
Chapter 1

Parallel Satisfiability

Tomáš Balyo and Carsten Sinz

Logic is the beginning of
wisdom, not the end –
Leonard Nimoy

Abstract The propositional satisfiability problem (SAT) is one of the fundamental
problems in theoretical computer science, but it also has many practical applications.
Parallel algorithms for the SAT problem have been proposed and implemented since
the 1990s. This chapter provides an overview of current approaches and their evolu-
tion over recent decades towards efficiently solving hard combinatorial problems on
multi-core computers and clusters.

1.1 Introduction

SAT is one the most important problems in computer science. It was the first problem
proven to be NP-hard [16]. Despite its complexity there are very efficient SAT
solvers which make it possible to design successful algorithms for hard problems by
translating them to SAT.

Parallelizing algorithms for combinatorial decision problems, such as SAT, is not
an easy task, as the search space is highly irregular and different search heuristics
can have a tremendous effect on the observed run-time. Theoretical results vary from
super-linear speedups for random problems [55] on the positive side to profound
proof-theoretic limitations [34] on the negative.

Nevertheless, important parallelization techniques for SAT have been developed,
including divide-and-conquer approaches, portfolio solvers, and parallel local search
solvers.

As the increase in compute power of a single processor core has been stagnating
over recent years, it has become even more important to invent and engineer parallel
algorithms that can make optimal use of current and future computer architectures.

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

3© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_1&domain=pdf

4 Tomáš Balyo and Carsten Sinz

This chapter is organized as follows: after an introduction to basic notions and
algorithms for the SAT problem, parallel computing architectures and the problem
of measuring speedups are discussed. Then the current main lines for parallel SAT
algorithms are presented, namely divide-and-conquer (also known as search space
partitioning), portfolios (diversify-and-conquer), and local search solvers. The chapter
closes with a look at future challenges.

1.2 Preliminaries

In this section we give the basic definitions and properties of the satisfiability problem,
which can also be found in any SAT-related textbook (for example the Handbook of
Satisfiability [7]).

1.2.1 Satisfiability (SAT)

We start with the definition of a formula, which is the input of the SAT problem.

Definition 1 (CNF Formula). A Boolean variable is a variable with two possible
values, True and False. A literal of a Boolean variable x is either x or ¬x, i.e., positive
or negative literal of x. A clause is a disjunction (OR) of literals. A conjunctive
normal form (CNF) formula is a conjunction (AND) of clauses. We can also regard
a clause as a set of literals and a CNF formula as a set of clauses, since the ordering
is not important in either case.

In the remainder of the chapter we will just use the term formula instead of CNF
formula. Next we define what is a satisfying assignment.

Definition 2 (Satisfying Assignment). A truth assignment φ of a formula F assigns
a truth value to its variables. The assignment φ satisfies

• a positive literal if it assigns the value True to its variable,
• a negative literal if it assigns the value False to its variable,
• a clause if it satisfies at least one of its literals,
• a CNF formula if it satisfies each one of its clauses.

If φ satisfies a formula F , then φ is called a satisfying assignment for F .

A clause with no literals is called an empty clause. Such a clause cannot be
satisfied by any truth assignment. The definition of satisfiability follows.

Definition 3 (Satisfiability). A formula F is said to be satisfiable if there is a truth
assignment φ that satisfies F , i.e., φ is a satisfying assignment of F . Otherwise, the
formula φ is unsatisfiable.

The problem of satisfiability (SAT) is to determine whether a given formula F is
satisfiable or unsatisfiable.

1 Parallel Satisfiability 5

A SAT solver is a procedure that solves the SAT problem. For satisfiable formulas
we also expect a SAT solver to produce a satisfying assignment. An example of a
satisfiable formula with its satisfying assignment follows.

Example 1. F = (x1 ∨ x2 ∨¬x4)∧ (x3 ∨¬x1)∧ (¬x1 ∨¬x2) is a CNF formula with
three clauses: {(x1∨x2∨¬x4), (x3∨¬x1), (¬x1∨¬x2)} and six literals {x1,¬x1,x2,
¬x2,x3,¬x4} on four variables {x1,x2,x3,x4}. F is satisfiable with φ = {x1 →
False,x2 → True,x3 → True,x4 → True} being a satisfying truth assignment of
F .

1.2.2 Local Search Algorithms for SAT

The simplest approach to SAT solving is local search. A generic local search algo-
rithm starts with a truth assignment (usually random, i.e., each variable has a random
truth value assigned) and then iteratively selects a variable whose value is flipped
(changed to False if it was True and vice versa) until a satisfying assignment is
reached. The pseudo-code of this generic local search is presented as Algorithm 1.1.

Obviously, this algorithm only works for satisfiable formulas; for unsatisfiable
instances it does not terminate. The performance of the algorithm depends on the
initial truth assignment and the way of selecting variables for flipping. In the best-
case scenario the initial assignment is already satisfying and we are finished. Also, if
the variable selection were ideal, we could reach a satisfying assignment from any
initial assignment in at most n steps (where n is the number of variables). In practice
we need to use heuristics for both these steps and the main loop (the variable flipping)
is executed only a limited number of times after which the algorithm gives up.

The initial truth assignment is often chosen randomly and for the variable selection
a heuristic minimizing the number of unsatisfied clauses is used. Two historically
important examples of local search algorithms are GSAT [49] and WalkSat [48].
GSAT select a variable that reduces the number of unsatisfied clauses most when
flipped. WalkSat first randomly selects a clause that is not satisfied under the current
assignment and flips one of its literals based on the number of clauses that become
satisfied and unsatisfied after the flip. WalkSat additionally performs a random
selection of the literal to flip in a certain percentage of the flips to emulate random
walk, hence the name WalkSat.

Local search algorithms are usually the best choice for randomly generated
satisfiable formulas and some combinatorial problems encoded to SAT.

1.2.3 The DPLL Algorithm

Most of the current state-of-the-art SAT solvers are based on the CDCL (conflict-
driven clause learning) algorithm [41], which is in turn based on the Davis Putnam

6 Tomáš Balyo and Carsten Sinz

Algorithm 1.1: A Generic Local Search Algorithm
1 Function LS(Formula f)
2 φ ← generate truth assignment
3 while F not satisfied by φ do

4 v ← pick a variable
5 φ [v]←¬φ [v]

6 return true

Logemann Loveland (DPLL) algorithm [17]. Before we give a description of CDCL
in the following section we review DPLL here. The DPLL algorithm is basically
a depth-first search of partial truth assignments (truth assignments where some
variables remain unassigned) with three additional enhancements. The explanation
of these enhancements follows.

• Early termination. If all literals are False in some clause, we can backtrack since
it is obvious that the current partial truth assignment cannot be extended into
a satisfying assignment. If all clauses are satisfied we can stop the search. The
remaining unassigned Boolean variables can be assigned arbitrarily.

• Pure literal elimination. Given a partial truth assignment φ a pure literal is a
literal the negation of which does not appear in any of the clauses not satisfied
by φ . The variable corresponding to a pure literal can be assigned to make each
clause where it appears true. This might lead to the appearance of new pure
literals.

• Unit propagation. A clause is called unit if all but one of its literals are false
under φ and the remaining literal is unassigned. The unassigned literal of a
unit clause must be assigned to be true. This can make other clauses unit and
thus force new assignments. The cascade of such assignments is called unit
propagation.

