
Youssef Hamadi · Lakhdar Sais Editors

Handbook
of Parallel
Constraint
Reasoning

Handbook of Parallel Constraint Reasoning

Youssef Hamadi • Lakhdar Sais
Editors

Handbook of Parallel
Constraint Reasoning

123

Editors
Youssef Hamadi
Laboratoire d’informatique (LIX)
de l’École polytechnique

Palaiseau
France

Lakhdar Sais
CRIL, CNRS UMR 8188
Université d’Artois
Lens
France

ISBN 978-3-319-63515-6 ISBN 978-3-319-63516-3 (eBook)
https://doi.org/10.1007/978-3-319-63516-3

Library of Congress Control Number: 2018937338

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

Many computational challenges in artificial intelligence, machine learning, and data
science can be formulated as optimization problems subject to a set of constraints.
Depending on the details of the underlying optimization task and the given con-
straints, a range of different constraint optimization and modeling formalisms have
been introduced. Over the last two decades, the development of ever more efficient
constraint solvers has led to a shift from a largely academic endeavor to an area
with significant real-world impact. Successful applications are in machine learning,
hardware and software verification and synthesis, AI planning and scheduling, and
combinatorial optimization. In the early 1990s, typical constraint solvers could han-
dle problems involving a few hundred variables and constraints. Current solvers can
handle instances with hundreds of thousands of variables and millions of constraints,
making real-world applications feasible. Novel algorithmic techniques combined
with a series of increasingly sophisticated implementations are key drivers behind
these advances. Note that given the formal worst-case intractability of constraint
optimization, this level of progress was completely unanticipated. However, we now
understand that most constraint problems of interest have significant internal structure
that can be automatically uncovered and exploited effectively by modern solvers.
The effectiveness of current solvers continues to open up new areas of applications in
artificial intelligence and computer science, in general. In fact, anyone encountering
a computational task that is NP-complete or even lies beyond NP should consider
whether modern constraint solvers can be of use in their domain.

The natural next step in the development of ever more powerful constraint op-
timization methods is the use of parallelism through multi-core processors or dis-
tributed cloud computing platforms. The Handbook of Parallel Constraint Reasoning
provides an exhilarating and comprehensive collection of chapters dealing with all as-
pects of parallel constraint reasoning and optimization. The handbook is remarkable
in its coverage and shows the richness of topics in constraint reasoning, while also
highlighting the many connections between subareas. Topics include, among others,
Boolean Satisfiability (SAT) solving, Maximum Satisfiability (MaxSAT) solvers,
Satisfiability Modulo Theory (SMT) solvers, Automated Theorem Proving (ATP),
Quantified Boolean Formulas (QBF) solvers, Answer Set Programming (ASP), Logic

v

vi Foreword

Programming (LP), Integer Linear Programming (ILP) methods, Model Checking
for Linear Temporal Logic (LTL), and algorithm configuration. The handbook also
includes several chapters on real-world applications. The wealth and selection of
material make this a truly seminal handbook. The chapters are written in a highly com-
prehensive manner, which means that they can also be read independently. Moreover,
in addition to a detailed discussion of parallelization techniques, each contribution
also includes a concise introduction to the basic techniques underlying each area
(such as SAT solving, SMT solving, etc.). The handbook therefore also provides a
valuable resource for anyone who wants to get an understanding of the opportunities
modern constraint reasoning and optimization provide, while, for researchers in the
area, the book covers the state-of-the-art in parallel techniques and the remaining
challenges. Parallelization provides the framework for the next level of constraint
solving. This handbook leads the way.

Ithaca, July 2017 Bart Selman

Preface

Constraint reasoning, the ability to draw inferences or decisions from available knowl-
edge using a wide range of techniques that spans logic, computer science, operations
research, and artificial intelligence, benefits from several powerful formalisms and
algorithms that cover large classes of combinatorial problems at the heart of science,
engineering, and business. Modern approaches for tackling these intractable problems
are usually declarative as they divide the task into two major interdependent steps:
modeling and solving. Depending on the complexity and nature of the problem to be
handled, choosing the most appropriate formalism that combines expressiveness and
solving efficiency is an important issue across several disciplines.

We can divide these formalisms into four categories.

- Those having their roots in propositional logic, Satisfiability (SAT), the prime
NP-complete problem, and its extensions, which cover optimization (MaxSAT),
quantified Boolean formulas (QBF), and several first-order theories (SMT).

- Those built on higher-order logics, Automated Theorem Proving (ATP), and
Answer Set Programming (ASP), which is based on the stable model semantics
of Logic Programming.

- Those related to operations research and artificial intelligence, Mixed-Integer
Linear Programming (MILP), Constraint Programming (CP), and Stochastic
Local Search (SLS).

- Those that are part of Computer Science as specific algorithms and data struc-
tures for important classes of problems: A* for optimal path finding and graph
traversal problems, Model Checking for Linear-time Temporal Logic (MC/LTL),
Binary Decision Diagrams (BDD) for checking given specifications over com-
plex systems, and Model-Based Diagnosis (MBD) to explain complex systems
behaviors.

The large search spaces explored through these paradigms have raised early
parallelizing endeavors. However, the scarcity of computational resources made
these attempts marginal and did not really impact practitioners. In the last ten years,
the situation has dramatically changed. First, the end of Moore’s law, the widespread
use of graphics-card processing, and the ubiquity of cheap cloud-computing resources

vii

viii Preface

have raised new scenarios where any practitioner can quickly harness a large amount
of cost effective computational resources to tackle its problems. Second, the previous
paradigms and methods have matured to the point of reaching industrial strength
and are now essential to the development of many services and products (including
software and hardware verification, very-large-scale logistics problems, complex
networks design, etc.). Third, the transition to a new information and digital era has
resulted in the emergence of new data-intensive technologies leading to even more
complex and hard combinatorial problems out of the reach of sequential computing.

These three factors have reignited and rejuvenated research on parallel constraint
reasoning, and the aim of the first Handbook of Parallel Constraint Reasoning is
to capture the full breadth and depth of these efforts. It presents work demonstrat-
ing the use of multiple resources from single-machine multi-core and GPU-based
computations to very-large-scale distributed execution platforms of up to 80,000
processing units. The intended audience of the handbook consists of researchers,
graduate students, and practitioners who wish to learn about the state of the art in
parallel constraint reasoning. Each of the seventeen chapters is intended to be a
self-contained survey of one of the previous paradigms, and is written by leading
researchers in the area.

The book is divided into two main parts. The first one presents the theories and
algorithms associated with the previous formalisms and problems. It is subdivided
into several sub-parts which group together related formalisms and methods. In
the first sub-part, SAT and its MaxSAT, QBF, and SMT extensions are presented.
Since parallelizing techniques are typically generalized from SAT to its extensions,
we encourage readers to read these chapters successively. The second sub-part
considers first-order logic and logic programming with chapters devoted to parallel
automated theorem proving, and parallel answer set programming. The third sub-part
describes mathematical-optimization, and artificial-intelligence-based formalisms,
with chapters on parallel mixed-integer linear programming, constraint programming,
and stochastic local search. Finally, the last sub-part collects methods for parallel
breadth-first search, including A* exploration, model checking for linear temporal
logic specifications, parallel binary decision diagrams data structures, and model-
based diagnosis.

The second part presents tools and applications. It starts with a chapter devoted to
the automatic composition of parallel portfolios algorithms through machine learning
techniques. The ideas and the underlying concepts are sufficiently general to be
extended and exploited in all the representation and solving models presented in
the first part. Afterwards, two applications are presented. The first one shows how
parallel satisfiability can speed up the verification of complex embedded systems by
orders of magnitude. The second one shows how parallel stochastic local search can
provide higher-quality long-reach optical network designs.

The parallel algorithms presented here are built around a common set of mech-
anisms and ideas, including divide-and-conquer with work stealing, portfolios of
competing techniques, knowledge sharing of new lemmas and objective-function
bounds, heuristic information exchanges, and efficient synchronizing for determiniza-
tion. We thus hope that the importance of these mechanisms as presented in this

Preface ix

handbook will inspire researchers from parallel and distributed computing and act as
a means for cross-fertilization.

The start and completion of this project would not have been possible without
much support and encouragement. This handbook is an effort of people from the
different sub-communities of constraint reasoning, and we take this opportunity to
express our gratitude to the fifty-four co-authors who contributed to this book.

We are indebted to Ronan Nugent at Springer-Verlag for his great patience and
renewed interest in materializing all these efforts into the book you are holding now.

Paris, Lens, Youssef Hamadi
March 2017 Lakhdar Saïs

Contents

Part I Theory and Algorithms

1 Parallel Satisfiability . 3
Tomáš Balyo and Carsten Sinz
1.1 Introduction . 3
1.2 Preliminaries . 4

1.2.1 Satisfiability (SAT) . 4
1.2.2 Local Search Algorithms for SAT . 5
1.2.3 The DPLL Algorithm . 5
1.2.4 Resolution Refutation . 7
1.2.5 The CDCL Algorithm . 7
1.2.6 Parallel Computing Architectures . 9
1.2.7 Measuring Speedups . 9

1.3 Divide-and-Conquer Approaches . 10
1.3.1 Problem Decomposition and Load Balancing 10
1.3.2 Implementations of Search-Space-Splitting Solvers 13
1.3.3 Search Space Splitting in CDCL . 14
1.3.4 Cube and Conquer . 15

1.4 Parallel Portfolios – Diversify and Conquer! 15
1.4.1 Virtual Best Solver . 15
1.4.2 Pure Portfolio Solvers and Diversification 16
1.4.3 Clause-Sharing Portfolios . 16
1.4.4 Impact of Diversification and Clause Sharing 17
1.4.5 Examples of Parallel Portfolio Solvers 19

1.5 Parallel Local Search . 23
1.5.1 Multiple Flips . 23
1.5.2 Portfolios . 24

1.6 Future Challenges . 24
References . 25

xi

xii Contents

2 Cube-and-Conquer for Satisfiability . 31
Marijn J.H. Heule, Oliver Kullmann, and Armin Biere
2.1 Introduction . 31
2.2 Preliminaries . 33
2.3 Combining CDCL and Lookahead . 33
2.4 Creating Cubes: The Basic Method . 36
2.5 Creating Cubes: a General Methodology . 38

2.5.1 General Framework . 38
2.5.2 Cutoff Heuristic . 39
2.5.3 Heuristics for Splitting . 41

2.6 Solving Cubes . 42
2.6.1 Sequential Solving . 42
2.6.2 Solving Cubes in Parallel . 44

2.7 Interleaving the Cube and Conquer Phases . 45
2.7.1 Ineffective Lookahead Heuristics . 46
2.7.2 Concurrent Cube-and-Conquer . 46
2.7.3 Cubes on Demand . 48

2.8 Proofs of Unsatisfiability . 50
2.9 Experimental Evaluation . 52

2.9.1 Application Benchmarks . 52
2.9.2 The Boolean Pythagorean Triples Problem 54

2.10 Conclusions . 56
References . 57

3 Parallel Maximum Satisfiability . 61
Inês Lynce, Vasco Manquinho, and Ruben Martins
3.1 Introduction . 61
3.2 Maximum Satisfiability . 65

3.2.1 Sequential MaxSAT Algorithms . 66
3.2.1.1 Linear Search Algorithms 67
3.2.1.2 Unsatisfiability-Based Algorithms 69
3.2.1.3 Other Algorithmic Solutions and

Implementation Issues . 71
3.3 Parallel MaxSAT . 71

3.3.1 Portfolio Approaches . 72
3.3.1.1 Parallel Unsatisfiability-Based Algorithms . . . 73
3.3.1.2 Parallel Linear Search Algorithms 74
3.3.1.3 Implementation Issues . 75

3.3.2 Search Space Splitting . 75
3.3.2.1 Interval Splitting . 75
3.3.2.2 Guiding Paths . 79
3.3.2.3 Other Splitting Schemes and Implementation

Issues . 80
3.3.3 Clause Sharing . 81

3.3.3.1 Conditions for Safe Clause Sharing 81

Contents xiii

3.3.3.2 Clause-Sharing Heuristics 82
3.3.3.3 Comparison Between Clause-Sharing

Heuristics 84
3.4 Deterministic Parallel MaxSAT . 85

3.4.1 Motivation . 86
3.4.2 Deterministic Solver . 87

3.4.2.1 Standard Synchronization 89
3.4.2.2 Period Synchronization 90
3.4.2.3 Dynamic Synchronization 91

3.4.3 Comparison Between Non-deterministic and
Deterministic Solvers . 92

3.5 Research Directions . 92
3.5.1 Scalability . 92
3.5.2 Clause Sharing . 93

References . 94

4 Parallel Solving of Quantified Boolean Formulas 101
Florian Lonsing and Martina Seidl
4.1 Introduction . 101
4.2 Background . 105
4.3 Sequential Search-Based QBF Solving . 108
4.4 Parallel QBF Solving at a Glance . 111
4.5 Parallel QBF-Solving Approaches . 115
4.6 Challenges and Potential of Parallel QBF Solving 127
4.7 Conclusion . 131
References . 132

5 Parallel Satisfiability Modulo Theories . 141
Antti E.J. Hyvärinen and Christoph M. Wintersteiger
5.1 Introduction . 141
5.2 General Preliminaries . 142

5.2.1 Theories . 142
5.2.2 The Underlying Conflict-Driven, Clause-Learning SAT

Solver . 143
5.2.3 Theory Combination . 144
5.2.4 Interpolants . 145
5.2.5 SMT Solvers . 145

5.3 Portfolios of SMT Solvers . 146
5.3.1 Parallel SMT Based on Algorithm Portfolios 148
5.3.2 Lemma Sharing in Portfolios . 148
5.3.3 Centralized Lemma Databases . 149
5.3.4 Experiments on the Algorithmic Framework 150
5.3.5 Lemma Sharing and Partitioning . 150

5.4 Search-Space Partitioning in SMT . 151
5.4.1 Plain Partitioning . 152

5.5 Decomposition . 157
5.5.1 Experimental Evidence . 158

. .

xiv Contents

5.5.2 Variations and Extensions . 159
5.6 Combinations of Parallelization Algorithms 161

5.6.1 The Parallelization Tree . 161
5.6.2 Iterative Partitioning with Partition Trees 163
5.6.3 Safe and Repeated Partitioning . 165
5.6.4 Constructing Partitions . 168

5.7 Further topics . 171
References . 172

6 Parallel Theorem Proving . 179
Maria Paola Bonacina
6.1 Introduction . 179
6.2 Theorem Proving Strategies . 181

6.2.1 Subgoal-Reduction Strategies . 182
6.2.2 Ordering-Based Strategies . 184

6.2.2.1 Expansion-Oriented Strategies 186
6.2.2.2 Contraction-Based Strategies 187

6.2.3 Instance-Based Strategies . 189
6.3 Parallelization of Theorem Proving . 190

6.3.1 Parallelism at the Term or Literal Level 191
6.3.1.1 Parallelism at the Literal Level for

Subgoal-Reduction Strategies 191
6.3.1.2 Parallelism at the Term Level for

Ordering-Based Strategies 191
6.3.2 Parallelism at the Clause Level . 193

6.3.2.1 Parallelism at the Clause Level for
Subgoal-Reduction and Instance-Based
Strategies . 193

6.3.2.2 Parallelism at the Clause Level for
Ordering-Based Strategies 194

6.3.3 The Rise of Parallel Search . 196
6.3.4 Multi-search . 198

6.3.4.1 Multi-search for Subgoal-Reduction
Strategies 199

6.3.4.2 Multi-search for Ordering-Based Strategies . . . 200
6.3.5 Distributed Search . 202

6.3.5.1 Distributed Search for Ordering-Based
Strategies . 202

6.3.5.2 The Basic Clause-Diffusion Mechanisms 203
6.3.5.3 The Subdivision of Clauses in Clause-

Diffusion 204
6.3.5.4 The Subdivision of Inferences in

Clause-Diffusion . 205
6.3.5.5 Distributed Global Contraction, Distributed

Fairness, and Distributed Proof
Reconstruction 206

6.3.5.6 The Clause-Diffusion Provers 207
6.4 Discussion . 211

. .

. .

. .

Contents xv

6.4.1 Parallel Theorem Proving and Parallel Satisfiability 211
6.4.2 Parallelism and First-Order Model-Based Reasoning 215

References . 217

7 Parallel Answer Set Programming . 237
Agostino Dovier, Andrea Formisano, and Enrico Pontelli
7.1 Introduction . 237
7.2 Background . 240

7.2.1 Definite Logic Programming . 240
7.2.2 Normal Logic Programs and Answer Set Programming . . 242
7.2.3 Datalog . 244
7.2.4 Alternative ASP Computation Models 244

7.2.4.1 Program Completion . 244
7.2.4.2 Conflict-Driven Search . 245
7.2.4.3 ASP Computation . 246

7.3 Parallelizing the Grounding Phase . 247
7.3.1 Introduction . 247
7.3.2 Naive Parallel Grounding . 248
7.3.3 Multi-level Parallel Grounding . 248

7.4 Parallelizing the Inference Phase I: Parallel Datalog 252
7.5 Parallelizing the Inference Phase II: Parallel ASP 253

7.5.1 Parallelizing the Search Process . 253
7.5.1.1 General Idea and Seminal Work 253
7.5.1.2 Techniques for Task Sharing 255
7.5.1.3 Scheduling and Load Balancing 258
7.5.1.4 Parallelizing Lookahead 261

7.5.2 GPU-Based Parallelism . 264
7.5.2.1 GPU-Based Datalog Solving 265
7.5.2.2 GPU-Based Conflict-Driven ASP Solving 266

7.5.3 Moving Towards Large-Scale Architectures 270
7.5.3.1 The Map-Reduce Programming Model 270
7.5.3.2 Datalog and Map-Reduce 271
7.5.3.3 Towards ASP: Well-Founded Semantics and

Map-Reduce . 272
7.5.3.4 Other Relevant Applications of Map-

Reduce 274
7.5.4 Portfolio Approaches for ASP . 274

7.6 Discussion and Conclusions . 276
References . 277

8 Parallel Solvers for Mixed Integer Linear Optimization 283
Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch
8.1 Introduction . 284
8.2 Sequential Algorithms . 286

8.2.1 Basic Components . 286
8.2.2 Advanced Procedures . 288

8.3 Parallel Algorithms . 290

. .

xvi Contents

8.3.1 Scalability and Performance . 291
8.3.1.1 Scalability . 292
8.3.1.2 Performance . 294

8.3.2 Properties . 295
8.3.2.1 Abstraction and Integration 295
8.3.2.2 Granularity . 297
8.3.2.3 Adaptivity . 298
8.3.2.4 Knowledge Sharing . 299
8.3.2.5 Load Balancing . 299
8.3.2.6 Synchronization and Coordination 303
8.3.2.7 Determinism . 304

8.3.3 Implementation . 305
8.3.3.1 Platform . 305
8.3.3.2 Frameworks and Solvers 308
8.3.3.3 Coordination Mechanisms 308

8.4 Software . 316
8.4.1 Solvers . 317
8.4.2 Frameworks . 321

8.5 Performance Measurement . 324
8.5.1 Performance Variability . 325
8.5.2 Comparisons . 326
8.5.3 Instance Selection . 327
8.5.4 Alternative Performance Measures 328
8.5.5 Summary Measures . 328

8.6 Concluding Remarks . 329
References . 329

9 Parallel Constraint Programming . 337
Jean-Charles Régin and Arnaud Malapert
9.1 Introduction . 337

9.1.1 Filtering + Propagation . 339
9.1.2 Search . 339

9.1.2.1 Search Methods in Solvers 341
9.1.3 Parallelism and Constraint Programming 342

9.1.3.1 Parallel Propagators and Propagation 342
9.1.3.2 Search Space Splitting . 342
9.1.3.3 Portfolio Algorithms . 344
9.1.3.4 Distributed CSPs . 345
9.1.3.5 Problem Decomposition 345

9.2 Background . 346
9.2.1 Parallelism . 346

9.2.1.1 Parallelization Measures and Amdahl’s
Law 346

9.2.2 Embarrassingly Parallel Computation 347
9.2.3 Internal and External Parallelization 348
9.2.4 Constraint Programming . 349

. ..

Contents xvii

9.3 Parallel Search Tree . 350
9.3.1 Static Partitioning . 350
9.3.2 Dynamic Partitioning . 351

9.3.2.1 Local Subtree Solving . 352
9.3.2.2 Subtree Definition . 353

9.4 Problem Decomposition . 356
9.4.1 Principles . 356

9.4.1.1 Sub-problems Generation: a Top-Down
Method 358

9.4.1.2 Sub-problems Generation: a Bottom-Up
Method . 361

9.4.1.3 Implementation . 362
9.4.1.4 Size of the Partition . 363

9.4.2 Determinism . 364
9.5 Comparison Between the Work-Stealing Approach and EPS 364
9.6 Experiments . 365

9.6.1 Benchmark Instances . 365
9.6.1.1 Implementation Details 366
9.6.1.2 Execution Environments 366

9.6.2 Multi-core . 367
9.6.3 Data Center . 368
9.6.4 Cloud Computing . 369
9.6.5 Comparison with Portfolios . 370

9.7 Conclusion . 371
References . 372

10 Parallel Local Search . 381
Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu
10.1 Introduction . 381
10.2 Local Search Metaheuristics . 383
10.3 Sources of Parallelism . 386

10.3.1 Single-Walk and Multiple-Walk Methods 386
10.3.2 Parallel Speedups and Runtime Distributions 387

10.4 Single-Walk Approaches . 389
10.5 Independent Multiple-Walk Approaches . 390

10.5.1 Early Independent Multiple-Walk Methods 390
10.5.2 Recent Experiments and Performance Results 392

10.6 Cooperative Multiple-Walk Approaches . 394
10.6.1 Metaheuristic Parallelization Approaches 395
10.6.2 Agent-Based Approaches . 398
10.6.3 Framework Approaches . 401

10.7 Parallelism at Work . 403
10.7.1 Stable Matching Problem . 403
10.7.2 The Quadratic Assignment Problem 405

10.8 Conclusion . 408
References . 409

. .

xviii Contents

11 Parallel A* for State-Space Search . 419
Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto
11.1 Introduction . 419
11.2 Preliminaries: Review of A* . 421

11.2.1 The A* Algorithm . 423
11.3 Parallel Best-First Search Algorithms . 424

11.3.1 Parallel Overheads . 425
11.3.2 Centralized Parallel A* . 425
11.3.3 Decentralized Parallel A* . 428

11.3.3.1 Termination Detection in Decentralized
Parallel Search . 429

11.4 Hash-Based Decentralized A* . 430
11.4.1 Hash Distributed A* . 431

11.5 Decentralized Search Using Structure-Based Search Space
Partitioning) . 432

11.6 Hash Functions for Hash-Based Decentralized Work
Distribution 433
11.6.1 Multiplicative Hashing . 433
11.6.2 Zobrist Hashing . 434
11.6.3 Operator-Based Zobrist Hashing . 434
11.6.4 Abstraction . 435
11.6.5 Abstract Zobrist Hashing . 436
11.6.6 Hyperplane Work Distribution . 437
11.6.7 Empirical Comparison of Hash Functions 439
11.6.8 Domain-Independent, Automatic Generation of Hash

Functions . 441
11.6.9 Hash-Based Work Distribution in Model Checking 441

11.7 Parallel Portfolios Using A* . 442
11.8 Parallel, Limited-Memory A* (Parallel IDA*, TDS, PRA*) 443

11.8.1 Transposition Table-Driven Scheduling (TDS) 444
11.8.2 Work Stealing for IDA* . 444
11.8.3 Parallel Window Search . 445
11.8.4 Parallel Retracting A* (PRA*) . 446

11.9 Parallel A* in Cloud Environments with Practically Unlimited
Available Resources . 446
11.9.1 Iterative Allocation Strategy . 447

11.10 Parallel A* and IDA* on Graphics Processing Units 448
11.11 Other Approaches . 449
References . 450

12 Parallel Model Checking Algorithms for Linear-Time Temporal

Logic . 457
Jiri Barnat, Vincent Bloemen, Alexandre Duret-Lutz, Alfons Laarman,
Laure Petrucci, Jaco van de Pol, and Etienne Renault
12.1 Introduction . 458
12.2 Preliminaries: LTL Model Checking and Automata 461

. .

Contents xix

12.2.1 Automata-Theoretic Model Checking 461
12.2.2 Sequences and ω-Words . 461
12.2.3 Linear-Time Temporal Logic . 462
12.2.4 Kripke Structures . 463
12.2.5 Büchi Automata . 463
12.2.6 The Emptiness-Check Problem . 466
12.2.7 Implicit Models and Automata . 469
12.2.8 Simpler Subclasses . 471

12.3 Basic Sequential LTL Model Checking Algorithms 473
12.3.1 On-the-Fly Algorithms . 473
12.3.2 Depth-First Search . 474
12.3.3 Nested-DFS . 476
12.3.4 Algorithms Based on SCC Decomposition 478

12.4 Multi-core, DFS-Based Solutions . 481
12.4.1 Terminal and Weak Acceptance . 481
12.4.2 CNDFS . 484
12.4.3 Multi-core/DFS-Based SCC Decomposition 486

12.5 Distributed, BFS-Based Solutions . 492
12.5.1 One-Way-Catch-Them-Young . 492
12.5.2 MAP . 494
12.5.3 Combining OWCTY and MAP . 497

12.6 Conclusion . 498
References . 499

13 Multi-core Decision Diagrams . 509
Tom van Dijk and Jaco van de Pol
13.1 Introduction . 509
13.2 Preliminaries . 510

13.2.1 Boolean Logic and Notation . 511
13.2.2 Binary Decision Diagrams . 511
13.2.3 Multi-terminal Binary Decision Diagrams 513
13.2.4 Algorithms on Decision Diagrams 514
13.2.5 Parallelism . 516
13.2.6 Historical Perspective . 517

13.3 Parallel Decision Diagrams . 519
13.3.1 Work-Stealing . 519
13.3.2 Parallel Operations with Work-Stealing 522
13.3.3 Conclusion . 525

13.4 Concurrent Data Structures . 525
13.4.1 Representation of Nodes . 525
13.4.2 Unique Table . 526
13.4.3 Computed Table . 531

13.5 Garbage Collection . 533
13.6 Empirical Results . 535

13.6.1 Symbolic Model Checking . 536

xx Contents

13.6.2 Symbolic On-the-Fly Reachability 536
13.6.3 Symbolic Bisimulation Minimisation 537
13.6.4 Probabilistic Model Checking . 540

13.7 Conclusions . 540
References . 541

14 Parallel Model-Based Diagnosis . 547
Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz
14.1 Introduction . 547

14.1.1 Background . 547
14.1.2 Outline of the Chapter . 548

14.2 Reiter’s Diagnosis Framework . 549
14.2.1 Example: A Diagnosis Problem Instance 549
14.2.2 Diagnoses and Conflicts . 551
14.2.3 The Hitting Set Tree Algorithm . 553
14.2.4 Example: Hitting Set Tree Construction 554
14.2.5 Complexity Considerations . 556

14.3 Alternative Approaches to Compute Diagnoses 556
14.4 Parallelization of Tree Search Algorithms . 559

14.4.1 General Parallelization Strategies . 559
14.4.2 Applying Domain-Independent Parallelized Search

Techniques . 561
14.5 Parallelized Hitting Set Tree Construction Schemes 562

14.5.1 Computing Multiple Hitting Set Tree Nodes in
Parallel 562
14.5.1.1 Level-Wise Parallelization 563
14.5.1.2 Full Parallelization . 564

14.5.2 Computing Nodes and Conflicts in Parallel 565
14.5.2.1 Background: QUICKXPLAIN and

MERGEXPLAIN . 566
14.5.2.2 Strategies for Combining Node and Conflict

Computation . 567
14.6 Effectiveness of Computing Multiple Nodes in Parallel 569

14.6.1 General Considerations . 569
14.6.2 Results for Standard Electronic Circuit Benchmark

Problems . 571
14.6.3 Systematic Variation of Problem Characteristics 572

14.6.3.1 Method . 572
14.6.3.2 Results . 574

14.7 Alternative Model-Based Diagnosis Parallelization
Approaches 574
14.7.1 Tree-Based Approaches To Find One or Few

Diagnoses 574
14.7.2 Distributed Hitting Set Algorithms with Known

Conflicts 576
14.8 Summary . 577
References . 578

. ...

. .

. .

. ..

Contents xxi

Part II Tools and Applications

15 Selection and Configuration of Parallel Portfolios 583
Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown
15.1 Introduction . 584
15.2 Per-Instance Selection of Parallel Portfolios 586

15.2.1 Problem Statement . 586
15.2.2 Parallelization of Sequential Algorithm Selectors 588

15.2.2.1 Performance-Based Nearest Neighbor (PNN) . 589
15.2.2.2 Distance-Based Nearest Neighbor (DNN) 589
15.2.2.3 Clustering . 590
15.2.2.4 Regression . 590
15.2.2.5 Pairwise Voting . 591

15.2.3 Parallel Presolving Schedules . 591
15.2.4 Empirical Study on Satisfiability Benchmarks 591
15.2.5 Other Parallel Portfolio Selection Approaches 594

15.3 Automatic Construction of Parallel Portfolios from Parameterized
Solvers . 595
15.3.1 Problem Statement . 596
15.3.2 Automatic Construction of Parallel Portfolios (ACPP) . . . 598

15.3.2.1 Multiplying Configuration Space: GLOBAL . . . 599
15.3.2.2 Iterative Approach: PARHYDRA 599
15.3.2.3 Comparing GLOBAL and PARHYDRA 601
15.3.2.4 Empirical Study on SAT 2012 Challenge 602
15.3.2.5 ACPP with Multiple Solvers 602

15.3.3 Automatic Construction of Parallel Portfolios from
Parallel Parameterized Solvers . 603
15.3.3.1 Configuration of Clause Sharing 603
15.3.3.2 Portfolio Construction Using Parallel

Solvers 604
15.3.3.3 Empirical Study on 2012 SAT Challenge 606

15.4 Conclusions and Future Work . 607
References . 609

16 An Application of Parallel Satisfiability Solving to the Verification

of Complex Embedded Systems . 617
Orlando Ferrante, Alberto Ferrari, Christos Sofronis, Leonardo
Mangeruca, and Luca Benvenuti
16.1 Introduction . 617
16.2 FormalSpecs Verifier Verification Framework 618
16.3 Integration of the ManySAT Solver . 619
16.4 Cruise Control Use Case . 620
16.5 Simulink Model and Specification . 622

16.5.1 Continuous-Time Non-linear Model 622
16.5.1.1 ECU Subsystem . 622
16.5.1.2 Engine Subsystem . 623

. .

xxii Contents

16.5.1.3 Vehicle Dynamics Subsystem 624
16.5.2 Discrete-Time Discrete-Value Model 625

16.5.2.1 Verification Subsystems 627
16.6 Experimental Results . 628

16.6.1 Cruise Control Model . 628
16.6.1.1 Bounded Model Checking Verification with

Incremental Bounds . 629
16.6.1.2 Bounded Model Checking Verification with

Fixed Bound Value . 629
16.6.2 Additional Experiments . 630

16.7 Conclusions . 631
References . 631

17 Parallel Constraint-Based Local Search: An Application to

Designing Resilient Long-Reach Passive Optical Networks 633
Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada
17.1 Introduction . 634
17.2 Formal Specification and Complexity . 635
17.3 A Mathematical Model for ERDCMST . 637
17.4 Iterated Constraint-Based Local Search . 638

17.4.1 Move Operators . 639
17.4.2 Operations and Complexities . 640

17.5 Sequential Algorithm . 644
17.6 Parallel Algorithm . 646

17.6.1 Multi-Walk and Single-Walk . 646
17.6.2 Parallel Moves for ERDCMST . 647

17.7 Application: Long-Reach Passive Optical Networks 650
17.8 Empirical Evaluation . 652

17.8.1 ERDCMST Results: Sequential LS 653
17.8.2 ERDCMST Results: Parallel LS . 656

17.9 Conclusions and Future Work . 662
References . 662

List of Algorithms . 669

Index . 671

List of Contributors

Adi Botea
IBM Research, Dublin, Ireland, e-mail: adibotea@ie.ibm.com

Agostino Dovier
University of Udine, Dept of Mathematics, Computer Science, and Physics, Italy,
e-mail: agostino.dovier@uniud.it

Akihiro Kishimoto
IBM Research, Dublin, Ireland, e-mail: akihirok@ie.ibm.com

Alberto Ferrari,
Advanced Laboratory on Embedded Systems - United Technologies Research Center,
East Hartford, CT, USA, e-mail: name.surname@utrc.utc.com

Alejandro Arbelaez
Insight Centre for Data Analytics, University College Cork, Ireland, e-mail:
alejandro.arbelaez@insight-centre.org

Alex Fukunaga
The University of Tokyo, Japan, e-mail: fukunaga@idea.c.u-tokyo.ac.jp

Alexandre Duret-Lutz
LRDE, Epita, Paris, France, e-mail: adl@lrde.epita.fr

Alfons Laarman
TU Wien, Vienna, Austria, e-mail: alfons@laarman.com

Andrea Formisano
University of Perugia, Dip. di Matematica e Informatica, Italy, e-mail:
andrea.formisano@unipg.it

Antti E. J. Hyvärinen
Università della Svizzera italiana, Lugano, Switzerland, e-mail:
antti.hyvaerinen@usi.ch

xxiii

adibotea@ie.ibm.com
agostino.dovier@uniud.it
akihirok@ie.ibm.com
name.surname@utrc.utc.com
alejandro.arbelaez@insight-centre.org
fukunaga@idea.c.u-tokyo.ac.jp
adl@lrde.epita.fr
alfons@laarman.com
andrea.formisano@unipg.it
antti.hyvaerinen@usi.ch

xxiv List of Contributors

Armin Biere
Johannes Kepler University, Linz, Austria, e-mail: biere@jku.at

Arnaud Malapert
Université Côte d’Azur, CNRS, I3S, France, e-mail: arnaud.malapert@
unice.fr

Barry O’Sullivan
Insight Centre for Data Analytics, University College Cork, Ireland, e-mail:
barry.osullivan@insight-centre.org

Carsten Sinz
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, e-mail:
carsten.sinz@kit.edu

Christoph M. Wintersteiger
Microsoft Research, e-mail: cwinter@microsoft.com

Christos Sofronis,
Advanced Laboratory on Embedded Systems - United Technologies Research Center,
East Hartford, CT, USA, e-mail: name.surname@utrc.utc.com

Daniel Diaz
University Paris 1/CRI, France, e-mail: daniel.diaz@univ-paris1.fr

Danny Munera
University of Antioquia, Medellin, Colombia, e-mail: danny.munera@udea.
edu.co

Deepak Mehta
Insight Centre for Data Analytics, University College Cork, Ireland, e-mail:
deepak.mehta@insight-centre.org

Dietmar Jannach
Department of Computer Science, TU Dortmund, Germany, e-mail:
dietmar.jannach@tu-dortmund.de

Enrico Pontelli
New Mexico State University, Dept. of Computer Science, USA, e-mail:
epontell@cs.nmsu.edu

Etienne Renault
LRDE, Epita, Paris, France e-mail: renault@lrde.epita.fr

Florian Lonsing
Institute of Information Systems, TU Wien, Austria, e-mail: florian.lonsing@
tuwien.ac.at

Frank Hutter
University of Freiburg, Germany, e-mail: fh@cs.uni-freiburg.de

biere@jku.at
arnaud.malapert@unice.fr
arnaud.malapert@unice.fr
barry.osullivan@insight-centre.org
carsten.sinz@kit.edu
cwinter@microsoft.com
name.surname@utrc.utc.com
daniel.diaz@univ-paris1.fr
danny.munera@udea.edu.co
danny.munera@udea.edu.co
deepak.mehta@insight-centre.org
dietmar.jannach@tu-dortmund.de
epontell@cs.nmsu.edu
renault@lrde.epita.fr
florian.lonsing@tuwien.ac.at
florian.lonsing@tuwien.ac.at
fh@cs.uni-freiburg.de

List of Contributors xxv

Holger Hoos
University of British Columbia, Canada & Leiden University, Netherlands, e-mail:
hoos@cs.ubc.ca

Inês Lynce
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal, e-mail:
ines.lynce@tecnico.ulisboa.pt

Jaco van de Pol
Formal Methods and Tools, University of Twente, Enschede, The Netherlands,
e-mail: j.c.vandepol@utwente.nl

Jean-Charles Régin
Université Côte d’Azur, CNRS, I3S, France, e-mail: jcregin@gmail.com

Jiri Barnat
Masaryk University, Brno, Czech Republic, e-mail: xbarnat@fi.muni.cz

Kevin Leyton-Brown
University of British Columbia, Canada, e-mail: kevinlb@cs.ubc.ca

Kostyantyn Shchekotykhin
Institute for Applied Informatics, Alpen-Adria-Universität Klagenfurt, Austria,
e-mail: konstantin.schekotihin@aau.at

Laure Petrucci
LIPN, CNRS, Paris, France, e-mail: Laure.Petrucci@lipn.
univ-paris13.fr

Leonardo Mangeruca
Advanced Laboratory on Embedded Systems - United Technologies Research Center,
East Hartford, CT, USA, e-mail: name.surname@utrc.utc.com

Luca Benvenuti
“Sapienza” University of Rome, Italy, e-mail: luca.benvenuti@uniroma1.it

Luis Quesada
Insight Centre for Data Analytics, University College Cork, Ireland, e-mail:
luis.quesada@insight-centre.org

Maria Paola Bonacina
Dipartimento di Informatica, Università degli Studi di Verona, Italy, e-mail:
mariapaola.bonacina@univr.it

Marijn J.H. Heule
The University of Texas at Austin, USA, e-mail: marijn@cs.utexas.edu

Marius Lindauer
University of Freiburg, Germany, e-mail: lindauer@cs.uni-freiburg.de

Martina Seidl
Institute for Formal Models and Verification, JKU Linz, Austria, e-mail:
martina.seidl@jku.at

hoos@cs.ubc.ca
ines.lynce@tecnico.ulisboa.pt
j.c.vandepol@utwente.nl
jcregin@gmail.com
xbarnat@fi.muni.cz
kevinlb@cs.ubc.ca
konstantin.schekotihin@aau.at
Laure.Petrucci@lipn.univ-paris13.fr
Laure.Petrucci@lipn.univ-paris13.fr
name.surname@utrc.utc.com
luca.benvenuti@uniroma1.it
luis.quesada@insight-centre.org
mariapaola.bonacina@univr.it
marijn@cs.utexas.edu
lindauer@cs.uni-freiburg.de
martina.seidl@jku.at

xxvi List of Contributors

Oliver Kullmann
Swansea University, UK, e-mail: O.Kullmann@swansea.ac.uk

Orlando Ferrante,
Advanced Laboratory on Embedded Systems - United Technologies Research Center,
East Hartford, CT, USA, e-mail: name.surname@utrc.utc.com

Philippe Codognet
University Pierre & Marie Curie/LIP6, France, e-mail: philippe.codognet@
upmc.fr

Ruben Martins
University of Texas at Austin, USA, e-mail: rmartins@cs.utexas.edu

Salvador Abreu
University of Évora/LISP/CRI, Portugal, e-mail: spa@di.uevora.pt

Ted Ralphs
Lehigh University, Bethlehem, PA, USA, e-mail: ted@lehigh.edu

Thomas Schmitz
Department of Computer Science, TU Dortmund, Germany, e-mail:
thomas.schmitz@tu-dortmund.de

Thorsten Koch
Zuse Institute, Berlin, Germany, e-mail: koch@zib.de

Timo Berthold
Fair Isaac Germany GmbH, Berlin, Germany, e-mail: timoberthold@fico.
com

Tom van Dijk
Institute for Formal Methods and Verification, Johannes Kepler University, Linz,
Austria, e-mail: tom.vandijk@jku.at

Tomáš Balyo
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, e-mail:
biotomas@gmail.com

Vasco Manquinho
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal, e-mail:
vmm@sat.inesc-id.pt

Vincent Bloemen
University of Twente, Enschede, The Netherlands, e-mail: v.bloemen@utwente.
nl

Yuji Shinano
Zuse Institute, Berlin, Germany, e-mail: shinano@zib.de

Yuu Jinnai
The University of Tokyo, Japan, e-mail: ddyuudd@gmail.com

O.Kullmann@swansea.ac.uk
name.surname@utrc.utc.com
philippe.codognet@upmc.fr
philippe.codognet@upmc.fr
rmartins@cs.utexas.edu
spa@di.uevora.pt
ted@lehigh.edu
thomas.schmitz@tu-dortmund.de
koch@zib.de
timoberthold@fico.com
timoberthold@fico.com
tom.vandijk@jku.at
biotomas@gmail.com
vmm@sat.inesc-id.pt
v.bloemen@utwente.nl
v.bloemen@utwente.nl
shinano@zib.de
ddyuudd@gmail.com

Part I

Theory and Algorithms

Chapter 1

Parallel Satisfiability

Tomáš Balyo and Carsten Sinz

Logic is the beginning of
wisdom, not the end –
Leonard Nimoy

Abstract The propositional satisfiability problem (SAT) is one of the fundamental
problems in theoretical computer science, but it also has many practical applications.
Parallel algorithms for the SAT problem have been proposed and implemented since
the 1990s. This chapter provides an overview of current approaches and their evolu-
tion over recent decades towards efficiently solving hard combinatorial problems on
multi-core computers and clusters.

1.1 Introduction

SAT is one the most important problems in computer science. It was the first problem
proven to be NP-hard [16]. Despite its complexity there are very efficient SAT
solvers which make it possible to design successful algorithms for hard problems by
translating them to SAT.

Parallelizing algorithms for combinatorial decision problems, such as SAT, is not
an easy task, as the search space is highly irregular and different search heuristics
can have a tremendous effect on the observed run-time. Theoretical results vary from
super-linear speedups for random problems [55] on the positive side to profound
proof-theoretic limitations [34] on the negative.

Nevertheless, important parallelization techniques for SAT have been developed,
including divide-and-conquer approaches, portfolio solvers, and parallel local search
solvers.

As the increase in compute power of a single processor core has been stagnating
over recent years, it has become even more important to invent and engineer parallel
algorithms that can make optimal use of current and future computer architectures.

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

3© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_1&domain=pdf

4 Tomáš Balyo and Carsten Sinz

This chapter is organized as follows: after an introduction to basic notions and
algorithms for the SAT problem, parallel computing architectures and the problem
of measuring speedups are discussed. Then the current main lines for parallel SAT
algorithms are presented, namely divide-and-conquer (also known as search space
partitioning), portfolios (diversify-and-conquer), and local search solvers. The chapter
closes with a look at future challenges.

1.2 Preliminaries

In this section we give the basic definitions and properties of the satisfiability problem,
which can also be found in any SAT-related textbook (for example the Handbook of
Satisfiability [7]).

1.2.1 Satisfiability (SAT)

We start with the definition of a formula, which is the input of the SAT problem.

Definition 1 (CNF Formula). A Boolean variable is a variable with two possible
values, True and False. A literal of a Boolean variable x is either x or ¬x, i.e., positive
or negative literal of x. A clause is a disjunction (OR) of literals. A conjunctive
normal form (CNF) formula is a conjunction (AND) of clauses. We can also regard
a clause as a set of literals and a CNF formula as a set of clauses, since the ordering
is not important in either case.

In the remainder of the chapter we will just use the term formula instead of CNF
formula. Next we define what is a satisfying assignment.

Definition 2 (Satisfying Assignment). A truth assignment φ of a formula F assigns
a truth value to its variables. The assignment φ satisfies

• a positive literal if it assigns the value True to its variable,
• a negative literal if it assigns the value False to its variable,
• a clause if it satisfies at least one of its literals,
• a CNF formula if it satisfies each one of its clauses.

If φ satisfies a formula F , then φ is called a satisfying assignment for F .

A clause with no literals is called an empty clause. Such a clause cannot be
satisfied by any truth assignment. The definition of satisfiability follows.

Definition 3 (Satisfiability). A formula F is said to be satisfiable if there is a truth
assignment φ that satisfies F , i.e., φ is a satisfying assignment of F . Otherwise, the
formula φ is unsatisfiable.

The problem of satisfiability (SAT) is to determine whether a given formula F is
satisfiable or unsatisfiable.

1 Parallel Satisfiability 5

A SAT solver is a procedure that solves the SAT problem. For satisfiable formulas
we also expect a SAT solver to produce a satisfying assignment. An example of a
satisfiable formula with its satisfying assignment follows.

Example 1. F = (x1 ∨ x2 ∨¬x4)∧ (x3 ∨¬x1)∧ (¬x1 ∨¬x2) is a CNF formula with
three clauses: {(x1∨x2∨¬x4), (x3∨¬x1), (¬x1∨¬x2)} and six literals {x1,¬x1,x2,
¬x2,x3,¬x4} on four variables {x1,x2,x3,x4}. F is satisfiable with φ = {x1 →
False,x2 → True,x3 → True,x4 → True} being a satisfying truth assignment of
F .

1.2.2 Local Search Algorithms for SAT

The simplest approach to SAT solving is local search. A generic local search algo-
rithm starts with a truth assignment (usually random, i.e., each variable has a random
truth value assigned) and then iteratively selects a variable whose value is flipped
(changed to False if it was True and vice versa) until a satisfying assignment is
reached. The pseudo-code of this generic local search is presented as Algorithm 1.1.

Obviously, this algorithm only works for satisfiable formulas; for unsatisfiable
instances it does not terminate. The performance of the algorithm depends on the
initial truth assignment and the way of selecting variables for flipping. In the best-
case scenario the initial assignment is already satisfying and we are finished. Also, if
the variable selection were ideal, we could reach a satisfying assignment from any
initial assignment in at most n steps (where n is the number of variables). In practice
we need to use heuristics for both these steps and the main loop (the variable flipping)
is executed only a limited number of times after which the algorithm gives up.

The initial truth assignment is often chosen randomly and for the variable selection
a heuristic minimizing the number of unsatisfied clauses is used. Two historically
important examples of local search algorithms are GSAT [49] and WalkSat [48].
GSAT select a variable that reduces the number of unsatisfied clauses most when
flipped. WalkSat first randomly selects a clause that is not satisfied under the current
assignment and flips one of its literals based on the number of clauses that become
satisfied and unsatisfied after the flip. WalkSat additionally performs a random
selection of the literal to flip in a certain percentage of the flips to emulate random
walk, hence the name WalkSat.

Local search algorithms are usually the best choice for randomly generated
satisfiable formulas and some combinatorial problems encoded to SAT.

1.2.3 The DPLL Algorithm

Most of the current state-of-the-art SAT solvers are based on the CDCL (conflict-
driven clause learning) algorithm [41], which is in turn based on the Davis Putnam

6 Tomáš Balyo and Carsten Sinz

Algorithm 1.1: A Generic Local Search Algorithm
1 Function LS(Formula f)
2 φ ← generate truth assignment
3 while F not satisfied by φ do

4 v← pick a variable
5 φ [v]←¬φ [v]

6 return true

Logemann Loveland (DPLL) algorithm [17]. Before we give a description of CDCL
in the following section we review DPLL here. The DPLL algorithm is basically
a depth-first search of partial truth assignments (truth assignments where some
variables remain unassigned) with three additional enhancements. The explanation
of these enhancements follows.

• Early termination. If all literals are False in some clause, we can backtrack since
it is obvious that the current partial truth assignment cannot be extended into
a satisfying assignment. If all clauses are satisfied we can stop the search. The
remaining unassigned Boolean variables can be assigned arbitrarily.

• Pure literal elimination. Given a partial truth assignment φ a pure literal is a
literal the negation of which does not appear in any of the clauses not satisfied
by φ . The variable corresponding to a pure literal can be assigned to make each
clause where it appears true. This might lead to the appearance of new pure
literals.

• Unit propagation. A clause is called unit if all but one of its literals are false
under φ and the remaining literal is unassigned. The unassigned literal of a
unit clause must be assigned to be true. This can make other clauses unit and
thus force new assignments. The cascade of such assignments is called unit
propagation.

In the DPLL procedure the enhancements are used after each decision assignment
of the depth-first search. First we check the termination condition. If the formula is
neither satisfied nor unsatisfied by the current partial assignment, we continue by
unit propagation. Finally we apply the pure literal elimination. Unit propagation is
called before pure literal elimination because it can cause the appearance of new pure
literals. The other way around, pure literal elimination will never produce a new unit
clause, since it does not make any literals false. Pseudo-code of DPLL is presented
as Algorithm 1.2.

We can see that DPLL is a sound and complete algorithm (always terminates
and answers correctly) from the fact that DPLL is a systematic depth-first search
of partial truth assignments. The enhancements only filter out some branches that
represent non-satisfying assignments.

The time complexity of this procedure is exponential in the number of variables.
That corresponds to the number of vertices of a binary search tree with depth n,
where n is the number of variables. However, in practice, thanks to unit propagation

1 Parallel Satisfiability 7

Algorithm 1.2: The DPLL Algorithm
1 Function DPLL(Formula F, Assignment φ)
2 doUnitPropagation(F ,φ)
3 if all literals false in some clause then

4 return false

5 doPureLiteralElimination(F ,φ)
6 if all clauses satisfied then

7 return true

8 x← choose an unassigned variable
9 return DPLL(F,φ [x] = True) or DPLL(F,φ [x] = False)

and early termination, the DPLL procedure never goes as deep as n in the search
tree. The maximal depth reached during search is often a fraction of n. This makes
DPLL run much faster on instances with n variables than one would expect from the
formula 2n.

1.2.4 Resolution Refutation

Resolution is a rule of inference which produces a new clause from clauses containing
complementary literals. Two clauses C and D are said to contain complementary
literals if there is a Boolean variable x such that x ∈C and ¬x ∈ D. The produced
clause (containing all the literals from C and D except for x and ¬x) is called the
resolvent of C and D (notation: R(C,D)).

A formula F containing C and D is satisfiable if and only if F ∧ R(C,D) is
satisfiable. This implies that if the empty clause can be resolved from the clauses
of a formula then this formula is unsatisfiable (since the empty clause cannot be
satisfied). The Resolution Refutation algorithm keeps adding resolvents to its input
formula until either the empty clause is added (which means the input formula is
unsatisfiable) or no more new resolvents can be added (in which case the input
formula is satisfiable). Note that resolvents added in one step can be used as input
clauses for resolutions in later steps.

Although the resolution refutation algorithm is sound and complete it is not very
efficient in practice since it has exponential memory complexity (in general there are
exponentially many possible resolvents for a formula).

1.2.5 The CDCL Algorithm

The conflict-driven clause learning (CDCL) algorithm is the state-of-the-art algorithm
for solving SAT problems. It was first implemented in the SAT solver Grasp [41].

8 Tomáš Balyo and Carsten Sinz

Algorithm 1.3: The CDCL Algorithm
1 Function CDCL(Formula f)
2 decLev← 0
3 φ ← /0
4 if doUnitPropagation(f,φ) = CONFLICT then

5 return false

6 while not all variables assigned do

7 decVar← pick decision variable
8 decVal ← pick a truth value
9 decLev← decLev+1

10 φ [decVar] = decVal with decision level decLev
11 if doUnitPropagation(f,φ) = CONFLICT then

12 (learnedClause, backLev)← analyze conflict
13 if backLev≥ 0 then

14 decLev← backLev
15 f ← f ∧ learnClause
16 φ ← unassign variables with decision level ≥ backLev
17 else

18 return false

19 return true

In this subsection we describe only the basic concepts behind CDCL. For a more
detailed comprehensive description please refer to [7].

The CDCL algorithm combines ideas of DPLL search and resolution refutation.
The pseudo-code of CDCL is presented in Algorithm 1.3. Similarly to DPLL the
algorithm performs depth-first search of partial truth assignments and uses improve-
ments such as unit propagation and early termination. Additionally, CDCL performs
a procedure called conflict analysis each time a conflict state is reached, i.e., every
literal becomes false in some clause under the current partial assignment.

The conflict analysis determines which decisions and which clauses (via unit
propagation) are responsible for the conflict. The clauses responsible for the conflict
are called reason clauses. By resolving the reason clauses of a conflict we get new
clauses that can be added to the formula. Clauses added this way are called learned
clauses.

In the CDCL algorithm each truth value assignment to a variable has an attribute
called its decision level. The assignments implied by the initial unit propagation have
decision level zero, the assignments coming from the first branching decision and
the unit propagation that follows it have decision level one, and so on. In DPLL the
decision level represents the depth of the recursive call during which the variable
was assigned. The decision level increases by one after every branching decision and
is decreased by one after a conflict is encountered and we backtrack to the previous
decision.

1 Parallel Satisfiability 9

In CDCL the decision level can decrease by more than one during backtracking.
This is called non-chronological backtracking or backjumping. The decision level to
which the algorithm “backjumps” is calculated during conflict analysis.

1.2.6 Parallel Computing Architectures

In this subsection we review the basic notions related to parallel computing, such
as parallel architectures, memory models, and definitions of speedup and parallel
efficiency.

Based on the access to the main memory used in a parallel system we can distin-
guish two kinds of parallel architectures.

• Shared Memory Architectures. The main memory is shared between all pro-
cessing elements in a single address space. It is used on single computers with
multiple (multi-core) processors. The advantages of this approach are that all
processes have very fast access to the shared data and less total memory is used,
which allows the solution of larger problems. The disadvantage is that race
conditions must be addressed (usually with locks), which may lead to parallel
slowdown or even deadlocks, and this makes implementations error prone.

• Distributed Memory Architectures. Each processing element has its own address
space and communication is usually done by message passing. This approach
can be used on single computers or on grids/clusters of computers. The speed of
communication is lower than in the case of shared-memory architectures but the
design and implementation of such a system is usually simpler.

A parallel system can also use a combination of these architectures. For example
the parallel solver HordeSat[6], which was designed to run on clusters of multi-core
computers, uses shared-memory communication inside the nodes and distributed-
memory communication between the nodes.

1.2.7 Measuring Speedups

The speedup of a parallel solver P compared to a sequential solver S for a given
benchmark is the ratio of run times that the solvers need to solve that benchmark,
i.e., s = tP/tS, where tP and tS are the runtimes of the parallel and sequential solver
respectively.

In parallel processing, one usually wants good scalability in the sense that the
speedup over the best sequential algorithm goes up near linearly with the number
of processors. Measuring scalability in a reliable and meaningful way is difficult
for SAT solving since running times are highly nondeterministic. Hence, we need
careful experiments on a large benchmark set chosen in an unbiased way.

10 Tomáš Balyo and Carsten Sinz

By averaging the speedups for each benchmark instance we can compute the
average speedup. The average speedup is not a very robust measure since it is highly
dependent on a few very large speedups that might be just due to luck. For this reason
we often get very large average speedup values that are not representative for the
entire benchmark set. Calculating the median of the speedups gives us the median
speedup. The value of the median speedup is often very small if the benchmark set
contains a large number of easy benchmarks where parallelization does not bring any
benefit, and therefore it is not an ideal measure either. A better measure is the total
speedup which is the sum of runtimes for the parallel solver divided by the sum of
runtimes for the sequential solver on the benchmark set.

Nevertheless, all these measures can treat a massively parallel solver (a solver
designed for hundreds or thousands of processors) unfairly when most instances
are actually too easy to justify investing in a lot of hardware. Indeed, in parallel
computing, it is usual to analyze the performance on many processors using weak
scaling where one increases the amount of work involved in the considered instances
proportionally to the number of processors. Therefore the set of benchmarks consid-
ered for calculating the average, median, and total speedups is usually restricted to
those instances where the sequential solver needs at least c× p seconds where p is
the number of processors used by the parallel solver and c is constant.

1.3 Divide-and-Conquer Approaches

Historically, the first parallelization approaches for the SAT problem were based on
splitting the search space. Here, different tasks search for a satisfying assignment in
disjunct portions of the search space. Different ways to split the search space have
been proposed [10, 11, 12, 14, 15, 20, 30, 32, 33, 38, 46, 50, 58, 59]. Splitting the
search space should preferably yield portions of potentially equal size to balance the
search evenly among different tasks. Predicting the size of the search space for a
DPLL or CDCL search is extremely hard and no satisfactory solutions exist up to
now, even though some promising attempts have been made [36, 37].

Thus, the search space is typically not split up statically (at the start of the
algorithm), but dynamically, as soon as one processor involved in the search becomes
idle.

1.3.1 Problem Decomposition and Load Balancing

Problem decomposition plays a central role within the design process of parallel
algorithms, since it influences all other design phases. In this stage, the whole
problem is divided into appropriate subproblems (called tasks) which can be executed
in parallel by the available processors. Problem decomposition must achieve two
(typically conflicting) goals:

1 Parallel Satisfiability 11

• Minimize idle times of available processors.
• Minimize overhead due to communication and excess computation.

Basically, problem decomposition can be carried out statically (i.e. tasks are
defined at compile time) or in a dynamic manner, where tasks are generated (on
demand) at run-time. In the latter case, tasks are explicit objects within the parallel
program which can be dynamically assigned to processors for execution.

Due to the sophisticated heuristics employed by contemporary DPLL-based SAT
solvers it is virtually impossible to predict the time needed to solve a specific SAT
instance. Accordingly, the run-time of an individual task cannot be predicted and
the run-times of different tasks may vary considerably. For SAT instances exhibiting
such a highly irregular problem structure a static approach to decomposition can
result in significant processor idling. Thus, for realizing a robust parallel SAT-solving
method, dynamic problem decomposition becomes mandatory.

For problems based on heuristic search, typically an exploratory approach to prob-
lem decomposition is employed where tasks represent untried branches of the search
tree. Specifically, this technique enables a running solving task to efficiently split
off a part of its own search space, generating a new task. The parallel computation
terminates when all generated tasks have been completed or when a task reports a
solution. In the latter case, the remaining tasks can be canceled.

Technically, exploratory decomposition can be accomplished by a transformation
of the assignment stack of a running solving process. It narrows the search space of
the solving process by fixing the decision and the corresponding implications of the
first level. The released search space is defined by the top-level assignments and the
flipped decision. In this way, tasks can be represented by a set of assignments. The
splitting procedure is depicted in Figure 1.1. This technique was first described by
Chrabakh and Wolski [15]. It represents a refinement of the guiding-path approach
developed by Zhang et al. [59].

In order to enable dynamic problem decomposition, a sequential solver must be
adapted to support the discussed transformation of the assignment stack and it must
also be capable of initializing the level 0 of the assignment stack according to the set
of assignments delivered by a task.

The parallel computation starts with a single task that is responsible for the whole
search space (i.e. the task is defined by an empty set of assignments). When idle
processors are detected (either initially or upon completion of a task), search space
splitting is performed to induce additional parallelism. This procedure is steered by
the load-balancing process, which we discuss next.

Generally, dynamic problem decomposition requires explicit load balancing, i.e.,
tasks have to be assigned to processors at run-time. Especially for problems with
high irregularity, the task pool model should be employed. It decouples problem
decomposition and load balancing by using an explicit data structure holding tasks
resulting from dynamic decomposition operations.

The task pool model can be organized in either a centralized or a distributed
fashion. In a centralized approach, a master processor maintains a global task pool
from which processors can request new tasks when they become idle. The master also

12 Tomáš Balyo and Carsten Sinz

Fig. 1.1: Problem Decomposition

keeps track of the activity of each processor. Thus it can select an active processor
to perform problem decomposition when the size of the pool falls below a given
threshold. This ensures that the task pool is sufficiently filled to serve task requests
in a timely fashion.

Fully distributed load balancing requires that every processor maintains its own
task pool. In this setting, problem decomposition and load balancing must be accom-
plished autonomously by the processors. If a processor runs out of tasks it chooses
another processor (e.g., by a round-robin or a randomized scheme) from which to
request new tasks. When a predefined amount of time has elapsed without a reply,
a request to a different processor is issued. On the other hand, active processors
perform problem decomposition when the size of the task pool falls below a certain
threshold. In order to prevent parallelism being generated in an uncontrolled way,
the number of splitting operations a processor performs must be limited, e.g., by a
minimum time interval between two consecutive split operations. In the distributed
task model, choosing appropriate threshold and timing values is a subtle task, which
can in practice only be managed by extensive experimentation. Due to the lack of a
central controller, detecting the end of a parallel computation (i.e., all generated tasks
have been executed) requires explicit protocols, e.g., Dijkstra’s token-ring-based
termination detection algorithm [18].

In general, a centralized approach can establish a more accurate view of the state of
the processors and is more easy to implement, particularly on shared-memory archi-
tectures. However, with an increasing number of processors, centralized components
soon become a sequential bottleneck of a parallel computation, which can seriously
limit the overall efficiency. Thus, at least for distributed-memory architectures with a
large number of processors a distributed design should be preferred.

The decomposition procedure we have discussed in this section represents the
approach taken by most of the existing parallel SAT solvers. However, in the light

x
1

x
4

x
3

x
2

x
5

x
1

x
4

x
3

x
5

x
9

x
2x

9

x
7

x
7

x
1

x
5

level 0

level 1

level 2

level 3

level 0

level 1

level 2

top-level
assignments

decisions

implications

original problem

modified problem new subproblem

1 Parallel Satisfiability 13

of the latest generation of sequential SAT-solving methods, exploratory decompo-
sition can become a source of work anomalies. The search spaces of the generated
subproblems are mutually disjoint, but their union isn’t necessarily identical to the
search space covered by the sequential algorithms (e.g., due to the failure-driven
assertion technique). Consequently, the total amount of work carried out may differ
significantly between the sequential and the parallel algorithm. On the one hand,
this can result in poor speedups (due to excess computation) and on the other hand
super-linear speedups are possible.

1.3.2 Implementations of Search-Space-Splitting Solvers

Table 1.1 shows implementations of search-space-splitting parallel DPLL SAT
solvers. (Abd El Klalek et al. [19] also provide an overview and classification
of many parallel SAT solvers.) For each solver the target infrastructure is indicated
as well as whether the implementation provides fault detection and clause exchange.

Solver /
Author(s)

Year Ref. Infra-
structure

Fault
Det.?

Clause
Exch.?

Comment

Böhm &
Speckenmeyer

1994 [14] Transputer no no First parallel SAT implementation

PSATO 1994 [58] Cluster yes no Introduced notion of “Guiding Path”
PSolver 1998 [38] Grid yes no Master / slave approach allowing inte-

gration of different sequential solvers
PaSAT 2001 [50] SMP no yes First solver with clause exchange
//Satz 2001 [32] Cluster no no Defined the notion of “ping-ping phe-

nomenon”
GridSAT /
GradSAT

2003 [15] Grid no yes Refined search space splitting

ySAT 2005 [20] SMP no yes Focus on cache performance
ZetaSAT 2005 [12] Grid yes no Runs on heterogeneous grids
NorduGrid 2006 [30] Grid yes no Splitting based on the “scattering rule”
PaMiraXT 2009 [47] SMP &

Cluster
no yes Master/client model

Table 1.1: Some early DPLL-based search-space-splitting SAT Solvers

Problem decomposition via dynamic search space splitting results in highly irreg-
ular run-times. This is shown in Figure 1.2. For a thousand runs on each instance, the
run-time distribution is depicted; the two instances on top are satisfiable, the ones on
the bottom unsatisfiable.

14 Tomáš Balyo and Carsten Sinz

Histogram of 'hanoi5' Run−Times
(1000 Runs with 2 Threads)

Run−Time

Fr
eq

ue
nc

y

0 50 100 150 200 250 300

0
20

40
60

80
10

0

Histogram of 'mizh' Run−Times
(1000 Runs with 2 Threads)

Run−Time

Fr
eq

ue
nc

y

0 50 100 150 200 250 300 350

0
50

10
0

15
0

Histogram of 'longmult' Run−Times
(1000 Runs with 2 Threads)

Run−Time

Fr
eq

ue
nc

y

0 20 40 60 80

0
50

10
0

15
0

Histogram of 'manol' Run−Times
(1000 Runs with 2 Threads)

Run−Time

Fr
eq

ue
nc

y

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

Fig. 1.2: Run-time distributions for 1,000 runs of the parallel solver PaSAT [50]
on four selected instances (towers of Hanoi; cryptanalysis; hardware multiplier;
pipelined microprocessor). The two instances on the top (Hanoi and mizh) are
satisfiable, the ones on the bottom are unsatisfiable. On the x-axis, the run-time of
PaSAT on two cores is shown. The y-axis indicates the number of times the run-times
were in the given interval. The vertical line depicts the sequential run-time of the
solver (one core). In the top left figure, the dashed curve indicates a beta distribution
with α = 2.0 and β = 6.5

1.3.3 Search Space Splitting in CDCL

As CDCL traverses the search space in a less structured way than DPLL, approaches
based on the guiding path and dynamic decomposition cannot be directly applied for
search-space-splitting CDCL solvers.

Adaptations have been implemented in PCASSO [40], Treengeling [9], and Am-
pharos [3]. The employed techniques are similar to the Cube and Conquer approach
described below.

1 Parallel Satisfiability 15

1.3.4 Cube and Conquer

The basic idea of the Cube and Conquer [28] approach is to use look-ahead techniques
to split the problem into a large number (thousands) of subproblems, which can then
be solved in parallel. The Cube and Conquer approach is discussed in detail in
Chapter 2.

1.4 Parallel Portfolios – Diversify and Conquer!

In this section we discuss the simplest and yet (currently) most powerful approach
to parallelizing SAT – parallel portfolios. We start by explaining the concept of the
virtual best solver that served as the inspiration for the portfolio approach. Then we
discuss clause sharing, which is an important component of any portfolio SAT solver.
We conclude the section by reviewing some of the existing portfolio SAT solvers.

1.4.1 Virtual Best Solver

In a SAT competition a collection of SAT solvers submitted by researchers from
all over the world is run on a pre-selected set of benchmark problems with some
time limit (usually 1 hour or 5,000 seconds per instance). The results of a solver are
defined as the set of run times for each problem solved by that solver. The solver
solving the highest number of problems (within the time limit) is the winner of the
competition; ties are broken by comparing the average run times.

When a SAT competition is organized and the results are published it is common
to include the results for the virtual best solver (VBS) along with the results of the
actual solvers participating in the competition. The results of the VBS are calculated
as follows. For each benchmark that was solved by at least one of the participating
solvers we take the best run time from the run times of the solvers on that benchmark.
This implies that no solver has better run time than the VBS on any of the benchmarks
or solves a benchmark not solved by the VBS.

Is it possible to have a real solver that is as good as the VBS? Such a solver would
need to have the ability to instantly select the best SAT solver for any benchmark.
This seems to be rather difficult; however, if we have a parallel architecture and only
care about wall-time, there is a simple solution. We run all the available solvers in
parallel on the given problem and as soon as one of the solvers finds a solution we
terminate all the remaining solvers. This parallel solver would clearly achieve the
same results as the VBS. A solver like this is called a parallel portfolio solver.

16 Tomáš Balyo and Carsten Sinz

1.4.2 Pure Portfolio Solvers and Diversification

In the 2011 SAT Competition the PPfolio [45] solver demonstrated that it is possible
to win several tracks of the competition by just taking the best solvers from the
previous competition and trivially combining them using a shell script into a portfolio.
The author of PPfolio argues that such a simple portfolio solver can serve as an
approximation of the virtual best solver. But he also "shamelessly claims" [31] that
“it’s probably the laziest and most stupid solver ever written” which “does not even
parse the CNF” and “knows nothing about the clauses”. This most basic kind of
portfolio solver is called a pure portfolio and the results obtained by this portfolio
are only due to the base solvers selected.

A pure portfolio solver winning the competition can be very demotivating for the
developers of the included solvers since someone else is winning with their solver.1

To avoid this situation the following SAT competitions restricted or completely
prohibited the participation of such portfolios.

A portfolio can be also created by using just one SAT solver, which is run several
times in parallel with different configuration settings. The motivation behind this
approach is that the performance of SAT solvers is heavily influenced by a high
number of different settings and parameters of the search such as the heuristic used to
select a decision literal in DPLL/CDCL, different restart policies or clause learning
and deleting schemes in CDCL. Numerous parameter configurations are possible but
none of them dominates all the other configurations on each problem instance.

The process of selecting good configurations for a portfolio solver is called
diversification. Similarly to stock market portfolios a SAT solver portfolio should
be diversified to achieve variety and increase the robustness of the solver. In a well
diversified parallel portfolio solver each core solver explores a different region of
the search space and therefore the overlap, i.e., redundant work, is minimized. The
usual parameters that are diversified are related to decision heuristics (for example
community branching [53] and block branching [52]), restart heuristics [51], and
clause deletion strategies [22]. These configurations are often selected by hand but
methods for automatic configuration of SAT solvers for portfolios are also studied
[57].

1.4.3 Clause-Sharing Portfolios

If a portfolio is based on CDCL (conflict-driven clause learning) solvers then learned-
clause exchange can be implemented. This grants a considerable boost to the solvers
performance. Together with diversification it is an important mechanism to reduce
duplicate work, i.e., parallel searches working on the same part of the search space.

1 It should be noted that non-portfolio solvers are often derived from existing solvers too. However,
they typically make reference to the original solver, e.g., by having a name derived from the original
solver’s name. Moreover, some competitions include a “Hack Track”, in which small modifications
to an existing solver can be submitted.

1 Parallel Satisfiability 17

A clause learned from a conflict by one CDCL instance distributed to all the other
CDCL instances will prevent them from doing the same work again in the future.

The problems related to clause sharing are to decide how many and which clauses
should be exchanged. Exchanging all the learned clauses is unfeasible especially in
the case of large-scale parallelism due to communication overhead. Also having too
many clauses slows down a CDCL solver. A simple solution is to distribute all the
clauses that satisfy some conditions. The conditions are usually related to the length
of the clauses (number of literals in them) and/or their glue value [4] (the number of
different decision levels associated with the literals of the clauses). A technique to
dynamically adjust the size of shared clauses has been proposed in [25].

An interesting technique called “lazy clause exchange” was introduced in a recent
paper [5] and used in the parallel version of the SAT solver Glucose [4]. In this policy
a solver does not share a clause immediately after it is learned, but only after it proves
its worth by being useful locally. Being useful locally means that the clause appears
in conflicts as a reason clause at least a given number of times. This restriction
does not apply to short clauses (at most two literals) and clauses with a low glue
value. The policy also contains a strategy for importing clauses from other solver
instances. The incoming clauses are put in “probation” before a potential entry into
the clause database. This limits the negative impact of importing too many clauses.
The probation phase is implemented by watching only one literal in these clauses,
which means that they are not used for unit propagation and are only detected when
they become unsatisfied. At that point they leave probation and are promoted to the
regular learned-clause status. The experimental data in [5] show that only 10% of the
imported clauses leave probation on average, which demonstrates how well-founded
this strategy is.

Similarly to sequential SAT solvers, clause-sharing portfolio solvers can produce
proofs of unsatisfiability and therefore be validated [27].

Clause sharing can be implemented in a lockless fashion as demonstrated by the
SAT solver SArTagnan [25, 35].

Clause sharing in a parallel environment introduces non-determinism to the solver,
which might not be desirable for practitioners who expect run time reproducibility.
This issue has been addressed in [23] where a fully deterministic parallel portfolio
solver was designed.

1.4.4 Impact of Diversification and Clause Sharing

Diversification and clause sharing are both essential components of a successful
CDCL portfolio SAT solver. But to better understand them let us take a look at the
impact of these techniques in isolation for satisfiable and unsatisfiable random 3-SAT
instances.

By looking at the cactus plots in Figure 1.3 we can observe that clause sharing
is essential for unsatisfiable instances while not very beneficial and even slightly

18 Tomáš Balyo and Carsten Sinz

��

����

����

����

����

����

�	��

�
��

����

����

�����

�� ��� ��� �	� ��� ���� ���� ���� ��	� ���� ����

�
�

��
��

��
��

��
��

��������

��������������������

��� �!�����������"�����#����$
%��&��#����$

%��&� �!�����������
 �!�����������������#����$

��

����

����

����

����

����

�	��

�
��

����

����

�����

�� ��� ��� �	� ��� ���� ���� ���� ��	�

�
�

��
��

��
��

��
��

��������

����������������������

��� �!�����������"�����������
���'��������

���'� �!�����������
 �!�����������������������

Fig. 1.3: The influence of diversification and clause sharing on the performance of
HordeSat[6] on random 3-SAT problems. Plot is taken from [6]

detrimental for satisfiable problems. On the other hand, diversification has only a
small benefit for unsatisfiable instances but high impact for satisfiable ones.

This is actually in accordance with what one would expect. To solve a satisfiable
formula we only need to find a satisfying assignment anywhere in the search space.
To do this efficiently we only need to diversify the search (which we also do when
only allowing clause sharing). On the other hand, for unsatisfiable problems we must
actually construct a resolution proof. The different solvers in the portfolio construct
different segments of the proof and to get the complete proof we join these segments
via clause sharing. Without clause sharing each solver must construct the complete
proof alone.

1 Parallel Satisfiability 19

1.4.5 Examples of Parallel Portfolio Solvers

ManySat

ManySat [24] was the first successful clause-sharing parallel portfolio SAT solver.
It was developed in 2008 and won first place in the Parallel Track of the 2008 SAT
Race and 2009 SAT Competition. Most previous parallel SAT solvers were designed
using the divide-and-conquer paradigm but since ManySat the parallel tracks of all
SAT Competitions and SAT Races have been dominated by portfolio solvers.

ManySat was implemented on top of the well-known sequential SAT solver
MiniSat [54] and the basic idea is that each parallel process should exploit a par-
ticular parameter set such that their combination represents a set of orthogonal yet
complementary strategies.

In the original version the authors defined four different strategies. Each of the four
strategies featured a different restart scheme and different decision literal polarity
heuristic. All four strategies used the VSIDS [54] decision variable selection heuristic
with a different percentage of random choices. Additionally half of the strategies
employed extended clause learning, which allows for bigger backjumps.

ManySat was designed for parallel systems with the shared-memory architecture –
basically for multi-core/multi-CPU computers. The clause sharing was organized via
lockless queues containing the clauses a particular solver wants to share. Unit clauses
were imported only at restarts while longer clauses were imported immediately on
the fly. Overall, all the clauses with eight or fewer literals were shared. The value
eight was determined based on experimental evaluation using SAT Competition
benchmarks.

The performance of ManySAT was evaluated (in the 2008 SAT Race) on four-core
computers where it achieved a super-linear average speedup of 6.02 [24]. ManySAT
was the most successful parallel solver (considering SAT Competitions/Races results)
until 2010 when Plingeling [9] took over.

Plingeling

Plingeling is the parallel version of the CDCL SAT solver Lingeling [8]. Both
solvers first appeared in the 2010 SAT Race, where Lingeling placed second in the
Main Track and Plingeling won the Parallel Track. In most of the following SAT
Competitions and SAT Races2 Plingeling won and Lingeling placed among the top
three solvers. Plingeling constantly evolved during these years and in the remainder
of this subsection we will describe the changes since the 2010 version up to the 2016
version.

2010. Similarly to ManySAT, Plingeling is a portfolio solver implemented on top
of Lingeling using Pthreads. A boss thread reads the input formula and generates

2 At least up until the 2016 SAT Competition, which was the latest competition at the time of writing
this text.

20 Tomáš Balyo and Carsten Sinz

separate solver instances for worker threads. The diversification between the worker
threads is achieved by setting different random seeds, preprocessing effort, and
decision heuristics. The workers share clauses, but only unit clauses (clauses with
one literal) are exchanged. This is done via the boss thread at regular intervals.
The boss thread maintains a global unit table that is lazily synchronized among the
workers.

2011. Additionally to unit clauses, literal equivalences are shared in the 2011
version of Plingeling. An equivalence between literals li and l j can be viewed as a
pair of binary clauses (li∨¬l j) and (¬li∨ l j), therefore Plingeling now shares unit
and some binary clauses. However, this is not how Plingeling implements this feature.
The sharing of equivalences is implemented via a global union-find data structure of
equivalences maintained by the boss thread.

2012. There is not much change regarding the features of the portfolio, however,
there are changes in implementation. Now the boss thread alone does the input
parsing and preprocessing and only then the worker thread solver instances are
created. This reduces the memory consumption and makes the solver more robust
for large instances, since worker thread addition can be stopped if the amount of
available memory is running low.

2013. The sharing of longer clauses is added to Plingeling. Clauses with up to 40
literals are exchanged if their glue value3 is at most 8. The sharing is implemented
via a global clause stack maintained by the boss thread. The worker threads read the
clauses from the global stack in the oldest first order, therefore it acts like a queue.

2014. Local Search is added to Plingeling. First the formula is examined in order
to figure out whether it resembles a uniform random instance. This is done by looking
at the average number of literal occurrences and its standard deviation. If the formula
looks random several worker threads (or even all but one) run local search instead of
CDCL (Lingeling). This was done to make Plingeling competitive also on random
satisfiable problems that are still best solved by local search algorithms.

2015. Diversification is improved. Automatic parameter configuration tech-
niques [29] are applied to find optimal parameter settings for various families of
benchmarks from previous competitions. Each one of the worker threads uses one of
these configurations.

2016. The parallel front-end is identical to the previous version, i.e., no changes
besides use of the newest version of Lingeling by the worker threads.

In Figure 1.4 we plot the number of problems solved per time limit for each
version of Plingeling. Bear in mind that each different Plingeling version uses a
different Lingeling version at its core. We can see that the 2015 and 2016 versions
perform best and are very similar, which is not at all surprising based on their
description. The third best is the 2013 version followed by a large gap and then 2014
and the remaining versions. The natural question here is what went wrong with the
2014 version that it fell behind so much compared to the 2013 version. We believe it
was caused by local search being used on instances that were not uniform random.
Based on experimental logs we know that version 2014 solved significantly fewer

3 The number of distinct decision levels associated with the literals of the learned clause.

1 Parallel Satisfiability 21

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160

Ti
m

e
in

 s
ec

on
ds

Problems

Plingeling History

2010
2011
2012
2013
2014
2015
2016

Fig. 1.4: The performance of Plingeling versions 2010 - 2016 on the benchmark of
problems of the 2016 SAT Competition

unsatisfiable problems than 2013, 2015, and 2016 while solving a similar number of
satisfiable problems.

HordeSat

HordeSat is a portfolio SAT solver designed for massively parallel architectures,
i.e., computer clusters with hundreds of multi-core computers. An overview of the
high-level design decisions made when designing HordeSat follows.

Modular Design. Rather than committing to any particular SAT solver HordeSat
uses an interface that is universal and can be efficiently implemented by current
state-of-the-art SAT solvers. This results in a more general implementation and the
possibility to easily add new SAT solvers to the portfolio.

Decentralization. All the nodes in the parallel system are equivalent. There is no
boss or central node that manages the search or the communication. Decentralized
design allows more scalability and also simplifies the algorithm.

Overlapping Search and Communication. The search and the clause exchange
procedures run in different (hardware) threads in parallel. The system is implemented
in such a way that the search procedure never waits for any shared resources, at the
expense of losing some of the shared clauses.

Hierarchical Parallelization. HordeSat is designed to run on clusters of computers
(nodes) with multiple processor cores, i.e., we have two levels of parallelization. The
first level uses the shared-memory model to communicate between solvers running

22 Tomáš Balyo and Carsten Sinz

on the same node and the second level relies on message passing between the nodes
of a cluster.

HordeSat defines a C++ interface that is used to access the instances of the core
solvers. This interface has the following methods.

• addClause(vector<int> clause) add clauses of the input formula
• solve() start solving, returns SAT/UNSAT/UNKNOWN
• setInterrupt() tell the solver to stop the search
• unsetInterrupt() allow the solver to continue solving
• setPhase(int var, bool val) suggest a truth value for a variable.

This is just a recommendation and can be ignored by the solver.
• diversify(int rank, int size) tell the core solver to diversify its

settings. The specifics of diversification are left to the solver. The provided
parameters can be used by the solver to determine how many solvers are working
on this problem (size) and which one of those is this solver (rank). A trivial
implementation of this method could be to set the pseudo-random number
generator seed of the core solver to rank.

• addLearnedClause(vector<int> clause) add a learned clause to
the core solver. The solver can decide whether and how long this clause is useful
for it.

• setLearnedClauseCallback(LCCallback* lcc) the solver calls
the callback function when it learns a clause to share it.

The interface is designed to closely match current CDCL SAT solvers, but any kind
of SAT solver can be used. For example a local search SAT solver could implement
the interface by ignoring the calls to the clause-sharing-related methods.

Since HordeSat can only access its core solvers via the interface defined above,
the only tools for diversification are setting phases using the setPhase method and
calling the solver-specific diversify method.

The setPhase method allows the partitioning of the search space in a semi-
explicit fashion. An explicit search space splitting into disjoint subspaces is usually
done by imposing phase restrictions instead of just recommending them. The explicit
approach is used in parallel solvers based on the divide-and-conquer methodology
described in Section 1.3.

In HordeSat each variable in each core solver gets a random phase recommenda-
tion with a probability of (#solvers)−1, where #solvers is the total number of core
solvers in the portfolio. This is done in conjunction with the diversify method
whose behavior is defined by the core solvers.

The clause sharing in HordeSat happens periodically in rounds. Each round a fixed
sized (1,500 integers in the implementation) message containing the literals of the
shared clauses is exchanged by all the processes in an all-to-all fashion. Each process
prepares the message by collecting the learned clauses from its core solvers. The
clauses are filtered to remove duplicates. The fixed-sized message buffer is filled up
with the clauses; shorter clauses are preferred. Clauses that do not fit are discarded.

The detection of duplicate clauses is implemented by using Bloom filters [13].
A Bloom filter is a space-efficient probabilistic set data structure that allows false-

1 Parallel Satisfiability 23

positive matches, which in this case means that some clauses might be considered to
be duplicates even if they are not.

Although important learned clauses might get lost, we believe that this relaxed
approach is still beneficial since it allows a simpler and more efficient implementation
of clause sharing.

1.5 Parallel Local Search

There are two kinds of approaches to parallelizing local search. One is doing multiple
flips in parallel and the other is the portfolio approach described above for CDCL
algorithms. A special kind of local search called Survey Propagation has also been
parallelized using GPU computation [39].

1.5.1 Multiple Flips

The parallel version of the local search solver GSAT [49] called PGSAT [44] first
divides the set of variables into k groups (typically k is the number of processors)
and then in each iteration each processor flips one of the variables from its group
until a solution is found. The variable is selected using the GSAT heuristic.

Experiments with PGSAT have shown that speedup is achieved only up to a
specific value of k. After this optimal value of k (denoted by k∗) the performance
drops. An interesting observation is that the value of k∗ depends on the instance
we want to solve and appears to be correlated to the average connectivity of the
variable-clause graph of the instance [44].

The solver PGWSAT [43] is a combination of PGSAT [44] and WalkSat [48]. In
each iteration PGWSAT either acts like WalkSat (flipping a literal from one of the
unsatisfied clauses) or PGSAT. The behavior is chosen randomly with the WalkSat
strategy being used on between 50% and 70% of the steps. PGWSAT is shown to
outperform PGSAT on random 3-SAT instances.

A parallel version of the solver genSat (generalized GSAT) [56] flips all the
variables that have the best GSAT score (number of unsatisfied clauses after the flip)
in each iteration. This is in contrast to other GSAT-style algorithms where only one
of the variables with the best score is flipped (ties are broken randomly). Parallel
genSat is experimentally shown to require fewer flips to solve a problem than the
original GSAT algorithm.

24 Tomáš Balyo and Carsten Sinz

1.5.2 Portfolios

The basic idea of portfolios (running several different solvers in parallel) can be
applied to local solvers the same way as it is used for CDCL. The first local search
solver to do this was gNovelty+ (v. 2)[42] in the 2009 SAT Competition, where it
achieved first place in the parallel random category. The solver did not do any kind
of sharing so it was pure portfolio.

It is not clear what kind of information should be shared in a portfolio of lo-
cal search solvers. The sharing of learned clauses cannot be adopted from CDCL
portfolios since local search solvers cannot produce them.

Several strategies of information sharing in local search portfolios were suggested
in [2]. The solvers exchange their best assignment (satisfying the highest number of
clauses) and based on these assignments a new starting assignment is constructed.
This construction is different for each cooperation strategy. The strategies range
from certain voting mechanisms to various probabilistic constructions. The most
successful strategy, called Prob-NormalizedW, constructs the assignment using a
probabilistic method that ensures that better variable values (w.r.t. satisfied clauses)
have a higher chance of being adopted.

In a follow-up work [1] it was shown that this approach does not scale well
for massively parallel systems and the proposed solution was to split the solvers
into smaller groups (e.g., 16 solvers) that cooperate internally but do not exchange
information between the different groups.

1.6 Future Challenges

In 2013 Hamadi and Wintersteiger published a paper listing seven challenges in
parallel SAT solving [26]. The first challenge is to design a way to automatically
estimate the number of parallel processes that should be used to solve a formula.
The second challenge is about finding new ways to decompose the input formulas
or the search space of a SAT-solving algorithm that outperform current techniques.
The third challenge is about parallelizing preprocessing techniques used in modern
SAT solvers. The next challenge is related to clause sharing and it asks for better
techniques for estimating the local quality of learned clauses coming from other
solvers. The technique called “lazy clause exchange” [5] used in the parallel version
of the SAT solver Glucose [4] is a step towards solving this challenge. Challenges
five and six ask for new encodings that would be specifically designed for parallel
SAT solvers. Finally, the seventh challenge is to design a completely new parallel
SAT algorithm from scratch, i.e., not based on existing algorithms, that performs on
a par with or better than the current state of the art. We extend this list by adding the
following three new challenges:

Massively Parallel Sat Solving. Design SAT solvers scalable in highly parallel
environments, i.e., computer clusters with thousands or even millions of processors.
Such solvers could potentially be used to solve large hard problem instances coming

1 Parallel Satisfiability 25

from computational biology and chemistry and even resolve open problems from
fields such as combinatorics and number theory.

Utilizing Graphics Processing Units (GPUs) for SAT. Modern graphics cards are
highly parallel computing units with hundreds of cores. General-purpose computing
on GPUs is useful to accelerate various algorithms (notably for problems involving
matrices) but has not yet been successfully used for SAT solving. Although there
have been attempts to adapt existing SAT algorithms for GPU we are yet to see a
GPU-based solver outperform standard CPU solvers. It seems that completely new
algorithms need to be developed for the GPU.

Parallel Incremental SAT Solving. Many applications of SAT are based on solving
a sequence of very similar SAT instances that often only differ in a few clauses.
Although these instances can be solved independently, it can be very inefficient
compared to an incremental SAT solver, which can reuse knowledge acquired while
solving the previous instances (for example some of the learned clauses). Several
SAT solvers support incremental SAT solving, however none of them is parallel.
Since incremental solvers are very useful for improving performance in practical
applications it is very important to develop highly scalable parallel incremental SAT
solvers.

Acknowledgements

We would like to thank Wolfgang Blochinger for allowing us to use material from an
unpublished draft in Section 1.3.1.

References

[1] Arbelaez, A., Codognet, P.: Massively parallel local search for SAT. In: 2012
IEEE 24th International Conference on Tools with Artificial Intelligence. vol. 1,
pp. 57–64. IEEE (2012)

[2] Arbelaez, A., Hamadi, Y.: Improving parallel local search for SAT. In: In-
ternational Conference on Learning and Intelligent Optimization. pp. 46–60.
Springer (2011)

[3] Audemard, G., Lagniez, J.M., Szczepanski, N., Tabary, S.: An adaptive par-
allel SAT solver. In: International Conference on Principles and Practice of
Constraint Programming. pp. 30–48. Springer (2016)

[4] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT
solvers. In: International Joint Conference on Artificial Intelligence (IJCAI).
vol. 9, pp. 399–404 (2009)

[5] Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers.
In: Theory and Applications of Satisfiability Testing (SAT), pp. 197–205.
Springer (2014)

26 Tomáš Balyo and Carsten Sinz

[6] Balyo, T., Sanders, P., Sinz, C.: Hordesat: A massively parallel portfolio SAT
solver. In: Heule, M., Weaver, S. (eds.) Theory and Applications of Satisfiability
Testing (SAT), Lecture Notes in Computer Science, vol. 9340, pp. 156–172.
Springer International Publishing (2015)

[7] Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press,
Amsterdam, The Netherlands (2009)

[8] Biere, A.: Lingeling, plingeling, picosat and precosat at SAT race 2010. In:
Technical Report 10/1, FMV Reports Series, Institute for Formal Models and
Verification, Johannes Kepler University (2010)

[9] Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition
2013. In: Proceedings of SAT Competition 2013, University of Helsinki. pp.
51–52 (2013)

[10] Blochinger, W., Sinz, C., Küchlin, W.: Distributed parallel SAT checking with
dynamic learning using DOTS. In: Gonzales, T. (ed.) Proc. of the IASTED Intl.
Conference Parallel and Distributed Computing and Systems (PDCS 2001). pp.
396–401. ACTA Press, Anaheim, CA (Aug 2001)

[11] Blochinger, W., Sinz, C., Küchlin, W.: Parallel propositional satisfiability check-
ing with distributed dynamic learning. Parallel Computing 29(7), 969–994
(2003)

[12] Blochinger, W., Westje, W., Küchlin, W., Wedeniwski, S.: ZetaSAT – boolean
SATisfiability solving on desktop grids. In: IEEE International Symposium on
Cluster Computing and the Grid. pp. 1079–1086 (2005)

[13] Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM 13(7), 422–426 (1970)

[14] Boehm, M., Speckenmeyer, E.: A fast parallel SAT-solver – efficient workload
balancing. Annals of Mathematics and Artificial Intelligence 17(3-4), 381–400
(1996)

[15] Chrabakh, W., Wolski, R.: GridSAT: A Chaff-based distributed SAT solver for
the grid. In: Proc. of Supercomputing 03. Phoenix, Arizona, USA (2003)

[16] Cook, S.A.: The complexity of theorem-proving procedures. In: ACM Sym-
posium on Theory of Computing. pp. 151–158. ACM, New York, NY, USA
(1971)

[17] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-
proving. Communications of the ACM 5(7), 394–397 (1962)

[18] Dijkstra, E.W., W.H.J.Feijen, van Gasteren, A.: Derivation of a termination
detection algorithm for distributed computations. Inf. Proc. Letters 16, 217–219
(1983)

[19] El Khalek, Y.A., Safar, M., El-Kharashi, M.W.: On the parallelization of sat
solvers. In: Computer Engineering & Systems (ICCES), 2015 Tenth Interna-
tional Conference on. pp. 119–128. IEEE (2015)

[20] Feldman, Y., Dershowitz, N., Hanna, Z.: Parallel multithreaded satisfiability
solver: Design and implementation. Electr. Notes Theor. Comput. Sci. 128(3),
75–90 (2005)

1 Parallel Satisfiability 27

[21] Gu, J.: The multi-sat algorithm. Discrete Applied Mathematics 96-97, 111–126
(1999)

[22] Guo, L., Jabbour, S., Lonlac, J., Saïs, L.: Diversification by clauses deletion
strategies in portfolio parallel SAT solving. In: Tools with Artificial Intelligence
(ICTAI), 2014 IEEE 26th International Conference on. pp. 701–708. IEEE
(2014)

[23] Hamadi, Y., Jabbour, S., Piette, C., Sais, L.: Deterministic parallel DPLL.
Journal on Satisfiability, Boolean Modeling and Computation 7, 127–132 (2011)

[24] Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. In: Satisfia-
bility, Boolean Modeling and Computation. vol. 6, pp. 245–262 (2008)

[25] Hamadi, Y., Jabbour, S., Sais, L.: Control-based clause sharing in parallel sat
solving. In: Twenty-First International Joint Conference on Artificial Intelli-
gence (2009)

[26] Hamadi, Y., Wintersteiger, C.: Seven challenges in parallel SAT solving. AI
Magazine 34(2), 99 (2013)

[27] Heule, M., Manthey, N., Philipp, T.: Validating unsatisfiability results of clause
sharing parallel SAT solvers. In: POS@ SAT. pp. 12–25 (2014)

[28] Heule, M.J., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding
cdcl SAT solvers by lookaheads. In: Haifa Verification Conference. pp. 50–65.
Springer (2011)

[29] Hutter, F., Hoos, H.H., Leyton-Brown, K., Stuetzle, T.: ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research
36, 267–306 (October 2009)

[30] Hyvärinen, A.E., Junttila, T., Niemelä, I.: A distribution method for solving
SAT in grids. In: International Conference on Theory and Applications of
Satisfiability Testing (SAT’06). pp. 430–435 (2006)

[31] Järvisalo, M., Le Berre, D., Roussel, O.: The SAT 2011 Competition – Results
of Phase 1 – slides. http://www.cril.univ-artois.fr/SAT11/
phase1.pdf (2011), accessed: 2015-12-18

[32] Jurkowiak, B., Li, C., Utard, G.: Parallelizing Satz using dynamic workload
balancing. In: Kautz, H., Selman, B. (eds.) LICS 2001 Workshop on Theory and
Applications of Satisfiability Testing (SAT 2001). Electronic Notes in Discrete
Mathematics, vol. 9. Elsevier Science Publishers, Boston, MA (Jun 2001)

[33] Jurkowiak, B., Li, C.M., Utard, G.: A parallelization scheme based on work
stealing for a class of SAT solvers. Journal of Automated Reasoning 34(1),
73–101 (2005)

[34] Katsirelos, G., Sabharwal, A., Samulowitz, H., Simon, L.: Resolution and
parallelizability: Barriers to the efficient parallelization of SAT solvers. In:
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 14-18, 2013, Bellevue, Washington, USA. (2013)

[35] Kaufmann, M., Kottler, S.: Sartagnan parallel portfolio SAT solver with lockless
physical clause sharing. In: Pragmatics of SAT. Citeseer (2011)

[36] Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Estimating search tree size. In:
Proceedings of the 21st National Conference on Artificial Intelligence - Volume
2. pp. 1014–1019. AAAI’06, AAAI Press (2006)

http://www.cril.univ-artois.fr/SAT11/phase1.pdf
http://www.cril.univ-artois.fr/SAT11/phase1.pdf

28 Tomáš Balyo and Carsten Sinz

[37] Knuth, D.E.: Estimating the efficiency of backtrack programs. Mathematics of
Computation 29(129), 121–136 (Jan 1975)

[38] Kokotov, L.: Distributed SAT solver framework (1998)
[39] Manolios, P., Zhang, Y.: Implementing survey propagation on graphics pro-

cessing units. In: International Conference on Theory and Applications of
Satisfiability Testing. pp. 311–324. Springer (2006)

[40] Manthey, N.: Towards Next Generation Sequential and Parallel SAT Solvers.
Ph.D. thesis, Technischen Universität Dresden, Fakultät Informatik (Jan 2014)

[41] Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

[42] Pham, D.N., Gretton, C.: gnovelty+ (v. 2). In: Proceedings of SAT Competition
2009, Artois University. pp. 9–10 (2009)

[43] Roli, A., Blesa, M., Blum, C.: Random walk and parallelism in local search. In:
Proceedings of MIC’2005 – Meta–heuristics International Conference. Vienna,
Austria (2005)

[44] Roli, A.: Criticality and parallelism in structured SAT instances. In: Interna-
tional Conference on Principles and Practice of Constraint Programming. pp.
714–719. Springer (2002)

[45] Roussel, O.: Description of ppfolio 2012. Proc. SAT Challenge p. 46 (2012)
[46] Schubert, T., Lewis, M., Becker, B.: PaMira - a parallel SAT solver with

knowledge sharing. In: 6th International Workshop on Microprocessor Test and
Verification (2005)

[47] Schubert, T., Lewis, M.D.T., Becker, B.: Pamiraxt: Parallel SAT solving with
threads and message passing. JSAT 6(4), 203–222 (2009)

[48] Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search.
In: AAAI. vol. 94, pp. 337–343 (1994)

[49] Selman, B., Levesque, H.J., Mitchell, D.G., et al.: A new method for solving
hard satisfiability problems. In: AAAI. vol. 92, pp. 440–446 (1992)

[50] Sinz, C., Blochinger, W., Küchlin, W.: PaSAT - parallel SAT-checking with
lemma exchange: Implementation and applications. In: Kautz, H., Selman,
B. (eds.) LICS 2001 Workshop on Theory and Applications of Satisfiability
Testing (SAT 2001). Electronic Notes in Discrete Mathematics, vol. 9. Elsevier
Science Publishers, Boston, MA (Jun 2001)

[51] Sonobe, T., Inaba, M.: Counter implication restart for parallel SAT solvers. In:
Learning and Intelligent Optimization, pp. 485–490. Springer (2012)

[52] Sonobe, T., Inaba, M.: Portfolio with block branching for parallel SAT solvers.
In: International Conference on Learning and Intelligent Optimization. pp.
247–252. Springer (2013)

[53] Sonobe, T., Kondoh, S., Inaba, M.: Community branching for parallel portfo-
lio SAT solvers. In: International Conference on Theory and Applications of
Satisfiability Testing. pp. 188–196. Springer (2014)

[54] Sorensson, N., Een, N.: Minisat v1.13 a SAT solver with conflict-clause mini-
mization. Tech. rep., Chalmers University of Technology, Sweden (2005)

1 Parallel Satisfiability 29

[55] Speckenmeyer, E., Monien, B., Vornberger, O.: Superlinear speedup for parallel
backtracking, pp. 985–993. Springer Berlin Heidelberg, Berlin, Heidelberg
(1988)

[56] Strohmaier, A.: Multi-flip networks: parallelizing gensat. In: Annual Conference
on Artificial Intelligence. pp. 349–360. Springer (1997)

[57] Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algo-
rithms for portfolio-based selection. AAAI Conference on Artificial Intelligence
(2010)

[58] Zhang, H., Bonacina, M.P.: Cumulating search in a distributed computing
environment: A case study in parallel satisfiability. In: Proc. of the First Int.
Symp. on Parallel Symbolic Computation. pp. 422–431. Linz, Austria (1994)

[59] Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: A distributed propositional
prover and its application to quasigroup problems. Journal of Symbolic Com-
putation 21, 543–560 (1996)

Chapter 2

Cube-and-Conquer for Satisfiability

Marijn J.H. Heule1, Oliver Kullmann2, and Armin Biere3

Abstract Satisfiability (SAT) is considered to be one of the most important core
technologies in formal verification and related areas. Even though there is steady
progress in improving practical SAT solving, there are limits on the scalability of
SAT solvers. In this chapter, we present the cube-and-conquer paradigm which
addresses this issue and targets reducing solving time on hard instances. This two-
phase approach partitions a problem into many thousands (or millions) of cubes using
lookahead techniques. Afterwards, a conflict-driven solver tackles the problem, using
the cubes to guide the search. On several hard competition benchmarks, our hybrid
approach outperforms both lookahead and conflict-driven solvers. Moreover, because
cube-and-conquer is natural to parallelize, it is a competitive alternative for solving
SAT problems in parallel. We demonstrate the strength of cube-and-conquer on the
Boolean Pythagorean Triples problem, a recently solved challenge from Ramsey
Theory. Cube-and-conquer achieves linear-time speedups on this problem even when
using thousands of cores. Moreover, we show how to compute a proof for such a
hard problem when solving it using cube-and-conquer.

2.1 Introduction

Satisfiability (SAT) solvers have become very powerful tools to tackle problems
ranging from industrial formal verification [4] to hard combinatorial challenges [37].
The most successful tools are known as conflict-driven clause learning (CDCL)
solvers [31]. These solvers have data structures optimized for huge instances and fo-
cus reasoning on learning new clauses from emerging conflicts. Although there exist
several approaches to parallelize CDCL solvers [12], it appears hard to significantly
improve performance on most industrial problems.

1 The University of Texas at Austin, United States ·2 Swansea University, United Kingdom ·
3 Johannes Kepler University, Linz, Austria

31© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_2&domain=pdf

32 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

On the other hand, lookahead solvers [18] focus on small hard problems that
require sophisticated heuristics to solve them efficiently. These solvers can be par-
allelized naturally and effectively. Yet, even with many cores at hand, they cannot
compete with single-core CDCL solvers on industrial problems.

While developing a method for computing van der Waerden numbers, Kullmann
observed that CDCL and lookahead solvers can be interleaved in such a way that the
combination outperforms both pure methods. In short, lookahead is used to assign a
certain fraction of the variables, and afterwards CDCL tackles the reduced problem.
For optimal performance the lookahead solver partitions the original problem into
thousands (sometimes millions) of cubes. The CDCL solver iteratively assumes
each cube to be true and solves the simplified instance. This was systematically
developed in [21]. The most recent successful application of this method, called
cube-and-conquer, in this area (Ramsey theory), is solving the Boolean Pythagorean
Triples problem [20], a long-outstanding mathematical problem.

In order to apply this method on a large spectrum of problems, we present a
mechanism that determines dynamically when to cut off a branch in the search tree of
a lookahead solver to send it to a CDCL solver. Using this mechanism, several hard
industrial problems can be solved more efficiently using the combination of solvers
than with a stand-alone SAT solver. Additionally, the combined solving method can
be parallelized naturally as well. Therefore, using a parallel implementation of our
method, we are able to solve some hard instances faster than alternative methods.

Our approach is based on the following intuition. Obviously the reduced formulas,
after applying some decisions, become easier to solve. Furthermore, at least empiri-
cally, CDCL solvers are effective at solving instances which are rather easy for their
size (but possibly impossible to solve by lookahead solvers), utilizing local heuristics
including those based on variable activities. On the other hand, lookahead solvers
are considered to be better at picking good decisions at the top-level, by using more
global heuristics. There has to be a transition between hard and easy subproblems.
So we try to switch from lookahead to CDCL solving when the subproblem seems to
become easy (for the CDCL solver).

The outline of this chapter is as follows. After some preliminaries in Section 2.2,
an overview of the cube-and-conquer method is provided in Section 2.3 as well as a
description of both solver types. Section 2.4, discussing the above application to Ram-
sey theory, offers a motivating study of the method. Then a general methodology is
developed. The details of the first phase, the “cube”-phase (partitioning the problem)
are discussed in Section 2.5, and the details of the second phase, the “conquer”-phase
(solving the subproblems) in Section 2.6. Two approaches to interleave the cube
and conquer phases are presented in Section 2.7. A framework to produce proofs of
unsatisfiability using cube-and-conquer is presented in Section 2.8. Experimental
results are presented in Section 2.9 and some conclusions are drawn in Section 2.10.

2 Cube-and-Conquer for Satisfiability 33

2.2 Preliminaries

For a Boolean variable x, there are two literals, the positive literal, denoted by x, and
the negative literal, denoted by ¬x. A clause is a disjunction of literals, and a CNF
formula is a conjunction of clauses. A clause can be seen as a finite set of literals,
and a CNF formula as a finite set of clauses. A special clause is the empty clause ⊥,
containing no literal. A unit clause contains exactly one literal. A truth assignment
for a CNF formula F is a function ϕ that maps variables in F to {t, f}; in general
ϕ is partial, and might even assign no variable, while a total assignment assigns all
variables in F . If ϕ(x) = v, then ϕ(¬x) = ¬v, where ¬t = f and ¬f = t. A clause C
is satisfied by ϕ if ϕ(l) = t for some l ∈C. So the empty clause is never satisfied
by any assignment. An assignment ϕ satisfies F if it satisfies every clause in F . A
cube is a conjunction of literals and a DNF formula a disjunction of cubes. A cube
can be seen as a finite set of literals and a DNF formula as a finite set of cubes. If
c = (l1∧· · ·∧ lk) is a cube, then ¬c = (¬l1∨· · ·∨¬lk) is a clause. A truth assignment
ϕ can be seen as the cube of literals l for which ϕ(l) = t. A cube c is satisfied by
ϕ if ϕ(l) = t for all l ∈ c. An assignment ϕ satisfies DNF formula D if it satisfies
some cube in D. A DNF formula D is called a tautology if every total assignment ϕ
satisfies D. For a CNF formula F , Boolean constraint propagation (BCP) (or unit
propagation) propagates all unit clauses, i.e., repeats the following until fix-point:
if there is a unit clause (l) ∈ F , remove from F all clauses that contain the literal l,
and remove the literal ¬l from all remaining clauses in F . The resulting formula is
referred to as BCP(F). If ⊥ ∈ BCP(F), we say that BCP derives a conflict.

2.3 Combining CDCL and Lookahead

The main complete SAT solver types are conflict-driven clause learning (CDCL)
solvers [31] and lookahead solvers [18]. In short, CDCL solvers are optimized for
large industrial problems and consequently use inexpensive decision heuristics. In
contrast, lookahead solvers focus on small hard problems on which it pays off to
compute sophisticated decision heuristics. This section describes the main features
of these solvers, and how we want to combine the two types.

Overview

The central approach in this chapter deals with a lookahead solver that partitions a
formula into many subformulas, which in turn are solved by a CDCL solver. The
sophisticated decision heuristics of lookahead solvers are used to compute important
decision variables. These decisions are provided to the CDCL solver to guide the
search process.

Figure 2.1 illustrates this approach by an example. The left shows a binary search
tree produced by a lookahead solver. Internal nodes contain a decision variable. On

34 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

x5

x7

t

x8

t

f

x2

t

t f

x9

f

t f

x2

f

x3

f

x7

t

f t

f

x8

t

x9

t

t f

f

cutoff leaf
refuted leaf

F1 := F ∧ (x5∧ x7∧¬x8)

F2 := F ∧ (x5∧ x7∧ x8∧ x2)

F3 := F ∧ (x5∧¬x7∧ x9)

F4 := F ∧ (x5∧¬x7∧¬x9)

F5 := F ∧ (¬x5∧¬x2∧¬x3)

F6 := F ∧ (¬x5∧ x2∧ x8∧ x9)

F7 := F ∧ (¬x5∧ x2∧ x8∧¬x9)

Fig. 2.1: A partition of a CNF formula F into seven subformulas Fi. The binary
search tree on the left is constructed by a lookahead solver. It shows in the internal
nodes the decision variable, and on the edges the truth value of a branch. Black leaves
represent refuted leaves, while white leaves are cutoff leaves. The decisions of cutoff
leaves yield a cube of assumptions that together with F forms a subformula Fi

the edges the truth value is shown to which a decision variable is set to reach a child
node. There are two possible leaf nodes. Either the lookahead solver refutes the
branch because a conflict emerges, or the cutoff heuristic suggests that this branch
should be solved by a CDCL solver. This heuristic (discussed in detail in Section 2.5)
is crucial for the effectiveness of the approach.

The cutoff branches can be described as the cubes of the decisions on the path
to the leaf. A CDCL solver can solve the branch by either adding the decisions as
unit clauses, or by adding them as assumptions (see the Incremental SAT solving
paragraph below). In case one of the branches is satisfiable, the original formula is
satisfiable (and hence remaining branches can be neglected). If all cutoff branches
are unsatisfiable, the original formula is unsatisfiable.

The use of lookahead heuristics to partition a formula has been proposed by
Hyvärinen et al. [22], who proposed to partition formulas into dozens of subformulas
which are distributed on a grid to be solved in parallel. The starting point of this
chapter is the discovery, discussed in Section 2.4, that some hard combinatorial
problems can be efficiently solved by partitioning them into many thousands of
subformulas (millions, or even billions for harder problems). Inspired by these results
we focus on the latter approach. We also use more sophisticated lookahead techniques
as employed in state-of-the-art lookahead solvers.

Lookahead solvers

Since CDCL is currently the dominant approach in practical SAT solving, we assume
the reader already knows how CDCL solvers work, and otherwise refer to [31] for
more details.

2 Cube-and-Conquer for Satisfiability 35

Lookahead solvers combine the David-Putnam-Logemann-Loveland (DPLL)
algorithm [7] with lookaheads; for a general discussion see [18, 26], while we
describe here an exemplary scheme. Given a CNF formula F , a lookahead on literal
x works as follows. First, x is assigned to t, followed by BCP. Second, in case there
was no conflict, the difference between F and the reduced formula F ′ is measured.
The quality of lookahead techniques depends heavily on the used measurement. A
frequently used method weighs the clauses in F ′ \F (the ones that are reduced but
not satisfied). Third, all simplifications are reversed to get back to F . If a conflict
was detected during the lookahead, then x is forced to f and is called a failed literal.
The measurements are used to determine the decision variable in each node of the
search tree. In general a variable x is chosen for which the lookahead both on x and
¬x results in a large reduction of the formula. We remark that this scheme combines
reduction (elimination of failed literals) and lookahead (estimating the quality of a
branch by considering its development in the future), while in general these processes
can be different.

State-of-the-art lookahead solvers are KCNFS [8], MARCH [32], OKSOLVER [25],
and SATZ [29]. These solvers show strong performances on hard random k-SAT
formulas, but they cannot compete with CDCL solvers on large industrial instances.
Apart from random instances, lookahead techniques are also useful for combinatorial
problems; these problems have fsome form of structure to be exploited, and yield
relatively small but typically very hard SAT problems.

While measuring the reduction of the formula F , most lookahead solvers also
perform local learning. In contrast to the learning in CDCL solvers, local learning
computes clauses (mostly unary and binary) that can be added to the formula for
further reduction, but that have to be removed again during backtracking to the parent
node in the search tree. An example of local learning is hyper binary resolution [2].
Current state-of-the-art lookahead solvers do not implement conflict clause learning
as in CDCL solvers, and most do not not even implement backjumping (except for
the OKSOLVER). For an overview of local learning we refer to [18].

Incremental SAT solving

A frequently used feature of CDCL solvers is incremental SAT solving [11]. The
solver provides an interface to (i) add clauses to the formula and (ii) solve the formula
under a cube of assumptions (decisions at level 0). Both techniques are very useful
for tools that integrate SAT solvers. The input of an incremental solver can be seen
as a sequence consisting of both clauses and cubes, where each cube defines a job,
which is the conjunction of that cube and all clauses preceding it in the sequence. In
the context of cube-and-conquer we solve one formula under a set of cubes, thus all
clauses precede all cubes in the solver input. A useful feature of incremental SAT
solvers is that if a formula has no solutions under a given cube c, then the solver
returns a subset c′ ⊆ c that was required to prove unsatisfiability. The clause ¬c′ can
then be added to the formula to improve performance on other cubes.

36 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

As an example of the above, let us return to Figure 2.1. Now, consider a CDCL
solver solving F2, which is F assuming cube (x5 ∧ x7 ∧ x8 ∧ x2). If however only
(x8 ∧ x2) is required to prove unsatisfiability, then we can add (¬x8 ∨¬x2) to the
formula. This binary clause conflicts with F6 and F7, so by adding it, these cubes are
immediately refuted.

2.4 Creating Cubes: The Basic Method

In this section we describe cube-and-conquer in its simplest form, as it came out of
investigations into van der Waerden-like numbers ([1, 28]). The principal aim is to
solve extremely hard instances, which would take many years on a single machine.
Thus a natural splitting of the problem into subproblems is applied, and since look-
ahead solvers are competitive on these instances, it is natural to use lookahead for
this task. The great surprise now is that on these (easy) subproblems, conflict-driven
solvers are very fast, and via this collaboration a total speedup (regarding the total
running time) of at least a factor of two (compared always to the best single solver
available) is achieved. So even on a single machine the problems are solved at least
twice as fast, and additionally the splitting is ideal for parallelization (via clusters for
example; no communication is needed between the processes). This was the birth
of “cube-and-conquer”. The lookahead solver is the OKSOLVER, which participated
successfully at the SAT 2002 competition and aims at being as “theoretically clean”
as possible; see [25, 26] for further information, and see the OKLIBRARY [27] for
the renovated source code. It uses complete elimination of failed literals, and autarky
reduction for the partial assignment at hand [24]. The distance along a branch is, as
discussed above, a weighted sum of the number of new clauses, while the heuristic is
the product of these values for the two branches (to be maximized); again (as for the
reduction), all variables are (always) considered.

Computing the cubes is rather simple: cubes are partial assignments, correspond-
ing to initial parts of the paths from the root to leaves in the splitting (branching)
tree, and the task is to “cut off” these paths at the right place. Two methods are
implemented, interpreting a depth parameter D≥ 0: the branches are either cut off
when exactly D decisions have been made (method A), or when the total number of
assigned variables (decisions, unit propagations, failed literals, autarkies) is at least
D (method B).

The interface to the sub-solver is here as simple as possible: a complete decoupling
is achieved by applying the partial assignments, and the sub-solver just gets the results.
So each sub-instance is solved completely independently of the other, and the sub-
solver only sees the sub-instance. For method A as well as for method B, the partial
assignments contain everything: the decisions, the unit-propagation, the failed literals,
the autarkies found (including pure literals).

On the implementation side, there are two simple data formats: either storing each
partial assignment in its own file in DIMACS format (this is used for the experiments

2 Cube-and-Conquer for Satisfiability 37

below), or creating an iCNF file1, which here is basically just the concatenation of the
instance and the partial assignments, put into one big file. Processing runs through
the partial assignments, applies them to the original CNF, and calls the sub-solver
on the sub-instance. Since only unsatisfiable instances are considered in this section,
and the sub-instances are independent of each other, the order of the instances does
not matter. All methods and all data are available in the OKLIBRARY, see [27]. The
cutoff (the above parameter D) is determined ad hoc such that sub-instances only
take a few seconds (this seems to be around the optimum, but with less overhead, as
achieved by the system discussed in Section 2.5, one can partition further – the more
cubes the better).

We report here only on two instance classes: determining unsatisfiability of van
der Waerden (vdW) instances and palindromic vdW instances, using in both cases
two colors, and thus the instances have a canonical translation into Boolean CNF.
Such problems are explained (resp. introduced in the palindromic case) in [1], and
they were also part of the SAT 2011 competition. The standard (Boolean) vdW
problems are given by equations vdW(k1,k2) = n, for natural numbers k1 ≤ k2 ≤ n,
meaning that whenever {1, . . . ,n} is partitioned into two parts, it holds that the first
part contains an arithmetic progression (ap for short) of size k1 or the second part
contains an ap of size k2 (and n is minimal with this property). This gives a CNF
with n variables v1, . . . ,vn and with two clause-sizes k1,k2, where the clauses of
length k1 are all the ap’s of size k1, as positive clauses, and the clauses of length
k2 are all the ap’s of size k2, as negative clauses. The palindromic (Boolean) vdW
problems are given by equations vdWpd(k1,k2) = (n1,n2) (n1 < n2), with a similar
meaning, only that now only palindromic partitions are allowed, thus regarding the
partition as a bit-string of length n, given by the values of v1, . . . ,vn, and requiring
that (v1, . . . ,vn) = (vn, . . . ,v1). By these equations, the number of variables is halved,
replacing vn with v1 and so on, and shorter clauses are obtained. Subsumption
elimination is performed on the instances. There are now two unsatisfiable problems,
one using n1+1

2 variables, with n = n1 + 1 as the smallest n with an unsatisfiable
problem, and one with n2+1

2 variables, based on the smallest n = n2 such that all
n′ ≥ n yield unsatisfiable problems. For standard vdW instances, lookahead solvers
can perform better than conflict-driven solvers, while for palindromic vdW instances
conflict-driven solvers are much better (here we are not speaking about cube-and-
conquer, but about standard SAT solving). Method B for determining the cutoff was
vastly superior (diminishing the variability of the sub-instances enormously), and
is the only one considered here. MINISAT (version 2.2) performed very well as
conquer-solver. All times are on a single core with about 2 GHz (parallelization
has not been used), and the times for the cube-and-conquer approach are the total
times, including all computations (writing each sub-instance to file etc.). All solvers
mentioned below for comparison seem best performing (as ordinary SAT solvers, on
the original (full) instances).

For vdW(3,15) = 218 (yielding 13,362 clauses) the lookahead solver SATZ (ver-
sion 215) needs about 20 hours, while with D = 35 (yielding 32,331 cubes) it is

1 http://users.ics.tkk.fi/swiering/icnf/

http://users.ics.tkk.fi/swiering/icnf/

38 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

solved in about 4 hours. The maximal time per job is 5 seconds, enabling trivial
optimal parallelization with more than 2,000 processors (by just distributing the jobs
for the subproblems to the first available processor). For vdW(4,8) = 146 (yielding
4,930 clauses) PICOSAT (version 913) takes 8 hours. Setting D= 20 (yielding 65,270
cubes), it is solved in 4 hours, with maximal job-time of 22 seconds. PICOSAT for
vdW(5,6) = 206 was aborted after a week, while with D = 20 (yielding 91,001
cubes) it was solved in about one day. For vdWpd(3,25) = (586,607) (yielding
45,779 resp. 49,427 clauses), PRECOSAT (version 570) used in both cases about 13
days, while with D = 45 (yielding 9,120 resp. 13,462 cubes) the problems were
solved in about 6.5 hours resp. 2 days. For vdWpd(4,12) = (387,394) (yielding
15,544 resp. 15,889 clauses) MINISAT (version 2.2) was aborted after 2 weeks,
while setting D = 30 resp. D = 34 (yielding 132,131 resp. 147,237 cubes) solved
the problems in 2 days resp. 8 hours. Finally, for vdWpd(5,8) = (312,323) (yielding
9,121 resp. 9,973 clauses), MINISAT used 3.5 days resp. 53 days, while setting
D = 20 in both cases (yielding 22,482 resp. 87,667 cubes) solved it in 5 hours resp.
40 hours.

2.5 Creating Cubes: a General Methodology

This section shows how to modify a lookahead solver into a partitioning tool. First,
we explain where to modify the code in Section 2.5.1. Second, we present an adaptive
mechanism to cut off branches in Section 2.5.2. We conclude with some important
heuristics in Section 2.5.3. The automatic partitioning provided here essentially is
able to simulate the splitting characteristics from Section 2.4.

2.5.1 General Framework

The procedure CreateCubes, a modified lookahead solver for partitioning, shown in
Algorithm 2.1, takes as input a CNF formula F and outputs two sets. The first set A
is a disjunction of cubes for which each cube represents a set of assumptions that
describes a cutoff branch in the DPLL tree. The cubes in A cover all subproblems of
F that have not been refuted during the partition procedure. The second set C is a
conjunction of clauses. Each of these (learnt) clauses is implied by F and represents
a refuted branch in the DPLL tree. Hence the clauses in C can be added to F to
obtain a logically equivalent formula F ′ := F ∪C .

The recursive procedure has five inputs. Besides F , A , and C , it passes on the
set of decision literals (denoted by ϕdec) and the set of implied literals (denoted
ϕimp). Implied literals are assignments that were forced by BCP or some form of
learning such as failed literal reasoning. Initially, CreateCubes is called with the
input formula F and all the other parameters as empty sets.

2 Cube-and-Conquer for Satisfiability 39

Algorithm 2.1: The General Framework of the Procedure CreateCubes

input :CNF F , DNF A , CNF C , dec. lits. ϕdec, imp. lits. ϕimp

1 〈F,ϕimp〉 := LAsimplify_and_learn (F , ϕdec, ϕimp);
2 if ϕdec∪ϕimp falsify a clause in F then

3 return 〈A ,C ∪{¬ϕdec}〉;
4 if cutoff heuristic is triggered then

5 return 〈A ∪{ϕdec},C 〉;
6 ldec := LAdecide (F , ϕdec, ϕimp);
7 〈A ,C 〉 := CreateCubes (F,A ,C ,ϕdec∪{ldec},ϕimp) ;
8 return CreateCubes (F,A ,C ,ϕdec∪{¬ldec},ϕimp) ;

In line 1 of Algorithm 2.1, the method LAsimplify_and_learn is called. This
method simplifies the formula by BCP and lookaheads, forcing some variables
to certain truth values. All assigned variables are added to ϕimp. Additionally, it
produces local learnt clauses which are added to F . In case the current assignment
falsifies F then a conflict clause is learnt. This clause consists of the complements
of the decisions and is added to C (line 3). Line 4 deals with cutting off branching
which is further discussed in the next subsection. The procedure LAdecide on line 6
determines the next decision variable and preferred truth value based on lookaheads.
There exists a vast body of work on these decision heuristics [26]. Section 2.5.3
offers the details of this procedure.

After CreateCubes is terminated, A and C are optimized. First, the clauses in C
are reduced in size by applying self-subsumption resolution. For instance, returning
to the example in Figure 2.1 with (x5 ∨ x2 ∨¬x3 ∨ x7),(x5 ∨ x2 ∨¬x3 ∨¬x7) ∈ C ,
then the resolvent (x5∨ x2∨¬x3) replaces both antecedent clauses. When C is fully
optimized, this set of conflict clauses is used to remove assumptions in A . For
instance, if (¬x5∧ x2∧ x8∧ x9) ∈A , and (x5∨¬x2∨ x8) ∈ C , then x8 is removed as
an assumption because it will be forced by BCP after C is added to F .

2.5.2 Cutoff Heuristic

The heuristic that triggers the cutoff of a branch is of crucial importance in creating
an effective partition. Ideally, this heuristic partitions the original problem into
several subproblems such that 1) the runtimes to solve each of the subproblems are
comparable and 2) the sum of these runtimes (at least) does not exceed the runtime
of the original instance.

A simplified interpretation of the results discussed in Section 2.4 is that for
some hard combinatorial problems both objectives can be achieved by cutting off
a branch if a certain fraction (say 10%) of the variables are assigned. This measure
is much easier to handle than the solution time for the sub-instances, which for the
experiments reported in Section 2.4 was determined in an ad hoc manner. The total

40 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

runtime to solve all subproblems was not just not bigger than the original runtime,
but much smaller. So this metric is very useful for several small hard problems.
However, for the larger industrial instances, the number of decisions appears to be
also important to determine the hardness of a subproblem. Additionally, for these
formulas sometimes a single decision assigns 10% of the variables, while for other
formulas it requires over 100 decisions. In the former case the number of partitions
becomes too small, while in the latter case the number of partitions becomes too
large.

An alternative approach by Hyvärinen et al. [22] cuts off a branch after k decisions
have been made (this was called method A in Section 2.4). The advantage of this
approach is that one can clearly upper-bound the number of partitions in advance.
However, branches with the same number of decisions are rarely equally hard to
solve. It is often the case that assigning a decision literal x to t results in significantly
more implied literals than assigning x to f or vice versa.

We combine both approaches by using the product of the number of decisions
and the number of assigned variables, |ϕdec| · |ϕdec ∪ ϕimp|, as the cutoff metric.
Furthermore, the refined procedure CreateCubes∗, Algorithm 2.2, includes a dynamic
cutoff mechanism. It implements the cutoff of a branch (with the cutoff heuristic
discussed above) as shown in line 7 using a threshold parameter θ . Two lines update
the value of θ . The first, the increment rule on line 1, raises the value by 5% without
a condition. This rule aims to restore the value in case it was reduced too much. The
second, the decrement rule on line 3, lowers the value by 30%. This rule tries to
avoid two unfavorable situations described below.

First and most importantly, the value is decreased if the lookahead solver hits
a conflict, meaning that the current node is a refuted branch. The rationale of this
update is as follows. If the lookahead solver was able to show that the current node
is conflicting, then probably a CDCL solver could have found the conflict faster.
Additionally, if the CDCL solver had found the conflict, then it could have analyzed
it and possibly computed a smaller reason for this conflict (than all decisions as
computed by the lookahead solver). By lowering θ , the mechanism tries to cut off
neighboring branches before a conflict emerges.

Secondly, the mechanism prevents the recursive procedure from going too deep
into the DPLL tree. For most interesting instances, it appeared useful to decrease θ
for all nodes with a depth larger than 20. In case one wants the mechanism to finish
creating cubes within a few seconds, then the condition should be dependent on the
size of the formula, such as |ϕdec|+ log2(|F |)> 30.

Initially, θ should be large enough to ensure that the mechanism will cut off the
tree at a reasonable depth. We used θ := 1000 as initial value. Using a value which
is a factor of 10 larger or smaller hardly influences the resulting partition. Using this
initial value, θ will first be decreased before cutting off a branch.

2 Cube-and-Conquer for Satisfiability 41

Algorithm 2.2: The Procedure CreateCubes∗ with the Cutoff Mechanism
input :CNF F , DNF A , CNF C , dec. lits. ϕdec, imp. lits. ϕimp

1 θ := 1.05 ·θ ;
2 〈F,ϕimp〉 := LAsimplify_and_learn (F , ϕdec, ϕimp);
3 if ϕdec∪ϕimp falsify a clause in F or |ϕdec|> 20 then

4 θ := 0.7 ·θ ;

5 if ϕdec∪ϕimp falsify a clause in F then

6 return 〈A ,C ∪{¬ϕdec}〉;
7 if |ϕdec| · |ϕdec∪ϕimp|> θ · |vars(F)| then

8 return 〈A ∪{ϕdec},C 〉;
9 ldec := LAdecide (F , ϕdec, ϕimp);

10 〈A ,C 〉 := CreateCubes∗ (F,A ,C ,ϕdec∪{ldec},ϕimp);
11 return CreateCubes∗ (F,A ,C ,ϕdec∪{¬ldec},ϕimp) ;

2.5.3 Heuristics for Splitting

Besides the development of the cutoff mechanism, the standard heuristics for look-
ahead solvers had to be tweaked in order to realize fast performance.

Decision heuristics

The default and costly lookahead evaluation heuristic (measurement) in most
lookahead solvers is based on the clauses that are reduced but not satisfied during a
lookahead. These clauses are weighted depending on their (new) length. In general,
a clause of length k has a weight which is five times larger compared to a clause of
length k+1. A cheaper heuristic counts the number of variables that are assigned
during the lookahead.

For an example of both heuristics, consider the formula F below. Because the
longest clauses have length 3, all “new” clauses have length 2, so no weights are
required. Let evalcls(xi) denote the clause-based heuristic that is the (weighted) sum
of the reduced, not satisfied clauses, and let evalvar(xi) be the variable-based heuristic
that is the number of assigned variables during the lookahead on xi = 1. For example,
evalvar(¬x6) = 1 and evalcls(¬x6) = 2 because the lookahead on x6 = 0 reduces two
clauses from ternary to binary, and only x6 is assigned. Notice that the values of
the two heuristics are not necessarily related. evalcls(xi) may be much smaller than
evalvar(xi). For instance evalcls(¬x2) = 1, while evalvar(¬x2) = 4.

F = (¬x1∨¬x3∨ x4)∧ (¬x1∨¬x2∨¬x3)∧ (¬x1∨ x2)∧ (x1∨ x3∨ x6) ∧
(¬x1∨ x4∨¬x5)∧ (x1∨¬x6)∧ (x4∨ x5∨ x6)∧ (x5∨¬x6)

In general, lookahead solvers rank variables xi by eval(xi) · eval(¬xi). Ties are
broken by eval(xi) + eval(¬xi). The decision heuristics select in each node of the
DPLL tree the variable with the highest rank.

42 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

The default heuristic evalcls appeared to be quite effective on instances that
had zero or few binary clauses. This is frequently the case for random and crafted
instances used in the SAT competitions. However, we noticed that evalvar was more
effective on industrial instances. An advantage of evalvar is that it does not require
the eager data structures used in lookahead SAT solvers. Hence, this heuristic is
relatively easy to implement in CDCL solvers.

Direction heuristics

Given a decision variable x, direction heuristics decide which branch (x to t or
x to f) to explore first; see Section 5.3.2 in [18] for more information. Direction
heuristics in lookahead solvers aim to improve performance on satisfiable formulas.
Therefore, the solver prefers the branch that is most “likely” to be satisfiable. For
methods to estimate such probabilities see Section 7.9 in [26], and see Subsection
4.6.2 in [33] for some discussions in the CSP context. As a cheap approximation one
can take the less constrained branch first. This is the complementary strategy of the
first fail principle [14] which is often used in constraint satisfaction. In case eval(x)
< eval(¬x), x to t is explored first. Otherwise x to f is preferred. For a certain node
with decision variable x, we refer to the branch with eval(x) < eval(¬x) as its left
branch. The other branch we call its right branch.

The partition mechanism as described in Section 2.5.2 seems to be quite robust
regarding the direction heuristics. The number of cubes and the average size of the
cubes is hardly influenced by exploring the left or the right branch first. However,
the order in which partitions are visited has a clear impact on performance related to
the left and right branches, when considering how the subproblems are solved; see
Section 2.6.1.

2.6 Solving Cubes

A CDCL solver deals with the second phase of the cube-and-conquer method. The
solver takes as input the original formula F , optionally extended with the learnt
clauses C , and the set of assumption cubes A . The latter is ordered based on
some heuristic. For each cube c ∈A based on this order, the CDCL solver solves
F ∧ c(∧C). First, we present how to solve the cubes sequentially in Section 2.6.1.
Second, we discuss a parallel-solving approach in Section 2.6.2.

2.6.1 Sequential Solving

The sequential-solving procedure is rather straightforward and shown in Algo-
rithm 2.3. Iteratively, a cube c ∈ A is selected (line 3) and assumed to be true,

2 Cube-and-Conquer for Satisfiability 43

followed by solving the simplified formula (line 4). In case the result is satisfiable,
the original formula is satisfiable and hence the procedure ends. After all cubes have
been refuted, the formula is found to be unsatisfiable.

After refuting a cube, most CDCL solvers provide a technique to extract a subset
of the cube that was required to prove unsatisfiability, known as AnalyzeFinal. It can
be useful to add the clause – the complement of this subset – to the formula (line 6).
Adding it can make refuting another cube easier. However, if |A | is much larger than
|F |, the addition may significantly slow down performance.

Last but not least, we observed that removing some learnt clauses after refuting a
cube can significantly improve the performance of cube-and-conquer. This can be
explained by the intuition that the subproblems are relatively independent and hence
the learnt clauses of one subproblem can hardly be reused for another subproblem.
Removal of learnt clauses is realized by resetting the clause deletion policy after
solving a cube (line 7). So the size of the clause database is reduced to its initial size
and the least important clauses are kicked out.

Algorithm 2.3: The Pseudo-Code of SolveCubes Using the Partition
input :CDCL solver S, CNF F , DNF A

1 S.Load (F);
2 while A is not empty do

3 get a cube c from A and remove c from A ;
4 if S.SolveWithAssumptions (c) = satisfiable then

5 return satisfiable;

6 S.AnalyzeFinal () ; // optional
7 S.ResetClauseDeletionPolicy () ;

8 return unsatisfiable ;

Describing the cubes

In the partition procedure CreateCubes, the cube consists only of all decisions
(ϕdec) from the root to the cutoff. Alternatively, one could describe a cube by all the
assigned variables (ϕdec∪ϕimp). The latter may include several assignments that a
CDCL solver cannot reconstruct by BCP, for instance the failed literals. Recall that
this approach is used is Section 2.4 and by Hyvärinen et al. [22, 23]. However, it
seems that communicating implied variables to a CDCL solver does not improve
runtime. Throughout our experiments, using cubes consisting of only decision literals
resulted in stronger performance.

The order in which the decision literals are assumed into the CDCL solver influ-
ences the size of conflict clauses. The natural order – the order in which the decisions
were made – appears to be the best alternative.

44 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

Ordering the cubes

During the experiments, we observed a relation between the time it requires to
refute a cube and the number of right branches between the root and the cutoff of
that cube: the more right branches (also known as discrepancies), the easier the
corresponding subformula. On the other hand, for satisfiable formulas, cubes that
cover a solution tend to have few right branches. Although we focused mostly on
unsatisfiable formulas, we observed that for satisfiable benchmarks it pays off to
solve the cubes with few right branches first. This strategy is known as limited
discrepancy search [15].

There is also another reason for preferring this order, namely when solving cubes
in parallel (see Section 2.6.2). In case CreateCubes produces an unbalanced tree,
then frequently one or a few cubes will consume most of the computation costs to
solve a formula. Therefore, one should solve the hard cubes first: a few cores attack
these hard cubes, while others solve the easier ones. In contrast, if a hard cube needs
to be solved at the end, all other cores may be idle as no unsolved cubes are left.

2.6.2 Solving Cubes in Parallel

A natural extension of the approach in the prior section is to consider solving
the partitions in parallel. In existing work on parallel SAT solving [12] two main
approaches are distinguishable. The first aims to partition the formula in an attempt
to divide the total workload evenly over multiple cores, the second are so-called
portfolio approaches [13]. Rather than partitioning the formula, portfolio systems run
multiple solvers in parallel, each attempting to solve the same formula. The system
finishes whenever the fastest solver finishes. Often such portfolios consist simply
of multiple instances of the same CDCL solver. They can be configured such that
each explores a different part of the search space — simply using different random
seeds. Such parallel solvers mostly exploit the lack of robustness of SAT solvers, and
can be surprisingly effective. Parallel SAT solvers of both types can be extended by
exchanging learnt clauses.

In the solving phase of cube-and-conquer many partitions are independently
solved and thus it can be easily parallelized. However, we treat this phase as one
single incremental problem and use of incremental SAT. In [36] two different job
assignment strategies for parallel incremental SAT were discussed and implemented
in a tool called TARMO. That work was focused on Bounded Model Checking (BMC)
but it can be seen as a general framework for parallel incremental SAT solving with
clause sharing . The first strategy implemented is the multijob approach in which
an idle core is assigned the first job that is not already assigned to any other core.
When two cores are idle at the same time the job assignment order is undefined but
it is guaranteed that no two cores ever work on the same job. The second strategy,
called multiconv, is inspired by portfolio solvers, and it simply runs a conventional
incremental SAT solver on all jobs on all cores. The latter can be effective for BMC,

2 Cube-and-Conquer for Satisfiability 45

where jobs are difficult and job order is relevant. For cube-and-conquer however, we
deal with an enormous number of jobs, most of which are very easy, which means
there are no large deviations in single-job runtimes for the multiconv strategy to
exploit. For this application multijob is a natural choice, although it is not ideal.
If the partitioning is uneven, a small number of the jobs may be responsible for a
large part of the runtime. Thus, many cores may end up sitting idle while waiting
for a small number of cores with hard jobs to finish. In TARMO we experimented
also with an extended strategy, multijob+, which is like multijob except that it will
assign a job that is already being solved by some core to cores that would otherwise
become idle. This modified strategy appeared beneficial for the performance of the
cube-and-conquer solving phase.

Another feature of TARMO is its ability to share learnt clauses between solver
threads. As discussed in [36] different settings are possible for the number of clauses
shared. TARMO by default shares learnt clauses which lengths is below as it appears
the most effective for this application.

After studying the parallelization of cube-and-conquer’s solving phase using
various versions of TARMO, a special purpose multithreaded version of the fast
SAT solver LINGELING was created, which uses the basic multijob strategy. This
special purpose solver called ILINGELING is faster than TARMO for this application,
although it does not use clause sharing or the multijob+ strategy yet.

2.7 Interleaving the Cube and Conquer Phases

Offline cube-and-conquer, i.e., performing the cube phase before the conquer phase,
shows strong performance on several hard application benchmarks, beating both the
lookahead and CDCL solvers that were used for the cube and conquer steps. However,
on many other instances, either lookahead or CDCL outperforms cube-and-conquer.
We observed that for benchmarks for which cube-and-conquer has relatively weak
performance, two important assumptions do not hold in general.

First, in order for cube-and-conquer to perform well, lookahead heuristics must
be able to split the search space into cubes that, combined, take less time for CDCL
to solve. Otherwise, cube-and-conquer techniques are ineffective and CDCL would
be the preferred solving technique. Second, lookahead must be able to cutoff cubes
that are easy for CDCL to solve, and it should not cutoff cubes that are still hard for
CDCL. When this assumption fails, the cutoff heuristic will perform badly, and the
cube phase either generates too few cubes and leaves a potential performance gain
unused, or generates too many cubes because cubes with fewer decisions are also
easy for CDCL to solve.

46 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

2.7.1 Ineffective Lookahead Heuristics

To compare the performance of CDCL and cube-and-conquer, we ran both solver
types2 on all application benchmarks of SAT 2009. CDCL was able to solve 57 more
benchmarks compared to cube-and-conquer within the timeout of 900 seconds (171
vs. 114). For some instances, the performance gap was huge (in favor of CDCL), in
particular on satisfiable ones. This can be explained as follows. After a decision, the
reduced formula might be harder (or at least not easier) than the original one. This
may be caused by ineffective lookahead heuristics. In case a decision hardly reduces
the search space, the conquer solver might need to solve two similar problems instead
of one, thereby raising the computational costs. On satisfiable formulas this negative
effect is expected to be more profound, since a single wrong decision might bring
the solver into a part of the search space without solutions.

The main reason for this negative effect is that the key assumption underlying
cube-and-conquer fails. This assumption expects that lookahead decision heuristics
can select for a formula F a decision variable x in such a way that F ∪{x} and
F ∪{¬x} are easier to solve separately than F itself. It was shown that for several
benchmarks this assumption holds [21]. However, the results above show that for
many benchmarks in the SAT 2009 application suite this is not the case. For those,
one would like to apply pure CDCL instead of cube-and-conquer.

Ineffective lookahead heuristics can be observed as follows. Given a formula F
and a decision variable x, lookahead creates two branches F ∪{x} and F ∪{¬x}. The
branch that reduces the formula the most is called the right branch, or a discrepancy.
In case lookahead heuristics are effective, then with each decision, but especially each
discrepancy, the formula becomes much simpler. Thus, after only a few discrepancies,
lookahead (or CDCL) should be able to refute the branch. A cube that is reached
through many discrepancies suggests that the lookahead heuristics have not been
effective for that branch.

2.7.2 Concurrent Cube-and-Conquer

This section describes the concurrent cube-and-conquer (CCC) technique. We first
describe CCC∞ (CCC without cutting of branches), and extend it later by adding a
cutoff heuristic for better resource utilization. CCC∞ constructs a decision tree via
the lookahead solver and simultaneously runs a CDCL solver on the newest node of
this decision tree. Whenever the lookahead solver assigns a decision variable, the new
literal is sent to the CDCL solver, which adds it as an assumption and restarts. This is
repeated recursively until either solver proves unsatisfiability, which means that the
cube is refuted and both solvers backtrack. Whereas (offline) cube-and-conquer cuts

2 MINISAT 2.2 for CDCL; MINISAT 2.2 and MARCH_CC (cube phase) and IMINISAT 2.2
(conquer phase) for cube-and-conquer. All benchmarks were first preprocessed using LINGELING
as suggested in [21]. We used the same version of LINGELING as in [21].

2 Cube-and-Conquer for Satisfiability 47

off branches explicitly using a heuristic, CCC∞ cuts branches off implicitly when
CDCL proves unsatisfiability before lookahead makes another decision.

Ideally, this approach is implemented within one solver. However, due to lack of
appropriate data structures, current CDCL solvers only apply lookahead and other
forms of preprocessing at the top level, and not under assumptions. For instance,
tree-based lookahead [19] requires access to all binary clauses at all decision levels,
which can only be accessed in a fast manner by using either full occurrence lists or
three pointers for non-binary clauses. Both techniques are not easy to combine with
data structures currently used in CDCL solvers.

On the other hand, lookahead solvers lack data structures for conflict analysis
and learning, which is essential in CDCL solvers for allowing non-chronological
backtracking and for cutting off repeated parts of the search. CC and CCC can be
seen as two different ways of solving this dilemma by running both types of solvers
separately, sequentially in CC and concurrently in CCC∞.

CC was particularly useful if many cubes were generated, which means that
CCC needs frequent synchronization. To limit the synchronization costs, CCC∞ uses
asynchronous message queues, where both solvers are peers. This architecture also
makes it easy to integrate other solvers in the future.

The solvers in CCC∞ communicate using two queues: the decision queue Qdecision
and the result queue Qsolved. Whenever the lookahead solver assigns a decision
variable, it pushes onto the queue the tuple 〈cube cid , literal ldec, backtrackLevel〉
comprising a uniquely allocated id, the decision literal, and the number of previously
assigned decision variables (backtrackLevel). When the CDCL solver reads the new
decision from the queue, it already knows all previous decision literals, and only
needs to backtrack to the backtrackLevel and add ldec as an assumption to start
solving cid . The id is used to identify the newly created cube.

If the CDCL solver proves unsatisfiability of a cube before it receives another
decision, it pushes the cid of the refuted cube to Qsolved. The solver then continues
with the parent cube, by backtracking to the level where all but the last decision literal
were assigned. When the lookahead solver reads the cid from Qsolved, it backtracks to
the level just above this cube’s last decision variable and continues its search as if it
proved unsatisfiability of the cube by itself.

The CDCL solver proves unsatisfiability of a cube if it encounters a comple-
mentary assignment when attempting to assign one of a cube’s literals. This is not
necessarily the last literal of the cube, so it may refute not only the cube correspond-
ing to the latest decision read from Qdecision, but also one or more of its parent cubes.
Therefore, it sends only cid of the smallest cube which it refuted, which implies that
the subcubes are also unsatisfiable.

To keep track of the cubes that are pending to be solved, both solvers keep the trail
of decision literals (or assumptions for the CDCL solver) and the ids of the cubes up
to and including each decision literal (or assumption). Whenever either solver proves
unsatisfiability of the empty cube, or when it finds a satisfying assignment, the other
solver is aborted.

It is possible that the lookahead solver already proved unsatisfiability of a cube
when it receives the same result from the CDCL solver. The id is used to discard

48 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

results on Qsolved for cubes that have already been closed. Similarly, it is possible
that the lookahead solver makes a decision even though the CDCL solver already
proved unsatisfiability of a parent of that cube. In that case the CDCL solver can
discard the obsolete item on Qdecision.

2.7.3 Cubes on Demand

Running CDCL and lookahead in parallel as described in Section 2.7.2 promises
to better combine the advantages of CDCL and lookahead than the original cube-
and-conquer offline approach. It allows the search to switch between paradigms as
soon as one becomes more effective. The original proposal however, only used two
parallel solvers and could not make use of more than two processing units.

Inspired by this basic concurrent cube-and-conquer idea we developed the parallel
SAT solver TREENGELING for multi-core computers, which not only combines
the strengths of lookahead solving with CDCL solving, but also combines it with
inprocessing. The main idea is to keep many instances of the base solver LINGELING
in memory. Each instance, called a node, corresponds to an open branch in the
lookahead search tree. The nodes are sorted by the number of remaining variables
and preference is given to nodes with fewer variables. We use eight times more
active nodes than there are processor cores available (including virtual cores due to
hyper-threading) and as many inactive nodes as the system allows.

In a first phase the active nodes are simplified by all preprocessor algorithms
available in LINGELING, then in a second phase they are searched with CDCL for
a certain number of conflicts, limited by a conflict limit. In the last phase half of
the larger active nodes are split using lookahead. This concludes one round. After
each round finishes, closed nodes (the solver proved unsatisfiability of its branch) are
removed and a new set of active nodes is determined by sorting all nodes w.r.t. the
number of remaining variables. These three phases, i.e., simplification, search, and
lookahead, are executed sequentially in order. But within each phase nodes are
processed in parallel (using pthreads) on as many cores as available, scheduled
by a working queue. If all nodes are removed or one node finds a solution, the solver
stops.

It is important to realize that TREENGELING relies on heavy-duty simplification
of each search node, which is only possible through copying (cloning) the solver
and adding lookahead decisions as units, which in turn, however, prevents sharing
learned clauses among cube-and-conquer nodes. This is the same trade-off made
by other lookahead solvers though. It is only expected to perform well on instances
where not much information can be shared among nodes. Lookahead bets on the
quality of its global decision heuristic to split the search into “disconnected” parts.

For unsatisfiable instances, the implementation of TREENGELING is in essence
deterministic, i.e., it always traverses the same search space and produces the same
number of conflicts, as long as the maximum number of active nodes stays the
same and the same memory limit is used. It is independent of the actual thread

2 Cube-and-Conquer for Satisfiability 49

schedule, as determined by the operating system. The number of parallel threads
during simplification, search, or lookahead does not influence the search. With more
available cores, more threads can be run in parallel, without runtime penalty. However,
in order to use more threads, more active nodes have to exist in parallel. The magic
constant of eight times more active nodes than processor cores seems to work best.

The conflict limit is adapted dynamically. If more nodes are removed (found
unsatisfiable during CDCL search) than added (through splitting), then the conflict
limit is increased, otherwise it is decreased, both in a geometric way. The limit
is increased more aggressively than decreased. Furthermore, there is a minimum
(1,000) and maximum (100,000) conflict limit.

TREENGELING combines part of the infrastructure of PLINGELING with cube-
and-conquer by running some additional parallel solver threads in portfolio manner,
which export units to the worker cube-and-conquer threads, and import blocking
clauses corresponding to closed branches. Since recent SAT competitions also fea-
tured certain random instances, on which local search solvers do fairly well in both
the combinatorial and the application track, our local search solver YALSAT is run
during inprocessing in these parallel solver threads, for a certain amount of time.

Note that TREENGELING, as well as PLINGELING, uses the same base library
of LINGELING as used in its stand-alone sequential version, without modifications,
except for registering call-backs, to support early termination and importing and
exporting clauses.

Further, after forking the first parallel solver thread, the initial instance is prepro-
cessed several times using the whole arsenal of preprocessing algorithms available
in LINGELING. Then further parallel solver threads are started and the cube-and-
conquer rounds are started.

As an example, consider a six-core machine with hyper-threading which has
12 virtual cores. Two threads are reserved for parallel solver threads running in a
portfolio manner. The first one is started after parsing and copying the formula, and
runs in parallel with preprocessing the original formula in 10 inprocessing rounds in
another thread. After this initial phase the second portfolio solver is cloned from the
preprocessed formula. Then the solver holding the preprocessed formula becomes
the first root node. Since there are 11 virtual cores left, the maximum number of
active nodes, which are simplified, searched, and split through lookahead in parallel
is 88.

For large formulas, keeping many copies of LINGELING around needs a sub-
stantial amount of memory. Splitting is disabled if there is a risk of exhausting the
available main memory. There is also a system limit on the maximum number of
threads. This may be reached if too many copies of nodes are active. These issues
will be addressed in future work.

50 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs

Fig. 2.2: Illustration of the framework to solve hard combinatorial problems. The
phases are shown in the rectangular boxes, while the input and output files for these
phases are shown in oval boxes

2.8 Proofs of Unsatisfiability

This section presents a framework for solving hard problems using cube-and-conquer
as well as for producing and validating a proof of unsatisfiability. The framework
consists of five phases: encode, transform, split, solve, and validate. The focus of the
encode phase is to make sure that representation of the problem as a SAT instance is
valid. The transform phase reformulates the problem to reduce the computation costs
of the later phases. The split phase partitions the transformed formula into many,
possibly millions of subproblems. The subproblems are tackled in the solve phase.
The validation phase checks whether the proofs emitted in the prior phases are a valid
refutation for the original formula. Figure 2.2 shows an illustration of the framework.

A proof of unsatisfiability (also called a refutation) for a formula F is a sequence of
satisfiability-preserving transitions ending with some formula containing the empty
clause. There are currently two prevalent types of unsatisfiability proofs: resolution
proofs and clausal proofs. Both do not display the sequence of transformed formulas,
but only list the axioms (from F) and the additions and (possibly) deletions. Several
formats have been designed for resolution proofs [38, 10, 3] (which only add clauses),
but they all share the same disadvantages. Resolution proofs are often enormous, and
it is hard to express important techniques, such as conflict clause minimization, with
resolution steps. Other techniques, such as bounded variable addition [30], cannot
be polynomially simulated by resolution at all. Clausal proof formats [35, 34, 17]
are syntactically similar; they involve a sequence of clauses that are claimed to be
satisfiability-preserving, starting with the given formula. But now we might add
clauses that are not logically implied, and we also might remove clauses (this is

2 Cube-and-Conquer for Satisfiability 51

needed now in order to enable certain additions, which might depend on global
conditions). The most popular format for clausal proofs is the DRAT (“Deletion
Resolution Asymmetric Tautology”) format [16].

Below we discuss the five phases of the framework in more detail.
Encode. The first phase of the framework focuses on making sure that the problem

to be solved is correctly represented in SAT. In the second phase the representation
will be optimized. The DRAT proof format can express all transformations.

Transform. The goal of the transformation phase is to massage the initial encoding
so that the later phases may be executed more efficiently. A proof for the transforma-
tions is required to ensure that the changes are valid. Notice that a transformation that
would be helpful for one later phase might be harmful for another phase. Selecting
transformations is therefore typically a balance between different trade-offs. For
example, bounded variable elimination [9] is a preprocessing technique that tends
to speed up the solving phase. However, this technique is generally harmful for the
splitting phase as it obscures the lookahead heuristics.

Split. Partitioning is crucial to solve hard combinatorial problems. Effective
partitioning is based on global heuristics [21] – in contrast to the “local” heuristics
used in CDCL solvers. The result of partitioning is a binary branching tree of which
the leaf nodes represent a subproblem of the original problem. The subproblem is
constructed by adding the conjunction of decisions that lead to the leaf as unit clauses.
Figure 2.1 shows such a partitioning as a binary tree with seven leaf nodes (left)
and the corresponding list of seven cubes (right). The cubes are shown in the iCNF
format that is used for incremental solvers to guide their search.

Solve. The solving phase is the most straightforward part of the framework. It
takes the transformed formula and cube files as input and produces a proof of unsat-
isfiability of the transformed formula. Two different approaches can be distinguished
in general: one for “easy” problems and one for “hard” problems. A problem is
considered easy when it can be solved in reasonable time, say within a day on a
single core. In that case, a single cube file can be used and the incremental SAT
solver will emit a single proof file. The more interesting case is when problems are
hard and two levels of splitting are required, allowing parallel solving.

Validate. The last phase of the framework validates the results of the earlier phases.
First, the encoding into SAT needs to be validated. This can be done by proving that
the encoding tool is correct using a theorem prover. Alternatively, a small program
can be implemented whose correctness can be checked manually. The second part
consists of checking the three types of DRAT proofs produced in the earlier phases:
the transformation, tautology, and the cube proofs. DRAT proofs can be merged easily
by concatenating them. The required order for merging the proofs is: transformation
proof, cube proofs, and tautology proof.

52 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

2.9 Experimental Evaluation

This section describes an evaluation of offline cube-and-conquer on application
benchmarks from the SAT Competition in Section 2.9.1 and of a very hard problem
in Ramsey Theory in Section 2.9.2.

2.9.1 Application Benchmarks

The experiments focus on the strength of cube-and-conquer on hard application
benchmarks. For this chapter we used instances from the SAT 09 application category
that were not solved during the competition (within the given timeout of 10,000
seconds) – the same set as used in [23]. We modified two existing SAT solvers
according to the general method of cube-and-conquer. First, the lookahead SAT
solver MARCH [32] was converted into a splitting tool called MARCH_CC. Second,
the CDCL solver LINGELING was extended to deal with iCNF files. This version
called ILINGELING also supports solving cubes in parallel. The sources of both tools
are available on http://fmv.jku.at/cnc/.

Phase I of our cube-and-conquer implementation consists of A) simplifying the
formula using the preprocessor of LINGELING (option -s) and B) calling MARCH_CC
on the result. The cutoff mechanism in MARCH_CC is implemented as shown in
Algorithm 2.2. Three benchmarks in the SAT 09 suite (9dlx* and sortnet*) remained
too large after simplifying and caused memory problems for MARCH_CC. Therefore,
we replaced |ϕdec| > 20 by |ϕdec| > 10 in the decrement rule for these instances.
We used the cheap evalvar lookahead evaluation, because it resulted in improved
performance compared to evalcls. The reported runtimes in Table 2.1 for phase
I include both preprocessing and partitioning – the latter consuming most of the
time. Notice that partitioning is based on lookahead. Hence, this part can relatively
easily be parallelized. Since solving cubes requires more time than creating them,
this optimization is left for future work. MARCH_CC outputs an iCNF file that
concatenates the simplified formula and a line for each cube.

For phase II of cube-and-conquer, the iCNF file is provided to ILINGELING. We
used a 12-core machine during this phase. On such a machine, ILINGELING starts 12
worker threads using separate LINGELING solvers. Idle threads ask for the first cube
that has not been dealt with by another thread. After receiving a cube, LINGELING
solves the reduced formula of the first phase with the cube as assumptions. After
a cube is refuted, the clause database of the corresponding LINGELING is reduced
as discussed in Section 2.6.1. A thread terminates either when a solution is found
by one of the 12 solvers or when no new cube is available. ILINGELING terminates
when all threads are terminated.

Table 2.1 shows the results of our cube-and-conquer implementation on hard SAT
2009 application instances. The experiments are run on a two 6-core AMD Opteron
2435 machine from 2009. This machine, part of a cluster, has 32 GB main memory

http://fmv.jku.at/cnc/

2 Cube-and-Conquer for Satisfiability 53

and each job had a memory limit of 2.5 GB per core. Additionally it shows the results
of three alternative solvers, which we obtained from [23]:

• PLINGELING 276, a multi-core portfolio solver using 12 cores [5].
• MANYSAT 1.5, a multi-core portfolio solver using 4 cores [13].
• PT-LEARN, an iterative partitioning solver with learning running on a grid [23].

The portfolio solvers PLINGELING and MANYSAT were run on exactly the same
hardware as our implementation, while PT-LEARN was run on the M-grid environ-
ment consisting of nine clusters with CPUs from 2006 to 2009.

Table 2.1: Results on benchmarks of the SAT 2009 application suite that were not
solved during that competition. S denotes satisfiable, U denotes unsatisfiable. Phase
I uses LINGELING for preprocessing and MARCH_CC for partitioning. The column
I shows the total time (in seconds) of both tools on a single core. Phase II uses
ILINGELING to solve the cubes. Both the total time (sum of all threads) and the
real time are listed. For the other solvers only the real time is provided (originating
from [23]). – denotes that the timeout of 4 hours (14,400 seconds) was reached

S number I II II PLINGELING MANYSAT PT-LEARN

Benchmark U of cubes total total real real real real
9dlx_vliw_at_b_iq8 U 84 284 — — 3256 2750 —
9dlx_vliw_at_b_iq9 U 40 314 — — 5164 3731 —
AProVE07-25 U 98320 168 81513 6858 — — 9967
dated-5-19-u U 28547 478 5601 2538 4465 18080 2522
eq.atree.braun.12 U 86583 115 3218 269 — — 4691
eq.atree.braun.13 U 83079 106 17546 1466 — — 9972
gss-24-s100 S 339398 1853 14265 1191 2930 6575 3492
gss-26-s100 S 493870 1517 66489 5547 18173 — 10347
gus-md5-14 U 78488 649 — — — — 13890
ndhf_xits_09_UNS U 39351 128 — — — — 9583
rbcl_xits_09_UNK U 61653 210 132788 16900 — — 9819
rpoc_xits_09_UNS U 36733 255 104552 20665 — — 8635
sortnet-8-ipc5-h19 S 583 271 48147 4023 2700 79010 4304
total-10-17-u U 19773 948 5927 5561 3672 10755 4447
total-5-15-u U 7865 192 — — — — 18670

When we compare our approach with the two portfolio solvers PLINGELING and
MANYSAT, then cube-and-conquer solves several more of these hard instances.
Portfolio solvers are stronger on the three huge instances 9dlx* and sortnet*. A
possible explanation could be that these instances must be “easy” relative to their
size. Therefore, lookahead techniques cannot really help the CDCL solvers.

The PT-LEARN solver shows on most instances comparable performance to
cube-and-conquer – although the latter is an order of magnitude faster on the
eq.atree.braun* and gss* benchmarks. The comparison of the two solvers in Ta-
ble 2.1 however is biased towards PT-LEARN: the experiments are run on similar
hardware, but PT-LEARN runs up to 60 jobs at the same time, while cube-and-
conquer runs at most 12 jobs. PT-LEARN suffers a bit from delays, while our solver

54 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

runs on one machine. So, the presented results suggest that cube-and-conquer is
actually the strongest solver on these hard application benchmarks.

Additional experiments suggest that our current implementation of cube-and-
conquer is not optimal yet. For several instances, we observed improved real-time
using fewer than 12 cores. For example, our 4-core cube-and-conquer experiments
solved dated-5-19-u in 901 seconds. Also, total-10-17-u was solved in 2,632 seconds
using a single core. This time is almost half the 12-core real-time and faster than the
other parallel SAT solvers. Notice that for both instances the real-time is relatively
close to the total time, indicating that solving a certain cube requires most of the
computational cost.

2.9.2 The Boolean Pythagorean Triples Problem

The Boolean Pythagorean Triples problem asks whether all bi-colorings of the
positive integers result in a monochromatic solution of the Pythagorean equation
a2 +b2 = c2. We solved the Boolean Pythagorean Triples problem [20] by showing
that there exists a bi-coloring of the numbers 1 to 7824 without a monochromatic
Pythagorean Triple, but that no such coloring exists of the numbers 1 to 7825. To
show that all bi-colorings of the numbers 1 to 7825 result in a monochromatic
Pythagorean Triple, we constructed a formula F7825 that is satisfiable if and only
if there exist a monochromatic-free Pythagorean Triple coloring. For each number
i ∈ {1, . . . ,7825}, the formula has a Boolean variable xi. Assigning xi to true colors i
red, while assigning xi to false colors i blue. For each solution of a2 +b2 = c2 with
a,b,c≤ 7825, F7825 contains two clauses: a, b, or c is red (xa∨ xb∨ xc) and a, b, or
c is blue (¬xa∨¬xb∨¬xc).

The first step of solving F7825 consisted of splitting the formula into 106 subprob-
lems [20] using MARCH_CC. Each of these subproblems, represented by a cube,
was solved using cube-and-conquer by combing MARCH_CC and GLUCOSE 3.0.
Figure 2.3 (left) shows a histogram of the size of the cube of the subproblems. Notice
that the smallest cube has size 12 and the largest cubes have size 49. Hence the cutoff
heuristics by MARCH_CC resulted in a highly unbalanced tree. Figure 2.3 (right)
shows the time for the cube and conquer runtimes averaged per size of the cubes. The
peak average of the cube runtime is around size 24, while the peak of the conquer
runtime is around size 26. The cutoff heuristics of the cube solver for second-level
splitting were based on the number of unassigned variables, 3,450 variables to be
precise.

A comparison between the cube, conquer, and validation runtimes is shown in
Figure 2.4. The left scatter plot compares cube and conquer runtimes. It shows that
within our experimental setup the cube computation is about twice as expensive
compared to the conquer computation. The right scatter plot compares the validation
and conquer runtimes. It shows that these times are very similar. Validation runtimes
grow slightly faster compared to conquer runtimes. The average cube, conquer,

2 Cube-and-Conquer for Satisfiability 55

and validation times for the 106 subproblems are 78.87, 47.52, and 60.62 seconds,
respectively.

Fig. 2.3: Left, a histogram (logarithmic) of the cube size of the 106 subproblems.
Right, average runtimes per size for the split (cube) and solve (conquer) phases

Fig. 2.4: Left, a scatter plot comparing the cube (split) and conquer (solve) time per
subproblem. Right, a scatter plot comparing the validation and conquer time

Figure 2.5 compares the cube-and-conquer runtimes to solve the 106 subproblems
with the runtimes of pure CDCL (using GLUCOSE 3.0) and pure lookahead (using
MARCH_CC). The plot shows that cube-and-conquer clearly outperforms pure CDCL.
Notice that no heuristics of GLUCOSE 3.0 were changed during any experiments for
cube-and-conquer or pure CDCL. In particular, a variable decay of 0.8 was used
throughout all experiments as this is the GLUCOSE default. However, we observed
that a higher variable decay (between 0.95 and 0.99) would improve the performance
of both cube-and-conquer and pure CDCL. We did not optimize GLUCOSE to keep
it simple, and because the conquer part is already the cheapest phase of the frame-
work (compared to split and validate); indeed, frequently speedups of two orders

56 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

Fig. 2.5: Scatterplots comparing cube-and-conquer to pure CDCL (left) and pure
lookahead (right) solving methods on the Pythagorean Triples subproblems

of magnitude could be achieved on the harder instances. Pure lookahead is also
slower compared to cube-and-conquer, but the differences are smaller: on average
cube-and-conquer is about twice as fast.

2.10 Conclusions

We presented the novel SAT-solving approach cube-and-conquer, which is a very
powerful method to solve hard CNF formulas. Our approach combines sophisticated
lookahead decision heuristics with the efficiency of CDCL solvers. Results on hard
van der Waerden benchmarks using our basic method show reduced computational
costs up to a factor of 20 compared to the fastest “pure” SAT solver. Using our cutoff
mechanism, we were able to apply cube-and-conquer on hard application instances
of the SAT competition. As a result, we outperform on most of these benchmarks
the state-of-the-art parallel SAT solvers. Moreover, cube-and-conquer allowed us to
solve the Boolean Pythagorean Triples problem. Interleaving the cube and conquer
phases is a promising alternative to offline cube-and-conquer. The TREENGELING
SAT solver, which is based on cubes on demand, has been very successful in recent
SAT competitions.

Acknowledgements

The authors thank Siert Wieringa for his contributions to Section 2.6.2 and Peter van
der Tak for his contributions to Section 2.7.2.

2 Cube-and-Conquer for Satisfiability 57

References

[1] Tanbir Ahmed, Oliver Kullmann, and Hunter Snevily. On the van der Waerden
numbers w(2;3, t). Discrete Applied Mathematics, 174:27–51, September 2014.

[2] Fahiem Bacchus. Enhancing Davis Putnam with extended binary clause rea-
soning. In AAAI 2002, pages 613–619, 2002.

[3] Armin Biere. PicoSAT essentials. JSAT, 4(2-4):75–97, 2008.
[4] Armin Biere. Bounded model checking. In Biere et al. [6], chapter 14, pages

455–481.
[5] Armin Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010.

2010.
[6] Armin Biere, Marijn J.H. Heule, Hans van Maaren, and Toby Walsh, editors.

Handbook of Satisfiability, volume 185 of FAIA. IOS Press, February 2009.
[7] Martin Davis, George Logemann, and Donald Loveland. A machine program

for theorem-proving. Commun. ACM, 5(7):394–397, 1962.
[8] Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient

solving of hard 3-SAT formulae. In Bernhard Nebel, editor, IJCAI, pages
248–253. Morgan Kaufmann, 2001.

[9] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable
and clause elimination. In Fahiem Bacchus and Toby Walsh, editors, Theory
and Applications of Satisfiability Testing, 8th International Conference, SAT
2005, St. Andrews, UK, June 19-23, 2005, Proceedings, volume 3569 of Lecture
Notes in Computer Science, pages 61–75. Springer, 2005.

[10] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, SAT, volume 2919 of LNCS,
pages 502–518. Springer, 2003.

[11] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT
solving. Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.

[12] Youssef Hamadi. Conclusion to the special issue on parallel SAT solving. JSAT,
6(4):263, 2009.

[13] Youssef Hamadi, Saïd Jabbour, and Lakhdar Sais. ManySAT: a parallel SAT
solver. JSAT, 6(4):245–262, 2009.

[14] Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for
constraint satisfaction problems. Artif. Intell., 14(3):263–313, 1980.

[15] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In
IJCAI 1995, pages 607–613, 1995.

[16] Marijn J.H. Heule. The DRAT format and DRAT-trim checker. CoRR,
abs/1610.06229, 2016. Source code available from: https://github.
com/marijnheule/drat-trim.

[17] Marijn J.H. Heule, Warren A. Hunt, Jr, and Nathan Wetzler. Verifying refu-
tations with Extended Resolution. In CADE, volume 7898 of LNAI, pages
345–359. Springer, 2013.

[18] Marijn J.H. Heule and Hans van Maaren. Look-Ahead Based SAT Solvers,
chapter 5, pages 155–184. Volume 185 of Biere et al. [6], February 2009.

https://github.com/marijnheule/drat-trim
https://github.com/marijnheule/drat-trim

58 Marijn J.H. Heule, Oliver Kullmann, and Armin Biere

[19] Marijn J.H. Heule, Mark Dufour, Joris E. van Zwieten, and Hans van Maaren.
March_eq: Implementing additional reasoning into an efficient look-ahead SAT
solver. In Holger H. Hoos and David G. Mitchell, editors, SAT (Selected Papers,
volume 3542 of Lecture Notes in Computer Science, pages 345–359. Springer,
2004.

[20] Marijn J.H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and
verifying the boolean Pythagorean Triples problem via Cube-and-Conquer.
In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of
Satisfiability Testing - SAT 2016, volume 9710 of Lecture Notes in Computer
Science, pages 228–245. Springer, 2016.

[21] Marijn J.H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube
and conquer: Guiding CDCL SAT solvers by lookaheads. In Kerstin Eder,
João Lourenço, and Onn Shehory, editors, Hardware and Software: Verification
and Testing (HVC 2011), volume 7261 of Lecture Notes in Computer Science
(LNCS), pages 50–65. Springer, 2012.

[22] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Partitioning SAT
instances for distributed solving. In LPAR-17, volume 6397 of LNCS, pages
372–386, 2010.

[23] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Grid-based SAT
solving with iterative partitioning and clause learning. In CP 2011, volume
6876 of LNCS, 2011.

[24] Hans Kleine Büning and Oliver Kullmann. Minimal Unsatisfiability and Au-
tarkies, chapter 11, pages 339–401. Volume 185 of Biere et al. [6], February
2009.

[25] Oliver Kullmann. Investigating the behaviour of a SAT solver on random formu-
las. Technical Report CSR 23-2002, University of Wales Swansea, Computer
Science Report Series, October 2002. 119 pages.

[26] Oliver Kullmann. Fundaments of Branching Heuristics, chapter 7, pages 205–
244. Volume 185 of Biere et al. [6], February 2009.

[27] Oliver Kullmann. The OKlibrary: Introducing a "holistic" research platform
for (generalised) SAT solving. Studies in Logic, 2(1):20–53, 2009.

[28] Oliver Kullmann. Green-Tao numbers and SAT. In Ofer Strichman and Stefan
Szeider, editors, SAT 2010, volume 6175 of LNCS, pages 352–362. Springer,
2010.

[29] Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfia-
bility problems. In IJCAI (1), pages 366–371, 1997.

[30] Norbert Manthey, Marijn J.H. Heule, and Armin Biere. Automated reencoding
of Boolean formulas. In Proceedings of Haifa Verification Conference 2012,
2012.

[31] Joao P. Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-Driven Clause
Learning SAT Solvers, chapter 4, pages 131–153. Volume 185 of Biere et al.
[6], February 2009.

[32] Sid Mijnders, Boris de Wilde, and Marijn J.H. Heule. Symbiosis of search
and heuristics for random 3-SAT. In David Mitchell and Eugenia Ternovska,
editors, LaSh 2010, 2010.

2 Cube-and-Conquer for Satisfiability 59

[33] Peter van Beek. Backtracking search algorithms. In Francesca Rossi, Peter
van Beek, and Toby Walsh, editors, Handbook of Constraint Programming,
chapter 4, pages 85–134. 2006.

[34] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In
ISAIM, 2008.

[35] Nathan Wetzler, Marijn J.H. Heule, and Warren A. Hunt, Jr. DRAT-trim:
Efficient checking and trimming using expressive clausal proofs. In Carsten
Sinz and Uwe Egly, editors, SAT 2014, volume 8561 of LNCS, pages 422–429.
Springer, 2014.

[36] Siert Wieringa, Matti Niemenmaa, and Keijo Heljanko. Tarmo: A framework
for parallelized bounded model checking. In Lubos Brim and Jaco van de Pol,
editors, PDMC, volume 14 of EPTCS, pages 62–76, 2009.

[37] Hantao Zhang. Combinatorial designs by SAT solvers. In Biere et al. [6],
chapter 17, pages 533–568.

[38] Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applications. In
DATE, pages 10880–10885, 2003.

Chapter 3

Parallel Maximum Satisfiability

Inês Lynce, Vasco Manquinho, and Ruben Martins

Abstract Developments in parallel Boolean Satisfiability (SAT) have motivated
developments in parallel Maximum Satisfiability (MaxSAT), where MaxSAT is the
optimization counterpart of SAT. Although many of the techniques implemented
in parallel SAT can be extended to parallel MaxSAT, additional techniques are
required to deal with the optimization part. This chapter provides an overview of
the state of the art in parallel Maximum Satisfiability. The required background
is first provided, namely the characteristics of the different MaxSAT algorithms.
Solutions to parallel MaxSAT solving include portfolio approaches and search space
splitting. Clause sharing is a key issue and so conditions for safe clause sharing
are described. Deterministic parallel MaxSAT is another contribution in the field,
having the additional challenge of synchronization strategies. Finally, future research
directions are discussed.

3.1 Introduction

Maximum Satisfiability (MaxSAT) is an optimization version of Boolean Satisfia-
bility (SAT) where the goal is to find an assignment to the problem variables such
that the number of satisfied (unsatisfied) clauses is maximized (minimized) [44].
Many important application domains can be encoded as MaxSAT problems, such

Inês Lynce
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol, 9, 1000-029
Lisboa, Portugal, e-mail: ines.lynce@tecnico.ulisboa.pt

Vasco Manquinho
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol, 9, 1000-029
Lisboa, Portugal, e-mail: vmm@sat.inesc-id.pt

Ruben Martins
University of Texas at Austin, 2317 Speedway, M/S D9500, TX 78712-0233, e-mail: rmartins@
cs.utexas.edu

61© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_3

ines.lynce@tecnico.ulisboa.pt
vmm@sat.inesc-id.pt
rmartins@cs.utexas.edu
rmartins@cs.utexas.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_3&domain=pdf

62 Inês Lynce, Vasco Manquinho, and Ruben Martins

Package Dependencies Conflicts
p1 {p2∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2∧ p3} {}

Table 3.1: Example of a software package upgradeability problem

as software package upgrades [9], error localization in C code [41], debugging of
hardware designs [22], haplotyping with pedigrees [34], course timetabling [1], and
detection of Android malware [29].

For example, consider the software package upgradeability problem [49] where
we have a set of software packages we want to install. Each package pi has a set
of dependencies and a set of conflicts. The dependencies denote packages which pi
depends on. Therefore, those packages must be installed for pi to be installed. On the
other hand, conflicts denote packages that cannot be installed for pi to be installed.
Table 3.1 shows an example of a software package upgradeability problem instance
with four packages {p1, p2, p3, p4}. Each package has a set of dependencies and a
set of conflicts. We can easily conclude that is not possible to install all packages of
the problem presented in Table 3.1. Note that package p4 requires package p3 to be
installed, but at the same time package p3 has a conflict with package p4.

Even though not all packages can be installed, the user may want to maximize
the number of installed packages. This problem instance can be encoded as a partial
MaxSAT problem. The encoding is a set of clauses to be split into a subset of hard
clauses that must be satisfied and a subset of soft clauses that are desired to be
satisfied. Consider the following hard clauses:

[¬p1∨ p2∨ p3]∧ [¬p1∨¬p4]∧ [¬p2∨ p3] ∧
[¬p3∨ p2]∧ [¬p3∨¬p4]∧ [¬p4∨ p2]∧ [¬p4∨ p3]

(3.1)

These clauses correspond to the dependencies and conflicts between the different
packages. For example, the clause [¬p1∨ p2∨ p3] corresponds to the dependencies
of package p1, i.e., if p1 is installed, then either p2 or p3 must also be installed. On
the other hand, clause [¬p1∨¬p4] corresponds to the conflicts of package p1, i.e., if
p1 is installed then p4 cannot be installed.

Since we want to maximize the number of installed packages, we include that
information in the formula by using the following soft clauses:

(p1)∧ (p2)∧ (p3)∧ (p4) (3.2)

Therefore, in the resulting partial MaxSAT problem we have to satisfy all clauses
in (3.1), while maximizing the number of satisfied clauses in (3.2). The assignment
ν = {p1 = true, p2 = true, p3 = true, p4 = false} satisfies all clauses in Equation
(3.1), while satisfying three out of four clauses in Equation (3.2).

3 Parallel Maximum Satisfiability 63

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200

se
co

nd
s

instances

Open-WBO (2015)
MaxHS (2016)
MSCG (2015)

Eva (2014)
Open-WBO (2014)

Z3 (Microsoft 2016)
QMaxSAT (2013)

WPM2 (2013)
PM2 (2010)

QMaxSAT (2011-12)
QMaxSAT (2010)

CPLEX (IBM 2013)
SAT4J (2009-10)

IncWMaxSatz (2008)

Fig. 3.1: Evolution of partial MaxSAT solvers

MaxSAT can indeed be used to effectively solve the software package upgrade-
ability problem. For example, the widely used Eclipse platform1 uses MaxSAT for
managing the plugin’s dependencies [18]. Improving MaxSAT algorithms will there-
fore result in more effective optimization solvers, which is expected to have a strong
impact on several application areas.

MaxSAT solvers have been significantly improved over the last decade. Figures 3.1
and 3.2 show the evolution of partial MaxSAT and partial weighted MaxSAT solvers
in the last decade. All experimental results for Figures 3.1 and 3.2 were obtained
in the StarExec [80] cluster infrastructure on Intel(R) Xeon(R) E5-2609 processors
(2.40 GHz) running Red Hat Enterprise Linux Workstation release 6.3 (Santiago)
with a timeout of 1,800 seconds and a memory limit of 32 GB. We have included the
best MaxSAT solvers from each year the MaxSAT evaluation was run2 [55, 70, 25,
66, 68, 2, 3, 4, 18, 48, 5, 51, 75] together with CPLEX3 and Z3.4 CPLEX is a tool for
solving linear optimization problems from IBM. We used the solver ILP [7], which
converts a MaxSAT formula into a linear optimization problem and uses CPLEX
as the back-end solver. Z3 is a Satisfiability Modulo Theory (SMT) solver and has
recently been extended to support optimization [19]. We converted each MaxSAT
formula into an equivalent SMT formula and used version 4.5.1 of Z3 to solve it. All

1 http://www.eclipse.org/
2 http://www.maxsat.udl.cat/
3 https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
4 Version 4.5.1 available at https://github.com/Z3Prover/z3

http://www.eclipse.org/
http://www.maxsat.udl.cat/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://github.com/Z3Prover/z3

64 Inês Lynce, Vasco Manquinho, and Ruben Martins

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800

se
co

nd
s

instances

MaxHS (2016)
LHMS (2015-16)

MSCG (2015)
MaxHS (2013)

Eva (2014)
QMaxSAT (2014)

Z3 (Microsoft)
CPLEX (IBM)
WPM2 (2013)

WPM1 (2011-12)
WBO (2010)

IncWMaxSatz (2008)
SAT4J (2009-10)

Fig. 3.2: Evolution of weighted partial MaxSAT solvers

solvers were evaluated on the 1,279 crafted and industrial partial benchmarks and
the 961 weighted partial benchmarks from the MaxSAT Evaluation of 2016.5

Partial MaxSAT solvers can now solve 2.9×more benchmarks than the best solver
in 2008. This remarkable improvement is due to a combination of new algorithmic
ideas and the evolution of SAT solvers. Partial MaxSAT solvers are now better
than other popular optimization tools such as CPLEX and Z3 for several Boolean
optimization problems. Specifically, Open-WBO [64, 55] is able to solve 67% more
benchmarks than CPLEX and 14% more benchmarks than Z3.

A similar picture can be seen for weighted partial MaxSAT solvers. MaxHS [24,
25] can solve 2.4× more benchmarks than the best solver in 2008. When compared
to CPLEX and Z3, MaxHS can solve 57% more benchmarks than both of those tools.

The solvers included in the plots are all sequential solvers. However, exploit-
ing new architectures is essential for the continued evolution of MaxSAT solvers.
Nowadays, extra computational power is no longer coming from higher processor
frequencies. On the other hand, multicore architectures and distributed systems are
becoming predominant.

This chapter focuses on recent techniques that have been proposed for parallel
MaxSAT solving and is organized as follows. Section 3.2 formally defines MaxSAT
and provides a short overview of sequential MaxSAT solvers. Section 3.3 presents
the two main approaches for parallel MaxSAT solving: (i) portfolio, and (ii) search
space splitting. Section 3.4 presents a deterministic approach for parallel MaxSAT for
multicore architectures and compares different synchronization mechanisms. Finally,

5 http://www.maxsat.udl.cat/16/index.html

http://www.maxsat.udl.cat/16/index.html

3 Parallel Maximum Satisfiability 65

Section 3.5 concludes this chapter with ongoing challenges for parallel MaxSAT
solvers and future research directions.

3.2 Maximum Satisfiability

A Boolean formula in conjunctive normal form (CNF) is a conjunction of clauses,
where a clause is a disjunction of literals. A literal l is a Boolean variable xi or its
negation ¬xi. An assignment is a correspondence between the Boolean variables
in the formula and the truth values true and false. The assignment of variables is
generalized to literals. A literal l = xi is said to be satisfied if xi is assigned value
true and unsatisfied if xi is assigned value false. On the other hand, a literal l = ¬xi
is satisfied if xi is assigned value false and unsatisfied if xi is assigned value true. A
clause is satisfied if and only if at least one of its literals is satisfied. A formula φ is
satisfied if all of its clauses are satisfied. The Boolean Satisfiability (SAT) problem
can be defined as finding a satisfying assignment to a propositional formula φ or
prove that such an assignment does not exist.

Consider the following CNF formula:

φ = (x1∨ x2∨ x3)∧ (¬x1∨¬x2)∧ (x2∨¬x3) (3.3)

Observe that φ is satisfiable, since there is at least one assignment ν that satisfies
the formula. For example, ν = {x1 = true,x2 = false,x3 = false} is a satisfying
assignment to φ .

A CNF formula φ is unsatisfiable if there is no assignment that satisfies the
formula. The following formula φ is unsatisfiable:

φ = (x1∨ x2∨ x3)∧ (¬x1∨ x2)∧ (x2∨¬x3)∧ (¬x2) (3.4)

Given a CNF formula φ , the Maximum Satisfiability (MaxSAT) problem is to find
an assignment to the formula variables such that the number of unsatisfied (satisfied)
clauses in φ is minimized (maximized) [44]. Observe that maximizing the number of
satisfied clauses is equivalent to minimizing the number of unsatisfied clauses. In
the context of this chapter, we assume that the MaxSAT problem is a minimization
problem.

Consider the CNF formula φ in (3.4). In this case, a MaxSAT optimal assignment
to φ could be ν = {x1 = false,x2 = false,x3 = false}, since only one clause is
unsatisfied.

MaxSAT has several variants such as partial MaxSAT, weighted MaxSAT, and
weighted partial MaxSAT. In partial MaxSAT, some clauses in φ are considered
hard while the others are considered soft. Let φh denote the set of hard clauses in
φ , while φs denotes the set of soft clauses. The goal in partial MaxSAT is to find an
assignment to the formula variables such that all hard clauses φh are satisfied, while
minimizing the number of unsatisfied soft clauses in φs.

66 Inês Lynce, Vasco Manquinho, and Ruben Martins

Consider the following CNF formula φ where hard clauses are enclosed within
square brackets:

φ = [x1∨ x2∨ x3]∧ (¬x1∨ x2)∧ (x2∨¬x3)∧ (¬x2) (3.5)

Observe that this formula is the same as in (3.4), but the first clause is labeled as
hard (φh = {[x1 ∨ x2 ∨ x3]}), while the remaining clauses are labeled as soft. As a
result, assigning false to all variables no longer produces an optimal assignment.
Hence, one possible optimal assignment for the partial MaxSAT problem would be
ν = {x1 = true,x2 = false,x3 = false}, where all clauses in φh are satisfied, while
only one soft clause remains unsatisfied.

Finally, in the weighted versions of MaxSAT, each soft clause ci is associated with
an integer weight wi such that wi ≥ 1. In this case, the goal is to find an assignment
such that all hard clauses are satisfied and the total weight of unsatisfied soft clauses
is minimized.

Consider the following weighted formula where an integer weight is associated
with each soft clause:

φ = [x1∨ x2∨ x3]∧ (¬x1∨ x2,3)∧ (x2∨¬x3,5)∧ (¬x2,2) (3.6)

In this weighted MaxSAT formula, an optimal solution could be ν = {x1 = false,x2 =
true,x3 = false}, where all hard clauses are satisfied and the sum of the weights of
unsatisfied soft clauses is 2, i.e., the weight associated with assignment ν is only 2.

In a MaxSAT problem instance φ , if the set of hard clauses φh is not satisfiable,
then φ is also unsatisfiable. For ease of explanation, we assume that φh is always
satisfiable. Note that this can be tested by using a SAT solver on φh before calling
any of the MaxSAT algorithms described in the chapter.

