam; PTHR, Panther; KOG, KOG; K, KEGGORTH

®P450—details in Sect. 11.2

“Phytozome-first number, KEGG ORTHOLOGY (http://www.kegg.jp/)-second number; if same, a number of genes is presented as a single value

Y. Reinprecht et al.

absorbs light at 450 nm, and are named for this
trait (Pigment absorbing at 450 nm), as well as
their cellular localization. Plant P450s are typi-
cally membrane-bound to the cytoplasmic sur-
face of the endoplasmic reticulum (ER) by a
short N-terminal segment.

The P450s are one of the largest families of
enzymes in plants and, in most of plant species,
exist as a superfamily. The number of P450
genes is highly variable among plants (Nelson
2006) and represents 0.57-1.07% of the protein
coding genes in various plant species [1.07% in
Arabidopsis (246/23,000) (Nelson et al. 2004),
0.71% in soybean (332/46,500) (Guttikonda
et al. 2010), and 0.78% in common bean
(247/31,638) (Kumar et al. 2015)]. The large
number of P450s in higher plants is due to gene
duplication and diversification (Werck-Reichhart
and Feyereisen 2000).

The P450 gene superfamily is characterized
by enormous structural and functional diversity
(Nelson et al. 2008; Nelson and
Werck-Reinchhart  2011;  Nagano  2014).
Homology and phylogeny were used to group
P450s into families (>40% amino acid sequence
identity) and subfamilies (>55% amino acid
sequence identity) (Nelson et al. 1996). Plant
P450 proteins are numbered as CYP51, CYP71
to CYP99, and CYP701 to CYP772. They
belong to ten clans (group of genes originated
from a single ancestor), which are named by their
lowest numbered member [six single-family
clans (CYP51, CYP74, CYP97, CP710,
CYP711, and CYP727) and four multiple-family
clans (CYP71, CYP72, CYPS85, and CYPS86)]
(Werck-Reichhart and Feyereisen 2000; Nelson
et al. 2004; Schuler and Werck-Reinchhart 2003;
Schuler et al. 2006). Following recommendations
of a nomenclature committee (Nelson et al.
1996), the name of P450s consists of a CYP
italicized root symbol, followed by a number of
the family, a letter of the subfamily and ending
by a number of the gene (e.g., CYP7I1D9—
family 71, subfamily D, gene 9), which is
determined by the order of identification
regardless of the origin.

Initially, P450s were divided into a large
A-type clade, which included members that are


http://phytozome.jgi.doe.gov/pz/portal.html
http://www.kegg.jp/
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involved in secondary metabolism (clan CYP71)
and several smaller, non-A-type clades, involved
in primary metabolism (such as fatty acids and
sterols) (Nelson 2006). The occurrence of large
numbers of A-type P450s, compared to the
non-A-type, suggests a rapid expansion of
A-type P450 gene families in plants (Bak et al.
2011).

11.3.2 Clan CYP71—P450s Involved
in the Phenylpropanoid
Pathway

Based on the current genome annotations
[Pfam:00067 (cytochrome P450) functional
annotation at Phytozome 10.2; http://phytozome.
jgi.doe.gov/pz/portal.html—accessed 26 June
2015], there are 249 P450 genes in A. thaliana
TAIR10, 443 P450 genes in G. max Wm82.a.v1,
and 264 P450 genes in P. vulgaris v1.0. How-
ever, the number of published P450s in these
species is slightly different, 272 genes (including
28 pseudogenes) in Arabidopsis (Bak et al. 2011)
and 247 genes (including 15 pseudogenes) in
common bean (Kumar et al. 2015). P450s in
common bean were classified into ten clans that
contain 47 families. The largest CYP71 clan
(A-type) consists of 19 families with 144 genes.
The majority of the genes (>70%) contain a
single intron, but more than 20% of the genes
have two introns and only a small number of
genes (4%) are intronless. In addition, over 80%
of the introns are of the zero phase (intron
sequence inserted between two successive
codons).

It was reported that over 16 P450s are
involved in the synthesis and metabolism of
phenylpropanoids (Werck-Reichhart 1995). They
are placed at the several key positions in the
phenylpropanoid pathway, and their roles in
phenylpropanoid metabolism were extensively
reviewed. For example, Ehlting et al. (2006) and
Alber and Ehlting (2012) focused on P450s
involved in the core phenylpropanoid pathway
and lignin branch, Ayabe and Akashi (2006) in
flavonoid metabolism, while Tanaka (2006) and

231

Tanaka and Brugliera (2013) reviewed the role of
P450s in flower color.

Seven gene families that encode P450
enzymes involved in phenylpropanoid pathway,
as identified in the current genome annotations in
common bean, soybean, and Arabidopsis, are
listed in Table 11.3. It should be noted, however,
that the number of genes in analyzed genomes
may change as more work on annotations is
done. For example, the CYP7ID family in soy-
bean had 81 genes (including 39 pseudogenes) in
G. max v1.0 (Nelson 2009) and 52 genes (in-
cluding 16 pseudogenes) in G. max Wm82.a2.v1.
Eleven gene sequences did not correspond
between the two genome annotations.

We wused the standard nomenclature of
chromosome-based locus (gene model) identi-
fiers in plant genome annotations and assemblies
(Phytozome), which consists of four segments:

e species [AT or At (A. thaliana), Glyma.
(G. max), Phvul. (P. vulgaris)],

e chromosome number [1 to 5 (A. thaliana), 01
to 20 (G. max), 001 to 011 (P. vulgaris)],

e gene (G or g), and

o five-digit code [A. thaliana—At2g37040 for
phenylalanine ammonia-lyase 1 (PALI)] or
six-digit code [G. max (Glyma.03g181700,
PALI) and P. vulgaris (Phvul.001g177800,
PALI)], numbered from top to bottom of
chromosome.

These gene families encode enzymes that cat-
alyze various reactions in different branches of the
phenylpropanoid pathway (Fig. 11.1), including

1. core phenylpropanoid pathway: cinnamate
4-hydroxylase (C4H, CYP73A),

2. lignin/lignan branch: coumarate
3-hydroxylase (C3H, CYP98A) and ferulic
acid 5-hydroxylase (FSH, CYP84A),

3. anthocyanin/condensed tannin branch: flavo-
noid 3'-hydroxylase (F3'H, CYP75B), flavo-
noid 3',5"-hydroxylase (F3',5'H, CYP75A),
and flavone synthase (FNS, CYP93B), and

4. isoflavonoid branch: isoflavone synthase
(IFS, CYP93C), isoflavone 2’-hydroxylase


http://phytozome.jgi.doe.gov/pz/portal.html
http://phytozome.jgi.doe.gov/pz/portal.html
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(I2'H, CYPS1E), flavonoid 6-hydroxylase

(F6H, CYP71D), and  3,9-dihydroxy
pterocarpan  6a-monooxygenase  (D6aH,
CYPI93A).