In the DPLL procedure the enhancements are used after each decision assignment
of the depth-first search. First we check the termination condition. If the formula is
neither satisfied nor unsatisfied by the current partial assignment, we continue by
unit propagation. Finally we apply the pure literal elimination. Unit propagation is
called before pure literal elimination because it can cause the appearance of new pure
literals. The other way around, pure literal elimination will never produce a new unit
clause, since it does not make any literals false. Pseudo-code of DPLL is presented
as Algorithm 1.2.

We can see that DPLL is a sound and complete algorithm (always terminates
and answers correctly) from the fact that DPLL is a systematic depth-first search
of partial truth assignments. The enhancements only filter out some branches that
represent non-satisfying assignments.

The time complexity of this procedure is exponential in the number of variables.
That corresponds to the number of vertices of a binary search tree with depth n,
where n is the number of variables. However, in practice, thanks to unit propagation

1 Parallel Satisfiability 7

Algorithm 1.2: The DPLL Algorithm
1 Function DPLL(Formula F, Assignment φ)
2 doUnitPropagation(F ,φ)
3 if all literals false in some clause then

4 return false

5 doPureLiteralElimination(F ,φ)
6 if all clauses satisfied then

7 return true

8 x ← choose an unassigned variable
9 return DPLL(F,φ [x] = True) or DPLL(F,φ [x] = False)

and early termination, the DPLL procedure never goes as deep as n in the search
tree. The maximal depth reached during search is often a fraction of n. This makes
DPLL run much faster on instances with n variables than one would expect from the
formula 2n.

1.2.4 Resolution Refutation

Resolution is a rule of inference which produces a new clause from clauses containing
complementary literals. Two clauses C and D are said to contain complementary
literals if there is a Boolean variable x such that x ∈ C and ¬x ∈ D. The produced
clause (containing all the literals from C and D except for x and ¬x) is called the
resolvent of C and D (notation: R(C,D)).

A formula F containing C and D is satisfiable if and only if F ∧ R(C,D) is
satisfiable. This implies that if the empty clause can be resolved from the clauses
of a formula then this formula is unsatisfiable (since the empty clause cannot be
satisfied). The Resolution Refutation algorithm keeps adding resolvents to its input
formula until either the empty clause is added (which means the input formula is
unsatisfiable) or no more new resolvents can be added (in which case the input
formula is satisfiable). Note that resolvents added in one step can be used as input
clauses for resolutions in later steps.

Although the resolution refutation algorithm is sound and complete it is not very
efficient in practice since it has exponential memory complexity (in general there are
exponentially many possible resolvents for a formula).

1.2.5 The CDCL Algorithm

The conflict-driven clause learning (CDCL) algorithm is the state-of-the-art algorithm
for solving SAT problems. It was first implemented in the SAT solver Grasp [41].

8 Tomáš Balyo and Carsten Sinz

Algorithm 1.3: The CDCL Algorithm
1 Function CDCL(Formula f)
2 decLev ← 0
3 φ ← /0
4 if doUnitPropagation(f,φ) = CONFLICT then

5 return false

6 while not all variables assigned do

7 decVar ← pick decision variable
8 decVal ← pick a truth value
9 decLev ← decLev+1

10 φ [decVar] = decVal with decision level decLev
11 if doUnitPropagation(f,φ) = CONFLICT then

12 (learnedClause, backLev)← analyze conflict
13 if backLev ≥ 0 then

14 decLev ← backLev
15 f ← f ∧ learnClause
16 φ ← unassign variables with decision level ≥ backLev
17 else

18 return false

19 return true

In this subsection we describe only the basic concepts behind CDCL. For a more
detailed comprehensive description please refer to [7].

The CDCL algorithm combines ideas of DPLL search and resolution refutation.
The pseudo-code of CDCL is presented in Algorithm 1.3. Similarly to DPLL the
algorithm performs depth-first search of partial truth assignments and uses improve-
ments such as unit propagation and early termination. Additionally, CDCL performs
a procedure called conflict analysis each time a conflict state is reached, i.e., every
literal becomes false in some clause under the current partial assignment.

The conflict analysis determines which decisions and which clauses (via unit
propagation) are responsible for the conflict. The clauses responsible for the conflict
are called reason clauses. By resolving the reason clauses of a conflict we get new
clauses that can be added to the formula. Clauses added this way are called learned
clauses.

In the CDCL algorithm each truth value assignment to a variable has an attribute
called its decision level. The assignments implied by the initial unit propagation have
decision level zero, the assignments coming from the first branching decision and
the unit propagation that follows it have decision level one, and so on. In DPLL the
decision level represents the depth of the recursive call during which the variable
was assigned. The decision level increases by one after every branching decision and
is decreased by one after a conflict is encountered and we backtrack to the previous
decision.

1 Parallel Satisfiability 9

In CDCL the decision level can decrease by more than one during backtracking.
This is called non-chronological backtracking or backjumping. The decision level to
which the algorithm “backjumps” is calculated during conflict analysis.

1.2.6 Parallel Computing Architectures

In this subsection we review the basic notions related to parallel computing, such
as parallel architectures, memory models, and definitions of speedup and parallel
efficiency.

Based on the access to the main memory used in a parallel system we can distin-
guish two kinds of parallel architectures.

• Shared Memory Architectures. The main memory is shared between all pro-
cessing elements in a single address space. It is used on single computers with
multiple (multi-core) processors. The advantages of this approach are that all
processes have very fast access to the shared data and less total memory is used,
which allows the solution of larger problems. The disadvantage is that race
conditions must be addressed (usually with locks), which may lead to parallel
slowdown or even deadlocks, and this makes implementations error prone.

• Distributed Memory Architectures. Each processing element has its own address
space and communication is usually done by message passing. This approach
can be used on single computers or on grids/clusters of computers. The speed of
communication is lower than in the case of shared-memory architectures but the
design and implementation of such a system is usually simpler.

A parallel system can also use a combination of these architectures. For example
the parallel solver HordeSat[6], which was designed to run on clusters of multi-core
computers, uses shared-memory communication inside the nodes and distributed-
memory communication between the nodes.

1.2.7 Measuring Speedups

The speedup of a parallel solver P compared to a sequential solver S for a given
benchmark is the ratio of run times that the solvers need to solve that benchmark,
i.e., s = tP/tS, where tP and tS are the runtimes of the parallel and sequential solver
respectively.

In parallel processing, one usually wants good scalability in the sense that the
speedup over the best sequential algorithm goes up near linearly with the number
of processors. Measuring scalability in a reliable and meaningful way is difficult
for SAT solving since running times are highly nondeterministic. Hence, we need
careful experiments on a large benchmark set chosen in an unbiased way.

10 Tomáš Balyo and Carsten Sinz

By averaging the speedups for each benchmark instance we can compute the
average speedup. The average speedup is not a very robust measure since it is highly
dependent on a few very large speedups that might be just due to luck. For this reason
we often get very large average speedup values that are not representative for the
entire benchmark set. Calculating the median of the speedups gives us the median
speedup. The value of the median speedup is often very small if the benchmark set
contains a large number of easy benchmarks where parallelization does not bring any
benefit, and therefore it is not an ideal measure either. A better measure is the total
speedup which is the sum of runtimes for the parallel solver divided by the sum of
runtimes for the sequential solver on the benchmark set.

Nevertheless, all these measures can treat a massively parallel solver (a solver
designed for hundreds or thousands of processors) unfairly when most instances
are actually too easy to justify investing in a lot of hardware. Indeed, in parallel
computing, it is usual to analyze the performance on many processors using weak
scaling where one increases the amount of work involved in the considered instances
proportionally to the number of processors. Therefore the set of benchmarks consid-
ered for calculating the average, median, and total speedups is usually restricted to
those instances where the sequential solver needs at least c× p seconds where p is
the number of processors used by the parallel solver and c is constant.