Cardinality constraints are a well-known generalization of propositional clauses.
A cardinality constraint encodes that at most k out of n literals can be assigned to
true, i.e., ∑n

i=1 li ≤ k where li is a literal. A generalization of cardinality constraints is
pseudo-Boolean constraints where each literal can have a weight, i.e., ∑n

i=1 wi · li ≤ k.
In this case, the weighted sum of the literals assigned to true must be smaller than or
equal to k.

Neither cardinality nor pseudo-Boolean constraints occur in MaxSAT formu-
lations, but their use in MaxSAT algorithms is common [31, 50, 5, 38, 65].
However, in order to iteratively use a SAT solver, most MaxSAT algorithms en-
code cardinality constraints [16, 79, 12, 71] and pseudo-Boolean constraints into
CNF [81, 28, 17, 40, 42].

3.2.1 Sequential MaxSAT Algorithms

In this section we briefly describe basic sequential MaxSAT algorithms. These
algorithms are presented solely to introduce notions that can be used in the parallel
framework. As a result, we refer to the vast literature on more advanced algorithms

3 Parallel Maximum Satisfiability 67

Algorithm 3.1: Linear Search SAT-UNSAT Algorithm
Input: φ = φh∪φs
Output: optimal solution to φ

1 (φW ,VR,μ,νsol)← (φh, /0,+∞, /0)
2 foreach ci ∈ φs do

3 VR ←VR∪{ri} // ri is a new variable
4 cR ← ci∪{ri}
5 φW ← φW ∪{cR}
6 while true do

7 (st,ν ,φC)← SAT(φW ∪{CNF(∑ri∈VR wi · ri ≤ μ)})
8 if st = UNSAT then

9 return νsol

10 νsol ← ν // save solution
11 μ ← (∑ri∈VR wi ·ν(ri))−1 // update bound

and implementation details in order to build a state-of-the-art sequential MaxSAT
algorithm.

Additionally, we focus on algorithms where a SAT solver is iteratively used in
order to find an optimal solution to the MaxSAT problem. These algorithms have
been shown to be more effective at tackling industrial benchmark instances. However,
there is also a vast literature on branch-and-bound algorithms [44], more commonly
used to solve randomly generated instances.

In the algorithms described in the next subsections, we assume that a SAT solver
call SAT(φ) takes as input a CNF formula φ . The result of a call to a SAT solver is
a triple (st, ν , φC), where st denotes the status of the formula: satisfiable (SAT) or
unsatisfiable (UNSAT). If the solver returns SAT, then the assignment that satisfies
φ is stored in ν . On the other hand, if the solver returns UNSAT, then φC contains an
unsatisfiable formula that explains a reason for the unsatisfiability of φ .6

Finally, for ease of notation and for a better understanding of the algorithms, in the
remaining sections we use set notation for CNF formulas and clauses. In particular, a
CNF formula φ can be seen as a set of clauses and a clause c as a set of literals.

3.2.1.1 Linear Search Algorithms

One common approach for solving MaxSAT is to perform a search on the possi-
ble values of the weight assignments by iteratively calling a SAT solver. In these
algorithms, a relaxation variable ri is added to each soft clause ci such that if the orig-
inal soft clause ci is unsatisfied, then ri must be assigned to true. Hence, relaxation
variables ri represents whether the original soft clause ci is satisfied (or not).

Algorithm 3.1 illustrates a linear search on the total weight of unsatisfied soft
clauses. The algorithm maintains an upper bound μ on the weight of an optimal
assignment. Observe that μ can be initialized with any value larger than the sum of

6 A common approach to extract an unsatisfiable subformula is to use assumptions [26].

68 Inês Lynce, Vasco Manquinho, and Ruben Martins

Algorithm 3.2: Linear Search UNSAT-SAT Algorithm
Input: φ = φh∪φs
Output: optimal solution to φ

1 (φW ,VR,λ)← (φh, /0,0)
2 foreach ci ∈ φs do

3 VR ←VR∪{ri} // ri is a new relaxation variable
4 cR ← ci∪{ri}
5 φW ← φW ∪{cR}
6 while true do

7 (st,ν ,φC)← SAT(φW ∪{CNF(∑ri∈VR wi · ri ≤ λ)}, /0)
8 if st = SAT then

9 return ν // optimal assignment to φ
10 λ ← UpdateBound({wi : ri ∈VR},λ)

the weights of all soft clauses. The working formula φW initially contains all hard
clauses from φh. Next, a relaxation variable ri is added to each soft clause ci and the
resulting clause is added to the working formula (lines 2-5).

At each iteration of the algorithm, a SAT solver is called (line 7) on the working
formula φW with an additional pseudo-Boolean constraint such that the total weight
of the unsatisfied soft clauses must be smaller than the upper bound μ . Therefore, if
the SAT solver call returns SAT, then ν contains an assignment with weight smaller
than μ , thus improving on the previously found solution. As a result, ν is saved
(line 10) and the upper bound μ is decreased (line 11). On the other hand, if the SAT
solver returns UNSAT, then there is no better solution than the last one found and
the algorithm ends (line 9).

Observe that the pseudo-Boolean constraint is encoded into CNF [81, 28, 17,
40, 42] in the SAT solver call (line 7). Otherwise, the SAT solver would have to
be replaced by a pseudo-Boolean solver that is able to natively deal with these
constraints [50, 18]. Moreover, if the MaxSAT formula is an instance of the partial
MaxSAT problem where all soft clauses ci have weight 1, then a cardinality constraint
is used and encoded into CNF [16, 79, 12, 71].

Algorithm 3.2 also performs a linear search on the weight of unsatisfied soft
clauses. However, in this case, the search maintains a lower bound λ on the weight
of an optimal assignment. The lower bound λ is initialized at 0 and increases at each
iteration until it reaches the optimal value.

The algorithm structure is very similar to Algorithm 3.1. The working formula is
initialized in exactly the same way by adding a relaxation variable to each soft clause
(lines 2-5). However, at each iteration, the SAT solver call checks whether there is a
solution with weight λ (line 7). If that is the case, then an optimal solution was found
and the algorithm ends (line 9). Otherwise, λ is increased to the next possible lower
bound value using function UpdateBound. The UpdateBound function returns
the smallest integer value υ such that υ > λ and SubSetSum({wi : ri ∈ VR},υ) is
true [6]. Function SubSetSum(S,υ) solves the well-known subset sum problem, i.e.,
it returns true if there is a subset S′ of S such that the sum of the elements of S′ equals

3 Parallel Maximum Satisfiability 69

Algorithm 3.3: WMSU3 Algorithm
Input: φ = φh∪φs
Output: optimal solution to φ

1 (φW ,VR,λ)← (φ , /0,0)
2 while true do

3 (st,ν ,φC)← SAT(φW ∪{CNF(∑ri∈VR wi · ri ≤ λ)})
4 if st = SAT then

5 return ν // optimal assignment to φ
6 foreach ci ∈ (φC ∩ φs) do

7 VR ←VR∪{ri} // ri is a new variable
8 cR ← ci∪{ri} // ci was not previously relaxed
9 φW ← (φW \{ci})∪{cR}

10 λ ← UpdateBound({wi : ri ∈VR},λ)

υ . Since the subset sum problem is NP-hard [32], a pseudo-polynomial algorithm
based on dynamic programming is used. This allows us to skip over lower bound
values that are not possible to attain, given the weights of the relaxed soft clauses in
VR [6]. Finally, notice that when the weight of all soft clauses is 1 (e.g., unweighted
partial MaxSAT), then UpdateBound always increases λ by 1.

3.2.1.2 Unsatisfiability-Based Algorithms

In 2006, Fu and Malik [31] proposed the first MaxSAT algorithm that takes advantage
of the ability of SAT solvers to be able to identify unsatisfiable subformulas (also
known as an unsatisfiable core of a formula). Since then, many other MaxSAT
algorithms have been proposed that also take advantage of this SAT solver feature.

As in Algorithm 3.2, the WMSU3 algorithm [52] also performs a lower bound
search on the weight of the optimal solution. However, the WMSU3 algorithm takes
advantage of the identification of unsatisfiable cores to delay the relaxation of soft
clauses.

Algorithm 3.3 presents the pseudo-code of WMSU3, where the working formula
is initialized with all clauses from φ (hard and soft). At each iteration, the SAT
solver call verifies whether there is a solution with weight λ . Whenever the SAT
solver returns UNSAT, φC contains an unsatisfiable subformula of φW . In that case, a
new relaxation variable ri is added to each soft clause ci ∈ φC that has not already
been relaxed (lines 6-9). Next, the lower bound λ is updated, as explained for
Algorithm 3.2.

Observe that at each SAT solver call (line 3), the pseudo-Boolean constraint
might not depend on the relaxation variables of all soft clauses. Since a clause is
relaxed only when it appears in an unsatisfiable core, the pseudo-Boolean constraint
is usually much smaller than the one in Algorithm 3.2. As a result, Algorithm 3.3 is
much more effective. Finally, when the SAT solver call is satisfiable, then an optimal
solution was found and the algorithm terminates (line 5).

70 Inês Lynce, Vasco Manquinho, and Ruben Martins

Algorithm 3.4: Fu-Malik for Weighted MaxSAT Algorithm
Input: φ = φh∪φs
Output: optimal solution to φ

1 (φW ,λ)← (φ ,0) // clauses in φs are marked as soft
2 while true do

3 (st,ν ,φC)← SAT(φW , /0)
4 if st = SAT then

5 return ν // optimal assignment to φ
6 VR ← /0
7 mC = min{weight(ci) | ci ∈ φC ∧soft(ci)}
8 foreach ci ∈ φC ∧soft(ci) do

9 VR ←VR∪{r} // r is a new relaxation variable
10 cR ← ci∪{r} // cR is marked as soft
11 weight(cr)← mC
12 if weight(ci)> mC then

13 weight(ci)← weight(ci)−mC
14 φW ← φW ∪{cR}
15 else

16 φW ← (φW \{ci})∪{cR}
17 φW ← φW ∪{CNF(∑r∈VR r ≤ 1)}
18 λ ← λ +mC

In the algorithms described so far, it is necessary to encode a pseudo-Boolean
constraint at each iteration. However, the generalization of the original Fu-Malik [31]
algorithm for weighted MaxSAT [50, 5] described in Algorithm 3.4 does not need
pseudo-Boolean constraints. Algorithm 3.4 also performs a lower bound search on
the optimal value of the MaxSAT problem. In this case, a constraint on the lower
bound is not represented explicitly.

In Algorithm 3.4, the working formula is also initialized with all hard and soft
clauses. When the working formula becomes satisfiable, then an optimal solution
was found and the algorithm ends. On the other hand, while the working formula
remains unsatisfiable, the SAT solver returns an unsatisfiable core φC. In this case,
each soft clause in ci ∈ φC is relaxed by creating a new relaxed clause cr from ci,
extended with a new relaxation variable.

On line 7, the weight of the core mC is the minimum weight of all soft clauses in
φC. Each soft clause ci ∈ φC with weight equal to mC is removed and replaced with
its relaxation cr (line 16). Otherwise, its weight is decreased by mC, thus resulting
in a clause split, since the original weight is divided between ci and cr. Finally, at
most one clause from the unsatisfiable core φC can be relaxed (line 17) and the lower
bound is increased by mC. Notice that no pseudo-Boolean constraints are involved in
this algorithm. At each iteration, a new AtMost1 cardinality constraint is encoded
into the working formula [33, 8, 30, 74, 43, 22].

3 Parallel Maximum Satisfiability 71

3.2.1.3 Other Algorithmic Solutions and Implementation Issues

In this chapter we have briefly introduced some algorithms for solving MaxSAT
that can be easily used in the parallel setting. We have focused on algorithms that
iteratively call a SAT solver, but other algorithmic solutions can be used instead.

A classic alternative is to use a specific branch and bound algorithm for MaxSAT.
In these algorithms, two techniques are common at each node of the search tree:
(1) the application of restrictive rules of MaxSAT inference [46, 21], and (2) the
application of lower bound estimation procedures in order to prune the search [45, 10,
23, 47]. Furthermore, SAT-based techniques can also be used on hard clauses [11].

More recently, several new algorithms based on the identification of unsatisfiable
cores have been proposed and an extended survey on this class of algorithms is
available [65]. The organization of iterative and core-based algorithms for MaxSAT
can be very diverse. For instance, some algorithms try to split the MaxSAT formula
using different criteria [60, 3, 70]. Others take advantage of identifying disjoint
unsatisfiable cores and perform binary search [38], while another approach is to
integrate hitting-set minimization into MaxSAT solving [25], among many other
diverse techniques [68].

In order to build a state-of-the-art MaxSAT solver, there are important implemen-
tation issues to be taken in consideration. First, the underlined SAT solver should be
able to effectively handle assumptions [26]. In particular, for iterative and core-based
algorithms, where the SAT solver is called successively, the usage of incremental
SAT solving is crucial [56]. In this chapter, we focus mainly on the algorithmic
techniques, but the integration with the SAT solver is essential to maximize the
performance of the MaxSAT solver.

3.3 Parallel MaxSAT

In recent years, parallel SAT solvers have successfully exploited multicore and
distributed architectures to speed up the performance of sequential SAT solvers.7

When compared with SAT instances, MaxSAT instances tend to be more intricate [72].
When solving a MaxSAT instance, it is not sufficient to find an assignment that
satisfies all clauses, but rather an assignment that satisfies all hard clauses and
minimizes the sum of the weights of unsatisfied soft clauses. Hence, it comes as a
natural step to develop parallel algorithms for MaxSAT.

Parallel MaxSAT solvers typically follow the architecture presented in Figure 3.3
and are based on two orthogonal approaches: (i) unsatisfiability-based algorithms
that search on the lower bound of the optimal solution, i.e., that perform lower
bound search, and (ii) linear search algorithms that search on the upper bound of the
optimal solution, i.e., that perform upper bound search. A parallel search with these
two orthogonal strategies results in a performance as good as the best strategy for

7 We refer the interested reader to Chapter 1, Parallel Satisfiability for more details on parallel SAT
solving.

72 Inês Lynce, Vasco Manquinho, and Ruben Martins

Lower Bound
Search

Optimal Value Upper Bound
Search

Exchanged Information:� Learned Clauses� Bound Value

Fig. 3.3: Architecture of parallel MaxSAT solvers

each problem instance. However, if workers cooperate through clause sharing , it is
possible to perform better than the best algorithm. Additionally, the two strategies
can cooperate in finding the optimum value. If during the search the lower bound
value provided by the unsatisfiability-based algorithms and the upper bound value
provided by linear search algorithms become the same, it means that an optimal
solution has been found. As a result, it is not necessary for any of the remaining
workers to continue the search to prove optimality since their combined information
already proves it.

The main differences between parallel MaxSAT solvers that follow the architecture
depicted in Figure 3.3 are:

• Resource allocation: different strategies for splitting the available workers be-
tween lower bound search and upper bound search;

• Information exchange: different heuristics for clause sharing .

In this section, we present the most common ways of splitting the available
resources and illustrate how parallel MaxSAT solvers exchange information to prune
the search space and speed up the search.

3.3.1 Portfolio Approaches

A portfolio approach explores the parallelism given by different strategies on the same
problem. Given n workers, a parallel portfolio MaxSAT solver will split the workers
between lower bound search and upper bound search. However, if the algorithms
that perform lower bound search are the same and the algorithms that perform upper
bound search are also the same, then the gain from increasing the number of workers
will be very small since all of them will be searching in a similar way. In order
to diversify the search one may employ different strategies such as: (i) change the
heuristics of the underlying SAT solver; (ii) use different algorithms on the lower
bound search or upper bound search; (iii) change the encoding of cardinality and
pseudo-Boolean constraints used in the MaxSAT algorithms.

The portfolio approaches for parallel MaxSAT solving presented in this section
are closely related to the portfolio approaches for parallel SAT solving presented in

3 Parallel Maximum Satisfiability 73

PWBO-T4 PWBO-T8

Encoding Search Encoding Search
Thread t1 Commander LB Commander LB
Thread t2 Totalizer LB Totalizer LB
Thread t3 Sorters UB Ladder LB
Thread t4 PB UB Product LB
Thread t5 − − Sorters UB
Thread t6 − − PB UB
Thread t7 − − Sequential UB
Thread t8 − − Totalizer UB

Table 3.2: Configuration of PWBO with four and eight threads

Chapter 1, Parallel Satisfiability. The main differences between these two approaches
are: (i) parallel portfolio for MaxSAT uses two orthogonal algorithms, whereas
parallel SAT solvers are usually based on the same algorithm; (ii) the diversification
of the search in parallel SAT solving is usually done through different heuristics,
while in parallel MaxSAT there are more available strategies to diversify the search.

An example of a portfolio solver for parallel MaxSAT that diversifies the search
by using different cardinality encodings for each worker is given in Table 3.2.
PWBO [57, 61] is a parallel MaxSAT solver for multicore architectures that uses
different configurations for four and eight threads. To maintain a balance between
lower and upper bound search PWBO uses the same number of threads for each kind
of search, while diversifying the search through different encodings.

3.3.1.1 Parallel Unsatisfiability-Based Algorithms

Figure 3.4 illustrates parallel unsatisfiability-based algorithms. These algorithms
work by iteratively identifying unsatisfiable cores and can use any unsatisfiability-
based algorithms such as the ones presented in Section 3.2.1.2. While solving the
formula, the parallel algorithm checks whether another worker has found a better
lower bound value, i.e., if it has found an unsatisfiable core. If this is the case, then it
imports the unsatisfiable core and relaxes it as if it had been found by this worker.

If a worker is not aware of a better lower bound value, then it continues the search
process until it finds an unsatisfiable core or a solution to the formula. If it finds an
unsatisfiable core, then it shares this unsatisfiable core with the remaining workers
searching on the lower bound. Next, it relaxes the unsatisfiable core as previously
described and continues the search on the new working formula. The procedure
terminates when the working formula becomes satisfiable and the solver returns an
optimal solution.

74 Inês Lynce, Vasco Manquinho, and Ruben Martins

Start

Solve CNF
formula

LB update? Import core

UNSAT?

Optimum found

Export core Relax core

Pseudo-Boolean
Encoding

checks yes

no

yes

no

Fig. 3.4: Parallel unsatisfiability-based algorithms

Start

Solve CNF
formula

UB update?

SAT?

Optimum found

Pseudo-
Boolean

constraint
on UB value

Pseudo-Boolean
Encoding

checks yes

no

yes

no

Fig. 3.5: Parallel linear search algorithms

3.3.1.2 Parallel Linear Search Algorithms

Figure 3.5 illustrates parallel linear search algorithms. These algorithms are based on
Algorithm 3.1 presented in Section 3.2.1.1. Recall that the original MaxSAT formula
φ is modified by adding a new relaxation variable ri to each soft clause ci from φ ,
resulting in an equivalent formula φW where one wants to minimize the number
of relaxation variables assigned to true. In the parallel algorithm, whenever a new

3 Parallel Maximum Satisfiability 75

solution is found for φW , the upper bound value is updated and a new pseudo-Boolean
constraint on the relaxation variables is added such that all solutions with a greater
or equal value are excluded. During search, each algorithm checks whether there is
a better upper bound value. If this is the case, it adds a pseudo-Boolean constraint
considering the new upper bound value. Afterwards, it restarts the search on the
constrained formula.

3.3.1.3 Implementation Issues

Note that there are a few implementation details not shown in Figures 3.4 and 3.5. In
particular, in Figure 3.4 only one worker exports an unsatisfiable core for each lower
bound value. Before exporting an unsatisfiable core, the respective worker checks
whether its lower bound value is the greatest lower bound value among all workers. If
this is the case, then it is safe to export the unsatisfiable core to the remaining workers.
Otherwise, it discards its own unsatisfiable core and imports the unsatisfiable core
that corresponds to the current lower bound value. Moreover, when a worker relaxes
an unsatisfiable core, it updates its lower bound value. When a worker imports an
unsatisfiable core from another worker, the relaxation procedure is the same as if this
unsatisfiable core had been found by the importing worker. Therefore, each worker
may preserve incrementality across iterations of the unsatisfiability-based algorithm
by using the incremental schemes presented in the literature [55, 56].

In Figure 3.5, the encodings used by the linear search algorithms support incre-
mental strengthening [12]. Since the upper bound value is always decreasing, the
pseudo-Boolean constraint only needs to be encoded when the first upper bound
value is found. In the following iterations, one can assign truth value false to some
specific literals in the encoding such that it restricts the pseudo-Boolean constraint
to the new upper bound value. Hence, all learned clauses from previous iterations
remain valid and can therefore be kept.

3.3.2 Search Space Splitting

In portfolio solvers there is a race between different algorithms (or the same algorithm
with different configurations) to reach a solution. In search-space-splitting solvers,
the goal is to split the original problem such that each worker process has to deal
with a smaller formula that is hopefully easier to solve. This section describes several
procedures to split the search space when solving MaxSAT formulas.

3.3.2.1 Interval Splitting

As previously mentioned, when solving a MaxSAT formula, one can define an
interval between a lower bound value and an upper bound value. Hence, a different

76 Inês Lynce, Vasco Manquinho, and Ruben Martins

approach for parallel MaxSAT is to split the search space by defining tentative bound
values to narrow this interval.

Consider that n cores or machines are available. In this case, one worker can
be used to search on the lower bound (using any unsatisfiability-based MaxSAT
algorithm), one worker can be used to search on the upper bound (using a linear
search algorithm), and the remaining n−2 workers can search considering different
tentative bound values between a known lower bound and a known upper bound.
The goal is to define tentative upper bound values that restrict the search space by
enforcing a fixed upper bound value of the optimal solution. Since this fixed upper
bound value is restricted to each worker, it is called local upper bound value. The
search performed by each of these workers is called the local upper bound search.
The iterative search on different local upper bound values leads to constant updates
on the lower and upper bound values that will reduce the search space. Next, an
example of this approach is described. Afterwards, a more detailed description of
local upper bound search is presented.

Example 1. Consider a partial MaxSAT formula φ as input. For the input formula,
one can easily find initial lower and upper bounds. Suppose the initial lower and
upper bound values are 0 and 11, respectively. Moreover, consider also that the
optimal solution is 3 and our goal is to find it using four workers: t0, t1, t2, and t3.
Worker t0 applies an unsatisfiability-based algorithm (i.e., searches on the lower
bound of the optimum solution). This worker starts with a lower bound of 0 and will
iteratively increase the lower bound until the optimum value is found.

Worker t1 searches on the upper bound of the optimum solution. Hence, worker t1
starts its search with upper bound value of 11. Workers t2 and t3 search on different
local upper bound values. For example, workers t2 and t3 can start their search with
local upper bound values of 3 and 7, respectively.

Suppose that worker t2 finishes its computation and finds that the formula is
unsatisfiable for an upper bound of 3. This means that there is no solution with values
0, 1 or 2. Therefore, the lower bound value can be updated to 3. Worker t2 is now
free to search on a greater local upper bound value, for example 5. In the meantime,
worker t3 finds a solution with value 6. Hence, the upper bound value can be updated
to 6. Worker t1 updates its upper bound value to 6 and worker t3 is now free to search
on a different local upper bound value, for example 4. Afterwards, consider that
worker t1 finds a solution with value 3. Again, the upper bound value can be updated
to 3. Since the lower bound value is the same as the upper bound value, the optimum
has been found and the search terminates.

Observe that this parallel search incorporates three types of algorithms: unsa-
tisfiability-based, linear search, and local linear search. The unsatisfiability-based
and linear search algorithms can be any two MaxSAT algorithms that follow these
approaches. In what follows we describe the algorithm for parallel local linear search
that is used by the remaining workers to perform local upper bound search.

Figure 3.6 illustrates parallel local linear search algorithms. Similarly to linear
search algorithms, the original MaxSAT formula φ = φh∪φs is modified by adding a
new relaxation variable ri to each soft clause ci from φs, resulting in an equivalent

3 Parallel Maximum Satisfiability 77

Start

Define
local UB

Add new
constraint
on local

UB value

Solve CNF
formula

SAT?

Update LB

Update UB

LB/UB
update?

Worker
bound
constraint

no

yes

checks

yes

no

Fig. 3.6: Parallel local linear search algorithms

formulation φR where the goal is to minimize the weighted sum of relaxation variables
assigned value 1.

These algorithms start by defining their local upper bound. Initially, the lower
bound value is set to 0 and the upper bound value to the sum of the weights of soft
clauses plus 1, i.e., s=∑ci∈φs wi+1. Therefore, considering k local workers, t1, . . . , tk,
a worker t j will have an initial tentative upper bound value b j of j×�(s+1)/(k+1)�.

Next, worker t j adds a constraint of the form ∑riwi ≤ b j−1 to exclude solutions
with a value greater than or equal to b j. Let this constraint be labeled the worker
bound constraint. If an encoding to CNF is used, then all clauses that were created to
encode this constraint will be labeled as worker bound constraints.

After adding a worker bound constraint, the algorithm starts the search. During
the search, the algorithm checks whether another worker has found a lower bound
that is greater than the current local upper bound or an upper bound that is smaller
than the current local upper bound. If one of these cases occurs, then the algorithm
will terminate its search and a new local upper bound is defined. Next, the search
restarts using the new local upper bound value. If the algorithm is not informed that

78 Inês Lynce, Vasco Manquinho, and Ruben Martins

x1

true f alse

x3 x2

true f alse true

{¬x1,x2}

f alse

x4

true

{¬x1,¬x2,x4}

f alse

{¬x1,¬x2,¬x4}

x2

{x1,¬x3}

true

{x1,x3,x2}

f alse

{x1,x3,¬x2}

Fig. 3.7: Example of guiding path generation using search tree split

a better lower or upper bound value has been found, then it continues the search
process until it finds a solution or proves that no solution exists for the current local
upper bound value. If a solution is found, then the algorithm updates the upper bound
value. Otherwise, if it proves that no solution exits, then the lower bound value is
updated. In both cases, a new local upper bound value is set and the search restarts.

Although not shown in Figure 3.6, note that updates to the global lower and upper
bounds can only take place when the new values improve the current ones. Observe
also that when a worker is assigned a new tentative upper bound value, its value
should cover the broadest range of yet untested bounds. More formally, the new
local upper bounds should be chosen as follows. Let B = 〈b0,b1, . . . ,bk−1,bk〉 be a
sorted list where b0 corresponds to the lower bound and bk corresponds to the upper
bound, while the remaining b j are the non-aborted worker local upper bounds. Let
[bm−1,bm], where 1≤ m≤ k, define an interval such that for all 1≤ j ≤ k we have
bm−bm−1 ≥ b j−b j−1. In this case, the new upper bound of the aborted worker is
�(bm +bm−1)/2�. The sorted list B is updated with the new value and this process is
repeated for each aborted worker.

Example 2. Consider the following scenario. A MaxSAT formula φ is currently being
solved by 4 worker processes. Worker t0 is searching on the lower bound value of
the optimal solution, and worker t1 is searching on the upper bound value of the
optimal solution. The current lower and upper bound values are 5 and 10, respectively.
Worker t2 is searching on a local upper bound with value 8 and worker t3 should
start computing with a new local upper bound. The sorted list B corresponds to
B = 〈5,8,10〉. Note that the largest interval between two consecutive values in B is
[5,8]. Therefore, the new tentative upper bound value of t3 should be �(8+5)/2�= 6.

3 Parallel Maximum Satisfiability 79

3.3.2.2 Guiding Paths

Another method of splitting the search space is to use guiding paths [77, 82]. In this
case, one considers the search space as a binary tree, where each node corresponds
to a variable and each of its edges corresponds to an assignment to that variable.

What the guiding paths approach does is to split the search tree into sub-trees and
assign each of them to a distinct worker process. Figure 3.7 illustrates how the search
tree could be split among 6 workers. Observe that the variable order for splitting
does not have to be fixed, and the guiding paths do not need to have the same size
(e.g., number of literals)

There are several issues regarding the generation of guiding paths, namely the
variables chosen to split the search space and the length of the guiding path. The vari-
ables should be important in the formula such that the exploration of the remaining
search spaces can be done effectively and in a balanced way. Moreover, the length of
the guiding path should be large enough to effectively reduce the search space to be
explored, but small enough so that just a small number of guiding paths should be
tried.

There are many different strategies to generate guiding paths [76, 73, 39]. For
instance, in order to identify relevant variables, some solvers make an initial SAT call
that is aborted after a small number of conflicts is attained (or some other stopping
criteria). Next, the variables with higher VSIDS [67] score are chosen to build the
guiding paths [82].

Another issue is an uneven load balancing between the workers. It might be the
case that some guiding paths result in very effective solver calls, while others will
take much more time. As a result, some workers might become idle. In this case,
solvers apply a work-stealing procedure [20] and a previously generated guiding
path is extended with another variable, thus producing a new guiding path for the
idle worker.

Yet another approach was proposed by Heule et al. [39] where a parallel SAT
algorithm initially uses a lookahead solver to generate guiding paths in order to split
the search tree. Lookahead solvers apply sophisticated reasoning at each branching
step in order to guide the search more effectively. This approach was successfully
adapted to solving several MaxSAT instances [69].

The parallel solver starts by generating a queue of guiding paths to be solved
by the worker processes and an initial upper bound μ is defined. The guiding paths
can be heuristically sorted (e.g. by the weight of the (un)satisfied soft clauses of the
guiding path assignments) and given to available workers with the best upper bound
computed thus far. Each worker can then apply any MaxSAT algorithm and returns
the best solution found for the given path. If the newly found solution improves on
the previous one, it is saved and the upper bound μ is updated.

Note that the number of guiding paths can be much larger than the number of
workers. As a result, the remaining MaxSAT instances to be solved by each worker
are smaller. Moreover, when a guiding path is solved, the worker can readily obtain
the next one from the queue. Each time a guiding path is solved by a worker, it must
be removed from the queue.

80 Inês Lynce, Vasco Manquinho, and Ruben Martins

The MaxSAT instance is considered solved when the guiding path queue becomes
empty. Additionally, in the context of MaxSAT, a generated guiding path may cause
some of the soft clauses to be unsatisfied. If the number of unsatisfied soft clauses is
greater than or equal to μ , then we know that no better solution will be found for that
guiding path. In that case, the guiding path is discarded and removed from the queue.
In fact, to prune guiding paths, one can also apply lower bounding procedures for
MaxSAT commonly used in branch-and-bound algorithms [44].

3.3.2.3 Other Splitting Schemes and Implementation Issues

Besides interval splitting and guiding paths, there are other splitting schemes based
on cut-and-join approaches. For instance, one can decompose the input problem into
simpler subproblems that can be independently solved [78]. Next, the solutions to
each subproblem can be joined and checked to build a global solution. In MaxSAT,
several sequential algorithms already decompose the formula using different strate-
gies, namely by using information from the weights of soft clauses [60, 3], finding
disjoint unsatisfiable cores in binary search [38], or based on the structural analysis of
the formula [70]. In these algorithms, one can decompose the formula to be solved in
parallel and later joined in order to find an optimal solution for the MaxSAT formula.

As with the sequential solvers, parallel MaxSAT solvers can also be improved by a
proper usage of current state-of-the-art SAT solvers, in particular by taking advantage
of incremental SAT solver calls. In both approaches of interval splitting and guiding
paths, each worker can be implemented in an incremental way, i.e., does not have
to rebuild its working formula when a new interval or guiding path is provided. We
refer the reader to the literature on the details of using a SAT solver incrementally to
build state-of-the-art MaxSAT algorithms [55, 56].

An incremental scheme can be implemented at each worker by considering the
guiding path literals as assumptions [27] in the SAT solver calls. Several incremental
schemes for MaxSAT have already been proposed [55, 56] that can be easily extended
to consider the guiding path literals [69]. Observe that considering these literals as
assumptions in SAT solver calls, one can check whether the MaxSAT formula is
unsatisfiable due to the guiding path literals. When the unsatisfiability does not
depend on the guiding path, then the current upper bound is also a lower bound of
the MaxSAT formula. As a result, the previously found solution is optimal and the
solver can terminate, even if there are guiding paths in the queue.

A similar scheme can also be implemented for interval splitting. Here, the up-
per bound constraint can be encoded just once with the initial upper bound limit.
Therefore, in the subsequent calls to the worker, the local upper bound will always
be smaller than the initial bound. As a result, when the worker is testing a new upper
bound, this limit can be encoded as assumptions in the SAT solver call by using
incremental strengthening [12] or incremental weakening [55], depending on the
new bound being tested.

3 Parallel Maximum Satisfiability 81

3.3.3 Clause Sharing

Conflict-driven clause learning [53, 83] is crucial for the efficiency of modern SAT
solvers. After detecting a conflict, i.e., a sequence of assignments that make a clause
unsatisfiable, a new clause is learned to prevent the same conflict from occurring
again in the subsequent search. The new clause results from the analysis of the
implication graph which represents the dependencies between assignments. A more
detailed explanation can be found in the literature [53, 83].

Clause learning is also essential to the efficiency of many modern MaxSAT solvers.
In the context of parallel solving, shared clauses correspond to learned clauses that
were exported by a worker and were given to other workers. The importing worker
can then decide whether it incorporates the shared learned clause into its context
or not. Sharing learned clauses helps to further prune the search space and boosts
performance of parallel solvers.

3.3.3.1 Conditions for Safe Clause Sharing

Sharing clauses in parallel MaxSAT is not straightforward and poses additional
challenges that need to be addressed. First, not all learned clauses can be shared
among all workers since each worker may have a different working formula. For
example, workers using unsatisfiability-based algorithms have relaxed the MaxSAT
formula in a different way than workers using linear search algorithms and cannot
share all learned clauses between them. Additionally, when using cardinality or
pseudo-Boolean encodings, we also have to take into account the auxiliary variables
used by those encodings. Therefore, each worker may contain variables not present
in the other workers.

Workers that perform local upper bound search contain worker bound constraints.8

Sharing conflict-driven learned clauses that are implied by worker bound constraints
depends on the upper bound value of the worker. If an importing worker has an upper
bound value smaller than or equal to the upper bound value of the exporting worker,
then the import is safe. Otherwise, the import may be unsafe and the respective
clauses are not shared. Therefore, it is necessary to define what is a local constraint
and in which conditions it can be shared with other workers. Let the worker bound
constraint be labeled as a local constraint. Let c be a conflict-driven learned clause
and let φc be the set of constraints used in the implication graph to learn c. The
new clause c is defined as a local constraint if at least one constraint in φc is a local
constraint. The sharing procedure between different workers is as follows:

• Learned clauses that are not local constraints and do not have encoding variables
can be safely shared between all workers;

8 Workers that perform lower bound search on a lower bound value k can be seen as performing
local upper bound search on the upper bound value k. Even though these workers do not have worker
bound constraints, they have cardinality or pseudo-Boolean constraints that have the same effect as
having a worker bound constraint.

82 Inês Lynce, Vasco Manquinho, and Ruben Martins

• Learned clauses that are local constraints can only be shared from worker ti to
worker t j if the local upper bound value of ti is greater than or equal to the local
upper bound value of t j.

Example 3. Consider the scenario presented in Example 2 where we have four work-
ers solving a MaxSAT formula. Worker t0 is searching on the lower bound value 5,
worker t1 on the upper bound value 10, and workers t2 and t3 on local upper bound
values 8 and 6, respectively. Learned local constraints from t1 can be shared to all
other workers since the local bound value of t1 is larger than the local bound value of
t0, t2 and t3. However, learned local constraints from t3 cannot be shared to t2 and t1
since the local bound of t3 is smaller than the local bound of t2 and t1.

3.3.3.2 Clause-Sharing Heuristics

When sharing learned clauses, not all learned clauses can be shared since this would
lead to an exponential blow up in memory and to many irrelevant clauses being
shared. A clause is considered irrelevant if it never becomes unsatisfied or unit,
which means that it does not help in pruning the search space. The problem of
determining whether a shared clause will be useful in the future remains challenging
and in practice heuristics are used to choose which learned clauses should be shared.
Clause-sharing heuristics can be divided into the following three categories: (i) static,
(ii) dynamic, and (iii) freezing. The static heuristics share learned clauses within
a given cutoff, whereas the dynamic heuristics adjust this cutoff during the search.
Alternatively, the freezing heuristics temporarily delay the incorporation of shared
clauses until they are expected to be useful in the context of the importing worker.

Static Heuristics. The static heuristics are the most commonly used heuristics for
clause sharing since they are simple but still efficient in practice. The following
measures are used in these heuristics:

• Size: the clause size is given by the number of literals in a clause from an
exporting worker. Small clauses are expected to be more useful than larger
clauses. Clause size was originally used as a measure to select which learned
clauses should be kept by the SAT solver [53, 54]. More recently, it has been
adopted by parallel SAT solvers (e.g., [37]) and parallel MaxSAT solvers [61].

• Literal Block Distance (LBD) [15]: the literal block distance corresponds to the
number of different decision levels involved in a clause to be shared from an
exporting worker. The decision level of a literal denotes the depth of the decision
tree at which the corresponding variable was assigned a value. Clauses with
small LBD are considered to be more relevant.

Dynamic Heuristics. It has been observed that the size of learned clauses tends to
increase over time. Consequently, in parallel solving, any static limit may lead to
halting the clause-sharing process. Therefore, to continue sharing learned clauses it

3 Parallel Maximum Satisfiability 83

is necessary to dynamically increase the limit during search. In the context of parallel
SAT solving, Hamadi et al. [36] proposed the following dynamic heuristic. At every
k conflicts (corresponding to a period α) the number of shared learned clauses (s) is
evaluated between each pair of workers (ti → t j) according to the following heuristic:

limα+1
ti→t j

=

{
if s < m (sharing is small): limα

ti→t j
+qualityα

ti→t j
× b

limα
ti→t j

if s ≥ m (sharing is large): limα
ti→t j

− (1−qualityα
ti→t j

)×a× limα
ti→t j

where a and b are positive constants and the value of qualityα
ti→t j

corresponds to the
quality of shared learned clauses that were exported from ti and imported by t j. If s is
less than a given m, then the sharing in period k is considered to be small. Otherwise,
if s is greater than or equal to m, then the sharing in period k is considered to be large.

A shared learned clause with n literals is said to have quality [36] if at least half
of its literals are active when the learned clause is exported. A literal is active if its
VSIDS heuristic [83] score is high in the exporting worker, i.e., if it is likely to be
chosen as a decision variable by the exporting worker in the near future. The quality
of sharing between each pair of workers (ti → t j) is given by the following heuristic:

qualityα
ti→t j

=
q
s

where q is the number of quality shared learned clauses and s is the total number of
shared learned clauses in the period α .

If the quality of sharing is high then the increase (decrease) in the size limit of
shared learned clauses will be larger (smaller). The idea behind this heuristic is
that the information recently received from a worker ti is qualitatively linked to the
information to be received from the same worker ti in the near future.

Freezing Heuristics. There are possible drawbacks to importing clauses shared by
other workers. One drawback is that the newly imported clauses may be irrelevant in
the context of the importing worker. Another possible drawback is that the exploration
of the search space may be influenced in such a way that the search becomes more
closely related to the exploration being performed by the worker from which the
clauses originated. As a result, the diversification of the exploration of the search
space is decreased by shifting the context of the current search in the importing
worker.

The freezing heuristic addresses these issues by only incorporating shared clauses
when they are expected to be useful in the near future. For that, the decision to
incorporate new learned clauses shared by other workers must take into consideration
the current search context where these clauses are to be integrated. As a result, these
new clauses should improve the efficiency of the search being carried out as they do
not imply a major change to the search context of the receiving worker.

Figure 3.8 illustrates the freezing procedure [59]. Each imported learned clause c
is evaluated to determine whether it will be frozen or added to the working formula
of the importing worker. If c is frozen then it will be reevaluated later. However, if c

84 Inês Lynce, Vasco Manquinho, and Ruben Martins

Import
Clauses

Frozen
Clauses

Freeze(c)? Add c

cleaning
for each clause c

yes

no

reevaluate clause

Fig. 3.8: Freezing procedure for sharing learned clauses

is assigned to the frozen state more than z times then it is permanently deleted. When
evaluating c, our goal is to import clauses that are unsatisfied or that will become
unit clauses in the near future. Next, the freezing heuristic is presented. According to
the status of c in the importing worker (satisfied, unsatisfied, unit, or unresolved), it
decides whether c should be frozen:

• c is satisfied: Let clevel denote the current decision level, level(c) the highest
decision level of the satisfied literals in c, unassignedLits(c) the number of
unassigned literals in c and activeLits(c) the number of active literals in c. If
(clevel− level(c)≤ d) and (unassignedLits(c)−activeLits(c)≤ e) (where d and
e are constant values) then c is imported, otherwise it is frozen. A satisfied clause
is expected to be useful in the near future assuming there is no need to backtrack
significantly for the clause to become unit. It is also important that the number
of unassigned literals is small, otherwise the clause may not become unit in the
near future. Active literals are also taken into consideration since they will be
assigned in the near future.

• c is unsatisfied or unit: c is always imported;
• c is unresolved: if unassignedLits(c)− activeLits(c)≤ e then the clause is im-

ported. Otherwise, it is frozen. Similarly to the satisfied case, if the number of
unassigned literals is small then c is likely to be unit in the near future.

Freezing learned clauses was first proposed as a deletion strategy for learned
clauses in SAT solving [14]. It was later extended for freezing shared clauses in the
context of parallel MaxSAT [59] and parallel SAT [13].

3.3.3.3 Comparison Between Clause-Sharing Heuristics

The clause-sharing heuristics presented in this section have been compared against
each other in the deterministic version of the portfolio-based parallel MaxSAT solver
PWBO [63]. Since the search is deterministic, one can independently evaluate the

3 Parallel Maximum Satisfiability 85

gains coming from the use of different heuristics rather than the non-determinism of
the solver.

This evaluation showed that sharing learned clauses does not significantly increase
the number of solved instances. However, it does allow for a considerable reduction
of the solving time. The freezing heuristic outperforms all other heuristics both
in solving time and number of solved instances. On the other hand, the dynamic
heuristics perform similarly to the static heuristics in terms of the number of solved
instances but outperform them in terms of solving time. Even though PWBO only
performs a limited form of clause sharing, it already shows a large impact of clause
sharing on the solving time of a parallel MaxSAT solver. This opens future research
directions to further improve clause sharing for parallel MaxSAT solving.

3.4 Deterministic Parallel MaxSAT

Despite being able to improve the performance of sequential MaxSAT solvers,
current parallel MaxSAT solvers cannot be used in application domains that require
reproducible results. For example, if we use a parallel MaxSAT solver in software
verification [41, 22], different runs can report different bugs when verifying the same
program. This behavior is unacceptable for the end user and restricts the use of
parallel MaxSAT solvers for software verification applications.

The non-deterministic behavior of parallel MaxSAT solvers arises from the co-
operation between workers. Sharing learned clauses and exchanging information
on the lower and upper bounds can prune the search space and boost the perfor-
mance of the parallel solver. However, this cooperation is also responsible for their
non-deterministic behavior.

Hamadi et al. [35] proposed the first deterministic parallel SAT solver for multicore
architectures. The deterministic solver only exchanges information between threads
at fixed points during the search. These points are referred to as synchronization
points and are defined based on the number of conflicts occurring during the search in
each thread. Whenever a thread reaches a synchronization point (i.e., after detecting
a given number of conflict assignments), it waits until the remaining threads reach
that same point. Afterwards, when all threads have reached the synchronization point,
they exchange learned clauses. This synchronization step guarantees the determinism
of the cooperation between threads.

Synchronization points can also be applied to build a deterministic parallel
MaxSAT solver [58, 63] for multicore architectures.9 In what follows, the details of
a deterministic parallel MaxSAT solver will be described.

9 Synchronization points are not limited to multicore architectures and could also be used for
building a deterministic parallel MaxSAT solver for distributed architectures.

86 Inês Lynce, Vasco Manquinho, and Ruben Martins

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

se
co

nd
s

runs

Fig. 3.9: Run time variation over 100 runs of the non-deterministic solver on the
instance normalized-f20c10b_001_area_delay.wcnf (industrial category)

3.4.1 Motivation

The work on deterministic parallel MaxSAT solving can be motivated by the behavior
illustrated in Figure 3.9. This figure shows the run time variation over 100 runs when
running a non deterministic parallel MaxSAT solver with four threads on one instance
of the partial MaxSAT industrial category of the MaxSAT Evaluation.10 Run times
vary between 108 seconds and 270 seconds, with an average run time of 166.41
seconds, a standard deviation of 35.59 seconds and a coefficient of variation 11 of
21.39%. Furthermore, 56 different optimal models were found during the 100 runs
of the non-deterministic solver, showing that not only do the run times have a high
variation but also the number of different models can be high.

For a more in-depth study of the variation of the non-deterministic solver, hundreds
of partial MaxSAT instances of the industrial and crafted categories of the MaxSAT
Evaluation were analyzed in detail [58, 63]. A generalized behavior was observed.
The average coefficient of variation is around 21% and it is similar for both industrial
and crafted benchmarks, although the average number of different models is lower in
the crafted-benchmark set. Note that the value of the average coefficient of variation,
despite being high, is similar to the variation of portfolio parallel SAT solvers on
solving satisfiable instances [37].

As expected, these results support the idea that current state-of-the-art parallel
solvers exhibit a high non-determinism on both running times and models found.

10 http://maxsat.ia.udl.cat/
11 The coefficient of variation is a normalized measure of dispersion and is given by Δ = σ

μ ×100,
where μ is the average time and σ is the standard deviation.

http://maxsat.ia.udl.cat/

3 Parallel Maximum Satisfiability 87

Therefore, if a parallel MaxSAT solver is to be widely used, it is necessary to build a
deterministic version of the solver, as end users should be able to replicate the solver
behavior for the same input.

3.4.2 Deterministic Solver

In this section, we present a deterministic parallel MaxSAT solver that ensures the re-
producibility of results [58, 63]. Similarly to deterministic parallel SAT solving [35],
synchronization points are used to guarantee the determinism of the cooperation
between threads of the parallel MaxSAT solver.

The goal of the deterministic solver is to reproduce the same results on solving
each problem instance by ensuring the following constraints: the solution reported
by the solver and the search performed by each thread are always the same.

Figure 3.10 exemplifies an execution of the deterministic solver with four threads
(although it can be easily generalized to any number of threads). In this example,
threads t1 and t2 search on the lower bound value of the optimal solution, while
threads t3 and t4 search on the upper bound value of the optimal solution. Each
thread begins by performing its search as in the non-deterministic version [57, 61].
Every time a clause is learned, it is exported to the remaining threads. However,
in the deterministic solver, learned clauses are only incorporated in other threads
at synchronization points. This contrasts with the non-deterministic version where
learned clauses can be imported on the fly.

When a thread that is searching on the lower bound finds a core, it stops the search
and proceeds to the synchronization point. As can be seen in Figure 3.10, before
reaching the synchronization point each thread exports the core that was found during
the current period. A period corresponds to the search done between two consecutive
synchronization points. Note that if a core has not been found in the last period, then
only learned clauses are exported.

Remember that to each core is associated a cost that corresponds to an increase in
the lower bound value and is used by the unsatisfiability-based algorithm to iteratively
relax the MaxSAT formula [50]. Consider k threads performing lower bound search.
At a synchronization point, all cores that were found in the last period are analyzed.
Our goal is to import the core that corresponds to the largest increase in the lower
bound value. If two threads find a core that corresponds to the same increase in the
lower bound value, then the core with the smallest size is imported by all threads.
If there are two cores with exactly the same size, then ties are broken by taking the
thread identifiers in increasing order. Notice that, similarly to the non-deterministic
version, all threads that are searching on the lower bound always have the same cores
after a synchronization point.

Threads that are searching on the upper bound export their best solution and the
corresponding upper bound value before reaching the synchronization point. At a
synchronization point, each thread imports the smallest upper bound value among all

88 Inês Lynce, Vasco Manquinho, and Ruben Martins

Threadlb
1 (t1) Threadlb

2 (t2) Threadub
3 (t3) Threadub

4 (t4)

LB search
(export:
clauses)

LB search
(export:
clauses)

UB search
(export:
clauses)

UB search
(export:
clauses)

export: core export: core
export:

solution,
UB value

export:
solution,

UB value

import:
clauses, core

import:
clauses, core

import:
clauses,

UB value

import:
clauses,

UB value

LB search
(export:
clauses)

LB search
(export:
clauses)

UB search
(export:
clauses)

UB search
(export:
clauses)

· · · · · ·
export:
optimal
solution

· · ·

end end end end

sync sync sync sync

sync sync sync sync

Fig. 3.10: Execution of the deterministic solver based on synchronization points

threads that have found a solution. As a result, all threads that are searching on the
upper bound will have the same upper bound value after the synchronization point.

Learned clauses are also imported at synchronization points. Each thread im-
ports the learned clauses that were exported by the remaining threads since the last
synchronization point. Note that threads searching on the lower bound can also
selectively import learned clauses from threads that are performing an upper bound
search. The converse is also true [57]. In order to guarantee deterministic behavior,
learned clauses must be imported in the same order. In our case, learned clauses are
imported using ascending order with respect to the thread identifiers. Note that this
is crucial to ensure that all procedures (such as unit propagation, conflict detection

3 Parallel Maximum Satisfiability 89

and clause learning, among others), maintain their behavior for different runs of
the solver. Otherwise, the search space could be explored in a different order, thus
resulting in non-deterministic behavior.

In addition, we must also guarantee the determinism of the solution reported. For
a given problem instance, the variable assignments of the optimal solution that the
solver outputs must always be the same for all runs of the solver. Every time a new
solution is exported, it is only recorded if its corresponding value is smaller than the
best value found so far. If the new solution has the same value as the current best
value, then the thread identifier is used to decide whether the new solution is recorded
or not. If the identifier of the exporting thread is smaller than the identifier of the
thread where the previous solution was found, then the new solution is recorded.
Otherwise, it is discarded. Finally, a thread stops when it proves optimality. However,
the remaining threads are only terminated when their next synchronization point is
reached. This is done to guarantee the determinism of the reported solution, since
new optimal solutions may be found by the threads still running.

In the remainder of the section, we denote the synchronization scheme described
above as standard synchronization. In this kind of synchronization, the threads that
are searching on the lower bound reach a synchronization point every time a new
core is found.

3.4.2.1 Standard Synchronization

As described in the previous section, the deterministic solver is based on the exis-
tence of synchronization points. However, a deterministic measure must be used to
define synchronization points. Otherwise, the solver would remain non-deterministic.
Hamadi et al. [35] proposed using the number of conflicts as a measure for defining
the synchronization points. A simple strategy is to use a static number of conflicts to
determine when a thread should reach a synchronization point. For example, each
thread performs k conflicts before reaching the next synchronization point.

There is a trade-off between having a large number of synchronization points
and how often the information is exchanged between threads. If k is too large, then
the number of synchronization points is low but learned clauses and information
regarding the bounds is exchanged less frequently. On the other hand, if k is too
small then the number of synchronization points is higher which may degrade the
performance of the solver. Note that other deterministic measures could be used
instead of the number of conflicts, such as the number of propagations and the
number of decisions.

An experimental evaluation [58, 63] has shown that the instantiation of k to 1,000
conflicts achieves a good balance. The overall performance for other values (e.g., 100
and 10,000) was worse than when using 1,000 conflicts. Moreover, the results for
other measures were similar to using conflicts (e.g., variable assignments, decisions,
etc.). More interestingly, the evaluation showed that the number of instances solved
by the deterministic solver is comparable to the number of instances solved by the
non-deterministic solver. On the other hand, the average idle time of each thread is

90 Inês Lynce, Vasco Manquinho, and Ruben Martins

high. Hence, it is expected that reducing the idle time will lead to an improvement in
the performance of the deterministic solver. Next, different synchronization strategies
are presented with the goal of reducing the idle time of the deterministic solver.

3.4.2.2 Period Synchronization

For problem instances with a large number of cores, standard synchronization may
result in high idle times since at most one core can be found by each thread within
each period. For example, consider a given instance having an optimal solution with
value 100. Assume that the lower bound search is able to solve this instance very
quickly by finding 100 cores, each with weight 1, whereas the upper bound search
is unable to solve this instance. In the standard synchronization approach, if we set
k to 1,000 conflicts then every time a core is found one has to wait for the threads
searching on the upper bound to reach 1,000 conflicts. In this case, the lower bound
threads would have to wait for the upper bound threads to reach more than 100,000
conflicts before finding a solution to the formula. This can require a prohibitive
amount of time, which is a critical issue in the standard synchronization approach.

An alternative approach is to synchronize the threads that are searching on the
lower bound only when they also reach the number of conflicts k that defines the
length of the period. However, notice that in this case more than one core may be
found between two synchronization points.

In this new approach, once all threads reach a synchronization point, the thread
with the largest lower bound value is selected. (If two threads have the same lower
bound value, then the thread with the smallest identifier is chosen.) In order to
synchronize the lower bound threads, the chosen thread will export the cores that were
found in the previous period to the remaining threads that are using an unsatisfiability-
based approach.

In the remainder of the section we denote the kind of synchronization just de-
scribed as period synchronization since the threads that are searching on the lower
bound only stop at the end of each period. The main difference between standard
and period synchronization is that in the standard synchronization at most one core
is found by each thread during each period, whereas in the period synchronization it
is possible to find a larger number of cores in a single period.

The main difference between the different synchronization techniques is shown by
the instances where the lower bound search is crucial for finding the optimal solution.
An experimental evaluation [58, 63] compared the standard synchronization with
the period synchronization on instances that were solved optimally by the lower
bound search on both deterministic solvers. For most of these instances, the period
synchronization clearly outperforms the standard synchronization. Observe that if
the optimal value is small then the standard synchronization may outperform the
period synchronization. This is due to the fact that the idle time resulting from the
synchronization for each core found is not significant. However, this case does not
seem to be common and is restricted to only a few outliers.

3 Parallel Maximum Satisfiability 91

3.4.2.3 Dynamic Synchronization

The main problem of a static strategy using a fixed number of conflicts k to define
the length of a period is that different threads have different search behaviors and
reach k conflicts at very different times. Therefore, using a static strategy may lead
to high idle times at each synchronization point for the faster threads. This problem
is further accentuated in parallel MaxSAT since the size of the formula can differ
substantially between threads. For example, threads that search on the upper bound
of the optimal solution and use CNF encodings to encode the constraint on the upper
bound value may have a formula that is several times larger than working formulas
in other threads.

An alternative approach that tries to minimize idle times is to use a dynamic
strategy. In this case, each thread updates the number of conflicts that is required in
order to reach the next synchronization point. Hamadi et al. [35] proposed to use the
number of clauses learned in each thread for dynamically updating the necessary
number of conflicts to reach the next synchronization point. A similar approach could
also be used for parallel MaxSAT. Note that in deterministic parallel SAT all threads
are initially run on the same formula. Therefore, all threads are initially working
on a formula with the same size. However, as previously mentioned, this is not the
case for our deterministic parallel MaxSAT solver. In fact, the size of the working
formula can be substantially different in each thread. As a result, we propose to take
into account the initial number of clauses and the number of learned clauses in each
thread.

Let ϕi and φi denote the set of initial clauses and the set of learned clauses in the
working formula of thread i, respectively. Consider that at synchronization point p,
thread i has |ϕi +φi| clauses. Let m be the maximum number of clauses between all
threads and k the number of conflicts to reach the first synchronization point. The
number of conflicts that thread i needs to reach the next synchronization point is
given by:

syncp+1
i = �k+(1− |ϕi+φi|

m)× k�
Threads that have more clauses will have smaller periods, whereas threads that

have fewer clauses will have larger periods. The goal is to balance the number of
conflicts required by each thread to reach the next synchronization point in an attempt
to reduce the idle time of each thread.

An experimental evaluation [58, 63] has shown that the dynamic synchroniza-
tion approach and the period synchronization solve the same number of instances.
However, the average number of synchronization points decreases with the dynamic
synchronization. Similarly, the percentage of idle time also decreases with the dy-
namic synchronization. The idle time was reduced significantly and the solving time
improved.

92 Inês Lynce, Vasco Manquinho, and Ruben Martins

3.4.3 Comparison Between Non-deterministic and Deterministic
Solvers

A thorough experimental evaluation was performed to compare the non-deterministic
version with the deterministic versions that use standard synchronization, period
synchronization, and dynamic synchronization [58, 63]. All deterministic versions
solved the same number of instances. On the other hand, the non-deterministic
version was able to solve a few more instances than the deterministic versions.
However, even though the non-deterministic solver is more efficient, the run times of
the deterministic solver are comparable to the ones of the non-deterministic solver.

The comparison between the run times of the non-deterministic and dynamic
deterministic solvers on industrial and crafted instances showed that the dynamic
deterministic solver is clearly slower than the non-deterministic solver for instances
that the non-deterministic solver solves in a few seconds. For these instances, it is
expected that the overhead of synchronization will dominate the performance of the
deterministic solver.

However, if we consider instances that required more time to be solved, then
the performance of the deterministic solver is comparable to the performance of
the non-deterministic solver. Moreover, for some instances the deterministic solver
can actually outperform the non-deterministic solver. Observe that the two solvers
perform different searches. Therefore, it is possible for the deterministic solver to
outperform the non-deterministic solver. Nevertheless, this was not the case for the
majority of the instances considered in the evaluation.

3.5 Research Directions

Parallel MaxSAT solvers [57, 61, 69] are taking their first steps towards using
multicore and distributed architectures to speed up MaxSAT solving. However,
there are still several challenges that need to be overcome in order for parallel
MaxSAT solvers to become the staple of MaxSAT solving. Two of the most important
challenges to be tackled in the near future are: (i) scalability and (ii) limited clause
sharing.

3.5.1 Scalability

Current portfolio-based parallel MaxSAT solvers perform well for a small number
of workers [57, 61] but lack scalability when the number of workers increases. One
of the reasons for the lack of scalability is the difficulty of finding complementary
approaches for a portfolio when the number of workers is large. Future research
directions may involve diversifying the search through different MaxSAT algorithms

3 Parallel Maximum Satisfiability 93

for both lower bound search as well as upper bound search. Another research direction
would be to build a hybrid version between the splitting and the portfolio approaches
presented in Section 3.3. One could start with a splitting strategy and when the
interval between the lower and upper bound values becomes small change to a
portfolio approach. A hybrid approach may be more suitable for a large number of
workers since it is possible to reduce the values of the optimal solution to a small
interval.

Splitting approaches tend to be more scalable than portfolio-based approaches for
parallel MaxSAT solving. Recently, there has been some work on distributed parallel
MaxSAT that has shown scalability beyond 32 workers [69]. Pursuing this direction
and improving the splitting strategy may further increase the scalability of parallel
MaxSAT solvers.

Another alternative is to develop new approaches beyond splitting and portfolio.
For example, partitioning techniques have been successfully used for improving
sequential MaxSAT solvers [60, 62, 70]. These approaches are based on partitioning
the formula into disjoint subformulas that can be solved independently and then
merged to find a global optimal solution. Exploiting the inherently parallel structure
of partitioning-based approaches is another research direction that may improve the
scalability of parallel MaxSAT solvers.

3.5.2 Clause Sharing

Clause sharing can significantly improve the performance of parallel solvers. How-
ever, there is a trade-off between the amount of information exchanged and the
benefit gained from this information. Current parallel MaxSAT solvers either use a
limited form of clause sharing for multicore architectures [57, 61] or do not share
learned clauses for distributed architectures [69].

To further improve the performance of MaxSAT solvers it is necessary to develop
new clause-sharing heuristics that take into consideration distributed architectures
with a large number of workers. The freezing heuristic presented in Section 3.3.3 is
a first step towards controlling the amount of useful information that is exchanged
between workers. However, for distributed architectures, the communication needs to
be more sparse than for multicore architectures. Since most clause-sharing heuristics
were proposed for multicore architectures with a small number of workers, it is
necessary to improve clause-sharing heuristics for architectures with hundreds of
workers. Clause sharing is intertwined with the scalability of parallel MaxSAT
solvers, and its improvement will lead to more scalable parallel MaxSAT solvers.

94 Inês Lynce, Vasco Manquinho, and Ruben Martins

Acknowledgments

This work was supported by national funds through Fundação para a Ciência e a
Tecnologia (FCT) with reference UID/CEC/50021/2013.

References

[1] Achá, R.J.A., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT
and MaxSAT. Annals of Operations Research 218(1), 71–91 (2014)

[2] An, X., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A Partial Max-SAT
Solver. Journal on Satisfiability, Boolean Modeling and Computation 8, 95–100
(2012)

[3] Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for
(Weighted) Partial MaxSAT. In: Proc. International Conference on Princi-
ples and Practice of Constraint Programming, pp. 117–132. Springer (2013)

[4] Ansótegui, C., Bonet, M.L., Levy, J.: On Solving MaxSAT Through SAT.
In: Proc. International Conference of the Catalan Association for Artificial
Intelligence, pp. 284–292. IOS Press (2009)

[5] Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) Partial MaxSAT
through Satisfiability Testing. In: Proc. International Conference on Theory
and Applications of Satisfiability Testing, pp. 427–440. Springer (2009)

[6] Ansótegui, C., Bonet, M.L., Levy, J.: A New Algorithm for Weighted Partial
MaxSAT. In: Proc. AAAI Conference on Artificial Intelligence, pp. 3–8. AAAI
Press (2010)

[7] Ansótegui, C., Gabàs, J.: Solving (Weighted) Partial MaxSAT with ILP. In: Proc.
International Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, pp. 403–409. Springer
(2013)

[8] Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables into
problems with Boolean variables. In: Proc. International Conference on Theory
and Applications of Satisfiability Testing, pp. 1–15. Springer (2004)

[9] Argelich, J., Berre, D.L., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving
Linux Upgradeability Problems Using Boolean Optimization. In: Workshop
on Logics for Component Configuration, pp. 11–22. Conference Proceedings
(2010)

[10] Argelich, J., Li, C.M., Manyà, F.: An improved exact solver for Partial Max-
SAT. In: Proc. of the International Conference on Nonconvex Programming:
Local and Global Approaches, pp. 230–231. Conference Proceedings (2007)

[11] Argelich, J., Manyà, F.: Partial Max-SAT Solvers with Clause Learning. In:
Proc. International Conference on Theory and Applications of Satisfiability
Testing, pp. 28–40. Springer (2007)

[12] Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality
Networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

3 Parallel Maximum Satisfiability 95

[13] Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.M., Piette, C.: Revisiting
Clause Exchange in Parallel SAT Solving. In: Proc. International Conference
on Theory and Applications of Satisfiability Testing, pp. 200–213. Springer
(2012)

[14] Audemard, G., Lagniez, J.M., Mazure, B., Sais, L.: On Freezing and Reactivat-
ing Learnt Clauses. In: International Conference on Theory and Applications
of Satisfiability Testing, pp. 188–200. Springer (2011)

[15] Audemard, G., Simon, L.: Predicting Learnt Clauses Quality in Modern SAT
Solvers. In: Proc. International Joint Conferences on Artificial Intelligence, pp.
399–404. IJCAI/AAAI Press (2009)

[16] Bailleux, O., Boufkhad, Y.: Efficient CNF Encoding of Boolean Cardinality
Constraints. In: Proc. International Conference on Principles and Practice of
Constraint Programming, pp. 108–122. Springer (2003)

[17] Bailleux, O., Boufkhad, Y., Roussel, O.: New Encodings of Pseudo-Boolean
Constraints into CNF. In: Proc. International Conference on Theory and
Applications of Satisfiability Testing, pp. 181–194. Springer (2009)

[18] Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2-3), 59–6
(2010)

[19] Bjørner, N., Phan, A., Fleckenstein, L.: νZ - An Optimizing SMT Solver. In:
Proc. Tools and Algorithms for Construction and Analysis of Systems, pp.
194–199. Springer (2015)

[20] Böhm, M., Speckenmeyer, E.: A Fast Parallel SAT-Solver - Efficient Workload
Balancing. Annals of Mathematics and Artificial Intelligence 17, 381–400
(1996)

[21] Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelli-
gence 171(8–9), 606–618 (2007)

[22] Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.G.: Automated Design
Debugging With Maximum Satisfiability. IEEE Transactions on CAD of
Integrated Circuits and Systems 29(11), 1804–1817 (2010)

[23] Darras, S., Dequen, G., Devendevill, L., Li, C.M.: On Inconsistent Clause-
Subsets for Max-SAT Solving. In: Proc. International Conference on Principles
and Practice of Constraint Programming, pp. 225–240. Springer (2007)

[24] Davies, J., Bacchus, F.: Solving MAXSAT by Solving a Sequence of Simpler
SAT Instances. In: Proc. International Conference on Principles and Practice of
Constraint Programming, pp. 225–239. Springer (2011)

[25] Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.
In: Proc. International Conference on Principles and Practice of Constraint
Programming, pp. 247–262. Springer (2013)

[26] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. International
Conference on Theory and Applications of Satisfiability Testing, pp. 502–518.
Springer (2003)

[27] Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Elec-
tronic Notes in Theoretical Computer Science 89(4), 543–560 (2003)

[28] Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

96 Inês Lynce, Vasco Manquinho, and Ruben Martins

[29] Feng, Y., Bastani, O., Martins, R., Dillig, I., Anand, S.: Automated Synthesis
of Semantic Malware Signatures using Maximum Satisfiability. In: Network
and Distributed System Security Symposium. The Internet Society (2017)

[30] Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.: Solving Non-
Boolean Satisfiability Problems with Stochastic Local Search: A Comparison
of Encodings. Journal of Automated Reasoning 35(1-3), 143–179 (2005)

[31] Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Proc. Inter-
national Conference on Theory and Applications of Satisfiability Testing, pp.
252–265. Springer (2006)

[32] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman (1979)

[33] Gent, I.P., Nightingale, P.: A new encoding of All Different into SAT. In: Inter-
national Workshop on Modelling and Reformulating Constraint Satisfaction
Problems. Conference Proceedings (2004)

[34] Graça, A., Lynce, I., Marques-Silva, J., Oliveira, A.L.: Efficient and Accurate
Haplotype Inference by Combining Parsimony and Pedigree Information. In:
Algebraic and Numeric Biology, pp. 38–56. Springer (2010)

[35] Hamadi, Y., Jabbour, S., Piette, C., Sais, L.: Deterministic Parallel DPLL.
Journal on Satisfiability, Boolean Modeling and Computation 7(4), 127–132
(2011)

[36] Hamadi, Y., Jabbour, S., Sais, L.: Control-Based Clause Sharing in Parallel SAT
Solving. In: Proc. International Joint Conferences on Artificial Intelligence, pp.
499–504. IJCAI/AAAI Press (2009)

[37] Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a Parallel SAT Solver. Journal on
Satisfiability, Boolean Modeling and Computation 6(4), 245–262 (2009)

[38] Heras, F., Morgado, A., Marques-Silva, J.: Core-Guided Binary Search Algo-
rithms for Maximum Satisfiability. In: Proc. AAAI Conference on Artificial
Intelligence, pp. 36–41. AAAI Press (2011)

[39] Heule, M.J., Kullmann, O., Wieringa, S., Biere, A.: Cube and Conquer: Guiding
CDCL SAT Solvers by Lookaheads. In: Hardware and Software: Verification
and Testing, pp. 50–65. Springer (2012)

[40] Hölldobler, S., Manthey, N., Steinke, P.: A compact encoding of pseudo-
Boolean constraints into SAT. In: KI 2013: Advances in Artificial Intelligence,
pp. 107–118. Springer (2012)

[41] Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proc. Conference on Programming Language Design and
Implementation, pp. 437–446. ACM Press (2011)

[42] Joshi, S., Martins, R., Manquinho, V.: Generalized Totalizer Encoding for
Pseudo-Boolean Constraints. In: International Conference on Principles and
Practice of Constraint Programming, pp. 200–209. Springer (2015)

[43] Klieber, W., Kwon, G.: Efficient CNF Encoding for Selecting 1 from N Objects.
In: International Workshop on Constraints in Formal Verification. Conference
Proceedings (2007)

[44] Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Handbook of
Satisfiability, pp. 613–631. IOS Press (2009)

3 Parallel Maximum Satisfiability 97

[45] Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower
bounds in branch and bound Max-SAT solvers. In: Proc. International Con-
ference on Principles and Practice of Constraint Programming, pp. 403–414.
Springer (2005)

[46] Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. Journal of
Artificial Intelligence Research 30, 321–359 (2007)

[47] Lin, H., Su, K.: Exploiting inference rules to compute lower bounds for MAX-
SAT solving. In: Proc. International Joint Conferences on Artificial Intelligence,
pp. 2334–2339. IJCAI/AAAI Press (2007)

[48] Lin, H., Su, K., Li, C.M.: Within-problem Learning for Efficient Lower Bound
Computation in Max-SAT Solving. In: Proc. AAAI Conference on Artificial
Intelligence, pp. 351–356. AAAI Press (2008)

[49] Mancinelli, F., Boender, J., Cosmo, R.D., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R.: Managing the Complexity of Large Free and Open Source Package-
Based Software Distributions. In: Proc. International Conference on Automated
Software Engineering, pp. 199–208. IEEE Computer Society Press (2006)

[50] Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for Weighted Boolean
Optimization. In: Proc. International Conference on Theory and Applications
of Satisfiability Testing, pp. 495–508. Springer (2009)

[51] Manquinho, V., Martins, R., Lynce, I.: Improving Unsatisfiability-Based Algo-
rithms for Boolean Optimization. In: Proc. International Conference on Theory
and Applications of Satisfiability Testing, pp. 181–193. Springer (2010)

[52] Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum
satisfiability. CoRR abs/0712.1097 (2007). URL http://arxiv.org/
abs/0712.1097

[53] Marques-Silva, J., Sakallah, K.: GRASP: A New Search Algorithm for Satis-
fiability. In: Proc. International Conference on Computer-Aided Design, pp.
220–227. IEEE Computer Society Press (1996)

[54] Marques-Silva, J., Sakallah, K.: GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

[55] Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental Cardinality Con-
straints for MaxSAT. In: Proc. International Conference on Principles and
Practice of Constraint Programming, pp. 531–548. Springer (2014)

[56] Martins, R., Joshi, S., Manquinho, V., Lynce, I.: On Using Incremental En-
codings in Unsatisfiability-based MaxSAT Solving. Journal on Satisfiability,
Boolean Modeling and Computation 9, 59–81 (2015)

[57] Martins, R., Manquinho, V., Lynce, I.: Exploiting Cardinality Encodings in
Parallel Maximum Satisfiability. In: Proc. International Conference on Tools
with Artificial Intelligence, pp. 313–320. IEEE Computer Society Press (2011)

[58] Martins, R., Manquinho, V., Lynce, I.: Clause Sharing in Deterministic Parallel
Maximum Satisfiability. In: RCRA International Workshop on Experimental
Evaluation of Algorithms for solving problems with combinatorial explosion.
Conference Proceedings (2012)

http://arxiv.org/abs/0712.1097
http://arxiv.org/abs/0712.1097

98 Inês Lynce, Vasco Manquinho, and Ruben Martins

[59] Martins, R., Manquinho, V., Lynce, I.: Clause Sharing in Parallel MaxSAT. In:
Proc. Learning and Intelligent Optimization Conference, pp. 455–460. Springer
(2012)

[60] Martins, R., Manquinho, V., Lynce, I.: On Partitioning for Maximum Satisfia-
bility. In: Proc. European Conference on Artificial Intelligence, pp. 913–914.
IOS Press (2012)

[61] Martins, R., Manquinho, V., Lynce, I.: Parallel Search for Maximum Satisfiabil-
ity. AI Communications 25(2), 75–95 (2012)

[62] Martins, R., Manquinho, V., Lynce, I.: Community-based Partitioning for
MaxSAT Solving. In: Proc. International Conference on Theory and Ap-
plications of Satisfiability Testing, pp. 182–191. Springer (2013)

[63] Martins, R., Manquinho, V., Lynce, I.: Deterministic Parallel MaxSAT Solving.
International Journal on Artificial Intelligence Tools 24(3) (2015)

[64] Martins, R., Manquinho, V.M., Lynce, I.: Open-WBO: A Modular MaxSAT
Solver. In: Proc. International Conference on Theory and Applications of
Satisfiability Testing, pp. 438–445. Springer (2014)

[65] Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative
and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4),
478–534 (2013)

[66] Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: Robust Core-Guided
MaxSAT Solving. Journal on Satisfiability, Boolean Modeling and Computation
9, 129–134 (2015)

[67] Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an Efficient SAT Solver. In: Design Automation Conference, pp. 530–535.
ACM (2001)

[68] Narodytska, N., Bacchus, F.: Maximum Satisfiability Using Core-Guided
MaxSAT Resolution. In: Proc. AAAI Conference on Artificial Intelligence, pp.
2717–2723. AAAI Press (2014)

[69] Neves, M., Lynce, I., Manquinho, V.: DistMS: A Non-Portfolio Distributed
Solver for Maximum Satisfiability. In: Proc. International Conference on Tools
with Artificial Intelligence. IEEE Computer Society Press (2016)

[70] Neves, M., Martins, R., Janota, M., Lynce, I., Manquinho, V.M.: Exploiting
resolution-based representations for MaxSAT solving. In: Proc. International
Conference on Theory and Applications of Satisfiability Testing, pp. 272–286.
Springer (2015)

[71] Ogawa, T., Liu, Y., Hasegawa, R., Koshimura, M., Fujita, H.: Modulo Based
CNF Encoding of Cardinality Constraints and Its Application to MaxSAT
Solvers. In: Proc. International Conference on Tools with Artificial Intelligence,
pp. 9–17. IEEE Computer Society (2013)

[72] Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading,
Massachusetts (1994)

[73] Plaza, S., Kountanis, I., Andraus, Z., Bertacco, V., Mudge, T.: Advances and
Insights into Parallel SAT Solving. In: Internacional Workshop on Logic &
Synthesis, pp. 188–194. Conference Proceedings (2006)

3 Parallel Maximum Satisfiability 99

[74] Prestwich, S.: Variable Dependency in Local Search: Prevention is Better
than Cure. In: Proc. International Conference on Theory and Applications of
Satisfiability Testing, pp. 107–120. Springer (2007)

[75] Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP Hybrid MaxSAT Solver.
In: Proc. International Conference on Theory and Applications of Satisfiability
Testing, pp. 539–546. Springer (2016)

[76] Schubert, T., Lewis, M., Becker, B.: PaMira - A Parallel SAT Solver with
Knowledge Sharing. In: Workshop on Microprocessor Test and Verification,
pp. 29–36. Conference Proceedings (2005)

[77] Schubert, T., Lewis, M., Becker, B.: PaMiraXT: Parallel SAT Solving with
Threads and Message Passing. Journal on Satisfiability, Boolean Modeling and
Computation 6, 203–222 (2009)

[78] Singer, D., Monnet, A.: JaCk-SAT: A New Parallel Scheme to Solve the Satisfi-
ability Problem (SAT) Based on Join-and-Check. In: Proc. Parallel Processing
and Applied Mathematics, pp. 249–258. Springer (2008)

[79] Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Con-
straints. In: Proc. International Conference on Principles and Practice of Con-
straint Programming, pp. 827–831. Springer (2005)

[80] Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A Cross-Community Infrastruc-
ture for Logic Solving. In: Proc. International Joint Conference on Automated
Reasoning, pp. 367–373. Springer (2014)

[81] Warners, J.P.: A linear-time transformation of linear inequalities into conjunc-
tive normal form. Information Processing Letters 68(2), 63–69 (1998)

[82] Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a Distributed Propositional
Prover and Its Application to Quasigroup Problems. Journal of Symbolic
Computation 21, 543–560 (1996)

[83] Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient Conflict
Driven Learning in Boolean Satisfiability Solver. In: Proc. International Confer-
ence on Computer-Aided Design, pp. 279–285. IEEE Computer Society Press
(2001)

Chapter 4

Parallel Solving of Quantified Boolean Formulas

Florian Lonsing and Martina Seidl

Abstract Quantified Boolean formulas (QBFs) extend propositional logic by univer-
sal and existential quantifiers over the propositional variables. In the same way as the
satisfiability problem of propositional logic is the archetypical problem for NP, the
satisfiability problem of QBFs is the archetypical problem for PSPACE. Hence, QBFs
provide an attractive framework for encoding many applications from verification,
artificial intelligence, and synthesis, thus motivating the quest for efficient solving
technology. Already in the very early stages of QBF solving history, attempts have
been made to parallelize the solving process, either by splitting the search space or
by portfolio-based approaches. In this chapter, we review and compare approaches
for solving QBFs in parallel.

4.1 Introduction

Since the late 1990s, there has been impressive progress in research on solving the
propositional satisfiability problem (SAT) (see Chapter 1, Parallel Satisfiability).
The boost in the performance of SAT solvers enabled routine applications of SAT
to large-scale industrial problems [13, 19, 85]. In practice, nowadays SAT solvers
are capable of solving formulas containing hundreds of thousands of variables and
millions of clauses. This is in contrast to the computational intractability that follows
from the NP-completeness of SAT.

Florian Lonsing
Institute of Information Systems, TU Wien,
Favoritenstr. 9-11, 1040 Wien, Austria, e-mail: florian.lonsing@tuwien.ac.at,
Supported by the Austrian Science Fund (FWF) under grant S11409-N23.

Martina Seidl
Institute for Formal Models and Verification, JKU Linz,
Altenbergerstr. 69, 4040 Linz, Austria, e-mail: martina.seidl@jku.at,
Supported by the Austrian Science Fund (FWF) under grant S11408-N23.

101© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_4

florian.lonsing@tuwien.ac.at
martina.seidl@jku.at
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_4&domain=pdf

102 Florian Lonsing and Martina Seidl

Motivated by the success story of SAT solving, problems from complexity classes
beyond NP became the focus of intensive research.1 The polynomial hierarchy [64,
82] is a theoretical framework to describe the complexity of problems beyond NP.
Examples of problems in the polynomial hierarchy are conformant planning [75],
problems related to answer set programming [27], or the computation of minimal
unsatisfiable subformulas (MUSes) [54].

A natural extension of SAT is QSAT, the satisfiability problem of quantified
Boolean formulas (QBFs) [32, 47]. In a nutshell, QBFs are propositional formulas
that additionally may contain existential (∃) and universal (∀) quantifiers over the
propositional variables. QBFs can be used to encode any problem in the polynomial
hierarchy. For example, the QBFs

∀x∃y.((x∨¬y)∧ (¬x∨ y)) (4.1)

and
∃y∀x.((x∨¬y)∧ (¬x∨ y)) (4.2)

encode the equivalence of the variables x and y by the propositional CNF ((x∨
¬y)∧ (¬x∨ y)) under the quantifier prefixes ∀x∃y and ∃y∀x, respectively. Intuitively,
the QBF 4.1 asks whether for all possible assignments of variable x there exists an
assignment of variable y such that the propositional CNF evaluates to true. In contrast
to that, the QBF 4.2 asks whether there exists an assignment of y such that for all
assignments of x the propositional CNF evaluates to true.

Like in propositional logic, the variables in a QBF are interpreted over the Boolean
domain. Obviously, the QBF 4.1 is satisfiable since the assignment of the existential
variable y can be selected depending on the assignment of the universal variable x
in order to satisfy the CNF. The QBF 4.2 is unsatisfiable since it differs from the
QBF 4.1 in the ordering of the variables in the quantifier prefix. Due to the ordering,
in the QBF 4.2 the value of y is fixed for any value of x. Hence, in general the
ordering of variables in the quantifier prefix impacts the satisfiability of a QBF.

When solving a propositional formula using a SAT solver, the solver can stop as
soon as it finds an assignment to the variables which satisfies the formula. When
solving a QBF, however, finding one assignment which satisfies its propositional
part is not enough to show the satisfiability of the QBF. The presence of universal
and existential quantifiers in a QBF and the ordering of variables in the quantifier
prefix give rise to tree-shaped (counter)models for witnessing (un)satisfiability. These
(counter)models represent the different choices of variable assignments that have to
be made depending on the quantifier types and the ordering of variables. Figure 4.1
shows a model of the QBF 4.1 and a countermodel of the QBF 4.2.

In practice, tree-shaped models (countermodels) are represented as functions
that provide strategies to assign the existential (universal) variables with respect to
universal (existential) ones if the considered formula is satisfiable (unsatisfiable).
For the QBF 4.1 the function fy(x) := x yields the strategy to assign variable y to
the same value as the previously assigned variable x in order to satisfy the CNF

1 Beyond NP research community website (June 2017): http://beyondnp.org/

http://beyondnp.org/

4 Parallel Solving of Quantified Boolean Formulas 103

∀x

∃y

� ⊥

∃y

⊥ �

∃y

∀x

� ⊥

∀x

⊥ �

Fig. 4.1: Tree-shaped model (left) and countermodel (right) illustrating the sat-
isfiability of the QBF 4.1 and the unsatisfiability of the QBF 4.2, respectively.
(Counter)models are special subtrees of a formula’s assignment tree. Dashed (solid)
edges indicate that the variable in the source node is set to false (true). In the model
every assignment along a path satisfies the propositional CNF ((x∨¬y)∧ (¬x∨ y))
of the QBF, whereas in the countermodel all such assignments falsify the CNF

((x∨¬y)∧ (¬x∨ y)). Thus function fy(x) witnesses the satisfiability of the QBF 4.1.
In a dual way, the function fx(y) := ¬y is a witness for the unsatisfiability of the
QBF 4.2 as it represents a strategy to assign x to the opposite value of y in order to
falsify the CNF.

As a consequence of extending propositional logic with quantifiers over the
propositional variables to obtain the language of QBFs, the QBF satisfiability problem
becomes PSPACE-complete [81]. The use of quantifiers allows for QBF encodings
of problems that potentially are exponentially more succinct than the corresponding
SAT encodings. Due to this property, QBFs are an attractive language for encoding
and solving many practically relevant problems from domains such as, for example,
formal verification [40], synthesis [14], or artificial intelligence [26, 75] (see [10] for
a detailed survey). For solving such problems in practice, efficient QBF solvers are
highly desirable.

Since the year 2000, there has been substantial progress in the development of
efficient QBF solvers. Traditional QBF solvers can be classified into one of two
dominant solving paradigms that have emerged: (1) search-based solving and (2)
expansion-based solving.

Search-based QBF solvers implement a QBF-specific extension of the DPLL algo-
rithm [18, 22] and of conflict-driven clause learning (CDCL) [66, 78, 79, 90]. CDCL
is at the core of most modern SAT solvers. The QBF variant of CDCL, often referred
to as QCDCL [35, 50, 91] implicitly searches for a tree-shaped (counter)model of the
given QBF in the search space of all possible variable assignments. Thereby assign-
ments encountered during the search that falsify the propositional part of the QBF,
called conflicts, and assignments satisfying it, called solutions, are analysed. The
analysis of conflicts and solutions allows the solver to learn new clauses (disjunctions
of literals) and cubes (conjunctions of literals) for pruning the search space. QCDCL
solvers may apply additional QBF-specific techniques such as duality-aware reason-

104 Florian Lonsing and Martina Seidl

ing [36, 37] or the analysis of variable dependencies with respect to the quantifier
structure of a QBF [57].

In contrast to SAT, where CDCL is almost the single dominant solving paradigm
in practice, QCDCL-based QBF solving is complemented by expansion-based QBF
solving. Expansion-based solvers rewrite a given QBF to a satisfiability-equivalent
propositional formula by successively expanding the quantifiers [5, 12]. To counter
the potential exponential blow-up of the formula size that may result from expan-
sions, counterexample-guided abstraction refinement (CEGAR) [20] has proven to be
powerful [42, 73]. With a CEGAR-based approach to expansion, the solver operates
on an abstract representation of the formula and expands quantifiers lazily. This
way, only those quantifiers are expanded which promise to be useful for solving
the formula. Expansion has been found to be orthogonal to QCDCL from a proof
complexity perspective [11, 43].

In SAT solving, typically expansion is not applied as a standalone approach to
solving since the size of formulas to be solved is often prohibitive. Instead expansion
is used as a pre- and inprocessing technique in a resource-bounded way [23, 45].
Inprocessing is an approach where preprocessing is dynamically interleaved with the
search process in CDCL. Bounded expansion has also been applied successfully for
QBF preprocessing [17].

Given the recently published literature on QBF solving, today the main focus
of QBF solver development is still on sequential systems. In QBF solving there
is no general consensus on which solving paradigm is superior in practice as the
performance of solvers may be highly sensitive to the considered benchmarks (for
example, see the results of related QBF evaluations and competitions [41, 60, 71]).
The landscape of sequential QBF solving has changed and evolved as novel solving
approaches have emerged, such as nested SAT solving [15], clause selection [44, 73]
or the computation of functions that represent strategies of QBFs [72].

While parallelization is natural for most QBF-solving approaches, it also intro-
duces additional complexity in solver engineering and development. Therefore it is
not surprising that solver developers first focus on the implementation of stable and
efficient sequential systems before facing the challenge of parallelization. Neverthe-
less, since the beginning of QBF solving in the early 2000s, several approaches have
been investigated to parallelize QBF solvers and thus benefit from modern clusters
and multicore processors. After a period of relatively little progress, the interest
in parallel QBF solving has increased, which is reflected by the QBF competition
QBFEVAL’16 [71] held in 2016.2 There, five different parallel solvers in six configu-
rations participated, while in previous competitions the parallel-solving track had to
be canceled due to the lack of participants.

In this chapter, we give an overview of previous and recent approaches to parallel
QBF solving. To this end, we first review the necessary preliminaries related to
QBFs and recapitulate relevant sequential-solving approaches. On this basis we first
present general ideas of parallelization and then introduce and compare concrete
approaches implemented in parallel QBF solvers. Finally, we conclude this chapter

2 QBFEVAL’16 website: http://www.qbflib.org/qbfeval16.php

http://www.qbflib.org/qbfeval16.php

4 Parallel Solving of Quantified Boolean Formulas 105

with a selection of challenges that have to be faced in order to make parallel QBF
solving ready for applications in practice.

4.2 Background

In this section, we recapitulate syntax and semantics of QBFs and summarize the
terminology used in the rest of this chapter.

The language LV of quantified Boolean formulas over a set of propositional
variables V and truth constants � and ⊥ is defined as the smallest set such that

1. if x ∈ (V ∪{�,⊥}) then x ∈LV ;
2. if φ ∈LV then ¬φ ∈LV ;
3. if φ1,φ2 ∈LV then (φ1 ◦φ2) ∈LV where ◦ ∈ {∨,∧,→,↔,⊕};
4. if φ ∈LV and x ∈ V , then (Qx.φ) ∈LV where Q ∈ {∀,∃}.

If convenient and unambiguous, we omit parenthesis in QBFs φ ∈LV . For a
QBF Qx.φ , φ is the scope of the quantifier Qx. A variable x is free in a QBF φ , if
x does not occur in the scope of a quantifier Qx in φ . A QBF is closed if it does
not contain any free variables. In the following, we consider only closed QBFs.
Furthermore, we assume that for each x ∈ V , a QBF contains at most one occurrence
of Qx. For ∃x1, . . . ,∃xn and ∀y1, . . . ,∀yn we also write ∃X and ∀Y , respectively, where
X = {x1, . . . ,xn} and Y = {y1, . . . ,yn}. We define var(φ) := {x |Qx occurs in φ ,Q ∈
{∀,∃}}.

A literal is a propositional variable x ∈ V or its negation ¬x. By ¬l we denote the
negation of literal l. Further, var(l) := x if l = x or l = ¬x. A clause is a disjunction
of literals. A cube is a conjunction of literals. A clause (cube) C is tautological
(contradictory) if {x,¬x} ⊆ C. A propositional formula is in conjunctive normal
form (CNF) if it is a conjunction of clauses. A propositional formula is in disjunctive
normal form (DNF) if it is a disjunction of cubes. When convenient, we interpret
a formula in CNF (DNF) as a set of clauses (cubes) and clauses (cubes) as sets of
literals.

A QBF φ is in prenex conjunctive normal form (PCNF) if it has the form Π .ψ
where Π := Q1X1, . . . ,QnXn is the prefix of φ and ψ is the matrix of φ . The matrix
ψ is a propositional formula in CNF over the variables in Π . The variable sets Xi are
pairwise disjoint and for Qi ∈ {∀,∃}, Qi �= Qi+1. We define var(Π) := X1∪ . . .∪Xn.
The quantifier quant(Π , l) of literal l is Qi if var(l) ∈ Xi. Given literals l and k, then
l ≤Π k if quant(Π , l) =Qi and quant(Π ,k) =Q j and i≤ j. For example, QBFs 4.1
and 4.2 are in PCNF.

A QBF φ over variables V is in negation normal form (NNF) if (1) φ ∈LV , (2)
the negation symbol occurs only directly in front of variables or truth constants, and
(3) the only binary connectives are conjunction (∧) and disjunction (∨). Note that
the NNF structure does not impose any restrictions on the positions of quantifiers.

A partial assignment of the variables var(φ) of a QBF φ is a total mapping
A : var(φ) �→ B∪{U}, where B := {T,F} is the Boolean domain and U denotes

106 Florian Lonsing and Martina Seidl

that the assignment of a variable is undefined. A full assignment is a total mapping
A : var(φ) �→ B. Given an assignment A of QBF φ , we also write A as a set of
literals A = {l1, . . . , ln} such that, for all x ∈ var(φ), x ∈ A if A(x) = T, ¬x ∈ A if
A(x) = F, and both x �∈ A and ¬x �∈ A if A(x) = U. Then for any li, l j ∈ A with i �= j,
var(li) �= var(l j).

For a QBF φ and an assignment A, φ [A] denotes the QBF φ under A which is
obtained from φ as follows. For all l ∈A with var(l) = x, the quantifier Qx is removed,
any occurrence of x is replaced by � if x ∈ A and by ⊥ if ¬x ∈ A, followed by the
usual simplifications of Boolean logic. For example, if φ := Π .ψ is in PCNF, then
for all l ∈ A any clause C with literal l ∈C is deleted, any occurrence of literal ¬l is
removed, and the variable var(l) of l and its quantifier quant(Π , l) are removed from
the prefix. If φ [A] simplifies to � (written as φ [A] =�) then A is called a satisfying
assignment. If φ [A] simplifies to ⊥ (written as φ [A] =⊥) then A is called a falsifying
assignment.

An assignment tree of a QBF φ is a complete binary tree of depth |var(φ)|+1
where the internal nodes of each level are associated with a variable of φ . The levels
reflect the order of the quantifiers in the formula. The outgoing edges of an internal
node labeled by variable x are associated with ¬x and x, indicating that x is set to
false and to true, respectively. A path from the root of the tree to a leaf represents a
particular variable assignment. The leaves are labeled by the truth value of φ under
the assignment of the respective path. Figure 4.1 shows examples of two assignment
trees. The highlighted subtrees of the assignment trees represent a model and a
countermodel, respectively.

The semantics of QBFs is defined recursively based on the syntactic structure
as follows. The QBF φ := � is satisfiable and the QBF φ := ⊥ is unsatisfiable. A
QBF ∀x.φ is satisfiable iff φ [x] is satisfiable and φ [¬x] is satisfiable. A QBF ∃x.φ is
satisfiable iff φ [x] is satisfiable or φ [¬x] is satisfiable. The Boolean connectives are
interpreted according to standard semantics. Two QBFs φ and φ ′ are satisfiability-
equivalent iff φ is satisfiable whenever φ ′ is satisfiable.

Example 1. The QBF 4.1 φ := ∀x∃y.((x∨¬y)∧ (¬x∨ y)) is satisfiable since both
φ [{¬x}] = ∃y.(¬y) and φ [{x}] = ∃y.(y) are satisfiable. In contrast to that, the
QBF 4.2 φ := ∃y∀x.((x∨¬y)∧ (¬x∨ y)) is unsatisfiable since neither φ [{¬y}] =
∀x.(¬x) nor φ [{y}] = ∀x.(x) is satisfiable.

In the following, we define the Q-resolution calculus, the formal framework
of QBF solvers based on QCDCL. The calculus consists of rules that allow us to
derive clauses and cubes from a given PCNF φ . The implementation of clause (cube)
learning in QCDCL relies on the Q-resolution calculus.

Definition 1 (Q-Resolution Calculus [35, 48, 50, 91]). Let φ = Π .ψ be a formula
in PCNF. The rules of the Q-resolution calculus are as follows:

4 Parallel Solving of Quantified Boolean Formulas 107

C∪{l}
C

if for all x ∈ var(Π) : {x,¬x} �⊆ (C∪{l}) and either
(1) C is a clause, quant(Π , l) = ∀,

l′ <Π l for all l′ ∈C with quant(Π , l′) = ∃ or
(2) C is a cube, quant(Π , l) = ∃,

l′ <Π l for all l′ ∈C with quant(Π , l′) = ∀

(red)

C1∪{p} C2∪{¬p}
C1∪C2

if for all x ∈ var(Π) : {x,¬x} �⊆ (C1∪C2),
¬p �∈C1, p �∈C2, and either
(1) C1, C2 are clauses, quant(Π , p) = ∃ or
(2) C1, C2 are cubes, quant(Π , p) = ∀

(res)

C
A is an assignment, φ [A] =�,
and C = (

∧
l∈A l) is a cube (cu-init)

C if for all x ∈ var(Π) : {x,¬x} �⊆C and C ∈ ψ is a clause (cl-init)

A QBF φ in PCNF is unsatisfiable (satisfiable) [35, 48, 50, 91] iff the empty
clause (empty cube) /0 is derivable from φ by applying the rules given in Def. 1. A
derivation of the empty clause (cube) /0 from φ starting with applications of the axiom
rules cl-init (cu-init) is a Q-resolution proof of the unsatisfiability (satisfiability) of
φ .

In the case of unsatisfiability, non-tautological clauses occurring in φ are selected
by applications of axiom rule cl-init. In the case of satisfiability, cubes obtained from
satisfying assignments are derived by applications of axiom rule cu-init.

The variants of rule res to resolve clauses or cubes, respectively, are similar
to the resolution rule in propositional logic. In this chapter, we assume that the
pivot variable p is existential (universal) when resolving clauses (cubes) by rule res.
Furthermore, clauses (cubes) derived by res must not be tautological (contradictory).
These restrictions define the most common variant of Q-resolution [48]. However, it
has been shown that the restriction may be lifted, resulting in more powerful variants
of Q-resolution [7, 29].

The main distinguishing feature between propositional resolution and Q-resolution
is rule red, the reduction operation. Universal (Existential) reduction eliminates trail-
ing universal (existential) literals from a non-tautological clause (non-contradictory
cube) C with respect to the quantifier ordering. We write UR(C) =C′ (ER(C) =C′)
to denote the clause (cube) C′ resulting from clause (cube) C by universal (existential)
reduction. For a PCNF φ = Π .ψ , UR(φ) = Π .(

∧
C∈ψ UR(C)) is the PCNF resulting

from universal reduction of every clause C ∈ ψ .

108 Florian Lonsing and Martina Seidl

Propagation

Conflict/Solution
Detection:

φ[A] = ⊥ or
φ[A] = �?

Decision
Making

Backtracking
Clause/Cube

Learning
UNSAT/

SAT

PCNF φ

A = ∅

CL �= ∅ CL = ∅

A
′ ⊂ A, A := A

′

A := A ∪ {l}

YES

NO

Fig. 4.2: Flowchart of QCDCL (adapted from [59]). Stages propagation and conflict/-
solution detection are part of function qbcp in Algorithm 4.1, and stages clause/cube
learning and backtracking are part of function analyze

4.3 Sequential Search-Based QBF Solving

Most parallel QBF solvers are based on the search-based QBF-solving paradigm.
Therefore, we briefly recapitulate the core concepts and ideas behind search-based
solvers.

Search-based QBF solving [18] lifts the DPLL algorithm [22] to QBF. Conflict-
driven clause learning (CDCL) in SAT solving [66, 78, 79, 80, 90] extends DPLL by
clause learning. Clauses are learned from conflicts to prune the search space during
the search for a satisfying assignment. The QBF-specific variant of CDCL is usually
called QCDCL [35, 50, 91]. In contrast to CDCL-based SAT solvers, QCDCL-based
QBF solvers not only learn clauses from conflicts, but also cubes from solutions.
Clauses and cubes are learned using the rules of the Q-resolution calculus. The
pseudocode in Algorithm 4.1 and the flowchart in Figure 4.2 provide a high-level
description of QCDCL.

From a high-level point of view, the basic building blocks of QCDCL such as
propagation, decision making, learning, and backtracking are similar to CDCL. Given
an input formula φ = Π .ψ in PCNF, the assignment tree of φ is traversed in a depth-
first manner. QCDCL terminates if the empty clause (cube) is derived in clause (cube)
learning, which shows the unsatisfiability (satisfiability) of φ .

Learned clauses and cubes are stored in separate sets φCL and φCU , respectively. In
practice, the set of learned clauses φCL is added conjunctively to φ = Π .ψ to obtain
the satisfiability-equivalent formula Π .(ψ ∧ (∧C∈φCL

C)). In a similar way, the set of
learned cubes is added disjunctively to φ =Π .ψ to obtain the satisfiability-equivalent
formula Π .(ψ ∧ (

∨
C∈φCU

C)). Adding learned clauses (cubes) to φ preserves the
satisfiability (unsatisfiability) of φ due to the soundness of the Q-resolution calculus.

Given the current assignment A (which is initially empty), unit and pure literals are
detected and assigned during QBF-specific Boolean constraint propagation (called

4 Parallel Solving of Quantified Boolean Formulas 109

QBCP, cf. function qbcp in Algorithm 4.1) [18, 31]. To this end, the PCNF φ [A] is
considered, i.e., φ interpreted under A. Some literal l is unit in φ [A] if φ [A] contains
a clause (l). Some literal l is pure in φ [A] if ¬l does not occur in φ [A]. Unit and pure
literal detection is also applied to the learned clauses and cubes in sets φCL and φCU ,
respectively. While unit clause detection is similar to CDCL, in QBCP additionally
universal reduction by rule red of the Q-resolution calculus is applied to the clauses
in φ [A].

After the techniques in QBCP have been applied until saturation, in conflict/solu-
tion detection (part of function qbcp) it is checked whether φ [A] =⊥ or φ [A] =�.

If neither φ [A] =⊥ nor φ [A] =� (line 5 in Algorithm 4.1) then A is extended by
tentatively assigning some variable in decision making (function assign_dec_var).
A SAT solver may assign any unassigned variable of the formula. However, this
would not be sound in QCDCL. Only variables from the outermost, i.e., leftmost
quantifier block of φ [A] may be assigned as decisions. As in SAT solving, it does not
affect soundness whether a variable is first set to true or to false. After a variable has
been assigned in decision making, propagation continues (function qbcp).

If φ [A] = ⊥ (line 7 in Algorithm 4.1) then φ (or φCL, respectively) contains
a clause C for which UR(C[A]) = /0. This situation is called a conflict. Conflicts
trigger clause learning, where a learned clause CL is derived using the rules of the
Q-resolution calculus. Thereby, C is successively resolved with antecedent clauses
of unit literals identified during QBCP. The antecedent clause of a unit literal l is the
clause in φ containing l that became unit in φ [A] during QBCP.

If φ [A] =� (line 7 in Algorithm 4.1), then φ [A] = /0, i.e., φ reduces to the empty
matrix under A, or φCU contains a cube C for which ER(C[A]) = /0. This situation is
called a solution. A solution corresponds to a single path in the assignment tree of φ
where the leaf is labeled with � (cf. Fig. 4.1). A SAT solver would terminate after a

Algorithm 4.1: Pseudocode of QCDCL
Data: PCNF φ
Result: True (false) if φ is satisfiable (unsatisfiable)

1 Result R = UNDEF
2 Assignment A = /0
3 while true do

/* Simplify under A, propagation. */
4 (R,A) = qbcp(φ ,A)
5 if R == UNDET then

/* Decision making. */
6 A = assign_dec_var(φ ,A)
7 else

/* Backtracking: R == UNSAT/SAT */
8 A′ = analyze(R,A)
9 if A′ == INVALID then

10 return R
11 else

12 A = backtrack(A′)

110 Florian Lonsing and Martina Seidl

solution has been found. However, due to universally quantified variables, a QCDCL
QBF solver in general must proceed and find further solutions. Solutions trigger cube
learning, where a learned cube CL is derived in a similar way to a learned clause.
Cubes to be resolved on by rule res have to be derived by rule cu-init first.

Clause (cube) learning is part of function analyze in Algorithm 4.1. If the
empty clause (cube) CL is derived in clause (cube) learning (CL = /0 in Figure 4.2),
then QCDCL terminates and reports the unsatisfiability (satisfiability) of the input
PCNF ψ (line 10 in Algorithm 4.1).

Otherwise (CL �= /0 in Figure 4.2), during backtracking the current assignment A is
analyzed (line 8, function analyze) in order to retract a subassignment A′ ⊆ A of A
(line 12). The subassignment A′ is selected so that the learned clause (cube) becomes
unit under the new assignment A that results from backtracking. Clauses (cubes) CL
having this property are called asserting. In QCDCL, typically only asserting clauses
and cubes are learned. The run of QCDCL proceeds with the new assignment A
resulting from backtracking.

Example 2 (Based on an example from [55]). Consider the PCNF φ = Π .ψ with
prefix Π = ∃z,z′∀u∃y and CNF

ψ = (u∨¬y)∧ (¬u∨y)∧ (z∨u∨¬y)∧ (z′ ∨¬u∨y)∧ (¬z∨¬u∨¬y)∧ (¬z′ ∨u∨y)

Initially the current assignment A and the sets of learned clauses and cubes are empty.
Propagation does not have any effect since φ does not contain unit literals (to keep
the example simple, we do not carry out pure literal detection). Suppose that both z
and z′ are assigned true in decision making, i.e., A := {z,z′}, resulting in the PCNF
φ [A] = ∀u∃y.(u∨¬y)∧ (¬u∨ y)∧ (¬u∨¬y)∧ (u∨ y). Again, φ [A] does not contain
unit literals to be propagated. Hence, let A be extended by assignment {u} in decision
making, i.e., A := {z,z′,u}, resulting in φ [A] = ∃y.(y)∧ (¬y). Suppose that variable
y is assigned true by unit literal detection applied to φ [A], where (¬u∨ y) ∈ φ is the
antecedent clause of the derived assignment {y}. Clause C1 = (¬z∨¬u∨¬y) ∈ φ is
falsified under A := {z,z′,u,y}, i.e., UR(C1[A]) = /0. In clause learning, C1 is resolved
with the antecedent clause (¬u∨ y) by pivot variable y, resulting in the asserting
learned clause CL,1 = (¬z) after universal reduction.

Based on the result of analyze, the whole current assignment A = {z,z′,u,y}
is retracted to the empty assignment A = /0. Note that, in particular, all assign-
ments of variables due to decision making are retracted, which corresponds to
non-chronological backtracking. Since the learned clause CL,1 is unit, i.e., a clause
of size one, under the empty assignment A, propagation updates A to A := {¬z}.
Next, suppose that z′ and u are assigned as decisions to obtain A := {¬z,¬z′,¬u}.
Finally we get A := {¬z,¬z′,¬u,¬y} by unit literal detection. Every clause in φ is
satisfied under A. In cube learning, the new cube C2 = (¬z∧¬z′ ∧¬u∧¬y) is derived
using rule cu-init of the Q-resolution calculus. From C2, the asserting learned cube
CL,2 = (¬z∧¬z′ ∧¬u) = ER(C2) is derived by existential reduction (rule red).

After retracting {¬u,¬y} from A to obtain A := {¬z,¬z′} due to the result of
analyze, CL,2 becomes unit and hence A is extended to A := {¬z,¬z′,u}, thus
flipping the assignment of u. Cube CL,2 is the antecedent cube of assignment {u}.

4 Parallel Solving of Quantified Boolean Formulas 111

Finally A := {¬z,¬z′,u,y} by unit clause detection. Every clause in φ is satisfied
under A. Cube C3 = (¬z∧¬z′ ∧u∧ y) is derived by rule cu-init as before and further
C4 = (¬z∧¬z′ ∧ u) = ER(C3) by existential reduction of C3. Q-resolution of the
antecedent cube CL,2 of assignment {u} and C4 using pivot variable u produces
C5 = (¬z∧¬z′). Finally, existential reduction of C5 results in the empty cube, proving
that φ is satisfiable.

4.4 Parallel QBF Solving at a Glance

In this section, we present approaches to parallel QBF solving that have been im-
plemented in 11 different solvers summarized in Table 4.1. Before we discuss the
individual solvers in detail in the next section, we first outline the basic ideas behind
the approaches. Parallel QBF solving can be classified into portfolio approaches and
approaches based on search space splitting.

A conceptually simple and straightforward way to solve a QBF in parallel is the
use of a portfolio approach. Thereby, given a set of sequential solvers having different
solving characteristics or one sequential solver in different configurations, the input
formula is solved by running the solver instances in parallel on separate computing
nodes. The nodes may be logically separated, like in threaded solvers, or physically
separated like in distributed solvers.

Due to the orthogonality of QCDCL and expansion-based QBF solving that has
been witnessed both in proof complexity [11, 43] and in experimental studies [60, 63],
portfolio approaches appear to be a promising direction for the implementation of
parallel QBF solvers. Since QBF solving by QCDCL and expansion has different
characteristics depending on the input formula, a parallel QBF portfolio solver which
combines these two solving paradigms can exploit the benefits of both approaches.
However, in contrast to parallel SAT solving, where portfolio solvers are well studied
and established (see Chapter 1, Parallel Satisfiability), few parallel portfolio QBF
solvers have been presented.

We are aware of the following three parallel QBF solvers based on the port-
folio approach. The solver HordeQBF [8] applies the HordeSAT framework [9]
(cf. Chapter 1, Parallel Satisfiability) to QBF, allowing us to run different configura-
tions of one QCDCL solver in a massively parallel manner. The solvers hiqqerfork
and par-pd-depqbf are implemented as Linux shell scripts which run instances of
sequential solvers in parallel processes. While hiqqerfork uses different configu-
rations of one solver in the parallel processes, par-pd-depqbf uses two identical
solver instances to solve different input formulas. To this end, par-pd-depqbf takes
structured non-PCNF formulas φ in the QCIR format3 as input and transforms both
φ and its negation ¬φ into PCNF [30]. Then one process in par-pd-depqbf runs a

3 QCIR format: http://qbf.satisfiability.org/gallery/qcir-gallery14.
pdf

http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf
http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf

112 Florian Lonsing and Martina Seidl

Algorithm 4.2: Splitting Algorithm for QBF Evaluation
Data: QBF φ
Result: True (false) if φ is satisfiable (unsatisfiable)

1 begin

2 switch φ do

3 case � do

4 return SAT
5 case ⊥ do

6 return UNSAT
7 case ¬ψ do

8 return NOT split(ψ)
9 case ψ1∨ψ2 do

10 return split(ψ1) OR split(ψ2)
11 case ψ1∧ψ2 do

12 return split(ψ1) AND split(ψ2)
13 case ∃x.ψ do

14 return split(ψ[x/�]) OR split(ψ[x/⊥])
15 case ∀x.ψ do

16 return split(ψ[x/�]) AND split(ψ[x/⊥])

solver instance to solve the primal PCNF encoding of φ , and a second process runs
an identical solver instance to solve the dual PCNF encoding of ¬φ .

The most widely used approach to parallel QBF solving in terms of implemented
solvers, however, is based on search space splitting by analyzing the formula structure
as follows. Consider Algorithm 4.2 which shows a very basic recursive algorithm
to evaluate a QBF of arbitrary syntactic structure. In fact, this algorithm is a direct
translation of the QBF semantics given in Section 4.2 into pseudocode. The evaluation
of a QBF is broken down into subproblems. The base cases of the evaluation are
QBFs consisting of only a truth constant. Compound formulas containing operators
such as negation, binary connectives, or quantifiers are evaluated depending on the
respective semantics of the operators. That is, the result of evaluating a QBF depends
on the results of evaluating its subformulas.

Algorithm 4.2 already illustrates the potential of parallel QBF solving. For exam-
ple, if we want to solve the QBF ∀x.ψ , then we can solve ψ[x] and ψ[¬x] in parallel
processes and then combine the results according to the semantics of the universal
quantifier. If either ψ[x] or ψ[¬x] is found unsatisfiable in one process, then the other
process can be stopped since the given QBF ∀x.ψ has been proved unsatisfiable
already. The situation is similar when solving a non-PCNF formula like ψ1∨ψ2. The
subformulas ψ1 and ψ2 can be solved independently by two different processes—as
soon as one of the subformulas is found to be satisfiable, the process evaluating the
other subproblem can be stopped due to the semantics of the ∨ operator.

Based on the above observations related to Algorithm 4.2, an obvious way to
parallelize QBF solving is to split the problem of evaluating the original formula into
several subproblems, which are then distributed to the different client solvers. Either
a sequential solver is called for each subproblem or the subproblem is split further.

4 Parallel Solving of Quantified Boolean Formulas 113

Reconsider QBF φ = ∃z,z′∀u∃y.ψ from Example 2. The assignment tree of φ
is shown in Fig. 4.3. Two processes could solve the subproblems φ [z] and φ [¬z]
independently and in parallel. Example 2 presented a sequential solver run in which
the subproblem φ [z] was considered first, i.e., the variable z was first set to true
in decision making. Only after undoing this decision in backtracking, the solver
entered that part of the assignment tree that contains the model of φ (i.e., the left
subtree in Fig. 4.3). If variable z were first set to the opposite value, i.e., false, then
the extra work spent on evaluating the subproblem φ [z] would have been avoided
altogether. It would not be necessary to wait for the solver to enter the part of the
search space given by subproblem φ [¬z], which contains the model. Moreover, if the
two subproblems φ [¬z] and φ [z] are solved in parallel, then the search can be stopped
as soon as one subproblem witnesses the satisfiability of φ . If a subproblem, e.g.,
φ [¬z] turns out to be too hard for a process to solve within certain resource limits,
then it can be split again into further subproblems φ [¬z,z′] and φ [¬z,¬z′], provided
that the necessary computing resources are available. Again these subproblems can be
solved independently of each other, and only the results of their evaluations need to
be merged according to the semantics of the existential quantifier in ∃z′. Subproblems
related to universal quantification are handled analogously.

As illustrated by Example 2, QCDCL solvers learn clauses and cubes from
conflicts and solutions encountered during the search. When solving a QBF in parallel,
these derived clauses and cubes potentially are helpful to other processes, even if a
process had only a minor contribution to identifying a model or a countermodel for
the given QBF. Therefore, sharing knowledge in terms of learned clauses and cubes
with other processes is crucial in parallel QBF solving.

Research on parallel QBF solving has been focused on (1) the generation of
subproblems, which are delegated to processes running on different computing nodes,
and (2) knowledge sharing, i.e., the distribution of information derived by one process
which is potentially useful for the others. Subproblem generation and knowledge
sharing for parallel QBF solving are strongly inspired by the respective approaches
to parallel SAT solving (see Chapter 1, Parallel Satisfiability). However, the SAT
approaches cannot be ported to QBF in a straightforward way.

Generating subproblems (and hence also assembling the results returned by differ-
ent processes) is complicated by the quantifier types of variables and by the order of
the variables with respect to the quantifier structure of a QBF.

A variant of the guiding path method [88] as introduced for SAT solving has been
found effective at generating subproblems in parallel QBF solving. With this method,
a sequential solver instance in a separate computing node is provided with a set of
assumptions. Assumptions are predefined variable assignments that the solver has to
take into account in the solving process. This way, the subproblem that the solver has
to solve is defined. Assumptions can also be understood as a special kind of decision
variables the solver has to treat in a certain way. For example, the subproblems φ [¬z]
and φ [z] in Fig. 4.3 are defined by the sets {¬z} and {z} of assumptions, respectively.

Typically, a master process generates sets of assumptions and distributes them to
the solver instances running on the computing nodes. Based on the result of solving
the subproblem, the solver may request further subproblems from the master. The

114 Florian Lonsing and Martina Seidl

∃z

∃z′

∀u

∃y

� ⊥

∃y

⊥ �

∀u

∃y

⊥ ⊥

∃y

⊥ �

∃z′

∀u

∃y

� ⊥

∃y

⊥ ⊥

∀u

∃y

⊥ ⊥

∃y

⊥ ⊥

φ [¬z] φ [z]

Fig. 4.3: Assignment tree of QBF φ from Example 2 and two subtrees of φ [¬z] and
φ [z]

master combines the results of the subproblems depending on the quantifier types
of the variables assigned in the set of assumptions (cf. the splitting algorithm in
Algorithm 4.2). Due to the quantifier types and the ordering of variables in the
quantifier prefix, the generation of subproblems and combination of results by the
master process is more complicated than in the context of SAT solving. In this respect,
care has to be taken to guarantee soundness and completeness of a parallel QBF
solver. For instance, in Example 2 it would be unsound to generate subproblems by
assumption {y} only since y is not at the left end of the quantifier prefix of φ .

In contrast to SAT solvers, QCDCL solvers operating on a PCNF φ not only learn
clauses from conflicts but also cubes from solutions. As illustrated by Example 2,
initially the set of learned cubes is empty. Hence cubes have to be derived first by
rule cu-init of the Q-resolution calculus based on satisfying assignments. Since a
satisfying assignment of φ must satisfy every clause in φ , cubes derived by rule cu-init
tend to be large and often contain a large number of the variables in φ . Therefore,
sharing large cubes with other solver instances in a parallel setting is challenging
not only because of their size but also since large cubes tend to have only a limited
pruning effect on the search space.

QBF solvers that implement parallelization by the guiding path method are MPI-
DepQBF, PAQuBE, PQSolve, and QMiraXT. They are distinguished by whether
learning is supported or not, whether subproblems are generated by the master or
by the client, and the way the result returned by the client solvers is represented.
To summarize, the master process in a parallel QBF solver based on search space
splitting carries out the following tasks (if supported by the respective concrete
approach):

4 Parallel Solving of Quantified Boolean Formulas 115

• administrate the currently distributed subproblems4;
• maintain information about decision variables used to generate assumptions;
• request new subproblems from busy clients if there are idle clients;
• activate idle clients when new subproblems are available;
• manage information sharing among the clients;
• stop the clients if the given QBF has been solved.

In principle, the clients in a parallel solver based on search space splitting are
responsible for the following tasks (if supported by the concrete approach):

• receive a subproblem (ideally in terms of assumptions);
• solve a subproblem and return the respective result to the master;
• share information with other clients;
• learn information from other clients;
• optionally generate subproblems, which are passed to the master (or to other

clients);
• terminate if requested by the master.

The solvers pcaqe, PQUABS, and PQSAT also use syntactic properties of a
formula to split the search space, but in a conceptually different manner to the guiding
path method. These solvers are based on expansion. PQSAT extracts subformulas as
subproblems, which may contain free variables. The clients processing the subprob-
lems either eliminate the remaining quantifiers such that a propositional formula over
these free variables is returned to the master, or they further split the subproblem.
The solvers pcaqe and PQUABS extract a propositional formula for each quantifier
block that is then used for evaluating the given QBF. Differently from the other
solvers, which operate on formulas in PCNF, PQUABS operates on formulas in
non-prenex form.

The rough classification of parallel QBF-solving paradigms presented above al-
ready illustrates the different approaches to leverage the power of modern computing
systems. In the following section, we give a detailed description of individual parallel
QBF solvers.

4.5 Parallel QBF-Solving Approaches

Table 4.1 summarizes and compares the parallel QBF-solving approaches that have
been presented in the literature. The only approach not implemented is the one
by Aspvall et al. [3], which is restricted to PCNFs with a maximum clause size
of two and so far has been of theoretical interest only. For the other approaches
implementations either are publicly available or at least experimental results have
been published. Most parallel solvers are based on a sequential QBF solver such
as DepQBF, QuBE, caqe, quabs, QSolve, and QSAT. Usually the sequential

4 In PQSolve a client may distribute subproblems to other clients and hence becomes the master
with respect to the particular subproblem.

116 Florian Lonsing and Martina Seidl

Table 4.1: Comparison of parallel QBF solvers

pa
ra

lle
l Q

B
F

so
lv

er

ba
se

so
lv

er

Q
C

D
C

L-
ba

se
d

po
rtf

ol
io

PC
N

F
in

pu
t f

or
m

at
in

fo
rm

at
io

n
sh

ar
in

g
pr

e-
/in

pr
oc

es
si

ng

pr
oc

es
s

m
an

ag
em

en
t

Q
B

FE
VA

L’
16

pu
bl

ic
ly

av
ai

la
bl

e

m
os

t r
ec

en
t p

ap
er

Aspvall et al. n.i. 1996[3]
pcaqe caqe1 × × � × � Pthreads � � –
hiqqerfork DepQBF � � � × � fork � – –
HordeQBF DepQBF2 � � � � � MPI � � 2016[8]
MPIDepQBF DepQBF � × � × � MPI � � 2014[46]
par-pd-depqbf DepQBF � � � × � fork � – –
PAQuBE QuBE � × � � � MPI × × 2011[51]
PQSolve QSolve ∼4 × � × � MPI × × 2000[28]
PQSAT QSAT × × × × � MPI × × 2010[67]
PQUABS quabs × × × × � Pthreads × � 2016[83]
QMiraXT MiraXT3 � × � � � Pthreads × � 2009[52]
� yes/supported × no/not supported – unpublished n.i. not implemented
1 Picosat is the default SAT solver; also Minisat is supported
2 any QCDCL solver could be used
3 parallel SAT-solving framework
4 DPLL-based

solvers are tightly integrated into the implementations of the clients. As the only
exception, HordeQBF is based on a generic framework that allows integration of any
QCDCL-based QBF solver supporting incremental solving and learning. QMiraXT
implements its own QBF solver in order to be used with the MiraXT framework that
was developed for parallel SAT solving. The majority of the parallel QBF solvers
are based on QCDCL; only pcaqe, PQSAT, and PQUABS apply expansion-based
techniques. Out of the QCDCL-based solvers, three support clause and cube sharing.
All solvers apply certain simplification techniques either before the solving starts,
i.e., as a preprocessing step, or dynamically as inprocessing [45] during solving, like
DepQBF as used in HordeQBF. In the following, we discuss the individual solving
approaches in detail.

Approach by Aspvall et al.

One of the first parallel approaches to QBF solving was presented by Aspvall et al.
in 1996 [3]. The considered QBFs φ are in PCNF with a quantifier prefix having
arbitrarily many quantifier alternations but with the restriction that clauses contain
at most two literals. Formulas of this kind are also called Q2CNF formulas. In
consequence, the satisfiability problem of Q2CNFs is not PSPACE-complete any
more. Instead, the satisfiability of a Q2CNF φ can be decided by a sequential

4 Parallel Solving of Quantified Boolean Formulas 117

algorithm [4] in time O(n+m), where n is the number of variables and m is the
number of clauses in φ .

In principle, the approach by Aspvall et al. builds on the linear time sequential al-
gorithm to solve Q2CNFs [4]. Let G(φ) :=(V,E) be the directed implication graph of
a Q2CNF formula φ = Q1x1 . . .Qnxn.ψ where the set V = {x1, . . . ,xn,¬x1, . . . ,¬xn}
of vertices is given by all possible literals xi ∈ φ , and for any clause (l ∨ k) ∈ φ it
holds that (¬l,k) and (¬k, l) are edges in E. A vertex of G(φ) is called existential
(universal) if its associated variable is existentially (universally) quantified. Given a
Q2CNF φ and the related graph G(φ), φ is satisfiable iff none of the following three
conditions holds [4]:

1. Existential vertices l and ¬l are in the same strongly connected component of
G(φ).

2. A strongly connected component of G(φ) contains universal vertex l and exis-
tential vertex k with k < l.

3. There is a path between two universal vertices.

To test the satisfiability of a Q2CNF φ , first the transitive closure of G(φ) is
represented as an adjacency matrix. Then the above conditions are checked in constant
parallel time by assigning one processor to each pair of variables. Furthermore,
Aspvall et al. present an algorithm to find models of satisfiable Q2CNFs: because
of the restricted formula structure it is sufficient that the values of the existential
variables are mapped either to truth constants or to one universal literal.

In the original publication [3] no implementation of the algorithm was reported,
and we are not aware of any implementation published elsewhere. In practical QBF
applications, encodings of problems typically have clauses of size bigger than two.
Therefore it is unlikely that this approach will ever be implemented in a dedicated
parallel Q2CNF solver. However, in the same way as the sequential version [4]
of this algorithm is used to identify equivalent literals (e.g., in the preprocessor
bloqqer [38]), also its parallel variant could be used for speeding up preprocessing.

Unpublished QBFEVAL’16 Participants: pcaqe, hiqqerfork, par-pd-depqbf

Three parallel solvers not formally published in the literature participated in the
parallel track of QBFEVAL’16. These solvers are par-pd-depqbf, hiqqerfork, and
pcaqe, which solved the largest number of formulas in the parallel track, i.e., 606,
598, and 585 formulas out of 825, respectively [71]. We briefly review these solvers
in the following.

Both hiqqerfork and par-pd-depqbf may be considered to be portfolio-based
solvers. The solver hiqqerfork is a portfolio solver in the classical sense, running
different configurations of the sequential solver hiqqer. A short description of hiqqer
can be found in [41]. The solver hiqqer uses modifications of the publicly available
preprocessors bloqqer and qxbf before invoking the solver DepQBF.

The solver par-pd-depqbf is based on the insight that often it is not clear whether
the primal or the dual encoding of a problem is preferable for a particular solver [30].

118 Florian Lonsing and Martina Seidl

Master

Client 1Client 0 Client 2

Control Signals (incl. timeouts)

Fig. 4.4: Master-Client architecture of MPIDepQBF

The primal encoding represents the original problem, whereas the dual encoding rep-
resents its negation. The solver par-pd-depqbf runs exactly two identical instances
of a sequential QBF solver in parallel. Given a structured non-PCNF formula φ in
the QCIR format as input, one solver instance processes the primal encoding of φ
as a PCNF, and the other solver instance processes the dual encoding of ¬φ as a
PCNF. If either the primal or the dual version is solved, the whole solving process
is stopped and the respective result is returned. The sequential back-end solver of
par-pd-depqbf is DepQBF in combination with the preprocessor bloqqer. However,
basically any QBF solver or preprocessor can be applied in par-pd-depqbf.

The solver pcaqe is a parallel version of the sequential solver caqe [73] which is
based on a similar abstraction-based technique to that used in the solver PQUABS
(see below). The solver pcaqe is part of the source code of caqe5 and can be run
with either Minisat or Picosat as back-end solver.

MPIDepQBF

The solver MPIDepQBF [46] relies on the sequential QCDCL-based solver De-
pQBF to solve any input formula φ in PCNF. To this end, φ is split into subproblems
to be evaluated by client processes operating in parallel. The clients are independent
of each other and do not exchange any information. However, information learned
locally by a client is reused in different runs of that client. Keeping the information
from run to run is realized by assumption-based reasoning. Assumptions are tempo-
rary (and partial) assignments of variables that define the formula to be solved by a
client following the guiding path method.

In MPIDepQBF one dedicated master process coordinates an arbitrary number of
clients via MPI (see Fig. 4.4). The sequential solver DepQBF applied by the clients
provides an API similar to the APIs of most incremental SAT solvers [25, 68]. The
API allows the solver to be provided with the formula to be solved by adding the
respective variables, quantifiers, and clauses, and has functions to control the solving
process. DepQBF was extended with assumption-based reasoning to integrate it into

5 https://www.react.uni-saarland.de/tools/caqe/index.html

https://www.react.uni-saarland.de/tools/caqe/index.html

4 Parallel Solving of Quantified Boolean Formulas 119

the framework implemented by MPIDepQBF. Apart from that, DepQBF was used
out of the box without any changes.

Due to the use of assumptions, the clients are provided with the original formula
φ to be solved in parallel only once. The master sends a set of assumptions to an idle
client, which defines its subproblem to be solved, in addition to a timeout restricting
the solving time. The client sends the result related to the subproblem back to the
master (the result may be undefined if the solving process of the client timed out) and
discards the set of assumptions. Then the master either generates a new subproblem
in terms of new assumptions, or resends the previous subproblem to the client with
an increased timeout. Information learned during a run of a client, e.g., like clauses
and cubes, is not shared between the clients. However, assumption-based reasoning
enables this information to be reused in different runs of the same client.

Given a PCNF φ := Q1X1 . . .QnXn.ψ , the master process in MPIDepQBF gen-
erates the subproblems to be solved by the clients as follows. First, the variables of
each quantifier block in φ are sorted according to their respective number of variable
occurrences. This heuristic ordering together with the quantifier ordering in the prefix
of φ determines the order in which the variables will be assigned as assumptions to
generate subproblems. Then a search tree is built in a similar way to assignment trees
(cf. Fig. 4.3), which contains three types of nodes: sat, unsat, and open. Nodes of
type sat and unsat represent solved subproblems whereas an open node corresponds
to an unsolved subproblem and contains a variable assignment and a timeout.

Initially, the search tree is balanced and has n leaves which are of type open
where n is the smallest power of 2 that is smaller than the total number of available
clients. The result obtained from a client for a particular subproblem is incorporated
into the search tree. For sat or unsat, the tree is simplified according to the quantifier
rules in the splitting algorithm shown in Algorithm 4.2. If the result is a timeout,
then the subproblem is either split further provided that additional clients are idle
and hence waiting for work, or it is handed again to the same client with an increased
timeout. If the tree is reduced to a single leaf node with sat or unsat then the formula
is solved.

The master process is implemented in OCaml. Source code is available as part
of the TOSS framework.6 For simplifying the formula, the preprocessor bloqqer is
used. MPIDepQBF is not limited to the use of DepQBF as a sequential back-end
solver. In principle, any QBF solver supporting assumption-based reasoning can
be integrated into MPIDepQBF. Further, the reuse of information learned locally
within a run of a client has been found crucial for solving performance [46] but is
not necessary for the basic workings of MPIDepQBF.

6 http://toss.sourceforge.net/

http://toss.sourceforge.net/

120 Florian Lonsing and Martina Seidl

HordeQBF

The solver HordeQBF [8] is based on the massively parallel SAT-solving framework
HordeSAT,7 which integrates sequential CDCL-based SAT solvers in a portfolio
style [9]. HordeSAT features hierarchical parallelism on two levels. On the top level,
several instances of HordeSAT are executed in parallel and communicate with each
other via MPI. These are the master processes. On the bottom level, each master
starts several core CDCL solvers as client processes in separate threads. Thus com-
munication within a master is implemented via the shared-memory paradigm. The
clients periodically put learned clauses in a pool which is managed by their respective
master. The pool is stored in a shared-memory region, which enables sharing of
learned clauses between clients at low communication overhead. Periodically the
masters exchange the learned clauses in their respective pools via MPI. This way,
clauses learned by a particular client in a certain master become available to all
the other clients in the different masters. The runs of the clients are diversified by
providing the core solvers with different parameter settings so that the solvers operate
in different parts of the search space.

HordeQBF differs from HordeSAT only in the use of a sequential QCDCL QBF
solver instead of a CDCL SAT solver. The communication framework as described
above is unchanged. In order to integrate a QCDCL solver into HordeQBF to be
used as a core solver in the clients, the solver has to implement an API that provides
functions to achieve various tasks, for example:

• import the formula in the core solver;
• diversify the run of the core solver by parameter settings;
• start the core solver;
• import/export learned clauses;
• stop the search if the formula has been solved by any core solver.

Although QCDCL solvers learn cubes in addition to clauses, the HordeSAT
framework does not have to be adapted to explicitly support sharing of cubes via
a dedicated API function. Instead, learned clauses and cubes are treated as sets of
literals which are augmented by a special marker literal. The marker literal indicates
whether the literal set is supposed to be interpreted by a client as a clause or as a cube.
The master processes communicating via MPI do not distinguish between clauses or
cubes but only exchange literal sets provided by the clients. Depending on certain
heuristics, clients may or may not import a shared clause or cube stored in the pool
of their respective master.

In principle, HordeQBF can be combined with any QCDCL QBF solver that
implements the HordeSAT API. In the first release [8], the search-based solver
DepQBF version 5.0, which implements a dynamic variant of blocked clause elimi-
nation (QBCE) for learning smaller cubes [55], was integrated into the framework.

In HordeQBF the clients check whether new learned clauses or cubes are available
in the pool after a restart. CDCL and QCDCL solvers periodically restart by retracting

7 http://baldur.iti.kit.edu/hordesat/

http://baldur.iti.kit.edu/hordesat/

4 Parallel Solving of Quantified Boolean Formulas 121

the entire assignment and starting the search from scratch while keeping the learned
clauses and cubes. In order to import learned clauses and cubes after a restart
in DepQBF, its restart policy was modified such that it always fully retracts the
assignment in a restart (cf. the original restart policy of DepQBF [56]). Learned
clauses and cubes are imported, data structures are updated, and the search is resumed
under the new constraints.

In order to diversify the different DepQBF instances, the master provides each
solver instance with a random seed. Based on this random seed several (Q)CDCL-
related parameters, such as the assignment cache [69], are randomly initialized.
In consequence, the first value assigned to a decision variable is random. Further,
parameters related to variable-activity scaling (see [30]), restarting parameters, and
the percentage of learned clauses and cubes to be discarded periodically are set at
random. Finally, various variants of dynamic QBCE and variants of different kinds
of Q-resolution to learn new constraints are randomly turned on and turned off.

Experimental results with HordeQBF on application benchmarks showed su-
perlinear average and median speedup on a cluster with up to 1024 processing
cores [8].

PAQuBE

The QBF solver PAQuBE [51, 62] is a parallel version of QuBE [33], which pio-
neered QCDCL solving but currently is not being further developed. QuBE imple-
ments literal watching, conflict and solution analysis, and learning as well as advanced
decision heuristics. Furthermore, QuBE uses the preprocessor SqueezBF [34] which
considerably improves its performance. To integrate QuBE into the parallel architec-
ture of PAQuBE, it was extended with assumption-based reasoning (like DepQBF
was extended for the integration into MPIDepQBF). For conflict analysis and back-
jumping, assumptions require special treatment. Furthermore, literal watching had to
be modified to correctly handle clauses and cubes obtained from other clients when
backtracking.

Parallelization in PAQuBE is based on MPI and a master-client architecture as
shown in Figure 4.5. One dedicated master controls n− 1 sequential instances of
QuBE. The master generates and distributes the subproblems and collects solutions
using a specific variant of the guiding path method. Thereby, at any time all clients
operate on subproblems rooted at variables from the same quantifier block of the
given PCNF to be solved. Due to the scheduling policy, the master has to deal only
with control signals but not with shared knowledge. In consequence, the master
process spends most of the time sleeping. It only has to wake up when one client
is idle and a new subproblem has to be requested from another client. Hence, the
master does not need its own CPU. The existence of the master process is justified
by the scheduling algorithm for the distribution of subproblems. Without a master
process, it would be necessary for the clients to communicate among themselves to
share subproblems, thus increasing the overall communication overhead.

122 Florian Lonsing and Martina Seidl

Master

Client 1Client 0 Client 2

Clause/Cube Sharing

Control Signals

Fig. 4.5: Master-Client architecture of PAQuBE

To solve a formula by PAQuBE, first it is read by the clients. For simplifying
the formula, the preprocessor SqueezBF is applied. One client informs the master
about basic formula properties such as number of variables, number of clauses,
and number of quantification levels. This information is necessary for scheduling
the subproblems. Then one client starts to solve the preprocessed formula as it is
without any assumptions. The other clients request a subproblem from the master,
who forwards their requests to the busy client. For the assignment of subproblems,
the SQLS algorithm introduced with the solver QMiraXT (see below for a description
of this approach) is used. SQLS is a restricted, simplified variant of the scheduling
algorithm of PQSolve. The master requests a subproblem with a root variable in the
current quantifier block. If the asked client does not have such a problem, another
client is asked. If no client can provide a subproblem of the requested form, the
master moves to the next quantification level. This will continue until either all clients
are waiting for new subproblems or until a subproblem with a topmost universally
(existentially) quantified variable is found unsatisfiable (satisfiable).

PAQuBE realizes an advanced knowledge-sharing mechanism of learned clauses
and cubes. The clients freely communicate with each other in order to share learned
clauses and cubes derived while solving their subproblems. The master process is
not involved in knowledge sharing. After a fixed number of decisions the clients
check whether new messages either from the master or from some other client are
available. At this time, also suitable learned clauses and cubes are shared with other
clients. The clients have to share the clauses and cubes learned from their run as
well as receive and learn clauses and cubes derived by other clients. In addition,
cubes are compressed under the assumption that different cubes share many literals
from the highest quantification levels. Therefore, the literals of a cube are sorted
according to the prefix order and common parts of cubes are sent only once. As this
knowledge exchange leads to a significant communication overhead, multiple clause-
and cube-sharing strategies are implemented. In experiments it was shown that an

4 Parallel Solving of Quantified Boolean Formulas 123

adaptive method yielded the overall best results. In [53] the application of machine
learning is suggested to control information sharing.

PQSAT

Da Mota et al. [67] presented a parallel architecture for QBF solving. In the follow-
ing, we name this approach PQSAT because it is based on the sequential solver
QSAT [70]. In contrast to most other systems, PQSAT does not require the formulas
to be in PCNF. Instead it accepts arbitrarily structured formulas as input. Furthermore,
the base solver QSAT used in PQSAT applies quantifier elimination rather than
QCDCL. Thereby, quantified variables are successively eliminated from a given
formula φ similarly to expansion.

PQSAT implements a parallel master-client architecture using MPI. The master
reads the original QBF and splits it into several subproblems, which are distributed
among the clients. For generating subproblems, the master analyses the syntactic
structure of the formula in order to find subproblems which can be solved indepen-
dently by the clients. For example, given the formula

φ = ∃a∀b.(((a↔ b)∧ (∀c.(c∨b)))∧ (∃d.(a∧¬d)))

the subproblems φ1 = ∀c.(c∨b) and φ2 = ∃d.(a∧¬d) are extracted (cf. [21]). Note
that variables b and a are free in φ1 and φ2, respectively. The task of the clients is to
find propositional formulas over the free variables that are equivalent to the formulas
in the subproblems by following the quantifier elimination approach implemented in
QSAT [70]. For example, given a QBF Π∃x.(ψ1∧ψ2) where ψ1 does not contain
any occurrence of x, the formula is rewritten to Π .(ψ1∧∃x.ψ2) by minimizing the
scope of ∃x. Then ∃x.ψ2 is replaced by an equivalent formula without x. Universally
quantified variables are eliminated in a similar manner. Quantifier elimination is
repeated until a purely propositional formula is left. Then this propositional formula
is passed to a SAT solver.

After subproblems have been assigned to the clients, the master waits for the
respective results and assembles them in order to get the result of the full problem.
As the subproblems may contain free variables, the clients must return an equivalent
formula over these free variables without any quantifiers. The clients themselves
may split their given subproblems into further subproblems if the given subproblem
appears to be too difficult according to some syntactic measure of difficulty. If a
client decides to split a subproblem, then it employs semantic splitting based on
assignments to the free variables. The set of new subproblems is passed to the master
node, who distributes them to other idle clients.

124 Florian Lonsing and Martina Seidl

PQSolve

One of the first parallel QBF solvers was PQSolve, which was published in the year
2000 [28]. At that time, QBF-solving technology in general still was in its infancy. For
example, neither learning as used in QCDCL-based QBF solvers nor expansion-based
solving had been presented. Although PQSolve naturally lacks many techniques
that are standard in modern solvers, it can be seen as a milestone in parallel QBF
solving. PQSolve relies on QSolve as the base solver, which implements the DPLL
algorithm for QBF with several then state-of-the-art heuristics and pruning techniques
such as quantifier inversion, trivial truth, and trivial falsity [18, 74]. Thus PQSolve
is an early distributed realization of DPLL for QBF.

The motivation for parallelizing QSolve stems from the common view of QBF
solving as a two-person zero-sum game with complete information (cf. [76]). Thereby,
the universal player assigns the universally quantified variables of a given QBF with
the aim to falsify the formula, whereas the existential player assigns the existentially
quantified variables in order to satisfy it. For the development of PQSolve, its
authors applied techniques successfully used in parallel chess programs.

PQSolve implements a master-client architecture based on MPI where the role of
master and client processes may change dynamically depending on the scheduling of
subproblems and on the progress of the search. Furthermore, there may be more than
one master process. This dynamic architecture of PQSolve is different from many
other parallel QBF solvers and complicates the checking of termination conditions.
To obtain a simpler design, solvers such as QMiraXT and PAQuBE implement a
restricted variant of PQSolve’s architecture and scheduling based on the SQLS
algorithm.

PQSolve takes formulas in PCNF as input and works as follows: first one process
is assigned to solve the input formula. All other processes are idle. If a process Q
is idle then it sends a request for work to a random process P which is not idle.
If the contacted busy process P has an unexplored part in its current search tree
then it sends the respective formula to the requesting process Q similarly to the
guiding path method. This way, P becomes the master of the client Q. The requesting
client process Q now solves the formula and sends the result back to the master P.
Then Q becomes idle again and the master-client relationship between P and Q is
released. Process P incorporates the result into its search tree. If P has another open
subproblem then it communicates that subproblem to the idle process Q. Otherwise,
a request for work is sent to a random busy process. It may happen that a client’s
work on a subproblem becomes obsolete because of some pruning techniques applied
in the master. In this case, the master informs the client to stop solving the respective
subproblem.

Every process in PQSolve applies tests for trivial truth and trivial falsity. For
the trivial truth check, only the existentially quantified variables are considered
and all literals of universal variables are discarded from the PCNF. If the resulting
propositional formula is satisfiable, then also the original PCNF is satisfiable. For
the trivial falsity check, all variables are assumed to be existentially quantified. If
the resulting propositional formula is unsatisfiable, then also the original PCNF is

4 Parallel Solving of Quantified Boolean Formulas 125

unsatisfiable. Trivial truth and falsity checks are simply realized with a SAT solver
and can be done at any time during the search.

The subproblem handed over to a different process in PQSolve must be large
enough to justify the communication overhead. The selection and scheduling of
subproblems work as follows. Let {l0, . . . , lm} be the current assignment such that
li was assigned before l j if i < j. When receiving a request from another process,
then the formula under assignment {l0, . . . ,¬li} is passed to the other process such
that 3∗ |N(xi)−P(xi)|+ i is minimal where var(li) = xi and P(xi) is the number of
positive occurrences of xi and N(xi) is the number of negative occurrences of xi.

To increase parallel efficiency, PQSolve implements Helpful Master Scheduling.
A master process that has passed on a subproblem to a client has to wait for the result
and thus stays idle after it has solved its own subproblem. In that case the master
itself sends a request to the client, which in turn provides a subproblem (of its current
one) to share the work.

To avoid irrelevant work, Young Brothers Wait Scheduling is applied. This ap-
proach tries to deal with the problem that when solving a formula under a certain
assignment of some variable x, it is often not necessary to solve the formula under
the dual assignment of x. In a parallel setting, situations of this kind result in a waste
of work. Therefore, blocks of variables are considered. Only after the leftmost leaves
of the subtrees obtained by setting the variables in a block have been fully evaluated
are the subformulas related to the other subtrees passed to other processes.

PQUABS

The solver PQUABS [83] extends the sequential solver quabs [84], which pro-
cesses formulas in prenex negation normal form (prenex NNF), by allowing input
formulas to be in non-prenex NNF. That is, PQUABS is able to handle formulas
with a tree-shaped quantifier structure in contrast to the linear quantifier structure
of formulas in prenex NNF. For each maximal consecutive block of quantifiers of
the same type, PQUABS builds a propositional abstraction of the input formula in a
way that is similar to the approach implemented in caqe [73] and its parallel variant
pcaqe. Thereby, the evaluation of a given QBF is broken down to evaluating a set
of propositional abstractions. The abstraction of a quantifier block is linked to the
abstractions of adjacent quantifier blocks in the syntactic structure of the formula
via so-called interface literals. The interface literals express quantifier dependencies
resulting from the ordering of quantifier blocks. The satisfiability of a subformula
is communicated via assignments to the interface literals. There are two types of
interface literals: one type to represent the assignments made by abstractions of outer
quantifier blocks, and the other type to represent the assignments made by abstrac-
tions of inner quantifier blocks. A counterexample-guided abstraction refinement
loop (CEGAR) is employed based on SAT solving to generate refined abstractions.
Additionally, PQUABS analyses the quantifier structure of the given formula to
avoid the use of interface literals whenever a subformula appears in the scope of only
one quantifier block.

126 Florian Lonsing and Martina Seidl

QMiraXT

The solver QMiraXT [52, 77] implements QCDCL combined with preprocessing.
Unlike the other parallel QCDCL solvers (see Table 4.1), knowledge sharing is based
on shared memory (see Figure 4.6) rather than message passing by MPI. QMiraXT is
an extension of the parallel SAT solver MiraXT. While MiraXT and QMiraXT share
a common architecture, the reasoning mechanisms of QMiraXT are adapted to QBF.

QMiraXT implements a decision heuristics similar to VSIDS [66], but takes the
different quantification levels of the variables into account. That is, all variables of the
current level have to be set before a variable of the next level is selected, similarly to
QBF semantics. Two counters are used to keep track of positive and negative variable
occurrences in the formula. When conflict clauses are added, these counters are
increased. Further, they are periodically decreased to amplify the influence of more
recent conflict clauses. From a set of existentially quantified variables, the variable
that satisfies the largest number of clauses is chosen. A universally quantified variable
is selected and assigned so that the number of implications by unit clauses that would
result from the respective assignment is maximized.

QMiraXT eliminates unused variables and pure literals and performs substitution
of equivalent literals. Then the complete solver Quantor [12] is applied as prepro-
cessor. Quantor implements bounded variable elimination and universal variable
expansion. Those techniques are applied until the formula reduces to a propositional
formula. As the memory consumption of Quantor is not restricted, QMiraXT sets a
memory limit (128 MB is reported in [52]) as well as a time limit of five seconds.
Then the remaining QBF formula is processed in QCDCL style. This way, Quantor
is applied in an incomplete manner as a preprocessor, what is very similar to the idea
behind the preprocessor bloqqer.

The shared clause database (SCD) of QMiraXT contains every clause that is
currently used by a client thread. Cubes are not stored because it was found [52] that
in general they are too large, and storing them would slow down the performance
of the solver. A clause is contained only once in the SCD and is marked as read-
only. After a clause has been generated and added to the SCD it is available to
all threads via shared-memory accesses. That is, unlike MPI-based communication
as implemented in other parallel solvers, explicit exchange of shared clauses via
messages is not required.

Clauses stored in the SCD may reside at any position in memory. To optimize
memory accesses made by the threads, each thread maintains a watched-literal
reference list (WLRL). For every clause, the WLRL allows a thread to store two
watched literals and an existentially quantified cache literal in its local memory. It
has been shown that this caching policy optimizes memory accesses made by the
threads.

QMiraXT has no controlling master process. Instead there is a Master Control
Object (MCO), which coordinates the communication between the threads. The
MCO is never directly involved in the communication. It stores messages on global
events, for example, that the formula has been solved. The most important task
of the MCO is the generation of subproblems. Subproblems are generated by the

4 Parallel Solving of Quantified Boolean Formulas 127

Master Control Object

QBF Solver
Thread 1

QBF Solver
Thread 0

QBF Solver
Thread 2

Shared Clause Database

Fig. 4.6: Architecture of the solver QMiraXT [52]

guiding path method like in the solvers MPIDepQBF, PAQuBE, and PQSolve.
To this end, the MCO provides the two functions donateDecisionStack()
and getDecisionStack(), which both enforce the use of locks. Function
donateDecisionStack() splits the decision stack of the current thread into
two different decision stacks and provides another thread with one of them. The
decision stack contains the decision variables in the ordering they were assigned in
QCDCL. Function getDecisionStack() implements single quantification level
scheduling (SQLS) [77]. SQLS is a restricted, simplified variant of the scheduling
algorithm of PQSolve and is also employed by the solver PAQuBE. The splitting of
the search space is done by the clients. Clients are allowed to split the search space
on one quantification level. If no subproblems are available anymore, the threads
block until either new subproblems have been provided by another thread or until all
other threads terminate. If only one thread is running and all other decisions have
been considered at the current decision level, it may use variables from the next
quantification level. In this way, the clients manage the subproblem generation by
themselves and no complicated management infrastructure is needed.

4.6 Challenges and Potential of Parallel QBF Solving

In the past and recent QBF solver landscape, the majority of the presented tools
focus on sequential solving approaches. Thus the potential of modern computer
architectures is currently not fully leveraged. In the following, we discuss challenges
and opportunities that arise in the context of parallel QBF solving.

Preprocessing

In the context of sequential QBF solving, preprocessing has been shown to be
substantially valuable to many state-of-the-art solvers [60]. All parallel approaches

128 Florian Lonsing and Martina Seidl

either perform some simplifications before solving, exploit the power of sequential
preprocessors such as bloqqer, SqueezBF, or HQSpre [87], or apply the complete
solver Quantor in a resource bounded way. In general, the goal of preprocessing is
to simplify the input formula such that it becomes easier to solve. At the moment,
however, no special parallel preprocessing techniques are applied. It would be a
natural approach to apply expensive sequential preprocessing techniques in parallel.
To this end, however, it has to be investigated whether preprocessing techniques that
have been found beneficial in the context of sequential solving are also beneficial
to parallel solving to the same extent. Furthermore, it may be necessary to tune
sequential preprocessing techniques to parallel settings. For example, whereas in
sequential solving the elimination of both variables and clauses from a formula is
crucial, in parallel solving it may be more important to emphasize the removal of
variables. Search space splitting is carried out based on the set of variables. Hence
eliminating variables reduces the size of the search space and thus might simplify
search space splitting.

Learning and Knowledge-Sharing Heuristics

All parallel solvers which support knowledge sharing (see Table 4.1) are based
on QCDCL. In QCDCL, new learned clauses and cubes are derived using the Q-
resolution calculus (Definition 1). The learned clauses can be shared with other
threads or processes in order to prune the search space and thus speed up the overall
search.

To limit the communication overhead that may result from sharing, suitable
heuristics must be applied in order to select the clauses and cubes to be shared. For
example, in parallel SAT solving, typical clause selection metrics are the length of a
clause or the involvement of literals in conflicts.

While the quantifier structure of QBFs results in several restrictions that potentially
limit the effectiveness of parallel solving techniques in general, at the same time it
gives rise to additional selection criteria. Possible criteria are the number of universal
(existential) literals in a clause (cube), or the quantification levels of literals of a
clause (cube).

Effective selection criteria are particularly important when it comes to sharing
learned cubes. In QCDCL learned cubes are first derived by rule cu-init of the Q-
resolution calculus. Cubes derived this way tend to be large since their derivation
relies on assignments that satisfy all clauses of the given PCNF. Due to the size of
cubes, it may be costly to share large numbers of cubes. Furthermore, large cubes
tend to prune only small parts of the search space. We see a lot of potential in the
development of useful heuristics to decide on the benefit of sharing knowledge.

In general, cube learning in QCDCL may be a bottleneck also in sequential QBF
solving. To mitigate the weaknesses of deriving only large cubes by rule cu-init,
the Q-resolution calculus has been extended by additional axioms [59]. Derivations
made by these additional axioms rely on the application of oracles to check the
satisfiability of QBFs that arise during the solving process. In this respect, oracles

4 Parallel Solving of Quantified Boolean Formulas 129

implement resource-bounded procedures for QBF satisfiability checking. Cubes
derived by the additional axioms are potentially smaller than cubes derived by
rule cu-init in the traditional way. In parallel QBF solving based on QCDCL, there
is considerable potential in parallelizing the calls of several oracles, which might
implement orthogonal or incomplete solving techniques, for example. Since the
cubes derived by such parallel oracle calls tend to be smaller than cubes derived by
rule cu-init, sharing these cubes with other threads or processes in the solver would
result in smaller communication overhead and better pruning of the search space.

Incremental Solving

An incremental QBF solver based on QCDCL [58, 61, 65] allows us to solve se-
quences S := 〈φ0, . . . ,φn〉 of related PCNFs φi. Each PCNF φi+1 is obtained from
the previous PCNF φi by adding or deleting clauses, variables, or quantifiers. When
solving a PCNF φi in S in an incremental way, the solver does not start from scratch.
Instead, clauses and cubes learned when solving φi potentially can be kept and reused
when solving the next PCNF φi+1. This way, the PCNFs φi might be solved faster
than if each φi was solved independently and non-incrementally. For incremental
solving, the solver must provide an API so that the same solver instance can be used
to solve the PCNFs in S.

We are not aware of any approaches to parallelize incremental QBF solving.
Hence the potential positive effects of combining the benefits of incremental and
parallel solving are currently not leveraged. It might be possible to apply approaches
from incremental and parallel SAT solving [86] also to QBF.

Expansion-Based Solving

Currently most parallel solvers implement search-based solving by QCDCL (see
Table 4.1 above). However, recently expansion-based solving [5, 12] in combination
with CEGAR [42, 43] has been shown to be powerful in solving many practically
relevant classes of formulas.

Since expansion is orthogonal to QCDCL regarding proof complexity [11, 43],
there is considerable potential in parallelizing solvers that employ CEGAR-based
expansion. However, it has not been deeply investigated how to leverage the power of
CEGAR approaches in parallel solving. For example, different processes could work
on different abstractions of a formula at the same time and then share or synchronize
counterexamples that they have found with respect to the different abstractions.

Duality-Aware Reasoning

In the context of QBF solving it is well known that reasoning on a propositional CNF
introduces a bias towards the search for conflicts. A CNF is easily falsified by an

130 Florian Lonsing and Martina Seidl

assignment that falsifies at least one clause. Based on such falsifying assignments, in
QCDCL learned clauses can be derived by rule cl-init of the Q-resolution calculus.
Compared to falsifying assignments, it is more difficult to satisfy a CNF as all
the clauses must be satisfied. Therefore, for the search for solutions, a formula in
disjunctive normal form (DNF), i.e., a disjunction of cubes, would be better suited.
A DNF is dual to a CNF in the sense that a DNF can be satisfied easily by satisfying
at least one of its cubes.

To benefit from properties of both CNFs and DNFs, approaches have been pre-
sented that reason on a CNF and on a DNF representation of the given QBF at
the same time. This way, propagations are performed on the CNF and on the DNF
(e.g., [37, 49, 89]). However, so far these approaches have been realized system-
atically only in a sequential manner. The solver par-pd-depqbf is based on the
observation of Van Gelder [30] who proposes to solve a formula in CNF as well as in
DNF by calling two separate solver instances in parallel. However, in this approach
there is neither communication nor knowledge sharing between the solver instances.

Proof Generation

The generation of proofs becomes more and more important for the practical applica-
bility of QBF solvers. Proofs serve two purposes: on the one hand, they allow for the
independent validation of the correctness of a solver’s result by an efficient checker,
and on the other hand they allow the extraction of Skolem and Herbrand functions.
Skolem functions represent a strategy for the assignment of existential variables if a
formula is satisfiable. Likewise, Herbrand functions represent a strategy for selecting
the assignments of universal variables in unsatisfiable formulas (see also the informal
presentation of these functions by means of the example in Fig. 4.1 in Section 4.1).

Strategies are crucial for practical applications of QBF solvers. For example, given
a PCNF φ which models an instance of some problem to be solved, a solution to the
problem instance can be computed from a strategy for φ .

Skolem and Herbrand functions can be efficiently extracted from Q-resolution
proofs as produced by sequential QCDCL solvers [6]. However, in parallel QBF
solving, currently none of the presented approaches supports the generation of proofs
or strategies in terms of Skolem and Herbrand functions, respectively. However, for
parallel solvers based on QCDCL a potential approach to proof generation would be
to combine the respective proofs of the subproblems that have been solved by the
different threads or processors. To this end, ideas from proof generation in parallel
SAT solving [39] may also be applicable.

Testing and Debugging

One of the major challenges in developing a sequential QBF solver is a stable
implementation, i.e., an implementation which does not crash and which returns
correct results. In general, implementations of QBF solvers are more complex than

4 Parallel Solving of Quantified Boolean Formulas 131

implementations of SAT solvers due to the complexity of handling nested quantifiers
that is present in QBFs. Furthermore, in order to achieve good solving performance, it
is necessary to equip QBF solvers with advanced data structures and optimizations to
prune the search space. At the same time, these optimizations may hinder the efficient
implementation of advanced features such as proof generation and incremental
solving.

For sequential solving, effective approaches to testing and debugging of solvers [16]
exist. First, fuzz testing has proven itself to be powerful for finding problematic corner
cases and conceptual errors in an implementation. A fuzz test generates random
formulas according to predefined random models such that the formulas are not too
hard to solve. The goal is to achieve a high testing throughput together with a uniform
distribution of satisfiable and unsatisfiable instances.

Second, delta debugging is used to automatically simplify large formulas on which
a solver exhibits incorrect behavior. To this end, clauses are successively removed
from the formula and literals are removed from clauses so that the incorrect behavior
of the solver is preserved. In the end, the result of delta debugging is a formula which
is reasonably small so that the run of the solver can be inspected manually using
traditional debugging techniques.

Third, model-based testers [1, 2] have been found particularly useful in testing
the behavior of incremental solvers via the API provided for incremental use. While
in fuzz testing and delta debugging solvers are considered as black boxes, a model-
based testing environment comes with a tighter integration of the solver. Sequences
of function calls of the solver’s API are automatically generated and replayed in
order to test solver behavior on the sequence. This approach also allows us to replay
entire solver runs where certain bugs were triggered.

It is well known that testing and debugging of parallel solvers is far more complex
than for sequential solvers. In parallel QBF solving, this problem is made worse by
the higher complexity that is intrinsic to QBF solvers, compared to SAT solvers. For
the development of robust parallel QBF solvers, it may be useful to combine the
generation of proofs and strategies outlined above with approaches to automated
testing and debugging.

4.7 Conclusion

Already in the very early years of QBF solving attempts were made to exploit the
full computational power of modern computer architectures, ranging from multicore
processors to huge clusters as found in modern cloud-based systems. However,
compared to the advancements made in sequential QBF solving, a lot of the potential
of parallelizing QBF solving has still not been exploited.

We have reviewed and classified parallel approaches to QBF solving that either
were published in the literature or that participated in the parallel track of the QBF
competition QBFEVAL’16 held in 2016. Overall, we identified 11 approaches; 10 of
them are implemented. The implementations of five systems are publicly available.

132 Florian Lonsing and Martina Seidl

Unfortunately, not all of the QBFEVAL’16 participants are among those solvers. As
half of the systems are not available (anymore), we did not carry out an empirical
evaluation. The parallel track of QBFEVAL’16 was not competitive due to the small
number of participating systems. However, it is still remarkable that the track could
be carried out, because in the previous editions of QBFEVAL it had to be canceled.
This fact might be a first indicator of an upwards trend in parallel QBF solving.
Given the high computational complexity of QBF solving in general, the large
variety of sequential solvers and the power of modern computer architectures, we
see considerable potential to speed up QBF solving by parallel approaches.

References

[1] Cyrille Artho, Armin Biere, and Martina Seidl. Model-Based Testing for
Verification Back-Ends. In Margus Veanes and Luca Viganò, editors, Proc. of
the 7th Int. Conference on Tests and Proofs (TAP 2017), volume 7942 of LNCS,
pages 39–55. Springer, 2013.

[2] Cyrille Artho, Martina Seidl, Quentin Gros, Eun-Hye Choi, Takashi Kitamura,
Akira Mori, Rudolf Ramler, and Yoriyuki Yamagata. Model-Based Testing of
Stateful APIs with Modbat. In Myra B. Cohen, Lars Grunske, and Michael
Whalen, editors, Proc. of the 30th Int. Conference on Automated Software
Engineering (ASE 2015), pages 858–863. IEEE Computer Society, 2015.

[3] Bengt Aspvall, Christos Levcopoulos, Andrzej Lingas, and Robert Storlind. On
2-QBF Truth Testing in Parallel. Information Processing Letters, 57(2):89–93,
1996.

[4] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time
algorithm for testing the truth of certain quantified Boolean formulas. Inf.
Process. Lett., 8(3):121–123, 1979.

[5] Abdelwaheb Ayari and David A. Basin. QUBOS: Deciding Quantified Boolean
Logic Using Propositional Satisfiability Solvers. In Mark Aagaard and John W.
O’Leary, editors, Proc. of the 4th Int. Conference on Formal Methods in
Computer-Aided Design (FMCAD 2002), volume 2517 of LNCS, pages 187–
201. Springer, 2002.

[6] Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its
applications. Formal Methods in System Design, 41(1):45–65, 2012.

[7] Valeriy Balabanov, Jie-Hong Roland Jiang, Mikolás Janota, and Magdalena
Widl. Efficient Extraction of QBF (Counter)models from Long-Distance Reso-
lution Proofs. In Blai Bonet and Sven Koenig, editors, Proc. of the 29th AAAI
Conference on Artificial Intelligence (AAAI 2015), pages 3694–3701. AAAI
Press, 2015.

[8] Tomas Balyo and Florian Lonsing. HordeQBF: A Modular and Massively
Parallel QBF Solver. In Nadia Creignou and Daniel Le Berre, editors, Proc. of
the 19th Int. Conference on Theory and Applications of Satisfiability Testing
(SAT 2016), volume 9710 of LNCS, pages 531–538. Springer, 2016.

4 Parallel Solving of Quantified Boolean Formulas 133

[9] Tomas Balyo, Peter Sanders, and Carsten Sinz. HordeSat: A Massively Parallel
Portfolio SAT Solver. In Marijn Heule and Sean Weaver, editors, Proc. of the
18th Int. Conference on Theory and Applications of Satisfiability Testing (SAT
2015), volume 9340 of LNCS, pages 156–172. Springer, 2015.

[10] Marco Benedetti and Hratch Mangassarian. QBF-Based Formal Verification:
Experience and Perspectives. Journal on Satisfiability, Boolean Modeling and
Computation, 5(1-4):133–191, 2008.

[11] Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. Proof Complexity of
Resolution-based QBF Calculi. In Ernst W. Mayr and Nicolas Ollinger, editors,
Proc. of the 32nd Int. Symposium on Theoretical Aspects of Computer Science
(STACS 2015), volume 30 of LIPIcs, pages 76–89. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

[12] Armin Biere. Resolve and Expand. In Holger H. Hoos and David G. Mitchell,
editors, Proc. of the 7th Int. Conference on Theory and Applications of Sat-
isfiability Testing (SAT 2004), volume 3542 of LNCS, pages 59–70. Springer,
2004.

[13] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Hand-
book of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009.

[14] Roderick Bloem, Robert Könighofer, and Martina Seidl. SAT-Based Synthesis
Methods for Safety Specs. In Kenneth L. McMillan and Xavier Rival, editors,
Proc. of the 15th Int. Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2014), volume 8318 of LNCS, pages 1–20. Springer,
2014.

[15] Bart Bogaerts, Tomi Janhunen, and Shahab Tasharrofi. Solving QBF instances
with nested SAT solvers. In Adnan Darwiche, editor, Proc. of the 2016 AAAI
Workshop Beyond NP, volume WS-16-05 of AAAI Workshops. AAAI Press,
2016.

[16] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and
debugging of SAT and QBF solvers. In Ofer Strichman and Stefan Szeider,
editors, Proc. of the 13th Int. Conference on Theory and Applications of Sat-
isfiability Testing (SAT 2010), volume 6175 of LNCS, pages 44–57. Springer,
2010.

[17] Uwe Bubeck and Hans Kleine Büning. Bounded Universal Expansion for
Preprocessing QBF. In Proc. of the 10th Int. Conference on Theory and
Applications of Satisfiability Testing (SAT 2007), volume 4501 of LNCS, pages
244–257. Springer, 2007.

[18] Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An Algorithm to
Evaluate Quantified Boolean Formulae. In Jack Mostow and Chuck Rich,
editors, Proc. of the 15th National Conference on Artificial Intelligence and
10th Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI
1998), pages 262–267. AAAI Press / The MIT Press, 1998.

[19] Koen Claessen, Niklas Eén, Mary Sheeran, Niklas Sörensson, Alexey Voronov,
and Knut Åkesson. SAT-Solving in Practice, with a Tutorial Example from
Supervisory Control. Discrete Event Dynamic Systems, 19(4):495–524, 2009.

134 Florian Lonsing and Martina Seidl

[20] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking.
Journal of the ACM, 50(5):752–794, 2003.

[21] Benoit Da Mota. Quantified Boolean formulae: formal processings and parallel
computations. Thesis, Université d’Angers, December 2010.

[22] Martin Davis, George Logemann, and Donald W. Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[23] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable
and clause elimination. In Fahiem Bacchus and Toby Walsh, editors, Proc. of
the 8th Int. Conference on Theory and Applications of Satisfiability Testing
(SAT 2005), volume 3569 of LNCS, pages 61–75. Springer, 2005.

[24] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Proc. of the 9th Int. Conference
on Theory and Applications of Satisfiability Testing (SAT 2006), volume 2919
of LNCS, pages 502–518. Springer, 2003.

[25] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT
solving. Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.

[26] Uwe Egly, Martin Kronegger, Florian Lonsing, and Andreas Pfandler. Confor-
mant planning as a case study of incremental QBF solving. Ann. Math. Artif.
Intell., 80(1):21–45, 2017.

[27] Wolfgang Faber and Francesco Ricca. Solving hard ASP programs efficiently.
In Chitta Baral, Gianluigi Greco, Nicola Leone, and Giorgio Terracina, editors,
Proc. of the 8th Int. Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2005), volume 3662 of LNCS, pages 240–252. Springer,
2005.

[28] Rainer Feldmann, Burkhard Monien, and Stefan Schamberger. A Distributed
Algorithm to Evaluate Quantified Boolean Formulae. In Henry A. Kautz
and Bruce W. Porter, editors, Proc. of the 17th Nat. Conference on Artificial
Intelligence and 12th Conference on on Innovative Applications of Artificial
Intelligence (AAA/IAAI 2000), pages 285–290. AAAI Press / The MIT Press,
2000.

[29] Allen Van Gelder. Contributions to the theory of practical quantified Boolean
formula solving. In Michela Milano, editor, Proc. of the 18th Int. Conference
on Principles and Practice of Constraint Programming (CP 2012), volume
7514 of LNCS, pages 647–663. Springer, 2012.

[30] Allen Van Gelder. Primal and Dual Encoding from Applications into Quantified
Boolean Formulas. In Christian Schulte, editor, Proc. of the 19th Int. Conference
on Principles and Practice of Constraint Programming (CP 2013), volume
8124 of LNCS, pages 694–707. Springer, 2013.

[31] Ian P. Gent, Enrico Giunchiglia, Massimo Narizzano, Andrew G. D. Rowley,
and Armando Tacchella. Watched data structures for QBF solvers. In Enrico
Giunchiglia and Armando Tacchella, editors, Proc. of the 6th Int. Conference
on Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919
of LNCS, pages 25–36. Springer, 2003.

4 Parallel Solving of Quantified Boolean Formulas 135

[32] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. Reasoning with
quantified Boolean formulas. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications, pages 761–780. IOS Press, 2009.

[33] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. QuBE7.0. Journal
on Satisfiability, Boolean Modeling and Computation, 7(2-3):83–88, 2010.

[34] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. sQueezeBF: An
Effective Preprocessor for QBFs Based on Equivalence Reasoning. In Ofer
Strichman and Stefan Szeider, editors, Proc. of the 13th Int. Conference on
Theory and Applications of Satisfiability Testing (SAT 2010), volume 6175 of
LNCS, pages 85–98. Springer, 2010.

[35] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Clause/Term
Resolution and Learning in the Evaluation of Quantified Boolean Formulas. J.
Artif. Intell. Res. (JAIR), 26:371–416, 2006.

[36] Alexandra Goultiaeva and Fahiem Bacchus. Recovering and Utilizing Partial
Duality in QBF. In Matti Järvisalo and Allen Van Gelder, editors, Proc. of the
16th Int. Conference on Theory and Applications of Satisfiability Testing (SAT
2013), volume 7962 of LNCS, pages 83–99. Springer, 2013.

[37] Alexandra Goultiaeva, Martina Seidl, and Armin Biere. Bridging the gap
between dual propagation and CNF-based QBF solving. In Enrico Macii,
editor, Proc. of the Int. Conference on Design, Automation and Test in Europe
(DATE 2013), pages 811–814. EDA Consortium / ACM DL, 2013.

[38] Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and Armin Biere.
Clause Elimination for SAT and QSAT. J. Artif. Intell. Res. (JAIR), 53:127–168,
2015.

[39] Marijn J.H. Heule and Armin Biere. Compositional Propositional Proofs.
In Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov,
editors, Proc. of the 20th Int. Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR-20), volume 9450 of LNCS, pages 444–459.
Springer, 2015.

[40] Tamir Heyman, Dan Smith, Yogesh Mahajan, Lance Leong, and Husam Abu-
Haimed. Dominant Controllability Check Using QBF-Solver and Netlist Opti-
mizer. In Carsten Sinz and Uwe Egly, editors, Proc. of the 17th Int. Conference
on Theory and Applications of Satisfiability Testing (SAT 2014), volume 8561
of LNCS, pages 227–242. Springer, 2014.

[41] Mikolás Janota, Charles Jordan, Will Klieber, Florian Lonsing, Martina Seidl,
and Allen Van Gelder. The QBF Gallery 2014: The QBF Competition at
the FLoC Olympic Games. Journal on Satisfiability, Boolean Modeling and
Computation, 9:187–206, 2016.

[42] Mikolás Janota, William Klieber, Joao Marques-Silva, and Edmund M. Clarke.
Solving QBF with counterexample guided refinement. Artif. Intell., 234:1–25,
2016.

[43] Mikolás Janota and Joao Marques-Silva. Expansion-based QBF solving versus
Q-resolution. Theor. Comput. Sci., 577:25–42, 2015.

136 Florian Lonsing and Martina Seidl

[44] Mikolás Janota and Joao Marques-Silva. Solving QBF by Clause Selection.
In Qiang Yang and Michael Wooldridge, editors, Proc. of the 24th Int. Joint
Conference on Artificial Intelligence (IJCAI 2015), pages 325–331. AAAI Press,
2015.

[45] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing Rules. In
Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, Proc. of the 6th Int.
Joint Conference on Automated Reasoning (IJCAR 2012), volume 7364 of
LNCS, pages 355–370. Springer, 2012.

[46] Charles Jordan, Lukasz Kaiser, Florian Lonsing, and Martina Seidl. MPIDe-
pQBF: Towards Parallel QBF Solving without Knowledge Sharing. In Carsten
Sinz and Uwe Egly, editors, Proc. of the 17th Int. Conference on Theory and
Applications of Satisfiability Testing (SAT 2014), volume 8561 of LNCS, pages
430–437. Springer, 2014.

[47] Hans Kleine Büning and Uwe Bubeck. Theory of quantified Boolean formulas.
In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, pages 735–760. IOS Press, 2009.

[48] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for
Quantified Boolean Formulas. Inf. Comput., 117(1):12–18, 1995.

[49] William Klieber, Samir Sapra, Sicun Gao, and Edmund M. Clarke. A non-
prenex, non-clausal QBF solver with game-state learning. In Ofer Strichman
and Stefan Szeider, editors, Proc. of the 13th Int. Conference on Theory and
Applications of Satisfiability Testing (SAT 2010), volume 6175 of LNCS, pages
128–142. Springer, 2010.

[50] Reinhold Letz. Lemma and Model Caching in Decision Procedures for Quanti-
fied Boolean Formulas. In Uwe Egly and Christian G. Fermüller, editors, Proc.
of the Int. Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX 2002), volume 2381 of LNCS, pages 160–175.
Springer, 2002.

[51] Matthew Lewis, Tobias Schubert, Bernd Becker, Paolo Marin, Massimo Nariz-
zano, and Enrico Giunchiglia. Parallel QBF Solving with Advanced Knowledge
Sharing. Fundamenta Informaticae, 107(2-3):139–166, 2011.

[52] Matthew D.T. Lewis, Tobias Schubert, and Bernd Becker. QmiraXT - A
Multithreaded QBF Solver. In Carsten Gremzow and Nico Moser, editors,
Methoden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen (MBMV), pages 7–16. Universitätsbibliothek Berlin,
Germany, 2009.

[53] Tao Li and Nan-feng Xiao. Parallel solving model for quantified Boolean
formula based on machine learning. Journal of Central South University,
20(11):3156–3165, 2013.

[54] Paolo Liberatore. Redundancy in logic I: CNF propositional formulae. Artif.
Intell., 163(2):203–232, 2005.

[55] Florian Lonsing, Fahiem Bacchus, Armin Biere, Uwe Egly, and Martina Seidl.
Enhancing Search-Based QBF Solving by Dynamic Blocked Clause Elim-
ination. In Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei

4 Parallel Solving of Quantified Boolean Formulas 137

Voronkov, editors, Proc. of the 20th Int. Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR 2015), volume 9450 of LNCS,
pages 418–433. Springer, 2015.

[56] Florian Lonsing and Armin Biere. DepQBF: A Dependency-Aware QBF Solver.
Journal on Satisfiability, Boolean Modeling and Computation, 7(2-3):71–76,
2010.

[57] Florian Lonsing and Armin Biere. Integrating dependency schemes in search-
based QBF solvers. In Ofer Strichman and Stefan Szeider, editors, Proc. of the
13th Int. Conference on Theory and Applications of Satisfiability Testing (SAT
2010), volume 6175 of LNCS, pages 158–171. Springer, 2010.

[58] Florian Lonsing and Uwe Egly. Incremental QBF Solving. In Barry O’Sullivan,
editor, Proc. of the 20th Int. Conference on Principles and Practice of Constraint
Programming (CP 2014), volume 8656 of LNCS, pages 514–530. Springer,
2014.

[59] Florian Lonsing, Uwe Egly, and Martina Seidl. Q-Resolution with Generalized
Axioms. In Nadia Creignou and Daniel Le Berre, editors, Proc. of the 19th Int.
Conference on Theory and Applications of Satisfiability Testing (SAT 2016),
volume 9710 of LNCS, pages 435–452. Springer, 2016.

[60] Florian Lonsing, Martina Seidl, and Allen Van Gelder. The QBF Gallery:
Behind the scenes. Artif. Intell., 237:92–114, 2016.

[61] Paolo Marin, Christian Miller, Matthew D.T. Lewis, and Bernd Becker. Verifica-
tion of partial designs using incremental QBF solving. In Wolfgang Rosenstiel
and Lothar Thiele, editors, Proc. of the Design, Automation & Test in Europe
Conference & Exhibition (DATE 2012), pages 623–628. IEEE, 2012.

[62] Paolo Marin, Massimo Narizzano, Enrico Giunchiglia, Matthew D.T. Lewis, To-
bias Schubert, and Bernd Becker. Comparison of knowledge sharing strategies
in a parallel QBF solver. In Proc. of the Int. Conference on High Performance
Computing & Simulation (HPCS 2009), pages 161–167. IEEE, 2009.

[63] Paolo Marin, Massimo Narizzano, Luca Pulina, Armando Tacchella, and Enrico
Giunchiglia. Twelve Years of QBF Evaluations: QSAT Is PSPACE-Hard and It
Shows. Fundam. Inform., 149(1-2):133–158, 2016.

[64] Albert R. Meyer and Larry J. Stockmeyer. The Equivalence Problem for
Regular Expressions with Squaring Requires Exponential Space. In 13th
Annual Symposium on Switching and Automata Theory, pages 125–129. IEEE
Computer Society, 1972.

[65] Christian Miller, Paolo Marin, and Bernd Becker. Verification of partial designs
using incremental QBF. AI Commun., 28(2):283–307, 2015.

[66] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proc. of the 38th
Design Automation Conference (DAC 2001), pages 530–535. ACM, 2001.

[67] Benoit Da Mota, Pascal Nicolas, and Igor Stéphan. A new parallel architecture
for QBF tools. In Proc. of the Int. Conference on High Performance Computing
and Simulation (HPCS 2010), pages 324–330. IEEE, 2010.

[68] Alexander Nadel and Vadim Ryvchin. Efficient SAT Solving under Assump-
tions. In Alessandro Cimatti and Roberto Sebastiani, editors, Proc. of the 15th

138 Florian Lonsing and Martina Seidl

Int. Conference on Theory and Applications of Satisfiability Testing (SAT 2012),
volume 7317 of LNCS, pages 242–255. Springer, 2012.

[69] Knot Pipatsrisawat and Adnan Darwiche. A Lightweight Component Caching
Scheme for Satisfiability Solvers. In João Marques-Silva and Karem A.
Sakallah, editors, Proc. of the 10th Int. Conference on Theory and Applications
of Satisfiability Testing (SAT 2007), volume 4501 of LNCS, pages 294–299.
Springer, 2007.

[70] David A. Plaisted, Armin Biere, and Yunshan Zhu. A satisfiability procedure for
quantified Boolean formulae. Discrete Applied Mathematics, 130(2):291–328,
2003.

[71] Luca Pulina. The Ninth QBF Solvers Evaluation - Preliminary Report. In Proc.
of the 4th Int. Workshop on Quantified Boolean Formulas (QBF 2016), volume
1719, pages 1–13. CEUR Workshop Proceedings, 2016.

[72] Markus N. Rabe and Sanjit A. Seshia. Incremental Determinization. In Nadia
Creignou and Daniel Le Berre, editors, Proc. of the 19th Int. Conference on
Theory and Applications of Satisfiability Testing (SAT 2016), volume 9710 of
LNCS, pages 375–392. Springer, 2016.

[73] Markus N. Rabe and Leander Tentrup. CAQE: A certifying QBF solver. In
Roope Kaivola and Thomas Wahl, editors, Proc. of the Int. Conference on
Formal Methods in Computer-Aided Design (FMCAD 2015), pages 136–143.
IEEE, 2015.

[74] Jussi Rintanen. Improvements to the evaluation of quantified Boolean formulae.
In Thomas Dean, editor, Proc. of the 16th Int. Joint Conference on Artificial
Intelligence (IJCAI 1999), pages 1192–1197. Morgan Kaufmann, 1999.

[75] Jussi Rintanen. Asymptotically Optimal Encodings of Conformant Planning in
QBF. In Proc. of the 22nd AAAI Conference on Artificial Intelligence (AAAI
2007), pages 1045–1050. AAAI Press, 2007.

[76] Thomas J. Schaefer. On the Complexity of Some Two-Person Perfect-
Information Games. J. Comput. Syst. Sci., 16(2):185–225, 1978.

[77] Tobias Schubert, Matthew D.T. Lewis, and Bernd Becker. PaMiraXT: Parallel
SAT solving with threads and message passing. Journal on Satisfiability,
Boolean Modeling and Computation, 6(4):203–222, 2009.

[78] João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause
learning SAT solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 131–153. IOS Press, 2009.

[79] João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm
for satisfiability. In Proc. of the Int. Conference on Computer-Aided Design
(ICCAD 1996), pages 220–227, 1996.

[80] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

[81] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time
(preliminary report). In Proc. of the 5th Annual ACM Symposium on Theory of
Computing (STOC’73), pages 1–9, New York, NY, USA, 1973. ACM.

4 Parallel Solving of Quantified Boolean Formulas 139

[82] Larry J. Stockmeyer. The Polynomial-Time Hierarchy. Theor. Comput. Sci.,
3(1):1–22, 1976.

[83] Leander Tentrup. Non-prenex QBF Solving Using Abstraction. In Proc. of the
19th Int. Conference on Theory and Applications of Satisfiability Testing (SAT
2016), volume 9710 of LNCS, pages 393–401. Springer, 2016.

[84] Leander Tentrup. Solving QBF by abstraction. CoRR, abs/1604.06752, 2016.
[85] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability

solvers and their applications in model checking. Proceedings of the IEEE,
103(11):2021–2035, 2015.

[86] Siert Wieringa and Keijo Heljanko. Asynchronous Multi-core Incremental
SAT Solving. In Nir Piterman and Scott A. Smolka, editors, Proc. of the 19th
Int. Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2013), volume 7795 of LNCS, pages 139–153. Springer, 2013.

[87] Ralf Wimmer, Sven Reimer, Paolo Marin, and Bernd Becker. HQSpre - An
Effective Preprocessor for QBF and DQBF. In Proc. of the 23rd Int. Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2017), volume 10205 of LNCS, pages 373–390. Springer, 2017.

[88] Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. PSATO: a Distributed
Propositional Prover and its Application to Quasigroup Problems. J. Symb.
Comput., 21(4):543–560, 1996.

[89] Lintao Zhang. Solving QBF by Combining Conjunctive and Disjunctive Normal
Forms. In Proc. of the 21st Nat. Conference on Artificial Intelligence and the
8th Innov. Applications of Artificial Intelligence Conference (AAAI/IAAI 2006),
pages 143–150. AAAI Press, 2006.

[90] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik.
Efficient Conflict Driven Learning in Boolean Satisfiability Solver. In Rolf
Ernst, editor, Proc. of the Int. Conference on Computer-Aided Design (ICCAD
2001), pages 279–285. IEEE, 2001.

[91] Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified
Boolean Satisfiability solver. In Lawrence T. Pileggi and Andreas Kuehlmann,
editors, Proc. of the Int. Conference on Computer-Aided Design (ICCAD 2002),
pages 442–449. ACM / IEEE Computer Society, 2002.

Chapter 5

Parallel Satisfiability Modulo Theories

Antti E.J. Hyvärinen and Christoph M. Wintersteiger

Abstract Satisfiability Modulo Theories (SMT) is an extension of the proposi-
tional satisfiability problem (SAT) to other, well-chosen (first-order) theories such
as integers, reals, and bit-vectors. This approach currently enjoys much popularity,
especially in the field of software verification, where SMT solvers have become
the de facto standard tool for the discharge of verification conditions. The develop-
ment of parallel SMT solvers is still in its infancy, but the first general paradigms
have been established. This chapter provides an overview of the recent advances in
this area, specifically algorithm portfolio, search-space partitioning, and problem
decomposition techniques, and how they relate to each other in theory and practice.

5.1 Introduction

Satisfiability Modulo Theories (SMT) [5] is an initiative in the area of automated
deduction that aims to foster development of techniques for satisfiability checking
that go beyond solving purely Boolean SAT problems. The scope of SMT is first-
order logic with particular, and well-chosen, background theories of industrial or
academic interest. In contrast to general first-order logic, SMT does not require
background theories to be finitely axiomatizable or even decidable and still allows us
to compute results that are of practical interest efficiently.

The traditional application field of SMT solvers is software verification, where a
restriction to particular background theories enabled the development of specialized
decision procedures that perform particularly well in determining satisfiability. Fre-
quently the software is modeled so that satisfying solutions correspond to bugs or
other undesirable program behavior. Today, SMT solvers are applied in an increasing

Antti E.J. Hyvärinen
Università della Svizzera italiana, Lugano, Switzerland, e-mail: antti.hyvaerinen@usi.ch

Christoph M. Wintersteiger
Microsoft Research, e-mail: cwinter@microsoft.com

141© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_5

antti.hyvaerinen@usi.ch
cwinter@microsoft.com
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_5&domain=pdf

142 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

number of applications outside of the traditional areas, including computational
biology (e.g. [84, 6]), chemistry (e.g., [32]), and material science (e.g., [31]). Current
research also attempts to lift the approach of providing a carefully crafted set of
background theories to other domains, for instance model checking [34], optimiza-
tion [77], planning [40], and probabilistic inference [76] – all modulo theories.

For some (combinations of) background theories, the computational cost of SMT
solving can be very high and, in terms of computational complexity, often greatly
exceeds the cost of NP-complete problems such as Boolean SAT. It is therefore of
general interest to study ways of improving the problem-solving performance by
addition of more parallel computing power to the SMT solver.

SMT solvers are conceptually based on SAT solvers and certain parallelization
techniques can be applied in very similar ways in both approaches. Perhaps surpris-
ingly the intricate interaction with the theory solvers results in certain techniques
that work in a predictable way in SAT solvers not maintaining similar behavior in
SMT solving. In particular the techniques for partitioning search space turn out to be
significantly different in SMT, the technique being very efficient when applied in the
presence of some background theories and even detrimental in the presence of other
background theories. It seems that the background theories require a very different
set of trade-offs to be considered (e.g., [83, 65]).