11.3.3 Gene Structure, Conserved
Domains, and Motifs
of P450s Involved
in the Phenylpropanoid
Pathway

Seven P450s families (clan CYP71) that encode
enzymes in the phenylpropanoid pathway in
common bean, soybean, and Arabidopsis contain
135 members, with one to 36 genes per family
(Table 11.3). Most of these genes contain introns.
Only one gene is intronless (Phvul.009g244000,
CYPS8IE51). The number of introns ranges from
one to four. The majority of the genes contain one
(63%) or two introns (32%). The proteins that
they encode range in size from 408 amino acids
(Phvul.001g139500, CYP93A57) to 543 amino
acids (Phvul.002g014800, CYPS81E44). The pro-
tein sequences were aligned using Clustal Omega
at EMBL-EBI (http://www.ebi.ac.uk/Tools/msa/
clustalo/), and conserved regions were displayed
with a sequence logo generated from the align-
ment using a Web-based WebLogo 3.4 (Crooks
et al. 2004; available at http://weblogo.
threeplusone.com/). All of the P450 sequences
included the following domains: a heme-binding
region (FxxGxRxCxG), a PERF motif (PERF/W),
a K-helix region (KETRL) involved in defining
the heme pockets and stabilizing the protein
structure, and an I-helix region (AGxDT) involved
in oxygen binding (Fig. 11.2).

11.3.4 Phylogenetic Analysis
of P450s Involved
in the Phenylpropanoid
Pathway

The alignment and tree construction of 135
protein sequences (Table 11.3) from seven P450
gene families (clan CYP71) involved in the
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phenylpropanoid pathway were performed in
MEGAG6 (Tamura et al. 2013). These analyses
were based on the full-length genes from the
three genomes, with one nearly intact soybean
C4H pseudogene included (indicated by P at the
end of the CYP name—CYP73A88P). A member
from  the soybean CYPSIE  family
(CYP81E220delb, Glyma.16g149200) is trun-
cated (101 amino acids) and was not included in
the tree construction.

The phylogenetic tree (Fig. 11.3) separates
P450 protein sequences (clan 71) from the two
species into seven families:

e CYP71—CYP71D is a legume-specific clus-
ter and contains 36 genes in soybean (and 16
pseudogenes, not included) and 21 genes in
common bean (and four pseudogenes, not
included). A single flavonoid 6-hydroylase
(F6H) in common bean was clustered with
three F6H proteins in soybean.

e CYP73—CYP73A family contains four genes
for cinnamic acid 4-hydroxylase (C4H) in
soybean (including one pseudogene), three
genes in common bean, and a single gene in
Arabidopsis. The C4H cluster splits into class
I and class II enzymes.

e CYP75 family is split into two subfamilies.
CYP75A consists of two genes for flavonoid
3',5"-hydroxylase (F3'5'H) (and one pseudo-
gene, not included) in soybean and two genes
in common bean. There are no genes for F3'5’
H in Arabidopsis. Subfamily CYP75B con-
tains five genes for flavonoid 3'-hydroxylase
(F3'H) (and one pseudogene, not included) in
soybean, two genes in common bean, and a
single gene for F3'H in Arabidopsis.

e (CYPS8I—CYPSIE is a legume-specific cluster
and consists of 12 genes coding isoflavone
2'-hydroxylase-like (I2'H) genes (and four
pseudogenes, not included) in soybean and 12
genes (and two pseudogenes, not included) in
common bean.

o CYP84—CYP84A cluster contains three
genes encoding ferulic acid 5-hydroxylase
(F5H) (and one pseudogene, not included) in
soybean, three genes in common bean, and
two genes in Arabidopsis.


http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://weblogo.threeplusone.com/
http://weblogo.threeplusone.com/
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Fig. 11.2 Conserved domains and motif patterns of
P450s, CYP71 clan involved in biosynthesis of various
phenylpropanoids. ~ P450  domains including a
heme-binding region [cysteine (C*) residue is indicated

WebLogo 3.4

by an asterisk (*)], PERF motif, K-helix and I-helix
regions are indicated in red rectangles; the other regions
(such as N-terminal region, proline-rich region, membrane
anchor, and C-terminal region) are shown in black
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Fig. 11.3 Protein sequences of the seven gene families
from the clan CYP7I involved in the phenylpropanoid
pathway in soybean and common bean. A neigh-
bor-joining tree (Poisson model, complete deletion) was
built using MEGAG6. Soybean sequences are labeled in

e (CYP93—The family is clustered into three
subfamilies. CYP93A is a legume-specific
subfamily. It consists of eight genes for
3,9-dihydropterocarpan  6a-monooxygenase
(D6aH) (and two pseudogenes, not inclu-
ded) in soybean and seven genes (and one
pseudogene, not included) in common bean.
The CYP93B subfamily contains two genes
encoding flavonoid synthase (FNS) in soy-
bean and a single gene in common bean.
There are no FNS genes in Arabidopsis.
CYP93C is a legume-specific branch. It con-
sists of two genes for isoflavone synthase
(IFS) in soybean and three genes in common
bean.

e CYP98—CYP98A cluster consists of two
genes for coumarate 3-hydroxylase (C3H) in
soybean and single genes in common bean
and Arabidopsis genomes, respectively.

1-CYP71D138
-CYP71D144
CYP71D134

Chyme, " 8G080200-

Gy e 054200.1-CYPT1D:
08080400, 1F6H1-CYPT 1
e
110066054900, 1-CYP 710400

0081509800

92086dAD" 4 0007L0DE

12086dAD Y

IFS

red, and common bean in blue; P at the end of CYP name
indicates pseudogene (Glyma.l10G275600-CYP73A88P);
shorter protein sequences are indicated by an asterisk (*);
a truncated (101 amino acids) Glyma.16g149200-
CYP81E220delb was excluded from the tree construction

There are two additional pollen-specific
CYP98As in Arabidopsis (CYP9SAS and
CYP98A9; Matsuno et al. 2009—not included
in tree construction).

11.3.5 Genome Organization
of the Clan CYP71 Gene
Families Involved
in Phenylpropanoid
Pathway in Common
Bean

A common bean in silico map that contained
genes coding for enzymes of phenylpropanoid
pathway, including nine P450s, was developed
previously (Reinprecht et al. 2013). The map was
created by BLASTing the genomic sequences of
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the phenylpropanoid pathway genes against the
whole common bean genome (P. vulgaris v1.0,
Phytozome) using the starting nucleotide posi-
tions of the resulting alignments with the chro-
mosome as the map positions for each of the
gene sequences.

A similar approach was used to develop a
common bean P450-based in silico map, which
contains 144 P450, clan CYP71 genes. The
mapping was initiated with 134 genes that were
identified at Phytozome by searching for
KOGO156 functional annotations (cytochrome
P450 CYP2 subfamily). Selected gene sequences
were BLASTed against the complete common
bean genome sequence (Phytozome) to identify
their locations. Gene identity was confirmed with
the published common bean P450s (Kumar et al.
2015), and ten new sequences (not annotated as
KOGO0156 in Phytozome) were added to the
map. Gene families involved in the phenyl-
propanoid pathway (shown in larger font,
color-coded) were found throughout the common
bean genome, except for chromosome Pv05
(Fig. 11.4).

Within the same family, P450s are usually
grouped into clusters and the structure of the
same P450 family is generally conserved (Nelson
et al. 2004; Paquette et al. 2009). In the common
bean genome, clustering of genes from the same
family was noticed on the chromosomes Pv03 for
family CYP93C (all three IFS genes) and Pv09
for family CYPS8IE (three I2'H genes). Some of
the CYP71 genes are tandem arranged with at
least four genes from the same subfamily in a
row. Many of these clustered genes are found in
the same orientation on four chromosomes [PvO1
(four CYP712B, all forward), Pv02 (four
CYP7I1D, all forward), Pv04 (ten CYP82A, all
forward; five CYP7IAU, all reverse; five
CYP736A, all reverse) and Pv06 (eight CYP71D,
all reverse; four CYP79D, all forward)] but in a
different orientation on three chromosomes
[Pv03 (four CYP71D), Pv04 (four CYP8IE), and
Pv06 (four CYP71D)]. However, members of the
large CYP71D subfamily clustered in the same
orientation on chromosomes Pv02 (four) and
Pv06 (eight) but in a different orientation on the
chromosomes Pv03 (four) and Pv06 (four).

