
Chapter 10

Parallel Local Search

Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

Abstract Local search metaheuristics are a recognized means of solving hard
combinatorial problems. Over the last couple of decades, significant advances have
been made in terms of the formalization, applicability and performance of these
methods. Key to the performance aspect is the increased availability of parallel
hardware, which turns out to be largely exploitable by this class of procedures. As
real-life cases of combinatorial optimization easily degrade into intractable territory
for exact or approximation algorithms, local search metaheuristics hold undeniable
interest. This situation is further compounded by the good adequacy exhibited by
this class of search procedures for large-scale parallel operation. In this chapter we
explore and discuss ways which lead to parallelization in local search.

10.1 Introduction

Stemming from the pioneering work on the Traveling Salesman Problem (TSP) by
Flood [47] and Croes [39] in the 1950s and then Lin [75] in the 1960s, the interest
in Local Search for solving large combinatorial problems has been growing since
the last decade of the twentieth century and has attracted much attention from both
the Operations Research and the Artificial Intelligence communities. Local search
is used for finding optimal or near-optimal solutions to real-life problems when the

Philippe Codognet
University Pierre & Marie Curie/LIP6, France, e-mail: philippe.codognet@upmc.fr

Danny Munera
University of Antioquia, Medellin, Colombia, e-mail: danny.munera@udea.edu.co

Daniel Diaz
University Paris 1/CRI, France, e-mail: daniel.diaz@univ-paris1.fr

Salvador Abreu
University of Évora/LISP/CRI, Portugal, e-mail: spa@di.uevora.pt

381© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_10

philippe.codognet@upmc.fr
danny.munera@udea.edu.co
daniel.diaz@univ-paris1.fr
spa@di.uevora.pt
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_10&domain=pdf

382 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

search space is too large to be explored by complete search algorithms, such as Mixed
Integer Programming or Constraint Solving [1, 68, 59]. Efficient general-purpose
systems for local search now exist, for instance the Comet system [117], which has
been parallelized for small clusters of PCs [86], or the Localsolver system [52].

Local search algorithms start from a random configuration and try to improve this
configuration, little by little, by small changes in the values of the problem variables.
Hence the term “local search” as, at each time step, only new configurations that
are “neighbors” of the current configuration are explored. The definition of what
constitutes a neighborhood will of course be problem-dependent, but basically it
consists in changing the value of a few variables only (usually one or two). The
advantage of local search methods is that they will usually quickly converge towards
a solution (if the optimality criterion and the notion of neighborhood are defined
correctly) and not exhaustively explore the entire search space. These methods
naturally lead to concurrent execution, by considering the development of several
configurations at the same time. This can be done sequentially by maintaining a
pool of candidate configurations or in parallel if adequate hardware is available.
Due to their simple algorithmic structure, local search methods therefore naturally
exhibit various forms of parallelism, either with or without communication, and
can be implemented on various types of parallel architectures such as multicore
machines, grids or clusters, GPUs, or massively parallel machines. Indeed parallel
implementation of local search methods has been studied since the early 1990s, when
parallel machines started to become widely available; see [119, 118] for a general
survey and concepts, or [99] for basic parallel versions of tabu search, simulated
annealing, GRASP and genetic algorithms. With the increasing availability of PC
clusters in the early 2000s this domain became active again [6, 38], and can further
take advantage of the major advances in hardware in the last decade such as GPUs and
massively parallel machines with thousands or tens of thousands of cores. However,
although many methods have been developed and implemented in the last two
decades, most of these experiments have been done for small-scale multiprocessors,
thus giving performance evaluation for a few tens of cores at best. Only very few
implementations of efficient local search solvers on larger machines have ever been
reported, leaving open the question of the scalability of parallel local search in the
age of exascale machines [101].

In the rest of this chapter we will present a general panorama of parallel local
search methods. After a presentation of the basic mechanisms of local search methods
in Section 10.2 and their sources of parallelism in Section 10.3, we will detail
Single-walk approaches in Section 10.4, then Independent multi-walk methods
in Section 10.5 and finally Cooperative multi-walk approaches in Section 10.6.
Section 10.7 shows the effectiveness of parallel local search on two hard problems: the
Stable Matching Problem and the Quadratic Assignment Problem. A short conclusion
and future work end the chapter.

10 Parallel Local Search 383

10.2 Local Search Metaheuristics

Metaheuristic methods aim at finding the optimal solutions (among all possible
solutions) of a Combinatorial Optimization Problem. They have been proven to be
very efficient on a wide variety of these problems. A metaheuristic is defined as
a set of strategies for exploring the search space of a problem by using different
methods [22]. Metaheuristics are high-level procedures using choices (i.e., heuristics)
to limit the part of the search space that actually gets visited, in order to make
problems tractable.

Metaheuristics generally implement two main search strategies: intensification
and diversification, also called exploitation and exploration [22]. Intensification
guides the solver to deeply explore a promising part of the search space. In con-
trast, diversification aims at extending the search into different parts of the search
space [66]. In order to obtain the best performance, a metaheuristic should provide a
useful balance between intensification and diversification. However, by design, some
heuristics are better at intensifying the search while others are better at diversifying
it. More generally, each metaheuristic has it own strengths and weaknesses. The
current trend is therefore to design hybrid metaheuristics, by combining different
metaheuristics in order to benefit from the individual advantages of each method.

In this chapter we are especially interested in local search metaheuristics; the
interested reader can consult several surveys on metaheuristics [111, 100, 22, 27,
107, 108].

Local search methods (also known as trajectory methods) explore the search
space by iteratively making small changes to a single solution (the current solution).
These methods generally start from a randomly generated solution candidate but
other strategies exist to start from a more promising initial solution constructed
heuristically. At each iteration a local search method performs a single move (i.e.,
a small change to the current solution). The set of all possible moves is called the
neighborhood (see Figure 10.1).

Fig. 10.1: Local search

384 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

At each iteration, a solution from the neighborhood of the current solution is
selected to become the new current solution. Different strategies may be used to
select the next move, for instance selecting the best move from the neighborhood
(hill climbing), or the first move that improves the current solution (which is thus
dependent on the order in which the moves are considered), or selecting a random
improving solution.

When the neighborhood does not contain any improving solution, the metaheuris-
tic has reached a local optimum1. Metaheuristics must provide strategies to avoid
becoming trapped in local optima. They detect this situation in order to move to
some other region of the search space. The simplest strategies to escape from a local
optimum are to restart the search from a new (usually random) point or to perform a
large perturbation of the current solution. These strategies are called multi-start local
search (MLS) or iterative local search (ILS) [76]. There are other approaches and it
is also possible to combine them.

By design, local search methods are very efficient at intensifying the search.
However, they generally include some (simple) strategies to diversify the search
(which are often executed when a local optimum is reached). Here we present the
most important local search methods.

Tabu search methods [57, 55, 56] use a memory structure to avoid getting trapped
in a local optimum. The main idea is to improve the basic hill-climbing algorithm by
maintaining a tabu list of recently visited solutions (in practice, some approximations
are necessary to avoid memory explosion). These solutions become prohibited (hence
the term “tabu”) to discourage the search from returning to previously visited places.
Generally, an aspiration criterion is used to authorize an otherwise tabu move to be
performed, in special circumstances (e.g., if it improves on the best solution found so
far). The time an element remains tabu is called the tabu tenure. This parameter has
a great influence on the efficiency of tabu search procedures and must be well tuned.

Simulated Annealing (SA) [73] is based on the annealing process of a crystalline
solid used in metallurgy to improve the quality of a solid. For this, the cycles of slow
cooling and heating (annealing) are alternated in order to reach a minimal energy
state, which corresponds to a stable structure of the metal. Starting from a high
temperature (at which the material is liquid), the cooling phase solidifies the material
by a gradual decrease of the temperature. The SA method is based on this process to
allow moves that result in solutions of worse quality than the current solution, in order
to escape from local optima. At each iteration, it randomly selects a neighbor among
its neighborhood. If it improves the current solution the move is adopted. Otherwise
(a local optimum is reached) the probability of making this move is controlled by
a parameter called the temperature. This temperature decreases during the search
process; thus at the beginning of the search the probability of accepting worse moves
is high but it gradually decreases, converging to a simple iterative improvement
algorithm. Usually a Boltzmann distribution is used to compute the probability to

1 The term is opposed to global optimum which is the best possible solution to the optimization
problem. The reached local optimum may actually coincide with the global optimum, but the method
is generally unable to detect this occurrence.

10 Parallel Local Search 385

accept a worse quality solution (taking into account both the current temperature and
how much the solution is degraded).

Variable neighborhood search (VNS) methods [88] escape from a local optimum
by changing the neighborhood structure using different move types. The basic idea
in VNS is that a local optimum relative to a given move type can be improved using
a different move type (since the optimum is w.r.t. the neighborhood of the current
solution). The search concludes when the current solution cannot be improved with
all possible move types. It is thus important to correctly define the number and types
of neighborhoods to be considered and the order in which they are tried. When these
parameters are well tuned the VNS metaheuristic provides high-quality solutions.

Adaptive Search (AS) [34] is a generic, domain-independent, constraint-based
local search method. AS takes advantage of the structure of the problem, in terms
of constraints and variables, in order to guide the search more precisely than a
single global cost function. Indeed, a cost is also associated with each constraint
that models the problem, measuring the degree of violation of the constraint in
the current solution candidate. This cost is then spread over all variables involved
in the constraint (e.g., using a weight linked to the coefficient of the variable in a
linear constraint). The worst variable is selected for update (i.e., to move), with the
neighborhood being the set of all possible values for this “culprit” variable. Finally,
AS maintains a tabu list of recently modified variables which led to local optima, but
also implements a reset mechanism as used in ILS methods.

Extremal Optimization (EO) [24, 25, 23] is a metaheuristic inspired by self-
organizing processes often found in nature. It is based on the concept of Self-
Organized Criticality (SOC) initially proposed by Bak [18, 16], and in particular on
the Bak-Sneppen model of SOC [17]. In this model of biological evolution, species
have a fitness ∈ [0,1] (0 representing the worst degree of adaptation). At each itera-
tion, the species with the worst fitness value is updated, i.e., its fitness is replaced
by a new random value. This change also affects all other species connected to
this “culprit” element and their fitness value also gets updated. This results in an
extremal process that progressively eliminates the least fit species (or forces them to
mutate). Repeating this process eventually leads to a state where all species have a
good fitness value, i.e., a SOC. The EO metaheuristic follows this line: it inspects
the current solution, selects the worst variable (the one with the lowest fitness) and
replaces its value by a random value (this corresponds to a move). However, always
selecting the worst variable can lead to a deterministic behavior and the algorithm
may stay blocked in a local minimum. To avoid this, the authors propose an ex-
tended algorithm; which first ranks the variables in increasing order of fitness (the
worst variable has thus a rank k = 1) and then resorts to a probability function over
the ranks k in order to introduce uncertainty in the search process: P(τ;k) = k−τ .
This power-law probability distribution depends on a single parameter τ , which is
problem-dependent. Depending on the value of τ , EO provides a wide variety of
search strategies from pure random walk (τ = 0) to deterministic (greedy) search
(τ → ∞). With an adequate value of τ , EO cannot be trapped in local minima since
any variable is likely to mutate (even if the worst ones are privileged). This parameter
can be tuned by the user.