In this chapter we address the challenges in parallelizing SMT solvers using both
multi-core and cloud-based computing environments and a variety of parallelization
approaches.

5.2 General Preliminaries

We rely on the basic definitions of Boolean variables, literals, clauses, etc. from
Chapter 1, Parallel Satisfiability. Some terms used in the SMT research community
and their publications may be confusing to the uninitiated reader, so we provide a
brief description of the most important concepts here.

5.2.1 Theories

SMT (Satisfiability Modulo Theories) focuses on the satisfiability problem for first-
order logic with particular, and well-chosen, background theories. Today, those
theories are Booleans, arrays, bit-vectors, floating-point numbers, integers, real
numbers, and uninterpreted symbols (equality and uninterpreted functions and sorts).
From these theories, a number of fragments have been identified as academically and
industrially important. Currently those fragments are as follows:

• core theory: Booleans and equalities,
• uninterpreted functions and sorts (UF),

5 Parallel Satisfiability Modulo Theories 143

• (infinite-size) arrays (including extensionality) (A),
• fixed-size bit-vectors (BV),
• floating-point numbers (FP),
• (non-)linear integer arithmetic (NIA, LIA),
• (non-)linear real arithmetic (NRA, LRA), and
• integer and real difference logic (IDL, RDL).

The abbreviations of those fragments are then combined to identify particular
logics, where QF is used to indicate that a logic is quantifier-free. For instance,
QF_AUFLIA is the quantifier-free theory of arrays, uninterpreted functions, and
linear integer arithmetic. SMT solvers implement decision procedures for some or
all of these logics and they are evaluated on a large set of community-contributed
benchmarks available in the SMT library [5].

Note that SMT solvers do not necessarily implement specialized decision pro-
cedures for each logic. Instead, they employ theory combination strategies to craft
decision procedures by combining more general core theory solvers. For instance, a
general ‘arithmetic’ theory solver, usually implemented as a backtrackable variation
of the Simplex algorithm [29], may be used for multiple logics involving some
fragments of integer and real arithmetic.

5.2.2 The Underlying Conflict-Driven, Clause-Learning SAT
Solver

The input to SMT solvers is usually a set of assertions (Boolean expressions, con-
straints), which may have a rich Boolean structure (the skeleton) that is not necessarily
in any normal form. In practice it is often rewritten into Conjunctive Normal Form
(CNF), such that existing SAT solver technology may be used to solve the skeleton.
Any (partial or complete) model for the skeleton of the formula implies that some
subset of theory literals needs to be solved.

Example 1. Consider the problem of solving

a = b∧ (f (a)− f (b) = c)∧¬(c≤ 0) ,

where a,b,c ∈N are integers and f : N→N is an uninterpreted function with integer
range and domain. First, we introduce new Boolean variables x1,x2,x3 to obtain

x1∧ x2∧¬x3 ∧ x1 ≡ (a = b)∧ x2 ≡ (f (a)− f (b) = c)∧ x3 ≡ (c≤ 0) ,

where the first three conjuncts are purely Boolean. A model for this part of the formula
is x1 = true,x2 = true,x3 = false. This means that every theory solver will now have
to solve a conjunction of literals instead of an arbitrary Boolean combination of
literals. Here, these are

(a = b) ∧ (f (a)− f (b) = c) ∧ (c > 0) ,

144 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

which are solved independently by a solver for the theory of (linear) integers and
a solver for uninterpreted functions. The theory solvers will determine that these
constraints are unsatisfiable, and will return a concise explanation ¬(x1∧x2∧¬x3)≡
(¬x1∨¬x2∨ x3) that the Boolean solver may learn and use for further guiding the
search.

There are of course many more details that can make a great difference in runtime
performance in practice, but here it is enough to remember that existing SAT tech-
nology such as DPLL and CDCL solvers (see Chapter 1, Parallel Satisfiability) are
immediately applicable to the Boolean skeleton of SMT formulas.

While SMT solvers learn skeleton clauses, they may also learn lemmas that involve
theory-specific terms. These may be completely internal to a theory solver (e.g., in
the form of caches), but they may also be exposed to the other theories involved.
Conceptually, we can think of lemmas introducing new predicates (and thus new
Boolean variables), or being new combinations of existing predicates or literals.
Whether lemmas are theory-dependent or purely Boolean, heuristics similar to those
in SAT solvers are employed to remove unnecessary clauses and lemmas periodically,
and various simplification and minimization techniques are used to control memory
usage.

5.2.3 Theory Combination

To combine theory solvers, the mechanism underlying many SMT solvers is the
Nelson/Oppen theory combination framework [69]. The first step of this is to purify
the formula into terms of single theories by introducing new variables for function
application terms. As a result two theories only ever share uninterpreted symbols and
constants. These sub-formulas are then solved independently and the theory solvers
then exchange entailed equalities (syntactic and semantic).

Example 2. Suppose we need to solve the theory part of the two first conjuncts in
Example 1:

(a = b) ∧ (f (a)− f (b) = 0) .

The aim is to employ separate theory solvers for subsets of the constraints. Before
that, we purify the constraints by introduction of new interface variables. Here, this
results in

(a = b)∧ (a = e1)∧ (b = e2)︸ ︷︷ ︸
Integers

∧ (f (e1)− f (e2) = e3)∧ (e3 = 0)︸ ︷︷ ︸
Uninterpreted f unctions

so that e1, e2, and e3 are the interfaces between theories. Basic theory combination as
defined by Nelson and Oppen now exchanges all equalities over interface variables
implied by the current constraints. Note that these equalities are equalities between
variables, not necessarily only between numerals. In this over-simplified example,

5 Parallel Satisfiability Modulo Theories 145

because of a = b we find the new equality (e1 = e2), which the integer theory
communicates to the UF theory solver. This can then derive f (e1)− f (e2)≡ f (e1)−
f (e1) and thus e3 = 0, satisfying all constraints.

Nelson and Oppen focused on equalities for the interface between theories, of
which there may be an infinite number, and models themselves may be of infinite
size, thus requiring theories to be ‘stably infinite’, and the theory solvers need to
be able to perform case splits in non-convex theories. However, there have been
extensions to deal with a larger set of theories since then, for instance by Tinelli
and Zarba [80]. Variations with certain other desirable properties and better runtime
performance include, for example, model-based theory combination [67], which, if
possible, communicates fewer equalities, and delayed theory combination, which
delays communication of some equalities to a later point in time [13, 17].

5.2.4 Interpolants

Let v(φ) = {x1, . . . ,xn} be the free variables of a first-order formula φ . Craig’s
interpolation theorem provides a way to characterize the relationship between two
formulas when one implies the other.

Theorem 1 (Craig Interpolation [23]). Let φ and ψ be first-order formulas. If φ ⇒
ψ then there exists an Interpolant I such that φ ⇒ I ∧ I⇒ψ and v(I)⊆ v(φ)∩v(ψ).

Equivalently, there is an interpolant I such that φ ⇒ I ∧ I ⇒ ¬ψ whenever
φ ∧ψ is unsatisfiable, because φ ⇒¬ψ ≡¬(φ ∧ψ). Craig’s theorem guarantees the
existence of an interpolant, but does not provide an algorithm to compute one. Such
algorithms are known for some logics, most importantly for propositional logic, and
for some of them the relationship between multiple choices of interpolants are known.
The most important interpolation algorithms for propositional logic can be expressed
using the labeled interpolation system [27, 3], and includes the McMillan [66] and
the Huang [48], Krajícek [61], Pudlák [73] (HKP) interpolants. It is, however, not
necessary to understand the details of these algorithms in the remainder of this
chapter.

It is worth noting that the Nelson/Oppen theory combination framework exchanges
interface equalities, but their proof of soundness does in fact rely on the existence of
Craig interpolants, which provides a more general view of theory combination, if all
involved theories have interpolants and methods to compute them.

5.2.5 SMT Solvers

The software used for determining the satisfiability of formulas expressed in SMT
are called SMT solvers. There are several SMT solver implementations with differ-
ent strengths. The solvers offering most compelling support for the SMT language

146 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

include CVC4 [4], Z3 [68], MathSAT [19], Yices [28]. Other solvers specializing
in particular theories or problems include OpenSMT [53], MapleSTP, STP, Boolec-
tor [16], ABC [15], AProVE [35], iSAT [59], Minkeyrink, ProB [62], Q3B [58],
raSAT [81], SMT-RAT [22], SMTInterpol [18], toysmt, Vampire [60], and veriT [12].
Many of these solvers take part in the annual SMT competition (for the latest edition
see [21]).

5.3 Portfolios of SMT Solvers

Many branch-and-bound backtracking algorithms exhibit high variance in runtime
when small alternations are introduced into the search process [79, 63, 72, 39].
Intuitively an ‘unlucky’ choice in the heuristic search can lead to a part of the branch-
and-bound tree which is particularly difficult to solve. Sometimes such areas could
have been avoided, had the search been performed in a slightly different order.

The SMT search can be seen as an instance of a branch-and-bound backtracking
algorithm, and experiments confirm that the runtime of an SMT solver exhibits
similar behavior. The range of the runtime depends on the instance being solved: for
example the runtime of OpenSMT [53] for a fixed instance varies from twofold to
several orders of magnitude. Two cumulative runtime distributions for benchmark
instances from the SMT-LIB benchmark collection, showing the probability that an
instance is solved in time less than a given t, are shown in Figure 5.1. The values are
normalized to the minimum measured runtime of the respective instance to make
the distributions comparable. Neither behavior is particularly unusual within the
benchmark collection, but they represent very different behaviors. For one instance
(purple, solid), the runtime ranges from 80 seconds to 400 seconds, resulting in
roughly fivefold difference between the slowest and the fastest run. For the other
(green, dashed), the runtime ranges from 0.2 seconds to 7.2 seconds, giving a much
bigger, 36-fold difference. Both instances are unsatisfiable, and the difference be-
tween the two distributions means that the instances will benefit from parallelization
approaches in very different ways.

The solving times of some SMT instances seem to obey a heavy-tailed runtime
distribution [37]. Such distributions have a significant probability of producing
‘outlier’ samples, that is, a runtime which is far from the median. In practice, the
distributions behave as if they had an infinite standard deviation or even an infinite
mean. Since SMT solvers in particular in the quantifier-free cases reduce the problem
to the satisfiability of a finite-sized propositional formula, the formulas have a finite
search space. As the heuristic parameters are usually also finite, the distributions
are, technically, finite as well. However, since the search space is in the worst case
exponential in the size of the formula, the statistics can in practice be considered to
be infinite for suitable formulas [38].

The small variations in the search can result, for example, from explanation
generation inside the theory solvers or the process used for selecting decision literals.
Most heuristics employ randomization to break ties, and often implement a form

5 Parallel Satisfiability Modulo Theories 147

0

20

40

60

80

100

1 5 10 15 20 25 30 35

p
ro
b
a
b
il
it
y
[%

]

t/tmin

Fig. 5.1: Runtime distributions for two unsatisfiable formulas from the QF_UF
category of SMT-LIB. The figure shows the cumulative solving probability with
respect to the minimum measured solving time tmin

of deliberate increase in the random behavior either by introducing a heuristic
equivalence parameter [36] or by simply mixing the random heuristic together with
a more context-dependent heuristic. Another source of randomness in runtimes can
be obtained by using different algorithms for the core theory solvers, such as different
variations of the Simplex algorithm, or using different pre-processing techniques that
might be detrimental for some instances and very useful for others. Hence it is natural
to express the runtime of a solver as a random variable and a related probability
distribution.

Let T be the random variable describing the time required to solve a given formula
φ with a (CDCL-based) SMT solver S randomized using, for example, some of the
abovementioned approaches. The cumulative runtime distribution qT (t) gives the
probability that T ≤ t. We will use the cumulative distribution to express the expected
time required to solve φ with S. By definition, this is

ET =
∫ ∞

0
tq′T (t)dt , (5.1)

where q′T (t) is the derivative of the cumulative distribution qT (t).

148 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

5.3.1 Parallel SMT Based on Algorithm Portfolios

The inherent randomness in SMT solver runtimes can be utilized in obtaining a
natural parallelization approach. In such approaches the goal is to run in parallel
several solvers with different heuristic parameters, such as restart and learning
strategies, decision heuristics, or using different theory solvers, on the same formula
and obtain the solution from the first solver determining the satisfiability. This
algorithm portfolio approach [75, 49, 36] has been extensively studied in related
areas [56, 57, 64, 71, 55, 33], and has recently proved surprisingly efficient in solving
structured formulas [43, 44, 41, 7] in SAT as well as in SMT [83].

We first consider a simplified version of the problem where worker solvers com-
municate their success or failure in determining satisfiability to a master process. In
Section 5.3.2 we extend this case by allowing the worker solvers to share clauses
and lemmas with each other either through the master or directly. The plain algo-
rithm portfolio approach is based on running several randomized SMT solvers in a
distributed or parallel computing environment on a given formula, and obtaining the
result from the first solver that finishes.

One effective approach is to simply introduce a small amount of randomness in
the heuristic while keeping the search strategy of the solver otherwise unchanged.
This provides an interesting setting for obtaining speed-up as it requires virtually no
modification to the underlying solver. The results in, e.g., [83] also suggest that it
compares favorably to many other portfolio-based approaches. In this case we are
given a randomized solver and a formula such that the probability that the solver
solves the instance within time t is qT (t). Assume now we are given n simultaneously
running solvers. As the formula is solved if at least one of the solvers solves the
formula within time t, the probability of solving within time t becomes

qT n(t) = 1− (1−qT (t))n . (5.2)

Depending on the distribution qT (t), the expected runtime ET n of the simple dis-
tribution approach can be be significantly lower than the expected runtime ET of a
single solver.

5.3.2 Lemma Sharing in Portfolios

Since clauses and lemmas learned during solver execution are implied by the original
problem, they may be shared freely between solvers, with the purpose of improving
the performance of the receiving solver. The challenge with this approach is that the
number of lemmas generated by an SMT solver is often very high and transferring
all lemmas is too much overhead, so that it often has a detrimental effect on the
overall performance. There are two approaches for avoiding this problem. One, taken
in [83], is to place a strict limit on the number of literals in the transferred lemmas.
The second, followed in [65], is to maintain a centralized database of lemmas from

5 Parallel Satisfiability Modulo Theories 149

which the solvers receive a heuristically determined subset. The former allows a
decentralized implementation, whereas the latter allows the use of more sophisticated
heuristics. In both cases experiments show that the shared lemmas can improve solver
performance significantly [83, 65].

5.3.3 Centralized Lemma Databases

Sharing of learned lemmas plays a central role in parallel SMT. The learned lemmas
are transferred to a lemma database, where they are filtered using a parallel lemma-
sharing heuristic, and then passed on to the running solvers. We first define some
concepts that help to formalize the working of the database. Let S be a set of lemmas.
The size of a lemma set ||S|| is the total number of literals in S, that is, ||S||=∑C∈S |C|.
Unit lemmas, i.e., lemmas consisting of a single literal, are handled specially in the
process: they are always stored in the lemma database, and do not contribute to the
size of the database.

Algorithm 5.1 shows a version of the CS-SDSMT algorithm and the related
concepts. The lemma database, initialized on line 1, is denoted by LemmaDB, and
is annotated with an index j to facilitate the representation of the results. The set
U contains the unit lemmas that are already proven to be logical consequences of
the input formula φ . The shorthand notation UP(φ) = UP(φ , /0) denotes computing
the unit theory propagation closure of φ on the empty truth assignment (with no
variables fixed to values).

The first part of the loop in lines 5–6 consists of submitting the formula, all unit
lemmas, and a heuristically selected subset of LemmaDB of size at most SubmSize to
the parallel computing environment so that the n computing resources are filled. The
next phase is to receive the results in lines 8–14. The Receive(i) function receives,
from the resource i, a tuple consisting of the result of the computation, which can be
Sat, Unsat, or Error (m/o), and a set L of learned lemmas. If the formula is found
either satisfiable or unsatisfiable, the algorithm terminates. Otherwise the set of unit
lemmas is updated using the learned lemmas on line 13 and the lemma database is
updated on line 14, again using a heuristic function Merge and limiting the maximum
size of the database to MaxDBSize.

The function Merge takes a central role in discussing lemma sharing. Firstly, the
function acts as a heuristic for selecting learned lemmas, and secondly, it simplifies
the learned lemmas using the set of literals U obtained by unit propagation. Two
operations are involved in the simplification:

1. removing satisfied lemmas (lemmas C such that C∩U �= /0), and
2. removing false literals¬l from lemmas so that for a given lemma C, the simplified

lemma becomes C′ = {l ∈C | ¬l �∈U}.

150 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

Algorithm 5.1: The CS-SDSMT Algorithm
Input :Formula φ , n (number of computing elements), MaxDBSize (maximum database

size), SubmSize (maximum submit size)
Output :Sat if φ is satisfiable, Unsat otherwise

1 LemmaDB0 := /0
2 U := UP(φ)
3 j := 0
4 while True do

5 for i := 1 to n do

6 Submit(φ ∪U ∪Choose(LemmaDB j,SubmSize))
7 LemmaDB j+1 := LemmaDB j

8 for i := 1 to n do

9 (result,L) := Receive(i)
10 if result is in {Sat,Unsat} then

11 return result
12 else

13 U := UP(φ ∪U ∪LemmaDB j+1∪L)
14 LemmaDB j+1 := Merge(U,LemmaDB j+1,L,MaxDBSize)
15 j := j+1

5.3.4 Experiments on the Algorithmic Framework

It is interesting to contemplate the different types of heuristics that can be imple-
mented both for Choose and Merge. This section studies the following four possibili-
ties:

• Choose123 only considers lemmas of length 1, 2, or 3. If the size of the resulting
database is greater than the limit, the shorter lemmas are preferred. This type
of approach is used in many portfolio solvers. For example, [7] only transfers
lemmas of length 1 to other solvers, and [44] only lemmas that have at most
eight literals.

• Chooselen returns the shortest lemmas. This approach is more general than
Choose123, as it always returns lemmas even if the argument set contains only
lemmas longer than some limit.

• Choosefreq returns the most common learned lemmas. As the parallel search is
allowed to overlap, it is not unlikely that the same lemma can be learned many
times in different solvers.

• Chooserand returns a randomly selected set of lemmas.

5.3.5 Lemma Sharing and Partitioning

For certain instances partitioning of the search space and forcing the search to be
performed on the partitions shows significant speed-up in the experiments. However,

5 Parallel Satisfiability Modulo Theories 151

Parallel environment

LemmaDB

Solver1

Solver2

...

Solvern

1

Pool of Shared Lem-
mas

Filtered Lemmas

Shared lemmas
(if not solved)

Filtered lemmas

Fig. 5.2: The CS-SDSMT Process

partitioning the search space of the formula makes lemma sharing more complicated
because of the constraints that result in the SMT solver learning lemmas that might
not be logical consequences of other partitions.

5.4 Search-Space Partitioning in SMT

The algorithm portfolio approach described in Section 5.3 does not force the solvers
to explore different search spaces on the formula, but instead relies on randomization
in the heuristic to produce speed-ups. The idea in portfolios is that it is unlikely that
two randomized solvers would be searching for the solution in a similar fashion.

A complementary approach is to use the divide-and-conquer paradigm to force
the search performed by the parallel computing units not to overlap with each other.
This can be achieved by constraining the original problem into a set of independently
solvable derived problems, finding the solutions for them, and computing the final
solution based on the results of the derived problems.

The constraints used for constructing the derived problems can be represented in
SMT as conjunctions of clauses (lemmas). This section analyzes the effects of the

152 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

partitioning approach on the expected time required to determine the satisfiability of
a formula.

5.4.1 Plain Partitioning

Plain-partitioning is the straightforward approach where an SMT formula φ is
divided into n derived formulas φ1, . . . ,φn that are solved in parallel with an SMT
solver S. The derived formulas are obtained with a partitioning function and satisfy
the following conditions (see Definition 1):

1. φ ≡ φ1∨ . . .∨φn, and
2. φi∧φ j is unsatisfiable if i �= j.

The unsatisfiability of all the derived formulas implies the unsatisfiability of φ ,
whereas it suffices to show one of the derived formulas is satisfiable to prove satisfia-
bility of φ . Of particular interest in this section is how much faster a given formula is
solved with the plain-partitioning approach compared to solving the formula directly
with the solver S.

In the discussion of this section we make an assumption that the partitioning of
the instance is done only once and the number of derived formulas is fixed. This is in
contrast to many implementations of plain-partitioning where it is natural to use a
form of load balancing where new derived formulas are constructed from formulas
being solved as the satisfiability of previous formulas is determined. As a result, the
number of derived formulas n is not fixed in these parallel solvers.

Despite such differences, an analysis of the plain-partitioning approach provides
insight into practical parallel solving. The main result in this section is that the
plain-partitioning approach is ‘risky’ in the following sense. Assume that for any
cumulative probability distribution q(t) there exists a formula φq such that the proba-
bility of solving φq with S in time less than or equal to t is q(t). If the partitioning
function is from a certain natural class described in Definition 1, and n is fixed
and sufficiently large, there is always an unsatisfiable formula so that the expected
runtime of the plain-partitioning approach will be higher than the expected runtime
of the underlying solver S [52].

The approach is analyzed in a spirit similar to the analysis of the portfolio approach
in Section 5.3. In particular, we will assume that given a formula, the time required
to determine its satisfiability with a solver S is a random variable T with cumulative
distribution qT (t). To simplify the discussion, we will assume for now that given a
number n≥ 2, the partitioning function produces n derived instances which are all
solved in parallel using n computing elements.

We will first introduce a model describing how a partitioning function affects the
runtime distributions of the derived formulas. We assume that the solver S performs
with the same probability a given search that takes time tφ in the formula φ but,
due to the partitioning constraints, a shorter time tφi in the derived formulas φi. The
efficiency ε(n) = tφ/tφi of the partitioning function is assumed to depend only on

5 Parallel Satisfiability Modulo Theories 153

the number n of derived formulas. This reasoning results in a model where, given a
formula with the runtime distribution qT (t) on a solver S, the n derived formulas all
have the distributions qT (ε(n)t).

The efficiency model that will be used in the proof is ε(n) = nα , where 0≤ α ≤ 1
is a constant depending on the partitioning function. This model can be motivated in
two ways. Firstly, the efficiency satisfies the following natural properties:

1. 1≤ ε(n)≤ n,
2. ε(n)≤ ε(n+1), and
3. (ε(n))p = ε(np) for all p ∈ N,

The first condition states that the partitioning function should not make a particular
search of S super-linearly faster or slow the search down. The second condition
requires that the efficiency does not decrease as more derived formulas are created.
The last condition states that if a partitioning function P(φ ,n) is used to produce np

derived formulas recursively, the resulting efficiency must equal the efficiency of
P(φ ,np) where the derived formulas are all generated at once.

Secondly, the model ε(n) = nα can be derived from the following constructive
application of partitioning. Assume there is a procedure for splitting the search space
of an arbitrary formula φ following the runtime distribution qT (t) into a fixed number
n0 ≥ 2 of derived formulas φ1, . . . ,φn0 . Assume further that the derived formulas φi
have runtime distributions qT (β t) where 1≤ β ≤ n0. Applying this procedure first
to φ and then recursively to the derived formulas i times in total results in n = ni

0
derived formulas with runtime distribution qT (β it). Hence the recursive application
of the procedure results in a partitioning function P(φ ,n) defined for values n = ni

0
with efficiency β i. Since i = logn0

n, we have

β i = β logn0
n
= e

lnn
lnn0

lnβ
= (elnn)

lnβ
lnn0 = n

lnβ
lnn0 = nα ,

where α = lnβ/ lnn0. Alternative expressions for the efficiency include a linear
model

ε ′(n) = max(βn,1) ,

where 0 ≤ β ≤ 1 is a constant. However, condition 3 does not hold for ε ′(n). For
example, setting β = 0.9, n = 2, and p = 2 results in (ε ′(2))2 = 3.24, while ε ′(4) =
3.6. We are now ready to define the partitioning function more precisely.

Definition 1. Given a formula φ with runtime distribution qT (t) on solver S and a
partitioning factor n≥ 2, a partitioning function P : (φ ,n) �→ (Π1, . . . ,Πn) is a func-
tion mapping the formula φ to n partitioning constraints Π1, . . . ,Πn. The partitioning
constraints produce n derived formulas φi = φ ∧Πi,1≤ i≤ n. The derived formulas
then satisfy the following two properties:

1. φ ≡ φ1∨ . . .∨φn, and
2. φi∧φ j is unsatisfiable for all i �= j.

The runtime distribution of each of the derived formulas on solver S is described by
the probability distribution qT (ε(n)t), where

154 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

ε(n) = nα ,0≤ α ≤ 1 (5.3)

describes the efficiency of the partitioning function.

We will denote by ET n
plain(α) the expected time required to determine the satisfiability

of φ with the plain-partitioning approach using a partitioning function with efficiency
ε(n) = nα . A partitioning function is called void if α = 0 and hence ε(n) = 1. In
this case all the derived instances are as difficult to solve as the original formula. A
partitioning function is called ideal if α = 1, that is, ε(n) = n.

With these definitions, we are now ready to show that for non-ideal partitioning
functions there are distributions where solving with plain partitioning is slower than
solving with the underlying solver.

Proposition 1. Let P(φ ,n) be a partitioning function as in Definition 1, where 0≤
α < 1, and S a SAT solver. Then for every n and every α there exists a distribution
qn(t) such that if the solving of an unsatisfiable instance follows qn(t) on S, then the
expected runtime ET of S is lower than the expected runtime

ET n
plain(α)

of the plain-partitioning approach.

Proof. The family of distributions qn(t) we will use in the proof is

qn(t) =

⎧⎨
⎩

0 if t < t1,
1− 1

n if t1 ≤ t < t2,and
1 if t ≥ t2,

(5.4)

where t1 < t2. Thus the probabilities that the formula is solved by S in exactly time t1
is 1−1/n and in time t2 is 1/n. The expected runtime for a formula following the
distribution qn(t) on S is

ET = (1− 1
n
)t1 +

1
n

t2 . (5.5)

The expected runtime of the plain-partitioning approach using the partition function
ε(n) = nα can be derived by noting that all derived formulas need to be solved before
the result can be determined. This means that either all solvers are ‘lucky’, and
determine the unsatisfiability in time t1/nα , or at least one of the solvers runs for
time t2/nα , which will then become the runtime of the approach. This results in

ET n
plain(α) =

(
1− 1

n

)n t1
nα +

(
1− (1− 1

n
)n
)

t2
nα . (5.6)

We claim that for every α , there are values for n, t1, and t2 such that ET < ET n
plain(α).

Dividing both sides of the resulting inequality by t2 and setting k = t1/t2 results in

(1− 1
n
)k+

1
n
<

(1− 1
n)

n

nα k+
1− (1− 1

n)
n

nα ,

5 Parallel Satisfiability Modulo Theories 155

which we reorder to

k

(
(1− 1

n
)− (1− 1

n)
n

nα

)
<

1− (1− 1
n)

n

nα − 1
n
.

Note that (1− 1
n)> (1− 1

n)
n/nα when n≥ 2, and therefore the left-hand side of the

inequality is positive and can be made arbitrarily small by setting k small. It remains
to show that the right-hand side of the inequality is positive for sufficiently large
n, i.e.,

n− (1− 1
n)

nn−nα

nα+1 > 0 .

Since nα+1 is always positive, we may simplify this and factor n from the denomina-
tor, resulting in

1− (1− 1
n
)n−nα−1 > 0 . (5.7)

Noting that limn→∞(1− 1
n)

n = 1
e ≈ 0.3, and that limn→∞ 1−nα−1 = 1 if α < 1, we

get the desired result, that is, for sufficiently large n, there are values t1 and t2 such
that t1 < t2 and ET < ET n

plain(α).

The following example illustrates the performance of the plain-partitioning approach
for distributions of type Equation (5.4).

Example 3. Assume there is a formula following the distribution q20(t) such that
t1 = 1 and t2 = 1000, and a partition function ε(n) = n0.7 for this formula. The
expected runtime of the solver S, given by Equation (5.5), is ET ≈ 50.95, while
the expected runtime of the plain-partitioning algorithm, from Equation (5.6), is
ET 20

plain(0.7) ≈ 78.84. The scalability of the expected runtime ET n
plain(α) of the plain-

partitioning approach is shown for the distribution q20(t) for different values of α in
Figure 5.3.

Note that the proof does not hold if the partitioning function is ideal, since the
left-hand side of Inequality (5.7) is negative if α = 1. In fact the condition that
the partitioning function be ideal turns out to be sufficient to guarantee that the
expected runtime of the plain-partitioning approach is never higher than the expected
runtime of S, that is, ET ≥ ET n

plain(1) for all n and T . To see this, we will first
derive an expression for ET n

plain(α) for an arbitrary distribution qT (t) and an arbitrary
partitioning function.

Let qT (t) be a runtime distribution of an unsatisfiable formula φ with a randomized
SAT solver S, and tmax the maximum time required to solve φ with S (hence qT (t) = 1
if t ≥ tmax and qT (t) < 1 otherwise). The n partitions have runtime distributions
qT (ε(n)t) and since they all need to be shown unsatisfiable, the runtime distribution of
the plain-partitioning approach is qT (ε(n)t)n. Hence by Equation (5.1) the expected
runtime of the plain-partitioning approach is given by

ET n
plain(α) =

∫ tmax

0
t

d
dt

qT (ε(n)t)ndt,

156 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

0

30

60

90

120

150

180

1 20 40 60 80 100

E
x
p
ec
te
d
ru
n
ti
m
e
[s
ec
]

derived formulas n

ET
α=0.5
α=0.6
α=0.7
α=0.8
α=0.9

Fig. 5.3: The scalability of the plain-partitioning approach for the distribution q20(t)
in Equation (5.4) where t1 = 1 and t2 = 1,000

where d
dt qT (ε(n)t)n = nε(n)qT (ε(n)t)n−1q′T (ε(n)t) is the derivative of the distribu-

tion function. Substituting ε(n)t = τ above, the expected runtime can be written

ET n
plain(α) =

∫ tmax
0

τ
ε(n)nε(n)qT (τ)n−1q′T (τ)

dτ
ε(n)

=
∫ tmax

0
n

ε(n)τqT (τ)n−1q′T (τ)dτ .
(5.8)

We can now state the following proposition that increasing the number of derived
instances in ideal plain-partitioning does not result in increased expected runtime.

Proposition 2. Let n ≥ 1, ε(n) = n1 = n be the efficiency of an ideal partitioning
function, and qT (t) be the runtime distribution of an unsatisfiable formula with a
randomized solver. Then ET n

plain(1) ≥ ET n+1
plain(1).

Proof. Substituting ε(n) = n in Equation (5.8) results in

ET n
plain(1) =

∫ tmax

0
τqT (τ)n−1q′T (τ)dτ .

Since qT (τ) ≤ 1 when 0 ≤ τ ≤ tmax, we immediately have the desired result
ET n

plain(1) ≥ ET n+1
plain(1).

Finally from Propositions 1 and 2 we get the main result concerning unsatisfiable
instances.

Proposition 3. The expected runtime of the plain-partitioning approach,

ET n
plain(α) ,

5 Parallel Satisfiability Modulo Theories 157

is guaranteed not to be higher than the expected runtime ET of the underlying solver
S if and only if the partitioning function is ideal, that is, α = 1.

It is a strong requirement that the efficiency of a partitioning function must
be ideal in order to never increase the time required to solve a formula, and it
would be tempting to draw the conclusion that this requirement is never met. The
practical implications of the above negative result are not as dramatic. However,
it is not completely impossible that unsatisfiable formulas have such pathological
distributions, even when the solvers employ restart strategies known to eliminate this
type of behavior [37]. Furthermore, it is not impossible for the partitioning function
to provide even super-linear speed-ups if, for example, the partitioning constraints
are related to the back door set [82] of the formula.

5.5 Decomposition

In some cases where partitioning is not applicable and where portfolios require
infeasible amounts of memory in practice, a different approach is required. For
instance, suppose the input formula is too large to fit into the local memory. In this
case the problem must be decomposed into a series of smaller problems, which, in
contrast to a partitioning, do not compose disjunctively.

Definition 2 (Decomposition). Let φ be a first-order formula in conjunctive normal
form, i.e., φ = φ1 ∧ ·· · ∧φn. A decomposition of φ into k sub-formulas is a set of
formulas {ψ1, . . . ,ψk} such that

• each ψi ⊆⋃ j∈J φ j, for some selection of indices J, and
• each φi is included in at least one ψi.

Note that the original problem φ is unsatisfiable if at least one of the ψi in the
decomposition is unsatisfiable, but the converse is not a sufficient criterion for
satisfiability, i.e., each ψi being satisfiable does not imply that φ is satisfiable.

In theory, this type of decomposition is ‘ultimately lazy’ in that it does not require
us to extract any other type of semantic information embedded in the input problem,
apart from the number of clauses. This enables us to decompose very large input
problems efficiently; for instance, we can simply send a random selection of 1

n th of
the clauses to each of n processors or nodes, without ever inspecting their content.

The cost that we pay for this laziness is then in the reconciliation of (partial)
models: suppose that we obtain (partial) models μi from independent SMT solver
queries, one for each corresponding ψi, and let v(ψi) be the variables in ψi. Two
models μi, μ j are trivially ‘compatible’ if the corresponding ψi, ψ j do not share
variables, i.e., when v(ψi)∩ v(ψ j) = /0. Models may however not be reconcilable if
they assign different values to variables that occur in both ψi and ψ j. This criterion
is easy to check for simple models that map theory variables to numerals, but we
should keep in mind that for more complex background theories this may amount to

158 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

function equivalence checks that are not polynomial-time decidable, as is the case,
for instance, for some problems involving arrays or quantifiers.

The reconciliation process is perhaps best understood by conceptual introduction
of one additional sub-formula σ (and perhaps an associated SMT solver and/or pro-
cessor or node) which we use to track models for the shared variables only. Initially,
we pick an arbitrary assignment μσ to those shared variables, which we propagate
to all ψi, after which the resulting, modified ψi do not share any variables anymore,
which means that all ψi can now be solved in parallel without communication be-
tween the computing elements, while we know that, if all sub-formulas are found to
be satisfiable, the conjunction of the corresponding models μi are extensions of μσ
and thus their conjunction is, trivially, a model for φ .

Usually however, there will be at least one ψi which is not satisfiable under
μσ . Thus, we have ψi ⇒ ¬σ for at least one ψi, and v(ψi)∩ v(σ) ⊆ v(φ), where
we expect v(ψi)∩ v(σ) to be a small set in practice. This is thus, essentially, an
interpolation problem.

Lemma 1. Let φ = ψ1∧ ·· ·∧ψk, let μσ be a model for the set of shared variables
V =

⋃
(i, j)∈C v(ψi)∩ v(ψ j), where C = {(i, j) | 1≤ i < j ≤ k}. If I is an interpolant

for ψi ⇒ ¬μσ over V , i.e., we have ψi ⇒ I ∧ I ⇒ ¬μσ and v(I) ⊆ v(ψi)∩ v(μσ),
then φ ⇒ I.

Proof. We have ψi ⇒ I∧ I ⇒¬μσ by Craig’s interpolation lemma. By construction
we also have φ ⇒ ψi; thus it follows that φ ⇒ I (and φ ⇒ ¬μσ as in traditional
learned clauses and lemmas).

Thus, the interpolant I is implied by φ , which means we may, conceptually, (conjunc-
tively) add I to φ , to σ , or to its corresponding ψi, while preserving satisfiability, just
as we would keep a learned clause or lemma (in a local or a shared lemma database).
This enables us to formulate a sound and (relatively) complete reconciliation algo-
rithm for decompositions as presented in Algorithm 5.2.

5.5.1 Experimental Evidence

While decomposition is necessary for very large formulas, there are some indications
that the concept itself may help to improve performance on small, hard problems as
well. So far, this has been shown to be the case for some propositional problems, for
which multiple different interpolation techniques exist that can be compared. The
experiments we present here are an example of this, on the small, but hard benchmark
instances by Aloul et al. [2], which contain symmetries that can be broken by addition
of symmetry-breaking predicates. Ideally, a good interpolation approach is able to
detect such symmetries and it automatically breaks them by finding interpolants
corresponding to symmetry-breaking predicates.

Figure 5.4 shows the runtime obtained for MiniSAT 1.14p [30] on each of Aloul
et al.’s benchmarks, when decomposed into up to 50 sub-formulas (where ‘1’ cor-
responds to no decomposition being performed). A time limit of 3,600 seconds

5 Parallel Satisfiability Modulo Theories 159

Algorithm 5.2: An Interpolation-based Reconciliation Algorithm
Input :Formula φ
Output :Sat if φ is satisfiable, Unsat otherwise

1 ψ1, . . . ,ψk := decompose(φ)
2 σ := /0
3 flag := true
4 while flag do

5 if σ is Unsat then

6 return Unsat
7 else

8 Let μσ be a model for σ
9 flag := false

10 foreach i in 1 . . .k do

11 if ψi∧μσ is Unsat then

/* ¬(ψi∧μσ) ⇔ ψi ⇒¬μσ is valid */
12 Let I be an interpolant for ψi ⇒¬μσ (over v(ψi)∩ v(μσ))
13 σ := σ ∧ I
14 flag := true

15 return satisfiable

is enforced and all averages are computed with memory-out problems counted as
36,000 = 10 × time limit. For representation of interpolants, both McMillan’s and
HKP interpolants, Reduced Boolean Circuits [1] are used and they are computed
along a resolution proof found by MiniSAT. Since they are general expressions and
not in conjunctive normal form yet, they are then added to the formula via Tseitin
transformation (including introduction of new variables). To compute the runtime
of a decomposition, all iterations of Algorithm 5.2 are executed sequentially, i.e.,
the runtime improvements we see in Figure 5.4 describe a completely sequential
algorithm, yet for decompositions into about 10 or more sub-formulas, the average
runtime over all benchmark problems is smaller than the average runtime of the
unmodified MiniSAT. Of course, for an effective parallelization of this algorithm,
it is necessary to implement a proper load-balancing strategy. More details of this
evaluation are provided by Hamadi et al. [45].

5.5.2 Variations and Extensions

Clearly, keeping a single additional formula γ for assignments to shared variables
is not ideal for all types of problems. For instance, there may be multiple non-
overlapping sets of shared variables, such that γ itself may be decomposed into
multiple parts trivially. Since all sub-formulas ψi as well as γ may grow (by addi-
tion of learned clauses and lemmas), a dynamic decomposition approach, which
introduces new ψi on demand, may be a good choice in practice.

160 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

1000

2000

3000

3600

1 2 10 20 30 40 50

1000

2000

3000

3600

1 2 10 20 30 40 50

R
un

tim
e

[s
ec

]
R

un
tim

e
[s

ec
]

Partitions

Fig. 5.4: Decompositions into up to 50 sub-formulas. Every line corresponds to one
benchmark problem; their average is the bold line. Reconciliation via McMillan
interpolants (top) and HKP interpolants (bottom)

Furthermore, in any given decomposition, it is not strictly necessary for all sub-
formulas (and sub-solvers) to communicate with all others. Solvers only need to
communicate with other solvers if their sub-formulas do in fact share variables, in
which case they communicate satisfying assignments and interpolants to each other.
This means that all sub-solvers may solve their problems independently, sharing
their satisfying assignments with those solvers that solve problems involving shared
variables. In return, and completely asynchronously, the recipients of satisfying
assignments may respond with an interpolant that excludes at least one particular
variable assignment, at a later time. The process terminates when all interpolants
have been received and all satisfying assignments have been consumed, which
indicates satisfiability of the whole problem; unsatisfiability is detected by one of the
interpolants becoming false. In this fashion, it is possible to construct a completely
asynchronous system in which no solver needs to have access to all of the data at
any given time, while termination of the algorithm is determined by a distributed
consensus algorithm (or variation thereof).

5 Parallel Satisfiability Modulo Theories 161

It is worth noting that Nelson/Oppen theory combination is essentially also a
decomposition in the sense defined here, with reconciliation taking place via a
particular kind of interpolant. A decomposition, however, does not require us to
separate sub-formulas into sets of constraints belonging to the same theory. Instead,
we may have multiple theory solvers of the same conceptual theory. For instance, we
may have two solvers for the theory of linear integers, each of them solving only a
subset of all (purified) linear integer constraints, exchanging interpolants between
them.

5.6 Combinations of Parallelization Algorithms

It is useful to analyze the differences between the three parallelization approaches,
portfolio, partitioning, and decomposing, discussed in the preceding sections. For in-
stance Bonacina [9] constructs a taxonomy of the approaches based on this distinction,
while Grama and Kumar [39] provides an overview of the different parallelization
approaches for constraint solving using essentially the same distinction. Attempts
at understanding the differences of in particular the portfolio and partitioning ap-
proaches include Bordeaux, Hamadi, and Samulowitz [11], and Bonacina [9].

A complementary approach to understanding the differences between the ap-
proaches is to try to combine their strengths. Some work towards this has been done
in Bonacina [10]; Segre et al. [78] on a parallel SAT-solving approach called nagging;
Hyvärinen, Junttila, and Niemelä [50] on the parallelization approach based on SAT
solving through scattering; Dequen, Vander-Swalmen, and Karajecki [25], which
implements a similar approach; Ohmura and Ueda [70], which implements a safe-
partitioning approach on computing clusters for SAT solving; and Gebser et al. [33],
which implements a plain-partitioning approach strengthened with a dedicated solver
solving the original, unpartitioned formula.

In this section we go a step further, giving a generic framework for combining
partitioning and portfolio called parallelization trees [54], which represents the
instances of parallel algorithms as and/or trees. We give a more in-depth analysis
of three of the approaches that we find particularly interesting; parts of this have
previously been presented in [52] and [51].

5.6.1 The Parallelization Tree

A way to represent the combination of partitioning and portfolio in a unified frame-
work is the parallelization tree abstract algorithmic framework. The idea is to provide
a unified way of presenting and comparing different parallelization algorithms. The
parallelization tree consists of two types of nodes: and-nodes and or-nodes. The tree
is constructed using the following simple rules:

• The root and the leaves of the parallelization tree are and-nodes.

162 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

• Each and-node is associated with an SMT instance and, with the possible excep-
tion of the root of the parallelization tree, with one or more SMT solvers.

• All children of an and-node are or-nodes,
• All children of an or-node are and-nodes.

In a more formal treatment we adapt the partitioning function of Definition 1 to
the construction of the parallelization tree through the operator splitk(n1, . . . ,nk,φ).

Definition 3. The result of applying the operator splitk on an and-node φ is a tree
rooted at the and-node φ with k children o1, . . . ,ok. Each child node oi is an or-node
and has as children the and-nodes ai

1, . . . ,a
i
ni

. Finally, each and-node ai
j is associated

with the partition obtained by applying the (randomized) partitioning function Pni of
Definition 1 on the formula φ .

The satisfiability of the instance is determined by the solvers and the tree structure
as follows:

• The instance at the root of the parallelization tree is satisfiable if any instance
among the and-nodes is shown satisfiable.

• A subtree rooted at an and-node is unsatisfiable if one of its children is unsatisfi-
able or at least one of the solvers associated with the and-node has shown the
instance unsatisfiable.

• A tree rooted at an or-node is unsatisfiable if every tree rooted at its children is
unsatisfiable.

We immediately obtain both the plain-partitioning and the portfolio approaches
as instances of the parallelization tree approach:

• The plain partitioning approach plain(n,φ) corresponds to the parallelization
tree split1(n,φ) where each of the instances associated with the nodes a1

1, . . . ,a
1
n

is solved with a single SMT solver.
• The portfolio approach portf(k,φ) corresponds to the parallelization tree consist-

ing of the root associated with the instance φ and using k SMT solvers to solve
the instance.

However, in addition to these two algorithms the parallelization tree approach
allows us to easily define other, less trivial algorithms from the literature:

• The safe-partitioning approach safe(n,s,φ) corresponds to the parallelization
tree split1(n,φ) and solving each of the instances a1

1, . . . ,a
1
n with s SMT solvers.

• The repeated-partitioning approach rep(n,k,φ) corresponds to the parallelization
tree splitk(n, . . . ,n,φ) where each instance associated with the nodes

a1
1, . . . ,a

1
n, . . . ,a

k
1, . . . ,a

k
n

is solved with one SMT solver.
• The iterative-partitioning approach iter(k,φ) corresponds to the infinite paral-

lelization tree where every instance associated with an and-node is solved with
a single SMT solver and every and-node associated with an instance φa has

5 Parallel Satisfiability Modulo Theories 163

the single or-child and and-grandchildren constructed by applying the operator
split1(n,φa).

Figure 5.5 illustrates the corresponding parallelization trees and the solver assign-
ments. When clear from the context, we omit the formula φ as well as the other
parameters from the partitioning approach.

iter

...
...

...
...

S S S S

rep

portf

S S S S

S S Sφ

safe

SS
S S

φ φ

S S

φ1 φ2

φ ′1 φ ′2 φ ′′1 φ ′′2

plain

φ

S S

φ1 φ2

φ 2
1 φ 2

2φ 1
1 φ 1

2

φ

φ1 φ2

Fig. 5.5: Example parallelization trees (clockwise from the top left): portf(2,φ),
safe(2,2,φ), iter(2,φ), plain(2,φ), and rep(2,2,φ). The and-nodes are drawn with
boxes, and the or-nodes with circles. The SMT solvers are indicated with the symbol
S (Figure adapted from [54])

Concrete SMT instantiations of the parallelization tree include the CVC4 and Z3
SMT solvers, which implement a portfolio, and PBoolector [74], which implements
an iterative-partitioning approach. The OpenSMT2 solver [53] implements the full
parallelization tree framework.

5.6.2 Iterative Partitioning with Partition Trees

The result of Proposition 3, showing that the plain-partitioning approach is ‘vulner-
able’ to certain distributions of unsatisfiable formulas, raises the question whether
there are other solving techniques that use a partitioning function but are immune
to the increased expected runtimes in all unsatisfiable cases. Given an unsatisfiable
formula, the challenge in plain-partitioning is that the number of formulas needed to
show unsatisfiability increases as more derived formulas are produced.

A trivial solution to this problem is to attempt to solve both the formula φ and
the derived formulas using n+1 computing elements. This solution corresponds to

164 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

solving the formula with the plain-partitioning approach and the underlying solver S
in parallel, and guarantees that the expected runtime of the approach will be at most
as high as the expected runtime of S. However, by Proposition 3, it is possible that
the runtime of the plain-partitioning approach increases as more resources are used,
which adversely affects the behavior of the proposed solution.

The iterative-partitioning approach [50], is based on a hierarchical partitioning
of formulas into increasingly constrained derived formulas, which are organized
as a tree. The satisfiability of the original formula is then determined by solving a
sufficient number of the derived formulas independently with S. The intuition behind
the approach is that the possible increase of the expected runtime due to Proposition 3
is avoided since every time a formula is partitioned, there is an added attempt to
solve the unpartitioned formula directly.

This section gives a formalization and an analysis of the iterative-partitioning
approach using the concept of a partition tree defined as follows.

Definition 4. A partition tree Tφ of a formula φ is a finite n-ary tree rooted at ν0.
The nodes νi are associated with constraints: the constraints of the root consist of the
formula φ and the constraints of the other nodes are obtained using a partitioning
function on their parents. More precisely,

Constr(ν0) := φ ,

and given a node νi, its children νi,1, . . . ,νi,n, and a rooted path ν0, . . . ,νi in the
partition tree, the partitioning constraints of the child nodes are

Constr(νi,k) := Πk where Πk ∈ P(Constr(ν0)∧ . . .∧Constr(νi),n) .

Finally, each node νi represents the derived formula

φνi := Constr(ν0)∧ . . .∧Constr(νi) .

In the iterative-partitioning approach a partition tree Tφ is constructed in breadth-first
order and the solving of each derived formula φνi is attempted in parallel with a
solver S until the satisfiability of φ is determined. The satisfiability of a node νi is
determined either by solving φνi with S, or determining the satisfiability of all the
child nodes νi,1, . . . ,νi,n.

The iterative-partitioning approach guarantees that its expected runtime does not
increase as more computing elements are introduced, even if the partitioning function
is void. We will show this for partition trees T k

φ , where all rooted paths to the leaves
are of length k. As is conventional, we say that the height of T k

φ is k.

Proposition 4. Let φ be an unsatisfiable formula, T k
φ and T m

φ be two partition trees
of height k and m, respectively, constructed with a void partition function, and k < m.
Then the expected runtime of the partition tree approach using T m

φ is less than or
equal to the expected runtime of the partition tree approach using T k

φ .

5 Parallel Satisfiability Modulo Theories 165

Proof. We show by induction on the height of the partition tree that the probability
that φ is solved within time t cannot decrease, from which the claim follows. Let q(t)
be the probability that φ is solved sequentially within time t, q′(t) be its derivative at t,
and let qi(t) denote the probability that φ is solved within time t using a partition tree
T i

φ of height i. Then the probability q0(t) = q(t). The probability that the formula
is solved within time t with the partition tree approach using a tree of height one
is q1(t) =

∫ t
0(q

′(τ)+ (1− q(τ))nq′(τ)q(τ)n−1)dτ , that is, the integral of the sum
of probability q′(τ)dτ that the formula is solved in the root of the tree at time
τ , and the probability that the formula has not been solved in the root, has been
solved by all children but one by time τ , and is solved at time τ in the last child.
A direct calculation shows that q1(t)≥ q0(t). Assume now that qk(t)≥ qk−1(t) for
all t ≥ 0. As previously, qk+1(t) =

∫ t
0(q

′(τ)+(1−q(τ))nq′k(τ)qk(τ)n−1)dτ = q(t)+
qk(t)n− ∫ t

0 q(τ)nq′k(τ)qk(τ)n−1dτ. Integration by parts on the negative term results
in qk+1(t) = q(t)+qk(t)n−qk(t)nq(t)+

∫ t
0 qk(τ)nq′(τ)dτ = q(t)+(1−q(t))qk(t)n+∫ t

0 qk(τ)nq′(τ)dτ. By the induction hypothesis qk+1(t)≥ q(t)+(1−q(t))qk−1(t)n +∫ t
0 qk−1(τ)nq′(τ)dτ = qk(t).

In practice the construction of the tree is not atomic, but the nodes of the tree
are expanded at different times in breadth-first order. As the construction of the
tree is not immediate, the tree expansion can use information obtained from earlier
solving attempts. The straightforward way to use this information, as in Example 4
(and first published in [50]), is not to expand a subtree rooted at a formula shown
unsatisfiable. This example further illustrates the use of iterative partitioning and the
related partition tree.

Example 4. Figure 5.6 illustrates how the partition tree approach runs in an environ-
ment with m = 8 parallel resources. The left tree shows the initial setup, and the right
tree shows how the solving has proceeded after one of the SAT solvers terminates
in a memory out and three of the solvers return unsatisfiable for their respective
formulas. In both trees the shaded area indicates the set of formulas currently being
solved. The formulas shown unsatisfiable are labeled with Unsat and the formula that
has exceeded its resource limit is labeled with Error (m/o) on the right-hand side
tree. There is no need to solve ν0,1,1 once ν0,1,1,1 and ν0,1,1,2 are shown unsatisfiable.

5.6.3 Safe and Repeated Partitioning

Another approach to avoiding the increase of expected runtime in solving unsatisfi-
able instances is to combine the plain-partitioning approach with randomization. This
way the inherent randomness in runtimes of SAT and SMT solvers and the reduction
in search space provided by the partitioning function can be used simultaneously to
improve performance. We present two such composite approaches:

• Safe partitioning uses the partitioning function to derive formulas each of which
is solved with the portfolio approach; and

166 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

ν0

ν0,1,2 ν0,2,2

ν0,2

ν0,1,1,1,1 ν0,1,1,1,2

ν0,2,2,2ν0,2,2,1ν0,2,1,2ν0,2,1,1

ν0,1,1

ν0,1,1,1

ν0,1

ν0,2,1

ν0,1,1,2 ν0,1,2,1ν0,1,2,2

Error (m/o)4

1

Unsat

Unsat
2 3

Unsat

Fig. 5.6: Illustration of the partition tree approach. The shaded area represents jobs
running simultaneously, the numbers indicate the order in which the jobs terminate,
and the solid lines represent the edges of the tree

• Repeated partitioning produces several sets of derived formulas with a parti-
tioning function, and solves these sets in parallel using one solver per derived
instance.

The use of safe partitioning has been suggested in [70, 33], whereas the repeated-
partitioning approach is closely related to hard restarts in guiding-path-based ap-
proaches (e.g., [33]). Here, we analyze a setting where n2 resources are used so that
in safe partitioning the partitioning function results in n partitions that are solved
using n solvers each. In repeated partitioning the partitioning function is repeated n
times for the same formula, resulting again in n2 formulas.

Safe partitioning applies a partitioning function P(φ ,n) = (Π1, . . . ,Πn), and
solves each derived formula φ ∧Πi, 1 ≤ i ≤ n, with a portfolio of n solvers. It
suffices then to show each derived instance unsatisfiable with one solver. Intuitively
this approach improves performance because derived formulas should be easier to
solve than the original formula, and, assuming the solving times of the derived for-
mulas obey a non-trivial random distribution, the portfolio approach results in lower
runtimes for the derived formulas. The repeated-partitioning approach, on the other
hand, consists of applying a family of partitioning functions P j(φ ,n) = (Π j

1 , . . . ,Π
j

n),
1 ≤ j ≤ n, and solving each derived formula φ ∧Π j

i , 1 ≤ i ≤ n, 1 ≤ j ≤ n with a
solver S. To show a formula unsatisfiable it suffices to show unsatisfiable any set
of derived formulas φ ∧Π k

1 , . . . ,φ ∧Π k
n for a fixed k. This approach is expected

to provide speed-ups as the derived formulas are easier to solve than the original
formula, but also because it is possible that one of the partitioning functions P j

performs better than some other partitioning function.
Based on the definition we can immediately give the runtime distributions of the

two composite approaches using Equations (5.2) and (5.8) for simple distribution
and plain-partitioning. The cumulative runtime distribution for safe partitioning
of unsatisfiable formulas qTsafe(t) is given by substituting qT (t) in (5.2) by (5.8),
yielding

5 Parallel Satisfiability Modulo Theories 167

qTsafe(t) = (1− (1−q(ε(n)t))n)n , (5.9)

and the repeated partitioning by substituting qT (t) in (5.8) by (5.2), resulting in

qTrep(t) = 1− (1−q(ε(n)t)n)n . (5.10)

From Equations (5.9) and (5.10) it follows that the expected runtime of the
repeated partitioning is always at least the expected runtime of the safe partitioning,
independent of the partitioning function or number of computing elements (n).

Proposition 5. Let qT (t) be the runtime distribution of an unsatisfiable formula.
Then ETsafe ≤ ETrep.

Proof. Since ETsafe ≤ ETrep if qTsafe(t) ≥ qTrep(t) for all 0 ≤ t ≤ tmax, it suffices to
show that that qTrep(t) = 1− (1− q(ε(n)t)n)n ≤ qTsafe(t) = (1− (1− q(ε(n)t))n)n.

Substituting q(ε(n)t) = x, this is equivalent to 1− (1− xn)n ≤ (1− (1− x)n)
n for

0≤ x≤ 1. We will show this by showing f (x) = (1− (1− x)n)
n−1+(1− xn)n ≥ 0

for 0≤ x≤ 1. First note that f (x) = f (1− x) is symmetric with respect to x = 1/2.
Since f (0) = 0, it suffices to show that f (x) is increasing when 0≤ x≤ 1/2, that is,
d/dx (f (x))≥ 0, whenever 0≤ x≤ 1/2. By computing the derivative, we have

d
dx

f (x) = n2 (1− (1− x)n)
n−1

(1− x)n−1−n2(1− xn)n−1xn−1

= n2
(
(1− (1− x)n)

n−1
(1− x)n−1− (1− xn)n−1xn−1

)
.

Since n2 is positive, it suffices to confirm that the parenthesized expression is positive.
By rearranging the terms, we get(

(1− (1− x)n)
n−1

(1− x)n−1− (1− xn)n−1xn−1
)
=(

(1− x)− (1− x)n+1
)n−1−

(
x− xn+1

)n−1
.

The expression above is positive, since the distance between (1− x) and (1− x)n+1

is greater than or equal to the distance between x and xn+1 whenever 0≤ x≤ 1/2, as
can be verified by confirming that the claim holds for n= 1 and noting that d/dn((1−
x)−(1−x)n+1) =−(1−x)n+1 log(1−x)≥ d/dn(x−xn+1) =−xn+1 logx. The latter
can be shown using induction by noting that −(1− x)n log(1− x) ≥ −xn logx for
n = 2, assuming that the claim holds for n = k and noting that in this case also
−(1− x)k+1 log(1− x)≥−xk+1 logx, since (1− x)≥ x when 0≤ x≤ 1/2.

By Proposition 5, the cumulative runtime distribution of safe-partitioning is less
than that of repeated partitioning for all t and unsatisfiable instances. We now show
that, when the number of resources is fixed to N, there are distributions of unsatis-
fiable instances for which the expected runtime of the safe partitioning approach
is greater than the expected runtime of a single solver. From this it follows that
whenever partitioning is performed, it is possible that the expected performance
of the approach is worse than that of a single solver. An example is a two-step

168 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

distribution where the probability of solving the instance exactly at time t1 is p and
the probability of solving the instance exactly at time t2 is (1− p). The expected
runtime of a single solver for this type of instance is ET = pt1 +(1− p)t2. The
safe partitioning approach with void partitioning function has the expected runtime
ET N

safe(0) =
(
1− (1− p)N

)
t1 +

(
1− (1− (1− p)N

)N
)

t2. For example, if p = 0.01,
t1 = 1, t2 = 1,000,000 and N = 2, the expected runtime of the safe-partitioning
approach is approximately 1% higher than the expected runtime of a single solver.

Conversely, if the formula to be solved is satisfiable, we have the following.

Proposition 6. ETsafe = ETrep for satisfiable instances.

Proof. If instead r of the k partitions are satisfiable, the expected runtime of safe
partitioning becomes

Dk
part(D

k
portf(q(t))) = 1− (1− (1− (1−q(ε(k)t))k))r = 1− (1−q(ε(k)t))kr ,

and the expected runtime for repeated partitioning equally becomes

Dk
portf(D

k
part(q(t))) = 1− (1− (1− (1−q(ε(k)t))r))k = 1− (1−q(ε(k)t))rk .

These types of step probability functions turn out to be interesting to compare
the working of different partitioning approaches on extreme cases. In Figure 5.7 we
show the behavior of some of the partitioning algorithms discussed in this chapter
when the number of parallel computing elements is increased. The distribution used
in the simulation is defined by

qT (t) =

⎧⎨
⎩

0 for 0≤ t < 1,
0.8 for 1≤ t < 1,000,000, and
1 for t ≥ 1,000,000.

(5.11)

5.6.4 Constructing Partitions

As seen from the preceding analytical discussion, the quality of the partitioning func-
tion is critical for performance, and, in case of plain, safe, and repeated partitioning,
avoiding an increase in expected runtime is too. The partitioning functions considered
here introduce new constraints, represented as clauses, to a formula. We consider
two types of partitioning functions: the DPLL-based partitioning producing only
unit clauses and the scattering-based partitioning, which produces longer clauses.
Heuristics for constructing the constraints are used for increasing the likelihood of
obtaining partitions that result in low runtime. All implementations of the partitioning
functions are built on a CDCL SAT solver underlying the SMT solver.

The first partitioning function discussed here uses the unit propagation lookahead
(see, e.g., [46]). The goal is to use as decision literals the literals that result in the
highest number of unit propagations.

5 Parallel Satisfiability Modulo Theories 169

1

10

100

1000

10000

100000

1× 106

10 20 30 40 50 60 70

orig

orig
n

portf

plain(0)

plain(1)

safe(0)

safe(1)

rep(0)

rep(1)

E
x
p
ec
te
d
ru
n
ti
m
e
[s
ec
]

n

Fig. 5.7: The expected runtimes of different approaches on an (artificial) unsatisfiable
instance having the distribution described in Equation (5.11)

Computing the full lookahead for a formula φ is worst-case quadratic in the num-
ber of variables in φ . To guarantee scalability the implementations only study a subset
of promising literals of φ and use several optimizations in the computation. The look-
ahead DPLL partitioning function implements such optimizations to produce evenly
sized derived formulas and uses both theory and Boolean propagation to determine
the heuristic value of the variables. Given a formula φ , promising literals l are studied
by computing the number of literals in the unit propagation closure UP(φ , l) and
UP(φ ,¬l). As the number of literals in UP(φ , l) might differ dramatically compared
to UP(φ ,¬l), the implementation scores literals based on the minimum of these two
numbers. Once a heuristically good literal has been selected, the corresponding two
derived formulas φ ∧UP(φ , l) and φ ∧UP(φ ,¬l) are recursively handled in a similar
way. The binary tree up to the depth n constructed this way can be interpreted as
consisting of 2n derived formulas covering all potential satisfying truth assignments
of φ , and the idea in DPLL-based partitioning is to return exactly these formulas as
the derived formulas.

It is interesting to study partitioning functions producing more general constraints.
The derived formulas in DPLL-based partitioning are of the form φ ∧ l1 ∧ . . .∧ ln,
but there is no need to limit partitioning functions to producing only constraints of
unit clauses. Scattering-based partitioning produces both unit and longer clauses as
the constraints. The idea is to first run the SMT solver for a fixed time to tune the
heuristic of the solver. If the satisfiability of the formula is not determined in this
time, the solver restarts, and starts to produce derived formulas. The first derived
formula is produced by making the decisions l1

1 , . . . , l
1
d1

, and producing the formula
φ ∧ l1

1 ∧ . . .∧ l1
d1

as in DPLL-based partitioning. Then, instead of selecting the next
branch of the search tree, the negation of the literals is added as a clause to φ .
The solver restarts again, makes new decisions l2

1 , . . . , l
2
d2

, and produces the formula

170 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

φ ∧(¬l1
1∨ . . .∨¬ln

d1
)∧ l2

1∧ . . .∧ l2
d2

. The process is continued until a sufficient number
of derived formulas are produced. The idea leads to a partitioning function producing
the derived formula φi such that

φi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ ∧(l1
1)∧ . . .∧ (l1

d1
) if i = 1,

φ ∧(¬l1
1 ∨ . . .∨¬l1

d1
)∧

∧ . . .∧ (¬li−1
1 ∨ . . .∨¬li−1

di−1
)∧

(li
1)∧ . . .∧ (li

di
) if 1 < i < n,

φ ∧(¬l1
1 ∨ . . .∨¬l1

d1
)∧ . . .∧

∧(¬ln−1
1 ∨ . . .∨¬ln−1

dn−1
) if i = n.

(5.12)

Essentially the derived formulas consist of the original formula φ , a conjunction of
unit clauses (l1)∧ . . .∧ (ld), and clauses representing negations of the previously
selected unit clauses. In order for the derived formulas to be of roughly equal size,
the number of new unit clauses, denoted by di, should not in general be the same in
all derived formulas. The selection of the number di is motivated so that the expected
runtime of each derived formula should be t/n, where t is the expected runtime
of the original formula and n is the total number of derived instances produced by
the partitioning function. Hence the goal fraction ri of the runtime for the derived
formula φi can be obtained from the equality

t
n
= (t− (i−1)

t
n
)ri ,

where (i−1) t
n is the runtime already contributed to the derived formulas φ1, . . . ,φi−1.

Solving the above for ri results in

ri =
1

n− i+1
. (5.13)

Here, we assume that conjoining a literal with a formula halves the expected runtime
of the formula, and therefore the number di is chosen to be the integer minimizing
the difference

Δ = |ri−2−di | . (5.14)

Example 5. Let φ be a propositional formula and P a partitioning function producing
three partitions. From Equation (5.13), the first fraction of the search space should be
r1 = 1/3. The value d1 = 2 minimizes Δ in Equation (5.14); the first derived formula
becomes, by Equation (5.12), φ1 = φ ∧ (l1

1)∧ (l1
2). Similarly, r2 = 1/2 and the value

d2 = 1 minimizes Δ ; the second derived formula becomes φ2 = φ ∧(¬l1
1 ∨¬l1

2)∧(l2
1).

The final derived formula then becomes φ3 = φ ∧ (¬l1
1 ∨¬l1

2)∧ (¬l2
1).

The approach for choosing values for di using the model in Equation (5.13) is
not the only choice we have. The following example illustrates how the scattering
approach can ‘simulate’ a DPLL-based partitioning.

5 Parallel Satisfiability Modulo Theories 171

Example 6. Let φ be a formula. Our target will be to build a partitioning function
producing four derived formulas. Let the first derived formula be φ1 = φ ∧ (l1)∧ (l2).
Setting d2 = 1 we may choose φ2 = φ ∧ (¬l1∨¬l2)∧ (l1) as the second derived for-
mula. Since UP((¬l1∨¬l2)∧(l1)) = {l1,¬l2}, the solving of φ2 will proceed exactly
as if the second derived formula had been φ2 = φ ∧ (l1)∧ (¬l2), corresponding to the
DPLL-based partitioning. Similarly it is possible to choose d3 = 1 in Equation (5.12)
and φ3 = φ ∧ (¬l1 ∨¬l2)∧ (¬l1)∧ (l3) resulting in the search corresponding to
the formula φ ∧¬l1 ∧ l3, derived from the DPLL-based-partitioning, and finally
φ4 = φ ∧ (¬l1∨¬l2)∧ (¬l1)∧ (¬l3).

The approach presented in the above example generalizes to higher numbers of
derived formulas. Let Sn = (d1, . . . ,dn) denote the sequence producing n derived
instances as in Example 6. Let Si = (d1, . . . ,di) and Tj = (e1, . . . ,e j) be two such
sequences. We denote by Sn +1 the sequence (d1 +1, . . . ,dn +1) and by (Si) · (Tj)
the concatenation of the two sequences (d1, . . . ,di,e1, . . . ,e j). The scattering-based
partitioning function simulates the DPLL-based partitioning function producing
n = 2k,k ≥ 0 derived instances by using a fixed variable ordering and the sequence
Sn defined recursively as S1 = Sk0 = (0) and S2k = (S2k−1 +1) · (S2k−1).

5.7 Further topics

Theory Solver Parallelization: Two core algorithms of an SMT theory solver are
the congruence closure algorithm based on the E-graph data structure [26] and an
incremental implementation of the Simplex algorithm [29]. For most non-incremental
SMT problems most of the runtime of an SMT solver is spent on the theory solvers.
This presents an interesting challenge for parallelization of the theory solvers, since
while the total time spent in theories is high, each individual call to the solver is
usually very short. However, the performance of a theory solver parallelization is of
course highly dependent on the type and behavior of the theory that it decides. While
this type of parallelization is often used for very specific problems in many areas,
their application in SMT with multiple theories being combined is not very common
yet. However, this area is just starting to be explored, for instance by Hadarean et
al. [42] who use lazy and eager bit-vector solvers in parallel.

Parallelization of Incremental SMT: Software and hardware verification using
symbolic model-checking is undeniably the most important application driving the
development of SMT solvers today. Many successful symbolic model-checking
approaches reduce the verification problem to repeated, related queries to an SMT
solver [14]. This frequently results in a very large set of (relatively) simple queries.
Thus, the problem of parallelization across multiple, but related, problems is of very
high importance as well.

172 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

References

[1] Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic reachability analysis based on
SAT-solvers. In: S. Graf, M.I. Schwartzbach (eds.) Tools and Algorithms for
Construction and Analysis of Systems, 6th International Conference, TACAS
2000, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2,
2000, Proceedings, Lecture Notes in Computer Science, vol. 1785, pp. 411–425.
Springer (2000)

[2] Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT
instances in the presence of symmetry. In: Proceedings of the 39th Design
Automation Conference, DAC 2002, New Orleans, LA, USA, June 10-14, 2002,
pp. 731–736. ACM (2002)

[3] Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: A proof-sensitive
approach for small propositional interpolants. In: A. Gurfinkel, S.A. Seshia
(eds.) Verified Software: Theories, Tools, and Experiments - 7th International
Conference, VSTTE 2015, San Francisco, CA, USA, July 18-19, 2015. Revised
Selected Papers, Lecture Notes in Computer Science, vol. 9593, pp. 1–18.
Springer (2015)

[4] Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: G. Gopalakrishnan, S. Qadeer (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, Lecture Notes in Computer Science,
vol. 6806, pp. 171–177. Springer (2011)

[5] Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

[6] Benque, D., Bourton, S., Cockerton, C., Cook, B., Fisher, J., Ishtiaq, S., Piter-
man, N., Taylor, A.S., Vardi, M.Y.: BMA: Visual tool for modeling and ana-
lyzing biological networks. In: P. Madhusudan, S.A. Seshia (eds.) Computer
Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA,
USA, July 7-13, 2012 Proceedings, Lecture Notes in Computer Science, vol.
7358, pp. 686–692. Springer (2012)

[7] Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010.
Technical Report 10/1, Institute for Formal Models and Verification, Johannes
Kepler University (2010)

[8] Biere, A., Bloem, R. (eds.): Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings, Lecture Notes in Computer
Science, vol. 8559. Springer (2014)

[9] Bonacina, M.P.: A taxonomy of parallel strategies for deduction. Annals of
Mathematics and Artificial Intelligence 29(1–4), 223–257 (2000)

[10] Bonacina, M.P.: Combination of distributed search and multi-search in Peers-
mcd.d. In: Proceedings of the 1st International Joint Conference on Automated
Reasoning (IJCAR 2001), Lecture Notes in Artificial Intelligence, vol. 2083,
pp. 448–452. Springer (2001)

5 Parallel Satisfiability Modulo Theories 173

[11] Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel
constraint solving. In: Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI 2009), pp. 443–448 (2009)

[12] Bouton, T., Oliveira, D.C.B.D., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient SMT-solver. In: R.A. Schmidt (ed.) Automated Deduction
- CADE-22, 22nd International Conference on Automated Deduction, Montreal,
Canada, August 2-7, 2009. Proceedings, Lecture Notes in Computer Science,
vol. 5663, pp. 151–156. Springer (2009)

[13] Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., van
Rossum, P., Sebastiani, R.: Efficient satisfiability modulo theories via delayed
theory combination. In: K. Etessami, S.K. Rajamani (eds.) Computer Aided
Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland,
UK, July 6-10, 2005, Proceedings, Lecture Notes in Computer Science, vol.
3576, pp. 335–349. Springer (2005)

[14] Bradley, A.R.: SAT-based model checking without unrolling. In: R. Jhala, D.A.
Schmidt (eds.) Verification, Model Checking, and Abstract Interpretation - 12th
International Conference, VMCAI 2011, Austin, TX, USA, January 23-25,
2011. Proceedings, Lecture Notes in Computer Science, vol. 6538, pp. 70–87.
Springer (2011)

[15] Brayton, R.K., Mishchenko, A.: ABC: an academic industrial-strength ver-
ification tool. In: T. Touili, B. Cook, P.B. Jackson (eds.) Computer Aided
Verification, 22nd International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings, Lecture Notes in Computer Science, vol. 6174, pp.
24–40. Springer (2010)

[16] Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors
and arrays. In: S. Kowalewski, A. Philippou (eds.) Tools and Algorithms for the
Construction and Analysis of Systems, 15th International Conference, TACAS
2009, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, Lecture
Notes in Computer Science, vol. 5505, pp. 174–177. Springer (2009)

[17] Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: Delayed
theory combination vs. Nelson-Oppen for satisfiability modulo theories: a
comparative analysis. Ann. Math. Artif. Intell. 55(1-2), 63–99 (2009)

[18] Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver. In:
A.F. Donaldson, D. Parker (eds.) Model Checking Software - 19th International
Workshop, SPIN 2012, Oxford, UK, July 23-24, 2012. Proceedings, Lecture
Notes in Computer Science, vol. 7385, pp. 248–254. Springer (2012)

[19] Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: N. Piterman, S.A. Smolka (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 19th International Conference, TACAS
2013, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, Lecture
Notes in Computer Science, vol. 7795, pp. 93–107. Springer (2013)

[20] Cimatti, A., Sebastiani, R. (eds.): Theory and Applications of Satisfiability
Testing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-20,

174 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

2012. Proceedings, Lecture Notes in Computer Science, vol. 7317. Springer
(2012)

[21] Conchon, S., Déharbe, D., Heizmann, M., Weber., T.: 11th Interna-
tional Satisfiability Modulo Theories Competition (SMT-COMP 2016).
http://smtcomp.sourceforge.net/2016/ (2016)

[22] Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an
open source C++ toolbox for strategic and parallel SMT solving. In: Heule and
Weaver [47], pp. 360–368

[23] Craig, W.: Linear reasoning. a new form of the Herbrand-Gentzen theorem. J.
Symb. Log. 22(3), 250–268 (1957)

[24] Creignou, N., Berre, D.L. (eds.): Theory and Applications of Satisfiability
Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July
5-8, 2016, Proceedings, Lecture Notes in Computer Science, vol. 9710. Springer
(2016)

[25] Dequen, G., Vander-Swalmen, P., Krajecki, M.: Toward easy parallel SAT
solving. In: Proceedings of the 21st IEEE International Concerence on Tools
with Artificial Intelligence (ICTAI 2009), pp. 425–432. IEEE Press (2009)

[26] Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program
checking. Journal of the ACM 52(3), 365–473 (2005)

[27] D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant
strength. In: G. Barthe, M.V. Hermenegildo (eds.) Verification, Model Check-
ing, and Abstract Interpretation, 11th International Conference, VMCAI 2010,
Madrid, Spain, January 17-19, 2010. Proceedings, Lecture Notes in Computer
Science, vol. 5944, pp. 129–145. Springer (2010)

[28] Dutertre, B.: Yices 2.2. In: Biere and Bloem [8], pp. 737–744
[29] Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T).

In: T. Ball, R.B. Jones (eds.) Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings,
Lecture Notes in Computer Science, vol. 4144, pp. 81–94. Springer (2006)

[30] Eén, N., Sörensson, N.: An extensible SAT-solver. In: E. Giunchiglia, A. Tac-
chella (eds.) Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected
Revised Papers, Lecture Notes in Computer Science, vol. 2919, pp. 502–518.
Springer (2003)

[31] Ermon, S., LeBras, R., Gomes, C.P., Selman, B., van Dover, R.B.: SMT-aided
combinatorial materials discovery. In: Cimatti and Sebastiani [20], pp. 172–185

[32] Fagerberg, R., Flamm, C., Merkle, D., Peters, P.: Exploring chemistry using
SMT. In: M. Milano (ed.) Principles and Practice of Constraint Programming -
18th International Conference, CP 2012, Québec City, QC, Canada, October
8-12, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7514, pp.
900–915. Springer (2012)

[33] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schnor, B.: Cluster-based
ASP solving with Claspar. In: Proceedings of the 11th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR 2011), Lecture
Notes in Computer Science, vol. 6645, pp. 364–369. Springer (2011)

5 Parallel Satisfiability Modulo Theories 175

[34] Ghilardi, S., Ranise, S.: MCMT: A model checker modulo theories. In: J. Giesl,
R. Hähnle (eds.) Automated Reasoning, 5th International Joint Conference,
IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings, Lecture Notes in
Computer Science, vol. 6173, pp. 22–29. Springer (2010)

[35] Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker,
M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving
termination of programs automatically with AProVE. In: S. Demri, D. Kapur,
C. Weidenbach (eds.) Automated Reasoning - 7th International Joint Confer-
ence, IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 19-22, 2014. Proceedings, Lecture Notes in Computer
Science, vol. 8562, pp. 184–191. Springer (2014)

[36] Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1–2),
43–62 (2001)

[37] Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems. Journal of Automated Reasoning
24(1/2), 67–100 (2000)

[38] Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through
randomization. In: Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI 1998), pp. 431–437. AAAI Press (1998)

[39] Grama, A., Kumar, V.: State of the art in parallel search techniques for discrete
optimization problems. IEEE Transactions on Knowledge and Data Engineering
11(1), 28–34 (1999)

[40] Gregory, P., Long, D., Fox, M., Beck, J.C.: Planning modulo theories: Ex-
tending the planning paradigm. In: L. McCluskey, B.C. Williams, J.R. Silva,
B. Bonet (eds.) Proceedings of the Twenty-Second International Conference on
Automated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil,
June 25-19, 2012. AAAI (2012)

[41] Guo, L., Hamadi, Y., Jabbour, S., Sais, L.: Diversification and intensification
in parallel SAT solving. In: 16th International Conference on Principles and
Practice of Constraint Programming (CP 2010), Lecture Notes in Computer
Science, vol. 6308, pp. 252 – 265. Springer (2010)

[42] Hadarean, L., Bansal, K., Jovanovic, D., Barrett, C., Tinelli, C.: A tale of two
solvers: Eager and lazy approaches to bit-vectors. In: Biere and Bloem [8], pp.
680–695

[43] Hamadi, Y., Jabbour, S., Sais, L.: Control-based clause sharing in parallel SAT
solving. In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI 2009), pp. 499–504 (2009)

[44] Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation 6(4), 245 – 262 (2009)

[45] Hamadi, Y., Marques-Silva, J., Wintersteiger, C.M.: Lazy decomposition for
distributed decision procedures. In: J. Barnat, K. Heljanko (eds.) Proceedings
10th International Workshop on Parallel and Distributed Methods in verifiCa-
tion, PDMC 2011, Snowbird, Utah, USA, July 14, 2011., EPTCS, vol. 72, pp.
43–54 (2011)

176 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

[46] Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: A. Biere,
M. Heule, H. van Maaren, T. Walsh (eds.) Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185, pp. 155–184. IOS Press
(2009)

[47] Heule, M., Weaver, S. (eds.): Theory and Applications of Satisfiability Testing -
SAT 2015 - 18th International Conference, Austin, TX, USA, September 24-27,
2015, Proceedings, Lecture Notes in Computer Science, vol. 9340. Springer
(2015)

[48] Huang, G.: Constructing Craig interpolation formulas. In: D. Du, M. Li (eds.)
Computing and Combinatorics, First Annual International Conference, CO-
COON ’95, Xi’an, China, August 24-26, 1995, Proceedings, Lecture Notes in
Computer Science, vol. 959, pp. 181–190. Springer (1995)

[49] Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard
computational problems. Science 275(5296), 51–54 (1997)

[50] Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving
SAT in grids. In: Proceedings of the 9th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2006), Lecture Notes in Computer
Science, vol. 4121, pp. 430–435. Springer (2006)

[51] Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: Partitioning search spaces of a
randomized search. Fundam. Inform. 107(2-3), 289–311 (2011)

[52] Hyvärinen, A.E.J., Manthey, N.: Designing scalable parallel SAT solvers. In:
Cimatti and Sebastiani [20], pp. 214–227

[53] Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: An SMT
solver for multi-core and cloud computing. In: Creignou and Berre [24], pp.
547–553

[54] Hyvärinen, A.E.J., Marescotti, M., Sharygina, N.: Search-space partitioning for
parallelizing SMT solvers. In: Heule and Weaver [47], pp. 369–386

[55] Inoue, K., Soh, T., Ueda, S., Sasaura, Y., Banbara, M., Tamura, N.: A competi-
tive and cooperative approach to propositional satisfiability. Discrete Applied
Mathematics 154(16), 2291–2306 (2006)

[56] Janakiram, V.K., Agrawal, D.P., Mehrotra, R.: A randomized parallel backtrack-
ing algorithm. IEEE Transactions on Computers 37(12), 1665–1676 (1988)

[57] Janakiram, V.K., Gehringer, E.F., Agrawal, D.P., Mehrotra, R.: A random-
ized parallel branch-and-bound algorithm. International Journal of Parallel
Programming 17(3), 277 – 301 (1988)

[58] Jonás, M., Strejcek, J.: Solving quantified bit-vector formulas using binary
decision diagrams. In: Creignou and Berre [24], pp. 267–283

[59] Kalinnik, N., Ábrahám, E., Schubert, T., Wimmer, R., Becker, B.: Exploiting
different strategies for the parallelization of an SMT solver. In: M. Dietrich
(ed.) Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen (MBMV), Dresden, Germany, February 22-24,
2010, pp. 97–106. Fraunhofer Verlag (2010)

[60] Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In:
N. Sharygina, H. Veith (eds.) Computer Aided Verification - 25th Interna-
tional Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.

5 Parallel Satisfiability Modulo Theories 177

Proceedings, Lecture Notes in Computer Science, vol. 8044, pp. 1–35. Springer
(2013)

[61] Krajícek, J.: Interpolation theorems, lower bounds for proof systems, and
independence results for bounded arithmetic. J. Symb. Log. 62(2), 457–486
(1997)

[62] Krings, S., Bendisposto, J., Leuschel, M.: From failure to proof: The prob
disprover for B and Event-B. In: R. Calinescu, B. Rumpe (eds.) Software
Engineering and Formal Methods - 13th International Conference, SEFM 2015,
York, UK, September 7-11, 2015. Proceedings, Lecture Notes in Computer
Science, vol. 9276, pp. 199–214. Springer (2015)

[63] Li, G.J., Wah, B.W.: Computational efficiency of parallel combinatorial OR-
Tree searches. IEEE Transactions on Software Engineering 16(1), 13–31 (1990)

[64] Luby, M., Ertel, W.: Optimal parallelization of Las Vegas algorithms. In:
Proceedings of the 11th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS 1994), Lecture Notes in Computer Science, vol. 775, pp.
463–474. Springer (1994)

[65] Marescotti, M., Hyvärinen, A.E.J., Sharygina, N.: Clause sharing and parti-
tioning for cloud-based SMT solving. In: C. Artho, A. Legay, D. Peled (eds.)
Automated Technology for Verification and Analysis - 14th International Sym-
posium, ATVA 2016, Chiba, Japan, October 17-20, 2016, Proceedings, Lecture
Notes in Computer Science, vol. 9938, pp. 428–443 (2016)

[66] McMillan, K.L.: Interpolation and SAT-based model checking. In: W.A. Hunt
Jr., F. Somenzi (eds.) Computer Aided Verification, 15th International Confer-
ence, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, Lecture
Notes in Computer Science, vol. 2725, pp. 1–13. Springer (2003)

[67] de Moura, L.M., Bjørner, N.: Model-based theory combination. Electr. Notes
Theor. Comput. Sci. 198(2), 37–49 (2008)

[68] de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: C.R. Ramakrish-
nan, J. Rehof (eds.) Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, Lecture Notes in
Computer Science, vol. 4963, pp. 337–340. Springer (2008)

[69] Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

[70] Ohmura, K., Ueda, K.: c-sat: A parallel SAT solver for clusters. In: Proceedings
of the 12th International Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2009), Lecture Notes in Computer Science, vol. 5584, pp.
524–537. Springer (2009)

[71] Petrik, M., Zilberstein, S.: Learning parallel portfolios of algorithms. Annals
of Mathematics and Artificial Intelligence 48(1-2), 85–106 (2006)

[72] Prestwich, S., Mudambi, S.: Improved branch and bound in constraint logic
programming. In: Proceedings of the 1st International Conference on Principles
and Practice of Constraint Programming (CP 1995), Lecture Notes in Computer
Science, vol. 976, pp. 534–548. Springer (1995)

178 Antti E.J. Hyvärinen and Christoph M. Wintersteiger

[73] Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log. 62(3), 981–998 (1997)

[74] Reisenberger, C.: PBoolector: a parallel SMT solver for QF_BV by combining
bit-blasting with look-ahead. Master’s thesis, Johannes Kepler Universität Linz,
Linz, Austria (2014)

[75] Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65 –
118 (1976)

[76] de Salvo Braz, R., O’Reilly, C., Gogate, V., Dechter, R.: Probabilistic inference
modulo theories. In: S. Kambhampati (ed.) Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016, pp. 3591–3599. IJCAI/AAAI Press (2016)

[77] Sebastiani, R., Trentin, P.: OptiMathSAT: A tool for optimization modulo
theories. In: D. Kroening, C.S. Pasareanu (eds.) Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part I, Lecture Notes in Computer Science, vol. 9206,
pp. 447–454. Springer (2015)

[78] Segre, A.M., Forman, S.L., Resta, G., Wildenberg, A.: Nagging: A scalable
fault-tolerant paradigm for distributed search. Artificial Intelligence 140(1/2),
71–106 (2002)

[79] Speckenmeyer, E., Monien, B., Vornberger, O.: Superlinear speedup for parallel
backtracking. In: Proceedings of the 1st international conference on Supercom-
puting (SC 1987), Lecture Notes in Computer Science, vol. 297, pp. 985–993.
Springer (1988)

[80] Tinelli, C., Zarba, C.G.: Combining nonstably infinite theories. J. Autom.
Reasoning 34(3), 209–238 (2005)

[81] Tung, V.X., Khanh, T.V., Ogawa, M.: raSAT: An SMT solver for polynomial
constraints. In: N. Olivetti, A. Tiwari (eds.) Automated Reasoning - 8th Inter-
national Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 - July 2,
2016, Proceedings, Lecture Notes in Computer Science, vol. 9706, pp. 228–237.
Springer (2016)

[82] Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:
Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI 2003), pp. 1173–1178. Morgan Kaufmann (2003)

[83] Wintersteiger, C.M., Hamadi, Y., de Moura, L.: A concurrent portfolio approach
to SMT solving. In: A. Bouajjani, O. Maler (eds.) Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2,
2009. Proceedings, Lecture Notes in Computer Science, vol. 5643, pp. 715–720.
Springer (2009)

[84] Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Kugler, H.: SMT-based analysis
of biological computation. In: G. Brat, N. Rungta, A. Venet (eds.) NASA Formal
Methods, 5th International Symposium, NFM 2013, Moffett Field, CA, USA,
May 14-16, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7871,
pp. 78–92. Springer (2013)

Chapter 6

Parallel Theorem Proving

Maria Paola Bonacina

Abstract This chapter surveys the research in parallel or distributed strategies for
mechanical theorem proving in first-order logic, and explores some of its connections
with the research in the parallelization of decision procedures for satisfiability in
propositional logic (SAT). We clarify the key role played by the Clause-Diffusion
methodology for distributed deduction in moving parallel reasoning from the par-
allelization of inferences to the parallelization of search, which is the dominating
paradigm today. Since the quest for parallel first-order proof procedures has not
been pursued recently, we endeavour to relate lessons learned from investigations
of parallel theorem proving and parallel SAT-solving with novel advances in the-
orem proving, such as SGGS (Semantically-Guided Goal-Sensitive reasoning), a
method that lifts the CDCL (Conflict-Driven Clause Learning) procedure for SAT to
first-order logic.

6.1 Introduction

Research on parallel theorem proving, meaning automatic theorem proving (ATP) in
first-order logic, began in the mid and late 1980’s, flourished in the 1990’s, and came
pretty much to a halt in the early 2000’s [192, 50, 210, 85, 37]. Research on parallel
satisfiability solving, meaning satisfiability in propositional logic (SAT), began in the
early 1990’s and is still actively pursued today (cf. [163, 114, 1, 158] and the chapters
on 1, Parallel Satisfiability and 2, Cube and Conquer for Satisfiability). It is probably
unknown to most authors active in parallel SAT-solving that Hantao Zhang began
work on his parallel SAT solver PSATO [227, 228], that pionereed the divide-and-
conquer approach to parallel SAT-solving, after learning about the Clause-Diffusion

Maria Paola Bonacina
Dipartimento di Informatica, Università degli Studi di Verona, Strada Le Grazie 15, I-37134 Verona,
Italy, EU. e-mail: mariapaola.bonacina@univr.it

179© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_6

mariapaola.bonacina@univr.it
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_6&domain=pdf

180 Maria Paola Bonacina

methodology for distributed deduction [27, 48, 49, 51] and its implementation in the
Aquarius theorem prover [46, 27, 47, 52].

In previous work, we surveyed parallel theorem proving twice, first at the height
of the interest in this topic [27, 50], and then when the involvement of the scientific
community with this fascinating subject was already decreasing [36, 37]. In this
chapter we revisit parallel theorem proving, in the light of advances in theorem
proving itself and in parallel SAT-solving, with the aim of providing the readers with
material to reflect about the connections between:

• Past work in parallel theorem proving and selected contemporary approaches to
theorem proving;

• Past work in parallel theorem proving and later work in parallel SAT-solving;
• Selected approaches to parallel SAT-solving and potentially new leads for parallel

theorem proving.

Since the time of the latest investigations in parallel theorem proving, the field
has witnessed a significant growth of the paradigm of model-based reasoning [44],
where a theorem-proving method is model-based, if the state of a derivation contains
a representation of a candidate partial model that unfolds with the derivation. Tradi-
tional model-based first-order methods include subgoal-reduction strategies based
on model elimination and model-elimination tableaux, whose parallelization received
considerable attention [194, 7, 75, 63, 144, 170, 209, 104, 219]. It is therefore an
interesting question to ask what we may learn from past work on parallel theorem
proving towards the parallelization of more recent or new approaches to model-based
theorem proving.

The growth of model-based reasoning has various motivations. One motivation
is the relevance of models for applications. For instance, an assignment to program
variables is a model from a logical point of view [40]. Thus, models become “moles”
to exercise program paths in testing or examples for example-driven synthesis, and
a reasoner that generates models supports automated test generation and program
synthesis [82, 141]. Another motivation is inspiration from the practical successes
of solvers for propositional satisfiability (cf. [157] and the chapter on 1, Parallel
Satisfiability) and satisfiability modulo theories (SMT) (cf. [83] and the chapter on 5,
Parallel Satisfiability Modulo Theories), that are model-based because built on the
CDCL (Conflict-Driven Clause Learning) procedure [161, 162, 171, 160], which is
inherently model-based. Therefore, another spontaneous question is what we may
learn from past work on both parallel theorem proving and parallel SAT-solving
towards the parallelization of recent model-based first-order methods. Examples
of the latter include DPLL(Γ +T) [81, 56, 57], that integrates an ordering-based
strategy in an SMT solver, and SGGS, for Semantically-Guided Goal-Sensitive
reasoning [60, 59, 61, 62], that generalizes CDCL to first-order logic.

To this end we reconsider and expand our analyses of the parallelization of
theorem proving [50, 37], covering subgoal-reduction strategies, ordering-based
strategies, and instance-based strategies. Ordering-based strategies are based on
ordered resolution and ordered paramodulation/superposition. They represent the
state of the art for first-order logic with equality and are implemented in top-notch

6 Parallel Theorem Proving 181

theorem-provers such as SPASS [218], E [190], and Vampire [137]. Although they
are not model-based, their connection with SAT or SMT solvers is a current research
topic [43, 57, 182]. Instance-based strategies integrate instance generation at the
first-order level with deciding satisfiability at the propositional or ground level, by a
SAT or SMT solver [125, 134]. They are model-based, or at least model-driven, in as
much as instance generation is geared to exclude the models proposed by the solver.

We illustrate a selection of methods already covered in our previous surveys
[50, 37], to make this chapter self-contained, give the reader a direct impression of
those methods, and have material for discussion. For example, ROO [154, 155, 156]
illustrates the approach to parallelization by parallel inferences in shared memory
that was the state of the art before Clause-Diffusion, and Team-Work [84, 9, 88, 10,
89, 92, 91, 87, 197] is a forerunner of the portfolio approach.

Then we summarize twelve years of research on the Clause-Diffusion methodology
[27, 48, 49, 51] to parallelize ordering-based strategies, including Modified Clause-
Diffusion [28, 29], and the Clause-Diffusion provers Aquarius [46, 27, 47, 52], Peers
[58, 51], and Peers-mcd [30, 31, 33, 38]. We reflect on the impact of Clause-Diffusion
on subsequent research: Clause-Diffusion played a central role, because it was the
first approach to move from the parallelization of inferences to the parallelization of
search, so that it can be considered a forerunner of all parallel or distributed search
methods in both theorem proving and satisfiability.

In the final discussion we draw connections between parallel theorem proving
and parallel SAT-solving (e.g., [107, 112, 113, 123, 187, 111, 116]), and we discuss
ideas for future work in parallel theorem proving, especially parallel model-based
theorem proving.

This chapter is organized in three parts: Section 6.2 provides a parallelization-
oriented survey of theorem-proving strategies; Section 6.3 presents the approaches to
parallel theorem proving; and Section 6.4 contains the final discussion.

It is our contention that much of the research in parallel and distributed theorem
proving was simply ahead of its time, with respect to both theorem proving and
parallel or distributed computing, and we hope that this chapter will contribute to
maintain its intellectual legacy alive and fruitful for future research.

6.2 Theorem Proving Strategies

We begin our analysis of the parallelizability of theorem proving with a classification
of theorem-proving strategies in three categories: subgoal-reduction based, ordering-
based, and instance-based strategies. Ordering-based strategies include expansion-
oriented and contraction-based strategies. In this section we survey these classes of
theorem-proving strategies, covering inference system, search plan, proof generation,
redundancy control, and use of models. The presence of backward contraction
inferences, the size of the database of clauses generated and kept by the strategy, and
the degree of dynamicity of the database of clauses, are among the relevant issues for
parallelization.

182 Maria Paola Bonacina

6.2.1 Subgoal-Reduction Strategies

We use ϕ and ψ for clauses, σ for most general unifiers, L and L′ for literals, C
and D for disjunctions of literals, " for equality, and � for the empty clause, which
represents a contradiction.

In theorem proving subgoal reduction stems from ordered linear resolution [138]:
at each step the strategy resolves the current goal clause ϕi = L∨C with an input
clause ψ = L′ ∨D, such that Lσ = ¬L′σ . The next goal clause ϕi+1 is the resolvent
(D∨C)σ , where L, seen as a subgoal to be solved, has been replaced by or reduced
to a new bunch of subgoals D. Such a procedure is called linear, because at every
resolution step one of the parents is the previous resolvent; it is called linear input,
if, in addition, the side clause ψ is always an input clause. The ordered attribute
refers to the requirement that the literals in goal clauses be resolved away in a fixed
pre-defined order, determined by the literal-selection rule of the strategy, also known
as AND-rule. A typical example is to select literals in left-to-right order. Using only
input clauses as side clauses is sufficient for problems made of Horn clauses, or
clauses with at most one positive literal [119]. For full first-order logic, also ancestor
goal clauses have to be considered for side clauses, so that ψ may be a ϕ j with j < i.

Model elimination (ME) can be described as a variant of ordered linear resolution
[153, 71, 54], where L is saved in ϕi+1 as a boxed, or framed, literal [L] (A-literal in
the original ME terminology), so that ϕi+1 has the form (D∨ [L]∨C)σ . The resulting
inference rule is called ME-extension. In this manner, resolution with an ancestor goal
clause can be replaced by ME-reduction, that reduces a goal clause L′ ∨D∨ [L]∨C
to (D∨ [L]∨C)σ when Lσ = ¬L′σ . Thus, ME is a linear input strategy for full
first-order logic.

Independent of resolution, the concept of ME is to prove that the input set S of
clauses is unsatisfiable by eliminating all possible candidate models [152]. In order
to satisfy a set S of first-order clauses, it is necessary to satisfy all its clauses. In
order to satisfy a clause, it is necessary to satisfy all its ground instances. In order to
satisfy a ground instance, it is necessary to satisfy one of its literals. If the current
goal clause ϕi = L∨C and an input clause ψ = L′ ∨D are such that Lσ = ¬L′σ ,
no model can satisfy ϕiσ and ψσ by satisfying Lσ and L′σ . The next goal clause
ϕi+1 = (D∨ [L]∨C)σ generated by ME-extension says precisely this: the literal
Lσ is framed to denote that it has been added to the current candidate model, so
that ϕiσ is satisfied; since a model that satisfies Lσ cannot satisfy L′σ , some other
literal in Dσ must be satisfied to satisfy ψσ . In this sense, the literals of Dσ are
subgoals of Lσ . An ME-reduction step that reduces a goal clause L′ ∨D∨ [L]∨C to
(D∨ [L]∨C)σ , when Lσ = ¬L′σ , reckons that L′σ cannot be satisfied in a model
that contains L.

ME-tableaux make this model elimination process perspicuous by building a
tableau, that is a tree, whose nodes are labeled by literals, and whose branches
represent candidate models [144, 19, 25, 20, 142, 146, 39]. A branch is closed if
it contains two complementary literals, and it is open otherwise. An open branch
represents a candidate model, whereas a closed branch represents an eliminated
model. A tableau is closed if all its branches are, which means that all candidate

6 Parallel Theorem Proving 183

models have been eliminated. If Lσ = ¬L′σ for the leaf L of an open branch and
an input clause ψ = L′ ∨D, ME-extension extends the branch with children labeled
by the literals of ψ , applies σ to the tableaux, and closes the branch with the
complementary literals Lσ and L′σ . If a branch contains literals L and L′ such that
Lσ = ¬L′σ , ME-reduction applies σ to the tableau and closes the branch.

A subgoal-reduction derivation can be described in the form

(S;ϕ0) # (S;ϕ1) # . . .(S;ϕi) # . . .

where S is the input set of clauses, ϕ0 ∈ S is the input clause designated as initial goal,
and ϕ1, . . . ,ϕi, . . . is the succession of proceeding goal clauses. The initial goal clause
ϕ0 = L1∨ . . .∨Lk yields an initial tableau where the root has k children labeled by
L1, . . . ,Lk. Note that the literals L1, . . . ,Lk may share variables, which means that the
branches of the tableau may share variables, which is why substitutions apply to the
entire tableau. The literals in the current goal clause ϕi label the leaves of the open
branches of the tableau, and the framed literals in ϕi label the inner nodes of the
tableau.

A derivation is a refutation if ϕk = � for some k, k > 0, or, equivalently, if
the tableau is closed. A subgoal-reduction strategy is refutationally complete if,
whenever S is unsatisfiable and S\{ϕ0} is satisfiable, there exists a refutation of S
by the strategy starting with (S;ϕ0). If S is unsatisfiable and S\{ϕ0} is satisfiable,
it is the addition of ϕ0 that makes the set unsatisfiable, and this is why ϕ0 is the
initial goal clause. Since all generated clauses descend from the initial goal clause,
subgoal-reduction strategies are goal-sensitive. An unsatisfiable S may contain more
than one clause ϕ0 such that S is unsatisfiable and S\{ϕ0} is satisfiable, so that there
may be a choice of initial goal clause.

Given a refutation with ϕk =�, the comb shaped resolution tree formed by the
sequence of goal clauses ϕ0, . . . ,ϕk−1,� and their companion side clauses is the
generated proof. The linear shape of the generated proof reveals the linear nature of
the strategy. In ME-tableaux, the closed tableau represents the proof.

In subgoal-reduction strategies, redundancy appears in the form of repeated sub-
goals or subgoal instances, and it is countered by techniques called C-reduction
[195], caching [8, 54], regressive merging [215], folding-up [143, 103] or success
substitutions [146], and tabling or memoing [217]. C-reduction, caching, and regres-
sive merging are used in model elimination, folding-up and success substitutions
in tableaux, tabling and memoing in declarative programming. In essence, all these
techniques descend from the idea of lemmatization or lemmaizing [152, 8, 54]. Adopt-
ing tableaux parlance, if the strategy manages to close a sub-tableau whose root is
labeled with literal L, it means that no model of the set S of clauses contains L, that is,
S |= ¬L. Thus, ¬L can be learned as a lemma, and applied to resolve away, or close,
any future subgoal L′ such that Lσ = L′σ [143, 103, 39]. 1 Lemmatization causes
the database of clauses to grow, if the lemmas are added to S, but a common charac-

1 If the sub-tableau is closed using ME-reductions with ancestors L1, . . . ,Ln of L, no model with
L1, . . . ,Ln contains L; the lemma is ¬L∨¬L1 ∨ . . .∨¬Ln; and ¬L can be applied as a unit lemma
only below L1, . . . ,Ln (cf. Section 2.5 of [39]).

184 Maria Paola Bonacina

teristic of caching techniques is to store the information on the learned lemma ¬L, or
dually, on the solved subgoal L, without bothering S. For example, in folding-up, the
information is stored in the tableau, at the node labeled with L.

Subgoal-reduction strategies use depth-first search (DFS) to search for a proof,
with backtracking to get out of the dead-end represented by a ϕi to which no inference
applies (e.g., its leftmost literal can be neither ME-extended nor ME-reduced). A
specific DFS plan is characterized by a literal-selection rule and a clause-selection
rule, also known as OR-rule, that determines the order in which the input clauses are
tried. A typical example is to try clauses in top-down order, that is, in the order they
are written in the input file. Backtracking undoes the latest inference and substitution
application to enable the strategy to try a different inference. For completeness,
DFS is enriched with iterative deepening [133, 206] on the number of resolution or
ME-extension inferences. Thus, subgoal-reduction strategies develop and keep in
memory one proof attempt at a time, and switch to another one by backtracking.

Prolog Technology Theorem Proving (PTTP) is a major paradigm for subgoal-
reduction strategies [202, 203, 205]. PTTP implements ME on top of the Warren
Abstract Machine (WAM), the virtual machine designed for Prolog [216]. The linear
input nature of ME is crucial, because Prolog uses a variant of ordered linear input
resolution. The WAM is a stack machine, with goal clauses stored on the stack,
and input clauses compiled as a Prolog program. A stack machine implements DFS
naturally. For theorem proving, PTTP adds iterative deepening and the occur check
in unification: when computing a most general unifier σ , the substitution σ cannot
include a pair x← t, where x occurs in t. Unification in Prolog omits this check for
the sake of performance, and because Prolog, at least in its basic formulation, is a
relational language with a limited use of function symbols, so that the likelihood of a
pair x← t, where x occurs in t, is deemed low.

6.2.2 Ordering-Based Strategies

Ordering-based strategies have two kinds of inference rules. Expansion inference
rules generate and add clauses:

S
S′ S⊂ S′

where S ⊂ S′ says that the existing set S of clauses is being expanded by adding
something. An expansion inference rule is sound, if whatever is added is a logical
consequence of what pre-existed, that is, if S′ ⊆ T h(S), where T h(S) = {ϕ : S |= ϕ}.
Examples include binary resolution and factoring [185], that add a binary resolvent
or a factor, paramodulation [183, 174], that adds a paramodulant, superposition
[132, 120, 12], which is ordered paramodulation where the literal paramodulated into
is an equality, equational factoring [13], and reflection, which is resolution with x" x.
Together these inference rules build equality into resolution [121, 186, 13, 53, 173].

6 Parallel Theorem Proving 185

Contraction inference rules delete clauses or replace them by smaller ones:

S

S′
S �⊆ S′ S′ ≺mul S

where S �⊆ S′ tells that something has been deleted; S′ ≺mul S says that S′ is smaller
than S in the multiset extension [96] of a well-founded ordering ≺ on terms, liter-
als, and clauses [93]; and the double inference line [41] emphasizes the diversity
of contraction with respect to the traditional notion of inference. Soundness for
contraction is called adequacy [41]: a contraction inference rule is adequate, if
whatever is deleted is a logical consequence of what is kept, that is, if S ⊆ T h(S′).
Since S⊆ T h(S′) implies T h(S)⊆ T h(S′), soundness for contraction is also called
monotonicity [35], meaning monotonicity of inferences with respect to theoremhood.
Examples of contraction inference rules include tautology deletion, subsumption
[185, 189], clausal simplification, which is a combination of unit resolution and sub-
sumption, demodulation [222] or simplification (i.e., simplification by an equation)
[132, 120, 12], functional subsumption (i.e., subsumption between equations) [120],
purity deletion [80, 54], and conditional simplification [42]. Repeated simplification
is called normalization or reduction to normal form, meaning a form that cannot be
rewritten further, and normalization can be viewed as a single contraction step. The
normal form of a clause ϕ is denoted ϕ ↓.

These strategies are called ordering-based, because they use the ordering ≺ to
define contraction rules and restrict expansion rules: resolution is ordered resolu-
tion, factoring is ordered factoring, paramodulation is ordered paramodulation, and
superposition is natively ordering-restricted. This means that only maximal literals
are resolved upon, factorized, paramodulated or superposed into and from, and only
maximal sides of equations are paramodulated or superposed into and from, where
maximality is tested in the clause instantiated by the most general unifier of the
inference step [120, 12, 121, 186, 13, 53, 173]. Ordering-based strategies search
for the proof by best-first search and do not need backtracking. Best-first search is
implemented by the given-clause algorithm that we shall cover in Section 6.3.2 be-
cause it is relevant to parallelization approaches. Several presentations, surveys, and
systematizations of ordering-based theorem proving and its orderings are available
[177, 94, 178, 98, 97, 15, 172, 41, 149, 179].

Ordering-based strategies are not model-based: in ordering-based inference sys-
tems models remain implicit, and come to the forefront only in the proofs of refu-
tational completeness. For example, a proof technique uses transfinite semantic
trees to survey models and show that the inference system excludes them all [121].
Another proof technique is based on saturation. A set of clauses is saturated, if any
inference with premises in the set is redundant (cf. Section 6.2.2.2 for redundancy).
Refutational completeness is established by showing that a saturated set of clauses
that does not contain � is satisfiable [13].

However, ordering-based strategies may use a fixed interpretation for semantic
guidance, as exemplified in semantic resolution [198], hyperresolution [184], and
resolution with set of support [221] (cf. Sections 2.6 in [35] and 2.1 in [44]).

186 Maria Paola Bonacina

Hyperresolution resolves a clause L1∨ . . .∨Lq∨C, called nucleus, and clauses
L′1 ∨D1, . . . ,L′q ∨Dq, with q ≥ 1, called electrons, such that Liσ = ¬L′iσ for all
i, 1 ≤ i ≤ q, to generate the hyperresolvent (D1 ∨ . . .∨Dq ∨C)σ [184]. Positive
hyperresolution assumes a fixed Herbrand interpretation I that contains all negative
literals, and generates only clauses that are false in I, namely clauses whose literals
are all positive. Such a clause is called positive. The electrons are required to be
positive clauses, and L1∨ . . .∨Lq are required to be all and only negative literals in
the nucleus. Thus, positive electrons are used to resolve away all negative literals
in the nucleus to get a positive hyperresolvent. Negative hyperresolution is defined
dually with all signs exchanged.

In a strategy with set of support, all clauses issued from the negation of the
conjecture are considered goal clauses. The input set S of clauses is subdivided
into the set of support SOS, that contains the goal clauses, and its complement
T = S\SOS. T is assumed to be satisfiable (e.g., it contains the axioms of a theory),
so that if S is unsatisfiable, the unsatisfiability is caused by SOS. Every expansion
inference is required to be supported, meaning that at least one parent is in SOS.
The generated clauses are added to SOS, and since they all descend from goal
clauses, the strategy is goal-sensitive. A strategy with set of support is compatible
with contraction (tautology deletion, subsumption, clausal simplification), provided
also clauses generated by backward contraction are inserted in SOS [54]. Since T
does not get expanded, a strategy with set of support is complete for problems with
equality only if T is saturated. The interplay of parallelism and semantic guidance
in ordering-based strategies has not been explored thus far, as we shall discuss in
Section 6.4.

6.2.2.1 Expansion-Oriented Strategies

The distinction between expansion-oriented and contraction-based strategies towards
analyzing parallelism [50] depends on the distinction between forward and backward
contraction. In forward contraction, a newly generated clause ϕ , called raw clause
[27, 50], is deleted or normalized into ϕ ↓ by previously existing clauses. In backward
contraction, such a ϕ ↓ is applied to contract previously existing clauses. Expansion-
oriented strategies apply at most forward contraction. Accordingly, an expansion-
oriented derivation has the form

(S0;N0) # (S1;N1) # . . .(Si;Ni) # . . .

where Si is the set of clauses in the database of clauses, and Ni is the set of raw clauses.
Every clause in Si has an identifier, typically a positive integer generated progressively
by the prover, and is ready to be used as premise. Raw clauses are clauses that were
just generated and still need to undergo forward contraction. Initially, S0 = S is the
input set of clauses and N0 = /0. Expansion takes premises in Si and adds raw clauses
to Ni+1. Forward contraction deletes clauses in Ni and adds their non-trivial normal

6 Parallel Theorem Proving 187

forms to Si+1. It follows that S0 ⊆ S1 ⊆ . . . ⊆ Si ⊆ . . ., that is, for an expansion-
oriented strategy the database of clauses is monotonically increasing.

A derivation is a refutation if � ∈ Sk for some k, k > 0. A strategy is refutationally
complete if, whenever S is unsatisfiable, there exists a refutation of S by the strategy.
Ordering-based strategies develop multiple proof attempts that remain implicit in the
set of clauses Si. Only when � ∈ Sk, the strategy reconstructs the generated proof
in the form of the ancestor-tree of � [29], denoted Π(�). The reconstruction starts
from � and proceeds backward until it reaches the input clauses. For instance, if
ϕ is a resolvent of ϕ1 and ϕ2, Π(ϕ) has root labeled ϕ and subtrees Π(ϕ1) and
Π(ϕ2). If ϕ is generated as the normal form of a pre-existing clause ψ with respect
to equations ϕ1, . . . ,ϕn, Π(ϕ) has root labeled ϕ and subtrees Π(ϕ1), . . . ,Π(ϕn)
and Π(ψ). Every clause has its own variables, and variants, that is, clauses that
are identical up to variable renaming, are treated as distinct clauses. Therefore, no
clause is generated twice, and Π(ϕ) is uniquely defined given ϕ . Since a clause may
be used as premise more than once, Π(ϕ) is an ancestor-tree if we allow the same
clause to label more than one node, an ancestor-graph otherwise.

At the time of our first analysis of parallel theorem proving [27, 50], it was al-
ready understood that backward contraction is indispensable for theorem proving
by ordering-based strategies, especially in the presence of equality. Thus, the class
of expansion-oriented strategies was introduced to cover parallel resolution-based
theorem-proving methods without backward contraction, mostly for first-order logic
without equality [150, 151, 72, 76, 127] or propositional logic [100], and paral-
lelizations [196, 214, 115, 68, 69] of the Buchberger algorithm [64] to compute
Gröbner bases of ideals generated by sets of polynomials. Buchberger algorithm
is a completion procedure like Knuth-Bendix completion [132], with an expansion
inference rule similar to superposition and a contraction rule similar to simplification
[65]. However, Buchberger algorithm is guaranteed to converge with or without
backward contraction, that can be delayed to a post-processing phase. On the other
hand, validity in equational theories, first-order logic, and first-order logic with
equality is a semi-decidable problem, so that theorem-proving methods are only
semi-decision procedures, and backward contraction is crucial in practice to find a
proof and terminate. Since expansion-oriented theorem-proving strategies today have
mostly pedagogical and historical interest, and Buchberger algorithm is not a first-
order theorem-proving strategy, we refer the reader interested in their parallelization
to our previous surveys [50, 37].

6.2.2.2 Contraction-Based Strategies

Contraction-based strategies apply both forward and backward contraction eagerly
and as much as possible. A contraction-based derivation has the form

(S0;N0;R0) # (S1;N1;R1) # . . .(Si;Ni;Ri) # . . .

188 Maria Paola Bonacina

where Si is the set of clauses in the database of clauses, those with an identifier
and ready to be used as premises; Ni is the set of raw clauses, that is, clauses just
generated and still to be subject to forward contraction; and Ri is the set of clauses
deleted by backward contraction. Initially, S0 = S is the input set of clauses and
N0 = R0 = /0. Expansion takes premises in Si and adds raw clauses to Ni+1. Forward
contraction deletes clauses in Ni and adds their non-trivial normal forms to Si+1.
Backward contraction detects which clauses in Si can be contracted, moves them to
Ni+1, and also copies them in Ri+1. In this way, backward and forward contraction are
implemented by the same operations, and clauses generated by backward contraction
are treated in the same way as clauses generated by expansion. The copy in the
R component is made for the purpose of proof reconstruction. The database Si of
clauses may either expand or shrink, and therefore it is non-monotonic.

Forward contraction applies to a clause before it is established in the database; it
can be seen as part of the process that leads to install a new clause in the database.
With backward contraction, every clause in the database may be subject to contraction.
Thus, the notion of persistent clauses becomes relevant: a clause is persistent, if it
is never deleted after it has entered Si at some stage i, i ≥ 0. The set of persistent
clauses, called the limit of the derivation, is defined as S∞ =

⋃
i≥0
⋂

j≥i S j.
The notions of refutation, refutational completeness, and proof reconstruction are

the same as for expansion-oriented strategies. Assume � ∈ Sk: while an expansion-
oriented strategy finds in Sk all ancestors of �, as clauses deleted by forward con-
traction are not premises of other steps, a contraction-based strategy reconstructs
the proof from Sk 'Rk. Indeed, clauses deleted by backward contraction may be
ancestors of �, because they may have been used as premises before being deleted,
and therefore they may be parents of other clauses. Proof reconstruction is the reason
for the Ri component.

If the Ni and Ri components are omitted, the derivation has the form

S0 # S1 # . . .Si # . . .

where S0 = S is the input set, and at every step Si+1 is derived from Si by an inference
that can be either an expansion or a contraction inference.

A key monotonicity property of contraction-based derivations is ρ(S0)⊆ ρ(S1)⊆
. . . ⊆ ρ(Si) ⊆ . . ., where ρ(S) is the set of clauses that are redundant in S. This
monotonicity property means that if a clause is redundant at a certain stage of the
derivation, it will be redundant at all subsequent stages (cf. Lemma 2.6.4 in [27]), a
principle later popularized by the slogan “once redundant, always redundant” [41].
A clause is redundant in S if adding it or removing it from S neither improves nor
worsens minimal proofs, where improving means making smaller, and worsening
means making larger, with respect to a well-founded proof ordering (cf. [53, 41] and
Chapter 2 of [27]). Clauses that are not redundant are called irredundant. Clauses
deleted by contraction rules are redundant, and so are clauses whose generation is
prevented by the ordering-based restrictions of expansion rules.

The notion of redundancy is extended from clauses to inferences: an inference is
redundant if it uses or generates redundant clauses, and irredundant otherwise. In

6 Parallel Theorem Proving 189

turn, redundancy is connected with fairness: intuitively, the two concepts are dual,
because redundancy aims at capturing which inferences can be ignored, and fairness
aims at capturing which inferences must be considered to find a proof. Refutational
completeness of the inference system ensures that if the input set S is unsatisfiable,
then there exist refutations. Fairness is the complementary property: if refutations
exist, a fair derivation is guaranteed to be a refutation. Similar to redundancy, also
fairness is defined based on proof orderings: whenever a minimal proof of the target
theorem is reducible by inferences, it is reduced eventually [27, 53, 41]. In practice,
a derivation is fair, if all irredundant inferences are considered eventually. A search
plan is fair, if it generates a fair derivation for all inputs. The combination of a
refutationally complete inference system and a fair search plan yields a complete
theorem-proving strategy.

Contraction-based strategies feature a search plan that prioritizes contraction
over expansion, in order to ensure that redundant clauses are deleted prior to being
selected as expansion premises. Such a search plan is called simplification-first [45],
contraction-first [50], or eager-contraction [29] search plan.

6.2.3 Instance-Based Strategies

All first-order clausal theorem-proving strategies can be seen as ways to implement
Herbrand’s theorem, which says that a set S of first-order clauses is unsatisfiable if
and only if there exists a finite set of ground instances of clauses of S that is unsatisfi-
able [71]. The semi-decidability of first-order theorem-proving descends from this
theorem. Instance-based strategies represent the theorem-proving paradigm most di-
rectly inspired by Herbrand’s theorem. The basic idea is to generate ground instances
of input clauses, and test them for propositional unsatisfiability. The first such proce-
dure was Gilmore method [71], followed by SATCHMO [159], and hyperlinking [140],
the latter at the beginning of the renewed interest for the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [80, 79, 71] for propositional satisfiability.

A clause L1 ∨ . . .∨ Lq, called nucleus, and clauses L′1 ∨D1, . . . ,L′q ∨Dq, with
q≥ 1, called electrons, such that Liσ = ¬L′iσ for all i, 1≤ i≤ q, form a hyperlink.
Hyperlinking generates the instance of the nucleus (L1 ∨ . . .∨Lq)σ . An instance
generated by hyperlinking is termed hyperinstance. Variants of a same clause may
be used in a hyperlink, and all literals of the nucleus are linked, since the purpose is
not to generate a hyperresolvent (cf. Section 6.2.2), but to instantiate the nucleus as
much as possible. Since only instances are generated, all contraction is forward con-
traction, limited to unit subsumption and clausal simplification, because unrestricted
subsumption would delete all instances and defeat the purpose of the strategy. An
instance-based derivation has the form

(S0;F0) # (S1;F1) # . . .(Si;Fi) # . . .

190 Maria Paola Bonacina

where Si is the set of clauses in the database of clauses, those with an identifier and
ready to be used as premises, and Fi is the set of generated instances. Initially, S0 = S
is the input set of clauses and F0 = /0. Instance generation takes premises in Si and
adds new clauses to Fi+1. Forward contraction deletes clauses in Fi and adds their
non-trivial normal forms to Fi+1. If all hyperlinks in Si have been considered, and
contraction has been applied, all clauses in Si ∪Fi are made ground by replacing
all variables by a new constant. A SAT solver is applied to the resulting ground
set: if it is unsatisfiable, the procedure halts successfully; otherwise, the next phase
of hyperlinking starts with state (Si+1;Fi+1) where Si+1 = Si ∪Fi and Fi+1 = /0. It
follows that S0 ⊆ S1 ⊆ . . .⊆ Si ⊆ . . ., that is, the database of clauses is monotonically
increasing.

While early instance-based strategies had a generate-and-test flavor, proceeding
ones, such as CLINS-S [73, 74], ordered semantic hyperlinking (OSHL) [181, 180],
Inst-Gen [105, 106, 136, 135], as well as methods that hybridize instance gener-
ation and tableaux, such as the disconnection calculus [26, 145, 147, 148] and
hypertableaux [16, 24], progressively emphasized model-driven instance genera-
tion, putting model building in the driver’s seat. The model-building component
of the procedure maintains a candidate model. The instance-generation component
generates ground instances that are false in the model in order to exclude it. The
model-building component updates the model to satisfy those ground instances, and
the game continues until a contradiction arises.

In summary, for subgoal-reduction strategies the database of clauses is fixed and
equal to the input set, hence relatively small; for expansion-oriented and instance-
based strategies it is large and monotonically increasing; for contraction-based
strategies it is large and non-monotonic. Since expansion-oriented strategies today
have mostly pedagogical and historical interest, from now on we use ordering-based
strategies to mean contraction-based strategies.

6.3 Parallelization of Theorem Proving

We distinguish three types of parallelism for deduction: fine-grain parallelism or
parallelism at the term/literal level, medium-grain parallelism or parallelism at the
clause level, and coarse-grain parallelism or parallelism at the search level.

In parallelism at the term/literal level, the parallelization affects operations below
the inference level, as in parallel rewriting, where parallel rewrite steps together
make a normalization inference; or below the clause level, as in AND-parallelism,
where alternative inferences apply in parallel to different literals of a clause. In
parallelism at the clause level, the parallelization affects operations at the inference
level, so that parallelism at the clause level means parallel inferences. The possibility
of conflicts between parallel inferences, and the impact of backward contraction on
their incidence, emerge as key issues for fine and medium-grain parallelism. This
discovery [27, 50] led to the move from parallelism at the clause level to parallelism
at the search level pionereed by Clause-Diffusion.

6 Parallel Theorem Proving 191

In parallelism at the search level, the parallelization affects entire derivations, as
multiple processes search in parallel for a proof, so that parallelism at the search level
means parallel search and involves communication among the processes. Parallel
search yields multi-search, where the parallel processes employ different search
plans, distributed search, where the search space is subdivided among the processes,
and their combination.

6.3.1 Parallelism at the Term or Literal Level

The classification of types of parallelism is based on the granularity of data accessed
in parallel, leading to a distinction among fine-grain, medium-grain, and coarse-grain
parallelism. Intuitively, the finer the granularity, the higher the possibility that parallel
processes incur into conflicts. For inferences, fine-grain parallelism means having
parallel processes access in parallel distinct terms or literals of a clause, so that
fine-grain parallelism is parallelism at the term or literal level.

6.3.1.1 Parallelism at the Literal Level for Subgoal-Reduction Strategies

For subgoal-reduction strategies, fine-grain parallelism is AND-parallelism, where
parallel processes access and reduce in parallel distinct literals of a goal clause. How-
ever, literals of the same clause may share variables, so that the parallel processes
may be in conflict, in the sense that they need to instantiate the same variables by
different unifiers.

For example, assume that the goal clause ϕ contains literals ¬P(x) and ¬Q(x,y),
where P and Q are predicate symbols, and x and y are variable symbols. The two
literals share the variable x. Let S include the clauses ψ1 = P(a)∨C and ψ2 =
Q(f (z),z)∨D, where a is a constant symbol, f is a function symbol, and z is a
variable symbol. A process that resolves upon ¬P(x) and P(a) and a process that
resolves upon ¬Q(x,y) and Q(f (z),z) are in conflict, because the first one needs
to apply the substitution x← a and the second one needs to apply the substitution
x ← f (z). For this reason, already early provers parallelizing subgoal-reduction
strategies, such as PARTHEO [194], METEOR [7], and Parthenon [75, 63], avoided
AND-parallelism.

6.3.1.2 Parallelism at the Term Level for Ordering-Based Strategies

For ordering-based strategies, fine-grain parallelism is parallel term rewriting, where
a term t is rewritten by applying in parallel multiple rewrite rules, or equations
applied according to the ordering (. Given two equations that apply to a term t, it is
well-known that there are three cases [132].

192 Maria Paola Bonacina

The first possibility is that the two equations rewrite t at disjoint positions. For
example, the equations i(i(x))" x and f (x,y)" f (y,x) match disjoint positions of
the term h(i(i(a)), f (a,b)), where f , h, and i are function symbols, and a and b are
constant symbols. The two steps can be applied in parallel, yielding h(a, f (b,a)),
under an ordering (where a(b.

The second possibility is that the two equations have a variable overlap. For
example, the equations (1) h(x,x) " x and (2) f (y,b) " y overlap at a variable
position in f (h(a,a),b), because h(x,x) matches with h(a,a), f (y,b) matches with
f (h(a,a),b), and the position of h(a,a) corresponds to that of the variable y in f (y,b).
The two equations can be applied in any order, because the two rewriting sequences
f (h(a,a),b)→(1) f (a,b)→(2) a and f (h(a,a),b)→(2) h(a,a)→(1) a yield the same
result.

The third possibility is that the two equations overlap at a non-variable position.
For example, the equations (1) f (z,e)" z and (2) f (l(x,y),y)" x, where e is another
constant symbol and l another function symbol, overlap at a non-variable position in
f (l(a,e),e), as both match the whole term. It is impossible to apply both equations,
because the first one rewrites the term to l(a,e) and the second one to a, as shown
in the peak l(a,e)←(1) f (l(a,e),e)→(2) a. The two rewriting steps are in conflict, as
they aim at replacing the same term by different terms.

An overlap tout court is a non-variable overlap: two equations overlap, if the
left-hand side of one unifies with a non-variable subterm of the other. An overlap is a
pre-condition to apply superposition. In the above example, the left hand sides f (z,e)
and f (l(x,y),y) of the equations (1) f (z,e) " z and (2) f (l(x,y),y) " x overlap
as they unify with most general unifier {y← e,z← l(x,e)}. Indeed, superposition
generates from the two equations the new equation l(x,e) " x, closing the peak
l(x,e)←(1) f (l(x,e),e)→(2) x, of which the above peak is an instance. A sufficient
and necessary condition to avoid conflicts is to exclude the non-variable overlap case
by requiring the equations to be non-overlapping, which means that neither left-hand
side unifies with a non-variable subterm of the other.

Historically, parallel rewriting [108, 109, 95, 129] allows parallel processes to
apply in parallel equations that match the term at disjoint positions, while concurrent
rewriting [131, 3, 4] allows them to apply equations that match at disjoint positions
or have a variable overlap.

In equational declarative languages for specification or programming, equations
are required to be regular, that is, non-overlapping and left-linear. The latter property
says that no variable occurs repeated in the left-hand side. Regularity suffices to
ensure uniqueness of normal forms, which means that the set of equations defines
a functional program, in the sense that the output t ↓ is unique for a given input
term t to be reduced [118]. Thus, the study of parallel or concurrent term rewriting
was motivated primarily by the quest for fast implementations of interpreters of
equational declarative languages [108, 109, 95, 129].

In theorem proving it is impossible to restrict the attention to non-overlapping
equations, since this would mean barring superposition, which is the main expansion
inference rule to deduce equations from equations. The same consideration applies
to Knuth-Bendix completion, where superposition first appeared [132]. Nevertheless,

6 Parallel Theorem Proving 193

the possibility of implementing Knuth-Bendix completion on top of parallel [66] or
concurrent [130] rewriting, the latter only in the ground case, was explored. If all
equations are ground, superposition collapses to simplification, and all operations
of completion are done by rewriting. In the non-ground case, superposition is done
sequentially, and only normalization can take advantage of parallel rewriting.

6.3.2 Parallelism at the Clause Level

Medium-grain parallelism for inferences means having parallel processes access in
parallel distinct clauses, and perform one or more inferences with those clauses as
premises. Thus, medium-grain parallelism is parallelism at the clause level.

6.3.2.1 Parallelism at the Clause Level for Subgoal-Reduction and

Instance-Based Strategies

For subgoal-reduction strategies parallelism at the clause level is OR-parallelism,
where parallel processes access in parallel distinct goal clauses, and resolve them
with as many side clauses generating new goal clauses. This means trying in parallel
the proof attempts that a sequential strategy tries in sequence by going from one to
the next via backtracking. Each goal clause is seen as a task (ϕ, j,k), where ϕ is a
goal clause, j is the number of ME-extension steps used to generate ϕ , and k is the
limit of iterative deepening. The task consists of reducing ϕ to � by applying at most
k− j ME-extension steps. When a new goal clause ϕi+1 is generated from a goal
clause ϕi, a new task (ϕi+1, j+1,k) is generated from task (ϕi, j,k). A task (ϕ, j,k)
is active only if j < k.

Assume that there are n processes, all with initial limit k for iterative deepening.
As soon as there are n active tasks, all processes may be active. A way of initializing
the derivation is to have a sequential preprocessing phase where one process proceeds
sequentially, generating at least n tasks. Then, a parallel subgoal-reduction derivation,
with parallelism at the clause level, has the form

(S;G0) # (S;G1) # . . .(S;Gi) # . . .

where the Gi component represents the set of active tasks.
Each process maintains a queue of its active tasks and the distribution of tasks

among the processes is realized by task stealing. When the queue of a process is
empty, that process steals active tasks from the queues of others. Task stealing is
implemented by representing a task (ϕ, j,k) by an encoding of the WAM operations
(cf. Section 6.2.1) that generate (ϕ, j,k) from the input set of clauses. When there
are no more active tasks, the search restarts with the initial goal and a higher limit
of iterative deepening. Communication of tasks is achieved by message passing in

194 Maria Paola Bonacina

PARTHEO [194], in shared memory in Parthenon [75, 63], and either way in METEOR
[7].

For instance-based strategies, parallelism at the clause level means having multiple
parallel processes picking different clauses as nuclei and generate in parallel all their
hyperinstances [223]. However, a most natural way to parallelize hyperlinking [140]
is to execute in parallel the instance generation and satisfiability testing phases [223].
This may be an example where parallelization contributed to improve the underlying
theorem-proving method, as the notion of doing in parallel instance generation and
satisfiability testing may have given ammunition to the design of instance-based
strategies with a tighter integration between model building and instance generation
(cf. Section 6.2.3).

6.3.2.2 Parallelism at the Clause Level for Ordering-Based Strategies

ROO [154, 155, 156] is the paradigmatic example of parallelism at the clause level for
ordering-based strategies. ROO is a parallelization of up to version 2.2 of the OTTER
theorem prover [164, 165, 166, 169]. The idea of ROO is to parallelize the given-
clause algorithm at the heart of OTTER. This algorithm was later adopted by most
theorem provers implementing ordering-based strategies, such as SPASS [218], E
[190] and its predecessor DISCOUNT [10, 90], Vampire [137], Gandalf [211], WALD-
MEISTER [117], and Zipperposition [77]. In the given-clause algorithm the database
of clauses is organized as two lists of clauses, that we call already-selected
and to-be-selected [35, 41]. In OTTER, these lists were named originally
axioms and set-of-support, abbreviated sos; in later versions axioms was
renamed usable. In E these lists are called active and passive.

The standard initialization is to start with all input clauses in to-be-selected
and empty already-selected. For a strategy with set of support (cf. Sec-
tion 6.2.2), one starts with already-selected containing the clauses of T and
to-be-selected those of SOS, which explains the original names of the two
lists in OTTER.

The given-clause algorithm prescribes to perform a loop, until either a refutation
is found or the list to-be-selected becomes empty. In the latter case the in-
put set of clauses is recognized to be satisfiable. For a first-order theorem prover,
termination typically occurs either with a refutation or when the prover hits a prede-
fined time or space threshold. At every iteration of the loop, the prover selects from
to-be-selected the best clause according to a heuristic evaluation function
[5, 166, 88, 33, 169, 191]. This clause is the given clause. Thus, the given-clause
algorithm realizes a best-first search. The prover performs all applicable expansion in-
ferences having as premises the given clause and clauses in already-selected
and moves the given clause from to-be-selected to already-selected.
Every raw clause ϕ thus generated is subject to forward contraction, so that it is
either deleted or reduced to a normal form ϕ ↓ (where ϕ ↓ and ϕ may be identical),
which gets an identifier and is appended to to-be-selected.

6 Parallel Theorem Proving 195

For backward contraction, the prover detects which previously existing clause ψ
can be contracted by such a ϕ ↓ and subjects every such ψ to forward contraction.
Any resulting ψ ↓ gets a new identifier, is added to to-be-selected, and will
try in turn to backward-contract other clauses. In the case of backward contraction it
cannot be that ψ and ψ ↓ are identical, because ψ was found reducible to begin with.
The backward contraction phase terminates when the set of clauses S is such that
ρ(S) = /0, which is guaranteed to occur eventually thanks to the well-foundedness of
the ordering (.

The OTTER version [169] of the given-clause algorithm applies backward con-
traction to both lists, so that the set S such that ρ(S) = /0 at the end of every iteration
of the loop is the union of already-selected and to-be-selected. The
E version [188, 190], tried first in DISCOUNT [10, 90], applies backward contrac-
tion only to already-selected, so that the set S such that ρ(S) = /0 at the
end of every iteration of the loop contains the clauses in already-selected.
If a clause in already-selected is backward contracted, its descendants in
to-be-selected are deleted.

The idea of the E versionis that it is not necessary to keep to-be-selected
fully reduced, since clauses in to-be-selected are not used as premises of
expansion inferences. Since to-be-selected is allowed to contain redundant
clauses, the given clause is subject to forward contraction as soon as extracted from
to-be-selected and prior to be used as expansion premise. Most contempo-
rary provers implementing ordering-based strategies feature both the OTTER and E
versions of the given-clause algorithm.

At the time of ROO, only the OTTER version of the given-clause algorithm
existed. The concept of ROO is to store the lists already-selected and
to-be-selected in shared memory, and let n parallel processes pick n given
clauses and perform in parallel the ensuing expansion and forward contraction in-
ferences. The expansion and forward contraction phases for a given clause is called
task A. The parallel processes are not allowed to append the clauses thus generated to
to-be-selected, because that could cause conflicts in accessing the shared list,
and more importantly because the clauses generated in parallel are not guaranteed
to be irredundant. Indeed, if N1 and N2 are the sets of clauses generated by parallel
processes p1 and p2, the clauses in N1 are not forward contracted with respect to
those in N2 and vice versa. ROO features an additional list, termed K-list, and lets
the parallel processes append their new clauses to the K-list. A single process
performs contraction within the K-list and then transfers all clauses from the
K-list to to-be-selected. This activity is called task B.

All the more, the parallel processes are not allowed to do backward contraction,
in order to avoid conflicts in deleting or rewriting clauses in already-selected
and to-be-selected in shared memory. They are only allowed to test for
backward contraction: if a parallel process discovers that one of its newly gen-
erated clauses can backward-contract a clause ψ in already-selected or
to-be-selected, it adds the identifier of ψ to a list named to-be-deleted.
The single process in charge of task B then proceeds to backward-contract every
such ψ . All processes follow the same schedule: execute task B, if either K-list or

196 Maria Paola Bonacina

to-be-deleted is not empty and no other process is doing task B; execute task
A otherwise.

Thus, ROO has to do backward contraction sequentially, as only one process is
allowed to execute task B at any given time. Since an ordering-based prover typically
spends most of its time doing contraction, and especially backward contraction, ROO
incurs in a problem identified as the backward-contraction bottleneck [27, 50], which
manifests itself as follows: the single process executing task B lags behind, K-list
and to-be-deleted grow too long, and the other processes remain idle waiting
for clauses to reach to-be-selected and become available as given clauses.

The backward-contraction bottleneck affects also the application of the transi-
tion-based approach to parallel programming [224] to Knuth-Bendix completion
[225]. The considered version of Knuth-Bendix completion is the original one [132],
that only handles rewrite rules and fails if it generates an equation that cannot be
oriented by the ordering into a rewrite rule. For theorem proving, unfailing or or-
dered completion [120, 12], that handles also equations, and therefore does not fail,
supersedes the original Knuth-Bendix completion [132]. Nevertheless, the transition-
based parallelization of Knuth-Bendix completion [225] is relevant to our analysis
as another instance of parallelism at the clause level. It performs parallel inferences
in shared memory, with locks and critical regions to prevent conflicts between in-
ference steps that involve the same rewrite rules. Backward contraction causes a
write-bottleneck as all the backward-contraction inferences ask write-access to shared
memory. It is plausible that the difficulty with backward contraction suggested apply-
ing the transition-based approach to Buchberger algorithm [68, 69] instead, since in
Buchberger algorithm backward contraction is not as crucial (cf. Section 6.2.2.1).

Because of the backward-contraction bottleneck, parallelism at the clause level
was largely abandoned, and an approach à la ROO was never tried in combination
with the E version of the given-clause algorithm.

6.3.3 The Rise of Parallel Search

The above analysis of parallelism at the term/literal and clause levels reveals that a
key element to understand whether and how theorem proving can be parallelized is
an abstract analysis of the conflicts between parallel inferences [27, 50]. The analysis
is abstract in the sense of not being tied to a memory model or an implementation.

Two expansion inferences read their premises and generate and add their con-
sequences. If they add their consequences to a shared data structure, some access
control is required, but two expansion inferences are not in conflict in an essential
way, because they only read their premises. On the other hand, contraction infer-
ences delete or rewrite one of their premises, and therefore determine three types of
conflicts:

1. Write-write conflict between contraction inferences: two contraction steps aim at
rewriting the same clause ϕ;

6 Parallel Theorem Proving 197

2. Write-read conflict between contraction inferences: a contraction step aims at
rewriting a clause ϕ that another contraction step aims at using as premise to
contract some other clause ψ;

3. Write-read conflict between contraction and expansion inferences: a contraction
step aims at rewriting a clause ϕ that an expansion step aims at using as premise
to generate other clauses.

Conflicts of Type (1) are exemplified by the conflicts in parallel rewriting (cf. Sec-
tion 6.3.1). Conflicts of Types (2) and (3) are due to backward contraction, because a
raw clause is not used as premise of another inference while it is subject to forward
contraction. A conflict of Type (2) is harmless: the once redundant always redundant
principle ensures that no matter which step commits, the other clause, whether ϕ
or ψ , will still be reducible [27]. Conflicts of Type (3) are the most problematic,
because ϕ is redundant, a clause generated by ϕ will also be redundant, and therefore
the contraction step should have priority.

Subgoal-reduction strategies have a static database of clauses given by the input set
and no contraction. The absence of contraction means no conflicts among inferences.
A static, relatively small, database of clauses represents read-only data that can be
kept in shared memory, and even compiled as done for declarative programs. Instance-
based strategies have a monotonically increasing database of clauses given by the
input set plus instances, and only forward contraction. The absence of backward
contraction means no conflicts among inferences. This explains why approaches to
parallelize subgoal-reduction and instance-based strategies adopted parallelism at
the clause level (cf. Section 6.3.2.1).

The situation is different for ordering-based strategies: the database of generated
clauses is large, and non-monotonic, in fact highly dynamic, due to backward con-
traction, which causes conflicts among inferences. There is no read-only data, as any
clause can be rewritten by proceeding ones. Contraction is essential for equational
reasoning: indeed subgoal-reduction and instance-based strategies as described thus
far are for first-order logic, and ordering-based strategies for first-order logic with
equality. This analysis motivates resorting to coarse-grain parallelism for ordering-
based strategies for first-order logic with equality.

Coarse-grain parallelism in deduction is parallelism at the search level or parallel
search: multiple processes p0, . . . , pn−1 search in parallel for a proof, each developing
its own derivation and maintaining its own database of clauses. It is sufficient that
one of the processes succeeds, and as soon as that happens, all may halt. Since
each process has its own database of clauses, the issue of conflicts disappears, and
especially the backward-contraction bottleneck cannot arise. While parallelism at
the term/literal or clause levels aim at speeding up a given search, parallelism at the
search level aims at finding a proof sooner by generating new searches, by searching
in different ways.

The counterpart of allowing every process to build its own database of clauses is
the redundancy of having the same clauses in all or some of these databases. However,
this duplication is not considered redundancy in parallel search, as long as the clauses
are not redundant in the logical sense (cf. Section 6.2.2.2). Moreover, as long as
contraction inferences are adequate, having ϕ in the database of a process and ϕ ↓ in

198 Maria Paola Bonacina

the database of another process is not a correctness issue, unlike in other distributed
applications, where the lack of agreement or coherence may affect correctness.

A general issue with parallelism at the search level is to differentiate the searches
conducted in parallel by the processes. Intuitively, it is wasteful to have different
processes visit the same search space, performing the same inferences in the same
order. On the other hand, it is unavoidable that their searches have something in
common, given that they are all solving the same problem. The idea is to minimize
the overlap of the searches performed by the parallel processes [27, 50, 51, 30, 31,
32, 34, 38].

One approach to this issue is to differentiate the processes by letting them execute
different search plans on the same data. The dual approach is to differentiate them by
letting them execute the same search plan on different data. A way to differentiate
data is to subdivide clauses and inferences among the processes, in order to subdivide
the work to be executed. In parallel theorem proving this distinction was presented
first as competition versus cooperation [192, 210, 85]. The analogue in parallel
SAT-solving is the dichotomy between the portfolio approach and the divide-and-
conquer approach. However, these terminologies suggest that the two parallelization
principles may not coexist, while several methods explore their combination. We
distinguish between multi-search and distributed search [37, 38].

Both multi-search and distributed search approaches feature communication
among the parallel deductive processes. In the case of distributed search the ra-
tionale for communication is obvious: since the space to be searched is subdivided,
communication is needed for completeness. However, also in the case of multi-search
communication is necessary, otherwise multi-search reduces to running independent
experiments in parallel.

For subgoal-reduction strategies, parallel search is typically multi-search, because
the database of clauses is small and static. On the other hand, the large database of
generated and kept clauses of ordering-based strategies suggests distributed search,
and the notion of subdividing the search space by subdividing clauses and inferences.
Since ordering-based strategies also offers a variety of search plans, both multi-search
and distributed search have been applied to ordering-based strategies. In the rest of
this section, we cover multi-search for subgoal-reduction strategies, multi-search for
ordering-based strategies, and distributed search for ordering-based strategies.

6.3.4 Multi-search

A multi-search method is a parallel search method where the parallel deductive pro-
cesses apply different search plans to search for a solution. As a way to differentiate
the searches further, multi-search may also allow the processes to employ different in-
ference systems. In multi-search with homogeneous systems, the deductive processes
have different search plans and the same inference system. In multi-search approaches
with heterogeneous systems, the deductive processes differ in the inference system or
in both inference system and search plan.

6 Parallel Theorem Proving 199

6.3.4.1 Multi-search for Subgoal-Reduction Strategies

For subgoal-reduction strategies, ways of differentiating the search plans include
assigning to the parallel processes different literal-selection rules [207], different
clause-selection rules, different limits for iterative deepening, different choices of
initial goal clause, or any combination thereof. These possibilities have been ex-
plored in the successors of PARTHEO [194], namely SETHEO, E-SETHEO, SPTHEO,
CPTHEO and P-SETHEO [144, 170, 209, 104, 219].

A multi-search subgoal-reduction derivation with n processes p0, . . . , pn−1 takes
the form

(S;G j
0) # (S;G j

1) # . . .(S;G j
i) # . . .

where S is the input set of clauses, and G j
i is the set of active tasks at process p j,

0 ≤ j ≤ n− 1, and stage i, i ≥ 0 (cf. Section 6.3.2.1 for the notion of task). The
processes may communicate tasks, so that each process may have a set of active tasks
as an effect of communication. If the processes start with different limits k0, . . . ,kn−1
for iterative deepening, a process may have in its set active tasks with different limits,
such as (ϕ,n,k) and (ϕ ′,n′,k′): if k < k′, task (ϕ,n,k) must be given higher priority
by the process, in order to preserve completeness.

An example of heterogeneous system is HPDS [208], with three deductive pro-
cesses and a deduction controller. The three deductive processes execute guided
linear deduction (GLD), which is similar to model elimination (cf. Section 6.2.1),
hyperresolution (HR) (cf. Section 6.2.2), and unit-resulting resolution (UR) [204],
respectively. The latter inference rule resolves a clause L1∨ . . .∨Lq∨Lq+1, called nu-
cleus, and unit clauses L′1, . . . ,L

′
q, with q≥ 1, called electrons, such that Liσ = ¬L′iσ

for all i, 1≤ i≤ q, to generate the unit clause Lq+1σ . If the Lq+1 literal is allowed
to be absent, UR resolution is allowed to generate �. As UR resolution alone does
not form a refutationally complete inference system, its purpose is to accelerate the
generation of unit clauses for other inference rules. For example, UR resolution is
used to generate unit lemmas for a PTTP prover [204].

HPDS implements this concept in a parallel setting. Every process is endowed with
forward and backward subsumption, employs a DFS plan with iterative deepening,
and sends the clauses it generates, including subsumed clauses tagged as such, to
the deduction controller. The deduction controller forwards to the GLD and HR
processes the unit clauses generated by the UR process, and feeds the latter with the
clauses generated by the other two. It may also forward to the HR process clauses
generated by GLD, but not vice versa, so that the GLD process only receives unit
lemmas. Furthermore, the deduction controller gives every process information on
clauses subsumed by the other processes.

Another instance of multi-search with heterogeneous systems is CPTHEO [104],
built on top of the model elimination prover SETHEO [144]. SETHEO is equipped
with a resolution-based prover preprocessor, named Delta [193], with the idea of
generating in advance, by resolution, clauses that could be useful as lemmas for the
subgoal-reduction derivation. CPTHEO replaces preprocessing by cooperation in a
parallel setting: it launches SETHEO and Delta in parallel, and lets SETHEO use

200 Maria Paola Bonacina

the clauses generated by Delta as lemmas, according to different communication
schemes.

For instance, SETHEO sends to Delta goal clauses from tasks that SETHEO cannot
solve in the current limit of iterative deepening. Delta responds with lemmas that
resolve with those goal clauses. SETHEO restarts with its next round of iterative
deepening and a database of clauses enriched with the received lemmas.

Alternatively, SETHEO sends to Delta the literals labeling the open leaves in its
current tableau. Delta replies by sending lemmas including similar literals of opposite
sign. Similarity is measured according to various heuristic criteria [103]. In either
scheme Delta ranks its generated clauses and selects the best to be sent as lemmas.
The ranking is based on clause size, with small size deemed preferable, size of Π(ϕ)
for clause ϕ , with large size deemed preferable, assuming that a clause that required
more inferences to be generated is more precious, and similarity-based criteria [103].

6.3.4.2 Multi-search for Ordering-Based Strategies

Multi-search for ordering-based strategies was introduced with the Team-Work
method [84, 9, 88, 10, 89, 91, 92, 87, 197]. Team-Work is devised for purely equa-
tional problems, but its concept applies just as well to first-order logic with equality.
The Team-Work method provides for n deductive processes p0, . . . , pn−1, one of
which also plays the role of supervisor. All processes start with the same input
problem, the same inference system, a time period, again the same for all pro-
cesses, but different search plans. For instance, in the context of the given-clause
algorithm, this may mean different evaluation functions to select the given clause
[5, 166, 88, 33, 169, 191]. Every process develops its own derivation and builds
its own database of clauses independently. When the allotted time period expires,
every process evaluates its current database of clauses, based on a set of heuristic
measures, the same for all processes. For example, the number of generated clauses
may indicate how productive a process has been, while the number of deleted clauses
may suggest whether the process has generated some very effective simplifiers or
subsumers.

Then, every process sends to the supervisor its scores according to the heuristic
measures. The supervisor picks a winner, the one with the best scores, and broadcasts
its identity, say p j. The winner p j becomes the supervisor for the next round, and
all the other processes send to p j their best clauses according to other heuristic
criteria, relative to individual clauses [5, 88], rather than the whole database. For
example, an equation that has simplified many other clauses may be deemed precious.
The new supervisor p j broadcasts its database, enriched with these best clauses
received from the others. In this manner, all deductive processes restart with the best
database generated thus far and augmented with selected good clauses from the other
derivations.

A multi-search ordering-based derivation with n processes p0, . . . , pn−1 has the
form

S j
0 # S j

1 # . . .S j
i # . . .

6 Parallel Theorem Proving 201

where S j
i is the database of clauses at process p j, 0≤ j ≤ n−1, and stage i, i≥ 0.

Initially, S0
0 = S1

0 = . . . = Sn−1
0 = S is the input set of clauses. Such a derivation is

a refutation if � ∈ S j
i for some i and j. A Team-Work derivation is a multi-search

ordering-based derivation characterized by a series A = i0 < i1 < .. . < ik < ik+1 <
.. . of special stages, where i0 = 0, and for all i ∈A , S0

i = S1
i = . . .= Sn−1

i : the stages
in A are those where all the processes restart with the same database.

Fairness of a multi-search derivation does not require that all search plans be fair.
In the context of Team-Work, it is sufficient that at least one of the search plans is fair,
and that a database produced by a fair search plan is selected as the winner infinitely
often [9].

Starting at least with OTTER [164, 165, 166, 169], automatic theorem provers
have many options and parameters that can be set for each problem. A multi-search à
la Team-Work adds even more, including the set of heuristics to evaluate databases,
the set of heuristics to evaluate clauses, and the time period. One may also program
the prover to vary selected parameters during a derivation. For example, the time
period may increase over time, so that the processes cooperate a lot at the beginning
and behave more independently later, or vice versa. The sequential basis for the
implementation of Team-Work is the DISCOUNT theorem prover [10, 90], meaning
that every p j executes an instance of DISCOUNT.

The purpose of Team-Work is to interleave and combine different search plans.
The periodic restart from a common database lets a process apply a search plan to a
database generated by another search plan, realizing the interleaving. The mechanism
whereby the database of the winner is enriched with clauses deemed good by other
processes provides the combination. Since different search plans may generate
clauses in different orders, their interleaving and combination may enable one of
the processes to discover a proof sooner than any of the search plans would allow
if applied sequentially. The downsides include the delays imposed by the periodic
synchronizations, and the risk that the heuristics are misleading, so that discarding
the databases with lower scores will make the search longer rather than shorter.

Ingredients of Team-Work appeared also in multi-search approaches with het-
erogeneous systems. For example, requirement-based cooperative theorem proving
[102] prescribes to run SPASS and DISCOUNT in parallel. The two provers commu-
nicate by expansion requests and contraction requests. In an expansion request, a
prover sends to the other a clause ϕ , and the receiver replies by sending all resol-
vents between ϕ and the clauses in its already-selected list. In a contraction
request, a prover sends to the other a clause ϕ , and the receiver replies by sending all
its clauses that contract ϕ .

The TECHS system [86] is even more heterogeneous, as it runs in parallel SPASS,
DISCOUNT, and SETHEO, thereby mixing contraction-based and subgoal-reduction
strategies, a feature that recalls HPDS and CPTHEO (cf. Section 6.3.4.1). In TECHS,
SPASS and DISCOUNT exchange equations, while SPASS and SETHEO exchange
lemmas, from SPASS to SETHEO, and subgoals, from SETHEO to SPASS. These
heterogeneous systems share with Team-Work the notion of heuristic selection of
good clauses to be shared. For example, short clauses are deemed good, so that unit
clauses and especially unit equations are the best.

202 Maria Paola Bonacina

The legacy of the Team-Work method is threefold. First, the notion of interleaving
search plans migrated into the design of search plans for sequential theorem provers:
the prover is programmed to execute a search plan for a fixed interval of time, then
another one for the next interval, and so on. This feature is available, for instance,
in Vampire [137]. This development is rather natural as interleaving is a standard
way to simulate a parallel computation by a sequential computation. In the theory
of parallel computing, a parallel computation that can be sequentially simulated by
interleaving is not regarded as truly concurrent, although we are not aware of results
on sequential derivations simulating multi-search derivations. Second, the notion of
letting a process send to another one its best clauses is connected with learning, in
the sense of learning the results of other derivations starting from the same problem
[90]. This concept is generalized to learning from proofs of similar problems, as in
the approaches that apply machine learning and big data technologies to theorem
proving [99, 213]. Third, Team-Work can be considered a forerunner of the portfolio
approach to parallel SAT-solving (cf. Section 6.4.1 in this chapter and the chapter
on 1, Parallel Satisfiability).

6.3.5 Distributed Search

A distributed-search method is a parallel-search method where the search space is
subdivided among the parallel deductive processes, in order to subdivide the work
to be performed, and possibly reach a solution sooner. As a way to differentiate the
searches further, distributed search may also allow the processes to apply different
search plans, leading to methods with both distributed-search and multi-search.

In general, subdividing the work may mean subdividing data, as in data-driven
parallelism, or subdividing operations, as in operation-driven parallelism. In theorem
proving, there are typically few inference rules and a huge number of generated
clauses, and therefore the subdivision and the parallelism are naturally data-driven.
However, the subdivision is designed knowing which inferences need to be applied to
the clauses, so that the two aspects are intertwined. This also means that distributed
search is usually coupled with homogeneous systems, where all deductive processes
feature the same inference system, although in principle it could be combined also
with heterogeneous systems, where the deductive processes employ different infer-
ence systems.

6.3.5.1 Distributed Search for Ordering-Based Strategies

Distributed search for ordering-based strategies was introduced with the Clause-
Diffusion methodology [27, 48, 49, 51], implemented in the Aquarius [46, 27, 47, 52]
and Peers [58, 51] provers, and then investigated through Modified Clause-Diffusion
[28, 29], the Peers-mcd [30, 31, 33, 38] prover, and a formal analysis of distributed
search for contraction-based proof search [32, 34]. To the best of our knowledge,

6 Parallel Theorem Proving 203

Clause-Diffusion was the first parallel-search method for automatic first-order theo-
rem proving, and many of the elements of the analysis of parallelism for deduction
(cf. Section 6.3.3) were discovered with and around Clause-Diffusion and its de-
velopments. The reason for calling it a methodology is that Clause-Diffusion came
since the start with a choice of solutions for several issues. In this presentation we
cover all issues and the most mature and most successful solutions, hence Modified
Clause-Diffusion, referring the interested readers to the original articles for other
possibilities.

6.3.5.2 The Basic Clause-Diffusion Mechanisms

Clause-Diffusion provides for n deductive processes p0, . . . , pn−1, that are all peers.
In a Clause-Diffusion prover, n is a parameter set by the user. All processes start with
the same input problem, inference system, and search plan, although different search
plans may be assigned. Every process develops its own derivation and builds its
own database of clauses independently. The processes are asynchronous, as the only
synchronization occurs when one sends all others a halting message. This happens,
for example, when one of the processes finds a proof.

Clause-Diffusion subdivides the search space by subdividing clauses, so that every
clause is owned by a process. A distributed-search ordering-based derivation, or
distributed derivation for short, has the form

(O0;NO0)
j # (O1;NO1)

j # . . .(Oi;NOi)
j # . . .

where for every process p j, 0 ≤ j ≤ n− 1, and stage i, i ≥ 0, S j
i = O j

i 'NO j
i is

the local database of clauses at p j; O j
i is the set of clauses owned by p j; NO j

i is
the set of clauses not owned by p j; and

⋃n−1
j=0 S j

i represents the global database at
stage i. Initially, S0

0 = S1
0 = . . . = Sn−1

0 = S is the input set of clauses. In the early
Clause-Diffusion terminology owned clauses are termed residents and the others
visitors or visiting clauses [27, 51]. A distributed derivation is a refutation if � ∈ S j

i
for some i and j.

Since every clause is owned by a process, for every stage i, i ≥ 0, we have⋃n−1
j=0 O j

i =
⋃n−1

j=0 S j
i . This also means that every clause ϕ ∈ NO j

i is owned by some
pk, with k �= j, so that ϕ ∈ Ok

l for some l ≥ 0. Furthermore, under the customary
assumptions that every clause has its own variables, and variants are distinct clauses,
every clause is owned by only one process, so that O j

i ∩Ok
i = /0 for all i ≥ 0 and

0≤ j �= k ≤ n−1.
Assume that a clause ψ is generated by process p j, and that its normal form after

forward contraction ϕ = ψ ↓ is not trivial, so that ϕ is kept. Regardless of whether
ψ was generated by expansion or backward contraction, process p j assigns ϕ to
some pk according to an allocation criterion. The number k becomes part of the
identifier of ϕ: for example, if ϕ is the m-th clause generated and kept by p j, its
identifier includes the fields 〈k,m, j〉. These three components suffice to identify a

204 Maria Paola Bonacina

clause uniquely across all processes, so that the identifier of a clause is a global
attribute.

If k = j, p j adds ϕ to O j; if k �= j, p j adds ϕ to NO j. Either way, p j applies
ϕ to backward-contract clauses in S j, and broadcasts it as an inference message
〈ϕ,k,m, j〉 to all other processes. This broadcasting mechanism is the reason for the
name Clause-Diffusion, as clauses are diffused. These messages are called inference
messages, because received clauses will be used for inferences.

Any other process pq, q �= j, upon receiving the inference message 〈ϕ,k,m, j〉
applies forward contraction to the received clause ϕ . If ϕ is deleted by forward
contraction no other operation is needed. Otherwise, let ϕ ↓ be the normal form of ϕ
with respect to Sq, where ϕ ↓ and ϕ may be identical. If k = q, pq adds ϕ ↓ to Oq; if
k �= q, pq adds ϕ ↓ to NOq. Either way, pq applies ϕ ↓ to backward-contract clauses
in Sq.

6.3.5.3 The Subdivision of Clauses in Clause-Diffusion

Allocation criteria to subdivide clauses play an important role in differentiating the
searches and limiting their overlap [32, 34]. The intuition is that different searches,
and searches that differ from a sequential one, may enable one of the processes to
find a proof sooner. A simple option is that each process assigns clauses according to
a round-robin schedule, called alternate-fit [27, 51] or rotate [31]: p j assigns ϕ to pk
for k = (q+1) mod n, if p j assigned the previous clause to pq.

In the half-alternate-fit criterion [27, 51], p j assigns every other clause to itself
and in a round-robin manner otherwise. Let pq1 and pq2 be the two most recently
used destinations; if q1 = j, p j assigns ϕ to pk for k = (q2 +1) mod n; if q1 �= j, p j
assigns ϕ to itself.

Alternatively, every process p j may estimate the work-load of each process as
measured by the number of generated clauses, a criterion named best-fit [27, 51] or
select-min [58]. Clearly, p j knows exactly how many clauses it generated thus far. For
all other processes pq, q �= j, p j may consider the latest inference message 〈ψ,k,m,q〉
received from pq and take m as an estimate of the number of clauses generated by
pq. Then p j assigns the next ϕ to the process with the smallest estimated work-load.
However such a criterion may lead the processes to assign too many clauses to others,
since a process may under-estimate the work-load of others but not its own. Therefore,
this criterion may be corrected by letting each process assign a fixed percentage of
clauses to itself as in the half-alternate-fit criterion.

A different approach is to determine the owner of a clause based on properties
of the clause itself. For example, assume that every symbol in the signature has an
associated weight. The sum of the weights of the symbols occurring in a clause
is the weight of the clause. This is a feature that the Clause-Diffusion provers
inherit from OTTER, where it is used for deletion by weight, a contraction rule that
allows the prover to delete all clauses whose weight is above a certain threshold
[164, 165, 166, 169]. Such a rule is not adequate (cf. Section 6.2.2), but it may be
useful in practice. A simple weight-based allocation criterion is to assign clause ϕ to

6 Parallel Theorem Proving 205

pk, where k = w mod n and w is ϕ’s weight. This criterion was called syntax in the
Peers prover [58, 51].

The next step is to use information from the ancestor-graph Π(ϕ) (cf. Sec-
tion 6.2.2.1) in order to allocate ϕ . Since theorem provers save anyway the data to
generate Π(ϕ) for every kept clause ϕ in order to be able to build Π(�), storing this
information is no additional burden. This concept is achieved by the ancestor-graph
oriented (AGO) allocation criteria [31]. The general idea is to use information from
the finite portion of the search space that has been generated to assign clauses to
processes and therefore induce a subdivision of the search space that lies ahead.

The AGO criterion parents determines ϕ’s owner by applying a function f to
the identifiers of ϕ’s parents. As the function f may vary, this is actually a family
of criteria. If ϕ was generated from premises ψ1 and ψ2 by a binary expansion
inference rules, such as resolution, paramodulation, or superposition, its parents are
ψ1 and ψ2. If ϕ is a factor of ψ , its parent is ψ . If ϕ was obtained by normalizing
ψ during backward contraction, ψ is considered as the sole parent. Since f is a
function, clauses that have the same parent(s) are assigned to the same process. The
intuition is that clauses that have the same parents are spatially close in the search
space, and therefore should belong to the same process. If they were assigned to
different processes, the effect could be to bring those different processes to be active
in the same region of the search space, increasing their overlap.

The AGO criterion majority considers all ancestors of clause ϕ , that is, all clauses
that occur in its ancestor-graph Π(ϕ). It assigns to every process p j a number of
votes equal to the number of clauses in Π(ϕ) owned by p j. The process, say pk, that
gets the most votes owns ϕ . Ties are broken arbitrarily. The idea is that a process that
owns the most ancestors of ϕ is already most active in the region of the search space
where ϕ is, and therefore should get ϕ as well. Assigning ϕ to another process, say
pq, with q �= k, could increase the overlap between pk and pq.

It remains what to do with input clauses. One process, say p0, reads the input file
and handles input clauses like raw clauses. Most allocation criteria listed above apply
regardless of whether the clause was read or generated. The select-min criterion does
not apply to input clauses, because at the beginning the processes have no work-
load: therefore, select-min assigns input clauses in round-robin fashion. The AGO
criteria do not apply to input clauses, because input clauses do not have ancestors.
The parents criterion assigns all input clauses to p0. The majority criterion cannot
proceed in this manner, because otherwise all clauses would belong to p0, as p0
would always have the majority of ancestors. This does not happen with the parents
criterion, because the function f applies to the entire identifiers of parents, not only
to the owners. Thus, also the majority criterion assigns input clauses in round-robin
style.

6.3.5.4 The Subdivision of Inferences in Clause-Diffusion

In Clause-Diffusion the ownership of clauses induces a subdivision of expansion
inferences as follows. Assume that p j is about resolving clauses ϕ = L∨C and

206 Maria Paola Bonacina

ψ = ¬L′ ∨D, such that Lσ = L′σ . Clause-Diffusion allows p j to proceed with the
inference if and only if p j owns ψ , that is, the parent with the negative literal
resolved upon. Similarly, assume that p j is about paramodulating or superposing
clause ϕ = l " r∨C into clause ψ = L[s]∨D, such that sσ = lσ . Clause-Diffusion
allows p j to proceed with the inference if and only if p j owns ψ , that is, the clause
paramodulated or superposed into. When paramodulating ϕ into ψ , the prover needs
to consider all non-variable subterms of ψ and only l and r in ϕ . In other words,
there is more work connected with the clause paramodulated into. For superposition,
that is, paramodulation into equalities, a prover needs to test for both superposition of
ϕ = l " r∨C into ψ = s" t∨D and superposition of ψ into ϕ . The owner of ψ will
superpose ϕ into ψ and the owner of ϕ will superpose ψ into ϕ . For factoring, p j is
allowed to generate the factors of ψ if and only if it owns ψ . For hyperresolution and
unit-resulting resolution, p j is allowed to proceed if and only if it owns the nucleus
of the inference step.

As far as contraction inferences are concerned, there is no subdivision of forward-
contraction inferences, as every process p j applies all the clauses in its current
local database S j to try to delete or reduce a raw clause it has generated. There is
also no subdivision of backward-contraction inferences that delete clauses, such as
subsumption, functional subsumption, or tautology elimination (cf. Section 6.2.2).
Every process p j is allowed to use any clause in S j to delete any other clause in S j

by such an inference rule, regardless of ownership.
On the other hand, ownership is used to subdivide backward-contraction in-

ferences that generate new clauses, such as clausal simplification and equational
simplification or normalization. Assume that process p j detects that clause ϕ ∈ S j

can be backward-simplified by some other clause ψ ∈ S j. If p j owns ϕ , p j is allowed
to generate ϕ ↓. If p j does not own ϕ , p j is allowed to delete ϕ , but it is not allowed
to generate ϕ ↓. Whoever owns ϕ will generate ϕ ↓, give it a new identifier, and
broadcast it as inference message.

6.3.5.5 Distributed Global Contraction, Distributed Fairness, and Distributed

Proof Reconstruction

Clause-Diffusion led to formulate and solve three general issues in distributed search
for ordering-based strategies: distributed fairness [27, 48, 51, 29], distributed proof
reconstruction [29], and distributed global contraction [27, 51, 29].

Distributed fairness, that is, fairness of a distributed derivation, is guaranteed by
two conditions. First, each process must be locally fair, which means it considers
eventually all irredundant inferences. Second, all persistent irredundant clauses must
be broadcast eventually. Clause-Diffusion fulfills the second condition eagerly, by
broadcasting kept clauses right after forward contraction. The reason for this eager
choice is the second property, namely distributed proof reconstruction.

Proof reconstruction requires to save the clauses deleted by backward contraction
(cf. Section 6.2.2.2). Thus, the distributed derivation takes the form

6 Parallel Theorem Proving 207

(O0;NO0;R0)
j # (O1;NO1;R1)

j # . . .(Oi;NOi;Ri)
j # . . .

where for every process p j, 0≤ j ≤ n−1, and stage i, i≥ 0, S j
i = O j

i 'NO j
i is the

database of clauses at process p j and stage i, partitioned into owned (O j
i) and not

owned (NO j
i) clauses, while R j

i is the set of clauses that p j deleted by backward
contraction. Distributed proof reconstruction means that if � ∈ Sk

i , process pk can
reconstruct Π(�) by consulting only Sk

i 'Rk
i . In order to guarantee distributed proof

reconstruction, it is not sufficient that all persistent irredundant clauses be broadcast
eventually, since clauses deleted by backward contraction, that are redundant and
not persistent, may be needed to reconstruct the proof. A stronger, and sufficient,
condition is that all clauses ever used as premises are broadcast. This is why Clause-
Diffusion lets every process broadcast a clause ϕ after ϕ emerges from forward
contraction, that is, as soon as ϕ is ready to be used as premise [29].

The problem of distributed global contraction is to ensure that notwithstanding
the subdivision of inferences among the parallel processes, if ϕ is globally redundant
at some stage i, ϕ is recognized redundant eventually by every process. Formally, if
ϕ ∈ ρ(

⋃n−1
j=0 S j

i) at some stage i, then for all processes p j, 0≤ j ≤ n−1, there exists

a stage l, l ≥ i, such that ϕ ∈ ρ(S j
l). Assume that ϕ ∈⋃n−1

j=0 S j
i , and ϕ ∈ ρ(

⋃n−1
j=0 S j

i),

because there is a ψ ∈ ⋃n−1
j=0 S j

i such that ψ can delete ϕ by contraction. By the
broadcasting mechanism of Clause-Diffusion, the two clauses are guaranteed to
meet at every process, so that global redundancy becomes local redundancy. By
fairness, every process eventually applies ψ to delete ϕ , so that global contraction
becomes local contraction, unless the derivation succeeds sooner. Furthermore, by
the subdivision of backward simplification, distributed global contraction is achieved
while avoiding both the redundancy of letting all processes generate ϕ ↓ and the
redundancy of preventing all processes but the owner from deleting ϕ .

In summary, Clause-Diffusion is a methodology to transform a sequential orde-
ring-based theorem-proving strategy into a distributed one, in the sense that each
parallel process executes the sequential strategy, modified with subdivision of labor
and communication according to Clause-Diffusion. If the requirements for distributed
fairness are fulfilled, a complete sequential strategy yields a complete distributed
strategy.

6.3.5.6 The Clause-Diffusion Provers

At the implementation level, Clause-Diffusion is a methodology to transform a
sequential ordering-based theorem prover into a distributed one, and indeed all
Clause-Diffusion provers have a pre-existing sequential code base.

The first Clause-Diffusion prototype is Aquarius [46, 27, 47, 52]. Aquarius is
the parallelization of OTTER 2.2 [165], using PCN for communication by message
passing [101, 70]. Aquarius implements the rotate allocation criterion, with variants
such as letting every process p j own the factors of ϕ if p j owns ϕ , or even allowing
every process to own all input clauses. The latter trick violates the principle that

208 Maria Paola Bonacina

every clause is owned by only one process, and it was tried only to watch its effect in
experiments, especially when the input clauses include the axioms of some theory.
Since Otter implements unfailing or ordered completion [120, 12], Aquarius offers
also a Clause-Diffusion parallelization of ordered completion. Aquarius features also
multi-search, since its options enable the user to shut off the subdivision of clauses,
so that every process assigns all its generated clauses to itself, and attach different
search plans to the processes. For a Clause-Diffusion prover that uses the given-clause
algorithm, different search plans may mean different evaluation functions to select
the given clause [164, 5, 165, 166, 88, 33, 169, 191].

While Aquarius, like OTTER, handles first-order logic with equality, the subse-
quent Clause-Diffusion provers focus on equational logic. A reason for this choice is
that a motivation for exploring distributed search is to avoid the backward-contraction
bottleneck, and backward contraction is crucial to solve equational problems.

The second Clause-Diffusion prototype is Peers [58, 51], whose name, chosen
by Bill McCune, emphasizes that the deductive processes in Clause-Diffusion are
peers. Peers is the parallelization of code from the Otter Parts Store (OPS), for
theorem proving in equational theories possibly with associative-commutative (AC)
function symbols, using p4 for communication by message passing [67]. If paramod-
ulation is done modulo AC [175], there are generally so many AC-paramodulants
that generating all AC-paramodulants between the given equation and all those in
already-selected is too much for an iteration of the given-clause loop (cf. Sec-
tion 6.3.2.2). Therefore, Peers employs a variant of the given-clause algorithm, called
pairs algorithm: in every iteration of the loop the prover selects a pair of equations
and performs all expansion inferences from the equations in the pair, provided at
least one of them comes from to-be-selected. The evaluation function to select
the best clause as given clause is replaced by an evaluation function that selects the
best pair of equations.

Peers implements the rotate, syntax, and select-min allocation criteria, with vari-
ants such as allowing every process p j to own ϕ ↓, if p j owns ϕ and ϕ ↓ is generated
by backward contraction. Assume that the input set S is satisfiable. In principle, a
theorem-proving strategy may not terminate, because it is a semi-decision procedure.
In practice, a theorem prover terminates on a satisfiable input, because either it
generates a finite saturated set (cf. Section 6.2.2), or, more likely, because it reaches a
predefined threshold on running time or memory space. For the first kind of situation,
Peers implements the Dijkstra-Pnueli global termination detection algorithm [212]
to recognize that all processes are idle. For the second kind of situation, a process
pk that reached a threshold broadcasts a message to inform all others that it quits
the search. Clause-Diffusion allows p0, . . . , pk−1, pk+1, . . . , pn−1 to continue, but in
Peers and its successors, for simplicity, such a message from pk is a halting message.

The third Clause-Diffusion prototype is Peers-mcd, thus named because it im-
plements Modified Clause-Diffusion. The first version, called Peers-mcd.a [29], is
obtained by modifying Peers to execute Modified Clause-Diffusion, still using code
from OPS as sequential base and p4 for message passing.

The second version, dubbed Peers-mcd.b [30], is the parallelization, according to
Modified Clause-Diffusion, of version 0.9 of the EQP prover [167] for equational

6 Parallel Theorem Proving 209

theories possibly with associative-commutative (AC) function symbols. In addition
to ordered paramodulation or superposition (cf. Section 6.2.2), EQP features blocking
[199, 139, 11, 128] and basic paramodulation [14]. Blocking prevents a paramodula-
tion step whose most general unifier contains at least a pair x← t where t is reducible.
Basic paramodulation stipulates that a term is basic, if it is not introduced by a sub-
stitution, and restricts paramodulation and simplification to apply only to basic terms.
The restriction to simplification is not implemented in EQP, renouncing refutational
completeness. In terms of search plan, EQP features both given-clause algorithm and
pairs algorithm. Peers-mcd.b and its successors inherit all these features, and adopt
the Message Passing Interface (MPI) and its implementation mpich for message
passing [110].

Peers-mcd.b is the first Clause-Diffusion prover to implement the AGO allocation
criteria (cf. Section 6.3.5.3). The EQP prover made history by proving mechani-
cally that Robbins algebras are Boolean [168, 78], a conjecture remained open in
mathematics since 1933 and considered a challenge in automatic theorem proving
since 1990 [220]. Thanks to the AGO allocation criteria, Peers-mcd.b exhibited
super-linear speedup on several problems, including two lemmas representing two
thirds of the proof of the Robbins theorem [30, 31], and the Levi commutator problem
in group theory [33].

The following version of Peers-mcd is Peers-mcd.c, that features version 0.9d of
EQP as sequential base. Peers-mcd.c maintains the super-linear speedup in the first
two lemmas that form the proof of the Robbins theorem, and adds an almost linear
speedup in the third lemma [37].

Peers-mcd.d [38] still has EQP0.9d as sequential base. It differs from all previous
versions of Peers-mcd, because it offers distributed search, multi-search, and their
combination. It can run in one of three modes: (1) pure distributed-search mode:
the search space is subdivided among the processes; all processes execute the same
search plan; (2) pure multi-search mode: the search space is not subdivided; every
process executes a different search plan; and (3) hybrid mode: the search space is
subdivided, and the processes execute different search plans.

A first way to differentiate the search plans in Peers-mcd.d is to have half the
processes execute the given-clause algorithm and the other half execute the pairs
algorithm. Another way is to let the processes employ different evaluation functions
to select the given clause or pair of equations. The two ways may also be combined,
if the number of processes is sufficiently high.

Peers-mcd.d implements three heuristic evaluation functions to select given
clauses based on their similarity with the target theorem [5, 88, 38]. If multi-search
with similarity-based heuristics is selected, process pk executes the given-clause
algorithm with the first heuristic function if k mod 3 = 0, with the second heuristic
function if k mod 3 = 1, and with the third heuristic function if k mod 3 = 2. These
heuristics do not apply to the pairs algorithm.

Peers-mcd.d also turns the pick-given-ratio parameter into a way of
differentiating searches in multi-search. This parameter appeared first in OTTER
[164, 165, 166, 169] and has been adopted by most ordering-based theorem provers
[191]. It allows the prover to mix best-first search and breadth-first search: if the

210 Maria Paola Bonacina

parameter pick-given-ratio has value x, the given-clause/pair algorithm picks
the oldest, rather than the best, equation/pair once every x+ 1 choices. In other
words, it picks the best according to the heuristic evaluation function x times, then
the oldest, and then it repeats. Peers-mcd.d lets each process use a different value of
pick-given-ratio: if multi-search with different ratios is selected, process pk
resets its pick-given-ratio to x+ k.

Prior to the Robbins theorem, another challenge problem for automatic theorem
provers were the Moufang identities in alternative rings [6]. Alternative rings are
rings where the product is not associative. The first automated proofs of these
identities by a sequential prover involve several ingredients [6], including inference
rules that build the cancellation laws in the inference system [122]. Peers-mcd.d
proves the Moufang identities in alternative rings without cancellation laws and
exhibiting several instances of super-linear speedup with respect to EQP0.9d [38].
This finding suggests that parallel search can even compensate for a weaker inference
system. These results are obtained in pure distributed-search mode or hybrid mode,
whereas multi-search alone shows no speedup at all. The best performances arise in
hybrid mode. Thus, distributed search is necessary to conquer these problems, and
the addition of multi-search improves the outcome further.

In summary, super-linear speedup by Clause-Diffusion is possible, precisely
because parallel search, and all the more distributed search, does not mean executing
in parallel the same steps of the sequential search, but generating a different search,
that may visit the search space in a different way. The analysis of the experiments
shows that whenever there is a super-linear speedup, the Clause-Diffusion prover
generates fewer clauses than the sequential prover, retains a higher percentage of
them, and generates a different proof [31, 38]. Generating fewer clauses and retaining
more of them suggest better focus and less redundancy. Thus, the interpretation
of the experiments is that an effective subdivision of the search space prevents the
processes from overlapping too much, reduces the amount of redundancy, and allows
the winning process to focus on a proof sooner. Since the proof is often not unique,
these differences also reflect in a different proof being found. Note that different
proof does not necessarily mean shorter proof: in theorem proving a shorter proof
may require a longer run. The observation of super-linear speedup also indicates that
the sequential search plan is not optimal for the problem, which is not surprising,
given the generic and still largely syntactic nature of most heuristics in theorem
proving.

While generating a different search may yield a faster proof, up to the point of
a super-linear speedup, it also means that scalability may be irregular. Precisely
because the point is not to use more computers to do the same steps, there is no
guarantee that the performance improves regularly with the number of processes. For
example, it may happen that the performance scales well with up to six processes,
and becomes worse with seven or eight. A pattern of this type suggests that the
problem may not be hard enough to justify more computing power beyond a certain
point, so that subdividing the search space further is counterproductive.

In other cases, the performance oscillates: two processes do better than one, but
four do worse than two, and six speed up again; or, neither four nor six improve,

6 Parallel Theorem Proving 211

but seven or eight do. In these instances, an explanation is that the subdivision of
the search space in Clause-Diffusion depends on the number of processes, as it is
done by dynamic allocation of generated clauses during the derivation. Assume that
we have two processes p0 and p1. When we add a third process p2, the portions of
the search space assigned to p0 and p1 change with respect to what they were with
two processes. The three searches developed by p0, p1, and p2, differ from those
developed by p0 and p1 when running as two processes. Since the result depends on
the subdivision of the search, it may happen that two processes do better than four
on a certain combination of problem and strategy. However, combining distributed
search and multi-search may smooth these oscillations improving scalability [38].

6.4 Discussion

In this section first we draw connections between parallel theorem proving and paral-
lel satisfiability solving. The readers will find more by reading this chapter together
with those on 1, Parallel Satisfiability and 2, Cube and Conquer for Satisfiability.
Then, we discuss future directions for research in parallelization of theorem proving
in the light of advances in first-order model-based reasoning [44].

6.4.1 Parallel Theorem Proving and Parallel Satisfiability

The idea of subdivision of the search space in Clause-Diffusion influenced the design
of the parallel SAT solver PSATO [227, 228], which is considered a forerunner of
the divide-and-conquer approach to parallel SAT-solving. More generally, research
in parallel SAT-solving inherited from research in parallel theorem proving the focus
on parallel search. In addition, inferences and data in propositional logic are simpler
than in first-order logic, so that there is no room for parallelism below or at the
inference level. The concepts of distributed search and multi-search apply with the
same meaning also in parallel SAT-solving, corresponding to the divide-and-conquer
and portfolio approaches, respectively.

PSATO is a distributed-search parallelization of SATO [226, 229], that imple-
ments the DPLL procedure [80, 79, 71] for propositional satisfiability. The original
Davis-Putnam (DP) procedure [80] is for first-order logic, and features propositional,
or ground, resolution. The Davis-Putnam-Logemann-Loveland (DPLL) procedure
[79] replaces propositional resolution with splitting, seen as breaking disjunctions
apart by case analysis, to avoid the growth of clauses and the non-determinism of
resolution. Splitting is understood also as guessing, or deciding, the truth value of
a propositional variable, in order to search for a model of the given set of clauses.
Thus, DPLL is a model-based procedure, where all operations are centered around a
candidate partial model, called context, represented by a sequence, or trail, of literals.

212 Maria Paola Bonacina

A PSATO derivation features n+1 processes, with one master process that subdi-
vides the work, and n client processes each searching for a model by executing SATO.
The key idea is to subdivide the search space by using guiding paths. The notion of
guiding path is inspired by the view of the search space of a SAT problem as the
tree of recursive calls of the DPLL procedure. In this tree a node has typically two
outgoing arcs, one labeled L and the other labeled ¬L, where L is a literal occurring
in the input problem. The two arcs correspond to the two cases of the case-splitting
on L (either L is true or L is false), and lead to the two ensuing recursive calls, one
where L is asserted and one where ¬L is asserted.

A guiding path is a path in this tree; it is represented as a sequence of pairs
〈(L1,δ1),(L2,δ2), . . . ,(Lk,δk)〉, where, for 1 ≤ i ≤ k, the Li’s are the literals la-
beling the path; δi = 1, if Li is a first child; and δi = 0, if Li is a second child.
A node labeled (L,1) is open, because L is still to be flipped; a node labeled
(L,0) is closed, because L has been already flipped. A job is given by a pair
(S,P), where S is the input set of clauses and P is a guiding path. Given a path
P = 〈(L1,0),(L2,0), . . . ,(Li,1), . . . ,(Lk,δk)〉, where i is the smallest index for which
δi = 1, two new disjoint paths are generated by splitting on Li, yielding P1 =
〈(L1,0),(L2,0), . . . ,(¬Li,0)〉 and P2 = 〈(L1,0),(L2,0), . . . ,(Li,0), . . . ,(Lk,δk)〉.

In PSATO, the master process is responsible for preparing the jobs and assigning
a job and a time limit to each client process. Every client will return either sat with
a model of S; or unsat, meaning that its assigned subtree contains no model; or a
guiding path, representing the search remaining when the time is up. The subtrees
assigned to the clients are disjoint portions of a finite search space, so that the
subdivision has no overlap by definition. In contrast, in first-order theorem proving
the search space is infinite, its representation is far more complex [55, 34, 39], and a
strategy may at most try to limit the overlap of the searches by heuristic subdivision
criteria as done in Clause-Diffusion (cf. Section 6.3.5.3).

The transition from the DPLL to the CDCL (Conflict-Driven Clause Learning)
procedure [161, 162, 171, 160] is a game changer in parallel SAT-solving like
in sequential SAT-solving. CDCL means conflict-driven SAT: when the current
candidate model falsifies a clause, called conflict clause, this conflict is explained by
a heuristically controlled series of resolution steps, where every resolvent is also a
conflict clause. A resolvent is learned, and the candidate partial model is repaired in
such a way to remove the conflict, by satisfying the learned clause and backjumping
as far away as possible from the conflict.

Learning a conflict clause is a form of lemmatization, as every resolvent is a
lemma, a logical consequence of the input set of clauses. All learned clauses are
former conflict clauses. Similar to other situations (cf. Section 6.2.1), a purpose of
learning lemmas is to avoid repetitions: in CDCL it prevents the procedure from
falling repeatedly in the same conflicts. In this sense, learning clauses is a way of
pruning the search space.

The CDCL procedure involves several ingredients, in addition to conflict-driven
clause learning and backjumping. Activity-based decision heuristics select the literal
for the next decision by counting how many times a literal appear in learned clauses
and favoring most active literals [230].