1.3 Divide-and-Conquer Approaches

Historically, the first parallelization approaches for the SAT problem were based on
splitting the search space. Here, different tasks search for a satisfying assignment in
disjunct portions of the search space. Different ways to split the search space have
been proposed [10, 11, 12, 14, 15, 20, 30, 32, 33, 38, 46, 50, 58, 59]. Splitting the
search space should preferably yield portions of potentially equal size to balance the
search evenly among different tasks. Predicting the size of the search space for a
DPLL or CDCL search is extremely hard and no satisfactory solutions exist up to
now, even though some promising attempts have been made [36, 37].

Thus, the search space is typically not split up statically (at the start of the
algorithm), but dynamically, as soon as one processor involved in the search becomes
idle.

1.3.1 Problem Decomposition and Load Balancing

Problem decomposition plays a central role within the design process of parallel
algorithms, since it influences all other design phases. In this stage, the whole
problem is divided into appropriate subproblems (called tasks) which can be executed
in parallel by the available processors. Problem decomposition must achieve two
(typically conflicting) goals:

1 Parallel Satisfiability 11

• Minimize idle times of available processors.
• Minimize overhead due to communication and excess computation.

Basically, problem decomposition can be carried out statically (i.e. tasks are
defined at compile time) or in a dynamic manner, where tasks are generated (on
demand) at run-time. In the latter case, tasks are explicit objects within the parallel
program which can be dynamically assigned to processors for execution.

Due to the sophisticated heuristics employed by contemporary DPLL-based SAT
solvers it is virtually impossible to predict the time needed to solve a specific SAT
instance. Accordingly, the run-time of an individual task cannot be predicted and
the run-times of different tasks may vary considerably. For SAT instances exhibiting
such a highly irregular problem structure a static approach to decomposition can
result in significant processor idling. Thus, for realizing a robust parallel SAT-solving
method, dynamic problem decomposition becomes mandatory.

For problems based on heuristic search, typically an exploratory approach to prob-
lem decomposition is employed where tasks represent untried branches of the search
tree. Specifically, this technique enables a running solving task to efficiently split
off a part of its own search space, generating a new task. The parallel computation
terminates when all generated tasks have been completed or when a task reports a
solution. In the latter case, the remaining tasks can be canceled.

Technically, exploratory decomposition can be accomplished by a transformation
of the assignment stack of a running solving process. It narrows the search space of
the solving process by fixing the decision and the corresponding implications of the
first level. The released search space is defined by the top-level assignments and the
flipped decision. In this way, tasks can be represented by a set of assignments. The
splitting procedure is depicted in Figure 1.1. This technique was first described by
Chrabakh and Wolski [15]. It represents a refinement of the guiding-path approach
developed by Zhang et al. [59].

In order to enable dynamic problem decomposition, a sequential solver must be
adapted to support the discussed transformation of the assignment stack and it must
also be capable of initializing the level 0 of the assignment stack according to the set
of assignments delivered by a task.

The parallel computation starts with a single task that is responsible for the whole
search space (i.e. the task is defined by an empty set of assignments). When idle
processors are detected (either initially or upon completion of a task), search space
splitting is performed to induce additional parallelism. This procedure is steered by
the load-balancing process, which we discuss next.

Generally, dynamic problem decomposition requires explicit load balancing, i.e.,
tasks have to be assigned to processors at run-time. Especially for problems with
high irregularity, the task pool model should be employed. It decouples problem
decomposition and load balancing by using an explicit data structure holding tasks
resulting from dynamic decomposition operations.

The task pool model can be organized in either a centralized or a distributed
fashion. In a centralized approach, a master processor maintains a global task pool
from which processors can request new tasks when they become idle. The master also

12 Tomáš Balyo and Carsten Sinz

Fig. 1.1: Problem Decomposition

keeps track of the activity of each processor. Thus it can select an active processor
to perform problem decomposition when the size of the pool falls below a given
threshold. This ensures that the task pool is sufficiently filled to serve task requests
in a timely fashion.

Fully distributed load balancing requires that every processor maintains its own
task pool. In this setting, problem decomposition and load balancing must be accom-
plished autonomously by the processors. If a processor runs out of tasks it chooses
another processor (e.g., by a round-robin or a randomized scheme) from which to
request new tasks. When a predefined amount of time has elapsed without a reply,
a request to a different processor is issued. On the other hand, active processors
perform problem decomposition when the size of the task pool falls below a certain
threshold. In order to prevent parallelism being generated in an uncontrolled way,
the number of splitting operations a processor performs must be limited, e.g., by a
minimum time interval between two consecutive split operations. In the distributed
task model, choosing appropriate threshold and timing values is a subtle task, which
can in practice only be managed by extensive experimentation. Due to the lack of a
central controller, detecting the end of a parallel computation (i.e., all generated tasks
have been executed) requires explicit protocols, e.g., Dijkstra’s token-ring-based
termination detection algorithm [18].

In general, a centralized approach can establish a more accurate view of the state of
the processors and is more easy to implement, particularly on shared-memory archi-
tectures. However, with an increasing number of processors, centralized components
soon become a sequential bottleneck of a parallel computation, which can seriously
limit the overall efficiency. Thus, at least for distributed-memory architectures with a
large number of processors a distributed design should be preferred.

The decomposition procedure we have discussed in this section represents the
approach taken by most of the existing parallel SAT solvers. However, in the light

x
1

x
4

x
3

x
2

x
5

x
1

x
4

x
3

x
5

x
9

x
2x

9

x
7

x
7

x
1

x
5

level 0

level 1

level 2

level 3

level 0

level 1

level 2

top-level
assignments

decisions

implications

original problem

modified problem new subproblem

1 Parallel Satisfiability 13

of the latest generation of sequential SAT-solving methods, exploratory decompo-
sition can become a source of work anomalies. The search spaces of the generated
subproblems are mutually disjoint, but their union isn’t necessarily identical to the
search space covered by the sequential algorithms (e.g., due to the failure-driven
assertion technique). Consequently, the total amount of work carried out may differ
significantly between the sequential and the parallel algorithm. On the one hand,
this can result in poor speedups (due to excess computation) and on the other hand
super-linear speedups are possible.

1.3.2 Implementations of Search-Space-Splitting Solvers

Table 1.1 shows implementations of search-space-splitting parallel DPLL SAT
solvers. (Abd El Klalek et al. [19] also provide an overview and classification
of many parallel SAT solvers.) For each solver the target infrastructure is indicated
as well as whether the implementation provides fault detection and clause exchange.

Solver /
Author(s)

Year Ref. Infra-
structure

Fault
Det.?

Clause
Exch.?

Comment

Böhm &
Speckenmeyer

1994 [14] Transputer no no First parallel SAT implementation

PSATO 1994 [58] Cluster yes no Introduced notion of “Guiding Path”
PSolver 1998 [38] Grid yes no Master / slave approach allowing inte-

gration of different sequential solvers
PaSAT 2001 [50] SMP no yes First solver with clause exchange
//Satz 2001 [32] Cluster no no Defined the notion of “ping-ping phe-

nomenon”
GridSAT /
GradSAT

2003 [15] Grid no yes Refined search space splitting

ySAT 2005 [20] SMP no yes Focus on cache performance
ZetaSAT 2005 [12] Grid yes no Runs on heterogeneous grids
NorduGrid 2006 [30] Grid yes no Splitting based on the “scattering rule”
PaMiraXT 2009 [47] SMP &

Cluster
no yes Master/client model

Table 1.1: Some early DPLL-based search-space-splitting SAT Solvers

Problem decomposition via dynamic search space splitting results in highly irreg-
ular run-times. This is shown in Figure 1.2. For a thousand runs on each instance, the
run-time distribution is depicted; the two instances on top are satisfiable, the ones on
the bottom unsatisfiable.