Y. Reinprecht et al.

Therefore, the subfamily distribution may not
follow a regular pattern. Due to clustered orga-
nization, the 144 CYP7I1 P450 genes (Kumar
et al. 2015) were not evenly distributed in the
common bean genome. They ranged from two
genes on the chromosome Pv05 to 25 genes on
the chromosome Pv04 (Fig. 11.4).

11.4 Cinnamate 4-Hydroxylase
(C4H, EC:1.14.13.11, CYP73A)

11.4.1 C4H Catalytic Reaction
and Position
in the Phenylpropanoid
Pathway

Cinnamate  4-hydroxylase  (frans-cinnamate

4-monooxygenase, C4H, EC:1.14.13.11,
CYP73A) is the first P450 enzyme in the
phenylpropanoid pathway. It is an ER
membrane-bound P450 and belongs to the family
of oxidoreductases that act on paired donors with
incorporation of molecular oxygen. The enzyme
catalyzes an irreversible (and rate-limiting)
region-specific hydroxylation of the aromatic
ring of trans-cinnamic acid (only at the
4-position or para position) to produce p-cou-
maric (hydroxycinnamic) acid (Fig. 11.5), a
precursor for many phenylpropanoids including
flavonoids, phytoallexins, and monolignols
(Hahlbrock and Scheel 1989; Anterola and Lewis
2002; Lu et al. 2006). For activity, C4H requires
molecular oxygen and a cytochrome P450
reductase (CPR).

Mizutani et al. (1997) isolated a cDNA and a
genomic clone encoding cinnamate
4-hydroxylase from Arabidopsis (CYP73A5) and
found its coordinated expression with PAL and
4CL genes. Mutations in this gene affected
phenylpropanoid metabolism, growth, and
development (Schilmiller et al. 2009). The gene
was mapped to the lower arm of chromosome 2
and was highly expressed in all Arabidopsis tis-
sues, especially in roots and lignifying cells
(Bell-Lelong et al. 1997). Genes targeted by the
same transcription factors tend to show similar
expression patterns, which usually suggest
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Fig. 11.4 Distribution of cytochrome P450—clan CYP71
genes [locus (gene model) identifiers—Phytozome] in the
common bean genome (identified on the right on bars).
Genes belonging to families involved in the phenyl-
propanoid pathway are color-coded; P at the end of CYP
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Cytochrome P450 —Clan CYP71:

P
N

P

CYP71D

(F6H, flavonoid 6-hydroxylase)
CYP73A

(C4H, cinnamic acid 4-hydroxylase)
CYP75A

(F3'5'H, flavonoid 3',5"-hydroxylase)
CYP75B

(F3'H, flavonoid 3'-hydroxylase)
CYP81E

(I2'H, isoflavone 2-hydroxylase)
CYP84A

(F5H, ferulic acid 5-hydroxylase)
CYP93A

(D6aH, 3,9-dyhydroxypterocarpan 6a-monooxygenase
CYP93B

(FNS, flavonoid synthase)

CYP93C

(IFS, isoflavone synthase)

CYP98A

(C3H, coumarate 3-hydroxylase)

aforward (L) or reverse () orientation along

the chromosome

pseudogene

name indicates a pseudogene; the orientation along the
chromosome is indicated by a forward or reverse arrow. The
starting nucleotide position of the resulting alignment with
the chromosome was used as the map position for each
P450 gene sequence (indicated on the left on bars)
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Fig. 11.5 Core (general) phenylpropanoid pathway and
the catalytic reaction of cinnamate 4-hydroxylase (C4H,
red). The enzyme catalyzes the first oxygenation step of

relationships among the genes. Down-regulation
of genes coding for PAL and C4H was associ-
ated with reduced lignin content and altered lig-
nin composition in transgenic tobacco (Sewalt
et al. 1997). The position of C4H in the
phenylpropanoid pathway protein network is
shown in Fig. 11.6a. Highly connected proteins
have a stable steady-state distribution of gene
expression (Fig. 11.6b).

Separation of three common beans, four soy-
beans, and single Arabidopsis sequences into two
groups (Fig. 11.7) confirmed earlier groupings of
C4H into class I and class II proteins (Ehlting
et al. 2006). This diversification occurred early in
the evolution of vascular plants through gene
duplication. Common bean and soybean have
both classes of C4Hs, while Arabidopsis (Bras-
sicaceae) contains only one gene encoding class |
C4H. The alignment of C4H protein sequences
(ClustalW2 at EMBL-EBI, available at http:/
www.ebi.ac.uk/Tools/msa/clustalw2/) revealed
high conservation (60-98% identity) among the
proteins (85-98% within five C4H class I pro-
teins and 90% between two class II C4H pro-
teins). However, when both monocots and dicots
were compared, class I C4H was highly con-
served (over 80% protein level), while class II
C4Hs were more divergent (less than 70% pro-
tein level). This suggests that class I C4Hs
“maintained an essential function that does not
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the core phenylpropanoid pathway leading to synthesis of
lignin, pigments, and phytoalexins

allow these genes to be lost or even changed
much, and it is appealing to assume that this
essential function is developmental lignification”
(Alber and Ehlting 2012). Class II C4Hs are only
present in some plant species, and the class
seems to have more specialized functions.

The sequences of eight C4H proteins from
common bean, soybean, and Arabidopsis were
aligned using Clustal Omega (http://www.ebi.ac.
uk/Tools/msa/clustalo/) and BoxShade (http:/
www.ch.embnet.org/software/BOX_form.html).
The sequences were most divergent in their
N-terminal membrane anchors. Conserved motifs
found in plant P450s (Fig. 11.8, shown in bold)
were present in all eight proteins, including
proline-rich (PPGP) region, C helix (WrkmR),
oxygen binding and activation I-helix (AAIETT),
K-helix (EtIR), PERF motif (PeeFrPeRF), and
heme-binding  region  (FgvGrRsCpG) at
C-terminus. The only exception is soybean C4H
(CYP73A88P) encoded by a pseudogene (Gly-
ma.10g275600). It has truncated N-terminal
region, and the generally highly conserved
PERF motif has an arginine (R, Arg) to lysine
(K, Lys) substitution (Fig. 11.8, highlighted).