6 Parallel Theorem Proving 213

Clausal propagation consists of detecting conflict clauses and implied literals. A
conflict clause is a clause whose literals are all false in the current candidate model.
A literal is implied if it is the only unassigned literal of a clause: such a literal must be
added to the trail in order to satisfy the clause, which is the justification of the implied
literal. In the two watched literals scheme for clausal propagation [230, 126], it is
sufficient to watch two non-false (i.e., either true or unassigned) literals per clause in
order to detect conflict clauses and implied literals. Indeed, a conflict clause has zero
non-false literals, and a justification has one non-false literal, so that a clause with
two is neither a conflict clause nor a justification.

The possibility of periodically restarting the search with an empty trail and a set
of clauses augmented with learned clauses may serve the purpose of compacting the
trail or changing dynamically the order with which literals are picked for decision.

From the point of view of our analysis of parallelization of reasoning, clause
learning is a key difference between DPLL and CDCL. Parallelizing DPLL can be
seen as analogous to parallelizing tableau-based subgoal-reduction strategies: the
database of clauses is fixed, equal to the input set, and the strategy searches for a
model by exploring a tree that represents a survey of all possible interpretations.
On the other hand, parallelizing CDCL can be seen as analogous to parallelizing
expansion-oriented strategies, as the database of clauses grows due to learning. In
CDCL learned clauses can be deleted based on heuristics (e.g., delete the oldest, or
the least involved in resolution). These deletions can be considered a kind of forward
contraction, while there is no analogy with backward contraction, since, for example,
input clauses are not subject to deletion.

For CDCL, the definition of guiding path is updated to abandon the reference to
the search space of a recursive DPLL procedure: a guiding path is simply a sequence
of literals, and a node labeled L is open, if L is a decided literal, closed, if L is an
implied literal [187]. Also, the notion of guiding path is replaced by that of cube
[116]. Logically speaking, a cube is a conjunction, or a set, of literals. In practice,
cubes are typically much longer than guiding paths [116].

In keeping with the model-based character of the CDCL procedure, a cube can
be understood as an assignment that assigns true to the literals in the cube. Then,
the SAT problem is generalized to the satisfiability modulo assignment (SMA)
problem, defined as the problem of deciding the satisfiability of S with respect to an
assignment J to some of the literals in S. If J is empty, SMA reduces to SAT, while
an intermediate state of a SAT search is an SMA instance, since during the search a
SAT solver maintains a partial candidate model represented by an assignment of truth
values to propositional variables. Approaches to parallel SAT-solving by distributed
search such as PAMIRAXT [187] and cube and conquer [116] (cf. the dedicated
chapter), attack a SAT problem with input set S, by having n processes p0, . . . , pn−1
working in parallel on n SMA instances with input set S and initial assignments
J0, . . .Jn−1, each containing a distinct cube.

Approaches to parallel SAT-solving by multi-search assign to the processes
p0, . . . , pn−1 different search plans, as in MANYSAT [113]. Similar to ATP sys-
tems, also SAT solvers have many options and parameters that define the search
plan and whose variation may serve the purpose of differentiating the searches. For

214 Maria Paola Bonacina

example, the p j’s may employ different heuristics to pick the next literal for decision,
or different heuristics to determine when to restart. Another way to differentiate
the searches is to use randomization as in CL-SDSAT [123]: a randomized SAT
solver makes a certain percentage of its decisions at random, starting from a given
randomized seed, rather than based on a heuristic. Then, the p j’s may use different
percentages or different seeds.

Activity-based decision heuristics and restart heuristics tend to intensify the search
of a process, meaning that the process focuses on a certain region of the search space.
In parallel search, this phenomenon may be useful to reduce the overlap between the
processes, if each p j focuses on a different region [112, 111].

In both distributed-search and multi-search parallel SAT-solving methods, the
processes may communicate learned clauses [112, 113, 187, 123]. A learned clause
ϕ is not sent to a process whose initial cube satisfies ϕ: indeed, in a model-based
strategy a satisfied clause is redundant [62]. Upon receiving a learned clause, a
process needs to determine its two watched literals for clausal propagation.

Since learned clauses are generated resolvents, communication of learned clauses
in parallel SAT-solving reminds one of Clause-Diffusion (cf. Section 6.3.5.2). The
possibility of applying heuristics to select for broadcasting only useful learned clauses
is in the spirit of the Team-Work method (cf. Section 6.3.4.2). A typical heuristic is
to broadcast learned clauses whose size is below a certain threshold. This is similar
to what happens in Clause-Diffusion with deletion by weight: a clause whose weight
is above the threshold gets deleted by forward contraction and therefore it is not
broadcast. This kind of heuristic can be made dynamic by varying the threshold
during the search [112]. In propositional logic the size of a clause is the number of
its literals. In a SAT solver the size of a clause is the number of its non-false literals
with respect to the current candidate model. Thus, a clause may have different sizes
under different cubes. Therefore, whether a learned clause is communicated depends
on the given cube, as suggested in PMSAT [107].

Since a purpose of learning conflict clauses is to prune the search space, receiving
from process pk a learned conflict clause may help process p j prune its search space.
This is analogous to what happens in parallel search for ordering-based strategies,
where receiving from process pk a good simplifier may help process p j prune its
search space. On the other hand, communication is a cost in both contexts.

In parallel SAT-solving, the communication of learned clauses may be at odd with
having low overlap or no overlap: if the processes delve into remote regions of the
search space, sharing learned clauses may become useless [112]. In parallel search
for theorem proving it is much harder to avoid overlapping searches, and therefore
this issue does not arise. The observation of this phenomenon in parallel SAT-solving
leads to the notion of subdividing the processes into groups [111]. Processes within
a group cooperate, by sharing information such as learned clauses. Each group is
devoted to search a different region of the search space, by letting all processes in
the group start with the same cube, which is distinct from the cubes given to all other
groups.

6 Parallel Theorem Proving 215

6.4.2 Parallelism and First-Order Model-Based Reasoning

Motivations for renewing the quest for parallel first-order theorem-proving methods
are not different from those for injecting parallelism in SAT solvers: problems from
applications get bigger and bigger; it is hard to improve sequential performance;
and parallel hardware is available. In addition, the ATP problem is harder (only
semi-decidable) and still far less understood than the SAT problem. The research of
new approaches to ATP is certainly not over, and there are also approaches that are
not new but never or barely considered for parallelization.

The investigation of ways to combine semantics and parallelism in theorem
proving is still largely an open problem. Semantically-guided strategies assume a
fixed interpretation for semantic guidance. Among ordering-based strategies, a basic
paradigm is that of semantic resolution, with hyperresolution and resolution with
set of support as special cases (cf. Section 6.2.2). Among instance-based strategies,
ordered semantic hyperlinking (OSHL) enriches hyperlinking with semantic guidance
(cf. Section 6.2.3). A natural idea is to devise multi-search methods where the
processes employ different guiding interpretations for semantic resolution or OSHL.
A simple example is to have two parallel processes, one using positive and the other
negative hyperresolution.

Another possibility is to design a method that combines distributed search as in
Clause-Diffusion (cf. Section 6.3.5) with a multi-search scheme where the processes
adopt different guiding interpretations. While Clause-Diffusion is a general paradigm,
it targets especially contraction-based strategies for equational theories and first-order
logic with equality (cf. Section 6.2.2.2). Thus, the challenge is to combine multi-
search with different guiding interpretations with distributed search for a logic
including equality.

Model-based strategies build a candidate partial model and declare unsatisfiability
when a contradiction arises, showing that no candidate can be completed in a model of
the input set of clauses. Beside model elimination (ME) and ME-tableaux strategies
(cf. Sections 6.2.1, 6.3.1.1, 6.3.2.1, 6.3.4.1), there are other classes of strategies that
aim at being model-based for first-order logic and have not been considered for
parallelization. This is the case for most model-oriented instance-based strategies and
hybrid strategies that combine instance generation with tableaux (cf. Section 6.2.3
and Section 7.3 of [39]), as well as for the model evolution calculus that lifts the
DPLL procedure to first-order logic [17, 18, 22, 23, 21].

Another example are the methods that integrate an ordering-based strategy for
first-order logic with equality with a model-building method. In early approaches
the two engines were loosely coupled and the model-building method was a model
finder enumerating small models [200]. In later approaches the integration is tight
and the model finder is replaced with a CDCL-based SAT [182] or SMT solver
[57]. A straightforward approach to parallelization is to have two parallel processes,
one executing the first-order strategy and one executing the solver. More ambitious
schemes could devote multiple processes to both kinds of reasoning, parallelizing, in
the sense of parallel search, both ordering-based strategy and solver. Such schemes
could combine approaches to parallel search for SAT solvers (cf. Section 6.4.1 and

216 Maria Paola Bonacina

the chapters on 1, Parallel Satisfiability and 2, Cube and Conquer for Satisfiability),
SMT solvers (cf. the chapter on 5, Parallel Satisfiability Modulo Theories), and
ordering-based first-order provers (cf. Sections 6.3.4.2 and 6.3.5).

SGGS (Semantically-Guided Goal-Sensitive reasoning) generalizes CDCL to
first-order logic, and is both model-based and semantically-guided [60, 59, 61, 62].
Other approaches to generalizing CDCL include DPLL(S X) [176] and NRCL [2]
for effectively propositional logic, and conflict resolution [201, 124] for first-order
logic. SGGS searches for a model of the input set S of clauses, starting from a given
initial Herbrand interpretation I, and building interpretations I[Γ1], I[Γ2], I[Γ3] . . .,
represented by SGGS clause sequences Γ1, Γ2, Γ3 An SGGS clause sequence is
a sequence of constrained clauses with selected literals. An SGGS-derivation has
the form Γ0 # Γ1 # Γ2 # Γ3 # . . ., where Γ0 is empty and I[Γ0] = I. The current SGGS
clause sequence corresponds to the current trail in CDCL. The main SGGS activities
correspond to those of CDCL as follows.

The SGGS analogue of CDCL decision is selection of a literal in any clause added
to the current SGGS clause sequence Γ . Selected literals differentiate I[Γ] from Γ .
SGGS is possibly the first method that features clausal propagation at the first-order
level. Clausal propagation in SGGS relies on the concepts of uniform falsity and
dependence. A literal is uniformly false in an interpretation, if all its ground instances
are false in that interpretation. For I, a literal is I-true if it is true in I, and I-false if it
is uniformly false in I. SGGS requires that all literals in an SGGS clause sequence
are either I-true or I-false. This invariant ensures that all ground instances of a literal
in the sequence are in harmony with respect to I. A literal L depends on a selected
literal M, if M precedes L in Γ , and all ground instances of L appear negated among
the ground instances of M that M contributes to I[Γ], so that M’s selection makes L
uniformly false in I[Γ].

Most SGGS concepts and activities are defined modulo semantic guidance by
I, because the system endeavours to make I[Γ] different from I, since I �|= S (if
I |= S, the problem is solved). For example, it is the I-false selected literals in Γ that
differentiate I[Γ] from I. Similarly, it is the dependence of I-true literals on I-false
selected literals that is recorded by assignments; and it is I-all-true clauses, or clauses
whose literals are all I-true, that are conflict clauses or justifications of implied literal.
When all literals of an I-all-true clause are assigned, it means that in an attempt to
diversify I[Γ] from I to satisfy other clauses, the system made that I-all-true clause
uniformly false in I[Γ]. When all literals of an I-all-true clause but one are assigned,
the non-assigned one must be selected, and it is an implied literal, as all its ground
instances must be true in I[Γ] to satisfy the clause.

The SGGS inference system includes SGGS-extension, SGGS-splitting, SGGS-
resolution, SGGS-move, and SGGS-deletion. SGGS-extension is an instance genera-
tion mechanism. SGGS-extension extends the sequence Γ and the candidate model
I[Γ], by adding to Γ an instance of an input clause which covers ground instances
not satisfied by I[Γ]. The clause is instantiated in a way that enforces the invariant
whereby all literals in Γ are either I-true or I-false.

SGGS-splitting has nothing to do with DPLL splitting. SGGS-splitting of a clause
ϕ by a clause ψ replaces ϕ by a partition, where all ground instances that a specified

6 Parallel Theorem Proving 217

literal in ϕ has in common with ψ’s selected literal are confined to one clause of the
partition. This enables SGGS-resolution or SGGS-deletion to remove such intersec-
tions between literals, eliminating duplications or contradictions in the representation
of the candidate model. SGGS-resolution is a restricted form of first-order resolution,
where an implied literal in a justification resolves away a literal that depends on
it: for this reason it uses matching rather than unification, and allows the resolvent
to replace the parent that is not a justification. SGGS-deletion removes disposable
clauses, that are redundant, because satisfied by the interpretation induced by the
clauses on their left in Γ . In a model-based approach a satisfied clause is redundant.

If SGGS-extension adds a clause in conflict with I[Γ], the first-order CDCL
mechanism of SGGS applies. It comprises explanation and solving inferences. If
the conflict clause includes I-false literals, SGGS-resolution explains the conflict by
resolving away those I-false literals with implied literals in Γ . An SGGS-extension
adding such a clause makes sure that this is possible by applying an appropriate
substitution. The explanation inferences yield either � or an I-all-true conflict clause,
which is then subject to the solving inferences.

If the conflict clause does not include I-false literals, only the solving inferences
are applied: the conflict clause is moved to the left of the clause which its selected
literal is assigned to. This SGGS-move solves the conflict by flipping the truth value
in I[Γ] of all ground instances of this selected literal. It corresponds to backjumping
in CDCL. The moved clause is learned in the sense that it becomes the justification
of its selected literal. Prior to the move, splitting inferences may apply to make the
selected literal of the clause to be moved so precise, that the move will indeed flip the
truth value of all its ground instances. Every SGGS-extension with a conflict clause
is followed by the explanation and solving inference that solve the conflict.

Because of the novelty of SGGS, its parallelization is a research goal for the long
term. Since SGGS is semantically guided by the initial interpretation I, the notion of
a parallel search with multiple SGGS processes, each using a different I for semantic
guidance, applies here too. Similar to hyperresolution, the simplest example is to
have two parallel SGGS processes, one using an I where all negative literals are true,
and the other using an I where all positive literals are true. Most excitingly, SGGS
opens the possibility of lifting to the first-order level the ideas for distributed search
(e.g., cubes) or multi-search put forth for CDCL.

References

[1] Martin Aigner, Armin Biere, Christoph M. Kirsch, Aina Niemetz, and Mathias
Preiner. Analysis of portfolio-style parallel SAT solving on current multi-core
architectures. In Daniel Le Berre and Allen Van Gelder, editors, Notes of
the Fourth Workshop on Pragmatics of SAT (POS), Sixteenth International
Conference on Theory and Applications of Satisfiability Testing (SAT), pages
28–40, 2013.

218 Maria Paola Bonacina

[2] Gábor Alagi and Christoph Weidenbach. NRCL – a model building approach
to the Bernays-Schönfinkel fragment. In Carsten Lutz and Silvio Ranise,
editors, Proceedings of the Tenth International Symposium on Frontiers of
Combining Systems (FroCoS), volume 9322 of Lecture Notes in Artificial
Intelligence, pages 69–84. Springer, 2015.

[3] Iliès Alouini. Concurrent garbage collector for concurrent rewriting. In Jieh
Hsiang, editor, Proceedings of the Sixth International Conference on Rewriting
Techniques and Applications (RTA), volume 914 of Lecture Notes in Computer
Science, pages 132–146. Springer, 1995.

[4] Iliès Alouini. Étude et mise en oeuvre de la réecriture conditionnelle concur-
rente sur des machines parallèles à mémoire distribuée. PhD thesis, Université
Henri Poincaré Nancy 1, May 1997.

[5] Siva Anantharaman and Nirina Andrianarivelo. Heuristical criteria in refu-
tational theorem proving. In Alfonso Miola, editor, Proceedings of the First
International Symposium on Design and Implementation of Symbolic Compu-
tation Systems (DISCO), volume 429 of Lecture Notes in Computer Science,
pages 184–193. Springer, 1990.

[6] Siva Anantharaman and Jieh Hsiang. Automated proofs of the Moufang
identities in alternative rings. Journal of Automated Reasoning, 6(1):76–109,
1990.

[7] Owen L. Astrachan and Donald W. Loveland. METEORs: high performance
theorem provers using model elimination. In Robert S. Boyer, editor, Auto-
mated Reasoning: Essays in Honor of Woody Bledsoe, pages 31–60. Kluwer
Academic Publishers, The Netherlands, 1991.

[8] Owen L. Astrachan and Mark E. Stickel. Caching and lemmaizing in model
elimination theorem provers. In Deepak Kapur, editor, Proceedings of the
Eleventh International Conference on Automated Deduction (CADE), volume
607 of Lecture Notes in Artificial Intelligence, pages 224–238. Springer, 1992.

[9] Jürgen Avenhaus and Jörg Denzinger. Distributing equational theorem proving.
In Claude Kirchner, editor, Proceedings of the Fifth International Conference
on Rewriting Techniques and Applications (RTA), volume 690 of Lecture
Notes in Computer Science, pages 62–76. Springer, 1993.

[10] Jürgen Avenhaus, Jörg Denzinger, and Matthias Fuchs. DISCOUNT: a system
for distributed equational deduction. In Jieh Hsiang, editor, Proceedings of
the Sixth International Conference on Rewriting Techniques and Applications
(RTA), volume 914 of Lecture Notes in Computer Science, pages 397–402.
Springer, 1995.

[11] Leo Bachmair and Nachum Dershowitz. Critical pair criteria for completion.
Journal of Symbolic Computation, 6(1):1–18, 1988.

[12] Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion
without failure. In Hassam Aït-Kaci and Maurice Nivat, editors, Resolution of
Equations in Algebraic Structures, volume II: Rewriting Techniques, pages
1–30. Academic Press, Cambridge, England, 1989.

6 Parallel Theorem Proving 219

[13] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem
proving with selection and simplification. Journal of Logic and Computation,
4(3):217–247, 1994.

[14] Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder.
Basic paramodulation. Information and Computation, 121(2):172–192, 1995.

[15] Leo Bachmair, Harald Ganzinger, David McAllester, and Christopher A.
Lynch. Resolution theorem proving. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 2,
pages 535–610. Elsevier, Amsterdam, The Netherlands, 2001.

[16] Peter Baumgartner. Hyper tableaux – the next generation. In Harrie de Swart,
editor, Proceedings of the Seventh International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX), volume
1397 of Lecture Notes in Artificial Intelligence, pages 60–76. Springer, 1998.

[17] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Implementing the
model evolution calculus. International Journal on Artificial Intelligence
Tools, 15(1):21–52, 2006.

[18] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Lemma learning
in the model evolution calculus. In Miki Hermann and Andrei Voronkov,
editors, Proceedings of the Thirteenth Conference on Logic, Programming
and Automated Reasoning (LPAR), volume 4246 of Lecture Notes in Artificial
Intelligence, pages 572–586. Springer, 2006.

[19] Peter Baumgartner and Ulrich Furbach. Consolution as a framework for
comparing calculi. Journal of Symbolic Computation, 16(5):445–477, 1993.

[20] Peter Baumgartner and Ulrich Furbach. Variants of clausal tableaux. In
Wolfgang Bibel and Peter H. Schmitt, editors, Automated Deduction - A Basis
for Applications, volume I: Foundations - Calculi and Methods, chapter 3,
pages 73–102. Kluwer Academic Publishers, The Netherlands, 1998.

[21] Peter Baumgartner, Björn Pelzer, and Cesare Tinelli. Model evolution calculus
with equality - revised and implemented. Journal of Symbolic Computation,
47(9):1011–1045, 2012.

[22] Peter Baumgartner and Cesare Tinelli. The model evolution calculus as a
first-order DPLL method. Artificial Intelligence, 172(4/5):591–632, 2008.

[23] Peter Baumgartner and Uwe Waldmann. Superposition and model evolution
combined. In Renate Schmidt, editor, Proceedings of the Twenty-Second
International Conference on Automated Deduction (CADE), volume 5663 of
Lecture Notes in Artificial Intelligence, pages 17–34. Springer, 2009.

[24] Markus Bender, Björn Pelzer, and Claudia Schon. E-KRHyper 1.4: extensions
for unique names and description logic. In Maria Paola Bonacina, editor,
Proceedings of the Twenty-Fourth International Conference on Automated
Deduction (CADE), volume 7898 of Lecture Notes in Artificial Intelligence,
pages 126–134. Springer, 2013.

[25] Wolfgang Bibel and Elmer Eder. Methods and calculi for deduction. In Dov M.
Gabbay, Christopher J. Hogger, and John Alan Robinson, editors, Handbook
of Logic in Artificial Intelligence and Logic Programming, volume I: Logical
Foundations, pages 68–183. Oxford University Press, Oxford, England, 1993.

220 Maria Paola Bonacina

[26] Jean-Paul Billon. The disconnection method. In Pierangelo Miglioli, Ugo
Moscato, Daniele Mundici, and Mario Ornaghi, editors, Proceedings of
the Fifth International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX), volume 1071 of Lecture Notes
in Artificial Intelligence, pages 110–126. Springer, 1996.

[27] Maria Paola Bonacina. Distributed automated deduction. PhD thesis, De-
partment of Computer Science, State University of New York at Stony Brook,
December 1992.

[28] Maria Paola Bonacina. On the reconstruction of proofs in distributed theorem
proving with contraction: a modified Clause-Diffusion method. In Hoon Hong,
editor, Proceedings of the First International Symposium on Parallel Symbolic
Computation (PASCO), volume 5 of Lecture Notes Series in Computing, pages
22–33. World Scientific, 1994.

[29] Maria Paola Bonacina. On the reconstruction of proofs in distributed the-
orem proving: a modified Clause-Diffusion method. Journal of Symbolic
Computation, 21(4–6):507–522, 1996.

[30] Maria Paola Bonacina. The Clause-Diffusion theorem prover Peers-mcd.
In William W. McCune, editor, Proceedings of the Fourteenth International
Conference on Automated Deduction (CADE), volume 1249 of Lecture Notes
in Artificial Intelligence, pages 53–56. Springer, 1997.

[31] Maria Paola Bonacina. Experiments with subdivision of search in distributed
theorem proving. In Markus Hitz and Erich Kaltofen, editors, Proceedings
of the Second International Symposium on Parallel Symbolic Computation
(PASCO), pages 88–100. ACM Press, 1997.

[32] Maria Paola Bonacina. Analysis of distributed-search contraction-based strate-
gies. In Jürgen Dix, Luis Fariñas del Cerro, and Ulrich Furbach, editors,
Proceedings of the Sixth European Workshop on Logics in Artificial Intelli-
gence (JELIA), volume 1489 of Lecture Notes in Artificial Intelligence, pages
107–121. Springer, 1998.

[33] Maria Paola Bonacina. Mechanical proofs of the Levi commutator problem.
In Peter Baumgartner et al., editor, Notes of the Workshop on Problem Solving
Methodologies with Automated Deduction, Fifteenth International Conference
on Automated Deduction (CADE), pages 1–10, 1998.

[34] Maria Paola Bonacina. A model and a first analysis of distributed-search
contraction-based strategies. Annals of Mathematics and Artificial Intelligence,
27(1–4):149–199, 1999.

[35] Maria Paola Bonacina. A taxonomy of theorem-proving strategies. In
Michael J. Wooldridge and Manuela Veloso, editors, Artificial Intelligence
Today - Recent Trends and Developments, volume 1600 of Lecture Notes in
Artificial Intelligence, pages 43–84. Springer, Berlin, Germany, 1999.

[36] Maria Paola Bonacina. Ten years of parallel theorem proving: a perspective.
In Bernhard Gramlich, Hélène Kirchner, and Frank Pfenning, editors, Notes
of the Third Workshop on Strategies in Automated Deduction (STRATEGIES),
Second Federated Logic Conference (FLoC), pages 3–15, 1999.

6 Parallel Theorem Proving 221

[37] Maria Paola Bonacina. A taxonomy of parallel strategies for deduction. Annals
of Mathematics and Artificial Intelligence, 29(1–4):223–257, 2000.

[38] Maria Paola Bonacina. Combination of distributed search and multi-search
in Peers-mcd.d. In Rajeev P. Gore, Alexander Leitsch, and Tobias Nipkow,
editors, Proceedings of the First International Joint Conference on Automated
Reasoning (IJCAR), volume 2083 of Lecture Notes in Artificial Intelligence,
pages 448–452. Springer, 2001.

[39] Maria Paola Bonacina. Towards a unified model of search in theorem proving:
subgoal-reduction strategies. Journal of Symbolic Computation, 39(2):209–
255, 2005.

[40] Maria Paola Bonacina. On theorem proving for program checking – Historical
perspective and recent developments. In Maribel Fernandez, editor, Proceed-
ings of the Twelfth International Symposium on Principles and Practice of
Declarative Programming (PPDP), pages 1–11. ACM Press, 2010.

[41] Maria Paola Bonacina and Nachum Dershowitz. Abstract canonical inference.
ACM Transactions on Computational Logic, 8(1):180–208, 2007.

[42] Maria Paola Bonacina and Nachum Dershowitz. Canonical ground Horn theo-
ries. In Andrei Voronkov and Christoph Weidenbach, editors, Programming
Logics: Essays in Memory of Harald Ganzinger, volume 7797 of Lecture
Notes in Artificial Intelligence, pages 35–71. Springer, 2013.

[43] Maria Paola Bonacina and Mnacho Echenim. Theory decision by decomposi-
tion. Journal of Symbolic Computation, 45(2):229–260, 2010.

[44] Maria Paola Bonacina, Ulrich Furbach, and Viorica Sofronie-Stokkermans.
On first-order model-based reasoning. In Narciso Martí-Oliet, Peter Olveczky,
and Carolyn Talcott, editors, Logic, Rewriting, and Concurrency: Essays
Dedicated to José Meseguer, volume 9200 of Lecture Notes in Computer
Science, pages 181–204. Springer, Berlin, Germany, 2015.

[45] Maria Paola Bonacina and Jieh Hsiang. High performance simplification-
based automated deduction. In Transactions of the Ninth U.S. Army Confer-
ence on Applied Mathematics and Computing, number 92-1, pages 321–335.
Army Research Office, 1991.

[46] Maria Paola Bonacina and Jieh Hsiang. A system for distributed simplification-
based theorem proving. In Bertrand Fronhöfer and Graham Wrightson, editors,
Proceedings of the First International Workshop on Parallelization in Infer-
ence Systems (December 1990), volume 590 of Lecture Notes in Artificial
Intelligence, pages 370–370. Springer, Berlin, Germany, 1992.

[47] Maria Paola Bonacina and Jieh Hsiang. Distributed deduction by Clause-
Diffusion: the Aquarius prover. In Alfonso Miola, editor, Proceedings of the
Third International Symposium on Design and Implementation of Symbolic
Computation Systems (DISCO), volume 722 of Lecture Notes in Computer
Science, pages 272–287. Springer, 1993.

[48] Maria Paola Bonacina and Jieh Hsiang. On fairness in distributed deduction.
In Patrice Enjalbert, Alain Finkel, and Klaus W. Wagner, editors, Proceedings
of the Tenth Annual Symposium on Theoretical Aspects of Computer Science

222 Maria Paola Bonacina

(STACS), volume 665 of Lecture Notes in Computer Science, pages 141–152.
Springer, 1993.

[49] Maria Paola Bonacina and Jieh Hsiang. On subsumption in distributed deriva-
tions. Journal of Automated Reasoning, 12:225–240, 1994.

[50] Maria Paola Bonacina and Jieh Hsiang. Parallelization of deduction strategies:
an analytical study. Journal of Automated Reasoning, 13:1–33, 1994.

[51] Maria Paola Bonacina and Jieh Hsiang. The Clause-Diffusion methodology
for distributed deduction. Fundamenta Informaticae, 24(1–2):177–207, 1995.

[52] Maria Paola Bonacina and Jieh Hsiang. Distributed deduction by Clause-
Diffusion: distributed contraction and the Aquarius prover. Journal of Sym-
bolic Computation, 19:245–267, 1995.

[53] Maria Paola Bonacina and Jieh Hsiang. Towards a foundation of comple-
tion procedures as semidecision procedures. Theoretical Computer Science,
146:199–242, 1995.

[54] Maria Paola Bonacina and Jieh Hsiang. On semantic resolution with lem-
maizing and contraction and a formal treatment of caching. New Generation
Computing, 16(2):163–200, 1998.

[55] Maria Paola Bonacina and Jieh Hsiang. On the modelling of search in theorem
proving – towards a theory of strategy analysis. Information and Computation,
147:171–208, 1998.

[56] Maria Paola Bonacina, Christopher A. Lynch, and Leonardo de Moura. On
deciding satisfiability by DPLL(Γ +T) and unsound theorem proving. In
Renate Schmidt, editor, Proceedings of the Twenty-second International Con-
ference on Automated Deduction (CADE), volume 5663 of Lecture Notes in
Artificial Intelligence, pages 35–50. Springer, 2009.

[57] Maria Paola Bonacina, Christopher A. Lynch, and Leonardo de Moura. On
deciding satisfiability by theorem proving with speculative inferences. Journal
of Automated Reasoning, 47(2):161–189, 2011.

[58] Maria Paola Bonacina and William W. McCune. Distributed theorem proving
by Peers. In Alan Bundy, editor, Proceedings of the Twelfth International
Conference on Automated Deduction (CADE), volume 814 of Lecture Notes
in Artificial Intelligence, pages 841–845. Springer, 1994.

[59] Maria Paola Bonacina and David A. Plaisted. Constraint manipulation in
SGGS. In Temur Kutsia and Christophe Ringeissen, editors, Proceedings of
the Twenty-Eighth Workshop on Unification (UNIF), Sixth Federated Logic
Conference (FLoC), Technical Reports of the Research Institute for Symbolic
Computation, pages 47–54. Johannes Kepler Universität, 2014. Available at
http://vsl2014.at/meetings/UNIF-index.html.

[60] Maria Paola Bonacina and David A. Plaisted. SGGS theorem proving: an
exposition. In Stephan Schulz, Leonardo De Moura, and Boris Konev, edi-
tors, Proceedings of the Fourth Workshop on Practical Aspects in Automated
Reasoning (PAAR), Sixth Federated Logic Conference (FLoC), July 2014,
volume 31 of EasyChair Proceedings in Computing (EPiC), pages 25–38,
2015.

http://vsl2014.at/meetings/UNIF-index.html

6 Parallel Theorem Proving 223

[61] Maria Paola Bonacina and David A. Plaisted. Semantically-guided goal-
sensitive reasoning: model representation. Journal of Automated Reasoning,
56(2):113–141, 2016.

[62] Maria Paola Bonacina and David A. Plaisted. Semantically-guided goal-
sensitive reasoning: inference system and completeness. Journal of Automated
Reasoning, 56(2):165–218, 2016.

[63] Soumitra Bose, Edmund M. Clarke, David E. Long, and Spiro Michaylov.
Parthenon: A parallel theorem prover for non-Horn clauses. Journal of Auto-
mated Reasoning, 8(2):153–182, 1992.

[64] Bruno Buchberger. An algorithm for finding a basis for the residue class ring
of a zero-dimensional polynomial ideal (in German). PhD thesis, Department
of Mathematics, Universität Innsbruck, 1965.

[65] Bruno Buchberger. History and basic features of the critical-pair/completion
procedure. Journal of Symbolic Computation, 3:3–38, 1987.

[66] Reinhard Bündgen, Manfred Göbel, and Wolfgang Küchlin. Strategy-
compliant multi-threaded term completion. Journal of Symbolic Computation,
21(4–6):475–506, 1996.

[67] Ralph M. Butler and Ewing L. Lusk. User’s guide to the p4 programming
system. Technical Report 92/17, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, Illinois, October 1992.

[68] Soumen Chakrabarti and Katherine A. Yelick. Implementing an irregular
application on a distributed memory multiprocessor. In Proceedings of the
Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 169–178, 1993.

[69] Soumen Chakrabarti and Katherine A. Yelick. On the correctness of a dis-
tributed memory Gröbner basis algorithm. In Claude Kirchner, editor, Pro-
ceedings of the Fifth International Conference on Rewriting Techniques and
Applications (RTA), volume 690 of Lecture Notes in Computer Science, pages
77–91. Springer, 1993.

[70] K. Many Chandy and Stephen Taylor. An Introduction to Parallel Program-
ming. Jones and Bartlett, Burlington, Massachusetts, 1991.

[71] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechan-
ical Theorem Proving. Academic Press, Cambridge, England, 1973.

[72] P. Daniel Cheng and J. Y. Juang. A parallel resolution procedure based on
connection graph. In Proceedings of the Sixth Annual Conference of the
American Association for Artificial Intelligence (AAAI), pages 13–17, 1987.

[73] Heng Chu and David A. Plaisted. Model finding in semantically guided
instance-based theorem proving. Fundamenta Informaticae, 21(3):221–235,
1994.

[74] Heng Chu and David A. Plaisted. CLINS-S: a semantically guided first-order
theorem prover. Journal of Automated Reasoning, 18(2):183–188, 1997.

[75] Edmund M. Clarke, David E. Long, Spiro Michaylov, Stephen A. Schwab,
Jean-Philippe Vidal, and Shinji Kimura. Parallel symbolic computation al-
gorithms. Technical Report CMU-CS-90-182, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, October 1990.

224 Maria Paola Bonacina

[76] Susan E. Conry, Douglas J. MacIntosh, and Robert A. Meyer. DARES: a
Distributed Automated REasoning System. In Proceedings of the Eleventh
Annual Conference of the American Association for Artificial Intelligence
(AAAI), pages 78–85, 1990.

[77] Simon Cruanes. Extending superposition with integer arithmetic, structural
induction, and beyond. PhD thesis, École Polytechnique, Université Paris-
Saclay, September 2015.

[78] Bernd I. Dahn. Robbins algebras are Boolean: a revision of McCune’s
computer-generated solution of Robbins problem. Journal of Algebra,
208:526–532, 1998.

[79] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[80] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201–215, 1960.

[81] Leonardo de Moura and Nikolaj Bjørner. Engineering DPLL(T) + satura-
tion. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,
Proceedings of the Fourth International Conference on Automated Reason-
ing (IJCAR), volume 5195 of Lecture Notes in Artificial Intelligence, pages
475–490. Springer, 2008.

[82] Leonardo de Moura and Nikolaj Bjørner. Bugs, moles and skeletons: Symbolic
reasoning for software development. In Jürgen Giesl and Reiner Hähnle,
editors, Proceedings of the Fifth International Conference on Automated
Reasoning (IJCAR), volume 6173 of Lecture Notes in Artificial Intelligence,
pages 400–411. Springer, 2010.

[83] Leonardo de Moura and Nikolaj Bjørner. Satisfiability modulo theories:
introduction and applications. Communications of the ACM, 54(9):69–77,
2011.

[84] Jörg Denzinger. Team-Work: a method to design distributed knowledge based
theorem provers. PhD thesis, Department of Computer Science, Universität
Kaiserslautern, 1993.

[85] Jörg Denzinger and Bernd Ingo Dahn. Cooperating theorem provers. In
Wolfgang Bibel and Peter H. Schmitt, editors, Automated Deduction – A Basis
for Applications, volume II: Systems and Implementation, chapter 14, pages
383–416. Kluwer Academic Publishers, Amsterdam, The Netherlands, 1998.

[86] Jörg Denzinger and Dirk Fuchs. Cooperation of heterogeneous provers. In
Thomas Dean, editor, Proceedings of the Sixeenth International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 10–15. Morgan Kaufmann
Publishers, 1999.

[87] Jörg Denzinger, Marc Fuchs, and Matthias Fuchs. High performance ATP
systems by combining several AI methods. In Martha E. Pollack, editor,
Proceedings of the Fifteenth International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 102–107. Morgan Kaufmann Publishers, 1997.

[88] Jörg Denzinger and Matthias Fuchs. Goal-oriented equational theorem proving
using Team-Work. In Bernhard Nebel and Leonie Dreschler-Fischer, editors,
Proceedings of the Eighteenth German Conference on Artificial Intelligence

6 Parallel Theorem Proving 225

(KI), volume 861 of Lecture Notes in Artificial Intelligence, pages 343–354.
Springer, 1994.

[89] Jörg Denzinger and Martin Kronenburg. Planning for distributed theorem
proving: the Team-Work approach. In Steffen Hölldobler, editor, Proceedings
of the Twentieth German Conference on Artificial Intelligence (KI), volume
1137 of Lecture Notes in Artificial Intelligence, pages 43–56. Springer, 1996.

[90] Jörg Denzinger, Martin Kronenburg, and Stephan Schulz. DISCOUNT: a
distributed and learning equational prover. Journal of Automated Reasoning,
18(2):189–198, 1997.

[91] Jörg Denzinger and Jürgen Lind. TWlib: a library for distributed search
applications. In Chu-Sing Yang, editor, Proceedings of the International
Conference on Artificial Intelligence, International Computer Symposium
(ICS), pages 101–108. National Sun-Yat Sen University, 1996.

[92] Jörg Denzinger and Stephan Schulz. Recording and analyzing knowledge-
based distributed deduction processes. Journal of Symbolic Computation,
21(4–6):523–541, 1996.

[93] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical
Computer Science, 17(3):279–301, 1982.

[94] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan
van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B,
pages 243–320. Elsevier, Amsterdam, The Netherlands, 1990.

[95] Nachum Dershowitz and Naomi Lindenstrauss. An abstract concurrent ma-
chine for rewriting. In Hélène Kirchner and W. Wechler, editors, Proceedings
of the Second International Conference on Algebraic and Logic Programming
(ALP), volume 463 of Lecture Notes in Computer Science, pages 318–331.
Springer, 1990.

[96] Nachum Dershowitz and Zohar Manna. Proving termination with multiset
orderings. Communications of the ACM, 22(8):465–476, 1979.

[97] Nachum Dershowitz and David A. Plaisted. Rewriting. In John Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 1,
chapter 9, pages 535–610. Elsevier, Amsterdam, The Netherlands, 2001.

[98] Norbert Eisinger and Hans Jürgen Ohlbach. Deduction systems based on
resolution. In Dov M. Gabbay, Christopher J. Hogger, and John Alan Robinson,
editors, Handbook of Logic in Artificial Intelligence and Logic Programming,
volume I: Logical Foundations, pages 184–273. Oxford University Press,
Oxford, England, 1993.

[99] Zachary Ernst and Seth Kurtenbach. Toward a procedure for data mining
proofs. In Maria Paola Bonacina and Mark E. Stickel, editors, Automated
Reasoning and Mathematics: Essays in Memory of William W. McCune, vol-
ume 7788 of Lecture Notes in Artificial Intelligence, pages 229–239. Springer,
2013.

[100] Michael Fisher. An alternative approach to concurrent theorem proving.
In James Geller, Hiroaki Kitano, and Christian B. Suttner, editors, Parallel
Processing for Artificial Intelligence 3, pages 209–230. Elsevier, Amsterdam,
The Netherlands, 1997.

226 Maria Paola Bonacina

[101] Ian Foster and Steve Tuecke. Parallel programming with PCN. Technical
Report 91/32, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, Illinois, December 1991.

[102] Dirk Fuchs. Requirement-based cooperative theorem proving. In Jürgen Dix,
Luis Fariñas del Cerro, and Ulrich Furbach, editors, Proceedings of the Sixth
Joint European Workshop on Logic in Artificial Intelligence (JELIA), volume
1489 of Lecture Notes in Artificial Intelligence, pages 139–153. Springer,
1998.

[103] Marc Fuchs. Controlled use of clausal lemmas in connection tableau calculi.
Journal of Symbolic Computation, 29(2):299–341, 2000.

[104] Marc Fuchs and Andreas Wolf. Cooperation in model elimination: CPTHEO.
In Claude Kirchner and Hélène Kirchner, editors, Proceedings of the Fifteenth
International Conference on Automated Deduction (CADE), volume 1421 of
Lecture Notes in Artificial Intelligence, pages 42–46. Springer, 1998.

[105] Harald Ganzinger and Konstantin Korovin. New directions in instantiation-
based theorem proving. In Proceedings of the Eighteenth IEEE Symposium
on Logic in Computer Science (LICS), pages 55–64. IEEE Computer Society
Press, 2003.

[106] Harald Ganzinger and Konstantin Korovin. Theory instantiation. In Miki Her-
mann and Andrei Voronkov, editors, Proceedings of the Thirteenth Conference
on Logic, Programming and Automated Reasoning (LPAR), volume 4246 of
Lecture Notes in Artificial Intelligence, pages 497–511. Springer, 2006.

[107] Luís Gil, Paulo F. Flores, and Luis Miguel Silveira. PMSat: a parallel version
of Minisat. Journal on Satisfiability, Boolean Modeling and Computation,
6:71–98, 2008.

[108] Joseph A. Goguen, Sany Leinwand, José Meseguer, and Timothy Winkler.
The rewrite rule machine 1988. Technical Report PRG-76, Oxford University
Computing Laboratory, Oxford, England, August 1989.

[109] Joseph A. Goguen, José Meseguer, Sany Leinwand, Timothy Winkler, and
Hitoshi Aida. The rewrite rule machine. Technical Report SRI-CSL-89-6,
Computer Science Laboratory, SRI International, Menlo Park, California,
March 1989.

[110] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface. MIT Press, Cam-
bridge, Massachusetts, 1994.

[111] Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Diversification
and intensification in parallel SAT solving. In Dave Cohen, editor, Proceed-
ings of the Sixteenth International Conference on Principles and Practice of
Constraint Programming (CP), volume 6308 of Lecture Notes in Computer
Science, pages 252–265. Springer, 2010.

[112] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Control-based clause
sharing in parallel SAT solving. In Craig Boutilier, editor, Proceedings of the
Twenty-First International Joint Conference on Artificial Intelligence (IJCAI),
pages 409–504. AAAI Press, 2009.

6 Parallel Theorem Proving 227

[113] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: a parallel
SAT solver. Journal on Satisfiability, Boolean Modeling and Computation,
6:245–262, 2009.

[114] Youssef Hamadi and Christoph M. Wintersteiger. Seven challenges in parallel
SAT solving. AI Magazine, 34(2):99–106, 2013.

[115] D. J. Hawley. A Buchberger algorithm for distributed memory multi-
processors. In Hans P. Zima, editor, Proceedings of the First International
Conference of the Austrian Center for Parallel Computation (ACPC), volume
591 of Lecture Notes in Computer Science. Springer, 1991.

[116] Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube
and conquer: guiding CDCL SAT solvers by lookaheads. In Kerstin Eder,
João Lourenço, and Onn M. Shehory, editors, Proceedings of the Seventh
International Haifa Verification Conference (HVC), volume 7261 of Lecture
Notes in Computer Science, pages 50–65. Springer, 2012.

[117] Thomas Hillenbrand. Citius, altius, fortius: lessons learned from the theorem
prover WALDMEISTER. In Ingo Dahn and Laurent Vigneron, editors, Proceed-
ings of the Fourth International Workshop On First-Order Theorem Proving
(FTP), volume 86 of Electronic Notes in Theoretical Computer Science. Else-
vier, 2003.

[118] Christoph M. Hoffmann and Michael J. O’Donnell. Programming with equa-
tions. ACM Transactions on Programming Languages and Systems, 4(1):83–
112, 1982.

[119] Alfred Horn. On sentences which are true in direct unions of algebras. Journal
of Symbolic Logic, 16:14–21, 1951.

[120] Jieh Hsiang and Michaël Rusinowitch. On word problems in equational theo-
ries. In Thomas Ottman, editor, Proceedings of the Fourteenth International
Colloquium on Automta, Languages, and Programming (ICALP), volume 267
of Lecture Notes in Computer Science, pages 54–71. Springer, 1987.

[121] Jieh Hsiang and Michaël Rusinowitch. Proving refutational completeness of
theorem proving strategies: the transfinite semantic tree method. Journal of
the ACM, 38(3):559–587, 1991.

[122] Jieh Hsiang, Michaël Rusinowitch, and Ko Sakai. Complete inference rules
for the cancellation laws. In John McDermott, editor, Proceedings of the
Tenth International Joint Conference on Artificial Intelligence (IJCAI), pages
990–992. Morgan Kaufmann Publishers, 1987.

[123] Antti E. J. Hyvärinen, Tommi Junttila, and Ilka Niemelä. Incorporating clause
learning in grid-based randomized SAT solving. Journal on Satisfiability,
Boolean Modeling and Computation, 6:223–244, 2009.

[124] Daniyar Itegulov, John Slaney, and Bruno Woltzenlogel Paleo. Scavenger
0.1: a theorem prover based on conflict resolution. In Leonardo de Moura,
editor, Proceedings of the Twenty-Sixth Conference on Automated Deduction
(CADE), volume 10395 of Lecture Notes in Artificial Intelligence, pp. 344–356,
Springer, 2017.

[125] Swen Jacobs and Uwe Waldmann. Comparing instance generation methods
for automated reasoning. Journal of Automated Reasoning, 38:57–78, 2007.

228 Maria Paola Bonacina

[126] Himanshu Jain. Verification using satisfiability checking, predicate abstraction
and Craig interpolation. PhD thesis, School of Computer Science, Carnegie
Mellon University, September 2008.

[127] Anita Jindal, Ross Overbeek, and Waldo C. Kabat. Exploitation of parallel
processing for implementing high-performance deduction systems. Journal of
Automated Reasoning, 8:23–38, 1992.

[128] Deepak Kapur, David Musser, and Paliath Narendran. Only prime superposi-
tion need be considered in the Knuth-Bendix completion procedure. Journal
of Symbolic Computation, 6:19–36, 1988.

[129] Owen Kaser, Shaunak Pawagi, C. R. Ramakrishnan, I. V. Ramakrishnan, and
R. C. Sekar. Fast parallel implementations of lazy languages – the EQUALS
experience. In John L. White, editor, Proceedings of the ACM Conference on
LISP and Functional Programming, pages 335–344. ACM Press, 1992.

[130] Claude Kirchner, Christopher Lynch, and Christelle Scharff. Fine-grained
concurrent completion. In Harald Ganzinger, editor, Proceedings of the
Seventh International Conference on Rewriting Techniques and Applications
(RTA), volume 1103 of Lecture Notes in Computer Science, pages 3–17.
Springer, 1996.

[131] Claude Kirchner and Patrick Viry. Implementing parallel rewriting. In
Bertrand Fronhöfer and Graham Wrightson, editors, Proceedings of the First
International Workshop on Parallelization in Inference Systems (December
1990), volume 590 of Lecture Notes in Artificial Intelligence, pages 123–138.
Springer, Berlin, Germany, 1992.

[132] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal
algebras. In John Leech, editor, Proceedings of the Conference on Com-
putational Problems in Abstract Algebras, pages 263–298. Pergamon Press,
Oxford, England, 1970.

[133] Richard E. Korf. Depth-first iterative deepening: an optimal admissible tree
search. Artificial Intelligence, 27(1):97–109, 1985.

[134] Konstantin Korovin. An invitation to instantiation-based reasoning: from
theory to practice. In Renate Schmidt, editor, Proceedings of the Twenty-
Second International Conference on Automated Deduction (CADE), volume
5663 of Lecture Notes in Artificial Intelligence, pages 163–166. Springer,
2009.

[135] Konstantin Korovin. Inst-Gen: a modular approach to instantiation-based
automated reasoning. In Andrei Voronkov and Christoph Weidenbach, editors,
Programming Logics: Essays in Memory of Harald Ganzinger, volume 7797
of Lecture Notes in Artificial Intelligence, pages 239–270. Springer, 2013.

[136] Konstantin Korovin and Christoph Sticksel. iProver-Eq: An instantiation-
based theorem prover with equality. In Jürgen Giesl and Reiner Hähnle,
editors, Proceedings of the Fifth International Conference on Automated
Reasoning (IJCAR), volume 6173 of Lecture Notes in Artificial Intelligence,
pages 196–202. Springer, 2010.

[137] Laura Kovàcs and Andrei Voronkov. First order theorem proving and Vampire.
In Natasha Sharygina and Helmut Veith, editors, Proceedings of the Twenty-

6 Parallel Theorem Proving 229

Fifth International Conference on Computer-Aided Verification (CAV), volume
8044 of Lecture Notes in Computer Science, pages 1–35. Springer, 2013.

[138] Robert Kowalski and Donald Kuehner. Linear resolution with selection func-
tion. Artificial Intelligence, 2:227–260, 1971.

[139] Dallas S. Lankford and A. M. Ballantyne. The refutation completeness of
blocked permutative narrowing and resolution. In William H. Joyner Jr., editor,
Proceedings of the Fourth Conference on Automated Deduction (CADE), pages
168–174, 1979. Available at http://www.cadeinc.org/.

[140] Shie-Jue Lee and David A. Plaisted. Eliminating duplication with the hyper-
linking strategy. Journal of Automated Reasoning, 9:25–42, 1992.

[141] K. Rustan M. Leino and Aleksandar Milicevic. Program extrapolation with Jen-
nisys. In Proceedings of the Twenty-Seventh Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 411–
430. ACM, 2012.

[142] Reinhold Letz. Clausal tableaux. In Wolfgang Bibel and Peter H. Schmitt, ed-
itors, Automated Deduction - A Basis for Applications, volume I: Foundations
- Calculi and Methods, chapter 2, pages 43–72. Kluwer Academic Publishers,
Amsterdam, The Netherlands, 1998.

[143] Reinhold Letz, Klaus Mayr, and Christian Goller. Controlled integration of
the cut rule into connection tableau calculi. Journal of Automated Reasoning,
13(3):297–338, 1994.

[144] Reinhold Letz, Johann Schumann, Stephan Bayerl, and Wolfgang Bibel.
SETHEO: a high performance theorem prover. Journal of Automated Reason-
ing, 8(2):183–212, 1992.

[145] Reinhold Letz and Gernot Stenz. DCTP - a disconnection calculus theorem
prover. In Rajeev P. Goré, Alexander Leitsch, and Tobias Nipkow, editors,
Proceedings of the First International Joint Conference on Automated Reason-
ing (IJCAR), volume 2083 of Lecture Notes in Artificial Intelligence, pages
381–385. Springer, 2001.

[146] Reinhold Letz and Gernot Stenz. Model elimination and connection tableau
procedures. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, chapter 28, pages 2015–2114. Elsevier, Amsterdam,
The Netherlands, 2001.

[147] Reinhold Letz and Gernot Stenz. Proof and model generation with discon-
nection tableaux. In Robert Nieuwenhuis and Andrei Voronkov, editors,
Proceedings of the Eighth International Conference on Logic, Programming
and Automated Reasoning (LPAR), volume 2250 of Lecture Notes in Artificial
Intelligence, pages 142–156. Springer, 2001.

[148] Reinhold Letz and Gernot Stenz. Integration of equality reasoning into the
disconnection calculus. In Uwe Egly and Christian G. Fermüller, editors,
Proceedings of the Fifteenth International Conference on Analytic Tableaux
and Related Methods (TABLEAUX), volume 2381 of Lecture Notes in Artificial
Intelligence, pages 176–190. Springer, 2002.

[149] Vladimir Lifschitz, Leora Morgenstern, and David A. Plaisted. Knowledge
representation and classical logic. In Frank van Harmelen, Vladimir Lifschitz,

http://www.cadeinc.org/

230 Maria Paola Bonacina

and Bruce Porter, editors, Handbook of Knowledge Representation, volume 1,
pages 3–88. Elsevier, Amsterdam, The Netherlands, 2008.

[150] Rasiah Loganantharaj. Theoretical and implementational aspects of parallel
link resolution in connection graphs. PhD thesis, Department of Computer
Science, Colorado State University, 1985.

[151] Rasiah Loganantharaj and Robert A. Müller. Parallel theorem proving with
connection graphs. In Jörg Siekmann, editor, Proceedings of the Eighth
International Conference on Automated Deduction (CADE), volume 230 of
Lecture Notes in Computer Science, pages 337–352. Springer, 1986.

[152] Donald W. Loveland. A simplified format for the model elimination procedure.
Journal of the ACM, 16(3):349–363, 1969.

[153] Donald W. Loveland. A unifying view of some linear Herbrand procedures.
Journal of the ACM, 19(2):366–384, 1972.

[154] Ewing L. Lusk and William W. McCune. Experiments with ROO: a parallel
automated deduction system. In Bertrand Fronhöfer and Graham Wrightson,
editors, Proceedings of the First International Workshop on Parallelization in
Inference Systems (December 1990), volume 590 of Lecture Notes in Artificial
Intelligence, pages 139–162. Springer, Berlin, Germany, 1992.

[155] Ewing L. Lusk, William W. McCune, and John K. Slaney. Parallel closure-
based automated reasoning. In Bertrand Fronhöfer and Graham Wrightson,
editors, Proceedings of the First International Workshop on Parallelization in
Inference Systems (December 1990), volume 590 of Lecture Notes in Artificial
Intelligence, pages 347–347. Springer, Berlin, Germany, 1992.

[156] Ewing L. Lusk, William W. McCune, and John K. Slaney. ROO: a parallel
theorem prover. In Deepak Kapur, editor, Proceedings of the Eleventh Interna-
tional Conference on Automated Deduction (CADE), volume 607 of Lecture
Notes in Artificial Intelligence, pages 731–734. Springer, 1992.

[157] Sharad Malik and Lintao Zhang. Boolean satisfiability: from theoretical
hardness to practical success. Communications of the ACM, 52(8):76–82,
2009.

[158] Norbert Manthey. Towards next generation sequential and parallel SAT solvers.
Constraints, 20(4):504–505, 2015.

[159] Rainer Manthey and François Bry. SATCHMO: a theorem prover implemented
in Prolog. In Ewing Lusk and Ross Overbeek, editors, Proceedings of the
Ninth International Conference on Automated Deduction (CADE), volume
310 of Lecture Notes in Computer Science, pages 415–434. Springer, 1988.

[160] João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause
learning SAT solvers. In Armin Biere, Marjin Heule, Hans Van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, chapter 4, pages 131–153. IOS Press,
Amsterdam, The Netherlands, 2009.

[161] João P. Marques-Silva and Karem A. Sakallah. GRASP: A new search algo-
rithm for satisfiability. In Proceedings of the International Conference on
Computer-Aided Design (ICCAD), pages 220–227, 1997.

6 Parallel Theorem Proving 231

[162] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521,
1999.

[163] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. An overview of parallel
SAT solving. Constraints, 17(3):304–347, 2012.

[164] William W. McCune. OTTER 2.0 users guide. Technical Report 90/9, Math-
ematics and Computer Science Division, Argonne National Laboratory, Ar-
gonne, Illinois, March 1990.

[165] William W. McCune. What’s new in OTTER 2.2. Technical Report TM-153,
Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Illinois, July 1991.

[166] William W. McCune. OTTER 3.0 reference manual and guide. Technical
Report 94/6, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, Illinois, January 1994. Revised August 1995.

[167] William W. McCune. 33 Basic test problems: a practical evaluation of some
paramodulation strategies. In Robert Veroff, editor, Automated Reasoning and
its Applications: Essays in Honor of Larry Wos, pages 71–114. MIT Press,
Cambridge, Massachusetts, 1997.

[168] William W. McCune. Solution of the Robbins problem. Journal of Automated
Reasoning, 19(3):263–276, 1997.

[169] William W. McCune. OTTER 3.3 reference manual. Technical Report TM-263,
Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Illinois, August 2003.

[170] Max Moser, Ortrun Ibens, Reinhold Letz, Joachim Steinbach, Christoph Goller,
Johann Schumann, and Klaus Mayr. The model elimination provers SETHEO
and E-SETHEO. Journal of Automated Reasoning, 18(2):237–246, 1997.

[171] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In David Blaauw
and Luciano Lavagno, editors, Proceedings of the Thirty-Ninth Design Au-
tomation Conference (DAC), pages 530–535, 2001.

[172] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem prov-
ing. In John Alan Robinson and Andrei Voronkov, editors, Handbook of
Automated Reasoning, volume 1, chapter 7, pages 371–443. Elsevier, Amster-
dam, The Netherlands, 2001.

[173] Robert Niewenhuis and A. Rubio. Theorem proving with ordering and equality
constrained clauses. Journal of Symbolic Computation, 19(4):321–351, 1995.

[174] Gerald E. Peterson. A technique for establishing completeness results in
theorem proving with equality. SIAM Journal of Computing, 12(1):82–100,
1983.

[175] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some
equational theories. Journal of the ACM, 28(2):233–264, 1981.

[176] Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjørner. Deciding effectively
propositional logic using DPLL and substitution sets. Journal of Automated
Reasoning, 44(4):401–424, 2010.

232 Maria Paola Bonacina

[177] David A. Plaisted. Mechanical theorem proving. In Ranan B. Banerji, ed-
itor, Formal Techniques in Artificial Intelligence, pages 269–320. Elsevier,
Amsterdam, The Netherlands, 1990.

[178] David A. Plaisted. Equational reasoning and term rewriting systems. In
Dov M. Gabbay, Christopher J. Hogger, and John Alan Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Programming, volume
I: Logical Foundations, pages 273–364. Oxford University Press, Oxford,
England, 1993.

[179] David A. Plaisted. Automated theorem proving. Wiley Interdisciplinary
Reviews: Cognitive Science, 5(2):115–128, 2014.

[180] David A. Plaisted and Swaha Miller. The relative power of semantics and
unification. In Andrei Voronkov and Christoph Weidenbach, editors, Program-
ming Logics: Essays in Memory of Harald Ganzinger, volume 7797 of Lecture
Notes in Artificial Intelligence, pages 317–344. Springer, 2013.

[181] David A. Plaisted and Yunshan Zhu. Ordered semantic hyper linking. Journal
of Automated Reasoning, 25:167–217, 2000.

[182] Giles Reger, Martin Suda, and Andrei Voronkov. Playing with AVATAR. In
Amy P. Felty and Aart Middeldorp, editors, Proceedings of the Twenty-Fifth
International Conference on Automated Deduction (CADE), volume 9195 of
Lecture Notes in Artificial Intelligence, pages 399–415. Springer, 2015.

[183] George A. Robinson and Larry Wos. Paramodulation and theorem-proving
in first-order theories with equality. In Donald Michie and Bernard Meltzer,
editors, Machine Intelligence, volume 4, pages 135–150. Edinburgh University
Press, Edinburgh, Scotland, 1969.

[184] John Alan Robinson. Automatic deduction with hyper-resolution. Interna-
tional Journal of Computer Mathematics, 1:227–234, 1965.

[185] John Alan Robinson. A machine oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965.

[186] Michaël Rusinowitch. Theorem-proving with resolution and superposition.
Journal of Symbolic Computation, 11(1 & 2):21–50, 1991.

[187] Tobias Schubert, Matthew Lewis, and Bernd Becker. PaMiraXT: parallel SAT
solving with threads and message passing. Journal on Satisfiability, Boolean
Modeling and Computation, 6:203–222, 2009.

[188] Stephan Schulz. E – A brainiac theorem prover. Journal of AI Communications,
15(2–3):111–126, 2002.

[189] Stephan Schulz. Simple and efficient clause subsumption with feature vector
indexing. In Maria Paola Bonacina and Mark E. Stickel, editors, Automated
Reasoning and Mathematics: Essays in Memory of William W. McCune, vol-
ume 7788 of Lecture Notes in Artificial Intelligence, pages 45–67. Springer,
2013.

[190] Stephan Schulz. System description: E 1.8. In Ken McMillan, Aart Mid-
deldorp, and Andrei Voronkov, editors, Proceedings of the Nineteenth In-
ternational Conference on Logic, Programming and Automated Reasoning
(LPAR), volume 8312 of Lecture Notes in Artificial Intelligence, pages 735–
743. Springer, 2013.

6 Parallel Theorem Proving 233

[191] Stephan Schulz and Martin Möhrmann. Performance of clause selection heuris-
tics for saturation-based theorem proving. In Nicola Olivetti and Ashish Tiwari,
editors, Proceedings of the Eighth International Conference on Automated
Reasoning (IJCAR), volume 9706 of Lecture Notes in Artificial Intelligence,
pages 330–345. Springer, 2016.

[192] Johan Schumann. Parallel theorem provers – an overview. In Bertrand Fron-
höfer and Graham Wrightson, editors, Proceedings of the First International
Workshop on Parallelization in Inference Systems (December 1990), volume
590 of Lecture Notes in Artificial Intelligence, pages 26–50. Springer, Berlin,
Germany, 1992.

[193] Johann Schumann. Delta: a bottom-up pre-processor for top-down theorem
provers. In Alan Bundy, editor, Proceedings of the Twelfth International
Conference on Automated Deduction (CADE), volume 814 of Lecture Notes
in Artificial Intelligence, pages 774–777. Springer, 1994.

[194] Johann Schumann and Reinhold Letz. PARTHEO: a high-performance parallel
theorem prover. In Mark E. Stickel, editor, Proceedings of the Tenth Interna-
tional Conference on Automated Deduction (CADE), volume 449 of Lecture
Notes in Artificial Intelligence, pages 28–39. Springer, 1990.

[195] Robert E. Shostak. Refutation graphs. Artificial Intelligence, 7:51–64, 1976.
[196] Kurt Siegl. Gröbner bases computation in STRAND: a case study for concurrent

symbolic computation in logic programming languages (Master thesis). Tech-
nical Report 90-54.0, Research Institute for Symbolic Computation (RISC),
Linz, Austria, November 1990.

[197] Carsten Sinz, Jörg Denzinger, Jürgen Avenhaus, and Wolfgang Küchlin. Com-
bining parallel and distributed search in automated equational deduction. In
Proceedings of the Fourth International Conference on Parallel Processing
and Applied Mathematics (PPAM) – Revised Papers, pages 819–832, 2001.

[198] James R. Slagle. Automatic theorem proving with renamable and semantic
resolution. Journal of the ACM, 14(4):687–697, 1967.

[199] James R. Slagle. Automated theorem proving for theories with simplifiers,
commutativity, and associativity. Journal of the ACM, 21:622–642, 1974.

[200] John Slaney, Ewing Lusk, and William W. McCune. SCOTT: Semantically
constrained Otter. In Alan Bundy, editor, Proceedings of the Twelfth Interna-
tional Conference on Automated Deduction (CADE), volume 814 of Lecture
Notes in Artificial Intelligence, pages 764–768. Springer, 1994.

[201] John Slaney and Bruno Woltzenlogel Paleo. Conflict resolution: a first-order
resolution calculus with decision literals and conflict-driven clause learning.
Journal of Automated Reasoning, in press:1–27, 2017.

[202] Mark E. Stickel. A Prolog technology theorem prover. New Generation
Computing, 2(4):371–383, 1984.

[203] Mark E. Stickel. A Prolog technology theorem prover: implementation by
an extended Prolog compiler. Journal of Automated Reasoning, 4:353–380,
1988.

234 Maria Paola Bonacina

[204] Mark E. Stickel. PTTP and linked inference. In Robert S. Boyer, editor,
Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 283–296.
Kluwer Academic Publishers, Amsterdam, The Netherlands, 1991.

[205] Mark E. Stickel. A Prolog technology theorem prover: new exposition and
implementation in Prolog. Theoretical Computer Science, 104:109–128, 1992.

[206] Mark E. Stickel and W. Mabry Tyson. An analysis of consecutively bounded
depth-first search with applications in automated deduction. In Proceedings
of the Ninth International Joint Conference on Artificial Intelligence (IJCAI),
pages 1073–1075. Morgan Kaufmann Publishers, 1985.

[207] David Sturgill and Alberto Maria Segre. Nagging: a distributed, adversarial
search-pruning technique applied to first-order inference. Journal of Auto-
mated Reasoning, 19(3):347–376, 1997.

[208] Geoff Sutcliffe. A heterogeneous parallel deduction system. In Ryuzo
Hasegawa and Mark E. Stickel, editors, Proceedings of the FGCS Work-
shop on Automated Deduction: Logic Programming and Parallel Computing
Approaches, pages 5–13, 1992.

[209] Christian B. Suttner. SPTHEO: a parallel theorem prover. Journal of Automated
Reasoning, 18(2):253–258, 1997.

[210] Christian B. Suttner and Johann Schumann. Parallel automated theorem prov-
ing. In Laveen N. Kanal, Vipin Kumar, Hiroaki Kitano, and Christian B.
Suttner, editors, Parallel Processing for Artificial Intelligence. Elsevier, Ams-
terdam, The Netherlands, 1994.

[211] Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204,
1997.

[212] Stephen Taylor. Parallel Logic Programming Techniques. Prentice Hall, Upper
Saddle River, New Jersey, 1989.

[213] Josef Urban and Jirí Vyskocil. Theorem proving in large formal mathematics
as an emerging AI field. In Maria Paola Bonacina and Mark E. Stickel,
editors, Automated Reasoning and Mathematics: Essays in Memory of William
W. McCune, volume 7788 of Lecture Notes in Artificial Intelligence, pages
240–257. Springer, 2013.

[214] Jean-Philippe Vidal. The computation of Gröbner bases on a shared memory
multiprocessor. In Alfonso Miola, editor, Proceedings of the First Interna-
tional Symposium on Design and Implementation of Symbolic Computation
Systems (DISCO), volume 429 of Lecture Notes in Computer Science, pages
81–90. Springer, 1990.

[215] Kevin Wallace and Graham Wrightson. Regressive merging in model elim-
ination tableau-based theorem provers. Journal of the IGPL, 3(6):921–937,
1995.

[216] David H. D. Warren. An abstract Prolog instruction set. Technical Report
309, Artificial Intelligence Center, SRI International, Menlo Park, California,
October 1983.

[217] David S. Warren. Memoing for logic programs. Communications of the ACM,
35(3):94–111, 1992.

6 Parallel Theorem Proving 235

[218] Christoph Weidenbach, Dylana Dimova, Arnaud Fietzke, Rohit Kumar, Martin
Suda, and Patrick Wischnewski. SPASS version 3.5. In Renate Schmidt, editor,
Proceedings of the Twenty-Second International Conference on Automated
Deduction (CADE), volume 5663 of Lecture Notes in Artificial Intelligence,
pages 140–145. Springer, 2009.

[219] Andreas Wolf. P-SETHEO: strategy parallelism in automated theorem proving.
In Harrie de Swart, editor, Proceedings of the Seventh International Confer-
ence on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX), volume 1397 of Lecture Notes in Artificial Intelligence, pages
320–324. Springer, 1998.

[220] Larry Wos. Searching for open questions. Newsletter of the Association for
Automated Reasoning, 15, May 1990.

[221] Larry Wos, Daniel F. Carson, and George A. Robinson. Efficiency and com-
pleteness of the set of support strategy in theorem proving. Journal of the
ACM, 12:536–541, 1965.

[222] Larry Wos, George A. Robinson, Daniel F. Carson, and Leon Shalla. The
concept of demodulation in theorem proving. Journal of the ACM, 14(4):698–
709, 1967.

[223] Chih-Hung Wu and Shie-Jue Lee. Parallelization of a hyper-linking based
theorem prover. Journal of Automated Reasoning, 26(1):67–106, 2001.

[224] Katherine A. Yelick. Using abstraction in explicitly parallel programs. PhD
thesis, Laboratory for Computer Science, Massachusetts Institute of Technol-
ogy, July 1991.

[225] Katherine A. Yelick and Steven J. Garland. A parallel completion procedure
for term rewriting systems. In Deepak Kapur, editor, Proceedings of the
Eleventh International Conference on Automated Deduction (CADE), volume
607 of Lecture Notes in Artificial Intelligence, pages 109–123. Springer, 1992.

[226] Hantao Zhang. SATO: an efficient propositional prover. In William W.
McCune, editor, Proceedings of the Fourteenth International Conference on
Automated Deduction (CADE), volume 1249 of Lecture Notes in Artificial
Intelligence, pages 272–275. Springer, 1997.

[227] Hantao Zhang and Maria Paola Bonacina. Cumulating search in a distributed
computing environment: a case study in parallel satisfiability. In Hoon Hong,
editor, Proceedings of the First International Symposium on Parallel Symbolic
Computation (PASCO), volume 5 of Lecture Notes Series in Computing, pages
422–431. World Scientific, 1994.

[228] Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. PSATO: a distributed
propositional prover and its application to quasigroup problems. Journal of
Symbolic Computation, 21(4–6):543–560, 1996.

[229] Hantao Zhang and Mark E. Stickel. Implementing the Davis-Putnam method.
Journal of Automated Reasoning, 24(1–2):277–296, 2000.

[230] Lintao Zhang and Sharad Malik. The quest for efficient Boolean satisfiability
solvers. In Andrei Voronkov, editor, Proceedings of the Eighteenth Interna-
tional Conference on Automated Deduction (CADE), volume 2392 of Lecture
Notes in Artificial Intelligence, pages 295–313. Springer, 2002.

Chapter 7

Parallel Answer Set Programming

Agostino Dovier, Andrea Formisano, and Enrico Pontelli

Abstract Answer Set Programming (ASP) has become, in recent years, the paradigm
of choice for the logic programming community and for a wide variety of application
domains. Thanks to its declarative nature, ASP offers excellent opportunities for
performance improvements through transparent exploitation of parallelism. This
Chapter provides a survey on the main techniques and approaches in the literature
to enable exploitation of parallelism in the execution of Answer Set Programming
solvers. The survey explores the approaches along two orthogonal dimensions. The
first dimension considers the different levels of complexity and features of the
underlying language, ranging from propositional Datalog/definite Horn clauses to
full ASP. The second dimension, instead, explores the different levels of granularity
of exploitation of parallelism, ranging from fine grain parallelism, exploited using
general-purpose graphical processing units, to very large grain parallelism exploited
on distributed platforms.

7.1 Introduction

The paradigm of logic programming can be traced back to the late 1960s and early
1970s, and the seminal work of researchers such as McCarthy, Robinson, Hayes,
and Kowalski—especially in their efforts to argue for the declarative front (opposed

Agostino Dovier
University of Udine, Dept. of Mathematics, Computer Science, and Physics
e-mail: agostino.dovier@uniud.it

Andrea Formisano
University of Perugia, Dept. of Mathematics and Computer Science
e-mail: andrea.formisano@unipg.it

Enrico Pontelli
New Mexico State University, Dept. of Computer Science
e-mail: epontell@cs.nmsu.edu

237© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_7

agostino.dovier@uniud.it
andrea.formisano@unipg.it
epontell@cs.nmsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_7&domain=pdf

238 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

to the procedural front promoted by researchers like Papert and Minsky) in the
debate on knowledge representation that permeated the development of Artificial
Intelligence in the 1960s. In the early 1970s, Hayes and Kowalski [37, 43] proposed
a unifying solution to this debate, through the exploration of SLD-Resolution, which
laid the foundation for the ability to use logic as a programming language, thus
providing a knowledge representation framework that provides both a declarative
and a procedural reading [44].

The first outcome of this line of work was the Prolog programming language,
which for decades served as the cornerstone of the logic programming commu-
nity. Prolog is a Turing complete programming language, with a declarative model-
theoretic semantics as well as a top-down procedural semantics. The success of
Prolog was driven by its declarative nature paired with sophisticated compiled imple-
mentation models—e.g., based on the abstract machine originally designed by D.H.D.
Warren [85]. Some of the initial promises of the logic programming paradigm were
not completely satisfied by the language Prolog. Some of the issues that plagued
Prolog include its inability to provide competitive performance in application do-
mains for which logic programming offered ideal modeling solutions—in particular,
database applications and combinatorial problems, the gap between the declarative
semantics and the procedural behavior (due to compromises in the implementation),
and the limitations of the language in capturing non-monotonic forms of knowledge
(e.g., as found in commonsense reasoning).

These issues prompted the development of alternative logic programming lan-
guages, more suitable to address some of these needs. The database community
promoted the creation of the language Datalog [11], which provides a clean declara-
tive semantics and is supported by highly efficient bottom-up execution models, but at
the price of severe syntactic restrictions limiting the expressive power of the language.
The hybridization of logic programming with constraint programming [45] allowed
the speeding up of the logic programming approaches to constraint satisfaction and
optimization problems but did not address the knowledge representation issues.

In [31] Gelfond and Lifschitz proposed a novel semantics, the stable model
semantics, for handling negation in logic programming, offering an alternative way of
looking at non-monotonic reasoning through the lenses of logic programming [4]. The
stable model semantics is elegant and, compared to the other semantics proposed for
logic programming with negation (e.g., the well-founded semantics), is more suitable
to capture uncertainty and defeasible reasoning. Under simple syntactic restrictions, it
was proved that establishing the existence of a stable model is NP-complete [61]. This
suggested a new, semantic-based, programming paradigm with exactly the expressive
power of the NP class [64, 60]. In these proposals, the notion of answer set became
a synonym of stable model, and programming in those settings was termed Answer
Set Programming (ASP). ASP represents, to a large extent, the holy grail of logic
programming, providing an elegant and purely declarative programming framework,
matched with efficient solvers. ASP has gained strong popularity in recent years,
supported by a research emphasis on the practical applications of the paradigm and
the development of efficient and highly competitive solvers.

7 Parallel Answer Set Programming 239

ASP solvers are typically composed of two main modules (see Figure 7.1): (1) A
preprocessing module that transforms a program into its ground, equivalent version,
and (2) A solving method that alternates non-deterministic choices and deterministic
inferences to construct the answer sets of the program. One of the first solvers
proposed that launched the success of the ASP solver is SMODELS, combined with its
grounder LPARSE [77]. A number of solvers have appeared over the years (e.g., the
DLV system, which was the first system to support ASP programs with disjunctive
heads [49]). The current state of the art is represented by the ASP solver CLASP (with
its grounder GRINGO) which implements learning capabilities typical of SAT solvers
[27].

P ground(P) answer
set(s)grounder solver

Fig. 7.1: Classical ASP solving pipeline

Declarative languages offer unprecedented opportunities for the use of parallelism
to speed up execution. A declarative language, being not procedural, removes the
need to perform operations in a strict order and reduces the number of dependencies
among operations, thus opening the doors for concurrent execution. The potential
for transparent exploitation of parallelism in logic programming emerged almost
immediately with the birth of the paradigm [69]. The literature on parallel execution
of Prolog is rich and has extensively explored many of the issues related to exploita-
tion of parallelism in a top-down goal-oriented computation model (e.g., [36]). On
the other hand, the literature on exploitation of parallelism in bottom-up execution
models of logic programming, as found in Datalog and in ASP, has been more sparse.
Yet, the fully declarative nature of ASP and Datalog offers even greater opportunities
for parallelism than Prolog (which has a more “procedural” operational semantics).

This Chapter provides, to the best of our knowledge, the first comprehensive
survey concerning the transparent exploitation of parallelism in ASP (and restricted
versions of the paradigm, such as Datalog). In particular, we first discuss the main
techniques used to parallelize the grounding phase (Section 7.3). We then explore
how parallelism can be applied to parallelize the search process that underlies the
construction of answer sets. We first consider some classical approaches for paral-
lelizing Datalog (Section 7.4) and then focus on approaches that have been used
to parallelize the search for an answer set of a general ASP program (Section 7.5).
Some results on using GPUs for parallelizing ASP search are also reported, as well
as the possibility of using the Map-Reduce framework for parallelizing Datalog
and some of the components of the ASP computation—thus, opening the doors for

240 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

parallelization of very large ASP programs (e.g., programs operating on extensive
knowledge bases).

This Chapter has some connections with Chapter 1, Parallel Satisfiability in this
book (SAT solving and propositional ASP solving have some common parts such as
clause learning and a DPLL core), with Chapter 9, Parallel Constraint Programming
(ASP can be used for solving constraint satisfaction problems), and with Chapter 15,
Selection and Configuration of Parallel Portfolios (Section 7.5.4 deals with portfolio
techniques for ASP).

7.2 Background

In this section, we provide a brief overview of the theoretical foundations of answer
set programming. We start with the description of the syntax and semantics of both
Datalog (definite logic programs) and full ASP (normal logic programs). We also
provide a brief overview of the main algorithms that underlie the design of most
common solvers for these logic programming languages.

7.2.1 Definite Logic Programming

The content of this section represents a brief review of the syntax and semantics of
traditional logic programming—the interested reader is referred to [54, 30].

Let us consider the signature Σ = 〈F ,X ,P〉 for a logic language, where

• F is a denumerable collection of function symbols; each symbol f ∈ F is
associated with an arity ar(f)≥ 0.

• X is a denumerable collection of variables.
• P is a denumerable collection of predicate symbols; each symbol p ∈P is

associated with an arity ar(p)≥ 0.

The concepts of term and atomic formula (atom) are defined following the traditional
structure as in traditional first order logic.

A term t in Σ is a syntactic structure defined recursively as follows:

• a variable x ∈X is a term.
• If f ∈F , ar(f) = n, and t1, . . . , tn are terms, then f (t1, . . . , tn) is a term.

We denote by F(Σ) the set of all terms of Σ ; we denote by F(F) the set of all terms
that do not contain any element from X . An atomic formula (atom) A in Σ is a
syntactic structure defined as follows: if t1, . . . , tn are terms, p ∈P , and ar(p) = n,
then p(t1, . . . , tn) is an atomic formula. The set of all atoms is denoted by Π(Σ); the
set Π(F) denotes all atoms that do not contain elements from X . Given an atom A,
we denote by pred(A) ∈P the predicate used to construct the atom A.

7 Parallel Answer Set Programming 241

Definite logic programs assemble atoms to compose restricted forms of implica-
tions—satisfying the structure of Horn clauses. A clause (or rule) is of the form

head← b1, . . . ,bm︸ ︷︷ ︸
Body

(7.1)

where head,b1, . . . ,bm are atoms and m≥ 0. If m = 0, then the clause is referred to
as a fact—and syntactically we omit everything to the right of the head.

A definite logic program P is a collection of clauses. A term (atom, clause,
program) is said to be ground if it does not contain any variable from X . We will
often refer to the ground instances of a term (atom, clause, program) α as the set
of all entities α ′ obtained by consistently replacing each variable with an element
from F(F). Given any syntactic entity α (e.g., a term, an atom, a rule, a program),
ground(α) denotes the set of all ground instances of α .

The semantics of definite logic programs is given through Herbrand models. An
interpretation I is a subset of Π(F). A ground atom A is true in I if A ∈ I (denoted
by I |= A), false otherwise (denoted by I �|= A). An interpretation I satisfies a ground
rule head ← b1, . . . ,bm if either I |= head or there exists i ∈ {1, . . . ,m} such that
I �|= bi. An interpretation I is a model of a definite logic program P if I satisfies each
rule in ground(P). We will often be interested in comparing interpretations based
on how many atoms are made true—this can be realized by simply comparing the
interpretations using the ⊆ relation. Note that each definite logic program P has
a unique minimal model MP which is also the set of logical consequences of the
“logical theory” P [54].

The minimal model of a definite logic program P can be computed in a bottom-up
fashion. Let us define the immediate consequence operator of a program P as

TP(I) = {head | (head← b1, . . . ,bm) ∈ ground(P),{b1, . . . ,bm} ⊆ I} (7.2)

The computation of the minimal model is a polynomial process (w.r.t. the size of
ground(P)) and can be summarized as in Algorithm 7.1.

Algorithm 7.1: Naive Computation of the Least Model
1 procedure LEASTMODEL(P)
2 I ← /0
3 repeat

4 I′ ← I
5 I ← TP(I′)
6 until I = I′

242 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

7.2.2 Normal Logic Programs and Answer Set Programming

While definite logic programs allow us to express monotonic behavior, the language
of logic programs needs to be extended to allow the expression of non-monotonic
reasoning (e.g., the ability to withdraw consequences as new facts are added to the
program). A normal clause has the form

head← b1, . . . ,bm,not c1, . . . ,not cn (7.3)

where head,b1, . . . ,bm,c1, . . . ,cn are atoms. Given a normal clause r, we will write
head(r)= head, pos(r)= {b1, . . . ,bm}, and neg(r)= {c1, . . . ,cn}. We also denote by
ϕpos(r) the conjunction b1∧·· ·∧bm and by ϕneg(r) the conjunction ¬c1∧·· ·∧¬cn.
A normal logic program is a collection of normal clauses.

Due to the presence of negated literals in clause bodies, the logical semantics is
inadequate to deal with this formalism. There is no longer the notion of a unique
minimal model that characterizes the logical consequences. If we consider, for
instance, the program P = {p← not q},1 it admits two (minimal) models: {p} and
{q}. Let us observe that (1) the intersection of the two models is /0 which is not a
logical model of P, and (2) there are no reasons in the program for believing in q and
so the latter model looks “weaker” than the former.

The extension of the TP operator (eq. (7.2)) to normal logic programs

TP(I) =
{

head
∣∣∣∣ (head ← b1, . . . ,bm,not c1, . . . ,not cn) ∈ ground(P)∧
{b1, . . . ,bm} ⊆ I∧{c1, . . . ,cn}∩ I = /0

}
(7.4)

is not monotone. In the above example TP(/0) = {p} while TP({q}) = /0.

The semantics of a normal logic program is given in terms of answer sets [31].
Given a normal program P and an interpretation I, we define the reduct of P w.r.t. I
(denoted by PI) as the set of rules

PI =

{
head ← b1, . . . ,bm

∣∣∣∣ (head ← b1, . . . ,bm,not c1, . . . ,not cn) ∈ ground(P)∧
{c1, . . . ,cn}∩ I = /0

}
(7.5)

Note that the reduct is a definite logic program. An interpretation I is an answer set
if I is the least model of PI . Note that a program may have zero, one, or multiple
answer sets; deciding whether a ground normal logic program P admits a stable
model is NP-complete [14]. A normal logic program under the answer set semantics
is referred to as an answer set program.

A number of algorithms for computing answer sets of a program have been
proposed. Proposed systems range from implementations that rely on translation of
ASP into other paradigms (e.g., [51, 50]), to ad hoc solvers, e.g., relying on variations
of the traditional Davis-Putnam-Logemann-Loveland (DPLL) procedure [15, 16] or
on nogood propagation (see Section 7.2.4.1 and [27]).

1 Let us observe that p← not q is logically equivalent to p∨q.

7 Parallel Answer Set Programming 243

Algorithm 7.2: Basic SMODELS Procedure
1 procedure compute(P: Program; S: Interpretation)
2 S′ ← expand(P,S);
3 if ¬consistent(S′) then

4 return False;
5 if complete(S′) then

6 return S′;
7 �← select_atom(P,S′);
8 S′ ← compute(P,S′ ∪{�});
9 if S′ �= False then

10 return compute(P,S′ ∪{¬�});
11 else

12 return S′;

Let us consider, for example, a simplified version of the procedure that underlies
the SMODELS system. Algorithm 7.2 describes the overall structure of the computa-
tion. The recursive function progressively builds an answer set by adding one new
literal at each recursive call.2 The procedure expand(P,S) (line 2) deterministically
expands the interpretation by adding literals whose truth value is uniquely determined
by the program P and the partial interpretation S (for instance, if q and r are in S and
the clause p← q,r is in P, then p is added to S′). The steps performed in expand
guarantee that the interpretation converges towards an answer set (and not only to
a generic logical model). If an inconsistency is reached (line 4—namely if both �
and ¬� are in S for some atom �), then an incorrect choice has been performed and
backtracking is started. If each atom is represented in S′ (line 6), then the procedure
has determined an answer set. Otherwise, the procedure select_atom chooses an
atom � that does not appear (positively or negatively) in S′. The algorithm explores
the two alternatives of adding either � (line 8) or ¬� (line 10) to S′ and continue the
construction of the answer set. The structure of this procedure, as well as similar
procedures that are at the heart of several ASP solvers, is derived from the traditional
Davis-Putnam-Logemann-Loveland procedure [16, 15].

Constraints of the form ⊥← b1, . . . ,bm,not c1, . . . ,not cn are common in ASP
programming. In this case ⊥ is superfluous, since any constraint can be replaced by a
normal clause (e.g., q← not q,b1, . . . ,bm,not c1, . . . ,not cn) that has the same stable
models, provided a new predicate (q in the example) is used for each rewriting.

During the grounding stage, each non-ground clause is replaced by a set of clauses
in which every variable is replaced by the constant symbols in the program. In order
to simplify this process, every variable in the clause should be limited by some atom
with a “simple” definition.

Given a program P, let us define the (complete) dependency graph G+,−(P) =
〈V,E〉 as follows [5, 7]: V is the set of predicate symbols defined in P and a labeled
edge 〈p,q, �〉 belongs to E if and only if there is a clause p(· · ·)← ·· ·q(· · ·) · · · in P.

2 For the sake of this procedure, we consider interpretations (stored in the variable S) that contain
both positive and negative literals.

244 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

The edge is labeled + (resp., −) if q occurs positively (resp., negatively). Notice that
an edge may be labeled by both + and −.

A predicate p is a domain predicate if every path in G+,−(P) starting from p does
not contain cycles involving edges labeled by−. A clause is strongly range restricted
if every variable in it occurs also as an argument of an atom built with a domain
predicate occurring positively in its body. A program is strongly range restricted if
every clause in it is strongly range restricted.

7.2.3 Datalog

Datalog [11] is a fragment of logic programming widely used in deductive databases.
The syntax of its basic version is the same as that of definite logic programs, with the
additional restriction that only function symbols of arity 0 (i.e., constant symbols)
can be used and the following additional restriction (safety) is required: for each rule
head← body each variable in head should appear in at least one atom in body.

The semantics of Datalog is simply represented by the minimal model semantics
described earlier—the semantics of a Datalog program P is simply given by the
minimal model MP. The computation of the semantics of a Datalog program P
is typically realized using a form of bottom-up computation. The procedure in
Algorithm 7.1 can be implemented using standard relational algebra operators (e.g.,
selection, projection, join); absence of non-constant function symbols and the safety
condition ensure finiteness of the process.

Negation is allowed in extended versions of Datalog. In this case, typically, a
notion of stratification (e.g., [75]) is required, which guarantees the existence of a
unique minimal model (computed by iterating Algorithm 7.1 for the different strata
of the program).

7.2.4 Alternative ASP Computation Models

7.2.4.1 Program Completion

An alternative viable solving technique for ASP relies on the theoretical connections
that exist between the stable models of a program P and the minimal models of the
completion of P [12]. Without loss of generality, let us consider the case of ground
programs only.

The positive dependency graph G (P) = 〈V,E〉 is the graph where V is the set of
ground atoms occurring in P, while (A,B) ∈ E if and only if there is a ground rule
r ∈ P such that A = head(r) and B ∈ pos(r) (basically it is the restriction of G+,−(P)
to edges labeled + for a propositional program). A loop in G (P) is any set of atoms
L⊆V inducing a non-trivial strongly connected component in G (P). A program P
is said to be tight (resp., non-tight) if there are no (resp., there are) loops in G (P).

7 Parallel Answer Set Programming 245

The completion Pcc of a program P is defined as the following formula:

Pcc =
∧

a∈atom(P)

(
a ↔

∨
r∈P,head(r)=a

(
ϕpos(r)∧ϕneg(r)

))

It is well known [29, 21] that the stable models of a tight program P coincide
with the minimal models of Pcc. To obtain an analogous result holding for non-tight
programs, one has to consider an additional class of loop formulae. Given a loop L
in G (P), the corresponding loop formula is defined as:

ϕL =
∨
a∈L

a→
∧

r∈ER(L)

(
ϕpos(r)∧ϕneg(r)

)

where ER(L) = {r | r ∈ P∧ head(r) ∈ L∧ pos(r)∩ L = /0}. Intuitively, the loop
formulae ensure that any atom that is part of a loop and true has to be made true by
a rule that is not involved in the loop

It can be shown that, if PΛ is the set of all loop formulae of a program P, then the
stable models of P are exactly the minimal models of Pcc∧PΛ . Since a SAT solver
can be used to determine the models of the formula Pcc∧PΛ , this enables the design
of ASP solvers based on state-of-the-art SAT solvers. This option has been pursued,
for instance, in solvers such as ASSAT and CMODELS [51, 32].

7.2.4.2 Conflict-Driven Search

Let us consider the basic techniques that are employed in the implementation of
the CLASP solver, which uses a conflict-driven search strategy for stable model
building (see [27] for a detailed treatment). The basic idea consists of translating the
completion of a program P into a collection of nogoods, whose solutions (see below)
correspond to stable models of P. The search for the solutions proceeds by executing
a DPLL-like procedure.

More specifically, the technique describes both assignments σ and nogoods as
sets of signed atoms—i.e., entities of the form T p or F p, denoting that p has
been assigned true or false, respectively. Given an assignment σ , let σT = {p :
T p ∈ σ} and σF = {p : F p ∈ σ}. An assignment σ requires that, for each atom p,
{T p,F p} �⊆σ . A total assignment σ is such that, for every atom p, {T p,F p}∩σ �= /0.
Given a (possibly partial) assignment σ and a nogood δ , we say that δ is violated if
δ ⊆ σ . An assignment σ is a solution for a set of nogoods Δ if no δ ∈ Δ is violated
by σ .

Given a program P, we distinguish between two types of nogoods: the completion
nogoods, which are derived from the completion of P, and the loop nogoods, which
are derived from the loop formulae of P. If σ is an assignment for a program P, then
σT is a stable model of P if and only if σ is a solution of the set of all completion
and loop nogoods.

246 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

The CLASP system [27] explores a search space composed of all interpretations for
the atoms in P, organized as a binary tree. The successful construction of a branch in
the tree corresponds to the identification of an answer set of the program. If a (possibly
partial) assignment violates a nogood, then backjumping procedures are used to
backtrack to the node in the tree that caused the failure. The tree construction and the
backjumping procedures in CLASP are implemented in such a way as to guarantee
that, if a branch is successfully constructed, then the outcome will be an answer
set of the program. CLASP’s search is guided by nogoods. During deterministic
propagation phases (unit propagation) nogoods are used to determine additional
needed assignments. For example, given a nogood δ and a partial assignment σ
such that δ \σ = {F p} (resp., δ \σ = {T p}), then we can infer the need to add T p
(resp., F p) to σ in order to avoid violation of δ .

CLASP exploits statically generated completion nogoods, while it dynamically
introduces loop nogoods when they are needed to rule out unsupported models.

7.2.4.3 ASP Computation

We report briefly here a computation-based characterization of answer sets. It is
based on an incremental construction process, where the choices are performed at
the level of which rules are actually applied to extend the partial answer set.

An ASP Computation [53] of a program P is a sequence of interpretations I0 =
/0, I1, I2, . . . satisfying the following conditions:

• Ii ⊆ Ii+1 for all i≥ 0 (Persistence of Beliefs)
• I∞ =

⋃∞
i=0 Ii is such that TP(I∞) = I∞ (Convergence)3

• Ii+1 ⊆ TP(Ii) for all i≥ 0 (Revision)
• if a ∈ Ii+1 \ Ii then there is a rule a← body in P such that I j is a model of body

for each j ≥ i (Persistence of Reason).

I0 can be the empty set or, more generally, a set of atoms that are logical consequences
of P. We say that a computation I0, I1, . . . converges to I if I =

⋃∞
i=0 Ii. The results

in [53] prove that, given a ground program P, an interpretation I is an answer set of
P if and only if there exists an ASP computation that converges to I. I is the set of
atoms that are “true” in the answer set. This technique will be further discussed in
Section 7.5.2.2 while describing a parallel GPU-based conflict-driven ASP-solver.

3 TP is defined in Equation (7.4).

7 Parallel Answer Set Programming 247

7.3 Parallelizing the Grounding Phase

7.3.1 Introduction

As anticipated in the introduction, the ASP-solving process is usually composed of
two phases, performed by two different modules of the ASP solver (see Figure 7.1).
During the first phase a grounder is in charge of replacing each non-ground rule with
the complete set of its ground instances. The grounding ground(P) of a program P
is such that the stable models of ground(P) are exaclty the stable models of P. In
general, this is achieved by uniformly replacing all the variables occurring in each
rule with elements of the Herbrand universe of P (typically, the constants occurring
in P). Then, ground(P) is processed by the solver module, which computes the
solutions of such a ground program. Note that ground(P) might be of exponential
size with respect to the size of the given program P [14].

Almost all available solvers follow this process, with some differences in the way
the two modules are integrated. For instance, in the cases of CLINGO [28] and DLV
[49], the grounder and the solver are tightly coupled to form a single tool, while in
other approaches two distinct tools are available to carry out the two tasks. This is
the case of GRINGO+CLASP and LPARSE+SMODELS [27, 77]. Modern grounders
employ several techniques and optimizations in order to reduce, as much as possible,
the size of the output program, while preserving its equivalence to P, with the hope
that smaller ground programs could potentially lead to greater efficiency during the
solving step.

In order to generate small propositional programs, the instantiation proceeds in a
bottom-up fashion, starting from the facts included in the program and following the
dependencies encoded by the program rules. Modern grounders exploit structural
information of the input program and combine smart techniques for query evaluation
originally developed in the field of deductive databases and briefly discussed in
Section 7.4.

Dependencies among atoms of a program P are described through the (positive)
dependency graph G (P) (Section 7.2.4.1). P is partitioned into modules consisting
of the strongly connected components (SCCs) of G (P); the dependencies among
predicates encoded by the rules induce a partial order among the modules. The
grounder proceeds by processing the modules of P following a topological order of
the SCCs of G (P). In this way, when a module M has to be grounded, all needed data
(i.e., the ground instances upon which the rules in M depend) are available. Moreover,
only the ground atoms that can potentially be derived (during the solving step) by
rules in M are considered. This reduces the size of the resulting ground program and
limits the combinatorial explosion that might otherwise occur if the full collection of
constants were blindly used.

Specific treatment is adopted for those modules containing recursive rules—recall
that, while the SCCs of G (P) form a directed acyclic graph, each module is not nec-
essarily a stratified subprogram of P. In these cases, a fix point technique is applied,
locally to the recursive module. This technique is derived from well-known algo-

248 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

rithms designed for Datalog (e.g., the naive algorithm in Algorithm 7.1, semi-naive
algorithms [82]). In order to efficiently explore all possible alternative instantiations,
backjumping techniques are used and optimal strategies, similar to those developed
for database query optimization, are employed to decide the order in which body
atoms have to be instantiated.

7.3.2 Naive Parallel Grounding

A first investigation of the parallelization of grounding has been conducted in [6]. In
that study, the authors propose a distributed implementation of the grounder LPARSE
as part of a full-blown distributed ASP solver. The approach exploits the property of
strong range restrictedness of LPARSE programs (see Section 7.2.2), and the presence
of domain predicates, in order to statically partition the program rules. In principle,
each rule can be grounded by a different processor. This basic idea is intuitively
captured by Algorithm 7.3. The target architecture is a Beowulf cluster. The system is
organized as a master-slave structure, where the master agent4 computes the program
partition and delegates the grounding of each component to different slaves. In line
4 the task is split among the available processors (i is the generic “slave” processor
identifier) and in line 6 the master collects the data obtained in the variable GP. Load
balancing can be heuristically controlled by assigning weights to rules—essentially,
by computing an estimate of the number of expected ground instances of each rule.

Algorithm 7.3: Parallel Grounding on Beowulf Cluster (from [6])
1 Procedure PARALLELLPARSE (P: Program)
2 GP←{a | a is a ground instance of a domain predicate};
3 P← P\GP;
4 for each ri ∈ P — in parallel do

5 ri
g ← GROUNDRULE(ri);

6 GP← GP ∪ ⋃i ri
g

7.3.3 Multi-level Parallel Grounding

A systematic study has been undertaken concerning the parallelization of the DLV
instantiator on multicore/multiprocessor systems, adopting an SMP (Symmetric
Multi-Processing) architecture, where concurrent threads communicate through a
shared memory. This research started with [10] and evolved over the years into a

4 Throughout the Chapter, we use the terms agent and processor with the same meaning, i.e., to
identify a unit capable of performing concurrent computation.

7 Parallel Answer Set Programming 249

Algorithm 7.4: Component Level Parallelism
1 Procedure COMPONENTSINSTANTIATOR (P: Program, G (P): DependencyGraph, GP:

GroundProgram)
2 S←{a | a is a fact in P} /* S is a set of ground atoms */
3 GP← /0
4 C ←{C |C is an SCC of G (P)}
5 while C �= /0 do /* until all SCCs have been processed */
6 C ′ ← {C |C ∈ C is an SCC of G (P) without incoming edges};
7 for each Ci ∈ C ′ —in parallel do /* spawn a ti for each Ci

*/
8 RULESINSTANTIATOR(P,Ci,S,G (P),C ,GP) /* mod. C and GP */

9 thread_join(t) /* wait for (some) thread termination */

manifold strategy described in [68]. The approach identifies three levels of parallelism
in the grounding process and, for each of them, it proposes different techniques to
take advantage of the underlying multi-threaded system.

The first level of parallelism, called the components level in [10], exploits a
partitioning of the given program P into modules, according to the dependencies
among the SCCs of G (P). The modules must be processed in topological order,
but the grounding concerning independent modules can be performed in parallel.
Algorithm 7.4 shows a possible high-level description of this phase. In particular,
in line 8 a new thread, executing the procedure RULESINSTANTIATOR, is spawned
as soon as a module is ready for grounding. This happens when all the modules it
depends on have been grounded. The synchronization step in line 9 ensures that the
procedure COMPONENTSINSTANTIATOR looks for groundable modules only when a
thread completes its task.

In the second level of parallelism, called the rules level, the rules of each single
module M are instantiated in parallel. Two kind of rules have to be considered.
Recursive rules are those defining a predicate p also occurring positively in the body
of some rule in M. The remaining rules are called exit rules. The latter are grounded
first, by spawning a sufficient number of threads, each one concurrently executing the
procedure SINGLERULEINSTANTIATOR—see Algorithm 7.5, line 5. Observe that
the parent thread (the one executing COMPONENTSINSTANTIATOR) waits for the
termination of all the children threads at the barrier in lines 6–7. Hence each exit rule
is processed, once, by a different thread. The calls to SINGLERULEINSTANTIATOR
concurrently update the set N S of newly generated ground atoms (i.e., the heads of
the newly generated ground rules).

The treatment of recursive rules is slightly more complex. In particular, the semi-
naïve algorithm of Datalog [82], is used to evaluate a fix point for the grounding of
these rules. Starting from the situation resulting from the grounding of exit rules (the
value of set N S in line 9), concurrent threads repeatedly instantiate all recursive
rules until no new instance is obtained (lines 8–16). A synchronization barrier paces
this iteration, ensuring that in each iteration each thread always operates on the
portion of the atoms’ extension added during the previous iteration. Note that, at
the end of the procedure the SCC C is removed from the collection of SCCs still to

250 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

be processed; this affects the condition in line 5 of Algorithm 7.4 and ensures its
termination.

Algorithm 7.5: Rule Level Parallelism (adapted from [68])
1 procedure RULESINSTANTIATOR (P: Program, C: SCC, S: SetOfAtoms, G (P):

DependencyGraph, C : SetOfSCCs, GP: GroundProgram)
2 ΔS← /0 /* ΔS is a set of ground atoms */
3 N S← /0 /* N S is a set of ground atoms */

4 for each ri ∈ Exit(C,P) —in parallel do /* spawn a ti for each ri
*/

5 SINGLERULEINSTANTIATOR(ri,S,ΔS,N S,GP) /* modify N S,ΔS,GP */

6 for each ri ∈ Exit(C,P) do /* synchronization barrier */
7 thread_join(ti) /* wait for all threads */

8 repeat/* process recursive rules in C */
9 ΔS←N S

10 N S← /0
11 for each r j ∈ Recursive(C,P) — in parallel do /* spawn t j for r j

*/
12 SINGLERULEINSTANTIATOR(r j,S,ΔS,N S,GP) /* modify N S,GP */

13 for each r j ∈ Recursive(C,P) do /* synchronization barrier */
14 thread_join(t j) /* wait for all threads */

15 S← S∪ΔS
16 until N S = /0
17 C ← C \C /* the SCC C has been processed */

As far as rule-level parallelism is concerned, one can observe that the smallest
task a thread can perform consists of the grounding of one rule. In other words, all
instances of a single rule must be generated by the same thread. Clearly, this strategy
does not take into account the different structure and complexity of the various
rules—specifically, the number of obtainable instances and the hardness of their
instantiation process. In order to optimize load balancing and improve granularity
control (the regulation of the amount of work assigned to each thread), a third level
of parallelism is introduced. The basic idea consists of splitting the grounding of a
hard rule r among different concurrent threads. This is achieved by selecting one
of the body atoms of r, partitioning its extension, and constraining the action of
each thread to one portion of the partition. This involves the solution of a number of
sub-problems.
1. First, one has to estimate the work needed to ground a rule (essentially, the

cardinality of the outcome) by applying well-known query optimization tech-
niques developed in relational database theory (see, for instance, [82]). More
specifically the grounding of the conjunction of those body atoms that share
variables can be seen as a natural join operation among relations (the extensions
of the atoms). Consequently, the size of the outcome is estimated by considering
the size of extensions of the body atoms and the selectivity of each variable.
Essentially, for each join-variable, one considers the number of distinct values
it might assume w.r.t. the extensions of the body atoms. When the estimated
size of the grounding of a rule exceeds a threshold, the rule is classified as hard,

7 Parallel Answer Set Programming 251

and the computation of its grounding is split between two or more threads. Note
that the number of splits is a parameter that may be heuristically controlled.
On the other hand, in order to obtain a better load balance, a set of easy rules
might be assigned to the same thread (for simplicity, this option is not shown in
Algorithms 7.5 and 7.6).

2. Second, once a hard rule is identified, one has to choose the body atom to be
split (line 3 in Algorithm 7.6). This choice is also made by taking into account
the estimates of the size of the extensions of the body atoms and by determining
the best order for the computation of the join (see [48] for further details). At
this point, the partition of the split atom is computed (line 4 in Algorithm 7.6),
and a pool of threads is spawned accordingly (line 5).

The entire process is dynamic, in the sense that each time a rule is grounded (for
recursive rules this might happen many times), the estimations are evaluated with
respect to the currently known atoms’ extensions. This differentiates the approach
from the techniques developed, for instance, in parallel Datalog evaluation, where rule
assignment to processors is usually determined statically, for example by applying
hashing functions, or fixing other parameters such as the number of splits, the
split atoms, etc. A further optimization concerns the lifetime of threads. Instead of
spawning new threads whenever needed, [68] suggests the creation of a global pool
of threads. Whenever a task has to be executed, it is assigned to one of the free
threads in the pool. Similarly, when a thread completes its task, it is inserted back
into the pool and will wait for the next available task. This limits the overhead due to
the creation and termination of threads.

Algorithm 7.6: Single-Rule Level Parallelism (adapted from [68])
1 procedure SINGLERULEINSTANTIATOR (r: Rule, S: SetOfAtoms, ΔS: SetOfAtoms,

N S: SetOfAtoms, GP: GroundProgram)
2 s← numberOfSplits(r,S,ΔS) /* heuristically evaluate optimal s */
3 L← selectSplitLiteral(r,s) /* heuris. select a literal to split */
4 Splits← SPLITEXTENSION(L,s,S,ΔS) /* split the extension for L */

5 for each spi ∈ Splits — in parallel do /* spawn a ti for each split */
6 INSTANTIATERULE(r,L,spi,S,ΔS,N S,GP)
7 for each spi ∈ Splits do /* synchronization barrier */
8 thread_join(ti) /* wait for all threads */

We conclude this section by mentioning an interesting approach described in [57].
In this case, the authors propose a portfolio-like framework to perform the grounding
phase. The focus is not on parallelism per se, but on the design of an automated
strategy for selecting the best grounder for each given input program. The motivating
idea is that different grounders, as well as different settings in their configuration
options, may offer significantly different performance, both in terms of the time spent
for grounding a program and in the size of the outcome. The proposed framework
exploits machine-learning techniques to classify input programs w.r.t. a number of
easy-to-evaluate heuristic features. The most promising grounding engine (and its

252 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

controlling options setting) is selected and run. The system is aimed at selecting a
single executor for the grounding phase. Nevertheless, the ideas in [57] might be
developed to design a portfolio parallel grounder, where different grounders are used
to process different portions of the same input program. (See Section 7.5.4 for details
of portfolio approaches applied to the solving phase.)

7.4 Parallelizing the Inference Phase I: Parallel Datalog

Several works (e.g., [86, 87, 24, 25, 90]) explored the parallelization of Datalog,
especially on distributed architectures. These approaches deal with Datalog in its
simple version, without negation (although the results could be applied to stratified
Datalog programs with negation), thus they parallelize the computation of MP (see
Algorithm 7.1), assuming that the processors do not have a shared memory. Com-
munication between computing units is instead allowed through explicit message
passing. Recent approaches using shared memory are also briefly discussed.

The principle underlying the approaches [86, 87, 24, 25] is the partition of the
ground rules of the Datalog program among k processors U1, . . . ,Uk. This is also
known as rule distribution. Let us consider a Datalog program P and let r be a
clause of P. We identify in r a set of distinct variables disc(r) that appear in the
body of r—referred to as the discriminating set. Let us define also a hash function
hr : F(F)|disc(r)| �→ {1, . . . ,k}; this function partitions the possible assignments of
values to the variables in disc(r) among the k processors.

For each predicate q ∈P and for each pair i, j ∈ {1, . . . ,k} we introduce the
following new predicates:
• qi

in, describing instances of q entering processor Ui,
• qi

out , describing instances of q produced by processor Ui, and
• qi

j, describing instances of q produced by processor Ui and to be sent to processor
U j.

Given an atom A based on predicate q, we will denote by Ai
in (resp. Ai

out , Ai
j) the

atom obtained by replacing the predicate q with qi
in (resp. qi

out , qi
j). The program P is

transformed as follows:

• The rule r of the form head← b1, . . . ,bm is replaced by the rule

headi
out ← bi

1,in, . . . ,b
i
m,in,hr(disc(r)) = i

Let us observe that the last atom is an equality atom; equality is allowed in
Datalog, and as soon as the variables are replaced by values, it is simply a literal
true/false property. This rule allows us to generate in processor Ui the relevant
instances of rule r;

• For every recursive atom A in the body of r and for every processor U j, generate
the communication rule

7 Parallel Answer Set Programming 253

Ai
j ← Ai

out ,hr(disc(r)) = j

used to send instances of A generated by processor Ui to the relevant processor
U j;

• For each recursive predicate p in the program, let A be an atom with predicate p
and fresh new variables as arguments; then generate the receiving rule Ai

in ← Ai
j.

• For each recursive atom A, the collection rule is defined as A← Ai
out .

While we described a general case, in practice the partitioning process can be focused
on specific rules, e.g., selected rules that are part of a loop in the dependency
graph G (P). Moreover, some of these approaches work also in the absence of data
transmission between processors (e.g., [86, 87]) if the program is decomposable (a
property, however, which is in general undecidable).

The method has also been modified to operate on multicore shared-memory
machines—by exploring hash functions to partition computation of relations that
guarantee the avoidance of locks [89]. Significant speedups can be obtained by
using as little synchronization as possible during the program evaluation. The shared
memory available in GPUs has been exploited in [63], where the authors distribute
the load of computing the model between the various GPU threads that can access
and modify the data in the shared memory. Particular care is taken in parallelizing the
natural join operation that underlies the naive or semi-naive bottom-up computation
of Datalog. Monotonicity of pure Datalog is crucial for the correctness of the shared-
memory approach.

In [90] the authors show that a simple rule partition schema might require a lot of
unnecessary message passing and propose to combine a rule partition schema with a
new data partition parallel schema.

7.5 Parallelizing the Inference Phase II: Parallel ASP

7.5.1 Parallelizing the Search Process

7.5.1.1 General Idea and Seminal Work

The majority of the solvers used for ASP are based on a search process—just as exem-
plified in the skeleton SMODELS algorithm (Algorithm 7.2). The non-deterministic
process incrementally constructs an answer set by alternating deterministic expan-
sions of the interpretation (e.g., the expand step shown in Section 7.2.2) with
non-deterministic choices (e.g., the addition of a yet undetermined literal to the
interpretation—see the select_atom operation used in the SMODELS structure in
Section 7.2.2). The ASP computation can, thus, be visualized as the construction/-
exploration of a binary search tree (see, e.g., Figure 7.2), where the internal nodes
correspond to the non-deterministic choices performed (e.g., the addition of an atom,

254 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

positively or negatively, to the interpretation being constructed), while the segment
of a branch between two consecutive internal nodes correspond to the determinis-
tic phase of the construction of the answer set (e.g., the expand operation). It is
possible to parallelize the computation by distributing the construction of different
branches of the search tree between different processors (Figure 7.2). Effectively,
this leads to different processors concurrently constructing/exploring different parts
of the search tree (Figure 7.3).

ex
pan

d expand

False

select_atom

select_atom

ex
pan

d expand

Processor i Processor j

Fig. 7.2: Search tree and search parallelism

Agent 1

Agent 2 Agent 3

Fig. 7.3: Search parallelism

In principle, the different branches of the search tree correspond to different as-
signments of truth values to the atoms in the language—and they will thus potentially
lead to distinct answer sets. This facilitates the exploitation of parallelism, as the

7 Parallel Answer Set Programming 255

parallel computations are independent and they can potentially be carried out, once
started, without any additional communication. In practice, most state-of-the-art ASP
solvers collect knowledge from each branch of the search tree being explored, to
improve pruning of unnecessary branches in the rest of the search tree. A typical
technique used is clause learning [8], which allows the learning of nogoods (sets
of literals that can never concurrently hold true in any answer set—see Section
7.2.4.2). These techniques, if extended to the case of search parallelism, will require
communication about concurrent computations—e.g., to exchange learned nogoods.

The idea of exploiting search parallelism was originally presented by El-Khatib
and Pontelli [20, 70] and by Finkel et al. [22]. These two concurrent developments
followed very similar directions, with the difference that the work in [20, 70] de-
veloped on a shared-memory platform, using Posix threads, while [22] relied on a
distributed architecture, implemented using PVM [78].

The overall structure of a typical ASP computation for search parallelism is
summarized in Algorithm 7.7. The parallel execution is conducted by a finite set of
computing units (e.g., threads or processes)—all proposed models do not account
for the dynamic creation/removal of computing units during execution to avoid
additional overheads. The initial step (line 3) statically assigns a subtree of the search
tree to the processor. Each processor performs a standard computation on the locally
assigned subtree (line 5) until the entire subtree has been completely explored. The
only novelty is represented by the need to occasionally respond to requests to share
work with other processors (line 6)—i.e., allow other processors to explore parts
of the local subtree. Upon completion of the exploration of the local subtree, the
processor will attempt to communicate with other processors to get access to other
unexplored subtrees (line 19).

While the overall idea of search parallelism is simple, its actual realization has
to address some critical challenges; the two main challenges are: (1) how to move a
processor to a different part of the search tree (referred to as task sharing and (2) how
to locate which part of the subtree one processor should explore next (referred to as
scheduling). These two issues are addressed in the following subsections.

7.5.1.2 Techniques for Task Sharing

The goal of the task-sharing phase is to “relocate” a processor to a different part of the
search tree (Figure 7.4). This is typically necessary when a processor has exhausted
a subtree and needs to access unexplored alternatives (which may be left behind by
another processor). For example, in Figure 7.4, agent x has no alternatives left to
explore, while agent y has at least one choice point (the open node) with unexplored
alternatives. Intuitively, task sharing requires the data structures owned by one
processor (e.g., agent x) to be modified to reflect the structure of the branch of the
search tree currently being explored by another processor (e.g., agent y). Regardless
of the approach used to achieve task sharing, we recognize two processors: the
receiver, which is the processor that is moving to a different part of the search tree,

256 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

Algorithm 7.7: Overall Structure of a Parallel Search ASP Computation
1 procedure COMPUTE (P: Program)
2 S← expand(P, /0)
3 (Branch, �)← Select_Private_Node(P,S) /* Initial partition */
4 while (¬Termination_Detection()) do

5 while (¬Completed_Local_Task(Branch)) do

6 if (Need_to_Schedule()) then /* respond to requests */
7 Branch← Scheduling(Branch)

8 Branch← Branch+[�]; S← expand(P,S∪{�})
9 if (¬consistent(S)) then /* backtrack */

10 (�,S,Branch)← backtrack(P,S,Branch)
11 else if (complete(S)) then

12 Output(S);
13 if (¬Complete_Local_Task(Branch)) then

14 (�,S,Branch)← backtrack(P,S,Branch)

15 else

16 atom← select_atom(P,S);
17 CHOICE: �← atom OR �←¬atom /* choice point */

18 Branch← Branch+[�]

19 (�,S,Branch)← Look_for_Work() /* seek work from others */

Open node
Destination

Agent x

Agent y

Agent x

Agent y

Fig. 7.4: Intuition about task sharing

and the sender, which is the processor that is offering local unexplored alternatives
to the receiver.

Addressing this problem is not trivial—especially when the processors do not
have access to any shared memory—e.g., the data structures representing the branch
of agent y are not directly accessible by agent x. The problem resembles a similar
problem explored in other domains where search parallelism has been considered—
e.g., the binding environment problem extensively discussed in the parallel Prolog
literature [36, 73, 71].

7 Parallel Answer Set Programming 257

Even though a wide variety of design options have been explored (see, e.g., [72]),
two options have emerged as the most promising—i.e., copying and recomputation.

Destination

Agent y
(Sender)

Agent x
(Receiver)

Copy

1

2

3 4

COPYING

Fig. 7.5: Task sharing using copying

Copying: the intuition behind copying is simple: the sender creates a duplicate of the
data structures it owns (representing its own branch of the search tree) and transfers
this copy to the receiver. The receiver installs the data structures received and simply
starts backtracking to locate the first unexplored alternative (see Figure 7.5 on the
right). This approach is simple and apparently suitable for distributed-memory ap-
proaches. The challenge lies in the fact that search trees are potentially very large, and
branches are often represented (in most state-of-the-art sequential implementations)
using complex data structures (e.g., multiple arrays of cross-linked records [65, 27]).
This makes copying a very expensive operation, requiring either very large chunks
of memory (e.g., the entire memory image of a processor) to be transferred or a
significant amount of time to be invested to extract the minimum necessary compo-
nents to be transferred (e.g., determine the “difference” between the branches of the
two processors involved in the task sharing). This is, for example, different from the
case of Prolog, where the branch of the search tree can be efficiently described by
a collection of stacks, allowing the parallel implementation to efficiently perform
incremental copying [36].
Recomputation: the symmetrical approach consists of allowing the receiver to re-
construct the branch of the sender. In order to make the recomputation possible, the
sender needs to provide the receiver with sufficient information to properly recon-
struct the branch. The minimum amount of information needed is represented by the

258 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

literals that have been “guessed” by the CHOICE operation (line 17 of Algorithm 7.7)
along the branch of the sender—indeed, the design of the expand operation is such
that, given the sequence of literals �1, . . . , �n that have been chosen to construct a
branch, and given

E0 = /0
Ei = expand(P,{�i}∪Ei−1) i≥ 1

we have that

expand(P,{�1, . . . , �n}) =
n⋃

i=0

Ei

As such, the only piece of information necessary for the receiver is the set of literals
chosen in the construction of the branch—a piece of information that is typically easy
to collect, as most sequential implementations maintain these choices in a stack to fa-
cilitate backtracking. Two versions of the recomputation approach can be envisioned.
One approach combines recomputation with backtracking (see Figure 7.6(left))—by
having the receiver backtrack to the nearest common ancestor in the search tree
between the sender and the receiver, and perform a recomputation from that point on.
The alternative is to allow the receiver to backtrack to the root of the search tree (e.g.,
the first expand in line 2) and reconstruct the entire branch (see Figure 7.6(right)).
The advantage of the first approach is the potential need to reconstruct only a segment
of the branch of the sender. The main disadvantage is the need for the sender and
receiver to communicate in order to determine their nearest common ancestor; this is
trivial in the case of a shared-memory implementation, but might require non-trivial
exchanges in the case of distributed-memory implementations [46, 72]. The second
approach benefits from the simplicity of positioning the receiver on the root of the
tree (which can be realized with a simple memory-copying operation), not requiring
any communication apart from the exchange of the set of chosen literals; the disad-
vantage is the need to recompute the entire branch (which could be potentially very
long).

The three methods have shown distinct performance on different benchmarks
(e.g., Figure 7.7), demonstrating that dynamic selection of the task-sharing scheme
is necessary, adapting the task-sharing scheme to the structure of the computation.
Further variations of these methods have been discussed in [72].

7.5.1.3 Scheduling and Load Balancing

The use of task-sharing is necessary to allow a finite number of processors to coop-
erate in constructing and exploring the search tree underlying an ASP computation.
While the task sharing technique provides the mechanism to allow one processor
to move from one part of the search tree to another, the open question is how to
determine the parameters of the sharing operation—i.e., who is the sender, who is
the receiver, what is the destination point, and when a sharing operation should be
performed. Different design dimensions can be explored.

7 Parallel Answer Set Programming 259

Agent x
(Receiver)

Destination

Agent y
(Sender)

1

2

3

4

5

RECOMPUTATION WITHOUT BACKTRACKING

Agent x
(Receiver)

Destination

Agent y
(Sender)

1

2

3

45

6

7

RECOMPUTATION WITH BACKTRACKING

Fig. 7.6: Recomputation-based task sharing

Scheduling Symmetry: A common scheduling design is the use of an asymmetric
scheduler, often referred to as a centralized scheduler. In this strategy, a distinction
is introduced between agents that are in charge of leading the scheduling efforts
(masters) and agents in charge of task execution (slaves or workers). Typically, a
single master is used. The master is in charge of keeping track of available tasks
for parallel execution (i.e., unexplored alternatives in the search tree), while the
workers are standard ASP solvers in charge of exploring assigned parts of the search
tree. Whenever a worker completes the exploration of the assigned search space, it
requests a new unexplored alternative from the master and restarts the computation.
The advantage is simplicity of communication and implementation, at the price of a
potential communication bottleneck.

The opposite design alternative is represented by symmetric scheduling. In this
model, all agents play the roles of both worker and master. Whenever one agent
completes the exploration of a part of the search space, it can acquire unexplored
alternatives from any of the other agents. The benefit of this model is the avoidance
of bottlenecks, since the distribution of unexplored tasks is spread among all the
agents. On the other hand, the lack of a reference master may require agents to
perform multiple communication acts before being able to locate a valid unexplored
alternative.
Scheduling Initiation: another important design decision concerns which processor
initiates the task-sharing activity. Traditional scheduling designs make use of receiver-
initiated models, where agents completing their assigned tasks seek new tasks to
explore. An alternative design is sender-initiated scheduling, where agents that carry
excessive unexplored alternatives volunteer their transfer to agents who are idle or
have fewer open alternatives.

260 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

Fig. 7.7: Speedups using copying and recomputation with and without backtracking

Location Policy: looking at the process of task sharing as moving an agent from
one position in the search tree to another, scheduling strategies may either select
a random position or attempt to move to the “closest” unexplored alternative in
the tree—where the distance is measured in terms of the cost of task sharing (e.g.,
backtracking+recomputation). The former method is frequently used in symmetric
scheduling, while distance-based methods are used in (a) shared-memory implemen-
tations, where it is feasible to share among agents their respective positions in the
tree, and (b) implementations based on asymmetric scheduling, where the master can
maintain a map of the positions of the agents.

7 Parallel Answer Set Programming 261

These distinct options have been compared in several experimental systems (e.g.,
[46, 47, 72]). While significant performance differences can be observed depending
on the type of benchmark and the type of implementation (e.g., shared-memory vs.
distributed-memory systems), a consistent observation is the dominance of sym-
metric scheduling methods over asymmetric methods, due to the complexity of
communication, especially in search trees that have a mixed combination of long
and short branches. Figures 7.8 and 7.9 show a comparison of speedups for selected
benchmarks between symmetric and asymmetric scheduling methods.

Fig. 7.8: Symmetric vs. asymmetric scheduling

7.5.1.4 Parallelizing Lookahead

Typical algorithms for the computation of answer sets have been enriched with a
large number of optimizations, including a variety of techniques that have been
drawn from the field of satisfiability testing (e.g., [8]). These optimizations may offer
additional opportunities for parallelization.

262 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

Fig. 7.9: Symmetric vs. asymmetric scheduling

Let us examine one such opportunity. Starting with the development of one of
the earliest ASP systems, SMODELS [66], the lookahead technique [38] has been
used to reduce the search space. Lookahead builds on two important principles of
the expand operation (see Section 7.2.2): (1) the operation is deterministic and
very efficient; (2) the operation can determine inconsistencies. The typical SMODELS
process makes non-deterministic choices, selecting an atom that does not appear in
the partially constructed answer set and non-deterministically adding it as a positive

7 Parallel Answer Set Programming 263

or negative literal. Lookahead performs a preliminary test to guide such selection, as
summarized in Algorithm 7.8.

Algorithm 7.8: Naive Lookahead

1 procedure LOOKAHEAD(P: Program, S: Interpretation)
2 for each A ∈Π(F)\{B |B ∈ S∨¬B ∈ S} do

3 S1 ← expand(P,S∪{A})
4 S2 ← expand(P,S∪{¬A})
5 if (¬consistent(S1)∧¬consistent(S2)) then

6 return False

7 else if (¬consistent(S1)) then

8 S← S∪{¬A}
9 else if (¬consistent(S2)) then

10 S← S∪{A}
11 else

12 return A

Algorithm 7.9: Parallel Lookahead

1 procedure PARALLEL LOOKAHEAD(Id: Processor; P: Program, S:
Interpretation)

2 for each (A ∈Π(F)\{B |B ∈ S∨¬B ∈ S} ∧ π(A) == Id) do

3 S1 ← expand(P,S∪{A})
4 S2 ← expand(P,S∪{¬A})
5 if (¬consistent(S1)∧¬consistent(S2)) then

6 Signal(Termination)
7 else if (¬consistent(S1)) then

8 S← S∪{¬A}
9 Broadcast(¬A)

10 else if (¬consistent(S2)) then

11 S← S∪{A}
12 Broadcast(A)
13 else

14 Signal(Success)
15 return A
16 Gather(S′)
17 S← S∪S′

An obvious source of parallelism is in the for each loop of line 2. While the
code in Algorithm 7.8 introduces a dependence among the iterations (due to the
incremental growth of the interpretation S), these additions are all deterministic.
The lookahead computation can be parallelized by distributing the iterations of the
loop among different processes/threads. A sample parallel structure is summarized
in Algorithm 7.9. An implementation of this structure has been presented in [6].
The set of atoms is partitioned among available processors by the function π (line
2). If any processor detects inconsistencies, a termination signal is issued (line 6).

264 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

Fig. 7.10: Sample speedups from parallel lookahead

Elements that can be deterministically added to the interpretation are broadcasted to
all processors (lines 9 and 12) and collected at each iteration (line 16). Figure 7.10
summarizes the speedups observed from parallelization of lookahead on some sample
benchmarks.

7.5.2 GPU-Based Parallelism

Graphical Processing Units (GPUs) are highly parallel structured devices, originally
developed to support efficient computer graphics and rapid image processing. In
recent years, the use of such powerful multicore systems has become pervasive in
general-purpose applications that are not directly related to computer graphics, but
demand massive computational power. Vendors such as AMD and NVIDIA provide
dedicated APIs and development environments, and promote language extensions

7 Parallel Answer Set Programming 265

such as OpenCL [42] and CUDA (Computing Unified Device Architecture) [67] to
support the development of GPU-based applications.

As concerns the hardware, a GPU consists of hundreds or even thousands of
identical computing units (cores) and provides access to both on-chip memory (used
for registers and shared memory) and off-chip memory (used for cache and global
memory). The underlying conceptual model for parallelism is Single-Instruction
Multiple-Thread (SIMT), where the same instruction is executed by different threads
that run on cores, while data and operands may differ from thread to thread.

A CUDA program includes parts meant for execution on the CPU (referred to
as the host) and parts meant for parallel execution on the GPU (referred to as the
device). Typically, the host code transfers data to the device memory, starts parallel
computations on the device, and retrieves the results from device memory.

The API supports interaction, synchronization, and communication between host
and device. Each device computation is described as a collection of concurrent
threads, each executing the same device function (called a kernel, in CUDA termi-
nology). These threads are hierarchically organized in blocks of threads and grids of
blocks. Device global memory is accessible by all threads, whereas threads of the
same block may access high-throughput on-chip shared memory.

7.5.2.1 GPU-Based Datalog Solving

The shared memory available in GPUs is exploited in [63] where the authors distribute
the load of computing the model of a Datalog program between the various threads,
which can access and modify the data in the shared memory. Particular care is given
to the parallelization of the join operation.

The bottom-up semantics of a Datalog program can be reduced to a computation
that makes use of the relational algebra operators select, join, and projection. The
computation order is driven by the dependency graph, and fixpoint procedures are
employed in case of recursive predicate definition.

The host preprocesses the program, converting each rule into an internal, numeri-
cal, representation; the host decides which kind of relational algebra operators are
needed for each rule, while their executions are delegated to the device.

In more detail, select is implemented using three different device function execu-
tions. The first one marks the rows of a matrix that satisfy the selection predicate, the
second one performs a prefix sum on the marks to determine the size of the results
buffer and the location where each GPU thread must write the results, and the last
device function writes the results.

The projection operator simply moves the elements of each required column to a
different location.

The authors implement single join, multijoin, and selfjoin operations according to
the number of variables involved. Let us focus here on the single join only, where
the authors adapted the Indexed Nested Loop Join implementation. They build an
array for each of the two columns to be joined, sort one of them, create a Cache
Sensitive Search (CSS) Tree [74] for the sorted column, search the tree to determine

266 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

the join positions, perform a first join to determine the size of the result, and finally
perform a second join to write the result. CSS Trees can be built in parallel and are
addressed arithmetically (rather than with pointers), thus making them well suited
for GPUs. Empirical evaluations show excellent speedups, up to 200 times for some
of the benchmarks, using a GPU with 512 cores.

In [40] the authors study the problem of parallelizing backtracking methods using
GPUs. Backtracking methods deal with irregular accesses to the problem instance,
with different memory accesses in different nodes of the same level, in a search
space that is possibly of exponential size and shaped as an unbalanced tree. All
these issues clash with the expected “regularity” of the SIMT parallelism model of
GPUs. The authors apply their method to the maximal clique enumeration (MCE)
problem, parallelizing a backtracking algorithm either on a GPU or using multicore
processors. The implementation exploits coarse-grained parallelism to handle the
construction of the tree, and fine-grained parallelism to execute tasks in each node.
They test the two implementations on four different datasets, two of them coming
from real-world problems (from biology and climate). The results of the comparison
between the two kinds of parallelism do not identify a clear winner, but in both cases
(multi-threaded implementations on standard multicore platforms and GPU-level
parallelization) there is a significant speedup w.r.t. the sequential approach. The
coarse-grain parallelization of backtracking algorithms can be easily ported to a GPU
architecture—by simply implementing the process of exploring a subtree as a kernel,
executed by multiple threads on the device, and by properly partitioning the global
memory of the GPU. However, the resulting performance is highly dependent on
how balanced the search tree is. Fine-grain parallelization of activities in a single
node potentially offers good speedup, but usually this is obtained by designing
ad hoc GPU-oriented algorithms, specifically devised to fully benefit from SIMT
parallelism.

A similar empirical study is the subject of [13], where the authors show the
possibilities and the limits of parallelizing the unit propagation procedure (done
in each node of the search tree) and backtracking search (coarse grain). While the
former seems to always benefit from GPU parallelism, the latter proved to be effective
only for problems of size falling within a given range—not too small, otherwise
the transfer time would not be justified, and not too large, otherwise the GPU
parallel computation will exceed memory capacity. The experimental study reported
in [13] shows that excellent speedups can be achieved by using GPU parallelism
as a subroutine of the SAT computation, performed when the number of remaining
unknown variables is close to 70.

7.5.2.2 GPU-Based Conflict-Driven ASP Solving

Overall Design: The approaches to the parallelization of ASP described earlier turn
out to be hardly applicable in the case of GPUs and do not ensure adequate scalability
of the solution. This is because GPUs’ model of parallelism is profoundly different.
Indeed, GPUs are designed to operate with a very large number of lightweight

7 Parallel Answer Set Programming 267

Algorithm 7.10: GPU-ASP-Computation

1 procedure GPU-ASP-COMPUTATION(Δ : SetOfNogoods, P: GroundProgram)
2 current_dl ← 1 /* initial decision level */
3 A← /0 /* initial assignment is empty */
4 (A,Violation)← InitialPropagation(A,Δ) /* GPU parallelism */
5 if Violation then

6 return no answer set
7 else

8 while true do

9 (ΔA,Violation)← NoGoodCheckAndPropagate(A,Δ) /* GPU par. */
A← A∪ΔA;

10 if Violation ∧ (current_dl = 1) then

11 return no answer set

12 else if Violation then

13 (current_dl,Λ)← ConflictAnalysis(Δ ,A) /* GPU par. */
14 Δ ← Δ ∪Λ /* add learned nogoods */
15 A← A \ {p ∈ A | current_dl < dl(p)}
16 if (A is not total) then

17 (p,Selected)← Selection(Δ ,A)/* GPU parallelism */
18 if Selected then

19 current_dl ← current_dl +1
20 dl(p)← current_dl
21 A← A∪{p}/* extend the assignment */

22 else

23 A← A∪{F p : p is unassigned}
24 else

25 return AT ∩atom(P) /* stable model found */

threads, homogeneously operating in a tightly synchronous fashion. Consequently,
device code has to maximize fair load balancing among threads and avoid divergence
in threads’ computations (namely, threads of the same block which concurrently
execute different instructions). Moreover, to fully benefit from the complex memory
architecture of GPUs, one has to prefer specific regular patterns in accessing each
type of device memory. Conversely, the presence of irregular memory accesses or
thread divergence often cause the serialization of the kernel executions, yielding poor
overall parallel performance.

A viable strategy to fully exploit GPUs’ computational power consists of paral-
lelizing the execution of those “easy” activities (i.e., those presenting polynomial
time complexity), such as nogood checking, unit propagation, conflict analysis, and
learning, that are basic components of the entire ASP solver. In this frame of mind,
the approach proposed in [18, 19] builds on the notion of ASP computation combined
with conflict analysis and learning techniques derived from those adopted in [27] for
the CLASP solver. To the best of our knowledge, this is the only investigation ever
proposed focused on the parallelization of ASP solving on GPUs.

Once the host has transferred the input nogoods to GPU global memory, the
computation develops on the device as shown in Algorithm 7.10. The overall structure

268 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

of the GPU-ASP-Computation procedure is the conventional structure of a conflict-
driven ASP solver [27], except for the adopted selection heuristics, which implements
the ASP computation (Section 7.2.4.3), and for the parallelization of all the functions
involved. In particular, as usual for conflict-driven solvers, the procedure maintains a
(partial) truth assignment, which is repeatedly extended by alternating decision steps
and unit propagation phases. During each decision step, heuristics are used to select
an unassigned atom and to assign it a truth value. To track taken decisions, at each
decision step a decision level is incremented. During the propagation phase, further
truth values for unassigned atoms can be derived from the current assignment, using
program rules/nogoods. All these assignments occur at the current decision level.

Whenever a failure is encountered, namely a rule/nogood cannot be satisfied by
the current partial assignment, a conflict analysis step is run to detect the decision
step causing the failure and its decision level, say �. Moreover, (at least) one new
nogood is derived by applying standard clause-learning techniques [8]. At this point
a backjumping step restores the state of the partial assignment corresponding to the
decision made at level �−1, the current decision level is updated accordingly, and the
search continues. The newly introduced nogoods prevent the solver from repeating
failing decisions. The computation ends as soon as the assignment becomes complete
or no backjump is possible (because a failure occurs already before taking the first
decision, namely, at the top decision level).

Implementation Details: Let us describe in more detail the main steps of Algo-
rithm 7.10, where Δ is the set of nogoods (initialized with those computed from the
program P), A is the partial truth assignment, and current_dl is the current decision
level.

Since the set Δ may include some (input) unitary nogoods, a preliminary parallel
computation partially initializes A by propagating them. This is done by the procedure
InitialPropagation (line 4), which runs a grid of threads with one thread for each
unitary nogood. Hence, all current unitary nogoods are processed in parallel. The sign
of the literal in each unitary nogood is analyzed and the corresponding entry of A is
set accordingly. If one thread finds such an atom already assigned in an inconsistent
way, a Violation flag is set to true and the computation ends (line 5).

The procedure NoGoodCheckAndPropagate (line 9) performs unit propagation
and, at the same time, checks nogoods for violation, w.r.t. A.

As mentioned earlier, to better exploit the SIMT parallelism and maximize the
number of concurrently active threads, in each device computation the workload has
to be distributed among the threads as uniformly as possible. To this aim, the set of
nogoods is partitioned depending on their size and NoGoodCheckAndPropagate is
organized as different steps, each one implemented by a different kernel grid. Each
kernel grid deals with all nogoods having the same size.

The procedure NoGoodCheckAndPropagate iterates by repeatedly running such
grids of kernels, which behave as follows. In each iteration the computation is driven
by the atoms that have been assigned a truth value in the previous iteration. The
motivation is that only these atoms may trigger either a conflict or a propagation.
In particular, in the first iteration, the procedure relies on the atoms that have been
assigned by the InitialPropagation procedure. Similarly, the atoms assigned in an

7 Parallel Answer Set Programming 269

iteration will possibly affect the following step. Thus, each grid of kernels involves a
number of blocks that is equal to the number of atoms assigned during the previous
iteration. The threads in each block process nogoods that share the same assigned
atom. This strategy in distributing the load among grids (depending on the size of
the nogoods) and among threads (depending on the assigned atoms) ensures that
all threads of the same block perform similar amounts of work, minimizing thread
divergence and irregularity in memory accesses. Specific data structures are used in
order to efficiently determine, after each iteration and for each assigned atom, which
are the input nogoods to be considered in the next iteration.

A similar approach is adopted to process those nogoods that are learned at run-
time through the conflict analysis step (see below). They are partitioned depending
on their size and processed by different grids, accordingly.

A further optimization, which is applied when processing nogoods of large size,
relies on a standard technique based on watched literals [8]. In this manner, each
thread may reduce the number of nogoods to be inspected by checking the watched
literals and acting accordingly.

Notice that, in each iteration of NoGoodCheckAndPropagate, all significant no-
goods are processed in parallel. On one hand, this implies that all possible propaga-
tions are performed as soon as possible. On the other hand, several violations/conflicts
might be detected as soon as they are triggered by propagations. The iterations end
when at least one conflict is generated or no more propagations are possible. The
variables ΔA and Violation are set accordingly. Then, the partial assignment A
is updated by adding the set of newly assigned atoms ΔA (line 9). In case of failure
at the top level, the procedure ends (line 11). If a failure occurs at a deeper level
(line 12), a conflict analysis phase is executed (see below). Otherwise, the procedure
proceeds by executing a new decision step and increasing the current decision level
(lines 16–23), unless A is complete (line 25).

The Selection procedure (line 17) determines the atoms to be decided. The se-
lection is performed by heuristically ranking all potential candidates. (Well-known
heuristics such as the Jeroslow-Wang and its variants [41], counting heuristics [8], as
well as considering the “activity” of atoms [33] are exploited.) Such ranking is evalu-
ated on the device, by processing in parallel all atoms that are potentially selectable
in accordance with the development of an ASP-computation (cf., Section 7.2.4.3).
The selected atom (p in lines 16–23), is assigned its decision level dl(p). In case
no selectable atom exists, A is completed by setting false all remaining unassigned
atoms (line 23). The formal properties of the ASP computation ensure that A is a
stable model [53].

The ConflictAnalysis procedure is used to resolve the conflicts previously detected
by NoGoodCheckAndPropagate. For each conflict, it identifies a decision level (and
the corresponding decided atom p) the computation should backjump to, in order to
remove the violation. It should be mentioned that the approach adopted in [18, 19] for
implementing conflict analysis and learning adapts techniques originally developed
for sequential solvers [8, 27]. These techniques derive a new nogood by performing
a linear sequence of resolution steps, that resolve the violated nogood against input
nogoods. This process is essentially sequential and hard to parallelize. Hence, this is

270 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

the part of the GPU-based solver that least exploits the SIMT parallelism. Some initial
investigations of the design of natively GPU-oriented parallel algorithms for learning
have been made in [23]. Nevertheless, at the time of writing, the ConflictAnalysis
procedure described in [19] is a parallelization of the algorithm described in [8, 27],
and adopted for the CLASP solver to identify a unique implication point (UIP [62])
and to determine the lower decision level among those causing the detected conflicts.
Notice that ConflictAnalysis can analyze all the conflicts in parallel. Moreover, for
each conflict, a block of threads performs the sequence of resolution steps deriving
one new nogood. In each step, the atoms composing intermediate resolvents are
processed in parallel, equally partitioned among the threads. The procedure detects
the best level to backjump to, performs backjumping, and returns a new set of
nogoods Δ .

Notice that the solver described by Algorithm 7.10 is somehow simplified with
respect to the concrete implementation reported on in [19], which encompasses also
well-known techniques such as restart and forgetting [8] to speedup the search.

7.5.3 Moving Towards Large-Scale Architectures

7.5.3.1 The Map-Reduce Programming Model

The increasing availability of large data sets—including large knowledge bases—has
pushed the development of frameworks and programming models that are suitable
for processing large amounts of data. In particular, emphasis has been placed on the
development of programming models that move computations to the data, to avoid
large data transfers.

The Map-Reduce framework, originally introduced by Google [17], is a program-
ming framework designed to operate over a distributed file system (e.g., Google
File System). The underlying distributed file system automatically handles the parti-
tioning of files into blocks (e.g., 128MB in the Hadoop File System [3]) and their
distribution across data servers, to ensure scalability and fault-tolerance.

Figure 7.11 summarizes the structure of a typical Map-Reduce application. The
workflow depicted in the figure is fixed, and the programmer’s job consists only of
developing the Map and the Reduce tasks. The workflow may include a large number
of instances of both the Map and Reduce tasks—typically executed on the same
servers that provide the distributed file system.

The tasks are designed to operate on data organized in 〈key, value〉 pairs. In
particular, the Map tasks act as “partitioners”, aimed at producing collections of 〈key,
value〉 pairs from blocks of data (parts of the input file), while the Reduce tasks
collect each key with the list of all values associated with the key, to produce the
final result. Note that the combiners, in charge of assembling the output of the
Map tasks according to the keys, are built-in in the Map-Reduce framework.

7 Parallel Answer Set Programming 271

Split 0

Split 1

Split 2

Split 3

Split 4

Split 5

MAP Task
0

MAP Task
1

MAP Task
2

MAP Task
3

MAP Task
4

INPUT
File

Combiner
0

Combiner
1

Combiner
2

REDUCE
Task 0

REDUCE
Task 1

REDUCE
Task 2

REDUCE
Task 3

key,value
key,value
…

key,value
key,value
…

key,value
key,value
…

key,value
key,value
…

key,value
key,value
…

key, value, value, …

key, value, value, …

key, value, value, …

key, value, value, …

OUTPUT
File

Fig. 7.11: Structure of a Map-Reduce application

7.5.3.2 Datalog and Map-Reduce

Datalog has been the focus of parallelization on large-scale distributed platforms
using the Map-Reduce model; this focus is not surprising: Datalog has been a
platform of choice for advanced database applications, and Map-Reduce enables the
use of Datalog over very large-scale datasets.

The core of the Datalog bottom-up computation is the determination that a logic
programming rule is applicable with respect to an interpretation. If we view the
collection of facts with the same predicate in an interpretation as a database relation,
then the application of a rule can be viewed as a combination of relational algebra
operations. For example, a clause of the form p(Y)← q(a,X),r(X ,Y) contributes to
the relation p according to the relational algebra expression πY (σq1=a(q) �� r).

The core of the application of a clause is the execution of natural joins among the
relations in the body of the clause. The literature [1] has explored the Map-Reduce
implementation of natural joins. Let us start by considering the simpler case of
binary relations and clause bodies composed of two atoms—i.e., clauses of the form
p(X ,Z)← q(X ,Y),r(Y,Z). Such a join can be realized with a Map-Reduce model
organized as follows:

• Each Map task receives facts of either relation; each fact q(a,b) is mapped to a
key-value pair of the type (b,(a,q)) while each fact r(b,c) is mapped to the pair
(b,(c,r)). Thus, the key is the value of common argument between the two facts.

• Each Reduce task receives elements of the form (key,List) and produces facts of
the form p(a,c) for each (a,q) ∈ List and (c,r) ∈ List.

272 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

This can extended to the case of multiple elements in the body of a clause, by creating
complex keys that capture the values of the variables used to connect facts in the join;
let us consider the case of a rule p(X ,Y)← q(X ,Z),r(Z,T),s(T,Y); a Map-Reduce
scheme can be realized as follows:

• Each Map task translates facts q(a,b) to pairs ((b,k),(a,q)) for each legal term
k; facts of the form s(c,d) are mapped to pairs ((k,c),(d,s)); facts of the form
r(b,c) are mapped to pairs ((b,c),r).

• Each Reduce task receives elements of the form ((b,c),List) and produces facts
p(a,d) for each (a,q) ∈ List, (d,s) ∈ List such that r ∈ List.

Generalizations to more complex cases are straightforward; for example, if the first
body element in the clause above is replaced by q(v,X ,Z), then the Map task will
produce the pair ((b,k),(a,q)) only for facts of the form q(v,a,b). The model can be
extended trivially to implement a single iteration of the Datalog semi-naive algorithm.
In order to provide the entire computation of the least Herbrand model, it becomes
necessary to iterate the Map-Reduce phase until a fixpoint is determined; efficient
schemes to support iterations of Map-Reduce pipelines (e.g., HaLoop [9]) have been
investigated and successfully applied to the case of Datalog [2].

7.5.3.3 Towards ASP: Well-Founded Semantics and Map-Reduce

As discussed in the introductory Section 7.2.2, the addition of negation as failure to
definite clause programs (hence to pure Datalog) has the consequence of possibly
leading to multiple minimal models. Nevertheless, there are large classes of programs
with negation that still have a single Herbrand model. The most popular syntactic
restriction is stratification [75, 4]. A logic program with negation P is stratified if
there exists a level mapping function p : P → N such that, for every rule head←
b1, . . . ,bn,not c1, . . . ,not cm in P, we have that p(pred(head)) ≥ p(pred(bi)) and
p(pred(head))> p(pred(c j)) for 1≤ i≤ n and 1≤ j≤m.5 Each stratified program
is guaranteed to have a unique least Herbrand model. For simplicity, we will assume
that the levels in the program are assigned consecutively from 0 to a maximum level
�. The computation model used for stratified programs is a simple extension of that
used for Datalog, as illustrated in Algorithm 7.11.

Algorithm 7.11: Stratified Datalog Computation
1 Procedure STRATIFIED(P)
2 I ← /0
3 for Level ← 0 to � do

4 P′ ← {ground(r) ∈ P | p(pred(head(r))) = Level}I

5 I′ ← least_Herbrand_model(P′ ∪ I)

5 This is equivalent to stating that the graph G+,−(P), defined in Section 7.2.2, does not have cycles
with negative edges.

7 Parallel Answer Set Programming 273

The extension of the Map-Reduce Datalog computation to the case of stratified
programs requires two components:

• The individual Map-Reduce pipeline described for applying one clause, through
multi-way joins, has to be extended to include negated literals.

• An additional loop has to be added around the Map-Reduce pipeline that corre-
sponds to the loop in lines 3–5 of Algorithm 7.11.

While the second item is simple, the first item requires work [79]. While positive
atoms are solved using natural joins, negated elements in a clause require the use of
anti-joins. Let us illustrate the modified Map-Reduce pipeline with an example. Let
us consider the clause p(X)← q(X),not r(X); then

• Map: for each atom q(a) received, the pair (a,+) is returned; for each atom r(b)
received, the pair (b,−) is generated.

• Reduce: for each element (key,List) received, the task produces the result p(key)
if + ∈ List and − �∈ List.

An analogous method can be used to deal with non-stratified programs under the well-
founded semantics [84]. This semantics determines a unique minimal three-valued
model and can be computed as explained below. If at the end of the computation all
the atoms are assigned (to true or to false) then it is also a stable model. The core of
the computation is a variant of the immediate consequence operator: given a ground
program P

TP,J(I) = {head(r) | r ∈ P, pos(r)⊆ I,neg(r)∩ J = /0}

where pos(r) denotes the atoms that appear non-negated in the body of rule r, while
neg(r) are those atoms that appear negated in the body of r. Intuitively, given sets
of true atoms I and false atoms J, the operator determines what rule heads can be
immediately derived using such knowledge. Let us denote by lfp(T) the least fixpoint
of the operator T . The well-founded semantics of a program can be defined according
to the following rules (P+ indicates the definite rules in P):

K0 = lfp(TP+, /0) U0 = lfp(TP,K0)
Ki+1 = lfp(TP,Ui) Ui+1 = lfp(TP,Ki+1)

Given a fixpoint (K,U) of this sequence, the well-founded model of P is composed
of the atoms in K (true elements) and all the elements not in U (false elements); the
remaining atoms are undefined.

A Map-Reduce model for the computation of the well-founded model follows the
same scheme shown earlier—since the computation of TP,J—except that there are
two iterative Map-Reduce pipelines (see Figure 7.12). Experimental results show
great potential for scalability [81].

274 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

M
AP

RE
DU

C
E

RE
DU

C
E

M
AP

Ki Ui

Fig. 7.12: Nested Map-Reduce pipelines for the well-founded semantics

7.5.3.4 Other Relevant Applications of Map-Reduce

Analogous principles to those discussed before have been applied to develop Map-
Reduce pipelines for other logics. The authors of [80] provide a Map-Reduce pipeline
for a defeasible logic; under the assumption of stratified defeasible theories, the
computation is analogous to the case of stratified Datalog, with the exception that the
processing within each level of the stratification requires two Map-Reduce pipelines,
one to determine consequences and one to perform defeasible reasoning.

The work in [83] illustrates the mapping of RDFS and OWL reasoning to logic
programming rules and the use of Map-Reduce pipelines for the computation, with
particular emphasis on the optimization of the encoding to take advantage of the
specific types of rules derived from RDFS and OWL encoding.

7.5.4 Portfolio Approaches for ASP

Portfolio is a meta-search technique that can easily benefit from parallelism; it applies
a family of different solvers with the aim to exploit the best of them on a specific
instance. As is common practice in the literature on portfolio techniques, we consider
in the same way the application of completely different solvers or of the same solver
used with different search parameters. Constraint solving in general, and Boolean
constraint solving in particular, are highly sensitive to parameter tuning. Given an
ASP program P, and a set A of solvers, portfolio methods use actual input data to set
up the most promising parameter assignments for a complete run. In Figure 7.13, we
describe the basic portfolio scheme adopted by CLASP—in the CLASPFOLIO system
[26]—which has been inspired by SATzilla [88].

Given a program P a (usually partial) run of the A solvers on P is executed and
halted when a timeout is reached. This part can be completely parallelized. At the end
of the computation a set of features is analyzed and according to the values of these
features the most promising solver is selected for running the complete computation.
Also in this case a parallel architecture would allow us to run (independently) more
than one solver on the complete input in the same time. Chapter 15, Selection and
Configuration of Parallel Portfolios of this book extensively covers this topic; we just
report here the main portfolio approaches for ASP solving.

7 Parallel Answer Set Programming 275

ground(P)

partial
run

opt 1

partial
run

opt 2

partial
run

opt k

P choose
opt i

complete
run
opt i

SVM

Fig. 7.13: A simple portfolio scheme. Partial executions with different search param-
eters can run in parallel. A parallel architecture can allow us to execute more than
one complete run in parallel

Following [52], let us assume we have a set A of solvers, a set I of instances
(programs) and a function � : A× I −→ R to be minimized (e.g., running time). A
selector S is a function S : I→ A aimed at minimizing �(S(P),P) with P∈ I. Portfolio
methods adopt a machine-learning technology to define the selector function S using
a set T of training instances, where a set F of features is considered. A selector
trained on a set of test instances is evaluated on a (disjoint) set of instances I by
comparing ∑P∈I �(S(P),P).

In the case of CLASPFOLIO [26] starting from the ground program, a lightweight
version of CLASP is used to extract the features F that are mapped to a score for
each configuration in the portfolio. Data-related features (e.g., number of constraints,
number of variables, etc.) and Search-related features (e.g., average backjump length,
length of learned clauses, etc.) are used by the selector to retrieve the most promising
configuration. The selector is based on an SVM trained using the Support Vector
Regression technique.

In [76] the authors elaborate on the previous approaches showing also the poten-
tial of the portfolio techniques for finding a sequence of parameter settings to be
switched in the computation. They also test local search methods for adjusting solver
configurations.

In [58] the authors presents ME-ASP, a multi-engine approach for ASP. Six
multinomial classification methods to train the selector are compared: Aggregation
Pheromone density-based pattern Classification (APC), Decision rules (FURIA),
Decision trees (J48), Multinomial Logistic Regression (MLR), Nearest-neighbor
(NN), and Support Vector Machine (SVM). Training is done on a set of easy-to-
compute features split into four families: Problem size features, Balance features,
“Proximity to horn” features, and ASP peculiar features. In [59] ME-ASP is extended
with a policy adaptation. The multi-engine nature of the approach makes it suitable
for parallelism.

276 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

In [39] the authors present CLASPFOLIO 2, which extends the rigid architecture
of Figure 7.13 to provide “a modular and open architecture that allows for inte-
grating several different approaches and techniques”, including different feature
generators, several approaches to solver selection, variable solver portfolios, and
solver-schedule-based pre-solving techniques. In [52] the same authors (plus Frank
Hutter) present AUTOFOLIO, partially based on CLASPFOLIO 2, a general approach
for automatically determining a strong algorithm selection method for a particular
dataset, by using algorithm configuration to search through a flexible design space of
algorithm selection methods.

7.6 Discussion and Conclusions

In this Chapter, we provided a brief overview of the principal approaches that have
been investigated to enable the parallel computation of ASP (and related logic
programming languages, like Datalog). A clear message that can be derived from the
presentation is that highly declarative logic programming languages, like ASP, offer
outstanding opportunities for the transparent exploitation of parallelism. The presence
of search-based execution models and the relative lack of control dependencies (as
present in traditional imperative programming) facilitate the mapping of the execution
models to parallel processes. A broad adoption of parallelism in ASP will enhance
scalability and applicability of the paradigm to real-world problems. Techniques such
as mapping of search parallelism on multicore threads are now mature and can be
realized in a robust and sustainable manner.

Research in the field of parallel ASP is still growing and moving in even more
promising directions. State-of-the-art ASP engines such as CLASP maintain support
for parallel execution, thus ensuring that the evolution of sequential techniques does
not impair the exploitation of parallelism.

The most promising research direction, at the time of the development of this
Chapter, is represented by the exploitation of very coarse-grained parallelism over
distributed architectures (e.g., using Map-Reduce and similar frameworks). All state-
of-the-art ASP solvers still rely on ground-then-solve, thus forcing ASP programmers
to contend with potential explosion in the size of the program as a result of grounding.
Large-scale parallelism provides an elegant avenue to mitigate the impact of large
grounding. The recent development of programming frameworks for handling very
large graphs (e.g., [34, 56, 55]) is opening up new opportunities for parallelization of
ASP, whose computation can be reduced to graph transformations—as preliminarily
explored in [35].

The effort on GPU-level parallelism, on the other hand, is still in its infancy. While
the works discussed in this Chapter have highlighted the potential of this type of
parallelism in ASP, the engineering of robust and scalable techniques still requires
further research. Furthermore, existing studies have focused on the use of the CUDA
framework, which is specific only to NVIDIA graphics cards. The impact of porting

7 Parallel Answer Set Programming 277

the techniques to a more general GPU programming framework (such as OpenCL)
and to non-NVIDIA architectures is an interesting open line of research.

Acknowledgements The research pursued by the authors on the topics of this Chapter has been
partially supported by NSF grants CBET-1401639, HRD-1345232, CNS-1337884, and DGE-
0947465, by INdAM GNCS 2014–2017 grants, by PRID ENCASE, and by YASMIN (R.d.B.-
UniPG2016/17) and FCRPG.2016.0105.021 projects.

References

[1] Afrati FN, Ullman JD (2010) Optimizing joins in a map-reduce environment.
In: Proc. of 13th International Conference on Extending Database Technology,
pp 99–110

[2] Afrati FN, Borkar VR, Carey MJ, Polyzotis N, Ullman JD (2011) Map-reduce
extensions and recursive queries. In: 14th International Conference on Extend-
ing Database Technology, pp 1–8

[3] Apache Software Foundation (2016) Apache Hadoop. http://hadoop.
apache.org

[4] Apt K, Bol R (1994) Logic Programming and Negation: A Survey. Journal of
Logic Programming 19/20:9–71

[5] Apt K, Blair H, Walker A (1989) Towards a Theory of Declarative Knowledge.
In: Minker J (ed) Foundations of Deductive Databases and Logic Programming,
Morgan Kaufmann

[6] Balduccini M, Pontelli E, Elkhatib O, Le H (2005) Issues in Parallel Execution
of Non-Monotonic Reasoning Systems. Parallel Computing 31(6):608–647

[7] Baral C (2003) Knowledge representation, reasoning and declarative problem
solving. Cambridge University Press

[8] Biere A, Heule M, Van Maaren H, Walsh T (eds) (2009) Handbook of Satisfia-
bility. IOS Press

[9] Bu Y, Howe B, Balazinska M, Ernst M (2010) Haloop: efficient iterative data
processing on large clusters. In: Very Large Data Bases (VLDB) Conference,
ACM, pp 285–296

[10] Calimeri F, Perri S, Ricca F (2008) Experimenting with parallelism for the
instantiation of ASP programs. Journal of Algorithms 63(1-3):34–54

[11] Ceri S, Gottlob G, Tanca L (1990) Logic Programming and Databases. Springer
[12] Clark K (1978) Negation as failure. In: Gallaire H, Minker J (eds) Logic and

Data Bases, Plenum
[13] Dal Palù A, Dovier A, Formisano A, Pontelli E (2015) CUD@SAT: SAT solving

on GPUs. J Exp Theor Artif Intell 27(3):293–316
[14] Dantsin E, Eiter T, Gottlob G, Voronkov A (2001) Complexity and expressive

power of logic programming. ACM Comput Surv 33(3):374–425
[15] Davis M, Putnam H (1960) A Computing Procedure for Quantification Theory.

Journal of the ACM 7:201–215

http://hadoop.apache.org
http://hadoop.apache.org

278 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

[16] Davis M, Logemann G, Loveland D (1962) A machine program for theorem
proving. Communications of the ACM 5(7):394–397

[17] Dean J, Ghemawat S (2004) MapReduce: Simplified Data Processing on Large
Clusters. Tech. rep., Google, Inc.

[18] Dovier A, Formisano A, Pontelli E, Vella F (2015) Parallel Execution of the
ASP Computation - an Investigation on GPUs. In: Proceedings of the Technical
Communications of the 31st International Conference on Logic Programming,
CEUR-WS.org, no. 1433 in CEUR Workshop Proceedings

[19] Dovier A, Formisano A, Pontelli E, Vella F (2016) A GPU implementation of
the ASP computation. In: Gavanelli M, Reppy JH (eds) Practical Aspects of
Declarative Languages - 18th International Symposium, PADL 2016. Proceed-
ings, Springer, Lecture Notes in Computer Science, vol 9585, pp 30–47

[20] El-Khatib O, Pontelli E (2000) Parallel Evaluation of Answer Sets Programs
Preliminary Results. In: Workshop on Parallelism and Implementation of Logic
Programming

[21] Fages F (1994) Consistency of Clark’s completion and existence of stable
models. Methods of Logic in Computer Science 1(1):51–60

[22] Finkel R, Marek V, Moore N, Truszczyński M (2001) Computing Stable
Models in Parallel. In: Provetti A, Tran S (eds) Proceedings of the AAAI Spring
Symposium on Answer Set Programming, AAAI/MIT Press, Cambridge, MA,
pp 72–75

[23] Formisano A, Vella F (2014) On multiple learning schemata in conflict driven
solvers. In: Bistarelli S, Formisano A (eds) Proceedings of the 15th Italian Con-
ference on Theoretical Computer Science, CEUR-WS.org, CEUR Workshop
Proceedings, vol 1231, pp 133–146

[24] Ganguly S, Silberschatz A, Tsur S (1990) A Framework for the Parallel Process-
ing of Datalog Queries. In: Garcia-Molina H, Jagadish H (eds) Proceedings of
ACM SIGMOD Conference on Management of Data, ACM Press, New York,
pp 143–152

[25] Ganguly S, Silberschatz A, Tsur S (1992) Parallel Bottom-Up Processing of
Datalog Queries. Journal of Logic Programming 14(1-2):101–126

[26] Gebser M, Kaminski R, Kaufmann B, Schaub T, Schneider MT, Ziller S (2011)
A portfolio solver for answer set programming: Preliminary report. In: Del-
grande JP, Faber W (eds) Logic Programming and Nonmonotonic Reasoning -
11th International Conference, LPNMR 2011, Vancouver, Canada, May 16-19,
2011. Proceedings, Springer, Lecture Notes in Computer Science, vol 6645, pp
352–357

[27] Gebser M, Kaminski R, Kaufmann B, Schaub T (2012) Answer Set Solving in
Practice. Morgan and Claypool Publishers

[28] Gebser M, Kaminski R, Kaufmann B, Schaub T (2014) Clingo = ASP + control:
Preliminary report. CoRR abs/1405.3694

[29] Gelfond M (2007) Answer sets. In: Handbook of Knowledge Representation.
Chapter 7, Elsevier

7 Parallel Answer Set Programming 279

[30] Gelfond M, Kahl Y (2014) Knowledge Representation, Reasoning, and the De-
sign of Intelligent Agents The Answer-Set Programming Approach. Cambridge
University Press

[31] Gelfond M, Lifschitz V (1988) The Stable Model Semantics for Logic Programs.
In: International Symposium on Logic Programming, MIT Press, pp 1070–1080

[32] Giunchiglia E, Lierler Y, Maratea M (2006) Answer set programming based on
propositional satisfiability. J Autom Reasoning 36(4):345–377

[33] Goldberg E, Novikov Y (2007) BerkMin: A fast and robust SAT-solver. Discrete
Applied Mathematics 155(12):1549–1561

[34] Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica I (2014)
GraphX: Graph Processing in a Distributed Dataflow Framework. In: Pro-
ceedings of the 11th USENIX Symposium on Operating Systems Design and
Implementation, USENIX

[35] Grossi G, Marchi M, Pontelli E, Provetti A (2008) Experimental Analysis of
Graph-based Answer Set Computation over Parallel and Distributed Architec-
tures. Journal of Logic and Computation 19(4):697–715

[36] Gupta G, Pontelli E, Carlsson M, Hermenegildo M, Ali K (2001) Parallel
Execution of Prolog Programs: a Survey. ACM Transactions on Programming
Languages and Systems 23(4):472–602

[37] Hayes PJ, Kowalski RA (1969) Semantic trees in automatic theorem proving.
Machine lntelligence 4:87–101

[38] Heule M, van Maaren H (2009) Look-ahead Based SAT Solvers. In: Handbook
of Satisfiability, IOS Press, chap 5, pp 155–184

[39] Hoos H, Lindauer MT, Schaub T (2014) claspfolio 2: Advances in algorithm
selection for answer set programming. TPLP 14(4-5):569–585

[40] Jenkins J, Arkatkar I, Owens JD, Choudhary AN, Samatova NF (2011) Lessons
Learned from Exploring the Backtracking Paradigm on the GPU. In: Proc. of
Euro-Par 2011, Springer Verlag, pp 425–437

[41] Jeroslow RG, Wang J (1990) Solving propositional satisfiability problems. Ann
Math Artif Intell 1:167–187

[42] Khronos Group Inc (2015) OpenCL: The open standard for parallel program-
ming of heterogeneous systems. http://www.khronos.org

[43] Kowalski RA (1970) Search strategies for theorem-proving. Machine Intelli-
gence 5:181–201

[44] Kowalski RA (1974) Predicate Logic as a Programming Language. In: Proceed-
ings IFIPS, pp 569–574

[45] Lassez J, Jaffar J (1987) Constraint logic programming. In: Proc. 14th ACM
POPL

[46] Le H, Pontelli E (2005) An Investigation of Sharing Strategies for Answer Set
Solvers and SAT Solvers. In: Euro-Par, Springer Verlag, pp 750–760

[47] Le H, Pontelli E (2007) Dynamic Scheduling in Parallel Answer Set Program-
ming Solvers. In: High Performance Computing Symposium, ACM Press, pp
367–374

http://www.khronos.org

280 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

[48] Leone N, Perri S, Scarcello F (2001) Improving ASP instantiators by join-
ordering methods. In: Logic Programming and Non-Monotonic Reasoning,
Springer Verlag, pp 280–294

[49] Leone N, Pfeifer G, Faber W, Eiter T, Gottlob G, Perri S, Scarcello F (2006)
The DLV system for knowledge representation and reasoning. ACM Trans
Comput Log 7(3):499–562

[50] Lierler Y, Maratea M (2004) Cmodels-2: SAT-based Answer Set Solver En-
hanced to Non-tight Programs. In: Lifschitz V, Niemelä I (eds) Proceedings of
the 7th International Conference on Logic Programming and NonMonotonic
Reasoning Conference (LPNMR’04), Springer Verlag, vol 2923, pp 346–350

[51] Lin F, Zhao Y (2004) ASSAT: Computing Answer Sets of a Logic Program by
SAT Solvers. Artificial Intelligence 157(1):115–137

[52] Lindauer MT, Hoos HH, Hutter F, Schaub T (2015) Autofolio: An automatically
configured algorithm selector. J Artif Intell Res (JAIR) 53:745–778

[53] Liu L, Pontelli E, Son TC, Truszczyński M (2010) Logic programs with abstract
constraint atoms: The role of computations. Artificial Intelligence 174(3-4):295–
315

[54] Lloyd J (1987) Foundations of Logic Programming. Springer-Verlag, Heidel-
berg

[55] Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein JM (2012)
Distributed GraphLab: a framework for machine learning and data mining in
the cloud. Journal of the Proceedings of the VLDB Endowment 5(8):716–727

[56] Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I, Leiser N, Czajkowski
G (2010) Pregel: a system for large-scale graph processing. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data,
ACM Press

[57] Maratea M, Pulina L, Ricca F (2013) Automated selection of grounding al-
gorithm in answer set programming. In: Baldoni M, Baroglio C, Boella G,
Micalizio R (eds) AI*IA 2013: Advances in Artificial Intelligence - XIIIth Inter-
national Conference of the Italian Association for Artificial Intelligence, Turin,
Italy, December 4-6, 2013. Proceedings, Springer, Lecture Notes in Computer
Science, vol 8249, pp 73–84

[58] Maratea M, Pulina L, Ricca F (2014) A multi-engine approach to answer-set
programming. TPLP 14(6):841–868

[59] Maratea M, Pulina L, Ricca F (2015) Multi-engine ASP solving with policy
adaptation. J Log Comput 25(6):1285–1306

[60] Marek V, Truszczyński M (1999) Stable models and an alternative logic pro-
gramming paradigm. In: The Logic Programming Paradigm, Springer Verlag,
pp 375–398

[61] Marek W, Truszczyński M (1991) Autoepistemic Logic. Journal of the ACM
38(3):588–619

[62] Marques Silva JP, Sakallah KA (1999) GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Transactions on Computers 48(5):506–521

[63] Martinez-Angeles CA, de Castro Dutra I, Costa VS, Buenabad-Chávez J (2014)
A Datalog engine for GPUs. In: Hanus M, Rocha R (eds) Declarative Program-

7 Parallel Answer Set Programming 281

ming and Knowledge Management - Declarative Programming Days, KDPD
2013, Unifying INAP, WFLP, and WLP, Kiel, Germany, September 11-13,
2013, Revised Selected Papers, Springer, Lecture Notes in Computer Science,
vol 8439, pp 152–168

[64] Niemelä I (1999) Logic Programs with Stable Model Semantics as a Constraint
Programming Paradigm. Annals of Mathematics and AI 25

[65] Niemelä I, Simons P (1996) Efficient Implementation of the Well-founded and
Stable Model Semantics. In: Joint International Conference and Symposium on
Logic Programming, MIT Press, pp 289–303

[66] Niemelä I, Simons P (1997) Smodels - An Implementation of the Stable Model
and Well-Founded Semantics for Normal LP. In: Logic Programming and
Non-monotonic Reasoning, Springer Verlag, pp 421–430

[67] NVIDIA Corporation (2015) NVIDIA CUDA Zone. https://developer.
nvidia.com/cuda-zone

[68] Perri S, Ricca F, Sirianni M (2013) Parallel instantiation of ASP programs: tech-
niques and experiments. Theory and Practice of Logic Programming 13(2):253–
278

[69] Pollard GH (1981) Parallel execution of Horn clause programs. PhD thesis,
Imperial College, London, Dept. of Computing

[70] Pontelli E, El-Khatib O (2001) Exploiting Vertical Parallelism from Answer Set
Programs. In: AAAI Spring Symposium on Answer Set Programming: Towards
Efficient and Scalable Knowledge Representation and Reasoning

[71] Pontelli E, Ranjan D, Dal Palù A (2002) An Optimal Data Structure to Han-
dle Dynamic Environments in Non-Deterministic Computations. Computer
Languages 28(2):181–201

[72] Pontelli E, Le H, Son T (2010) An Investigation in Parallel Execution of Answer
Set Programs on Distributed Memory Platforms. Computer Languages, Systems
and Structures 36(2):158–202

[73] Ranjan D, Pontelli E, Gupta G (1999) On the Complexity of Or-Parallelism.
New Generation Computing 17(3):285–308

[74] Rao J, Ross KA (1999) Cache conscious indexing for decision-support in main
memory. In: Atkinson MP, Orlowska ME, Valduriez P, Zdonik SB, Brodie
ML (eds) VLDB’99, Proceedings of 25th International Conference on Very
Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, Morgan
Kaufmann, pp 78–89

[75] Shepherdson J (1989) Negation in Logic Programming. In: Minker J (ed) Foun-
dations of Deductive Databases and Logic Programming, Morgan Kaufmann

[76] Silverthorn B, Lierler Y, Schneider M (2012) Surviving solver sensitivity: An
ASP practitioner’s guide. In: Dovier A, Costa VS (eds) Technical Communica-
tions of the 28th International Conference on Logic Programming, ICLP 2012,
September 4-8, 2012, Budapest, Hungary, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, LIPIcs, vol 17, pp 164–175

[77] Simons P, Niemelä I, Soininen T (2002) Extending and implementing the stable
model semantics. Artificial Intelligence 138(1-2):181–234

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone

282 Agostino Dovier, Andrea Formisano, and Enrico Pontelli

[78] Sunderam V (1990) PVM: a framework for parallel distributed computing.
Concurrency: Practice & Experience 2(4)

[79] Tachmazidis I, Antoniou G (2013) Computing the Stratified Semantics of Logic
Programs over Big Data through Mass Parallelization. In: Theory, Practice,
and Applications of Rules on the Web - 7th International Symposium, RuleML
2013

[80] Tachmazidis I, Antoniou G, Flouris G, Kotoulas S, McCluskey L (2012) Large-
scale Parallel Stratified Defeasible Reasoning. In: Proceedings of the European
Conference on Artificial Intelligence (ECAI), IOS Press, pp 738–743

[81] Tachmazidis I, Antoniou G, Faber W (2014) Efficient Computation of the Well-
Founded Semantics over Big Data. Theory and Practice of Logic Programming
14(4-5):445–459

[82] Ullman JD (1988) Principles of Database and Knowledge-Base Systems. Com-
puter Science Press, Maryland

[83] Urbani J, Kotoulas S, Maassen J, van Harmelen F, Bal H (2012) WebPIE:
A Web-Scale Parallel Inference Engine using MapReduce. Journal of Web
Semantics 10:59–75

[84] Van Gelder A, Ross K, Schlipf J (1991) The Well-Founded Semantics for
General Logic Programs. Journal of the ACM 38(3):620–650

[85] Warren DHD (1980) Logic programming and compiler writing. Software –
Practice and Experience 10(2):97–125

[86] Wolfson O (1988) Sharing the load of logic-program evaluation. In: Jajodia S,
Kim W, Silberschatz A (eds) Proceedings of the International Symposium on
Databases in Parallel and Distributed Systems, Austin, Texas, USA, December
5-7, 1988, IEEE Computer Society, pp 46–55

[87] Wolfson O, Silberschatz A (1988) Distributed Processing of Logic Programs. In:
Boral H, Larson P (eds) Proceedings of the SIGMOD International Conference
on Management of Data, ACM, ACM Press, New York, pp 329–336

[88] Xu L, Hutter F, Hoos HH, Leyton-Brown K (2008) Satzilla: Portfolio-based
algorithm selection for SAT. J Artif Intell Res (JAIR) 32:565–606

[89] Yang M, Shkapsky A, Zaniolo C (2015) Parallel bottom-up evaluation of logic
programs: Deals on shared-memory multicore machines. In: De Vos M, Eiter T,
Lierler Y, Toni F (eds) Proceedings of the Technical Communications of the 31st
International Conference on Logic Programming (ICLP) 2015, CEUR-WS.org,
CEUR Workshop Proceedings, vol 1433

[90] Zhang W, Wang K, Chau SC (1995) Data Partition and Parallel Evaluation of
Datalog Programs. IEEE Transactions on Knowledge and Data Engineering
7:163–176

Chapter 8

Parallel Solvers for Mixed Integer Linear

Optimization

Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

Abstract In this chapter, we provide an overview of the current state of the art
with respect to solution of mixed integer linear optimization problems (MILPs) in
parallel. Sequential algorithms for solving MILPs have improved substantially in
the last two decades and commercial MILP solvers are now considered effective
off-the-shelf tools for optimization. Although concerted development of parallel
MILP solvers has been underway since the 1990s, the impact of improvements
in sequential solution algorithms has been much greater than that which came
from the application of parallel computing technologies. As a result, parallelization
efforts have met with only relatively modest success. In addition, improvements
to the underlying sequential solution technologies have actually been somewhat
detrimental with respect to the goal of creating scalable parallel algorithms. This has
made efforts at parallelization an even greater challenge in recent years. With the
pervasiveness of multi-core CPUs, current state-of-the-art MILP solvers have now
all been parallelized and research on parallelization is once again gaining traction.
We summarize the current state-of-the-art and describe how existing parallel MILP
solvers can be classified according to various properties of the underlying algorithm.

Ted Ralphs
Lehigh University, Bethlehem, PA, USA, e-mail: ted@lehigh.edu

Yuji Shinano
Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany, e-mail: shinano@zib.de

Timo Berthold
Fair Isaac Germany GmbH, Germany, Takustraße 7, 14195 Berlin, Germany, e-mail:
timoberthold@fico.com

Thorsten Koch
Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany, e-mail: koch@zib.de

283© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_8

ted@lehigh.edu
shinano@zib.de
timoberthold@fico.com
koch@zib.de
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_8&domain=pdf

284 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

8.1 Introduction

This chapter addresses the solution of mixed integer linear optimization problems
(MILPs) on parallel computing architectures. A MILP is a problem of the following
general form:

minx∈φ c�x (MILP)

where the set

φ = {x ∈ Rn | Ax≤ b, l ≤ x≤ u,x j ∈ Z, for all j ∈ I}

is the feasible region, described by a given matrix A ∈ Qm×n; vectors b ∈ Qm and
c, l,u ∈ Qn; and a subset I ⊆ {1, . . . ,n} indicating which variables are required to
have integer values. Members of φ are called solutions and are assignments of values
to the variables. The polyhedron

¶ = {x ∈ Rn | Ax≤ b, l ≤ x≤ u}

is the feasible region of a linear optimization problem (LP)

minx∈¶c�x (LP)

known as the LP relaxation. The class of problems that can be expressed in this form
is quite broad and many optimization problems arising in practice can be modeled as
MILPs (see, e.g., [66]). As a language for describing optimization problems, MILP
(and mathematical optimization, more generally) has proven to be flexible, expressive,
and powerful.

All state-of-the-art solvers for MILP employ one of many existing variants of the
well-known branch-and-bound algorithm of [56]. This class of algorithm searches
a dynamically constructed tree (known as the search tree), following the general
scheme of the generic tree search algorithm specified in Algorithm 8.1. Sequential al-

Algorithm 8.1: A Generic Tree Search Algorithm
1 Add root r to a priority queue Q.
2 while Q is not empty do

3 Remove a node i from Q.
4 Process the node i.
5 Apply pruning rules.
6 if Node i can be pruned then

7 Prune (discard) node i.
8 else

9 Create successors of node i (branch) by applying a successor function, and add
the successors to Q.

gorithms for solving MILPs vary broadly based on their methods of processing nodes
(line 4); their strategies for the order of processing nodes (search strategy, line 3);

8 Parallel Solvers for Mixed Integer Linear Optimization 285

their rules for pruning nodes (line 5); and their strategies for creating successors
(branching strategy, line 9). We provide some details on how each of these steps is
typically managed in Section 8.2. In the case of a parallel algorithm, some additional
strategic factors come into play, such as how the search is managed (now in parallel),
what information is shared as global knowledge, and the specific mechanism for
sharing this knowledge on a particular target computer architecture.

Tree search algorithms appear to be naturally parallelizable, and soon after the
advent of networked computing researchers began to experiment with parallelizing
branch and bound. In [40], Gendron and Crainic chronicle the early history, dating the
first experiments to somewhere in the 1970s. It did not take long after the first large-
scale systems became available for it to be realized that good parallel performance is
often difficult to achieve. In the case of MILPs, this is particularly true (and becoming
more so over time) for reasons that we summarize in Section 8.3.

Despite the enormity of the existing literature on solving search problems in
parallel, the case of MILP appears to present unique challenges. Although some
progress has been made in the more than two decades in which parallel algorithms
for MILP have been seriously developed, it is fair to say that many challenges
remain. The difficulty comes from a few intertwining sources. For one, the most
capable sequential solvers are commercial software and therefore only available to
members of the research community as black boxes with which parallel frameworks
can interact in limited ways. Even if this were not the case, it is also generally
true that more sophisticated solvers are inherently more difficult to parallelize in a
scalable fashion because of their greater exploitation of global information sharing
and increasing emphasis on operations that limit the size of the search tree (and hence
limit opportunities for parallelization), among other things. Despite an appearance to
the contrary, state-of-the-art sequential algorithms for solving MILPs depend strongly
on the order in which the nodes of the tree are processed, and advanced techniques
for determining this order are in part responsible for the dramatic improvements
that have been observed in sequential solution algorithms [59]. It is difficult to
replicate this ordering in parallel without centralized control mechanisms, which
themselves introduce inefficiencies. Moreover, sequential algorithms heavily exploit
the warm-starting capabilities of the underlying LP solver in that they can usually
process the child of a node shoe parent has just been processed, a phenomena
which is more difficult to exploit in combination with the load-balancing techniques
described in Section 8.3.2.5. Finally, most research has focused on parallelization of
less sophisticated sequential algorithms, which both limits the sophistication of the
overall algorithm (and hence limits the degree to which challenging open problems
can be tackled) and inherently involves different challenges to achieving scalability.

The limits to scalability are by now well understood, but the degree to which these
limits can be overcome is unclear and will unfortunately remain a moving target.
Scalability involves the interplay of a changing landscape of computer architectures
and evolving sequential algorithms, neither of which is being developed with the
goal of making this (or any other) particular class of algorithms efficient. The days in
which we could expect to see exponential improvements to sequential algorithms are

286 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

gone, so the future will likely bring an increasing emphasis on the development of
algorithms that effectively exploit parallel architectures.

In the remainder of this chapter, we survey the current landscape with respect to
parallel solution of MILPs. By now, most existing solvers have been parallelized in
some fashion, while in addition, there are also a few frameworks and approaches for
parallelizing solvers that are only available as black boxes. We begin by briefly sur-
veying the current state of the art in sequential solution algorithms in Section 8.2. In
Section 8.3, we provide an overview of issues faced in parallelizing these algorithms
and the design decisions that must be taken during development. In Section 8.4,
we review the approaches taken by a number of existing solvers. Finally, in Sec-
tion 8.5, we discuss the tricky issue of how to measure performance of a solver before
concluding in Section 8.6.

8.2 Sequential Algorithms

8.2.1 Basic Components

As we have already mentioned, most modern solvers employ sophisticated variants
of the well known branch-and-bound algorithm of [56]. The basic approach is
straightforward, yet effective: the feasible region of the original optimization problem
is partitioned to obtain smaller subproblems, each of which is recursively solved
using the same algorithm. This recursive process can be interpreted naturally as a
tree search algorithm and visualized as the exploration of a search tree. The goal
of the search is to implicitly enumerate all potential assignments of the values of
the integer variables. The power of the algorithm comes from the bounds that are
calculated during the processing of nodes in the search tree and are used to truncate
the recursive partitioning process in order to avoid what would eventually amount to
the costly complete enumeration of all solutions.

An updated version of Algorithm 8.1 that reflects the specific way in which a tree
search is managed according to the basic principles of branch and bound is shown in
Algorithm 8.2. In employing the metaphor of this algorithm as the exploration of a
search tree, we associate each subproblem with a node in the search tree and describe
the tree itself through parent-child relationships, beginning with the root node. Thus,
each subproblem has both a parent and zero or more children. Subproblems with no
children are called terminal or leaf nodes. In Algorithm 8.2, the set Q is the set of
terminal subproblems of the search tree as it exists at the end of each iteration of the
algorithm. We next describe the specific elements of this algorithm in more detail.

Bounding. The processing of a subproblem in line 4 of Algorithm 8.2 consists of the
computation of updated upper and lower bounds on the value of an optimal solution
to the subproblem.

The lower bound is calculated with the help of a relaxation, which is constructed
so as to be easy to solve. The lower-bounding scheme of most MILP solvers is

8 Parallel Solvers for Mixed Integer Linear Optimization 287

Algorithm 8.2: A Generic Branch-and-Bound Algorithm
1 Add root optimization problem r to a priority queue Q. Set global upper bound U ← ∞

and global lower bound L←−∞
2 while L <U do

3 Remove the highest priority subproblem i from Q.
4 Bound the subproblem i to obtain (updated) final upper bound U(i) and (updated)

final lower bound L(i).
5 Set U ← min{U(i),U}.
6 if L(i)<U then

7 Branch to create child subproblems i1, . . . , ik of subproblem i with
- upper bounds U(i1), . . . ,U(ik) (initialized to ∞ by default); and
- initial lower bounds L(i1), . . . ,L(ik) (initialized to L(i) by default)

by partitioning the feasible region of subproblem i.
8 Add i1, . . . , ik to Q.
9 Set L← mini∈QL(i).

based on solution of a strengthened version of the LP relaxation (LP), which can
be solved efficiently, i.e., in time polynomial in the size of the input data [51, 67].
The strengthening is done using techniques stemming from another, more involved
procedure for solving MILPs known as the cutting-plane method [41] that was
developed prior to the introduction of the branch-and-bound algorithm. The basic idea
of the cutting-plane method is to iteratively solve and strengthen the LP relaxation of
an MILP. To do so, in each iteration, one or more valid inequalities are added to the
LP relaxation. These inequalities have to fulfill two requirements:

1. they are violated by the computed optimal solution to the LP relaxation, and
2. they are satisfied by all “improving solutions” (those with objective values

smaller than U) in the feasible set φ .

Since they “cut off” the observed optimal solution to LP relaxation, such inequalities
are called cutting planes or cuts. For an overview of cutting plane algorithms for
MILP, see, e.g., [63, 99].

An upper bound, on the other hand, results when either the solution to the re-
laxation is also a member of φ or a solution feasible for the subproblem is found
using an auxiliary method, such as a primal heuristic designed for that purpose (see
Section 8.2.2 below). Note that when the solution to the relaxation is in φ , the pruning
rule applies, since in that case, the upper and lower bounds for the subproblem are
equal. For an overview of primal heuristics for MILP, see, e.g., [32, 8].

The bounds on individual subproblems are aggregated to obtain global upper and
lower bounds (lines 9 and 5), which are used to avoid the complete enumeration of all
(usually exponentially many) potential assignments of values to the integer variables.
If a subproblem’s lower bound is greater than or equal to the global upper bound
(this includes the case in which the subproblem is infeasible, e.g., has no feasible
solution), that subproblem can be pruned (line 6). The difference between the upper
and lower bounds at a given point in the algorithm is referred to as the optimality gap
and can be expressed as either an absolute gap (the difference itself) or a relative

288 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

gap (the ratio of the difference to the lower or upper bound). The progress of the
algorithm is sometimes expressed in terms of how the gap decreases over time, with
a final gap of zero representing the successful completion of the algorithm.