386 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

While simple, local search procedures have been successfully used to find high-
quality solutions for many Combinatorial Optimization Problems. They are also
often a part of a hybrid metaheuristic to intensify the search around a promising
solution found by another metaheuristic. However, there are some hard (real-life)
problems for which the limit to consider the execution time as “reasonable” is rapidly
reached, even using metaheuristics. It is unquestionable that the more computational
resources are available, the more complex problems may be solved. It is therefore
natural to consider exploiting the various forms of augmented computational power
that are currently available, as conveniently as feasible.

10.3 Sources of Parallelism

Apart from domain-decomposition methods and population-based methods (such
as genetic algorithms), [119] distinguishes between single-walk and multiple-walk
methods for local search. Single-walk methods consist in using parallelism inside
a single search process, e.g., for parallelizing the exploration of the neighborhood
(see for instance [77] for such a method making use of GPUs for the parallel phase).
Multiple-walk methods (parallel execution of multi-start methods) consist in develop-
ing concurrent explorations of the search space, either independently or cooperatively
with some communication between concurrent processes. Sophisticated cooperative
strategies for multiple-walk methods can be devised by using solution pools [37], but
require shared memory or emulation of central memory in distributed clusters, thus
impacting on performance.

10.3.1 Single-Walk and Multiple-Walk Methods

Figures 10.2 and 10.3 below show in a graphical way the different parallel trajectories
of single-walk and multiple-walk methods.

Fig. 10.2: Single-walk parallelism

10 Parallel Local Search 387

Fig. 10.3: Multiple-walk parallelism

Single-walk parallelism is limited to the neighborhood of the current solution and
parallel processes need to be synchronized in order to choose the most promising
neighbor and commit to the next solution. Multiple-walk parallelism explores a
wider portion of the search space, limited only by the number of available concurrent
processes. A key point is that independent multiple-walk methods are the easiest
to implement on parallel computers, as they require no communication between
processes; hence they are equivalent to parallel multi-start methods. On the other hand,
one has to take care to ensure a good diversification of the search processes, which can
only be achieved through communication between concurrent processes. Therefore,
communication of information between concurrent processes could, if implemented
without much overhead, improve the overall search. This type of parallelism is
called cooperative multiple-walk parallelism. We will detail in the following sections
the different methods that have been proposed in the literature for the single-walk
approach, the independent multiple-walk approach and the cooperative multiple-walk
approach.

10.3.2 Parallel Speedups and Runtime Distributions

Since [119, 118], it has been believed that combinatorial problems can enjoy a linear
speedup when implemented in parallel by independent multiple-walks if solutions
are uniformly distributed in the search space and if the method is able to diversify
correctly. Thus, in theory, if such a method is implemented on a machine with n
processors, the initial problem instance will be solved with a speedup factor of
n. We will see that this is in fact not so easy to achieve in practice, especially
when considering implementation on massively parallel multiprocessors, e.g., with
thousands of processors. Moreover, when considering the latest cooperative methods
and hybridization between different types of solvers, better performance can be
achieved amounting to super-linear speedups.

But let us first see how to better analyze the execution times of local search
algorithms, both sequentially and in parallel, in order to better understand the behavior

388 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

and potential parallelization of such algorithms on different problem instances. Indeed
the parallel speedup depends not only on the algorithm at work, but also on the
structure of the problem instance which it is attempting to solve. Most papers on the
performance of stochastic local search algorithms focus on the average execution
time in order to measure the performance of the method, both for sequential and
parallel executions. However, a more detailed analysis could be done by looking
at the whole series of execution times. Indeed, because of the many stochastic
choices within any local search method, the runtime on the same problem instance
might vary significantly from one execution to another. Thus by considering the
execution time of a local search method on a given problem instance as a random
variable and by observing the execution time over many runs, the runtime behavior
can be characterized by its statistical distribution. This study of so-called runtime
distributions has been initially proposed in [65] for stochastic local search algorithms
for the SAT problem. In this context, the property of having a linear parallel speedup
in solving a given problem instance by a stochastic algorithm has been proven
only under the assumption that the probability of finding a solution in a given
time t follows an exponential law, that is, if the runtime behavior follows a pure
exponential distribution (non-shifted). This behavior has been conjectured for local
search solvers on the SAT problem in [64, 65], and shown experimentally for the
GRASP metaheuristics on some combinatorial problems [4], but it is not always the
case for other types of problems. Although it is very difficult to formally prove that
the execution of some stochastic algorithm on a given problem instance follows an
exponential distribution, it is easy to verify this experimentally. Indeed, as introduced
in [5, 105], this can be done by constructing so-called time-to-target plots, in which
the probability of having found a solution as a function of the elapsed time is
measured.

However, when considering not only exponential distributions, one has to look
directly at the runtime distributions and analyze them with statistical tools. Such
an analysis of the scalability of independent multiple-walk local search methods
has been proposed in [116] and developed in [115], where a general framework is
presented in order to estimate the parallel performance of any Las Vegas algorithm
[15] by analyzing the runtime behavior of the sequential version of the algorithm.
Indeed, by approximating the runtime distribution of the sequential process with
statistical methods, the runtime behavior of a multiple-walk parallel process can
be predicted by a model based on order statistics [41]. Experiments show that the
estimation is quite accurate and predicts performance close to the empirical data,
with a deviation limited to about 20%. It also shows that, depending on the problem,
runtime distributions can be approximated by two types of distributions, exponential
(shifted and non-shifted) and lognormal, being much more complex than a pure
(non-shifted) exponential distribution, which would give rise to a linear parallel
speedup. In the cases of a shifted exponential distribution (the most common one)
or a lognormal distribution, the speedup is no longer linear, but admits a finite limit
when the number of processors goes toward infinity, and is thus bounded.

10 Parallel Local Search 389

10.4 Single-Walk Approaches

Single-walk methods use parallelism within a single search process, e.g., by paral-
lelizing the most computationally expensive functions of the algorithm. Runtime
profiling of local search procedures reveals that one of the most resource-consuming
parts is the evaluation of the neighborhood. This situation makes this function an
attractive target to be parallelized with single-walk search procedures. The basic
idea is to divide the neighborhood into different parts, which are then independently
evaluated, in parallel. This strategy is called neighborhood decomposition.

In [109], Taillard presents one of the first implementations of the single-walk
strategy for local search methods. He proposes a neighborhood decomposition strat-
egy applied to the tabu search method for solving large instances of the Quadratic
Assignment Problem. The implemented prototype ran on a network of Transputers.

In 1994, Garcia et al. [50] presented a new parallel version of the tabu search
metaheuristic, applied to solving the vehicle-routing problem with time windows
constraints. They propose a master-slave architecture where the master creates a
partition of the neighborhood and assigns the portions to the available processors
(slaves). Each processor then explores its own neighborhood, identifies its best move,
and sends this move back to the master processor.

Note that parallel activities involved in the neighborhood decomposition task
need to be performed at each iteration of the algorithm. These activities have to
be spawned and joined several times during the main algorithm execution, thereby
inducing a significant overhead due to the management of fine-grained tasks. Dealing
with this overhead is considered a major challenge in single-walk parallelization.
For instance, in the aforementioned work by Taillard, the authors report a maximal
parallel efficiency2 of 85% using only 10 processors.

Recent years have seen a proliferation of GPUs; which, even though they are
designed to perform mostly intensive graphical operations, have significant general
compute ability and relatively low cost, so as to attract research on several different
applications. Such is the case for single-walk parallelization in local search methods,
where GPUs have emerged as a suitable architecture to implement the neighborhood
decomposition. When the operations happen to be within their reach, GPUs can
effectively operate on data much faster than traditional CPU architectures: doing
neighborhood decomposition in parallel on GPUs has the potential to noticeably
reduce the overhead of single-walk approaches. Luong et al. in [77, 78] present
a parallel local search method that uses the neighborhood decomposition strategy
performed by a GPU unit. They propose guidelines to efficiently implement the
parallel evaluation of the neighborhood considering the idiosyncrasies of a GPU
architecture (e.g., memory management and access, thread control, mapping of
neighborhood solutions to GPU threads, etc.). This approach proved to be effective
in solving different optimization problems, as witness the authors’ report on parallel
speedups, which range from 50 when using an entry-level GPU, up to 240 with a

2 Parallel efficiency: the division of the theoretical CPU time with an ideal speedup by the CPU
time effectively observed.

390 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

higher-performance GPU board. This approach was tailored for embedding within
the ParadisEO framework, as reported in [85].

Arbelaez and Codognet [11] present a parallel version of the adaptive search (AS)
algorithm using both multiple-walk and single-walk parallelization. The solver takes
advantage of the GPU architecture by executing multiple instances of the AS solver,
but also and at the same time performing the evaluation of large neighborhoods in
parallel, as previously described. The authors report a maximum speedup of 17 in
solving two classical constraint satisfaction problems, and a speedup of 3 in solving
the Costas Array problem.

Single-walk parallelization in GPU architectures presents rather good perfor-
mance, however the implementation of local search methods on GPUs is far from
trivial and the scalability of these approaches is limited, if nothing else, by Amdahl’s
law [8]. Amdahl’s law states that the maximum speedup that may be expected from
the parallelization of an algorithm is 1/s where s is the fraction of non-parallelizable
parts of the algorithm. For instance, if a sequential algorithm is 90% parallelizable,
then the theoretical maximum speedup one can ever expect by parallelizing this
algorithm is 10, regardless of the number of processors in use.

10.5 Independent Multiple-Walk Approaches

Multiple-walk methods develop concurrent explorations of the search space, either
independently or cooperatively. The independent multiple-walk scheme derives from
the observation that local search processes, being mostly stochastic in nature, will
exhibit different behavior from one run to the next. This will directly impact on the
time it takes to complete an individual search, which will vary accordingly. The base
insight is thus to have several instances execute concurrently, so as to collect the
earliest or the best result.

Because they are concerned with processes whose execution is unrelated, inde-
pendent multiple-walk methods tend to be relatively straightforward to implement
on parallel computers and can lead – at least in theory – to linear speedups [119]. It
should be noted, however, that this holds under the assumption that the time it takes
to reach a solution obeys an exponential distribution. We will see that a more complex
model may be required in order to explain the performance actually observed in
larger-scale parallel executions.

10.5.1 Early Independent Multiple-Walk Methods

Early work, in 1996, by Rego and Roucairol [102] introduced a parallel variant of the
tabu search metaheuristic, which they apply to the Vehicle-Routing Problem. This
system uses the PVM parallel platform to perform independent parallel searches,
starting from a common point but following different paths. Each search reports

10 Parallel Local Search 391

back to a central hub, which in turn collects solutions, looking for a local optimum,
which, in turn, is used to relaunch a new batch of searches. This algorithm mixes
functional with data parallelism, and it uses slightly different instances of the tabu
search procedure, in the hopes that the ensuing diversity will promote better collec-
tive performance. The authors report that the parallel system begets higher-quality
solutions, although at the expense of a sometimes significantly slower computation.
The reason for the performance impact is not very clear, but may be related to the
parallel library overheads.