Secondary structures of C4H proteins were
predicted by programs GOR (Garnier-Osgu-
thorpe-Robson), IV (Garnier et al. 1996; https://
npsa-prabi.ibep.fr/cgi-bin/npsa_automat.pl?page=
npsa_gor4.html), and Phyre2 (Protein Homology/
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Fig. 11.6 Functional protein association network in
Arabidopsis (action view) visualized on the STRING
Web site (http://string-db.org/; accessed: 25 June 2015).
a C4H is colored red, and modes of action are shown in

analogY Recognition Engine V 2.0) (Kelley
et al. 2015; http://www.sbg.bio.ic.ac.uk/phyre2/
html/page.cgi?id=index). Transmembrane heli-
ces were predicted by program TMHMM-2.0
(TransMembrane prediction using Hidden Mar-
kov Models; Krogh et al. 2001; http://www.cbs.
dtu.dk/servicess TMHMM-2.0/).  All  proteins
have secondary structures similar to the previ-
ously published P450s (Graham and Peterson
1999) including alpha helices (blue), beta sheets
(red), and random coils (pink) (Fig. 11.9a). They
consist of 36-45% alpha helices, 14-18%
extended (or beta) strands, and 40-46% random
coils. There is a slight difference between the
classes of common bean and soybean C4H pro-
teins. Class I C4H proteins contain higher per-
centages of alpha helices, while class II C4H
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different colors. Nodes directly linked to C4H are colored;
b Co-expression of C4H with other phenylpropanoid
pathway genes in Arabidopsis; locus AT1G15950 is a
CCRI gene

proteins were predicted to have higher percent-
ages of extended (or beta) strands and random
coils. Membrane anchors were predicted for all
proteins except for soybean C4H (CYP73A88P)
encoded by the pseudogene Glyma.l10g026000
(Fig. 11.9b). All C4H proteins are globular pro-
teins as predicted by Phyre2 (Fig. 11.9¢). Com-
mon bean and soybean C4Hs have tertiary
structures similar to the previously identified
CYP73A5 in Arabidopsis (At2g30490) and also
contain an alpha-domain and a beta-domain
(Rupasinghe et al. 2003).

Gene ontology (GO) annotations for C4H
proteins (Table 11.4) were predicted using the
protein function prediction (PFP), a sequence
similarity-based protein function prediction ser-
ver at Kihara Bioinformatics Laboratory (http://
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Fig. 11.7 Phylogenetic tree of class I and class II C4H proteins. Common bean sequences are labeled in blue, soybean

in red, and Arabidopsis in black

kiharalab.org/; Hawkins et al. 2009). PFP takes
into account weakly similar sequences as well as
GO term associations observed in known
annotations.

11.4.2 CYP73A Gene Family—
Structure and Genome
Location of C4H Genes

C4Hs are encoded by the relatively small
CYP73A gene family. It consists of three genes in
common bean { Phvul.006g079700—
CYP73A118, Phvul.007g026000—CYP73A15,
and Phvul.008g247400—CYP73A [this P450
was incorrectly named as CYP73A2 in common
bean (Kumar et al. 2015); however, CYP73A2
was identified in mung bean (Mizutani et al.
1993), Vigna radiata (previously Phaseolus
aureus; recently moved from the genus Phaseo-
lus to Vigna)], four genes (including one pseu-
dogene, Glyma.10g275600—CYP73A88P) in
soybean, and a single gene in Arabidopsis
(Ar2g30490; CYP73A5; REF3).

The gene is well conserved in plants, includ-
ing soybean and common bean. It contains the
Pfam domain (PF00067), found as a

“duplication-resistant” gene (Paterson et al.
2006). The first C4Hs were identified in Jer-
usalem artichoke (Helianthus tuberosus—
CYP73A1, GenBank accession Z17369; Teutsch
et al. 1993) and mung bean (V. radiata—
CYP73A2, GenBank accession 1.07634; Mizu-
tani et al. 1993). Soybean C4H (CYP73Al11), a
class I C4H enzyme, was identified as an
elicitor-induced cytochrome P450, using differ-
ential display of mRNA (Schopfer and Ebel
1998). In contrast, common bean C4H
(CYP73A15) was identified as a class II C4H
enzyme, whose expression was associated with
differentiation (Nedelkina et al. 1999).

The genes coding for C4H in common bean,
soybean, and Arabidopsis differ in their
exon/intron structures. The exons are conserved,
while introns are more variable. Genes encoding
class II proteins in common bean and soybean
consist of two exons separated by an intron of
moderate size (354 and 463 bp, respectively).
Both exons are split, resulting in four exons, in
the two genes encoding class I C4Hs in soybean.
These genes are characterized by a long intron 3
(1499 and 1272 bp, respectively). The class I
C4H gene in Arabidopsis and the two genes in
common bean all have three exons (Fig. 11.10).
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N terminal region Membrane anchor
ccecchhhhhh—= === === === = — e ——— hhhhhhhhhhhhhhhhhccecccccccccceeeccce
AT2G30490 1 === MDLLLLEKSL-----———————==———— IAVFVAVILATVISKLRGKKLKLPPGPIPIPIFGNW
Phvul.006G079700 1 === MDLLFLEKVL----———=—————————— TALFFAAVIAVTAAKLRGKRFRLPPGPLSVPIFGNW
Phvul.008G247400 1 === MDLLLLEKTL--------——=——=————— LGLFLSAVVAIAVSKLRGKRFKLPPGPLPVPVFGNW
Glyma.02G236500 1 ——————————————— MDLLLLEKTL----—----—-——-——=———-—— IGLFLAAVVAIAVSTLRGRKFKLPPGPLPVPIFGNW
Glyma.14G205200 1l === MDLLLLEKTL---------——=——=———-—— IGLFLAAVVAIAVSTLRGRKFKLPPGPLPVPIFGNW
Phvul.007G026000 1 MSCFHNKKPIFSSLVTLSLISMTKLLHSYFSIPFSPFYVSIPIATVLFVLIIYNFFLASKNHS--STPPGPLSVPIFGNW
Glyma.20G114200 1 -MGLQIKEPLLFTLVTISLISITKLLHSYFSIPFSPSNLSIAIATLIFVLISYKFSSSSIKHSSTTLPPGPLSVPIFGNW
Glyma.10G275600 | MP! G LSVPIFGNW
PPGP Proline-rich region

eeecccccchhhhhhhhccchhhhhhhcccceeeeccccecchhhhhhecccccccccceeeeeecccccceeeeeeccce
AT2G30490 47 LQVGDDLNHRNLVDYAKKFGDLFLLRMGQRNLVVVSSPDLTKEVLLTQGVEFGSRTRNVVFDIFTGKGQDMVEFTVYGEHW
Phvul.006G079700 47 LQVGDDLNHLNLAGIARRFGDIFLLRMGQRNLVVVSSPELAKEVLHTQGVEFGSRTRNVVFDIFTGEGQDMVFTVYGEHW
Phvul.008G247400 47 LQVGDDLNHRNLTGLAKRFGDIFLLRMGQRNLVVVSSPDLAKEVLHTQGVEFGSRTRNVVFDIFTGEGQDMVEFTVYGEHW
Glyma.02G236500 47 LQVGDDLNHRNLTDLAKKFGDIFLLRMGQRNLVVVSSPELAKEVLHTQGVEFGSRTRNVVEFDIFTGKGQDMVFTVYGEHW
Glyma.14G205200 47 LQVGDDLNHRNLTDLAKKFGDIFLLRMGQRNLVVVSSPELAKEVLHTQGVEFGSRTRNVVFDIFTGKGQDMVFTVYGEHW
Phvul.007G026000 79 LKVGNDLNHRVLASMSQTYGPVFLLKLGSKNLVVVSDPELATQVLHSQGVEFGSRPRNVVFDIFTGNGQDMVFTVYGEHW
Glyma.20G114200 80 LQVGNDLNHRLLASMSQTYGPVFLLKLGSKNLVVVSDPELATQVLHAQGVEFGSRPRNVVFDIFTGNGQDMVEFTVYGDHW
Glyma.10G275600 15 LQVGNNLNHRLLASMSQTYGPVFLLKLGSKNLVVVSDPEPATQVLHAQGVEFGSRPRNVVFDIFAGNGQDMIFTVYGDHW