Branching. The task of branching in line 7 of Algorithm 8.2 is to successively
partition the feasible region φ into regions defining smaller subproblems until the
individual subproblems can either be solved explicitly or it can be proven that
their feasible region cannot contain an optimal solution. This partitioning is done
using logical disjunctions that must be satisfied by all feasible solutions. A solution
with least cost among all those found by solving the subproblems yields the global
optimum.

The branching strategy or branching method is an algorithm for determining the
particular disjunction to be used for partitioning the current subproblem once the
processing is done. As with the addition of cutting places, we generally require that
these disjunctions be violated by the solution to the relaxation solved to obtain the
lower bound. Note that part of the task of branching is to determine initial bounds for
each of the created subproblems. By default, the initial bound of the child subproblem
is set equal to the final bound for that of its parent. However, some more sophisticated
branching strategies involve the calculation of more accurate initial bounds for each
of the children, which can be used instead. For an overview of branching strategies
for MILP, see, e.g., [3, 11].

Search. Finally, the search strategy is the scheme for prioritizing the subproblems
and determining which to process next on line 3. The scheme typically involves a
sophisticated strategy designed to accelerate the convergence of the global upper
and lower bounds. This generally involves a careful balance of diving, in which one
prioritizes nodes deep in the tree at which we are likely to be able to easily discover
some feasible solution, and best bound, in which one prioritizes nodes whose feasible
regions are likely to contain high-quality solutions (though extracting those solutions
may be more difficult).

Generally speaking, diving emphasizes improvement in the upper bound, while
best bound emphasizes improvement in the lower bound. Once the upper and lower
bounds are equal, the solution process terminates. We mentioned in Section 8.1 that
the rate of convergence depends strongly on an effective search order. The fact that
it is extremely difficult to replicate the same ordering in the parallel algorithm that
would have been observed in a sequential one is one of the major impediments to
achieving scalability. For an overview on search strategies for MILP, see [59] and [3].

8.2.2 Advanced Procedures

In addition to the fundamental procedures of branching and bounding, there are
a number of auxiliary subroutines that enhance the performance of the basic al-
gorithm. The most important such subroutines used in MILP solvers are those for

8 Parallel Solvers for Mixed Integer Linear Optimization 289

preprocessing, primal heuristics, and conflict analysis, each of which we explain here
briefly.

Primal Heuristics. These are algorithms that try to find feasible solutions of good
quality for a given optimization problem within a reasonably short amount of time.
There is typically no guarantee that they will find any solution, let alone an optimal
one. General-purpose heuristics for MILP are often able to find solutions with
objective values close to the global lower bound (and thus with provably high
quality) for a wide range of problems; they have become a fundamental ingredient
of state-of-the-art MILP solvers [9]. Primal heuristics have a significant relevance
as supplementary procedures since the early knowledge of a high-quality feasible
solution helps to prune the search tree by bounding and enhances the effectiveness of
certain procedures that strengthen the problem formulation.

Preprocessing. These are procedures to transform the given problem instance into
an equivalent instance that is (hopefully) easier to solve. The task of preprocessing is
threefold: first, it reduces the size of the problem by removing irrelevant information,
such as redundant constraints or fixed variables. Second, it strengthens the LP
relaxation of the model by exploiting integrality information, e.g., to tighten the
bounds of the variables or to improve coefficients in the constraints. Third, it extracts
information from the model that can be used later to improve the effectiveness of
branching and the generation of cutting planes. For an overview on preprocessing for
MILP, see, e.g., [2, 39, 61].

Conflict analysis. This analysis is performed to analyze and track the logical impli-
cations whenever a subproblem is found to be infeasible. To track these implications,
a so-called conflict graph is constructed, which gets updated whenever a subproblem
is deemed to be infeasible. This graph represents the logic of how the combination
of constraints enforcing the partitioning in the branching step led to the infeasibility,
which makes it possible to prohibit the same combination from arising in other
subproblems. More precisely, the conflict graph is a directed acyclic graph in which
the vertices represent bound changes of variables and the arcs correspond to bound
changes implied by logical deductions, so-called propagation steps. In addition to
the inner vertices, which represent the bound changes from domain propagation, the
graph features source vertices for the bound changes that correspond to branching
decisions and an artificial target vertex representing infeasibility. Then, each cut in
the graph that separates the branching decisions from the artificial infeasibility vertex
gives rise to a valid conflict constraint. For an overview of conflict analysis for MILP,
see, e.g., [1, 98].

Figure 8.1 illustrates the connections between the main algorithmic components
of an MILP solver. The development of MILP solvers started long before parallel
computing became a mainstream topic. Among the first commercial mathematical
optimization software was IBM’s MPS/360 and its predecessor MPSX, which were
introduced in the 1960s. Interestingly, the MPS input data format, designed to
work with the punch-card input system of early computers, is still the most widely
supported format for state-of-the-art MILP solvers half a century later.

290 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

Start Init Presolving

Stop

Select Subproblem

Solve Subproblem

Branching

Conflict Analysis

Primal Heuristics

infeasible

feasible, not integral

feas. & integral

Domain Propagation

Solve Relaxation

Cuts

Check Relaxation

feasible, not integral

infeasible feas. & integral

Fig. 8.1: Flowchart of the main solving loop of a typical MILP solver

Today, there is a wide variety of commercial software available for solving MILPs,
including Xpress [31], Gurobi [44], and CPLEX [18]. All of them providing a deter-
ministic parallelization for shared-memory systems. There are also several academic,
noncommercial alternatives, such as CBC [35], Glpk [62], Lpsolve [30], SYM-
PHONY [75], DIP [74], and SCIP [81]. Some of these feature parallel algorithms,
some do not. Every two years, Robert Fourer publishes a list of currently available
codes in the field of linear and integer programming, the 2015 edition being the latest
at the time of writing this chapter [36].

8.3 Parallel Algorithms

In this section, we discuss a variety of issues that arise in designing, implementing,
and measuring the performance of parallel algorithms for solving MILPs. The ma-
terial here is a high-level overview and thus intentionally avoids some details that
are unnecessary in describing general concepts. Parallel algorithms can be assessed
with respect to both correctness and effectiveness. Generally speaking, correctness
is a mathematical property of an algorithm that must be proven independent of a
particular implementation, though details of the implementation and even properties
of the underlying hardware may sometimes matter in proving that a particular algo-
rithm will terminate successfully without entering a race condition or other related
error caused by the parallelization itself. We don’t directly address correctness here,
since correctness of this class of parallel algorithms typically follows easily from
correctness of an associated sequential algorithm (with some minor exceptions that
we’ll point out). We focus instead on how the design of a parallel algorithm informs

8 Parallel Solvers for Mixed Integer Linear Optimization 291

its effectiveness, a general term denoting how well the algorithm performs according
to some specified measure.

Naturally, it is only once an algorithm has been implemented and deployed on
a particular computational platform that we can assess its effectiveness. The end
goal of the design and implementation process is what we call a solution platform:
the combination of an algorithm and a computational platform consisting of a
particular architecture, communication network, storage system, OS, compiler tool
chain, and other related auxiliary components. We take a rather simplistic view of
the details of the computational platform, assuming that it consists of a collection
of processors capable of executing sequential programs and an interconnection
network that allows any pair of processors to communicate. The details of how
the processors communicate and the latency involved in such communication are
vitally important in practice, but beyond the scope of this overview. For our purposes,
the processors can be co-located on a single central processing unit (CPU) and
communicate through memory or be located on physically distinct computers, with
communication occurring over a network. We discuss more details about architectures
in Section 8.3.3.1, but we also recommend [6] and [45] to the interested reader for
more in-depth discussion and technical definitions.

In general, a complete parallel algorithm can be viewed as a collection of proce-
dures and control mechanisms that can be divided roughly into two groups. Some
are primarily geared towards governing the parallelization strategy: these include
mechanisms for moving data between processors (see Section 8.3.2.4) and mecha-
nisms for determining what each processor should be doing (see Section 8.3.2.5).
Others are primarily methods for performing one of the subtasks associated with a
standard sequential algorithm listed in Section 8.2 (branching, bounding, generating
valid inequalities, etc.). It is the control mechanism governing the parallelization
strategy that we generally refer to as the parallel algorithm. The remaining methods
form the underlying sequential algorithm, since this latter collection of methods is
generally sufficient to specify a complete sequential algorithm. Because most state-
of-the-art sequential algorithms are based on some variant of tree search, a particular
parallelization strategy can usually be used in tandem with any number of underlying
sequential algorithms. We explore this idea in more detail in Section 8.3.2.1.

8.3.1 Scalability and Performance

By its very nature, tree search appears to be highly parallelizable—each time the
successor function is applied, new tasks are generated that can be executed in parallel.
By splitting the nodes in the set Q among multiple processors, it would seem that the
search can be accomplished much faster. Unfortunately, there are a number of reasons
why a naive implementation of this idea has proven not to work well, especially in
the case of MILPs. At a high level, this is largely due to a few important factors.

• Most modern solvers spend a disproportionate amount of time processing the
shallowest nodes in the tree (particularly the root node) because this generally

292 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

results in a smaller overall tree, which generally leads to smaller running times
in the case of a sequential algorithm. However, it is generally not until these
shallowest nodes are processed that all computing resources can be effectively
utilized.

• The tree being searched is constructed dynamically and its shape cannot be
easily predicted [70, 17]. On top of that, state-of-the-art MILP solvers generate
a highly unbalanced tree in general. This makes it difficult to divide the node
queue into subsets of nodes whose processing (including the time to explore the
entire resulting subtrees) will require approximately the same amount of effort.

• The order in which the nodes are considered can make a dramatic difference
to the efficiency of the overall algorithm and enforcing the same ordering in a
parallel algorithm as would be observed in a highly tuned sequential algorithm
without a loss of efficiency is extremely difficult.

• Most state-of-the-art solvers generate a wide range of information while search-
ing one part of the tree that, if available, could inform the search in another part
of the tree.

• The combination of the above two points means that it’s generally desirable/nec-
essary to move large amounts of data dynamically during the algorithm, but this
is costly, depending on the architecture on which the algorithm is being executed.

It is not difficult to see that there are several important tradeoffs at play. On the
one hand, we would like to effectively share data in order to improve algorithmic
efficiency. On the other hand, we must also limit communication to some extent or
the cost of communication will overwhelm the cost of the algorithm itself. There is
also a tradeoff between the time spent exploring the shallowest part of the tree and
how quickly the algorithm is able to fully utilize all available processing power.

8.3.1.1 Scalability

Generally speaking, scalability is the degree to which a solver platform is able to take
advantage of the availability of increased computing resources. In this chapter, we
focus mainly on the ability to take advantage of more processors, but the increased
resources could also take the form of additional memory, among other things. Scal-
ability is a property of an entire solution platform, since scalability is inherently
affected by properties of the underlying computational platform. Most parallel al-
gorithms are designed to exhibit good performance on a particular such platform,
but we do not attempt to survey the properties of platforms affecting scalability in
this article and rather focus mainly on the properties of the algorithms themselves.
For a good general introduction to computational platforms, see [45] and [6] (also
see Section 8.3.3.1 for a brief summary). In the remainder of this section, we briefly
survey issues related to scalability of algorithms.

Phases. The concept of algorithm phases is an important one in parallelizing tree
search algorithms. Conceptually, a parallel algorithm consists of three phases. The
ramp-up phase is the period during which work is initially partitioned and allocated

8 Parallel Solvers for Mixed Integer Linear Optimization 293

to the available processors. In our current setting, this phase can be defined loosely
as lasting until all processors have been assigned at least one task. The second phase
is the primary phase, during which the algorithm operates in steady state. This is
followed by the ramp-down phase, during which termination procedures are executed
and final results are tabulated and reported. Defining when the ramp-down phase
begins is slightly problematic, but we define it here as the earliest time at which one
of the processors becomes permanently idle.

In tree search, a naive parallelization considers a “task” to be the processing of a
single subproblem in the search tree. The division of the algorithm into phases is to
highlight the fact that when parallelized naively, a tree search algorithm cannot take
full advantage of available resources during the ramp-up and ramp-down portions
of the algorithm without changing the granularity of the tasks (see Section 8.3.2.2).
For some variants of the branch-and-bound algorithm and for instances with large
size or particular structure, the processing of the root subproblems and immediate
descendants can be very time-consuming relative to the time to search deeper parts
of the tree, which results in lengthy ramp-up and ramp-down periods. This can make
good scalability difficult to achieve.

Sequential Algorithm. Although the underlying sequential algorithm is often viewed
essentially as a black box from the viewpoint of the parallel algorithm, it is not possi-
ble in general to parallelize a sequential algorithm without inherently affecting how
it operates. Most obviously, the parallel algorithm generally reorders the execution
of tasks and thus changes the search strategy. However, other aspects of the parallel
algorithm’s approach can affect the operation of the sequential parts in important
ways. The parallel algorithm may even seek to control the sequential algorithm to
make the combination more scalable. The degree to which the parallel algorithm can
control the sequential algorithm and the degree to which it has access to information
inside the “black box” has important implications.

Overhead. Scalability of parallel MILP solvers is often assessed by measuring the
amount of parallel overhead introduced by the parallelization scheme. Roughly
speaking, parallel overhead is the work done in parallel that would not have been
performed in the sequential algorithm. It can be broken down into the following
general categories (see [53]).

• Communication overhead: Computation time spent sending and receiving in-
formation, including time spent inserting information into the send buffer and
reading it from the receive buffer. This is to be differentiated from time spent
waiting for access to information or for data to be transferred from a remote
location.

• Idle time (ramp-up/ramp-down): Time spent waiting for initial tasks to be allo-
cated or waiting for termination at the end of the algorithm. The ramp-up phase
includes inherently sequential parts of the algorithm, such as time spent reading
in the problem, processing the root node, etc., but also the time until enough
B&B nodes are created to utilize all available processors. The ramp-up and
ramp-down time is highly influenced by the shape of the search tree. If the tree

294 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

is “well balanced” and “wide” (versus deep), then both ramp-up and ramp-down
time will be minimized.

• Idle time (latency/contention/starvation): Time spent waiting for data to be
moved from where it is currently stored to where it is needed. This can include
time waiting to access local memory due to contention with other threads, time
spent waiting for a response from a remote thread either due to inherent latency
or because the remote thread is performing other tasks and cannot respond, and
even time spent waiting for memory to be allocated to allow for the storage of
locally generated data.

• Performance of redundant work: Time spent performing work (other than com-
munication overhead) that would not have been performed in the sequential
algorithm. This includes the evaluation of nodes that would not have been eval-
uated with fewer threads. The primary reason for the occurrence of redundant
work is differences in the order in which the search tree nodes are explored. In
general, one can expect that the performance of redundant work will increase
when parallelizing the computation, since information that would have been used
to avoid the enumeration of certain parts of the search space may not yet have
been available (locally) at the time the enumeration took place in the parallel
algorithm. However, it is entirely possible that the parallel algorithm will explore
fewer nodes in some cases.

Effective parallelization is about controlling overhead, but how best to do this can
vary depending on a wide range of factors and there is no “one-size-fits-all” solution.
Properties of the search algorithm itself, properties of the instances to be solved, and
properties of the architecture on which the algorithm will be deployed all play a role
in determining what approach should be taken. This is one of the reasons why we see
such a wide variety of approaches when we consider solvers in the wild. Evidence of
this is presented in Section 8.4.

8.3.1.2 Performance

It is important to point out that scalability, also called parallel performance, is not
the same as overall “performance.” As we have already noted, parallelization of
more sophisticated sequential algorithms is inherently more difficult in terms of
achieving scalability than parallelization of a less sophisticated algorithm. Moreover,
it could be the case that a solver platform exploiting a more sophisticated underlying
sequential algorithm, although not as scalable when parallelized, would nevertheless
outperform a more scalable but less sophisticated solver platform on the usual metrics
used to assess overall effectiveness and solution power, such as wall-clock solution
time or ability to solve difficult instances. The fact that there is a performance
tradeoff between scalability and overall performance is one of the fundamental
difficulties in determining how to measure performance and in assessing progress
in this challenging field of research. We discuss measures of performance in much
greater detail in Section 8.5.

8 Parallel Solvers for Mixed Integer Linear Optimization 295

8.3.2 Properties

In this section, we provide some means by which to classify the existing algorithms.
This is certainly not the first attempt to do such classification. Already in 1994, [40]
provided a very thorough classification for parallel branch-and-bound algorithms.
An updated survey was later published in [19]. By now, much has changed and it
is no longer possible to provide a classification of existing solvers in the traditional
sense of a partitioning into subsets taking similar approaches. Modern solvers vary
along many different axes in a complex design space. No partition of algorithms
into subsets based on fundamental properties will likely be satisfactory, or if so, the
subsets will have cardinality one. We therefore simply list basic properties of existing
algorithms that we refer to in Section 8.4 when describing existing algorithms and
software.

8.3.2.1 Abstraction and Integration

The separation between the parallel and sequential parts of the algorithm discussed
in the previous part need not be as clean as we have indicated in our discussion in
Section 8.3.1.1. In some cases, there is a tight integration of parallel and sequen-
tial parts into a single monolithic whole. In other cases, the parallel algorithm is
completely separated from the underlying sequential algorithm or even encapsulated
as a framework, whose overall approach does not depend on the details of the se-
quential algorithm. To make the clean separation of the parallel algorithm and the
underlying sequential algorithm possible, the parallel algorithm must have a high
level of abstraction and a low level of integration with the sequential solver. The
concept of abstraction is similar to that which forms the basic philosophy underly-
ing object-oriented programming languages, but we distinguish here between two
different types of abstraction: algorithmic abstraction and interface abstraction.

To exemplify what we mean by algorithmic abstraction, consider Algorithm 8.2
once again. This tree search algorithm is stated at a high level of algorithmic abstrac-
tion because the internal details of how the bounding, branching, and prioritization
methods work are not specified and the algorithm does not depend on these details.
Naturally, any concrete implementation of this algorithm must specify these elements,
but the algorithm as stated constitutes an abstract framework for branch and bound
that is agnostic with respect to the internal implementation of these algorithmic
elements.

Of course, there is some interaction between the unspecified elements of the
underlying branch-and-bound algorithm and the abstract framework. These constitute
the algorithmic interface, by which the framework interacts with the components of
the underlying algorithm through the production of outputs in a specified form. For
example, the bounding method on line 4 in Algorithm 8.2 is required to produce a
lower bound that the framework may then use later on line 3 to determine the search
order or on line 6 to prune nodes. The framework does not need to know how the
bound is produced, it only requires that the underlying sequential methods produce it

296 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

somehow. This may be done, for example, through a function call to the underlying
sequential algorithm that encapsulates the processing of a single node in the search
tree.

The flexibility and level of access to internal parts of the sequential algorithm
that are present in a particular sequential solver’s API determine the degree to which
the parallel solver is able to control various aspects of the underlying sequential
algorithm. Lack of ability to execute certain internal procedures independent of the
sequential algorithm may limit the options for parallelization. In some cases, the only
access to the sequential solver’s functionality is by limited execution of the sequential
solution algorithm, as a “black box,” for solution of subproblems associated with
nodes in the search tree. In other cases, fine-grained access to individual procedures,
such as those for bounding and branching of individual nodes in the search tree, is
available.

A related concept is that of implementational abstraction, which is a more practi-
cal measure of the degree to which the implementation (in the form of source code)
of a parallel search algorithm is customized to work in tandem with a particular
implementation of an underlying sequential solver. This has primarily to do with
whether or not the interface between the parallel and sequential parts is well defined
and “generic.” In general, frameworks intended to work with multiple underlying se-
quential solvers need to have high degrees of both implementational and algorithmic
abstraction. When there is a tight integration between the parallel and sequential parts
(especially when they are produced as a monolithic whole), the level of implementa-
tional abstraction is often low, but this does not mean that the level of algorithmic
abstraction is low.

Implementations with a low degree of abstraction depend on internal interfaces
that may either not be well defined or depend on the passing of data that only a solver
with a particular internal implementation can produce. Implementations with a high
degree of abstraction interact with the underlying sequential solver only through well
defined interfaces that only require the passing of data that almost any sequential
algorithm should be able to produce. How those interfaces work and at what points
in the sequential algorithm the solver is required to pass information depends on the
level of granularity of the solver.

With an abstract framework, such as the one specified in Algorithm 8.2, paral-
lelization becomes much easier, since we can conceptually parallelize the abstraction
without dependence on the unspecified internals of the various algorithmic elements.
A simple way of parallelizing Algorithm 8.2 is just to maintain set Q and global
bounds L and U as global data, but allow multiple subproblems to be simultaneously
bounded (this is one variant of the Master-Worker coordination scheme described
in Algorithms 8.5 and 8.6). In other words, each processor independently executes
the same processing loop, but all update the same global bounds, access the same
common global queue (Q) of subproblems at the top of the loop, and insert into
the same global queue any newly produced subproblems. As a practical matter, this
requires the avoidance of conflicts in writing and reading global data, which is one
primary source of overhead, but as long as this can be achieved, the convergence of

8 Parallel Solvers for Mixed Integer Linear Optimization 297

the algorithm in parallel follows from the same principles that guarantee convergence
of the sequential algorithm.

8.3.2.2 Granularity

One way in which we can differentiate algorithmic approaches is by their granularity.
Roughly speaking, the granularity refers to what is considered to be the atomic
unit of work in the algorithm. We consider four primary levels of granularity, but
of course, there are many gradations and most algorithms either fall somewhere
between these levels or may even take different approaches in different phases of the
algorithm. Ranked from coarse to fine, they are tree parallelism, subtree parallelism,
node parallelism, and subnode parallelism.

Tree parallelism. Several trees can be searched in parallel using different strategies
and the knowledge generated when building one tree can be used for the construction
of other trees. In other words, several tree searches look for solutions in the same state
space at the same time. Each tree search algorithm can take a different approach, e.g.,
different successor function, search strategy, etc. For example, Pekny [71] developed
a parallel tree search algorithm for solving the Traveling Salesman Problem in which
the trees being built differed only in the successor functions (branching mechanism).
A brute-force strategy for parallelization is to concurrently start single-threaded
solves of slightly perturbed (but mathematically equivalent) copies of the same MILP
problem. One implementation of this is the racing scheme described in Algorithm 8.3

Subtree parallelism. Multiple subtrees of the same overall search tree may be
explored simultaneously, but independently (without sharing information). This can
be accomplished, for example, by passing a single subproblem to a sequential solver
and executing the sequential algorithm for some fixed amount of time. Most of the
more advanced algorithms described later in this chapter use some form of subtree
parallelism to avoid the overhead associated with more fine-grained approaches.

Node parallelism. A single search tree can be searched in parallel by executing an
algorithm similar to the sequential one, but processing multiple nodes simultaneously,
with a centralized control mechanism of some sort and more information sharing.
A straightforward implementation would utilize a master process to coordinate the
search, distribute nodes from the queue, and collect results. This is the most widely
used type of parallelism for tree search algorithms and is reflected in the Master-
Worker coordination scheme described in Algorithms 8.5 and 8.6.

Subnode parallelism. The parallelism may be introduced by performing the process-
ing of a single node in parallel. This can be done effectively with decomposition-
based algorithms, such as column generation, for example.

• Strong branching: A natural candidate for parallelization is the so-called strong
branching approach to selecting a branching disjunction, in which some pre-
computations are done to evaluate the potential effectiveness of each candidate.

298 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

Similarly, probing or domain propagation techniques, which also involve pre-
computations to simplify a given subproblem and improve the efficiency of later
bounding computations, might also be parallelizable [42].

• Solution of LPs: All solution algorithms for solving MILPs rely fundamentally
on the ability to quickly solve sequences of LPs, usually in the context of deriving
a bound for a given subproblem. The barrier algorithm for solving the initial LP
relaxation in the root node, always one of the first steps in any algorithm for
solving a MILP, can be parallelized effectively. Recently, there has also been
progress in the development of a parallel implementation of the dual simplex
algorithm, the most commonly used algorithm for solving the LP relaxations in
non-root nodes, due to its superior warm-starting capabilities (see [47]).

• Heuristics: Primal heuristics can often be executed independently of the search
itself. Hence, they can be used to employ processor idle time to best effect.
Furthermore, multiple expensive heuristics, such as large neighborhood search
algorithms, can be run concurrently or can themselves be parallelized.

• Cutting: During bounding of individual search tree nodes, the relaxations are
strengthened by executing additional sub-procedures, called separation algo-
rithms. Multiple such algorithms can be executed simultaneously to achieve
faster strengthening.

• Decomposition: If a problem naturally decomposes due to block structure in the
matrix A, the problem can be solved as a sequence of completely independent
subproblems. Even when the matrix A does not have perfect block structure (it
only decomposes after removing some rows or columns), decomposition meth-
ods, such as Dantzig-Wolfe [21], can be employed, which enable parallelization
of the bounding procedure.

8.3.2.3 Adaptivity

Another general property of algorithms is the degree to which they are adaptive. All
algorithms must be adaptive to some extent. For example, most algorithms switch
strategies from phase to phase, e.g., initially pursuing tree-level parallelism for
exploring shallow parts of multiple trees during the ramp-up phase, then switching
to subtree or node parallelism during the primary phase. In general, an algorithm
for solution of MILPs could be changed adaptively as the solution process evolves
based on many different possible aspects of the underlying algorithm, such as the
global upper and lower bounds, the distribution of subproblems across processors,
the overall “quality” of the remaining work (see Section 8.3.2.5), and others. When,
how, and which part of algorithms are adapted at run-time is a crucial aspect of
performance.

8 Parallel Solvers for Mixed Integer Linear Optimization 299

8.3.2.4 Knowledge Sharing

Knowledge is the data generated during the course of a search, such as solutions, valid
inequalities, conflict information, bounds, and other “globally valid” data generated
as a by-product of the search in one part of the tree that may inform the search in
another. Such knowledge can be used to guide the search, e.g., by determining the
order in which to process available nodes. Global knowledge is knowledge that is
valid for all subproblems in the search tree. Local knowledge is knowledge that is
only valid with respect to certain subproblems and their descendants. The general
categories of knowledge to be shared in solving MILPs includes the following.

• Bounds: Global upper bounds, as well as the bounds of individual nodes in the
search tree can be shared.

• Nodes: Descriptions of the search tree nodes themselves are data that can (and
usually must) be shared.

• Solutions: Feasible solutions from one part of the tree may help with computa-
tions in another part.

• Pseudocost estimates: So-called pseudocost estimates are used to predict the
effectiveness of branching disjunctions based on historical statistics.

• Valid inequalities: Valid inequalities used to strengthen relaxations in one part of
the tree may be useful in strengthening relaxations in another part of the tree.

With knowledge about the progress of the search, the processes participating in the
search are able to make better decisions. When knowledge about global bounds,
for example, is shared among processes, it is easier to avoid the performance of
redundant work and the parallel search can be executed in a fashion more similar
to its sequential counterpart. If all processes had complete knowledge of all global
information, then no redundant work should be performed at all, in principle.

Despite the obvious benefits of knowledge sharing, there are several challenges
associated with it. Most obviously, increased sharing of knowledge can have signifi-
cant impact on parallel overhead. Communication overhead and a possible increase
in idle time due to the creation of communication bottlenecks are among the inherent
costs of sharing knowledge. An increase in redundant work, on the other hand, is
the main cost of not sharing knowledge. This highlights a fundamental tradeoff:
sharing of knowledge reduces the performance of redundant work and can improve
the effectiveness of the underlying sequential algorithms, but these benefits come at
a price. The goal is to strike the proper balance in this tradeoff. Trienekens and de
Bruin [92] give a detailed description of the issues involved in knowledge generation
and sharing.

8.3.2.5 Load Balancing

Load balancing is the method by which information describing the units of work to
be done is moved from place to place as needed to keep all processors busy with
useful work. It is characterized by how often it is done, what information must

300 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

be moved (mainly a product of what are considered to be the atomic tasks), and
whether it is done statically (just once at the beginning) or dynamically (throughout
the algorithm).

Static load balancing. The first task of any parallel algorithm is to create enough
units of work to ensure all processors can be employed in useful work as quickly as
possible. The goal is to make the initial work distribution as even as possible in order
to avoid having to either rebalance later or absorb the overhead resulting from the
idling of processors whose work is finished quickly.

In a pure static load-balancing scheme, each processor works independently on its
assigned tasks following the initial distribution, reporting final results at the end. If
the initial work distribution is uneven, there is no recourse. Such a scheme requires
very little communication, but can result in the performance of a vast amount of
redundant work, as well as a large amount of idle time due to the fact that the tasks
assigned to one processor may be much less time-consuming than the tasks assigned
to another processor. Because it is extremely challenging to predict the difficulty of
any given subproblem, static load balancing on its own is usually not very effective,
though a well-designed static load-balancing scheme has proven effective [79] in
some cases.

In an early paper, Henrich [46] summarized four categories of initialization
methods and describes the advantages and disadvantages of each. We repeat these
here to give a flavor of these methods.

• Root initialization: When applying this method, one process processes the root
of the search tree and creates children according to a branching scheme that may
or may not be the same as the one used during the primary phase. These children
of the root are then distributed to other processors and the process is continued
iteratively until all processors are busy. Root initialization is the most common
approach due to the fact that it is easy to implement. For example, one can
use the same branching scheme and mechanisms for distributing nodes to idle
processors that are used during the primary phase of the algorithm. The method
is most effective when the time to process a node is short and the number of
children created during branching is large, so that all processors are engaged in
work as early as possible. A major shortcoming of root initialization is that when
the processing times are not short or when the number of available processors is
large, many of the processes are idle while waiting to receive their allocation of
nodes.

• Enumerative initialization: This method broadcasts the root node to all processes,
which then perform an initial tree search according to the sequential algorithm.
When the number of leaf nodes on each processor is at least the number of
processes, processes can stop expanding. The ith process then keeps the ith

node and deletes the rest. In this method, all processes are working from the
very beginning and no communication is required. On the other hand, there is
redundant work because each process is initially doing an identical task. Note
also that it is crucial that all processors generate identical search trees (this

8 Parallel Solvers for Mixed Integer Linear Optimization 301

requires determinism of the sequential algorithm, see Section 8.3.2.7). This
method has been successfully implemented in PEBBL [29].

• Selective initialization: This method starts with the broadcasting of the root
node to each process. Each process then generates one single path from the root
(without generating any others). The method requires little communication, but
requires a sophisticated scheme to ensure processes work on distinct paths. It
also requires determinism as mentioned above.

• Direct initialization: This method does not build up the search tree explicitly.
Instead, each process directly creates a node at a certain depth in the search
tree. The number of nodes at this depth should be no less than the number of
processes. This method requires little computation and communication, but it
works only if the structure of the search tree is known in advance.

More sophisticated schemes have been implemented recently that build on these basic
ideas, such as the racing ramp-up of the Ubiquity Generator (UG) framework [87, 94]
(described in Section 8.3.3.3) or the spiral and two-level root initialization schemes
of the CHiPPS framework [105, 100].

Dynamic Load Balancing. Although static load balancing is effective in certain cases,
the uneven processor utilization, processor speed, memory size, and the change of
tree shape due to the pruning of subtrees can make the workloads of processes
gradually become unbalanced, especially in distributed computing environments.
This necessitates dynamic load balancing, which involves reallocating workload
among the processes during the execution of a parallel program.

Dynamic load balancing has been studied in many computational contexts and the
literature abounds with surveys of various techniques that have been implemented
([23] and [97] are but two thorough and relevant such surveys). Load balancing in
general parallel tree search generally addresses the need to distribute the quantity
of work evenly among the processors (or at least to keep all processors busy). The
challenge of tree search for solving optimization problems is that not all work in
the current queue has the same priority. When work of higher priority is produced
(new nodes are generated through branching), this work should preempt the currently
existing lower-priority work. Unfortunately, the distribution of high-priority work
can (and is very likely to) become uneven through the natural course of the algorithm.
Even when all processors are busy, some of the work being done may not be useful
(it will turn out to be redundant in hindsight). For this reason, load balancing needs
to consider both quality and quantity of work when redistributing workload. The
definitions of quality and quantify of work follow.

Definition 1. The quality of work is a numeric value to measure the possibility that
the region to be explored (represented by a node or a set of nodes) contains high
quality solutions.

Definition 2. The quantity of work is a numeric value to measure the amount of
work. For instance, this could be the estimated number of nodes to be processed in a
subtree.

302 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

The relative quality (and also quantity) of existing work may change as global
information is received. Furthermore, because it is far more efficient to process a
node in the search tree directly following the processing of its parent on the same
processor due to the ability to warm start the computation, one must be careful not to
be overly aggressive in balancing the load.

For these reasons, load balancing in optimization applications can be more chal-
lenging than in many general tree search applications. This is certainly not a new
observation in the context of parallel optimization and was discovered early during
the development of parallel algorithms for branch and bound [26, 27].

In general tree search, a vast number of methods have been proposed to dy-
namically balance workloads, many of which have been focused on tree-based
computations [54, 69, 78, 80, 89]. Despite the wide array of work on this topic,
most schemes, even when described as very general, have been targeted at particular
problem classes or particular architectures and are best suited for these use cases.
Few truly general-purpose schemes have been proposed for the simple reason that
requirements vary dramatically for different applications and algorithmic approaches.

Broadly, load-balancing strategies can be categorized based on the degree of
centralization of the mechanism and based on whether the balancing is initiated by
a separate manager process, by the sender, or by the receiver. Centralized schemes
involving one or more processors that act as managers, tracking workload and
directing transfers, are generally referred to as work-sharing schemes, whereas
schemes in which transfers are initiated by individual processors with either surplus
or deficit workload are referred to as work-stealing.

Kumar, et al. [54] studied a number of early dynamic load-balancing schemes,
such as asynchronous round robin, nearest neighbor, and random polling, and
performed extensive scalability testing. We briefly describe these schemes here to
provide a flavor of how such schemes work.

• In an asynchronous round robin scheme, each process maintains an independent
variable target, which is the identification of the process to ask for work, i.e.,
whenever a process needs more work, it sends a request to the process identified
by the value of the target. The value of the target is incremented each time the
process requests work. Assuming P is the number of processes, the value of the
target on process i is initially set to (i+1) modulo P. A process can request work
independently of other processes. However, it is possible that many requests may
be sent to processes that do not have enough work to share.

• The nearest neighbor scheme assigns each process a set of neighbors. Once a
process needs more work, it sends a request to its immediate neighbors. This
scheme ensures locality of communication for requests and work transfer. A
disadvantage is that the workload may take a long time to be balanced globally.

• In the random-polling scheme, a process sends a request to a randomly selected
process when it needs work. All processors have the same probability of being
selected. Although it is very simple, random polling is quite effective in some
applications [54].

8 Parallel Solvers for Mixed Integer Linear Optimization 303

There are many important tradeoffs encapsulated in the load-balancing scheme. The
work units themselves can be considered to be “knowledge” of a certain type that
can be shared either more or less aggressively. More aggressive balancing will result
in less idling and less redundant work, but also increased overhead, much as in the
case of sharing of other types of knowledge. Modern solvers generally employ more
sophisticated, adaptive schemes and these will be described in Section 8.4.1.

8.3.2.6 Synchronization and Coordination

Synchronization is a requirement that at some step in a parallel algorithm, a set of
processes needs to proceed simultaneously from a known state for reasons of either
correctness or efficiency. One common purpose of synchronization is to enforce
determinism (see Section 8.3.2.7), but the need for synchronization arises in many
applications for a variety of reasons. It is a natural requirement when parallelizing
an algorithm that was originally designed to be sequential and sequential algorithms
often aggregate results obtained in a distributed fashion at intermediate points.

Synchronization can be achieved either by using a barrier or by some kind
of counting scheme [96]. A barrier is a mechanism that prevents processes from
continuing past a specified point in a parallel program until certain other processes
reach this point. The substantial downside of introducing synchronization is that
some processes might reach the synchronization point much more quickly than others
and will waste time in waiting for other processes to reach the same state. From the
standpoint of parallel scalability, synchronization introduces overhead and overhead
leads to a loss of performance. Therefore, synchronization is to be avoided if possible.

The most obvious need for synchronization arises from the need to compute
accurate global bounds. It is evident that if Algorithm 8.2 were to be parallelized
straightforwardly in an asynchronous fashion, computing accurate global bounds
would not be possible. This is because the global lower bound requires minimizing
over the terminal nodes (those without children) in the current search tree, but the set
Q doesn’t always contain all terminal nodes. In the sequential algorithm, this problem
doesn’t arise because the bound is only calculated at a time when we know that set Q
does contain all terminal nodes. In parallel, however, some form of synchronization
is required.

Fortunately, the maintenance of accurate global lower and upper bounds is not a
strict requirement in parallel branch and bound. An upper bound is only needed for
applying pruning rules and certain other advanced functionality, but any provably
valid upper bound will suffice. It is not necessary (though it is generally desirable) for
a global upper bound to be accurately computed and known to all processes. Likewise,
knowledge of the global lower bound is not necessary either except possibly as a
measure of progress. Application of pruning rules only requires the lower bound
computed for an individual subproblem to be accurate.

A related, though different, phenomenon is the introduction of coordination,
which may introduce communication bottlenecks due to the requirement that an
algorithm coordinate actions. Coordination does not always require strict synchro-

304 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

nization, but it may introduce points at which one process must wait for a reply from
another one. Load balancing is an obvious example of coordination, but there are
many other possibilities. In general, coordination leads to overhead. At the same
time, coordination can also improve the performance of the underlying sequential
algorithm, so this introduces a fundamental tradeoff and a balance that must be struck.
We discuss coordination schemes used in modern solvers in Section 8.3.3.3.

The appropriate amount of synchronization and coordination has to do with the
relative cost of communication on the computational platform on which the algorithm
is to be deployed. An asynchronous execution mode is appropriate for algorithms
running on networks of workstations and computational grids, where synchronization
is hard to achieve. A major issue with asynchronous algorithms is that there is
typically no process that has accurate information about the overall state of the
search. This can cause difficulties in effectively balancing workload and detecting
termination. Load-balancing and termination detection schemes should have the
ability to deal with the issue of innaccurate information.

8.3.2.7 Determinism

A deterministic solver platform is one that is guaranteed to perform the same op-
erations and to produce the same end result when provided with the same input.
Although all valid parallel algorithms should produce a valid result in the end, it is
often the case that more than one valid result is possible (due to alternative optimal
solutions) and even if not, the intermediate computations done to achieve the result
can vary substantially. Small variations in the timing of the discovery of intermediate
feasible solutions may lead to small differences in the global upper bounds that
get applied in the pruning step of an algorithm, leading to a different search tree
being produced. Even tiny differences in the execution path in the beginning stages
of a parallel algorithm can lead to very large differences in the overall execution
and can even cause changes in running time of an order of magnitude or more.
Non-determinism is even easily possible in the case of a sequential algorithm. For
example, some algorithms depend on the generation of random numbers. It’s also
possible for tie-breaking to occur differently on different computational platforms,
depending on how memory is allocated.

It should be clear then that ensuring an algorithm executes deterministically, even
in the sequential case, requires careful attention to detail. In the parallel case, this is
not only difficult, but inevitably requires some kind of synchronization and control
of when inter-process communication happens. Thus, determinism also leads to a
degradation in performance.

Further, it is not entirely clear what determinism means in the parallel case. In the
sequential case, determinism means performing exactly the same atomic operations
in exacctly the same sequence (putting aside possible reordering of operations by
hyper-threading and such). In the parallel case, we generally cannot hope to ensure
that individual atomic operations are performed in precisely the same order (strong
deterministic parallelism, but rather must make a similar requirement that allows

8 Parallel Solvers for Mixed Integer Linear Optimization 305

for different ordering at a low level with order preserved at a higher level (weak
deterministic parallelism [68]. The precise definition is implementation-dependent,
but one might require for example, that exactly the same search tree be explored with
exactly the same set of subproblems and exactly the same relaxations solved at each
step to produce exactly the same sequence of bounds and thus exactly the same end
result. Accomplishing this requires not only synchronization, but also awareness that
computations may vary on different processing elements on a single computational
platform.

8.3.3 Implementation

In this section, we discuss some of the algorithmic issues that arise mainly in the
implementation phase when the conceptual algorithm is translated into a computer
program, compiled on a given computational platform, and deployed.

8.3.3.1 Platform

Although it is possible for algorithms to be conceived independently of the computa-
tional platform on which they are to be run, design must, to some extent, be informed
by one or more target platforms. We have so far discussed a number of important
tradeoffs, such as the fact that the sharing of knowledge may both reduce the total
amount of computation time spent executing the parts of the algorithm associated
with the underlying sequential algorithm while increasing the parallel overhead.
We have the same sort of tradeoff with regards to the frequency of load balancing.
Determining the appropriate compromise between the two sides of such tradeoffs is
only possible in light of a particular platform. It is only with specific knowledge of
the platform that particular hardware parameters, such as the communication latency,
can be known.

Naturally, the development of a solver is time-consuming and one would therefore
like to ensure effectiveness across as wide a variety of platforms as possible. To
a certain extent, this can be done through parameterization. We specify certain
parameters, such as the frequency of load balancing, and then tune them at run-time,
based on collected statistics. This works fine for relatively small variations occurring
between platforms, but for larger variations, design decisions must be made that
inherently limit the algorithm to certain classes of platform.

Communication Network. Perhaps the most important property of the platform that
needs to be taken into account is the nature of the underlying communication network.
A full treatment of the properties of communication networks is well beyond the
scope of this article. Roughly speaking, we can characterize the network by its latency
and its topology. The former is a measure of how long it takes data to travel between
specific pairs of processors and the latter concerns the general physical layout of

306 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

the network. These two are connected in that the expected latency between a pair of
processors has largely to do with their relative physical locations.

We generally divide platform into two broad categories: shared memory and
distributed memory, though the distinction is not as clear on modern architectures
as it was historically. In a shared-memory architecture, all processors have access
to a common memory and data does not need to be physically moved in order for
different cores to make use of it. In such an architecture, latency is, in principle,
negligible. In distributed-memory architectures, on the other hand, processors have
physical memories and one must account for the non-negligible time it takes to move
data from the memory of one processor to the memory of another.

In modern practice, one finds that these distinctions are rather blurred at best. With
respect to shared-memory architectures, modern CPUs have multiple computing
cores, which, although they share a physical address space, may or may not share an
actual physical memory. Further, a single computing device may have multiple multi-
core CPUs that communicate over a bus. There may be significant differences in the
latency passing data between pairs of cores on the same CPU versus on different
CPUs, although from the point of view of the communication abstraction at the level
of the programming interface, these things appear identical. To make matters worse,
even access to different data in the same memory from the same individual cores may
have different latencies due to the existence of a complex memory hierarchy in which
the kernel attempts to cache data that is predicted to be needed in the near future.
This exacerbates the imbalance in the time to access the same data from different
cores. All of this may be more or less invisible to the programmer except inasmuch
as there are ways to indirectly influence the communication patterns. This topic is
also beyond the scope of the present article. For more information, see [45].

Shared-memory architectures also present the very real issue of memory con-
tention, in which multiple processors attempt to access the same physical memory
simultaneously or to use the same physical channel for retrieving such data. Con-
tention results in longer memory access times than would otherwise be expected
and may also necessitate the use of locks. A lock restricts access to certain memory
to only a single physical processor until that lock is released. The use of locks is
necessary in some situations to prevent run-time error conditions, but also contributes
to contention and leads to effective increases in the time required to access data.

All modern CPUs have multiple cores and most modern computers have multiple
such CPUs. A distributed-memory architecture generally consists of multiple com-
puters connected by a communication network. Because each of these computers
is a miniature parallel computer in its own right, “pure” distributed architectures
have essentially ceased to exist. For efficiency, all algorithms that target distributed-
memory architectures must thus account for the massive differences in the time to
communicate data between cores on the same physical computer versus cores on
different physical computers.

Taking account of the major differences in performance between the different
possible types of computers discussed above can lead to major differences in the
high-level design of parallel algorithms, as we discuss below in Section 8.3.3.3.

8 Parallel Solvers for Mixed Integer Linear Optimization 307

Communication Protocol. Aside from the many variations in architecture that we
have just discussed, algorithm design may also be informed by the chosen commu-
nication protocol, the mechanism by which data is transferred from one processor
to another. Protocols are usually closely associated with some underlying physical
transfer mechanism. What we refer to as the “communication protocol” here is the
interface used by the programmer to cause the data transfer programmatically.

Very broadly, there are two categories of communications protocols: threads and
message passing. The threads model is generally associated with shared-memory
architectures and involves communication that is performed by passing data through
local memory. Message passing is generally associated with distributed-memory
architectures and involves communication that is performed by passing data across a
network. These two categories of protocol are in turn associated with the two basic
ways of achieving parallelism programmatically: multi-threaded computation versus
multi-process computation. A process presents the execution of a single computer
program with its own private memory address space. A process can spawn multiple
threads, all of which may execute sequential procedures simultaneously with access
to the same memory.

The importance of both the communication protocol and the associated program-
ming model and architecture is both that it can influence the efficiency of data
transfer and, merely by restrictions in the interface itself, limit the algorithmic op-
tions available. The most prevalent communication protocols at the time of writing
are

• Threads

– OpenMP (Open Multi-Processing): an interface standard for providing in-
structions in source code that allow for the semi-automatic parallelization of
multi-threaded applications by OpenMP-aware compilers using communica-
tion through shared memory.

– pthreads (POSIX Threads): an interface standard for allowing communi-
cation between individual threads of a single process running on a shared-
memory computer.

• Message Passing

– MPI (Message Passing Interface): an interface standard and a set of asso-
ciated libraries for allowing separate processes running either on the same
computer or on remotely located computers to communicate with each other
either through shared memory or over an associated communication network
(the precise conduit depends on the details of the implementation of the MPI
library used).

– PVM (Parallel Virtual Machine): A much older and no longer commonly
used message-passing protocol similar to MPI.

Programming Language. As with communication protocols, the choice of program-
ming language can also heavily influence both the options for parallelization and the
design of a given algorithm. Many newer high-level languages (e.g., Go) include

308 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

parallel constructs directly in the language. Older, low-level languages, such as C, do
not include direct support for parallelization. On the other hand, low-level languages
tend to be preferred for implementation of numerical algorithms for well-known
efficiency reasons.

8.3.3.2 Frameworks and Solvers

In Section 8.3.2.1, we described the level of abstraction of an algorithm as a fun-
damental property. At the level of an actual implementation, an abstract parallel
algorithm, in which the parallel algorithm does not depend on the details of the
associated sequential algorithm except through well defined interfaces, can be imple-
mented completely independently of the sequential solver and can even be made to
work with multiple sequential solvers. The implementation of a parallel algorithm in
such a way as to enable any sequential algorithm (with possible slight modification
to conform to the interface) to work within the scheme specified by the parallel
algorithm is called a framework. The combination of a parallel framework and (the
implementation of) a particular sequential algorithm make a solver (which when
deployed on a particular platform becomes a solver platform). Naturally, it is not
necessary for a solver to utilize a framework in order to execute in parallel. In some
cases, the solver includes its own parallel algorithm in a tightly integrated package.
We provide examples of both solvers and frameworks in Section 8.4 below.

8.3.3.3 Coordination Mechanisms

In this section, we review what we generally refer to as coordination mechanisms.
This is a general term for the overall way in which the parallel algorithm controls
execution, including both static and dynamic load balancing and the interaction
with the underlying sequential solver. We review here the most common existing
mechanisms employed by the solvers and frameworks discussed in Section 8.4.1.

It should be highlighted that in all the approaches reviewed below that involve
dynamic load balancing, the adaptive tuning of granularity is a centrally important
concept. Generally speaking, the atomic unit of work that we consider is the explo-
ration of a subtree using the strategy of the underlying sequential algorithm, but with
a work limit imposed. This work limit is generally imposed in the form of a limit
on the execution time or a limit on the number of nodes enumerated. Depending
on the specific details of how the parallel and sequential solvers interact (through a
restrictive API or by direct internal function calls with access to the solver’s internals),
the work limit may be imposed in different ways.

Parallel Racing. Despite the decades of effort that have resulted in increasingly
sophisticated sequential solution platforms, current state-of-the-art MILP solvers still
have a high performance variability, which means that the impact on performance
of seemingly performance neutral changes in the input or in minor implementation

8 Parallel Solvers for Mixed Integer Linear Optimization 309

details of the solver can sometimes result in large variations in solution time and other
performance measures. As the most striking example of this kind of variation, simply
permuting the rows or columns of the constraint matrix, which yields an identical
instance from a mathematical standpoint, can cause even the most sophisticated
solvers to vary wildly [52]. It is impossible to predict, for a particular instance, what
perturbations to the model or to the solver’s run-time parameters will minimize
running time.

Given this situation, one of the most straightforward ways to parallelize an existing
sequential algorithm is simply to exploit this performance variability by executing the
same sequential algorithms either with different parameter settings or with different
permuted instances of the same MILP (or both) in parallel. We call this approach
parallel racing, since it executes a simple race among the solver instances with no
communication. The computation is terminated when the first solver finishes, and
a winner is declared. The idea dates back to the early days of the development of
parallel branch-and-bound algorithms [71, 64, 48] and has recently been shown to be
surprisingly effective in some cases [33].

This approach has some obvious advantages. It is simple to implement and can be
used easily with any sequential solver or combination of different sequential solvers
and thus can capitalize on all available sequential solver technology. It requires no
coordination of the solver instances and thus reduces parallel overhead to nearly zero.
The cost of this simplicity, of course, is that the algorithm may perform a potentially
vast amount of redundant work. By passing some small amount of data between the
solvers, the basic procedure can easily be improved. Algorithm 8.3 shows a simplified
racing-type algorithm in which global upper bounds are communicated during com-
putation. Naturally, it would be possible to communicate other information as well,
but there is a tradeoff between the communication overhead and the improvement
that comes from communicating such data. See Section 8.4.2 for a description of
the UG framework that provides an implementation of this approach. Commercial
solvers CPLEX and Gurobi can also execute in this manner (see Section 8.4.1). There
is a study specialized for this paradigm [15].

Algorithm 8.3: Basic Racing Algorithm
Input :Set of N different MILP solvers, N processors indexed by S = {1, . . . ,N}, and

a MILP instance to be solved
Output :An optimal solution

1 terminated← false.
2 Spawn N parallel processes with solver i solving the MILP instance on processor i, ∀i ∈ S.
3 while terminated = false. do

4 (i, tag)←Wait for message from solver processes. // Returns source
SOLVER identifier and message tag

5 if tag = incumbentValue then

6 ∀ j ∈ S\{i} : Send the incumbent value to solver j.
7 else

8 terminated← true // tag = optimalSolution.

9 Output optimal solution.

310 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

Pure Static Load Balancing. Another simple approach to parallelization is to use a
static load-balancing scheme (see Section 8.3.2.5) to generate and distribute a set
of subproblems that can then be solved independently in parallel. This approach
has advantages similar to those of the parallel-racing approach—no coordination is
needed after the initial subproblem generation and distribution phase and thus parallel
overhead is near zero. As with parallel racing, it can be used to parallelize almost any
sequential solver. It can therefore take advantage of the state-of-the-art performance
of sequential solvers. Finally, the amount of redundant work is minimized.

The scheme is, however, vitally dependent on the ability to predict a priori the
difficulty of the subproblems being generated in order to balance the load. This
problem of predicting difficulty is notoriously difficult except for problems with
certain special structure and lies at the core of the difficulty of parallelizing. If
the predictions made are not accurate, then some solvers will end up solving their
assigned subproblem(s) well before others and this will result in a potentially large
amount of idle time for the assigned processors, introducing large overhead.

As with racing strategies, this idea dates back to the early days of the devel-
opment of parallel branch-and-bound algorithms (see, e.g., [57]). A very recent
implementation of it, the so-called SelfSplit approach, is described in [34]. As in the
parallel-racing case, the basic scheme can be improved by allowing some communi-
cation between the solvers, at the cost of increased complexity and a small amount
of overhead. Algorithm 8.4 provides the basic outline of an algorithm similar to that
of [34].

Algorithm 8.4: Static Load-Balancing Algorithm
Input :Single MILP solver, set of N processors i ∈ S = {1, . . . ,N}, and a MILP

instance to be solved
Output :An optimal solution

1 Spawn N identical processes solving the MILP instance on processors 1 to N with a fixed
limit of L nodes.

2 forall i ∈ S IN PARALLEL do

3 forall leaf nodes j in the partial search tree do

4 compute a score for the difficulty of node j.
5 Sort the nodes by decreasing scores.
6 Assign a color c between 1 and N to all nodes, in round robin.
7 Discard all nodes with color c �= i from the branch-and-bound tree.
8 Enumerate the remaining parts of the search tree.
9 Output solution x∗i for solver i.

10 Output x∗ = argmini∈S c�x∗i .

Master-Worker. The Master-Worker paradigm is a well-known and widely used
paradigm for many parallel tasks. The basic scheme involves a single Master process
that coordinates the efforts of a set of Workers. In most cases, the role of the Master
is to balance the load as effectively as possible, though it may possibly play other
roles as well. In its straightforward implementation, the Master may become a com-

8 Parallel Solvers for Mixed Integer Linear Optimization 311

munication bottleneck as the amount of communication with Workers may increase
linearly with the number of Workers, eventually becoming a bottleneck. Naturally,
there are approaches to combat this, such as having the Master request Workers to
send information (such as the description of a workload) directly to each other rather
than via the Master. The granularity of the workload can also be dynamically changed
so that Workers do more work independently and intervals between communication
with the Master are increased, decreasing the communication load on the Master.

This scheme, while not quite as simple as the previously described ones, is still
rather simplified—all coordination decisions are made in a single sequential process.
The potential advantage of this scheme is that the Master maintains a complete
(though inevitably somewhat outdated) picture of the state of the entire procedure.
As long as the Master’s global view remains accurate, this allows the search order in
the parallel algorithm to replicate, to a large extent, the search order that would be
observed in sequential mode. The downside, of course, is that for this fine-grained
global view to be maintained accurately requires a high communication frequency
with Workers. There must inevitably be a point at which the Master becomes a
communication bottleneck. Here again, there is an obvious tradeoff at play. Less data
being shared will result in less effective coordination decisions in the long run, most
likely resulting in redundant work being done. More data being shared results in
higher overhead.

Despite the simplicity and the potential downsides, this approach has been used
successfully to solve difficult open instances (a1c1s1, roll3000, timtab2)
from MIPLIB 2003 in a large computational grid. A MILP instance was decomposed
carefully using CPLEX, and the generated subproblems were distributed across a
computational grid. Solution of the subproblems continued until predefined termi-
nation criteria, such as a time limit, were met. Subproblems not yet solved were
decomposed using CPLEX again, and the newly generated subproblems were again
distributed on a computational grid [14]. FATCOP [16] is a solver developed to
perform this process automatically.

Algorithms 8.5 and 8.6 show a simplified Master-Worker-based parallel algorithm
for solution of MILPs. After sending a subproblem to a Worker, there is no communi-
cation between the Master and the Worker. If a Worker solves a received subproblem,
an optimal solution for the subproblem is returned; otherwise, the terminal nodes of
the search tree for the subproblem (a new collection of subproblems) are returned af-
ter the Worker performs. The Master coordinates distribution of the global collection
of subproblems to Workers. In order to keep the number of subproblems as small as
possible, the search strategy is the so-called depth-first strategy, which processes the
deepest node in the search tree first and minimizes the generation of new terminal
nodes. All subproblems managed by the Master are treated independently, which
makes fault tolerance easy to handle when computing resources are being added
and removed at random, as on a computational grid. In the algorithm, N could be
changed dynamically.

Supervisor-Worker. In contrast to the Master-Worker paradigm, the idea of Supervisor-
Worker is that the Supervisor functions only to coordinate workload, but does not

312 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

Algorithm 8.5: Master (Master-Worker)
Input :Single MILP solver, set of N processors i ∈ S = {1, . . . ,N} and an MILP

instance to be solved
Output :An optimal solution

1 Spawn N Workers with the MILP solver on processors 1 to N.
2 x∗ ← NULL.
3 I ← S. // Idle processors
4 A← /0. // Busy processors
5 Q← {0}. // Queue of indices of subproblems for processing,

0 is the index of the root problem
6 R← /0. // Subproblems currently being processed
7 while Q �= /0 and R �= /0 do

8 while I �= /0 and Q �= /0 do

9 i ∈ I, I ← I \{i}, A← A∪{i}.
10 j ∈ Q, Q← Q\{ j}, R← R∪{(i, j)}.
11 Send subproblem j and best solution to processor i.
12 (i, tag)←Wait for message. // Returns processor identifier and

message tag
13 if tag = optimalSolutionFound or tag = solutionFound then

14 Receive solution x̂ from processor i.
15 if x∗ = NULL or c�x̂ < c�x∗ then

16 x∗ ← x̂.
17 Receive list of candidate subproblems generated by processor i and add them to Q.
18 R← R\{(i, j)}.
19 A← A\{i}, I ← I∪{i}.
20 Output x∗.

Algorithm 8.6: Worker (Master-Worker)
Input :A subproblem and an incumbent solution
Output :A termination code, improved solution (if found), and a list of candidate

subproblems

1 Set initial global upper bound based on the incumbent solution.
2 Set termination criteria and the other parameters, such as search strategy etc.
3 Execute sequential solution algorithm until termination criteria are reached.
4 if algorithm solves subproblem to optimality then

5 tag← optimalSolutionFound.
6 else

7 if algorithm found feasible solution then

8 tag← solutionFound.
9 else

10 tag← noSolutionFound.
11 Send candidate subproblems, any solution found, and tag to Master.

8 Parallel Solvers for Mixed Integer Linear Optimization 313

actually store the data associated with the search tree. The terminal nodes of the
search tree in the Workers are collected on demand and a set of subproblems in the
Supervisor works as a buffer to ensure subproblems are available to idle Workers
as needed. This coordination scheme has been successful in solving open instances
from both MIPLIB2003 and MIPLIB2010 by using the UG framework described in
Section 8.4.2 and the underlying sequential solver SCIP on a large supercomputer.
This coordination scheme is also used in the CPLEX distributed MILP solver men-
tioned in Section 8.4.1. Algorithms 8.7 and 8.8 show a parallel algorithm with a
simplified Supervisor-Worker coordination scheme similar to the one used in UG.

In the Supervisor-Worker approach in UG, the load balancing is accomplished
mainly by toggling the collection mode flag in the Worker. Turning collecting mode
on results in additional “high-quality” subproblems being sent to the Supervisor,
which can then be distributed to Workers. Naturally, the method of selecting which
Worker to collect from is crucial to the effectiveness of the approach. Some additional
keys to avoiding having the Supervisor become a communication bottleneck are:

• Frequency of status updates can be controlled depending on the number of
Workers.

• The maximum number of Workers in collection mode is capped and the Workers
are carefully chosen in a dynamic fashion.

Naturally, there is a tradeoff between the frequency of communication and the number
of Workers in collection mode and the degree to which the parallel search order
replicates the sequential one. As the number of processors is scaled up, this tradeoff
must be carefully navigated.

Multiple-Master-Worker and Master-Hub-Worker. An alternative approach to en-
suring that the Master doesn’t become a bottleneck is to either create additional
Master processes (Multiple-Master-Worker) or even to create a layer of “middle
management” (Master-Hub-Worker). In both schemes, Workers are grouped into
collectives called Hubs, each of which has its own Hub Master. In creating this
management hierarchy, the hope is that the Hub Masters can effectively balance the
workload within the collective for some time before having to coordinate with other
Hubs through the Master to do higher-level global balancing. Naturally, more levels
can be added and experiments with schemes such as having a dynamic number of
levels have appeared in the literature [106].

The CHiPPS framework, described in Section 8.4.2, uses the Master-Hub-Worker
paradigm, whereas the PEBBL framework, described in 8.4.2, uses a Multiple Master
approach. This scheme can be extended to allow for even more layers in a hierar-
chical load-balancing scheme [49]. A basic scheme similar to the one in CHiPPS
is described in Algorithms 8.9–8.11. The keys to ensuring the effectiveness of this
framework are:

• The number of clusters (Hub Masters) and thereby the cluster size can be
dynamically controlled.

• The frequency of status updates between Workers and Hubs, as well as Hubs
and Masters can be fixed or automatically adjusted adaptively (the default).

314 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

Algorithm 8.7: Supervisor (Supervisor-Worker)
Input :Single MILP solver, set of N processors i ∈ S = {1, . . . ,N} and a MILP

instance to be solved
Output :An optimal solution

1 Spawn N Workers with the MILP solver on processors 1 to N.
2 collectMode← false.
3 x∗ ← NULL.
4 I ← N \{1}. // Idle processors
5 A←{1}. // Busy processors
6 Q← /0. // Queue of indices of subproblems for processing, 0

is the index of the root problem
7 R← {(1,0)}. // Subproblems currently being processed, 0 is

the index of the root problem
8 Send the root problem to processor 1.
9 while Q �= /0 and R �= /0 do

10 (i, tag)←Wait for message. // Returns processor identifier and
message tag

11 if tag = solutionFound then

12 Receive solution x̂ from processor i if x∗ = NULL or c�x̂ < c�x∗ then

13 x∗ ← x̂.
14 else

15 if tag = subproblem then

16 Receive a subproblem indexed by k from processor i.
17 Q← Q∪{k}.
18 else

19 if tag = terminated then

20 R← R\{(i, j)}. // j is the index of the terminated
subproblem

21 A← A\{i}, I ← I∪{i}.
22 else

23 if tag = status then

24 if collectMode = true then

25 if there are enough heavy subproblems in Q then

// heavy subproblem is a subproblem
which is expected to generate a
large subtree

26 Send message with tag = stopCollecting to processors
in collecting mode.

27 collectMode← false

28 else

// collectMode = false

29 if there are not enough heavy subproblems in Q then

30 Select processors which have heavy subproblems.
31 Send message with tag = startCollecting to the

selected processors.
32 collectMode← true.

33 while I �= /0 and Q �= /0 do

34 i ∈ I, I ← I \{i}, A← A∪{i}.
35 subproblem j ∈ Q, Q← Q\{ j}, R← R∪{(i, j)}.
36 Send subproblem j and x∗ to processor i.
37 ∀i ∈ S : Send message with tag = termination to processor i.
38 Output x∗.

8 Parallel Solvers for Mixed Integer Linear Optimization 315

Algorithm 8.8: Worker (Supervisor-Worker)
Input :A MILP solver and an original MILP instance to be solved

1 collectMode← false.
2 terminate← false.
3 while terminate = false do

4 (i, tag)←Wait for message from Supervisor. // Returns Supervisor
identifier 0 and message tag

5 if tag = subproblem then

6 Receive subproblem and solution from Supervisor.
7 Solve the subproblem, periodically communicating with supervisor as follows

- Send message with tag solutionFound anytime a new solution is discovered.
- Periodically send message with tag status to report current lower bound
for this subproblem.
- When messages with tag startCollecting or stopCollecting are received,
toggle collectMode.
- When collectMode = true, periodically send message with
tag subproblem containing best candidate subproblem.

8 Send a message with tag = terminated.
9 else

10 if tag = termination then

11 terminate← true.

• The frequency of inter-cluster and intra-cluster load balancing can be fixed or
automatically adjusted adaptively (the default).

• The granularity of the work unit can also be fixed or automatically adjusted
adaptively (default).

As with Supervisor-Worker, there is a clear tradeoff in adjusting these parameters
between communication overhead and the ability to replicate the sequential search
order.

Self Coordination. Recently, a completely decentralized approach to parallel branch-
and-bound was introduced and implemented in PIPS-SBB [65], a distributed-memory
parallel solver for Stochastic Mixed Integer Programs (SMIPs). Parallel PIPS-SBB
features a lightweight mechanism for redistributing the most promising nodes among
all the parallel processors without the need for a centralized load coordinator. This
alternative scheme seeks to keep the load in balance without formally introducing
any notion of a separate process to coordinate the load. In order to accomplish this, a
synchronization point must be added, potentially introducing an alternative source
of overhead. This scheme is untested with regard to solving generic MILPs, so it is
unclear how to assess this tradeoff. Nevertheless, we introduce the basic scheme here
in Algorithm 8.12. Instead of point-to-point communications, parallel processors
exchange subproblems via all-to-all collective MPI asynchronous communications,
allowing rebalance of the computational load using a single communication step.
Parallel processors proceed to solve subproblems until the problem has been solved
to optimality.

316 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

Algorithm 8.9: Master (Master-Hub-Worker)
Input :Single MILP solver, set of N processors i ∈ S = {1, . . . ,N}, number of hubs H,

and a MILP instance to be solved
Output :An optimal solution

1 Spawn N Processes with the MILP solver on processors 1 to N
// Process 1 is the master, processes 1 to H are hubs

(master is also hub), all processes also function as
workers.

2 x∗ ← NULL.
3 Li ←−∞,Wi ← 0, 2≤ i≤ H. // Best bound and workload of cluster i
4 Do initial static load balancing. // Either 2-level root initialization

or spiral
5 while ∃i, Wi > 0 do

6 while timeSinceLastBalanceCheck < masterBalancePeriod do

7 (i, tag)← Check for messages. // Returns processor identifier
and message tag or NULL

8 if tag = solutionFound then

9 Receive newSolution from processor i.
10 if x∗ = NULL or c�x̂ < c�x∗ then

11 x∗ ← x̂.
12 else

13 if tag = hubStatusUpdate then

14 Update Wi,Li.
15 else

16 Process message as hub or worker (see Algorithms 8.10 and 8.11).
17 Do a unit of work. // As worker
18 Update timeSinceLastBalanceCheck

19 if Wi < workloadThreshold or Li > boundThreshold then

20 Balance cluster loads.
21 ∀i ∈ S : Send message with tag = termination to processor i.
22 Output x∗.

8.4 Software

In this section, we summarize software architectures of existing software for solving
MILPs in parallel. The development of parallel software for solving MILPs has a
long history by now and many solvers and frameworks have preceded the ones listed
here. In addition to the ones listed below, previous efforts include ABACUS [50],
PPBB-LIB [93], FATCOP [16], PARINO [58], MW [43], BoB [7], Bob++ [24],
PUBB [88], PUBB2 [86], ParaLEX [84], ZRAM [12], and MallBa [5].

We divide this section into two subsections. In the first, we describe solvers
that have embedded, generally tightly integrated parallelization schemes. In the
second, we describe frameworks that can be used in tandem with multiple underlying
sequential solvers.

8 Parallel Solvers for Mixed Integer Linear Optimization 317

Algorithm 8.10: Hub Master (Master-Hub-Worker)
Input :Process index k, set Sk of workers assigned to cluster

1 Li ←−∞,Wi ← 0, i ∈ Sk. // Best bound and workload of worker i
2 terminate← false.
3 Participate in initial static load balancing.
4 while terminate = false do

5 while timeSinceLastBalanceCheck < hubBalancePeriod and

timeSinceLastHubReport < hubReportPeriod do

6 (i, tag)← Check for message. // Returns processor identifier
and message tag or NULL

7 if tag = masterRequestsBalance or tag = workerRequestsBalance then

8 Identify donors and notify them of need to donate.
9 else

10 if tag = workerStatusUpdate then

11 Update Wi,Li.
12 else

13 if tag = terminate then

14 terminate← true.
15 else

16 Process message as worker (see Algorithm 8.11).

17 Do a unit of work and request balance if necessary. // As worker
18 Incorporate worker status into hub status.
19 Increment timeSinceLastBalanceCheck,timeSinceLastHubReport.
20 if ∃i,Wi < workloadThreshold or Li > boundThreshold then

21 Balance load of workers.
22 if timeSinceLastHubReport ≥ hubReportPeriod then

23 Send hub status to master.

8.4.1 Solvers

BLIS and DisCO. BLIS [103, 105] is an open-source parallel MILP solver that is
part of the CHiPPS hierarchy to be described in section 8.4.2 below. DisCO [13] is a
recent re-implementation and generalization of BLIS that supports the solution of
mixed integer second-order conic optimization problems.

CBC. CBC [35] is an open-source solver originally developed by IBM. It employs a
simple thread-based Master-Worker scheme, which is a straightforward paralleliza-
tion of its sequential algorithm. Nodes are handed off by the master thread to idle
workers one at a time and the results collected, with all global data stored centrally.
The sequential algorithm is itself quite sophisticated and this simple approach to
parallelization is quite effective at a small scale, since it mirrors the algorithmic ap-
proach taken by the underlying sequential solver. CBC has a deterministic execution
mode in which the parallelization is at the subtree level. In this mode, each thread
works on an entire subtree, with the amount of work fixed deterministically. After
all threads complete their unit of work, there is a synchronization point, after which
computation continues from this deterministic state.

318 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

Algorithm 8.11: Worker (Master-Hub-Worker)
Input :Process index k

1 Lk ←−∞,Wk ← 0. // Best bound and workload of this worker
2 terminate← false.
3 Participate in initial static load balancing.
4 while terminate = false do

5 while timeSinceLastWorkerReport < workerReportPeriod do

6 (i, tag)← Check for message. // Returns processor identifier
and message tag or NULL

7 if tag = hubRequestsDonation then

8 Identify subtree to donate or split current tree.
9 else

10 if tag = subTree then

11 Receive donated subtree.
12 else

13 if tag = terminate then

14 terminate← true.

15 Do a unit of work on best locally available subtree, send improved solution (if
found), and request more work if necessary.

16 Increment timeSinceLastWorkerReport.
17 if timeSinceLastHubReport ≥ hubReportPeriod then

18 Send worker status to hub.

Algorithm 8.12: Self Coordination Algorithm
Input :Single MILP solver, set of N processors i ∈ S = {1, . . . ,N} and an MILP

instance to be solved
Output :An optimal solution

1 Spawn N identical processes solving the MILP instance on processors 1 to N.
2 forall i ∈ S IN PARALLEL do

3 Add the root problem to priority queue Q1.
4 Set upper bound Ui ← ∞ and lower bound Li ←−∞ on processor i.
5 while mini∈S{Li}< mini∈S{Ui} do

6 if Load imbalance exists or synchronization point is reached then

7 Exchange best solutions, set Ui ← min1≤i≤N{Ui}.
8 Determine the top M candidate subproblems from ∪i∈SQi and redistribute

them among all processors in a round robin fashion.
9 if termination conditions are met then

10 return

11 Remove subproblem s from Qi.
12 Process subproblem s, update Ui,Li.
13 if s not fathomed then

14 Branch to create children of s and add them to Qi.

8 Parallel Solvers for Mixed Integer Linear Optimization 319

DIP. DIP (Decomposition in Integer Programming) [74, 37] is a decomposition-
based solver that takes a different approach to parallelism than any of the others listed
so far. DIP was built on the ALPS tree search framework [104], although it does
not currently take advantage of the built-in ability of ALPS to parallelize the tree
search at the subtree level. Rather, it parallelizes the bounding process of individual
search tree nodes (subnode parallelism). This can be done in a number of different
ways. First, it can utilize an interior point-based LP solver to solve the LPs that arise.
More importantly, however, since it can recursively use a MILP solver for solving
the column-generation subproblem that must be solved during the bounding process,
this step can itself be parallelized by using one of the other solvers listed in this
section. Furthermore, when there is block structure present (see [95]), the solution
of the subproblem can itself be decomposed into independent subproblems that can
then also be solved in parallel. These two strategies may even be hybridized.

FICO Xpress-Optimizer. The internal parallelization of the FICO Xpress-Optimizer
is based on a general task scheduler that is independent of the concrete MILP-solving
application. It can handle the execution of interdependent tasks in a deterministic
fashion. A core aspect of its design is the capability to handle asymmetric tasks that
might have different levels of complexity. It is not only possible to have, e.g., cutting,
heuristics, and exploration of the branch-and-bound tree parallelized individually,
but to run tasks of each type at the same time.

The parallel design of Xpress avoids fixed synchronization points. At the time
when a task is created, it gets a deterministic stamp. The task may only use infor-
mation which is itself tagged with a smaller stamp. In this way, the task uses only
a subset of the information that would be available if a synchronization had been
triggered when the task was created. The idea is that the potential performance loss
from using slightly “outdated” information will be easily made up for by the per-
formance gain from dropping the need for regular complete synchronization. When
information is collected, all data that are transferred back to global data receive a
deterministic stamp. All tasks that have a stamp which is greater than this, will be
allowed to use that information.

Concerning synchronization, the incumbent solution is always shared globally
and as soon as possible. Apart from solutions, Xpress shares branching statistics
and selected cuts. For both kinds of information, each task has a local variant that
contains more and potentially newer information, which is combined with the global
information. For the ramp-up, a root-initialization-like scheme is used.

In principle, tasks could be anything; in practice, they either refer to subtrees,
more particularly individual dives, or to the execution of expensive heuristics. In
that sense, Xpress employs a node parallelization scheme, with a slight flavor of
subtree parallelization since the nodes explored within local search heuristics are not
necessarily distinct from the nodes in the main tree search or within other heuristics.
For the main tree search, however, it holds that no node is explored twice. Subnode
parallelization is exclusively used at the root node, mainly for solving the global LP
relaxation by parallel barrier and/or parallel dual simplex, subordinately for parallel
heuristics and cutting.

320 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

A problem with deterministic parallelization approaches that use fixed synchro-
nization points is that they do not scale well on large numbers of cores. One decision
made as a consequence is to break with the one-to-one association between threads
and tasks to be performed. As a consequence, more tasks, typically by a factor
between two and four, are maintained than there are threads available. By doing so,
Xpress aims at immediately having new tasks available for a thread when it com-
pletes a previous task, without needing to wait for other threads to synchronize. As a
consequence, the load balancer might need to dynamically put certain tasks on hold
when they require information from a task that is currently not being executed and
exchange them with the task lagging behind. For more details on the parallelization
of Xpress, see [10].

As an important consequence, by breaking the link between threads and tasks, it
is possible to make the solution path independent of the number of threads used—it
only depends on the maximum number of tasks that may exist at the same time.
Moreover, the parallelization of Xpress is not only deterministic, but Xpress as a
whole is also platform-independent, meaning that the solver takes exactly the same
solution path independent of whether the underlying machine is a Mac, Windows, or
Linux system and what brand of CPUs is used.

SYMPHONY. SYMPHONY [75, 77, 73, 22] was originally developed in the early
1990s as a framework that was intended to be customized by the addition of user-
defined subroutines for generation of valid inequalities and other functionality (known
today as callbacks). It did not initially have an execution mode as a generic MILP
solver, but this capability was added later by leveraging libraries for I/O and genera-
tion of valid inequalities provided by the COIN-OR project [60].

SYMPHONY was originally designed to run on distributed memory platforms
and was later modified to run on shared-memory platforms. It is implemented mainly
in pure C and in its distributed execution mode, it uses the message-passing pro-
tocol PVM for communication. Generally speaking, it employs a Master-Worker
coordination mechanism with node-level parallelism (the unit of work is a single
node), though it has a variety of execution modes, some of which enable sub-node
parallelism and parallelize some auxiliary processes that involve knowledge sharing.

SYMPHONY’s functionality is divided into five modules that are designed to
execute independently in parallel or in various bundled combinations.

• Master: This module contains functions that perform problem initialization and
I/O. The primary reason for a separate master module is fault tolerance, as this
module is not heavily tasked once the computation has begun.

• Tree Manager (TM): The TM controls the execution of the algorithm by main-
taining a complete description of the search tree and deciding which candidate
node should be chosen as the next to be processed at each step of the algorithm.

• Node Processor (NP): The NP modules perform basic node processing to calcu-
late bounds and also perform the branching operation.

• Cut Generator (CG): The CG modules generate valid inequalities used to
strengthen the relaxations solved by the NP modules. Multiple CG modules
can be executed in parallel in tandem with NP modules.

8 Parallel Solvers for Mixed Integer Linear Optimization 321

• Cut Pool (CP): The CP modules store previously generated inequalities and act
as auxiliary cut generators. It is possible to have multiple cut pools for different
parts of the tree and even to store locally valid inequalities in them.

It is possible to combine the modules in various ways, such as either

• combining the NP module with the CG module to obtain one single sequential
module that performs both functions or

• combining the CP, TM, and Master modules into a single module maintaining
all global information.

After processing each node and making a branching decision, the NP module queries
the TM module as to what to do next: retain one of the child nodes just generated
and continue “diving” or wait for a new node to be sent. This approach minimizes
redundant computation by ensuring that all NP modules are processing high-quality
nodes, but increases communication overhead substantially. Scalability is limited by
the TM’s ability to handle incoming requests from the NP modules.

SYMPHONY’s data structures are designed to ensure that all data that needs to be
stored and communicated is represented as compactly as possible. All data in the tree
is stored using a differencing scheme in which only the differences between a child
node and parent node are stored. Descriptions of valid inequalities are only stored
once and referred to elsewhere by index. In this way, parallel overhead is reduced as
much as possible.

SYMPHONY also has a shared-memory parallel mode implemented using the
OpenMP protocol to create a multi-threaded program that functions in roughly the
same fashion as the distributed parallel version but with all communication through
memory rather than over the network. The scalability issues with the shared-memory
version are similar to those of the distributed version.

SYMPHONY has been used to develop a number of custom solvers for combina-
torial problems, such as the vehicle routing problem [72].

Other Commercial Sovers. CPLEX [18] and Gurobi [44] are commercial solvers
that also have parallel execution modes. However, not much public information is
available on the approach to parallelization that these solvers take.

8.4.2 Frameworks

BCP. BCP [55, 76] is a framework for implementing parallel branch, cut, and price
algorithms. It was initially developed as a re-implementation and generalization
of SYMPHONY (which was also a framework at that time) in the C++ language
using the more modern MPI message-passing protocol. It has extensive support
for implementing column generation algorithms, whereas SYMPHONY’s support
for such algorithms was not developed. Its basic modular design is similar to that
of SYMPHONY, however, and is described above. It employs the Master-Worker
coordination scheme with node parallelism in a fashion similar to SYMPHONY, with

322 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

a complete description of the tree maintained centrally and all decisions about search
order made centrally. Its limitations from a scalability standpoint are also similar to
SYMPHONY’s.

CHiPPS. CHiPPS [101, 102, 103, 105, 104] is a generic framework for perform-
ing parallel tree search, but with particular support for branch-and-bound-based
algorithms for optimization. CHiPPS is implemented in C++ and uses MPI as its
communications protocol. The coordination mechanism is a Master-Hub-Worker
scheme with subtree parallelism. The unit of work performed by a Worker is the
exploration of an entire subtree until some specific criteria are met (time limit, node
limit, etc.). These criteria can be dynamically adjusted to limit overhead.

The base layer of CHiPPS is ALPS, which is an abstract implementation of
parallel tree search. To develop an algorithm using ALPS, the user must provide
implementations of the node-processing method and the branching method of the
tree search algorithm to be implemented, as well as providing classes for storing
descriptions of the problem data and the data required to describe a node in the search
tree.

ALPS is optimized for “data-intensive” tree search algorithms in which the amount
of data required to describe a single subproblem in the search tree may be large and
in which additional types of knowledge also might be shared. ALPS has an extensible
mechanism for defining new types of knowledge and a general mechanism for storing
such knowledge in auxiliary pools and sharing it between processors. Each processor
has a knowledge broker responsible for routing all communication. All that’s required
to convert a sequential algorithm to a parallel one is to replace the serial knowledge
broker with the parallel one. No other part of the implementation depends on the
communication protocol or even whether the algorithm is to be executed in parallel.

The BiCePs layer, built on top of ALPS, provides support for implementing
relaxation-based branch-and-bound algorithms for solving optimization problems. It
provides an abstract notion of modeling “objects,” collections of which can be used to
describe subproblems. Subtrees, in turn, are described using a compact differencing
scheme in which nodes are described in terms of differences between parent and
child.

CHiPPS employs a unique load-balancing scheme in which entire subtrees are
shifted directly from one worker to another to balance the load instead of individual
nodes. A subtree can be seen as a collection of related nodes, which can be stored
more efficiently if kept together as a single unit. By load balancing in this way,
we hope to minimize both communication overhead and storage overhead. The
overall mechanism is a hierarchical coordination scheme with several static balancing
options; sender-initiated balancing (if necessary); and periodic intra- and inter-cluster
dynamic load balancing, as described earlier in Algorithms 8.9–8.11.

CHiPPS has been used to develop three MILP solvers to date: DIP, BLIS (the third
layer of the CHiPPS hierarchy), and DisCO (a generalization of BLIS to support
solution of mixed integer conic optimization problems). It has also been used to
develop MibS, a solver for mixed integer bilevel optimization problems [91].

8 Parallel Solvers for Mixed Integer Linear Optimization 323

PEBBL. The developerfpment of the Parallel Enumeration and Branch-and-Bound
Library (PEBBL) [28] was sponsored by Sandia National Laboratories and has
been ongoing for close to two decades. Its purpose was to support the solution
of optimization problems arising in applications of interest to that laboratory. The
PEBBL project itself resulted from the splitting of the parallel MILP solver PICO
into an abstract framework for implementing parallel branch-and-bound algorithms
and the parts of PICO specific to the solution of MILPs. PICO is now an application
layer built on top of the base layer PEBBL. PEBBL uses a multiple-master-worker
coordination mechanism with a sophisticated load-balancing scheme described in
detail in [28] to achieving scalability.

UG. The core idea behind UG was to make it possible to utilize a powerful state-of-
the-art MILP solver as the underlying sequential solver while still achieving good
parallel performance. Development was started in 2001 using a general parallel
branch-and-bound software framework PUBB2 [85]. After recognizing how difficult
it is to use a powerful black-box solver with a general parallel branch-and-bound
framework in order to improve overall solver performance, development was begun
on ParaLEX [84], which was specialized for the CPLEX solver on a distributed-
memory computing environment. ParaLEX was redesigned in 2008 [83], after which
the idea to have a general software framework to exploit state-of-the-art MILP solvers
was conceived.

Ubiquity Generator (UG) framework [87, 94] is a generic framework to parallelize
an existing state-of-the-art branch-and-bound-based solver, which is referred to as
the base solver, from “outside.” UG is composed of a collection of base C++ classes,
which define interfaces that can be customized for any base solvers (MILP/MINLP
solvers) and allow descriptions of subproblems and solutions to translated into a
solver-independent form. Additionally, there are base classes that define interfaces
for different message-passing protocols. Implementations of ramp-up, dynamic load
balancing, and check-pointing and restarting mechanisms are available as a generic
functionality. The branch-and-bound tree is maintained as a collection of subtrees by
the base solvers, while UG only extracts and manages a small number of subproblems
(typically represented by variable bound changes) from the base solvers for load
balancing.

The basic concept of UG is thus to abstract from a base solver and parallelization
library and to provide a framework that can be used, in principle, to parallelize
any powerful state-of-the-art base solver on any computational environment (shared
or distributed memory, multithreading or massively parallel). For a particular base
solver, only the interface to UG in the form of specializations of base classes, as
provided by UG, needs to be implemented. Similarly, for a particular parallelization
library (e.g., MPI), a specialization of an abstract UG class is necessary.

The message-passing functions used in UG are limited as much as possible and
are wrapped within the base class. Therefore, adding support for an additional
parallelization library should be easy. The most-used libraries for implementing
distributed parallel programs are MPI implementations. The virtual functions in the
base class provided by UG can be mapped straightforwardly onto corresponding MPI

324 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

functions. Pthreads is a popular library that is used to make multi-threaded programs
and the UG specialization for pthreads uses a simple message queue implementation,
which has been developed as a part of the UG code.

From the UG framework point of view, a particular instantiated parallel solver is
referred to as

ug [a specific solver name, a specific parallelization library name].

Here, the specific parallelization library is used to realize the message-passing-
based communications. Solvers have been developed for the non-commercial SCIP

solver (ParaSCIP (= ug [SCIP, MPI]), FiberSCIP (= ug [SCIP, Pthreads])) and the
commercial Xpress solver (ParaXpress (= ug [Xpress, MPI]), FiberXpress (= ug

[Xpress, Pthreads])). UG has also been used to parallelize the PIPS-SBB solver for
two-stage stochastic programming problems (ug [PIPS-SBB,MPI]).

UG employs a Supervisor-Worker coordination mechanism with subtree-level
parallelism (the unit of work is a subtree). One of the most important characteristics
of UG is that it makes algorithmic changes to the base solver, such as multiple
preprocessing, and performs very adaptive algorithms, such as racing ramp-up. These
features make it difficult to measure the performance of an instantiated parallel solver.
However, from a solvability point of view, instantiated parallel solvers are among the
most successful ones. ParaSCIP successfully solved 14 previously unsolved instances
from MIPLIB2003 and MIPLIB2010 as of writing this document.

UG has been developed mainly in concert with SCIP. Therefore, ug [SCIP,*] is
the most mature and has user-customizable libraries. By using these libraries with
the plug-in architecture of SCIP, a customized parallel solver can be developed with
minimal effort. One of the successful results of using this development mechanism
is the SCIP-Jack solver for Steiner Tree Problems and its variants. ug [SCIP-Jack,
MPI] solved three open instances from the SteinLib[90] benchmark set [38]. The
largest-scale computation conducted with ParaSCIP is up to 80,000 cores on TITAN
at Oak Ridge National Laboratory[82].

8.5 Performance Measurement

Performance measurement presents exceedingly difficult challenges when it comes to
parallel MILP solvers. As we mentioned in Section 8.3.1.1, performance of parallel
MILP solvers is often assessed by measuring the amount of parallel overhead
introduced by the parallelization scheme. The direct measurement of such overhead
is problematic, so parallel overhead is often measured indirectly. The most common
way of doing this involves measuring the efficiency, which is an intuitive and simple
measure that focuses on the effect of using more cores, assumed to be the bottleneck
resource, to perform a fixed computational task (e.g., solve a given optimization
problem). The efficiency of a parallel program running on N processors is

EN := (T0/TN)/N

8 Parallel Solvers for Mixed Integer Linear Optimization 325

with T0 being the sequential running time and TN being the parallel running time
with N threads. Generally speaking, the efficiency attempts to measure the fraction of
work done by the parallel algorithm that could be considered “useful.” An algorithm
that scales perfectly on a given system would have an efficiency of EN = 1 for all N.
A related measure is the speed-up, which is simply

SN := NEN

Although this way of measuring performance seems reasonable, one faces many
problems with it in practice. We outline these problems in the sections below before
discussing alternatives.

8.5.1 Performance Variability

Sequential Algorithms. Modern MILP solvers employ complex algorithms. Many
algorithmic decisions are made heuristically, such as, e.g., when and how often primal
heuristics are called, which disjunction to select for branching, or how many cutting
planes should be generated/added. Furthermore, the results of certain operations
are not necessarily unique. For example, the root LP might have several different
optimal solutions and which one is selected will be influenced by the breaking of ties
during algorithmic decision-making. How these ties are broken may end up being
determined by any number of factors, including details of the hardware on which the
algorithm is run. Small differences in algorithm parameters, how ties are broken, and
other details, can result in enormous variations in the course of the algorithm. The
tree generated by the algorithm, even when the algorithm itself is deterministic for a
given input, might vary greatly in both structure and size, depending on such things
as the order of constraints or variables in the model or slight numerical differences
introduced by different CPU types.

Some instances are more vulnerable to variation than others. One way to test
whether a particular instance is prone to performance variability in regard to a partic-
ular solver is to solve the instance multiple times, each with a different permutation
of the rows and columns of the constraint matrix (and other associated input data).
Such permutations create a problem that is mathematically equivalent to the original
one, but for which the running time of a given algorithm might vary dramatically
(see, e.g., [20, 52]).

The computer architecture might have an influence also. As mentioned, different
CPUs might introduce slight numerical differences. NUMA architectures where the
assignment of processes to cores is done by the operating system can easily have
performance variations of 10%. In general, when doing benchmarking it is useful to
bind processes to cores if possible to limit such variation.

To complicate matters, modern CPUs may change their clock frequency depending
on the number of cores currently employed. A CPU might run much faster single-
threaded and otherwise empty then it does when all cores are fully loaded. Switching

326 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

this behavior off decreases variability, but on the other hand, real-world performance
might be quite different.

As a result of all this performance variability, the number of instances that one
would need to include in a test set and the number of experiments one would need
to do in order to ensure that an observed, e.g., 5%, performance increase is actually
statistically significant is rather high [4].

Parallel Algorithms. On top of the issues noted above, when an algorithm is executed
in parallel, additional sources of variability are introduced, including possible non-
determinism of the algorithm itself, due to the unpredictability of the order in which
operations occur. As we mentioned in Section 8.3.2.7, it is usually possible to
implement parallel algorithms in a deterministic mode. However, this will inevitably
worsen performance, due to the required introduction of synchronization points, and
if the goal is to assess the non-deterministic variant of the algorithm, then enforcing
determinism does not make sense. Due to timing issues and the reasons mentioned
above, the number of branch-and-bound nodes generated to solve a particular instance
might vary strongly depending on the number of cores used (see [53] for more
details).

Measuring Running Time. Finally, we briefly mention that the measurement of
running time is itself problematic in the case of a parallel algorithm. In the sequential
case, one typically measures the running time of an algorithm not using wall-clock
time (the actual real time elapsed), but rather the amount of CPU time taken by
the process. The CPU time and the wall-clock time can differ if other processes
are running on the computer, which they often are, especially if testing is done
on a platform shared with others. In the parallel case, however, one needs to rely
on wall-clock time measurement because the running time must include idle time,
which may not be properly measured if one only includes CPU time. It is the total
elapsed running time of the parallel algorithm that matters, but as we have already
noted, wall-clock time measurements are inherently more variable due to the possible
influence of external processes and other extraneous factors.

8.5.2 Comparisons

It is usual in the literature to compare alternative algorithms for solving the same
problem on the basis of some objective measures of performance, and this is a
primary reason for measuring such performance. We have so far motivated why
performance measurement is problematic due to inherent variability. This is a general
phenomenon that affects all parallel algorithms. In the case of comparing parallel
MILP solvers, however, there are additional problematic factors. In general, the main
goal of algorithmic research in MILP solvers is to reduce the number of branch-
and-bound nodes required to solve an instance. At present, it is not unusual for an
instance to be solved in the root node or within fewer than a few hundred nodes.
Unfortunately, as we mentioned earlier, reductions in the size of the search tree

8 Parallel Solvers for Mixed Integer Linear Optimization 327

have a negative impact on scalability. This means that differences in the underlying
sequential algorithm can impact our assessment of scalability of parallel algorithms,
although these differences may be tangential to the differences we are actually
attempting to observe (differences due to the approach to parallelization). In the
extreme, one could imagine comparing a parallel algorithm employing an underlying
sequential solver capable of solving most instances in a given benchmark set by
enumerating only a handful of nodes against one that requires thousands of nodes.
The former parallel algorithm will likely be more effective (faster) overall, while the
latter is more likely to be scalable. Separating the effects of the underlying sequential
solver from the approach taken by the parallel algorithm itself is difficult at best. This
is further highlighted by the difficulties encountered in selecting a proper test set.

8.5.3 Instance Selection

Due to well-established data formats collections of widely used data-sets, e.g., the
MIPLIB2010 [52], are available and are generally recommended to be used for com-
parisons. However, it is important to realize that properties of individual instances
can limit the scalability that it will be possible to achieve, independent of a given
solver’s approach to parallelization. Instances that can be solved by most solvers in a
small number of nodes or for which the LP relaxation in the root node is extremely
difficult to solve will not scale with any current solver. It is therefore important to
select instances that are suitable for parallel testing.

• Instances should produce a tree suitably large and broad enough that paralleliza-
tion is both necessary and effective. Unfortunately, this property depends very
much on the effectiveness of the underlying sequential solver. An instance may
be suitable in this regard with respect to one solver and not with respect to
another. In addition, the size of the tree is not fixed and may vary based on
random factors, as noted above.

• If one wants to use efficiency as a performance measure, it is important that in-
stances be solvable with one processor (or at least a small number of processors),
since this is used as a baseline for assessing the amount of parallel overhead.
Unfortunately, instances that can be solved in a reasonable amount of time on a
single processor may not be difficult enough with a large number of processors
to be interesting and may not be suitable with respect to the first criterion.

This makes standard benchmark sets of only limited use in testing parallel perfor-
mance, at least insofar as we limit ourselves to parallelizing the tree search itself.
Naturally, subnode parallelism could be employed in the case of small trees, but this
approach has so far not been pursued very vigorously.

It should be noted that the performance of a solver on any single instances has
very little meaning. After the release of MIPLIB 2010 the overall geometric mean
performance of CPLEX, Gurobi, and Xpress was nearly equal, while the performance
on individual instances varied by a factor of up to 1,500.

328 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

8.5.4 Alternative Performance Measures

Although efficiency is the most commonly employed measure of performance, we
have motivated above why it might be slightly problematic in the case of measuring
the performance of parallel MILP solvers. [53] suggests alternative measures based
on separation of the overall running time into two factors: the number of search
tree nodes required to be processed (the size of the search tree) and the throughput
rate (the number of search tree nodes processed per second per core). Variation in
the former can be mainly attributed to the performance of redundant work due to
differences in the search order and a possible lack of global knowledge of the upper
bound. Variation in the latter is mainly due to other sources of overhead, such as idle
time. Whereas the former measure is subject to the effects of algorithmic variabilities
described earlier, the latter is not. If both the size of the tree and the throughput
rate remain constant as the number of cores is increased, then the result will be an
efficiency of one (ideal). Otherwise, either the size of the tree must have increased
(i.e., redundant work is being performed) or the throughput rate has dropped due to
increased overhead. By considering these two kinds of statistics together, along with
any other fine-grained measurements we can obtain (direct measurement of various
sources of overhead, such as idle time from blocking), we obtain a more nuanced
picture of performance(e.g. computational results in [87]).

Overall it can be said that benchmarking parallel MILP solvers is a very difficult
topic. To get meaningful results, one needs well-defined settings, a large number of
suitable instances, the ability to execute a large number of experiments, and a clear
understanding regarding the factors influencing the results.

8.5.5 Summary Measures

Finally, we mention that a few guidelines have been established regarding how to
summarize performance over an entire benchmark set. If the results over several
instances are to be combined, it has been observed that it is better done using the
geometric mean or the shifted geometric mean, as opposed to the arithmetic mean.
Experience has shown that the latter is often dominated by a few instances in a
given test set. When comparing two or more solvers special care has to be given to
the question of how to deal with instances that can be solved by only a subset of
the solvers. Choosing the time limit will have an substantial impact on the overall
result. The same applies to the difficult question of how to deal with wrong results
in a useful way. On the other hand, only selecting those instances for comparison
which can be solved by all solvers is certainly a disadvantage to those solvers that are
superior in this regard. Alternatives to single summary statistics, such as performance
profiles [25], should also be considered.

8 Parallel Solvers for Mixed Integer Linear Optimization 329

8.6 Concluding Remarks

In this chapter, we have provided an overview of the main challenges involved in
parallelizing solution methods for MILP solvers. We have also surveyed the current
state of the art in terms of available software implementations. Although tremendous
effort has been directed towards the development of scalable parallel algorithms, the
tension between scalability and overall effectiveness is ever present and strategies for
parallelization must constantly evolve in order to effectively exploit improvements
in sequential solvers. Replicating the algorithmic schemes of sequential solvers in
parallel continues to pose significant challenges. Nevertheless, substantial progress
has been observed and more is expected as technology continues to evolve. New
frontiers, such as the exploitation of GPUs, will continue to pose interesting research
questions for years to come.

Acknowledgements This work has been supported by the Research Campus Modal (Mathematical
Optimization and Data Analysis Laboratories) funded by the Federal Ministry of Education and
Research (BMBF Grant 05M14ZAM), by the DFG SFB/Transregio 154, and by Lehigh University.
All responsibility for the content is assumed by the authors.

References

[1] Achterberg, T.: Conflict analysis in mixed integer programming. Discrete
Optimization 4(1), 4–20 (2007). Special issue: Mixed Integer Programming

[2] Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve
reductions in mixed integer programming. ZIB-Report 16-44, Zuse Institute
Berlin, (2016)

[3] Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. ORL 34(4), 1–12 (2006)
[4] Achterberg, T., Wunderling, R.: Mixed integer programming: Analyzing 12

years of progress. In: M. Jünger, G. Reinelt (eds.) Facets of Combinatorial
Optimization: Festschrift for Martin Grötschel, pp. 449–481. Springer Berlin
Heidelberg (2013)

[5] Alba, E., Almeida, F., Blesa, M., Cabeza, J., Cotta, C., Díaz, M., Dorta,
I., Gabarró, J., León, C., Luna, J., Moreno, L., Pablos, C., Petit, J., Rojas,
A., Xhafa, F.: Mallba: A library of skeletons for combinatorial optimisation.
In: B. Monien, R. Feldmann (eds.) Euro-Par 2002 Parallel Processing: 8th
International Euro-Par Conference, Paderborn, Germany, August 27–30, 2002
Proceedings, pp. 927–932. Springer Berlin Heidelberg (2002). DOI 10.1007/
3-540-45706-2_132

[6] Barney, B.: Introduction to Parallel Computing. https://computing.
llnl.gov/tutorials/parallel_comp/

[7] Bénichou, M., Cung, V.D., Dowaji, S., Cun, B.L., Mautor, T., Roucairol, C.:
Building a parallel branch and bound library. In: Solving Combinatorial

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/

330 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

Optimization Problems in Parallel, Lecture Notes in Computer Science 1054,
pp. 201–231. Springer, Berlin (1996)

[8] Berthold, T.: Primal heuristics for mixed integer programs. Diploma thesis,
Technische Universität Berlin (2006)

[9] Berthold, T.: Heuristic algorithms in global MINLP solvers. Ph.D. thesis,
Technische Universität Berlin (2014)

[10] Berthold, T., Farmer, J., Heinz, S., Perregaard, M.: Parallelization of the FICO
Xpress-Optimizer. In: G.M. Greuel, T. Koch, P. Paule, A. Sommese (eds.)
Mathematical Software – ICMS 2016, pp. 251–258. Springer International
Publishing (2016). DOI 10.1007/978-3-319-42432-3_31

[11] Berthold, T., Salvagnin, D.: Cloud branching. In: C. Gomes, M. Sellmann
(eds.) Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, Lecture Notes in Computer Science,
vol. 7874, pp. 28–43. Springer Berlin Heidelberg (2013)

[12] Brüngger, A., Marzetta, A., Fukuda, K., Nievergelt, J.: The parallel search
bench ZRAM and its applications. Annals of Operations Research 90(0),
45–63 (1999). DOI 10.1023/A:1018972901171

[13] Bulut, A., Ralphs, T.K.: Disco version 0.95 (2017). DOI 10.5281/zenodo.
237107

[14] Bussieck, M.R., Ferris, M.C., Meeraus, A.: Grid-enabled optimization with
GAMS. IJoC 21(3), 349–362 (2009). DOI 10.1287/ijoc.1090.0340

[15] Carvajal, R., Ahmed, S., Nemhauser, G., Furman, K., Goel, V., Shao, Y.:
Using diversification, communication and parallelism to solve mixed-integer
linear programs. Operations Research Letters 42(2), 186–189 (2014). DOI
10.1016/j.orl.2013.12.012

[16] Chen, Q., Ferris, M.C., Linderoth, J.: Fatcop 2.0: Advanced features in an
opportunistic mixed integer programming solver. Annals of Operations
Research 103(1), 17–32 (2001). DOI 10.1023/A:1012982400848. URL
http://dx.doi.org/10.1023/A:1012982400848

[17] Cornuéjols, G., Karamanov, M., Li, Y.: Early estimates of the size of branch-
and-bound trees. INFORMS J. on Computing 18(1), 86–96 (2006). DOI
10.1287/ijoc.1040.0107

[18] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/
software/integration/optimization/cplex-optimizer/

[19] Crainic, T., Le Cun, B., Roucairol, C.: Parallel branch-and-bound algorithms.
In: E. Talbi (ed.) Parallel Combinatorial Optimization, pp. 1–28. Wiley, New
York (2006)

[20] Danna, E.: Performance variability in mixed integer programming (2008).
Presentation, Workshop on Mixed Integer Programming (MIP 2008),
Columbia University, New York. http://coral.ie.lehigh.edu/
~jeff/mip-2008/talks/danna.pdf

[21] Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Opera-
tions Research 8(1), 101–111 (1960)

[22] DeNegre, S., Ralphs, T.K.: A branch-and-cut algorithm for bilevel inte-
ger programming. In: Proceedings of the Eleventh INFORMS Comput-

http://dx.doi.org/10.1023/A:1012982400848
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://coral.ie.lehigh.edu/~jeff/mip-2008/talks/danna.pdf
http://coral.ie.lehigh.edu/~jeff/mip-2008/talks/danna.pdf

8 Parallel Solvers for Mixed Integer Linear Optimization 331

ing Society Meeting, pp. 65–78 (2009). DOI 10.1007/978-0-387-88843-9\
_4. URL http://coral.ie.lehigh.edu/~ted/files/papers/
BILEVEL08.pdf

[23] Dinan, J., Olivier, S., Sabin, G., Prins, J., Sadayappan, P., Tseng, C.W.: Dy-
namic load balancing of unbalanced computations using message passing. In:
2007 IEEE International Parallel and Distributed Processing Symposium, pp.
1–8 (2007). DOI 10.1109/IPDPS.2007.370581

[24] Djerrah, A., Cun, B.L., Cung, V.D., Roucairol, C.: Bob++: Framework for
solving optimization problems with branch-and-bound methods. In: 2006 15th
IEEE International Conference on High Performance Distributed Computing,
pp. 369–370 (2006). DOI 10.1109/HPDC.2006.1652188

[25] Dolan, E.D., Moré, J.J.: Benchmarking optimization software with per-
formance profiles. Mathematical Programming 91(2), 201–213 (2002).
DOI 10.1007/s101070100263. URL http://dx.doi.org/10.1007/
s101070100263

[26] Eckstein, J.: Control strategies for parallel mixed integer branch and bound.
In: Proceedings of the 1994 conference on Supercomputing, pp. 41–48. IEEE
Computer Society Press (1994)

[27] Eckstein, J.: Distributed versus centralized storage and control for parallel
branch and bound: Mixed integer programming on the CM-5. Comput. Optim.
Appl. 7(2), 199–220 (1997). URL http://dx.doi.org/10.1023/A:
1008699010646

[28] Eckstein, J., Hart, W.E., Phillips, C.A.: Pebbl: an object-oriented framework
for scalable parallel branch and bound. Mathematical Programming Com-
putation 7(4), 429–469 (2015). DOI 10.1007/s12532-015-0087-1. URL
http://dx.doi.org/10.1007/s12532-015-0087-1

[29] Eckstein, J., Phillips, C.A., Hart, W.E.: PEBBL 1.0 user guide (2007)
[30] Eikland, K., Notebaert, P.: lp_solve 5.5.2. http://lpsolve.

sourceforge.net
[31] FICO Xpress-Optimizer. http://www.fico.com/en/Products/

DMTools/xpress-overview/Pages/Xpress-Optimizer.
aspx

[32] Fischetti, M., Lodi, A.: Heuristics in mixed integer programming. In: J.J.
Cochran, L.A. Cox, P. Keskinocak, J.P. Kharoufeh, J.C. Smith (eds.) Wiley
Encyclopedia of Operations Research and Management Science. John Wiley
& Sons, Inc. (2010). Online publication

[33] Fischetti, M., Lodi, A., Monaci, M., Salvagnin, D., Tramontani, A.: Improving
branch-and-cut performance by random sampling. Mathematical Program-
ming Computation 8(1), 113–132 (2016)

[34] Fischetti, M., Monaci, M., Salvagnin, D.: Self-splitting of workload in parallel
computation. In: H. Simonis (ed.) Integration of AI and OR Techniques
in Constraint Programming: 11th International Conference, CPAIOR 2014.
Proceedings, pp. 394–404. Springer International Publishing (2014). DOI
10.1007/978-3-319-07046-9_28

[35] Forrest, J.: CBC MIP solver. http://www.coin-or.org/Cbc

http://coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1023/A:1008699010646
http://dx.doi.org/10.1023/A:1008699010646
http://dx.doi.org/10.1007/s12532-015-0087-1
http://lpsolve.sourceforge.net
http://lpsolve.sourceforge.net
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
http://www.coin-or.org/Cbc

332 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

[36] Fourer, R.: Linear programming: Software survey. OR/MS Today 42(3) (2015)
[37] Galati, M.V., Ralphs, T.K., Wang, J.: Computational experience with generic

decomposition using the DIP framework. In: Proceedings of RAMP
2012 (2012). URL http://coral.ie.lehigh.edu/~ted/files/
papers/RAMP12.pdf

[38] Gamrath, G., Koch, T., Maher, S.J., Rehfeldt, D., Shinano, Y.: SCIP-Jack—a
solver for STP and variants with parallelization extensions. Mathematical
Programming Computation 9(2), 231–296 (2017)

[39] Gamrath, G., Koch, T., Martin, A., Miltenberger, M., Weninger, D.: Progress
in presolving for mixed integer programming. Mathematical Programming
Computation 7(4), 367–398 (2015)

[40] Gendron, B., Crainic, T.G.: Parallel branch-and-branch algorithms: Survey and
synthesis. Operations Research 42(6), 1042–1066 (1994). DOI 10.1287/opre.
42.6.1042. URL http://dx.doi.org/10.1287/opre.42.6.1042

[41] Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society 64(5), 275–278 (1958)

[42] Gottwald, R.L., Maher, S.J., Shinano, Y.: Distributed domain propagation.
ZIB-Report 16-71, Zuse Institute Berlin, (2016)

[43] Goux, J.P., Kulkarni, S., Linderoth, J., Yoder, M.: An enabling framework for
master-worker applications on the computational grid. In: Proceedings the
Ninth International Symposium on High-Performance Distributed Computing,
pp. 43–50 (2000). DOI 10.1109/HPDC.2000.868633

[44] Gurobi Optimizer. http://www.gurobi.com/
[45] Hager, G., Wellein, G.: Introduction to High Performance Computing for

Scientists and Engineers. CRC Press, Inc., Boca Raton, FL, USA (2010)
[46] Henrich, D.: Initialization of parallel branch-and-bound algorithms. In: Second

International Workshop on Parallel Processing for Artificial Intelligence(PPAI-
93) (1993)

[47] Huangfu, Q., Hall, J.: Parallelizing the dual revised simplex method. Tech.
rep., arXiv preprint arXiv:1503.01889 (2015)

[48] Janakiram, V.K., Gehringer, E.F., Agrawal, D.P., Mehrotra, R.: A random-
ized parallel branch-and-bound algorithm. International Journal of Parallel
Programming 17(3), 277–301 (1988). DOI 10.1007/BF02427853

[49] Jeannot, E., Mercier, G., Tessier, F.: Topology and affinity aware hierarchical
and distributed load-balancing in Charm++. In: Proceedings of the First
Workshop on Optimization of Communication in HPC, COM-HPC ’16, pp.
63–72. IEEE Press, Piscataway, NJ, USA (2016). DOI 10.1109/COM-HPC.
2016.12

[50] Jünger, M., Thienel, S.: Introduction to ABACUS—a branch-and-cut system.
Operations Research Letters 22, 83–95 (1998)

[51] Khachiyan, L.G.: A polynomial algorithm in linear programming. Doklady
Akademii Nauk SSSR 244(5), 1093–1096 (1979). English translation in
Soviet Math. Dokl. 20(1):191–194, 1979

[52] Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E.,
Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H.,

http://coral.ie.lehigh.edu/~ted/files/papers/RAMP12.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/RAMP12.pdf
http://dx.doi.org/10.1287/opre.42.6.1042
http://www.gurobi.com/

8 Parallel Solvers for Mixed Integer Linear Optimization 333

Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Prog.
Comp. 3, 103–163 (2011)

[53] Koch, T., Ralphs, T., Shinano, Y.: Could we use a million cores to solve an
integer program? Mathematical Methods of Operations Research 76(1), 67–93
(2012). DOI 10.1007/s00186-012-0390-9. URL http://dx.doi.org/
10.1007/s00186-012-0390-9

[54] Kumar, V., Grama, A.Y., Vempaty, N.R.: Scalable load balancing techniques
for parallel computers. Journal of Parallel and Distributed Computing 22(1),
60–79 (1994)

[55] Ladányi, L.: BCP: Branch-cut-price framework (2000). URL https://
projects.coin-or.org/Bcp

[56] Land, A.H., Doig, A.G.: An automatic method of solving discrete program-
ming problems. Econometrica 28(3), 497–520 (1960)

[57] Laursen, P.S.: Can parallel branch and bound without communication be
effective? SIAM Journal on Optimization 4, 288–296 (1994)

[58] Linderoth, J.: Topics in parallel integer optimization. Ph.D. thesis, School of
Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA (1998)

[59] Linderoth, J.T., Savelsbergh, M.: A computational study of search strategies
for mixed integer programming. INFORMS Journal on Computing 11, 173–
187 (1998)

[60] Lougee-Heimer, R.: The common optimization interface for operations re-
search. IBM Journal of Research and Development 47(1), 57–66 (2003)

[61] Mahajan, A.: Presolving mixed-integer linear programs. In: J.J. Cochran, L.A.
Cox, P. Keskinocak, J.P. Kharoufeh, J.C. Smith (eds.) Wiley Encyclopedia
of Operations Research and Management Science. John Wiley & Sons, Inc.
(2010). DOI 10.1002/9780470400531.eorms0437. Online publication

[62] Makhorin, A.: the GNU linear programming kit. http://www.gnu.org/
software/glpk

[63] Marchand, H., Martin, A., Weismantel, R., Wolsey, L.: Cutting planes in
integer and mixed integer programming. Discrete Applied Mathematics
123(1), 397–446 (2002)

[64] Miller, D., Pekny, J.: Results from a parallel branch and bound algorithm for
the asymmetric traveling salesman problem. Operations Research Letters 8(3),
129–135 (1989). DOI http://dx.doi.org/10.1016/0167-6377(89)90038-2

[65] Munguia, L.M., Oxberry, G., Rajan, D.: PIBS-SBB: A parallel distributed-
memory branch-and-bound algorithm for stochastic mixed-integer programs.
In: 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 730–739 (2016). DOI 10.1109/IPDPSW.2016.159

[66] Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley
(1988)

[67] Nesterov, Y., Nemirovski, A.: Interior-Point Polynomial Algorithms in Convex
Programming. Studies in Applied and Numerical Mathematics. Society for
Industrial and Applied Mathematics (1994)

http://dx.doi.org/10.1007/s00186-012-0390-9
http://dx.doi.org/10.1007/s00186-012-0390-9
https://projects.coin-or.org/Bcp
https://projects.coin-or.org/Bcp
http://www.gnu.org/software/glpk
http://www.gnu.org/software/glpk

334 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

[68] Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: efficient deterministic
multithreading in software. ACM SIGPLAN Notices 44(3), 97–108 (2009).
DOI 10.1145/1508284.1508256

[69] Osman, A., Ammar, H.: Dynamic load balancing strategies for parallel com-
puters. URL http://citeseer.nj.nec.com/osman02dynamic.
html

[70] Ozaltin, O.Y., Hunsaker, B., Schaefer, A.J.: Predicting the solution time of
branch-and-bound algorithms for mixed-integer programs. INFORMS J. on
Computing 23(3), 392–403 (2011). DOI 10.1287/ijoc.1100.0405

[71] Pekny, J.F.: Exact parallel algorithms for some members of the traveling sales-
man problem family. Ph.D. thesis, Carnegie-Mellon University, Pittsburgh,
PA, USA (1989)

[72] Ralphs, T.K.: Parallel branch and cut for capacitated vehicle routing.
Parallel Computing 29, 607–629 (2003). DOI 10.1016/S0167-8191(03)
00045-0. URL http://coral.ie.lehigh.edu/~ted/files/
papers/PVRP.pdf

[73] Ralphs, T.K.: Parallel branch and cut. In: E. Talbi (ed.) Parallel Combinatorial
Optimization, pp. 53–101. Wiley, New York (2006). URL http://coral.
ie.lehigh.edu/~ted/files/papers/PBandC.pdf

[74] Ralphs, T.K., Galati, M.V., Wang, J.: Dip version 0.92 (2017). DOI 10.5281/
zenodo.246087

[75] Ralphs, T.K., Guzelsoy, M., Mahajan, A.: Symphony version 5.6 (2017).
DOI 10.5281/zenodo.237456

[76] Ralphs, T.K., Ladányi, L.: COIN/BCP user’s manual. Tech. rep., COR@L
Laboratory, Lehigh University (2001). URL http://coral.ie.lehigh.
edu/~ted/files/papers/BCP-Manual.pdf

[77] Ralphs, T.K., Ladányi, L., Saltzman, M.J.: Parallel branch, cut, and price
for large-scale discrete optimization. Mathematical Programming 98, 253–
280 (2003). DOI 10.1007/s10107-003-0404-8. URL http://coral.ie.
lehigh.edu/~ted/files/papers/PBCP.pdf

[78] Sanders, P.: A detailed analysis of random polling dynamic load balancing. In:
International Symposium on Parallel Architectures Algorithms and Networks,
pp. 382–389 (1994)

[79] Sanders, P.: Randomized static load balancing for tree-shaped computations.
In: Workshop on Parallel Processing, pp. 58–69 (1994)

[80] Sanders, P.: Tree shaped computations as a model for parallel applications. In:
ALV’98 Workshop on application based load balancing, pp. 123–132 (1998)

[81] SCIP: Solving Constraint Integer Programs. http://scip.zib.de/
[82] Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.:

Solving open MIP instances with ParaSCIP on supercomputers using up to
80,000 cores. In: 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 770–779. IEEE Computer Society, Los Alamitos,
CA, USA (2016)

[83] Shinano, Y., Achterberg, T., Fujie, T.: A dynamic load balancing mechanism
for new ParaLEX. In: Proceedings of ICPADS 2008, pp. 455–462 (2008)

http://citeseer.nj.nec.com/osman02dynamic.html
http://citeseer.nj.nec.com/osman02dynamic.html
http://coral.ie.lehigh.edu/~ted/files/papers/PVRP.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/PVRP.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/PBandC.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/PBandC.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/BCP-Manual.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/BCP-Manual.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/PBCP.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/PBCP.pdf
http://scip.zib.de/

8 Parallel Solvers for Mixed Integer Linear Optimization 335

[84] Shinano, Y., Fujie, T.: ParaLEX: A parallel extension for the CPLEX
mixed integer optimizer. In: F. Cappello, T. Herault, J. Dongarra (eds.)
Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face. Proceedings, pp. 97–106. Springer Berlin Heidelberg (2007). DOI
10.1007/978-3-540-75416-9_19

[85] Shinano, Y., Fujie, T., Kounoike, Y.: Effectiveness of parallelizing the ILOG-
CPLEX mixed integer optimizer in the PUBB2 framework. In: H. Kosch,
L. Böszörményi, H. Hellwagner (eds.) Euro-Par 2003 Parallel Processing:
Proceedings, pp. 451–460. Springer Berlin Heidelberg (2003). DOI 10.1007/
978-3-540-45209-6_67

[86] Shinano, Y., Fujie, T., Kounoike, Y.: Pubb2: A redesigned object-oriented
software tool for implementing parallel and distributed branch-and-bound
algorithms. In: Proceedings of ISTEAD International Conference: Parallel
and Distributed Computing and Systems, pp. 639–647 (2003)

[87] Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: FiberSCIP – a shared
memory parallelization of SCIP. INFORMS Journal on Computing, Published
online 2017, https://doi.org/10.1287/ijoc.2017.0762

[88] Shinano, Y., Higaki, M., Hirabayashi, R.: A generalized utility for parallel
branch and bound algorithms. In: Proceedings of the Seventh IEEE Sym-
posium on Parallel and Distributed Processing, pp. 392–401 (1995). DOI
10.1109/SPDP.1995.530710

[89] Sinha, A., Kalé, L.V.: A load balancing strategy for prioritized execution of
tasks. In: Seventh International Parallel Processing Symposium, pp. 230–237.
Newport Beach, CA. (1993)

[90] SteinLib Testdata Library. http://steinlib.zib.de/steinlib.
php

[91] Tahernejad, S., Ralphs, T., DeNegre, S.: A branch-and-cut algorithm for mixed
integer bilevel linear optimization problems and its implementation. Tech.
rep., COR@L Laboratory Technical Report 16T-015-R3, Lehigh University
(2016)

[92] Trienekens, H.W.J.M., de Bruin, A.: Towards a taxonomy of parallel branch
and bound algorithms. Tech. Rep. EUR-CS-92-01, Department of Computer
Science, Erasmus University (1992)

[93] Tschoke, S., Polzer, T.: Portable parallel branch and bound library
(2008). http://www.cs.uni-paderborn.de/cs/ag-monien/
SOFTWARE/PPBB/ppbblib.html

[94] UG: Ubiquity Generator framework. http://ug.zib.de/
[95] Wang, J., Ralphs, T.K.: Computational experience with hypergraph-based

methods for automatic decomposition in discrete optimization. In: Proceedings
of the Conference on Constraint Programming, Artificial Intelligence, and
Operations Research, pp. 394–402 (2013). DOI 10.1007/978-3-642-38171-3

[96] Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers. Prentice-Hall, Inc,
New Jersey, USA (1999)

http://steinlib.zib.de/steinlib.php
http://steinlib.zib.de/steinlib.php
http://www.cs.uni-paderborn.de/cs/ag-monien/SOFTWARE/PPBB/ppbblib.html
http://www.cs.uni-paderborn.de/cs/ag-monien/SOFTWARE/PPBB/ppbblib.html
http://ug.zib.de/

336 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch

[97] Willebeek-LeMair, M.H., Reeves, A.P.: Strategies for dynamic load balancing
on highly parallel computers. IEEE Transactions on Parallel and Distributed
Systems 4, 979–993 (1993). DOI 10.1109/71.243526

[98] Witzig, J., Berthold, T., Heinz, S.: Experiments with conflict analysis in mixed
integer programming. ZIB-Report 16-63, Zuse Institute Berlin, (2016)

[99] Wolter, K.: Implementation of Cutting Plane Separators for Mixed Integer
Programs. Master’s thesis, Technische Universität Berlin (2006)

[100] Xu, Y.: Scalable algorithms for parallel tree search. Ph.D. thesis, Department
of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA,
USA (2007)

[101] Xu, Y., Ralphs, T.K., Ladányi, L., Saltzman, M.: Alps version 1.5 (2016).
DOI 10.5281/zenodo.245971

[102] Xu, Y., Ralphs, T.K., Ladányi, L., Saltzman, M.: Biceps version 0.94 (2017).
DOI 10.5281/zenodo.245652

[103] Xu, Y., Ralphs, T.K., Ladányi, L., Saltzman, M.: Blis version 0.94 (2017).
DOI 10.5281/zenodo.246079

[104] Xu, Y., Ralphs, T.K., Ladányi, L., Saltzman, M.J.: Alps: A framework for im-
plementing parallel search algorithms. In: The Proceedings of the Ninth
INFORMS Computing Society Conference, pp. 319–334 (2005). DOI
10.1007/0-387-23529-9_21. URL http://coral.ie.lehigh.edu/
~ted/files/papers/ALPS04.pdf

[105] Xu, Y., Ralphs, T.K., Ladányi, L., Saltzman, M.J.: Computational experi-
ence with a software framework for parallel integer programming. The
INFORMS Journal on Computing 21, 383–397 (2009). DOI 10.1287/ijoc.
1090.0347. URL http://coral.ie.lehigh.edu/~ted/files/
papers/CHiPPS-Rev.pdf

[106] Zheng, G., Bhatelé, A., Meneses, E., Kalé, L.V.: Periodic hierarchical load
balancing for large supercomputers. Int. J. High Perform. Comput. Appl.
25(4), 371–385 (2011). DOI 10.1177/1094342010394383

http://coral.ie.lehigh.edu/~ted/files/papers/ALPS04.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/ALPS04.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/CHiPPS-Rev.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/CHiPPS-Rev.pdf

Chapter 9

Parallel Constraint Programming

Jean-Charles Régin and Arnaud Malapert

Abstract Constraint programming (CP) is an efficient technique for solving com-
binatorial optimization problems. In CP a problem is defined over variables that
take values in domains and constraints which restrict the allowed combination of
values. CP uses for each constraint an algorithm that removes values of variables
that are inconsistent with the constraint. These algorithms are called while a domain
is modified. Then, a search algorithm such as a backtracking or branch-and-bound
algorithm is called to find solutions. Several methods have been proposed to combine
CP with parallelism. In this chapter, we present some of them: parallelization of the
propagator, parallel propagation, search splitting, also called work-stealing, prob-
lem decomposition, also called embarrassingly parallel search (EPS), and portfolio
approaches. We detail the two giving the best performances in practice: the work-
stealing approach and embarrassingly parallel search. We give some experiments
supporting this claim on a single multi-core machine, on a data center and on the
cloud.

9.1 Introduction

Constraint Programming (CP) is an efficient technique for solving combinatorial
optimization problems. It is widely used for solving real-world applications such as
rostering, scheduling, car sequencing, routing, etc. CP-based solvers are general and
generic tools for modeling and solving problems [12, 13, 81, 95, 83, 96, 93]. The
development of such solvers is an active topic of the CP community. In this chapter,
we propose to consider different approaches for parallelizing a CP-based solver. Our

Jean-Charles Régin
Université Côte d’Azur, CNRS, I3S, France, e-mail: jcregin@gmail.com

Arnaud Malapert
Université Côte d’Azur, CNRS, I3S, France e-mail: arnaud.malapert@unice.fr

337© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_9

jcregin@gmail.com
arnaud.malapert@unice.fr
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_9&domain=pdf

338 Jean-Charles Régin and Arnaud Malapert

goal is to present methods that have been used to automatically parallelize CP-based
solvers. This means that no particular action of the user is required.

CP is mainly based on the exploitation of the structure of the constraints and
accepts constraints whose structure is different, unlike SAT or MIP which impose
certain rules on allowable models of the problem: having only boolean variables and
three clauses for SAT, or having only linear constraints for MIP.

This specificity of CP allows the use of any kind of algorithm for solving a problem.
We could even say that we want to exploit as much as possible the capability to use
different algorithms. Currently, when a problem is modeled in CP it is possible that
a large variety of algorithms are used at the same time and communicate with each
other. For instance, unlike with other techniques, it is really conceivable to have at
the same time flow algorithms and dynamic programming.

In CP, a problem is defined using variables and constraints. Each variable is
associated with a domain containing its possible values. A constraint expresses
properties that have to be satisfied by a set of variables.

In CP, a problem can also be viewed as a conjunction of sub-problems for which
we have efficient resolution methods. These sub-problems can be very easy like x < y
or complex like the search for a feasible flow. These sub-problems correspond to
constraints. Then, CP uses for each sub-problem the associated resolution method,
often called a propagator. A propagator removes from the domains the values that
cannot belong to any solution of the sub-problem. This mechanism is called filtering.
By repeating this process for each sub-problem, so for each constraint, the domains
of the variables are reduced.

After each modification of a variable domain, it is useful to reconsider all the con-
straints involving that variable, because that modification can lead to new deductions.
In other words, the domain reduction of one variable may lead to deduce that some
other values of some other variables cannot belong to a solution. So, CP calls all the
propagators associated with a constraint involving a modified variable until no more
modification occurs. This mechanism is called propagation.

Then, and in order to reach a solution, the search space will be traversed by assign-
ing successively a value to each variable. The filtering and propagation mechanisms
are, of course, triggered when a modification occurs. Sometimes, an assignment may
lead to the removal of all the values of a domain: we say that a failure occurs, and
the latest choice is reconsidered: there is a backtrack and a new assignment is tried.
This mechanism is called search.

So, CP is based on three principles: filtering, propagation and search. We could
represent it by reformulating Kowalski’s famous definition of Algorithm (Algorithm
= Logic + Control) [51] as:

CP = f iltering+ propagation+ search (9.1)

where filtering and propagation correspond to Logic and search to Control.
An objective can also be added in order to deal with optimization problems. In

this case, a specific variable representing the objective is defined. When a better
solution is found then this variable is updated, and this modification is permanent.

9 Parallel Constraint Programming 339

The relation between the objective variable and the other variables is usually via a
constraint representing the objective function, which is often a sum constraint.

9.1.1 Filtering + Propagation

Since constraint programming is based on filtering algorithms [86], it is quite im-
portant to design efficient and powerful algorithms. Therefore, this topic caught the
attention of many researchers, who discovered a large number of algorithms.

As we mentioned, a filtering algorithm directly depends on the constraint it is
associated with. The advantage of using the structure of a constraint can be shown on
the constraint x≤ y. Let min(D) and max(D) be respectively the minimum and the
maximum value of a domain. It is straightforward to establish that all the values of
x and y in the range [min(D(x)),max(D(y)] are consistent with the constraint. This
means that arc consistency can be efficiently and easily established by removing the
values that are not in the above ranges. Moreover, the use of the structure is often
the only way to avoid memory consumption problems when dealing with non-binary
constraints. In fact, this approach prevents us from explicitly having to represent all
the combinations of values allowed by the constraint.

One of the most famous examples is the ALLDIFFB constraint, which states that
values taken by variables must be different, especially because the filtering algorithm
associated with this constraint is able to establish arc consistency in a very efficient
way by using matching techniques [85].

The propagation mechanism pushes the propagators associated with a variable
when this variable is modified. There are usually two levels: a first level for the
immediate propagation of the modification of a variable and a delayed level that aims
at considering once and for all the modification of the variables involved in each
propagator. The delayed level is called only when there are no more propagator to
call in the first level. The delayed level is interrupted by the first level when the latter
is no longer empty.

Of course, each propagator can be parallelized. However a synchronization be-
tween them is needed, so it is really difficult to obtain consistent speed up with such
an approach. The propagation mechanism can also be parallelized, with the same
issues.

Note that the mechanism that is used when solving a Sudoku puzzle corresponds
to the application of rules, that is to the call of filtering algorithms (i.e. propagators)
until we cannot make any deduction. Thus, this is a propagation mechanism.

9.1.2 Search

Solutions can be found by searching systematically through the possible assignments
of values to variables. A backtracking scheme incrementally extends a partial assign-

340 Jean-Charles Régin and Arnaud Malapert

ment that specifies consistent values for some of the variables toward a complete
solution, by repeatedly choosing a value for another variable. The variables are
assigned sequentially.

Fig. 9.1a: Search tree for the four queens problems without propagation

Fig. 9.1b: Search tree for the four queens problems with weak propagation

Fig. 9.1c: Search tree for the four queens problems with strong propagation

At each node of the search tree, an uninstantiated variable is selected and the node
is extended so that the resulting new branches out of the node represent alternative
choices that may have to be examined in order to find a solution. The branching
strategy, also called the variable-value strategy, determines the next variable to be
instantiated, and the order in which the values from its domain are selected. Each

9 Parallel Constraint Programming 341

time a variable is assigned a value the propagation mechanism is triggered. If a
partial assignment violates any of the constraints, that is if a domain becomes empty,
then a backtrack is performed to the most recently assigned variable that still has
alternative values available in its domain. Clearly, whenever a partial assignment
violates a constraint, backtracking is able to eliminate a subspace from the Cartesian
product of non-empty variable domains.

When a backtrack occurs, the refutation of the previous choice is usually added to
the solver and the propagation mechanism is called. More precisely, if the assignment
x = a fails, then a backtrack is performed and the constraint x �= a is added.

The propagation mechanism allows the reduction of the variable domains and the
pruning of the search tree whereas the branching strategy can improve the detection
of solutions (or failures for unsatisfiable problems).

In the absence of specific knowledge, defining an efficient variable-value strategy
for guiding the search for solutions of a given problem is not an easy task. Thus
some generic variable-value strategies have been defined. They either try to apply
generic principles such as the first fail principle (i.e., we should try to fail as quickly
as possible) [37] or try to detect relations between variables and constraints. In the
first case, we have strategies such as min-domain, which selects the variable having
the minimum domain size, max-constrained, which prefers variables involved in a
lot of constraints, or min-regret which selects the variable that may lead to the largest
increase in the cost if it is not selected. The latter case is mainly formed by the impact-
based strategy [84], the weighted degree strategy [7] and the activity-based strategy
[68]. However, selecting a priori the best variable-value strategy is not an easy task,
because no strategy is better than any other in general and because it is quite difficult
to identify the types of problems for which a strategy is going to perform well. In
addition, there is no robustness among the strategies. Any variable-value strategy can
give good results for one problem and really bad results for some others. It is not
rare to see the ratio of performance for a pair of strategies going to 1 to 20 (and even
more sometimes) according to the problems which are solved.

The difference on the explored search spaces can be seen on the 4-queens problem:
search without propagation (see Figure 9.1a), with weak propagation (see Figure
9.1b), and with strong propagation (see Figure 9.1c).

9.1.2.1 Search Methods in Solvers

In generic solvers based on constraint programming, the search mechanism is an
important part. It is a generic method for controlling the solver that is used to take
decisions and to introduce refutation (i.e., the negation of decisions) for solving a
whole problem. Decisions can correspond to the assignment of values to variables,
but they can also be more complicated. Real-life applications are usually complex
and the search mechanism is used for decomposing the problem, for adding some
constraints and for solving some subparts. In other words it is used for performing
different tasks. For instance, in scheduling applications it is common to deal with
the relation between activities, that is which one starts before the other, instead of

342 Jean-Charles Régin and Arnaud Malapert

deciding at what precise moment an activity starts. In problems in which variables
are continuous it is also common that a decision splits a variable into two equal parts.

The search is usually totally controlled by the user, who specifies functions that
will be called to take a decision and to refute that decision. It is important to note that,
in general, there is no other way to reach a state given by a sequence of decisions
and refutations than replaying from the beginning that sequence.

9.1.3 Parallelism and Constraint Programming

In this chapter, we only discuss parallel constraint solving. Some surveys have
been written about parallel logic programming [21, 33], and about parallel integer
programming [20, 4, 26].

The main approaches to parallel constraint solving can roughly be divided into
the following main categories: parallel propagators and propagation; search-space-
splitting; portfolio algorithms; distributed CSPs; problem decomposition. Most ap-
proaches require communication and synchronization, but the most important issue
is load balancing, which refers to the practice of distributing approximately equal
amounts of work among tasks so that all processors are kept busy all the time.

After an introduction of the main principles of each approach we will detail the
two most important ones: the search space splitting method (i.e., the work-stealing
approach) and problem decomposition (i.e., embarrassingly parallel search).

9.1.3.1 Parallel Propagators and Propagation

The propagators of the constraints, that is the filtering algorithms associated with
constraints, can be parallelized. However, this operation is not simple, and some
synchronization issues of the domains of the variables arise. In addition, one of the
most important drawback is that propagation requires a specific parallelization of each
constraint. So, it is not popular because of the same synchronization problems, only
a few studies can be found on the parallelization of the propagation mechanism [74,
35, 91]. Thus, parallelizing propagation is challenging [44] and the scalability is
limited by Amdahl’s law.

9.1.3.2 Search Space Splitting

Strategies exploring the parallelism provided by the search space are common ap-
proaches [82]: when a branching is done, different branches can be explored in
parallel.

The work-stealing method dynamically splits the search space during the resolu-
tion. It was originally proposed by Burton and Sleep [10] and first implemented in
Lisp parallel machines [34]. When a worker has finished exploring a sub-problem, it

9 Parallel Constraint Programming 343

asks other workers for another sub-problem. If another worker agrees to the demand,
then it dynamically splits its current sub-problem into two disjoint sub-problems and
sends one sub-problem to the starving worker. The starving worker “steals” some
work from the busy one. Note that some form of locking is necessary to avoid the
case that several starving workers steal the same sub-problem. The starving worker
asks other workers in turn until it receives a new sub-problem. Termination of the
work-stealing method must be carefully designed to reduce the overhead when almost
all workers are starving, but almost no work remains. Search space splitting is an
active research area [41, 67, 15]. This is also one of the methods giving the best
results in practice.

Some frameworks sharing the same search tree in memory have been proposed
[79, 97]. In this case, a shared list of open nodes in the search tree is maintained
(nodes that have at least one child that is still unvisited) and starved processors
just pick up the most promising node in the list and expand it. Although this kind
of mechanism intrinsically provides excellent load balancing, it is known not to
scale beyond a certain number of processors; beyond that point, performance starts
to decrease. Indeed, on a shared-memory system, threads must contend with each
other to communicate with the memory and the problem is exacerbated by cache
consistency transactions. Thus, other approaches that do not use shared memory are
preferred.

However, even if the memory is not shared it is not easy to scale up to thousands
of processors, because work-stealing consumes communication, synchronization and
computation time. To address these issues, Xie and Davenport allocated specific
processors to coordination tasks, allowing an increase in the number of processors
(linear scaling up to 256 processors) that can be used on a parallel supercomputer
before performance starts to decline.

Machado et al. proposed a hierarchical works-stealing scheme adapted to a cluster
physical infrastructure, in order to reduce the communication overhead [59]. A
worker first tries to steal from its local node, before considering remote nodes
(starting with the closest remote node). This approach achieved good scalability up
to 512 cores for the n-queens and quadratic assignment problems. For constraint
optimization problems, maintaining the best solution for each worker would require a
large communication and synchronization overhead. However, they observed that the
scalability was lowered because of the lazy dissemination of the so-far best solution,
i.e., because some workers use an obsolete best solution.

General-purpose programming languages designed for multi-threaded parallel
computing such as Charm++ [43] and Cilk++ [54, 9] can ease the implementation of
work-stealing approaches. Otherwise, a work-stealing framework such as Bobpp [25,
52] provides an interface between solvers and parallel computers. In Bobpp, the
work is shared via a global priority queue and the search tree is decomposed and
allocated to the different cores on demand during the search algorithm execution.
Periodically, a worker tests whether starving workers exist. In this case, the worker
stops the search and the path from the root node to the right highest open node is
saved and inserted into the global priority queue. Then, the worker continues the
search with the left open node. Otherwise, if no starving worker exists, the worker

344 Jean-Charles Régin and Arnaud Malapert

continues the search locally using the solver. Starving workers are notified of the
insertions in the global priority queue, and each one picks up a node and starts
the search. Using or-tools as an underlying solver, Menouer and Le Cun observed
good speedups for the Golomb Ruler problem with 13 marks (41.3 with 48 workers)
and the 16-queens problem (8.63 with 12 workers) [64, 65] . Other experiments
investigate the exploration overhead caused by their approach.

Bordeaux et al. proposed another promising approach based on a search-space-
splitting mechanism not based on a work-stealing approach [5]. They use a hashing
function implicitly allocating the leaves to the processors. Each processor applies the
same search strategy in its allocated search space. Well-designed hashing constraints
can address the load-balancing issue. This approach gives a linear speedup from 30
processors for the n-queens problem, but then the speedups stagnate from 30 to 64
processors. However, it only got moderate results on 100 industrial SAT instances.

Sometimes, for complex applications where very good domain-specific strategies
are known, the parallel algorithm should exploit the domain-specific strategy. Moisan
et al. proposed a parallel implementation of the classic backtracking algorithm,
Limited Discrepancy Search (LDS) [38], that is known to be efficient in a centralized
context when a good variable-value selection heuristic is provided [71, 72]. Xie
and Davenport proposed that each processor locally uses LDS to search in the trees
allocated to them (by a tree-splitting, work-stealing algorithm) but the global system
does not replicate the LDS strategy.

9.1.3.3 Portfolio Algorithms

Portfolio algorithms explore the parallelism provided by different viewpoints on the
same problem, for instance by using different algorithms or parameter tuning. This
idea has also been exploited in a non-parallel context [30].

No communication is required and an excellent level of load balancing is achieved
(all workers visit the same search space). Even if this approach causes a high level of
redundancy between processors, it shows really good performance. It was greatly
improved by using randomized restarts [58] where each worker executes its own
restart strategy. More recently, Cire et al. executed the Luby restart strategy, as a
whole, in parallel [17]. They proved that it achieves asymptotic linear speedups and,
in practice, often obtained linear speedups. Besides, some authors proposed to allow
processors to share information learned during the search [36].

One challenge is to find a scalable source of diverse viewpoints that provide orthog-
onal performance and are therefore of complementary interest. We can distinguish
between two aspects of parallel portfolios: if assumptions can be made on the number
of available processors then it is possible to handpick a set of solvers and settings that
complement each other optimally. If it is not possible to make such assumptions, then
we need automated methods to generate a portfolio of any size on demand [5]. So,
portfolio designers became interested in feature selection [28, 29, 31, 45]. Features
characterize problem instances by number of variables, domain sizes, number of
constraints, constraints arities. Many portfolios select the best candidate solvers from

9 Parallel Constraint Programming 345

a pool based on static features or by learning the dynamic behavior of solvers. The
SAT portfolio iSAC [2] and the CP portfolio CP-Hydra [77] use feature selection to
choose the solvers that yield the best performance. Additionally, CP-Hydra exploits
the knowledge coming from the resolution of a training set of instances by each
candidate solver. Then, given an instance, CP-Hydra determines the k most similar
instances of the training set and determines a time limit for each candidate solver
based on the constraint program maximizing the number of solved instances within
a global time limit of 30 minutes. Briefly, CP-Hydra determines a switching policy
between solvers (Choco, Abscon, Mistral).

In general, the main advantage of the portfolio algorithms approach is that many
strategies will be automatically tried at the same time. This is very useful because
defining good search strategies is a difficult task.

The best strategy can also be detected in parallel by using estimation techniques
[78].

9.1.3.4 Distributed CSPs

Distributed CSPs is another idea that relates to parallelism, where the problem
itself is split into pieces to be solved by different processors. The problem typically
becomes more difficult to solve than in the centralized case because no processor
has a complete view of the problem. So, reconciling the partial solutions of each
sub-problem becomes challenging. Problem splitting typically relates to distributed
CSPs, a framework introduced by Yokoo et al. in which the problem is naturally
split among agents, for example for privacy reasons [102]. Other distributed CSP
frameworks have been proposed [39, 14, 23, 53, 98].

9.1.3.5 Problem Decomposition

The Embarrassingly Parallel Search (EPS) method based on search space splitting
with loose communications was first proposed by Régin et al. [87, 88, 90, 61].

When we have k workers, instead of trying to split the problem into k equivalent
subparts, EPS proposes to split the problem into a huge number of sub-problems,
for instance 30k sub-problems, and to give these sub-problems successively and
dynamically to the workers when they need work. Instead of expecting to have
equivalent sub-problems, EPS expects that for each worker the sum of the resolution
time of its sub-problems will be equivalent. Thus, the idea is not to decompose a
priori the initial problem into a set of equivalent sub-problems, but to decompose the
initial problem into a set of sub-problems whose resolution time can be shared in an
equivalent way by a set of workers. Note that the sub-problems that will be solved by
a worker is not known in advance, because this is dynamically determined. All the
sub-problems are put in a queue and a worker takes one when it needs some work.

The decomposition into sub-problems must be carefully done. Sub-problems
that would have been eliminated by the propagation mechanism of the solver in a

346 Jean-Charles Régin and Arnaud Malapert

sequential search must be avoided. Thus, only problems that are consistent with the
propagation are considered.

Fischetti et al. proposed another paradigm called SelfSplit in which each worker
is able to autonomously determine, without any communication between workers,
the job parts it has to process [24]. SelfSplit can be decomposed into three phases:
the same enumeration tree is initially built by all workers (sampling); when enough
open nodes have been generated, the sampling phase ends and each worker applies
a deterministic rule to identify and solve the nodes that belong to it (solving); a
single worker gathers the results from others (merging). SelfSplit exhibited linear
speedups up to 16 processors and good speedups up to 64 processors on five bench-
mark instances. SelfSplit assumes that sampling is not a bottleneck in the overall
computation whereas that can happen in practice [88].

This chapter is organized as follows. First we recall some preliminaries about
parallelism and constraint programming. Then we detail the work-stealing method
and the embarassingly parallel search. Next we give some results comparing the
methods and showing their efficiency on different types of parallel machines. Finally,
we conclude.

9.2 Background

9.2.1 Parallelism

For the sake of clarity, we will use the notion of worker instead of process, processor,
core or thread. A worker is an entity which is able to perform some computations. It
usually corresponds to a thread/core in a current computer.

9.2.1.1 Parallelization Measures and Amdahl’s Law

Two important parallelization measures are speedup and efficiency. Let t(c) be the
wall-clock time of the parallel algorithm where c is the number of cores and let t(1)
be the wall-clock time of the sequential algorithm. The speedup su(c) = t(1)/t(c)
is a measure indicating how the parallel algorithm performs much faster due to
parallelization. The efficiency eff (c) = su(c)/c is a normalized version of speedup,
which is the speedup value divided by the number of cores. The maximum possible
speedup of a single program as a result of parallelization is known as Amdahl’s
law [3]. It states that a small portion of the program which cannot be parallelized will
limit the overall speedup available from parallelization. Let B ∈ [0,1] be the fraction
of the algorithm that is strictly sequential. The time t(c) that an algorithm takes to
finish when being executed on c cores corresponds to t(c) = t(1)

(
B+ 1

c (1−B)
)
.

Therefore, the theoretical speedup su(c) is

9 Parallel Constraint Programming 347

su(c) =
1

B+ 1
c (1−B)

According to Amdahl’s law, the speedup can never exceed the number of cores, i.e.,
a linear speedup. This, in terms of efficiency measure, means that efficiency will
always be less than 1.

Note that the sequential and parallel branch-and-bound (B&B) algorithms do not
always explore the same search space. Therefore, super-linear speedups in parallel
B&B algorithms are not in contradiction with Amdahl’s law because processors can
access high-quality solutions in early iterations, which in turn bring a reduction in
the search tree and problem size.

For the oldest approaches, scalability issues are still to be investigated because of
the small number of processors, typically around 16 and up to 64 processors. One
major issue is that all approaches may (and a few must) resort to communication.
Communication between parallel agents is costly in general: in shared-memory
models such as multi-core, this typically means an access to a shared data structure
for which one cannot avoid some form of locking; the cost of message-passing cross-
CPU is even significantly higher. Communication additionally makes it difficult to
get insights on the solving process since the executions are highly inter dependent
and understanding parallel executions is notoriously complex.

Most parallel B&B algorithms explore leaves of the search tree in a different
order than they would on a single-processor system. This could be a pity in situations
where we know a really good search strategy, which is not entirely exploited by the
parallel algorithm.

For many approaches, experiments with parallel programming involve a great
deal of non-determinism: running the same algorithm twice on the same instance,
with identical number of threads and parameters, may result in different solutions,
and sometimes in different runtimes.

9.2.2 Embarrassingly Parallel Computation

A computation that can be divided into completely independent parts, each of which
can be executed on a separate worker, is called embarrassingly parallel [99].

An embarrassingly parallel computation requires none or very little communica-
tion. This means that workers can execute their task, without any interaction with
other workers.

Some well-known applications are based on embarrassingly parallel computations,
such as the Folding@home project, Low-level image processing, the Mandelbrot set
(a.k.a. fractals) or Monte Carlo calculations [99].

Two steps must be defined: the definition of the tasks and the task assignment to
the workers The first step depends on the application, whereas the second step is
more general. We can either use a static task assignment or a dynamic one.

348 Jean-Charles Régin and Arnaud Malapert

With a static task assignment, each worker does a fixed part of the problem which
is known a priori.

With a dynamic task assignment, a work-pool is maintained and workers consult
it to get more work. The work-pool holds a collection of tasks to be performed.
Workers ask for new tasks as soon as they finish the previously assigned task. In more
complex work-pool problems, workers may even generate new tasks to be added to
the work-pool.

9.2.3 Internal and External Parallelization

Techniques that aim at sharing the search tree, such us work stealing can be imple-
mented in two different ways in generic CP solvers. Either the solver integrates the
capability of traversing the search by several workers at the same time, that is the
parallelization is ad hoc to the solver, or the solver provides some mechanisms like
monitors to control the search from outside of the solver. In the former case, we say
that the parallelization is made intra solver, whereas for the latter case we say that it
is an extra solver parallelization.

Usually the former case is more powerful, but requires some modifications of the
source code and so is less flexible and can only be done by the author of the solver
[76]. The allocation of the part of the search tree is often specific and it is difficult to
control, modify or change it.

Extra solver parallelization adds an algorithm that aims at supervising and con-
trolling the search for solutions. This algorithm also manages the work done by each
worker. It interacts with the sequential solver, which provides it with some parts
of the search tree. The advantage of this approach is that the sequential search is
not really modified. The parallel algorithm is defined on the top of the sequential
mechanism and uses the sequential search in parallel for each worker. Some functions
are usually given in order to be able to define different kinds of task allocations and
to have a better control of the parallelization. Unfortunately, this also has some costs:
there are more communications, the protocol must be general and some functions
must be provided by the solver such us the capability to give a part of the search
tree and to restart the search from a given node of the search tree. Thus, this method
is often dedicated to some methods of parallelization like the work stealing. For
instance, the or-tools solver gives monitors that directly interact with the internal
search.

Some generic frameworks have been developed in order to deal with external par-
allelization. Such frameworks provide the user with some features for controlling the
search that are independent of the solver. The role of the framework is to implement
the interface with the solver.

Bobpp [25] is a parallel framework oriented towards solving Combinatorial Opti-
mization Problems. It provides an interface between solvers of combinatorial prob-
lems and parallel computers. It is developed in C++ and can be used as the runtime
support. Bobpp provides several search algorithms that can be parallelized using

9 Parallel Constraint Programming 349

different parallel programming methods. The goal is to propose a single framework
for most classes of Combinatorial Optimization Problems, so that they may be solved
in as many different parallel architectures as possible. Figure 9.2 shows how Bobpp
interfaces with high-level applications (QAP, TSP, etc.), CP solvers, and different par-
allel architectures using several parallel programming environments such as Pthreads
as well as MPI or more specialized libraries such as Athapascan/Kaapi.

Fig. 9.2: Bobpp framework

9.2.4 Constraint Programming

A constraint network C N = (X ,D ,C) is defined by

• a set of n variables X = {x1,x2, . . . ,xn},
• a set of n finite domains D = {D(x1),D(x2), . . . ,D(xn)} with D(xi) the set of

possible values for the variable xi,
• a set of constraints between the variables C = {C1,C2, . . . ,Ce}. A constraint Ci is

defined on a subset of variables XCi = {xi1 ,xi2 , . . . ,xi j} of X with a subset of the
Cartesian product D(xi1)×D(xi2)× . . .×D(xi j) that states which combinations
of values of variables {xi1 ,xi2 , . . . ,xi j} are compatible.

Each constraint Ci is associated with a filtering algorithm, often called a propagator,
which removes values from the domains of its variables that are not consistent
with it. The propagation mechanism applies the filtering algorithms of C to reduce
the domains of variables in turn until no reduction can be done. One of the most
interesting properties of a filtering algorithm is arc consistency. We say that a filtering
algorithm associated with a constraint establishes arc consistency if it removes all
the values of the variables involved in the constraint that are not consistent with
the constraint. For instance, consider the constraint x+ 3 = y with the domain of
x equal to D(x) = {1,3,4,5} and the domain of y equal to D(y) = {4,5,8}. Then
establishing arc consistency will lead to D(x) = {1,5} and D(y) = {4,8}.

350 Jean-Charles Régin and Arnaud Malapert

For convenience, we will use the word "problem" to designate a constraint network
when it is used to represent the constraint network and not the search for a solution.
We say that a problem P is consistent with the propagation if and only if running the
propagation mechanism on P does not trigger a failure.

Now, we can detail the general methods giving the best results in practice.

9.3 Parallel Search Tree

One of the most popular techniques for combining constraint programming and
parallelism is to define a parallel search tree. In other words, we try to traverse the
search space in parallel. Usually, this result is achieved by splitting the search tree.
This can be done either before the beginning of the search or dynamically during
the search. The former case is named static partitioning while the latter is named
dynamic partitioning

9.3.1 Static Partitioning

When we want to use k workers for solving a problem, we can split the initial search
tree into k disjoint parts and give one sub-problem to each worker. Then, we gather
the different intermediate results in order to produce the results corresponding to
the whole problem. The advantage of this method is its simplicity. Unfortunately, it
suffers from several drawbacks that arise frequently in practice: the times spent to
solve each part are rarely well balanced and the communication of the objective value
is not good when solving an optimization problem (the workers are independent).
The main issue is that the balancing of the workload of the workers is equivalent to
the balancing of the parts. Some works has been done on decomposing search trees
based on their size in such a way as to equilibrate the parts to be solved [49, 18, 46].
However, the tree size is only approximated and is not strictly correlated with the
solving time. In addition, we do not know how to have equivalent subtrees because
the propagation mechanism will modify the tree during the search for solutions. Thus,
as mentioned by Bordeaux et al. [6], it is quite difficult to ensure that each worker
will receive the same amount of work. Hence, this method suffers from some issues
of scalability, since the resolution time is the maximum of the resolution times of all
workers. In order to remedy these issues, dynamic partitioning of the search tree is
preferred.

9 Parallel Constraint Programming 351

9.3.2 Dynamic Partitioning

This strategy, called the work-stealing method, aims to partition the search tree into
a set of subtrees, and schedule them during the execution of the search algorithm
in order to have good load balancing between the different workers. Thus, workers
each solve part of the problems and when a worker is waiting, it "steals" some work
from another worker. This general mechanism can be described as follow: when a
worker W no longer has any work, it asks another worker V whether it has some
work to give it. If the answer is positive, then the worker V splits the search tree it is
currently solving into two subtrees and gives one of them to the waiting worker W . If
the answer is negative then W asks another worker U , until it gets some work to do
or all the workers have been considered. The work-stealing approach partly resolves
the balancing issue of the simple static decomposition method, mainly because the
decomposition is dynamic. Therefore, it does not need to be able to split a search
tree into well-balanced parts at the beginning.

This method has been implemented in a lot of solvers (Comet [67] or ILOG Solver
[80] for instance), and in several ways [42, 103, 16] depending on whether the work
to be done is centralized or not, on the way the search tree is split (into one or several
parts) or on the communication method between workers.

For example, the study presented by Xie and Davenport [100] proposes the
masters/workers approach. Each master has its workers. The search space is divided
between the different masters, then each master puts its attributed subtrees in a work-
pool to dispatch to the workers. When a node of the subtree is detected that is a root
of a large subtree, the workers generate a large number of its subtrees and put them
in a work-pool in order to have better load balancing. Fischetti et al. [24], propose a
work-pool without communication between workers. First, the workers decompose
the initial problem during a limited sampling phase, during which each worker visits
nodes randomly. Thus, they can visit redundant nodes. After the sampling phase,
each worker is attributed its nodes by a deterministic function. During the resolution,
if a node is detected to be difficult by an estimation function, it is put into a global
queue. When a worker finishes the resolution of its node, it receives a hard node from
the global queue and solves it. When the queue is empty and there is no work to do,
the resolution is done. Jaffar et al. [42] propose the use of a master that centralizes
all pieces of information (bounds, solutions and requests). The master evaluates
which worker has the largest amount of work in order to give some work to a waiting
worker.

In the Bobpp framework, the work is shared thanks to a Global Priority Queue
(GPQ). The search tree is decomposed and allocated to the different workers on
demand and during the execution of the search algorithm. A unit of work corresponds
to the solving of a subtree of the search tree. This subtree is the subtree of the search
tree rooted at a given node, called the local root. This subtree is called the local
search tree.

Periodically, a working worker tests whether waiting worker(s) exist(s). If this is
the case, the working worker stops the search in the current node and gives a part
of its local search tree, that is the subtree rooted at a node. In other words, it puts a

352 Jean-Charles Régin and Arnaud Malapert

node of the local search tree in the GPQ and continues to solve the remaining part
of its local search tree. The waiting workers are notified by the insertion of a new
node in the GPQ, and a waiting worker picks up the node and starts the solving of
the subtree rooted at this node. This partitioning strategy has been presented in detail
by Menouer and Le Cun [63].

There are two main questions that have to be answered to efficiently implement
this mechanism: How do we start the search for a solution in a given subtree? And
which subtree is given? In the next sections we will see that there is no perfect answer
to these questions.

9.3.2.1 Local Subtree Solving

Conceptually there is no difficulty to start a search from a given node of the search
tree. However, in practice, this is quite different. The main question is to be able to
set the solver in the correct state corresponding to the root node. A state of a solver is
defined by the domains of the variables and the internal data structure required by the
propagators and some other data that may have been defined by the user. This means
that some actions have been performed to reach a state. Thus, the question is how
can we restore a state or how can we move from one state to another state? This is
the continuation problem in computer science [89]. The restoration of a state of the
search tree depends on the solver. Some solvers, such as or-tools [81] or Choco [12]
or Oscar [93], use a trail mechanism. This means that they save some data when the
search is going down in order to be able to restore them when the search is going up
(i.e., backtracking). Some others, such as Gecode, use different mechanisms to avoid
restoring the memory. The internal mechanism may lead to different strategies to
move from one state to another one. Some solvers directly implement continuations
[96].

There are usually three possibles methods: the state is explicitly saved, the state
is recomputed from the current state or the state is recomputed from scratch, that is
from the root of the search tree.

The possible implementations of these methods depend on whether the solver
uses a generic search procedure or an internal one.

Internal Search Procedure.

Such a procedure means that the solver has total control over what can be done
during the search for a solution. Some interactions with the search are possible
but these are limited and the user cannot define its own data structures in a way
which is not controlled by the solver. Usually internal search corresponds to a search
method in which the only decisions are assignments or refutations. In this case, this
means that nodes can be seen as sub-problems. Thus, computing a state is equivalent
to restarting the search from a given sub-problem of the initial problem. This can
be easily done by simply imposing the specific definition of the sub-problem and

9 Parallel Constraint Programming 353

running the propagation of the solver once. Therefore the cost is not really expensive.
In addition saving a sub-problem is not costly in memory so it is a good alternative
to the explicit saving of the state.

The two other methods can also be used, that is we can easily backtrack to the
lowest common ancestor (lca) of the current and the target node and then replay
the search from the lca to the target node. We can measure whether this is more
efficient than direct instantiation with the sub-problem of the target node or not. The
replay from scratch is usually less interesting than restarting the problem with the
constraints defining the sub-problem of the target node.

Generic Search Procedure.

As we mentioned in the Introduction, if a generic search is used then there is no way
to deduce the state of a node of the search tree, mainly because we cannot know what
are the data structures that are used. We have no information about the data that are
defined by the user. This means that the state needs to be recomputed from the path
going from the root to the target node. In this case, we say that the search is replayed.
Unfortunately this has a cost.

Since we cannot define precisely the structure of a state, the memorization of a
state can only be done by copying the whole memory, which is possible only when
there are only a few variables and constraints. So in general the first method is not
possible. The second method is only possible for the current worker. Therefore when
some work is given to another worker, the third method is usually used. Replaying the
search from the root node has a cost that depends on the length of the path. Therefore,
it is common to study the consequences of some choices. This is the purpose of the
next section.

9.3.2.2 Subtree Definition

When a worker needs some work it asks the other workers to give it a part of their
current work. We discuss here how a worker can answer this request. All jobs, that is
all given subtrees are not equivalent for several reasons: it can be expensive to replay
the corresponding state and the solving times of the subtrees may strongly differ.

The first problem can be solved by the worker which gives some work by defining
a strategy for selecting the given node of its local search tree. The simplest strategy
consists of giving the current node and triggering a local backtrack in order to
continue solving the local search tree (see Figure 9.3). It is also possible to give the
next available open node.

However this method does not take into account the time to replay the state of a
node. Thus, some other methods [62] have been developed. Notably, the node that
is the closest to the root can be transferred. Some experiments have shown that this
decreases the number of decision replays by a factor of 2. Figure 9.4 illustrates this
approach.

354 Jean-Charles Régin and Arnaud Malapert

Fig. 9.3: Simple work separation

Fig. 9.4: Transmission of the subtree rooted at the node closest to the root

The second question about the amount of work that is given is more important for
the global solving time. In fact, dynamic partitioning has a termination issue. When
the whole search for solutions is almost done, there are more and more workers
without work and so there are more and more workers asking for some work. At the
same time, there are fewer and fewer workers that can give a part of their work. In
addition the quantity of work that can be given is less and less important. Thus, we
have more requests, fewer possible responders and less work to give. This is why we
often observe a decrease in performance when the search is almost ended. Thus, we
generally observe that the method scales well for a small number of workers whereas

9 Parallel Constraint Programming 355

it is difficult to maintain a linear gain when the number of workers becomes larger,
even though some methods have been developed to try to remedy this issue [101, 67].
Note that it is possible to have an immediate failure, that is the propagation of the
new node may fail.

In order to speed up the termination of the algorithm, we should avoid giving a
search tree that will be too small to be solved. Unfortunately, it is difficult to estimate
the time that will be required to traverse a search tree, otherwise we would be able
to have nice decompositions. One possible solution is to consider the depth of a
node and to relate it to the solving time of the subtree rooted at that node. Thus, if
a node is at a depth that is greater than a given threshold then the node cannot be
given to another worker. This means that some workers will not be able to give any
node. This idea usually improves the global behavior of the parallelization. However,
it can be further improved by using a dynamic threshold that mainly depends on
the depth. The choice of the value of the threshold is a difficult problem. Choosing
a very small threshold makes the algorithm similar to static partitioning, with a
limited number of subtrees explored by the different workers. Conversely, choosing
a high threshold makes the algorithm similar to dynamic partitioning without a
threshold, which makes load balancing easier between the workers but increases the
exploration of redundant nodes. For instance, Menouer [62] uses a threshold equal
to 2 log(#workers), where #workers is the number of available workers. In addition,
the threshold is increased each time a worker no longer has work. The maximum
value is defined by 7log(#workers).

Even if the depth is a poor estimation of the quantity of work needed to solve a
subtree, a threshold based on depth improves the work-stealing approach in practice.
Figure 9.5 shows the variation in computation time according to the value of the
threshold to solve the Naval Battle problem (Sb_sb_13_13_5_1) [70] using 12 cores
on an Intel machine (12 cores and 48 GB of RAM). As a result, the computation time
decreases with increasing threshold value until an optimal threshold (value of 25) is
reached. After this optimal value the computation time increases again.

��
��� ���

��� ��� ��� ��� �����������	���������

�
��	

�������

�����������������

�������� ������������ ����!��"�!��

�������

������
������
����	

�����	

��	��

�	� �	� ��� �������������������
� �
�

�
�
��
��
�

����������������

���������������

Fig. 9.5: Variation of the computation time for solving the Naval Battle problem on
12 cores according to the threshold value [66]

356 Jean-Charles Régin and Arnaud Malapert

9.4 Problem Decomposition

The idea of Embarrassingly Parallel Search (EPS) is to statically decompose the initial
problem into a huge number of sub-problems that are consistent with propagation
(i.e., running the propagation mechanism on them does not detect any inconsistency).
These sub-problems are added to a queue, which is managed by a master. Then, each
waiting worker takes a sub-problem from the queue and solves it. The process is
repeated until all the sub-problems have been solved. The assignment of the sub-
problems to workers is dynamic and there is no communication between the workers.
EPS is based on the idea that if there is a large number of sub-problems to solve then
the resolution times of the workers will be balanced even if the resolution times of
the sub-problems are not. In other words, load balancing is automatically obtained in
a statistical sense.

We will detail this method in this section.

9.4.1 Principles

This approach relies on the assumption that the resolution time of disjoint sub-
problems is equivalent to the resolution time of the union of these sub-problems.
If this condition is not met, then the parallelization of the search of a solver (not
necessarily a CP Solver) based on any decomposition method, such as simple static
decomposition, work stealing or embarrassingly parallel method may be unfavorably
impacted.

This assumption does not seem too strong because experiments do not show such
a poor behavior with a CP Solver. However, it has been observed in some cases with
a MIP Solver.

We have seen that decomposing the initial problem into the same number of sub-
problems as workers may cause unbalanced resolution times for different workers.
Thus, the idea of EPS is to strongly increase the number of considered sub-problems,
in order to define an embarrassingly parallel computation leading to good perfor-
mance.

Before going into further details of the implementation, a property can be estab-
lished. While solving a problem, we will use the following terminology:

• active time of a worker: the sum of the resolution times of a worker (the decom-
position time is excluded).

• inactive time of a worker: the difference between the elapsed time for solving all
the sub-problems (the decomposition time is excluded) and the active time of
the worker.

The EPS approach is mainly based on the following remark.

Remark 1. The active time of all the workers may be well balanced even if the
resolution time of each sub-problem is not well balanced.

9 Parallel Constraint Programming 357

Since a worker may solve several sub-problems, their resolution times can be different
while their sum remains equal to a given value.

The main challenge of a decomposition is not to define equivalent problems, it is
to avoid having some workers without work whereas some others are running. We
do not need to know in advance the resolution time of each sub-problem. We just
expect that the workers will have equivalent activity time. In order to reach that goal,
EPS decomposes the initial problem into a lot of sub-problems. This increases our
chance to obtain well-balanced activity times for the workers, because we increase
our chance to be able to obtain a combination of resolution times leading to the same
activity time for each worker.

For instance, when the search space tends to be not equilibrated, there are sub-
problems that will take a longer time to be solved. By having a lot of sub-problems we
increase our chance to split these sub-problems into several parts having comparable
resolution time and so to obtain a well-balanced load for the workers at the end. It also
reduces the relative importance of each sub-problem with respect to the resolution of
the whole problem.

Here is an example of the advantage of using a lot of sub-problems. Consider a
problem which requires 140s to be solved sequentially and for which we have four
workers. If we split the problem into four sub-problems then we have the following
resolution times: 20,80,20,20. We will need 80s to solve these sub-problems in paral-
lel. Thus, we gain a factor of 140/80 = 1.75. Now if we split again each sub-problem
into four sub-problems we might obtain the following sub-problems represented
by their resolution time: ((5,5,5,5),(20,10,10,40), (2,5,10,3),(2,2,8,8)). In this
case, we might use the following assignment: worker1 : 5+20+2+8= 35; worker2 :
5+10+2+10= 27; worker3 : 5+10+5+3+2+8= 33 and worker4 : 5+40= 45.
The elapsed time is now 45s and we gain a factor of 140/45 = 3.1. By splitting the
sub-problems again, we will reduce the average resolution time of the sub-problems
and expect to break the 40s sub-problem. Note that decomposing a sub-problem
further does not run away the risk of increasing the elapsed time.

Property 1. Let P be an optimization problem, or a satisfaction problem in which we
search for all solutions. If P is split into sub-problems whose maximum resolution
time is tmax, then

(i) the minimum resolution time of the whole problem is tmax;
(ii) the maximum inactivity time of a worker is less than or equal to tmax.

Proof. Suppose that a worker W has an inactivity time which is greater than tmax.
Consider the moment where W started to wait after its activity time. At this time,
there are no more available sub-problems to solve, otherwise W would be active. All
active workers are then finishing their last task, whose resolution is bounded by tmax.
Thus, the remaining resolution time of each of these other workers is less than or
equal to tmax. Hence a contradiction.

The next section shows that the decomposition should be carefully done.

358 Jean-Charles Régin and Arnaud Malapert

9.4.1.1 Sub-problems Generation: a Top-Down Method

We assume that we want to decompose a problem into q sub-problems.
Unlike the work-stealing approach, EPS does not aim to decompose the search

tree into subtrees instead, it aims to decompose the whole problem into a set of
sub-problems. These two decompositions are really different even if at first glance
they look similar. Notably the relation to the sequential approach is different. There
exists one rule when we try to parallelize a sequential process that should not be
forgotten: We should avoid doing something in parallel that we would not have done
sequentially.

The simplest method that can be considered does not satisfy this remark. It is a
simple decomposition that is done as follows:

1. We consider any ordering of the variables x1,...,xn.
2. We define Ak to be the Cartesian product D(x1)× ...×D(xk).
3. We compute the value k such that |Ak−1|< q≤ |Ak|.

Each assignment of Ak defines a sub-problem and so Ak is the sought decomposition.
This method works well for some problems such as the nqueens or the Golomb

ruler, but it is really bad for some other problems, because a lot of assignments of A
may be trivially not consistent. Consider for instance that x1, x2 and x3 have the three
values {a,b,c} in their domains and that there is an alldiff constraint involving these
three variables. The Cartesian product of the domains of these variables contains 27
tuples. Among them only six ((a,b,c), (a,c,b), (b,a,c),(b,c,a),(c,a,b), (c,b,a)) are
not inconsistent with the alldiff constraint. That is, only 6/27 = 2/9 of the generated
sub-problems are not trivially inconsistent. It is important to note that most of these
inconsistent problems would never be considered by a sequential search, and so we
violate the previous rule. For some problems we have observed more than 99% of the
generated problems were detected inconsistent by running the propagation (Figure
9.6). Thus, another method is needed to avoid this issue.

EPS solves this issue by generating only sub-problems that are consistent with
the propagation, that is such that if we run the propagation mechanism on them
then there is no failure. This means that they are not known to be inconsistent. Such
sub-problems will also be considered by a sequential process, so they no longer
violate the parallel-sequential rule we mentioned.

The generation of q such sub-problems becomes more complex because the
number of sub-problems consistent with the propagation may not be related to
the Cartesian product of some domains. A simple algorithm could be to perform
a Breadth-First Search (BFS) in the search tree, until the desired number of sub-
problems consistent with the propagation is reached. Unfortunately, it is not easy to
perform a BFS efficiently mainly because BFS is not an incremental algorithm like
Depth-First Search (DFS). Therefore, we can use a process similar to an iterative
deepening depth-first search [50]: we repeat a Depth-Bounded Depth First Search
(DBDFS), in other words a DFS that never visits nodes located at a depth greater
than a given value, increasing the bound until we have generated the right number of
sub-problems. However, even if the depth of a search tree can be precisely defined, it

9 Parallel Constraint Programming 359

��

����

����

����

����

�	

��� ��� ���� ���� 	���� ����� 	�����

�

�

�������

Fig. 9.6: Percentage of sub-problems consistent with the propagation (NDI) generated
by the simple decomposition method for all problems. The geometric mean is in
bold, dashed lines represent minimum and maximum values

is not easy to relate this notion to the number of variables already assigned. In fact,
some variables may be assigned by propagation, and this is the case for the latest
values of the domain of the variables. Thus, it is better to replace the depth limit by
another simple limit.
We consider a set Y ⊆ X of variables: we only assign the variables of Y and we
stop the search when they are all assigned. In other words, we never try to assign a
variable that is not in Y . This process is repeated until all assignments of Y consistent
with the propagation have been found. Each branch of a search tree computed by this
search defines an assignment. We will denote by AY the set of assignments computed
with Y ⊆ X . To generate q sub-problems, we repeat the DBDFS by adding variables
to Y if necessary until we have |AY | ≥ q.

For convenience and simplicity, a static ordering of the variables is used.
This method can be improved in two ways:

1. We try to estimate some good set of variables Y in order to avoid repeating
too many DBDFSs: For instance, if for a given Y we produce only q/1000 sub-
problems and if the size of the domains of the next three non-assigned variables
is 10, then we can deduce that we need to add at least three variables to Y .

2. In order to avoid repeating the same DFS for the first variables while repeating
DBDFS, we store in a table constraint the previously computed assignments.
More precisely, if we have computed AY then we use a table constraint containing
all these assignments when we look for AY ′ with Y ⊆ Y ′.

Large Domains

This method can be adapted to large domains. A new step must be introduced in
the algorithm in the latest iteration. If the domain of the latest considered variable,

360 Jean-Charles Régin and Arnaud Malapert

denoted by lx, is large then each of its values cannot be considered individually. In
this case, its domain is split into a fixed number of parts and we use each part as a
value. Then, either the desired number of sub-problems is generated or we have not
been able to reach that number. In the latter case, the domain of lx is split again, for
instance by splitting each part into two new parts (this multiplies by at most 2 the
number of generated sub-problems) and we check whether the generated number
of sub-problems is fine or not. This process is repeated until the right number of
sub-problems is generated or the domain of lx is totally decomposed, that is each
part corresponds to a value. In the latter case, we continue the algorithm by selecting
a new variable.

Parallelization of the Decomposition

When there are a lot of workers, for instance 500, the decomposition into sub-
problems may represent an important part of the resolution if it is done sequentially.
Two reasons can explain this behavior: the ratio between a sequential method and a
parallel one is large because we have 500 workers and not 6, 12 or 40. Since there are
a lot of workers, there is also much more work to do because the initial problem needs
to be decomposed into a larger number of sub-problems. Thus, between a sequential
solution with w workers and another one with W > w workers, the potential loss in
term of computation power is W/w whereas we have at least W/w more work to do.
So, it is can be necessary to parallelize the decomposition into sub-problems.

Experiments give some information:

1. The difference in the total work (i.e., activity time) done by the workers decreases
when the number of sub-problems increases. This is not a linear relation. There
is a huge difference between the activity times of the workers when there are
fewer than five sub-problems per worker. These differences decrease when there
are more than five sub-problems per worker.

2. A simple decomposition into sub-problems that may be inconsistent quickly
causes some issues because inconsistencies are detected very quickly.

3. Splitting an initial problem into a small set of sub-problems is fast compared to
the overall decomposition time and compared to the overall resolution time.

These observations show that a compromise has to be found and an iterative
process decomposing the initial problem in three phases has to be defined. In the
first phase, the whole problem is decomposed into only a few sub-problems because
the relative cost is small even with an unbalanced workload. However, we should be
careful with the first phase (i.e., starting with probably inconsistent sub-problems)
because it can have an impact on the performance. Finally, the most important thing
seems to be to generate five sub-problems because we could restart from these sub-
problems to decompose further and such a decomposition should be reasonably well
balanced.

Thus, a method in three main phases has been designed:

9 Parallel Constraint Programming 361

• An initial phase where one sub-problem per worker is generated as quickly as
possible. This phase does not consume time and may remain sequential.

• A main phase which aims to generate five sub-problems per worker. Each sub-
problem is consistent with the propagation. This phase can be divided into several
steps to reach that goal while balancing the work among the workers.

• A final phase which consists of generating K ≥ 30 sub-problems per worker
from the set of sub-problems computed by the main phase.

9.4.1.2 Sub-problems Generation: a Bottom-Up Method

Another method for finding the requested sub-problems has been proposed by
Malapert et al [61]. It is a bottom-up decomposition that tries to find in a depth-first
manner the depth d at which we can generate the q sub-problems (Figure 9.7).

2P nodes

Search Frontier Dynamic

Static

P nodes Initial depth

Final depth

nodes

D

D

p�

Fig. 9.7: Bottom-up decomposition and estimation

The algorithm aims to identify the topmost search frontier with approximately
p∗ = q open nodes by sampling and estimation of the sought depth. The procedure
can be divided into three phases:

1. a partial tree is built by sampling the top of the real search tree;
2. we estimate the level widths of the real tree;
3. we determine the decomposition depth d with a greedy heuristic.

Since we need to explore the top of the search tree, an upper bound D on the
decomposition depth is fixed. The maximum decomposition depth D must be chosen
according to the number of workers and the expected number of sub-problems per
worker. If D is too small, the decomposition could generate too few sub-problems. If
D is too large, the sampling time increases while the decomposition quality could
decrease.

The sampling phase builds a partial tree with at most p∗ assignments on a level
using a depth-first search. The number of assignments (i.e., open nodes in the search
tree) at each level is counted by a callback. The maximum depth D is reduced

362 Jean-Charles Régin and Arnaud Malapert

each time there are p∗ assignments at a given level. If the sampling ends within its
limits, then the top of the tree has been entirely visited and no estimation is needed.
Otherwise, we need to estimate the widths of the topmost levels of the tree depending
on the partial tree. This estimation is a straightforward adaptation of the one proposed
by Cornuéjols et al. [19] to deal with n-ary search trees. In practice, the main issue
is that the higher the arity is, the lower the precision of the estimation. Therefore,
the heuristics that is used minimizes the absolute deviation between the estimated
number of nodes and the expected number p∗. If several levels have an identical
absolute deviation, then the lowest level with an estimated number of sub-problems
greater than or equal to p∗ is selected.

9.4.1.3 Implementation

EPS involves three tasks: the definition of the sub-problem (TaskDefinition), the task
assignment of sub-problems to the workers (TaskAssignment) and a task that aims
at gathering solutions and/or objective values: TaskResultGathering. In this step, the
answers to all the sub-problems are collected and combined in some way to form the
output (i.e., the answer to the initial problem).

For convenience, we create a master (i.e., a coordinator process) which is in charge
of these operations. So, it creates the sub-problems (TaskDefinition), holds the work-
pool and assigns tasks to workers (TaskAssignment) and fetches the computations
made by the workers (TaskResultGathering).

We detail these operations for the satisfaction and optimization problems.

Satisfaction Problems

• The TaskDefinition operation consists of computing a partition of the initial
problem P into a set S of sub-problems.

• The TaskAssignment operation is implemented by using a FIFO data structure
(i.e., a queue). Each time a sub-problem is defined it is added to the back of the
queue. When a worker needs some work it takes a sub-problem from the queue.

• The TaskResultGathering operation is quite simple: when searching for a solution
it stops the search when one is found; when searching for all solutions, it just
gathers the solutions returned by the workers.

Optimization Problems

In case of optimization problems we have to manage the best value of the objective
function computed so far. Thus, the operations are slightly modified.

9 Parallel Constraint Programming 363

• The TaskDefinition operation consists of computing a partition of the initial
problem P into a set S of sub-problems.

• The TaskAssignment operation is implemented by using a queue. Each time a
sub-problem is defined it is added to the back of the queue. The queue is also
associated with the best objective value computed so far. When a worker needs
some work, the master gives it a sub-problem from the queue. It also gives it the
best objective value computed so far.

• The TaskResultGathering operation manages the optimal value found by the
worker and the associated solution.

Note that there is no other communication, that is when a worker finds a better
solution, the other workers that are running cannot use it for improving their current
resolution. So, if the absence of communication may increase our performance, this
aspect may also lead to a decrease in performance. Fortunately, we do not observe
this bad behavior in practice. We can see here another argument for having a lot
of sub-problems in case of optimization problems: the resolution of a sub-problem
should be short in order to improve the transmission of a better objective value and
to avoid performing work that could have been ignored with a better objective value.

9.4.1.4 Size of the Partition

One important question is: how many sub-problems should be generated?
This is mainly an experimental question. However, in order to have good scala-

bility, this number should be defined in relation to the number of workers that are
involved. More precisely, it is more consistent to have q sub-problems per worker
than a total of q sub-problems.

It appears that this number does not depend on the type of problem that is con-
sidered. Some experiments show that a minimum of 30 sub-problems per worker is
required.

����

��

����

����

����

����

��

����

�� �� �� ��� ��� ��� �	� ���� ����

��
��
��
��
��

�����

Fig. 9.8: Percentage of maximum inactivity time of the workers (geometric mean)

364 Jean-Charles Régin and Arnaud Malapert

Figure 9.8 shows that the percentage of the maximum inactivity time of the
workers decreases when the number of sub-problems per worker is increased. From
20 sub-problems per worker, we observe that on average the maximum inactivity
time represents less than 20% of the resolution time.

9.4.2 Determinism

EPS can be modified to return the same solution as the sequential algorithm, which
can be useful in several scenarios such as debugging or performance evaluation.

We assume that the whole problem is decomposed into the sub-problems P1, . . . ,Pp
in that order and that they are selected by respecting that order.

The first solution found by the sequential algorithm belongs to the satisfiable
sub-problem Pi with the smallest index, that is the leftmost solution. Consider that
the parallel algorithm finds the first solution for the sub-problem Pj such that j > i.
Then, it is not necessary to solve problems Pk such that k > j and one must only wait
for each problem Pk such that k < j and then determine the leftmost solution, the
satisfiable sub-problem with the smallest index.

This can easily be extended for optimization problems by slightly modifying the
cutting constraints. Usually, when a new solution is found a cutting constraint is
stated that only allows strictly better solutions. On the contrary to other constraints,
the cutting constraint is always propagated while backtracking. Here, if a solution is
found when solving the sub-problem Pj, then the cutting constraint only allows strictly
improving solution for sub-problems k ≥ j, but also allows equivalent solutions for
sub-problems k < j.

So, the parallel algorithm returns the same solution as the sequential one if the sub-
problems are visited in the same order. Moreover, the solution returned by the parallel
algorithm does not depend on the number of workers, but only on the decomposition.

9.5 Comparison Between the Work-Stealing Approach and EPS

The EPS method has several advantages compared to the work-stealing approach.
We can cite the most important ones:

• there is almost no communication between workers and the communication
between the master and the workers is really weak.

• the method is independent of the solver. There is no need to know the solver
in detail or to have access to internal data structures. It can be used with a generic
search without any problem.

• there is no termination issue.
• very easy problems can be considered by a worker without causing any issue.

There is no need for any threshold.

9 Parallel Constraint Programming 365

• there is no issue of replaying a part of the search with a generic search, because
the problem is decomposed and not split.

• the method is quite simple.
• the method can be easily adapted to use distributed machines.
• by saving the order in which the sub-problems have been executed, we can

simply replay a resolution in parallel. This costs almost nothing and helps a lot with
the debugging of applications. Determinism is easy to achieve.

The work-stealing approach has several advantages:
• we have fine and dynamic control over the way the search is explored and split.
• the method manages the repartition of the work and if only one worker is

working then its work will be shared, whereas this may not be the case with EPS.
• there is no setup time because there is no a priori decomposition of the problem

9.6 Experiments

These experiments come from Malapert et al. [61]. More information and more
details can be found in [61].

9.6.1 Benchmark Instances

We consider instances of satisfaction and optimization problems. We ignore the
problem of finding a first feasible solution because the parallel speedup can be
completely uncorrelated to the number of workers, making the results hard to analyze.
We consider optimization problems for which the same variability can be observed,
but to a lesser extent because an optimality proof is required.

We perform a huge number of tests and we select the most representative ones.
The first set, called fzn, is a selection of 18 instances selected from more than

5000 instances either from the repository maintained by [47] or directly from the
Minizinc 1.6 distribution written in the FlatZinc language [75]. Each instance is
solved in more than 500 seconds and less than 1 hour with Gecode. The selection is
composed of one unsatisfiable, six enumerations, and 11 optimization instances.

The set xcsp is composed of instances from the categories ACAD and REAL of
XCSP 2.1 [92]. It consists of difficult instances that can be solved within 24 hours by
Choco2 [60]. A first subset, called xcsp1, is composed of five unsatisfiable and
five enumeration instances whereas the second subset, called xcsp2, is composed
of 11 unsatisfiable and three enumeration instances. The set xcsp1 is composed of
instances easier to solve than those of xcsp2.

366 Jean-Charles Régin and Arnaud Malapert

9.6.1.1 Implementation Details

Three CP solvers are used: Choco2 2.1.5 written in Java, Gecode 4.2.1 and
OR-tools rev. 3163 written in C++. Threads [73, 48] and MPI [55, 32] tech-
nologies are used. The typical difference between them is that threads (of the same
process) run in a shared memory space, while MPI is a standardized and portable
message-passing system to exchange information between processes running in
separate memory spaces. Therefore, Thread technology does not handle multiple
nodes of a cluster whereas MPI does.

In C++, Threads are implemented by using pthreads, a POSIX library [73, 48]
used by Unix systems. In Java, the standard Java Thread technology [40] is used.

OR-tools uses a sequential top-down decomposition and C++ Threads. Gecode
uses a parallel top-down decomposition and C++ Threads or MPI technologies. In
fact, Gecode will use C++ pthread on the multi-core computer, OpenMPI on the
data center, and MS-MPI on the cloud platform. Gecode and OR-tools both use
the lex variable selection heuristic because the top-down decomposition requires a
fixed variable ordering. Choco2 uses a bottom-up decomposition and Java Threads.
In every case, the jobs are scheduled in FIFO to mimic as much as possible the se-
quential algorithm so that speedups are relevant. We always take the value selection
heuristic that selects the smallest value, whatever heuristic that may be.

9.6.1.2 Execution Environments

We use three execution environments that are representative of computing platforms
available nowadays: multi-core, data center and cloud computing.