In 1999, Eikelder et al. [46] proposed a Sequential and Parallel Local Search
Algorithm, applied to the Job Shop Scheduling problem. In this work, the authors
recognize the impact of non-determinism in performing multiple instances of a local
search procedure, and establish a process whereby the parallel speedup of a simple
independent multiple-walk local search algorithm may be modeled. The proposed
approach takes into account the success or failure of the search procedures, as well as
the quality of the solutions found, for the definition of parallel speedup. The predicted
times are a good match to the observed times in the authors’ experiments, scaling
to about 40 large-granularity processors. The predicted and observed speedups both
appear to have a largely linear section, up to about 10 processors. Beyond that,
performance gains suffer a visible drop, yet there remains an undeniable benefit from
running independent multiple-walk searches in parallel.

A system by Mori and Ogita [89] was proposed in 2000, which also does tabu
search in parallel, applying it to the reconfiguration of power distribution systems
problem. One of the driving ideas is that carrying out multiple search processes in
parallel, each with just a distinct value for the tabu tenure parameter, will lead to
a faster convergence on an optimal solution, because of the subsequent diversity.
The authors combine this with a parallel decomposition of the neighborhood, i.e., a
form of functional parallelism. The results indicate that tabu search produces the best
quality solutions among several metaheuristics (which include genetic algorithms
and simulated annealing), in both the sequential and parallel versions. Likewise, the
parallel tabu search procedure exhibits the highest performance of the set, notably
so in the case where a moderate amount of parallelism is dedicated to the parallel
neighborhood decomposition (two to four sub-neighborhoods).

Finding different approaches to structure the neighborhood of a candidate solution
was essential to the work of Garcia-Lopez et al. [51], published in 2002. The authors
propose a parallel method to do Variable Neighborhood Search, and apply it to the
p-Median problem, taking large instances from TSPLIB [103]. This proposal follows
three different takes on parallelism: either the local search, the variable neighborhood
search or both become subject to parallel execution. In all cases, the parallel pro-
cedures execute independently, and the runtimes reflect a near-linear speedup with
up to eight processors. The prototype implementation runs on a multicore system,
resorting to a shared-memory configuration using OpenMP [40], and is therefore tied
to that multiprocessor organization.

Another system was described in 2003, by Bortfeldt et al. [26], which carries
out multiple independent tabu search procedures, running on top of a distributed
system in the form of a network of workstations. The network of parallel processes

392 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

keeps tabs on the solutions found by each worker, storing them in a storage object
for possible reuse by others. Even though the architecture is essentially that of
independent multiple-walk parallelism, it may include various forms of information
exchange among workers, as a consequence of the solution storage access pattern,
by each participant. Solutions found by workers are made available to the entire
network or just part of it, e.g., workers may be arranged in a ring topology. Workers
may be selective as to which external solutions to look at and, should they perform
better, adopt. The authors apply their prototype implementation to the Container-
Loading Problem, with measurable solution quality improvements over competing
approaches, namely the sequential tabu search and genetic algorithms-based solvers.
Performance-wise, the parallel system actually requires more time to achieve its
results and communication among workers only seems to yield minute improvements.

The 2010 work by Yazdani et al. [121] supplies another case of a parallel local
search procedure: in this instance, Variable Neighborhood Search benefits from the
diversification of neighborhood structures via the parallel independent exploration
thereof. The parallel architecture adopted is that of shared-memory multicore proces-
sors. The authors apply their system to Flexible Job Shop Scheduling, a harder variant
of the base problem, and provide experimental validation in a parallel setup with
up to five processors. The results indicate that the Parallel Variable Neighborhood
Search procedure computes good-quality solutions, when compared to competing
approaches.

10.5.2 Recent Experiments and Performance Results

In the domain of SAT (satisfaction problem for Boolean formulas), parallel methods
based on independent multi-walks have been developed under the name of the
portfolio approach, and most of the current solvers for SAT, based either on complete
or local search methods, now use portfolios for small-scale multi-core architectures.
Arbelaez and Codognet experimented in [10] with multi-walks versions of several
sequential local search solvers such as Sparrows, AdaptiveNovelty+ , PAWS and VW
on parallel hardware up to 512 cores. Experiments were done using benchmarks from
the SAT’11 competition belonging to four types of instance families: random, crafted,
verification and quasigroup. The parallel speedup of each solver varies depending on
the instance family but stay more or less consistent within each family. In general,
nearly linear speedups are achieved on crafted and verification instances while sub-
linear speedups are obtained on random and quasigroup instances. It is also worth
noticing that the best sequential solver may not exhibit the best parallel speedup and
therefore may not necessarily be the best one in a massively parallel context.

Work by Caniou et al. [31, 33, 32] presents a simple parallel scheme based
on independent multiple-walks with no communication between processes during
search, the sequential engine being based on the adaptive search metaheuristic. It
was built using the MPI [48] parallel programming interface and was tested on
different hardware platforms, of varying scale: up to a few hundred cores on the

10 Parallel Local Search 393

GRID’5000 platform in France and the Hitachi HA8000 and Fujitsu FX10 machines
at the University of Tokyo and up to 8,000 cores on the JUGENE supercomputer at
Jülich Supercomputing Centre. Performance evaluation on large instances of some
classical Constraint Satisfaction Problems from CSPLIB [54], such as the Magic
Square, Perfect Square and All-Interval problems, shows that speedups are very good
for a few tens of cores (e.g., speedup of a factor of 20-25 on 32 cores), and correct
up to a few hundreds of cores (e.g., speedup of a factor of 50-60 on 256 cores), but
speedup then degrades, showing that not much parallelism could be further extracted
even with a larger number of cores. Figure 10.4 shows the performance results of the
parallel adaptive search method on these problems in the form of runtime speedups
for a given number of cores.

 10

 20

 30

 40

 50

 60

 16 32 64 128 256

sp
ee

du
p

number of cores

MS 400
PS 5

AI 700

Fig. 10.4: Speedups for benchmark CSP programs on the HA8000 parallel machine,
from [31]

However, another hard combinatorial benchmark, the Costas Arrays Problem
(CAP), was also tested with instances of CAP up to 23 (large instances) and the
experimental evaluation shows better parallel scalability. Indeed, parallel speedup
scales very well (linearly) up to about 8,000 cores, on the JUGENE supercomputer.
Figure 10.5 shows the performance results of the parallel adaptive search method on
instances 21, 22 and 23 of CAP, in the form of runtime speedup for a given number
of cores.

This can be explained by the fact that the runtime distribution of the adaptive
search metaheuristic on the CAP problem exhibits a nearly pure (non-shifted) ex-
ponential distribution; see [43] for details of experimental results. The authors also
experimented with a limited form of cooperation among search processes (exchang-
ing only solution costs between processes and performing restarts), but the results
were not markedly different from the independent multiple-walk strategy.

394 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

 1

 2

 4

 8

 16

 512 1024 2048 4096 8192

sp
ee

du
p

number of cores

Ideal
CAP 21
CAP 22
CAP 23

Fig. 10.5: Speedups for the Costas Array Problem on the JUGENE supercomputer,
from [32]

It turns out that most independent multiple-walk procedures start off with good
speedups attributable to parallel execution. However, this characteristic appears to
hit a problem-dependent hard limit, which may be attributed to the lack of entropy
(diversity) across the different runs which are being performed in parallel, and thereby
bounds the usefulness of such a strategy, at larger scale.

Although there are stand-out exceptions, this diminishing returns situation be-
comes especially obvious when attempting to scale beyond a few dozen cores. This
has prompted research into exploring more sophisticated parallel methods that can
compensate for this performance drop, namely those that rely on some form of
cooperation among worker threads, as discussed in section 10.6.

10.6 Cooperative Multiple-Walk Approaches

To overcome the limitations of the independent multiple-walk strategy, it is natural to
consider a paradigm based on cooperation. This is the case of Cooperative Multiple-
walk methods, which add a communication mechanism to the independent search
strategy, in order to share or exchange information among solver instances during the
search process. However, designing an efficient cooperative method is a very complex
task, and many issues must be solved: What information is exchanged? Between
which processes is it exchanged? When is the information exchanged? How is it
exchanged? How is the imported data used? [114]. The work presented in [79] studies

10 Parallel Local Search 395

these questions, and concludes that no one cooperative configuration may efficiently
tackle all problems. Indeed, most cooperative choices are problem-dependent (and
even instance-dependent).

According to the literature [119, 120, 22, 111], an efficient cooperative method
should consider four essential functionalities: flexibility, adaptability, performance
and scalability. Flexibility refers to the capability of a given method to tackle different
problems, using different methods and providing hybrid behavior. Adaptability is
related to the ability of a given method to adjust its cooperative behavior. In addition,
a method has a good performance if it can obtain a high-quality solution in a short
execution time. Finally, scalability refers to the ability of a given method to efficiently
use a significant number of processing units (cores).

In this chapter, we analyze several approaches using the cooperative multiple-walk
strategy. We identify three different kinds of algorithms: metaheuristic parallelization,
agents-based and general frameworks.

10.6.1 Metaheuristic Parallelization Approaches

We first analyze cooperative methods based on metaheuristic parallelization. One of
the oldest cooperative approaches was proposed in 1993 by Hogg and Williams [63].
The basic idea is to create multiple solver entities (metaheuristics) that share partial
configurations (hints) through a centralized memory (blackboard). Each entity re-
ports to the blackboard a hint at each step (based on its current state) with a given
probability p. When the entity is at an appropriate decision point, it reads a hint
from the blackboard with probability p. If p is set to zero, the algorithm behaves
like independent search. The implementation of the method is dedicated to solving
the graph coloring problem using two different heuristics: the Berlaz algorithm and
heuristic repair. The experimental evaluation is performed using 10 agents, solving
graphs with 100 nodes and comparing the performance of the independent and the
cooperative approaches. The cooperative version presents better performance than the
independent version in terms of the execution time, however the parallel scalability
is not evaluated in this work.

In 1998, Aiex et al. proposed a cooperative parallel tabu search for solving the
circuit partitioning problem [3]. This method implements a master-slave model com-
posed of search processes (slaves) which implement different combinations of the
initial solution algorithm and move attribute for a specialized tabu search metaheuris-
tic. Periodically, the search processes exchange information (elite solutions) with the
master node, which maintains a centralized shared memory for elite configurations.
The parallel procedure is implemented using two different parallel programming
languages, PVM (based on message passing) and Linda (based on the shared-memory
model). The authors test both implementations on a set of problem instances from the
ISCAS benchmark on an IBM SP-2 machine with 16 processors. Only 10 processors
are used in the experimental evaluation, using one master and nine search processes.
The implementation improves the solution quality for all problem instances with

396 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

respect to the sequential version of the algorithm, the PVM version being 20% faster
than the Linda implementation. This work does not present any evaluation of the
performance in terms of the execution time and the parallel scalability.

Gendreau et al. [53], in 1999, proposed another master-slave scheme to parallelize
the tabu search algorithm for solving the dynamic vehicle-routing and dispatching
problem. The master entity manages an adaptive memory which is fed by a set of
tabu search instances (slaves). The adaptive memory is used to create new initial
solutions for slave processes. The authors present a prototype implementation, which
runs on a network of 17 SUN UltraSparc workstations. The proposed method is
compared with other heuristic approaches and obtains a better solution quality than
its competitors. An evaluation of the parallel scalability is performed using up to 16
processors, showing that the solution quality is improved by increasing the number
of processors involved.