hhhheeeeeccccceeeeeccccchhhhhhhhhhhheccecccecchhhhhhhhhhhhhhhceeeeeeeccccccechhhhhh
AT2G30490 127 RKMRRIMTVPFEFTNKVVQONREGWEFEAASVVEDVKKNPDSATKGIVLRKRLQLMMYNNMFRIMFDRRFESEDDPLFLRL
Phvul.006G079700 127 RKMRRIMTVPFFTNKVVQQYRVGWEDEAARVVEDVRCSPDAASGGIVLRRRLQLMMYNIMYRIMFDRRFENEDDPLFQKL
Phvul.008G247400 127 RKMRRIMTVPFFTNKVVQQYRHGWEAEAGAVVDDVRKNPDAAVSGVVIRRRLQLMMYNNMYRIMFDRRFESEEDPLFQRL
Glyma.02G236500 127 RKMRRIMTVPFFTNKVVQQYRHGWESEAAAVVEDVKKNPDAAVSGTVIRRRLQLMMYNNMYRIMFDRRFESEEDPIFQRL
Glyma.14G205200 127 RKMRRIMTVPFFTNKVVQQYRHGWESEAAAVVEDVKNNPDAAVSGTVIRRRLQLMMYNNMYRIMFDRRFESEEDPIFQRL
Phvul.007G026000 159 RRMRRIMTLPFFTNKVVHNYSSMWEEEMELVVRDLKVNESVRSEGIVIRKRLQLMLYNIMYRMMFDAKFESQEDPLFIQA
Glyma.20G114200 160 RKMRRIMTLPFFTNKVVHNYSNMWEEEMDLVVRDLNVNERVRSEGIVIRRRLOLMLYNIMYRMMFDAKFESQEDPLFIQA
Glyma.10G275600 95 RKMRRIMTLPFFTNKVVHNYSNMWEEEMDLMVRDLNMNDRVRSEGIVIRRRLOLMLYNIMYRMMFDAKFESQEDPLFIQA

WxxxR C-helix

hhhccchhhhhhhhhecccccccecchhhhhceecccccecchhhhhhhhhhhhhhhhhhheccce-cccccechhhhhhhh
AT2G30490 207 KALNGERSRLAQSFEYNYGDFIPILRPFLRGYLKICQDVKDRRIALFKKYFVDERKQIASSKPT-GSEGLKCAIDHILEA
Phvul.006G079700 207 RVLNGERSRLAQSFEYNYGDFIPVLRPFLRGYLKICKEIKDTRFKLFKDYFLEERKNLESTKRR-DNGGLKCAIDHILDA
Phvul.008G247400 207 RALNGERSRLAQSFEYNYGDFIPILRPFLKGYLKICKEVKETRLKLFKDYFVDERKNIGSTKSTN-NEGLKCAIDHILDA
Glyma.02G236500 207 RALNGERSRLAQSFEYNYGDFIPILRPFLKGYLKICKEVKETRLKLFKDYFVDERKKLGSTKSTNNNNELKCAIDHILDA
Glyma.14G205200 207 RALNGERSRLAQSFEYNYGDFIPILRPFLKGYLKICKEVKETRLKLFKDYFVDERKKLGSIKSSN-NNELKCAIDHILDA
Phvul.007G026000 239 TRFNSERSRLAQSFEYNYGDFIPLLRPFLRGYLNKCKDLQSRRLAFFNTHYVQKRRQIMAAN--GEKHKISCAIDHIIDA
Glyma.20G114200 24O7TRFNSERSRLAQSFEYNYGDFIPLLRPFLRGYLNKCKDLQSRRLAFFNTHYVEKRRQIMAAN——GEKHKISCAMDHIIDA
Glyma.10G275600 175 TREFNSERSRLAQSFEYNYGDFIPLLRPFLRGYLNKCKNLQSRRLAFFNTHYVEKRRQIMIAN--GEKHKIGCAIDHIIDA

hhhccccccchhhhhhccceeeeeeeehhhhhhhhheccccchhhhhhhheccceeccccceecccccccchhhhhhhhhhh
AT2G30490 286 EQKGEINEDNVLYIVENINVAAIETTLWSIEWGIAELVNHPEIQSKLRNELDTVLGPGVQVTEPDLHKLPYLQAVVKETL
Phvul.006G079700 286 QKKGEISEDNVLYIVENINVAAIETTLWTIEWGIAELVNHPEIQKKVREEIDRVVGPGNQVTEPDTHKLPYLQAVIKETL
Phvul.008G247400 286 QKKGEINEDNVLYIVENINVAAIETTLWSIEWGIAELVNHPEIQQKAREEMDRVLGAGHQVTEPDIQKLPYLQAVVKETL
Glyma.02G236500 287 QRKGEINEDNVLYIVENINVAAIETTLWSIEWGIAELVNHPEIQQKLRDEIDRVLGAGHQVTEPDIQKLPYLQAVVKETL
Glyma.14G205200 286 QRKGEINEDNVLYIVENINVAAIETTLWSIEWGIAELVNHPEIQQKVRDEIDRVLEAGHQVTEPDIQKLPYLQAVVKETL
Phvul.007G026000 317 QMKGEISEENVIYIVENINVAAIETTLWSMEWAIAELVNHPSVQSKIRDEISEVL-KGEPVTESNLHELPYLQATVKETL
Glyma.20G114200 318 QMKGEISEENVIYIVENINVAAIETTLWSIEWAVAELVNHPTVQSKIRDEISKVL-KGEPVTESNLHELPYLQATVKETL
Glyma.10G275600 253 QMKGEISEENGIYIVENINVAAIETTLWSMEWAIAELVNHPTIQSKIRDEISKVL-KGEPVTESNLHELPYLQATVKETL

A/GGXE/DTT/S I-helix (Oxygen binding and activation)

hhhhhhceeehhhhhhhhhhccccccccceeeeeeeeeecccccccccccccchhhhhhhhhhh---cccccceeeeeec
AT2G30490 366 RLRMAIPLLVPHMNLHDAKLAGYDIPAESKILVNAWWLANNPNSWKKPEEFRPERFFEEESHVE---ANGNDFRYVPEGV

Phvul.006G079700 366 RLRMAIPLLVPHMNLQHAKLGGYDIPAESKVLVNAWWLANNPAHWKKPEEFRPERFLEEESKVE———ANGNDFRFLPFGV

Phvul.008G247400 366 RLRMAIPLLVPHMNLHDAKLGGFDIPAESKILVNAWWLANNPAHWKKPEEFRPERFFEEEAHVE---ANGNDFRYLPFGV
Glyma.02G236500 367 RLRMAIPLLVPHMNLHDAKLGGYDIPAESKILVNAWWLANNPAHWKKPEEFRPERFFEEESLVE———ANGNDFRYLPFGV

Glyma.14G205200 366 RLRMAIPLLVPHMNLHDAKLGGYDIPAESKILVNAWWLANNPAHWKKPEEFRPERFLEEELHVE---ANGNDFRYLPFGV

Phvul.007G026000 396 RLHTPIPLLVPHMNLEEAKLGGYTVPKESKVVVNAWWLANNPSWWKNPEEEREE;ELEEECATDAVAGGKVDFRFVPFGV
Glyma.20G114200 397 RLHTPIPLLVPHMNLEEAKLGGHTVPKESKVVVNAWWLANNPSWWKNPEEFRPERFLEEECATDAVAGGKVDFRFVPFGV