14 Tomáš Balyo and Carsten Sinz

Histogram of 'hanoi5' Run−Times
(1000 Runs with 2 Threads)

Run−Time

Fr
eq

ue
nc

y

0 50 100 150 200 250 300

0
20

40
60

80
10

0

Histogram of 'mizh' Run−Times
(1000 Runs with 2 Threads)

Run−Time

Fr
eq

ue
nc

y

0 50 100 150 200 250 300 350

0
50

10
0

15
0

Histogram of 'longmult' Run−Times
(1000 Runs with 2 Threads)

Run−Time

Fr
eq

ue
nc

y

0 20 40 60 80

0
50

10
0

15
0

Histogram of 'manol' Run−Times
(1000 Runs with 2 Threads)

Run−Time

Fr
eq

ue
nc

y

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

Fig. 1.2: Run-time distributions for 1,000 runs of the parallel solver PaSAT [50]
on four selected instances (towers of Hanoi; cryptanalysis; hardware multiplier;
pipelined microprocessor). The two instances on the top (Hanoi and mizh) are
satisfiable, the ones on the bottom are unsatisfiable. On the x-axis, the run-time of
PaSAT on two cores is shown. The y-axis indicates the number of times the run-times
were in the given interval. The vertical line depicts the sequential run-time of the
solver (one core). In the top left figure, the dashed curve indicates a beta distribution
with α = 2.0 and β = 6.5

1.3.3 Search Space Splitting in CDCL

As CDCL traverses the search space in a less structured way than DPLL, approaches
based on the guiding path and dynamic decomposition cannot be directly applied for
search-space-splitting CDCL solvers.

Adaptations have been implemented in PCASSO [40], Treengeling [9], and Am-
pharos [3]. The employed techniques are similar to the Cube and Conquer approach
described below.

1 Parallel Satisfiability 15

1.3.4 Cube and Conquer

The basic idea of the Cube and Conquer [28] approach is to use look-ahead techniques
to split the problem into a large number (thousands) of subproblems, which can then
be solved in parallel. The Cube and Conquer approach is discussed in detail in
Chapter 2.

1.4 Parallel Portfolios – Diversify and Conquer!

In this section we discuss the simplest and yet (currently) most powerful approach
to parallelizing SAT – parallel portfolios. We start by explaining the concept of the
virtual best solver that served as the inspiration for the portfolio approach. Then we
discuss clause sharing, which is an important component of any portfolio SAT solver.
We conclude the section by reviewing some of the existing portfolio SAT solvers.

1.4.1 Virtual Best Solver

In a SAT competition a collection of SAT solvers submitted by researchers from
all over the world is run on a pre-selected set of benchmark problems with some
time limit (usually 1 hour or 5,000 seconds per instance). The results of a solver are
defined as the set of run times for each problem solved by that solver. The solver
solving the highest number of problems (within the time limit) is the winner of the
competition; ties are broken by comparing the average run times.

When a SAT competition is organized and the results are published it is common
to include the results for the virtual best solver (VBS) along with the results of the
actual solvers participating in the competition. The results of the VBS are calculated
as follows. For each benchmark that was solved by at least one of the participating
solvers we take the best run time from the run times of the solvers on that benchmark.
This implies that no solver has better run time than the VBS on any of the benchmarks
or solves a benchmark not solved by the VBS.

Is it possible to have a real solver that is as good as the VBS? Such a solver would
need to have the ability to instantly select the best SAT solver for any benchmark.
This seems to be rather difficult; however, if we have a parallel architecture and only
care about wall-time, there is a simple solution. We run all the available solvers in
parallel on the given problem and as soon as one of the solvers finds a solution we
terminate all the remaining solvers. This parallel solver would clearly achieve the
same results as the VBS. A solver like this is called a parallel portfolio solver.

16 Tomáš Balyo and Carsten Sinz

1.4.2 Pure Portfolio Solvers and Diversification

In the 2011 SAT Competition the PPfolio [45] solver demonstrated that it is possible
to win several tracks of the competition by just taking the best solvers from the
previous competition and trivially combining them using a shell script into a portfolio.
The author of PPfolio argues that such a simple portfolio solver can serve as an
approximation of the virtual best solver. But he also "shamelessly claims" [31] that
“it’s probably the laziest and most stupid solver ever written” which “does not even
parse the CNF” and “knows nothing about the clauses”. This most basic kind of
portfolio solver is called a pure portfolio and the results obtained by this portfolio
are only due to the base solvers selected.

A pure portfolio solver winning the competition can be very demotivating for the
developers of the included solvers since someone else is winning with their solver.1

To avoid this situation the following SAT competitions restricted or completely
prohibited the participation of such portfolios.

A portfolio can be also created by using just one SAT solver, which is run several
times in parallel with different configuration settings. The motivation behind this
approach is that the performance of SAT solvers is heavily influenced by a high
number of different settings and parameters of the search such as the heuristic used to
select a decision literal in DPLL/CDCL, different restart policies or clause learning
and deleting schemes in CDCL. Numerous parameter configurations are possible but
none of them dominates all the other configurations on each problem instance.

The process of selecting good configurations for a portfolio solver is called
diversification. Similarly to stock market portfolios a SAT solver portfolio should
be diversified to achieve variety and increase the robustness of the solver. In a well
diversified parallel portfolio solver each core solver explores a different region of
the search space and therefore the overlap, i.e., redundant work, is minimized. The
usual parameters that are diversified are related to decision heuristics (for example
community branching [53] and block branching [52]), restart heuristics [51], and
clause deletion strategies [22]. These configurations are often selected by hand but
methods for automatic configuration of SAT solvers for portfolios are also studied
[57].

1.4.3 Clause-Sharing Portfolios

If a portfolio is based on CDCL (conflict-driven clause learning) solvers then learned-
clause exchange can be implemented. This grants a considerable boost to the solvers
performance. Together with diversification it is an important mechanism to reduce
duplicate work, i.e., parallel searches working on the same part of the search space.

1 It should be noted that non-portfolio solvers are often derived from existing solvers too. However,
they typically make reference to the original solver, e.g., by having a name derived from the original
solver’s name. Moreover, some competitions include a “Hack Track”, in which small modifications
to an existing solver can be submitted.

1 Parallel Satisfiability 17

A clause learned from a conflict by one CDCL instance distributed to all the other
CDCL instances will prevent them from doing the same work again in the future.

The problems related to clause sharing are to decide how many and which clauses
should be exchanged. Exchanging all the learned clauses is unfeasible especially in
the case of large-scale parallelism due to communication overhead. Also having too
many clauses slows down a CDCL solver. A simple solution is to distribute all the
clauses that satisfy some conditions. The conditions are usually related to the length
of the clauses (number of literals in them) and/or their glue value [4] (the number of
different decision levels associated with the literals of the clauses). A technique to
dynamically adjust the size of shared clauses has been proposed in [25].