Two similar methods are proposed to implement cooperation on the GRASP
(Greedy Randomized Adaptive Search Procedure) and the Path Relinking meta-
heuristic [2, 104]. A distributed cooperation mechanism was proposed by Aiex et
al. in 2003 [2], which creates several search processes. Each process sends the best
overall configuration to the other processes when the cost is improved. Each process
maintains a local elite pool which possibly contains configurations from all processes.
This pool is used as input for the Path Relinking phase. An experimental evaluation
is carried out solving standard job shop scheduling test problems from Beasley’s
OR-Library. The experiments are done on an SGI Challenge computer composed
of 28 R10000 MIPS processors, using 1, 2, 4, 8 and 16 processors. The prototype
is coded in Fortran using the MPI library. The cooperative strategy obtains almost
linear speedups, improving on the independent strategy; which, as expected, shows
only a sub-linear speedup.

Ribeiro and Rosseti, in 2007, proposed another parallel cooperative approach
also using GRASP and Path Relinking [104]. This method takes advantage of the
multi-start behavior of the GRASP metaheuristic to implement a multiple-walks
parallelization. In addition, a master-slave cooperative strategy is implemented. Slave
processes send the best configurations to a master process, which maintains a central-
ized pool of elite solutions. Then the master can send back a new configuration to
slave nodes upon request. A prototype implementation of this approach is developed
using C and the MPI specification. The experiments are carried out on a cluster of
32 Pentium II 400 MHz processors solving the randomly generated instances of the
2-path network design problem. The cooperative strategy presents smaller execution
times and scales better than the independent implementation, obtaining almost linear
speedups and reporting a maximum speedup of 17.6 using 32 cores. Although the
two previous methods present fair parallel performances, the functionality is attached
to GRASP behavior and to the problem nature, thus limiting its flexibility.

A cooperative parallel approach that uses the rollout algorithm for solving the
Sequential Ordering Problem was proposed in 2003 by Guerriero and Mancini [60].
This approach presents a master-slave topology in which slaves are executed in
parallel, running an instance of the rollout algorithm. Slave processes periodically
send the best configurations found to the master, which maintains a centralized

10 Parallel Local Search 397

pool of configurations. The master restarts slaves with adjusted parameters using a
new initial point from the pool. The cooperative mechanism can adapt its behavior
by selecting the best parameters for the base algorithm. However, this cooperative
approach is strongly linked to the rollout algorithm, limiting the possibility to use
this technique with other metaheuristics. The parallel version of the algorithm was
implemented in C++ using the MPI library. The experiments run on a cluster of nine
nodes with two Pentium 1 GHz processors, solving 14 instances of the Sequential
Ordering Problem (taken from the TSPLIB). The cooperative approach obtains a
good solution quality for the given set of problems. The scalability of the algorithm
is evaluated using 1, 2, 4 and 8 slaves (cores). The algorithm improves either the
solution quality or the execution time used to find the best solution when increasing
the number of slaves. However, the authors report that the rollout-like approach
obtains a higher computational time to find good solutions compared with other
state-of-the-art approaches.

The 2004 work by Crainic et al. [37] presents a master-slave cooperative method
to solve the p-median problem based on the Variable Neighborhood Search (VNS)
metaheuristic. The master process implements a central memory to maintain the best
overall solution. The master also sends the initial configuration to slaves. The slave
processes (VNS processes) perform the search and notify the master when improving
the overall solution. A slave process asks the master for a new search point if it cannot
improve its current configuration. An MPI implementation of this approach run on a
64-processor SUN enterprise machine with 400 MHz clock. The experiments use
1, 5, 10 and 15 processors, solving a set of problems from the TSPLIB benchmark.
This strategy obtains significant gains in terms of execution time, maintaining a
good solution quality. However the cooperation mechanism is strongly linked to the
behavior of the VNS metaheuristic and to the problem model. The principles of this
approach include avoiding using parameters, which is convenient for the user but not
for the adaptability of the system.

In 2012, Cordeau and Maischberger [36] proposed a parallel iterated tabu search
algorithm to solve vehicle-routing problems. The basic idea is to execute in parallel
several iterated tabu search solver instances using different sets of parameters. The
algorithm implements a communication mechanism to share the most promising
configurations found in the search process. Each process can apply a crossover
operator to the received configurations (with a given probability), in order to combine
information of two different received configurations. The algorithm is implemented
in C++ using the MPI libraries for the parallel version. The experiments run on a
cluster composed of 128 nodes, each with a 3 GHz dual Intel Xeon CPU E5472
(i.e., four cores per node). This strategy is tested solving different variants of the
vehicle-routing problem, using up to 80 cores, and obtaining good performances in
terms of the solution quality (allowing the identification of new best known solutions
for a large set of problems).

A cooperative approach based on the execution of multiple instances of the
adaptive search solver was presented in 2013 by Machado et al. [80]. A single master
solver instance sends every k iterations its current configuration to the other solver
instances. Since this information is stored in a shared-memory structure, all the solver

398 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

instances (threads) running on the node benefit from this communication. Each solver
instance decides whether it adopts the received configuration or continues its current
search process. This cooperative scheme was implemented using the GPI (Global
Address Space Programming Interface) API for parallel applications running on
clusters. The experiments are conducted on a cluster system with 155 nodes; each
node includes a dual Intel Xeon 5148LV (i.e., four cores per node). This strategy is
evaluated solving two constraint satisfaction problems from the CSPLib: all-interval
and magic-square; and one hard real-life problem: the Costas Array Problem (CAP).
The cooperative strategy presents no gain compared to the independent strategy, when
solving the CAP. For the CSPLib problems the cooperative approach presents a better
speedup than the independent strategy. The parallel scalability is evaluated using up
to 512 cores; however the obtained speedups are sub-linear for both cooperative and
independent approaches. More recently, in 2015, Caniou et al. presented a similar
approach in [32], which uses the same base algorithm (adaptive search) and the same
set of CSPLib problems. The authors propose a new cooperative approach in which
only single integer values are exchanged between entities (as opposed to complex
data types such as vectors of variables, i.e., a configuration). The receiver entity uses
this information to decide whether it is convenient to develop a restart procedure.
This strategy is evaluated on the Helios cluster of the GRID’5000 platform, using up
to 128 cores. The results of the experimentation cannot show an improvement in the
performance using this cooperative approach.

In the domain of SAT, parallel cooperative methods based on local search have
also been developped. Arbelaez and Hamadi proposed in [12] several strategies
for sharing knowledge between processes, involving a pool of elite configurations
containing the best configuration found so far by each process. When a restart is
performed, new restart configurations are thus created on demand by agreggating
those elite solutions, variable by variable. The best aggregation strategy, named
Prob-NormalizedW, consists in weighting the influence of each process by using a
probability reflecting the cost of the configuration (number of unsatisfied clauses).
Small-scale experiments on 4 and 8 cores machines show that good performances
could be achieved and this solver won a silver medal in the SAT’11 competition
(random category, parallel track). Thoses ideas were later extended by Arbelaez and
Codognet in [9] for larger-scale parallel systems (up to 256 cores), but performance
then becomes very sensitive to the cost of communication and possible excessive
diversification. Indeed, the best performance is achieved when defining small groups
of cooperative solvers (up to 16 processes) and having no communication between
different groups of solvers.

10.6.2 Agent-Based Approaches

Agent-based modeling is a powerful strategy that facilitates the implementation of
cooperative approaches. In early work, in 1998, Talukdar et al. propose a multi-
agent-based cooperative methodology to combine solving strategies [113]. The

10 Parallel Local Search 399

A-Team (asynchronous teams) framework allows agents to cooperate through a
shared memory containing a population of configurations. Agents can create, modify
or delete configurations from the shared memory. Furthermore, they can obtain
elite configurations from the shared memory, which have probably been created by
another agent, in order to cooperate and make the initial set of configurations evolve.
The A-Team framework provides a good level of flexibility, because agents can
implement different algorithms, and this method can be applied to different problems.
The referenced paper does not report any experimental evaluation, however this
approach has been used as the basis for many agent-based cooperative solvers.

In 2004, Milano and Roli presented a multi-agent metaheuristic architecture
(called MAGMA) that can describe cooperative search or hybrid metaheuristics [87].
This architecture is based on a multi-level organization in which components (agents)
are classified according to their capabilities. Low-level agents describe the basic
functionality of metaheuristics. A top layer manages integration and cooperation of
different solvers. Agents in the top layer can store partial or complete configurations
and promote changes in lower layers in response to the gathered information. This
approach provides a theoretical description that can be easily adapted to tackle
different problems and to use different metaheuristics, thus providing fair flexibility
and adaptability. Similarly to the A-Team strategy, MAGMA is considered as a
generic framework; the referenced paper only provides an experimental evaluation in
the appendix, where a guided-restart iterated local search algorithm is conceived as a
combination of existing components in the MAGMA framework.

A multi-agent architecture was proposed in 2006 by Bachelet and Talbi for solving
large-scale instances of the Quadratic Assignment Problem [112]. This method, called
COSEARCH, is composed of a set of agents that perform specific tasks: search agent,
intensifying agent and diversifying agent. COSEARCH implements as the main
search agent a tabu search heuristic; for the diversifying agent, it uses a genetic
algorithm; and for the intensifying agent, a kick operator is used. These agents
share information through an adaptive memory that stores information about the
already visited areas of the search space and about the intrinsic nature of the elite
solutions already found (initial and elite configurations). This strategy is evaluated
solving a set of problem instances from the QAPLib benchmark. The experiments
run on a heterogeneous parallel platform composed of around 150 workstations,
using a significant number of cores. The results show COSEARCH presents better
performance than a basic parallel multi-start strategy, in terms of execution time and
solution quality.

The 2007 work by Aydin [14] proposed a study of different cooperative topologies
for agent-based metaheuristics. This work tested three different schemes: A-Team, a
multiple-island model and variable neighborhood search. The job shop scheduling
problem is used to develop the experimental evaluation, which only considers the
solution quality. All the schemes are developed using DREAM software [13] which
is a Java-based framework that implements the distributed sub-population model for
evolutionary algorithms by using multi-agent technology. The main objective in this
experimentation is to reveal more details about each strategy.

400 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

In 2009, Cadenas et al. presented a cooperative parallel hybrid strategy that uses
machine learning techniques [29]. The system is composed of two different types of
agents: metaheuristic and coordinator. Multiple instances of different metaheuristics
are run in parallel by metaheuristic agents, which, simultaneously, share information
through a blackboard data structure. One coordinator agent is used to analyze the
information in the blackboard and to adapt the metaheuristic agents’ behavior. The
coordinator agent incorporates knowledge from an offline machine learning process.
This knowledge helps the coordinator to guide the search and to adapt the behavior of
the system to different situations. The authors also proposed a Java implementation
of this strategy using tabu search, simulated annealing and genetic algorithms for
the metaheuristic agent. This implementation is used to solve different instances
of the knapsack problem. The experiments run on an Intel core2 Quad 1.66 GHz.
The parallel version of the algorithm, which consists in a parallel execution of
each metaheuristic, presents better performance than the non-cooperative approach.
However, no comparison with state-of-the-art methods was carried out, and the
evaluation does not include a parallel scalability analysis.