Multi-core is a Dell computer with 256 GB of RAM and four Intel E7-4870 2.40
GHz processors running on Scientific Linux 6.0 (each processor has 10 cores).

Data Center is the “Centre de Calcul Interactif” hosted by the Université Nice
Sophia Antipolis, which provides a cluster composed of 72 nodes (1152 cores)
running on CentOS 6.3, each node with 64 GB of RAM and two Intel E5-2670 2.60
GHz processors (eight cores). The cluster is managed by OAR [11], i.e., a versatile
resource and task manager. As Thread technology is limited to a single node of
a cluster, Choco2 can use up to 16 physical cores whereas Gecode can use any
number of nodes thanks to MPI.

Cloud Computing is a cloud platform managed by the Microsoft company (Mi-
crosoft Azure) that enables applications to be deployed on Windows Server tech-
nology [56]. Each node has 56 GB of RAM and Intel Xeon E5-2690E 2.6 GHz
processors (eight physical cores) We were allowed to simultaneously use three nodes
(24 cores) managed by the Microsoft HPC Cluster 2012 [69].

Some computing infrastructures provide hyper-threading technologies, which
improves parallelization of computations (doing multiple tasks at once). For each
core that is physically present, the operating system addresses two logical cores, and
shares the workload among them when possible. The multi-core computer provides

9 Parallel Constraint Programming 367

hyper-threading, whereas it is deactivated on the cluster, and not available on the
cloud.

The time limit for solving each instance is set to 12 hours whatever be the solver.
Usually, we use two workers per physical core (w = 2c) because hyper-threading is
efficient in our experiments. The target number p of sub-problems depends linearly
on the number w of workers (p = 30×w), which allows statistical balance of the
workload without increasing too much the total overhead [87].

Let t be the solving time (in seconds) of an algorithm and let su be the speedup
of a parallel algorithm. In the tables, a row gives the results obtained by different
algorithms for a given instance. For each row, the best solving times and speedups
are indicated in bold. Dashes indicate that the instance is not solved by the algorithm.
Question marks indicate that the speedup cannot be computed because the sequential
solver does not solve the instance within the time limit. Arithmetic means, abbreviated
AM, are computed for solving times, whereas geometric means, abbreviated GM,
are computed for speedups and efficiency. Missing values, i.e., dashes and question
marks, are ignored when computing statistics.

9.6.2 Multi-core

In this section, we use parallel solvers based on Thread technologies to solve the
instances of xcsp1 or the nqueens problem using a multi-core computer. Let us recall
that there are two workers per physical core because hyper-threading is activated
(w = 2c = 80). We show that EPS frequently gives linear speedups, and outperforms
the work-stealing approach proposed by [94] and [76].

Table 9.1 gives the solving times and speedups of the parallel solvers using 80
workers for the xcsp1 instances. Choco2, Gecode and OR-tools use lex.
They are also compared to a work-stealing approach denoted Gecode-WS [94, 76].
First, implementations of EPS are faster and more efficient than the work-stealing.
EPS often reaches linear speedups in the number of cores whereas it never happens
for the work stealing. Even worse, three instances are not solved within the 12-hour
time limit using work-stealing whereas they are using the sequential solver.

Decomposition is the key to the bad performance on the instances knights-80-5
and lemma-100-9-mod. The decomposition of knights-80-5 takes more than
1,100 seconds and generates too many sub-problems, which precludes any speedup.
The issue is lessened using the sequential decomposition of OR-tools and is
resolved by the parallel top-down decomposition of Gecode. Note also that the se-
quential solving times of OR-tools and Gecode respectively are 20 and 40 times
higher. Similarly, the long decomposition time of Choco2 for lemma-100-9-mod
leads to a low speedup. However, the moderate efficiency of Choco2 and Gecode
for squares-9-9 is not caused by the decomposition.

Gecode and OR-tools are often more efficient and faster than Choco2. The
solvers show different behaviors even when using the same variable selection heuris-
tic because their propagation mechanisms and decompositions differ. Furthermore,

368 Jean-Charles Régin and Arnaud Malapert

Instances Choco2 Gecode OR-tools Gecode-WS

t su t su t su t su

costasArray-14 240.0 38.8 62.3 19.1 50.9 33.4 594.0 2.0
knights-80-5 1133.1 1.5 548.7 37.6 2173.9 18.5 – –
latinSquare-dg-8_all 328.1 39.2 251.7 42.0 166.6 35.2 4488.5 2.4
lemma-100-9-mod 123.4 4.1 6.7 10.1 1.8 22.9 3.0 22.3
ortholatin-5 249.9 36.0 421.7 13.5 167.7 38.1 2044.6 2.8
pigeons-14 899.1 15.5 211.8 39.1 730.3 18.5 – –
quasigroup5-10 123.5 32.5 18.6 26.4 17.0 36.9 22.8 21.5
queenAttacking-6 622.5 28.5 15899.1 ? – – – –
series-14 39.3 32.9 11.3 34.2 16.2 28.7 552.3 0.7
squares-9-9 1213.0 16.1 17.9 18.4 81.4 35.0 427.8 0.8

AM (t) or GM (su) 497.2 17.4 1745.0 24.0 378.4 28.7 1161.9 3.3

Table 9.1: Solving times and speedups (40-cores machine). Gecode and OR-tools
use the lex heuristic

the parallel top-down decomposition of Gecode does not preserve the ordering of
the sub-problems with regard to the sequential algorithm.

9.6.3 Data Center

In this section, we study the influence of the search strategy on the solving times and
speedups, the scalability up to 512 workers, and compare EPS to a work-stealing
approach.

 2

 4

 8

 16

 32

 64

 128

 256

 512

16 32 64 128 256 512

sp
ee

du
p

(s
u)

workers (w)

Fig. 9.9: Scalability up to 512 workers (Gecode, lex, data center)

Table 9.2 compares the Gecode implementations of EPS and work-stealing
(WS) for solving xcsp instances using 16 or 512 workers. EPS is faster and more
efficient than work-stealing. With 512 workers, EPS is on average almost 10 times
faster than work-stealing. It is also more efficient because they both parallelize the

9 Parallel Constraint Programming 369

Instances w = 16 w = 512
EPS WS EPS WS

t su t su t su t su

cc-15-15-2 – – – – – – – –
costasArray-14 64.4 13.6 69.3 12.7 3.6 243.8 17.7 49.8
crossword-m1c1 240.6 13.1 482.1 6.6 18.7 168.6 83.1 38.0
crossword-m12 171.7 14.5 178.5 13.9 13.3 187.3 57.8 43.0
knights-20-9 5190.7 ? 38347.4 ? 153.4 ? 3312.4 ?
knights-25-9 7462.3 ? – – 214.9 ? – –
knights-80-5 1413.7 11.5 8329.2 2.0 49.3 329.8 282.6 57.5
langford-3-17 24351.5 ? 21252.3 ? 713.5 ? 7443.5 ?
langford-4-18 3203.2 ? 25721.2 ? 94.6 ? 5643.1 ?
langford-4-19 26871.2 ? – – 782.5 ? – –
latinSquare-dg-8_all 613.5 13.1 621.2 13.0 23.6 341.7 124.4 64.7
lemma-100-9-mod 3.4 14.7 5.8 8.6 1.0 51.4 2.5 19.7
ortholatin-5 309.5 14.1 335.8 13.0 10.4 422.0 71.7 61.0
pigeons-14 383.3 14.5 6128.9 0.9 15.3 363.1 2320.2 2.4
quasigroup5-10 27.1 13.5 33.7 10.8 1.7 211.7 9.8 37.3
queenAttacking-6 42514.8 ? 37446.1 ? 1283.9 ? 9151.5 ?
ruler-70-12-a3 96.6 15.1 105.5 13.8 3.7 389.3 67.7 21.5
ruler-70-12-a4 178.9 14.4 185.2 13.9 6.0 429.5 34.1 75.5
series-14 22.5 13.4 56.9 5.3 1.1 264.0 8.2 36.9
squares-9-9 22.8 11.1 44.3 5.7 1.3 191.7 7.6 33.7

AM (t) or GM (su) 5954.8 13.5 8196.7 7.4 178.53 246.2 1684.6 33.5
1crossword-m1-words-05-06 2crossword-m1c-words-vg7-7_ext

Table 9.2: Speedups and solving times for xcsp (Gecode, lex, data center, w = 16
or 512)

same sequential solver. On the multi-core machine, Gecode is faster than Choco2
on most instances of xcsp1. Five instances that are not solved within the time
limit by Gecode are not reported in Table 9.2. Six instances are not solved with 16
workers whereas twelve instances are not solved with the sequential solver. By way of
comparison, only five instances are not solved by Choco2 using the lex heuristics
whereas all instances are solved in sequential or parallel when using dom/wdeg or
dom/bwdeg. Once again, this highlights the importance of the search strategy.

Figure 9.9 is a boxplot of the speedups with different numbers of workers for
solving fzn instances. The median of speedups are around w

2 on average and their
dispersion remains low.

9.6.4 Cloud Computing

The systems are deployed on the Microsoft Azure cloud platform. The available
computing infrastructure is organized as follows: cluster nodes compute the appli-

370 Jean-Charles Régin and Arnaud Malapert

Instance EPS WS

t su t su

market_split_s5-02 467.1 24.3 658.6 17.3
market_split_s5-06 452.7 24.4 650.7 17.0
market_split_u5-09 468.1 24.4 609.2 18.7
pop_stress_0600 874.8 10.8 2195.7 4.3
nmseq_400 342.4 8.5 943.2 3.1
pop_stress_0500 433.2 10.1 811.0 5.4
fillomino_18 160.2 13.9 184.6 12.1
steiner-triples_09 108.8 17.2 242.4 7.7
nmseq_300 114.5 6.6 313.1 2.4

golombruler_13 154.0 20.6 210.4 15.1
cc_base_mzn_rnd_test.11 1143.6 7.3 2261.3 3.7
ghoulomb_3-7-20 618.2 6.8 3366.0 1.2
still_life_free_8x8 931.2 9.6 1199.4 7.5
bacp-6 400.8 16.4 831.0 7.9
depot_placement_st70_6 433.9 18.3 1172.5 6.8
open_stacks_01_wbp_20_20_1 302.7 17.6 374.1 14.3
bacp-27 260.2 16.4 548.4 7.8
still_life_still_life_9 189.0 16.9 196.8 16.2
talent_scheduling_alt_film117 22.7 74.0 110.5 15.2

AM (t) or GM (su) 414.7 15.1 888.4 7.7

Table 9.3: Solving times and speedups for fzn (Gecode, lex, cloud, w = 24)

cation; one head node manages the cluster nodes; and proxy nodes load-balance
communication between cluster nodes. Unlike a data center, cluster nodes may be far
from each other and communication time may take longer. Proxy nodes requires two
cores and are managed by the service provider. Here, three nodes of eight cores with
56 GB of RAM memory provide 24 workers (cluster nodes) managed by MPI.

Table 9.3 compares the Gecode implementations of EPS and work stealing
for solving the fzn instances with 24 workers. Briefly, EPS is always faster than
work-stealing, and therefore more efficient because they both parallelize the same
sequential solver. Work–stealing suffers from a higher communication overhead
in the cloud than in a data center. Furthermore, the architecture of the computing
infrastructure and the location of cluster nodes are mostly unknown, which precludes
improvements to work-stealing such as those proposed by Machado et al. [59] or Xie
and Davenport.

9.6.5 Comparison with Portfolios

Portfolio approaches exploit the variability of performance that is observed between
several solvers, or several parameter settings for the same solver. We use four port-
folios. The portfolio CPHydra [77] uses feature selection on top of the solvers

9 Parallel Constraint Programming 371

Mistral, Gecode and Choco2. CPHydra uses case-based reasoning to deter-
mine how to solve an unseen problem instance by exploiting a case base of problem
solving experience. It aims to find a feasible solution within 30 minutes. It does
not handle optimization or all-solution problems and the time limit is hard coded.
The other static and fixed-size portfolios (Choco2, CAG, OR-tools) use different
variable selection heuristics as well as randomization and restarts. Details about
Choco2 and CAG can be found in [60]. The CAG portfolio extends the Choco2
portfolio by also using the solvers AbsCon and Gecode. So, CAG always produces
better results than Choco2. The OR-tools portfolio was the gold medalist of the
Minizinc challenge 2013 and 2014. It can seem unfair to compare parallel solvers and
portfolios using different numbers of workers, but designing scalable portfolios (up
to 512 workers) is a difficult task and almost no implementation is publicly available.

Table 9.4 gives the solving times of EPS and portfolios for the xcsp instances
on the data center. First, CPHydra with 16 workers only solves two among 16 un-
satisfiable instances (cc-15-15-2 and pigeons-14), but in less than 2 seconds
whereas these are difficult for all other approaches. OR-tools is the second-least
efficient approach because it solves fewer problems and often takes longer as con-
firmed by its low Borda score. The parallel Choco2 using dom/wdeg is better
on average than the Choco2 portfolio even if the portfolio solves a few instances
much faster such as scen11-f5 or queensKnights-20-5-mul. In this case,
the diversification provided by the portfolio outperforms the speedups offered by the
parallel B&B algorithm. This is emphasized for the CAG portfolio, which solves all
instances and obtains several of the best solving times. The parallel Gecode with
16 workers is often slower and less robust than the portfolios Choco2 and CAG.
However, increasing the number of workers to 512 clearly makes it the fastest solver,
but still less robust because five instances are not solved within the time limit.

To conclude, the Choco2 and CAG portfolios are more robust thanks to their
inherent diversification, but their solving times vary more from one instance to
another. With 16 workers, implementations of EPS outperform the CPHydra and
OR-tools portfolio, are competitive with the Choco2 portfolio, and are slightly
dominated by the CAG portfolio. In fact, the good scaling of EPS is a key to beat the
portfolios.

9.7 Conclusion

We have presented different methods for combining constraint programming tech-
niques and parallelism, such as parallelization of the propagator or parallel propaga-
tion. We have detailed the most popular methods: work-stealing methods based on
search tree splitting, and EPS, the embarrassingly parallel search method, which is
based on problem decomposition. These methods give good results in practice. They
have been tested on a single multi-core machine, on a data center and on the cloud.
However, it seems that the scaling performance of EPS is better. In addition EPS
is simple and easy to implement. The future will tell us whether it can replace the

372 Jean-Charles Régin and Arnaud Malapert

Instances EPS Portfolio

Choco2 Gecode Choco2 CAG OR-tools

w = 16 w = 16 w = 512 w = 14 w = 23 w = 16

cc-15-15-2 2192.1 – – 1102.6 3.5 1070.0
costasArray-14 649.9 64.4 3.6 6180.8 879.4 1368.8
crossword-m1-words-05-06 204.6 240.6 18.7 512.3 512.3 22678.1
crossword-m1c-words-vg7-7_ext 1611.9 171.7 13.3 721.2 721.2 13157.2
fapp07-0600-7 2295.7 – – 37.9 3.2 –
knights-20-9 491.3 5190.7 153.4 3553.9 0.8 –
knights-25-9 1645.2 7462.3 214.9 9324.8 1.1 –
knights-80-5 1395.6 1413.7 49.3 1451.5 301.6 32602.6
langford-3-17 3062.2 24351.5 713.5 8884.7 8884.7 –
langford-4-18 538.3 3203.2 94.6 2126.0 2126.0 –
langford-4-19 2735.3 26871.2 782.5 12640.2 12640.2 –
latinSquare-dg-8_all 294.8 613.5 23.6 65.1 36.4 4599.8
lemma-100-9-mod 145.3 3.4 1.0 435.3 50.1 38.2
ortholatin-5 362.4 309.5 10.4 4881.2 4371.0 4438.7
pigeons-14 2993.3 383.3 15.3 12336.9 5564.5 12279.6
quasigroup5-10 451.5 27.1 1.7 3545.8 364.3 546.0
queenAttacking-6 706.4 42514.8 1283.9 2644.5 2644.5 –
queensKnights-20-5-mul 5209.5 – – 235.3 1.0 –
ruler-70-12-a3 42.8 96.6 3.7 123.5 123.5 8763.1
ruler-70-12-a4 1331.3 178.9 6.0 1250.2 1250.2 –
scen11-f5 – – – 45.3 8.5 –
series-14 338.9 22.5 1.1 1108.3 302.1 416.2
squares-9-9 115.9 22.8 1.3 1223.7 254.3 138.3
squaresUnsat-19-19 3039.8 – – 4621.1 4621.1 –

Arithmetic mean 1385.0 5954.8 178.5 3293.8 1902.7 7853.6

Table 9.4: Solving times of EPS and portfolio (data center)

work-stealing approach in CP solvers. In any case, the obtained results show that we
can efficiently combine parallelism and CP and often expect results that are almost
linear.

References

[1] 16th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2004), 15-17 November 2004, Boca Raton, FL, USA. IEEE Com-
puter Society (2004). URL http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=9460

[2] Amadini, R., Gabbrielli, M., Mauro, J.: An Empirical Evaluation of Portfolios
Approaches for Solving CSPs. In: C. Gomes, M. Sellmann (eds.) Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems, Lecture Notes in Computer Science, vol. 7874, pp. 316–

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9460
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9460

9 Parallel Constraint Programming 373

324. Springer Berlin Heidelberg (2013). DOI 10.1007/978-3-642-38171-3_21.
URL http://dx.doi.org/10.1007/978-3-642-38171-3_21

[3] Amdahl, G.: Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. In: Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference, AFIPS ’67, pp. 483–485. ACM, New
York, NY, USA (1967)

[4] Bader, D., Hart, W., Phillips, C.: Parallel Algorithm Design for Branch and
Bound. In: H. G (ed.) Tutorials on Emerging Methodologies and Applica-
tions in Operations Research, International Series in Operations Research
& Management Science, vol. 76, pp. 5–1–5–44. Springer, New York (2005).
DOI 10.1007/0-387-22827-6_5

[5] Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with Massively Par-
allel Constraint Solving. In: Boutilier [8], pp. 443–448

[6] Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively paral-
lel constraint solving. In: Boutilier [8], pp. 443–448

[7] Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In: ECAI, vol. 16, p. 146 (2004)

[8] Boutilier, C. (ed.): IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17,
2009 (2009)

[9] Budiu, M., Delling, D., Werneck, R.: DryadOpt: Branch-and-bound on dis-
tributed data-parallel execution engines. In: Parallel and Distributed Process-
ing Symposium (IPDPS), 2011 IEEE International, pp. 1278–1289 (2011)

[10] Burton, F.W., Sleep, M.R.: Executing Functional Programs on a Virtual Tree
of Processors. In: Proceedings of the 1981 Conference on Functional Pro-
gramming Languages and Computer Architecture, FPCA ’81, pp. 187–194.
ACM, New York, NY, USA (1981)

[11] Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin, C., Mounie, G.,
Neyron, P., Richard, O.: A Batch Scheduler with High Level Components. In:
Proceedings of the Fifth IEEE International Symposium on Cluster Computing
and the Grid (CCGrid’05) - Volume 2 - Volume 02, CCGRID ’05, pp. 776–
783. IEEE Computer Society, Washington, DC, USA (2005). URL http:
//dl.acm.org/citation.cfm?id=1169223.1169583

[12] Choco, T.: Choco: an open source java constraint programming library. Ecole
des Mines de Nantes, Research report 1, 10–02 (2010)

[13] Choco solver
http://www.emn.fr/z-info/choco-solver/ (2013).

[14] Chong, Y.L., Hamadi, Y.: Distributed Log-Based Reconciliation. In: Pro-
ceedings of the 2006 Conference on ECAI 2006: 17th European Conference
on Artificial Intelligence August 29 – September 1, 2006, Riva Del Garda,
Italy, pp. 108–112. IOS Press, Amsterdam, The Netherlands (2006). URL
http://dl.acm.org/citation.cfm?id=1567016.1567045

[15] Chu, G., Schulte, C., Stuckey, P.J.: Confidence-Based Work Stealing in Parallel
Constraint Programming. In: Gent [27], pp. 226–241

http://dx.doi.org/10.1007/978-3-642-38171-3_21
http://dl.acm.org/citation.cfm?id=1169223.1169583
http://dl.acm.org/citation.cfm?id=1169223.1169583
http://dl.acm.org/citation.cfm?id=1567016.1567045

374 Jean-Charles Régin and Arnaud Malapert

[16] Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel
constraint programming. In: Gent [27], pp. 226–241

[17] Cire, A.A., Kadioglu, S., Sellmann, M.: Parallel Restarted Search. In: Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
AAAI’14, pp. 842–848. AAAI Press (2014). URL http://dl.acm.org/
citation.cfm?id=2893873.2894004

[18] Cornuéjols, G., Karamanov, M., Li, Y.: Early estimates of the size of branch-
and-bound trees. INFORMS Journal on Computing 18(1), 86–96 (2006)

[19] Cornuéjols, G., Karamanov, M., Li, Y.: Early Estimates of the Size of Branch-
and-Bound Trees. INFORMS Journal on Computing 18, 86–96 (2006)

[20] Crainic, T.G., Le Cun, B., Roucairol, C.: Parallel branch-and-bound algorithms.
Parallel Combinatorial Optimization 1, 1–28 (2006)

[21] De Kergommeaux, J.C., Codognet, P.: Parallel logic programming systems.
ACM Computing Surveys (CSUR) 26(3), 295–336 (1994)

[22] De Nicola, R., Ferrari, G.L., Meredith, G. (eds.): Coordination Models and
Languages, 6th International Conference, COORDINATION 2004, Pisa, Italy,
February 24-27, 2004, Proceedings, Lecture Notes in Computer Science, vol.
2949. Springer (2004)

[23] Ezzahir, R., Bessière, C., Belaissaoui, M., Bouyakhf, E.H.: DisChoco: A
platform for distributed constraint programming. In: DCR’07: Eighth In-
ternational Workshop on Distributed Constraint Reasoning - In conjunc-
tion with IJCAI’07, pp. 16–21. Hyderabad, India (2007). URL https:
//hal-lirmm.ccsd.cnrs.fr/lirmm-00189778

[24] Fischetti, M., Monaci, M., Salvagnin, D.: Self-splitting of workload in parallel
computation. In: H. Simonis (ed.) Integration of AI and OR Techniques in
Constraint Programming: 11th International Conference, CPAIOR 2014, Cork,
Ireland, May 19-23, 2014. Proceedings, pp. 394–404. Springer International
Publishing, Cham (2014). DOI 10.1007/978-3-319-07046-9_28. URL http:
//dx.doi.org/10.1007/978-3-319-07046-9_28

[25] Galea F., Le Cun, B.: Bob++ : a Framework for Exact Combinatorial Opti-
mization Methods on Parallel Machines. In: International Conference High
Performance Computing & Simulation 2007 (HPCS’07) and in conjunction
with The 21st European Conference on Modeling and Simulation (ECMS
2007), pp. 779–785 (2007)

[26] Gendron, B., Crainic, T.G.: Parallel branch-and-bound algorithms: Survey and
synthesis. Operations research 42(6), 1042–1066 (1994)

[27] Gent, I.P. (ed.): Principles and Practice of Constraint Programming - CP 2009,
15th International Conference, CP 2009, Lisbon, Portugal, September 20-24,
2009, Proceedings, Lecture Notes in Computer Science, vol. 5732 (2009)

[28] Gomes, C., Selman, B.: Algorithm Portfolio Design: Theory vs. Practice.
In: Proceedings of the Thirteenth Conference on Uncertainty in Artificial
Intelligence, pp. 190–197 (1997)

[29] Gomes, C., Selman, B.: Search strategies for hybrid search spaces. In: Tools
with Artificial Intelligence, 1999. Proceedings. 11th IEEE International Con-
ference, pp. 359–364. IEEE (1999)

http://dl.acm.org/citation.cfm?id=2893873.2894004
http://dl.acm.org/citation.cfm?id=2893873.2894004
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00189778
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00189778
http://dx.doi.org/10.1007/978-3-319-07046-9_28
http://dx.doi.org/10.1007/978-3-319-07046-9_28

9 Parallel Constraint Programming 375

[30] Gomes, C., Selman, B.: Hybrid Search Strategies For Heterogeneous Search
Spaces. International Journal on Artificial Intelligence Tools 09, 45–57 (2000)

[31] Gomes, C., Selman, B.: Algorithm Portfolios. Artificial Intelligence 126,
43–62 (2001)

[32] Gropp, W., Lusk, E.: The MPI communication library: its design and a portable
implementation. In: Scalable Parallel Libraries Conference, Proceedings of
the, pp. 160–165. IEEE (1993)

[33] Gupta, G., Pontelli, E., Ali, K.A., Carlsson, M., Hermenegildo, M.V.: Parallel
execution of Prolog Programs: a Survey. ACM Transactions on Programming
Languages and Systems (TOPLAS) 23(4), 472–602 (2001)

[34] Halstead, R.: Implementation of MultiLisp: Lisp on a Multiprocessor. In: Pro-
ceedings of the 1984 ACM Symposium on LISP and Functional Programming,
LFP ’84, pp. 9–17. ACM, New York, NY, USA (1984)

[35] Hamadi, Y.: Optimal Distributed Arc-Consistency. Constraints 7, 367–385
(2002)

[36] Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a Parallel SAT Solver. Journal
on Satisfiability, Boolean Modeling and Computation 6(4), 245–262 (2008)

[37] Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satis-
faction problems. Artificial Intelligence 14, 263–313 (1980)

[38] Harvey, W.D., Ginsberg, M.L.: Limited Discrepancy Search. In: Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence,
IJCAI 95, Montréal, Québec, Canada, August 20-25 1995, 2 Volumes, pp.
607–615 (1995)

[39] Hirayama, K., Yokoo, M.: Distributed Partial Constraint Satisfaction Problem.
In: Principles and Practice of Constraint Programming-CP97, pp. 222–236.
Springer (1997)

[40] Hyde, P.: Java thread programming, vol. 1. Sams (1999)
[41] Jaffar, J., Santosa, A.E., Yap, R.H.C., Zhu, K.Q.: Scalable Distributed

Depth-First Search with Greedy Work Stealing. In: 16th IEEE Interna-
tional Conference on Tools with Artificial Intelligence [1], pp. 98–103.
URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=9460

[42] Jaffar, J., Santosa, A.E., Yap, R.H.C., Zhu, K.Q.: Scalable distributed
depth-first search with greedy work stealing. In: ICTAI [1], pp. 98–103.
URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=9460

[43] Kale, L., Krishnan, S.: CHARM++: a portable concurrent object oriented
system based on C++, vol. 28. ACM (1993)

[44] Kasif, S.: On the Parallel Complexity of Discrete Relaxation in Constraint
Satisfaction networks. Artificial Intelligence 45, 275–286 (1990)

[45] Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic Restart
Policies. 18th National Conference on Artificial Intelligence AAAI/IAAI 97,
674–681 (2002)

[46] Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Estimating search tree size. In:
AAAI, pp. 1014–1019 (2006)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9460
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9460
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9460
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9460

376 Jean-Charles Régin and Arnaud Malapert

[47] Kjellerstrand, H.: Håkan Kjellerstrand’s Blog. http://www.hakank.
org/ (2014)

[48] Kleiman, S., Shah, D., Smaalders, B.: Programming with threads. Sun Soft
Press (1996)

[49] Knuth, D.E.: Estimating the efficiency of backtrack programs. Mathematics
of Computation 29, 121–136 (1975)

[50] Korf, R.: Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence 27, 97–109 (1985)

[51] Kowalski, R.: Algorithm = logic + control. Commun. ACM 22(7), 424–436
(1979)

[52] Le Cun, B., Menouer, T., Vander-Swalmen, P.: Bobpp. http://forge.
prism.uvsq.fr/projects/bobpp (2007)

[53] Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: An open-source framework
for distributed constraint optimization. In: Boutilier [8], pp. 160–164

[54] Leiserson, C.E.: The Cilk++ concurrency platform. The Journal of Supercom-
puting 51(3), 244–257 (2010)

[55] Lester, B.: The art of parallel programming. Prentice Hall, Englewood Cliffs,
NJ (1993)

[56] Li, H.: Introducing Windows Azure. Apress, Berkeley, CA, USA (2009)
[57] Lodi, A., Milano, M., Toth, P. (eds.): Integration of AI and OR Techniques

in Constraint Programming for Combinatorial Optimization Problems, 7th
International Conference, CPAIOR 2010, Bologna, Italy, June 14-18, 2010.
Proceedings, Lecture Notes in Computer Science, vol. 6140. Springer (2010)

[58] Luby, M., Sinclair, A., Zuckerman, D.: Optimal Speedup of Las Vegas Algo-
rithms. Inf. Process. Lett. 47, 173–180 (1993)

[59] Machado, R., Pedro, V., Abreu, S.: On the Scalability of Constraint Program-
ming on Hierarchical Multiprocessor Systems. In: ICPP, pp. 530–535. IEEE
(2013)

[60] Malapert, A., Lecoutre, C.: À propos de la bibliothèque de modèles XCSP. In:
10èmes Journées Francophones de Programmation par Contraintes (JFPC’15).
Angers, France (2014)

[61] Malapert, A., Régin, J., Rezgui, M.: Embarrassingly parallel search in con-
straint programming. J. Artif. Intell. Res. (JAIR) 57, 421–464 (2016). DOI
10.1613/jair.5247. URL http://dx.doi.org/10.1613/jair.5247

[62] Menouer, T.: Parallélisations de Méthodes de Programmation Par Contraintes.
Ph.D. thesis, Université de Versailles Saint-Quentin-en-Yvelines (2015)

[63] Menouer, T., Cun, B.L.: Anticipated dynamic load balancing strategy to paral-
lelize constraint programming search. In: 2013 IEEE 27th International Sym-
posium on Parallel and Distributed Processing Workshops and PhD Forum, pp.
1771–1777 (2013). DOI 10.1109/IPDPSW.2013.210. URL http://doi.
ieeecomputersociety.org/10.1109/IPDPSW.2013.210

[64] Menouer, T., Le Cun, B.: Anticipated Dynamic Load Balancing Strategy
to Parallelize Constraint Programming Search. In: 2013 IEEE 27th Interna-
tional Symposium on Parallel and Distributed Processing Workshops and PhD
Forum, pp. 1771–1777 (2013)

http://www.hakank.org/
http://www.hakank.org/
http://forge.prism.uvsq.fr/projects/bobpp
http://forge.prism.uvsq.fr/projects/bobpp
http://dx.doi.org/10.1613/jair.5247
http://doi.ieeecomputersociety.org/10.1109/IPDPSW.2013.210
http://doi.ieeecomputersociety.org/10.1109/IPDPSW.2013.210

9 Parallel Constraint Programming 377

[65] Menouer, T., Le Cun, B.: Adaptive N To P Portfolio for Solving Constraint
Programming Problems on Top of the Parallel Bobpp Framework. In: 2014
IEEE 28th International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum (2014)

[66] Menouer, T., Rezgui, M., Cun, B.L., Régin, J.: Mixing static and dy-
namic partitioning to parallelize a constraint programming solver. Inter-
national Journal of Parallel Programming 44(3), 486–505 (2016). DOI
10.1007/s10766-015-0356-7. URL http://dx.doi.org/10.1007/
s10766-015-0356-7

[67] Michel, L., See, A., Hentenryck, P.V.: Transparent parallelization of constraint
programming. INFORMS Journal on Computing 21(3), 363–382 (2009)

[68] Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint
programming solvers. In: Integration of AI and OR Techniques in Con-
traint Programming for Combinatorial Optimzation Problems, pp. 228–243.
Springer (2012)

[69] Microsoft Corporation: Microsoft HPC Pack 2012 R2 and HPC
Pack 2012. http://technet.microsoft.com/en-us/library/
jj899572.aspx (2015)

[70] Minizinc challenge
http://www.minizinc.org/challenge2012/challenge.html
(2012). Accessed: 14-04-2014

[71] Moisan, T., Gaudreault, J., Quimper, C.G.: Parallel Discrepancy-Based Search.
In: Principles and Practice of Constraint Programming, Lecture Notes in
Computer Science, vol. 8124, pp. 30–46. Springer (2013)

[72] Moisan, T., Quimper, C.G., Gaudreault, J.: Parallel Depth-bounded Discrep-
ancy Search. In: H. Simonis (ed.) Integration of AI and OR Techniques
in Constraint Programming: 11th International Conference, CPAIOR 2014,
Cork, Ireland, May 19-23, 2014. Proceedings, pp. 377–393. Springer Interna-
tional Publishing, Cham (2014). DOI 10.1007/978-3-319-07046-9_27. URL
http://dx.doi.org/10.1007/978-3-319-07046-9_27

[73] Mueller, F., et al.: A Library Implementation of POSIX Threads under UNIX.
In: USENIX Winter, pp. 29–42 (1993)

[74] Nguyen, T., Deville, Y.: A Distributed Arc-Consistency Algorithm. Science
of Computer Programming 30(1–2), 227 – 250 (1998). DOI http://dx.doi.org/
10.1016/S0167-6423(97)00012-9. URL http://www.sciencedirect.
com/science/article/pii/S0167642397000129. Concurrent
Constraint Programming

[75] NICTA Optimisation Research Group: MiniZinc and FlatZinc. http://
www.g12.csse.unimelb.edu.au/minizinc/ (2012)

[76] Nielsen, M.: Parallel Search in Gecode. Master’s thesis, KTH Royal Institute
of Technology (2006)

[77] O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using
case-based reasoning in an algorithm portfolio for constraint solving. In: Irish
Conference on Artificial Intelligence and Cognitive Science, pp. 210–216
(2008)

http://dx.doi.org/10.1007/s10766-015-0356-7
http://dx.doi.org/10.1007/s10766-015-0356-7
http://technet.microsoft.com/en-us/library/jj899572.aspx
http://technet.microsoft.com/en-us/library/jj899572.aspx
http://dx.doi.org/10.1007/978-3-319-07046-9_27
http://www.sciencedirect.com/science/article/pii/S0167642397000129
http://www.sciencedirect.com/science/article/pii/S0167642397000129
http://www.g12.csse.unimelb.edu.au/minizinc/
http://www.g12.csse.unimelb.edu.au/minizinc/

378 Jean-Charles Régin and Arnaud Malapert

[78] Palmieri, A., Régin, J., Schaus, P.: Parallel strategies selection. In: M. Rueher
(ed.) Principles and Practice of Constraint Programming - 22nd International
Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings,
Lecture Notes in Computer Science, vol. 9892, pp. 388–404. Springer (2016).
DOI 10.1007/978-3-319-44953-1_25. URL http://dx.doi.org/10.
1007/978-3-319-44953-1_25

[79] Perron, L.: Search Procedures and Parallelism in Constraint Programming. In:
Principles and Practice of Constraint Programming – CP’99: 5th International
Conference, CP’99, Alexandria, VA, USA, October 11-14, 1999. Proceedings,
pp. 346–360. Springer Berlin Heidelberg, Berlin, Heidelberg (1999). DOI 10.
1007/978-3-540-48085-3_25. URL http://dx.doi.org/10.1007/
978-3-540-48085-3_25

[80] Perron, L.: Search procedures and parallelism in constraint programming. In:
CP, Lecture Notes in Computer Science, vol. 1713, pp. 346–360 (1999)

[81] Perron, L., Nikolaj, V.O., Vincent, F.: Or-Tools. Tech. rep., Google (2012)
[82] Pruul, E., Nemhauser, G., Rushmeier, R.: Branch-and-bound and Parallel

Computation: A historical note. Operations Research Letters 7, 65–69 (1988)
[83] cois Puget, J.F.: ILOG CPLEX CP Optimizer : A C++ implementation of CLP.

http://www.ilog.com/ (1994)
[84] Refalo, P.: Impact-based search strategies for constraint programming. In:

M. Wallace (ed.) CP, Lecture Notes in Computer Science, vol. 3258, pp. 557–
571. Springer (2004)

[85] Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In:
Proceedings AAAI-94, pp. 362–367. Seattle, Washington (1994)

[86] Régin, J.C.: Global Constraints: a Survey. In Milano, M., Van-Hentenryck, P.
eds., Hybrid Optimization. Springer (2011)

[87] Régin, J.C., Rezgui, M., Malapert, A.: Embarrassingly Parallel Search.
In: Principles and Practice of Constraint Programming: 19th International
Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceed-
ings, pp. 596–610. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
DOI 10.1007/978-3-642-40627-0_45. URL http://dx.doi.org/10.
1007/978-3-642-40627-0_45

[88] Régin, J.C., Rezgui, M., Malapert, A.: Improvement of the Embarrassingly
Parallel Search for Data Centers. In: B. O’Sullivan (ed.) Principles and
Practice of Constraint Programming: 20th International Conference, CP 2014,
Lyon, France, September 8-12, 2014. Proceedings, Lecture Notes in Computer
Science, vol. 8656, pp. 622–635. Springer International Publishing, Cham
(2014). DOI 10.1007/978-3-319-10428-7_45. URL http://dx.doi.
org/10.1007/978-3-319-10428-7_45

[89] Reynolds, J.C.: The discoveries of continuations. Lisp and Symbolic Compu-
tation. 6(3/4), 233–248. (1993)

[90] Rezgui, M., Régin, J.C., Malapert, A.: Using Cloud Computing for Solving
Constraint Programming Problems. In: First Workshop on Cloud Computing
and Optimization, a conference workshop of CP 2014. Lyon, France (2014)

http://dx.doi.org/10.1007/978-3-319-44953-1_25
http://dx.doi.org/10.1007/978-3-319-44953-1_25
http://dx.doi.org/10.1007/978-3-540-48085-3_25
http://dx.doi.org/10.1007/978-3-540-48085-3_25
http://www.ilog.com/
http://dx.doi.org/10.1007/978-3-642-40627-0_45
http://dx.doi.org/10.1007/978-3-642-40627-0_45
http://dx.doi.org/10.1007/978-3-319-10428-7_45
http://dx.doi.org/10.1007/978-3-319-10428-7_45

9 Parallel Constraint Programming 379

[91] Rolf, C.C., Kuchcinski, K.: Parallel Consistency in Constraint Programming.
PDPTA ’09: The 2009 International Conference on Parallel and Distributed
Processing Techniques and Applications 2, 638–644 (2009)

[92] Roussel, O., Lecoutre, C.: Xml representation of constraint networks
format. http://www.cril.univ-artois.fr/CPAI08/XCSP2_
1Competition.pdf (2008)

[93] Schaus, P.: Oscar, Operational Research in Scala. URL https://
bitbucket.org/oscarlib/oscar/wiki/Home

[94] Schulte, C.: Parallel Search Made Simple. In Proceedings of TRICS: Tech-
niques foR Implementing Constraint programming Systems, a post-conference
workshop of CP 2000, pp. 41–57. Singapore (2000)

[95] Schulte, C.: Gecode: Generic Constraint Development Environment. http:
//www.gecode.org/ (2006)

[96] Van Hentenryck, P., Michel, L.: The objective-CP optimization system. In:
C. Schulte (ed.) Principles and Practice of Constraint Programming - 19th
International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013.
Proceedings, Lecture Notes in Computer Science, vol. 8124, pp. 8–29. Springer
(2013). DOI 10.1007/978-3-642-40627-0_5. URL http://dx.doi.org/
10.1007/978-3-642-40627-0_5

[97] Vidal, V., Bordeaux, L., Hamadi, Y.: Adaptive K-Parallel Best-First Search: A
Simple but Efficient Algorithm for Multi-Core Domain-Independent Planning.
In: Proceedings of the Third International Symposium on Combinatorial
Search. AAAI Press (2010)

[98] Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: DisChoco 2: A Platform
for Distributed Constraint Reasoning. In: Proceedings of the IJCAI’11 work-
shop on Distributed Constraint Reasoning, DCR’11, pp. 112–121. Barcelona,
Catalonia, Spain (2011)

[99] Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Application
Using Networked Workstations and Parallel Computers, 2nd edition, Prentice-
Hall Inc. (2005)

[100] Xie, F., Davenport, A.: Solving scheduling problems using parallel message-
passing based constraint programming. In: Proceedings of the Workshop on
Constraint Satisfaction Techniques for Planning and Scheduling Problems
COPLAS, pp. 53–58 (2009)

[101] Xie, F., Davenport, A.J.: Massively parallel constraint programming for super-
computers: Challenges and initial results. In: Lodi et al. [57], pp. 334–338

[102] Yokoo, M., Ishida, T., Kuwabara, K.: Distributed Constraint Satisfaction for
DAI Problems. In: Proceedings of the 1990 Distributed AI Workshop. Bandara,
TX (1990)

[103] Zoeteweij, P., Arbab, F.: A component-based parallel constraint solver. In: De
Nicola et al. [22], pp. 307–322

http://www.cril.univ-artois.fr/CPAI08/XCSP2_ 1Competition.pdf
http://www.cril.univ-artois.fr/CPAI08/XCSP2_ 1Competition.pdf
https://bitbucket.org/oscarlib/oscar/wiki/Home
https://bitbucket.org/oscarlib/oscar/wiki/Home
http://www.gecode.org/
http://www.gecode.org/
http://dx.doi.org/10.1007/978-3-642-40627-0_5
http://dx.doi.org/10.1007/978-3-642-40627-0_5

Chapter 10

Parallel Local Search

Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

Abstract Local search metaheuristics are a recognized means of solving hard
combinatorial problems. Over the last couple of decades, significant advances have
been made in terms of the formalization, applicability and performance of these
methods. Key to the performance aspect is the increased availability of parallel
hardware, which turns out to be largely exploitable by this class of procedures. As
real-life cases of combinatorial optimization easily degrade into intractable territory
for exact or approximation algorithms, local search metaheuristics hold undeniable
interest. This situation is further compounded by the good adequacy exhibited by
this class of search procedures for large-scale parallel operation. In this chapter we
explore and discuss ways which lead to parallelization in local search.

10.1 Introduction

Stemming from the pioneering work on the Traveling Salesman Problem (TSP) by
Flood [47] and Croes [39] in the 1950s and then Lin [75] in the 1960s, the interest
in Local Search for solving large combinatorial problems has been growing since
the last decade of the twentieth century and has attracted much attention from both
the Operations Research and the Artificial Intelligence communities. Local search
is used for finding optimal or near-optimal solutions to real-life problems when the

Philippe Codognet
University Pierre & Marie Curie/LIP6, France, e-mail: philippe.codognet@upmc.fr

Danny Munera
University of Antioquia, Medellin, Colombia, e-mail: danny.munera@udea.edu.co

Daniel Diaz
University Paris 1/CRI, France, e-mail: daniel.diaz@univ-paris1.fr

Salvador Abreu
University of Évora/LISP/CRI, Portugal, e-mail: spa@di.uevora.pt

381© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_10

philippe.codognet@upmc.fr
danny.munera@udea.edu.co
daniel.diaz@univ-paris1.fr
spa@di.uevora.pt
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_10&domain=pdf

382 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

search space is too large to be explored by complete search algorithms, such as Mixed
Integer Programming or Constraint Solving [1, 68, 59]. Efficient general-purpose
systems for local search now exist, for instance the Comet system [117], which has
been parallelized for small clusters of PCs [86], or the Localsolver system [52].

Local search algorithms start from a random configuration and try to improve this
configuration, little by little, by small changes in the values of the problem variables.
Hence the term “local search” as, at each time step, only new configurations that
are “neighbors” of the current configuration are explored. The definition of what
constitutes a neighborhood will of course be problem-dependent, but basically it
consists in changing the value of a few variables only (usually one or two). The
advantage of local search methods is that they will usually quickly converge towards
a solution (if the optimality criterion and the notion of neighborhood are defined
correctly) and not exhaustively explore the entire search space. These methods
naturally lead to concurrent execution, by considering the development of several
configurations at the same time. This can be done sequentially by maintaining a
pool of candidate configurations or in parallel if adequate hardware is available.
Due to their simple algorithmic structure, local search methods therefore naturally
exhibit various forms of parallelism, either with or without communication, and
can be implemented on various types of parallel architectures such as multicore
machines, grids or clusters, GPUs, or massively parallel machines. Indeed parallel
implementation of local search methods has been studied since the early 1990s, when
parallel machines started to become widely available; see [119, 118] for a general
survey and concepts, or [99] for basic parallel versions of tabu search, simulated
annealing, GRASP and genetic algorithms. With the increasing availability of PC
clusters in the early 2000s this domain became active again [6, 38], and can further
take advantage of the major advances in hardware in the last decade such as GPUs and
massively parallel machines with thousands or tens of thousands of cores. However,
although many methods have been developed and implemented in the last two
decades, most of these experiments have been done for small-scale multiprocessors,
thus giving performance evaluation for a few tens of cores at best. Only very few
implementations of efficient local search solvers on larger machines have ever been
reported, leaving open the question of the scalability of parallel local search in the
age of exascale machines [101].

In the rest of this chapter we will present a general panorama of parallel local
search methods. After a presentation of the basic mechanisms of local search methods
in Section 10.2 and their sources of parallelism in Section 10.3, we will detail
Single-walk approaches in Section 10.4, then Independent multi-walk methods
in Section 10.5 and finally Cooperative multi-walk approaches in Section 10.6.
Section 10.7 shows the effectiveness of parallel local search on two hard problems: the
Stable Matching Problem and the Quadratic Assignment Problem. A short conclusion
and future work end the chapter.

10 Parallel Local Search 383

10.2 Local Search Metaheuristics

Metaheuristic methods aim at finding the optimal solutions (among all possible
solutions) of a Combinatorial Optimization Problem. They have been proven to be
very efficient on a wide variety of these problems. A metaheuristic is defined as
a set of strategies for exploring the search space of a problem by using different
methods [22]. Metaheuristics are high-level procedures using choices (i.e., heuristics)
to limit the part of the search space that actually gets visited, in order to make
problems tractable.

Metaheuristics generally implement two main search strategies: intensification
and diversification, also called exploitation and exploration [22]. Intensification
guides the solver to deeply explore a promising part of the search space. In con-
trast, diversification aims at extending the search into different parts of the search
space [66]. In order to obtain the best performance, a metaheuristic should provide a
useful balance between intensification and diversification. However, by design, some
heuristics are better at intensifying the search while others are better at diversifying
it. More generally, each metaheuristic has it own strengths and weaknesses. The
current trend is therefore to design hybrid metaheuristics, by combining different
metaheuristics in order to benefit from the individual advantages of each method.

In this chapter we are especially interested in local search metaheuristics; the
interested reader can consult several surveys on metaheuristics [111, 100, 22, 27,
107, 108].

Local search methods (also known as trajectory methods) explore the search
space by iteratively making small changes to a single solution (the current solution).
These methods generally start from a randomly generated solution candidate but
other strategies exist to start from a more promising initial solution constructed
heuristically. At each iteration a local search method performs a single move (i.e.,
a small change to the current solution). The set of all possible moves is called the
neighborhood (see Figure 10.1).

Fig. 10.1: Local search

384 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

At each iteration, a solution from the neighborhood of the current solution is
selected to become the new current solution. Different strategies may be used to
select the next move, for instance selecting the best move from the neighborhood
(hill climbing), or the first move that improves the current solution (which is thus
dependent on the order in which the moves are considered), or selecting a random
improving solution.

When the neighborhood does not contain any improving solution, the metaheuris-
tic has reached a local optimum1. Metaheuristics must provide strategies to avoid
becoming trapped in local optima. They detect this situation in order to move to
some other region of the search space. The simplest strategies to escape from a local
optimum are to restart the search from a new (usually random) point or to perform a
large perturbation of the current solution. These strategies are called multi-start local
search (MLS) or iterative local search (ILS) [76]. There are other approaches and it
is also possible to combine them.

By design, local search methods are very efficient at intensifying the search.
However, they generally include some (simple) strategies to diversify the search
(which are often executed when a local optimum is reached). Here we present the
most important local search methods.

Tabu search methods [57, 55, 56] use a memory structure to avoid getting trapped
in a local optimum. The main idea is to improve the basic hill-climbing algorithm by
maintaining a tabu list of recently visited solutions (in practice, some approximations
are necessary to avoid memory explosion). These solutions become prohibited (hence
the term “tabu”) to discourage the search from returning to previously visited places.
Generally, an aspiration criterion is used to authorize an otherwise tabu move to be
performed, in special circumstances (e.g., if it improves on the best solution found so
far). The time an element remains tabu is called the tabu tenure. This parameter has
a great influence on the efficiency of tabu search procedures and must be well tuned.

Simulated Annealing (SA) [73] is based on the annealing process of a crystalline
solid used in metallurgy to improve the quality of a solid. For this, the cycles of slow
cooling and heating (annealing) are alternated in order to reach a minimal energy
state, which corresponds to a stable structure of the metal. Starting from a high
temperature (at which the material is liquid), the cooling phase solidifies the material
by a gradual decrease of the temperature. The SA method is based on this process to
allow moves that result in solutions of worse quality than the current solution, in order
to escape from local optima. At each iteration, it randomly selects a neighbor among
its neighborhood. If it improves the current solution the move is adopted. Otherwise
(a local optimum is reached) the probability of making this move is controlled by
a parameter called the temperature. This temperature decreases during the search
process; thus at the beginning of the search the probability of accepting worse moves
is high but it gradually decreases, converging to a simple iterative improvement
algorithm. Usually a Boltzmann distribution is used to compute the probability to

1 The term is opposed to global optimum which is the best possible solution to the optimization
problem. The reached local optimum may actually coincide with the global optimum, but the method
is generally unable to detect this occurrence.

10 Parallel Local Search 385

accept a worse quality solution (taking into account both the current temperature and
how much the solution is degraded).

Variable neighborhood search (VNS) methods [88] escape from a local optimum
by changing the neighborhood structure using different move types. The basic idea
in VNS is that a local optimum relative to a given move type can be improved using
a different move type (since the optimum is w.r.t. the neighborhood of the current
solution). The search concludes when the current solution cannot be improved with
all possible move types. It is thus important to correctly define the number and types
of neighborhoods to be considered and the order in which they are tried. When these
parameters are well tuned the VNS metaheuristic provides high-quality solutions.

Adaptive Search (AS) [34] is a generic, domain-independent, constraint-based
local search method. AS takes advantage of the structure of the problem, in terms
of constraints and variables, in order to guide the search more precisely than a
single global cost function. Indeed, a cost is also associated with each constraint
that models the problem, measuring the degree of violation of the constraint in
the current solution candidate. This cost is then spread over all variables involved
in the constraint (e.g., using a weight linked to the coefficient of the variable in a
linear constraint). The worst variable is selected for update (i.e., to move), with the
neighborhood being the set of all possible values for this “culprit” variable. Finally,
AS maintains a tabu list of recently modified variables which led to local optima, but
also implements a reset mechanism as used in ILS methods.

Extremal Optimization (EO) [24, 25, 23] is a metaheuristic inspired by self-
organizing processes often found in nature. It is based on the concept of Self-
Organized Criticality (SOC) initially proposed by Bak [18, 16], and in particular on
the Bak-Sneppen model of SOC [17]. In this model of biological evolution, species
have a fitness ∈ [0,1] (0 representing the worst degree of adaptation). At each itera-
tion, the species with the worst fitness value is updated, i.e., its fitness is replaced
by a new random value. This change also affects all other species connected to
this “culprit” element and their fitness value also gets updated. This results in an
extremal process that progressively eliminates the least fit species (or forces them to
mutate). Repeating this process eventually leads to a state where all species have a
good fitness value, i.e., a SOC. The EO metaheuristic follows this line: it inspects
the current solution, selects the worst variable (the one with the lowest fitness) and
replaces its value by a random value (this corresponds to a move). However, always
selecting the worst variable can lead to a deterministic behavior and the algorithm
may stay blocked in a local minimum. To avoid this, the authors propose an ex-
tended algorithm; which first ranks the variables in increasing order of fitness (the
worst variable has thus a rank k = 1) and then resorts to a probability function over
the ranks k in order to introduce uncertainty in the search process: P(τ;k) = k−τ .
This power-law probability distribution depends on a single parameter τ , which is
problem-dependent. Depending on the value of τ , EO provides a wide variety of
search strategies from pure random walk (τ = 0) to deterministic (greedy) search
(τ → ∞). With an adequate value of τ , EO cannot be trapped in local minima since
any variable is likely to mutate (even if the worst ones are privileged). This parameter
can be tuned by the user.

386 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

While simple, local search procedures have been successfully used to find high-
quality solutions for many Combinatorial Optimization Problems. They are also
often a part of a hybrid metaheuristic to intensify the search around a promising
solution found by another metaheuristic. However, there are some hard (real-life)
problems for which the limit to consider the execution time as “reasonable” is rapidly
reached, even using metaheuristics. It is unquestionable that the more computational
resources are available, the more complex problems may be solved. It is therefore
natural to consider exploiting the various forms of augmented computational power
that are currently available, as conveniently as feasible.

10.3 Sources of Parallelism

Apart from domain-decomposition methods and population-based methods (such
as genetic algorithms), [119] distinguishes between single-walk and multiple-walk
methods for local search. Single-walk methods consist in using parallelism inside
a single search process, e.g., for parallelizing the exploration of the neighborhood
(see for instance [77] for such a method making use of GPUs for the parallel phase).
Multiple-walk methods (parallel execution of multi-start methods) consist in develop-
ing concurrent explorations of the search space, either independently or cooperatively
with some communication between concurrent processes. Sophisticated cooperative
strategies for multiple-walk methods can be devised by using solution pools [37], but
require shared memory or emulation of central memory in distributed clusters, thus
impacting on performance.

10.3.1 Single-Walk and Multiple-Walk Methods

Figures 10.2 and 10.3 below show in a graphical way the different parallel trajectories
of single-walk and multiple-walk methods.

Fig. 10.2: Single-walk parallelism

10 Parallel Local Search 387

Fig. 10.3: Multiple-walk parallelism

Single-walk parallelism is limited to the neighborhood of the current solution and
parallel processes need to be synchronized in order to choose the most promising
neighbor and commit to the next solution. Multiple-walk parallelism explores a
wider portion of the search space, limited only by the number of available concurrent
processes. A key point is that independent multiple-walk methods are the easiest
to implement on parallel computers, as they require no communication between
processes; hence they are equivalent to parallel multi-start methods. On the other hand,
one has to take care to ensure a good diversification of the search processes, which can
only be achieved through communication between concurrent processes. Therefore,
communication of information between concurrent processes could, if implemented
without much overhead, improve the overall search. This type of parallelism is
called cooperative multiple-walk parallelism. We will detail in the following sections
the different methods that have been proposed in the literature for the single-walk
approach, the independent multiple-walk approach and the cooperative multiple-walk
approach.

10.3.2 Parallel Speedups and Runtime Distributions

Since [119, 118], it has been believed that combinatorial problems can enjoy a linear
speedup when implemented in parallel by independent multiple-walks if solutions
are uniformly distributed in the search space and if the method is able to diversify
correctly. Thus, in theory, if such a method is implemented on a machine with n
processors, the initial problem instance will be solved with a speedup factor of
n. We will see that this is in fact not so easy to achieve in practice, especially
when considering implementation on massively parallel multiprocessors, e.g., with
thousands of processors. Moreover, when considering the latest cooperative methods
and hybridization between different types of solvers, better performance can be
achieved amounting to super-linear speedups.

But let us first see how to better analyze the execution times of local search
algorithms, both sequentially and in parallel, in order to better understand the behavior

388 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

and potential parallelization of such algorithms on different problem instances. Indeed
the parallel speedup depends not only on the algorithm at work, but also on the
structure of the problem instance which it is attempting to solve. Most papers on the
performance of stochastic local search algorithms focus on the average execution
time in order to measure the performance of the method, both for sequential and
parallel executions. However, a more detailed analysis could be done by looking
at the whole series of execution times. Indeed, because of the many stochastic
choices within any local search method, the runtime on the same problem instance
might vary significantly from one execution to another. Thus by considering the
execution time of a local search method on a given problem instance as a random
variable and by observing the execution time over many runs, the runtime behavior
can be characterized by its statistical distribution. This study of so-called runtime
distributions has been initially proposed in [65] for stochastic local search algorithms
for the SAT problem. In this context, the property of having a linear parallel speedup
in solving a given problem instance by a stochastic algorithm has been proven
only under the assumption that the probability of finding a solution in a given
time t follows an exponential law, that is, if the runtime behavior follows a pure
exponential distribution (non-shifted). This behavior has been conjectured for local
search solvers on the SAT problem in [64, 65], and shown experimentally for the
GRASP metaheuristics on some combinatorial problems [4], but it is not always the
case for other types of problems. Although it is very difficult to formally prove that
the execution of some stochastic algorithm on a given problem instance follows an
exponential distribution, it is easy to verify this experimentally. Indeed, as introduced
in [5, 105], this can be done by constructing so-called time-to-target plots, in which
the probability of having found a solution as a function of the elapsed time is
measured.

However, when considering not only exponential distributions, one has to look
directly at the runtime distributions and analyze them with statistical tools. Such
an analysis of the scalability of independent multiple-walk local search methods
has been proposed in [116] and developed in [115], where a general framework is
presented in order to estimate the parallel performance of any Las Vegas algorithm
[15] by analyzing the runtime behavior of the sequential version of the algorithm.
Indeed, by approximating the runtime distribution of the sequential process with
statistical methods, the runtime behavior of a multiple-walk parallel process can
be predicted by a model based on order statistics [41]. Experiments show that the
estimation is quite accurate and predicts performance close to the empirical data,
with a deviation limited to about 20%. It also shows that, depending on the problem,
runtime distributions can be approximated by two types of distributions, exponential
(shifted and non-shifted) and lognormal, being much more complex than a pure
(non-shifted) exponential distribution, which would give rise to a linear parallel
speedup. In the cases of a shifted exponential distribution (the most common one)
or a lognormal distribution, the speedup is no longer linear, but admits a finite limit
when the number of processors goes toward infinity, and is thus bounded.

10 Parallel Local Search 389

10.4 Single-Walk Approaches

Single-walk methods use parallelism within a single search process, e.g., by paral-
lelizing the most computationally expensive functions of the algorithm. Runtime
profiling of local search procedures reveals that one of the most resource-consuming
parts is the evaluation of the neighborhood. This situation makes this function an
attractive target to be parallelized with single-walk search procedures. The basic
idea is to divide the neighborhood into different parts, which are then independently
evaluated, in parallel. This strategy is called neighborhood decomposition.

In [109], Taillard presents one of the first implementations of the single-walk
strategy for local search methods. He proposes a neighborhood decomposition strat-
egy applied to the tabu search method for solving large instances of the Quadratic
Assignment Problem. The implemented prototype ran on a network of Transputers.

In 1994, Garcia et al. [50] presented a new parallel version of the tabu search
metaheuristic, applied to solving the vehicle-routing problem with time windows
constraints. They propose a master-slave architecture where the master creates a
partition of the neighborhood and assigns the portions to the available processors
(slaves). Each processor then explores its own neighborhood, identifies its best move,
and sends this move back to the master processor.

Note that parallel activities involved in the neighborhood decomposition task
need to be performed at each iteration of the algorithm. These activities have to
be spawned and joined several times during the main algorithm execution, thereby
inducing a significant overhead due to the management of fine-grained tasks. Dealing
with this overhead is considered a major challenge in single-walk parallelization.
For instance, in the aforementioned work by Taillard, the authors report a maximal
parallel efficiency2 of 85% using only 10 processors.

Recent years have seen a proliferation of GPUs; which, even though they are
designed to perform mostly intensive graphical operations, have significant general
compute ability and relatively low cost, so as to attract research on several different
applications. Such is the case for single-walk parallelization in local search methods,
where GPUs have emerged as a suitable architecture to implement the neighborhood
decomposition. When the operations happen to be within their reach, GPUs can
effectively operate on data much faster than traditional CPU architectures: doing
neighborhood decomposition in parallel on GPUs has the potential to noticeably
reduce the overhead of single-walk approaches. Luong et al. in [77, 78] present
a parallel local search method that uses the neighborhood decomposition strategy
performed by a GPU unit. They propose guidelines to efficiently implement the
parallel evaluation of the neighborhood considering the idiosyncrasies of a GPU
architecture (e.g., memory management and access, thread control, mapping of
neighborhood solutions to GPU threads, etc.). This approach proved to be effective
in solving different optimization problems, as witness the authors’ report on parallel
speedups, which range from 50 when using an entry-level GPU, up to 240 with a

2 Parallel efficiency: the division of the theoretical CPU time with an ideal speedup by the CPU
time effectively observed.

390 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

higher-performance GPU board. This approach was tailored for embedding within
the ParadisEO framework, as reported in [85].

Arbelaez and Codognet [11] present a parallel version of the adaptive search (AS)
algorithm using both multiple-walk and single-walk parallelization. The solver takes
advantage of the GPU architecture by executing multiple instances of the AS solver,
but also and at the same time performing the evaluation of large neighborhoods in
parallel, as previously described. The authors report a maximum speedup of 17 in
solving two classical constraint satisfaction problems, and a speedup of 3 in solving
the Costas Array problem.

Single-walk parallelization in GPU architectures presents rather good perfor-
mance, however the implementation of local search methods on GPUs is far from
trivial and the scalability of these approaches is limited, if nothing else, by Amdahl’s
law [8]. Amdahl’s law states that the maximum speedup that may be expected from
the parallelization of an algorithm is 1/s where s is the fraction of non-parallelizable
parts of the algorithm. For instance, if a sequential algorithm is 90% parallelizable,
then the theoretical maximum speedup one can ever expect by parallelizing this
algorithm is 10, regardless of the number of processors in use.

10.5 Independent Multiple-Walk Approaches

Multiple-walk methods develop concurrent explorations of the search space, either
independently or cooperatively. The independent multiple-walk scheme derives from
the observation that local search processes, being mostly stochastic in nature, will
exhibit different behavior from one run to the next. This will directly impact on the
time it takes to complete an individual search, which will vary accordingly. The base
insight is thus to have several instances execute concurrently, so as to collect the
earliest or the best result.

Because they are concerned with processes whose execution is unrelated, inde-
pendent multiple-walk methods tend to be relatively straightforward to implement
on parallel computers and can lead – at least in theory – to linear speedups [119]. It
should be noted, however, that this holds under the assumption that the time it takes
to reach a solution obeys an exponential distribution. We will see that a more complex
model may be required in order to explain the performance actually observed in
larger-scale parallel executions.

10.5.1 Early Independent Multiple-Walk Methods

Early work, in 1996, by Rego and Roucairol [102] introduced a parallel variant of the
tabu search metaheuristic, which they apply to the Vehicle-Routing Problem. This
system uses the PVM parallel platform to perform independent parallel searches,
starting from a common point but following different paths. Each search reports

10 Parallel Local Search 391

back to a central hub, which in turn collects solutions, looking for a local optimum,
which, in turn, is used to relaunch a new batch of searches. This algorithm mixes
functional with data parallelism, and it uses slightly different instances of the tabu
search procedure, in the hopes that the ensuing diversity will promote better collec-
tive performance. The authors report that the parallel system begets higher-quality
solutions, although at the expense of a sometimes significantly slower computation.
The reason for the performance impact is not very clear, but may be related to the
parallel library overheads.

In 1999, Eikelder et al. [46] proposed a Sequential and Parallel Local Search
Algorithm, applied to the Job Shop Scheduling problem. In this work, the authors
recognize the impact of non-determinism in performing multiple instances of a local
search procedure, and establish a process whereby the parallel speedup of a simple
independent multiple-walk local search algorithm may be modeled. The proposed
approach takes into account the success or failure of the search procedures, as well as
the quality of the solutions found, for the definition of parallel speedup. The predicted
times are a good match to the observed times in the authors’ experiments, scaling
to about 40 large-granularity processors. The predicted and observed speedups both
appear to have a largely linear section, up to about 10 processors. Beyond that,
performance gains suffer a visible drop, yet there remains an undeniable benefit from
running independent multiple-walk searches in parallel.

A system by Mori and Ogita [89] was proposed in 2000, which also does tabu
search in parallel, applying it to the reconfiguration of power distribution systems
problem. One of the driving ideas is that carrying out multiple search processes in
parallel, each with just a distinct value for the tabu tenure parameter, will lead to
a faster convergence on an optimal solution, because of the subsequent diversity.
The authors combine this with a parallel decomposition of the neighborhood, i.e., a
form of functional parallelism. The results indicate that tabu search produces the best
quality solutions among several metaheuristics (which include genetic algorithms
and simulated annealing), in both the sequential and parallel versions. Likewise, the
parallel tabu search procedure exhibits the highest performance of the set, notably
so in the case where a moderate amount of parallelism is dedicated to the parallel
neighborhood decomposition (two to four sub-neighborhoods).

Finding different approaches to structure the neighborhood of a candidate solution
was essential to the work of Garcia-Lopez et al. [51], published in 2002. The authors
propose a parallel method to do Variable Neighborhood Search, and apply it to the
p-Median problem, taking large instances from TSPLIB [103]. This proposal follows
three different takes on parallelism: either the local search, the variable neighborhood
search or both become subject to parallel execution. In all cases, the parallel pro-
cedures execute independently, and the runtimes reflect a near-linear speedup with
up to eight processors. The prototype implementation runs on a multicore system,
resorting to a shared-memory configuration using OpenMP [40], and is therefore tied
to that multiprocessor organization.

Another system was described in 2003, by Bortfeldt et al. [26], which carries
out multiple independent tabu search procedures, running on top of a distributed
system in the form of a network of workstations. The network of parallel processes

392 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

keeps tabs on the solutions found by each worker, storing them in a storage object
for possible reuse by others. Even though the architecture is essentially that of
independent multiple-walk parallelism, it may include various forms of information
exchange among workers, as a consequence of the solution storage access pattern,
by each participant. Solutions found by workers are made available to the entire
network or just part of it, e.g., workers may be arranged in a ring topology. Workers
may be selective as to which external solutions to look at and, should they perform
better, adopt. The authors apply their prototype implementation to the Container-
Loading Problem, with measurable solution quality improvements over competing
approaches, namely the sequential tabu search and genetic algorithms-based solvers.
Performance-wise, the parallel system actually requires more time to achieve its
results and communication among workers only seems to yield minute improvements.

The 2010 work by Yazdani et al. [121] supplies another case of a parallel local
search procedure: in this instance, Variable Neighborhood Search benefits from the
diversification of neighborhood structures via the parallel independent exploration
thereof. The parallel architecture adopted is that of shared-memory multicore proces-
sors. The authors apply their system to Flexible Job Shop Scheduling, a harder variant
of the base problem, and provide experimental validation in a parallel setup with
up to five processors. The results indicate that the Parallel Variable Neighborhood
Search procedure computes good-quality solutions, when compared to competing
approaches.

10.5.2 Recent Experiments and Performance Results

In the domain of SAT (satisfaction problem for Boolean formulas), parallel methods
based on independent multi-walks have been developed under the name of the
portfolio approach, and most of the current solvers for SAT, based either on complete
or local search methods, now use portfolios for small-scale multi-core architectures.
Arbelaez and Codognet experimented in [10] with multi-walks versions of several
sequential local search solvers such as Sparrows, AdaptiveNovelty+ , PAWS and VW
on parallel hardware up to 512 cores. Experiments were done using benchmarks from
the SAT’11 competition belonging to four types of instance families: random, crafted,
verification and quasigroup. The parallel speedup of each solver varies depending on
the instance family but stay more or less consistent within each family. In general,
nearly linear speedups are achieved on crafted and verification instances while sub-
linear speedups are obtained on random and quasigroup instances. It is also worth
noticing that the best sequential solver may not exhibit the best parallel speedup and
therefore may not necessarily be the best one in a massively parallel context.

Work by Caniou et al. [31, 33, 32] presents a simple parallel scheme based
on independent multiple-walks with no communication between processes during
search, the sequential engine being based on the adaptive search metaheuristic. It
was built using the MPI [48] parallel programming interface and was tested on
different hardware platforms, of varying scale: up to a few hundred cores on the

10 Parallel Local Search 393

GRID’5000 platform in France and the Hitachi HA8000 and Fujitsu FX10 machines
at the University of Tokyo and up to 8,000 cores on the JUGENE supercomputer at
Jülich Supercomputing Centre. Performance evaluation on large instances of some
classical Constraint Satisfaction Problems from CSPLIB [54], such as the Magic
Square, Perfect Square and All-Interval problems, shows that speedups are very good
for a few tens of cores (e.g., speedup of a factor of 20-25 on 32 cores), and correct
up to a few hundreds of cores (e.g., speedup of a factor of 50-60 on 256 cores), but
speedup then degrades, showing that not much parallelism could be further extracted
even with a larger number of cores. Figure 10.4 shows the performance results of the
parallel adaptive search method on these problems in the form of runtime speedups
for a given number of cores.

 10

 20

 30

 40

 50

 60

 16 32 64 128 256

sp
ee

du
p

number of cores

MS 400
PS 5

AI 700

Fig. 10.4: Speedups for benchmark CSP programs on the HA8000 parallel machine,
from [31]

However, another hard combinatorial benchmark, the Costas Arrays Problem
(CAP), was also tested with instances of CAP up to 23 (large instances) and the
experimental evaluation shows better parallel scalability. Indeed, parallel speedup
scales very well (linearly) up to about 8,000 cores, on the JUGENE supercomputer.
Figure 10.5 shows the performance results of the parallel adaptive search method on
instances 21, 22 and 23 of CAP, in the form of runtime speedup for a given number
of cores.

This can be explained by the fact that the runtime distribution of the adaptive
search metaheuristic on the CAP problem exhibits a nearly pure (non-shifted) ex-
ponential distribution; see [43] for details of experimental results. The authors also
experimented with a limited form of cooperation among search processes (exchang-
ing only solution costs between processes and performing restarts), but the results
were not markedly different from the independent multiple-walk strategy.

394 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

 1

 2

 4

 8

 16

 512 1024 2048 4096 8192

sp
ee

du
p

number of cores

Ideal
CAP 21
CAP 22
CAP 23

Fig. 10.5: Speedups for the Costas Array Problem on the JUGENE supercomputer,
from [32]

It turns out that most independent multiple-walk procedures start off with good
speedups attributable to parallel execution. However, this characteristic appears to
hit a problem-dependent hard limit, which may be attributed to the lack of entropy
(diversity) across the different runs which are being performed in parallel, and thereby
bounds the usefulness of such a strategy, at larger scale.

Although there are stand-out exceptions, this diminishing returns situation be-
comes especially obvious when attempting to scale beyond a few dozen cores. This
has prompted research into exploring more sophisticated parallel methods that can
compensate for this performance drop, namely those that rely on some form of
cooperation among worker threads, as discussed in section 10.6.

10.6 Cooperative Multiple-Walk Approaches

To overcome the limitations of the independent multiple-walk strategy, it is natural to
consider a paradigm based on cooperation. This is the case of Cooperative Multiple-
walk methods, which add a communication mechanism to the independent search
strategy, in order to share or exchange information among solver instances during the
search process. However, designing an efficient cooperative method is a very complex
task, and many issues must be solved: What information is exchanged? Between
which processes is it exchanged? When is the information exchanged? How is it
exchanged? How is the imported data used? [114]. The work presented in [79] studies

10 Parallel Local Search 395

these questions, and concludes that no one cooperative configuration may efficiently
tackle all problems. Indeed, most cooperative choices are problem-dependent (and
even instance-dependent).

According to the literature [119, 120, 22, 111], an efficient cooperative method
should consider four essential functionalities: flexibility, adaptability, performance
and scalability. Flexibility refers to the capability of a given method to tackle different
problems, using different methods and providing hybrid behavior. Adaptability is
related to the ability of a given method to adjust its cooperative behavior. In addition,
a method has a good performance if it can obtain a high-quality solution in a short
execution time. Finally, scalability refers to the ability of a given method to efficiently
use a significant number of processing units (cores).

In this chapter, we analyze several approaches using the cooperative multiple-walk
strategy. We identify three different kinds of algorithms: metaheuristic parallelization,
agents-based and general frameworks.

10.6.1 Metaheuristic Parallelization Approaches

We first analyze cooperative methods based on metaheuristic parallelization. One of
the oldest cooperative approaches was proposed in 1993 by Hogg and Williams [63].
The basic idea is to create multiple solver entities (metaheuristics) that share partial
configurations (hints) through a centralized memory (blackboard). Each entity re-
ports to the blackboard a hint at each step (based on its current state) with a given
probability p. When the entity is at an appropriate decision point, it reads a hint
from the blackboard with probability p. If p is set to zero, the algorithm behaves
like independent search. The implementation of the method is dedicated to solving
the graph coloring problem using two different heuristics: the Berlaz algorithm and
heuristic repair. The experimental evaluation is performed using 10 agents, solving
graphs with 100 nodes and comparing the performance of the independent and the
cooperative approaches. The cooperative version presents better performance than the
independent version in terms of the execution time, however the parallel scalability
is not evaluated in this work.

In 1998, Aiex et al. proposed a cooperative parallel tabu search for solving the
circuit partitioning problem [3]. This method implements a master-slave model com-
posed of search processes (slaves) which implement different combinations of the
initial solution algorithm and move attribute for a specialized tabu search metaheuris-
tic. Periodically, the search processes exchange information (elite solutions) with the
master node, which maintains a centralized shared memory for elite configurations.
The parallel procedure is implemented using two different parallel programming
languages, PVM (based on message passing) and Linda (based on the shared-memory
model). The authors test both implementations on a set of problem instances from the
ISCAS benchmark on an IBM SP-2 machine with 16 processors. Only 10 processors
are used in the experimental evaluation, using one master and nine search processes.
The implementation improves the solution quality for all problem instances with

396 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

respect to the sequential version of the algorithm, the PVM version being 20% faster
than the Linda implementation. This work does not present any evaluation of the
performance in terms of the execution time and the parallel scalability.

Gendreau et al. [53], in 1999, proposed another master-slave scheme to parallelize
the tabu search algorithm for solving the dynamic vehicle-routing and dispatching
problem. The master entity manages an adaptive memory which is fed by a set of
tabu search instances (slaves). The adaptive memory is used to create new initial
solutions for slave processes. The authors present a prototype implementation, which
runs on a network of 17 SUN UltraSparc workstations. The proposed method is
compared with other heuristic approaches and obtains a better solution quality than
its competitors. An evaluation of the parallel scalability is performed using up to 16
processors, showing that the solution quality is improved by increasing the number
of processors involved.

Two similar methods are proposed to implement cooperation on the GRASP
(Greedy Randomized Adaptive Search Procedure) and the Path Relinking meta-
heuristic [2, 104]. A distributed cooperation mechanism was proposed by Aiex et
al. in 2003 [2], which creates several search processes. Each process sends the best
overall configuration to the other processes when the cost is improved. Each process
maintains a local elite pool which possibly contains configurations from all processes.
This pool is used as input for the Path Relinking phase. An experimental evaluation
is carried out solving standard job shop scheduling test problems from Beasley’s
OR-Library. The experiments are done on an SGI Challenge computer composed
of 28 R10000 MIPS processors, using 1, 2, 4, 8 and 16 processors. The prototype
is coded in Fortran using the MPI library. The cooperative strategy obtains almost
linear speedups, improving on the independent strategy; which, as expected, shows
only a sub-linear speedup.

Ribeiro and Rosseti, in 2007, proposed another parallel cooperative approach
also using GRASP and Path Relinking [104]. This method takes advantage of the
multi-start behavior of the GRASP metaheuristic to implement a multiple-walks
parallelization. In addition, a master-slave cooperative strategy is implemented. Slave
processes send the best configurations to a master process, which maintains a central-
ized pool of elite solutions. Then the master can send back a new configuration to
slave nodes upon request. A prototype implementation of this approach is developed
using C and the MPI specification. The experiments are carried out on a cluster of
32 Pentium II 400 MHz processors solving the randomly generated instances of the
2-path network design problem. The cooperative strategy presents smaller execution
times and scales better than the independent implementation, obtaining almost linear
speedups and reporting a maximum speedup of 17.6 using 32 cores. Although the
two previous methods present fair parallel performances, the functionality is attached
to GRASP behavior and to the problem nature, thus limiting its flexibility.

A cooperative parallel approach that uses the rollout algorithm for solving the
Sequential Ordering Problem was proposed in 2003 by Guerriero and Mancini [60].
This approach presents a master-slave topology in which slaves are executed in
parallel, running an instance of the rollout algorithm. Slave processes periodically
send the best configurations found to the master, which maintains a centralized

10 Parallel Local Search 397

pool of configurations. The master restarts slaves with adjusted parameters using a
new initial point from the pool. The cooperative mechanism can adapt its behavior
by selecting the best parameters for the base algorithm. However, this cooperative
approach is strongly linked to the rollout algorithm, limiting the possibility to use
this technique with other metaheuristics. The parallel version of the algorithm was
implemented in C++ using the MPI library. The experiments run on a cluster of nine
nodes with two Pentium 1 GHz processors, solving 14 instances of the Sequential
Ordering Problem (taken from the TSPLIB). The cooperative approach obtains a
good solution quality for the given set of problems. The scalability of the algorithm
is evaluated using 1, 2, 4 and 8 slaves (cores). The algorithm improves either the
solution quality or the execution time used to find the best solution when increasing
the number of slaves. However, the authors report that the rollout-like approach
obtains a higher computational time to find good solutions compared with other
state-of-the-art approaches.

The 2004 work by Crainic et al. [37] presents a master-slave cooperative method
to solve the p-median problem based on the Variable Neighborhood Search (VNS)
metaheuristic. The master process implements a central memory to maintain the best
overall solution. The master also sends the initial configuration to slaves. The slave
processes (VNS processes) perform the search and notify the master when improving
the overall solution. A slave process asks the master for a new search point if it cannot
improve its current configuration. An MPI implementation of this approach run on a
64-processor SUN enterprise machine with 400 MHz clock. The experiments use
1, 5, 10 and 15 processors, solving a set of problems from the TSPLIB benchmark.
This strategy obtains significant gains in terms of execution time, maintaining a
good solution quality. However the cooperation mechanism is strongly linked to the
behavior of the VNS metaheuristic and to the problem model. The principles of this
approach include avoiding using parameters, which is convenient for the user but not
for the adaptability of the system.

In 2012, Cordeau and Maischberger [36] proposed a parallel iterated tabu search
algorithm to solve vehicle-routing problems. The basic idea is to execute in parallel
several iterated tabu search solver instances using different sets of parameters. The
algorithm implements a communication mechanism to share the most promising
configurations found in the search process. Each process can apply a crossover
operator to the received configurations (with a given probability), in order to combine
information of two different received configurations. The algorithm is implemented
in C++ using the MPI libraries for the parallel version. The experiments run on a
cluster composed of 128 nodes, each with a 3 GHz dual Intel Xeon CPU E5472
(i.e., four cores per node). This strategy is tested solving different variants of the
vehicle-routing problem, using up to 80 cores, and obtaining good performances in
terms of the solution quality (allowing the identification of new best known solutions
for a large set of problems).

A cooperative approach based on the execution of multiple instances of the
adaptive search solver was presented in 2013 by Machado et al. [80]. A single master
solver instance sends every k iterations its current configuration to the other solver
instances. Since this information is stored in a shared-memory structure, all the solver

398 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

instances (threads) running on the node benefit from this communication. Each solver
instance decides whether it adopts the received configuration or continues its current
search process. This cooperative scheme was implemented using the GPI (Global
Address Space Programming Interface) API for parallel applications running on
clusters. The experiments are conducted on a cluster system with 155 nodes; each
node includes a dual Intel Xeon 5148LV (i.e., four cores per node). This strategy is
evaluated solving two constraint satisfaction problems from the CSPLib: all-interval
and magic-square; and one hard real-life problem: the Costas Array Problem (CAP).
The cooperative strategy presents no gain compared to the independent strategy, when
solving the CAP. For the CSPLib problems the cooperative approach presents a better
speedup than the independent strategy. The parallel scalability is evaluated using up
to 512 cores; however the obtained speedups are sub-linear for both cooperative and
independent approaches. More recently, in 2015, Caniou et al. presented a similar
approach in [32], which uses the same base algorithm (adaptive search) and the same
set of CSPLib problems. The authors propose a new cooperative approach in which
only single integer values are exchanged between entities (as opposed to complex
data types such as vectors of variables, i.e., a configuration). The receiver entity uses
this information to decide whether it is convenient to develop a restart procedure.
This strategy is evaluated on the Helios cluster of the GRID’5000 platform, using up
to 128 cores. The results of the experimentation cannot show an improvement in the
performance using this cooperative approach.

In the domain of SAT, parallel cooperative methods based on local search have
also been developped. Arbelaez and Hamadi proposed in [12] several strategies
for sharing knowledge between processes, involving a pool of elite configurations
containing the best configuration found so far by each process. When a restart is
performed, new restart configurations are thus created on demand by agreggating
those elite solutions, variable by variable. The best aggregation strategy, named
Prob-NormalizedW, consists in weighting the influence of each process by using a
probability reflecting the cost of the configuration (number of unsatisfied clauses).
Small-scale experiments on 4 and 8 cores machines show that good performances
could be achieved and this solver won a silver medal in the SAT’11 competition
(random category, parallel track). Thoses ideas were later extended by Arbelaez and
Codognet in [9] for larger-scale parallel systems (up to 256 cores), but performance
then becomes very sensitive to the cost of communication and possible excessive
diversification. Indeed, the best performance is achieved when defining small groups
of cooperative solvers (up to 16 processes) and having no communication between
different groups of solvers.

10.6.2 Agent-Based Approaches

Agent-based modeling is a powerful strategy that facilitates the implementation of
cooperative approaches. In early work, in 1998, Talukdar et al. propose a multi-
agent-based cooperative methodology to combine solving strategies [113]. The

10 Parallel Local Search 399

A-Team (asynchronous teams) framework allows agents to cooperate through a
shared memory containing a population of configurations. Agents can create, modify
or delete configurations from the shared memory. Furthermore, they can obtain
elite configurations from the shared memory, which have probably been created by
another agent, in order to cooperate and make the initial set of configurations evolve.
The A-Team framework provides a good level of flexibility, because agents can
implement different algorithms, and this method can be applied to different problems.
The referenced paper does not report any experimental evaluation, however this
approach has been used as the basis for many agent-based cooperative solvers.

In 2004, Milano and Roli presented a multi-agent metaheuristic architecture
(called MAGMA) that can describe cooperative search or hybrid metaheuristics [87].
This architecture is based on a multi-level organization in which components (agents)
are classified according to their capabilities. Low-level agents describe the basic
functionality of metaheuristics. A top layer manages integration and cooperation of
different solvers. Agents in the top layer can store partial or complete configurations
and promote changes in lower layers in response to the gathered information. This
approach provides a theoretical description that can be easily adapted to tackle
different problems and to use different metaheuristics, thus providing fair flexibility
and adaptability. Similarly to the A-Team strategy, MAGMA is considered as a
generic framework; the referenced paper only provides an experimental evaluation in
the appendix, where a guided-restart iterated local search algorithm is conceived as a
combination of existing components in the MAGMA framework.

A multi-agent architecture was proposed in 2006 by Bachelet and Talbi for solving
large-scale instances of the Quadratic Assignment Problem [112]. This method, called
COSEARCH, is composed of a set of agents that perform specific tasks: search agent,
intensifying agent and diversifying agent. COSEARCH implements as the main
search agent a tabu search heuristic; for the diversifying agent, it uses a genetic
algorithm; and for the intensifying agent, a kick operator is used. These agents
share information through an adaptive memory that stores information about the
already visited areas of the search space and about the intrinsic nature of the elite
solutions already found (initial and elite configurations). This strategy is evaluated
solving a set of problem instances from the QAPLib benchmark. The experiments
run on a heterogeneous parallel platform composed of around 150 workstations,
using a significant number of cores. The results show COSEARCH presents better
performance than a basic parallel multi-start strategy, in terms of execution time and
solution quality.

The 2007 work by Aydin [14] proposed a study of different cooperative topologies
for agent-based metaheuristics. This work tested three different schemes: A-Team, a
multiple-island model and variable neighborhood search. The job shop scheduling
problem is used to develop the experimental evaluation, which only considers the
solution quality. All the schemes are developed using DREAM software [13] which
is a Java-based framework that implements the distributed sub-population model for
evolutionary algorithms by using multi-agent technology. The main objective in this
experimentation is to reveal more details about each strategy.

400 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

In 2009, Cadenas et al. presented a cooperative parallel hybrid strategy that uses
machine learning techniques [29]. The system is composed of two different types of
agents: metaheuristic and coordinator. Multiple instances of different metaheuristics
are run in parallel by metaheuristic agents, which, simultaneously, share information
through a blackboard data structure. One coordinator agent is used to analyze the
information in the blackboard and to adapt the metaheuristic agents’ behavior. The
coordinator agent incorporates knowledge from an offline machine learning process.
This knowledge helps the coordinator to guide the search and to adapt the behavior of
the system to different situations. The authors also proposed a Java implementation
of this strategy using tabu search, simulated annealing and genetic algorithms for
the metaheuristic agent. This implementation is used to solve different instances
of the knapsack problem. The experiments run on an Intel core2 Quad 1.66 GHz.
The parallel version of the algorithm, which consists in a parallel execution of
each metaheuristic, presents better performance than the non-cooperative approach.
However, no comparison with state-of-the-art methods was carried out, and the
evaluation does not include a parallel scalability analysis.

A Coalition-Based Metaheuristic (CBM) was presented in 2010 by Meignan et
al. [84]. This approach is based on the agent metaheuristic framework and the hyper-
heuristic approach. The system architecture is composed of agents that implement a
complete set of capabilities that make them suitable to perform different roles during
the execution (strategist, guide, intensifier and diversifier). Agents exchange informa-
tion in a decentralized and asynchronous manner. Agents use reinforcement learning
and mimetism to adjust their behaviors. The authors present an implementation of
the CBM in Java, running on a 3 GHz Pentium 4 processor. This implementation
is tested solving the capacitated vehicle-routing problem and it shows competitive
results in terms of both solution quality and execution time, using up to 20 parallel
agents.

More recently, in 2014, Barbucha proposed another agent-based cooperative
approach for population learning algorithms (called CPLA) [19]. This approach is
based on the A-Team framework and on the population learning algorithm. The basic
idea is to make a population of individuals (configurations) evolve using a process
that is divided into stages. At each stage, the population is improved using dedicated
algorithms and different topologies. After each stage some elite individuals are
promoted to the next stage. Agents have communication capabilities and, according
to the stage, can share information with other agents (through a shared elite pool).
Furthermore, multiple A-Teams can be run in parallel and exchange information
through a migration manager agent. An implementation of the CPLA was developed
using JADE (Java Agent Development Framework) [20]. The experiments run on
the HOLK cluster built of 256 Intel Itanium 2 Dual Core processors solving the
vehicle-routing problem with time windows. The results show CPLA has good
performance in terms of solution quality and execution time, being competitive with
state-of-the-art methods. No parallel scalability is analyzed in the referenced paper.

In 2016, Martin et al. proposed another agent-based cooperative approach [82].
In this method agents implement different metaheuristics to perform the search pro-
cess. Agents asynchronously exchange partial configurations; which are analyzed

10 Parallel Local Search 401

by machine learning techniques in order to identify patterns and to adapt the agent
behavior. The experimental evaluation runs on a Linux cluster composed of eight
nodes, solving three different combinatorial optimization problems: the permutation
flow-shop scheduling, the capacitated vehicle-routing and the nurse-rostering prob-
lems. The results show good performance in terms of solution quality, using up to 16
cores. The referenced paper does not present information about execution times or
parallel scalability.

10.6.3 Framework Approaches

In this last group we analyze cooperative methods that propose a general framework.
These methods generally offer high flexibility because they can tackle different
problems using different metaheuristic solvers.

Cahon, Melab and Talbi in 2004 proposed an open-source framework for parallel
and distributed design of hybrid metaheuristics, ParadisEO [30]. This framework
provides different hybridization mechanisms for metaheuristics including population-
based and single-solution methods. ParadisEO separates the modeling of the meta-
heuristic formulation from the problem to be solved, using a modular architecture
that allows code and design reuse. For instance, ParadisEO-MO [67] is the module
dedicated to the design, analysis and implementation of local search algorithms and
the ParadisEO-PEO module provides a set of classes to design and implement parallel
and distributed metaheuristics. ParadisEO-PEO supports different levels of parallel
metaheuristics, from neighborhood decomposition (single-walk) to independent and
cooperative multiple-walk. Cooperation is implemented following the island model
(from population-based methods), in which the solver instances can share informa-
tion based on a migration model. ParadisEO has been successfully experimented
with in a wide range of problems; for instance in [110], the ParadisEO framework is
used to solve the multi-objective constrained combinatorial optimization model for a
problem in radio network design.

A cooperative parallel hyper-heuristic framework was proposed in 2010 by Ouel-
hadj and Petrovic [96]. This framework is composed of multiple heuristic agents
and one cooperative hyper-heuristic agent. Heuristic agents implement low-level
heuristics performing a local search procedure. The best configuration found by the
heuristic agents is sent to the cooperative hyper-heuristic agent which maintains
a pool of elite configurations. This pool also stores information about low-level
heuristics and the objective function. Additionally, the cooperative hyper-heuristic
agent decides which low-level heuristic the heuristic agents will run and also provides
them with elite configurations from the pool to diversify the search. This method
clearly provides high flexibility, because it can be adapted to different problems or
metaheuristics. Additionally some parameters were defined to adapt the cooperative
mechanism. A prototype implementation to solve the flow shop scheduling problem
is presented using C# and multi-thread libraries. The experiments run on an Intel
Pentium M 1500 MHz processor obtaining good performance in terms of solution

402 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

quality, however this cooperative approach does not outperform the state-of-the-art
methods for the flow shop scheduling problem.

In 2014, Munera et al. [93] presented a Cooperative Parallel Local Search Frame-
work (CPLS). This framework is both problem- and metaheuristic-independent and
allows the programmer to tune the search process through an extensive set of param-
eters. The basic component of CPLS is an explorer, which executes an LS solver
instance and runs on a physical core (see Figure 10.6). Several explorers are grouped
into teams. Inside a team the explorers intensify the search, sharing the most promis-
ing solutions via an elite pool. The teams also communicate with one another to
promote search diversification; for this a measure of the distance between teams is
used to detect when two teams are exploring the same region (in which case a cor-
rective action is taken to force one team to explore another region). Thus intra-team
communication is used for intensification while inter-team communication ensures
diversification.

Fig. 10.6: CPLS framework

The concepts and entities involved are all subject to parametric control (e.g., trade-
off between intensification and diversification, elite pool size, communication interval,
distance, corrective action, etc.). An implementation of CPLS (available as an open
source library) in the X10 parallel programming language [106] has been used to
solve different hard Combinatorial Optimization Problems [95], providing (super-)
linear speedups up to 128 cores.

10 Parallel Local Search 403

10.7 Parallelism at Work

In this section we discuss the efficacy of parallel local search methods on two hard
problems, both of which have several real-world application instances: the Stable
Matching (SM) and Quadratic Assignment (QAP) Problems.

10.7.1 Stable Matching Problem

The Stable Matching problem was introduced by Gale and Shapley in their seminal
1962 paper [49]. The SM problem can be stated as follows: given a set of n men and
a set of n women, each of whom have ranked all members of the other set in a strict
order of preference, find a matching (a one-to-one correspondence between the men
and the women) such that there is no man-woman pair where both prefer each other
than their assigned partner. This criterion is called stability and is a desirable property
since it ensures, according to stated preferences, that there is no man-woman pair
for which both have incentive to elope – such a pair is called a blocking pair. Gale
and Shapley proved that such a stable matching always exists and proposed an O(n2)
algorithm (called GS in what follows) to find one.

However, requiring each member to rank all members of the opposite sex in a
strict order is unfeasible for many real-life, large-scale applications. A natural variant
of SM is the Stable Matching with Ties and Incomplete Lists (SMTI) problem [70, 81].
In SMTI, the preference lists may include ties (to express indifference among several
partners) and may be incomplete (to express that some partners are unacceptable).
A stable matching always exists for SMTI and can be easily obtained by arbitrarily
breaking the ties and applying the GS algorithm. However, with the introduction of
ties and incompleteness in the preference lists, the stable matching for an instance
of SMTI may have different sizes. It is thus desirable to find the stable matching
of maximal size (that is, with the smallest number of singles). This optimization
problem has been shown to be NP-hard, even for very restricted cases [70, 81]. This
problem has attracted a lot of research in recent years since it is at the heart of a wide
variety of important real-life applications. Indeed, matching problems can be found
in several settings, such as car sharing or bipartite market sharing, job markets and
social networks. Many of these applications involve very large sets, thereby ruling out
the use of complete methods. SMTI has been shown to be an APX-hard problem [61]
and most recent research focuses on designing efficient approximation algorithms,
i.e., algorithms running in polynomial time yet able to guarantee solutions within
a constant factor of the optimum [69, 71]. SMTI cannot be approximated within a
factor of 21/19 and probably not within a factor of 4/3 either [62]. Currently, the best
known algorithms are 3/2-approximations [83, 72, 98] or heuristic-based specific
solutions. These algorithms produce a single solution for a given problem instance,
even though it is often useful to provide multiple optimal or quasi-optimal solutions.

In [95], the authors proposed AS-SMTI, a local search procedure for SMTI based
on adaptive search in the CPLS framework briefly described in Section 10.6.3.

404 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

The sequential version displays significant improvement in performance or solution
quality w.r.t. the state-of-the-art exact and approximate sequential algorithms, and
the independent multi-walk parallel version exhibits a significant speedup with an
increasing number of cores. Moreover, the cooperative parallel version achieves
super-linear speedup on average, consistently behaving very well on hard instances.

The parallel experiments were carried out on a cluster of 16 machines, each
with four 16-core AMD Opteron 6376 CPUs running at 2.3 GHz and 128 GB of
RAM. The nodes are interconnected with InfiniBand FDR 4× (i.e., 56 Gbps) and the
experiment involved up to 128 cores (four nodes and 32 cores per node). Figure 10.7
presents log-log graphs of the speedup using independent walks (IW in red) and
cooperative walks (CW in green) on 10 very hard and large instances (size n = 1 000).
The independent version reaches a quasi-linear speedup (91.5 for 128 cores) while
the cooperative version gets super-linear speedups (492 with 128 cores).

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128

Sp
ee

du
p

lo
ga

ri
th

m
ic

 s
ca

le

Number of cores
logarithmic scale

coop
indep
linear

Fig. 10.7: Speedups obtained with AS-SMTI on hard instances of SMTI problems
(size = 1 000)

In [94] the same authors propose an extension of their algorithm to tackle one
important and hard variant of the Stable Matching problem: the Hospital/Resident
problem, which is NP-hard. This problem consists of a set of n1 residents who
apply for k positions distributed among n2 hospitals. The preference list of a resident
consists of the ordered list of acceptable hospitals. The preference list of a hospital
contains the ordered list of residents who apply to it. In the most general case,
preference lists are allowed to contain ties (to express indifference) and can be
incomplete (residents only apply to a subset of the hospitals and hospitals rank
their corresponding candidates). In addition, each hospital has a capacity, which
indicates the maximum number of positions it offers. The problem consists in finding

10 Parallel Local Search 405

a (maximum size) stable matching between residents and hospitals (thus satisfying
the preference lists) that complies with the capacities (each resident being assigned
to at most one hospital and the number of residents assigned to any hospital not
exceeding its capacity). The HRT problem is important in the medical domain and
there are national programs in various countries, the best-known ones being the
National Resident Matching Program (NRMP) in the USA, the Canadian Resident
Matching Service (CARMS), the Scottish Foundation Allocation Scheme (SFAS)
and the Japan Residency Matching Program (JRMP). As might be expected, such
programs involve very large data sets. The HRT problem also has several other
application domains, e.g., assignment of applicants to positions in job markets.

The resulting cooperative parallel solver, while much simpler and more general,
displays performance which is comparable to the best known specific solvers for
HRT, including those which assume domain restrictions (e.g., having ties on one side
only).

10.7.2 The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) was introduced in 1957 by Koopmans and
Beckmann [74] as a model for a facilities location problem. This problem consists
in assigning a set of n facilities to a set of n specific locations so as to minimize the
cost associated with the flows of items among facilities and the distance between
them. This combinatorial optimization problem has many other real-life applications:
scheduling, electronic chipset layout and wiring, process communications, turbine
runner balancing and data center network topology, to cite but a few [35, 21]. This
problem is known to be NP-hard and finding effective algorithms to solve it has
attracted a lot of attention for many years.

Since the mid-1980s several metaheuristics have been successfully applied to
the QAP: tabu search, simulated annealing, genetic algorithms, GRASP and ant-
colonies [21]. For solving the hardest instances, the current trend is to resort to hybrid
procedures, in order to benefit from the strengths of different classes of heuristics.
Such is the case of hybrid genetic algorithms for the Quadratic Assignment Problem
(a.k.a. memetic algorithms) [45]. The price to pay for this improvement is a significant
increase in the complexity of the resulting solver code.

An alternative approach for constructing hybrid search methods has been presented
in [91, 90], based on cooperative parallelism. The authors show additional benefits
of the intra/inter-team cooperation mechanisms in order to provide hybridization
behaviors. To this end, CPLS was configured with explorers running instances
of different metaheuristics inside a team. Hybridization is obtained thanks to the
collaboration between explorers through the elite pool. It turns out that the intra-
team communication mechanism, implemented to intensify the search within a
team, now also becomes a mechanism to exchange information between explorers
running different metaheuristics. The whole system behaves like a hybrid solver,
benefiting from cross-fertilization, which stems from the inherent diversity of the

406 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

search strategies. The basic idea of running in parallel different metaheuristics
that exchange elite solutions has been mentioned [7, 113] but from a general and
strictly theoretical point of view. This technique may also be viewed as a portfolio
approach [58] augmented with cooperation.

Following this line, the authors propose a parallel hybrid solver (called ParEOTS)
to tackle the Quadratic Assignment Problem (QAP), combining two different meta-
heuristics: Taillard’s Robust Tabu Search [109] and an original Extremal Optimization
method [92]. This parallel hybrid solver performs very well on QAPLIB, the standard
benchmark library used to assess QAP solvers [28]. For instance, linear speedups up
to 128 cores can be achieved, see Figure 10.8.

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64 128

Sp
ee

du
p

lo
ga

ri
th

m
ic

 s
ca

le

Number of cores
logarithmic scale

lipa70a
tai35a
linear

Fig. 10.8: Speedups obtained with ParEOTS on two QAPLIB instances

ParEOTS has been tested on the 33 hardest problems of QAPLIB, using 128
cores. The solver was set to stop when reaching the Best Known Solutions (BKS,
i.e., best known optimum) as recorded in the QAPLIB archive. A (comparatively
short) timeout of 5 minutes was used to limit the execution in case the BKS is not
reached. Each instance was solved 10 times (results are averaged). Table 10.1 shows
the performance of ParEOTS. For each problem, the table includes the current BKS
(which was sometimes the optimum), the number of times the BKS was reached by
the solver (#BKS), the Average Percentage Deviation (APD), which is the average
of the 10 relative deviation percentages computed as follows: 100× F(sol)−BKS

BKS , and
the average execution time (either shown as a decimal number representing seconds
or in a human-readable form as mm:ss). Even with a very short timeout, ParEOTS
provided solutions of high quality. It reached the best known solution (BKS) for all
but four QAPLIB instances. When the BKS was not reached, the obtained solution
was nevertheless very close (less than 0.22% off, on average).

10 Parallel Local Search 407

BKS #BKS APD time

els19 17212548 10 0.000 0.0
kra30a 88900 10 0.000 0.0
sko56 34458 10 0.000 1.5
sko64 48498 10 0.000 1.7
sko72 66256 10 0.000 8.7
sko81 90998 10 0.000 0:24
sko90 115534 10 0.000 1:32
sko100a 152002 10 0.000 1:09
sko100b 153890 10 0.000 0:45
sko100c 147862 10 0.000 0:56
sko100d 149576 10 0.000 1:03
sko100e 149150 10 0.000 0:47
sko100f 149036 10 0.000 0:57
tai40a 3139370 10 0.000 1:26
tai50a 4938796 3 0.077 4:24
tai60a 7205962 3 0.146 4:15
tai80a 13499184 0 0.364 5:00
tai100a 21052466 0 0.298 5:00
tai20b 122455319 10 0.000 0.0
tai25b 344355646 10 0.000 0.0
tai30b 637117113 10 0.000 0.1
tai35b 283315445 10 0.000 0.3
tai40b 637250948 10 0.000 0.1
tai50b 458821517 10 0.000 2.6
tai60b 608215054 10 0.000 4.6
tai80b 818415043 10 0.000 0:53
tai100b 1185996137 10 0.000 1:11
tai150b 498896643 0 0.061 5:00
tai64c 1855928 10 0.000 0.0
tai256c 44759294 0 0.178 5:00
tho40 240516 10 0.000 0.5
tho150 8133398 1 0.007 4:51
wil100 273038 10 0.000 1:37

Table 10.1: ParEOTS on the hardest instances of QAPLIB (128 cores)

This solver was also tested on even harder QAP instances from Palubeckis [97] and
Drezner [44], which were designed with a known optimum but were specifically ill-
conditioned in order to be difficult for many metaheuristic-based methods. Recently
Carvalho & Rahmann proposed new instances, with unknown optimum, that turn out
to be extremely difficult to solve [42]. For the former two classes of problems (called
paluXX and dreXX) the solver was configured to reach the optimum (within
a timeout of 5 minutes). For the latter (called cr-blXX and cr-ciXX) it was
configured to stop as soon as the BKS was improved (with a timeout of 6 hours).
ParEOTS was able to improve the quality of several solutions. Table 10.2 summarizes
the new solutions discovered by ParEOTS for these hard problems, using 128 cores.

408 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

OPT previous ParEOTS

BKS #OPT new BKS time

palu30 271092 272080 10 271092 0.1
palu40 837900 840308 10 837900 4.0
palu50 1840356 1846876 10 1840356 0:17
palu60 2967464 2978216 10 2967464 1:07
palu70 5815290 5831954 10 5815290 2:07
palu80 6597966 6618290 10 6597966 1:56
palu100 15008994 15047406 1 15008994 5:00
palu150 58352664 58468204 0 58414888 5:00
palu200 75405684 75543960 0 75498892 5:00

dre90 1838 1959 9 1838 2:47
dre110 2264 2479 6 2264 3:43
dre132 2744 3023 1 2744 4:54

cr-bl81 - 7536 - 7532 48:41
cr-bl100 - 9272 - 9264 41:33
cr-bl121 - 11412 - 11400 1:05:10
cr-bl144 - 13472 - 13452 5:32:03
cr-ci144 - 795009899 - 794811636 2:29:27

Table 10.2: new solutions found by ParEOTS on other hard problems (128 cores)

It becomes clear from these examples that cooperative parallel hybridization
for different metaheuristics can attain very competitive results and, in some cases,
sometimes achieves a clear improvement.

10.8 Conclusion

In this chapter we have tried to present a survey of parallel local search methods over
the last 20 years. Although local search methods have been pioneered since the late
1950s, parallelism has only been investigated in the context of local search methods
since the 1990s, when multiprocessors started to become more widely available, and
this endeavor continued until the present with experiments on massively parallel
supercomputers. Local search exhibits some natural opportunities for parallelism,
which may be easily derived from the basic features of the search methods such as
the selection of a new candidate solution within a neighborhood or the choice of an
initial (random) starting solution. This observation prompted the adoption of some
basic parallel schemes, such as single-walk and independent multi-walk methods,
which can be effective on small-scale multiprocessor machines (e.g., with a few tens
of cores). However, in order to achieve better performance on massively parallel
machines, more complex schemes have to be devised, for instance cooperative multi-
walks in which concurrent processes exchange information about their current search
and communicate so as to guide the search towards promising areas of the search

10 Parallel Local Search 409

space. If information exchange and cooperation can be implemented efficiently and
become effective enough to actually lead processes to parts of the search space where
optimal or quasi-optimal solutions are, one may assert that cooperative strategies are
instrumental in tapping the performance potential held in massively parallel computer
architectures.

Encouraging results have already been achieved, e.g., super-linear speedups have
been demonstrated on a few hard optimization problems, but more work is needed to
develop general and efficient frameworks. Key issues to be investigated, especially
in the context of the massively parallel machines with tens or hundreds of thousands
of cores that are now available, are the flexibility and dynamicity of the system
architecture, the scale and frequency of the communication between processes, and
the nature of the information that should be exchanged.

Most, if not all, solvers that are mentioned in this text require non-trivial parameter
tuning in order to attain their optimum performance. This task has been clearly
identified and is the object of a significant and continued research effort, often
resorting to different problem-solving techniques, such as machine learning.

Lastly, the hybrid nature of modern parallel multiprocessors poses several chal-
lenges concerning their effective use, as a significant portion of the available compute
power stems from nonstandard architectures, such as GPUs or other accelerators.
Making use of these multiple forms of parallelism is a high-stakes challenge, but one
for which local search techniques could be a very good fit.

References

[1] Emile Aarts and Jan K Lenstra. Local Search in Combinatorial Optimization.
John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1997.

[2] Renata Aiex, S. Binato, and Mauricio Resende. Parallel GRASP with Path-
Relinking for Job Shop Scheduling. Parallel Computing, 29:393–430, 2003.

[3] Renata Aiex, Simone Martins, Celso Ribeiro, and Noemi De R. Rodriguez.
Cooperative Multi-thread Parallel Tabu Search with an Application to Circuit
Partitioning. Lecture Notes in Computer Science Volume 1457, 1457:310–331,
1998.

[4] Renata Aiex, Mauricio Resende, and Celso Ribeiro. Probability distribution of
solution time in GRASP: An experimental investigation. Journal of Heuristics,
8(3):343–373, 2002.

[5] Renata Aiex, Mauricio Resende, and Celso Ribeiro. TTT plots: a Perl program
to create time-to-target plots. Optimization Letters, 1:355–366, 2007.

[6] Enrique Alba. Special Issue on New Advances on Parallel Meta-Heuristics
for Complex Problems. Journal of Heuristics, 10(3):239–380, 2004.

[7] Enrique Alba. Parallel Metaheuristics: a New Class of Algorithms. Wiley-
Interscience, 2005.

410 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

[8] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. AFIPS Spring Joint Computer Confer-
ence, 1967. AFIPS ’67 (Spring). Proceedings of the, 30:483–485, 1967.

[9] Alejandro Arbelaez and Philippe Codognet. Massively Parallel Local Search
for SAT. In 24th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), pages 57–64, Athens, Nov 2012. IEEE Press.

[10] Alejandro Arbelaez and Philippe Codognet. From Sequential to Parallel Local
Search for SAT. In 13th European Conference on Evolutionary Computation
in Combinatorial Optimization (EvoCOP), LNCS, pages 157–168. Springer,
2013.

[11] Alejandro Arbelaez and Philippe Codognet. A GPU Implementation of Parallel
Constraint-Based Local Search. In 22nd Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), volume 1,
pages 648–655, Turin, Italy, 2014.

[12] Alejandro Arbelaez and Youssef Hamadi. Improving Parallel Local Search
for SAT. In Carlos A. Coello Coello, editor, 5th International Conference on
Learning and Intelligent Optimization (LION5), volume 6683 of LNCS, pages
46–60. Springer, 2011.

[13] M. G. Arenas, Pierre Collet, A. E. Eiben, Márk Jelasity, J. J. Merelo, Ben
Paechter, Mike Preuß, and Marc Schoenauer. A Framework for Distributed
Evolutionary Algorithms. In Parallel Problem Solving from Nature - PPSN
VII, pages 665–675. Springer 2002.

[14] Mehmet E. Aydin. Metaheuristic Agent Teams for Job Shop Scheduling
Problems. Holonic and Multi-Agent Systems for Manufacturing, 4659:185–
194, 2007.

[15] László Babai. Monte-Carlo algorithms in graph isomorphism testing. Research
Report D.M.S. No. 79-10, Université de Montréal, 1979.

[16] Per Bak. How Nature Works: The Science of Self-organized Criticality. Coper-
nicus (Springer), 1st edition, 1996.

[17] Per Bak and Kim Sneppen. Punctuated equilibrium and criticality in a simple
model of evolution. Physical Review Letters, 71(24):4083–4086, 1993.

[18] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality: An
explanation of the 1/f noise. Physical Review Letters, 59(4):381–384, 1987.

[19] Dariusz Barbucha. A Cooperative Population Learning Algorithm for Vehicle
Routing Problem with Time Windows. Neurocomputing, 146:210–229, 2014.

[20] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Develop-
ing Multi-Agent Systems with JADE. Wiley, 2007.

[21] Ravi Kumar Bhati and Akhtar Rasool. Quadratic Assignment Problem and its
Relevance to the Real World: A Survey. International Journal of Computer
Applications, 96(9):42–47, 2014.

[22] Christian Blum and Andrea Roli. Metaheuristics in Combinatorial Opti-
mization: Overview and Conceptual Comparison. ACM Computing Surveys,
35(3):268–308, 2003.

10 Parallel Local Search 411

[23] Stefan Boettcher. Extremal Optimization. In Alexander K. Hartmann and
Heiko Rieger, editors, New Optimization Algorithms to Physics, chapter 11,
pages 227–251. Wiley-VCH Verlag, Berlin, 2004.

[24] Stefan Boettcher and Allon Percus. Nature’s way of optimizing. Artificial
Intelligence, 119(1–2):275–286, 2000.

[25] Stefan Boettcher and Allon Percus. Extremal Optimization: an Evolutionary
Local-Search Algorithm. In Computational Modeling and Problem Solving in
the Networked World, volume 21. Springer 2003.

[26] A. Bortfeldt, H. Gehring, and D. Mack. A Parallel Tabu Search Algorithm
for Solving the Container Loading Problem. Parallel Computing, 29(5
SPEC.):641–662, 2003.

[27] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. A Survey on Optimiza-
tion Metaheuristics. Information Sciences, 237(February):82–117, 2013.

[28] Rainer E. Burkard, S. Karisch, and F. Rendl. QAPLIB - a Quadratic Assign-
ment Problem Library. European Journal of Operational Research, 55(1):115–
119, 1991.

[29] J. M. Cadenas, M. C. Garrido, and E. Muñoz. Using Machine Learning in a
Cooperative Hybrid Parallel Strategy of Metaheuristics. Information Sciences,
179(19):3255–3267, 2009.

[30] S. Cahon, N. Melab, and E. G. Talbi. ParadisEO: A Framework for the
Reusable Design of Parallel and Distributed Metaheuristics. Journal of Heuris-
tics, 10(3):357–380, 2004.

[31] Yves Caniou, Philippe Codognet, Daniel Diaz, and Salvador Abreu. Experi-
ments in parallel constraint-based local search. In EvoCOP’11, 11th European
Conference on Evolutionary Computation in Combinatorial Optimisation, vol-
ume 6622 of Lecture Notes in Computer Science, Torino, Italy, 2011. Springer
Verlag.

[32] Yves Caniou, Philippe Codognet, Florian Richoux, Daniel Diaz, and Salvador
Abreu. Large-scale Parallelism for Constraint-Based Local Search: the Costas
Array Case Study. Constraints, 20(1):30–56, 2015.

[33] Yves Caniou, Daniel Diaz, Florian Richoux, Philippe Codognet, and Salvador
Abreu. Performance Analysis of Parallel Constraint-Based Local Search. In
Symposium on Principles and Practice of Parallel Programming (PPoPP),
PPoPP ’12, New York, NY, USA, 2012. ACM. poster paper.

[34] Philippe Codognet and Daniel Diaz. Yet Another Local Search Method for
Constraint Solving. In Kathleen Steinhöfel, editor, Stochastic Algorithms:
Foundations and Applications, pages 342–344. Springer, 2001.

[35] Clayton Warren Commander. A survey of the quadratic assignment problem,
with applications. Morehead Electronic Journal of Applicable Mathematics,
4:MATH–2005–01, 2005.

[36] Jean-Francois Cordeau and Mirko Maischberger. A Parallel Iterated Tabu
Search Heuristic for Vehicle Routing Problems. Computers and Operations
Research, 39(9):2033–2050, 2012.

412 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

[37] Teodor Crainic, Michel Gendreau, Pierre Hansen, and Nenad Mladenovic.
Cooperative Parallel Variable Neighborhood Search for the p-Median. Journal
of Heuristics, 10(3):293–314, 2004.

[38] Teodor Crainic and Michel Toulouse. Special Issue on Parallel Meta-
Heuristics. Journal of Heuristics, 8(3):247–388, 2002.

[39] G. A. Croes. A method for solving traveling-salesman problems. Operations
Research, 6(6):791–812, 1958.

[40] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard API for
shared-memory programming. IEEE computational science and engineering,
5(1):46–55, 1998.

[41] H.A. David and H.N. Nagaraja. Order Statistics. Wiley series in probability
and mathematical statistics. John Wiley, 2003.

[42] Sérgio A de Carvalho Jr. and Sven Rahmann. Microarray layout as a quadratic
assignment problem. In German Conference on Bioinformatics (GCB), vol-
ume 83, pages 11–20, Tübingen, Germany, 2006.

[43] Daniel Diaz, Florian Richoux, Philippe Codognet, Yves Caniou, and Salvador
Abreu. Constraint-based Local Search for the Costas Array Problem. In LION
6, Learning and Intelligent OptimizatioN Conference, Paris, France, 2012.
Springer LNCS.

[44] Zvi Drezner. The Extended Concentric Tabu for the Quadratic Assignment
Problem. European Journal of Operational Research, 160(2):416–422, 2005.

[45] Zvi Drezner. Extensive experiments with hybrid genetic algorithms for the
solution of the quadratic assignment problem. Computers & Operations
Research, 35(3):717–736, 2008.

[46] Huub M. M. Eikelder, Bas J. M. Aarts, Marco G. A. Verhoeven, and Emile H. L.
Aarts. Sequential and Parallel Local Search Algorithms for Job Shop Schedul-
ing. In Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization, pages 359–371. Springer, Boston, MA, 1999.

[47] Merrill M. Flood. The traveling-salesman problem. Operations Research,
4(1):61–75, 1956.

[48] Edgar Gabriel and al. Open MPI: Goals, concept, and design of a next
generation MPI implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, pages 97–104, Budapest, Hungary, 2004.

[49] D. Gale and L. Shapley. College Admissions and the Stability of Marriage.
American Mathematical Monthly, 69(1):9–15, 1962.

[50] Bruno-Laurent Garcia, Jean-Yves Potvin, and Jean-Marc Rousseau. A Par-
allel Implementation of the Tabu Search Heuristic for Vehicle Routing Prob-
lems with Time Window Constraints. Computers & Operations Research,
21(9):1025–1033, 1994.

[51] F. García-López, B. Melián-Batista, J. A. Moreno-Pérez, and J. M. Moreno-
Vega. The Parallel Variable Neighborhood Search for the p -Median Problem.
Journal of Heuristics, 8(3):375–388, 2002.

[52] Frédéric Gardi and Karim Nouioua. Local search for mixed-integer nonlinear
optimization: A methodology and an application. In Evolutionary Computa-

10 Parallel Local Search 413

tion in Combinatorial Optimization - 11th European Conference, EvoCOP
2011, Torino, Italy, April 27-29, 2011. Proceedings, pages 167–178, 2011.

[53] M. Gendreau, F. Guertin, J.-Y. Potvin, and E. Taillard. Parallel Tabu Search
for Real-Time Vehicle Routing and Dispatching. Transportation Science,
33(4):381–390, 1999.

[54] Ian Gent and Toby Walsh. CSPLib: A Benchmark Library for Constraints. CP
1999 LNCS 1713 Springer, 1999.

[55] Fred Glover. Tabu Search–Part I. ORSA Journal on Computing, 1(3):190–206,
1989.

[56] Fred Glover. Tabu Search–Part II. ORSA Journal on Computing, 2(1):4–32,
1990.

[57] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
Jul 1997.

[58] Carla Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence,
126(1-2):43–62, 2001.

[59] Teofilo Gonzalez, editor. Handbook of Approximation Algorithms and Meta-
heuristics. Chapman and Hall / CRC, 2007.

[60] F. Guerriero and M. Mancini. A Cooperative Parallel Rollout Algorithm for
the Sequential Ordering Problem. Parallel Computing, 29:663–677, 2003.

[61] Magnus Halldorsson, Robert Irving, Kazuo Iwama, David Manlove, Shuichi
Miyazaki, Yasufumi Morita, and Sandy Scott. Approximability Results for
Stable Marriage Problems with Ties. Theoretical Computer Science, 306(1-
5):431–447, 2003.

[62] Magnus Halldorsson, Kazuo Iwama, Shuichi Miyazaki, and Hiroki Yanag-
isawa. Improved Approximation of the Stable Marriage Problem. ACM
Transactions on Algorithms, 3(3):266–277, 2007.

[63] Tad Hogg and Colin P. Williams. Solving the Really Hard Problems with
Cooperative Search. In AAAI Conference on Artificial Intelligence (AAAI-93),
pages 231–236, 1993.

[64] Holger Hoos and Thomas Stützle. Evaluating Las Vegas algorithms: Pitfalls
and remedies. In Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, UAI’98, pages 238–245. Morgan Kaufmann, 1998.

[65] Holger Hoos and Thomas Stützle. Towards a characterisation of the behaviour
of stochastic local search algorithms for SAT. Artificial Intelligence, 112(1-
2):213–232, 1999.

[66] Holger Hoos and Thomas Stützle. Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann / Elsevier, 2004.

[67] J. Humeau, A. Liefooghe, E. G. Talbi, and S. Verel. ParadisEO-MO: From
Fitness Landscape Analysis to Efficient Local Search Algorithms. Technical
report, INRIA, 2013.

[68] T. Ibaraki, K. Nonobe, and M. Yagiura, editors. Metaheuristics: Progress as
Real Problem Solvers. Springer Verlag, 2005.

[69] Robert Irving and David Manlove. Approximation Algorithms for Hard
Variants of the Stable Marriage and Hospitals/Residents Problems. Journal of
Combinatorial Optimization, 16(3):279–292, 2008.

414 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

[70] Kazuo Iwama, David Manlove, Shuichi Miyazaki, and Yasufumi Morita.
Stable Marriage with Incomplete Lists and Ties. In Proceedings of ICALP ’99:
the 26th International Colloquium on Automata, Languages and Programming,
number ii, pages 443–452. Springer-Verlag, 1999.

[71] Zoltán Király. Approximation of Maximum Stable Marriage. Technical report,
Egervary Research Group, Budapest, Hungary, 2011.

[72] Zoltán Király. Linear Time Local Approximation Algorithm for Maximum
Stable Marriage. Algorithms, 6(3):471—-484, aug 2013.

[73] S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671–680, 1983.

[74] Tjalling C. Koopmans and Martin Beckmann. Assignment Problems and the
Location of Economic Activities. Econometrica, 25(1):53–76, 1957.

[75] S Lin. Computer solutions of the traveling salesman problem. Bell System
Technical Journal, 44(10):2245–2269, 1965.

[76] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated Local
Search. In Handbook of Metaheuristics, pages 320–353. Kluwer Academic
Publishers, Boston, 2003.

[77] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Local Search Algo-
rithms on Graphics Processing Unit. A Case Study: The Permutation Percep-
tron Problem. In Evolutionary Computation in Combinatorial Optimization,
pages 264–275. LNCS 6022, Springer Verlag, 2010.

[78] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU Computing
for Parallel Local Search Metaheuristics. IEEE Transactions on Computers,
62(1):173–185, 2013.

[79] Rui Machado, Salvador Abreu, and Daniel Diaz. Parallel Local Search:
Experiments with a PGAS-based programming model. In 12th International
Colloquium on Implementation of Constraint and Logic Programming Systems,
pages 1–17, Budapest, Hungary, 2012.

[80] Rui Machado, Salvador Abreu, and Daniel Diaz. Parallel Performance of
Declarative Programming Using a PGAS Model. In Kostis Sagonas and Gopal
Gupta, editors, Practical Aspects of Declarative Languages, PADL’2013,
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2013.

[81] David Manlove, Robert Irving, Kazuo Iwama, Shuichi Miyazaki, and Yasu-
fumi Morita. Hard Variants of Stable Marriage. Theoretical Computer Science,
276(1-2):261–279, Apr 2002.

[82] Simon Martin, Djamila Ouelhadj, Patrick Beullens, Ender Ozcan, Angel A.
Juan, and Edmund K. Burke. A Multi-Agent Based Cooperative Approach
to Scheduling and Routing. European Journal of Operational Research,
254(1):169–178, 2016.

[83] Eric McDermid. A 3/2-Approximation Algorithm for General Stable Marriage.
In International Colloquium on Automata, Languages and Programming,
ICALP’2009, pages 689–700, Rhodes, Greece, 2009.

[84] David Meignan, Abderrafiaa Koukam, and Jean Charles Créput. Coalition-
based metaheuristic: A self-adaptive metaheuristic using reinforcement learn-
ing and mimetism. Journal of Heuristics, 16(6):859–879, 2010.

10 Parallel Local Search 415

[85] Nouredine Melab, Thé Van Luong, Karima Boufaras, and El-Ghazali Talbi.
ParadisEO-MO-GPU: A Framework for Parallel GPU-Based Local Search
Metaheuristics. In 15th annual conference on Genetic and evolutionary
computation conference GECCO ’13, pages 1189–1196, Amsterdam, The
Netherlands, 2013.

[86] Laurent Michel, Andrew See, and Pascal Van Hentenryck. Distributed
constraint-based local search. In Frédéric Benhamou, editor, CP’06, 12th Int.
Conf. on Principles and Practice of Constraint Programming, Lecture Notes
in Computer Science, pages 344–358. Springer Verlag, 2006.

[87] Michela Milano and Andrea Roli. MAGMA: A Multiagent Architecture for
Metaheuristics. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, 34(2):925–941, 2004.

[88] Nenad Mladenovic and Pierre Hansen. Variable Neighborhood Search. Com-
puters & Operations Research, 24(11):1097–1100, 1997.

[89] Hiroyuki Mori and Yoshihiro Ogita. A Parallel Tabu Search Based Method for
Reconfigurations of Distribution Systems. In 2000 Power Engineering Society
Summer Meeting (Cat. No.00CH37134), volume 1, pages 73–78. IEEE, 2000.

[90] Danny Munera. Solving Hard Combinatorial Optimization Problems using
Cooperative Parallel Metaheuristics. PhD Thesis, University Paris 1 Pantheon-
Sorbonne, 2016.

[91] Danny Munera, Daniel Diaz, and Salvador Abreu. Hybridization as Coopera-
tive Parallelism for the Quadratic Assignment Problem. In 10th International
Workshop, HM 2016, volume 9668 of Lecture Notes in Computer Science,
pages 47–61, Plymouth, UK, 2016. Springer International Publishing.

[92] Danny Munera, Daniel Diaz, and Salvador Abreu. Solving the Quadratic
Assignment Problem with Cooperative Parallel Extremal Optimization. In The
16th European Conference on Evolutionary Computation in Combinatorial
Optimisation, Porto, 2016.

[93] Danny Munera, Daniel Diaz, Salvador Abreu, and Philippe Codognet. A
Parametric Framework for Cooperative Parallel Local Search. In Christian
Blum and Gabriela Ochoa, editors, European Conference on Evolutionary
Computation in Combinatorial Optimisation (EvoCOP), volume 8600 of
Lecture Notes in Computer Science, pages 13–24, Granada, Spain, 2014.
Springer.

[94] Danny Munera, Daniel Diaz, Salvador Abreu, Francesca Rossi, Vijay Saraswat,
and Philippe Codognet. A Local Search Algorithm for SMTI and its exten-
sion to HRT Problems. In 3rd International Workshop on Matching Under
Preferences, Glasgow, UK, 2015.

[95] Danny Munera, Daniel Diaz, Salvador Abreu, Francesca Rossi, Vijay Saraswat,
and Philippe Codognet. Solving Hard Stable Matching Problems via Local
Search and Cooperative Parallelization. In AAAI, Austin, TX, USA, 2015.

[96] Djamila Ouelhadj and Sanja Petrovic. A Cooperative Hyper-heuristic Search
Framework. Journal of Heuristics, 16(6):835–857, 2010.

416 Philippe Codognet, Danny Munera, Daniel Diaz, and Salvador Abreu

[97] Gintaras Palubeckis. An Algorithm for Construction of Test Cases for the
Quadratic Assignment Problem. Informatica, Lith. Acad. Sci., 11(3):281–296,
2000.

[98] Katarzyna Paluch. Faster and Simpler Approximation of Stable Matchings.
Algorithms, 7(2):176–187, Nov 2014.

[99] Panos M. Pardalos, Leonidas S. Pitsoulis, Thelma D. Mavridou, and Mauricio
G. C. Resende. Parallel search for combinatorial optimization: Genetic algo-
rithms, simulated annealing, tabu search and GRASP. In Parallel Algorithms
for Irregularly Structured Problems (IRREGULAR), pages 317–331, 1995.

[100] J. Antonio Parejo, Antonio Ruiz-Cortés, Sebastián Lozano, and Pablo Fernan-
dez. Metaheuristic Optimization Frameworks: a Survey and Benchmarking.
Soft Computing, 16(3):527–561, 2012.

[101] International Exascale Software Project. Exascale roadmap 1.0. Technical
report, 2009. http://www.exascale.org/iesp/IESP:Documents.

[102] César Rego and Catherine Roucairol. A Parallel Tabu Search Algorithm Using
Ejection Chains for the Vehicle Routing Problem. In Meta-Heuristics, pages
661–675. Springer US, Boston, MA, 1996.

[103] Gerhard Reinelt. TSPLIB–A traveling salesman problem library. ORSA
Journal on Computing, 3(4):376–384, 1991.

[104] Celso Ribeiro and Isabel Rosseti. Efficient Parallel Cooperative Implementa-
tions of GRASP Heuristics. Parallel Computing, 33(1):21–35, 2007.

[105] Celso Ribeiro, Isabel Rosseti, and Reinaldo Vallejos. Exploiting run time dis-
tributions to compare sequential and parallel stochastic local search algorithms.
Journal of Global Optimization, 54:405–429, 2012.

[106] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David
Grove. X10 Language Specification - Version 2.3. Technical report, IBM
Research, 2012.

[107] Kenneth Sörensen and Fred Glover. Metaheuristics. In Encyclopedia of
Operations Research and Management Science, pages 960–970. Springer,
Boston, MA, 2013.

[108] Kenneth Sörensen, Marc Sevaux, and Fred Glover. A History of Metaheuristics.
In Rafael Marti, Panos Pardalos, and Mauricio Resende, editors, Handbook of
Heuristics. Springer, Boston, MA, 2016.

[109] Éric Taillard. Robust Taboo Search for the Quadratic Assignment Problem.
Parallel Computing, 17(4-5):443–455, 1991.

[110] E. G. Talbi, S. Cahon, and N. Melab. Designing Cellular Networks Using a
Parallel Hybrid Metaheuristic on the Computational Grid. Computer Commu-
nications, 30(4):698–713, 2007.

[111] El-Ghazali Talbi. Metaheuristics: From Design to Implementation. Wiley,
2009.

[112] El-Ghazali Talbi and Vincent Bachelet. COSEARCH: A parallel cooperative
metaheuristic. Journal of Mathematical Modelling and Algorithms, 5(1):5–22,
2006.

10 Parallel Local Search 417

[113] Sarosh Talukdar, Lars Baerentzen, Andrew Gove, and Pedro De Souza. Asyn-
chronous Teams: Cooperation Schemes for Autonomous Agents. Journal of
Heuristics, 4:295–321, 1998.

[114] Michel Toulouse, Teodor Crainic, and Michel Gendreau. Communication
Issues in Designing Cooperative Multi-Thread Parallel Searches. In I.H.
Osman and J.P. Kelly, editors, Meta-Heuristics: Theory & Applications, pages
501–522. Kluwer Academic Publishers, Norwell, MA., 1995.

[115] Charlotte Truchet, Alejandro Arbelaez, Florian Richoux, and Philippe
Codognet. Estimating parallel runtimes for randomized algorithms in con-
straint solving. J. Heuristics, 22(4):613–648, 2016.

[116] Charlotte Truchet, Florian Richoux, and Philippe Codognet. Prediction of
Parallel Speed-ups for Las Vegas Algorithms. In Jack Dongarra and Yves
Robert, editors, Proceedings of ICPP-2013, 42nd International Conference
on Parallel Processing. IEEE Press, October 2013.

[117] Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local Search.
The MIT Press, Aug 2005.

[118] Marcus Verhoeven. Parallel Local Search. PhD thesis, University of Eind-
hoven, Eindhoven, Netherlands, 1996.

[119] Marcus Verhoeven and Emile Aarts. Parallel Local Search. Journal of
Heuristics, 1(1):43–65, 1995.

[120] Stefan Voß. Meta-heuristics: The State of the Art. In Alexander Nareyek,
editor, Local Search for Planning and Scheduling, pages 1–23. Springer Berlin
Heidelberg, 2001.

[121] M. Yazdani, M. Amiri, and M. Zandieh. Flexible Job-Shop Scheduling with
Parallel Variable Neighborhood Search Algorithm. Expert Systems with Appli-
cations, 37(1):678–687, 2010.

Chapter 11

Parallel A* for State-Space Search

Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

Abstract A* is a best-first search algorithm for finding optimal-cost paths in graphs.
A* benefits significantly from parallelism because in many applications, A* is limited
by memory usage, so distributed memory implementations of A* that use all of the
aggregate memory on the cluster enable us to solve problems that can not be solved
by serial, single-machine implementations. We survey approaches to parallel A*,
focusing on decentralized approaches to A* which partition the state space among
processors. We also survey approaches to parallel, limited-memory variants of A*
such as parallel IDA*.

11.1 Introduction

This chapter surveys parallel A* for state-space search. State-space search is a
very general approach to solving a broad class of problems, such as robot planning
problems, domain-independent AI planning, solving puzzles, and multiple sequence
alignment problems in computational biology.

Solving a problem with state-space search involves defining the state space as a
graph where nodes represent states and edges represent actions (transitions) between
states. The task is to find a sequence of actions which transforms a given initial state
into a state that satisfies some goal conditions. In other words, finding a solution

Alex Fukunaga
The University of Tokyo, Tokyo, Japan, e-mail: fukunaga@idea.c.u-tokyo.ac.jp

Adi Botea
IBM Research, Dublin, Ireland, e-mail: ADIBOTEA@ie.ibm.com

Yuu Jinnai
The University of Tokyo, Tokyo, Japan, e-mail: ddyuudd@gmail.com

Akihiro Kishimoto
IBM Research, Dublin, Ireland, e-mail: AKIHIROK@ie.ibm.com

419© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_11

fukunaga@idea.c.u-tokyo.ac.jp
ADIBOTEA@ie.ibm.com
ddyuudd@gmail.com
AKIHIROK@ie.ibm.com
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_11&domain=pdf

420 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

boils down to finding a path from the initial state to a goal state. The quality of a
solution is typically measured in terms of the total cost of the path. The smaller the
cost, the better the solution. Optimal search aims at finding a minimal-cost solution.
We formally define concepts such as state spaces, state-space search problems, and
(optimal) solutions after the next example.

15 2 8 7
1 6 9 11
13 12 4
10 5 3 14

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Fig. 11.1: An instance of the sliding-tile puzzle with 15 tiles. Left: initial state. Right:
goal state

Consider the simple sliding-tile problem, where an n× n board is occupied by
n2−1 tiles and a “blank” space. As there are n2−1 tiles, the problem is also called
the n2−1 puzzle. Figure 11.1 illustrates a 15 puzzle instance. Given an initial state
where the tiles are out of order, the task is to find a sequence of actions which results
in the goal state where the tiles are in order. The actual, physical problem is played
by moving one of the tiles currently adjacent to the blank space into the blank space.
As this is equivalent to moving the blank space, it is customary to treat the problem
as having four actions (up, down, left, and right), which move the blank space. The
most common variant of this problem in the AI literature requires finding the solution
with the minimal number of moves. The problem of finding optimal solution for
the sliding-tile puzzle has been used as a standard benchmark problem in the AI
search algorithm literature because of the simplicity of the problem description and
the difficulty of finding an optimal solution. Although puzzles of small sizes, such
as 3× 3 and 4× 4, can be solved fairly easily, a 5× 5 version of this puzzle has
(5×5)!/2≈ 7.76×1024 possible configurations, providing a challenging benchmark
for search algorithms.

This survey is structured as follows. First, in Section 11.2, we give a formal
definition of state-space search, and review the A* algorithm [23], which is the
standard, baseline approach for optimally solving state-space search problems. Next,
in Section 11.3, we give an overview of the parallel-search related overheads which
pose the fundamental challenges in parallelizing A*, and review the two basic
approaches to parallelizing A*: the centralized and decentralized approaches. Then,
in Section 11.4, we describe hash-based work distribution, the class of algorithms
which is the current, state-of-the-art approach for parallelizing A* both on single,
shared-memory multi-core machines as well as on large-scale clusters. Hash-based
work distribution handles both load balancing and efficient detection of duplicate

11 Parallel A* for State-Space Search 421

states. Section 11.5 reviews structure-based search space partitioning, which is
another approach to decentralized search based on the concept of a duplicate detection
scope which allows minimization of communications among processors. Section
11.6 surveys the various approaches to implementing hashing strategies for hash-
based work distribution, including recent approaches which integrate key ideas
from structure-based search space partitioning. Parallel portfolios (meta-solvers that
combine multiple problem solvers) which include A*-based solvers as a component
are reviewed in Section 11.7. A fundamental limitation of A* is that it can exhaust
memory on hard problems, resulting in failure to solve the problem. Limited-memory
variants of A* such as IDA* [41] overcome this limitation (at the cost of some search
efficiency). We survey parallel, limited-memory A* variants in Section 11.8. With the
emergence of cloud environments offering virtually unlimited available resources (at
a cost), another approach to addressing the A* memory usage problem is to simply
use more machines. Section 11.9 describes resource allocation strategies for parallel
A* that are efficient with respect to cost and runtime. Recently, graphics processing
units (GPUs) with thousands of cores have become widely used. Since GPUs have
afundamentally different architecture compared to traditional CPUs, this provides
new challenges for parallelizing A*. Section 11.10 describes recent work on parallel
A* variants for GPUs. Finally, Section 11.11 reviews other approaches to parallel
state-space search.

11.2 Preliminaries: Review of A*

This section provides preliminary and background material for the rest of this chapter.
We first formally define state-space search, and then present the A* search algorithm.

The formal definitions presented below are adapted from Edelkamp and Schroedl’s
textbook on heuristic search [13].

Definition 1 (State Space Problem). A State Space Problem P = (S,A,s0,T) is
defined by a set of states S, an initial state s0 ∈ S, a set of goal states T ⊂ S, and
a finite set of actions A = a1, ...,am where each ai : S → S transforms a state into
another state.

For the sliding-tile puzzle, the state space problem formulation consists of the
states S, where each state corresponds to a unique configuration of the tiles, s0
is the given initial configuration, T is a singleton set whose sole member is the
configuration with the tiles in the correct order, and A corresponds to the transitions
between tile configurations.

Definition 2 (State Space Problem Graph). A problem graph G = (V,E,s0,T) for
the state space problem P = (S,A,s0,T) is defined by V = S as the set of nodes,
s0 ∈ S as the initial node, T as the set of goal nodes, and E ⊂ V ×V as the set of
edges that connect nodes to nodes with (u,v) ∈ E if and only if there exists an a ∈ A
with a(u) = v.

422 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

Definition 3 (Solution). A solution π = (a1, ...,ak) is an ordered sequence of actions
ai ∈ A, i ∈ 1, ...,k that transforms the initial state s0 into one of the goal states t ∈ T ;
that is, there exists a sequence of states ui ∈ S, i ∈ 0, ...,k, with u0 = s0,uk = t, and ui
is the outcome of applying ai to ui−1, i ∈ 1, ...,k.

In some problems, such as the sliding-tile puzzle, all actions have the same cost. In
other problems, however, different actions can have different costs. Take pathfinding
on a gridmap for example. Pathfinding refers to computing a path for a mobile agent,
such as a robot or a character in a game, from an initial location to a target location.
Gridmaps are a popular approach to discretizing the environment of the agent (e.g., a
game map) into a search graph. A gridmap is a two-dimensional array where a cell is
either traversable or blocked by an obstacle. The mobile agent occupies exactly one
traversable cell at a time. In creating the problem graph, all traversable cells become
states in the state space (equivalently, nodes in the problem graph). Two adjacent
traversable states are connected with an edge. On a so-called 8-connected gridmap,
or octile gridmap, adjacency relations are defined in 8 directions, four straight and
four diagonal. Straight edges have a cost of 1, and diagonal edges have a cost of

√
2.

State spaces where actions have different costs are called weighted state spaces.

Definition 4. A weighted state space problem P = (S,A,s0,T,w), where w is a cost
function w : A→ R. The cost of a path consisting of actions a1, ...,an is defined as
∑n

i=1 w(ai). For a weighted state space problem, there is a corresponding weighted
problem graph G = (V,E,s0,T,w), where w is extended to E → R in the straightfor-
ward way. The graph is uniformly weighted if w(u,v) is constant for all (u,v) ∈ E.
The weight or cost of a path π = (v0, ...,vk) is defined as w(π) = ∑k

i=1 w(vi−1,vi).

Definition 5. A solution from s0 to a given goal state v is optimal if its weight is
minimal among all paths between s0 and v.

A state space is undirected if for every action from a state u to a state v, there
exists an action from state v to state u. Otherwise, the state space is directed. For
example, the sliding tile puzzle has an undirected state space, as every action can be
reversed. On the other hand, planning an itinerary on a road map with one-way roads
is a directed state space problem.

In some domains, the problem graph is sufficiently small to fit into the memory of
the computer. In such cases, the search graph can be defined explicitly, enumerating
all nodes and edges. Pathfinding on gridmaps is a typical example of a problem
where the search graph can be defined explicitly. In many other problems, the search
graph is very large, much larger than can fit into the memory of a modern computer.
Examples include puzzles such as the Rubik’s cube and the sliding tile puzzle, as
well as many benchmark domains in AI domain-independent planning. In such cases,
the search graph is defined implicitly. Defining a search graph implicitly requires
three key ingredients: a specification of the initial state, a method for recognizing
goal nodes, and a method for expanding any node v ∈V . Expanding a node v refers
to generating all nodes u such that (v,u) is an edge in the problem graph.

11 Parallel A* for State-Space Search 423

Definition 6. In an implicit state space graph, we have an initial node s0 ∈V , a set
of goal nodes determined by a predicate Goal : V → B= {false, true}, and a node
expansion procedure Expand : V → 2V .

Defining a graph implicitly allows us to generate portions of the search graph on
demand, as a given search algorithm needs to explore new parts of the search graph.

11.2.1 The A* Algorithm

Algorithm 11.1: A*
1 Initialize OPEN to {s0}
2 while OPEN �= /0 do

3 Get and remove from OPEN a node n with a smallest f (n)
4 Add n to CLOSED
5 if n is a goal node then

6 Return solution path from s0 to n
7 for every successor n′ of n do

8 g1 = g(n)+ c(n,n′)
9 if n′ ∈ CLOSED then

10 if g1 < g(n′) then

11 Remove n′ from CLOSED and add it to OPEN
12 else

13 Continue
14 else

15 if n′ /∈ OPEN then

16 Add n′ to OPEN
17 else if g1 ≥ g(n′) then

18 Continue
19 Set g(n′) = g1
20 Set f (n′) = g(n′)+h(n′)
21 Set parent(n′) = n

22 Return failure (no path exists)

Most of the parallel state-space search algorithms presented in this chapter are
based on the serial algorithm A* [23]. A* is a best-first search algorithm whose
pseudocode is illustrated in Algorithm 11.1. A* keeps two sets of nodes, called the
OPEN list and the CLOSED list. The CLOSED list is the set of expanded nodes.
Recall that expanding a node refers to generating its successors. The OPEN list
contains the nodes that have been generated and are waiting to be expanded. At each
iteration of the main while loop shown in the pseudocode, A* selects for expansion
a node from the OPEN list, with the smallest f -value. The f -value of a node n is
defined as f (n) = g(n)+ h(n). The g(n) value is the cost of the best known path
from the root node s0 to the current node n. The h(n) value, called the heuristic

424 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

evaluation of n, is an estimation of the cost from n to a closest goal node. As such,
f (n) estimates the cost of a shortest solution passing through n.

A heuristic function h is admissible if h(n)≤C∗(n), where C∗(n) is the cost of the
minimal path from n to some goal, i.e., h is a lower bound on C∗. A heuristic function
is consistent (or monotonic) if h(n)≤ c(n,n′)+h(n′) for all nodes n and n′ such that
n′ is a successor of n; and h(t) = 0 for all goal nodes t. A consistent heuristic is also
admissible. With a consistent heuristic is used, nodes are never reopened (i.e., moved
from CLOSED to OPEN as shown at line 11 of Algorithm 11.1). In other words,
every node is expanded at most once. This allows us to simplify the algorithm when
consistent heuristics are used, replacing lines 10–13 with a “Continue” statement.

An algorithm is complete if it terminates and returns a solution whenever a solution
exists. An algorithm is admissible if it always returns an optimal solution whenever a
solution exists.

Theorem 1. A* is complete on both finite and infinite graphs [53].

Theorem 2. If h is an admissible function, then A* using h is admissible [23].

Besides producing optimal solutions, another powerful feature of A* is that it is
an efficient algorithm in terms of the number of node expansions performed. For
simplicity, assume that a consistent heuristic is used, to ensure that there are no
re-expansions. A* expands all nodes n with f (n) < C∗, where C∗ is the optimal
solution cost. It also expands some of the nodes n with f (n) =C∗, and no node with
f (n)>C∗. A* is efficient because any other admissible algorithm using the same
knowledge (e.g., the same heuristic h) must expand all nodes n with f (n)<C∗. The
reason is that, according to the knowledge available, a node n with f (n)<C∗ might
belong to a solution with a smaller cost than C∗. Unless extra information is available
(e.g., pruning based on symmetries in the state space) the node n has to be expanded
to explore whether a better solution can be found.

Besides being a powerful property of serial A*, the efficiency of A* in terms of
node expansions has a special significance to parallel best-first search. It allows us to
evaluate the efficiency of a parallel search algorithm, such as HDA* [37], even in
very difficult instances where serial A* fails and therefore a direct comparison of the
node expansions between HDA* and A* is not possible. The idea is to measure the
number of expanded nodes n with f (n)<C∗ as a fraction of all expanded nodes. If
the fraction is close to 1, then the instance at hand is solved quite efficiently [36].

11.3 Parallel Best-First Search Algorithms

Parallelization of A* heuristic search is important due to two reasons. First, effective
parallelization is necessary in order to obtain good speedup on multi-core processors.
However, in the case of parallelization on a cluster consisting of many machines,
parallelization offers another benefit which is at least as important as speedup, which
is increased aggregate memory. A* memory usage continuously increases during the

11 Parallel A* for State-Space Search 425

run, as it must keep all expanded nodes in memory in order to guarantee the soundness
(optimality of solution) and completeness of the algorithm. Running parallel A* on a
cluster of machines makes the entire aggregate memory of the cluster available to A*.
This allows parallel A* to solve problem instances that would not be solvable at all
on a single machine (using the same heuristic function). This offers a fundamental
benefit to parallelization of A*, and perhaps makes parallelization of A* an even
more pressing concern than for other search algorithms.

In this section, we first describe the major technical challenges that must be
addressed in parallel A*, and then describe the two basic approaches to parallelization
of A*: centralized and decentralized parallelization.

11.3.1 Parallel Overheads

Efficient implementation of parallel search algorithms is challenging due to several
types of overhead. Search overhead (SO) occurs when a parallel implementation of a
search algorithm expands (or generates) more states than a serial implementation. The
main cause of search overhead is partitioning of the search space among processors,
which has the side effect that access to non-local information is restricted. For
example, sequential A* can terminate immediately after a solution is found, because
it is guaranteed to be optimal. In contrast, when a parallel A* algorithm finds a (first)
solution at some processor, it is not necessarily a globally optimal solution. A better
solution which uses nodes being processed in some other processor might exist.

Synchronization overhead is the idle time wasted when some processors have to
wait for the others to reach synchronization points. For example, in a shared-memory
environment, the idle time can be caused by mutual exclusion locks on shared data.
Finally, communication overhead (CO) refers to the cost of inter-process information
exchange. In a distributed-memory environment, this includes the cost of sending a
message from one processor to another over a network. Even in a shared-memory
environment, there are overheads associated with moving work from one work queue
to another.

The key to achieving good speedup in parallel search is minimizing such over-
heads. This is often a difficult task, in part because the overheads are interdependent.
For example, reducing search overhead usually increases synchronization and com-
munication overhead.

Figure 11.2 presents a visual classification of these approaches, which summarizes
the survey of approaches in the next several sections.

11.3.2 Centralized Parallel A*

Algorithms such as breadth-first or best-first search (including A*) use an open list
which stores the set of states that have been generated but not yet expanded. In

426 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

������������������������	
����
������������������������

����������
����
���
�������

��
		
������	�������

����
����� �������
�!�� ������

�"���
�������
#������
��

��������	
��������������������
����������������������

����$%�����&��'����������������������������������
�
���%��
������������������������������������

	
��������
���
����

(�)�������	������

�
#�������
��	
���
��

��������������������������)
���
�����������
����������

������������������������������
����������������������%������
��

��
�������
*���������	�������

����	
���
)���#�)���

��))��
���
��

&��'
�
���
%��
��

�	��
+!��������	������,

����
����� �������
�!�� ����������
�#

������������������������ � ����������� ���������������������������

�����
-�������.

(
��
)��������	���
����/����0

�
#����))��
���
��
�!������

1�������
#������
��

)�����

1���������������������������������������

�����
-�����	
������
�

�����	
����������.

*���������	�������

�
#���������
�!������

�%������
��%�������1������

������
-������
��������.

2
���
�3�'���#���
����

��������	
���	�

(�%� ���
�����	���
����

��)�
����������

���������� ��	����������������������

����
(
��
)��������	�������/����0

Fig. 11.2: Classification of parallel best-first search algorithms

an early study, Kumar, Ramesh, and Rao [46] identified two broad approaches to
parallelizing best-first search, based on how the usage and maintenance of the open
list was parallelized. We first survey centralized approaches to parallel A*.

The most straightforward way to parallelize A* on a shared-memory, multi-core
machine is Simple Parallel A* (SPA*) [30], shown in Algorithm 11.2. In SPA*, a
single open list is shared among all processors. Each processor expands one of the
current best nodes from the globally shared open list, and generates and evaluates its
children. This centralized approach introduces very little or no search overhead, and
no load balancing among processors is necessary. Node re-expansions are possible
in SPA* because (as with most other parallel A* variants) SPA* does not guarantee
that a state has an optimal g-value when expanded. SPA* is especially simple to
implement in a shared-memory architecture by using a shared data structure for
the open list and closed list. However, concurrent access to the shared open list
becomes a bottleneck, even if lock-free data structures are used [4] – in fact, for
problems with fast node generation rates, SPA* exhibits runtimes that are slower than
single-threaded A* [4]. Thus, the scalability of the centralized approach is limited
unless the time required to expand each node is extremely expensive (if the node
expansion rate is slow enough, then concurrent access to the open list will not be a
bottleneck).

11 Parallel A* for State-Space Search 427

Algorithm 11.2: Simple Parallel A* (SPA*)
1 Initialize OPENshared to {s0}
2 Initialize Lock lo, li
3 Initialize incumbent.cost = ∞
4 In parallel, on each thread, execute 5-32
5 while TerminateDetection() do

6 if OPENshared = /0 or Smallest f (n) value of n ∈ OPENshared ≥ incumbent.cost then

7 Continue
8 AcquireLock(lo)
9 Get and remove from OPENshared a node n with a smallest f (n)

10 ReleaseLock(lo)
11 Add n to CLOSEDshared
12 if n is a goal node then

13 AcquireLock(li)
14 if path cost from s0 to n < incumbent.cost then

15 incumbent = path from s0 to n
16 incumbent.cost = path cost from s0 to n
17 ReleaseLock(li)
18 for every successor n′ of n do

19 g1 = g(n)+ c(n,n′)
20 if n′ ∈CLOSEDshared then

21 if g1 < g(n′) then

22 Remove n′ from CLOSEDshared and add it to OPENshared

23 else

24 Continue
25 else

26 if n′ /∈ OPENshared then

27 Add n′ to OPENshared

28 else if g1 ≥ g(n′) then

29 Continue
30 Set g(n′) = g1
31 Set f (n′) = g(n′)+h(n′)
32 Set parent(n′) = n

33 if incumbent.cost = ∞ then

34 Return failure (no path exists)
35 else

36 Return solution path from s0 to n

Vidal et al. [69] propose Parallel K-Best First Search, a multi-core version of
the K-BFS algorithm [16], a satisficing (non-admissible) best-first search variant.
Parallel KBFS is a centralized best-first search strategy, enhanced by the use of more
threads than the number of physical cores, which improves performance on hard
problems by exploiting search diversification effects. This is further improved using
a restart strategy. They show that good scaling behavior can be obtained on a 4-core
machine.

428 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

Phillips et al. have proposed PA*SE, a mechanism for reducing node re-expansions
in SPA* [54] that only expands nodes when their g-values are optimal, ensuring that
nodes are not re-expanded.

11.3.3 Decentralized Parallel A*

As described above, SPA* suffers from severe synchronization overhead due to the
need to constantly access shared open/closed lists.

Algorithm 11.3: Decentralized A* with Local OPEN/CLOSED lists
1 Initialize OPENp for each thread p
2 Initialize incumbent.cost = ∞
3 Add s0 to OPENComputeRecipient(s0)

4 In parallel, on each thread p, execute 5-31
5 while TerminateDetection() do

6 while BUFFERp �= /0 do

7 Get and remove from BUFFERp a triplet (n′,g1,n)
8 if n′ ∈CLOSEDp then

9 if g1 < g(n′) then

10 Remove n′ from CLOSEDp and add it to OPENp

11 else

12 Continue
13 else

14 if n′ /∈ OPENp then

15 Add n′ to OPENp

16 else if g1 ≥ g(n′) then

17 Continue
18 Set g(n′) = g1
19 Set f (n′) = g(n′)+h(n′)
20 Set parent(n′) = n
21 if OPENp = /0 or Smallest f (n) value of n ∈ OPENp ≥ incumbent.cost then

22 Continue
23 Get and remove from OPENp a node n with a smallest f (n)
24 Add n to CLOSEDp
25 if n is a goal node then

26 if path cost from s0 to n < incumbent.cost then

27 incumbent = path from s0 to n
28 incumbent.cost = path cost from s0 to n

29 for every successor n′ of n do

30 Set g1 = g(n)+ c(n,n′)
31 Add (n′,g1,n) to BUFFERComputeRecipient(n)

32 if incumbent.cost = ∞ then

33 Return failure (no path exists)
34 else

35 Return solution path from s0 to n

11 Parallel A* for State-Space Search 429

In contrast, in a decentralized approach to parallel best-first search, shown in
Algorithm 11.3, each processor has its own open list. Initially, the root processor
generates and distributes some search nodes among the available processors. Then,
each processor starts to locally run best-first search using its local open list (as well as
a closed list, in case of algorithms such as A*). Decentralizing the open list eliminates
the concurrency overhead associated with a shared, centralized open list, but load
balancing becomes necessary.

Kumar, Ramesh and Rao [46], as well as Karp and Zhang [34, 35] proposed
a random work allocation strategy, where newly generated states are sent to ran-
dom processors, i.e., in the decentralized algorithm schema in Algorithm 11.3, line
31, ComputeRecipient(n′) simply returns a random processor ID. In parallel archi-
tectures with non-uniform communication costs, a straightforward variant of this
randomized strategy is to send states to a random neighboring processor (with low
communication cost) to avoid the cost of sending to an arbitrary processor (cf., [12]).

The problem with these randomized strategies is that duplicate nodes are not
detected unless they are fortuitously sent to the same processor, which can result in a
tremendous amount of search overhead due to nodes that are redundantly expanded
by multiple processors. In many search applications, including domain-independent
planning, the search space is a graph rather than a tree, and there are multiple paths to
the same state. In sequential search, duplicates can be detected and pruned by using
a closed list (e.g., hash table) or other duplicate detection techniques (e.g., [44, 71]).
Efficient duplicate detection is critical for performance, both in serial and parallel
search algorithms, and can potentially eliminate vast amounts of redundant work.

In parallel search, duplicate state detection incurs several overheads, depending
on the algorithm and the machine environment. For instance, in a shared-memory
environment, many approaches, including work stealing, need to carefully manage
locks on the shared open and closed lists.

11.3.3.1 Termination Detection in Decentralized Parallel Search

In a decentralized parallel A*, when a solution is discovered, there is no guarantee
at that time that the solution is optimal [46]. When a processor discovers a locally
optimal solution, the processor broadcasts its cost. The search cannot terminate until
all processors have proved that there is no solution with a better cost. In order to
correctly terminate a decentralized parallel A*, it is not sufficient to check the local
open list at every processor. We must also ensure that there is no message en route
to some processor that could lead to a better solution. Various algorithms to handle
termination exist. A commonly used method is by Mattern [50].

Mattern’s method is based on counting sent messages and received messages. If
all processors were able to count simultaneously, it would be trivial to detect whether
a message is still en route. However, in reality, different processors Pi will report
their sent and received counters, S(ti) and R(ti), at different times ti. To handle this,
Mattern introduces a basic method where the counters are reported in two different
waves. Let R∗ = ∑i R(ti) be the accumulated received counter at the end of the first

430 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

wave, and S′∗ = ∑i S(t ′i) be the accumulated sent counter at the end of the second
wave. Mattern proved that if S′∗ = R∗, then the termination condition holds (i.e., there
are no messages en route that can lead to a better solution).

Mattern’s time algorithm is a variation of this basic method that allows checking
the termination condition in only one wave. Each work message (i.e., containing
search states to be processed) has a time stamp, which can be implemented as a
clock counter maintained locally by each processor. Every time a new termination
check is started, the initiating processor increments its clock counter and sends a
control message to another processor, starting a chain of control messages that will
visit all processors and return to the first one. When receiving a control message, a
processor updates its clock counter C to max(C,T), where T is the maximum clock
value among processors visited so far. If a processor contains a received message m
with a time stamp tm ≥ T , then the termination check fails. Obviously, if, at the end
of the chain of messages, the accumulated sent and received counters differ, then the
termination check fails as well.

11.4 Hash-Based Decentralized A*

An approach to decentralized A* which cleanly addresses both load balancing and
duplicate detection assigns a unique owner processor to each search node according
to a hash function. That is, in Algorithm 11.3, line 31, ComputeRecipient(n′) is
implemented by hashing, i.e., ComputeRecipient(n′) = hash(n′)mod numprocessors.
This maps each state to exactly one processor which “owns” the state. If the hash
keys are distributed uniformly among the processors, and the time to process each
state is the same, then load balancing is achieved. Furthermore, duplicate detection is
performed by the “owner” state – states that are already in the local OPEN/CLOSED
lists are duplicates, and by definition, nodes can never be expanded by a non-owner
processor.

The idea of hash-based work distribution for parallel best-first search was first
used in PRA* by Evett et al. [14], a limited-memory best-first search algorithm
for a massively parallel SIMD machine (see Section 11.8.4). It was then used in a
parallelization of SEQ_A*, a variant of A* that performs partial expansion of states,
on a hypercube by Mahapatra and Dutt [49], who called the technique Global Hashing
(GOHA). However, the hash-based work distribution mechanism itself was not
studied deeply by either Evett et al. or Mahapatra and Dutt, as their work encompassed
significantly more than this work distribution mechanism1 Transposition-Table-
Driven Work Scheduling (TDS) [61] is a distributed-memory, parallel IDA* with
hash-based work distribution (see Section 11.8.1). Kishimoto, Fukunaga, and Botea
reopened investigation into hash-based work distribution for A* by implementing

1 PRA* has a sophisticated node retraction mechanism which allows more nodes to be searched
in a limited amount of memory than A*, and GOHA was treated as a baseline for LOHA&QE, a
more complex mechanism which decouples duplicate checking and load balancing and also applies
a more localized hash function.

11 Parallel A* for State-Space Search 431

HDA*, a straightforward application of hash-based work distribution to A*, showing
that it scaled quite well on both multi-core machines and large-scale clusters [37, 36].
The key to achieving good parallel speedups in hash-based work distribution is the
hash function. While PRA* left the hash function undefined in the paper and GOHA
used a multiplicative hash function (see Section 11.6.1), HDA* used the Zobrist hash
function [77]. Unfortunately, the early work on HDA* did not quantitatively evaluate
the effect of the choice of hash function, resulting in some misleading results in later
work using implementations of HDA* that did not use a hash function which was
as effective as the Zobrist function. Recently, Jinnai and Fukunaga compared hash
distribution functions that have been used in the literature, showing that the Zobrist
hash function as well as Abstract Zobrist hashing, an improved version of the Zobrist
function, significantly outperforms other hash functions which have been used in
the literature [31]. Further details on hash functions as well as an experimental
comparison are in Section 11.6.

11.4.1 Hash Distributed A*

We now describe details of Hash Distributed A* (HDA*), a simple, decentralized
parallelization of A* using hash-based work distribution. In HDA* the closed and
open lists are implemented as a distributed data structure, where each processor
“owns” a partition of the entire search space. The local open and closed lists for
processor P are denoted OpenP and ClosedP. The partitioning is done by hashing
the state, as described below.

HDA* starts by expanding the initial state at the root processor. Then, each
processor P executes the following loop until an optimal solution is found:

1. First, P checks whether one or more new states have been received in its message
queue. If so, P checks for each new state s in ClosedP, in order to determine
whether s is a duplicate, or whether it should be inserted in OpenP.2

2. If the message queue is empty, then P selects a highest priority state from OpenP
and expands it, resulting in newly generated states. For each newly generated
state s, a hash key K(s) is computed based on the state representation, and the
reK(s) and s is sent to the processor that owns K(s). This send is asynchronous
and non-blocking. P continues its computation without waiting for a reply from
the destination.

In a straightforward implementation of hash-based work distribution on a shared-
memory machine, each thread owns a local open/closed list implemented in shared
memory, and when a state s is assigned to some thread, the writer thread obtains a
lock on the target shared memory, writes s, then releases the lock. Note that whenever
a thread P “sends” a state s to a destination dest(s), then P must wait until the

2 Even if the heuristic function [25] is consistent, parallel A* search may sometimes have to reopen
a state saved in the closed list. For example, P may receive many identical states with various
priorities from different processors and these states may reach P in any order.

432 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

lock for the shared open list (or message queue) for dest(s) is available and not
locked by any other thread. This results in significant synchronization overhead –
for example, it was observed in [5] that a straightforward implementation of PRA*
exhibited extremely poor performance on the Grid search problem, and multi-core
performance for up to 8 cores was consistently slower than sequential A*. While it
is possible to speed up locking operations by using, for example, highly optimized
implementations of lock operations in inline assembly language, the performance
degradation due to synchronization remains a considerable problem.

In contrast, the open/closed lists in HDA* are not explicitly shared among the
processors. Thus, even in a multi-core environment where it is possible to share
memory, all communications are done between separate MPI processes using non-
blocking send/receive operations (e.g. MPI_Bsend and MPI_Iprobe). and relies
on highly optimized message buffers implemented in MPI.

Every state must be sent from the processor where it is generated to its “owner”
processor. In their work with transposition-table-driven scheduling for parallel IDA*,
Romein et al. [62] showed that this communication overhead could be overcome
by packing multiple states with the same destination into a single message. HDA*
uses this state-packing strategy to reduce the number of messages. The relationship
between performance and message sizes depends on several factors such as network
configurations, the number of CPU cores, and CPU speed. In [37, 36], 100 states are
packed into each message on a commodity cluster using more than 16 CPU cores
and a HPC cluster, while 10 states are packed on the commodity cluster using fewer
than 16 cores.

11.5 Decentralized Search Using Structure-Based Search Space

Partitioning)

An alternate approach for load balancing is based on structured abstraction. Given
a state space graph and a projection function, an abstract state graph is (implicitly)
generated by projecting states from the original state space graph into abstract nodes.
In many domains, a projection function can be derived by ignoring some features
in the original state space. For example, an abstract space for the sliding-tile puzzle
domain can be created by projecting all nodes with the blank tile at position b to the
same abstract state. While the use of abstractions as the basis for heuristic functions
has a long history [53], the use of abstractions as a mechanism for partitioning search
states originated in Structured Duplicate Detection (SDD), an external memory
search which stores explored states on disk [72]. In SDD, an n-block is defined as the
set of all nodes which map to the same abstract node. SDD uses n-blocks to enable
duplicate detection. For any node n that belongs to n-block B, the duplicate detection
scope of n is defined as the set of n-blocks that can possibly contain duplicates of
n, and duplicate checks can be restricted to the duplication detection scope, thereby
avoiding the need to look for a duplicate of n outside this scope. SDD exploits this
property for external memory search by expanding nodes within a single n-block

11 Parallel A* for State-Space Search 433

B at a time and keeping the duplicate detection scope of the nodes in B in RAM,
avoiding costly I/O. Parallel Structured Duplicate Detection (PSDD) is a parallel
search algorithm that exploits n-blocks to address both synchronization overhead
and communication overhead [75]. Each processor is exclusively assigned to an
n-block and its neighboring n-blocks (which are the duplication detection scopes).
By exclusively assigning n-blocks with disjoint duplicate detection scopes to each
processor, synchronization during duplicate detection is eliminated. While PSDD
uses disjoint duplicate detection scopes to parallelize breadth-first heuristic search
[73], Parallel Best-NBlock-First (PBNF) [4] extends PSDD to best-first search on
multi-core machines by ensuring that n-blocks with the best current f -values are
assigned to processors.

Since livelock is possible in PBNF on domains with infinite state spaces, Burns
et al. proposed SafePBNF, a livelock-free version of PBNF [4]. Burns et al. [4] also
proposed AHDA*, a variant of HDA* using an abstraction-based node distribution
function. AHDA* is described below in Section 11.6.4.

11.6 Hash Functions for Hash-Based Decentralized Work

Distribution

The performance of hash-based decentralized A* algorithms in Section 11.4 de-
pends entirely on the characteristics of the hash function. However, early work on
hash-based decentralized A* did not present empirical evaluation of candidate hash
functions, and the importance of the choice of hash function was not fully under-
stood or appreciated. Recent work has investigated the performance characteristics
and tradeoffs among various hashing strategies, resulting in a significantly better
understanding of previous hashing strategies, as well as new hashing strategies that
combine previous methods in order to obtain superior performance [31, 33].

In this section, we first classify and review various hash functions which have been
proposed for hash-based distributed A* (Sections 11.6.1-11.6.6). We then present
an evaluation of some of the functions on the sliding-tile puzzle benchmark domain
(Section 11.6.7). Next, we review fully automated, domain-independent methods
for deriving hash functions (Section 11.6.8). Finally, we briefly review work on
hash-based work distribution in the related field of model checking (Section 11.6.9).

11.6.1 Multiplicative Hashing

The multiplication method H(κ) is a widely used hashing method that has been
observed to hash a random key to P slots with almost equal likelihood [11]. Multi-
plicative hashing M(s) uses this function to achieve good load balancing of nodes
among processors [49]:

434 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

M(s) = H(κ(s)), (11.1)
H(κ) = �p(κ ·A−�κ ·A�)�, (11.2)

where κ(s) is a key derived from the state s, p is the number of processors, and A is
a parameter in the range [0,1). Typically A = (

√
5−1)/2 (the golden ratio) is used

since the hash function is known to work well with this value of A [39]. As H(κ)
achieves almost perfect load balance for random κ keys, designing κ(s) so that it
appears to be random to state s is important to its performance. However, designing
such a κ(s) for a given domain is a non-trivial problem.

11.6.2 Zobrist Hashing

Since the work distribution in HDA* is completely determined by a global hash
function, the choice of the hash function is crucial to its performance. Kishimoto et
al. [37, 36] noted that it is desirable to use a hash function that uniformly distribute
nodes among processors, and used the Zobrist hash function [77], described below.
The Zobrist hash value of a state s, Z(s), is calculated as follows. For simplicity,
assume that s is represented as an array of n propositions, s = (x0,x1, ...,xn). Let R
be a table containing preinitialized random bit strings:

Z(s) := R[x0] xor R[x1] xor · · · xor R[xn] (11.3)

In the rest of the paper, we refer to the original version of HDA* by Kishimoto et
al. [37, 36], which used Zobrist hashing, as ZHDA* or HDA∗[Z].

It is possible for two different states to have the same Zobrist hash key, although
the probability of such a collision is extremely low with 64-bit keys. Thus, when using
Zobrist hashing, checking whether a state s is a duplicate requires first checking
whether the bucket for hash(s) is nonempty, and if so, the state itself needs to
be compared. Although this is slightly slower than comparing only the hash key,
duplicate checks are guaranteed to be correct.

11.6.3 Operator-Based Zobrist Hashing

Zobrist hashing seeks to distribute nodes uniformly among all processors, without
any consideration of the neighborhood structure of the search space graph. As a
consequence, communication overhead is high. Assume an ideal implementation
that assigns nodes uniformly among threads. Every generated node is sent to another
thread with probability 1− 1

#threads . Therefore, with 16 threads, > 90% of the nodes
are sent to other threads, so communication costs are incurred for the vast majority
of node generations.

11 Parallel A* for State-Space Search 435

Operator-based Zobrist hashing (OZHDA*) [32] partially addresses this problem
by manipulating the random bit strings in R, the table used to compute Zobrist hash
values, such that for some selected states S, there are some operators A(s) for s ∈ S
such that the successors of s that are generated when a ∈ A(s) is applied to s are
guaranteed to have the same Zobrist hash value as s, which ensures that they are
assigned to the same processor as s. Jinnai and Fukunaga [32] showed that OZHDA*
significantly reduces communication overhead compared to Zobrist hashing [32].
However, this may result in increased search overhead compared to HDA∗[Z], and it
is not clear whether the extent of the increased search overhead in OZHDA* could
be predicted a priori.

11.6.4 Abstraction

In order to minimize communication overhead in HDA*, Burns et al. [4] proposed
AHDA*, which uses abstraction based node assignment. AHDA* applies the state-
space partitioning technique used in PBNF [4] and PSDD [75]. Abstraction uses the
abstraction strategy to project nodes in the state space to abstract states. A hash-based
work distribution function can then be applied to the projected state. The AHDA*
implementation by Burns et al. [4] assigns abstract states to processors using a perfect
hashing and a modulus operator.

Thus, nodes that are projected to the same abstract state are assigned to the same
thread. If the abstraction function is defined so that children of node n are usually
in the same abstract state as n, then communication overhead is minimized. The
drawback of this method is that it focuses solely on minimizing communication
overhead, and there is no mechanism for equalizing load balance, which can lead to
high search overhead.

HDA* with abstraction can be characterized by two parameters to decide its behav-
ior – a hashing strategy and an abstraction strategy. Burns et al. [4] implemented the
hashing strategy using a perfect hashing and a modulus operator, and an abstraction
strategy following the construction for SDD [74] (for domain-independent plan-
ning), or a hand-crafted abstraction (for the sliding-tile puzzle and grid path-finding
domains).

Jinnai and Fukunaga showed that AHDA* with a static Nmax threshold performed
poorly for a benchmark set with varying difficulty because a fixed size abstract graph
results in very poor load balance, and proposed Dynamic AHDA* (DAHDA*), which
dynamically sets the size of the abstract graph according to the number of features
(the state space size is exponential in the number of features) [32].

436 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

11.6.5 Abstract Zobrist Hashing

Both search and communication overheads have a significant impact on the per-
formance of HDA*, and methods that only address one of these overheads are
insufficient. ZHDA*, which uses Zobrist hashing, assigns nodes uniformly to proces-
sors, achieving near-perfect load balance, but at the cost of incurring communication
costs on almost all state generations. On the other hand, abstraction-based methods
such as PBNF and AHDA* significantly reduce communication overhead by trying
to keep generated states at the same processor as where they were generated, but
this results in significant search overhead because all of the productive search may
be performed at one node, while all other nodes are searching unproductive nodes
that would not be expanded by A*. Thus, we need a more balanced approach that
simultaneously addresses both search and communication overheads.

Abstract Zobrist hashing (AZH) is a hybrid hashing strategy which augments the
Zobrist hashing framework with the idea of projection from abstraction, incorporating
the strengths of both methods. The AZH value of a state, AZ(s) is:

AZ(s) := R[A(x0)] xor R[A(x1)] xor · · · xor R[A(xn)] (11.4)

where A is a feature projection function, a many-to-one mapping from each raw
feature to an abstract feature, and R is a precomputed table for each abstract feature.

Thus, AZH is a 2-level, hierarchical hash, where raw features are first projected
to abstract features, and Zobrist hashing is applied to the abstract features. In other
words, we project state s to an abstract state s′ = (A(x0),A(x1), ...,A(xn)), and AZ(s) =
Z(s′). Figure 11.3 illustrates the computation of the AZH value for an 8-puzzle state.

AZH seeks to combine the advantages of both abstraction and Zobrist hashing.
Communication overhead is minimized by building abstract features that share the
same hash value (abstract features are analogous to how abstraction projects state
to abstract states), and load balance is achieved by applying Zobrist hashing to the
abstract features of each state.

Compared to Zobrist hashing, AZH incurs less CO due to abstract feature-based
hashing. While Zobrist hashing assigns a hash value to each node independently,
AZH assigns the same hash value to all nodes that share the same abstract features for
all features, reducing the number of node transfers. Also, in contrast to abstraction-
based node assignment, which minimizes communications but does not optimize
load balance and search overhead, AZH seeks good load balance, because the node
assignment considers all features in the state, rather than just a subset.

AZH is simple to implement, requiring only an additional projection per feature
compared to Zobrist hashing, and we can precompute this projection at initialization.
Thus, there is no additional runtime overhead per node during the search. The
projection function A(x) can be either hand-crafted or automatatically generated.

11 Parallel A* for State-Space Search 437

00100101

10001100

00000111

10101110
2

1

4 1 2
3 5 6
7 8

3

�1=2

�2=3

�3=4

State
�

Feature
��

Feature
Hash
�[��]

State
Hash
�(�)

(a) Zobrist hashing

01010001

01100010

00101100

00011111

2

1

4 1 2
3 5 6
7 8

State
�

Feature
��

3

Abstract
Feature
Hash
�[�(��)]

State
Hash
��(�)

1

2

3

Abstract
Feature
�����

����

����

����

�������

�������

�������

(b) Abstract Zobrist hashing

Fig. 11.3: Calculation of abstract Zobrist hash (AZH) value AZ(s) for the 8-puzzle: State s =
(x1,x2, ...,x8), where xi = 1,2, ...,9 (xi = j means tile i is placed at position j). The Zobrist hash
value of s is the result of xor’ing a preinitialized random bit vector R[xi] for each feature (tile) xi.
AZH incorporates an additional step which projects features to abstract features (for each feature xi,
look up R[A(xi)] instead of R[xi])

11.6.6 Hyperplane Work Distribution

HDA* suffers significantly from increased search overhead in the multiple sequence
alignment (MSA) domain whose search space is a directed acyclic graph with non-
uniform edge costs [40]. The increased search overhead is caused by reopening the
nodes in the closed list to ensure solution optimality. Even with a consistent heuristic,
HDA* may need to reopen a node, because HDA* selects the best node in its local
open list, which is not necessarily the globally best node. On the other hand, A* with
the consistent heuristic never reopens the nodes in the closed list.

Figure 11.4 illustrates an example of HDA*’s drawback. Assume that P1 owns
states a, c, and d, and P2 owns state b. P1 is likely to expand d via path a→ c→ d,

438 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

since P1 does not send a, c, and d to P2, while b needs to be sent to P2. Assume that
P1 saves d in the closed list with g(d) = 1+3 = 4 and expands d, then receives d
from P2 via a→ b→ d with g(d) = 1+ 1 = 2, and saves d in the open list. Then,
when choosing d for expansion, P1 needs to regenerate the successors of d.

Fig. 11.4: An example from [40], showing how HDA* may expand nodes in a
non-optimal order, resulting in duplicate search effort

In MSA with n sequences, a state can be represented by a location x =
(x1,x2, · · · ,xn) in the n-dimensional grid, where xi is an integer (0 ≤ xi ≤ li) and
li is the length of the i-th sequence. Based on the hyperplane defined in the structural
regularity in the MSA search space, the hyperplane work distribution (HWD) strategy
attempts to limit the owners of successors to some processors. In HWD, the owner
of state x is defined as:

Plane(x,d) :=
{
� 1

d ∑xi�
(
d ∈ {1,2,3, ...})

1
d ∑xi +

(
Z(x) mod 1

d

) (
d ∈ { 1

2 ,
1
3 , ...,

1
p}
)

where p is the number of processors, d is an empirically determined parameter
indicating the thickness of the hyperplane, and Z is the Zobrist function. Then,
processor Pi (0≤ i < p) owns x where i = P(x) and P(x) := Plane(x,d) mod p.

HWD’s work localization scheme increases the chance of allocating generated
successors to the same processor. The local open list of HWD orders these successors
more reasonably, thus contributing to reducing the frequency of reopening the states.
For example, if states b and c are allocated to the same processor and h(b) = h(c)
holds, the processor expands b before c. Thus, d via a→ b→ d is generated first,
and d via a→ c→ d is successfully removed.

Assume processor Pi owns x and let Succ(x) be a set of successors of x. Then, the
following theorem indicates that HWD bounds the number of processors to which Pi
sends the successors of x.

Theorem 3.

#

⎛
⎝ ⋃

x : P(x)=i

{
P(x′) | x′ ∈ Succ(x)

}⎞⎠≤ ⌊ n
d
+max(1,

1
d
)

⌋

11 Parallel A* for State-Space Search 439

There is a trade-off between load balancing and localization of the work. Choosing
a good value for d is important for achieving satisfactory parallel performance (see
[40] for details).

LOHA [49] distributes work with a hash function taking into account locality
for the Traveling Salesperson Problem where the search space is represented as
a levelized graph. LOHA is similar to HWD in the sense that both approaches
limit the number of destination processors to which each processor sends work.
However, there are notable differences between LOHA and HWD in the design of
the hash functions. LOHA does not employ the Zobrist function, which plays an
important role for uniformly distributing work. In addition, LOHA was designed
for the Hypercube machine whose communication delays between subcubes are
much larger than between processors inside the same subcube. As a result, LOHA
first allocates coarse-grained work to a subcube, then splits such allocated work
finely among the processors inside the subcube. On the other hand, HWD directly
partitions fine-grained work to a restricted subset of processors, aiming to reduce
search overhead incurred by reopening the states.

Both HWD and LOHA require the search space to be levelized. Their extension
to non-levelized graphs such as cost-optimal planning remains an open question.

11.6.7 Empirical Comparison of Hash Functions

To illustrate the scaling behavior of the various hash functions reviewed in this
section, We evaluated the performance of the following parallel A* algorithms on
the 15-puzzle. See [33] for a more detailed comparison

• AZHDA*: HDA* using Abstract Zobrist hashing [31]
• ZHDA*: HDA* using Zobrist hashing [36]
• AHDA*: HDA* using abstraction based work distribution [4]
• SafePBNF: [4]
• HDA*+GOHA: HDA* using multiplicative hashing, a hash function proposed

in [49]
• Randomized strategy: nodes are sent to random cores (duplicate nodes are not

guaranteed to be sent to the same core) [46, 35]
• Simple Parallel A* (centralized, single OPEN list) [30]

This experiment was run on an Intel Xeon E5-2650 v2 2.60 GHz CPU with 128
GB RAM, using up to 16 cores. The code for the experiment (based on the code by
[4]) is available3.

We solved 100 randomly generated instances using Manhattan distance heuristic.
Following [4], we implemented open list using a binary heap. The average runtime
of sequential A* solving these instances was 52.3 seconds.

3 https://github.com/jinnaiyuu/Parallel-Best-First-Searches

https://github.com/jinnaiyuu/Parallel-Best-First-Searches

440 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

The features used by Zobrist hashing in ZHDA* are the positions of each tile
i. The projections we used for Abstract Zobrist hashing in AZHDA* are shown in
Figure 11.5. The abstraction use by AHDA* and SafePBNF ignores the positions
of all tiles except tiles 1, 2, and 3. For HDA*+GOHA, we used a bit vector of the
positions of the tiles for κ .

Figure 11.6 shows the speedup of each method.

(a) 15-puzzle ZHDA (b) 15-puzzle AZHDA

Fig. 11.5: The hand-crafted abstract features used by abstract Zobrist hashing for the
15-puzzle

0

2

4

6

8

10

12

14

4 6 8 10 12 14 16

sp
ee

du
p

#threads

AZHDA*
ZHDA*

SafePBNF
GOHA

RandomHDA*
AHDA*

SharedOpen

Fig. 11.6: Comparison of speedups obtained by HDA* variants using various hashing
methods

11 Parallel A* for State-Space Search 441

11.6.8 Domain-Independent, Automatic Generation of Hash
Functions

The hashing methods described above are domain-independent methods that can be
applied to a wide range of problems. Although concrete implementations of hash
functions for a specific problem can be hand-crafted, as in the case of the sliding-tile
puzzle example above, it is possible to fully automate this process when a formal
model of a domain (such as PDDL/SAS+ for classical planning) is available. For
example, for ZHDA*, domain-independent feature generation for classical planning
problems represented in the SAS+ representation [2] is straightforward [36]. For
each possible assignment of value k to variable vi in a SAS+ representation, e.g.,
vi = k, there is a binary proposition xi,k (i.e., the corresponding STRIPS propositional
representation). Each such proposition xi,k is a feature to which a randomly generated
bit string is assigned, and the Zobrist hash value of a state can be computed by
xor’ing the propositions that describe the state, as in Equation 11.3.

For AHDA*, the abstract representation of the state space can be generated by
ignoring some of the features (SAS+ variables) and using the rest of the features to
represent the abstraction. Burns et al. [4] used the greedy abstraction algorithms by
Zhou and Hansen [74] to select the subset of features [4]. The greedy abstraction
algorithm adds one atom group to the abstract graph at a time, choosing the atom
group which minimizes the maximum out-degree of the abstract graph, until the
graph size (number of abstract nodes) reaches the threshold given by a parameter.

For AZHDA*, the feature projection function, which generates abstract features
from raw features, plays a critical role in determining the performance of AZHDA*,
because AZHDA* relies on the feature projection in order to reduce communications
overhead. Methods based on the domain-transition graph are proposed in [32, 33].

11.6.9 Hash-Based Work Distribution in Model Checking

While this paper focuses on parallel best-first search (more specifically, parallel
A*), which is applied to standard AI search domains including domain-independent
planning and the sliding-tile puzzle, distributed search, including hash-based work
distribution, has also been studied extensively by the parallel model checking com-
munity. Parallel Murϕ [64, 65] addresses verification tasks that involve exhaustively
enumerating all reachable states in a state space, and implements a hash-based work
distribution schema where each state is assigned to a unique owner processor. Kumar
and Mercer [45] present a load balancing technique as an alternative to the hash-
based work distribution implemented in Murϕ . The Eddy Murphi model checker [51]
specializes processors’ tasks, defining two threads for each processing node. The
worker thread performs state processing (e.g., state expansion), whereas the other
thread handles communication (e.g., sending and receiving states).

442 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

Lerda and Sisto parallelized the SPIN model checker to increase the availability
of memory resources [47]. Similarly to hash-based distribution, states are assigned to
an owner processing node, and get expanded at their owner node. However, instead
of using a hash function to determine the owner processor, only one state variable is
taken into account. This is done to increase the likelihood that the processor where a
state is generated is identical to the owner processor. Holzmann and Bošnački [27]
introduce an extension of SPIN to multi-core, shared memory machines. Garavel
et al. [20] use hash-based work distribution to convert an implicitly defined model-
checking state space into an explicit file representation. Symbolic parallel model
checking has been addressed in [26].