Glyma.10G275600 332 BLHTPIPLLVPHMNLEEAKLGGHTIPKESRVVVNAWWLANDPSWWKNEEEEREEKELEEECATDAVAGGKVDFRFVPEGV
ExxR K-helix PxxFxPxRF P(E)R(F) motif

ccccccceeeeeccceeeechhhhhhhhcccccccccccceccccceeeeeeceeeeeeeecce
AT2G30490 443 GRRSCPGIILALPILGITIGRMVONFELLPPPGQSKVDTSEKGGQFSLHILNHSIIVMKPRNC*-

Phvul.006G079700 443 GRRSCPGIILALPILGITLGRLVQONFELLPPPGODKLDTTEKGGQFSLHILKHSTIVAKPRSC* -

Phvul.008G247400 443 _GRRSCPGIILALPILGITLGRLIQNFELLPPPGQSQIDTSEKGGQFSLHILKHSTIVAKPRSF*-
Glyma.02G236500 444 GRRSCPGIILALPILGITLGRLVQNFELLPPPGQSQIDTSEKGGQFSLHILKHSTIVAKPRSF* -
Glyma.14G205200 443 GRRSCPGIILALPILAITLGRLVONFELLPPPGQSQIDTSEKGGQFSLHILKHSTIVAKPRSF* -

Phvul.007G026000 476 GRRSCPGIILALPILGLVIAKMVSNFELSAPQG-TKIDVNEKGGQFSLHIANYSTVLFHPIRTQ*

Glyma.20G114200 477 GRRSCPGIILALPILGLVIAKLVKSFQMSAPAG-TKIDVSEKGGQFSLHIANHSTVLFHPIKTL*

Glyma.10G275600 412 GRRSCPGIILALPILGLE------------= TG-TKIDVSEKGGQFSLHIANHSIVLFHPIKTL*
FxxGxRxCxG Heme-binding region C terminal region

Fig. 11.8 Comparison of C4H protein sequences from (Ar2g30490) are color-coded [shown at the top of
common bean, soybean, and Arabidopsis. Conserved sequences alignment, where H (blue) indicates alpha
motifs and sequences are shown in bold. Secondary helices, E (red) represents extended (beta) strands, and C
structures  predicted for Arabidopsis C4H gene (pink) indicates random coils]
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Fig. 11.9 Predicted structure of C4H class I and class 11
proteins in Arabidopsis, soybean, and common bean.
a Secondary structures of C4H proteins (predicted by

11.4.3 Tissue-Specific Expression
of Genes Encoding C4Hs

Using publicly available microarray data, Ehlting
et al. (2008) created a tool for co-expression
analysis of P450s in Arabidopsis. RNA
sequencing (RNA-seq) atlases were developed
for both soybean (Severin et al. 2010) and
common bean (O’Rurke et al. 2014). Based on
RNA-seq data (Phytozome 10), genes encoding
C4H are differentially expressed in six common
bean and soybean tissues (Fig. 11.11). In gen-
eral, the expression of the genes encoding class I
C4H enzymes [Phvul.008g247400 (CYP73A),
Glyma.02g236500 (CYP73A11), and Glyma.

ransmembrane

C I Coil

GOR 1V); b Transmembrane helices of C4H proteins
(predicted by TMHMM); ¢ Tertiary structure of C4H
proteins (predicted by Phyre2)

142205200 (CYP73A90)] compared to the class
IT enzymes [Phvul.007g026000 (CYP73A15) and
Glyma.20g114200 (CYP73A87)] was higher in
all tissues (flowers, pods, leaves, stems, roots,
and nodules). Both common bean and soybean
have two copies of genes encoding class I C4H
enzymes. In both species, one of the genes
(Phvul.008g247400 and Glyma.02g236500) is
highly expressed in all tissues. The second copy
of the genes (Glyma.14g205200 and Phvul.
006g079700) is expressed at lower level. In
soybean, Glyma.14g205200 had approximately
half of the expression of Glyma.02g236500 in
stems, roots, and nodules but very low expres-
sion in leaves, pods, and flowers. However,
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Table 11.4 Protein function prediction (PFP) GO terms predicted for common bean, soybean, and Arabidopsis CAH

Description
Iron ion binding

Oxidoreductase activity, acting on paired donors,

with incorporation or reduction of molecular oxygen

proteins

Function GO terms

Molecular function GO:0005506
GO0:0016705
GO:0009055
G0:0020037

Biological process GO:0055114

Cellular component GO0:0005789

Electron carrier activity
Heme binding
Oxidation-reduction process

Endoplasmic reticulum membrane
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Fig. 11.10 Exon/intron structures of C4H genes in
common bean, soybean, and Arabidopsis. Exons are
represented by rectangles (common bean—blue, soybean

Phvul.006g079700 had very low expression in
all common bean tissues compared to
Phvul.008g247400 (Fig. 11.11).

Common bean C4H (CYP73A15) was char-
acterized as a class II C4H enzyme, whose
expression was more related to differentiation
than the responses to stress (Nedelkina et al.
1999). Antisense and sense expression of cDNA
coding for a truncated CYP73A15 gene from

/
/ /

/ /

/ /

/ /

At2g30490 [ ——

Phvul.007g026000 [

1 1 ' i ’
: H /o /
: : L

i
;
)

.

Glyma. 20114200 [

—red, and Arabidopsis—black), and introns are shown as
full lines. Conserved exon sequences are connected by
dashed lines

French bean led to a reduced and delayed pro-
duction of lignin in tobacco (Blee et al. 2001).
Three C4H genes were identified in the P. tri-
chocarpa genome. Two of them (PtrC4HI and
PtrC4H2) were abundant in differentiating
xylem, suggesting their importance in monolig-
nol biosynthesis. Transcripts of PtrC4H3 had
little or no expression in all examined tissues (Lu
et al. 20006).
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Fig. 11.11 Expression of common bean and soybean
genes encoding cinnamic acid 4-hydroxylase (C4H) in six
different tissues. FPKM (Fragments Per Kilobase of
transcript per Million fragments mapped) data for

11.4.4 Cis-Regulatory Regions in
5'UTRs of C4H Genes

In order to understand the functions of individual
members of the C4H multigene families, pro-
moters of the common bean and soybean genes
were analyzed and compared to Arabidopsis
gene (Ar2g30490) promoter, which have known
functions. Promoter sequences [1 kb of 5’ regu-
latory sequence upstream of the coding region
(1 kb 5'UTR flanking region)] of C4H genes
were retrieved from Phytozome (10.2) and
aligned in Clustal Omega at EMBL-EBI (http://
www.ebi.ac.uk/Tools/msa/clustalo/) to search for
possible sequence similarities among these
sequences in the two C4H classes. The analysis
of the 5' regulatory regions of C4H genes in
Arabidopsis, soybean, and common bean C4H
genes revealed a moderate degree of divergence
in these regions (39-60% identity). Multiple
sequence alignment was sent to ClustalW2_
Phylogeny to produce a phylogenetic tree, which

expression levels of the genes were calculated from the
RNA-seq data deposited at Phytozome 10.2 (available at
http://phytozome.jgi.doe.gov/pz/portal.html)

was visualized in TreeView. Based on the 5'UTR
sequences, eight C4Hs were split into two clus-
ters: a three-gene class 1 C4Hs (Phvul.008g
247400, Glyma.02g236500, and Glyma.14g205

200) and a two-gene class II C4Hs
(Phvul.007g026000 and  Glyma.20g114200)
clusters. However, Arabidopsis (class 1

At2¢30490), common bean (class I Phvul.006g
079700), and soybean (class II pseudogene
Glyma.10g275600) were not clearly included in
any class (Fig. 11.12).