A Coalition-Based Metaheuristic (CBM) was presented in 2010 by Meignan et
al. [84]. This approach is based on the agent metaheuristic framework and the hyper-
heuristic approach. The system architecture is composed of agents that implement a
complete set of capabilities that make them suitable to perform different roles during
the execution (strategist, guide, intensifier and diversifier). Agents exchange informa-
tion in a decentralized and asynchronous manner. Agents use reinforcement learning
and mimetism to adjust their behaviors. The authors present an implementation of
the CBM in Java, running on a 3 GHz Pentium 4 processor. This implementation
is tested solving the capacitated vehicle-routing problem and it shows competitive
results in terms of both solution quality and execution time, using up to 20 parallel
agents.

More recently, in 2014, Barbucha proposed another agent-based cooperative
approach for population learning algorithms (called CPLA) [19]. This approach is
based on the A-Team framework and on the population learning algorithm. The basic
idea is to make a population of individuals (configurations) evolve using a process
that is divided into stages. At each stage, the population is improved using dedicated
algorithms and different topologies. After each stage some elite individuals are
promoted to the next stage. Agents have communication capabilities and, according
to the stage, can share information with other agents (through a shared elite pool).
Furthermore, multiple A-Teams can be run in parallel and exchange information
through a migration manager agent. An implementation of the CPLA was developed
using JADE (Java Agent Development Framework) [20]. The experiments run on
the HOLK cluster built of 256 Intel Itanium 2 Dual Core processors solving the
vehicle-routing problem with time windows. The results show CPLA has good
performance in terms of solution quality and execution time, being competitive with
state-of-the-art methods. No parallel scalability is analyzed in the referenced paper.

In 2016, Martin et al. proposed another agent-based cooperative approach [82].
In this method agents implement different metaheuristics to perform the search pro-
cess. Agents asynchronously exchange partial configurations; which are analyzed

10 Parallel Local Search 401

by machine learning techniques in order to identify patterns and to adapt the agent
behavior. The experimental evaluation runs on a Linux cluster composed of eight
nodes, solving three different combinatorial optimization problems: the permutation
flow-shop scheduling, the capacitated vehicle-routing and the nurse-rostering prob-
lems. The results show good performance in terms of solution quality, using up to 16
cores. The referenced paper does not present information about execution times or
parallel scalability.

10.6.3 Framework Approaches

In this last group we analyze cooperative methods that propose a general framework.
These methods generally offer high flexibility because they can tackle different
problems using different metaheuristic solvers.

Cahon, Melab and Talbi in 2004 proposed an open-source framework for parallel
and distributed design of hybrid metaheuristics, ParadisEO [30]. This framework
provides different hybridization mechanisms for metaheuristics including population-
based and single-solution methods. ParadisEO separates the modeling of the meta-
heuristic formulation from the problem to be solved, using a modular architecture
that allows code and design reuse. For instance, ParadisEO-MO [67] is the module
dedicated to the design, analysis and implementation of local search algorithms and
the ParadisEO-PEOmodule provides a set of classes to design and implement parallel
and distributed metaheuristics. ParadisEO-PEO supports different levels of parallel
metaheuristics, from neighborhood decomposition (single-walk) to independent and
cooperative multiple-walk. Cooperation is implemented following the island model
(from population-based methods), in which the solver instances can share informa-
tion based on a migration model. ParadisEO has been successfully experimented
with in a wide range of problems; for instance in [110], the ParadisEO framework is
used to solve the multi-objective constrained combinatorial optimization model for a
problem in radio network design.

A cooperative parallel hyper-heuristic framework was proposed in 2010 by Ouel-
hadj and Petrovic [96]. This framework is composed of multiple heuristic agents
and one cooperative hyper-heuristic agent. Heuristic agents implement low-level
heuristics performing a local search procedure. The best configuration found by the
heuristic agents is sent to the cooperative hyper-heuristic agent which maintains
a pool of elite configurations. This pool also stores information about low-level
heuristics and the objective function. Additionally, the cooperative hyper-heuristic
agent decides which low-level heuristic the heuristic agents will run and also provides
them with elite configurations from the pool to diversify the search. This method
clearly provides high flexibility, because it can be adapted to different problems or
metaheuristics. Additionally some parameters were defined to adapt the cooperative
mechanism. A prototype implementation to solve the flow shop scheduling problem
is presented using C# and multi-thread libraries. The experiments run on an Intel
Pentium M 1500 MHz processor obtaining good performance in terms of solution

402 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

quality, however this cooperative approach does not outperform the state-of-the-art
methods for the flow shop scheduling problem.

In 2014, Munera et al. [93] presented a Cooperative Parallel Local Search Frame-
work (CPLS). This framework is both problem- and metaheuristic-independent and
allows the programmer to tune the search process through an extensive set of param-
eters. The basic component of CPLS is an explorer, which executes an LS solver
instance and runs on a physical core (see Figure 10.6). Several explorers are grouped
into teams. Inside a team the explorers intensify the search, sharing the most promis-
ing solutions via an elite pool. The teams also communicate with one another to
promote search diversification; for this a measure of the distance between teams is
used to detect when two teams are exploring the same region (in which case a cor-
rective action is taken to force one team to explore another region). Thus intra-team
communication is used for intensification while inter-team communication ensures
diversification.

Fig. 10.6: CPLS framework

The concepts and entities involved are all subject to parametric control (e.g., trade-
off between intensification and diversification, elite pool size, communication interval,
distance, corrective action, etc.). An implementation of CPLS (available as an open
source library) in the X10 parallel programming language [106] has been used to
solve different hard Combinatorial Optimization Problems [95], providing (super-)
linear speedups up to 128 cores.

10 Parallel Local Search 403

10.7 Parallelism at Work

In this section we discuss the efficacy of parallel local search methods on two hard
problems, both of which have several real-world application instances: the Stable
Matching (SM) and Quadratic Assignment (QAP) Problems.

10.7.1 Stable Matching Problem

The Stable Matching problem was introduced by Gale and Shapley in their seminal
1962 paper [49]. The SM problem can be stated as follows: given a set of n men and
a set of n women, each of whom have ranked all members of the other set in a strict
order of preference, find a matching (a one-to-one correspondence between the men
and the women) such that there is no man-woman pair where both prefer each other
than their assigned partner. This criterion is called stability and is a desirable property
since it ensures, according to stated preferences, that there is no man-woman pair
for which both have incentive to elope – such a pair is called a blocking pair. Gale
and Shapley proved that such a stable matching always exists and proposed an O(n2)
algorithm (called GS in what follows) to find one.

However, requiring each member to rank all members of the opposite sex in a
strict order is unfeasible for many real-life, large-scale applications. A natural variant
of SM is the Stable Matching with Ties and Incomplete Lists (SMTI) problem [70, 81].
In SMTI, the preference lists may include ties (to express indifference among several
partners) and may be incomplete (to express that some partners are unacceptable).
A stable matching always exists for SMTI and can be easily obtained by arbitrarily
breaking the ties and applying the GS algorithm. However, with the introduction of
ties and incompleteness in the preference lists, the stable matching for an instance
of SMTI may have different sizes. It is thus desirable to find the stable matching
of maximal size (that is, with the smallest number of singles). This optimization
problem has been shown to be NP-hard, even for very restricted cases [70, 81]. This
problem has attracted a lot of research in recent years since it is at the heart of a wide
variety of important real-life applications. Indeed, matching problems can be found
in several settings, such as car sharing or bipartite market sharing, job markets and
social networks. Many of these applications involve very large sets, thereby ruling out
the use of complete methods. SMTI has been shown to be an APX-hard problem [61]
and most recent research focuses on designing efficient approximation algorithms,
i.e., algorithms running in polynomial time yet able to guarantee solutions within
a constant factor of the optimum [69, 71]. SMTI cannot be approximated within a
factor of 21/19 and probably not within a factor of 4/3 either [62]. Currently, the best
known algorithms are 3/2-approximations [83, 72, 98] or heuristic-based specific
solutions. These algorithms produce a single solution for a given problem instance,
even though it is often useful to provide multiple optimal or quasi-optimal solutions.

In [95], the authors proposed AS-SMTI, a local search procedure for SMTI based
on adaptive search in the CPLS framework briefly described in Section 10.6.3.

404 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

The sequential version displays significant improvement in performance or solution
quality w.r.t. the state-of-the-art exact and approximate sequential algorithms, and
the independent multi-walk parallel version exhibits a significant speedup with an
increasing number of cores. Moreover, the cooperative parallel version achieves
super-linear speedup on average, consistently behaving very well on hard instances.

The parallel experiments were carried out on a cluster of 16 machines, each
with four 16-core AMD Opteron 6376 CPUs running at 2.3 GHz and 128 GB of
RAM. The nodes are interconnected with InfiniBand FDR 4× (i.e., 56 Gbps) and the
experiment involved up to 128 cores (four nodes and 32 cores per node). Figure 10.7
presents log-log graphs of the speedup using independent walks (IW in red) and
cooperative walks (CW in green) on 10 very hard and large instances (size n = 1 000).
The independent version reaches a quasi-linear speedup (91.5 for 128 cores) while
the cooperative version gets super-linear speedups (492 with 128 cores).

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128

Sp
ee

du
p

lo
ga

ri
th

m
ic

 s
ca

le

Number of cores
logarithmic scale

coop
indep
linear

Fig. 10.7: Speedups obtained with AS-SMTI on hard instances of SMTI problems
(size = 1 000)

In [94] the same authors propose an extension of their algorithm to tackle one
important and hard variant of the Stable Matching problem: the Hospital/Resident
problem, which is NP-hard. This problem consists of a set of n1 residents who
apply for k positions distributed among n2 hospitals. The preference list of a resident
consists of the ordered list of acceptable hospitals. The preference list of a hospital
contains the ordered list of residents who apply to it. In the most general case,
preference lists are allowed to contain ties (to express indifference) and can be
incomplete (residents only apply to a subset of the hospitals and hospitals rank
their corresponding candidates). In addition, each hospital has a capacity, which
indicates the maximum number of positions it offers. The problem consists in finding

10 Parallel Local Search 405

a (maximum size) stable matching between residents and hospitals (thus satisfying
the preference lists) that complies with the capacities (each resident being assigned
to at most one hospital and the number of residents assigned to any hospital not
exceeding its capacity). The HRT problem is important in the medical domain and
there are national programs in various countries, the best-known ones being the
National Resident Matching Program (NRMP) in the USA, the Canadian Resident
Matching Service (CARMS), the Scottish Foundation Allocation Scheme (SFAS)
and the Japan Residency Matching Program (JRMP). As might be expected, such
programs involve very large data sets. The HRT problem also has several other
application domains, e.g., assignment of applicants to positions in job markets.

The resulting cooperative parallel solver, while much simpler and more general,
displays performance which is comparable to the best known specific solvers for
HRT, including those which assume domain restrictions (e.g., having ties on one side
only).

10.7.2 The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) was introduced in 1957 by Koopmans and
Beckmann [74] as a model for a facilities location problem. This problem consists
in assigning a set of n facilities to a set of n specific locations so as to minimize the
cost associated with the flows of items among facilities and the distance between
them. This combinatorial optimization problem has many other real-life applications:
scheduling, electronic chipset layout and wiring, process communications, turbine
runner balancing and data center network topology, to cite but a few [35, 21]. This
problem is known to be NP-hard and finding effective algorithms to solve it has
attracted a lot of attention for many years.