An interesting technique called “lazy clause exchange” was introduced in a recent
paper [5] and used in the parallel version of the SAT solver Glucose [4]. In this policy
a solver does not share a clause immediately after it is learned, but only after it proves
its worth by being useful locally. Being useful locally means that the clause appears
in conflicts as a reason clause at least a given number of times. This restriction
does not apply to short clauses (at most two literals) and clauses with a low glue
value. The policy also contains a strategy for importing clauses from other solver
instances. The incoming clauses are put in “probation” before a potential entry into
the clause database. This limits the negative impact of importing too many clauses.
The probation phase is implemented by watching only one literal in these clauses,
which means that they are not used for unit propagation and are only detected when
they become unsatisfied. At that point they leave probation and are promoted to the
regular learned-clause status. The experimental data in [5] show that only 10% of the
imported clauses leave probation on average, which demonstrates how well-founded
this strategy is.

Similarly to sequential SAT solvers, clause-sharing portfolio solvers can produce
proofs of unsatisfiability and therefore be validated [27].

Clause sharing can be implemented in a lockless fashion as demonstrated by the
SAT solver SArTagnan [25, 35].

Clause sharing in a parallel environment introduces non-determinism to the solver,
which might not be desirable for practitioners who expect run time reproducibility.
This issue has been addressed in [23] where a fully deterministic parallel portfolio
solver was designed.

1.4.4 Impact of Diversification and Clause Sharing

Diversification and clause sharing are both essential components of a successful
CDCL portfolio SAT solver. But to better understand them let us take a look at the
impact of these techniques in isolation for satisfiable and unsatisfiable random 3-SAT
instances.

By looking at the cactus plots in Figure 1.3 we can observe that clause sharing
is essential for unsatisfiable instances while not very beneficial and even slightly

18 Tomáš Balyo and Carsten Sinz

��

����

����

����

����

����

�	��

�
��

����

����

�����

�� ��� ��� �	� ��� ���� ���� ���� ��	� ���� ����

�
�

��
��

��
��

��
��

��������

��������������������

��� �!�����������"�����#����$
%��&��#����$

%��&� �!�����������
 �!�����������������#����$

��

����

����

����

����

����

�	��

�
��

����

����

�����

�� ��� ��� �	� ��� ���� ���� ���� ��	�

�
�

��
��

��
��

��
��

��������

����������������������

��� �!�����������"�����������
���'��������

���'� �!�����������
 �!�����������������������

Fig. 1.3: The influence of diversification and clause sharing on the performance of
HordeSat[6] on random 3-SAT problems. Plot is taken from [6]

detrimental for satisfiable problems. On the other hand, diversification has only a
small benefit for unsatisfiable instances but high impact for satisfiable ones.

This is actually in accordance with what one would expect. To solve a satisfiable
formula we only need to find a satisfying assignment anywhere in the search space.
To do this efficiently we only need to diversify the search (which we also do when
only allowing clause sharing). On the other hand, for unsatisfiable problems we must
actually construct a resolution proof. The different solvers in the portfolio construct
different segments of the proof and to get the complete proof we join these segments
via clause sharing. Without clause sharing each solver must construct the complete
proof alone.

1 Parallel Satisfiability 19

1.4.5 Examples of Parallel Portfolio Solvers

ManySat

ManySat [24] was the first successful clause-sharing parallel portfolio SAT solver.
It was developed in 2008 and won first place in the Parallel Track of the 2008 SAT
Race and 2009 SAT Competition. Most previous parallel SAT solvers were designed
using the divide-and-conquer paradigm but since ManySat the parallel tracks of all
SAT Competitions and SAT Races have been dominated by portfolio solvers.

ManySat was implemented on top of the well-known sequential SAT solver
MiniSat [54] and the basic idea is that each parallel process should exploit a par-
ticular parameter set such that their combination represents a set of orthogonal yet
complementary strategies.

In the original version the authors defined four different strategies. Each of the four
strategies featured a different restart scheme and different decision literal polarity
heuristic. All four strategies used the VSIDS [54] decision variable selection heuristic
with a different percentage of random choices. Additionally half of the strategies
employed extended clause learning, which allows for bigger backjumps.

ManySat was designed for parallel systems with the shared-memory architecture –
basically for multi-core/multi-CPU computers. The clause sharing was organized via
lockless queues containing the clauses a particular solver wants to share. Unit clauses
were imported only at restarts while longer clauses were imported immediately on
the fly. Overall, all the clauses with eight or fewer literals were shared. The value
eight was determined based on experimental evaluation using SAT Competition
benchmarks.

The performance of ManySAT was evaluated (in the 2008 SAT Race) on four-core
computers where it achieved a super-linear average speedup of 6.02 [24]. ManySAT
was the most successful parallel solver (considering SAT Competitions/Races results)
until 2010 when Plingeling [9] took over.

Plingeling

Plingeling is the parallel version of the CDCL SAT solver Lingeling [8]. Both
solvers first appeared in the 2010 SAT Race, where Lingeling placed second in the
Main Track and Plingeling won the Parallel Track. In most of the following SAT
Competitions and SAT Races2 Plingeling won and Lingeling placed among the top
three solvers. Plingeling constantly evolved during these years and in the remainder
of this subsection we will describe the changes since the 2010 version up to the 2016
version.

2010. Similarly to ManySAT, Plingeling is a portfolio solver implemented on top
of Lingeling using Pthreads. A boss thread reads the input formula and generates

2 At least up until the 2016 SAT Competition, which was the latest competition at the time of writing
this text.

20 Tomáš Balyo and Carsten Sinz

separate solver instances for worker threads. The diversification between the worker
threads is achieved by setting different random seeds, preprocessing effort, and
decision heuristics. The workers share clauses, but only unit clauses (clauses with
one literal) are exchanged. This is done via the boss thread at regular intervals.
The boss thread maintains a global unit table that is lazily synchronized among the
workers.

2011. Additionally to unit clauses, literal equivalences are shared in the 2011
version of Plingeling. An equivalence between literals li and l j can be viewed as a
pair of binary clauses (li ∨¬l j) and (¬li ∨ l j), therefore Plingeling now shares unit
and some binary clauses. However, this is not how Plingeling implements this feature.
The sharing of equivalences is implemented via a global union-find data structure of
equivalences maintained by the boss thread.

2012. There is not much change regarding the features of the portfolio, however,
there are changes in implementation. Now the boss thread alone does the input
parsing and preprocessing and only then the worker thread solver instances are
created. This reduces the memory consumption and makes the solver more robust
for large instances, since worker thread addition can be stopped if the amount of
available memory is running low.

2013. The sharing of longer clauses is added to Plingeling. Clauses with up to 40
literals are exchanged if their glue value3 is at most 8. The sharing is implemented
via a global clause stack maintained by the boss thread. The worker threads read the
clauses from the global stack in the oldest first order, therefore it acts like a queue.

2014. Local Search is added to Plingeling. First the formula is examined in order
to figure out whether it resembles a uniform random instance. This is done by looking
at the average number of literal occurrences and its standard deviation. If the formula
looks random several worker threads (or even all but one) run local search instead of
CDCL (Lingeling). This was done to make Plingeling competitive also on random
satisfiable problems that are still best solved by local search algorithms.

2015. Diversification is improved. Automatic parameter configuration tech-
niques [29] are applied to find optimal parameter settings for various families of
benchmarks from previous competitions. Each one of the worker threads uses one of
these configurations.

2016. The parallel front-end is identical to the previous version, i.e., no changes
besides use of the newest version of Lingeling by the worker threads.