The 5'UTR sequence of C4H genes was
analyzed for potential cis-acting regulatory ele-
ments using PlantCARE database (http://
bioinformatics.psb.ugent.be/webtools/plantcare/
html; Lescot et al. 2002). In total, 69 potential
regulatory elements were identified in 5'UTR
sequences of eight C4H genes (Fig. 11.13;
Table 11.5). Twenty-six (38%) elements were
present in four or more genes (Fig. 11.13,
color-coded). In addition to the core TATA box
and CAAT box (present in all genes), the list


http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
http://phytozome.jgi.doe.gov/pz/portal.html

11 A Comparison of Phenylpropanoid Pathway Gene Families ...

245

C4H class Il
Glyma.20G114200
(CYP73A87)
Phvul.006G079700
(CYP73A118)
Phvul.007G026000
(CYP73A15)
AT2G30490
(CYP73A5) \ Glyma.10G275600
(CYP73A88P)
* Glyma.14G205200
(CYP73A90) *k
Phvul.008G247400
YP73A
**Glyma.02G236500 (CYP73A)
0.1 (CYP73A11)
C4H class |

Fig. 11.12 Phylogenetic tree of 5’ upstream region (5’
UTR) sequences of the class I and class I C4H genes in
Arabidopsis, common bean, and soybean. Arabidopsis
sequences are labeled in black, soybean in red, and

included a large number of light-responsive ele-
ments (27), as well as elements associated with
tissue-specific expression (5), defense and stress
responses (6), or hormonal responsiveness (9).
A considerable number (14) of predicted regu-
latory elements were categorized as unknown
function (Table 11.5), and two of these (AC II
and unnamed_4) were present in all eight C4H
genes.

common bean are in blue; P at the end of the CYP name
indicates pseudogene. Class II C4Hs are shown in boxes.
* identifies the mostly highly expressed genes, and the
number of asterisks indicates the relative levels

A fraction of identified regulatory elements
was specific only to class I or class II C4H genes
(Fig. 11.13; Table 11.5). Twenty-six elements
(37.7%) were present only in class I C4H genes.
Four of these elements were identified in all five
class I C4H genes. The CGTCA-motif and the
TGACG-motif are cis-acting elements involved
in the MeJA responsiveness, while the functions
of the unnamed_1 and unnamed_3 are unknown.
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using PlantCARE database. The elements found in four or
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Fig. 11.13 Distribution of the putative cis-regulatory
elements in the 5" upstream regions (5'UTRs) in common

bean, soybean, and Arabidopsis C4H genes, identified
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In addition, MBS (a MYB binding site involved
in drought inducibility) and O, site (cis-acting
regulatory element involved in regulation of zein
metabolism) were identified in the 5'UTRs of all
four legume class I C4H genes. Eleven elements
(15.9%) were unique to the class II C4H genes.
Three of these elements were identified in both
soybean (Glyma.20g114200) and common bean
(Phvul.007g026000) C4H genes. The MNF1 and
CG motifs are light-responsive elements, while
the function of the TATCCAT/C-motif is
unknown. Lu et al. (2006) reported that four
divergent C4H isoforms play distinct roles in
P. trichocarpa. The divergent upstream sequen-
ces among the two group PtreC4H genes sug-
gested that the mechanisms of gene regulation
might be different.

The identification of the cis-acting sequences
regulating differential expression of C4H genes
and transcription factors that interact with these
sequences in common bean, soybean, and Ara-
bidopsis could lead to an understanding of the
mechanism(s) of differential regulation of these
highly similar genes in these plant species.

11.4.5 Syntenic Regions Containing
Common Bean C4H
Genes

The availability of the complete genome
sequences for numerous plant species, including
soybean (Schmutz et al. 2010) and common bean
(Schmutz et al. 2014), allows the organization of
the individual genomes to be studied, as well as
enables comparison of the genomes at the
nucleotide level. The size of the common bean
genome (521 Mb) is approximately half of the
size of the soybean genome (978 Mb). As a
result of at least two rounds of polyploidization
[~59 MYA  (million years ago) and
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~13 MYA], the soybean genome contains sig-
nificant gene duplications and redundancy (Sch-
mutz et al. 2010). In general, for any gene in
common bean, two corresponding homologous
genes could potentially be found in soybean.
Moreover, because of the shared synteny
between the two genomes, regions homologous
to regions in two soybean chromosomes were
found for all 11 common bean chromosomes,
with a minor marker rearrangement and/or
sequence orientation (Galeano et al. 2009;
McClean et al. 2010; Reinprecht et al. 2013).

Synteny analysis was performed in Plant
Genome Duplication Database (PGDD, available
at http://chibba.agtec.uga.edu/duplication; Lee
et al. 2013) against complete genome sequences
available for 47 flowering plant species.
Numerous syntenic regions (26-44) with other
plant species were found for common bean,
soybean, and Arabidopsis class 1 C4Hs. The
blocks were of various sizes, ranging from 14 to
884 gene anchors. For example, common bean
C4H on the chromosome Pv06, CYP73A118
(Phvul.006g079700), was syntenic to 44 regions
in 31 different plant species including two
regions in soybean, poplar, pear, watermelon,
rice, kale, sacred lotus, and chickpea, three
regions in Chinese cabbage, and four regions in
kiwifruit (data not shown). In contrast, only five
syntenic blocks were identified for common bean
and soybean class Il C4Hs. They were syntenic
to each other and to another three legumes
(Medicago truncatula, Cicer arietinum, and
Cajanus cajan).

Several syntenic blocks containing C4H loci
were identified among common bean, soybean, and
Arabidopsis genomes (Table 11.6; Fig. 11.14). For
example, Phvul.006g079700 (encoding common
bean class I C4H) was syntenic to other four class I
C4Hs: common bean Phvul.008g247400, soybean
Glyma.02g236500 and Glyma.14g205200, and


http://chibba.agtec.uga.edu/duplication
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Table 11.6 Syntenic blocks containing C4H loci in genomes of common bean, soybean, and Arabidopsis

C4H locus (gene model) identifier®

Syntenic block”

Query Synteny Score  E-value
Phvul.006G079700  At2g30490 894 | 6e—112
Glyma.02g236500 1862 | 2e—83
Phvul.008g247400 1537 0.0
1789 | 8e—82
539 | 9e—53
Glyma.02g236500 8130 0.0
Phyul.006g079700 1537 0.0
Phvul.007g026000  Glyma.10g275600 | 24,980 0.0
Glyma.20g114200 21,836  2e—137
Glyma.02g236500  Phvul.008g247400 8130 0.0
Phvul.006g079700 1862 | 2e—83
Ar2g30490 1183 | 5e—66
Glyma.14g205200  Phvul.006g079700 1789 | 8e—82
Glyma.10g275600  Phvul.007g026000 | 24,980 0.0
Glyma.20g114200 35,199 0.0
Glyma.20g114200  Phvul.007g026000 | 21,836  2e—137
Glyma.10g275600 35,199 0.0
Ar2g30490 Phvul.008g247400 539 | 9e—-53
Phyul.006g079700 894  6e—115
Glyma.02g236500 1183  5e—66

Anchors (# genes)
24
51
40
48
14

209
40

641

561

209
51
31
48

641

884

561

884
14
24
31

Position
within a block
21
38
20
35
13
81
20
487
99
81
38
29
35
487
779
99
779
13
21
29

Ka®

0.0

0.10
0.08
0.09
0.0

0.04
0.08
0.04
0.05
0.04
0.10
0.12
0.09
0.04
0.02
0.05
0.02
0.0

0.0

0.12

Ks!