Since the mid-1980s several metaheuristics have been successfully applied to
the QAP: tabu search, simulated annealing, genetic algorithms, GRASP and ant-
colonies [21]. For solving the hardest instances, the current trend is to resort to hybrid
procedures, in order to benefit from the strengths of different classes of heuristics.
Such is the case of hybrid genetic algorithms for the Quadratic Assignment Problem
(a.k.a. memetic algorithms) [45]. The price to pay for this improvement is a significant
increase in the complexity of the resulting solver code.

An alternative approach for constructing hybrid search methods has been presented
in [91, 90], based on cooperative parallelism. The authors show additional benefits
of the intra/inter-team cooperation mechanisms in order to provide hybridization
behaviors. To this end, CPLS was configured with explorers running instances
of different metaheuristics inside a team. Hybridization is obtained thanks to the
collaboration between explorers through the elite pool. It turns out that the intra-
team communication mechanism, implemented to intensify the search within a
team, now also becomes a mechanism to exchange information between explorers
running different metaheuristics. The whole system behaves like a hybrid solver,
benefiting from cross-fertilization, which stems from the inherent diversity of the

406 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

search strategies. The basic idea of running in parallel different metaheuristics
that exchange elite solutions has been mentioned [7, 113] but from a general and
strictly theoretical point of view. This technique may also be viewed as a portfolio
approach [58] augmented with cooperation.

Following this line, the authors propose a parallel hybrid solver (called ParEOTS)
to tackle the Quadratic Assignment Problem (QAP), combining two different meta-
heuristics: Taillard’s Robust Tabu Search [109] and an original Extremal Optimization
method [92]. This parallel hybrid solver performs very well on QAPLIB, the standard
benchmark library used to assess QAP solvers [28]. For instance, linear speedups up
to 128 cores can be achieved, see Figure 10.8.

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64 128

Sp
ee

du
p

lo
ga

ri
th

m
ic

 s
ca

le

Number of cores
logarithmic scale

lipa70a
tai35a
linear

Fig. 10.8: Speedups obtained with ParEOTS on two QAPLIB instances

ParEOTS has been tested on the 33 hardest problems of QAPLIB, using 128
cores. The solver was set to stop when reaching the Best Known Solutions (BKS,
i.e., best known optimum) as recorded in the QAPLIB archive. A (comparatively
short) timeout of 5 minutes was used to limit the execution in case the BKS is not
reached. Each instance was solved 10 times (results are averaged). Table 10.1 shows
the performance of ParEOTS. For each problem, the table includes the current BKS
(which was sometimes the optimum), the number of times the BKS was reached by
the solver (#BKS), the Average Percentage Deviation (APD), which is the average
of the 10 relative deviation percentages computed as follows: 100× F(sol)−BKS

BKS , and
the average execution time (either shown as a decimal number representing seconds
or in a human-readable form as mm:ss). Even with a very short timeout, ParEOTS
provided solutions of high quality. It reached the best known solution (BKS) for all
but four QAPLIB instances. When the BKS was not reached, the obtained solution
was nevertheless very close (less than 0.22% off, on average).

10 Parallel Local Search 407

BKS #BKS APD time

els19 17212548 10 0.000 0.0
kra30a 88900 10 0.000 0.0
sko56 34458 10 0.000 1.5
sko64 48498 10 0.000 1.7
sko72 66256 10 0.000 8.7
sko81 90998 10 0.000 0:24
sko90 115534 10 0.000 1:32
sko100a 152002 10 0.000 1:09
sko100b 153890 10 0.000 0:45
sko100c 147862 10 0.000 0:56
sko100d 149576 10 0.000 1:03
sko100e 149150 10 0.000 0:47
sko100f 149036 10 0.000 0:57
tai40a 3139370 10 0.000 1:26
tai50a 4938796 3 0.077 4:24
tai60a 7205962 3 0.146 4:15
tai80a 13499184 0 0.364 5:00
tai100a 21052466 0 0.298 5:00
tai20b 122455319 10 0.000 0.0
tai25b 344355646 10 0.000 0.0
tai30b 637117113 10 0.000 0.1
tai35b 283315445 10 0.000 0.3
tai40b 637250948 10 0.000 0.1
tai50b 458821517 10 0.000 2.6
tai60b 608215054 10 0.000 4.6
tai80b 818415043 10 0.000 0:53
tai100b 1185996137 10 0.000 1:11
tai150b 498896643 0 0.061 5:00
tai64c 1855928 10 0.000 0.0
tai256c 44759294 0 0.178 5:00
tho40 240516 10 0.000 0.5
tho150 8133398 1 0.007 4:51
wil100 273038 10 0.000 1:37

Table 10.1: ParEOTS on the hardest instances of QAPLIB (128 cores)

This solver was also tested on even harder QAP instances from Palubeckis [97] and
Drezner [44], which were designed with a known optimum but were specifically ill-
conditioned in order to be difficult for many metaheuristic-based methods. Recently
Carvalho & Rahmann proposed new instances, with unknown optimum, that turn out
to be extremely difficult to solve [42]. For the former two classes of problems (called
paluXX and dreXX) the solver was configured to reach the optimum (within
a timeout of 5 minutes). For the latter (called cr-blXX and cr-ciXX) it was
configured to stop as soon as the BKS was improved (with a timeout of 6 hours).
ParEOTS was able to improve the quality of several solutions. Table 10.2 summarizes
the new solutions discovered by ParEOTS for these hard problems, using 128 cores.

408 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

OPT previous ParEOTS

BKS #OPT new BKS time

palu30 271092 272080 10 271092 0.1
palu40 837900 840308 10 837900 4.0
palu50 1840356 1846876 10 1840356 0:17
palu60 2967464 2978216 10 2967464 1:07
palu70 5815290 5831954 10 5815290 2:07
palu80 6597966 6618290 10 6597966 1:56
palu100 15008994 15047406 1 15008994 5:00
palu150 58352664 58468204 0 58414888 5:00
palu200 75405684 75543960 0 75498892 5:00

dre90 1838 1959 9 1838 2:47
dre110 2264 2479 6 2264 3:43
dre132 2744 3023 1 2744 4:54

cr-bl81 - 7536 - 7532 48:41
cr-bl100 - 9272 - 9264 41:33
cr-bl121 - 11412 - 11400 1:05:10
cr-bl144 - 13472 - 13452 5:32:03
cr-ci144 - 795009899 - 794811636 2:29:27

Table 10.2: new solutions found by ParEOTS on other hard problems (128 cores)

It becomes clear from these examples that cooperative parallel hybridization
for different metaheuristics can attain very competitive results and, in some cases,
sometimes achieves a clear improvement.

10.8 Conclusion

In this chapter we have tried to present a survey of parallel local search methods over
the last 20 years. Although local search methods have been pioneered since the late
1950s, parallelism has only been investigated in the context of local search methods
since the 1990s, when multiprocessors started to become more widely available, and
this endeavor continued until the present with experiments on massively parallel
supercomputers. Local search exhibits some natural opportunities for parallelism,
which may be easily derived from the basic features of the search methods such as
the selection of a new candidate solution within a neighborhood or the choice of an
initial (random) starting solution. This observation prompted the adoption of some
basic parallel schemes, such as single-walk and independent multi-walk methods,
which can be effective on small-scale multiprocessor machines (e.g., with a few tens
of cores). However, in order to achieve better performance on massively parallel
machines, more complex schemes have to be devised, for instance cooperative multi-
walks in which concurrent processes exchange information about their current search
and communicate so as to guide the search towards promising areas of the search

10 Parallel Local Search 409

space. If information exchange and cooperation can be implemented efficiently and
become effective enough to actually lead processes to parts of the search space where
optimal or quasi-optimal solutions are, one may assert that cooperative strategies are
instrumental in tapping the performance potential held in massively parallel computer
architectures.

Encouraging results have already been achieved, e.g., super-linear speedups have
been demonstrated on a few hard optimization problems, but more work is needed to
develop general and efficient frameworks. Key issues to be investigated, especially
in the context of the massively parallel machines with tens or hundreds of thousands
of cores that are now available, are the flexibility and dynamicity of the system
architecture, the scale and frequency of the communication between processes, and
the nature of the information that should be exchanged.

Most, if not all, solvers that are mentioned in this text require non-trivial parameter
tuning in order to attain their optimum performance. This task has been clearly
identified and is the object of a significant and continued research effort, often
resorting to different problem-solving techniques, such as machine learning.

Lastly, the hybrid nature of modern parallel multiprocessors poses several chal-
lenges concerning their effective use, as a significant portion of the available compute
power stems from nonstandard architectures, such as GPUs or other accelerators.
Making use of these multiple forms of parallelism is a high-stakes challenge, but one
for which local search techniques could be a very good fit.

References

[1] Emile Aarts and Jan K Lenstra. Local Search in Combinatorial Optimization.
John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1997.

[2] Renata Aiex, S. Binato, and Mauricio Resende. Parallel GRASP with Path-
Relinking for Job Shop Scheduling. Parallel Computing, 29:393–430, 2003.

[3] Renata Aiex, Simone Martins, Celso Ribeiro, and Noemi De R. Rodriguez.
Cooperative Multi-thread Parallel Tabu Search with an Application to Circuit
Partitioning. Lecture Notes in Computer Science Volume 1457, 1457:310–331,
1998.

[4] Renata Aiex, Mauricio Resende, and Celso Ribeiro. Probability distribution of
solution time in GRASP: An experimental investigation. Journal of Heuristics,
8(3):343–373, 2002.

[5] Renata Aiex, Mauricio Resende, and Celso Ribeiro. TTT plots: a Perl program
to create time-to-target plots. Optimization Letters, 1:355–366, 2007.

[6] Enrique Alba. Special Issue on New Advances on Parallel Meta-Heuristics
for Complex Problems. Journal of Heuristics, 10(3):239–380, 2004.

[7] Enrique Alba. Parallel Metaheuristics: a New Class of Algorithms. Wiley-
Interscience, 2005.

410 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

[8] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. AFIPS Spring Joint Computer Confer-
ence, 1967. AFIPS ’67 (Spring). Proceedings of the, 30:483–485, 1967.

[9] Alejandro Arbelaez and Philippe Codognet. Massively Parallel Local Search
for SAT. In 24th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), pages 57–64, Athens, Nov 2012. IEEE Press.

[10] Alejandro Arbelaez and Philippe Codognet. From Sequential to Parallel Local
Search for SAT. In 13th European Conference on Evolutionary Computation
in Combinatorial Optimization (EvoCOP), LNCS, pages 157–168. Springer,
2013.

[11] Alejandro Arbelaez and Philippe Codognet. A GPU Implementation of Parallel
Constraint-Based Local Search. In 22nd Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), volume 1,
pages 648–655, Turin, Italy, 2014.

[12] Alejandro Arbelaez and Youssef Hamadi. Improving Parallel Local Search
for SAT. In Carlos A. Coello Coello, editor, 5th International Conference on
Learning and Intelligent Optimization (LION5), volume 6683 of LNCS, pages
46–60. Springer, 2011.

[13] M. G. Arenas, Pierre Collet, A. E. Eiben, Márk Jelasity, J. J. Merelo, Ben
Paechter, Mike Preuß, and Marc Schoenauer. A Framework for Distributed
Evolutionary Algorithms. In Parallel Problem Solving from Nature - PPSN
VII, pages 665–675. Springer 2002.

[14] Mehmet E. Aydin. Metaheuristic Agent Teams for Job Shop Scheduling
Problems. Holonic and Multi-Agent Systems for Manufacturing, 4659:185–
194, 2007.