In Figure 1.4 we plot the number of problems solved per time limit for each
version of Plingeling. Bear in mind that each different Plingeling version uses a
different Lingeling version at its core. We can see that the 2015 and 2016 versions
perform best and are very similar, which is not at all surprising based on their
description. The third best is the 2013 version followed by a large gap and then 2014
and the remaining versions. The natural question here is what went wrong with the
2014 version that it fell behind so much compared to the 2013 version. We believe it
was caused by local search being used on instances that were not uniform random.
Based on experimental logs we know that version 2014 solved significantly fewer

3 The number of distinct decision levels associated with the literals of the learned clause.

1 Parallel Satisfiability 21

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160

Ti
m

e
in

 s
ec

on
ds

Problems

Plingeling History

2010
2011
2012
2013
2014
2015
2016

Fig. 1.4: The performance of Plingeling versions 2010 - 2016 on the benchmark of
problems of the 2016 SAT Competition

unsatisfiable problems than 2013, 2015, and 2016 while solving a similar number of
satisfiable problems.

HordeSat

HordeSat is a portfolio SAT solver designed for massively parallel architectures,
i.e., computer clusters with hundreds of multi-core computers. An overview of the
high-level design decisions made when designing HordeSat follows.

Modular Design. Rather than committing to any particular SAT solver HordeSat
uses an interface that is universal and can be efficiently implemented by current
state-of-the-art SAT solvers. This results in a more general implementation and the
possibility to easily add new SAT solvers to the portfolio.

Decentralization. All the nodes in the parallel system are equivalent. There is no
boss or central node that manages the search or the communication. Decentralized
design allows more scalability and also simplifies the algorithm.

Overlapping Search and Communication. The search and the clause exchange
procedures run in different (hardware) threads in parallel. The system is implemented
in such a way that the search procedure never waits for any shared resources, at the
expense of losing some of the shared clauses.

Hierarchical Parallelization. HordeSat is designed to run on clusters of computers
(nodes) with multiple processor cores, i.e., we have two levels of parallelization. The
first level uses the shared-memory model to communicate between solvers running

22 Tomáš Balyo and Carsten Sinz

on the same node and the second level relies on message passing between the nodes
of a cluster.

HordeSat defines a C++ interface that is used to access the instances of the core
solvers. This interface has the following methods.

• addClause(vector<int> clause) add clauses of the input formula
• solve() start solving, returns SAT/UNSAT/UNKNOWN
• setInterrupt() tell the solver to stop the search
• unsetInterrupt() allow the solver to continue solving
• setPhase(int var, bool val) suggest a truth value for a variable.
This is just a recommendation and can be ignored by the solver.

• diversify(int rank, int size) tell the core solver to diversify its
settings. The specifics of diversification are left to the solver. The provided
parameters can be used by the solver to determine how many solvers are working
on this problem (size) and which one of those is this solver (rank). A trivial
implementation of this method could be to set the pseudo-random number
generator seed of the core solver to rank.

• addLearnedClause(vector<int> clause) add a learned clause to
the core solver. The solver can decide whether and how long this clause is useful
for it.

• setLearnedClauseCallback(LCCallback* lcc) the solver calls
the callback function when it learns a clause to share it.

The interface is designed to closely match current CDCL SAT solvers, but any kind
of SAT solver can be used. For example a local search SAT solver could implement
the interface by ignoring the calls to the clause-sharing-related methods.

Since HordeSat can only access its core solvers via the interface defined above,
the only tools for diversification are setting phases using the setPhase method and
calling the solver-specific diversify method.

The setPhase method allows the partitioning of the search space in a semi-
explicit fashion. An explicit search space splitting into disjoint subspaces is usually
done by imposing phase restrictions instead of just recommending them. The explicit
approach is used in parallel solvers based on the divide-and-conquer methodology
described in Section 1.3.

In HordeSat each variable in each core solver gets a random phase recommenda-
tion with a probability of (#solvers)−1, where #solvers is the total number of core
solvers in the portfolio. This is done in conjunction with the diversify method
whose behavior is defined by the core solvers.

The clause sharing in HordeSat happens periodically in rounds. Each round a fixed
sized (1,500 integers in the implementation) message containing the literals of the
shared clauses is exchanged by all the processes in an all-to-all fashion. Each process
prepares the message by collecting the learned clauses from its core solvers. The
clauses are filtered to remove duplicates. The fixed-sized message buffer is filled up
with the clauses; shorter clauses are preferred. Clauses that do not fit are discarded.

The detection of duplicate clauses is implemented by using Bloom filters [13].
A Bloom filter is a space-efficient probabilistic set data structure that allows false-

1 Parallel Satisfiability 23

positive matches, which in this case means that some clauses might be considered to
be duplicates even if they are not.

Although important learned clauses might get lost, we believe that this relaxed
approach is still beneficial since it allows a simpler and more efficient implementation
of clause sharing.

1.5 Parallel Local Search

There are two kinds of approaches to parallelizing local search. One is doing multiple
flips in parallel and the other is the portfolio approach described above for CDCL
algorithms. A special kind of local search called Survey Propagation has also been
parallelized using GPU computation [39].

1.5.1 Multiple Flips

The parallel version of the local search solver GSAT [49] called PGSAT [44] first
divides the set of variables into k groups (typically k is the number of processors)
and then in each iteration each processor flips one of the variables from its group
until a solution is found. The variable is selected using the GSAT heuristic.

Experiments with PGSAT have shown that speedup is achieved only up to a
specific value of k. After this optimal value of k (denoted by k∗) the performance
drops. An interesting observation is that the value of k∗ depends on the instance
we want to solve and appears to be correlated to the average connectivity of the
variable-clause graph of the instance [44].

The solver PGWSAT [43] is a combination of PGSAT [44] and WalkSat [48]. In
each iteration PGWSAT either acts like WalkSat (flipping a literal from one of the
unsatisfied clauses) or PGSAT. The behavior is chosen randomly with the WalkSat
strategy being used on between 50% and 70% of the steps. PGWSAT is shown to
outperform PGSAT on random 3-SAT instances.

A parallel version of the solver genSat (generalized GSAT) [56] flips all the
variables that have the best GSAT score (number of unsatisfied clauses after the flip)
in each iteration. This is in contrast to other GSAT-style algorithms where only one
of the variables with the best score is flipped (ties are broken randomly). Parallel
genSat is experimentally shown to require fewer flips to solve a problem than the
original GSAT algorithm.

24 Tomáš Balyo and Carsten Sinz

1.5.2 Portfolios

The basic idea of portfolios (running several different solvers in parallel) can be
applied to local solvers the same way as it is used for CDCL. The first local search
solver to do this was gNovelty+ (v. 2)[42] in the 2009 SAT Competition, where it
achieved first place in the parallel random category. The solver did not do any kind
of sharing so it was pure portfolio.

It is not clear what kind of information should be shared in a portfolio of lo-
cal search solvers. The sharing of learned clauses cannot be adopted from CDCL
portfolios since local search solvers cannot produce them.

Several strategies of information sharing in local search portfolios were suggested
in [2]. The solvers exchange their best assignment (satisfying the highest number of
clauses) and based on these assignments a new starting assignment is constructed.
This construction is different for each cooperation strategy. The strategies range
from certain voting mechanisms to various probabilistic constructions. The most
successful strategy, called Prob-NormalizedW, constructs the assignment using a
probabilistic method that ensures that better variable values (w.r.t. satisfied clauses)
have a higher chance of being adopted.

In a follow-up work [1] it was shown that this approach does not scale well
for massively parallel systems and the proposed solution was to split the solvers
into smaller groups (e.g., 16 solvers) that cooperate internally but do not exchange
information between the different groups.