0.0

1.22
1.05
1.11
0.0

0.38
1.05
0.42
0.36
0.38
1.22
0.0

1.11
0.42
0.22
0.36
0.22
0.0

0.0

0.0

“Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html)

®Related syntenic regions in multiple species by locus identifier were obtained from the Plant Genome Duplication
Database (PGDD, available at http://chibba.agtec.uga.edu/duplication/index/locus; accessed 26 June 2015). All intra-
and cross-species blocks for the query locus, graphs, and tables displayed +200 kb region

“The number of non-synonymous substitutions per site (Ka)

9The number of synonymous substitutions per site (Ks)

Arabidopsis Ar2g30490. Similarly, common bean
class I C4H Phvul.007g026000 was syntenic to
two soybean class Il C4Hs: Glyma20g.114200 and
Glyma.10g275600. They were contained in large
syntenic blocks anchored by 641 and 561 genes,
respectively (Table 11.6; Fig. 11.14, ). Synteny

was also analyzed with SyMap v4.0 (Synteny
Mapping and Analysis Program; available at http://
www.symapdb.org; Soderlund et al. 2011) to pro-
duce circular  alignments of  multiple
common bean and soybean chromosomes
(Fig. 11.14, right).


http://www.symapdb.org
http://www.symapdb.org
https://phytozome.jgi.doe.gov/pz/portal.html
http://chibba.agtec.uga.edu/duplication/index/locus
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(a) Class | C4H
38. Phvul.006g079700 (CYP73A118)
i ER—
st
IR— —
8 Glyma.02g236500 (42.420,467)
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Fig. 11.14 Syntenic regions containing C4H loci in
genomes of common bean and soybean. a. Class | C4H—
Phyul.006g079700 (CYP73A118) and Phvul.008g247400
(CYP73A); b Class II  C4H—Phvul.007g026000
(CYP73A15). Left—synteny identified in Plant Genome

11.4.6 Sequence Polymorphisms
in C4H Genes
in Common Bean

Nucleotide polymorphisms for a number of
phenylpropanoid pathway genes in various plant
species have been described, including Ara-
bidopsis (Savolainen et al. 2000; Aguade 2001;

Duplication Database. Query locus is represented by a red
arrow; blue arrows are other anchor genes in the region.
Right—circular alignment of common bean and soybean
chromosomes containing C4H loci

Wright et al. 2003) and maize (Brenner et al.
2010). In the current work, sequences of three
C4H genes in the common bean landrace
G19833 (Phytozome) were BLASTed against
genome sequence of cultivar OAC Rex. The
structure of C4H genes identified in OAC Rex
was predicted with the HMM-based Fgenesh
gene finder (Solovyev et al. 2006; available at
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Table 11.7 C4H gene polymorphism between common beans cultivar OAC Rex and landrace G19833

Class C4H locus (gene Polymorphism (bp difference)
model) identifier Typ oP 50
UTR
1 Phvul.006g079700 SNP 1
(CYP73A118) Del 0
Ins 0
Phvul.008g247400 SNP 27
(CYP73A) Del 55
Ins 2
I Phvul.007g026000 SNP 9
(CYP73A15) Del 5
Ins 1

*Phytozome (http://phytozome.jgi.doe.gov/pz/portal.html)

Exon Intron Exon Intron Exon 3

1 1 2 2 3 UTR
4 18 0 13 1 49
0 1 0 146 0 173
0 0 0 3 0 18
3 6 0 5 5 11
0 0 0 22 0 16
0 0 0 0 0 1

11 8 3 NA® NA 8
0 1 0 NA NA 0
0 2 0 NA NA 0

®Polymorphism (SNP, single nucleotide polymorphism; del, deletion; ins, insertion) detected in OAC Rex C4H gene
sequences [GenBank accessions: KU308554 (Phvul.006g079700), KU308555 (Phvul.007g026000), KU308556
(Phvul.008g247400)] compared to G19833 gene sequences

“NA—Not applicable

‘Bold values’ indicate polymorphism identified in coding (exonic) regions of the genes

http://linux 1.softberry.com/berry.phtml?topic=
fgenesh&group=programs&subgroup=gfind;
accessed: 7 July 2015).

The C4H proteins in the two genotypes were
very similar. The proteins encoded by the
Phvul.006g079700 gene in G19833 and OAC
Rex were identical. A single amino acid differ-
ence was identified at position 42 between OAC
Rex (I) and G19833 (V) C4H proteins encoded
by the Phvul.008g247400 gene (99.8% identity).
OAC Rex and G19833 C4H proteins encoded by
the Phvul.007g026000 gene were 99.1% identi-
cal. Differences were found in five amino acids at
positions 4 (V in OAC Rex, F in G19833), 7 (N
in OAC Rex, K in G19833), 18 (L in OAC Rex,
S in G19833), 54 (K in OAC Rex, N in G19833),

and 420 (I in OAC Rex, V in G19833) (data not
shown).

The CH4 genomic sequences were also very
similar between two common bean genotypes
(97.2% identity for Phvul.006g079700, 98.5%
identity for Phvul.008g247400, and 98.9%
identity for Phvul.007g026000). However, by
aligning the CH4 encoding sequences in the two
bean genomes (G19833 and OAC Rex), poly-
morphism (SNPs, insertions, and deletions) was
identified for all three C4H genes (Table 11.7;
Fig. 11.15).

Although polymorphisms were detected in both
the coding (one to 11 SNPs, shown in bold) and
non-coding regions, the majority of the sequence
differences that were identified occurred in the


http://linux1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind
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Fig. 11.15 C4H gene sequence polymorphisms between
common bean cultivar OAC Rex (UofG) and landrace
G19833 (Phytozome v10.2). a Class | C4H—CYP73A118
(Phvul.006G079700; OAC Rex accession KU308554); in
an alignment, E indicates exons (shown in capital letters)
and I represents introns (shown in small letters); the

introns and UTRs. For example, the size difference
of the Phvul.006g079700 gene (encoding class I
C4H, CYP73A118) intron 2 (143 bp) in OAC Rex
(272 bp) and G19833 (415 bp) can be used to
develop gene-based marker(s). However, the

sequence polymorphism in intron 2 (I2) is highlighted
(shown in gray); b Class I C4H—CYP73A
(Phvul.008G247400; OAC Rex accession KU308556);
¢ Class I C4H—CYP73A15 (Phvul.007G026000; OAC
Rex accession KU308555)

usefulness of these polymorphisms as C4H
gene-specific marker needs to be evaluated in
additional germplasm from two common bean gene
pools.
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11.5 Conclusions

The availability of the whole genome sequences
allowed us to identify gene families encoding
major enzymes of the phenylpropanoid pathway
in common bean, soybean, and Arabidopsis. The
work focused on C4H, a cytochrome P450 that
occupies an entry position in the pathway. Three
genes encoding C4H proteins were identified in
common bean genome compared to the four
genes in soybean. The next step would be to
functionally characterize these genes. The avail-
ability of the common bean genome sequence
also makes it possible to identify and characterize
the members of each gene family that are
involved in the specific branches of the phenyl-
propanoid pathway. Furthermore, the identifica-
tion of transcription factors that activate
phenylpropanoid biosynthetic gene families
could provide tools to potentially manipulate the
amount of different phenylpropanoids in com-
mon bean.
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