[15] László Babai. Monte-Carlo algorithms in graph isomorphism testing. Research
Report D.M.S. No. 79-10, Université de Montréal, 1979.

[16] Per Bak. How Nature Works: The Science of Self-organized Criticality. Coper-
nicus (Springer), 1st edition, 1996.

[17] Per Bak and Kim Sneppen. Punctuated equilibrium and criticality in a simple
model of evolution. Physical Review Letters, 71(24):4083–4086, 1993.

[18] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality: An
explanation of the 1/f noise. Physical Review Letters, 59(4):381–384, 1987.

[19] Dariusz Barbucha. A Cooperative Population Learning Algorithm for Vehicle
Routing Problem with Time Windows. Neurocomputing, 146:210–229, 2014.

[20] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Develop-
ing Multi-Agent Systems with JADE. Wiley, 2007.

[21] Ravi Kumar Bhati and Akhtar Rasool. Quadratic Assignment Problem and its
Relevance to the Real World: A Survey. International Journal of Computer
Applications, 96(9):42–47, 2014.

[22] Christian Blum and Andrea Roli. Metaheuristics in Combinatorial Opti-
mization: Overview and Conceptual Comparison. ACM Computing Surveys,
35(3):268–308, 2003.

10 Parallel Local Search 411

[23] Stefan Boettcher. Extremal Optimization. In Alexander K. Hartmann and
Heiko Rieger, editors, New Optimization Algorithms to Physics, chapter 11,
pages 227–251. Wiley-VCH Verlag, Berlin, 2004.

[24] Stefan Boettcher and Allon Percus. Nature’s way of optimizing. Artificial
Intelligence, 119(1–2):275–286, 2000.

[25] Stefan Boettcher and Allon Percus. Extremal Optimization: an Evolutionary
Local-Search Algorithm. In Computational Modeling and Problem Solving in
the Networked World, volume 21. Springer 2003.

[26] A. Bortfeldt, H. Gehring, and D. Mack. A Parallel Tabu Search Algorithm
for Solving the Container Loading Problem. Parallel Computing, 29(5
SPEC.):641–662, 2003.

[27] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. A Survey on Optimiza-
tion Metaheuristics. Information Sciences, 237(February):82–117, 2013.

[28] Rainer E. Burkard, S. Karisch, and F. Rendl. QAPLIB - a Quadratic Assign-
ment Problem Library. European Journal of Operational Research, 55(1):115–
119, 1991.

[29] J. M. Cadenas, M. C. Garrido, and E. Muñoz. Using Machine Learning in a
Cooperative Hybrid Parallel Strategy of Metaheuristics. Information Sciences,
179(19):3255–3267, 2009.

[30] S. Cahon, N. Melab, and E. G. Talbi. ParadisEO: A Framework for the
Reusable Design of Parallel and Distributed Metaheuristics. Journal of Heuris-
tics, 10(3):357–380, 2004.

[31] Yves Caniou, Philippe Codognet, Daniel Diaz, and Salvador Abreu. Experi-
ments in parallel constraint-based local search. In EvoCOP’11, 11th European
Conference on Evolutionary Computation in Combinatorial Optimisation, vol-
ume 6622 of Lecture Notes in Computer Science, Torino, Italy, 2011. Springer
Verlag.

[32] Yves Caniou, Philippe Codognet, Florian Richoux, Daniel Diaz, and Salvador
Abreu. Large-scale Parallelism for Constraint-Based Local Search: the Costas
Array Case Study. Constraints, 20(1):30–56, 2015.

[33] Yves Caniou, Daniel Diaz, Florian Richoux, Philippe Codognet, and Salvador
Abreu. Performance Analysis of Parallel Constraint-Based Local Search. In
Symposium on Principles and Practice of Parallel Programming (PPoPP),
PPoPP ’12, New York, NY, USA, 2012. ACM. poster paper.

[34] Philippe Codognet and Daniel Diaz. Yet Another Local Search Method for
Constraint Solving. In Kathleen Steinhöfel, editor, Stochastic Algorithms:
Foundations and Applications, pages 342–344. Springer, 2001.

[35] Clayton Warren Commander. A survey of the quadratic assignment problem,
with applications. Morehead Electronic Journal of Applicable Mathematics,
4:MATH–2005–01, 2005.

[36] Jean-Francois Cordeau and Mirko Maischberger. A Parallel Iterated Tabu
Search Heuristic for Vehicle Routing Problems. Computers and Operations
Research, 39(9):2033–2050, 2012.

412 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

[37] Teodor Crainic, Michel Gendreau, Pierre Hansen, and Nenad Mladenovic.
Cooperative Parallel Variable Neighborhood Search for the p-Median. Journal
of Heuristics, 10(3):293–314, 2004.

[38] Teodor Crainic and Michel Toulouse. Special Issue on Parallel Meta-
Heuristics. Journal of Heuristics, 8(3):247–388, 2002.

[39] G. A. Croes. A method for solving traveling-salesman problems. Operations
Research, 6(6):791–812, 1958.

[40] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard API for
shared-memory programming. IEEE computational science and engineering,
5(1):46–55, 1998.

[41] H.A. David and H.N. Nagaraja. Order Statistics. Wiley series in probability
and mathematical statistics. John Wiley, 2003.

[42] Sérgio A de Carvalho Jr. and Sven Rahmann. Microarray layout as a quadratic
assignment problem. In German Conference on Bioinformatics (GCB), vol-
ume 83, pages 11–20, Tübingen, Germany, 2006.

[43] Daniel Diaz, Florian Richoux, Philippe Codognet, Yves Caniou, and Salvador
Abreu. Constraint-based Local Search for the Costas Array Problem. In LION
6, Learning and Intelligent OptimizatioN Conference, Paris, France, 2012.
Springer LNCS.

[44] Zvi Drezner. The Extended Concentric Tabu for the Quadratic Assignment
Problem. European Journal of Operational Research, 160(2):416–422, 2005.

[45] Zvi Drezner. Extensive experiments with hybrid genetic algorithms for the
solution of the quadratic assignment problem. Computers & Operations
Research, 35(3):717–736, 2008.

[46] HuubM.M. Eikelder, Bas J. M. Aarts, Marco G. A. Verhoeven, and Emile H. L.
Aarts. Sequential and Parallel Local Search Algorithms for Job Shop Schedul-
ing. In Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization, pages 359–371. Springer, Boston, MA, 1999.

[47] Merrill M. Flood. The traveling-salesman problem. Operations Research,
4(1):61–75, 1956.

[48] Edgar Gabriel and al. Open MPI: Goals, concept, and design of a next
generation MPI implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, pages 97–104, Budapest, Hungary, 2004.

[49] D. Gale and L. Shapley. College Admissions and the Stability of Marriage.
American Mathematical Monthly, 69(1):9–15, 1962.

[50] Bruno-Laurent Garcia, Jean-Yves Potvin, and Jean-Marc Rousseau. A Par-
allel Implementation of the Tabu Search Heuristic for Vehicle Routing Prob-
lems with Time Window Constraints. Computers & Operations Research,
21(9):1025–1033, 1994.

[51] F. García-López, B. Melián-Batista, J. A. Moreno-Pérez, and J. M. Moreno-
Vega. The Parallel Variable Neighborhood Search for the p -Median Problem.
Journal of Heuristics, 8(3):375–388, 2002.

[52] Frédéric Gardi and Karim Nouioua. Local search for mixed-integer nonlinear
optimization: A methodology and an application. In Evolutionary Computa-

10 Parallel Local Search 413

tion in Combinatorial Optimization - 11th European Conference, EvoCOP
2011, Torino, Italy, April 27-29, 2011. Proceedings, pages 167–178, 2011.

[53] M. Gendreau, F. Guertin, J.-Y. Potvin, and E. Taillard. Parallel Tabu Search
for Real-Time Vehicle Routing and Dispatching. Transportation Science,
33(4):381–390, 1999.

[54] Ian Gent and Toby Walsh. CSPLib: A Benchmark Library for Constraints. CP
1999 LNCS 1713 Springer, 1999.

[55] Fred Glover. Tabu Search–Part I. ORSA Journal on Computing, 1(3):190–206,
1989.

[56] Fred Glover. Tabu Search–Part II. ORSA Journal on Computing, 2(1):4–32,
1990.

[57] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
Jul 1997.

[58] Carla Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence,
126(1-2):43–62, 2001.

[59] Teofilo Gonzalez, editor. Handbook of Approximation Algorithms and Meta-
heuristics. Chapman and Hall / CRC, 2007.

[60] F. Guerriero and M. Mancini. A Cooperative Parallel Rollout Algorithm for
the Sequential Ordering Problem. Parallel Computing, 29:663–677, 2003.

[61] Magnus Halldorsson, Robert Irving, Kazuo Iwama, David Manlove, Shuichi
Miyazaki, Yasufumi Morita, and Sandy Scott. Approximability Results for
Stable Marriage Problems with Ties. Theoretical Computer Science, 306(1-
5):431–447, 2003.

[62] Magnus Halldorsson, Kazuo Iwama, Shuichi Miyazaki, and Hiroki Yanag-
isawa. Improved Approximation of the Stable Marriage Problem. ACM
Transactions on Algorithms, 3(3):266–277, 2007.

[63] Tad Hogg and Colin P. Williams. Solving the Really Hard Problems with
Cooperative Search. In AAAI Conference on Artificial Intelligence (AAAI-93),
pages 231–236, 1993.

[64] Holger Hoos and Thomas Stützle. Evaluating Las Vegas algorithms: Pitfalls
and remedies. In Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, UAI’98, pages 238–245. Morgan Kaufmann, 1998.

[65] Holger Hoos and Thomas Stützle. Towards a characterisation of the behaviour
of stochastic local search algorithms for SAT. Artificial Intelligence, 112(1-
2):213–232, 1999.

[66] Holger Hoos and Thomas Stützle. Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann / Elsevier, 2004.

[67] J. Humeau, A. Liefooghe, E. G. Talbi, and S. Verel. ParadisEO-MO: From
Fitness Landscape Analysis to Efficient Local Search Algorithms. Technical
report, INRIA, 2013.

[68] T. Ibaraki, K. Nonobe, and M. Yagiura, editors. Metaheuristics: Progress as
Real Problem Solvers. Springer Verlag, 2005.

[69] Robert Irving and David Manlove. Approximation Algorithms for Hard
Variants of the Stable Marriage and Hospitals/Residents Problems. Journal of
Combinatorial Optimization, 16(3):279–292, 2008.

414 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

[70] Kazuo Iwama, David Manlove, Shuichi Miyazaki, and Yasufumi Morita.
Stable Marriage with Incomplete Lists and Ties. In Proceedings of ICALP ’99:
the 26th International Colloquium on Automata, Languages and Programming,
number ii, pages 443–452. Springer-Verlag, 1999.

[71] Zoltán Király. Approximation of Maximum Stable Marriage. Technical report,
Egervary Research Group, Budapest, Hungary, 2011.

[72] Zoltán Király. Linear Time Local Approximation Algorithm for Maximum
Stable Marriage. Algorithms, 6(3):471—-484, aug 2013.

[73] S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671–680, 1983.

[74] Tjalling C. Koopmans and Martin Beckmann. Assignment Problems and the
Location of Economic Activities. Econometrica, 25(1):53–76, 1957.