1.6 Future Challenges

In 2013 Hamadi and Wintersteiger published a paper listing seven challenges in
parallel SAT solving [26]. The first challenge is to design a way to automatically
estimate the number of parallel processes that should be used to solve a formula.
The second challenge is about finding new ways to decompose the input formulas
or the search space of a SAT-solving algorithm that outperform current techniques.
The third challenge is about parallelizing preprocessing techniques used in modern
SAT solvers. The next challenge is related to clause sharing and it asks for better
techniques for estimating the local quality of learned clauses coming from other
solvers. The technique called “lazy clause exchange” [5] used in the parallel version
of the SAT solver Glucose [4] is a step towards solving this challenge. Challenges
five and six ask for new encodings that would be specifically designed for parallel
SAT solvers. Finally, the seventh challenge is to design a completely new parallel
SAT algorithm from scratch, i.e., not based on existing algorithms, that performs on
a par with or better than the current state of the art. We extend this list by adding the
following three new challenges:

Massively Parallel Sat Solving. Design SAT solvers scalable in highly parallel
environments, i.e., computer clusters with thousands or even millions of processors.
Such solvers could potentially be used to solve large hard problem instances coming

1 Parallel Satisfiability 25

from computational biology and chemistry and even resolve open problems from
fields such as combinatorics and number theory.

Utilizing Graphics Processing Units (GPUs) for SAT. Modern graphics cards are
highly parallel computing units with hundreds of cores. General-purpose computing
on GPUs is useful to accelerate various algorithms (notably for problems involving
matrices) but has not yet been successfully used for SAT solving. Although there
have been attempts to adapt existing SAT algorithms for GPU we are yet to see a
GPU-based solver outperform standard CPU solvers. It seems that completely new
algorithms need to be developed for the GPU.

Parallel Incremental SAT Solving. Many applications of SAT are based on solving
a sequence of very similar SAT instances that often only differ in a few clauses.
Although these instances can be solved independently, it can be very inefficient
compared to an incremental SAT solver, which can reuse knowledge acquired while
solving the previous instances (for example some of the learned clauses). Several
SAT solvers support incremental SAT solving, however none of them is parallel.
Since incremental solvers are very useful for improving performance in practical
applications it is very important to develop highly scalable parallel incremental SAT
solvers.

Acknowledgements

We would like to thank Wolfgang Blochinger for allowing us to use material from an
unpublished draft in Section 1.3.1.

References

[1] Arbelaez, A., Codognet, P.: Massively parallel local search for SAT. In: 2012
IEEE 24th International Conference on Tools with Artificial Intelligence. vol. 1,
pp. 57–64. IEEE (2012)

[2] Arbelaez, A., Hamadi, Y.: Improving parallel local search for SAT. In: In-
ternational Conference on Learning and Intelligent Optimization. pp. 46–60.
Springer (2011)

[3] Audemard, G., Lagniez, J.M., Szczepanski, N., Tabary, S.: An adaptive par-
allel SAT solver. In: International Conference on Principles and Practice of
Constraint Programming. pp. 30–48. Springer (2016)

[4] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT
solvers. In: International Joint Conference on Artificial Intelligence (IJCAI).
vol. 9, pp. 399–404 (2009)

[5] Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers.
In: Theory and Applications of Satisfiability Testing (SAT), pp. 197–205.
Springer (2014)

26 Tomáš Balyo and Carsten Sinz

[6] Balyo, T., Sanders, P., Sinz, C.: Hordesat: A massively parallel portfolio SAT
solver. In: Heule, M., Weaver, S. (eds.) Theory and Applications of Satisfiability
Testing (SAT), Lecture Notes in Computer Science, vol. 9340, pp. 156–172.
Springer International Publishing (2015)

[7] Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press,
Amsterdam, The Netherlands (2009)

[8] Biere, A.: Lingeling, plingeling, picosat and precosat at SAT race 2010. In:
Technical Report 10/1, FMV Reports Series, Institute for Formal Models and
Verification, Johannes Kepler University (2010)

[9] Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition
2013. In: Proceedings of SAT Competition 2013, University of Helsinki. pp.
51–52 (2013)

[10] Blochinger, W., Sinz, C., Küchlin, W.: Distributed parallel SAT checking with
dynamic learning using DOTS. In: Gonzales, T. (ed.) Proc. of the IASTED Intl.
Conference Parallel and Distributed Computing and Systems (PDCS 2001). pp.
396–401. ACTA Press, Anaheim, CA (Aug 2001)

[11] Blochinger, W., Sinz, C., Küchlin, W.: Parallel propositional satisfiability check-
ing with distributed dynamic learning. Parallel Computing 29(7), 969–994
(2003)

[12] Blochinger, W., Westje, W., Küchlin, W., Wedeniwski, S.: ZetaSAT – boolean
SATisfiability solving on desktop grids. In: IEEE International Symposium on
Cluster Computing and the Grid. pp. 1079–1086 (2005)

[13] Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM 13(7), 422–426 (1970)

[14] Boehm, M., Speckenmeyer, E.: A fast parallel SAT-solver – efficient workload
balancing. Annals of Mathematics and Artificial Intelligence 17(3-4), 381–400
(1996)

[15] Chrabakh, W., Wolski, R.: GridSAT: A Chaff-based distributed SAT solver for
the grid. In: Proc. of Supercomputing 03. Phoenix, Arizona, USA (2003)

[16] Cook, S.A.: The complexity of theorem-proving procedures. In: ACM Sym-
posium on Theory of Computing. pp. 151–158. ACM, New York, NY, USA
(1971)

[17] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-
proving. Communications of the ACM 5(7), 394–397 (1962)

[18] Dijkstra, E.W., W.H.J.Feijen, van Gasteren, A.: Derivation of a termination
detection algorithm for distributed computations. Inf. Proc. Letters 16, 217–219
(1983)

[19] El Khalek, Y.A., Safar, M., El-Kharashi, M.W.: On the parallelization of sat
solvers. In: Computer Engineering & Systems (ICCES), 2015 Tenth Interna-
tional Conference on. pp. 119–128. IEEE (2015)

[20] Feldman, Y., Dershowitz, N., Hanna, Z.: Parallel multithreaded satisfiability
solver: Design and implementation. Electr. Notes Theor. Comput. Sci. 128(3),
75–90 (2005)

1 Parallel Satisfiability 27

[21] Gu, J.: The multi-sat algorithm. Discrete Applied Mathematics 96-97, 111–126
(1999)

[22] Guo, L., Jabbour, S., Lonlac, J., Saïs, L.: Diversification by clauses deletion
strategies in portfolio parallel SAT solving. In: Tools with Artificial Intelligence
(ICTAI), 2014 IEEE 26th International Conference on. pp. 701–708. IEEE
(2014)

[23] Hamadi, Y., Jabbour, S., Piette, C., Sais, L.: Deterministic parallel DPLL.
Journal on Satisfiability, Boolean Modeling and Computation 7, 127–132 (2011)

[24] Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. In: Satisfia-
bility, Boolean Modeling and Computation. vol. 6, pp. 245–262 (2008)

[25] Hamadi, Y., Jabbour, S., Sais, L.: Control-based clause sharing in parallel sat
solving. In: Twenty-First International Joint Conference on Artificial Intelli-
gence (2009)

[26] Hamadi, Y., Wintersteiger, C.: Seven challenges in parallel SAT solving. AI
Magazine 34(2), 99 (2013)