Thus, hash-based work distribution and related techniques for distributed search
have been widely studied for parallel model checking. There are several important
differences between previous work in model checking and this chapter. First, this
chapter focuses on parallel A*. In model checking, there is usually no heuristic
evaluation function, so depth-first search and breadth-first search is used instead of
best-first strategies such as A*.

Second, reachability analysis in model checking (e.g., [64, 65, 47, 20]), which
involves visiting all reachable states, does not necessarily require optimality. Search
overhead is not an issue because both serial and parallel solvers will expand all
reachable states exactly once. In contrast, A* specifically addresses the problem
of finding an optimal path, a significant constraint which introduces the issue of
search efficiency because distributed A* (including HDA*) searches many nodes
with f -cost greater than or equal to the optimal cost, as detailed in Section 11.3.1;
furthermore, node re-expansions in parallel A* can introduce search overhead.

11.7 Parallel Portfolios Using A*

An algorithm portfolio [29] is often employed and parallelized in other domains,
such as the ManySAT solver [22] for SAT solving and ArvandHerd [67] for satis-
ficing planning. This approach runs a set of different search algorithms in parallel.
Processors execute the search algorithms mostly independently, but may periodically
exchange important information with others.

A long-tailed distribution is often observed in the runtime distribution of the search
algorithms [21]. The algorithm portfolio attempts to exploit such search behaviors
by using a variety of algorithms that examine potentially overlapping, but different
portions of the search space.

Dovetailing [38], which is a simple version of the algorithm portfolio, performs
search simultaneously with different parameter settings. Valenzano et al. apply paral-
lel dovetailing [68] to the weighted versions of IDA* [41], RBFS [42], A*, PBNF
[4]4, as well as BULB [19], a suboptimal heuristic search. Their parallel dovetailing

4 The suboptimality of these weighted algorithms is is bounded by the values of the weights.

11 Parallel A* for State-Space Search 443

runs search with many different weight values without exchanging information, and
terminates when one of the algorithms returns a solution.

In their experiments on puzzle solving, admissible heuristics were used to evaluate
the performance of parallel dovetailing. On sequential planning, weighted A* was
executed with many different weights including the weight value of ∞ (i.e., identical
to Greedy Best-First Search (GBFS)), one admissible heuristics and two inadmissible
heuristics. In addition, the original Fast Downward planner using multiple heuristics
and GBFS is included as one of the algorithms.

In both puzzle solving and sequential planning, the experimental results shown by
Valenzano et al. [68] indicate that parallel dovetailing often yields good speedups
and solves additional problem instances. However, unlike other approaches described
in this article, parallel dovetailing does not always return optimal solutions.

11.8 Parallel, Limited-Memory A* (Parallel IDA*, TDS, PRA*)

In problem domains where the rate of node generation by A* is high, the amount of
memory available becomes a significant limitation, because A* can exhaust memory
and terminate before finding a solution. A*-based planners for domain-independent,
classical planning such as Fast Downward [24] generate between 104−105 nodes
per second on standard International Planning Competition benchmark domains. If a
single state requires 100 bytes to represent, this means that A*-based planning can
consume 106−107 bytes per second. Highly optimized solvers for specific domains
such as the sliding-tile puzzle can generate over 106− 107 nodes per second [6],
consuming memory even faster. This problem is particularly pressing for parallel A*
on a single machine. Although the amount of RAM on a single machine has been
steadily increasing, the number of cores on a single machine has also been rising, and
the amount of memory per core has remained fairly constant over the past decade
(around 2GB/core). If RAM is consumed at a rate of 107 bytes per second, then A*
will exhaust 1GB in approximately 100 seconds. Thus, in domains with fast node
generation rates, parallel A* can exhaust memory in a matter of minutes.

To overcome this limitation of A*, limited-memory, best-first search algorithms
for finding optimal paths in implicit graphs have been extensively studied. The
best-known algorithm is Iterative Deepening A* (IDA*) [41]. IDA* performs a
series of depth-first searches, where each iteration is limited to an f -cost bound,
which is increased on each iteration. Since each iteration of IDA* only performs
a depth-first search, this requires memory which is only linear in the depth of
the solution. Although each iteration revisits all of the nodes visited on all of the
previous iterations, many search spaces have the property that the runtime of iterative
deepening is dominated by the search performed in the last few iterations, so the
overhead of repeating the work done in past iterations is relatively small as a fraction
of the total search effort [41].

However, if the search space is a graph, there may be many paths to each state,
which results in significant amount of wasted search effort revisiting nodes through

444 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

different paths. To alleviate this problem with standard IDA*, a transposition table,
which is a cache of lower bounds on the solution cost achievable for previously visited
states, can be added so that search is pruned if a search reaches a previously visited
state and it can be proven that the pruning does not result in loss of optimality [58, 1].
Other limited-memory A* variants include MA* [9], SMA* [63], and recursive
best-first search [42].

Below, we review parallel, limited-memory A* variants.

11.8.1 Transposition Table-Driven Scheduling (TDS)

Transposition-Table-Driven work scheduling (TDS) [62, 60] is a distributed-memory,
parallel IDA* algorithm that uses a distributed transposition table. Similarly to HDA*,
TDS partitions the transposition table (TT) over processors and asynchronously dis-
tributes work using a Zobrist-based state hash function. In this way, TDS effectively
allocates the large amount of distributed memory to the TT and uses the TT for
efficiently detecting and pruning duplicate states that arrive at the processor. The
distributed TT implementation uses the Zobrist hash function for mapping states to
processors. TDS initiates parallelism within each iteration and synchronizes between
iterations. In a straightforward implementation of TDS, processors need to exchange
messages that convey back-propagated lower bounds, but the efficient implementa-
tion of Romein et al. eliminates such a back-propagation procedure, thus reducing
communication overhead in exchange for giving up the use of more informed lower
bounds (see [62, 60] for details). Due to this modification, the Mattern’s algorithm
(Section 11.3.3.1) is used for the termination detection of each IDA* iteration.

Romein et al. [62, 60] showed that TDS exhibits a very low (sometimes negative)
search overhead and yields significant (sometimes super-linear) speedups in solving
puzzles on a distributed-memory machine, compared to a sequential IDA* that runs
on a single computational node with limited RAM capacity. On the other hand, for
domain-independent planning (International Planning Contest benchmark instances) ,
Kishimoto et al. showed that HDA* was consistently faster than TDS but sometimes
terminates its execution due to memory exhaustion [36]. Therefore, Kishimoto et al.
proposed a simple, hybrid strategy combining HDA* and TDS. Their hybrid strategy
first executes HDA* until either one of the HDA* processors exhausts its memory
or the problem instance is solved. If HDA* fails to solve the problem instance, then
TDS, which skips some wasteful iterations detected by HDA* search, is executed.
Thus, their hybrid strategy inherits advantages of both HDA* and TDS.

11.8.2 Work Stealing for IDA*

Work stealing is a standard approach for partitioning the search space, and is used
particularly for parallelizing depth-first search in shared-memory environments. In

11 Parallel A* for State-Space Search 445

work stealing, each processor maintains a local work queue. When generating a new
state, the processor places that state in its local queue. When the processor has no
work in its queue, it “steals” work from the queue of a busy processor. Strategies for
selecting a processor to steal the work from and determining the amount of work to
steal are extensively studied (e.g., [57, 15, 17]).

Nevertheless, work stealing suffers from performance degradation in domains
where detecting duplicate states plays an important role. Romein et al. implemented
work stealing for IDA* with transposition tables and compared it with TDS on a
distributed-memory environment. They showed that TDS was 1.6 to 12.9 times faster
than work stealing in puzzle solving domains [60]. On the other hand, TDS requires
the use of a reasonably low-latency, high-bandwidth network for achieving efficient
parallel performance. Therefore, Romein and Bal combined TDS with work stealing
[59] in a grid environment where the communication latency is high between PC
clusters and is low within each cluster. They use TDS to parallelize IDA* within
each cluster for carrying out efficient duplication detection. When a cluster runs out
of work, it steals work from another cluster, enabling much smaller communication
overhead in the presence of the high-latency network.

Variants of work stealing-based IDA* for Single Instruction, Multiple Data
(SIMD) architecture machines have also been studied [55, 48]. Since all proces-
sors in a SIMD machine must execute the same instruction, these approaches used
a two-phase strategy which alternates between (1) a work (search) phase where all
processors perform local, IDA* search, and (2) a load balancing phase, during which
all processors exchange nodes.

To our knowledge, there is no published, empirical evaluation of work stealing for
A* (as opposed to IDA*) in distributed-memory environments. This is a curious gap in
the literature, given that work stealing is a standard approach for other parallel search
models (e.g., branch-and-bound and backtracking for integer programming and
constraint programming). This may be because work stealing strategies, particularly
work stealing across machines in a cluster, tend to be more complex to implement
than successful hash-based decentralized approaches such as HDA*. An investigation
of work stealing approaches to A* therefore remains an avenue for future work.

11.8.3 Parallel Window Search

Another approach to parallelizing IDA* is parallel-window search [56], where each
processor searches from the same root node, but is assigned a different bound – that
is, each processor is assigned a different, independent iteration of IDA*. When a
processor finishes an iteration, it is assigned the next highest bound which has not yet
been assigned to a processor. The first solution found by parallel window IDA* is not
necessarily optimal. However, if, after finding a solution in the processor assigned
bound b, we wait until all processors with bound less than b finish, then the optimality
of the best solution found is assured.

446 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

11.8.4 Parallel Retracting A* (PRA*)

Parallel Retracting A* (PRA*) [14] simultaneously addresses the problems of work
distribution and duplicate state detection. In PRA*, each processor maintains its
own open and closed lists. A hash function maps each state to exactly one processor
which “owns” the state (as mentioned in Section 11.4, the hash function used in
PRA* was not specified in [14]). When generating a state, PRA* distributes it
to the corresponding owner. If the hash keys are distributed uniformly across the
processors, load balancing is achieved. After receiving states, PRA* has the advantage
that duplicate detection can be performed efficiently and locally at the destination
processor.

While PRA* incorporated the idea of hash-based work distribution, PRA* differs
significantly from a parallel A* in that it is a parallel version of Retracting A* (RA)*
[14], a limited-memory search algorithm closely related to MA* [9] and SMA* [63].
When a processor’s memory becomes full, Parallel Retracting A* retracts states
from the search frontier, and their f -values are stored in their parents, which frees
up memory. Thus, unlike parallel A*, PRA* does not store all expanded nodes in
memory, and will not terminate due to running out of memory in some process. On
the other hand, the implementation of this retraction mechanism in [14] incurs a
significant synchronization overhead: when a processor P generates a new state s and
sends it to the destination processor Q, P blocks and waits for Q to confirm that s has
been successfully received and stored (or whether the send operation failed due to
memory exhaustion at the destination processor).

11.9 Parallel A* in Cloud Environments with Practically

Unlimited Available Resources

Cloud computing resources such as Amazon EC2, which offer computational re-
sources on demand, have become widely available in recent years. In addition to cloud
computing platforms, there is an increasing availability of massive-scale, distributed
grid computing resources such as TeraGrid/XSEDE, as well as massively parallel,
high-performance computing (HPC) clusters. These large-scale utility computing
resources share two characteristics that have significant implications for parallel
search algorithms. First, vast (practically unlimited) aggregate memory and CPU
resources are available on demand. Secondly, resource usage incurs a direct monetary
cost.

Previous work on parallel search algorithms has focused on makespan: minimizing
the runtime (wall-clock time) to find a solution, given fixed hardware resources; and
scalability: as resource usage is increased, how are makespan and related metrics
affected? However, the availability of virtually unlimited resources at some cost
introduces a new context for parallel search algorithm research where an explicit
consideration of cost-performance tradeoffs is necessary. For scalable algorithms, it

11 Parallel A* for State-Space Search 447

is possible to reduce the makespan by allocating more resources (up to some point).
In practice, this incurs a high cost with diminishing marginal returns. For parallel
A* variants, under-allocating resources results in memory exhaustion. On the other
hand, over-allocation is costly and undesirable. With the vast amounts of aggregate
memory available in utility computing, the cost (monetary funds) can be the new
limiting factor, since one can exhaust funds long before allocating all of the memory
resources available from a large cloud service provider.

In utility computing services, there is some notion of an atomic unit of resource
usage. A hardware allocation unit (HAU), is the minimal, discrete resource unit
that can be requested from a utility computing service. Various HAU types can be
available, each with different performance characteristics and cost. Commercial
clouds such as EC2 tend to have an immediate HAU allocation model with discrete
charges. Usage of a HAU for any fraction of an hour is rounded up. Grids and shared
clusters tend to be batch-job based with a continuous cost model. Jobs are submitted
to a centralized scheduler, with no guarantees about when a job will be run. The cost
is a linear function of the amount of resources used.

11.9.1 Iterative Allocation Strategy

A scalable, ravenous algorithm is an algorithm that can run on an arbitrary number of
processors, and whose memory consumption increases as it keeps running. HDA* is
an example of a scalable, ravenous algorithm. The iterative allocation (IA) strategy
[18] repeatedly runs a ravenous algorithm a until the problem is solved. The key
detail is deciding the number of HAUs to allocate in the next iteration, if the previous
iteration failed. We seek a policy that tries to minimize the total cost.

Two realistic assumptions which facilitate formal analysis are the following:
Firstly, all HAUs used by IA are identical hardware configurations. Secondly, if a
problem is solved on i HAUs, then it will be solved on j > i HAUs (monotonicity).
Monotonicity is usually (implicitly) assumed in the previous work on parallel search.
Let Tv be the makespan (wall-clock) time needed to solve a problem on v HAUs. In a
continuous cost model, the cost on v HAUs is Tv×v. In a discrete cost model, the cost
is �Tv�× v. The minimal width W+ is the minimum number of HAUs that can solve
a problem with a given ravenous algorithm. Given a cost model (i.e., continuous or
discrete), C+ is the associated min width cost. C∗ is the optimal cost to solve the
problem, and the minimal cost width W ∗ is the number of HAUs that results in a
minimal cost. Since W ∗ is usually not known a priori, the best we can hope for is to
develop strategies that approximate the optimal values.

The max iteration time E is the maximum actual (not rounded up) time that an
iteration can run before at least 1 HAU exhausts memory.

The min-width cost ratio R+ is defined as I(S)/C+, where I(S) is the total cost
of IA (using a particular allocation strategy S). The min-cost ratio R∗ is defined as
I(S)/C∗. The total cost I(S) of IA is accumulated over all iterations. In a discrete cost
model, times spent by individual HAUs are rounded up. The effect of the rounding

448 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

up is alleviated by the fact that HAUs will use any spare time left at the end of one
iteration to start the next iteration.

A particularly simple but useful strategy is the Geometric (bi) Strategy, which
was analyzed and evaluated by [18]. The geometric strategy allocates �bi� HAUs
at iteration i, for some b > 1. For example, the 2i (doubling) strategy doubles the
number of HAUs allocated on each iteration.

Cloud platforms such as Amazon EC2 and Windows Azure typically have discrete
cost models, where the discrete billing unit is 1 hour. This relatively long unit of time,
combined with the fast rate at which search algorithms consume RAM, leads to the
observation that many (but not all) search applications will exhaust the RAM/core
in a HAU within a single billing time unit in modern cloud environments. In other
words, a single iteration of IA will complete (by either solving the problem or
running out of memory) within 1 billing time unit (i.e., E ≤ 1). This observation was
experimentlly validated in [18] for domain-independent planning benchmarks and
sequence alignment benchmarks. In addition, HDA* has been observed to exhaust
memory within 20 minutes on every planning and 24-puzzle problem studied in [36].
With a sufficiently small E, all iterations could be executed within a single billing
time unit, entirely eliminating the repeated allocation cost overhead.

In a discrete cost model with E ≤ 1, the cost to solve a problem on v HAUs
is proportional to v. As a direct consequence, W+ =W ∗ and thus R+ = R∗. It can
be shown that in the best case, R∗ = R+ = 1, in the worst case, R∗wo = R+

wo ≤ b2

b−1 ,

and in the average case, R∗avg = R+
avg ≤ 2b2

b2−1 . The worst case bound b2/(b− 1) is
minimized by the doubling strategy (b = 2). As b increases above 2, the upper bound
for R∗avg improves, but the worst case gets worse. Therefore, the doubling strategy is
the natural allocation policy to use in practice. For the 2i strategy, the average case
ratio is bounded by 8/3≈ 2.67, and the worst case cost ratio does not exceed 4. With
the 2i strategy in a discrete cost model when E ≤ 1, we never pay more than 4 times
the optimal, but a priori unknown cost.

11.10 Parallel A* and IDA* on Graphics Processing Units

General-purpose computing using the thousands of cores available on Graphics
Processing Units (GPUs) is currently a very active area of research. Zhou and Zeng
propose a GPU-based A* algorithm using many (thousands) of parallel priority
queues (OPEN lists) [76]. A fundamental tradeoff successfully exploited by this
approach is that by increasing the number of threads (parallel queues), they increase
the effective parallelism. This results in duplicate node generations, but the duplicates
are efficiently detected and eliminated using hash-based duplicate detection.

The current bottleneck with executing A* entirely in the GPU is memory capacity
– the current, state-of-the-art GPU with the largest amount of RAM (Nvidia P100)
has 16GB of global memory, which is an order of magnitude smaller than the amount
of RAM on a current workstation. Since this GPU RAM is shared among thousands

11 Parallel A* for State-Space Search 449

of cores, the amount of memory per core is several orders of magnitude smaller than
the amount of RAM per core for the CPU, which limits the size of the search spaces
that can be optimally searched.

As discussed in Section 11.8, one approach to limit memory usage is iterative
deepening. Horie and Fukunaga developed Block-Parallel IDA* (BPIDA*) [28], a
parallel version of IDA* [41] for the GPU. Although the single instruction, multi-
thread architecture used in NVIDIA GPUs is somewhat similar to earlier SIMD
architectures, Horie and Fukunaga found that simply porting earlier SIMD IDA*
approaches [55, 48] to the GPU results in extremely poor performance due to warp
divergence and load balancing overheads. Instead of assigning a subtree of the
search to a single thread as SIMD IDA* does, BPIDA* assigns a subtree to a GPU
block (a group of threads which execute on the same streaming multiprocessor and
share memory), and each block has a shared, parallel open list. This was shown to
significantly improve parallel efficiency on the 15-puzzle. Their implementation of
BPIDA* only uses the shared memory, and completely avoids using the GPU global
memory (RAM on the GPU which is shared by all streaming multiprocessors). This
was possible because 15-puzzle states can be represented compatly enough that the
search stacks fit entirely in shared memory; in addition, they used Mahnattan distance
as the heuristic function, which requires no memory. Thus, BPIDA* achieves good
parallel efficiency but the search is not efficient compared to a state-of-the-art IDA*
implementation which uses a more powerful but memory-intensive heuristic function
(e.g., pattern databases [43]). Using such memory-intensive heuristics (as well as
other memory-intensive methods such as a transposition tables [58]) on the GPU will
require using the global memory and is a direction for future work.

Heterogeneous approaches which use both the GPU as well as CPU is an open
area for future work. One instance of such a hybrid GPU/CPU based approach is for
best-fist search with a blind heuristic by Sulweski et al [66]. Their algorithm uses a
GPU to accelerate precondition checks and successor generation, but uses the CPU
for duplicate detection.

Finally, a different application of many-core GPU architectures is for multi-agent
search, where each core executes an independent A* search for each agent in the
simulation environment [3].

11.11 Other Approaches

One alternative to partitioning the search space among processors is to parallelize
the computation done during the processing of a single search node (cf., [7, 8]).
The Operator Distribution Method for parallel Planning (ODMP) [70] parallelizes
the computation at each node. In ODMP, there is a single controlling thread, and
several planning threads. The controlling thread is responsible for initializing and
maintaining the current search state. At each step of the controlling-thread main loop,
it generates the applicable operators, inserts them in an operator pool, and activates
the planning threads. Each planning thread independently takes an operator from

450 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

this shared operator pool, computes the grounded actions, generates the resulting
states, evaluates the states with the heuristic function, and stores the new state and its
heuristic value in a global agenda data structure. After the operator pool is empty,
the controlling thread extracts the best new state from the global agenda, assigning it
to the new, current state.

The best parallelization strategy for a search algorithm depends on the properties
of the search space, as well as the parallel architecture on which the search algorithm
is executed. The EUREKA system [10] used machine learning to automatically
configure parallel IDA* for various problems (including nonlinear planning) and
machine architectures.

Niewiadomski et al. [52] propose PFA*-DDD, a parallel version of Frontier A*
with Delayed Duplicate Detection. PFA*-DDD partitions the open sets into groups
(interval lists) and assigns them to processors. PFA*-DDD returns the cost of a path
from start to target, not an actual path. While divide-and-conquer (DC) can be used
to reconstruct a path (as in sequential frontier search), parallel DC poses non-trivial
design issues that need to be addressed in future work.

Acknowledgements This work was supported in part by JSPS KAKENHI grants 25330253 and
17K00296.

References

[1] Akagi, Y., Kishimoto, A., Fukunaga, A.: On transposition tables for single-
agent search and planning: Summary of results. In: Proceedings of the 3rd
Symposium on Combinatorial Search (SOCS), pp. 1–8 (2010)

[2] Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Computa-
tional Intelligence 11(4), 625–655 (1995)

[3] Bleiweiss, A.: GPU accelerated pathfinding. In: Proceedings of the EU-
ROGRAPHICS/ACM SIGGRAPH Conference on Graphics Hardware 2008,
Sarajevo, Bosnia and Herzegovina, 2008, pp. 65–74 (2008). DOI 10.
2312/EGGH/EGGH08/065-074. URL http://dx.doi.org/10.2312/
EGGH/EGGH08/065-074

[4] Burns, E., Lemons, S., Ruml, W., Zhou, R.: Best-first heuristic search for
multicore machines. Journal of Artificial Intelligence Research (JAIR) 39,
689–743 (2010)

[5] Burns, E., Lemons, S., Zhou, R., Ruml, W.: Best-first heuristic search for
multi-core machines. In: Proceedings of the Twenty-First International Joint
Conference on Artificial Intelligence IJCAI-09 (2009)

[6] Burns, E.A., Hatem, M., Leighton, M.J., Ruml, W.: Implementing fast heuristic
search code. pp. 25–32 (2012)

[7] Campbell, M., Hoane, J., Hsu, F.: Deep Blue. Artificial Intelligence 134(1-2),
57–83 (2002)

http://dx.doi.org/10.2312/EGGH/EGGH08/065-074
http://dx.doi.org/10.2312/EGGH/EGGH08/065-074

11 Parallel A* for State-Space Search 451

[8] Cazenave, T., Jouandeau, N.: On the parallelization of UCT. In: H. van den
Herik et al. (ed.) Proceedings of Computers and Games CG-08, LNCS, vol.
5131, pp. 72–80. Springer (2008)

[9] Chakrabarti, P., Ghose, S., Acharya, A., de Sarkar, S.: Heuristic search in
restricted memory. Artificial Intelligence 41(2), 197–221 (1989)

[10] Cook, D., Varnell, R.: Adaptive parallel iterative deepening search. Journal of
Artificial Intelligence Research 9, 139–166 (1998)

[11] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduc-
tion to Algorithms, Second Edition. The MIT Press (2001). URL
http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20{&}path=ASIN/0262531968

[12] Dutt, S., Mahapatra, N.: Scalable load balancing strategies for parallel A*
algorithms. Journal of parallel and distributed computing 22, 488–505 (1994)

[13] Edelkamp, S., Schroedl, S.: Heuristic Search: Theory and Applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2010)

[14] Evett, M., Hendler, J., Mahanti, A., Nau, D.: PRA∗: Massively parallel heuristic
search. Journal of Parallel and Distributed Computing 25(2), 133–143 (1995)

[15] Feldmann, R.: Spielbaumsuche mit massiv parallelen Systemen. Ph.D. thesis,
University of Paderborn (1993). English translation titled Game tree search on
massively parallel systems is available.

[16] Felner, A., Kraus, S., Korf, R.E.: Kbfs: K-best-first search. Annals of Mathe-
matics and Artificial Intelligence 39, 19–39 (2003)

[17] Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5
multithreaded language. In: ACM SIGPLAN Conferences on Programming
Language Design and Implementation (PLDI’98), pp. 212–223 (1998)

[18] Fukunaga, A., Kishimoto, A., Botea, A.: Iterative resource allocation for
memory intensive parallel search algorithms on clouds, grids, and shared
clusters. In: Proceedings of the National Conference on Artificial Intel-
ligence (AAAI) (2012). URL http://www.aaai.org/ocs/index.
php/AAAI/AAAI12/paper/view/5054

[19] Furcy, D., Koenig, S.: Limited discrepancy beam search. In: Proceedings of the
International Joint Conference on Artificial Intelligence, pp. 125–131 (2005)

[20] Garavel, H., Mateescu, R., Smarandache, I.M.: Parallel state space construction
for model-checking. In: Proceedings of the 8th International SPIN Workshop,
pp. 217–234 (2001)

[21] Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems. Journal of Automated Reasoning
24(1-2), 67–100 (2000)

[22] Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation 6, 245–262 (2009)

[23] Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on System Sciences and Cybernetics
SSC-4(2), 100–107 (1968)

[24] Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelli-
gence Research 26, 191–246 (2006). DOI 10.1613/jair.1705

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20{&}path=ASIN/0262531968
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20{&}path=ASIN/0262531968
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5054
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5054

452 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

[25] Helmert, M., Haslum, P., Hoffmann, J.: Flexible abstraction heuristics for
optimal sequential planning. In: Proceedings of the Seventeenth International
Conference on Automated Planning and Scheduling ICAPS-07, pp. 176–183
(2007)

[26] Heyman, T., Geist, D., Grumberg, O., Schuster, A.: Achieving scalability in
parallel reachability analysis of very large circuits. In: Proceedings 12th Inter-
national Conference on Computer Aided Verification, pp. 20–35 (2000)

[27] Holzmann, G.J., Bošnački, D.: The design of a multicore extension of the SPIN
model checker. IEEE Transactions on Software Engineering 33(10), 659–674
(2007)

[28] Horie, S., Fukunaga, A.S.: Block-parallel IDA* for GPUs. In: Proceedings of
the Tenth International Symposium on Combinatorial Search, Edited by Alex
Fukunaga and Akihiro Kishimoto, 16-17 June 2017, Pittsburgh, Pennsylva-
nia, USA., pp. 134–138 (2017). URL https://aaai.org/ocs/index.
php/SOCS/SOCS17/paper/view/15801

[29] Huberman, B., Lukose, R., Hogg, T.: An economics approach to hard computa-
tional problems. Science 275(5296), 51–54 (1997)

[30] Irani, K., Shih, Y.: Parallel A* and AO* algorithms: An optimality criterion and
performance evaluation. In: International Conference on Parallel Processing,
pp. 274–277 (1986)

[31] Jinnai, Y., Fukunaga, A.: Abstract Zobrist hashing: An efficient work distri-
bution method for parallel best-first search. In: Proceedings of the National
Conference on Artificial Intelligence (AAAI), pp. 717–723 (2016)

[32] Jinnai, Y., Fukunaga, A.: Automated creation of efficient work distribution
functions for parallel best-first search. In: Proc. ICAPS (2016)

[33] Jinnai, Y., Fukunaga, A.: On work distribution functions for parallel best-first
search. Journal of Artificial Intelligence Research (2017). (to appear)

[34] Karp, R., Zhang, Y.: A randomized parallel branch-and-bound procedure. In:
Proceedings of the 20th ACM Symposium on Theory of Computing (STOC),
pp. 290–300 (1988)

[35] Karp, R., Zhang, Y.: Randomized parallel algorithms for backtrack search and
branch-and-bound computation. Journal of the Association for Computing
Machinery 40(3), 765–789 (1993)

[36] Kishimoto, A., Fukunaga, A., Botea, A.: Evaluation of a simple, scalable, paral-
lel best-first search strategy. Artificial Intelligence 195, 222–248 (2013). DOI
10.1016/j.artint.2012.10.007. URL http://linkinghub.elsevier.
com/retrieve/pii/S0004370212001294

[37] Kishimoto, A., Fukunaga, A.S., Botea, A.: Scalable, parallel best-first
search for optimal sequential planning. In: Proc. ICAPS, pp. 201–
208 (2009). URL http://aaai.org/ocs/index.php/ICAPS/
ICAPS09/paper/view/705

[38] Knight, K.: Are many reactive agents better than a few deliberative ones? In:
Proceedings of the 13th International Joint Conference on Artificial Intelligence,
pp. 432–437 (1993)

https://aaai.org/ocs/index.php/SOCS/SOCS17/paper/view/15801
https://aaai.org/ocs/index.php/SOCS/SOCS17/paper/view/15801
http://linkinghub.elsevier.com/retrieve/pii/S0004370212001294
http://linkinghub.elsevier.com/retrieve/pii/S0004370212001294
http://aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/view/705
http://aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/view/705

11 Parallel A* for State-Space Search 453

[39] Knuth, D.E.: "Sorting and Searching", The Art of Computer Programming,
vol. 3. Addison-Wesley (1973)

[40] Kobayashi, Y., Kishimoto, A., Watanabe, O.: Evaluations of Hash Distributed
A* in optimal sequence alignment. In: Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, pp. 584–590 (2011)

[41] Korf, R.: Depth-first iterative deepening: An optimal admissible tree search.
Artificial Intelligence 97, 97–109 (1985)

[42] Korf, R.: Linear-Space Best-First Search. Artificial Intelligence 62(1), 41–78
(1993)

[43] Korf, R.E., Felner, A.: Disjoint pattern database heuristics. Artificial Intelli-
gence 134(1-2), 9–22 (2002)

[44] Korf, R.E., Zhang, W.: Divide-and-conquer frontier search applied to optimal
sequence alignment. In: Proceedings of the 17th National Conference on
Artificial Intelligence AAAI-00, pp. 910–916 (2000)

[45] Kumar, R., Mercer, E.G.: Load balancing parallel explicit state model checking.
Electronic Notes in Theoretical Computer Science 128 (2005)

[46] Kumar, V., Ramesh, K., Rao, V.N.: Parallel best-first search of state-space
graphs: A summary of results. In: Proceedings of the 7th National Conference
on Artificial Intelligence AAAI-88, pp. 122–127 (1988)

[47] Lerda, F., Sisto, R.: Distributed-memory model checking with SPIN. In: Theo-
retical and Practical Aspects of SPIN Model Checking, 5th and 6th International
SPIN Workshops, Lecture Notes in Computer Science, vol. 1680, pp. 22–39
(1999)

[48] Mahanti, A., Daniels, C.: A SIMD approach to parallel heuristic search. Artifi-
cial Intelligence 60, 243–282 (1993)

[49] Mahapatra, N., Dutt, S.: Scalable global and local hashing strategies for dupli-
cate pruning in parallel A* graph search. IEEE Transactions on Parallel and
Distributed Systems 8(7), 738–756 (1997)

[50] Mattern, F.: Algorithms for distributed termination detection. Distributed
Computing 2(3), 161–175 (1987)

[51] Melatti, I., Palmer, R., Sawaya, G., Yang, Y., Kirby, R.M., Gopalakrishnan,
G.: Parallel and distributed model checking in Eddy. International Journal on
Software Tools for Technology Transfer 11(1), 13–25 (2009)

[52] Niewiadomski, R., Amaral, J.N., Holte, R.C.: Sequential and parallel algorithms
for frontier A* with delayed duplicate detection. In: Proceedings of the 21st
National Conference on Artificial Intelligence (AAAI), pp. 1039–1044 (2006)

[53] Pearl, J.: Heuristics - Intelligent Search Strategies for Computer Problem Solv-
ing. Addison–Wesley (1984)

[54] Phillips, M., Likhachev, M., Koenig, S.: PA*SE: Parallel A* for slow ex-
pansions. In: Proc. ICAPS (2014). URL http://www.aaai.org/ocs/
index.php/ICAPS/ICAPS14/paper/view/7952

[55] Powley, C., Ferguson, C., Korf, R.: Depth-first heuristic search on a SIMD
machine. Artificial Intelligence 60, 199–242 (1993)

[56] Powley, C., Korf, R.: Single-agent parallel window search. IEEE Transactions
on Pattern Analysis and Machine Intelligence 13(5), 466–477 (1991)

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7952
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7952

454 Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto

[57] Rao, V.N., Kumar, V.: Parallel depth-first search on multiprocessors part I:
Implementation. International Journal of Parallel Programming 16(6), 479–499
(1987)

[58] Reinefeld, A., Marsland, T.: Enhanced iterative-deepening search. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 16(7), 701–710 (1994)

[59] Romein, J.W., Bal, H.E.: Wide-area transposition-driven scheduling. In: Pro-
ceedings of the 10th IEEE International Symposium on High Performance
Distributed Computing, pp. 347–355 (2001)

[60] Romein, J.W., Bal, H.E., Schaeffer, J., Plaat, A.: A performance analysis of
transposition-table-driven work scheduling in distributed search. IEEE Trans-
actions on Parallel and Distributed Systems 13(5), 447–459 (2002)

[61] Romein, J.W., Plaat, A., Bal, H.E., Schaeffer, J.: Transposition table driven work
scheduling in distributed search. In: Proceedings of the National Conference
on Artificial Intelligence (AAAI), pp. 725–731 (1999)

[62] Romein, J.W., Plaat, A., Bal, H.E., Schaeffer, J.: Transposition table driven work
scheduling in distributed search. In: Proceedings of the National Conference
on Artificial Intelligence AAAI-99, pp. 725–731 (1999)

[63] Russell, S.: Efficient memory-bounded search methods. In: Proc. ECAI (1992)
[64] Stern, U., Dill, D.L.: Parallelizing the Murphi verifier. In: Proceedings of the

9th International Conference on Computed Aided Verification, pp. 256–278
(1997)

[65] Stern, U., Dill, D.L.: Parallelizing the Murphi verifier. Formal Methods in
System Design 18(2), 117–129 (2001)

[66] Sulewski, D., Edelkamp, S., Kissmann, P.: Exploiting the computational
power of the graphics card: Optimal state space planning on the GPU.
In: Proceedings of the 21st International Conference on Automated
Planning and Scheduling, ICAPS 2011, Freiburg, Germany June 11-16,
2011 (2011). URL http://aaai.org/ocs/index.php/ICAPS/
ICAPS11/paper/view/2699

[67] Valenzano, R., Nakhost, H., Müller, M., Schaeffer, J., Sturtevant, N.: Arvand-
Herd: Parallel planning with a portfolio. In: Proceedings of the 20th European
Conference on Artificial Intelligence, pp. 786–791 (2012)

[68] Valenzano, R., Sturtevant, N., Schaeffer, J., Buro, K., Kishimoto, A.: Simulta-
neously searching with multiple settings: An alternative to parameter tuning
for suboptimal single-agent search algorithms. In: Proceedings of the 20th
International Conference on Automated Planning and Scheduling, pp. 177–184
(2010)

[69] Vidal, V., Bordeaux, L., Hamadi, Y.: Adaptive k-parallel best-first search: A
simple but efficient algorithm for multi-core domain-independent planning. In:
Proceedings of the 3rd Symposium on Combinatorial Search (SOCS’10) (2010)

[70] Vrakas, D., Refanidis, I., Vlahavas, I.: Parallel planning via the distribution of
operators. Journal of Experimental and Theoretical Artificial Intelligence 13(3),
211–226 (2001)

http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2699
http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2699

11 Parallel A* for State-Space Search 455

[71] Zhou, R., Hansen, E.: Domain-independent structured duplicate detection. In:
Proceedings of the 21st National Conference on Artificial Intelligence AAAI-06,
pp. 683–688 (2006)

[72] Zhou, R., Hansen, E.A.: Structured duplicate detection in external-memory
graph search. In: Proceedings of the National Conference on Artificial Intelli-
gence (AAAI), pp. 683–689 (2004)

[73] Zhou, R., Hansen, E.A.: Breadth-first heuristic search. Artificial Intelligence
170(4), 385–408 (2006)

[74] Zhou, R., Hansen, E.A.: Domain-independent structured duplicate detection.
In: Proceedings of the National Conference on Artificial Intelligence (AAAI),
pp. 1082–1087 (2006)

[75] Zhou, R., Hansen, E.A.: Parallel structured duplicate detection. In: Proceedings
of the National Conference on Artificial Intelligence (AAAI), pp. 1217–1223
(2007)

[76] Zhou, Y., Zeng, J.: Massively parallel A* search on a GPU. In: Proceed-
ings of the National Conference on Artificial Intelligence (AAAI), pp. 1248–
1255 (2015). URL http://www.aaai.org/ocs/index.php/AAAI/
AAAI15/paper/view/9620

[77] Zobrist, A.L.: A new hashing method with application for game playing.
reprinted in International Computer Chess Association Journal (ICCA) 13(2),
69–73 (1970)

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9620
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9620

Chapter 12

Parallel Model Checking Algorithms for

Linear-Time Temporal Logic

Jiri Barnat, Vincent Bloemen, Alexandre Duret-Lutz, Alfons Laarman, Laure
Petrucci, Jaco van de Pol, and Etienne Renault

Abstract Model checking is a fully automated, formal method for demonstrating
absence of bugs in reactive systems. Here, bugs are violations of properties in
Linear-time Temporal Logic (LTL). A fundamental challenge to its application is the
exponential explosion in the number of system states. The current chapter discusses
the use of parallelism in order to overcome this challenge. We reiterate the textbook
automata-theoretic approach, which reduces the model checking problem to the
graph problem of finding cycles. We discuss several parallel algorithms that attack
this problem in various ways, each with different characteristics: Depth-first search
(DFS) based algorithms rely on heuristics for good parallelization, but exhibit a
low complexity and good on-the-fly behavior. Breadth-first search (BFS) based
approaches, on the other hand, offer good parallel scalability and support distributed
parallelism. In addition, we present various simpler model checking tasks, which
still solve a large and important subset of the LTL model checking problem, and
show how these can be exploited to yield more efficient algorithms. In particular,

Jiri Barnat
Masaryk University, Brno, Czech Republic, e-mail: xbarnat@fi.muni.cz

Vincent Bloemen
University of Twente, Enschede, The Netherlands, e-mail: v.bloemen@utwente.nl

Alexandre Duret-Lutz
LRDE, Epita, Paris, France, e-mail: adl@lrde.epita.fr

Alfons Laarman
Leiden University, Leiden, The Netherlands, e-mail: a.w.laarman@liacs.leidenuniv.nl

Laure Petrucci
LIPN, CNRS, Paris, France, e-mail: Laure.Petrucci@lipn.univ-paris13.fr

Jaco van de Pol
University of Twente, Enschede, The Netherlands, e-mail: j.c.vandepol@utwente.nl

Etienne Renault
LRDE, Epita, Paris, France, e-mail: renault@lrde.epita.fr

457© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_12

xbarnat@fi.muni.cz
v.bloemen@utwente.nl
adl@lrde.epita.fr
a.w.laarman@liacs.leidenuniv.nl
Laure.Petrucci@lipn.univ-paris13.fr
j.c.vandepol@utwente.nl
renault@lrde.epita.fr
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_12&domain=pdf

458 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

we provide simplified DFS-based search algorithms and show that the BFS-based
algorithms exhibit optimal runtimes in certain cases.

12.1 Introduction

This chapter discusses parallel algorithms for model checking properties of Linear-
time Temporal Logic (LTL). Model checking [30, 8] is a verification technique to
establish the correctness of hardware and software systems. In contrast to theorem
proving, model checking is a fully automated procedure, invented by the Turing
Award winners Clarke, Emerson, and Sifakis (2007). In contrast to testing, it is a
complete and exhaustive method. Nowadays, along with testing and static analysis,
model checking is an indispensable industrial tool for eliminating bugs and increasing
confidence in hardware designs (e.g., at Intel [45] and IBM [15]) and software
products (e.g., at Microsoft [9]). For an example case study, refer to Chapter 16,
An Application of Parallel Satisfiability Solving to the Verification of Complex
Embedded Systems.

Formally, model checking solves the problem: “Does model M satisfy property P?”
(M � P). Here the model M is a finite abstraction of a hardware or software system,
provided in the form of a transition system. The paths in the graph of model M
consist of infinite sequences of states connected by state transitions. Paths correspond
to possible runs of the system. The property P is specified in some temporal logic.
In this chapter, we restrict the discussion to Linear-time Temporal Logic (LTL). An
LTL property denotes a set of paths, so P can be viewed as a specification of the
correct runs of the system. Section 12.2 will formalize the syntax and semantics of
LTL and identify some important fragments. For this introduction, it is sufficient to
view model checking as a graph search problem, where the goal is to find a bad state
or, more generally, a cycle representing an infinite path violating the property.

The main obstacle to model checking is the size of the transition system, often
referred to as “the state space explosion” [96]. This graph grows exponentially in
the number of components and variables in the specification, mainly due to parallel
interleaving in concurrent systems, and the Cartesian product of data domains. Many
sequential algorithms exist to address the state space explosion, reducing the state
space by exploiting symmetries [29, 41, 20, 61], restricting the interleavings to be
checked [95, 63, 54, 1], or abstracting the data domains [27, 24]. Another direction is
to represent state spaces symbolically, applying powerful techniques such as Binary
Decision Diagrams (BDD) [23, 77] or satisfiability (SAT) [28, 16, 78]. Parallel
satisfiability is discussed in Chapter 1, Parallel Satisfiability, and parallel decision
diagrams in Chapter 13, Multi-core Decision Diagrams. Although these methods
greatly reduce the memory and time usage of model checking, the ever-growing
complexity of hardware and software designs has meant that, so far, the practical
application of model checking is still hindered by memory and time resources.

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 459

Parallel Model Checking Algorithms — Pragmatics

This chapter focuses on recent advances in utilizing more hardware resources to solve
the model checking problem. In distributed model checking, the memory problem
is alleviated by distributing the state space over the memory of many computers in
some network (cluster, cloud). Recently, several new approaches to parallel model
checking emerged using multiple processors in a shared-memory machine to speed
up model checking computations. Both approaches are highly non-trivial, since graph
(search) algorithms must be redesigned to be fit for parallel computation. Next, we
consider parallel graph algorithms from pragmatic and theoretical points of view.

From a pragmatic point of view, obtaining good parallel speedups for graph
problems is notoriously hard [75, 73]. This is mainly caused by the irregularity
of graphs. The efficiency of parallel programs often depends on exploiting locality,
which can be predicted for regular data structures like matrices. However, state spaces
are irregular sparse graphs, whose shape highly depends on the model at hand. For
distributed algorithms, the consequence is that traversing a transition from a source
state in the graph often requires communication with the machine where the target is
stored, leading to a dramatic communication overhead. For multi-core computing,
the threads are continually looking up the location of target states in main memory.
Since main memory (and the memory bus) are a shared resource, memory-intensive
algorithms are hard to speed up on multi-core machines. As a consequence, practical
implementations pay a lot of attention to low-level details, such as local caching,
evading the need for locks using atomic instructions such as compare-and-swap, and
latency hiding by asynchronous communication. This chapter does not focus on these
implementation details, although they are essential to demonstrate that the treated
algorithms achieve speedup in practice.

Instead, we focus on the algorithmic aspects. We review the basic sequential
algorithms for LTL model checking in Section 12.3. These subproblems can be solved
by linear-time algorithms. However, today the only known linear time algorithms
heavily depend on the Depth-First Search (DFS) strategy, which (as we will explain
below) is hard to parallelize. This holds for LTL algorithms based on Nested Depth-
First Search as well as for those based on the analysis of the Strongly Connected
Components.

Another reason for our general preference for DFS lies in the nature of search.
If we use the algorithm to search for bugs (bug hunting), we can terminate as soon
as the first bug has been found. It would be a waste of resources if we were to first
compute the whole state space and then search only a small part to find the bug. The
DFS-based algorithms are generally well-suited for on-the-fly model checking, where
computing the state space and checking the properties are intertwined. This carries
over to parallel search. It is well known that parallel random search can achieve
superlinear speedups when the goal states are uniformly distributed [81, 72]. In case
of full verification of programs, this consideration is less important. We will present
parallel DFS-based algorithms in Section 12.4.

460 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Parallel Model Checking Algorithms — Theoretical Considerations

Finally, what does theory actually say? A well-known result [82] is that DFS is
inherently sequential. To understand this, we recall the class NC (Nick’s Class) of
problems that admit scalable parallel algorithms [56]: A problem is in NC if it can be
solved in poly-logarithmic time (logn)o(1) using a polynomial amount of hardware,
i.e., no(1) processors. Let P be the class of problems that admit a polynomial-time
algorithm. A problem is P-complete , if all problems in P can be reduced to it by
an NC algorithm. The canonical P-complete problem is CVP, the circuit valuation
problem (given a circuit, and its Boolean input values, determine the value of its
output). Although formally open, it is widely believed that NC does not contain
P-complete problems, so problems in P are “inherently sequential.” Note that if NC
contained a single P-complete problem, then all polynomial problems would be
parallelizable. Reif [82] actually showed that lexicographic DFS is P-complete by a
direct reduction to the CVP. Hence, given a graph and a fixed ordering of transitions
from each state, there is probably no parallel algorithm to even check whether node
x will be visited before node y in the DFS post-order, observing the fixed transition
ordering.

The following intellectual positions are possible in relation to this fact from theory:
First, one can decide to ignore this theoretical restriction. This is the position in
Section 12.4. We introduce various parallel random DFS algorithms for which we
have shown practical speedup, even though they are not poly-logarithmic. The main
motivation is that, in practice, the number of processors is much smaller than the
size of the graph. A practical speedup for graphs from 103 to 108 nodes does not
contradict the impossibility result in the limit case of (108)k processors.

The second position is to take the theoretical result seriously, and avoid DFS
algorithms. Parallel BFS (breadth-first search), and hence SCC decomposition, is in
NC [51], which can be shown by computing transitive closure with matrix multiplica-
tion. Several BFS-based model checking algorithms and SCC decomposition methods
have been designed. Although their worst-case time complexity is strictly more than
linear, they behave well on practical instances, and are even linear for many model
checking fragments. Moreover, since BFS-based algorithms can be parallelized, with
sufficiently many processors this approach should scale (even though the increased
work-complexity doesn’t admit a provably efficient parallel solution). Algorithms
OWCTY and MAP in Section 12.5 are an illustration of BFS-based algorithms in this
category.

The third possibility is to circumvent the theoretical results. Note that it is techni-
cally still possible that non-lexicographic DFS (without fixing the ordering of the
transitions in advance) is in NC. Actually, it has been proved that free DFS is in
NC indeed for planar graphs [57], and for general graphs the problem is known to
be in Random NC [3]. We do not claim complexity-theoretic results in this chapter.
Our random parallel free DFS algorithms will not provide a single global post-order
and, in the worst case, they don’t run in parallel logarithmic time. However, we have
proved that they provide sufficient ordering to solve the model checking problem,

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 461

and we demonstrated have good speedups for practical problems. Eventually, this
approach might shed some light on this intriguing 30-year-old open problem.

12.2 Preliminaries: LTL Model Checking and Automata

The current section explains the theoretical foundation of LTL model checking. The
formal approach taken here is to interpret both the system and its specification as
an automaton. We will show that this automaton is exponential in the size of both
the system and the specification and develop the constructs required by the LTL
model checking algorithms in the subsequent section to efficiently handle such large
automata.

12.2.1 Automata-Theoretic Model Checking

Model checkers are tools that take two inputs: some model M of a system, and some
specification ϕ that should be satisfied by all possible behaviors of M. For instance
if M is a model of a road intersection with traffic lights and sensors, the property ϕ
could specify that whenever a car is sensed the light of its lane should eventually
become green. Note that such a property is not necessarily about the state of the
system: in this example it is about its possible behaviors, i.e., the evolution of its
state. Furthermore, the behaviors of this system are infinite.

Model checking [97] decides whether some model M satisfies some specification
ϕ (which we denote M |= ϕ). In the automata-theoretic approach, the model M is
first converted into an automaton KM whose language L (KM) represents the set of
all (infinite) behaviors of M. The negation of the formula ϕ is converted into an
automaton A¬ϕ whose language L (A¬ϕ) captures the forbidden behaviors. With
these objects, testing whether M satisfies ϕ amounts to checking the emptiness of the
product of the two automata: if L (KM⊗A¬ϕ) = /0, then M |= ϕ . If L (KM⊗A¬ϕ)
is found not to be empty, it means there exists a counterexample: a behavior of M
that invalidates ϕ .

12.2.2 Sequences and ω-Words

We shall use B= {⊥,�} to denote the set of Boolean values, ω = {0,1,2, . . .} for
the set of non-negative integers, and [n] = {0,1,2, . . . ,n−1} the first n of those. By
convention [0] = /0.

Let AP be a finite set of (atomic) propositions. An assignment is a function
x : AP → B that evaluates each proposition. We use BAP to denote the set of all
assignments of AP.

462 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

An infinite sequence over some set Σ is a function σ : ω → Σ that assigns an
element of Σ to each possible index. We use Σ ω to denote the set of infinite sequences
over Σ .

A finite sequence of length n over Σ is a function σ : [n]→ Σ . We use Σ ∗ for the
set of all finite sequences of any length n≥ 0, and Σ+ for the set of finite sequences
of length n > 0.

To define a particular sequence, we denote it by the concatenation of its elements
xi ∈ Σ as σ = x0;x1;x2; . . ., meaning that σ(i) = xi.

For some infinite sequence σ ∈ Σ ω , we use σ i to denote the sequence obtained
from σ by removing its first i ≥ 0 elements; i.e., σ i(j) = σ(i+ j) for all j. We
denote by Inf(σ) ⊆ Σ the set of elements that appear infinitely often in σ , i.e.,
Inf(σ) = {s ∈ Σ | ∀i ∈ ω, ∃ j > i, σ(j) = s}.

In this chapter AP is assumed to be fixed, and infinite sequences of assignments,
i.e., elements of (BAP)ω , are called ω-words. Finally, a language is a (possibly
infinite) set of ω-words.

12.2.3 Linear-Time Temporal Logic

In model checking, ω-words are used to represent the different behaviors of the
system to check.

Linear-time Temporal Logic (LTL) formulas are typically used to specify the
property to verify on the system by specifying which ω-words should be accepted or
rejected. LTL formulas are constructed according to the following grammar, where
a ∈ AP:

ϕ ::=�|⊥|a |¬ϕ |ϕ ∨ϕ |ϕ ∧ϕ |ϕ Uϕ |ϕ Rϕ |Fϕ |Gϕ |Xϕ

Given an ω-word σ ∈ (BAP)ω and an LTL formula ϕ , we say that σ satisfies ϕ
(denoted σ |= ϕ) according to the following semantics. For any a ∈ AP and any LTL
formulas ϕ1 and ϕ2,

σ |=�
σ �|=⊥
σ |= a iff σ(0)(a) =�
σ |= ¬ϕ1 iff σ �|= ϕ1
σ |= ϕ1∨ϕ2 iff (σ |= ϕ1)∨ (σ |= ϕ2)
σ |= ϕ1∧ϕ2 iff (σ |= ϕ1)∧ (σ |= ϕ2)
σ |= ϕ1Uϕ2 iff ∃i≥ 0,(σ i |= ϕ2)∧ (∀ j < i, σ j |= ϕ1)
σ |= ϕ1Rϕ2 iff ∀i≥ 0,(σ i |= ϕ2)∨ (∃ j < i, σ j |= ϕ1)
σ |= Fϕ1 iff ∃i≥ 0, σ i |= ϕ1
σ |= Gϕ1 iff ∀i≥ 0, σ i |= ϕ1
σ |= Xϕ1 iff σ1 |= ϕ1

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 463

The language of a formula ϕ is the set of words that satisfy it: L (ϕ) = {σ ∈
(BAP)ω | σ |= ϕ}. Two LTL formulas are equivalent iff they have the same language:
ϕ1 ≡ ϕ2 ⇐⇒ L (ϕ1) = L (ϕ2). For example one can see that ¬FGa≡ GF¬a.

The size of an LTL formula ϕ , denoted |ϕ|, is the number of symbols in ϕ . For
example |¬FGa|= 4.

12.2.4 Kripke Structures

A Kripke structure is an automaton with states labeled by assignments.

Definition 1 (Kripke Structure). A Kripke structure is a tuple K =(Q, ι ,δ , �) where

• Q is a finite set of states,
• ι ∈ Q is the initial state,
• δ ⊆ Q×Q is a set of transitions,
• � : Q→BAP is a function labeling each state with an assignment.

The runs of K, denoted Runs(K), are the infinite sequences of states ρ ∈ Qω that
start with ι and follow transitions in δ :

Runs(K) = {ρ ∈ Qω | ρ(0) = ι and ∀i≥ 0, (ρ(i),ρ(i+1)) ∈ δ}

If we naturally extend the labeling function � to runs, then each run ρ is associated
with an ω-word �(ρ) defined by �(ρ)(i) = �(ρ(i)). The language L (K) of the
Kripke structure is the set of words associated with all its runs: L (K) = {�(ρ) | ρ ∈
Runs(K)}.
Definition 2 (Deadlock-Free Kripke Structure). A Kripke structure is said to be
deadlock-free if all its states have at least one successor. In other words K =(Q, ι ,δ , �)
is deadlock-free if ∀s ∈ Q, ∃d ∈ Q, (s,d) ∈ δ .

12.2.5 Büchi Automata

Büchi automata can represent ω-regular languages. We shall define different flavors
of Büchi automata that correspond to combinations of the following two options:

• transition-based or state-based acceptance
• classical Büchi acceptance, or generalized Büchi acceptance.

While all the resulting automata have the same expressive power, they can have
different degrees of conciseness, and may require different emptiness-check pro-
cedures. Hence from the model checking point of view, these choices can affect
memory consumption and emptiness-check complexity.

464 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Definition 3 (TGBA). A Transition-based Generalized Büchi Automaton is a tuple
A = (Q, ι ,δ ,n,M) where

• Q is a finite set of states,
• ι ∈ Q is the initial state,
• δ ⊆ Q×BAP×Q is a set of transitions,
• n is an integer specifying a number of accepting marks,
• M : δ → 2[n] is a marking function that specifies a subset of marks associated

with each transition.

For a transition t ∈ δ we write ts for its source, t� for its label, and td for its
destination: t = (ts, t�, td).

The runs of A are infinite sequences of consecutive transitions:

Runs(A) = {ρ ∈ δ ω | ρ(0)s = ι and ∀i≥ 0, ρ(i)d = ρ(i+1)s}

The accepting runs of A are those that have, for each acceptance mark, infinitely
many transitions with that mark:

Acc(A) =
{

ρ ∈ Runs(A)
∣∣∣ [n] = ⋃

t∈Inf(ρ)
M(t)

}

Let us also define the word �(ρ) associated with a run ρ by �(ρ)(i) = ρ(i)�. Now the
language L (A) of the automaton A is the set of words associated with its accepting
runs:

L (A) = {�(ρ) | ρ ∈ Acc(A)}
For convenience, we will also overload the δ notation and write δ (q) for the set

of outgoing transitions of any state q ∈ Q: δ (q) = {(s,x,d) ∈ δ | s = q}.
Definition 4 (SGBA). A State-based Generalized Büchi Automaton is also a tuple
A = (Q, ι ,δ ,n,M), with identical definitions for Q, ι , δ , and n, but this time the
marking function M associates marks with states: M : Q→ 2[n]. The runs are defined
similarly. The accepting runs are those that have infinitely many states marked with
each acceptance mark:

Acc(A) =
{

ρ ∈ Runs(A)
∣∣∣ [n] = ⋃

t∈Inf(ρ)
M(ts)

}

and then the automaton’s language is still defined as L (A) = {�(ρ) | ρ ∈ Acc(A)}.
Definition 5 (SBA and TBA). State-based and Transition-based Büchi Automata
are particular cases of the above definitions where n = 1.

Figure 12.1 shows four automata with different acceptance conditions, all recog-
nizing the language of the LTL formula GFa∧GFb: a and b should each hold
infinitely often, but not necessary at the same time. As usual, multiple transi-
tions of the form (s,x,d) and (s,y,d) are pictured as a single edge s dx,y .

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 465

2

0

1
ab

ab,ab

ab

ab,ab

ab

ab

ab,ab

ab,ab 0

(a) SBA

1

0

ab,ab

ab,ab

ab,ab

ab,ab

1

0

(b) SGBA

1

0

ab,ab

0ab,ab

ab,ab

ab,ab

(c) TBA

0
ab

0
1

ab
0

ab
1

ab

(d) TGBA

Fig. 12.1: Minimal deterministic automata recognizing L (GFa∧GFb). The SGBA
and TGBA use n = 2 accepting marks, while the SBA and TBA have n = 1 by
definition

Marked states and transitions are denoted using colored bullets such as 0 or 1 .
So the fact that M

(
(s,x,d)

)
= {0,1} is pictured as s dx

0 1 . Looking at the
automaton of Figure 12.1(b), the run ρ1 = (0,ab,1);(1,ab,1);(1,ab,0);(0,ab,1);
(1,ab,1);(1,ab,0); . . . is an accepting run for the word ab;ab;ab;ab;ab;ab; . . .
as it visits 0 and 1 infinitely often. The run ρ2 = (0,ab,1);(1,ab,1);(1,ab,1);
(1,ab,1); . . . is not accepting because it only visits 1 infinitely often. By compar-
ing the two definitions of Acc, it is clear that an SGBA A = (Q, ι ,δ ,n,M) can
be converted into a language-equivalent TGBA B = (Q, ι ,δ ,n,M′) by defining
M′(t) = M(ts). This amounts to pushing the acceptance marks onto the outgoing
transitions, as in Figure 12.2.

1

0

ab,ab
1

ab,ab 1

ab,ab
0

ab,ab0

Fig. 12.2: How to
interpret the SGBA
of Fig. 12.1(b) as a
TGBA

The automata of Figure 12.1 are minimal in the sense
that there does not exist language-equivalent automata with
the same acceptance condition and fewer states. This figure
is therefore an example showing how TGBAs can be more
concise than the other types of automata presented, but in
Section 12.2.8 we will also discuss some classes of properties
for which using SBAs is sufficient, i.e., no reduction can be
obtained by using generalized or transition-based acceptance.

Property 1. Any TGBA (Q, ι ,δ ,n,M) can be “degeneralized”
into a language-equivalent SBA with at most (n + 1) |Q|
states, or into a language-equivalent TBA with at most n · |Q|
states.

There exist several variants of degeneralization constructions, discussed for instance
by Gastin and Oddoux [49], or Giannakopoulou and Lerda [53], and improved by
Babiak et al. [7]. The automata of Figures 12.1(a) and (c) are typically what one
could obtain by degeneralizing the TGBA of Figure 12.1(d).

Property 2. For any LTL formula ϕ , there exists a language-equivalent TGBA with
O(2|ϕ|) states and n = O(|ϕ|) acceptance marks.

466 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Numerous translations from LTL to TGBAs exist, and are implemented in tools
such as ltl2ba [49], ltl3ba [6], or Spot’s ltl2tgba [37]. Now, combining
Properties 1 and 2, we get

Property 3. For any LTL formula ϕ , there exists a language-equivalent SBA with
O(|ϕ| ·2|ϕ|) states.

These upper bounds are rarely reached in practice. For instance Dwyer et al. [39]
define 55 LTL formulas1 that represent 11 intents (Absence, Response, Precedence,
etc) combined with five different scopes (Before, Between, After, etc). These 55
formulas have an average size of 16.75 (maximum 40), but the SBAs produced
by ltl2tgba (from Spot 2.1) have on average only 3.945 states (maximum 13).
Using TGBAs instead of SBAs is only marginally better: ltl2tgba produces
TGBAs with an average of 3.782 states (maximum 10); we will discuss this point in
Section 12.2.8.

These small automata, representing the negation of a property we want to check,
will be combined with a (potentially very large) Kripke structure representing the
state space of the model to verify.

Property 4 (Synchronized product). Let K = (Q1, ι1,δ1, �) be a Kripke structure,
and A = (Q2, ι2,δ2,n,M) be a TGBA. Then the TGBA K⊗A = (Q′, ι ′,δ ′,n,M′)
where

• Q′ = Q1×Q2,
• ι ′ = (ι1, ι2),
• ((s1,s2),x,(d1,d2)) ∈ δ ′ ⇐⇒ (s1,d1) ∈ δ1∧ �(s1) = x∧ (s2,x,d2) ∈ δ2,
• M′(((s1,s2),x,(d1,d2))

)
= M

(
(s2,x,d2)

)
,

is such that L (K⊗A) = L (K)∩L (A).

The product between a Kripke structure and a SGBA can be defined similarly,
with M′((s1,s2)

)
= M(s2) as the only change.

Clearly |Q′|= |Q1| · |Q2|. However the states reachable from ι ′ can be a subset of
that, and only that subset needs to be explored to decide whether L (K⊗A) is empty.

12.2.6 The Emptiness-Check Problem

The emptiness-check problem can be presented as follows:

Given an automaton B = (Q, ι ,δ ,n,M), decide whether L (B) = /0.

The automaton B could be any type of automaton presented previously. We will
focus on TGBA, the more compact ones, as well as SBA, more frequently used
because of their simple structure.

1 http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.
shtml

http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 467

Property 5. If L (B) �= /0, then there exists a lasso-shaped accepting run, i.e., a run
ρ ∈Acc(B) for which there exist i≥ 0 and j≥ i such that ρ(i) = ρ(j). (Figure 12.3.)

To show the existence of such a run, consider an automaton B (a TGBA or SGBA)
and assume that L (B) �= /0. Then by definition of L (B), there exists an accepting
run π ∈ Acc(B), but that run is not necessarily lasso-shaped. The set Inf(π) contains
transitions of B that (1) are visited infinitely often by π , (2) cover all acceptance
marks (since π is accepting), (3) are all reachable from one another, and (4) are
reachable from the initial state. Then a lasso-shaped run ρ can be constructed by
building a prefix connecting the initial state of B to any transition t ∈ Inf(π), and then
building a cycle around t that visits all transitions of Inf(π). Note that for the lasso-
shaped run ρ , the set Inf(ρ) corresponds exactly to the transitions that appear on the
cycle. We therefore have Inf(ρ)⊇ Inf(π), which entails that ρ is also accepting.

Definition 6 (Accepting cycle). Given a TGBA (Q, ι ,δ ,n,M), and a finite sequence
of transitions c ∈ δ+ of length k. We say that c is a cycle if its transitions actually
form a cycle: ∀i < k, c(i)d = c(i+1 mod k)s.

We say that a cycle c is an elementary cycle if additionally |{c(i)s | i < k}|= k,
i.e., if c goes through k different states.

We say that a cycle c is an accepting cycle if its transitions visit each acceptance
mark at least once: ∀i ∈ [n],∃ j < k, i ∈ M(c(j)). Accepting cycles for SGBA are
defined likewise, replacing M(c(i)) by M(c(i)s).

Note that the cycle part of any lasso-shaped accepting run is an accepting cycle.
Combining this with Property 5 allows us to reduce the emptiness-check problem to
the search for an accepting cycle.

Property 6. For an automaton B, we have L (B) �= /0 if and only if B contains an
accepting cycle reachable from the initial state.

However the number of cycles can be infinite, so it is useful to consider the simpler
case where only elementary cycles need to be checked for acceptance:

Property 7. For an automaton B with n≤ 1 acceptance marks, we have L (B) �= /0 if
and only if B contains an accepting elementary cycle reachable from the initial state.

The case with n = 0 is obvious, since any cycle would be accepting, and if a cycle
exists, an elementary cycle also exists. For n= 1, any accepting cycle c contains some

.
ρ(0) ρ(1) ρ(i−1) ρ(i) ρ(i+1) ρ(j−2)

ρ(j−1)

prefix cycle

ι

Fig. 12.3: A lasso-shaped run can be built from two finite sequences of transitions: a
(possibly empty) prefix and a (non-empty) cycle

468 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

transition c(i) such that M(c(i)) = 1, and there necessarily exists some elementary
accepting cycle around this transition. Note that this does not hold for n≥ 2, as in
the example of Figure 12.4 where the only two elementary cycles are rejecting, but
they can be combined to form an infinite number of accepting cycles.

a1a 0

Fig. 12.4: This TGBA
has an infinite num-
ber of accepting cy-
cles; none are elemen-
tary

The goal of all emptiness-check algorithms presented
in the sequel is to establish the existence or absence of
such accepting cycles. Finding an accepting lasso-shaped
run is one direct way to prove the existence of a reachable
accepting cycle, but it is not the only one. Another one,
which is especially useful with generalized acceptance (n≥
2), is to prove that the automaton has a (reachable) strongly
connected component that covers all acceptance marks. This
is formalized by Definition 7 and Property 8.

Definition 7 (SCC). In an automaton (Q, ι ,δ ,n,M), a partial strongly connected
component (partial SCC) is a nonempty set of states C ⊆ Q such that any ordered
pair of states of C can be connected by a sequence of consecutive transitions. If
additionally C is maximal with respect to set inclusion, we call it a maximal strongly
connected component (maximal SCC). Let us use Cδ = {(s,x,d) ∈ δ | s ∈C,d ∈C}
to denote the set of transitions induced by C.

We call an SCC C trivial if Cδ = /0. In a TGBA we say that a non-trivial SCC C
is accepting if Cδ covers all acceptance marks, i.e., ∀i ∈ [n], ∃t ∈Cδ , i ∈M(t). In
an SGBA a non-trivial SCC C is accepting if C covers all acceptance marks, i.e.,
∀i ∈ [n], ∃s ∈C, i ∈M(s).

A rejecting SCC is either a trivial SCC, or a non-trivial SCC that does not cover
all acceptance marks.

Property 8. For an automaton B, we have L (B) �= /0 if and only if the initial state
can reach an accepting SCC.

Note that it does not matter whether the accepting SCC is partial. SCC-based
emptiness checks usually maintain a set of partial SCCs, to which they add new states
when cycles are discovered. For each (reachable) partial SCC C they maintain the
set of acceptance marks seen in C (that is SC =

⋃
t∈Cδ

M(t) in the case of TGBAs, or
SC =

⋃
s∈C M(s) for SGBAs), and they can report the non-emptiness of the automaton

as soon as one of these sets equals [n].
In the context of model checking, the automaton B to be checked for emptiness is

actually the product of a Kripke structure (representing the state space of the model
under verification) with an automaton capturing the behaviors invalidating an LTL
formula ϕ (the specification to check).

Theorem 1. Let ϕ be an LTL formula, A¬ϕ an automaton with n acceptance marks
such that L (¬ϕ) = A¬ϕ , and K a Kripke structure. The following statements are
equivalent:

1. L (K)⊆L (ϕ),
2. L (K)∩L (A¬ϕ) = /0,

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 469

3. L (K⊗A¬ϕ) = /0,
4. K⊗A¬ϕ has no reachable, accepting cycle;
or in case n≤ 1 no reachable accepting elementary cycle,
5. K⊗A¬ϕ has no reachable, accepting SCC.

The emptiness checks we will present either look for accepting elementary cycles
(when n≤ 1) or accepting SCCs. However an important point is that they search for
those in the product K⊗A¬ϕ . Because the Kripke structure K can be pretty large,
a classical optimization is to generate both the Kripke structure K and the product
K⊗A¬ϕ on the fly, as required by the needs of the emptiness-check procedure. Doing
so avoids generating any part of K that would never be reached in the product, and
it may also save a lot of time in case an accepting cycle is discovered early: the
emptiness check can then exit immediately without exploring the rest of the product.
For this on-the-fly construction to work, the emptiness check should only move
forward, i.e., from a given state (s1,s2) of the product, one may only compute its
successors, but not its predecessors. Originally, only the initial state (ι1, ι2) is known,
and the emptiness check may explore the successors of this state, as well as the
successors of any new state discovered this way. In such a setup, any cycle or SCC
we discover is necessarily reachable.

12.2.7 Implicit Models and Automata

We have seen in Property 2 that the size of the Büchi automaton can be exponential
in the size of the LTL formula, i.e., the number of symbols it contains. Not much has
been said about the size of the model M. To expand on this, we first need to make
some assumptions about its representation.

Definition 8. A model is a tuple M = (D,θ ,state-labels,next-state) where

• D =V1×·· ·×Vk is the data of the model composed of k Boolean variables,
• θ ∈ D is the initial state,
• state-labels : D→ 2AP is a state label function, and
• next-state : D→ 2D is a next-state function.

The data D of the model can be thought of as the values of all variables and
program (thread) counters in some imperative language. The set D represents all
potential states of the model. The next-state function provides an implicit encoding
of all transitions in the system from a given state. It is typically an implementation of
the system semantics of the individual program statements; for an example see [62].

The actual Kripke structure can be computed as an explicit representation of the
data that the model represents implicitly.

Definition 9. The Kripke structure KM = (Q, ι ,δ , �) of a model M =
(D,θ ,state-labels,next-state) is defined as follows:

• ι = θ ,

470 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

• Q is the smallest fixpoint of next-state that includes θ ,
• δ =

{
(s,d) ∈ D2 | d ∈ next-state(s)

}
, and

• �= state-labels.

The introduction mentioned that the graph of the system (the Kripke structure of
the model) is exponential in the number of components and variables. We can now be
more exact. Let n be an upper bound on the data domains, i.e., |Vi| ≤ n (0≤ i≤ k).

Property 9. The number of states in the Kripke structure K = (Q, ι ,δ , �) is exponen-
tial in the number of variables in the model (k): |Q| ∈ O(nk).

The implicit definition of the Kripke structure can be extended to the product
automaton as well.

Definition 10 (Implicit Product Automaton). The implicit product automaton of
a model M = (D,θ ,state-labels,next-state) and a TGBA A = (Q, ι ,δ ,n,M) is the
implicit TGBA C = (Q′, ι ′,next-product,n,M′) where

• ι ′ = (θ , ι),
• Q′ = D×Q,
• (x,(d1,d2)) ∈ next-product((s1,s2)) ⇐⇒ (d1) ∈ next-state(s1) ∧

state-labels(s1) = x∧ (s2,x,d2) ∈ δ , and
• M′(((s1,s2),x,(d1,d2))

)
= M

(
(s2,x,d2)

)
.

Definition 11. The TGBA (Q′′, ι ′,δ ′,n,M′) generated from the implicit product
automaton (Q′, ι ′,next-product,n,M′) is defined by taking:

• Q′′ is the smallest fixpoint of next-product that includes ι ′,
• δ ′ =

{
(s,x,d) ∈ D2 | (x,d) ∈ next-product(s)

}
.

Property 10. By definition, the product TGBA of M and A in Definition 11 is the
same as KM⊗A from Property 4.

Property 11. The number of states in the product structure KM⊗A¬ϕ = (Q, ι ,δ ,n,M)
of a model M = (D,θ ,state-labels,next-state) and a TGBA A¬ϕ can be exponential
in the number of variables in the model (|D|= l, with data domains bounded by n)
and in the formula ϕ: |Q| ∈ O(nl×2|ϕ|).

The implicit definition helps us to avoid storing all transitions of the Kripke
structure and its product, by recomputing them from the states. Moreover, entire
parts of the Kripke structure might never have to be generated as they are suppressed
by the synchronization of the product. The algorithms in the subsequent section will
therefore use the implicit definition. While this definition prevents algorithms from
doing backwards traversals (the inverse of next-state is not always computable), we
will see that this is not required.

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 471

0

1 2

3 4

0 1

ab,ab

ab

ab

0 1
ab,ab

01

ab,ab

0
ab

0

ab

ab ab
0

1 2

3 4

ab,ab

ab

ab

ab,ab

ab,ab

ab

ab

ab ab0

0 0

Fig. 12.5: A weak TGBA (left) and an equivalent weak SBA (right). Both have two
accepting SCCs and one rejecting SCC. Inside each SCC, all transitions or states bear
the same marks. Their language is that of the formula (Fa∧G((b∧X¬b)∨ (¬b∧
Xb)))Rb, which is an LTL persistence

12.2.8 Simpler Subclasses

In 1990, Manna and Pnueli [76] presented a classification of temporal properties (i.e.,
languages expressed either as LTL or automata), into a hierarchy. Two subclasses are
of particular interest in the context of model checking [25]: guarantee and persistence
properties. The reason is that they can be represented by automata with additional
constraints that simplify their emptiness checks.

Let us call an LTL guarantee (ϕG) and an LTL persistence (ϕP) any property that
can be defined as an LTL formula using the following grammar, where a ∈ AP is
any atomic proposition. (ϕS and ϕR correspond to the dual classes of safety and
recurrence.)

ϕG ::=⊥ | � | a | ϕG∨ϕG | ϕG∧ϕG | XϕG | FϕG | ϕGUϕG | ¬ϕS

ϕS ::=⊥ | � | a | ϕS∨ϕS | ϕS∧ϕS | XϕS | GϕS | ϕSRϕS | ¬ϕG

ϕP ::= ϕS | ϕG | ϕP∨ϕP | ϕP∧ϕP | XϕP | FϕP | ϕPUϕP | ϕPRϕS | ¬ϕR

ϕR ::= ϕS | ϕG | ϕR∨ϕR | ϕR∧ϕR | XϕR | GϕR | ϕRRϕR | ϕRUϕG | ¬ϕP

For instance, GFa is a recurrence formula (ϕR), FGb is a persistence formula (ϕP),
but the conjunction of these two formulas GFa∧FGb does not belong to any of the
above classes.

LTL guarantee and LTL persistence formulas can be represented respectively by
terminal and weak automata.

Definition 12 (Weak Automaton). A TGBA (or SGBA) is weak if in any of its
SCCs all transitions (or states) have the same marks.

This definition implies that in each SCC of a weak automaton, either all cycles are
accepting, or all cycles are rejecting. Because of that, any weak TGBA (Q, ι ,δ ,n,M)
can be trivially converted into an equivalent SBA (Q, ι ,δ ,1,M′), with the same
transition structure, but defining M′ by M′(s) = [1] if there exists a transition t ∈ δ (s)

472 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

0 1 2 3

a

a
a

a

a

a

a

a,a

0 0
0 1

a

a

a,a

0

Fig. 12.6: Two terminal SBAs recognizing L (Fa). The left one was made artificially
more complex to illustrate how any terminal automaton can be simplified by com-
pacting all accepting SCCs into a single (and unique) state, and removing any SCCs
that are only reachable via an accepting SCC

such that M(t) = [n] and ts and td belong to the same SCC; or M′(s) = /0 otherwise.
Figure 12.5 illustrates this.

Weak automata can still express a large subclass of LTL properties. Many proper-
ties encountered in practice turn out to be weak or even simpler [11, 69].

An even simpler subclass of weak automata is terminal automata.

Definition 13 (Terminal Automaton). A TGBA (SGBA) (Q, ι ,δ ,n,M) is terminal
if it is weak, and if any of its accepting SCCs is complete: that is, for any accepting
SCC C⊆Q, any pair of states s,d ∈C within that SCC, and any assignment x ∈BAP,
there exists (s,x,d) ∈ δ .

The states that belong to accepting SCCs are called terminal states.

Note that because the accepting SCCs of terminal automata are complete, they
will accept all suffixes. Therefore any terminal automaton can be simplified into an
equivalent terminal automaton with a single terminal state looping over all possible
assignments. Figure 12.6 illustrates this.

Property 12. From any LTL guarantee (ϕG on page 471) one can build an equivalent
terminal automaton. Similarly, one can build a weak automaton equivalent to any
LTL persistence (ϕP).

The subclass of LTL guarantees is simple enough that typical LTL translation
algorithms [49, 6, 37] produce terminal automata naturally. A construction of weak
automata from LTL persistence properties is given by Černá and Pelánek [25], and is
implemented for instance in ltl2tgba.

The usefulness of terminal automata for model checking comes from the fact that
to prove the existence of an accepting run, we only need to reach a terminal state.
This fact also applies to the product with a Kripke structure, provided that the Kripke
structure is known to be deadlock-free (Definition 2).

Property 13. Let K = (Q1, ι1,δ1, �) be a deadlock-free Kripke structure, and A =
(Q2, ι2,δ2,n,M) a terminal automaton. L (A⊗K) �= /0 if and only if there exists a
reachable state (s1,s2) ∈ Q1×Q2 where s2 is a terminal state.

Indeed, the fact that K is dead lock-free implies that any prefix from ι1 to s1 can
be continued into a lasso-shaped accepting run on K, and the fact that s2 belongs to

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 473

an accepting and complete SCC means that any suffix can be accepted from there.
Therefore, upon reaching (s1,s2) it is clear that an accepting run can be found in
A⊗K.

In the subsequent section, we show that these simpler classes of automata also
allow for simpler algorithms to solve the emptiness-check problem.

12.3 Basic Sequential LTL Model Checking Algorithms

The current section presents sequential algorithms for checking emptiness of Büchi
automata. As discussed in the previous section, this problem can be solved in the
case of n ≤ 1 by showing that none of the elementary cycles are accepting. In the
generalized case with n≥ 2, however, all cycles need to be considered according to
Theorem 1. Therefore, we present a specialized algorithm called Nested Depth-First
Search for the case where n≤ 1 and an SCC-based algorithm for the general case. We
will show that the generality of the second algorithm comes at the cost of a slightly
higher resource consumption.

We also saw that the automaton to check is the product between the property
automaton A¬ϕ and the Kripke structure KM . Since this product can be large, a
classical technique these algorithms employ is to compute this product on the fly.
Before presenting the algorithms, we first discuss the on-the-fly technique and its
advantages.

12.3.1 On-the-Fly Algorithms

While the automaton A¬ϕ representing the specification is usually quite small (often
fewer than 10 states), the automaton KM can have billions of states, and the product
of these two automata is a Cartesian product of their states in the worst case (i.e.,
|KM⊗A¬ϕ | ≤ |KM|⊗ |A¬ϕ |).

For efficiency reasons model checkers will therefore compute KM and KM⊗A¬ϕ
on the fly, using the implicit definitions from Section 12.2.7. So instead of using the
static definition of product transitions δ , we use its implicit counterpart next-product.
This approach has various advantages:

• any part of KM that does not synchronize with A¬ϕ is not computed,
• we do not need to store the transitions of KM and KM⊗A¬ϕ since these can

be recomputed when needed, and
• states can be deleted and recomputed, at the expense of re-explorations of

the automaton, thus allowing for trading of computation time for memory use.2

2 Various state space caching techniques have been invented that also ensure termination of the
model checking algorithm [55, 89].

474 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

The advantages are especially important when we recall that the number of states
in the product automaton is exponential in both the property and the system (see
Property 11). As memory is often a bottleneck for model checking, it would be
disastrous to store those as well since there might be up to quadratically more
transitions than states.

An important consequence is that these emptiness-check algorithms are only
allowed to move forward in the automaton: from a state of A, one can compute
the successors, but not the predecessors. This restriction comes from the fact that
the actions of the original model might not be reversible (it might be intractable to
compute the inverse of next-product). While respecting this constraint, the emptiness
check needs to explore the product automaton to find information about cycles or
SCCs.

12.3.2 Depth-First Search

This exploration can be done using one of the two classical graph traversal algorithms:
breadth-first search (BFS) or depth-first search (DFS). These algorithms iterate over
vertices of a graph (or states of an automaton). The evolution of both DFS and BFS
may be described as a process by which every state in the automaton is colored. At
the beginning a state has no color and, at some point, it becomes “activated” and
receives its color. In the general description of DFS below, we use ⊥ for “no color”
and � for “a color”. These algorithms only differ by the order in which states are
colored. In depth-first search, when choosing which state to explore next, children
are favored over siblings. In contrast, in a breadth-first search siblings are favored
over children. Even if both DFS and BFS have running time that is linear in the size
of the product automaton (i.e., the number of states plus the number of transitions),
most sequential emptiness checks are based on a DFS exploration since it can be
used to detect cycles easily.

Algorithm 12.1: Depth-First Search Algorithm
1 function SETUP (A = (Q, ι ,next-product,n,M))
2 DFS(A, ι)
3 function DFS (A = (Q, ι ,next-product,n,M),s)
4 s.color := �
5 forall t ∈ next-product(s) do

6 if td .color =⊥ then

7 DFS(A, td)

Algorithm 12.1 presents a DFS exploration for an implicit automaton A =
(Q, ι ,next-product,n,M). Lines 1–2 only set up the exploration and launch the DFS
exploration with the initial state ι of the automaton A. The main procedure (lines 3–

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 475

7) maintains for each state a Boolean color, initially set to ⊥, that keeps track of
“activated” states. Every time a state is visited, its field color is set to � (line 4). At
line 5 all successors of the currently visited state are processed: only new ones, i.e.,
with color =⊥, are recursively visited (line 7). The stack of recursive calls is also
called the DFS stack. A state that is colored � and is on the stack is called scheduled
or stacked. Once all its successors have been considered, it is popped off the stack,
or backtracked.

A closer look at this algorithm shows that DFS exploration by its nature supports
on-the-fly processing: only the initial state is used at the beginning (line 2) and the
predecessors of a state are never computed (line 5).

The emptiness of a terminal automaton A = (Q, ι ,next-product,n,M) (see Sec-
tion 12.2.8) can easily be verified using the above DFS. All we have to do is to
check whether M(t) = [n] (for transition-based acceptance) or M(ts) = [n] (for the
state-based case) in the for loop. The check is so simple that it can be done by a BFS
algorithm as well.

To detect elementary cycles of the automaton, the DFS algorithm has to be
extended to keep track of the states on the stack. Algorithm 12.2 does this. It first
marks the state s that is about to be explored gray at line 5. When backtracking over a
state (removing it from the (program) stack), its color is set to black (line 11). When
exploring the successor td of s at line 6, if td is in the DFS stack, a cycle has been
found. Indeed, the states in the DFS stack between td and s form a path and td is a
successor of s. Otherwise, if td is not on the DFS stack, no information about cycles
can be inferred.

The algorithm exploits this to check the accepting condition in the weak case
(Definition 12). Since in this case either all states on the cycle are accepting or none
are, the following solution is correct. At line 2, the automaton is first converted into
an equivalent state-based version. Then at line 7, the check for elementary cycles
is performed by checking whether td .color = gray. If additionally the state td is
accepting (M(td) = [1]), non-emptiness of the automaton is reported at line 8. We
only need to check the accepting mark on td (or s), and not the marks of other states
on the cycle, as all states in one SCC have the same mark by Definition 12 and
consequently all states on the same cycle also carry the same mark.

Edelkamp et al. [40] show how such simple algorithms can be used even in the
case when only part of the automaton is weak or terminal. In Section 12.4.1, we
discuss similar parallel variants.

Since the Büchi emptiness-check problem requires an inspection of all cycles to
exclude accepting cycles, most algorithms rely on a DFS exploration (with some
more elaborate cycle checks for general, non-weak TGBAs/SBAs as we will show in
the subsequent section on Nested-DFS). These algorithms either use DFS directly
to conclude emptiness by inspecting elementary cycles, exploiting Property 7, or
decompose the automaton into SCCs, exploiting Property 8. Nested-DFS falls in the
former category, while the SCC algorithm falls in the latter.

In contrast, a BFS exploration cannot easily detect cycles. Consequently, us-
ing BFS as exploration strategy requires a redesign of the LTL model checking
algorithms, as we will illustrate in Section 12.5.

476 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.2: Sequential Emptiness Check for Weak TGBAs Based on
DFS

1 function SETUP (A = (Q, ι ,next-product,n,M))
2 Convert A to an equivalent SBA A′ (e.g. Figure 12.5)
3 DFS(A′, ι)
4 function DFS (A = (Q, ι ,next-product,1,M),s)
5 s.color := gray
6 forall t ∈ next-product(s) do

7 if td .color = gray∧M(td) = [1] then

8 report non-empty

9 if td .color =⊥ then

10 DFS(A, td)

11 s.color := black

12.3.3 Nested-DFS

The Nested-DFS algorithm (NDFS) was originally proposed by Courcoubetis et al.
[31] and relies on the detection of accepting elementary cycles reachable from the
initial state. This algorithm focuses on SBA with n≤ 1 and runs in time linear with
respect to the size of the graph. The algorithm accomplishes this by using DFS.
Its use of DFS is however not as simple as we have seen in the previous section,
because we cannot simply check the acceptance criterion on any state in the cycle as
is sufficient in the case of weak automata.

NDFS uses a first DFS to detect accepting states, i.e., states of the automaton
holding the unique acceptance mark. Traditionally this DFS is called blue-DFS since
it colors in blue all the states encountered during the exploration. When an accepting
state is about to be backtracked during this search, a second DFS is then invoked
with the accepting state as a seed. This DFS colors all states in red and thus it is
often called red-DFS. The goal of this second exploration is again to reach the seed
state. If this state, which is accepting, can be reached itself, an accepting run is
reported proving that the automaton has a non-empty language. Because the version
in Algorithm 12.3 contains several improvements, we first discuss its details.

The BLUEDFS function (lines 4–15) is similar to the DFS presented in Algo-
rithm 12.1. Nonetheless some improvements have been added to transform it into an
emptiness check. First of all, this algorithm uses two bits per state to keep track of
the associated colors. Four colors are used:

• white: the initial color of a state. We assume that states are white when they are
generated for the first time.

• cyan: the state is still in the DFS stack of the blue search.
• blue: all the direct successors of the state have been visited by the blue-DFS but

not yet by a red one.
• red: states that have been considered in both the blue- and the red-DFS.

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 477

Algorithm 12.3: Nested Depth-First Search Algorithm
1 function NDFS (A = (Q, ι ,next-product,n,M))
2 assert(n = 1)
3 DFSBLUE (A, ι)
4 function DFSBLUE (A = (Q, ι ,next-product,1,M),s)
5 s.color := cyan
6 forall t ∈ next-product(s) do

7 if td .color = cyan∧ (M(ts) = [1]∨M(td) = [1]) then

8 report non-empty

9 else if td .color = white then

10 DFSBLUE (A, td)

11 if M(s) = [1] then

12 DFSRED (A,s)
13 s.color := red
14 else

15 s.color := blue

16 function DFSRED (A = (Q, ι ,next-product,1,M),s)
17 forall t ∈ next-product(s) do

18 if td .color = cyan then

19 report non-empty

20 else if td .color = blue then

21 s.color := red
22 DFSRED (A, td)

The BLUEDFS function starts by coloring any new state in cyan (line 5). This
color helps to detect accepting cycles directly inside the BLUEDFS (lines 7 and 8):
during this search, if the successor td of an accepting state s is cyan an accepting run
exists since there is a path from d to s and vice versa. Similarly, if td is accepting
and cyan, an accepting run exists. Otherwise, if td has not yet been visited (line 9) a
recursive call is performed (line 10).

Two cases are of interest when all the successors of a state have been visited, i.e.,
just before backtracking it from the blue search. If the state is not accepting (line 15),
its color becomes blue and the state is backtracked. Otherwise, the state is accepting
(line 11) and the algorithm launches a nested exploration using the REDDFS function.

This function uses the accepting state as a seed, which is treated specially: it
remains cyan during the red search and becomes red afterwards (line 13). This is
required to limit the algorithm to four colors (which can be stored in two bits).
The REDDFS function only looks for a state with the cyan color, i.e., a state that
belongs to the DFS stack of the blue exploration. Because the stack of the blue search
terminates in the seed, this condition is sufficient to demonstrate the reachability
of a cycle over an accepting state. Therefore, if a cyan state is detected in the red
search (line 18) then an accepting run exists and the automaton is reported to have a
non-empty language (line 19).

Because the red search therefore never crosses the stack of the blue search, it will
only explore blue states.

478 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

One can also note that all states visited by the REDDFS are marked red (line 21)
and thus will be ignored by other (blue or red) explorations. This makes NDFS linear
in the size of the input automaton (in terms of states and transitions). But why does
the red search not have to reset its visited states like the inner search of the previous
algorithm? It turns out that the DFS order of the blue search plays a crucial role here.
Consider the case where the red search is started from a seed s and it encounters a red
state. It can be shown that this state can never lead back to the cyan stack, because
that would contradict the depth-first order of the blue search. An intuition for this
property can be found in [48] and a detailed proof in [64].

Note that if the automaton has no accepting state the NDFS is optimal since states
and transitions are visited only by the blue-DFS.

Many improvements of this algorithm have been proposed [59, 50, 40] to faster
detect non-emptiness, reduce the size of accepting runs if they exist, or to reduce
memory footprint. Algorithm 12.3, derived from the work of Schwoon and Esparza
[87], presents a combination of all these optimizations.

12.3.4 Algorithms Based on SCC Decomposition

The algorithm presented in the previous section works only if the automaton to check
is a non-generalized Büchi automaton. If the input automaton is a generalized one,
the emptiness check of Tauriainen [94] can be used. This algorithm derives from the
NDFS and repeats the inner DFS several times (at worst n times, with n the number
of acceptance marks). The main drawback of this algorithm is that its complexity
depends of the number of acceptance marks: this reduces all the benefits of using a
generalized Büchi automaton.

Another idea to check for the emptiness of a generalized Büchi automaton is
to degeneralize this automaton (as described by Property 1) before checking its
emptiness. In this approach, the degeneralized automaton may have n · |Q| states,
with |Q| the number of states of the input automaton and n the number of acceptance
marks. Once again, this approach is not optimal since it depends of the number of
acceptance marks.

Another emptiness-check approach is to compute the accepting strongly connected
components of the generalized Büchi automaton. SCC-based emptiness checks [32,
52, 33, 4, 48] are still based on a DFS exploration of the automaton; they do not
require another nested DFS, have a linear time complexity and directly support TGBA.
These emptiness checks are based on the classical SCC decomposition algorithm
for directed graphs by Tarjan [90], which partitions the set of states according to the
SCC equivalence classes. Each partition is then associated with the set of acceptance
marks that appears inside the corresponding SCC to facilitate the emptiness check.

Intuitively, Tarjan’s algorithm maintains a separate stack (apart from the search
stack) of partial SCCs. Partial SCCs are enlarged when the DFS finds a cycle by
adding its states to the secondary SCC stack. Each partial SCC is associated with a
potential root, i.e., the state of the partial SCC that is the lowest on the stack. Thus,

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 479

every time the partial SCC is enlarged, a new potential root may be selected. When
the root is backtracked, the DFS order guarantees that the entire SCC was visited and
is on the secondary stack. This is the moment when it is popped off the stack and the
SCC can be reported even before the algorithm finishes traversing the entire graph
(i.e., on the fly). To identify current roots the algorithm uses indices. Therefore, it
uses slightly more memory per state than the NDFS algorithm, which requires only
two bits per state.

We focus on a version of Tarjan’s algorithm that maintains partial SCCs in
a database, as it forms the basis of communicating partial SCCs in our parallel
algorithm (see Section 12.4.3). It was developed by Purdom [80] even before Tarjan’s
algorithm, and later optimized by Munro [79]. Like Tarjan’s algorithm it uses DFS,
but this is not explicitly mentioned (Tarjan was the first to do so). In this algorithm,
the secondary stack only stores roots as the partial SCC is kept in the database.
We also add the ability to collapse cycles into partial SCCs immediately (as in
Dijkstra [35, 47]).

The database with partial SCCs is implemented using a union-find data structure.
As its name suggests, a union-find is a data structure that represents sets and provides
efficient union and membership-check procedures. The union-find structure partitions
a set E of elements and associates a unique representative (an element of E) with
each partition. This structure offers the following methods on elements x,y ∈ E:

• MAKESET(x): creates a new partition containing the element x if x is not already
in the union-find.

• FIND(x): returns null if x is not in the union-find, otherwise returns the actual
representative of the partition containing x.

• SAMESET(x,y): returns a Boolean indicating whether x and y are in the same
partition.

• UNITE(x,y): merges the partitions containing x and y.

With this structure, the set E of elements is partitioned into disjoint subsets {S1,
. . . , Sm} where m corresponds to the number of disjoint subsets. The underlying data
structure of each subset Si is typically a reverse arborescence (an in-tree), represented
by a parent function p(x) ∈ Si for each x ∈ Si. A unique representative y is appointed
as the root of this in-tree. It is often designated with a self-pointer p(y) = y.

The parent function is usually implemented using an array of size |E| that stores,
for each element in |E|, the index of its parent in the tree. The array elements are
initialized to ⊥ representing the empty subset. The operation MAKESET(x) then
creates a singleton set consisting of its root p(x) := x. If two sets are merged with
UNITE(x,y), first the representativity of rx = FIND(x) and ry = FIND(y) is identified.
Then one of them, e.g., ry, is designated the new root by setting p(rx) := ry.

By compacting the paths in the in-tree, i.e., making leaves point directly to the
root, the operations on the structure can all be solved in quasi-constant, amortized
time [92]. Many variants on compaction schemes and unite strategies have been
studied by Tarjan and van Leeuwen [93].

Algorithm 12.4 presents the emptiness check [83] for TGBA. Two global variables
are used:

480 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.4: SCC-Based Emptiness Check
1 Union-find of 〈Q'{Dead}〉 : uf
2 Stack of 〈q ∈ Q,a ∈ 2[n], ingoing ∈ 2[n]〉 : roots
3

4 function SETUP (A = (Q, ι ,next-product,n,M))
5 uf.MAKESET(Dead)
6 SCCBASED(A, ι , /0)
7 function SCCBASED (A = (Q, ι ,next-product,n,M),s,acc)
8 uf.MAKESET(s)
9 roots.PUSH(〈s, /0,acc〉)

10 forall t ∈ next-product(s) do

11 if uf.SAMESET(td ,Dead) then

12 continue

13 else if uf.FIND(td) = null then

14 SCCBASED(A, td ,M(t))
15 else

16 roots.TOP().a← roots.TOP().a∪M(t)
17 while ¬uf.SAMESET(td ,s) do

18 〈r,a, i〉 ← roots.POP()
19 roots.TOP().a← roots.TOP().a∪ i∪a
20 uf.UNITE(r,roots.TOP().q)
21 if roots.TOP().a = [n] then

22 report non-empty

23 if roots.TOP().q = s then

24 roots.POP()
25 uf.UNITE(s,Dead)

1. The union-find uf (line 1), which stores the various partitions corresponding to
the SCCs discovered so far by the exploration. This structure maintains a special
partition Dead, which holds all states of already completed SCCs (without
accepting run), i.e., all states that cannot be part of an accepting run.

2. The roots stack roots (line 2), which contains tuples composed of: q the potential
root, a the set of acceptance marks (visited so far) associated with the SCC
containing q, and a special field ingoing. This special field keeps track of the
acceptance marks held by the ingoing transition. This information must be kept
since it is not directly available on TGBAs.

Lines 4 to 6 only set up the union-find with the special partition Dead, and then
call the recursive exploration through the SCCBASED function. This function takes
three parameters: the automaton to check, the state to explore, and the acceptance
mark held by the ingoing transition.

Lines 8 and 9 respectively insert the state into the union-find and the roots stack.
Lines 10 to 22 process all the successors of the current state s. If the destination td

of a transition is already Dead (lines 11–12) then the transition is just skipped since
it cannot lead to an accepting run. If the destination has not yet been visited (lines
13–14) the function is called recursively. Finally, the destination can be a part of an

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 481

SCC (trivial or not) that is not yet marked Dead. In this case, a cycle has been found
and partial SCCs stored in the roots stack (lines 16–20) must be merged. During this
merge the acceptance marks in the SCC are also merged (line 19). When all partial
SCCs have been merged, an accepting run exists iff the field a of the top of the roots
stack contains all acceptance marks. Note that this test could also be done during the
merge.

Finally, when the root of an SCC is about to be backtracked, all states belonging
to this SCC must be marked Dead. Line 25 performs this operation in quasi-constant
time, by virtue of the union-find data structure.

12.4 Multi-core, DFS-Based Solutions

12.4.1 Terminal and Weak Acceptance

In Section 12.3, we saw that the simplest classes of Büchi automata often allow for
simpler and more efficient algorithms. Here we show that checking emptiness of weak
and terminal automata can be done using a parallel version of DFS that preserves
enough of the depth-first order to still be able to find all elementary cycles. First, we
show how a simple parallel search can detect emptiness of terminal automata, as it
illustrates nicely what low-level ingredients are required for shared-memory parallel
algorithms.

Terminal Acceptance

Algorithm 12.5 shows a parallel search algorithm with a shared state set. To simplify
the acceptance condition, the algorithm first converts the terminal automaton, which
is by extension also a weak automaton, into an equivalent SBA A′ at line 4. Then it
schedules the initial state in the stack or the queue of the first worker Queues[0]. The
first worker will start exploring from this state and generate new states, as we will see
later, while a load balancer will take care that work arrives in the queues of the other
workers. When the initializations are completed, the algorithm launches the actual
search procedure in parallel at line 7. At the first encounter of an accepting state
the algorithm terminates at line 15, just like the sequential algorithm for terminal
acceptance discussed in Section 12.3.2.

Each worker perpetually calls the load balancer at line 10. When its queue is
non-empty (Q[p] �= /0), the load-balance function will merely return true. When a
worker has run out of work (Q[p] = /0), however, the function takes some work from
the queue of another thread and adds it to the local queue Q[p]. Only when the load
balancer detects termination, using a specialized termination detection algorithm [85],
will the load balancer return false, allowing the worker thread to exit the SEARCH
function.

482 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.5: A Parallel Search Algorithm for Checking the Emptiness
of Terminal Automata

1 global Queues[P]
2 global StateSet
3 function PAR-TERMINAL-CHECK (A = (Q, ι ,next-product,n,M),P)
4 Convert A into an equivalent SBA A′ (e.g. Figure 12.5).
5 Queues[0] := {ι}
6 StateSet := /0
7 SEARCH1(A′) || . . . || SEARCHP(A′)
8 report no-cycle

9 function SEARCH p (A = (Q, ι ,next-product,1,M))
10 while load-balance(Queues[p]) do

11 s := Queues[p].dequeue()
12 if StateSet.find-or-put(s) then

13 forall t ∈ next-product(s) do

14 if M(td) = [1] then

15 report cycle and terminate

16 Queues[p].queue(td)

The use of a load balancer has the advantage that no communication occurs while
workers still have work locally available (their queue is non empty). Only in the
extreme cases when a worker is without work, e.g., right after initialization and when
most of the state space has been processed, will the algorithm experience overhead
from additional synchronization. Specialized concurrent “deque” data structures
allow the load balancer to be particularly efficient [19].

For the rest, the parallel search function operates as expected: A state is taken from
the local queue at line 11, its successors are considered at line 13, and when a new
state is encountered it is added to the local queue at line 16. The worker thus traverses
the state space more or less independently, with one exception: visited states are
entered into a shared set StateSet. To atomically add states, this set implementation
has a find-or-put operation, which at the same time checks whether a state s is already
contained in the set, and when this is not the case, adds it to the set. It can be used to
“grab” new states and thus exclusively assign them to the worker that encounters a
state first.

The state set can be implemented efficiently as a concurrent hash table or tree
table data structure [71, 68]. Because the set of visited states accounts for almost
all memory use of the algorithm (recall from the previous section that transitions
do not need to be stored), and because workers diverge into different parts of the
(huge) state space, most lookups in the table do not collide, i.e., they access different
parts of the table. This is another efficient aspect of the algorithm; it exploits the
random memory characteristic of model checking algorithms (as also discussed in
the introduction) to increase parallelism.

In the sequential case, the algorithm yields a strict DFS order when implementing
Queues as a stack, and a strict BFS order when implementing Queues as a fifo-queue.
This parallel algorithm variant however violates a strict order as soon as workers

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 483

start encountering the same states. Because only one of them will win the race in
the find-or-put call, the others are forced to violate the order. For this reason, the
algorithm might just as well immediately try to “grab” each generated state td inside
the for loop by moving line 12 right before line 16 (the state set should be initialized
to {ι}). While this causes a more abnormal search order, it limits all duplication of
states on local stacks.

Various researchers have found ways to approach BFS more precisely in parallel
algorithms, while also limiting communication by introducing separate queues [2, 58].
A more precise order can have practical benefits, e.g., it allows the model checker to
find the shortest counterexample, but also mitigates the on-the-fly behavior of the
procedure. It is unknown yet whether (non-lexicographic) DFS can be preserved
efficiently as well (recall from the introduction that lexicographic DFS, with fixed
transition ordering, likely is not parallelizable according to theory). Nonetheless,
we now show that with a simple parallel algorithm, we can preserve enough of the
DFS order to find all elementary cycles, which is sufficient to tackle the LTL model
checking problem as the following sections show.

Weak Acceptance

Emptiness of weak automata is a little harder to compute than for terminal automata
because the algorithm still needs to inspect all elementary cycles. In Section 12.3.2,
we showed how DFS can solve it sequentially. Algorithm 12.6 does the same in
parallel. Again, to simplify the acceptance condition, the algorithm first converts the
terminal automaton to an equivalent SBA A′ at line 2. Then, the algorithm launches
the actual search procedure in parallel at line 3. All workers start searching from the
same initial state.

Algorithm 12.6: A parallel DFS algorithm for checking emptiness of weak
automata

1 function PAR-WEAK-CHECK (A = (Q, ι ,next-product,n,M),P)
2 Convert A to an equivalent SBA A′ (e.g. Figure 12.5)
3 PAR-DFS1(A′, ι) || . . . || PAR-DFSP(A′, ι)
4 report no-cycle

5 function PAR-DFS p (A = (Q, ι ,next-product,1,M),s)
6 s.gray[p] := true
7 forall t ∈ RANDOMIZE(next-product(s)) do

8 if td .gray[p]∧M(td) = [1] then

9 report cycle and terminate

10 if ¬td .gray[p]∧¬td .black then

11 PAR-DFS p(td)

12 s.black := true
13 s.gray[p] := false

484 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

The search procedure resembles the sequential DFS procedure of Algorithm 12.2,
with the exception that the stack states are now colored gray locally. This means
that workers’ stacks might overlap while searching through the state space. When
backtracked, however, the states are colored globally black, pruning the search space
for other workers. This is where the speedup of the parallel algorithm comes from.
To obtain the best performance, the search order of each parallel worker should be
randomized, so that workers are guided into different parts of the state space [65].
Although redundant due to the set inclusion, we nonetheless emphasize this with the
RANDOMIZE function.

To detect cycles, the algorithm uses the same stack-based check as its sequential
counterpart. It will not miss any cycles because of the parallel search for the following
reasons:

• It is possible to show that all black states always have black or gray states as
successors (gray for some worker).

• When a worker p ignores a state td for being black, and that state actually has a
path to its gray stack, then by induction on the cycle, it can be shown that there
is some other worker in a similar situation or able to find a path back to its stack.

• Because there are a finite number of workers, one will eventually find the cycle.

A full proof of correctness can be found in Laarman and Faragó [69].
Because of the use of DFS, the weak emptiness check algorithm looks simpler

than Algorithm 12.5. Indeed, it does not require a load-balancer, because work
distribution is achieved by letting stacks (partly) overlap. While it may be the case
that workers exclude each other from parts of the state space, there are easy ways to
remedy that [69]. Because of the lack of a load balancer, the stack can be completely
local (here it is maintained as part of the program stack). However, it is not the
case that the algorithm does without a global state set. The set is hidden behind the
color variables and implicitly accessed when these are referenced in the algorithm.
Therefore, an efficient concurrent hash table or tree data structure is again crucial for
its performance.

To detect non-progress properties, another subset of LTL, Laarman and Faragó [69]
introduce DFS-FIFO, an algorithm that utilizes a similar parallel DFS. It can be
used for checking emptiness of weak automata as well and improves the parallel
scalability by combining the search with a highly scalable BFS. A similar approach
was taken for parallel checking of weak LTL properties on timed automata in [34].
The parallel DFS approach has the additional benefit that it combines well with
state space reduction techniques, as these can implemented with the same on-the-fly
algorithm [70].

12.4.2 CNDFS

Two algorithms were presented simultaneously (LNDFS by Laarman et al. [66] and
ENDFS by Evangelista et al. [42]) that adapted the Nested-DFS (NDFS) algorithm

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 485

to multi-core architectures. Both share the principle of launching multiple instances
of NDFS that synchronize themselves to avoid useless state revisits, just like the
algorithm for checking emptiness of weak automata discussed in the previous section.
Although they are heuristic algorithms in the sense that, in the worst case, they reduce
to spawning multiple unsynchronized instances of NDFS, the experiments reported
by Laarman et al. [66, 65] show good practical speedups.

They were then combined and improved in the CNDFS algorithm by Evangelista
et al. [43]. This algorithm is both much simpler and uses less memory, making it
more compatible with exact compression techniques such as tree compression [68]
that can compress large states down to two integers.

CNDFS is presented in Alg. 12.7 for P threads. It is based on the principle of
SWARM worker threads (indicated by subscript p here), sharing information via colors
stored in the visited states: here blue and red. After randomly visiting all successors
(lines 13–15), a state is marked blue at line 16 (meaning “globally visited”), causing
the (other) blue-DFS workers to lose the strict postorder property.

If the state s is accepting, as in the sequential NDFS algorithm, a red-DFS is
launched at line 19 to find a cycle. At this point, state s is called “the seed.” All states
visited by DFSREDp are collected in Rp. If no cycle is found in the red-DFS, none
exists for the seed. Still, because the red-DFS was not necessarily called in postorder,
other (non-seed, non-red) accepting states may be encountered about which we know
nothing, except the fact that they are out of order and reachable from the seed. These
are handled after completion of the red-DFS at line 20 by simply waiting for them to
become red.

In this scenario there is always another worker that can color such a state red. The
intuition behind this is that there has to be another worker to cause the out-of-order
red search in the first place (by coloring blue) and, in the second place, this worker
can continue its execution because cyclic waiting configurations can only happen
for accepting cycles. These accepting cycles would however be encountered first,
causing termination and a cycle report (line 8). After completion of the waiting
procedure, CNDFS marks all states in Rp globally red, pruning other red-DFSs.

An efficient parallelization of the blue-DFS is absolutely essential for scalability,
since the number of blue states (all reachable states) typically exceeds the number of
red states (visited by the red-DFS). Since it was impossible to color both blue and red
while backtracking from the respective DFS procedures, CNDFS uses an intermediate
solution, using a wait statement as a compromise, leaving enough parallelism to
maintain scalability.

CNDFS only uses P+2 bits per state plus the sizes of R. In the theoretical worst
case (an accepting initial state), each worker p ∈ [P] could collect all states in Rp.
According to extensive experiments, the set rarely contains more than one state and
never more than thousands, which is still negligible compared to |Q|.

486 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.7: CNDFS, a Multi-Core Algorithm for LTL Model Checking
1 function CNDFS (ι ,P)
2 DFSBLUE1(ι) || . . . || DFSBLUEP(ι)
3 return no-cycle

4 function DFSREDp(A = (Q, ι ,next-product,n,M),s)
5 Rp := Rp∪{s}
6 forall t ∈ RANDOMIZE(next-product(s)) do

7 if td .cyan[p] then

8 return cycle and terminate

9 if td �∈Rp∧¬td .red then

10 DFSREDp(A, td)

11 function DFSBLUEp(A = (Q, ι ,next-product,n,M),s)
12 s.cyan[p] := true
13 forall t ∈ RANDOMIZE(next-product(s)) do

14 if ¬td .cyan[p]∧¬td .blue then

15 DFSBLUEp(A, td)

16 s.blue := true
17 if M(s) �= /0 then

18 Rp := /0
19 DFSREDp(A,s)
20 await ∀s′ ∈Rp s.t. M(s′) �= /0 : s �= s′ ⇒ s′.red
21 forall s′ ∈Rp do

22 s′.red := true

23 s.cyan[p] := false

12.4.3 Multi-core/DFS-Based SCC Decomposition

To handle emptiness checking of TGBAs, a parallel SCC-based algorithm is required
as Theorem 1 indicates. Traditional parallel SCC algorithms [86, 46, 13, 98, 60, 88]
are BFS-based implementations of divide-and-conquer approaches, which are not
on the fly [18]. Also, these algorithms often exhibit an n× log(n) or quadratic-time
worst-case complexity. We therefore rely on DFS to detect SCCs in parallel since
DFS-based SCC detection can be both on the fly and linear time. The main difficulty
here, like in the previous section, is that a sufficient amount of the DFS order must
be preserved for correctly detecting cycles.

We first briefly discuss a fully synchronized approach and show how bottlenecks
impose limitations on the algorithm’s performance. Then we present a random
search/swarmed approach that performs linearly and show how this technique scales
for multiple workers.

Fully Synchronized Parallel SCC Algorithm

The general idea of the fully synchronized algorithm [74] is to have multiple non-
overlapping search instances. Every reachable state is visited by exactly one worker,

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 487

who globally takes ownership of the state. Searches are spawned from unvisited
successor states. Upon encountering a state taken by a different worker, the search
suspends until the state is marked as being completely explored. Otherwise, the
search proceeds similarly to Tarjan’s algorithm [91].

A cycle of suspended searches can occur as a consequence. In case no further
actions are taken, the algorithm may never finish. A map of suspended searches
is used to detect such cycles. If a worker suspends a search and detects a cycle of
suspended searches, it transfers all relevant states from the suspended searches to one
search and proceeds normally. For example, suppose that a worker visits edge v→ w
and detects that w is part of a different search. Before suspending, it checks whether
the path w→∗ v can be found by traversing states from the suspended searches. If so,
a cycle is detected, which should be resolved by the current worker.

Maintaining the suspended map and resolving cycles of suspended searches
is a costly process. The sequential linear-time performance of Tarjan’s algorithm
reduces to a quadratic worst-case performance in the synchronized variant. For the
practical performance of the algorithm, two important cases can be distinguished:
graphs containing relatively large SCC sizes (|C| ∼ |Q|), often consisting of many
interconnections; and small SCCs, consisting of only a few states (|C| ∼ 1). The
synchronized algorithm exhibits good scalability for graphs containing only small
SCCs, since the different searches do not tend to interfere with each other. For
graphs with large SCCs, a fully synchronizing algorithm can pay a large performance
penalty if the worst-case time complexity is attained due to the wait-cycle checks.
On the other hand, this algorithm totally avoids any redundant explorations as
searches never overlap. Hence, while in appearance similar to the multi-core NDFS
approaches discussed in the previous subsection, the fully synchronous algorithm
has characteristics similar to the BFS-based algorithms that will be discussed in
Section 12.5.

Swarmed Parallel SCC Algorithm

A different approach is to detect SCCs in a swarmed fashion, similarly to CNDFS
(Section 12.4.2). The general idea of the algorithm is to spawn multiple instances of
a sequential DFS algorithm and communicate the fully explored SCCs in a shared
data structure [84]. An SCC is considered to be fully explored when all its successors
(direct or indirect) have been explored. As a consequence, an instance of the algorithm
can ignore all states belonging to a fully explored SCC. Thus, communicating fully
explored SCCs allows us to prune other DFSs since an instance will never traverse a
state that belongs to a fully explored SCC.

In this approach, two instances can still visit the same SCC (in a swarmed fashion)
until one of the instances detects that it has been fully explored. If the SCC contains
an accepting run, we want to be able to speed up its discovery. The multiple instances
can then share the acceptance marks discovered so far for each (partial) SCC. This
information helps us to find whether an accepting run exists. Suppose that we
have two instances of a classical SCC-based algorithm running on the example of

488 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Figure 12.7 without sharing acceptance marks. Neither of these instances can detect
an accepting cycle before δ0,δ1,δ2, and δ3 have all been visited. Let us now suppose
that they share acceptance marks and that the first instance i0 has visited δ1 and δ2
while the other instance i1 has visited δ0. When instance i1 discovers the transition δ3
it also discovers that s0 and s1 are in the same SCC. In this case, since i0 and i1 share
information about acceptance marks, they can detect the existence of an accepting
cycle.

s1

s0

δ2
1

δ3

δ0
2

δ1

Fig. 12.7: Sharing
acceptance marks

In the sequential SCC-based emptiness check (Algo-
rithm 12.4) the information about fully explored SCCs is al-
ready stored inside a union-find data structure with a dedicated
partition Dead. Lock-free versions of the union-find structure
exist [5]. A simple implementation of this structure is presented
in Algorithm 12.8. As mentioned in Section 12.3.4 each ele-
ment stored by the union-find maintains a field parent, which
represents a forest of reverse arborescences. In a parallel set-
ting this field must not be updated concurrently by two threads.
This can be done using a compare-and-swap (CAS) operation
(line 13 and 15). This operation is an atomic instruction used in

multithreading to achieve synchronization: CAS(m, v1, v2) compares the contents
of a memory location m to a given value v1 and, only if they are the same, modifies
the contents of that memory location to a given new value v2. The CAS operation
returns true if the modification was successful and false otherwise. A closer look to
Algorithm 12.8 shows that this structure is only lock-free and not wait-free because
of the spin-wait loops of lines 8 and 19. The rest of this union-find remains similar to
the sequential version apart from the use of atomic operations.

This union-find can then be shared among the multiple instances to communicate
fully explored SCCs. This structure can also be extended to store, for each partition,
a set of acceptance marks. This modification slightly impacts the interface of union-
find:

• When MAKESET(e) effectively creates a partition for e (because it did not exist
before), the associated acceptance set is /0.

• The UNITE function takes an extra argument representing the set of acceptance
marks that occur in the (partial) SCC. During this operation, the union-find must
propagate the acceptance set to the representative of the partition. This is costless
since this representative is already computed by the FIND function. Also note that
for implementation details, a union with the partition containing Dead always
returns /0.

This swarmed emptiness check is presented in Algorithm 12.9 and mostly relies on
the sequential SCC-based emptiness check presented in Algorithm 12.4. It performs
a DFS, maintains a roots stack, and uses a union-find to store partitions representing
partial SCC and Dead states. Nonetheless, some minor changes have been made:

• Only the union-find is shared among the threads. The roots stack is local to each
instance.

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 489

Algorithm 12.8: Concurrent Union-Find Data Structure
1 function FIND (a)
2 if a.parent �= a then

3 a.parent := FIND(a.parent)
4 return a.parent
5 function UNITE (a,b)
6 x := a
7 y := b
8 while true do

9 x := FIND(x)
10 y := FIND(y)
11 if x = y then return

12 else if x < y then

13 if CAS(x.parent,x,y) then return

14 else

15 if CAS(y.parent,y,x) then return

16 function SAMESET (a,b)
17 x := a
18 y := b
19 while TRUE do

20 x := FIND(x)
21 y := FIND(y)
22 if x = y then return TRUE
23 else if x.parent = x then return FALSE

• Each instance p now maintains a local integer counterp (line 3). This integer is
only incremented (line 10) so it can be used to (locally) order states that have
been visited.

• For an instance p, each state s is associated with a live number, i.e., an integer
accessible via s.livenump. This live number is given according to counterp the
first time the state is visited by the thread p (line 11).

• Line 21 has been changed since SAMESET cannot be used to pop the roots stack
until the new root is discovered. Indeed, since the union-find is shared among all
threads, no assumptions about its internal state can be made.

It is worth noting that the union-find structure collects the acceptance marks
that are discovered by all threads. Thus, at line 23 the algorithm uses the global
uf structure to detect which acceptance marks have been found, by any worker, in
the partial SCC. This helps speed up reporting the existence of an accepting run.
Nonetheless, if an SCC is not accepting, its states cannot be marked Dead before a
thread has visited all the states and all the transitions of this SCC. This is a serious
drawback of this algorithm when the automaton to check is composed of a single
large SCC: in this case, the expected speedup is null. The next algorithm solves this
problem.

490 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.9: Swarmed SCC-Based Algorithm
1 Shared Union-find of 〈Q∪{Dead},a ∈ 2[n]〉 : uf
2 Local Stack of 〈q ∈ Q, ingoing ∈ 2[n]〉 : rootsp
3 Local Integer counterp
4

5 function SETUP (A = (Q, ι ,next-product,n,M))
6 uf.MAKESET(Dead)
7 counter1 ← 0; . . . ; counterP ← 0
8 SWARMEDSCCBASED1(ι , /0) || . . . || SWARMEDSCCBASEDP(ι , /0)
9 function SWARMEDSCCBASED p (A = (Q, ι ,next-product,n,M),s,acc)

10 counterp := counterp +1
11 s.livenump := counterp
12 uf.MAKESET(s)
13 rootsp.PUSH(〈s,acc〉)
14 forall t ∈ RANDOMIZE(next-product(s)) do

15 if uf.SAMESET(td ,Dead) then

16 continue

17 else if uf.FIND(td) = null then

18 SWARMEDSCCBASED p(A, td ,M(t))
19 else

20 uf.FIND(s).a := uf.FIND(s).a∪M(t)
21 while td .livenump < rootsp.TOP().q.livenump do

22 〈r, i〉 := rootsp.POP()
23 uf.UNITE(r,rootsp.TOP().q, i)
24 if uf.FIND(s).a = [n] then

25 report non-empty

26 if rootsp.TOP().q = s then

27 rootsp.POP()
28 uf.UNITE(s,Dead, /0)

Improved Parallel Swarmed SCC Algorithm

The key aspects of the improved algorithm are to communicate partially found SCCs
and globally track the remaining work left for each SCC. The SCC algorithm is
presented in [18] and is applied to LTL model checking in [17]. It is presented in
Algorithm 12.10 and differs slightly from Algorithm 12.9.

The local counter and livenum have been replaced by globally tracking worker
IDs in the union-find structure. This worker set, w ∈ 2P, is a bitset that tracks which
worker threads are active in the current SCC. The MAKESET(p,s) is extended to set
the bit for worker p in the partial SCC of s, which is tracked in the representative of
the set. This worker set is used in line 14 to detect a cycle. Note that if worker p has
visited some state s in a partial SCC, every state of this partial SCC is considered to
have been visited before. This is valid since there is a path from every other state in
the SCC to s. Also note that multiple workers aid each other by concurrently adding
more states to the set, thus increasing the number of states that have been “visited
before.”

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 491

Algorithm 12.10: UFSCC Algorithm: Improved Swarmed SCC Algorithm
1 Shared Union-find of 〈Q∪{Dead},a ∈ 2[n],w ∈ 2P, list ∈ 2Q〉 : uf
2 Local Stack of 〈q ∈ Q, ingoing ∈ 2[n]〉 : rootsp
3

4 function SETUP (A = (Q, ι ,next-product,n,M))
5 uf.MAKESET(Dead)
6 IMPROVEDSCC1(ι , /0) || . . . || IMPROVEDSCCP(ι , /0)
7 function IMPROVEDSCCp (A = (Q, ι ,next-product,n,M),s,acc)
8 uf.MAKESET(p,s)
9 rootsp.PUSH(〈s,acc〉)

10 while s′ ∈ uf.PICKFROMLIST(s) do

11 forall t ∈ RANDOMIZE(next-product(s′)) do

12 if uf.SAMESET(td ,Dead) then

13 continue

14 else if p /∈ uf.FIND(td).w then

15 IMPROVEDSCCp(A, td ,M(t))
16 else

17 uf.FIND(s).a := uf.FIND(s).a∪M(t)
18 while ¬SAMESET(s, td) do

19 〈r, i〉 := rootsp.POP()
20 UNITE(r,rootsp.TOP().q, i)
21 if uf.FIND(s).a = [n] then

22 report non-empty

23 uf.REMOVEFROMLIST(s′)
24 uf.UNITE(s,Dead, /0)
25 if rootsp.TOP() = s then

26 rootsp.POP()

In order to collaborate in detecting when an SCC has been fully explored, the
union-find structure has been further extended to track a list of Busy states in each
partial SCC. The idea is to initially keep a global list consisting of every state in the
SCC. Then, after concluding that no new knowledge can be obtained from a state, it
gets removed from the list and another state is chosen. In the algorithm this is shown
in lines 10 and 23. When all successors of state s′ have been handled (lines 11–22)
we can conclude that for every successor d of s′ we either have: (1) d is part of a
Dead SCC, or (2) d is part of the same SCC as s′. In the latter case, d has been
added to the list of Busy states and therefore s′ can be removed from the list. Multiple
workers pick states from the list, explore them, and correspondingly remove them
from the list to cooperatively reduce the number of states in the list. Once the list is
empty (exit condition for line 10), every state of the SCC has been fully explored
and the SCC can be marked Dead.

In the implementation, the union-find structure is extended such that every state
contains a worker set of size |P|, which is maintained (similarly to the acceptance set)
in the UNITE procedure. Every state in the structure also contains a list-next pointer
such that a cyclic list is formed of all states in the partial SCC. See Figure 12.8 for an
illustration. Combining two lists in the UNITE procedure is then realized by swapping

492 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Fig. 12.8: Cyclic list of Busy states. White nodes are Busy and gray nodes have been
removed from the list

two list pointers with a fine-grained lock to form a single list containing all states.
A Boolean flag is used to mark a state to be removed from the list. Workers then
traverse the list to find Busy states and update the next pointers such that the removed
states are detached from the list.

12.5 Distributed, BFS-Based Solutions

In shared-memory, parallel algorithms can exploit relatively fast accesses to concur-
rent data structures to dynamically distribute the search procedure over the processor
cores, as achieved in the previous section through the use of a shared state set. In the
distributed setting, such synchronous communication would be too costly. To solve
this problem, distributed algorithms statically partition the states over the workers,
using so called hash-based partitioning. Under this scheme, every state of the graph
to be stored is assigned to a single workstation that is responsible for its storage. The
function to assign an owner of a state is referred to as the partition or owner function.

This section discusses two algorithms suitable for distributed computation. Be-
cause the static partitioning works best in combination with the highly scalable
breadth-first search, the emptiness-check problem is first rephrased so that it can be
solved by an iterative approach. In the worst case, each iteration represents one pass
over the state space, but can be implemented with BFS. Nonetheless, for many inputs
the time complexity of this approach is still optimal and we demonstrate that the
emptiness check can even be made partially on the fly. At the end of this section, we
show how this approach compares to the DFS approaches in the previous section.

12.5.1 One-Way-Catch-Them-Young

The emptiness-check algorithm discussed in this section is built on top of a procedure
for topological sorting. It relies on the fact that vertices of a directed graph may
be topologically sorted if and only if the graph is acyclic. The topological sort

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 493

procedure may be effectively adapted for parallel processing without any increase
in the theoretical time complexity. While topological sort can directly detect the
presence of a cycle in a directed graph, it cannot distinguish between accepting and
non-accepting cycles. Therefore, it must be accompanied by another technique in
order to be used as a Büchi automata emptiness check. One of the options to achieve
accepting-cycle detection is to combine the topological sort procedure with a forward
reachability analysis that eliminates states not reachable from accepting states. The
algorithm relying on this combination is referred to as the OWCTY algorithm (One-
Way-Catch-Them-Young) [44, 26].

The idea of the OWCTY algorithm is to remove leading rejecting SCCs (SCCs
without accepting states) from the graph of the product Büchi automaton, then use
the topological sort procedure to remove leading accepting states that do not lie on a
cycle. This process is iterated until a fixpoint is reached. When the remaining graph
is empty, it contains no accepting cycle. When the remaining graph is non-empty, the
presence of an accepting cycle in the graph is guaranteed.

The OWCTY algorithm therefore uses two removal procedures, ELIM-NO-
ACCEPTING and ELIM-NO-PREDECESSORS, which alternate. See Algorithm 12.11
for details. ELIM-NO-ACCEPTING is a procedure that computes all states that are
reachable from an accepting state in the graph and removes the rest. Efficiently,
this procedure removes all leading SCCs that contain no accepting states at all.
Obviously, these SCCs must be rejecting. After that, all leading SCCs in the rest
of the graph contain an accepting state; however, they might all be trivial SCCs
(contain no edges). To detect whether there is a non-trivial leading SCC with an
accepting state in the graph, the trivial leading SCCs must be removed. For that,
the ELIM-NO-PREDECESSORS procedure is used. Note that after the removal of a
leading trivial SCC another trivial SCC may become leading. To deal with that the
ELIM-NO-PREDECESSORS procedure proceeds iteratively, and removes all trivial
SCCs from the top of the graph (mimicking the topological sort procedure). After
ELIM-NO-PREDECESSORS finishes, all leading SCCs in the remaining part of the
graph are non-trivial, hence a new round of the elimination is executed, starting again
with the ELIM-NO-ACCEPTING procedure.

To learn whether a state is a trivial leading component, the algorithm needs to
detect not-yet-removed predecessors of the state. To do so, the algorithm maintains an
integer value associated with every vertex to keep the number of not-yet-removed di-
rect predecessors, the so called indegree. The unique feature of the OWCTY algorithm
is that the indegrees are updated without the need to enumerate the predecessors of a
state. In fact, the algorithm only performs forward traversal procedures to maintain
the indegrees. This is exactly what the One-Way in the name of the algorithm stands
for. While this does not immediately make the algorithms on the fly (we do so in the
subsequent section), it does already avoid the costly need to store all edges of the
graph for reverse traversals as discussed in Section 12.3.1. To emphasize this fact,
we again use the implicit definition of the Büchi automaton, i.e., with next-product
instead of δ , as defined in Section 12.2.7.

The pseudo code of the OWCTY algorithm depends on the following notational
conventions. Distributed data structures R,Open, and OldR are referred to either in

494 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

a global way, in which case no subscript is used, or in a local (partitioned) way,
in which case the subscript denotes which part of a distributed data structure is
accessed. For example, a set of states R is a union over distributed data parts of
R denoted by R1, . . . ,Rn. Rp is used in procedure ELIM-NO-PREDECESSORSp to
denote that the algorithm accesses the local part of the data structure. The indegrees
are denoted as fields of the states, but in reality should be stored in the state set Rp,
which can be implemented as a hash map. At line 20, the indegree is set to 0 for
(newly encountered) accepting states, as these are the roots of the search tree, but
to 1 for other states, indicating that these are reachable from one accepting state. At
line 17, the indegree is incremented when other incoming edges of the state s are
found. Termination detection is implemented by TERMINATION.

12.5.2 MAP

Yet another approach to accepting-cycle detection in distributed memory is taken by
the algorithm MAP [21]. The main idea behind the algorithm is based on the fact that
each accepting state lying on an accepting cycle is its own predecessor. When the
algorithm computes the set of all accepting predecessors for every accepting state,
it is sufficient to check, whether any of the accepting states is present in its own
predecessor set. However, to compute and store all this information would be rather
expensive. The algorithm instead stores only a single unique representative of the set
of all accepting predecessors per state. Let us assume a linear ordering ≺ of vertices
(given; e.g., by their representation in memory), then the unique representative
could just be the maximal accepting predecessor (MAP). Let ⊥ be a unique value
that is the lowest in the order. We will present here a sequential version of the
MAP algorithm and explain in a subsequent section how it can be integrated into
the OWCTY algorithm to achieve a parallel version with on-the-fly properties. See
Algorithm 12.12 for the pseudocode of the sequential version of the MAP algorithm.

For a state u, we denote its maximal accepting predecessor in the graph G by
mapG(u). Clearly, if an accepting state is its own maximal accepting predecessor
(mapG(u) = u), then it lies on an accepting cycle. Unfortunately, the converse does
not hold in general. Assume that u is the largest accepting state on some accepting
cycle. It can happen that the maximal accepting predecessor of u lies outside the
cycle, i.e., mapG(u) = v for some accepting state v. However, for this accepting
state v either mapG(v) = v, in which case the presence of an accepting cycle can be
detected on v, or mapG(v)≺ v, in which case v is not part of any cycle in the graph.
In the latter case, v can safely be removed from the set of accepting states (or marked
as non-accepting). However, removing v from the set of accepting states invalidates
the value of mapG(u), which has to be recomputed.

The basic workflow of the algorithm is thus to compute maximal accepting
predecessors for accepting states in the graph, and when no accepting cycle can be
proved, to shrink the set of accepting states. These two steps are alternated until either
a cycle is found, or there are no more accepting states in the graph to be removed.

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 495

Algorithm 12.11: OWCTY Algorithm
1 global Open,R,OldR
2 function OWCTY(A = (Q, ι ,next-product,n,M))
3 R := Open := /0
4 o := owner(ι)
5 Openo := {ι}
6 REACH(A,Rp)
7 OldR := /0
8 while (R �= OldR)∧ (R �= /0) do

9 OldR := R
10 ELIM-NO-ACCEPTING1(A,R1) || . . . || ELIM-NO-ACCEPTINGn(A,Rn)
11 ELIM-NO-PREDECESSORS1(A,R1) || . . . || ELIM-NO-PREDECESSORSn(A,Rn)

12 if R �= /0 then report “accepting cycle” else report “no accepting cycle”
13 function REACHp (A = (Q, ι ,next-product,n,M),Rp)
14 while Openp �= /0∧¬TERMINATION(Open) do

15 s := Openp.dequeue()
16 if s ∈ Rp then

17 s.indegree := s.indegree+1
18 else

19 Rp.add(s)
20 s.indegree := if M[s] = [1] then 0 else 1
21 forall t ∈ next-product(s) do

22 o := owner(td)

23 Openo.queue(td)

24 function ELIM-NO-ACCEPTINGp (A = (Q, ι ,next-product,n,M),Rp)
25 forall s ∈ Rp do

26 if M[s] = [1] then

27 Openp.queue(s)

28 R′p := /0
29 BARRIER() // Wait until all workers reinitialized R′p
30 REACH(A,R′p)
31 function ELIM-NO-PREDECESSORSp (A = (Q, ι ,next-product,n,M),Rp)
32 forall s ∈ Rp do

33 if s.indegree = 0 then

34 Openp.queue(s)

35 while Openp �= /0∧¬TERMINATION(Open) do

36 s := Openp.dequeue()
37 s.indegree := s.indegree−1
38 if s.indegree≤ 0 then

39 Rp.remove(s)
40 forall t ∈ next-product(s) do

41 o := owner(td)

42 Openo.queue(td)

To compute the value of the mapG function, Algorithm 12.12 proceeds by the
principle of value propagation. Note that whenever some value is propagated to a

496 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.12: MAP Algorithm
1 function MAP(A = (Q, ι ,next-product,n,M))
2 Waiting.add(ι)
3 oldmap(Q) := ⊥
4 ShrinkM := /0
5 while Waiting �= /0 do

6 while Waiting �= /0 do

7 seed := Waiting.dequeue()
8 PROPAGATE-MAP(A,seed,ShrinkM)

9 Waiting := ShrinkM
10 ShrinkM := /0
11 report “no accepting cycle”
12 function PROPAGATE-MAP(A = (Q, ι ,next-product,n,M),seed,ShrinkM)
13 oldmap(seed) := seed
14 map(seed) := ⊥
15 Seeds.queue(seed)
16 while Seeds �= /0 do

17 u := Seeds.dequeue()
18 if M[u] = [1]∧ (u �= oldmap(u)) then

19 if map(u)≤ u then

20 propagate := u
21 ShrinkM.add(u)
22 else

23 propagate := map(u)
24 ShrinkM.remove(u)

25 else

26 propagate := map(u)
27 forall t ∈ next-product(u) do

28 if propagate = td then

29 report “accepting cycle”
30 if map(td) = oldmap(ts) then

31 oldmap(td) := oldmap(ts)

32 map(td) := propagate
33 Seeds.queue(td)

34 else if (propagate > map(td))∧ (oldmap(td) = oldmap(ts)) then

35 map(td) := propagate
36 Seeds.queue(td)

state from which a low value had been propagated before, the new higher value
must be repropagated. Due to these duplicate propagations, this procedure requires
quadratic time with respect to the size of the graph.

An interesting property of the mapG function is that once computed, the values of
mapG partition the graph into subgraphs. More precisely, states that share the same
value of mapG may lie on a cycle, however, states that do not share the same value
of mapG cannot lie on the same cycle (they cannot be part of the same SCC). The
algorithm takes advantage of this observation and in the propagation phase it restricts
the propagation to only the subgraphs given by the same value of the mapG function

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 497

from the previous iteration. In particular, when exploring a transition t within a given
subgraph for the first time, it is the case that mapG(t

d) = oldmapG(t
s) (line 30);

later on, oldmapG(t
d) = oldmapG(t

s) is used to localise the exploration to a single
subgraph (line 34).

To do so, the algorithm maintains oldmap values for all states. Also note that
the subgraphs where the next iteration of map propagation is about to be computed
are rooted in the accepting states that were just shrunk. Note that some accepting
states may be temporarily recorded as roots of a subgraph, but later on they may
become dominated by some other accepting state, in which case they are no longer
considered to be roots (see line 24).

An interesting question is how to define the ordering with respect to which the
maximal accepting state is determined. It has been shown [22] that for every graph
an optimal ordering exists, however, to find it is as difficult as to define a DFS
postorder, which is hard to parallelize, and would bring us back to the algorithms in
Section 12.4.

12.5.3 Combining OWCTY and MAP

Algorithm MAP works on the fly, i.e., it is capable of reporting the presence of
accepting cycles without the need to explore the whole underlying graph. This is
not the case with algorithm OWCTY, as to properly compute the indegrees, the
whole graph has to be traversed. On the other hand, the time complexity of the
OWCTY algorithm is quadratic, while the time complexity of MAP is cubic. In [11]
a combination of the two algorithms has been presented to obtain the best of both
worlds. In particular, while performing the ELIM-NO-ACCEPTING procedure in the
OWCTY algorithm, it is possible to perform limited propagation of map values at the

Complexity Scalability Optimal On-the-fly TGBA

CNDFS O(V +E) + Yes Yes No
UFSCC O(V +E) + Yes Yes Yes
OWCTY

general Büchi O(V.(V +E)) ++ No No ?
weak Büchi O(V +E) ++ Yes No ?

MAP O(V 2 · (V +E)) ++ No Partially ?
OWCTY + MAP

general Büchi O(V · (V +E)) ++ No Partially ?
weak Büchi O(V +E) ++ Yes Partially ?

Table 12.1: Overview of distributed-memory algorithms for accepting-cycle detection.
Complexity is expressed in the number of vertices V , the number of edges E, and the
number of processes P

498 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

same time. The propagation is limited to a single visit of a state (no repropagation is
allowed). Still, if the algorithm finds an accepting state that is its own predecessor,
the accepting cycle may be reported and the algorithm may terminate without the
need for the whole exploration of the graph.

Table 12.1 provides an overview of all emptiness algorithms discussed in this
chapter. We use a subjective scale for the scalability of these algorithms, as a theoret-
ical treatise on the matter is out of the scope of this handbook. The DFS algorithms
feature optimal runtimes, but not necessarily good scalability. The BFS algorithms
on the other hand sacrifice the optimality property to attain better scalability. How-
ever, in practice, both approaches have been shown to scale well on multi-core
machines [43, 65, 12]. Moreover, in many important cases, i.e., for weak automata,
the OWCTY algorithm and its combination with MAP also achieve optimal runtime
in theory.

The integration of MAP into the OWCTY algorithm further yields some on-the-
fly behavior. While not completely on the fly, OWCTY tends to deliver shorter
counterexamples because of its use of BFS. Short counterexamples are important for
repairing errors in the model as they simplify error diagnosis. In practice, CNDFS has
been shown to also be able to yield similarly short counterexamples with increasing
parallelism [43], but it provides no guarantees about counterexample length. Thus far,
only the SCC algorithms are suitable for direct use on TGBAs. CNDFS likely cannot
be adapted to support TGBAs without increasing the complexity, but we consider the
combination of the BFS algorithms with TGBAs to be an open problem.

12.6 Conclusion

This chapter has revisited the automata-theoretic approach to LTL model checking in
Section 12.2. The starting point is a translation of an LTL formula into a (Transition-
based Generalized) Büchi Automaton. Fragments of LTL lead to weak or even
terminal automata. The LTL model checking algorithm is reduced to emptiness
checking of automata, which boils down to detecting accepting cycles.

To speed up cycle detection, we have introduced parallel algorithms for shared-
memory multi-core machines in Section 12.4. These algorithms are based on Depth-
First Search and come in two flavors: those based on Nested-DFS, and those based
on SCC detection. We showed instances of both.

Based on the observation that DFS is hard to parallelize, an alternative is to design
BFS-based algorithms to detect accepting cycles. We have done so in Section 12.5.
This type of algorithm is used in shared-memory machines, but was originally
designed for distributed clusters of machines connected by a fast communication
network.

Although this chapter has focused on the algorithmic ideas behind the various
parallel LTL model checking algorithms, we would like to stress that the algorithms
that we have explained are also available to the community in open-source tools. The

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 499

translations from LTL to automata are available in the Spot toolset3 [36, 38]. Various
DFS-based multi-core algorithms are available in the LTSmin toolset4 [67, 62].
Finally, the distributed and multi-core implementation of the BFS-based algorithms
are available through the DiVinE toolset5 [10, 14].

The scientific papers connected to the algorithms implemented in these tools
report on extensive experiments to investigate the practical efficiency and parallel
speedup on various benchmark suites of realistic examples, and on their performance
in international model checking competitions.

References

[1] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal dynamic par-
tial order reduction. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, pages
373–384, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2544-8.
doi: 10.1145/2535838.2535845. URL http://doi.acm.org/10.1145/
2535838.2535845.

[2] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable Graph Exploration
on Multicore Processors. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analy-
sis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE Computer Society.
ISBN 978-1-4244-7559-9. doi: 10.1109/SC.2010.46.

[3] A. Aggarwal, R. J. Anderson, and M. Kao. Parallel depth-first search in general
directed graphs. SIAM J. Comput., 19(2):397–409, 1990. doi: 10.1137/0219025.
URL http://dx.doi.org/10.1137/0219025.

[4] R. Alur, S. Chaudhuri, K. Etessami, and P. Madhusudan. On-the-fly reacha-
bility and cycle detection for recursive state machines. In N. Halbwachs and
L. Zuck, editors, Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’05), volume
3440 of Lecture Notes in Computer Science, pages 61–76. Springer Berlin
Heidelberg, April 2005.

[5] R. Anderson and H. Woll. Wait-free Parallel Algorithms for the Union-find
Problem. In Proceedings of the Twenty-third Annual ACM Symposium on
Theory of Computing, STOC ’91, pages 370–380, New York, NY, USA, 1991.
ACM. ISBN 0-89791-397-3. doi: 10.1145/103418.103458. URL http:
//doi.acm.org/10.1145/103418.103458.

[6] T. Babiak, M. Křetínský, V. Řehák, and J. Strejček. LTL to Büchi automata
translation: Fast and more deterministic. In Proc. of the 18th Int. Conf. on

3 https://spot.lrde.epita.fr
4 http://fmt.cs.utwente.nl/tools/ltsmin
5 https://divine.fi.muni.cz

http://doi.acm.org/10.1145/2535838.2535845
http://doi.acm.org/10.1145/2535838.2535845
http://dx.doi.org/10.1137/0219025
http://doi.acm.org/10.1145/103418.103458
http://doi.acm.org/10.1145/103418.103458
https://spot.lrde.epita.fr
http://fmt.cs.utwente.nl/tools/ltsmin
https://divine.fi.muni.cz

500 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Tools and Algorithms for the Construction and Analysis of Systems (TACAS’12),
volume 7214 of LNCS, pages 95–109. Springer, 2012.

[7] T. Babiak, T. Badie, A. Duret-Lutz, M. Křetínský, and J. Strejček. Composi-
tional approach to suspension and other improvements to LTL translation. In
Proceedings of the 20th International SPIN Symposium on Model Checking of
Software (SPIN’13), volume 7976 of Lecture Notes in Computer Science, pages
81–98. Springer, July 2013. doi: 10.1007/978-3-642-39176-7_6.

[8] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.
[9] T. Ball, V. Levin, and S. K. Rajamani. A decade of software model

checking with SLAM. Commun. ACM, 54(7):68–76, 2011. doi: 10.1145/
1965724.1965743. URL http://doi.acm.org/10.1145/1965724.
1965743.

[10] J. Barnat, L. Brim, and P. Rockai. DiVinE 2.0: High-performance model
checking. In Proceedings of the International Workshop on High Performance
Computational Systems Biology (HiBi’09), pages 31–32. IEEE Computer Soci-
ety Press, 2009.

[11] J. Barnat, L. Brim, and P. Ročkai. A time-optimal on-the-fly parallel algorithm
for model checking of weak LTL properties. In Proceedings of the 11th
International Conference on Formal Engineering Methods (ICFEM’09), volume
5885 of LNCS, pages 407–425, Berlin, Heidelberg, 2009. Springer-Verlag.

[12] J. Barnat, L. Brim, and P. Ročkai. Scalable shared memory LTL model checking.
International Journal on Software Tools for Technology Transfer, 12(2):139–
153, 2010.

[13] J. Barnat, P. Bauch, L. Brim, and M. Cežka. Computing strongly connected
components in parallel on cuda. In 2011 IEEE International Parallel Distributed
Processing Symposium, pages 544–555, May 2011. doi: 10.1109/IPDPS.2011.
59.

[14] J. Barnat, L. Brim, V. Havel, J. Havlícek, J. Kriho, M. Lenco, P. Rockai,
V. Still, and J. Weiser. Divine 3.0 - an explicit-state model checker for mul-
tithreaded C & C++ programs. In N. Sharygina and H. Veith, editors, Com-
puter Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of Lec-
ture Notes in Computer Science, pages 863–868. Springer, 2013. ISBN
978-3-642-39798-1. doi: 10.1007/978-3-642-39799-8_60. URL http:
//dx.doi.org/10.1007/978-3-642-39799-8_60.

[15] S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal. Model checking
at IBM. Formal Methods in System Design, 22(2):101–108, 2003. doi:
10.1023/A:1022905120346. URL http://dx.doi.org/10.1023/A:
1022905120346.

[16] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using sat procedures instead of bdds. In Proceedings of the 36th
Annual ACM/IEEE Design Automation Conference, DAC ’99, pages 317–320,
New York, NY, USA, 1999. ACM. ISBN 1-58113-109-7. doi: 10.1145/309847.
309942. URL http://doi.acm.org/10.1145/309847.309942.

http://doi.acm.org/10.1145/1965724.1965743
http://doi.acm.org/10.1145/1965724.1965743
http://dx.doi.org/10.1007/978-3-642-39799-8_60
http://dx.doi.org/10.1007/978-3-642-39799-8_60
http://dx.doi.org/10.1023/A:1022905120346
http://dx.doi.org/10.1023/A:1022905120346
http://doi.acm.org/10.1145/309847.309942

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 501

[17] V. Bloemen and J. van de Pol. Multi-core SCC-Based LTL Model Check-
ing. In R. Bloem and E. Arbel, editors, Hardware and Software: Verifi-
cation and Testing: 12th International Haifa Verification Conference, HVC
2016, Haifa, Israel, November 14-17, 2016, Proceedings, pages 18–33, Cham,
2016. Springer International Publishing. ISBN 978-3-319-49052-6. doi:
10.1007/978-3-319-49052-6_2. URL http://dx.doi.org/10.1007/
978-3-319-49052-6_2.

[18] V. Bloemen, A. Laarman, and J. van de Pol. Multi-core On-the-fly SCC
Decomposition. In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’16, pages 8:1–8:12,
New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4092-2. doi: 10.1145/
2851141.2851161. URL http://doi.acm.org/10.1145/2851141.
2851161.

[19] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[20] D. Bošnački. A nested depth first search algorithm for model checking with
symmetry reduction. In D. A. Peled and M. Y. Vardi, editors, Formal Techniques
for Networked and Distributed Sytems, volume 2529 of LNCS, pages 65–80.
Springer Berlin Heidelberg, 2002. ISBN 978-3-540-00141-6. doi: 10.1007/
3-540-36135-9_5.

[21] L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting predecessors are better
than back edges in distributed LTL model-checking. In A. J. Hu and A. K.
Martin, editors, Proceedings of the 5th International Conference on Formal
Methods in Computer-Aided Design (FMCAD’04), volume 3312 of Lecture
Notes in Computer Science, pages 352–366. Springer, November 2004.

[22] L. Brim, I. Černá, P. Moravec, and J. Šimša. How to Order Vertices for Dis-
tributed LTL Model-Checking Based on Accepting Predecessors. In Proceed-
ings of the 4th International Workshop on Parallel and Distributed Methods in
verifiCation (PDMC 2005), pages 1–12, Lisboa, Portugal, 2005. TU Munchen.

[23] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, Aug. 1986.

[24] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. Hwang. Symbolic
model checking: 1020 states and beyond. In Proceedings of the Fifth Annual
IEEE Symposium on Logic in Computer Science, pages 1–33, Washington, D.C.,
1990. IEEE Computer Society Press.

[25] I. Černá and R. Pelánek. Relating hierarchy of temporal properties to model
checking. In B. Rovan and P. Vojtáǎ, editors, Proceedings of the 28th In-
ternational Symposium on Mathematical Foundations of Computer Science
(MFCS’03), volume 2747 of Lecture Notes in Computer Science, pages 318–
327, Bratislava, Slovak Republic, Aug. 2003. Springer-Verlag.

[26] I. Černá and R. Pelánek. Distributed explicit fair cycle detection (set based
approach). In T. Ball and S. Rajamani, editors, Proceedings of the 10th Inter-
national SPIN Workshop on Model Checking of Software (SPIN’03), volume
2648 of Lecture Notes in Computer Science, pages 49–73. Springer Berlin
Heidelberg, May 2003.

http://dx.doi.org/10.1007/978-3-319-49052-6_2
http://dx.doi.org/10.1007/978-3-319-49052-6_2
http://doi.acm.org/10.1145/2851141.2851161
http://doi.acm.org/10.1145/2851141.2851161

502 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

[27] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement, pages 154–169. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2000. ISBN 978-3-540-45047-4. doi: 10.1007/10722167_15. URL
http://dx.doi.org/10.1007/10722167_15.

[28] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

[29] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry reductions
in model checking, pages 147–158. Springer, 1998. ISBN 978-3-540-69339-
0. doi: 10.1007/BFb0028741. URL http://dx.doi.org/10.1007/
BFb0028741.

[30] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
2000.

[31] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithm for the verification of temporal properties. Formal Methods in System
Design, 1:275–288, 1992.

[32] J.-M. Couvreur. On-the-fly verification of temporal logic. In J. M. Wing,
J. Woodcock, and J. Davies, editors, Proceedings of the World Congress on
Formal Methods in the Development of Computing Systems (FM’99), volume
1708 of Lecture Notes in Computer Science, pages 253–271, Toulouse, France,
Sept. 1999. Springer-Verlag. ISBN 3-540-66587-0.

[33] J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly emptiness checks
for generalized Büchi automata. In P. Godefroid, editor, Proceedings of the
12th International SPIN Workshop on Model Checking of Software (SPIN’05),
volume 3639 of Lecture Notes in Computer Science, pages 143–158. Springer,
Aug. 2005.

[34] A. Deshpande, F. Herbreteau, B. Srivathsan, T. Tran, and I. Walukiewicz. Fast
detection of cycles in timed automata. CoRR, abs/1410.4509, 2014. URL
http://arxiv.org/abs/1410.4509.

[35] E. W. Dijkstra. EWD 376: Finding the maximum strong components in a di-
rected graph. http://www.cs.utexas.edu/users/EWD/ewd03xx/
EWD376.PDF, May 1973.

[36] A. Duret-Lutz. Manipulating LTL formulas using Spot 1.0. In Proceed-
ings of the 11th International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA’13), volume 8172 of Lecture Notes in Com-
puter Science, pages 442–445, Hanoi, Vietnam, Oct. 2013. Springer. doi:
10.1007/978-3-319-02444-8_31.

[37] A. Duret-Lutz. LTL translation improvements in Spot 1.0. International
Journal on Critical Computer-Based Systems, 5(1/2):31–54, Mar. 2014. doi:
10.1504/IJCCBS.2014.059594.

[38] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu.
Spot 2.0 — a framework for LTL and ω-automata manipulation. In Proceedings
of the 14th International Symposium on Automated Technology for Verification
and Analysis (ATVA’16), volume 9938 of Lecture Notes in Computer Science,
pages 122–129. Springer, 2016.

http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/BFb0028741
http://dx.doi.org/10.1007/BFb0028741
http://arxiv.org/abs/1410.4509
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 503

[39] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns
for finite-state verification. In M. Ardis, editor, Proceedings of the 2nd Workshop
on Formal Methods in Software Practice (FMSP’98), pages 7–15, New York,
Mar. 1998. ACM Press.

[40] S. Edelkamp, A. L. Lafuente, and S. Leue. Directed explicit model check-
ing with HSF-SPIN. In Proceedings of the 8th international Spin workshop
on model checking of software (SPIN’01), volume 2057 of Lecture Notes in
Computer Science, pages 57–79. Springer-Verlag, 2001.

[41] E. A. Emerson and T. Wahl. Dynamic Symmetry Reduction, pages 382–396.
Springer, 2005. ISBN 978-3-540-31980-1. doi: 10.1007/978-3-540-31980-1_
25. URL http://dx.doi.org/10.1007/978-3-540-31980-1_
25.

[42] S. Evangelista, L. Petrucci, and S. Youcef. Parallel nested depth-first searches
for LTL model checking. In Proceedings of the 9th international conference on
Automated technology for verification and analysis (ATVA’11), volume 6996 of
Lecture Notes in Computer Science, pages 381–396. Springer-Verlag, 2011.

[43] S. Evangelista, A. Laarman, L. Petrucci, and J. van de Pol. Improved multi-core
nested depth-first search. In Proceedings of the 10th international conference
on Automated technology for verification and analysis (ATVA’12), volume 7561
of Lecture Notes in Computer Science, pages 269–283. Springer-Verlag, 2012.

[44] K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best
symbolic cycle-detection algorithm? In Proceedings of the fourth International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’01), volume 2031 of LNCS, pages 420–434. Springer-Verlag,
2001.

[45] L. Fix. Fifteen years of formal property verification in Intel. In O. Grumberg
and H. Veith, editors, 25 Years of Model Checking - History, Achievements, Per-
spectives, volume 5000 of Lecture Notes in Computer Science, pages 139–144.
Springer, 2008. ISBN 978-3-540-69849-4. doi: 10.1007/978-3-540-69850-0_8.
URL http://dx.doi.org/10.1007/978-3-540-69850-0_8.

[46] L. K. Fleischer, B. Hendrickson, and A. Pınar. On Identifying Strongly
Connected Components in Parallel, pages 505–511. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000. ISBN 978-3-540-45591-2. doi:
10.1007/3-540-45591-4_68. URL http://dx.doi.org/10.1007/
3-540-45591-4_68.

[47] H. N. Gabow. Path-based depth-first search for strong and biconnected compo-
nents. Information Processing Letters, 74(3-4):107–114, February 2000.

[48] A. Gaiser and S. Schwoon. Comparison of algorithms for checking emptiness
on Büchi automata. In P. Hlinený, V. Matyás, and T. Vojnar, editors, Procedings
of Annual Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science (MEMICS’09), volume 13 of OASICS. Schloss Dagstuhl,
Leibniz-Zentrum fuer Informatik, Germany, Nov. 2009.

[49] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In G. Berry,
H. Comon, and A. Finkel, editors, Proceedings of the 13th International Con-

http://dx.doi.org/10.1007/978-3-540-31980-1_25
http://dx.doi.org/10.1007/978-3-540-31980-1_25
http://dx.doi.org/10.1007/978-3-540-69850-0_8
http://dx.doi.org/10.1007/3-540-45591-4_68
http://dx.doi.org/10.1007/3-540-45591-4_68

504 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

ference on Computer Aided Verification (CAV’01), volume 2102 of Lecture
Notes in Computer Science, pages 53–65, Paris, France, 2001. Springer-Verlag.

[50] P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in SPIN.
In S. Graf and L. Mounier, editors, Proceedings of the 11th International SPIN
Workshop on Model Checking of Software (SPIN’04), volume 2989 of Lecture
Notes in Computer Science, pages 92–108, Apr. 2004.

[51] H. Gazit and G. L. Miller. An improved parallel algorithm that computes the
BFS numbering of a directed graph. Inf. Process. Lett., 28(2):61–65, 1988. doi:
10.1016/0020-0190(88)90164-0. URL http://dx.doi.org/10.1016/
0020-0190(88)90164-0.

[52] J. Geldenhuys and A. Valmari. More efficient on-the-fly LTL verification with
Tarjan’s algorithm. Theoretical Computer Science, 345(1):60–82, Nov. 2005.
Conference paper selected for journal publication.

[53] D. Giannakopoulou and F. Lerda. From states to transitions: Improving trans-
lation of LTL formulæ to Büchi automata. In D. Peled and M. Vardi, editors,
Proceedings of the 22nd IFIP WG 6.1 International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE’02), volume 2529
of Lecture Notes in Computer Science, pages 308–326, Houston, Texas, Nov.
2002. Springer-Verlag.

[54] P. Godefroid. Using partial orders to improve automatic verification methods.
In Computer-Aided Verification, pages 176–185. Springer, 1991.

[55] P. Godefroid, G. Holzmann, and D. Pirottin. State-space caching revisited.
Formal Methods in System Design, 7(3):227–241, Nov. 1995.

[56] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation:
P-Completeness Theory. Oxford University Press, 1995.

[57] X. He and Y. Yesha. A nearly optimal parallel algorithm for constructing
depth first spanning trees in planar graphs. SIAM J. Comput., 17(3):486–491,
1988. doi: 10.1137/0217028. URL http://dx.doi.org/10.1137/
0217028.

[58] G. Holzmann. Parallelizing the spin model checker. In A. Donaldson and
D. Parker, editors, SPIN’12, volume 7385 of LNCS, pages 155–171. Springer,
2012. ISBN 978-3-642-31758-3. URL http://dx.doi.org/10.1007/
978-3-642-31759-0_12.

[59] G. J. Holzmann, D. A. Peled, and M. Yannakakis. On nested depth first search.
In J.-C. Grégoire, G. J. Holzmann, and D. A. Peled, editors, Proceedings of the
2nd Spin Workshop, volume 32 of DIMACS: Series in Discrete Mathematics
and Theoretical Computer Science. American Mathematical Society, May 1996.

[60] S. Hong, N. C. Rodia, and K. Olukotun. On fast parallel detection of strongly
connected components (scc) in small-world graphs. In 2013 SC - Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pages 1–11, Nov 2013. doi: 10.1145/2503210.2503246.

[61] T. Junttila. On the Symmetry Reduction Method for Petri Nets and Similar
Formalisms. PhD thesis, Helsinki University of Technology, Laboratory for
Theoretical Computer Science, Espoo, Finland, 2003.

http://dx.doi.org/10.1016/0020-0190(88)90164-0
http://dx.doi.org/10.1016/0020-0190(88)90164-0
http://dx.doi.org/10.1137/0217028
http://dx.doi.org/10.1137/0217028
http://dx.doi.org/10.1007/978-3-642-31759-0_12
http://dx.doi.org/10.1007/978-3-642-31759-0_12

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 505

[62] G. Kant, A. Laarman, J. Meijer, J. Pol, S. Blom, and T. Dijk. LTSmin: High-
performance language-independent model checking. In C. T. Christel Baier,
editor, Proceedings of the 21st International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’15), volume 9035
of Lecture Notes in Computer Science, pages 692–707. Springer-Berlin, 2015.

[63] S. Katz and D. Peled. An efficient verification method for parallel and dis-
tributed programs, pages 489–507. Springer, 1989. ISBN 978-3-540-46147-
0. doi: 10.1007/BFb0013032. URL http://dx.doi.org/10.1007/
BFb0013032.

[64] A. Laarman. Scalable multi-core model checking. PhD thesis, University of
Twente, 2014.

[65] A. Laarman and J. van de Pol. Variations on multi-core nested depth-first search.
In PDMC’11, pages 13–28, 2011.

[66] A. Laarman, R. Langerak, J. van de Pol, M. Weber, and A. Wijs. Multi-core
nested depth-first search. In T. Bultan and P.-A. Hsiung, editors, Proceedings
of the Automated Technology for Verification and Analysis, 9th International
Symposium (ATVA’11), volume 6996 of Lecture Notes in Computer Science,
pages 321–335, Taipei, Taiwan, October 2011. Springer.

[67] A. Laarman, J. van de Pol, and M. Weber. Multi-core LTSmin: Marrying
modularity and scalability. In M. Bobaru, K. Havelund, G. Holzmann, and
R. Joshi, editors, NFM 2011, Pasadena, CA, USA, volume 6617 of LNCS, pages
506–511, Berlin, July 2011. Springer. doi: 10.1007/978-3-642-20398-5_40.

[68] A. Laarman, J. van de Pol, and M. Weber. Parallel Recursive State Compression
for Free. In A. Groce and M. Musuvathi, editors, SPIN 2011, LNCS, pages
38–56, London, July 2011. Springer. URL http://doc.utwente.nl/
77024/.

[69] A. W. Laarman and D. Faragó. Improved on-the-fly livelock detection.
In G. Brat, N. Rungta, and A. Venet, editors, NFM 2013, volume 7871
of LNCS, pages 32–47. Springer, 2013. ISBN 978-3-642-38087-7. doi:
10.1007/978-3-642-38088-4_3.

[70] A. W. Laarman and A. J. Wijs. Partial-Order Reduction for Multi-core
LTL Model Checking. In E. Yahav, editor, HVC 2014, volume 8855 of
LNCS, pages 267–283. Springer, 2014. ISBN 978-3-319-13337-9. doi:
10.1007/978-3-319-13338-6_20. URL http://dx.doi.org/10.1007/
978-3-319-13338-6_20.

[71] A. W. Laarman, J. C. van de Pol, and M. Weber. Boosting Multi-Core
Reachability Performance with Shared Hash Tables. In N. Sharygina and
R. Bloem, editors, FMCAD 2010. IEEE Computer Society, 2010. URL
http://dl.acm.org/citation.cfm?id=1998496.1998541.

[72] T. Lai and S. Sahni. Anomalies in parallel branch-and-bound algorithms.
Commun. ACM, 27(6):594–602, 1984. doi: 10.1145/358080.358103. URL
http://doi.acm.org/10.1145/358080.358103.

[73] A. Lenharth, D. Nguyen, and K. Pingali. Parallel graph analytics. Commun.
ACM, 59(5):78–87, Apr. 2016. ISSN 0001-0782. doi: 10.1145/2901919. URL
http://doi.acm.org/10.1145/2901919.

http://dx.doi.org/10.1007/BFb0013032
http://dx.doi.org/10.1007/BFb0013032
http://doc.utwente.nl/77024/
http://doc.utwente.nl/77024/
http://dx.doi.org/10.1007/978-3-319-13338-6_20
http://dx.doi.org/10.1007/978-3-319-13338-6_20
http://dl.acm.org/citation.cfm?id=1998496.1998541
http://doi.acm.org/10.1145/358080.358103
http://doi.acm.org/10.1145/2901919

506 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

[74] G. Lowe. Concurrent depth-first search algorithms based on Tarjan’s Algorithm.
International Journal on Software Tools for Technology Transfer, pages 1–
19, 2015. ISSN 1433-2779. doi: 10.1007/s10009-015-0382-1. URL http:
//dx.doi.org/10.1007/s10009-015-0382-1.

[75] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. Challenges in par-
allel graph processing. Parallel Processing Letters, 17(1):5–20, 2007. doi:
10.1142/S0129626407002843. URL http://dx.doi.org/10.1142/
S0129626407002843.

[76] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proceedings
of the sixth annual ACM Symposium on Principles of distributed computing
(PODC’90), pages 377–410, New York, NY, USA, 1990. ACM.

[77] K. L. McMillan. Symbolic Model Checking, pages 25–60. Springer US, Boston,
MA, 1993. ISBN 978-1-4615-3190-6. doi: 10.1007/978-1-4615-3190-6_3.
URL http://dx.doi.org/10.1007/978-1-4615-3190-6_3.

[78] K. L. McMillan. Interpolation and SAT-Based Model Checking, pages 1–
13. Springer, Berlin, Heidelberg, 2003. ISBN 978-3-540-45069-6. doi:
10.1007/978-3-540-45069-6_1. URL http://dx.doi.org/10.1007/
978-3-540-45069-6_1.

[79] I. Munro. Efficient determination of the transitive closure of a directed graph.
Information Processing Letters, 1(2):56–58, 1971.

[80] P. Purdom. A transitive closure algorithm. BIT Numerical Mathematics, 10(1):
76–94, 1970.

[81] N. V. Rao and V. Kumar. Superlinear speedup in parallel state-space
search. Foundations of Software Technology and Theoretical Computer
Science, pages 161–174, 1988. URL http://dx.doi.org/10.1007/
3-540-50517-2_79.

[82] J. H. Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20:229–234, 1985.

[83] E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud. Three SCC-based
emptiness checks for generalized Büchi automata. In K. McMillan, A. Mid-
deldorp, and A. Voronkov, editors, Proceedings of the 19th International
Conference on Logic for Programming, Artificial Intelligence, and Reason-
ing (LPAR’13), volume 8312 of Lecture Notes in Computer Science, pages
668–682. Springer, Dec. 2013. doi: 10.1007/978-3-642-45221-5_44.

[84] E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud. Variations on parallel
explicit model checking for generalized Büchi automata. International Journal
on Software Tools for Technology Transfer (STTT), 19(6): 653-673, Apr. 2016.

[85] P. Sanders. Lastverteilungsalgorithmen für parallele Tiefensuche. number 463.
In Fortschrittsberichte, Reihe 10. VDI. Verlag, 1997.

[86] W. Schudy. Finding strongly connected components in parallel using o(log2n)
reachability queries. In Proceedings of the Twentieth Annual Symposium
on Parallelism in Algorithms and Architectures, SPAA ’08, pages 146–151,
New York, NY, USA, 2008. ACM. ISBN 978-1-59593-973-9. doi: 10.1145/
1378533.1378560. URL http://doi.acm.org/10.1145/1378533.
1378560.

http://dx.doi.org/10.1007/s10009-015-0382-1
http://dx.doi.org/10.1007/s10009-015-0382-1
http://dx.doi.org/10.1142/S0129626407002843
http://dx.doi.org/10.1142/S0129626407002843
http://dx.doi.org/10.1007/978-1-4615-3190-6_3
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/3-540-50517-2_79
http://dx.doi.org/10.1007/3-540-50517-2_79
http://doi.acm.org/10.1145/1378533.1378560
http://doi.acm.org/10.1145/1378533.1378560

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 507

[87] S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. In
N. Halbwachs and L. Zuck, editors, Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’05), volume 3440 of Lecture Notes in Computer Science,
Edinburgh, Scotland, Apr. 2005. Springer.

[88] G. M. Slota, S. Rajamanickam, and K. Madduri. Bfs and coloring-based parallel
algorithms for strongly connected components and related problems. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium, pages
550–559, May 2014. doi: 10.1109/IPDPS.2014.64.

[89] U. Stern and D. L. Dill. Combining state space caching and hash compaction. In
Methoden des Entwurfs und der Verifikation digitaler Systeme, 4. GI/ITG/GME
Workshop, pages 81–90. Shaker Verlag, 1996.

[90] R. Tarjan. Depth-first search and linear graph algorithms. In Conference records
of the 12th Annual IEEE Symposium on Switching and Automata Theory, pages
114–121. IEEE, Oct. 1971. Later republished [91].

[91] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[92] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM (JACM), 22(2):215–225, Apr. 1975.

[93] R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms.
Journal of the ACM, 31(2):245–281, Mar. 1984.

[94] H. Tauriainen. Nested emptiness search for generalized Büchi automata. In
Proceedings of the 4th International Conference on Application of Concurrency
to System Design (ACSD’04), pages 165–174. IEEE Computer Society, June
2004.

[95] A. Valmari. Stubborn sets for reduced state space generation. In Proceedings
of the 10th International Conference on Applications and Theory of Petri
Nets (ICATPN’91), volume 618 of Lecture Notes in Computer Science, pages
491–515, London, UK, 1991. Springer-Verlag.

[96] A. Valmari. The state explosion problem. In W. Reisig and G. Rozenberg,
editors, Lectures on Petri Nets 1: Basic Models, volume 1491 of Lecture Notes
in Computer Science, pages 429–528. Springer-Verlag, 1998.

[97] M. Y. Vardi. Automata-theoretic model checking revisited. In Proceedings of
the 8th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’07), volume 4349 of Lecture Notes in Computer Science,
Nice, France, Jan. 2007. Springer. Invited paper.

[98] A. Wijs, J.-P. Katoen, and D. Bošnački. GPU-Based Graph Decomposi-
tion into Strongly Connected and Maximal End Components, pages 310–326.
Springer International Publishing, Cham, 2014. ISBN 978-3-319-08867-9. doi:
10.1007/978-3-319-08867-9_20. URL http://dx.doi.org/10.1007/
978-3-319-08867-9_20.

http://dx.doi.org/10.1007/978-3-319-08867-9_20
http://dx.doi.org/10.1007/978-3-319-08867-9_20

Chapter 13

Multi-core Decision Diagrams

Tom van Dijk and Jaco van de Pol

Abstract Decision diagrams are fundamental data structures that revolutionized
fields such as model checking, automated reasoning and decision processes. As
performance gains in the current era mostly come from parallel processing, an
ongoing challenge is to develop data structures and algorithms for modern multi-
core architectures. This chapter describes the parallelization of decision diagram
operations as implemented in the parallel decision diagram package Sylvan, which
allows sequential algorithms that use decision diagrams to exploit the power of
multi-core machines.

13.1 Introduction

Decision diagrams are fundamental data structures in computer science and find appli-
cations in many areas. They are extensively used in symbolic model checking [15, 16],
logic synthesis [40, 41, 55], Boolean satisfiability, fault tree analysis [52, 12], test
generation [6, 1] and even to represent access control lists [26]. A recent survey
paper by Minato [44] provides an accessible history of research into decision dia-
grams, listing applications to data mining [38], Bayesian networks and probabilistic
inference models [45, 32], and game theory [53].

In the past, the processing power of computers increased mostly by improvements
in the clock speed and the efficiency of processors, which often do not require
adaptations to algorithms. However, as physical constraints seem to limit such
improvements, further increases in processing power of modern machines inevitably

Tom van Dijk
Institute for Formal Methods and Verification, Johannes Kepler University, Linz, Austria
e-mail: tom.vandijk@jku.at

Jaco van de Pol
Formal Methods and Tools, University of Twente, Enschede, The Netherlands
e-mail: j.c.vandepol@utwente.nl

509© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_13

tom.vandijk@jku.at
j.c.vandepol@utwente.nl
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_13&domain=pdf

510 Tom van Dijk and Jaco van de Pol

come from using multiple cores. To make optimal use of the processing power of
multi-core machines, algorithms must be adapted.

This chapter discusses the techniques that we used to parallelize decision diagram
algorithms in the parallel decision diagram library Sylvan [61, 64, 59]. These tech-
niques are based on two main ingredients. The first ingredient is work-stealing to
perform task-based algorithms such as decision diagram operations in parallel. The
second ingredient consists of two concurrent data structures: a single shared hash
table that stores all nodes of the decision diagrams, and a single concurrent operation
cache that stores the intermediate results of operations for reuse.

This chapter is largely based on the research related to the parallel decision
diagram library Sylvan, which is described in [66] and in the PhD thesis of Van
Dijk [59]. Sylvan implements parallelized operations on binary decision diagrams
(BDDs), list decision diagrams (LDDs), which are used in the model checking toolset
LTSMIN [33], and multi-terminal binary decision diagrams (MTBDDs) [5, 22].
Sylvan can replace existing non-parallel implementations to bring the processing
power of multi-core machines to non-parallel applications.

The remainder of this chapter is organized in the following way:

Section 13.2 gives a high-level overview of decision diagrams and decision diagram
operations.

Section 13.3 discusses how decision diagram operations can be parallelized using
work-stealing.

Section 13.4 discusses the main concurrent data structures: the hash table that con-
tains the nodes of the decision diagrams, and the operation cache that stores the
intermediate results of the operations.

Section 13.5 presents parallel garbage collection.

Section 13.6 briefly reviews the performance of parallel decision diagram operations
for a number of applications. We discuss previously reported case studies on using
decision diagrams in model checking, bisimulation reduction and probabilistic model
checking.

Section 13.7 finally concludes the chapter.

13.2 Preliminaries

This section gives a high-level overview of decision diagrams and decision diagram
operations. We discuss Boolean logic and the most well-known form of decision
diagrams, binary decision diagrams, in Sections 13.2.1 and 13.2.2, as well as one pop-
ular extension of binary decision diagrams with non-binary leaves in Section 13.2.3.
Section 13.2.4 describes how typical decision diagram operations are implemented.
Section 13.2.5 discusses lock-free programming. Finally, Section 13.2.6 aims to
provide the reader with an overview of parallelized decision diagram operations in
earlier literature.

13 Multi-core Decision Diagrams 511

13.2.1 Boolean Logic and Notation

Boolean logic is fundamental in computer science, especially as all digital data can
be expressed in binary form. Boolean variables are either true or false. Boolean
formulas are defined on Boolean variables and have operators such as conjunction
(x∧ y), disjunction (x∨ y), negation (¬x) and quantification (∃ and ∀). Boolean
functions are functions BN → B (on N inputs), with a Boolean formula representing
the relation between the inputs and the output of the Boolean function.

In this chapter, we also use 0 to denote false and 1 to denote true. We use
the notation fx=v for a Boolean function f where the variable x is given value v. For
example, given a function f defined on N variables:

f (x1, . . . ,xi, . . . ,xN)xi=0 ≡ f (x1, . . . ,0, . . . ,xN)

f (x1, . . . ,xi, . . . ,xN)xi=1 ≡ f (x1, . . . ,1, . . . ,xN)

This notation is especially relevant for decision diagrams, as they are recursively
defined on the value of a Boolean variable.

13.2.2 Binary Decision Diagrams

Binary decision diagrams (BDDs) are a concise and canonical representation of
Boolean functions BN → B [3, 14] and are a basic structure in discrete mathematics
and computer science.

A (reduced, ordered) BDD is a rooted directed acyclic graph with leaves 0 and
1. Each internal node has a variable label xi and two outgoing edges labeled 0
and 1, called the “low” and the “high” edge. Variables are encountered along each
directed path according to a fixed variable ordering. Equivalent nodes (two nodes
with the same label and outgoing edges) and nodes with two identical outgoing edges
(redundant nodes) are forbidden. It is well known that, given a fixed ordering, every
Boolean function is represented by a unique BDD [14].

The following figure shows the BDDs for several Boolean functions. Internal
nodes are drawn as circles with variables, and leaves as boxes. High edges are drawn
solid, and low edges are drawn dashed. Given a valuation of the variables, BDDs are
evaluated by following the high edge when the variable x is true, or the low edge
when it is false.

512 Tom van Dijk and Jaco van de Pol

x x1∧ x2 x1∨ x2 x1⊕ x2

x

1 0

x1

x2

1 0

x1

x2

1 0

x1

x2

1

x2

0

There are various equivalent ways to interpret a binary decision diagram, leading to
the same Boolean function:

1. Consider every distinct path from the root of the BDD to the terminal 1. Every
such path assigns true or false to the variables encountered along that path,
by following either the high edge or the low edge. In this way, every path
corresponds to a conjunction of literals, sometimes called a cube. For example,
the cube x0x1x3x4x5 corresponds to a path that follows the high edges of nodes
labeled x0, x3 and x4, and the low edges of nodes labeled x1 and x5. If the cubes
c1, . . . ,ck correspond to the k distinct paths in a BDD, then this BDD encodes
the function c1∨·· ·∨ ck.

2. Alternatively, after computing fx=1 and fx=0 by interpreting the BDDs obtained
by following the high and the low edges, a BDD node with variable label x
represents the Boolean function x fx=1∨ x fx=0.

In addition, we use complemented edges [13] as a property of an edge to denote
the negation of a BDD, i.e., the leaf 1 in the BDD will be interpreted as 0 and vice
versa, or in general, each terminal node will be interpreted as its negation. This is a
well-known technique. We write ¬ to denote toggling this property on an edge. The
following figure shows the BDDs for the same simple examples as above, but with
complemented edges:

x x1∧ x2 x1∨ x2 x1⊕ x2

0

x

0

x2

x1

0

x2

x1

0

x2

x1

As this example demonstrates, always strictly fewer nodes are required, and there
is only one (“false”) terminal node. The terminal “true” is simply a complemented

13 Multi-core Decision Diagrams 513

edge to “false”. We only allow complement marks on the high edges to maintain the
property that BDDs uniquely represent Boolean functions (see also below).

The interpretation of a BDD with complemented edges is as follows:

1. Count the complemented edges on each path to the terminal 0. Since negation is
an involution (¬¬x = x), each path with an odd number of complemented edges
is a path to “true”, and with cubes c1, . . . ,ck corresponding to all such paths, the
BDD encodes the Boolean function c1∨·· ·∨ ck.

2. If the high edge has a complement mark, then the BDD node represents the
Boolean function x¬ fx=1∨ x fx=0, otherwise x fx=1∨ x fx=0.

With complemented edges, the following BDDs are identical:

xi xi

Complemented edges thus introduce a second representation of a Boolean func-
tion: if we toggle the complement mark on the two outgoing edges and on all
incoming edges, we find that it encodes the same Boolean function. By forbidding a
complement on one of the outgoing edges, for example the low edge, BDDs remain
canonical representations of Boolean functions, since then the representation without
a complement mark on the low edge is always used [13].

13.2.3 Multi-terminal Binary Decision Diagrams

In addition to BDDs with leaves 0 and 1, multi-terminal binary decision diagrams
(MTBDDs) have been proposed [5, 22] with arbitrary leaves, representing functions
from the Boolean space BN into any set. For example, MTBDDs can have leaves
representing integers (encoding BN →N), floating-point numbers (encoding BN →R)
or rational numbers (encoding BN →Q). In our implementation of MTBDDs, we
also allow for partially defined functions, using a leaf⊥. See Figure 13.1 for a simple
example of such an MTBDD.

Similar to the interpretation of BDDs, MTBDDs are interpreted as follows:

1. An MTBDD encodes functions from a Boolean domain D ⊆ BN onto some
codomain C, such that for each path to a leaf V ∈ C, all inputs matching the
corresponding cube c map to V . Also, given all such cubes c1, . . . ,ck, the domain
D equals c1∨·· ·∨ ck. All paths corresponding to cubes not in D, i.e., for which
the function is not defined, lead to the leaf ⊥.

514 Tom van Dijk and Jaco van de Pol

2. If an MTBDD is a leaf with the label V , then it represents the function
f (x1, . . . ,xN) ≡ V . Otherwise, it is an internal node with label x. After re-
cursively computing fx=1 and fx=0 by interpreting the MTBDDs obtained
by following the high and the low edges, the node represents a function
f (x1, . . . ,xN)≡ if x then fx=1 else fx=0.

Like BDDs, MTBDDs can have complement edges. This works only for leaf
types for which negation is properly defined, i.e., each leaf x has a unique negated
counterpart ¬x, such that ¬¬x = x and ¬x �= x. In general, this does not work for
numbers as 0 =−0 in ordinary arithemetic. In addition, this also does not work for
partially defined functions, as the negation of ⊥ is not properly defined. In practice
this means that complement edges are not typically used with MTBDDs.

13.2.4 Algorithms on Decision Diagrams

Many BDD packages implement the basic BDD operations and, not and xor, the
if-then-else (ite) operation, and exists (Table 13.1). Negation ¬ is performed
using complemented edges (Section 13.2.2) and is basically free. See Algorithm 13.1
for a typical implementation of and.

This algorithm showcases all features of a typical decision diagram operation.
Most decision diagram operations first check whether the operation can be applied
immediately to x and y (lines 2–4). This is typically the case when x and y are leaves.
Often there are also other trivial cases that can be checked first. In Algorithm 13.1,
this is the case when x = y or when x = ¬y.

Often, the parameters of an operation can be normalized in some way to increase
the cache efficiency. For example, a∧b and b∧a are the same operation. Normaliza-
tion rules can then rewrite the parameters to some standard form in order to increase
cache utilization, as at line 5. A well-known example is the if-then-else algorithm,
which rewrites using rewrite rules called “standard triples” as described in [13].

x1

x2 x2

⊥ 1 0.5 0.33333

Fig. 13.1: A simple MTBDD for a function which maps x1x2 to 1, x1x2 to 0.5 and
x1x2 to 0.33333. The function is undefined for the input x1x2

13 Multi-core Decision Diagrams 515

Operation Implementation

x∧ y and(x,y)
x∨ y not(and(not(x),not(y)))
¬(x∧ y) not(and(x,y))
¬(x∨ y) and(not(x),not(y))
x⊕ y xor(x,y)
x↔ y not(xor(x,y))
x→ y not(and(x,not(y)))
x← y not(and(not(x),y))
if x then y else z ite(x,y,z)
∃v : x exists(x,v)
∀v : x not(exists(not(x),v))

Table 13.1: Basic BDD operations on the input BDDs x, y, z

Algorithm 13.1: The BDD Algorithm and, with the BDDs x and y as
Parameters

1 def and(x, y):

2 if x = 1 : return y
3 if y = 1∨ x = y : return x
4 if x = 0∨ y = 0∨ x = ¬y : return 0
5 if x > y : swap x and y
6 if result← cache[(x,y)] : return result
7 v← topvar(x,y)
8 low← and(xv=0, yv=0)
9 high← and(xv=1, yv=1)

10 result← lookupBDDnode(v, low, high)
11 cache[(x,y)]← result
12 return result

We consult the operation cache (line 6) to see whether this (sub)operation has
been computed earlier. The operation cache is required to reduce the time complexity
of BDD operations from exponential to polynomial in the size of the BDDs.

If x and y are not leaves and the operation is not trivial or in the cache, we use a
function topvar (line 7) to determine the first variable of the root nodes of x and y.
If x and y have different variables in their root nodes, topvar returns the first one
in the variable ordering of x and y. We then compute the recursive application to the
cofactors of x and y with respect to variable v at lines 8–9.

We write xv=i to denote the cofactor of x where variable v takes value i. Since x
and y are ordered according to the same fixed variable ordering, we can easily obtain
xv=i. If the root node of x has the variable v, then xv=i is obtained by following the
low (i = 0) or high (i = 1) edge of x. Otherwise, xv=i equals x.

After computing the suboperations, we compute the result by either reusing
an existing or creating a new BDD node (line 10). This is done by a function
lookupBDDnode, which, given a variable v and the BDDs of resultv=0 and
resultv=1, returns the BDD for result by consulting the unique table.

516 Tom van Dijk and Jaco van de Pol

When the result has been computed, we store it in the operation cache (line 11)
and return the result (line 12).

13.2.5 Parallelism

A major goal in computing is to perform ever larger calculations and to improve
their performance and efficiency. This can be accomplished using various techniques
that are often orthogonal to each other, such as better algorithms, faster processors
and parallel computing using multiple processors. Faster hardware increases the
performance of most computations, often regardless of the algorithm, although
some algorithms benefit more from processor speed while others benefit more from
faster memory access. For suitable algorithms, parallel processing can considerably
improve the performance, on top of what is possible just by increased processor
speeds.

For some algorithms, efficient parallelism is almost trivial. It is no coincidence that
graphics cards contain thousands of small processors, resulting in massive speedups
for very particular applications. Other algorithms are more difficult to parallelize.
For example, some algorithms are inherently sequential, with few opportunities
for the parallel execution of independent calculation paths. Other algorithms have
enough independent paths for parallelization in theory, but are difficult to parallelize
in practice, for example because they are irregular and continually require load
balancing, moving work between processors. Some algorithms are memory-intensive,
i.e., they spend most of their time manipulating data in memory, which can result in
bottlenecks due to the limited bandwidth between the processors and the memory, as
well as time spent waiting in locks.

This chapter discusses the parallelization of algorithms for decision diagrams,
which are large directed acyclic graphs. They are typically irregular and mainly
consist of unpredictable memory accesses with high demands on memory bandwidth.
Decision diagrams are often used as the underlying operations of other algorithms.
If the underlying decision diagram operations are parallelized, then sequential algo-
rithms that use them may also benefit from the parallelization.

Lock-Free Programming

In parallel programs, memory accesses can result in race conditions or data corruption,
for example when multiple threads write to the same location in memory. Typically
data structures are protected against race conditions using locking techniques. While
locks are relatively easy to implement and reason about, they often severely cripple
parallel performance, especially as the number of threads increases. Threads have
to wait until the lock is released, and locks can be a bottleneck when many threads
try to acquire the same lock. Also, locks can sometimes cause spurious delays that

13 Multi-core Decision Diagrams 517

smarter data structures could avoid, for example by recognizing that some operations
do not interfere even though they access the same resource.

A standard technique that avoids locks uses the atomic compare-and-swap
(cas) operation, which is supported by many modern processors.