[75] S Lin. Computer solutions of the traveling salesman problem. Bell System
Technical Journal, 44(10):2245–2269, 1965.

[76] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated Local
Search. In Handbook of Metaheuristics, pages 320–353. Kluwer Academic
Publishers, Boston, 2003.

[77] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Local Search Algo-
rithms on Graphics Processing Unit. A Case Study: The Permutation Percep-
tron Problem. In Evolutionary Computation in Combinatorial Optimization,
pages 264–275. LNCS 6022, Springer Verlag, 2010.

[78] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU Computing
for Parallel Local Search Metaheuristics. IEEE Transactions on Computers,
62(1):173–185, 2013.

[79] Rui Machado, Salvador Abreu, and Daniel Diaz. Parallel Local Search:
Experiments with a PGAS-based programming model. In 12th International
Colloquium on Implementation of Constraint and Logic Programming Systems,
pages 1–17, Budapest, Hungary, 2012.

[80] Rui Machado, Salvador Abreu, and Daniel Diaz. Parallel Performance of
Declarative Programming Using a PGAS Model. In Kostis Sagonas and Gopal
Gupta, editors, Practical Aspects of Declarative Languages, PADL’2013,
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2013.

[81] David Manlove, Robert Irving, Kazuo Iwama, Shuichi Miyazaki, and Yasu-
fumi Morita. Hard Variants of Stable Marriage. Theoretical Computer Science,
276(1-2):261–279, Apr 2002.

[82] Simon Martin, Djamila Ouelhadj, Patrick Beullens, Ender Ozcan, Angel A.
Juan, and Edmund K. Burke. A Multi-Agent Based Cooperative Approach
to Scheduling and Routing. European Journal of Operational Research,
254(1):169–178, 2016.

[83] Eric McDermid. A 3/2-Approximation Algorithm for General Stable Marriage.
In International Colloquium on Automata, Languages and Programming,
ICALP’2009, pages 689–700, Rhodes, Greece, 2009.

[84] David Meignan, Abderrafiaa Koukam, and Jean Charles Créput. Coalition-
based metaheuristic: A self-adaptive metaheuristic using reinforcement learn-
ing and mimetism. Journal of Heuristics, 16(6):859–879, 2010.

10 Parallel Local Search 415

[85] Nouredine Melab, Thé Van Luong, Karima Boufaras, and El-Ghazali Talbi.
ParadisEO-MO-GPU: A Framework for Parallel GPU-Based Local Search
Metaheuristics. In 15th annual conference on Genetic and evolutionary
computation conference GECCO ’13, pages 1189–1196, Amsterdam, The
Netherlands, 2013.

[86] Laurent Michel, Andrew See, and Pascal Van Hentenryck. Distributed
constraint-based local search. In Frédéric Benhamou, editor, CP’06, 12th Int.
Conf. on Principles and Practice of Constraint Programming, Lecture Notes
in Computer Science, pages 344–358. Springer Verlag, 2006.

[87] Michela Milano and Andrea Roli. MAGMA: A Multiagent Architecture for
Metaheuristics. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, 34(2):925–941, 2004.

[88] Nenad Mladenovic and Pierre Hansen. Variable Neighborhood Search. Com-
puters & Operations Research, 24(11):1097–1100, 1997.

[89] Hiroyuki Mori and Yoshihiro Ogita. A Parallel Tabu Search Based Method for
Reconfigurations of Distribution Systems. In 2000 Power Engineering Society
Summer Meeting (Cat. No.00CH37134), volume 1, pages 73–78. IEEE, 2000.

[90] Danny Munera. Solving Hard Combinatorial Optimization Problems using
Cooperative Parallel Metaheuristics. PhD Thesis, University Paris 1 Pantheon-
Sorbonne, 2016.

[91] Danny Munera, Daniel Diaz, and Salvador Abreu. Hybridization as Coopera-
tive Parallelism for the Quadratic Assignment Problem. In 10th International
Workshop, HM 2016, volume 9668 of Lecture Notes in Computer Science,
pages 47–61, Plymouth, UK, 2016. Springer International Publishing.

[92] Danny Munera, Daniel Diaz, and Salvador Abreu. Solving the Quadratic
Assignment Problem with Cooperative Parallel Extremal Optimization. In The
16th European Conference on Evolutionary Computation in Combinatorial
Optimisation, Porto, 2016.

[93] Danny Munera, Daniel Diaz, Salvador Abreu, and Philippe Codognet. A
Parametric Framework for Cooperative Parallel Local Search. In Christian
Blum and Gabriela Ochoa, editors, European Conference on Evolutionary
Computation in Combinatorial Optimisation (EvoCOP), volume 8600 of
Lecture Notes in Computer Science, pages 13–24, Granada, Spain, 2014.
Springer.

[94] DannyMunera, Daniel Diaz, Salvador Abreu, Francesca Rossi, Vijay Saraswat,
and Philippe Codognet. A Local Search Algorithm for SMTI and its exten-
sion to HRT Problems. In 3rd International Workshop on Matching Under
Preferences, Glasgow, UK, 2015.

[95] DannyMunera, Daniel Diaz, Salvador Abreu, Francesca Rossi, Vijay Saraswat,
and Philippe Codognet. Solving Hard Stable Matching Problems via Local
Search and Cooperative Parallelization. In AAAI, Austin, TX, USA, 2015.

[96] Djamila Ouelhadj and Sanja Petrovic. A Cooperative Hyper-heuristic Search
Framework. Journal of Heuristics, 16(6):835–857, 2010.

416 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

[97] Gintaras Palubeckis. An Algorithm for Construction of Test Cases for the
Quadratic Assignment Problem. Informatica, Lith. Acad. Sci., 11(3):281–296,
2000.

[98] Katarzyna Paluch. Faster and Simpler Approximation of Stable Matchings.
Algorithms, 7(2):176–187, Nov 2014.

[99] Panos M. Pardalos, Leonidas S. Pitsoulis, Thelma D. Mavridou, and Mauricio
G. C. Resende. Parallel search for combinatorial optimization: Genetic algo-
rithms, simulated annealing, tabu search and GRASP. In Parallel Algorithms
for Irregularly Structured Problems (IRREGULAR), pages 317–331, 1995.

[100] J. Antonio Parejo, Antonio Ruiz-Cortés, Sebastián Lozano, and Pablo Fernan-
dez. Metaheuristic Optimization Frameworks: a Survey and Benchmarking.
Soft Computing, 16(3):527–561, 2012.

[101] International Exascale Software Project. Exascale roadmap 1.0. Technical
report, 2009. http://www.exascale.org/iesp/IESP:Documents.

[102] César Rego and Catherine Roucairol. A Parallel Tabu Search Algorithm Using
Ejection Chains for the Vehicle Routing Problem. In Meta-Heuristics, pages
661–675. Springer US, Boston, MA, 1996.

[103] Gerhard Reinelt. TSPLIB–A traveling salesman problem library. ORSA
Journal on Computing, 3(4):376–384, 1991.

[104] Celso Ribeiro and Isabel Rosseti. Efficient Parallel Cooperative Implementa-
tions of GRASP Heuristics. Parallel Computing, 33(1):21–35, 2007.

[105] Celso Ribeiro, Isabel Rosseti, and Reinaldo Vallejos. Exploiting run time dis-
tributions to compare sequential and parallel stochastic local search algorithms.
Journal of Global Optimization, 54:405–429, 2012.

[106] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David
Grove. X10 Language Specification - Version 2.3. Technical report, IBM
Research, 2012.

[107] Kenneth Sörensen and Fred Glover. Metaheuristics. In Encyclopedia of
Operations Research and Management Science, pages 960–970. Springer,
Boston, MA, 2013.

[108] Kenneth Sörensen, Marc Sevaux, and Fred Glover. A History of Metaheuristics.
In Rafael Marti, Panos Pardalos, and Mauricio Resende, editors, Handbook of
Heuristics. Springer, Boston, MA, 2016.

[109] Éric Taillard. Robust Taboo Search for the Quadratic Assignment Problem.
Parallel Computing, 17(4-5):443–455, 1991.

[110] E. G. Talbi, S. Cahon, and N. Melab. Designing Cellular Networks Using a
Parallel Hybrid Metaheuristic on the Computational Grid. Computer Commu-
nications, 30(4):698–713, 2007.

[111] El-Ghazali Talbi. Metaheuristics: From Design to Implementation. Wiley,
2009.

[112] El-Ghazali Talbi and Vincent Bachelet. COSEARCH: A parallel cooperative
metaheuristic. Journal of Mathematical Modelling and Algorithms, 5(1):5–22,
2006.

10 Parallel Local Search 417

[113] Sarosh Talukdar, Lars Baerentzen, Andrew Gove, and Pedro De Souza. Asyn-
chronous Teams: Cooperation Schemes for Autonomous Agents. Journal of
Heuristics, 4:295–321, 1998.

[114] Michel Toulouse, Teodor Crainic, and Michel Gendreau. Communication
Issues in Designing Cooperative Multi-Thread Parallel Searches. In I.H.
Osman and J.P. Kelly, editors, Meta-Heuristics: Theory & Applications, pages
501–522. Kluwer Academic Publishers, Norwell, MA., 1995.

[115] Charlotte Truchet, Alejandro Arbelaez, Florian Richoux, and Philippe
Codognet. Estimating parallel runtimes for randomized algorithms in con-
straint solving. J. Heuristics, 22(4):613–648, 2016.

[116] Charlotte Truchet, Florian Richoux, and Philippe Codognet. Prediction of
Parallel Speed-ups for Las Vegas Algorithms. In Jack Dongarra and Yves
Robert, editors, Proceedings of ICPP-2013, 42nd International Conference
on Parallel Processing. IEEE Press, October 2013.

[117] Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local Search.
The MIT Press, Aug 2005.

[118] Marcus Verhoeven. Parallel Local Search. PhD thesis, University of Eind-
hoven, Eindhoven, Netherlands, 1996.

[119] Marcus Verhoeven and Emile Aarts. Parallel Local Search. Journal of
Heuristics, 1(1):43–65, 1995.

[120] Stefan Voß. Meta-heuristics: The State of the Art. In Alexander Nareyek,
editor, Local Search for Planning and Scheduling, pages 1–23. Springer Berlin
Heidelberg, 2001.

[121] M. Yazdani, M. Amiri, and M. Zandieh. Flexible Job-Shop Scheduling with
Parallel Variable Neighborhood Search Algorithm. Expert Systems with Appli-
cations, 37(1):678–687, 2010.

	10 Parallel Local Search
	10.1 Introduction
	10.2 Local Search Metaheuristics
	10.3 Sources of Parallelism
	10.3.1 Single-Walk and Multiple-Walk Methods
	10.3.2 Parallel Speedups and Runtime Distributions

	10.4 Single-Walk Approaches
	10.5 Independent Multiple-Walk Approaches
	10.5.1 Early Independent Multiple-Walk Methods
	10.5.2 Recent Experiments and Performance Results

	10.6 Cooperative Multiple-Walk Approaches
	10.6.1 Metaheuristic Parallelization Approaches
	10.6.2 Agent-Based Approaches
	10.6.3 Framework Approaches

	10.7 Parallelism at Work
	10.7.1 Stable Matching Problem
	10.7.2 The Quadratic Assignment Problem

	10.8 Conclusion
	References