[27] Heule, M., Manthey, N., Philipp, T.: Validating unsatisfiability results of clause
sharing parallel SAT solvers. In: POS@ SAT. pp. 12–25 (2014)

[28] Heule, M.J., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding
cdcl SAT solvers by lookaheads. In: Haifa Verification Conference. pp. 50–65.
Springer (2011)

[29] Hutter, F., Hoos, H.H., Leyton-Brown, K., Stuetzle, T.: ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research
36, 267–306 (October 2009)

[30] Hyvärinen, A.E., Junttila, T., Niemelä, I.: A distribution method for solving
SAT in grids. In: International Conference on Theory and Applications of
Satisfiability Testing (SAT’06). pp. 430–435 (2006)

[31] Järvisalo, M., Le Berre, D., Roussel, O.: The SAT 2011 Competition – Results
of Phase 1 – slides. http://www.cril.univ-artois.fr/SAT11/
phase1.pdf (2011), accessed: 2015-12-18

[32] Jurkowiak, B., Li, C., Utard, G.: Parallelizing Satz using dynamic workload
balancing. In: Kautz, H., Selman, B. (eds.) LICS 2001 Workshop on Theory and
Applications of Satisfiability Testing (SAT 2001). Electronic Notes in Discrete
Mathematics, vol. 9. Elsevier Science Publishers, Boston, MA (Jun 2001)

[33] Jurkowiak, B., Li, C.M., Utard, G.: A parallelization scheme based on work
stealing for a class of SAT solvers. Journal of Automated Reasoning 34(1),
73–101 (2005)

[34] Katsirelos, G., Sabharwal, A., Samulowitz, H., Simon, L.: Resolution and
parallelizability: Barriers to the efficient parallelization of SAT solvers. In:
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 14-18, 2013, Bellevue, Washington, USA. (2013)

[35] Kaufmann, M., Kottler, S.: Sartagnan parallel portfolio SAT solver with lockless
physical clause sharing. In: Pragmatics of SAT. Citeseer (2011)

[36] Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Estimating search tree size. In:
Proceedings of the 21st National Conference on Artificial Intelligence - Volume
2. pp. 1014–1019. AAAI’06, AAAI Press (2006)

http://www.cril.univ-artois.fr/SAT11/phase1.pdf
http://www.cril.univ-artois.fr/SAT11/phase1.pdf

28 Tomáš Balyo and Carsten Sinz

[37] Knuth, D.E.: Estimating the efficiency of backtrack programs. Mathematics of
Computation 29(129), 121–136 (Jan 1975)

[38] Kokotov, L.: Distributed SAT solver framework (1998)
[39] Manolios, P., Zhang, Y.: Implementing survey propagation on graphics pro-

cessing units. In: International Conference on Theory and Applications of
Satisfiability Testing. pp. 311–324. Springer (2006)

[40] Manthey, N.: Towards Next Generation Sequential and Parallel SAT Solvers.
Ph.D. thesis, Technischen Universität Dresden, Fakultät Informatik (Jan 2014)

[41] Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

[42] Pham, D.N., Gretton, C.: gnovelty+ (v. 2). In: Proceedings of SAT Competition
2009, Artois University. pp. 9–10 (2009)

[43] Roli, A., Blesa, M., Blum, C.: Random walk and parallelism in local search. In:
Proceedings of MIC’2005 – Meta–heuristics International Conference. Vienna,
Austria (2005)

[44] Roli, A.: Criticality and parallelism in structured SAT instances. In: Interna-
tional Conference on Principles and Practice of Constraint Programming. pp.
714–719. Springer (2002)

[45] Roussel, O.: Description of ppfolio 2012. Proc. SAT Challenge p. 46 (2012)
[46] Schubert, T., Lewis, M., Becker, B.: PaMira - a parallel SAT solver with

knowledge sharing. In: 6th International Workshop on Microprocessor Test and
Verification (2005)

[47] Schubert, T., Lewis, M.D.T., Becker, B.: Pamiraxt: Parallel SAT solving with
threads and message passing. JSAT 6(4), 203–222 (2009)

[48] Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search.
In: AAAI. vol. 94, pp. 337–343 (1994)

[49] Selman, B., Levesque, H.J., Mitchell, D.G., et al.: A new method for solving
hard satisfiability problems. In: AAAI. vol. 92, pp. 440–446 (1992)

[50] Sinz, C., Blochinger, W., Küchlin, W.: PaSAT - parallel SAT-checking with
lemma exchange: Implementation and applications. In: Kautz, H., Selman,
B. (eds.) LICS 2001 Workshop on Theory and Applications of Satisfiability
Testing (SAT 2001). Electronic Notes in Discrete Mathematics, vol. 9. Elsevier
Science Publishers, Boston, MA (Jun 2001)

[51] Sonobe, T., Inaba, M.: Counter implication restart for parallel SAT solvers. In:
Learning and Intelligent Optimization, pp. 485–490. Springer (2012)

[52] Sonobe, T., Inaba, M.: Portfolio with block branching for parallel SAT solvers.
In: International Conference on Learning and Intelligent Optimization. pp.
247–252. Springer (2013)

[53] Sonobe, T., Kondoh, S., Inaba, M.: Community branching for parallel portfo-
lio SAT solvers. In: International Conference on Theory and Applications of
Satisfiability Testing. pp. 188–196. Springer (2014)

[54] Sorensson, N., Een, N.: Minisat v1.13 a SAT solver with conflict-clause mini-
mization. Tech. rep., Chalmers University of Technology, Sweden (2005)

1 Parallel Satisfiability 29

[55] Speckenmeyer, E., Monien, B., Vornberger, O.: Superlinear speedup for parallel
backtracking, pp. 985–993. Springer Berlin Heidelberg, Berlin, Heidelberg
(1988)

[56] Strohmaier, A.: Multi-flip networks: parallelizing gensat. In: Annual Conference
on Artificial Intelligence. pp. 349–360. Springer (1997)

[57] Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algo-
rithms for portfolio-based selection. AAAI Conference on Artificial Intelligence
(2010)

[58] Zhang, H., Bonacina, M.P.: Cumulating search in a distributed computing
environment: A case study in parallel satisfiability. In: Proc. of the First Int.
Symp. on Parallel Symbolic Computation. pp. 422–431. Linz, Austria (1994)

[59] Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: A distributed propositional
prover and its application to quasigroup problems. Journal of Symbolic Com-
putation 21, 543–560 (1996)

	1 Parallel Satisfiability
	1.1 Introduction
	1.2 Preliminaries
	1.2.1 Satisfiability (SAT)
	1.2.2 Local Search Algorithms for SAT
	1.2.3 The DPLL Algorithm
	1.2.4 Resolution Refutation
	1.2.5 The CDCL Algorithm
	1.2.6 Parallel Computing Architectures
	1.2.7 Measuring Speedups

	1.3 Divide-and-Conquer Approaches
	1.3.1 Problem Decomposition and Load Balancing
	1.3.2 Implementations of Search-Space-Splitting Solvers
	1.3.3 Search Space Splitting in CDCL
	1.3.4 Cube and Conquer

	1.4 Parallel Portfolios – Diversify and Conquer!
	1.4.1 Virtual Best Solver
	1.4.2 Pure Portfolio Solvers and Diversification
	1.4.3 Clause-Sharing Portfolios
	1.4.4 Impact of Diversification and Clause Sharing
	1.4.5 Examples of Parallel Portfolio Solvers

	1.5 Parallel Local Search
	1.5.1 Multiple Flips
	1.5.2 Portfolios

	1.6 Future Challenges
	Acknowledgements
	References