1 def compare-and-swap(location, expected, newvalue):

2 value← *location
3 if value �= expected : return False
4 *location← newvalue
5 return True

This operation atomically compares the contents of a given location in shared memory
to some given expected value and, if the contents match, changes the contents to
a given new value. If multiple processors try to change the same bytes in memory
using cas at the same time, then only one succeeds.

Data structures that avoid locks are called non-blocking or lock-free. Such data
structures often use the atomic cas operation to make progress in an algorithm,
rather than protecting a part that makes progress. For example, when modifying a
shared variable, an approach using locks would first acquire the lock, then modify
the variable, and finally release the lock. A lock-free approach would use atomic
cas to modify the variable directly. This requires only one memory write rather than
three, but lock-free approaches are typically more complicated to reason about, and
prone to bugs that are more difficult to reproduce and debug.

13.2.6 Historical Perspective

This section describes various approaches have been tried in the past for parallel
processing of decision diagrams, as discussed in [59].

Massively Parallel Computing (early 1990s)

In the early 1990s, researchers tried to speed up BDD manipulation by parallel
processing. The first paper [34] views BDDs as automata, and combines them by
computing a product automaton followed by minimization. Parallelism arises by
handling independent subformulas in parallel: the expansion and reduction algorithms
themselves are not parallelized. They use locks to protect the global hash table, but
this still results in a speedup that is almost linear with the number of processors.
Most other work in this era implemented BFS algorithms for vector machines [46] or
massively parallel SIMD machines [17, 28] with up to 64K processors. Experiments
were run on supercomputers, such as the Connection Machine. Given the large
number of processors, the speedup (around 10 to 20) was disappointing.

518 Tom van Dijk and Jaco van de Pol

Parallel Operations and Constructions

An interesting contribution in this period is the paper by Kimura et al. [35]. Although
they focus on the construction of BDDs, their approach relies on the observation that
suboperations of a logic operation can be executed in parallel and the results can be
merged to obtain the result of the original operation. Our solution to parallelizing
BDD operations follows the same line of thought, although the work-stealing method
for efficient load balancing that we use was first published two years later [10].
Similarly to [35], Parasuram et al. implement parallel BDD operations for distributed
systems, using a “distributed stack” for load balancing, with speedups from 20–32
on a CM-5 machine [50]. Chen and Banerjee implement the parallel construction
of BDDs for logic circuits using lock-based distributed hash tables, parallelizing on
the structure of the circuits [18]. Yang and O’Hallaron [71] parallelize breadth-first
BDD construction on multi-processor systems, resulting in reasonable speedups of
up to 4× with eight processors, although there is a significant synchronization cost
due to their lock-protected unique table.

Distributed Memory Solutions (late 1990s)

Attention shifted towards Networks of Workstations, based on message passing
libraries. The motivation was to combine the collective memory of computers con-
nected via a fast network. Both depth-first [4, 58, 7] and breadth-first [54] traversal
have been proposed. In the latter, BDDs are distributed according to variable levels.
A worker can only proceed when its level has a turn, so these algorithms are inher-
ently sequential. The advantage of distributed memory is not that multiple machines
can perform operations faster than a single machine, but that their memory can be
combined in order to handle larger BDDs. For example, even though [58] reports
a nice parallel speedup, the performance with 32 machines is still 2× slower than
the non-parallel version. BDDNOW [43] is the first BDD package that reports some
speedup compared to the non-parallel version, but it is still very limited.

Parallel Symbolic Reachability (after 2000)

After 2000, research attention shifted from parallel implementations of BDD op-
erations towards the use of BDDs for symbolic reachability in distributed [29, 19]
or shared memory [23, 21]. Here, BDD partitioning strategies such as horizontal
slicing [19] and vertical slicing [31] were used to distribute the BDDs over the
different computers. Also the saturation algorithm [20], an optimal iteration strat-
egy in symbolic reachability, was parallelized using horizontal slicing [19] and
using the work-stealer Cilk [23], although it is still difficult to obtain good parallel
speedup [21].

13 Multi-core Decision Diagrams 519

Multi-core BDD Algorithms

There is some recent research on multi-core BDD algorithms. There are several
implementations that are thread-safe, i.e., they allow multiple threads to use BDD
operations in parallel, but they do not offer parallelized operations. In a thesis on the
BDD library JINC [49], Chapter 6 describes a multi-threaded extension. JINC’s par-
allelism relies on concurrent tables and delayed evaluation. It does not parallelize the
basic BDD operations, although this is mentioned as possible future research. Also, a
recent BDD implementation in Java called BeeDeeDee [39] allows execution of BDD
operations from multiple threads, but does not parallelize single BDD operations.
Similarly, the well-known sequential BDD implementation CUDD [57] supports
multi-threaded applications, but only if each thread uses a different “manager,” i.e.,
unique table to store the nodes in. Except for our contributions [62, 61, 64] related to
Sylvan, there is no recent published research on modern multi-core shared-memory
architectures that parallelizes the actual operations on BDDs. Recently, Oortwijn et
al. [47, 48] continued our work by parallelizing BDD operations on shared-memory
abstractions of distributed systems using remote direct memory access. Work by
Velev et al. [68] implements BDD operations on GPUs for a small case study with
promising results.

13.3 Parallel Decision Diagrams

The requirements for the efficient parallel implementation of decision diagrams are
not the same as for a non-parallel implementation. We refer to Somenzi [56] for a
general discussion on the implementation of non-parallel decision diagrams. Somenzi
already established several aspects of a BDD package. The two central data structures
of a BDD package are the unique table (or nodes table) and the computed table (or
operation cache). Furthermore, garbage collection is essential for a BDD package, as
most BDD operations continuously create and discard BDD nodes. The two central
data structures are discussed in Section 13.4 and garbage collection in Section 13.5.
The current section presents the parallelization of decision diagram operations by
work-stealing.

13.3.1 Work-Stealing

Operations on decision diagrams are typically recursively defined on the structure of
the inputs. To parallelize decision diagram operations, we consider each subproblem
as a separate task and execute independent tasks in parallel. This type of parallelism
is called task-based parallelism.

For task parallelism that fits a “strict” fork-join model, i.e., each task creates the
subtasks that it depends on, work-stealing is well known to be an effective load-

520 Tom van Dijk and Jaco van de Pol

Algorithm 13.2: The Algorithm (left) is Implemented (right) Using SPAWN,
SYNC and CALL

1 do in parallel:

2 K← F1(x, y, z)
3 L← F2(a, b, c)
4 M← F3(g, h)

1 SPAWN(F1, x, y, z)
2 SPAWN(F2, a, b, c)
3 M← CALL(F3, g, h)
4 L← SYNC
5 K← SYNC

balancing method [10], with implementations such as Cilk [11, 27] and Wool [24, 25]
that allow parallel programs to be written in a style similar to sequential programs [2].
Work-stealing has been proven to be optimal for a large class of problems and has
tight memory and communication bounds [10].

In work-stealing, tasks are executed by a fixed number of workers, typically equal
to the number of processor cores. Each worker owns a task pool into which it inserts
new subtasks created by the task it currently executes. Idle workers steal tasks from
the task pools of other workers. Worker are idle either because they do not have any
tasks to perform (e.g., at the start of a computation), or because all their subtasks have
been stolen and they have to wait for the result of the stolen subtasks to continue the
current task. Typically, one worker starts executing a root task and the other workers
perform work-stealing to acquire subtasks.

We use do in parallel to denote that tasks are executed in parallel. Programs
in the Cilk/Wool style are then implemented like in Algorithm 13.2. The SPAWN
keyword creates a new task. The SYNC keyword matches with the last unmatched
SPAWN, i.e., operating as if spawned tasks are stored on a stack. It waits until that
task is completed and retrieves the result. Every SPAWN during the execution of the
program must have a matching SYNC. The CALL keyword skips the task stack and
immediately executes a task.

One important aspect of the work-stealing algorithm is victim selection. For
example in systems with hierarchy, e.g., a network of workstations, it might be useful
to steal from local workers first before trying to steal from a remote worker. Another
strategy would be to remember how much work other workers have after a steal
attempt, and use this to intelligently select targets. In our implementation, workers
with an empty task pool steal from random victims.

When synchronizing with a stolen task, a possible strategy for the victim is to steal
from the thief until the stolen task is completed. By stealing back from the thief, a
worker executes subtasks of the stolen task. This technique is called leapfrogging [69].
When stealing from random workers instead, the size of the task pool of each worker
could grow beyond the size needed for complete sequential execution [25], since
stealing will build a new stack on top of the blocked join. Using leapfrogging rather
than stealing from random workers thus limits the space requirement of the task pools
to that of sequential execution, although in practice it is expensive to guarantee that
the tasks that are stolen from the thief are really subtasks of the original task. It might
be possible that the thief finished the original task and stole a different branch of the

13 Multi-core Decision Diagrams 521

Work-stealing operations Task pool operations

spawn(task) push(task)
sync peek, pop
steal-and-run(victim) steal

Table 13.2: Operations of the work-stealing algorithm and matching operations of
the task pool of each worker

task tree after the victim checked the status of the stolen task. Our implementation
also uses the leapfrogging strategy.

Another concern is which task(s) to steal. A simple algorithm is to steal the first
unstolen task from the bottom of the stack. A variation could be to steal multiple
tasks, or to steal a random task from anywhere in the stack. In our implementation,
thieves steal the first unstolen task from the bottom of the stack.

See Table 13.2 for an overview of the work-stealing operations and how they
match with operations on the task pool. The methods spawn and sync implement
the keywords SPAWN and SYNC. The method steal-and-run tries to steal a task
from the given victim and, if successful, executes the task and communicates the
result back to the owner of the task. The methods push, peek, pop and steal
are implemented by the task pool:

• The push, peek and pop operations are only used by the owner of the stack,
and the steal operation only by thieves.

• The push operation puts a task on the stack.
• The peek operation fixes the status of the task at the top of the stack: either

stolen or available as work. After peek, the top task, if not stolen, cannot be
stolen until the next push (or if peek is called again).

• The pop operation removes the topmost task from the stack. Furthermore we
assume that the task data remains in the task pool until overwritten by a push
operation.

• The steal operation steals a task from the bottom of the stack, changing its
status from available work to stolen work. Stolen tasks are kept on the stack so
the results of tasks can be communicated back to the original owner of the task.

Different implementations of the work-stealing stack can be used, as long as
they implement the described functionality. Experiments show that the difference
in performance between the private deque by Acar et al. [2], the shared deque in
Wool [24, 25] and the shared deque we implemented in Lace [63] are relatively small;
they all have sufficient scalability, although Lace also implements a stop-the-world
feature required for garbage collection (Section 13.5).

522 Tom van Dijk and Jaco van de Pol

Algorithm 13.3: The Implementation of Work-Stealing Using Leapfrogging
when Waiting for a Stolen Task to Finish, i.e., steal from the thief

1 def spawn(task):

2 push(task)

3 def sync():

4 res← peek()
// res is Work(task) or Stolen(task)

5 if res = Work(task) :

6 pop()
7 return task.execute()
8 else:

9 while task.thief = None : (loop)
10 while ¬ task.done : steal-and-run (task.thief)
11 pop-stolen()
12 return task.result

13 def steal-and-run(victim):

14 if victim.steal()= Task(stolentask) :

15 stolentask.thief← me
16 result← stolentask.execute()
17 stolentask.result← result
18 stolentask.done← True

19 thread worker(id, roottask):

20 done← False
21 if id = 0 :

22 roottask.execute()
23 done← True
24 else: while done is False: steal-and-run(random victim)

13.3.2 Parallel Operations with Work-Stealing

Decision diagram operations such as and (Algorithm 13.1) are parallelized by
executing the subtasks (lines 9–10) in parallel:

8 do in parallel:

9 low← and(xv=0, yv=0)
10 high← and(xv=1, yv=1)

This is equivalent to the following:

8 SPAWN(and, xv=0, yv=0)
9 high← CALL(and, xv=1, yv=1)

10 low← SYNC

A more involved example is the parallelized algorithm exists (Algorithm 13.4),
which computes existential quantification. This algorithm receives the input parame-
ters x and V , where x is the BDD representing the function to which quantification
is applied, and V is the BDD representing the conjunction of the variables that are

13 Multi-core Decision Diagrams 523

Algorithm 13.4: Parallelized BDD Algorithm exists, with the BDD x
and V the Cube of Variables that are Abstracted via Existential Quantification

1 def exists(x, V):

2 if x = 0∨ x = 1∨V = /0 : return x
3 v = var(x)
4 while V �= /0∧var(V)< v : V ← next(V)
5 if V = /0 : return x
6 if result← cache[(x,V)] : return result
7 if v = var(V) :

8 if xv=0 = 1∨ xv=1 = 1∨ xv=0 = ¬xv=1 : result← 1
9 else:

10 low← exists(xv=0, next(V))
11 if low = 1 : result← 1
12 else:

13 high← exists(xv=1, next(V))
14 result← or(low, high)

15 else:

16 do in parallel:

17 low← exists(xv=0, V)
18 high← exists(xv=1, V)
19 result← lookupBDDnode(v, low, high)
20 cache[(x,V)]← result
21 return result

abstracted away from x. After the trivial cases (line 2), we check whether V actu-
ally contains variables that are in the BDD (lines 3–5), exploiting the fact that V
is also an ordered BDD. This is also a normalization step for the cache, which is
checked at line 6. Now, there are two cases: either the current root variable v is in V
(lines 7–14) or it is not in V (lines 15–19). In the second case, we simply perform the
two suboperations in parallel and compute the result. In the first case, after checking
some trivial cases, we can either 1) perform the two suboperations in parallel; 2)
perform the “low” suboperation first; or 3) perform the “high” suboperation first. If
either of these suboperations returns 1, then the other does not need to be computed.
The advantage of option 1 is that there is more opportunity for parallelization, at
the cost of possible extra work. However, this extra independent work might not be
necessary, since there is already a lot of independent work from the parallelization at
lines 17–18 and inside the or operation. In Algorithm 13.4, we compute the “low”
suboperation first.

In model checking using decision diagrams, relational products play a central role.
Relational products compute the successors or the predecessors of (sets of) states.
Typically, states are encoded using Boolean variables x = x1,x2, . . . ,xN . Transitions
between these states are represented using Boolean variables x for the source states
and variables x′ = x′1,x

′
2, . . . ,x

′
N for the target states. Given a set of states Si encoded

as a BDD on variables x, and a transition relation R encoded as a BDD on variables
x∪ x′, the set of states S′i+1 encoded on variables x′ is obtained by computing

524 Tom van Dijk and Jaco van de Pol

Algorithm 13.5: The Parallel Algorithm relnext, which Given the BDDs
S (representing a set of states), R (representing a transition relation) and
V (the cube of interleaved variables x∪x′) Computes the Set of Successor
States Defined on x, i.e.,

(∃x : (S∧R)
)
[x′ := x]. We Assume that all Variables

in R are also in V
1 def relnext(S, R, V):

2 if S = 0∨R = 0 : return 0
3 if S = 1∧R = 1 : return 1
4 v = topvar(S,R)
5 while var(V)< v : V ← next(V)

// if V = /0, we assume R is irrelevant
6 if V = /0 : return S
7 if result← cache[(S,R,V)] : return result
8 if v = var(V) :

9 x, x’← unprimed v, primed v
10 V’← V without x and x’
11 do in parallel:

12 a← relnext(Sx=0, Rx=0,x′=0, V ′)
13 b← relnext(Sx=1, Rx=1,x′=0, V ′)
14 c← relnext(Sx=0, Rx=0,x′=1, V ′)
15 d← relnext(Sx=1, Rx=1,x′=1, V ′)
16 do in parallel:

17 low← or(a, b)
18 high← or(c, d)
19 result← lookupBDDnode(x, low, high)
20 else:

// v is not in R, by assumption
21 do in parallel:

22 low← relnext(Sv=0, R, V)
23 high← relnext(Sv=1, R, V)
24 result← lookupBDDnode(v, low, high)
25 cache[(S,R,V)]← result
26 return result

S′i+1 = ∃x : (Si∧R). BDD packages typically implement an operation and_exists
that combines ∃ and ∧ to compute S′i+1.

Typically we want the BDD of the successor states defined on the unprimed
variables x instead of the primed variables x′, so the and_exists call is then
followed by a variable substitution that replaces all occurrences of variables from
x′ with the corresponding variables from x. Furthermore, the variables are typically
interleaved in the variable ordering, like x1,x′1,x2,x′2, . . . ,xN ,x′N , as this often results
in smaller BDDs. This combination of and_exists and variable renaming can
be done with a specialized operation relnext, which computes the successors of
sets of states, where the transition relation is encoded with the interleaved variable
ordering.

See Algorithm 13.5 for the parallel implementation of relnext. This function
takes as input a set S, a transition relation R and the set of variables V , which is the

13 Multi-core Decision Diagrams 525

union of the interleaved sets x and x′ (the variables on which the transition relation
is defined). We first check for terminal cases (lines 2–3). These are the same cases
as for the ∧ operation. Then we process the set of variables V to skip variables that
are not in S and R (lines 5–6). After consulting the cache (line 7), either the current
variable is in the transition relation, or it is not. If it is not, we perform the usual
recursive calls and compute the result (lines 21–24). If the current variable is in the
transition relation, then we let x and x′ be the two relevant variables (either of these
equals v) and compute four subresults, namely for the transitions (a) from 0 to 0, (b)
from 1 to 0, (c) from 0 to 1, and (d) from 1 to 1 in parallel (lines 11–15). We then
abstract from x′ by computing the existential quantifications in parallel (lines 16–18),
and finally compute the result (line 19). This result is stored in the cache (line 25)
and returned (line 26).

13.3.3 Conclusion

This section discussed using work-stealing to perform operations on decision di-
agrams in parallel. We looked at three operations in particular: and, which is a
prototype for many simple decision diagram operations; exists, which adds the
complexity that the subtasks are not completely independent (if “low” returns 1,
“high” does not need to be computed); and relnext, which adds the complexity of
having two phases with independent subtasks.

13.4 Concurrent Data Structures

To efficiently parallelize decision diagram operations, we must perform memory
operations in a scalable manner, i.e., using optimized scalable data structures. This
section describes the organization of decision diagram nodes in memory, as well as
the design of the unique table and the operation cache.

13.4.1 Representation of Nodes

The representation of BDD and MTBDD nodes in memory is important for both
the sequential and the parallel performance of decision diagram implementations.
We use 16 bytes for all types of nodes, so we can use the same unique table for
all nodes and have a fixed node size. With 16 bytes per node, exactly four nodes
fit in a cacheline of 64 bytes (the size of the cacheline for many current computer
architectures, in particular the x86 family that we use). If the unique table is properly
aligned in memory, then only one cacheline needs to be accessed when accessing a
node.

526 Tom van Dijk and Jaco van de Pol

We use 40 bits to store the index of a node in the unique table. This is sufficient to
store up to 240 nodes, i.e., 16 terabytes of nodes, excluding overhead costs.

Sylvan defines the type MTBDD as a 64-bit integer, representing an edge to an
MTBDD node. The lowest 40 bits represent the location of the node in the nodes
table, and the most significant bit stores the complement mark [13], mainly used by
BDDs. The BDD 0 is reserved for the leaf false, with the complemented edge to 0
(i.e., 0x8000000000000000) meaning true.

Internal BDD and MTBDD nodes store the variable label (24 bits), the low edge
(40 bits), the high edge (40 bits), the complement bit of the high edge (1 bit, the first
bit below) and the fact they are not a leaf (1 bit, the second bit below, set to 0):

high edge variable low edge

MTBDD leaves store the leaf type (32 bits), the leaf value (64 bits) and the fact
that they are a leaf (1 bit, set to 1):

leaf type leaf value

The unused space bits are set to 0. They can also be used by the decision diagram
library for other node types or for temporary marking of nodes in algorithms, which
is beyond the scope of this chapter.

13.4.2 Unique Table

The unique table stores all decision diagram nodes and is essential to avoid duplicate
nodes. This table is typically implemented as a hash table, in particular because the
find-or-insert operation is performed in time O(1) on average (amortized) by
a hash table.

The unique table can either be one shared table, or be split into multiple parts
somehow. For example, Somenzi [56] argues for a subtable for each variable level,
as this makes the implementation of variable reordering easier. The disadvantage of
subtables is that their sizes must be adjusted dynamically, thus requiring the different
parallel processes to cooperate on performing garbage collection and resizing when
subtables are full. In addition, there is some overhead to compute the correct size for
each table, which can be avoided by using a single table. Finally, subtables require
the additional complexity of decreasing subtable sizes and compressing decision
diagrams, which we avoid by using a single table that only increases in size when
this is needed.

In the past, there have been various proposals to split the unique table into several
parts for parallel applications, for example to assign parts of the decision diagrams to
certain processors or workstations. This is a consideration that can be orthogonal to
parallelism. As we use work-stealing to perform the load balancing of the decision

13 Multi-core Decision Diagrams 527

diagram operations, we have no control over which processor performs specific
operations. Therefore, we use a single continuous block of memory, and we let the
operating system take care of allocating memory blocks on all available memories in
the system.

The unique table essentially requires the following operations, which must be
highly scalable:

• a find-or-insert method, which, given a 16-byte node, either finds the
existing node in the table, or creates a new node.

• a method to delete nodes for garbage collection. Our implementation has a
separate “data array” containing the nodes and a “hash array” containing the
metadata. We require three operations:

– clear removes all entries from the hash array;
– mark marks a given node for reinsertion in the hash array; and
– rehash reinserts a given node in the hash array.

Our design strictly separates lookup and insertion of nodes from a stop-the-world
garbage collection phase, during which the table may be resized. From the perspective
of the nodes table algorithms (and correctness), all threads of the program are in one
of two phases:

1. During normal operation, threads only call the find-or-insert operation,
which takes as input the 16-byte data and either returns a unique identifier for
the data, or raises the TableFull signal if the algorithm fails to insert the data.

2. During garbage collection, the find-or-insert operation is never called.
Instead, methods clear, mark and rehash (described in Section 13.5) are
called to perform garbage collection.

This simplifies the requirements for the hash tables. The find-or-insert opera-
tion must have the following property: if the operation returns a value for some given
data, then other find-or-insert operations may not return the same value for
a different input, or return a different value for the same input. This property must
hold between garbage collections; garbage collection obviously breaks the property
for nodes that are not kept during garbage collection, as nodes are removed from the
table to make room for new data.

The unique table we use in Sylvan is based on the hash table in [36], which is
designed to store visited states in model checking. This hash table incorporates two
ideas that we also use in our design:

• Using a probe sequence called “walking-the-line” that is efficient with respect to
transferred cachelines.

• Separating the stored data in a “data array” and the hash of the data in the “hash
array” to avoid directly comparing the data.

Furthermore, to manage the “data array” we use bit arrays as a convenient parallel
allocator, although other scalable parallel allocation mechanisms for fixed-size (16
bytes) memory blocks could be used to manage the data array.

528 Tom van Dijk and Jaco van de Pol

72 73 74 75 76 77 78 79

232 233 234 235 236 237 238 239

296 297 298 299 300 301 302 303

Order of buckets:

236–239, 232–235,
297–303, 296,
77–79, 72–76

Fig. 13.2: Example of the walking-the-line probe sequence, with the starting buckets
236, 297 and 77 based on the first three hash values of the data

The Walking-the-Line Probe Sequence

Every hash table needs to implement a strategy to deal with hash table collisions, i.e.,
when different data hashes to the same location in the table. To find a location for the
data in the hash table, some hash tables use open addressing: they visit buckets in the
hash table in a deterministic order called the probe sequence, to either detect that the
data is already in the hash table, or to find an empty bucket, which indicates that the
data can be inserted into that bucket. One of the simplest probe sequences is linear
probing, where the data is hashed once to obtain the first bucket (e.g., bucket 61), and
the probe sequence consists of all buckets from that first bucket (e.g., 61, 62, 63, ...).

An alternative to linear probing is walking-the-line, proposed in [36]. Since data
in a computer is transferred in blocks called cachelines, it is more efficient to use
the entire cacheline instead of only a part of the cacheline. For example, if there are
eight buckets per cacheline and we assume that the buckets are properly aligned so
that the first cacheline starts with bucket 0, then linear probing starting at bucket 61
would only check buckets 61–63 of the first accessed cacheline. In walking-the-line,
the other buckets in that cacheline are also checked, so after buckets 61–63, also
buckets 56–60 would be checked. Then, a new hash value is obtained for the data
using a hash function to obtain the next starting bucket. In theory, this procedure could
be repeated forever; in practice, after a certain number of cachelines the procedure
terminates with the result that the table is full. See also Figure 13.2 for an example
of walking-the-line.

Separated Arrays

The hash table stores the hash of the data in each bucket in a separate array. The idea is
that the find-or-insert algorithm does not need to access the stored data if the
stored hash does not match with the hash of the data given to find-or-insert.
This reduces the number of accessed cachelines during find-or-insert.

13 Multi-core Decision Diagrams 529

hash index in data array data

hash index in data array data

hash index in data array data

24 bits 40 bits

8 bytes 16 bytes

.

0:

1:

2:

Hash array: Data array:

Fig. 13.3: Layout of the hash array and data array

Bit Arrays for Data Management

We use a separate bit array databits to implement a parallel allocator for the data
array. Furthermore, to avoid having to use cas for every change to databits,
we divide this bit array into regions, such that every region matches exactly with
one cacheline of the databits array, i.e., 512 buckets per region if there are
64 bytes in a cacheline, which is the case for most current architectures. Every
worker has exclusive access to one region, which is managed with a second bit array
regionbits. Only changes to regionbits (to claim a new region) require an
atomic cas. We therefore only use normal writes for insertion and uninsertion into
the data array, and only occasionally an atomic cas during speculative insertion to
obtain exclusive access to the next region of 512 buckets.

A claimed region is not given back until garbage collection, which resets claimed
regions. On startup and after garbage collection, the regionbits array is cleared
and all threads claim an initial region using the claim-next-region method in
Algorithm 13.6. All threads start at a different position (distributed over the entire
table) for their first claimed region, to minimize the interactions between threads.
The databits array is empty at startup and during garbage collection threads use
atomic cas to set the bits in databits of decision diagram nodes that must be
kept in the table. In addition, the bit of the first bucket is always set to 1 to avoid
using the index 0 since this is a reserved value in Sylvan.

The layout of the hash array and the data array is given in Figure 13.3. We use a
hash function that never hashes to 0 and we forbid nodes with the index 0 because 0
is a reserved value in Sylvan. The fields hash and index are therefore never 0, unless
the hash bucket is empty, so the field H to indicate that hash and index have valid
values is not necessary. Manipulating the hash array bucket is also simpler, since we
no longer need to take into account changes to the field D.

Inserting data into the hash table consists of three steps. First the algorithm tries
to find whether the data is already in the table. If this is not the case, then a new
bucket in the data array is reserved in the current region of the thread with the
reserve-data-bucket function. If the current region is full, then the thread

530 Tom van Dijk and Jaco van de Pol

Algorithm 13.6: Algorithm for Parallel find-or-insert of the Hash
Table, with 512 Buckets per Region. The Variable myregion is a Thread-
Specific Variable

1 def find-or-insert(data):

2 index← 0
3 h← hash(data)
4 for s ∈ probe-sequence(data) :

5 V← harray[s]
6 if V = 0 :

7 if index = 0 :

8 index← reserve-data-bucket()
9 darray[index]← data

10 if cas(harray[s], 0, {h, index}) : return index
11 else: V← harray[s]
12 if V.hash = h∧darray[V.index] = data :

13 if index �= 0 : free-data-bucket(index)
14 return V.index
15 raise TableFull

16 def reserve-data-bucket():

17 loop:

18 if myregion has a bit set to 0 :

19 i← first bit in myregion that is 0
20 set-bit(databits, 512×myregion+ i, 1)
21 return 512×myregion+ i
22 else: myregion← claim-next-region(myregion)

23 def free-data-bucket(d):

24 set-bit(databits, d, 0)

25 def claim-next-region(oldregion):

26 newregion← (oldregion+1) mod (tablesize/512)
27 while newregion �= oldregion :

28 loop:

29 if the bit for newregion is 1 : break

30 if set-bit-cas(regionbits, newregion, 0, 1) : return newregion
31 newregion← (newregion+1) mod (tablesize/512)
32 raise TableFull

claims a new region with the claim-next-region function. Note that it may be
possible that the next region contains used buckets, if there has been a garbage col-
lection earlier. Afterwards the new bucket is inserted into the hash array. Sometimes,
the data has been inserted concurrently (by another thread) and then the bucket in the
data array is freed again with the free-data-bucket function, so it is available
the next time the thread wants to insert data.

The main method of the hash table is find-or-insert. See Algorithm 13.6.
The algorithm uses the local variable “index” to keep track of whether the data is
inserted into the data array. This variable is initialized to 0 (line 2), which signifies
that data is not yet inserted into the data array. For every bucket in the probe sequence,

13 Multi-core Decision Diagrams 531

we first check whether the bucket is empty (line 6). In that case, the data is not yet
in the table. If we did not yet write the data in the data array, then we reserve the
next bucket and write the data (lines 7–9). We use atomic cas to insert the hash and
index into the hash array (line 10). If this is succesful, then the algorithm is done
and returns the location of the data in the data array. If the cas operation fails, some
other thread inserted data here and we refresh our knowledge of the bucket (line 11)
and continue at line 12. If the bucket is not empty, then we compare the stored hash
with the hash of our data, and if this matches, we compare the data in the data array
with the given input (line 12). If this matches, then we may need to free the reserved
bucket (line 13) and we return the index of the data in the data array (line 14). If we
finish the probe sequence without inserting the data, we raise the TableFull signal
(line 15).

The find-or-insert method relies on reserve-data-bucket and on
free-data-bucket, which are also given in Algorithm 13.6. They are fairly
straightforward.

The claim-next-region method searches in the regionbits array for
the first 0-bit. The value tablesize here represents the size of the entire table. We
use a simple linear search and a cas-loop to actually claim the region. Note that
we may be competing with threads that are trying to set the bit of a different region,
since the smallest range for the atomic cas operation is 1 byte or 8 bits.

13.4.3 Computed Table

The operation cache is a hash table that stores intermediate results of BDD operations.
It is well known that an operation cache is required to reduce the worst-case time
complexity of BDD operations from exponential time to polynomial time [56]. As
with the unique table, we use only one shared operation cache for all operations,
because we want to minimize interaction between workers, such as synchronization
when shared parts of memory are resized.

In [56], Somenzi writes that a lossless computed table guarantees polynomial cost
for the basic synthesis operations, but that lossless tables (which do not throw away
results) are not feasible when manipulating many large BDDs and in practice lossy
computed tables (which may throw away results) are implemented. If the cost of
recomputing subresults is sufficiently small, it can pay to regularly delete results or
even prefer to sometimes skip the cache to avoid data races. We design the operation
cache to abort operations as early as possible when there may be a data race or the
data may already be in the cache.

We use an operation cache that consists of two arrays: the hash array and the data
array. See Figure 13.4 for the layout.

Since we implement a lossy cache, the design of the operation cache is extremely
simple. We do not implement a special strategy to deal with hash collisions, but
simply overwrite the old results. There is a trade-off between the cost of recomputing
operations and the cost of synchronizing with the cache. For example, the caching

532 Tom van Dijk and Jaco van de Pol

lock hash tag key value

lock hash tag key value

lock hash tag key value

1 bit 15 bits 16 bits 24 bytes 8 bytes

4 bytes 32 bytes

.

0:

1:

2:

Hash array: Data array:

Fig. 13.4: Layout of the operation cache

Algorithm 13.7: The cache-put Algorithm
1 def cache-put(key, value):

2 h, location← hash(key)
3 s← harray[location]
4 if s.lock : return

5 if s.hash = h : return

6 if not cas(harray[location], s, {1,h,s.tag+1}) : return

7 darray[location]← {key,value}
8 harrray[location]← {0,h,s.tag+1}

granularity (see Section 13.4.3) increases the number of recomputed operations but
improves the performance in practice.

The most important concern for correctness is that every result obtained via
cache-getwas inserted earlier with cache-put, and the most important concern
for performance is that the number of memory accesses is as low as possible. To
ensure this, we use a 16-bit “tag” counter that increments (modulo 4096) with every
update to the bucket, and check this value before reading the cache and after reading
the cache to check that the obtained result is valid. The chance that this tag counter
is the same for a different result is astronomically small, as this requires exactly
4096 cache-put operations on the same bucket by other workers between the first
and the second time the tag is read in cache-get, and the last of these 4096 other
operations must have the same hash value but different data.

We reserve 24 bytes of the bucket for the operation and its parameters. We use
the first 64-bit value to store a BDD parameter and the operation identifier. The
remaining 128 bits store other parameters, such as up to two 64-bit values, or up to
three BDDs (123 bits, with 41 bits per BDD with a complement edge). The same
holds for MTBDDs and LDDs. The result of the operation can be any 64-bit value or
a BDD. Note that with 32 bytes per bucket and a properly aligned array, accessing a
bucket requires only one cacheline transfer.

See Algorithms 13.7 and 13.8 for the cache-put and cache-get algorithms.
The algorithms are quite straightforward. We use a 64-bit hash function that

returns sufficient bits for the 15-bit h value and the location value. The h value is

13 Multi-core Decision Diagrams 533

Algorithm 13.8: The cache-get Algorithm
1 def cache-get(key):

2 h, location← hash(key)
3 s← harray[location]
4 if s.lock : return ⊥
5 if s.hash �= h : return ⊥
6 storedkey, value← darray[location]
7 if storedkey �= key : return ⊥
8 if s �= harray[location] : return ⊥
9 return value

used for the hash in the hash array, and the location for the location of the bucket
in the table. The cache-put operation aborts as soon as some problem arises, i.e.,
if the bucket is locked (line 4), or if the hash of the stored key matches the hash of
the given key (line 5), or if the cas operation fails (line 6). If the cas operation
succeeds, then the bucket is locked. The key-value pair is written to the cache array
(line 7) and the bucket is unlocked (line 8, by setting the locked bit to 0).

In the cache-get operation, when the bucket is locked (line 4), we abort instead
of waiting for the result. We also abort if the hashes are different (line 5). We read
the result (line 6) and compare the key to the requested key (line 7). If the keys
are identical, then we verify that the cache bucket has not been manipulated by a
concurrent operation by comparing the “tag” counter (line 8).

It is theoretically possible that between lines 6–8 of the cache-get operation,
exactly 4096 cache-put operations are performed on the same bucket by other
workers, with at least one of these such that the comparison at line 7 succeeds. The
chances of this occurring are astronomically small. The reason we choose this design
is that this implementation of cache-get only reads from memory and never
writes. Memory writes cause additional communication between processors and with
the memory when writing to the cacheline, and also force other processor caches
to invalidate their copy of the bucket. We also want to avoid locking buckets for
reading, because locking often causes bottlenecks. Since there are no loops in either
algorithm, both algorithms are wait-free.

13.5 Garbage Collection

Operations on decision diagrams typically create many new nodes and discard
old nodes. Nodes that are no longer referenced are typically called “dead nodes.”
Garbage collection, which removes dead nodes from the unique table, is essential for
the implementation of decision diagrams. Since dead nodes are often reused in later
operations, garbage collection should be delayed as long as possible [56].

There are various approaches to garbage collection. For example, a reference
count could be added to each node, which records how often the node is referenced.

534 Tom van Dijk and Jaco van de Pol

Nodes with a reference count of zero are either immediately removed when the
count decreases to zero, or during a separate garbage collection phase. Another
approach is mark-and-sweep, which marks all nodes that should be kept and removes
all unmarked nodes. We refer to [56] for a more in-depth discussion of garbage
collection.

For a parallel implementation, reference counts can incur a significant cost, as
accessing nodes implies continuously updating the reference count, increasing the
amount of communication between processors, as writing to a location in memory
requires all other processors to refresh their view on that location. This is not a severe
issue when there is only one processor, but with many processors this results in
excessive communication, especially for nodes that are commonly used.

When parallelizing decision diagram operations, we can choose to perform
garbage collection “on the fly”, allowing other workers to continue inserting nodes,
or we can “stop-the-world” and have all workers cooperate on garbage collection.
We use a separate garbage collection phase, during which no new nodes are inserted.
This greatly simplifies the design of the hash table, and we see no major advantage
to allowing some workers to continue inserting nodes during garbage collection.

Some decision diagram implementations maintain a counter that counts how many
buckets in the nodes table are in use and triggers garbage collection when a certain
percentage of the table is in use. We want to avoid global counters like this and
instead use a bounded “probe sequence” (see Section 13.4) for the nodes table: when
the algorithm cannot find an empty bucket in the first K buckets, garbage collection
is triggered. In simulations and experiments, we find that this occurs when the hash
table is between 80% and 95% full.

As described in Section 13.4, decision diagram nodes are stored in a “data array,”
separated from the metadata of the unique table, which is stored in the “hash array.”
Nodes can be removed from the hash table without deleting them from the data
array, simply by clearing the hash array. The nodes can then be reinserted during
garbage collection, without changing their location in the data array, thus preserving
the identity of the nodes.

We use a mark-and-sweep approach, where we keep track of all nodes that must be
kept during garbage collection. Our approach of parallel garbage collection consists
of the following steps:

1. Initiate the operation using the work-stealing framework (e.g., as supported by
Lace) to arrange the “stop-the-world” interruption of all ongoing tasks. This
feature is described below.

2. Clear the hash array of the unique table, and clear the operation cache. The
operation cache is cleared instead of checking each entry individually after
garbage collection, although that would also be possible.

3. Mark all nodes that we want to keep, allowing various mechanisms that keep
track of the decision diagram nodes that we want to keep (see below).

4. Count the number of kept nodes and optionally increase the size of the unique
table. Also optionally change the size of the operation cache.

5. Rehash all marked nodes in the hash array of the unique table.

13 Multi-core Decision Diagrams 535

The garbage collection process itself is also executed in parallel using task paral-
lelism. Removing all nodes from the hash table and clearing the operation cache is an
instant operation that is amortized over time by the operating system by reallocating
the memory (see below). Marking nodes that must be kept occurs in parallel, mainly
by implementing the marking operation as a recursive task. Counting the number of
used nodes and rehashing all nodes (steps 4–5) is also parallelized using a standard
binary divide-and-conquer approach , which distributes the memory pages over all
workers.

Various mechanisms can be used to store the set of nodes to be kept in step 3.
Operations must often temporarily store subresults that may not be removed; we use
thread-local stacks to store these subresults, which minimizes worker interactions.
External references (outside of operations) are less sensitive to these interactions; one
can use any kind of set implementation (we use a simple hash table) to implement
this; an important optimization is to not store references to nodes directly, but pointers
to the variables; this way, updating a variable does not incur calls to remove and add
references.

One helpful feature for garbage collection in Sylvan that we implemented in the
work-stealing framework Lace is a feature that suspends all current tasks and starts a
new task tree. Lace implements a macro NEWFRAME(...) that starts a new task
tree, where one worker executes the given task and all other workers perform work-
stealing to help execute this task in parallel. The exact implementation depends on
the queue and involves several steps, where workers regularly check a flag in shared
memory and use barriers to coordinate starting a new task tree. Further details are
beyond our scope here, as they strongly depend on the used queue implementation.
Interested readers are referred to [59].

13.6 Empirical Results

This section showcases the performance of parallel decision diagram operations in
a number of applications, as reported in the literature. We briefly introduce model
checking using decision diagrams in Section 13.6.1. We show the performance for
symbolic on-the-fly reachability in the LTSMIN toolset as discussed in [62, 61, 64,
33, 59] in Section 13.6.2. For symbolic bisimulation minimization, which is related
to symbolic model checking, we obtained good performance results in [65], which
we report in Section 13.6.3. Finally, in Section 13.6.4 we discuss a performance
comparison with other decision diagram implementations [60], showing that decision
diagrams can be parallelized effectively without much overhead.

536 Tom van Dijk and Jaco van de Pol

13.6.1 Symbolic Model Checking

As modern society increasingly depends on automated and complex systems, the
safety demands on such systems increase as well. We depend on automated systems
for basic infrastructure, to clean our water, to supply energy, to control our cars and
trains, to monitor and process our financial transactions and for the internet. We use
systems for entertainment when watching TV or using the phone, or for cooking
with modern stoves, microwaves and fridges. Failure or unexpected behavior in these
ubiquitous systems can have many consequences, from mild annoyances to fatal
accidents. This motivates research into the formal verification of such systems, as
well as computing properties such as failure rates and time to recovery.

In model checking, systems are modeled as sets of possible states of the system
and transitions between these states. System states are typically represented by
Boolean vectors. Fixed-point algorithms, which are procedures that repeatedly apply
some operation until a fixed point is reached, play a central role in many model
checking algorithms. An example of a fixed-point algorithm is state space exploration
(“reachability”), which computes all states reachable from the initial state of the
system. Many model checking algorithms depend on state space exploration to
determine the number of states, to check whether an invariant is always true, to find
cycles and deadlocks, and so forth.

A major challenge in model checking is that the space and time requirements of
these algorithms increase exponentially with the size of the models. One technique to
alleviate this problem is symbolic model checking [15, 16]. Symbolic model checking
operates on sets of states and transitions, rather than individual states and transitions.
These sets are then represented by their characteristic (Boolean) functions, which can
be stored using BDDs. One advantage of using BDDs for fixed point computations is
that equivalence testing is a trivial check, since BDDs uniquely represent Boolean
functions. As small Boolean formulas can describe very large state spaces, symbolic
model checking has been very successful at pushing the limits of model checking in
the past [15]. Symbolic representations are also quite natural for the composition of
multiple transition systems, e.g., when composing systems from subsystems.

13.6.2 Symbolic On-the-Fly Reachability

LTSMIN is a model checking toolset that provides a language-independent Parti-
tioned Next-State Interface (PINS), which connects various input languages to model
checking algorithms [9, 37, 62, 33, 42]. In PINS, the states of a system are repre-
sented by vectors of N integer values. Furthermore, transitions are distinguished in K
disjunctive “transition groups,” i.e., each transition in the system belongs to one of
these transition groups. The transition relation of each transition group usually only
depends on a subset of the entire state vector called the “short vector,” further distin-
guished by the variables that are “read” and the variables that are “written” [42]. This
enables the efficient encoding of transitions that only affect some integers of the state

13 Multi-core Decision Diagrams 537

Experiment T1 T48 T1/T48

firewire_link.1 4.24 0.48 8.8
anderson.1 8.93 6.21 1.4
firewire_tree.1 4.23 0.30 14.1
blocks.4 635.86 17.27 36.8
collision.5 341.57 10.99 31.1
lifts.8 416.04 13.05 31.9
exit.4 494.85 13.95 35.5
telephony.8 915.61 28.18 32.5

Sum of all 269 models 16231 896 18.1

Table 13.3: Benchmark results (runtimes in seconds) for symbolic on-the-fly reach-
ability with the LTSMIN toolset. Each data point is the average of at least five
measurements

vector. Exploiting this information lets the PINS interface work in a quasi-symbolic
way, as a single pair of short vectors can represent many transition relations on the
full state vector. Initially, LTSMIN does not have knowledge of the transitions in
each transition group, and only the initial state is known. The transition system is
explored by learning new transitions via the PINS interface, which are then added to
the transition relation.

We evaluated the application of parallelization to LTSMIN [64, 59]. The exper-
imental evaluation was based on the BEEM model database [51]. We performed
the benchmarks on 269 benchmark models on a 48-core machine, consisting of
four AMD OpteronTM 6168 processors with 12 cores each and 128 GB of internal
memory. A summary of results is given in Table 13.3.

As is clear from these results, obtained speedups (T1/T48) strongly depend on
the models; for some models, we obtain speedups above 30×, up to 36.8× for the
blocks.4 model.

See Figure 13.5 for a speedup graph of a selection of these models. This speedup
graph was obtained using list decision diagrams, which are discussed in [59] and are
beyond the scope of this chapter. The speedup graph suggests that most likely further
speedups would be obtained after 48 cores for the selected models.

13.6.3 Symbolic Bisimulation Minimisation

One of the main challenges for model checking is that the space and time require-
ments of model checking algorithms increase exponentially with the size of the
models. One technique that helps combat this challenge is called bisimulation mini-
mization. Given an input model, bisimulation minimization computes the smallest
equivalent model, also called the maximal bisimulation, under some notion of equiva-

538 Tom van Dijk and Jaco van de Pol

0

10

20

30

40

0 10 20 30 40 50
Workers

Sp
ee

du
p

Model

blocks.4

collision.5

exit.4

lann.6

lifts.8

mcs.5

rether.6

telephony.5

Fig. 13.5: Speedup graphs of several well-performing models. Each data point is an
average of at least five measurements

lence. This can significantly reduce the number of states. This technique is also used
to abstract models from internal behavior, when only observable behavior is relevant.

The maximal bisimulation of a model is typically computed using partition re-
finement. Starting with an initially coarse partition (e.g., all states are equivalent),
the partition is refined until states in each equivalence class can no longer be distin-
guished. The result is the maximal bisimulation with respect to the initial partition.
Blom et al. [8] introduced a signature-based method, which assigns states to equiva-
lence classes according to a characterizing signature. This method easily extends to
various types of bisimulation.

In [65, 67], we studied bisimulation minimization for labeled transition systems
(LTSs), continuous-time Markov chains (CTMCs) and interactive Markov chains
(IMCs), which combine the features of LTSs and CTMCs. These allow the analysis
of quantitative properties, e.g., performance and dependability. We implemented
strong bisimulation and branching bisimulation in the SIGREFMC tool. Strong
bisimulation preserves both internal behavior (τ-transitions) and observable behavior,
while branching bisimulation abstracts from internal behavior. The SIGREFMC
tool also connects to the LTSMIN tool described in Section 13.6.2, enabling the
minimization of models described with various input languages.

Bisimulation minimization is performed in two steps. The first step is computing
the maximal bisimulation, which is a partition computed using signature refinement.

13 Multi-core Decision Diagrams 539

SIGREF LTS models Signature refinement Quotient computation

Model States Blocks T1 T48 Sp. T1 T48 Sp.

kanban03 1024240 85356 10.09 0.88 11.52× 6.72 0.35 19.08×
kanban04 16020316 778485 148.15 11.37 13.03× 106.22 5.38 19.73×
kanban05 16772032 5033631 1284.86 73.57 17.47× 740.53 33.80 21.91×
SIGREF CTMC models Signature refinement Quotient computation

Model States Blocks T1 T48 Sp. T1 T48 Sp.

cycling-
4

431101 282943 26.72 2.60 10.29× 59.51 3.32 17.90×

cycling-
5

2326666 1424914 170.28 19.42 8.77× 294.15 13.48 21.83×

fgf 80616 38639 8.86 0.88 10.04× 7.42 0.73 10.20×
p2p-5-6 230 336 26.96 2.99 9.03× 10.25 1.41 7.29×
p2p-6-5 230 266 9.49 1.21 7.82× 3.67 0.55 6.71×
p2p-7-5 235 336 24.01 2.97 8.08× 9.26 1.19 7.79×
polling-
16

1572864 98304 118.50 10.18 11.64× 66.25 4.49 14.75×

polling-
17

3342336 196608 303.65 22.58 13.45× 161.74 10.02 16.14×

polling-
18

7077888 393216 705.22 49.81 14.16× 359.49 21.68 16.58×

LTSMIN LTS models Signature refinement Quotient computation

Model States Blocks T1 T48 Sp. T1 T48 Sp.

brp-3-4-
4

40,592 10,326 13.50 0.92 14.75× 2.45 0.14 17.53×

brp-4-4-
4

109,422 27,106 38.91 2.23 17.43× 9.84 0.52 18.93×

franklin-
3-3

41,401 883 24 1.24 19.40× 3.13 0.19 16.46×

franklin-
4-2

272,241 10,706 330.56 14.67 22.53× 28.04 1.43 19.63×

hesselink-
4

142,081,536 6,036 51.41 3.56 14.44× 7.01 1.21 5.78×

hesselink-
5

883,738,000 11,005 179.85 12.61 14.26× 22.32 3.64 6.14×

swp-2-4 2,589,056 69,555 267.46 11.33 23.60× 30.78 1.39 22.21×
swp-3-3 1,652,724 65,025 142.60 6.13 23.26× 24.89 1.11 22.39×
swp-4-3 7,429,632 264,708 630.73 25.92 24.34× 111.69 4.55 24.56×

Table 13.4: Computation time in seconds for partition refinement and quotient compu-
tation on various benchmarks provided with the original SIGREF tool and generated
by LTSMIN

540 Tom van Dijk and Jaco van de Pol

The second step is computing the quotient of the original model and the partition,
resulting in the minimized system.

See Table 13.4 for a selection of the benchmark results from [67]. We used
benchmark models provided with the original SIGREF tool by Wimmer et al. [70]
and from process algebra (in the MCRL2 language) prepared using LTSMIN. See
further [67] for a description of the models. The benchmarks were performed on a
48-core machine, consisting of four AMD OpteronTM 6168 processors with 12 cores
each and 128 GB of internal memory. Table 13.4 shows that the parallel speedup
varies with the model used, similarly to the results we obtained with symbolic
reachability in Table 13.3. We obtained speedups of up to 24× for both the signature
refinement step and the quotient computation step.

13.6.4 Probabilistic Model Checking

Sylvan has also been used as a symbolic back-end in the model checker ISCASMC,
a probabilistic model checker [30] written in Java. A recent study [60] compared
the performance of the BDD libraries CUDD, BuDDy, CacBDD, JDD, Sylvan and
BeeDeeDee when used as the symbolic back-end of ISCASMC and performing
symbolic reachability.

They summarize the overall runtimes by the following table [60]:

back-end time (s) back-end time (s)

sylvan-7 608 buddy 2156
cacbdd 1433 jdd 2439

cudd-bdd 1522 beedeedee 2598
sylvan-1 1838 cudd-mtbdd 2837

This result was produced with variant 2 of the nodes table in Sylvan. As the results
show, Sylvan is competitive with other BDD implementations when used sequentially
(with one worker) and benefits from parallelism (with seven workers).

13.7 Conclusions

This chapter has discussed the two basic ingredients to achieve scalable binary
decision diagrams in a multi-core shared-memory environment. The first ingredient
is a fine-grained work-stealing framework that provides parallel execution and load
balancing of the decision diagram operations. The second ingredient consists of the
concurrent, lock-free hash tables for the unique table and the operation cache.

We discussed Sylvan, a parallel implementation of decision diagrams. Sylvan
offers an easy-to-use, sequential interface like a traditional BDD package, but with a
parallel implementation of its operations. Thus, existing sequential algorithms that

13 Multi-core Decision Diagrams 541

depend on decision diagram operations benefit from the multi-core parallelization
offered by Sylvan. In addition, sequential algorithms can further profit from the
parallel work-stealing framework embedded in Sylvan by implementing parallel
tasks that call decision diagram operations in parallel. For example, a transition
system can be partitioned and the partitioned transition relations can be applied in
parallel via tree-like reductions.

The approach presented in this chapter is versatile. As shown with the different
types of decision diagrams implemented by Sylvan and used in the specific applica-
tions, the principles of parallel decision diagram operations can be applied to BDDs,
MTBDDs, list decision diagrams, multi-way decision diagrams, zero-suppressed
decision diagrams, etc. As decision diagrams are heavily used in many application
domains, we foresee that parallel decision diagram operations can be a practical
tool to bring parallelization to these domains. Future directions also include tackling
the challenges that other applications bring, such as efficient dynamic variable re-
ordering and tentative execution of decision diagram operations. Furthermore, the
development of parallel decision diagram operations for heterogeneous systems such
as clusters of multi-core computers [47, 48] and systems with many cores and highly
specialized hierarchies such as GPUs [68] offers additional challenges for BDD
operations that need to be addressed in the future.

References

[1] Magdy S. Abadir and Hassan K. Reghbati. Functional Test Generation for
Digital Circuits Described Using Binary Decision Diagrams. IEEE Trans.
Computers, 35(4):375–379, 1986.

[2] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Scheduling parallel
programs by work stealing with private deques. In PPOPP, pages 219–228.
ACM, 2013.

[3] S.B. Akers. Binary Decision Diagrams. IEEE Trans. Computers, C-27(6):509–
516, 6 1978.

[4] Prakash Arunachalam, Craig M. Chase, and Dinos Moundanos. Distributed
binary decision diagrams for verification of large circuit. In ICCD, pages
365–370, 1996.

[5] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico
Macii, Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and
their applications. In ICCAD 1993, pages 188–191, 1993.

[6] Debashis Bhattacharya, Prathima Agrawal, and Vishwani D. Agrawal. Test
Generation for Path Delay Faults Using Binary Decision Diagrams. IEEE Trans.
Computers, 44(3):434–447, 1995.

[7] F. Bianchi, Fulvio Corno, Maurizio Rebaudengo, Matteo Sonza Reorda, and
Roberto Ansaloni. Boolean function manipulation on a parallel system using
BDDs. In HPCN Europe, pages 916–928, 1997.

542 Tom van Dijk and Jaco van de Pol

[8] Stefan Blom and Simona Orzan. Distributed Branching Bisimulation Reduction
of State Spaces. ENTCS, 89(1):99–113, 2003.

[9] Stefan Blom, Jaco van de Pol, and Michael Weber. LTSmin: Distributed
and Symbolic Reachability. In CAV, volume 6174 of LNCS, pages 354–359.
Springer, 2010.

[10] Robert D. Blumofe. Scheduling multithreaded computations by work stealing.
In FOCS, pages 356–368. IEEE Computer Society, 1994.

[11] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded
Runtime System. J. Parallel Distrib. Comput., 37(1):55–69, 1996.

[12] Marco Bozzano, Alessandro Cimatti, and Francesco Tapparo. Symbolic fault
tree analysis for reactive systems. In ATVA 2007, volume 4762 of LNCS, pages
162–176. Springer, 2007.

[13] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementa-
tion of a BDD package. In DAC, pages 40–45, 1990.

[14] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Trans. Computers, C-35(8):677–691, 8 1986.

[15] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. Symbolic model checking: 10ˆ20 states and beyond. Inf. Comput.,
98(2):142–170, 1992.

[16] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill. Symbolic
model checking for sequential circuit verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 13(4):401–424, 4
1994.

[17] G.P. Cabodi, S. Gai, and M. Sonza Reorda. Boolean function manipulation on
massively parallel computers. In Proc. of 4th Symp. on Frontiers of Massively
Parallel Computation, pages 508–509. IEEE, 10 1992.

[18] Jer-Sheng Chen and P. Banerjee. Parallel construction algorithms for BDDs. In
ISCAS 1999, pages 318–322. IEEE, 1999.

[19] Ming-Ying Chung and Gianfranco Ciardo. Saturation NOW. In QEST, pages
272–281. IEEE Computer Society, 2004.

[20] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Saturation: An
Efficient Iteration Strategy for Symbolic State-Space Generation. In TACAS,
volume 2031 of LNCS, pages 328–342, 2001.

[21] Gianfranco Ciardo, Yang Zhao, and Xiaoqing Jin. Parallel symbolic state-space
exploration is difficult, but what is the alternative? In PDMC, pages 1–17, 2009.

[22] Edmund M. Clarke, Kenneth L. McMillan, Xudong Zhao, Masahiro Fujita, and
J. Yang. Spectral Transforms for Large Boolean Functions with Applications to
Technology Mapping. In DAC, pages 54–60, 1993.

[23] Jonathan Ezekiel, Gerald Lüttgen, and Gianfranco Ciardo. Parallelising sym-
bolic state-space generators. In CAV, volume 4590 of LNCS, pages 268–280,
2007.

[24] Karl-Filip Faxén. Wool–A work stealing library. SIGARCH Computer Archi-
tecture News, 36(5):93–100, 2008.

13 Multi-core Decision Diagrams 543

[25] Karl-Filip Faxén. Efficient work stealing for fine grained parallelism. In ICPP
2010, pages 313–322. IEEE Computer Society, 2010.

[26] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl
Tschantz. Verification and change-impact analysis of access-control policies.
In ICSE 2005, pages 196–205. ACM, 2005.

[27] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation
of the Cilk-5 Multithreaded Language. In PLDI, pages 212–223. ACM, 1998.

[28] S. Gai, M. Rebaudengo, and M. Sonza Reorda. An improved data parallel
algorithm for Boolean function manipulation using BDDs. In Proc. Euromicro
Workshop on Par. and Distrib. Processing, pages 33–39. IEEE, 1 1995.

[29] Orna Grumberg, Tamir Heyman, and Assaf Schuster. A work-efficient dis-
tributed algorithm for reachability analysis. Formal Methods in System Design,
29(2):157–175, 2006.

[30] Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun Zhang.
iscasmc: A web-based probabilistic model checker. In FM, volume 8442 of
LNCS, pages 312–317. Springer, 2014.

[31] Tamir Heyman, Danny Geist, Orna Grumberg, and Assaf Schuster. Achieving
Scalability in Parallel Reachability Analysis of Very Large Circuits. In Com-
puter Aided Verification, volume 1855 of Lecture Notes in Computer Science,
pages 20–35. Springer Berlin / Heidelberg, 2000.

[32] Masakazu Ishihata, Taisuke Sato, and Shin-ichi Minato. Compiling Bayesian
networks for parameter learning based on shared BDDs. In AI 2011, volume
7106 of Lecture Notes in Computer Science, pages 203–212. Springer, 2011.

[33] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and
Tom van Dijk. LTSmin: High-Performance Language-Independent Model
Checking. In TACAS 2015, volume 9035 of LNCS, pages 692–707. Springer,
2015.

[34] S. Kimura and E.M. Clarke. A parallel algorithm for constructing binary
decision diagrams. In Proc. of IC on Computer Design: VLSI in Computers
and Processors ICCD, pages 220–223, 9 1990.

[35] S. Kimura, T. Igaki, and H. Haneda. Parallel Binary Decision Diagram Manip-
ulation. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Science, E75-A(10):1255–62, 10 1992.

[36] Alfons Laarman, Jaco van de Pol, and Michael Weber. Boosting multi-core
reachability performance with shared hash tables. In FMCAD 2010, pages
247–255. IEEE, 2010.

[37] Alfons W. Laarman, Jaco van de Pol, and Michael Weber. Multi-Core LTSmin:
Marrying Modularity and Scalability. In NASA Formal Methods - Third In-
ternational Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011.
Proceedings, volume 6617 of LNCS, pages 506–511. Springer, 2011.

[38] Elsa Loekito and James Bailey. Fast mining of high dimensional expressive
contrast patterns using zero-suppressed binary decision diagrams. In SIGKDD
2006, pages 307–316. ACM, 2006.

544 Tom van Dijk and Jaco van de Pol

[39] Alberto Lovato, Damiano Macedonio, and Fausto Spoto. A Thread-Safe Library
for Binary Decision Diagrams. In SEFM, volume 8702 of LNCS, pages 35–49.
Springer, 2014.

[40] Sharad Malik, Albert R. Wang, Robert K. Brayton, and Alberto L. Sangiovanni-
Vincentelli. Logic verification using binary decision diagrams in a logic synthe-
sis environment. In ICCAD 1998, pages 6–9, 1988.

[41] Yusuke Matsunaga and Masahiro Fujita. Multi-level logic optimization using
binary decision diagrams. In ICCAD 1989, pages 556–559. IEEE, 1989.

[42] Jeroen Meijer, Gijs Kant, Stefan Blom, and Jaco van de Pol. Read, Write and
Copy Dependencies for Symbolic Model Checking. In Eran Yahav, editor, HVC,
volume 8855 of Lecture Notes in Computer Science, pages 204–219. Springer,
2014.

[43] Kim Milvang-Jensen and Alan J. Hu. BDDNOW: A parallel BDD package. In
FMCAD, pages 501–507, 1998.

[44] Shin-ichi Minato. Techniques of BDD/ZDD: Brief History and Recent Activity.
IEICE Transactions, 96-D(7):1419–1429, 2013.

[45] Shin-ichi Minato, Ken Satoh, and Taisuke Sato. Compiling Bayesian networks
by symbolic probability calculation based on zero-suppressed BDDs. In IJCAI
2007, pages 2550–2555, 2007.

[46] Hiroyuki Ochi, Nagisa Ishiura, and Shuzo Yajima. Breadth-first manipulation
of SBDD of Boolean functions for vector processing. In DAC, pages 413–416,
1991.

[47] Wytse Oortwijn. Distributed Symbolic Reachability Analysis. Master’s thesis,
University of Twente, Dept. of C.S., 2015.

[48] Wytse Oortwijn, Tom van Dijk, and Jaco van de Pol. Distributed Binary
Decision Diagrams for Symbolic Reachability. In SPIN, pages 21–30. ACM,
2017.

[49] Jörn Ossowski. JINC – A Multi-Threaded Library for Higher-Order Weighted
Decision Diagram Manipulation. PhD thesis, Rheinische Friedrich-Wilhelms-
Universität Bonn, 10 2010.

[50] Yegnashankar Parasuram, Edward P. Stabler, and Shiu-Kai Chin. Parallel
implementation of BDD algorithms using a distributed shared memory. In
HICSS (1), pages 16–25, 1994.

[51] Radek Pelánek. BEEM: benchmarks for explicit model checkers. In SPIN,
pages 263–267, Berlin, Heidelberg, 2007. Springer-Verlag.

[52] Karen A. Reay and John D. Andrews. A fault tree analysis strategy using binary
decision diagrams. Rel. Eng. & Sys. Safety, 78(1):45–56, 2002.

[53] Yuko Sakurai, Suguru Ueda, Atsushi Iwasaki, Shin-ichi Minato, and Makoto
Yokoo. A compact representation scheme of coalitional games based on multi-
terminal zero-suppressed binary decision diagrams. In PRIMA 2011, volume
7047 of Lecture Notes in Computer Science, pages 4–18. Springer, 2011.

[54] Jagesh V. Sanghavi, Rajeev K. Ranjan, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. High performance BDD package by exploiting mem-
ory hiercharchy. In DAC, pages 635–640, 1996.

13 Multi-core Decision Diagrams 545

[55] Mathias Soeken, Laura Tague, Gerhard W. Dueck, and Rolf Drechsler. Ancilla-
free synthesis of large reversible functions using binary decision diagrams. J.
Symb. Comput., 73:1–26, 2016.

[56] Fabio Somenzi. Efficient manipulation of decision diagrams. STTT, 3(2):171–
181, 2001.

[57] Fabio Somenzi. CUDD: CU decision diagram package release 3.0.0. http:
//vlsi.colorado.edu/~fabio/CUDD/, 2015.

[58] Tony Stornetta and Forrest Brewer. Implementation of an efficient parallel
BDD package. In DAC, pages 641–644, 1996.

[59] Tom van Dijk. Sylvan: Multi-core Decision Diagrams. PhD thesis, University
of Twente, 7 2016.

[60] Tom van Dijk, Ernst Moritz Hahn, David N. Jansen, Yong Li, Thomas Neele,
Mariëlle Stoelinga, Andrea Turrini, and Lijun Zhang. A Comparative Study of
BDD Packages for Probabilistic Symbolic Model Checking. In SETTA, volume
9409 of LNCS, pages 35–51. Springer, 2015.

[61] Tom van Dijk, Alfons Laarman, and Jaco van de Pol. Multi-core BDD opera-
tions for symbolic reachability. ENTCS, 296:127–143, 2013.

[62] Tom van Dijk, Alfons W. Laarman, and Jaco van de Pol. Multi-core and/or
Symbolic Model Checking. ECEASST, 53, 2012.

[63] Tom van Dijk and Jaco van de Pol. Lace: Non-blocking Split Deque for
Work-Stealing. In MuCoCoS, volume 8806 of LNCS, pages 206–217. Springer,
2014.

[64] Tom van Dijk and Jaco van de Pol. Sylvan: Multi-Core Decision Diagrams. In
TACAS, volume 9035 of LNCS, pages 677–691. Springer, 2015.

[65] Tom van Dijk and Jaco van de Pol. Multi-Core Symbolic Bisimulation Minimi-
sation. In TACAS, volume 9636 of LNCS, pages 332–348. Springer, 2016.

[66] Tom van Dijk and Jaco van de Pol. Sylvan: multi-core framework for decision
diagrams. International Journal on Software Tools for Technology Transfer,
19(6) pp 675–696, 2017.

[67] Tom van Dijk and Jaco van de Pol. Multi-core symbolic bisimulation minimi-
sation. International Journal on Software Tools for Technology Transfer, 2017.
Published online, August 2017.

[68] Miroslav N. Velev and Ping Gao. Efficient parallel GPU algorithms for BDD
manipulation. In ASP-DAC, pages 750–755. IEEE, 2014.

[69] David B. Wagner and Brad Calder. Leapfrogging: A portable technique for
implementing efficient futures. In PPOPP, pages 208–217. ACM, 1993.

[70] Ralf Wimmer, Marc Herbstritt, Holger Hermanns, Kelley Strampp, and Bernd
Becker. Sigref – A Symbolic Bisimulation Tool Box. In ATVA, volume 4218 of
LNCS, pages 477–492. Springer, 2006.

[71] Bwolen Yang and David R. O’Hallaron. Parallel breadth-first BDD construction.
In PPOPP, pages 145–156, 1997.

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

Chapter 14

Parallel Model-Based Diagnosis

Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

Abstract Model-Based Diagnosis (MBD) is a general-purpose computational ap-
proach to determine why a system under observation, e.g., an electronic circuit or a
software program, does not behave as expected. MBD approaches utilize knowledge
about the system’s expected behavior if all of its components work correctly. In
case of an unexpected behavior they systematically explore the possible reasons, i.e.,
diagnoses, for the misbehavior. Such diagnoses are determined through systematic
or heuristic search procedures which often use MBD-specific rules to prune the
search space. In this chapter we review approaches that rely on parallel or distributed
computations to speed up the diagnostic reasoning process. Specifically, we focus
on recent parallelization strategies that exploit the capabilities of modern multi-core
computer architectures and report results from experimental evaluations to shed light
on the speedups that can be achieved by parallelization for various MBD applications.

14.1 Introduction

14.1.1 Background

Model-Based Diagnosis (MBD) is a subfield of Artificial Intelligence that focuses
on automated reasoning methods that are capable of generating hypotheses and

Kostyantyn Shchekotykhin
Institute for Applied Informatics, Alpen-Adria-Universität Klagenfurt, Austria,
e-mail: konstantin.schekotihin@aau.at

Dietmar Jannach
Department of Computer Science, TU Dortmund, Germany,
e-mail: dietmar.jannach@tu-dortmund.de

Thomas Schmitz
Department of Computer Science, TU Dortmund, Germany,
e-mail: thomas.schmitz@tu-dortmund.de

547© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_14

konstantin.schekotihin@aau.at
dietmar.jannach@tu-dortmund.de
thomas.schmitz@tu-dortmund.de
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_14&domain=pdf

548 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

explanations why a system under observation is not behaving as expected. The term
“model-based” means that the diagnostic inference process is based on knowledge
(i.e., a model) of how the system and its components work, which makes it possible
to simulate the system’s behavior in order to test alternative hypotheses.

MBD techniques were pioneered in the 1980s and many of the proposals at that
time were centered on the application domain of digital circuits [1, 2, 3]. The model
in such cases consists of knowledge about (a) the normal and expected behavior
of the components of the circuit (e.g., how an AND-gate works when it functions
correctly), and (b) how the components are interconnected. This knowledge can then
be used to simulate the behavior of the circuit and to compute the expected outputs
for a given set of inputs. The resulting simulated behavior is then contrasted with the
real and observed behavior of the system. Whenever there is a discrepancy between
the expected and the observed outputs, the task of an MBD system is to determine
which parts of the analyzed system can be responsible for the observed outputs.

The predominant algorithmic approach to find one or more sets of components that
can be responsible for the observed faulty outputs is to systematically test different
hypotheses about the (binary) health state of each of the components. One main
and computationally complex part of the diagnostic reasoning process is therefore a
search process in which the search space in principle consists of all possible subsets
of the components of the analyzed system. In much research work the search process
itself is guided by so-called “conflicts,” which are typically comparatively small
subsets of the system’s components, which – according to the simulation – cannot all
be working correctly, i.e., at least one of them must be faulty. These conflicts can
help to significantly reduce the search space. Their computation can however also be
computationally demanding. But even if all conflicts were known in advance, finding
all possible diagnoses using the known conflicts corresponds to finding a solution to
a set cover (hitting set) problem, leading to an NP-hard search problem.

In this chapter we review existing work that approaches the problem of the
computational complexity of model-based reasoning processes by parallelizing parts
of the reasoning and search processes.

14.1.2 Outline of the Chapter

The chapter is organized as follows. Next, in Section 14.2, we will review the
formal and logic-based characterization of the Model-Based Diagnosis problem
and a conflict-directed, sound and complete tree-based search method as introduced
by Reiter in [3]. Reiter’s domain-independent problem formalization is the basis
for most of the works discussed in the chapter. Its generality is also one of the
reasons for the success of MBD techniques and why they are still relevant today.
MBD techniques are in fact not limited to electronic circuits, but have been applied
over the last three decades in particular to a variety of software artifacts including
logic programs, ontologies, process specifications, special purpose and general-

14 Parallel Model-Based Diagnosis 549

purpose languages such as VHDL or Java, and recently also to spreadsheet programs
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

Section 14.3 then discusses alternative ways of finding diagnoses more quickly
than with Reiter’s approach. Typically, these methods make some sort of assumptions
to make the problem easier to solve, e.g., by requiring that the diagnosed system has
a certain structure or by focusing only on certain subsets of all existing diagnoses,
thereby sacrificing the completeness of the algorithm. In this section we will also
discuss so called “direct” methods that encode the diagnosis problem in a form that
can be directly processed by specific inference engines such as a SAT solver without
explicitly creating a diagnosis search tree.

Since diagnostic reasoning is predominantly a tree search problem, we will review
general strategies for search parallelization (e.g., tree decomposition or window-
based processing) and analyze the applicability of parallelized versions of general
search strategies such as A∗ to the Model-Based Diagnosis problem in Section 14.4.

Section 14.5 then presents recent techniques for parallelizing the MBD reasoning
process on multi-core machines. The main focus will be on sound and complete
diagnosis approaches and on methods that parallelize Reiter’s tree search method
in different ways. Selected results of empirical evaluations that were made using a
number of benchmark problems are then presented in Section 14.6. These results
help us to quantify the possible gains that can be obtained by running the search
process on parallel threads on one machine.

Finally, in Section 14.7, we will discuss a number of alternative parallelization
approaches that are not based on Reiter’s HS-tree algorithm.

14.2 Reiter’s Diagnosis Framework

In this section, we will summarize the formal characterization of the MBD problem
as proposed by Reiter in [3]. The goal of Reiter’s work was to provide a generic
formalization that allows one to diagnose any system whose behavior can be modeled
by a set of first-order sentences. Given a formal model describing the “normal”
behavior of the system under observation, the general task of an MBD algorithm is to
analyze the possible fault reasons, whenever the system does not behave as expected.
The starting points for this analysis are therefore discrepancies between the system’s
outputs as predicted by the model and the observed outputs.

14.2.1 Example: A Diagnosis Problem Instance

Let us consider the binary half adder shown in Figure 14.1 as an example. This
simple digital circuit whose behavior we know when it works normally, has two
inputs A and B, two outputs S and C, an AND-gate A1, and an XOR-gate X1.

550 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

A

B
S

C

X1

A1

Fig. 14.1: Half-adder with inputs A and B, and outputs S and C

The half-adder can be described by first-order sentences as follows. First, we
describe the expected behavior of the two types of logic gates, where in(x,1) denotes
the first input of component x, in(x,2) its second input, and out(x) refers to the output
of the component. The and and xor functions implement boolean conjunction and
exclusive disjunction respectively.

∀x : AND(x)→ [out(x) = and(in(x,1), in(x,2))]
∀x : XOR(x)→ [out(x) = xor(in(x,1), in(x,2))]

The components A1 and X1 and their wiring are modeled next.

AND(A1), XOR(X1)

in(A1,1) = in(X1,1), in(A1,2) = in(X1,2)

Finally, we state that the inputs of X1 can only be 0 or 1 (which then also applies to
A1 according to the wiring of our circuit).

in(X1,1) = 0∨ in(X1,1) = 1, in(X1,2) = 0∨ in(X1,2) = 1

Now let us assume that the following inputs to the system were provided, which
are again described as a set of first-order sentences: in(X1,1) = 1, in(X1,2) = 0.
The observed outputs were however out(X1) = 0, out(A1) = 0. This is obviously
unexpected, since the output of the XOR-gate X1 should be 1.

Having completed our description of the system and the inputs and outputs, we
can feed all the first-order sentences modeled so far into a theorem prover (TP),
which will find that the model is inconsistent. Consequently, an abnormal behavior
has been detected.

However, the presented way of modeling does not easily allow us to find the true
cause of the problem, i.e., that gate X1 is broken. In order to find the possible causes
of a problem, typical MBD systems test different assumptions about the faultiness
of individual components. To be able to systematically explore the possible causes,
Reiter proposes a modeling approach that uses a unary predicate AB(·) to denote that
a component is “abnormal”. Following this approach, we reformulate the first set of
sentences of our model as follows.

∀x : ¬AB(x)→ (AND(x)→ [out(x) = and(in(x,1), in(x,2))])
∀x : ¬AB(x)→ (XOR(x)→ [out(x) = xor(in(x,1), in(x,2))])

14 Parallel Model-Based Diagnosis 551

The resulting model – in combination with the observations (i.e., the inputs
and outputs) – allows us to test different assumptions about the correctness of the
components. For instance, if we assume that all components are working properly
{¬AB(X1),¬AB(A1)}, the theorem prover will find that the model is inconsistent
given the observations. However, under the assumption {AB(X1),¬AB(A1)}, i.e., X1
is faulty, we will find that the model is consistent with the observations. Assuming
that X1 is not working correctly therefore explains the observed outputs and the set
{X1}, which is a subset of the system’s components, would thus be what is called a
diagnosis in Reiter’s framework.

Finally, the main advantage of the described modeling approach using “abnormal”
predicates is that we can determine such diagnoses by systematically or heuristically
varying our assumptions about the faultiness of the components.

14.2.2 Diagnoses and Conflicts

Formally, the principled approach to Model-Based Diagnosis by Reiter can be
summarized as follows.

Definition 1. (Diagnosis problem instance) Let (SD,COMPS,OBS) be a triple, where
SD and OBS are finite sets of first-order sentences which encode a system description
and observations, respectively, and COMPS is a finite set of constants that represent
the system’s components.

(SD,COMPS,OBS) is a diagnosis problem instance (DPI) iff (1) SD is consistent,
(2) OBS is consistent, and (3) SD∪ OBS∪{¬AB(c) | c ∈ COMPS} is inconsistent.

Definition 2. (Diagnosis problem) Given a DPI (SD,COMPS,OBS), the diagnosis
problem is to find a subset-minimal set Δ ⊆ COMPS, called a diagnosis, such that
SD∪ OBS∪{AB(c) | c ∈ Δ}∪{¬AB(c) | c ∈ COMPS−Δ} is consistent.

According to Definition 2, we are only interested in minimal diagnoses, i.e.,
diagnoses which contain no superfluous elements and which are thus not supersets of
other diagnoses. Whenever we use the term diagnosis in the remainder of the chapter,
we mean minimal diagnosis. Whenever we want to refer to non-minimal diagnoses,
we will explicitly mention this fact.

Finding a diagnosis can in theory be done by simply trying out all possible subsets
of COMPS and checking their consistency with the observations. A simple tree search
algorithm that enumerates the possible assumptions in a breadth-first manner can be
used for that purpose. Consider Algorithm 14.1, which takes a problem instance DPI
as an input and returns one single diagnosis. The algorithm starts with the simple
assumption that all components work properly. In every iteration it uses Definition 2
to test whether the current assumption Δ is a diagnosis. If this is not the case, the
algorithm extends the search frontier by all supersets of Δ by adding one component
from the set COMPS−Δ . The breadth-first order guarantees the subset-minimality of
the returned set of faulty components Δ .

552 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

Algorithm 14.1: Tree Search Algorithm
Input: DPI (SD,COMPS,OBS)
Output: A diagnosis Δ

1 closed← /0 /* Maintain list of work already done */

2 frontier←{ /0} /* Initialize the search frontier */

3 while frontier �= /0 :
/* Get and remove the first element of the frontier */

4 Δ ← Pop(frontier)
5 if Δ /∈ closed : /* Skip the node */

6 closed← closed∪{Δ}
7 if SD∪ OBS∪{AB(c) | c ∈ Δ}∪{¬AB(c) | c ∈ COMPS−Δ} is consistent :

8 return Δ /* A diagnosis is found */

/* Generate successors of Δ and add them to the frontier */

9 frontier← frontier ∪ {Δ ∪{c} | c ∈ (COMPS−Δ)}
10 return failure /* Provided triple is not a DPI */

Algorithm 14.1 is obviously very inefficient because it exhaustively enumerates
all possible assumptions. In many real-world scenarios such an algorithm would
make many assumptions about the faultiness of components that are in fact irrelevant.
This can for instance be the case if the unexpected behavior is observed only for
a certain part of a physical system. Therefore, Reiter [3] proposes a more efficient
procedure based on the concept of conflicts. The main idea is to focus only on those
components that are actually involved in an inconsistency and to ignore all others.

Definition 3. (Conflict) A conflict for (SD,COMPS,OBS) is a set CS ⊆ COMPS such
that SD∪ OBS∪{¬AB(c) | c ∈ CS} is inconsistent.

A conflict corresponds to a subset of components for which it would not be
consistent to assume that they all work correctly given the observations. A conflict
CS is considered to be minimal if no proper subset of CS exists that is also a conflict.

In the original approach by Reiter the conflicts are computed through calls to a
theorem prover TP. The TP component is considered to be a “black box” and no
assumptions are made about how the conflicts are determined or whether they are
minimal or not. In practice, however, researchers often use specific algorithms such
as QUICKXPLAIN (QXP) [15], Progression [16] or MERGEXPLAIN (MXP) [17]
to efficiently find the conflicts (see later sections for more details). These conflict
detection algorithms, in contrast to the original assumptions by Reiter, furthermore
have the advantage that they can guarantee that the returned conflict sets are minimal.

Reiter then describes the relationship between conflicts and diagnoses and shows
that the set of diagnoses for a collection of minimal conflicts CS is equivalent to the
set H of minimal hitting sets1 of CS.

1 Let S be a finite set and C be a family of subsets of S, then a subset-minimal set H ⊆ S is a hitting
set for C iff for any C ∈ C it holds that H ∩C �= /0. This corresponds to the set cover problem.

14 Parallel Model-Based Diagnosis 553

14.2.3 The Hitting Set Tree Algorithm

To determine the minimal hitting sets and therefore the diagnoses, Reiter proposes
a breadth-first search procedure for the computation of a hitting set tree (HS-tree),
whose construction is guided by conflicts (Algorithm 14.2). Furthermore, the algo-
rithm implements different techniques to prune the search space. Algorithm 14.2 is
sound and complete when it is guaranteed that getConflicts used in Algorithm 14.3
only returns minimal conflicts. Soundness and completeness in this context means
that all returned solutions are guaranteed to be minimal diagnoses and no diagnosis
for the given set of conflicts will be missed.2

Algorithm 14.2: HS-TREE ALGORITHM

Input: DPI (SD,COMPS,OBS)
Output: All minimal diagnoses Δ

1 D← /0 /* Initialize set of known diagnoses */

2 CS← /0 /* Initialize set of known conflicts */

3 frontier←{(/0, /0)} /* Initialize the search frontier */

4 while frontier �= /0 :
/* Get and remove the first element of the frontier */

5 (CS,Δ)← Pop(frontier)
6 frontier← frontier ∪ processNode(D,CS,(CS,Δ))

7 return D /* Return the set of all diagnoses */

The main principle of the HS-tree algorithm is to create a search tree where each
node corresponds to a pair (CS,Δ). The first element CS represents a conflict with
which a node is labeled. The second element Δ represents the set of components
which are supposed to be faulty at the current node.

When the next node is retrieved from the frontier and forwarded to Algorithm 14.3,
the set CS of the retrieved node is empty and a new label must be computed. Algo-
rithm 14.3 can either reuse one of the known conflicts stored in CS (line 3) that is
not hit by Δ or use getConflicts to determine one or more new conflicts (line 5).
When no conflict can be reused and CS remains empty, the set Δ hits all conflicts of
the given DPI and, therefore, is a diagnosis.

To guarantee the subset-minimality of the computed hitting sets, Algorithm 14.3
includes a pruning rule in line 2. This rule forces the algorithm to ignore all nodes
where the set Δ is a superset of one of the already known minimal hitting sets.

2 An algorithm variant called HS-DAG (Directed Acyclic Graph) is proposed in [18] for cases when
the returned conflicts are not minimal.

554 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

Algorithm 14.3: PROCESSNODE

Input: Sets of diagnoses D and conflicts CS as well as the node (CS,Δ)
Output: A set of new nodes frontier

1 frontier← /0
2 if ∀Δ ′ ∈ D : Δ ′ �⊆ Δ : /* If not superset of known diagnosis */

3 if ∃CS′ ∈ CS : CS′ ∩Δ = /0 : CS← CS′ /* Reuse a conflict */

4 else: /* Compute a set of new conflicts not hit by Δ */

5 CS← CS∪getConflicts(COMPS, SD∪ OBS∪{AB(c) | c ∈ Δ})
6 CS← Pop({CS′|CS′ ∈ CS,CS′ ∩Δ = /0}) /* Retrieve a conflict */

7 if CS = /0 : D← D∪{Δ} /* No new conflict is found */

8 else:
/* Generate successors of (CS,Δ) and add them to the frontier */

9 frontier← frontier ∪ {(/0,Δ ∪{c}) | c ∈ CS}
10 return frontier

14.2.4 Example: Hitting Set Tree Construction

In the following example we show how Reiter’s approach can be applied to locate
a fault in a specification of a Constraint Satisfaction Problem (CSP). The example,
adapted from [19], also illustrates the generality of the proposed consistency-based
MBD framework.

A CSP instance I is defined as a tuple (V,D,C), where V = {v1, . . . ,vn} is a
set of variables, D = {D1, . . . ,Dn} is a set of domains for the variables in V , and
C = {C1, . . . ,Ck} is a set of constraints. An assignment to any subset X ⊆V is a set
of pairs A = {〈v1,d1〉, . . . ,〈vm,dm〉} where vi ∈ X is a variable and di ∈ Di is a value
from the domain of this variable. An assignment comprises exactly one variable-value
pair for each variable in X . Each constraint Ci ∈C is defined over a list of variables
S, called its scope, and forbids or allows certain simultaneous assignments to the
variables in its scope. An assignment A to S satisfies a constraint Ci if A comprises
an assignment allowed by Ci. An assignment A is a solution to I if it satisfies all
constraints C.

Consider a CSP instance I with variables V = {a,b,c} where each variable has
the domain {1,2,3} and where the following constraints are defined:

C1 : a > b, C2 : b > c, C3 : c = a, C4 : b < c

Obviously, no solution for I exists and our diagnosis problem consists in finding
subsets of the constraints whose definition is faulty. The engineer who has modeled
the CSP could, for example, have made a mistake when writing down C2, which
should have been b < c. Eventually, C4 was added later on to correct the problem,
but the engineer forgot to remove C2.

The problem can be represented as a DPI as follows by defining SD as

14 Parallel Model-Based Diagnosis 555

{C1 ,C2 , C3 }

C1

C2
3

1

2

4 5

C3

{C2 ,C4 } {C2 ,C4 }

C2 C4 C2 C4

Fig. 14.2: Example of HS-tree construction, adapted from [19]

¬AB(C1)→ (a > b), ¬AB(C2)→ (b > c)

¬AB(C3)→ (c = a), ¬AB(C4)→ (b < c)

the set of components COMPS = {C1,C2,C3,C4}, and OBS = /0.
Given the faulty definition of I, two minimal conflicts exist. Namely, the

sets {{C1,C2,C3}, {C2,C4}} can be found by getConflicts using, for instance,
QUICKXPLAIN as a conflict detection algorithm. Given these two conflicts, the
HS-tree algorithm determines three minimal hitting sets {{C2},{C1,C4}, {C3,C4}},
which are diagnoses for the problem instance. The set of diagnoses contains the true
cause of the error, the definition of C2.

Let us now review in more detail how the HS-tree is constructed when using
QUICKXPLAIN (QXP) as a conflict detection technique for the example problem.
The tree construction process is illustrated in Figure 14.2.

Since no conflict can be reused in the first iteration, a call to QXP is made, which
returns the conflict CS = {C1,C2,C3}. This conflict is used to label the root node 1
of the tree and is added to the set of conflicts CS. For each element of the conflict,
a child node is created and the respective conflict element is used as a path label
(line 9). Hence, in the next iteration of the main loop the frontier comprises the three
nodes (/0,{C1}), (/0,{C2}), and (/0,{C3}).

Next, node (/0,{C1}) is retrieved from the frontier, shown as 2 in Figure 14.2.
Since the known conflict cannot be reused, a new conflict is computed by QXP
under the assumption that C1 is abnormal. This call returns the conflict {C2,C4}. The
set containing only C1 is therefore not a diagnosis and the new conflict is used as a
label for node 2 . The algorithm then proceeds in breadth-first style and retrieves
the node (/0,{C2}). For this node none of the known conflicts can be reused and no
new conflict can be found. Therefore, Δ = {C2} is a diagnosis and is added to the set
D. The corresponding node is marked with � in the figure and not further expanded.
At node 3 , which does not correspond to a diagnosis, the already known conflict
{C2,C4} can be reused as it has no overlap with the node’s path label. Consequently,
no call to TP (QXP) is required. At the last tree level, the nodes 4 and 5 are
not further expanded (“closed” and marked with �) because {C2} has already been

556 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

identified as a diagnosis at the previous level and the resulting diagnoses would be
supersets of {C2}. Finally, the sets {C1,C4} and {C3,C4} are identified as additional
diagnoses.

14.2.5 Complexity Considerations

Finding the hitting sets for a given collection of sets – in our case a given set of
conflicts – is known to be an NP-hard problem [20]. Furthermore, in many of the
mentioned applications of MBD techniques to practical problems, we cannot assume
that the set of minimal conflicts is given in advance. Therefore, in these applications
(as well as in Algorithm 14.2), the conflicts are computed “on demand,” i.e., during
tree construction. Depending on the problem setting, finding the conflicts can be the
computationally most demanding part of the entire diagnosis process.

Deciding whether an additional diagnosis exists when conflicts are computed on
demand is also NP-complete, even for propositional Horn theories [21]. Therefore, a
number of heuristics-based, approximate and thus incomplete, as well as problem-
specific diagnosis algorithms have been proposed over the years. We will discuss
such approaches next in Section 14.3.

Later on, in Section 14.5, however, we will focus on application scenarios where
the goal is to find all minimal diagnoses for a given problem, i.e., we focus on com-
plete algorithms. Application scenarios in which finding just one or a few diagnoses
is insufficient include, for example, the MBD-based approach for finding errors in
spreadsheet programs described in [6].

14.3 Alternative Approaches to Compute Diagnoses

Since determining diagnoses in Reiter’s framework is a computationally demanding
problem, a number of alternatives to the logic-based framework and to the sound and
complete HS-tree diagnosis method have been proposed over the years. Three main
categories of approaches can be identified: (I) approaches that limit the search to cer-
tain diagnoses, (II) approaches that use other formalisms and problem encodings than
the logic-based one, and (III) approaches that trade soundness and/or completeness
for efficiency.

(I) Approaches that limit the search to certain diagnoses

Approaches of this type aim to find only certain subsets of all existing diagnoses of a
given DPI. The most prominent examples include approaches that (a) focus on the
computation of one “minimum-cardinality” diagnosis or (b) find the k best diagnoses.

14 Parallel Model-Based Diagnosis 557

(a) Finding minimum-cardinality diagnoses conceptually means extending Reiter’s
definition of a diagnosis (Definition 2) with an additional requirement: Δ is a
minimum-cardinality diagnosis iff there is no diagnosis Δ ′ such that |Δ |> |Δ ′|.
A minimum-cardinality diagnosis therefore comprises the smallest possible
number of system components that, if assumed to be faulty, explain the observed
misbehavior [22, 23, 24]. These types of diagnoses are important when analyzing
very large systems for which the computation of diagnoses can be very time
consuming.

(b) Approaches of this type compute k diagnoses that are optimal with respect to
some predefined measure. For instance, finding the k most probable diagnoses is
one of the most prominent examples found in the literature, see, e.g., [25, 26]
or [27]. One can easily modify the HS-tree algorithm from Section 14.2.3 to
compute the k most probable diagnoses. We only have to rewrite the condition
in line 4 to (frontier �= /0∧|D| ≤ k) and extend the function Pop to return the
most probable node of a tree from the frontier. The latter modification turns the
breadth-first scheme of the HS-tree algorithm into a uniform-cost scheme.

Parallelization approaches: Algorithms of this group can be parallelized in the same
way as any uninformed search algorithm, including breadth-first or depth-first search.
How these general search strategies can be parallelized is discussed in more detail in
Section 14.4.

(II) Approaches that use alternative formalisms and problem encodings

The main idea of these approaches is to use special types of problem encodings that
support a more efficient computation of the diagnoses. Siddiqi and Huang [28], for
example, suggest to solve the diagnosis problem by using Bayesian networks. To
speed up the computations they apply a differential approach to the reasoning in
these networks [29].

Pill and Quaritsch [30], on the other hand, propose to transform a given DPI into
an algebraic expression. The diagnoses are then computed by calling a recursive
function H, which systematically selects a part of the provided algebraic expression
and applies one of five pre-defined modification operators. One of them, for example,
extracts individual elements of the selected sub-expressions that are also elements of
at least one diagnosis for the given DPI.

The function H is designed in such a way that the method guarantees its termi-
nation after a finite number of rewritings. The algebraic expression returned as an
output finally represents all or k diagnoses of the given DPI.

However, the currently most common and very efficient alternative way of encod-
ing the problem is to use so-called “direct” methods, see, e.g., [23, 24, 31, 32, 33, 34].
Direct approaches transform and encode diagnosis problem instances in such a way
that every model output (solution) returned by an inference engine that can process
the target encoding corresponds to a diagnosis. Typical approaches encode the DPIs
as constraint satisfaction (CSP) or as boolean satisfiability (SAT) problems. These

558 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

methods also support the generation of multiple diagnoses in one single call to the
inference engine.

In [35], Nica et al. report the results of a series of experiments in which they
compared conflict-directed search with direct encodings. Their findings indicate that
for several problem settings, using the direct encoding was advantageous. However,
direct methods can be applied only if there is a knowledge representation and reason-
ing system which is (i) expressive enough to encode the given problem setting (input
system description), and in which (ii) the computation of minimal hitting sets can be
embedded in some form.

In case of direct SAT encodings, one can for example weave the computation of
the diagnoses into the system description [32]. Alternatively, one can reformulate the
diagnosis problem as a MaxSAT problem [24]. However, there are also application
areas of Model-Based Diagnosis such as the diagnosis of description logic (DL)
ontologies [36], for which such direct encodings cannot be applied because existing
DL reasoners are not able to generate models that correspond to diagnoses.

Parallelization approaches: The applicability of parallelization strategies for
direct diagnosis methods largely depends on the approach that is used to reformulate
the DPI. For instance, the methods suggested in [32] and [24] can be parallelized
simply by using a SAT/MaxSAT solver that is able to compute multiple models in
parallel. The parallelization of SAT and MaxSAT methods is covered in Chapter 1,
Parallel Satisfiability and Chapter 3, Parallel Maximum Satisfiability.

(III) Approaches that trade soundness and/or completeness for efficiency

This family of methods uses “approximate” algorithms to increase the efficiency of
the search process, but in exchange cannot make guarantees on soundness and/or com-
pleteness. Typical strategies include the application of stochastic search techniques
such as genetic algorithms, simulated annealing, or greedy approaches.

For instance, the method presented in [37] uses a two-step greedy approach. In the
first step, a random and possibly non-minimal diagnosis candidate is determined by a
modified DPLL3 algorithm. In the second step, the algorithm minimizes the candidate
returned by the DPLL technique by repeatedly applying random modifications.

The approach by Li et al. [38], as another example, uses a genetic algorithm that
takes a number of conflict sets as input and generates a set of bit-vectors (chromo-
somes), where every bit encodes a truth value of an atom over the AB(·) predicate. In
each iteration the algorithm applies genetic operations such as mutation, crossover,
etc., to obtain new chromosomes. Subsequently, all obtained bit-vectors are evaluated
by a “hitting set” fitting function which eliminates bad candidates. The algorithm
stops after a predefined number of iterations and returns the best diagnosis.

Parallelization approaches: So far, no proposals have been made to parallelize
such approximate techniques for MBD problems. Parallel algorithms for search
approaches such as simulated annealing exist [39], but it is still open so far whether

3 Davis-Putnam-Logemann-Loveland.

14 Parallel Model-Based Diagnosis 559

these parallelization schemes can be applied to the approximate MBD algorithms
described above. In particular, this is unclear because these approximate techniques
usually relax the definition of the diagnosis problem in different ways.

Since no parallel versions of approximate or incomplete diagnosis algorithms
have been proposed so far, the remaining sections of this chapter will focus on the
parallelization of sound and complete tree-based diagnosis algorithms that can be ap-
plied to different variants of the diagnosis problem. In particular, various approaches
to parallelize the HS-tree algorithm will be discussed in Section 14.5. It will turn out
that most of these algorithms implement basic strategies from uninformed search
algorithms and the difference mainly lies in the used heuristics and/or pruning rules.
In the next section we will therefore first discuss general approaches for search
parallelization.

14.4 Parallelization of Tree Search Algorithms

In this section, we summarize different general strategies to parallelize tree search
processes and discuss their applicability to Model-Based Diagnosis problems.

14.4.1 General Parallelization Strategies

Historically, the parallelization of tree search algorithms has been approached in
three different ways [40]:

(I) Parallelization of node processing: When applying this type of parallelization,
the tree is expanded by one single process, but the computation of labels or
the evaluation of heuristics is done in parallel.

(II) Window-based processing: In this approach, sets of nodes, called “windows,”
are processed by different threads in parallel. The windows are formed by the
search algorithm according to some predefined criteria.

(III) Tree decomposition approaches: The main idea of these methods is to identify
a node in a search tree such that all sub-trees originating in this node are
independent and can be processed in parallel [41, 42].

In principle, all three types of parallelization can be applied in some form to the
problem of generating a hitting set tree.

(I) Parallelization of node processing

Applying this strategy to the MBD problem setting means parallelizing the process
of conflict computation. That is, the method getConflicts (Algorithm 14.3, line 5)

560 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

relies on a theorem prover that either makes use of multiple threads for consistency
checking or that implements a parallel conflict search algorithm.

The first variant is usually simple to implement as most of the conflict computation
algorithms, as in [15, 16, 43, 44], are not dependent on a particular method used in TP
for consistency checking. Depending on the implemented strategy, such algorithms
select a set of components CS ⊆ COMPS and ask TP whether SD∪ OBS∪{¬AB(c) |
c ∈ CS} is inconsistent. Depending on the result, the algorithm returns a conflict set
or selects another subset of components to be checked.

In the latter case – parallel conflict search – one can use, for instance, a slightly
modified version of the recently proposed MERGEXPLAIN method [17], which will
be discussed in more detail later in section 14.5.2.1. In every step, this algorithm
splits the set of components into two non-empty disjoint subsets, which can then be
processed in parallel. For other well-known conflict or prime implicate computation
algorithms like the ones listed above, parallelizing the process is not as easy. There-
fore, more research is required on parallel conflict computation when the goal is to
speed up node processing through parallelization.

(II) Window-based processing

This strategy, in which multiple sets of independent nodes of the search tree (win-
dows) are computed in parallel, was for example applied by Powley et al. [45]. In
their work the windows are determined by different thresholds of a heuristic function
of Iterative Deepening A*.

In principle we can apply such a strategy also to the HS-tree construction problem.
This would however mean that we have to categorize the nodes to be expanded
according to some criterion, e.g., the probability of finding a diagnosis, and then
allocate the different groups to individual threads. In the absence of such criteria, we
could use a constant window size such that each open node is allocated to a separate
thread. In this case the number of parallel threads (windows) should not exceed the
number of physically available computing threads to obtain the best performance.

A general problem when applying a window-based strategy is that in the general
case it is hard to find a window function that assigns sets of tree nodes to different
threads. Ideally such a function should guarantee that the decisions made by an
algorithm for nodes of different windows are independent. In case of MBD, there
are two types of such decisions: labeling of nodes and pruning. For the first type, the
window function has to guarantee that no two TP calls for two nodes of different
windows return the same conflict. For the second type, it has to be guaranteed that
the results of tree pruning for nodes of one window are irrelevant for nodes of other
windows.

Unfortunately, for many MBD problem instances the computations at different
levels of the tree are not independent of each other. Moreover, there is no general way
to split the components of a DPI into subsets in such a way that the computation of
different conflicts for every subset is ensured. Therefore, the parallel MBD algorithms
discussed in Section 14.5 do not rely on window-based parallelization.

14 Parallel Model-Based Diagnosis 561

(III) Tree decomposition approaches

The idea of these approaches is to determine sub-trees in the search tree that can
be processed independently of each other by different threads. Any decision made
within one sub-tree must therefore not influence the behavior or decision of threads
working on other parts of the search tree.

For example, Anglano et al. [46] suggest a tree decomposition approach for
MBD problems in which they parallelize the diagnosis problem based on structural
problem characteristics. In their work, they first map a given diagnosis problem to a
Behavioral Petri Net (BPN). Then, the obtained BPN is manually partitioned into
subnets and every subnet is submitted to a different Parallel Virtual Machine (PVM)
for parallel processing. A major drawback of this approach is that a manual problem
decomposition step is required and that such a decomposition has to be possible in
the first place.

The main problem with structure-based parallelization algorithms is that they
impose a number of requirements on the DPI. For example, in order to apply the
decomposition approach in Binary HS-tree (BHS) algorithms [30], all conflict sets
for the given diagnosis problem instance must be known in advance. Given this
additional information, the method can split the search tree into two sub-trees for
which the resulting sets of diagnoses are disjoint. This makes the computations in
both sub-trees independent and, therefore, easy to execute in parallel. However, in the
majority of cases the set of conflicts is unknown for a given DPI. The structure-based
approach proposed in [47] on the other hand requires that the diagnosis problem has
a tree-like structure. Overall, the applicability of tree decomposition approaches to
parallel MBD is therefore limited to specific types of problem settings.

14.4.2 Applying Domain-Independent Parallelized Search
Techniques

In principle, parallelized versions of domain-independent search algorithms such
as A∗ can be applied to MBD settings as well (see Chapter 11, Parallel A* For
State Space Search). However, the MBD problem has different particularities that
make the application of some of these algorithms difficult. For instance, the PRA∗
method and its variant HDA∗ discussed in the work of Burns et al. [40] use a
mechanism to minimize the memory requirements by retracting parts of the search
tree. These “forgotten” parts are later regenerated when required. In our MBD setting,
the generation of nodes is however the most costly part, which is why the applicability
of HDA∗ seems limited. Similarly, duplicate detection algorithms such as PBNF [40]
require the existence of an abstraction function that partitions the original search
space into blocks. In general MBD settings, however, we cannot assume that such a
function is given.

In order to improve the performance of a parallel algorithm one should in general
try to avoid the duplicate generation of nodes by different threads. A promising

562 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

starting point for this research could be the work by Phillips et al. [48]. The authors
suggest a variant of the A* algorithm that generates only independent nodes in order
to reduce the costs of node generation. Two nodes are considered to be independent
if the generation of one node does not lead to a change of the value returned by the
heuristic function for the other node. The generation of independent nodes can then
be done in parallel without the risk of the repeated generation of an already known
state. The main difficulty when adopting this algorithm for MBD is the formulation
of an admissible heuristic required to evaluate the independence of the nodes for
arbitrary diagnosis problems. However, for specific problems that can be encoded as
CSPs, Williams and Ragno [26] present a heuristic that depends on the number of
unassigned variables at a particular search node.

Finally, parallelization has also been used in the literature to speed up the search
in very large search trees that do not fit in memory. Korf [49], for instance, suggests
an extension of a hash-based delayed duplicate detection algorithm that allows a
search algorithm to continue search while other parts of the search tree are written to
or read from the hard drive. Such methods can in theory be used in combination with
parallel MBD algorithms in case of complex diagnosis problems.

14.5 Parallelized Hitting Set Tree Construction Schemes

In this section, we review two algorithms that implement parallelization strategies
for Reiter’s sound and complete HS-tree algorithm. As discussed in Section 14.2.3,
in every iteration the HS-tree algorithm picks a node from the queue, labels it with a
conflict set, generates a set of successor nodes, and applies the pruning rules. The two
approaches to parallelize this process considered in this section follow the general
idea of breadth-first search parallelization. In particular, they assign every iteration
step of the main loop to a different thread. The main problem of such a scheme,
however, is that the generation of node labels, i.e., the computation of conflict sets,
can be time consuming. Therefore, we also show three possible extensions to these
schemes which move more of the processing power to the conflict computation task.

14.5.1 Computing Multiple Hitting Set Tree Nodes in Parallel

The two algorithms presented next aim to maintain the breadth-first tree exploration
scheme of the HS-tree algorithm and implement strategies that utilize multiple
threads without sacrificing the soundness and completeness of the diagnosis process.
Furthermore, both algorithms do not make any assumptions about specific properties
of the diagnosis problem instances to be solved. Therefore, they can be applied to
different variations of the diagnosis problem definition from Section 14.2. Conceptu-
ally, the presented algorithms can also be seen as special cases of the window-based

14 Parallel Model-Based Diagnosis 563

parallelization scheme described in Section 14.4.1, where every window comprises
exactly one node.

14.5.1.1 Level-Wise Parallelization

The strategy of the first parallelization scheme is to examine all nodes of one tree
level in parallel and to proceed with the next level only when all elements of the
current level have been processed.

In the example shown in Figure 14.2, this would mean that the computations (TP
calls) required for the three first-level nodes labeled with {C1}, {C2}, and {C3} can
be processed in three parallel threads. The nodes of the next level are processed when
all threads of the previous level are finished.

Using this Level-Wise Parallelization (LWP) scheme, the breadth-first order is
strictly maintained. The parallelization of the computations is generally feasible
because the consistency checks for each node can be done independently of those
done for the other nodes on the same level. Synchronization is only required to
make sure that no thread starts exploring a path that is already under examination by
another thread.

Algorithm 14.4: DIAGNOSELW: Level-Wise Parallelization
Input: DPI (SD,COMPS,OBS)
Output: All minimal diagnoses Δ

1 D← /0 /* Initialize set of known diagnoses */

2 CS← /0 /* Initialize set of known conflicts */

3 frontier←{(/0, /0)} /* Initialize the search frontier */

4 level← /0 /* Initialize level-wise processing */
5 while frontier �= /0 :

/* Get and remove the first element of the frontier */

6 (CS,Δ)← Pop(frontier)
7 level← level ∪ runParallel({processNode(D,CS,(CS,Δ))})
8 wait()
9 if level �= /0 : frontier← level; goto 4

10 return D /* Return the set of all diagnoses */

Algorithm 14.4 shows how the sequential method implemented in Algorithm 14.2
can be adapted to support this parallelization approach.4 The statement runParallel
takes a function as a parameter and schedules it for execution in a pool of threads of
a given size. With a thread pool of, e.g., size 2, the generation of the first two nodes
is done in parallel and then the main thread waits until one of the threads finishes.
Only then will the third node be processed. Using this mechanism we can ensure
that the number of threads executed in parallel is less than or equal to the number of
hardware threads or CPUs.

4 Differences to the original Algorithm 14.2 are highlighted with a gray background.

564 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

In addition, during the execution of the algorithm all changes to global structures
such as D and CS have to be synchronized. That is, two threads may read the
structures concurrently, but writing to one of these data structures is exclusive. While
one thread is writing, all other threads must wait until the operation has finished
regardless of whether they want to read or write.5 Finally, the statement wait is
used for synchronization and blocks the execution of the subsequent code until all
scheduled threads are finished.

Theorem 1 ([19]). Level-Wise Parallelization is sound and complete.

14.5.1.2 Full Parallelization

The LWP scheme maintains the breadth-first order of the original algorithm and,
therefore, inherits all its properties, such as soundness and completeness. However,
in some situations the level-wise processing procedure might get stuck at the end of
a level when the computation of a conflict for one of the nodes takes a long time. In
this case, all threads that have already finished processing their nodes have to wait
for the one thread still working.

The Full Parallelization (FP) approach presented in Algorithm 14.5 immediately
schedules the first node of the frontier for execution as soon as some thread becomes
idle. In this way, the FP scheme avoids the problem observed for the LWP procedure.
The main loop continues until the frontier is empty and no more nodes are processed
in parallel.

Algorithm 14.5: DIAGNOSEFP: Full Parallelization
Input: DPI (SD,COMPS,OBS)
Output: All minimal diagnoses Δ

1 D← /0 /* Initialize set of known diagnoses */

2 CS← /0 /* Initialize set of known conflicts */

3 frontier←{(/0, /0)} /* Initialize the search frontier */

4 while frontier �= /0∨ runningThreads > 0 do
/* Get and remove the first element of the frontier */

5 (CS,Δ)← Pop(frontier)
6 frontier← frontier ∪ runParallel({processNode(D,CS,(CS,Δ))})
7 checkMinimality(D)

8 return D /* Return the set of all diagnoses */

Since the nodes are expanded as soon as possible, FP might not follow the
breadth-first strategy of the HS-tree algorithm anymore. Consequently, it may find
non-minimal diagnoses during the search. Therefore, in every iteration the elements
stored in the set of known diagnoses D must be checked for minimality. The method

5 Implementing such concurrency aspects is comparatively simple in modern programming lan-
guages such as Java, e.g., by using the synchronized keyword.

14 Parallel Model-Based Diagnosis 565

checkMinimality removes all Δ j from the set D if there exists Δi ∈ D such that
Δi ⊂ Δ j. Note that the check for minimality has to be synchronized on D. That is, all
other threads are not allowed to modify D while its elements are removed.

From the performance perspective, the FP method ensures that all its threads are
busy as long as there is at least one node in the frontier. On the other hand it needs
more time to synchronize the threads and to remove redundant hitting sets. If the
computation of conflicts does not take long and the last nodes of a level are finished
simultaneously, then LWP can be advantageous. These aspects will be discussed in
more detail in Section 14.6 where we present results of an empirical comparison of
FP and LWP for different problems.

Theorem 2 ([19]). Full Parallelization is sound and complete, if applied to find all
diagnoses up to some cardinality.

Theorem 3 ([19]). Full Parallelization cannot guarantee completeness and sound-
ness when applied to find the first k diagnoses, i.e., 1≤ k < N, where N is the total
number of diagnoses of a problem.

Note that in cases when FP is used to search for only k diagnoses, every com-
puted hitting set must additionally be minimized by applying an algorithm such as
INV-QUICKXPLAIN [50]. Similarly to QUICKXPLAIN, INV-QUICKXPLAIN applies a
divide-and-conquer strategy , but in this case to find one minimal diagnosis for a
given diagnosis problem instance. Applied to a given, possibly non-minimal hit-
ting set H, this algorithm can find a minimal hitting set H ′ ⊆ H requiring only
O(|H ′|+ |H ′| log(|H|/|H ′|)) calls to the theorem prover TP. The first part, |H ′|, cor-
responds to the number of TP calls required to determine whether or not H ′ is
minimal. The second part indicates the number of subproblems that must be consid-
ered by INV-QUICKXPLAIN’s divide-and-conquer strategy to find the minimal hitting
set H ′.

14.5.2 Computing Nodes and Conflicts in Parallel

In all versions of the HS-tree algorithm presented above, the TP call (getConflicts)
corresponds to an invocation of QXP. Whenever a new node of the HS-tree is created,
QXP returns a set of elements that represents exactly one new conflict. This strategy
has the advantage that the call to TP immediately returns after one conflict has been
determined. This in turn means that the other parallel execution threads immediately
“see” this new conflict in the shared data structures and can, in the best case, reuse it
when constructing new nodes.

A disadvantage of computing only one conflict at a time with QXP is that the
search for conflicts is restarted on each invocation. A recently proposed new conflict
detection technique called MERGEXPLAIN (MXP) [17] is capable of computing
multiple conflicts in one call. The general idea of MXP is to continue the search
after the identification of the first conflict and look for additional conflicts in the
remaining constraints (or logical sentences) in a divide-and-conquer approach.

566 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

When combined with a sequential HS-tree algorithm, the effect is that during tree
construction more time is initially spent on conflict detection before the construction
continues with the next node. In exchange, the chances of having a conflict available
for reuse increase for the next nodes. At the same time, the identification of some of
the conflicts is less time-intensive as smaller sets of constraints have to be investigated
due to the divide-and-conquer approach of MXP. An experimental evaluation on
various benchmark problems shows that substantial performance improvements are
possible in a sequential HS-tree scenario when the goal is to find a few leading
diagnoses [17].

14.5.2.1 Background: QUICKXPLAIN and MERGEXPLAIN

The QXP method implemented in Algorithm 14.6 is a conflict detection technique
which was originally applied to find one minimal conflict set for a set of unsatisfiable
constraints.6 However, over the last decade it was often applied to find conflicts for
Model-Based Diagnosis problems.

QXP implements a recursive divide-and-conquer strategy that operates on two
sets of constraints B and C. The set B – called “background theory” – comprises all
constraints that are considered to be correct in the current recursive call. When QXP
starts, this set is initialized with SD, OBS, and {¬AB(c) | c ∈ L}, where L is a set of
components used as arc labels on the path from the root to the current node in the
HS-tree (visited nodes). The set C comprises all constraints that are possibly faulty
and in which we search for a conflict.

In case the set C is consistent with the background theory or C is empty, then
no conflict can be found and the algorithm immediately returns. Otherwise, QXP
calls computeConflict, which corresponds to Junker’s QUICKXPLAIN’ function in
[15]. The only difference between these methods is that computeConflict does not
require a strict partial order for the set of constraints C. We omit the requirement for
a strict partial order here, as in many applications of MBD prior information about
fault probabilities is not available.

Roughly, QXP applies a divide-and-conquer strategy that has two modes: “search”
and “extraction.” The algorithm starts in the search mode, in which every recursive
call partitions the set of faulty constraints C into two sets C1 and C2. If C1 is
inconsistent, then QXP will continue to search for a conflict within this set and
partitions C1 in the next recursive call. The algorithm switches into the extraction
mode if the partitioning process has split all conflicts of C into two parts, i.e., C1 is
consistent. In this mode QXP finds the first part of a conflict in the set C2 and then
the second part in the set C1.

The recently proposed MXP algorithm extends the ideas of QXP by searching
for conflicts not only in C1, but also in C2 in one call. This results in the computation

6 Hereafter we use the term constraints as it was done in the original paper [15]. However, note that
QXP uses the theorem prover only for consistency checking and is independent of the underlying
reasoning technique. Therefore, the elements of the sets could be any set of logic sentences for
which sound and complete reasoning methods exist.

14 Parallel Model-Based Diagnosis 567

Algorithm 14.6: QUICKXPLAIN (QXP)
Input: A diagnosis problem (SD, COMPS, OBS), a set pathNodes of labels on the path

from the root to the current node
Output: A set containing one minimal conflict CS⊆ C

1 B= SD∪OBS ∪ {AB(c)|c ∈ pathNodes}
2 C= {¬AB(c)|c ∈ COMPS\pathNodes}
3 if isConsistent(B∪C) : return ‘no conflict’
4 elif C= /0 : return /0
5 return {c|¬AB(c) ∈ computeConflict(B,B,C)}

function computeConflict(B, D, C)
6 if D �= /0 ∧ ¬isConsistent(B) : return /0
7 if |C|= 1 : return C
8 Split C into disjoint, non-empty sets C1 and C2
9 D2 ← computeConflict(B∪C1, C1, C2)

10 D1 ← computeConflict(B∪D2, D2, C1)
11 return D1∪D2

of multiple conflicts, if they exist. Algorithm 14.7 presents the general procedure
of MXP. First, the algorithm checks whether the sets of input constraints actually
include at least one conflict. Next, it calls the function findConflicts, which returns
a tuple 〈C′,CS〉, where C′ is a set of remaining consistent constraints and CS is a
set of found conflicts. Similarly to QXP’s computeConflict this function first recur-
sively partitions the set C into two subsets. However, in contrast to computeConflict,
findConflicts continues the search for conflicts in both subsets. This allows the
algorithm to identify conflict sets in both C1 and C2. Every found conflict is stored in
the set CS and is resolved by removing one of its elements from the set C1. Finally,
after all conflicts in the subsets C1 and C2 have been found and resolved, the function
checks whether the union of these two sets is consistent. If not, it searches for a
conflict in C′1∪C′2 (and the background theory) in the style of QXP.7

14.5.2.2 Strategies for Combining Node and Conflict Computation

The main idea of the following strategies is to invest more processing power in the
task of conflict computation while the nodes of the HS-tree are constructed in parallel
using LWP or FP. Our expectation is that higher conflict reuse levels can be achieved
during tree construction as we know more conflicts at the beginning of the process.

The desired effect can be achieved by embedding variants of MXP as a conflict
detection strategy, because in MXP we invest more time in looking for additional
conflicts in one call before we proceed with the next node. In principle, computing
one conflict with MXP requires at least one consistency check more for every
partition than QXP. However, MXP should still be advantageous because it can

7 Please see [17] for more details. The paper also contains the results of an in-depth experimental
analysis for different problems.

568 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

Algorithm 14.7: MERGEXPLAIN (MXP)
Input: A diagnosis problem (SD, COMPS, OBS), a set pathNodes of labels on the path

from the root to the current node
Output: CS, a set of minimal conflicts

1 B= SD∪ OBS∪{AB(c) | c ∈ pathNodes}
2 C= {¬AB(c) | c ∈ COMPS \pathNodes}
3 if ¬isConsistent(B) : return ‘no solution’
4 if isConsistent(B∪C) : return /0
5 〈_,CS〉 ← findConflicts(B,C)
6 return {c | ¬AB(c) ∈ CS}

function findConflicts(B,C) returns tuple 〈C′,CS〉
7 if isConsistent(B∪C) : return 〈C, /0〉
8 if |C|= 1 : return 〈 /0,{C}〉
9 Split C into disjoint, non-empty sets C1 and C2

10 〈C′1,CS1〉 ← findConflicts(B,C1)
11 〈C′2,CS2〉 ← findConflicts(B,C2)
12 CS← CS1∪CS2
13 while ¬isConsistent(C′1∪C′2∪B) :

14 X ← computeConflict(B∪C′2,C′2,C′1)
15 CS← X ∪ computeConflict(B∪X ,X ,C′2)
16 C′1 ← C′1 \{α} where α ∈ X
17 CS← CS ∪ {CS}
18 return 〈C′1∪C′2,CS〉

avoid the potential overheads that can happen when the same conflict is computed
simultaneously by LWP and FP.

In the following we discuss different ways of incorporating MXP within the full
parallelization scheme FP:

Strategy (1)

One first strategy is simply to call MXP instead of QXP during node generation.
Whenever MXP finds a conflict, it is added to the global list of known conflicts and
can be (re-)used by other parallel threads. The thread that executes MXP during
node generation continues with the next node when MXP returns.

Strategy (2)

This strategy implements a variant of MXP that is slightly more complex. Once
MXP finds the first conflict, the method immediately returns this conflict so that
the calling thread can continue exploring additional nodes. At the same time, a new
background thread is started which continues the search for additional conflicts,
i.e., it completes the work of the MXP call. In addition, whenever MXP finds a
new conflict it checks whether any other already running node generation thread

14 Parallel Model-Based Diagnosis 569

could have reused the conflict if it had been available beforehand. If this is the case,
the search for conflicts in this other thread is stopped as no new conflict is needed
anymore. Strategy (2) could in theory result in better CPU utilization, as we do
not have to wait for an MXP call to finish before we can continue building the
HS-tree. However, the strategy also leads to higher synchronization costs between
the threads as, for instance, we have to potentially notify the working threads about
newly identified conflicts.

Strategy (3)

A final strategy is to parallelize the conflict detection procedure of MXP itself.
Whenever the set C of constraints is split into two parts, the first recursive call
of findConflicts is queued for execution in a thread pool and the second call
is executed in the current thread. When both calls are finished, the algorithm can
continue. An empirical evaluation of this approach in [19] however indicated that the
additional gains that can be obtained through this strategy are limited. Nonetheless,
parallelizing the conflict detection algorithm – which can be any sort of Theorem
Prover – in principle represents a possible strategy to speed up the overall tree
construction process.

14.6 Effectiveness of Computing Multiple Nodes in Parallel

The goal of this section is to quantify the possible gains that can be obtained through
parallelization for typical Model-Based Diagnosis problems. In this section, we will
analyze the effectiveness of the two approaches presented in Section 14.5.1 to paral-
lelize Reiter’s HS-tree algorithm (Level-Wise Parallelization and Full Parallelization)
as examples. The presented results are taken from [19], which also contains a detailed
discussion of a number of additional experiments.

14.6.1 General Considerations

In our experiments, we will use wall times as a basic measure for our evaluation,
because the comparison of wall times is a common approach in the literature to
assess the improvements that one can obtain through parallelization. Wall times
represent a start-to-end measurement approach for a given task, which means that
also times are included when processors have to wait for resources etc. Using wall
time instead of CPU time is particularly appropriate for the given problem setting,
because the synchronization between threads in particular in the FP algorithm can
take a significant amount of time.

570 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

The differences in the wall times are often reported with the help of two measures,
speedup and efficiency, that take the amount of available computing resources into
account. Speedup Sp is computed as Sp = T1/Tp, where T1 is the wall time when
using one thread (the sequential algorithm) and Tp the wall time when p parallel
threads are used. The efficiency Ep is defined as Sp/p and compares the speedup
with the theoretical optimum.

While speedup and efficiency are well defined, one has to be careful when inter-
preting or trying to generalize the results, because the speedups that can be achieved
depend not only on the algorithms, but can also be influenced by the underlying
hardware architecture. With Intel’s Hyper-Threading Technology, for example, vir-
tual computing cores can be used, which are, however, mapped to the same physical
cores. For a parallel program, these virtual cores appear like real physical computing
nodes, but the results that are obtained when using virtual cores can be different
from those that one would see with more physical cores. In addition, an algorithm
can perform differently when executed on a single CPU with multiple cores or on a
server architecture with multiple CPUs on a single main board. Furthermore, running
the same algorithm on multiple computers connected in a network might lead to
yet different results. The results that are reported below were obtained with specific
hardware configurations. For alternative hardware architectures, the speedups might
be different and other algorithms might even be better suited.

Besides the hardware on which the experiments are executed, also the choice
of the benchmark problems influences the obtained results. Obviously, problems
that we only need a few milliseconds to solve in a single-threaded system are not
a good subject to study the possible benefits of parallelization. In such cases, the
speedups that might eventually be achieved can easily be eaten up by the overhead
costs of parallelization. Starting a new execution thread in Java, for example, is
often considered expensive, e.g., due to the costs of thread initialization and lifecycle
management. In addition to the general complexity of the individual benchmark
problems, we should furthermore also look at certain other characteristics of the
individual problems that might impact the benefits of parallelization. Which of the
characteristics are relevant, however, might depend on the specific parallelization
algorithm. For example, the average width of the search tree can impact the perfor-
mance of the level-wise approach LWP, i.e., if the tree is not very wide, the degree of
parallelization that can be achieved will be limited.

Overall, the discussions show that a number of aspects, both hardware-related ones
and problem-specific ones, can impact the effectiveness of different parallelization
strategies. In [19], the proposed parallelization approaches were therefore tested on a
variety of different benchmark problems, and we will summarize some of the results
next. The experiments were limited to two different types of standard hardware
architectures and did not require any special computing equipment for massive
parallelization or the utilization of the processing power of Graphics Processing
Units (GPUs). The obtained results will show that even with standard hardware and
general-purpose programming languages significant speedups can be achieved.

14 Parallel Model-Based Diagnosis 571

14.6.2 Results for Standard Electronic Circuit Benchmark
Problems

In order to evaluate the usefulness of the LWP and FP parallelization strategies in
comparison with Reiter’s original single-threaded method, a number of diagnosis
problems from three different application domains were used in [19]. In this chap-
ter we report the detailed results of one of these domains, the electronic circuit
benchmarks from the DX Competition 2011 Synthetic Track [51], and summarize
the overall findings. The detailed results for the other problem domains – faulty
descriptions of Constraint Satisfaction Problems (CSPs) as well as problems from
the domain of ontology debugging – can be found in [19].

For the evaluation on the DX benchmarks the first five systems of the competition
dataset were used (see Table 14.1). For each system, the competition specifies 20
scenarios with injected faults that result in different faulty output values. The system
descriptions and the given input and output values were used for the diagnosis process,
while the additional information about the injected faults was of course ignored. The
problems were converted into Constraint Satisfaction Problems, which allowed us
to simulate the behavior of the circuits. In the experiments Choco [52] served as a
constraint solver and QXP was used for conflict detection.

System #C #V #F #D #D |D|
74182 21 28 4 - 5 30 - 300 139.0 4.66
74L85 35 44 1 - 3 1 - 215 66.4 3.13
74283* 38 45 2 - 4 180 - 4,991 1,232.7 4.42
74181* 67 79 3 - 6 10 - 3,828 877.8 4.53
c432* 162 196 2 - 5 1 - 6,944 1,069.3 3.38

Table 14.1: Characteristics of the selected DXC benchmarks

Table 14.1 shows the characteristics of the systems in terms of the number of
constraints (#C) and the problem variables (#V).8 The number of injected faults (#F)
and the number of calculated diagnoses (#D) vary strongly because of the different
scenarios for each system. For both columns we show the ranges of values over all
scenarios. The columns #D and |D| indicate the average number of diagnoses and
their average cardinality. As can be seen, the search tree for the diagnosis can become
extremely broad with up to 6,944 diagnoses with an average diagnosis size of only
3.38 for the system c432.

Table 14.2 shows the averaged results when searching for all minimal diagnoses in
the DXC benchmarks. We first list the running times in milliseconds for the sequential
version (Seq.) and then the improvements of LWP or FP in terms of speedup S4 and
efficiency E4 with respect to the sequential version. The fastest algorithm for each
system is highlighted in bold.

8 For systems marked with *, the search depth was limited to the actual number of faults to ensure
that the sequential algorithm terminated within a reasonable time frame.

572 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

System Seq. LWP FP

[ms] S4 E4 S4 E4
74182 65 2.23 0.56 2.28 0.57

74L85 209 2.55 0.64 2.77 0.69

74283* 371 2.53 0.63 2.66 0.67

74181* 21,695 1.22 0.31 3.19 0.80

c432* 85,024 1.47 0.37 3.75 0.94

Table 14.2: Observed performance gains for the DXC benchmarks

In all tests, both parallelization approaches outperform the sequential algorithm.
Furthermore, the difference between the sequential algorithm and one of the parallel
approaches was statistically significant (p < 0.05) in 95 of the 100 tested scenarios.
For all systems, FP was more efficient than LWP and the speedups range from
2.28 to 3.75 (i.e., up to a reduction in running time of more than 70%). In 59 of
the 100 scenarios the difference between LWP and FP was statistically significant.
A trend that can be observed is that the efficiency of FP was higher for the more
complex problems. The reason is that for these problems the time needed for node
generation is much larger in absolute numbers than the additional overhead times
that are required for thread synchronization.

As mentioned above, additional experiments for other problem domains were
reported in [19]. The obtained results show that parallelizing the HS-tree algorithm is
also advantageous for these domains. For the CSP and ontology debugging problems,
however, FP was not consistently faster than LWP. This indicates that the advantage
of FP over LWP can depend on the characteristics of the problems. In addition, for
some scenarios the speedups of the parallelized approaches were not as high as the
speedups achieved for the DXC benchmark problems.

14.6.3 Systematic Variation of Problem Characteristics

The empirical analyses reported in the previous section for typical MBD benchmark
problems show that computing multiple nodes in parallel can help to significantly
speed up the diagnosis process. Both parallelization techniques were faster than the
sequential algorithm in all tests. However, the full parallelization approach FP was
not consistently faster than the level-wise approach LWP across all tested problem
instances.

14.6.3.1 Method

To obtain a better understanding of how different problem characteristics impact the
performance of the parallelization techniques, a series of additional experiments with
synthetic problem instances was performed in [19]. For these experiments, a suite

14 Parallel Model-Based Diagnosis 573

of hitting set computation problems was created where the following characteristics
were systematically varied: number of components (#Cp), number of conflicts (#Cf),
and average size of the conflicts (|Cf|).

To create these diagnosis problem instances, a problem generation algorithm
was designed which constructs a set of minimal conflicts of the specified average
size for the given number of components. To obtain realistic scenarios, not all
generated conflicts were of equal size but their size was varied in a randomized
process according to a Gaussian distribution with the desired size as a mean. Similarly,
since not all components should be equally likely to be part of a conflict, again a
randomized process was used to assign failure probabilities to the components.

An additional aspect that can impact the performance of the different paralleliza-
tion techniques is the time that is required to compute one conflict to label a new
node in the search tree. For the suite of synthetic benchmark problems, the conflicts
are known in advance (as they were used to construct the diagnosis problems in the
first place). A call to the theorem prover would therefore simply mean looking up
one of the known conflicts from memory, which requires almost no computation
time. To be still able to measure the impact of varying conflict computation times,
artificial processing delays were introduced into the diagnosis process to simulate
varying conflict detection times. Technically, this can be done by adding artificial
and slightly randomized waiting times (Wt) upon each consistency check inside the
theorem prover. Of course, the consistency-checking method is only called if no
already retrieved conflict can be reused for the current node.

#Cp, #Cf, #D Wt Seq. LWP FP

|Cf| [ms] [ms] S4 E4 S4 E4

Varying computation times Wt
50, 5, 4 25 0 23 2.26 0.56 2.58 0.64

50, 5, 4 25 10 483 2.98 0.75 3.10 0.77

50, 5, 4 25 100 3,223 2.83 0.71 2.83 0.71

Varying conflict sizes
50, 5, 6 99 10 1,672 3.62 0.91 3.68 0.92

50, 5, 9 214 10 3,531 3.80 0.95 3.83 0.96

50, 5, 12 278 10 4,605 3.83 0.96 3.88 0.97

Varying numbers of components
50, 10, 9 201 10 3,516 3.79 0.95 3.77 0.94
75, 10, 9 105 10 2,223 3.52 0.88 3.29 0.82
100, 10, 9 97 10 2,419 3.13 0.78 3.45 0.86

#Cp, #Cf, #D Wt Seq. LWP FP

|Cf| [ms] [ms] S8 E8 S8 E8

Adding more threads (8 instead of 4)
50, 5, 6 99 10 1,672 6.40 0.80 6.50 0.81

50, 5, 9 214 10 3,531 7.10 0.89 7.15 0.89

50, 5, 12 278 10 4,605 7.25 0.91 7.27 0.91

Table 14.3: Simulation results

574 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

14.6.3.2 Results

The results of the systematic variation of the problem characteristics are shown in
Table 14.3. The table shows the effects of varying the conflict computation times,
effects of different conflict sizes, effects of different problem sizes in terms of system
components, and finally the effects of using more parallel computation threads.

The following observations can be made. First, if conflicts can be found in almost
no time (Wt = 0) parallelizing the computation of multiple nodes still helps to speed
up the overall diagnosis process, but due to the overhead of thread creation and
synchronization the benefits of parallelization are greater for cases in which the
conflict computation actually takes at least a few milliseconds.

Second, larger conflicts (|Cf|) and correspondingly broader HS-trees are better
suited for parallel processing. On the other hand, increasing the number of com-
ponents with an unchanged number and size of conflicts leads to larger diagnoses.
Searching for diagnoses up to a pre-defined search depth in this case leads to fewer
found diagnoses and a narrower search tree. As a result, the relative performance
gains of the parallelized algorithms are lower than when there are fewer compo-
nents. Finally, when there are larger conflicts, using more threads leads to further
improvements as in these cases even higher levels of parallelization can be achieved.

Overall, the simulation experiments clearly demonstrate that parallelization is
advantageous for a variety of problem configurations. For all tests, the speedups of
LWP and FP are statistically significant. The results also reveal how the different
problem characteristics of the underlying problem impact the possible performance
gains. Finally, regarding the comparison of the LWP and the FP scheme, the additional
gains of not waiting at the end of each search level (as done by the FP method)
typically led to small further improvements.

14.7 Alternative Model-Based Diagnosis Parallelization

Approaches

The parallelization approaches presented in the previous sections maintain the generic
and problem-independent nature of the original HS-tree algorithm. With slight and
straightforward adaptations they are furthermore applicable to different variations of
the general definition of the diagnosis problem introduced in Section 14.2. In this
section we briefly review existing alternative parallelization approaches from the
recent literature that were developed for specific diagnosis problem settings.

14.7.1 Tree-Based Approaches To Find One or Few Diagnoses

The first situation we consider here is when computing all minimal diagnoses is
extremely challenging in cases when, e.g., a system to be diagnosed is huge or the

14 Parallel Model-Based Diagnosis 575

computation of even one minimal conflict is too complex and takes unacceptably
long. Also, there could be application scenarios where the allowed response time
to return the diagnoses is very limited. In such settings, one can try to focus on a
specific subset of all existing diagnoses which might be easier to compute and, e.g.,
search for a predefined number of diagnoses or for diagnoses of a limited cardinality
(some examples are given in Section 14.3).

Different heuristic, stochastic, or approximative algorithms have been suggested
for such situations in the literature [22, 32, 37]. The internal designs of these ap-
proaches are quite diverse. Therefore, it is challenging to analyze them with respect
to the potential benefits of parallelization in a general manner.

As a simplification and approximation of such algorithms, one can however look
at the possible benefits of parallelizing a depth-first strategy to find a limited number
of diagnoses. If parallelizing such a strategy proves beneficial, we can see this as
an indicator that parallelizing other strategies such as those mentioned above could
be worth investigating. In [19], the results of a number of experiments are reported
in which two variants of such tree-based approaches were compared with the Full
Parallelization approach from Section 14.5.

Parallel Random Depth-First Search (PRDFS)

The PRDFS method aims at the fast computation of one single diagnosis, using a
depth-first strategy of expanding the search tree. Given the root node of the search
tree, every parallel execution thread of the algorithm greedily searches for a diagnosis
by expanding random nodes of the tree depth-first. Whenever a node has been labeled
with a conflict, each PRDFS thread – in contrast to the HS-tree algorithm – randomly
selects one component of the conflict and generates only one successor. This node is
then expanded in the next iteration of the thread’s main loop.

Whenever a diagnosis is found with this greedy strategy, it is obviously not
guaranteed that the diagnosis is minimal. As in the situation when applying the
FP strategy to search for a limited number of diagnoses, every returned diagnosis
therefore has to be minimized, i.e., the redundant elements have to be removed.

A Hybrid Strategy

This algorithm, similar to PRDFS, focuses on the computation of one single diagnosis.
The algorithm however considers that depending on the cardinality of the existing
minimal diagnoses it can either be advantageous to quickly descend in the search
tree or to exhaustively look for diagnoses of very small sizes first. In the proposed
hybrid strategy, half of the available threads therefore follow the PRDFS scheme to
descend in the search tree and the other half of them explore the tree in breadth-first
manner using the FP algorithm.

The coordination between the two algorithms can be done with the help of
shared data structures that contain the known conflicts and diagnoses. When enough

576 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

diagnoses (e.g., one) are found, all running threads can be terminated and the results
are returned.

Insights

In the experiments from [19], the same benchmark problems were used as for the
evaluation of the LWP and FP techniques. The goal this time however was to find
one arbitrary minimal diagnosis. The obtained results can be summarized as follows.
When only one diagnosis is needed, using a depth-first strategy is in most cases faster
than using the FP technique and thus faster than Reiter’s single-threaded HS-tree
algorithm. Using multiple threads in this depth-first search (PRDFS) is in almost all
cases beneficial. Finally, the hybrid strategy represents a good compromise whose
performance on average is between the breadth-first FP scheme and the PRDFS
method.

14.7.2 Distributed Hitting Set Algorithms with Known Conflicts

Several research papers in the MBD literature make the assumption that the set of
(non-minimal) conflicts is already given at the beginning of the diagnosis process.
Consequently, the diagnosis problem is reduced to the construction of hitting sets.

For such situations, Cardoso and Abreu in [53] suggested a distributed version
of their STACCATO algorithm [54], which is based on the popular MapReduce
computation scheme [55]. The proposed algorithm computes the minimal hitting sets,
and thus the minimal diagnoses, in a distributed manner, given the (non-minimal) set
of conflicts as an input.

In every execution step, the algorithm builds a hitting set d′ by adding a component
to it that hits at least one of the so far unhit minimal conflict sets. The selection of
the component is done from a queue R that comprises all components that are not in
d′. In addition, the elements of R are ranked according to the Ochiai coefficient.

The mapping step implements two functions that assign elements of the queue to
one of the n available processes. The mapping can be done with one of two possible
functions, stride and random. The first function assigns elements in a cyclical manner,
i.e., process k gets a component l if (l mod n) = k−1. The second function assigns
components by randomly sampling from a uniform distribution.

The authors compared their distributed version of the algorithm with the single-
threaded STACCATO method using a variety of artificially created benchmark prob-
lems. Their analyses showed that the new algorithm is faster than the previous one
in both a distributed and a single-CPU setup. Furthermore, the required additional
overhead for distributing the problem across computing nodes seemed to diminish in
particular for the large problem instances.

In [56], Zhao and Ouyang suggest two further algorithms that can be used in
distributed settings. Given a set of conflicts, the first algorithm starts with the par-

14 Parallel Model-Based Diagnosis 577

titioning of this set such that any two conflicts from different partitions share no
components. Next, it computes minimal hitting sets for every partition and finds
the set of diagnoses. To compute a diagnosis in this set, the algorithm selects one
minimal hitting set for every partition and then joins them.

The second proposed algorithm is used in cases when additional conflicts arise
after the diagnoses are already computed. The main idea is to update the families
of conflict sets with new elements and find diagnoses in a distributed way, which is
done in a similar way to the first algorithm.

The parallelization approach in this work relies on the fact that hitting sets of such
partitions can be computed in parallel. This resulted in a considerable reduction of
the required computation times compared to the single-threaded Boolean [57] and
Boolean-HS-Tree [30] algorithms.

14.8 Summary

The computation of possible explanations of an unexpected system behavior using
Model-Based Diagnosis approaches can be computationally challenging, in particular
in application scenarios in which it is not sufficient to know only some heuristically
determined diagnoses.

Even though multi-core computers are common today, and in different domains
relying on the processing power of Graphics Processing Units has proven to be useful,
limited research exists so far on parallel computation approaches in the context of
Model-Based Diagnosis.

In this chapter, we have focused on different strategies for parallelizing Reiter’s
classical HS-tree algorithm on multi-core computers. While the algorithm in principle
follows a breadth-first tree search strategy, using the concept of conflicts is essential
to prune the search space, which is why the presented parallelization approaches try
to maintain the basic character of the algorithm.

We believe that the presented algorithms therefore only represent a first step
toward a better usage of the computing power that we have available today. Instead
of being parallel versions of existing single-threaded algorithms, future Model-Based
Diagnosis techniques should be designed with the concept of parallelization in mind
from the beginning.

Acknowledgements

The authors were supported by the Carinthian Science Fund (KWF) under contract
KWF-3520/26767/38701, the Austrian Science Fund (FWF) and the German Re-
search Foundation (DFG) under contract numbers I 2144 N-15 and JA 2095/4-1
(Project “Debugging of Spreadsheet Programs”).

578 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

References

[1] de Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing Diagnoses and
Systems. Artificial Intelligence 56(2-3) (1992) 197–222

[2] de Kleer, J., Williams, B.C.: Diagnosing Multiple Faults. Artificial Intelligence
32(1) (April 1987) 97–130

[3] Reiter, R.: A Theory of Diagnosis from First Principles. Artificial Intelligence
32(1) (1987) 57–95

[4] Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.: Consistency-based
Diagnosis of Configuration Knowledge Bases. Artificial Intelligence 152(2)
(2004) 213–234

[5] Mateis, C., Stumptner, M., Wieland, D., Wotawa, F.: Model-Based Debugging
of Java Programs. In: AADEBUG’00. (2000)

[6] Jannach, D., Schmitz, T.: Model-based Diagnosis of Spreadsheet Programs:
A Constraint-based Debugging Approach. Automated Software Engineering
23(1) (2016) 105–144

[7] Wotawa, F.: Debugging Hardware Designs Using a Value-Based Model. Ap-
plied Intelligence 16(1) (2001) 71–92

[8] Felfernig, A., Friedrich, G., Isak, K., Shchekotykhin, K.M., Teppan, E., Jannach,
D.: Automated Debugging of Recommender User Interface Descriptions.
Applied Intelligence 31(1) (2009) 1–14

[9] Console, L., Friedrich, G., Dupré, D.T.: Model-Based Diagnosis Meets Error
Diagnosis in Logic Programs. In: IJCAI’93. (1993) 1494–1501

[10] Friedrich, G., Shchekotykhin, K.M.: A General Diagnosis Method for Ontolo-
gies. In: ISWC’05. (2005) 232–246

[11] Stumptner, M., Wotawa, F.: Debugging Functional Programs. In: IJCAI’99.
(1999) 1074–1079

[12] Friedrich, G., Stumptner, M., Wotawa, F.: Model-Based Diagnosis of Hardware
Designs. Artificial Intelligence 111(1-2) (1999) 3–39

[13] White, J., Benavides, D., Schmidt, D.C., Trinidad, P., Dougherty, B., Cortés,
A.R.: Automated Diagnosis of Feature Model Configurations. Journal of
Systems and Software 83(7) (2010) 1094–1107

[14] Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G.: Exception Han-
dling for Repair in Service-Based Processes. IEEE Transactions on Software
Engineering 36(2) (2010) 198–215

[15] Junker, U.: QUICKXPLAIN: Preferred Explanations and Relaxations for
Over-Constrained Problems. In: AAAI’04. (2004) 167–172

[16] Marques-Silva, J., Janota, M., Belov, A.: Minimal Sets over Monotone Predi-
cates in Boolean Formulae. In: Computer Aided Verification. (2013) 592–607

[17] Shchekotykhin, K., Jannach, D., Schmitz, T.: MergeXplain: Fast Computation
of Multiple Conflicts for Diagnosis. In: IJCAI’15. (2015) 3221–3228

[18] Greiner, R., Smith, B., Wilkerson, R.: A Correction to the Algorithm in Reiter’s
Theory of Diagnosis. Artificial Intelligence 41(1) (1989) 79–88

14 Parallel Model-Based Diagnosis 579

[19] Jannach, D., Schmitz, T., Shchekotykhin, K.: Parallel Model-Based Diagnosis
On Multi-Core Computers. Journal of Artificial Intelligence Research (JAIR)
55 (2016) 835–887

[20] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co. (1979)

[21] Eiter, T., Gottlob, G.: The Complexity of Logic-Based Abduction. Journal of
the ACM 42(1) (1995) 3–42

[22] de Kleer, J.: Hitting Set Algorithms for Model-based Diagnosis. In: DX’11.
(2011) 100–105

[23] Stern, R., Kalech, M., Feldman, A., Provan, G.: Exploring the Duality in
Conflict-Directed Model-Based Diagnosis. In: AAAI’12. (2012) 828–834

[24] Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient Model Based
Diagnosis with Maximum Satisfiability. In: IJCAI’15. (2015) 1966–1972

[25] de Kleer, J., Williams, B.C.: Diagnosing Multiple Faults. Artif. Intell. 32(1)
(apr 1987) 97–130

[26] Williams, B.C., Ragno, R.J.: Conflict-directed A* and its Role in Model-based
Embedded Eystems. Discrete Applied Mathematics 155(12) (2007) 1562–1595

[27] Darwiche, A.: Model-Based Diagnosis using Structured System Descriptions.
Journal of Artificial Intelligence Research 8 (1998) 165–222

[28] Siddiqi, S., Huang, J.: Sequential Diagnosis by Abstraction. Journal of Artificial
Intelligence Research 41 (2011) 329–365

[29] Darwiche, A.: A Differential Approach to Inference in Bayesian Networks.
Journal of the ACM 50(3) (May 2003) 280–305

[30] Pill, I., Quaritsch, T.: Optimizations for the Boolean Approach to Computing
Minimal Hitting Sets. In: ECAI’12. (2012) 648–653

[31] Feldman, A., Provan, G., de Kleer, J., Robert, S., van Gemund, A.: Solving
Model-Based Diagnosis Problems with Max-SAT Solvers and Vice Versa. In:
DX’10. (2010) 185–192

[32] Metodi, A., Stern, R., Kalech, M., Codish, M.: A Novel SAT-Based Approach
to Model Based Diagnosis. Journal of Artificial Intelligence Research 51 (2014)
377–411

[33] Mencia, C., Marques-Silva, J.: Efficient Relaxations of Over-constrained CSPs.
In: ICTAI’14. (2014) 725–732

[34] Mencía, C., Previti, A., Marques-Silva, J.: Literal-Based MCS Extraction. In:
IJCAI’15. (2015) 1973–1979

[35] Nica, I., Pill, I., Quaritsch, T., Wotawa, F.: The Route to Success: A Performance
Comparison of Diagnosis Algorithms. In: IJCAI’13. (2013) 1039–1045

[36] Shchekotykhin, K., Friedrich, G., Fleiss, P., Rodler, P.: Interactive Ontology
Debugging: Two Query Strategies for Efficient Fault Localization. Journal of
Web Semantics 12–13 (2012) 88–103

[37] Feldman, A., Provan, G., van Gemund, A.: Approximate Model-Based Diagno-
sis Using Greedy Stochastic Search. Journal of Artifcial Intelligence Research
38 (2010) 371–413

[38] Li, L., Yunfei, J.: Computing Minimal Hitting Sets with Genetic Algorithm. In:
DX’02. (2002) 1–4

580 Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz

[39] Ram, D.J., Sreenivas, T.H., Subramaniam, K.G.: Parallel Simulated Annealing
Algorithms. Journal of Parallel and Distributed Computing 37(2) (1996) 207 –
212

[40] Burns, E., Lemons, S., Ruml, W., Zhou, R.: Best-First Heuristic Search for
Multicore Machines. Journal of Artificial Intelligence Research 39 (2010)
689–743

[41] Ferguson, C., Korf, R.E.: Distributed Tree Search and its Application to alpha-
beta Pruning. In: AAAI’88. (1988) 128–132

[42] Brüngger, A., Marzetta, A., Fukuda, K., Nievergelt, J.: The Parallel Search
Bench ZRAM and its Applications. Annals of Operations Research 90(0)
(1999) 45–63

[43] Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding All Justifications of
OWL DL Entailments. In: ISWC 2007 + ASWC 2007. (2007) 267–280

[44] Previti, A., Ignatiev, A., Morgado, A., Marques-Silva, J.: Prime Compilation of
Non-Clausal Formulae. In: IJCAI’15. (2015) 1980–1987

[45] Powley, C., Korf, R.E.: Single-agent Parallel Window Search. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 13(5) (1991) 466–477

[46] Anglano, C., Portinale, L.: Parallel Model-based Diagnosis using PVM. In:
EuroPVM’96. (1996) 331–334

[47] Wotawa, F.: A Variant of Reiter’s Hitting-set Algorithm. Information Processing
Letters 79(1) (2001) 45–51

[48] Phillips, M., Likhachev, M., Koenig, S.: PA*SE: Parallel A* for Slow Expan-
sions. In: ICAPS’14. (2014)

[49] Korf, R.E., Schultze, P.: Large-scale Parallel Breadth-first Search. In: AAAI’05.
(2005) 1380–1385

[50] Shchekotykhin, K.M., Friedrich, G., Rodler, P., Fleiss, P.: Sequential Diagnosis
of High Cardinality Faults in Knowledge-Bases by Direct Diagnosis Generation.
In: ECAI’14. (2014) 813–818

[51] Kurtoglu, T., Feldman, A.: Third International Diagnostic Competition (DXC
11). https://sites.google.com/site/dxcompetition2011
(2011) Accessed: 2016-03-15.

[52] Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. (2015) http:
//www.choco-solver.org.

[53] Cardoso, N., Abreu, R.: A Distributed Approach to Diagnosis Candidate
Generation. In: EPIA’13. (2013) 175–186

[54] Abreu, R., van Gemund, A.J.C.: A Low-Cost Approximate Minimal Hitting
Set Algorithm and its Application to Model-Based Diagnosis. In: SARA’09.
(2009) 2–9

[55] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM 51(1) (2008) 107–113

[56] Zhao, X., Ouyang, D.: Deriving All Minimal Hitting Sets Based on Join
Relation. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45(7)
(2015) 1063–1076

[57] Lin, L., Jiang, Y.: The computation of Hitting Sets: Review and New Algorithms.
Information Processing Letters 86(4) (2003) 177–184

https://sites.google.com/site/dxcompetition2011
http://www.choco-solver.org
http://www.choco-solver.org

Part II

Tools and Applications

Chapter 15

Selection and Configuration of Parallel

Portfolios

Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

Abstract In recent years the availability of parallel computation resources has grown
rapidly. Nevertheless, even for the most widely studied constraint programming prob-
lems such as SAT, solver development and applications remain largely focussed on
sequential rather than parallel approaches. To ease the burden usually associated with
designing, implementing and testing parallel solvers, in this chapter, we demonstrate
how methods from automatic algorithm design can be used to construct effective
parallel portfolio solvers from sequential components. Specifically, we discuss two
prominent approaches for this problem. (I) Parallel portfolio selection involves select-
ing a parallel portfolio consisting of complementary sequential solvers for a specific
instance to be solved (as characterised by cheaply computable instance features).
Applied to a broad set of sequential SAT solvers from SAT competitions, we show
that our generic approach achieves nearly linear speedup on application instances,
and super-linear speedups on combinatorial and random instances. (II) Automatic
construction of parallel portfolios via algorithm configuration involves a parallel
portfolio of algorithm parameter configurations that is optimized for a given set of
instances. Applied to gold-medal-winning parameterized SAT solvers, we show that
our approach can produce significantly better-performing SAT solvers than state-of-
the-art parallel solvers constructed by human experts, reducing time-outs by 17%
and running time (PAR10 score) by 13% under competition conditions.

Marius Lindauer
University of Freiburg, Germany, e-mail: lindauer@cs.uni-freiburg.de

Holger Hoos
University of British Columbia, Canada & Leiden University, The Netherlands,
e-mail: hh@liacs.nl

Frank Hutter
University of Freiburg, Germany, e-mail: fh@cs.uni-freiburg.de

Kevin Leyton-Brown
University of British Columbia, Canada, e-mail: kevinlb@cs.ubc.ca

583© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_15

lindauer@cs.uni-freiburg.de
hh@liacs.nl
fh@cs.uni-freiburg.de
kevinlb@cs.ubc.ca
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_15&domain=pdf

584 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

15.1 Introduction

Given the prevalence of multi-core processors and the ready availability of large
compute clusters (e.g., in the cloud), parallel computation continues to grow in
importance. This is particularly true in the vibrant area of propositional satisfiability
(SAT), where over the last decade, parallel solvers have received increasing attention
and shown impressive performance in the influential SAT competitions. Nevertheless,
development and research efforts remain largely focused on sequential rather than
parallel designs; for example, 29 sequential solvers participated in the main track of
the 2016 SAT Competition, compared to 14 parallel solvers.

One key reason for this focus on sequential solvers lies in the complexity of
designing, implementing and testing effective parallel solvers. This involves a host of
challenges, including coordination between threads or processes, efficient communi-
cation strategies for information sharing, and non-determinism due to asynchronous
computation. As a result, it is typically difficult to effectively parallelise a sequential
solver; in most cases, fundamental redesign is required to harness the power of
parallel computation. Methods that can produce effective parallel solvers from one or
more sequential solvers automatically (or with minimal human effort) are therefore
very attractive, even if they cannot generally be expected to reach the performance
levels of a carefully hand-crafted parallel solver design. In this chapter, we give an
overview of several such automatic approaches. We illustrate these for SAT solvers,
in part because SAT is one of the most widely studied NP-hard problems, but also
because these approaches, although not limited to SAT solving, were first developed
in this context.

One of the simplest automatic methods for constructing a parallel solver is to run
multiple sequential solvers independently in parallel on the same input; this is called
a parallel algorithm portfolio. For SAT, this approach has been applied with consider-
able success. A well-known example is ppfolio [70], which, despite the simplicity of
the approach, won several categories of the 2011 SAT Competition; ppfolio runs sev-
eral sequential SAT solvers (including CryptoMiniSat [74], Lingeling [13], clasp [24],
TNM [54], and march_hi [33]) as well as one parallel solver (Plingeling [13]) in
parallel, without any communication between the solvers, except that all portfolio
components are terminated as soon as the first solves the given SAT instance. This
works well when the component solvers have complementary strengths. For example,
CryptoMiniSat and Lingeling perform well on application instances, clasp excels on
“crafted” instances, and TNM and march_hi are particularly effective on randomly
generated SAT instances. The ppfolio portfolio was constructed manually by experts
with deep insights into the performance characteristics of SAT solvers, drawing from
a large set of sequential SAT solvers and using limited computational experiments to
assemble hand-picked components into an effective parallel portfolio.

In the following, we focus on generic methods that automate the construction of
effective parallel solvers from given sequential components. Such methods can be
seen as instances of programming by optimization [35] and search-based software
engineering [30]. There are several advantages to using automatic methods for
parallel solver construction: substantially reduced need for rare and costly human

15 Selection and Configuration of Parallel Portfolios 585

expertise; easier exploitation of new component solvers; and easier adaptation to
different sets or distributions of problem instances. Broadly speaking, there are two
automatic methods for parallel solver construction:1

Parallel Portfolio Selection. Parallel portfolio selection focuses on combining a
set of algorithms by means of per-instance algorithm selection or algorithm
schedules. In per-instance algorithm selection [69, 39, 51], we select one solver
from a given set based on features of that instance, with the goal of optimizing
performance on the given instance. Per-instance selection can be generalised to
produce a parallel portfolio of solvers rather than a single solver [56]; this portfolio
consists of sequential solvers that run concurrently on a given problem instance.
Algorithm schedules exploit solver complementarity through a sequence of runs
with associated time budgets. This strategy can be parallelised by concurrently
running multiple sequential schedules, each on a separate processing unit [36].

Automatic Construction of Parallel Portfolios (ACPP). In automated algorithm
configuration [45], the goal is to set the parameters of a given algorithm (e.g.,
a SAT solver) to optimise performance for a given set or distribution of prob-
lem instances. Automatic configuration can also be used to determine a set of
configurations [79, 50] that jointly perform well when combined into a parallel
portfolio [58].

These two approaches address orthogonal problems: the former allows us to
effectively use an existing set of solvers for each instance, while the latter builds an
effective portfolio for a given instance set from complementary components drawn
from a large (often infinite) configuration space of solvers.

Both of these approaches are based on the assumption that different solvers or
solver configurations exhibit sufficient performance complementarity: i.e., they differ
substantially in efficacy relative to each other depending on the problem instance to
be solved. Solver complementarity is known to exist for many NP-hard problems—
notably SAT, where it has been studied by Xu et al. [82]—and is also reflected in the
excellent performance of many portfolio-based solvers [28, 70, 25, 15, 6]. While in
the following we focus on SAT, solver complementarity has also been demonstrated
and exploited for a broad range of other problems, including MAXSAT [4], quantified
Boolean formulas [68, 53], answer set programming [64], constraint satisfaction [67],
AI planning [31, 73], and mixed integer programming [41, 81]; we thus expect that
the techniques we describe could successfully be applied to these problems.

This chapter is organized as follows. We discuss parallel portfolio selection in
Section 15.2 and automatic construction of parallel portfolios from parameterized
solvers in Section 15.3. We conclude the chapter by discussing limitations as well
as possible extensions and combinations of the two approaches (Section 15.4). The
material in this chapter builds on and extends previously published work on parallel
portfolio selection [56] and automatic construction of parallel portfolios [58].

1 We note that parallel resources can also be used for parallel algorithm configuration [44]; while this
is an important area of study, in this chapter, we focus on methods that produce parallel portfolios
as an output.

586 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

15.2 Per-Instance Selection of Parallel Portfolios

Well-known per-instance algorithm selection systems for SAT include SATzilla [65,
80, 83], 3S [49], CSHC [62], and AutoFolio [57]. The algorithm portfolios such
systems construct have been very successful in past SAT competitions, regularly
outperforming the best non-portfolio solvers.2 Algorithm selection systems per-
form particularly well on heterogeneous instance sets, for which no single solver
(or parameter configuration of a solver) performs well overall [71]. For example,
the instance sets used in SAT competitions include problems from packing, argu-
mentation, cryptography, hardware verification, planning, scheduling, and software
verification [12].

In parallel portfolio selection, we select a set of algorithms to run together in
a parallel portfolio. This offers robustness against errors in solver selection, can
reduce dependence on instance features, and provides a simple yet effective way of
exploiting parallel computational resources.

15.2.1 Problem Statement

Formally, the algorithm selection problem is defined as follows.

Definition 1 (Sequential Algorithm Selection). An instance of the per-instance
algorithm selection problem is a 4-tuple 〈I,D ,A ,m〉, where

• I is a set of instances of a problem,
• D is a probability distribution over I,
• A is a set of algorithms for solving instances in I, and
• m : A × I→R quantifies the performance of algorithm A∈A on instance π ∈ I.

The objective is to construct an algorithm selector, i.e., a mapping φ : I → A ,
such that the expected performance measure Eπ∼D [m(φ(π),π)] across all instances
is optimised. In this chapter, we will consider a performance measure based on
minimizing running time.

The mapping φ is computed by extracting features f (π)∈ F from a given instance
π , which are subsequently used to determine the algorithm to be selected [66, 80, 48];
a mapping from this feature space F to algorithms is typically constructed using
machine learning techniques. Instance features for algorithm selection must be cheap
to compute (normally costing at most a few seconds) to avoid taking too much time
away from actually solving the instance.

2 New SAT competition rules limit portfolio systems to two SAT solving engines. Nevertheless,
algorithm selection systems have remained quite successful; e.g., Riss BlackBox [3] won 3 medals
in 2014.

15 Selection and Configuration of Parallel Portfolios 587

Pre-Solving
Schedule

Features f(π)

Instance π

Select Algo-
rithm A∗ ∈ A

Solve π with A∗

Set of
algorithms A

Fig. 15.1: Sequential algorithm selection

Some important examples for instance features include:

• Size features, such as the number of variables and clauses, or their ratio [20];
• CNF graph features based on the variable-clause graph, variable graph [32], or

clause graph;
• Balance features, such as the fraction of unary, binary or ternary clauses [66, 80];
• Proximity to Horn formula features, such as statistics on horn clauses [66];
• Survey propagation features, which estimate variable bias with probabilistic

inference [38];
• Probing features, which are computed by running, e.g., DPLL solvers, stochastic

local search solvers, LP solvers or CDCL solvers for a short amount of time
to obtain insights in their solving behavior [66], such as the number of unit
propagations at a given search tree depth;

• Timing features, the time required to compute other features [48].

For a full list of currently used SAT features, we refer the interested reader to Hutter
et al. [48] and to Alfonso et al. [2].

Some performance metrics based on running time penalize solvers for spending
seconds to solve instances that can be solved in milliseconds. (A complex perfor-
mance metric of this type has been used in some past SAT competitions.) In such
cases, evaluating features for every instance can lead to unacceptable penalties. Such
penalties can be mitigated via static presolving schedules [80, 49, 37]. Based on
the observation that many solvers solve a given instance either quickly or not all, a
presolving schedule runs a sequence of complementary solvers, each for a small frac-
tion of the overall running time cutoff. If the given instance is solved in any of these
runs, the remainder of the presolving and algorithm selection workflow is skipped.
Furthermore, the presolving schedule is static, meaning that it does not vary between
instances. Beyond saving the time to compute features, static presolving schedules
also have another benefit: by running more than the finally selected algorithm, to
some degree we hedge against suboptimal selection outcomes based on instance
features.

Parallel portfolio selection takes this idea further, selecting a whole set of solvers
to run in parallel. Thus, instead of learning a single mapping φ : I →A to select a
solver, we learn a mapping φk : I →A k to select a portfolio with k components for a
given number of processing units k.

Formally, the parallel portfolio selection problem [56] is defined as follows.

588 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

Pre-Solving1: Features f(π)

Instance π

Select Portfolio
A∗1:4 ∈ A 4

Solve π with A∗1

Pre-Solving2: Solve π with A∗2

Pre-Solving3: Solve π with A∗3

Pre-Solving4: Solve π with A∗4

Set of
algorithms A

Fig. 15.2: Parallel portfolio selection with presolving on four processing units

Definition 2 (Parallel Portfolio Selection). An instance of the per-instance parallel
portfolio selection problem is a 5-tuple 〈I,D ,A ,m,k〉, where

• I is a set of instances of a problem,
• D is a probability distribution over I,
• A is a set of algorithms for instances in I,
• k is the number of available processing units, and
• m : A l × I → R quantifies the performance of a portfolio A1:l on an instance

π ∈ I for any given portfolio size l.

The objective is to construct a parallel portfolio selector, i.e., a mapping φk : I→A k,
such that the expected performance measure Eπ∼D [m(φk(π),π)] across all instances
is optimised. If the concurrently running algorithms in the selected portfolio neither in-
teract nor communicate, the objective can be written as Eπ∼D [MINA∗∈φk(π)m(A∗,π)].

As in the case of selecting a single solver, we can extend parallel portfolio selection
to include a static presolving schedule. Figure 15.2 shows the workflow of a parallel
portfolio selection procedure. First, we run a parallel presolving schedule on all
processing units. Since feature computation is currently still a sequential process, we
run a short presolving schedule on the first unit and then start feature computation if
necessary. On all other units, we presolve until feature computation finishes. We then
select an algorithm for each processing unit.

15.2.2 Parallelization of Sequential Algorithm Selectors

We now discuss a general strategy for parallelizing sequential algorithm selection
methods. This approach is motivated by the availability of a broad range of effective
sequential selection approaches that use an underlying scoring function s : A ×I→R

to rank the candidate algorithms for a given instance to be solved, such that the
putatively best algorithm receives the lowest score value, the second best the second
lowest score, etc. [52]. The key idea is to use this scoring function to produce

15 Selection and Configuration of Parallel Portfolios 589

portfolios of algorithms to run in parallel by simply sorting the algorithms in A
based on their scores (breaking ties arbitrarily) and choosing the n best-ranked
algorithms. In the following, we discuss five existing algorithm selection approaches,
their scoring functions and how we can efficiently extend them to parallel portfolio
selection.

15.2.2.1 Performance-Based Nearest Neighbor (PNN)

The algorithm selection approach in 3S [62] in its simplest form uses a k-nearest
neighbour approach. For a new instance π with features f(π), it finds the k near-
est training instances Ik(π) in the feature space F and selects the algorithm that
has the best training performance on them. Formally, given a performance met-
ric m : A × I → R, we define mk(A,π) = ∑π ′∈Ik(π) m(A,π ′) and select algorithm
argminA∈A mk(A,π).

To extend this approach to parallel portfolios, we determine the same k nearest
training instances Ik(π) and simply select the n algorithms with the best performance
on Ik. Formally, our scoring function in this case is simply

sPNN(A,π) = mk(A,π). (15.1)

In terms of complexity, identifying the k nearest instances costs time O(# f · |I| ·
log |I|), with # f denoting the number of used instance features; averaging the perfor-
mance values over the k instances costs time O(k · |A |).

15.2.2.2 Distance-Based Nearest Neighbor (DNN)

ME-ASP [64] implements an interface for different machine learning approaches used
in its selection framework, but its released version uses a simple nearest neighbour
approach with neighbourhood size 1, which also worked best empirically in experi-
ments by the authors of ME-ASP [64]. At training time, this approach memorizes
the best algorithm A∗(π ′) on each training instance π ′ ∈ I. For a new instance π , it
finds the nearest training instance π ′ in the feature space using Euclidean distance
and selects the algorithm A∗(π ′) associated with that instance.

To extend this approach to parallel portfolios, for a new test instance π , we score
each algorithm A by the minimum of the distances between π and any training
instance associated with A. Formally, letting d(f(π), f(π ′)) denote the distance in
feature space between instance π and π ′, we have the following scoring function

sDNN(A,π) = MIN{d(f(π), f(π ′)) | π ′ ∈ I∧A∗(π ′) = A}. (15.2)

Intuitively, an algorithm is preferred to be in a parallel portfolio if it performed best
on a problem instance similar to the instance at hand (where similarity is judged by
Euclidean distance in feature space).

590 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

If {π ′ ∈ I | A∗(π ′) = A} is empty (because algorithm A was never the best algo-
rithm on an instance) then sDNN(A,π) = ∞ for all instances π . Since we memorize
the best algorithm for each instance in the training phase, the time complexity of this
method is dominated by the cost of computing the distance of each training instance
to the test instance, O(|I| ·# f), where # f is the number of features.

15.2.2.3 Clustering

The selection part of ISAC [50]3 uses a technique similar to ME-ASP’s distance-based
NN approach, with the difference that it operates on clusters of training instances
instead of on single instances. Specifically, ISAC clusters the training instances,
memorizing the cluster centers Z (in the feature space) and the best algorithms Â(z)
for each cluster z ∈ Z. For a new instance, similarly to ME-ASP, it finds the nearest
cluster z in the feature space and selects the algorithm associated with z.

To extend this approach to parallel portfolios, for a new test instance π , we
score each algorithm A by the minimum of the distances between π and the clusters
associated with A. Formally, using d(f(π),z) to denote the distance in feature space
between instance π and cluster center z, we have the following scoring function:

sClu(A,π) = MIN{d(f(π),z) | z ∈ Z∧ Â(z) = A}. (15.3)

As for DNN, if {z ∈ Z | Â(z) = A} is empty (because algorithm A was not the best
algorithm on any cluster) then sClu(A,π) =∞ for all instances π . The time complexity
is as for DNN, replacing the number of training instances |I| with the number of
clusters |Z|.

15.2.2.4 Regression

The first version of SATzilla [65] used a regression approach, which, for each A ∈A ,
learns a regression model rA : F → R to predict performance on new instances. For a
new instance π with features f(π), it selected the algorithm with the best predicted
performance, i.e., argminA∈A rA(f(π)).

This approach trivially extends to parallel portfolios; we simply use scoring
function

sReg(A,π) = rA(f(π)) (15.4)

to select the A algorithms predicted to perform best. The complexity of model
evaluations differs across models, but it is polynomial for all models in common
use; we denote this polynomial by Preg. Since we need to evaluate one model per
algorithm, the time complexity to select a parallel portfolio is then O(Preg · |A |).

3 In its original version, ISAC is a combination of algorithm configuration and selection, but only
the selection approach was used in later publications.

15 Selection and Configuration of Parallel Portfolios 591

15.2.2.5 Pairwise Voting

The most recent SATzilla version [82] uses cost-sensitive random forest classification
to learn for each pair of algorithms A1 �= A2 ∈A which of them performs better for a
given instance; each such classifier cA1,A2 : F →{0,1} votes for A1 or A2 to perform
better, and SATzilla then selects the algorithms with the most votes from all pairwise
comparisons. Formally, let v(A,π) = ∑A′∈A \{A} cA,A′(f(π ′)) denote the sum of votes
algorithm A receives for instance π; then, SATzilla selects argmaxA∈A v(π,A).

To extend this approach to parallel portfolios, we simply select the n algorithms
with the most votes by defining our scoring function to be minimized as

sVote(A,π) =−v(A,π). (15.5)

As for regression models, the time complexity for evaluating a learned classifier
differs across classifier types, but it is polynomial for all commonly used types, in
particular random forests; we denote this polynomial function by Pclass. Since we
need to evaluate pairwise classifiers for all algorithm pairs, the time complexity to
select a parallel portfolio is then O(Pclass · |A |2).

15.2.3 Parallel Presolving Schedules

As mentioned previously, our approach for parallel portfolios does not only consider
parallel portfolios selected on a per-instance basis, but also uses parallel presolv-
ing schedules (see Figure 15.2). Fortunately, Hoos et al. [36] already proposed an
effective system to compute a static parallel schedule for a given set of instances,
called aspeed. This system is based on an answer set programming (ASP) encoding
of the NP-hard problem of algorithm scheduling, and we only need to add one further
constraint in this encoding to shorten the schedule in the first processing unit to allow
for feature computation. We approximate the required time for feature computation
by the allowed upper bound.

Computationally, it is not a problem that finding the optimal algorithm schedule
is NP-hard, since this step is performed offline during training and not online in the
solving process. Furthermore, the empirical results of Hoos et al. [36] indicated that
the problem of optimizing parallel schedules gets easier with more processing units
such that it also scales well with an increasing number of processing units.

15.2.4 Empirical Study on Satisfiability Benchmarks

To study the performance of our selected parallel portfolios, we show results on
the SAT scenarios of the algorithm selection library (ASlib [17]). ASlib scenarios
define a cross validation split scheme, i.e., the instances are split into 10 equally sized

592 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

Scenario |I| |U | |A | # f # fg ∅t f tc Ref.

SAT11-INDU 300 47 18 115 10 135.3 5000 [82, 48]
SAT11-HAND 296 77 15 115 10 41.2 5000 [82, 48]
SAT11-RAND 600 108 9 115 10 22.0 5000 [82, 48]

SAT12-INDU 1167 209 31 115 10 80.9 1200 [83, 48]
SAT12-HAND 767 229 31 115 10 39.0 1200 [83, 48]
SAT12-RAND 1362 322 31 115 10 9.0 1200 [83, 48]

Table 15.1: The ASlib algorithm selection scenarios for SAT solving – information
on the number of instances |I|, number of unsolvable instances |U | (U ⊂ I), number
of algorithms |A |, number of features # f , number of feature groups # fg, the average
feature computation cost of the used default features ∅t f , and running time cutoff tc

subsets, and in each iteration, one of the splits is used as a test set and the remaining
ones are used as a training set.

In particular, we study the performance of parallel portfolio selection systems on
two different SAT scenarios. As in the SAT competitions, each scenario is divided
into application, crafted (a.k.a. handmade or hard combinatorial) and random tracks.

1. SAT11*. The SAT11 scenarios consider the SAT solvers, instances and measured
runtimes from the SAT Competition 2011. As features, we used the features
from the SATzilla [83] feature generator.

2. SAT12*. The SAT12 scenarios include all instances used in competitions prior to
the SAT Competition 2012; the solvers are from all tracks of the previous SAT
Competition 2011. The instance features are the same as in the SAT11 scenarios.
The data was used to train SATzilla [83] for the SAT Competition 2012.

To run these experiments, we extended the flexible algorithm selection framework
claspfolio 2 [37] (see also Chapter 7, Parallel Answer Set Programming) to parallel
portfolio selection.

Table 15.1 shows the details of the used scenarios. The main differences are that
the SAT11 scenarios have fewer instances and fewer algorithms with a larger running
time budget in comparison to the SAT12 scenarios. Comparing the different tracks,
the time to compute the instance features is largest for industrial instances, followed
by crafted instances and random instances. However, in our experiments we use only
the 54 “base” features that do not include any probing features and are much cheaper
to compute.

Table 15.2 shows the speedup of our parallel portfolio selection approaches
based on PAR10 scores4 depending on the number of processing units k. Since all
approaches have different sequential performance, we use the performance of the
sequential single best solver (SB, i.e., the solver with the best performance across
all training instances) as the baseline for the speedup computation; for example,

4 PAR10 [45] is the penalized average running time, counting each timeout as 10 times the running
time cutoff.

15 Selection and Configuration of Parallel Portfolios 593

k 1 2 4 8

SAT11-INDU (VBS: 21.4)

PNN 1.1 1.5 2.6 5.2
DNN 1.4 1.9 2.6 7.8
clustering 1.3 1.9 3.3 5.3
pairwise-voting 2.0 2.4 3.6 4.7
regression 1.3 2.0 3.6 7.8
SB 1.0 1.7 2.9 7.2

SAT11-HAND (VBS: 37.2)

PNN 2.3 2.8 8.4 10.8
DNN 3.2 5.2 9.6 23.9
clustering 1.6 2.9 4.2 7.0
pairwise-voting 3.4 4.8 8.6 10.9
regression 2.9 4.5 8.4 12.5
SB 1.0 1.2 1.9 6.2

SAT11-RAND (VBS: 65.7)

PNN 6.5 9.3 10.7 60.2
DNN 3.8 11.0 42.2 60.5
clustering 6.1 9.5 32.3 42.7
pairwise-voting 4.4 8.3 11.4 60.4
regression 5.9 7.8 8.3 60.3
SB 1.0 5.9 6.8 64.8

k 1 2 4 8

SAT12-INDU (VBS: 15.4)

PNN 1.6 2.3 3.9 5.7
DNN 2.0 2.4 3.4 5.0
clustering 1.3 2.1 2.8 4.6
pairwise-voting 2.4 3.0 3.8 5.4
regression 1.9 2.5 3.5 6.3
SB 1.0 1.5 2.5 4.8

SAT12-HAND (VBS: 34.7)

PNN 2.0 2.8 4.9 7.5
DNN 3.7 6.2 11.4 14.3
clustering 1.8 2.3 3.3 4.6
pairwise-voting 4.2 5.4 9.0 12.4
regression 2.9 4.2 7.0 9.8
SB 1.0 1.0 1.4 1.9

SAT12-RAND (VBS: 12.1)

PNN 1.2 2.1 4.8 7.3
DNN 0.8 1.5 4.7 8.6
clustering 1.3 1.7 2.7 4.9
pairwise-voting 1.1 1.7 2.8 6.4
regression 1.3 1.8 5.2 8.3
SB 1.0 1.5 4.0 6.8

Table 15.2: Speedup on PAR10 (wallclock) in comparison to SB with one processing
unit (k = 1). Entries shown in bold-face are statistically indistinguishable from the
best speedups obtained for the respective scenario and number of processing units
(according to a permutation test with 100 000 permutations and α = 0.05)

594 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

a speedup of 1.0 corresponds to the same performance as the SB. We applied a
paired statistical test (i.e., a permutation test) with significance level α = 0.05 to
mark statistically indistinguishable performance from the best-performing system for
each number of processing units. We note that algorithm selection (k = 1) already
performs better than the SB in all settings except DNN on SAT12-RAND.

Since we do not consider clause sharing in our experiments, the maximal possible
speedup is limited by the virtual best solver (VBS, i.e., running the best solver for
each instance, or running all available solvers in parallel). The performance of the
VBS depends on the complementarity of the component solvers. The set of all SAT
solvers in a SAT competition tends to be quite complementary [82], but since this
complementarity is not always the same across different instance sets and available
algorithms, the maximal speedup that can be achieved differs between the scenarios.
The extremes in our experiments were SAT11-RAND with a maximal speedup factor
of 65.7 using 8 cores and SAT12-RAND with “only” a speedup factor of 12.1 using 8
cores.

Overall, the speedups were quite large (sometimes superlinear, particularly for the
random and crafted instances) and there was no clear winner amongst the different
approaches. On the industrial and crafted scenarios, the pairwise-voting approaches
from SATzilla [83] and DNN performed consistently well. Surprisingly, in contrast,
on the random instances pairwise-voting had amongst the worst performances, but
simply selecting statically the n best-performing solvers (SB) from the training
instances performed well.5 We note that the performance with 8 processing units on
SAT11-RAND nearly saturates, since we select 8 out of the 9 available solvers.

15.2.5 Other Parallel Portfolio Selection Approaches

A relevant medal-winning system in the SAT Competition 2013 was the parallel
portfolio selector CSHCpar [63], which is based on the algorithm selection of cost-
sensitive hierarchical clustering (CSHC [62]). It always runs, independently and
in parallel, the parallel SAT solver Plingeling with 4 threads, the sequential SAT
solver CCASat, and three solvers that are selected on a per-instance basis. These
per-instance solvers are selected by three models that are trained on application,
crafted and random SAT instances, respectively. While CSHCpar is particularly
designed for the SAT Competition with its 8 available cores, it does not provide
an obvious way of adjusting the number of processing units and does not support
use cases without explicitly identified, distinct instance classes (such as industrial,
crafted and random).

The extension of 3S [49] to parallel portfolio selection, dubbed 3Spar [61], selects
a parallel portfolio using k-NN to find the k most similar instances in instance feature
space. Using integer linear programming (ILP), 3Spar constructs a static presolving
schedule offline and a per-instance parallel algorithm schedule online, based on

5 We note that the solvers in SAT*-RAND are randomized, but the scenarios in ASlib do not reflect
this; thus, these performance estimates are probably optimistic [19].

15 Selection and Configuration of Parallel Portfolios 595

training data of the k most similar instances. The ILP problem that needs to be
solved for every instance is NP-hard and its time complexity grows exponentially
with the number of parallel processing units and the number of available solvers.
Unlike our approach, during the feature computation phase, 3Spar runs in a purely
sequential manner. Since feature computation can require a considerable amount
of time (e.g., more than 100 seconds on industrial SAT instances), this can leave
important performance potential untapped.

EISAC [60] clusters the training instances in the feature space and provides a
method for selecting parallel portfolios for each cluster of instances by searching over
all
(|A |

k

)
combinations of |A | algorithms and k processing units. As this approach

quickly becomes infeasible for growing |A | and k, Yuri Malitsky, author of EISAC,
recommends to limit its use to at most 4 processing units (README file6).

The aspeed system [36] solves a similar scheduling problem to 3Spar, but gen-
erates a static algorithm schedule during an offline training phase, thus avoiding
overhead in the solving phase. Unlike 3Spar, aspeed does not support including
parallel solvers in the algorithm schedule, and the algorithm schedule is static and
not selected on a per-instance basis. For this reason, aspeed is not directly applicable
to per-instance selection of parallel portfolios; however, our approach uses it to
effectively compute parallel presolving schedules.

RSR-WG [84] combines a case-based-reasoning approach from CP-Hydra [67]
with greedy construction of parallel portfolio schedules via GASS [75] for CSPs.
Since the schedules are constructed on a per-instance basis, RSR-WG relies on
instance features. In the first step, a schedule is greedily constructed to maximize
the number of instances solved within a given cutoff time, and in the second step,
the components of the schedule are distributed over the available processing units.
In contrast to our approach, RSR-WG optimizes the number of timeouts and is
not directly applicable to arbitrary performance metrics. Since the schedules are
optimized online on a per-instance base, RSR-WG has to solve an NP-hard problem
for each instance, which is done heuristically. Finally, there are also different possible
extensions of algorithm schedules to per-instance schedules [49, 55], which aim to
select an algorithm schedule on an instance-by-instance basis.

15.3 Automatic Construction of Parallel Portfolios from

Parameterized Solvers

So far, we have assumed that we are given a set of solvers for a given problem, such as
SAT, and that for a problem instance to be solved, we select a subset of these solvers to
be run as a parallel portfolio. Now, we focus on a different approach for constructing
parallel portfolios, starting from the observation that solvers for computationally
challenging problems typically expose parameters, whose settings can have a very
substantial impact on performance. For SAT solvers, these parameters control key

6 https://sites.google.com/site/yurimalitsky/downloads

https://sites.google.com/site/yurimalitsky/downloads

596 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

aspects of the underlying search process (e.g., the variable selection mechanism,
clause deletion policy and restart frequency); by choosing their values specifically
for a given instance set, performance can often be increased by orders of magnitude
over that obtained using default parameter settings [40, 45, 43, 23, 47]. The task
of automatically determining parameter settings such that performance on a given
instance set is optimised is known as algorithm configuration [45].

Based on the success of algorithm selection and configuration systems, we con-
jecture that there is neither a single best algorithm nor a single best parameter
configuration for all possible instances. Therefore, by combining complementary
parameter configurations into a parallel portfolio solver more robust behaviour can
be achieved on a large variety of instances. In fact, many parallel SAT solvers al-
ready exploit this idea by using different parameter settings in different threads,
e.g., ManySAT [28], clasp [25] or Plingeling [16]. However, these portfolios are
hand-designed, which requires a tedious, error-prone and time-consuming manual
parameter optimization process.

Combining the ideas of parallel portfolios of different parameter settings and
automatic algorithm configuration leads to our approach of automatic construction
of parallel portfolios (ACPP). In its simplest form, the only required input is a single
parameterized sequential SAT solver. Using an automatic algorithm configuration
procedure, we determine a set of complementary parameter configurations and run
them in parallel to obtain a robust and efficient parallel portfolio solver.

15.3.1 Problem Statement

The traditional algorithm configuration task consists of determining a parameter
configuration with good performance on a set of instances from the configuration
space of a given algorithm. Formally, this gives rise to the following problem.

Definition 3 (Algorithm Configuration; AC). An instance of the algorithm config-
uration problem is a 6-tuple (A,Θ , I,D ,κ,m), where

• A is a parameterized target algorithm,
• Θ is the parameter configuration space of A,
• I is a set of instances of a problem,
• D is a probability distribution over I,
• κ ∈ R+ is a cutoff time, after which each run of A will be terminated if still

running, and
• m : Θ × I → R quantifies the performance of configuration θ ∈Θ on instance

π ∈ I w.r.t. a given cutoff time κ .

The objective is to determine a configuration θ ∗ ∈Θ that achieves near-optimal
performance across instances π ∈ I drawn from D . As in the previous section, we
consider a performance measure based on running time, which we aim to minimise;
therefore, we aim to determine θ ∗ ∈ argminθ∈Θ Eπ∼D [m(θ ,π)].

15 Selection and Configuration of Parallel Portfolios 597

Algorithm Configuration Scenario

Configuration
Space Θ

Algorithm
Configurator

Target
Algorithm A Instances I

Call A(θ)

on π ∈ I

Solves

Return performance m(A(θ),π)

Fig. 15.3: Algorithm configuration workflow

The workflow of algorithm configuration is visualized in Figure 15.3. An AC pro-
cedure iteratively determines algorithm runs to be performed by selecting appropriate
pairs of configurations 〈θ and instances π〉, executing the corresponding algorithm
runs, and observing their performance measurements. Finally, after a given configu-
ration budget—usually a given amount of computing time—has been exhausted, the
AC procedure returns its incumbent parameter configuration θ̂ at that time, i.e., its
best known configuration.

For several reasons, AC is a challenging problem. First, the only mode of inter-
action between the AC procedure and the target algorithm A is to run A on some
instances and observe its performance. Thus, A is treated as a black box, and no
specific knowledge about its inner workings can be directly exploited. As a result,
automatic algorithm configuration procedures are broadly applicable, but have to
work effectively with very limited information.

Second, the configuration space of many solvers is large and complex. These
spaces typically involve parameters of different types, such as categorical and contin-
uous parameters, and often exhibit structure in the form of conditional dependencies
between parameters or forbidden parameter configurations. For example, the config-
uration space of Lingeling [15] in the configurable SAT solver challenge [47] had
241 parameters giving rise to 10974 possible parameter configurations.

Third, particularly when solving NP-hard problems (such as SAT), even a single
evaluation of a target algorithm configuration on one problem instance can be costly
in terms of running time. Therefore, AC procedures typically can only evaluate
a small number of pairs 〈θ ,π〉 in a high-dimensional search space—often, only
hundreds (and sometimes, thousands) of evaluations are possible even within typical
configuration budgets of 12–48 hours of computing time.

Nevertheless, in recent years, algorithm configuration systems have been able
to substantially improve the performance of SAT solvers on many types of SAT in-
stances [47]. Well-known algorithm configuration systems include (i) ParamILS [46,
45], which performs iterated local search in the configuration space; (ii) GGA [5, 4],
which is based on a genetic algorithm; (iii) irace [59], which uses F-race [9] for
racing parameter configurations against each other; and (iv) SMAC [43, 42], which
makes use of an extension of Bayesian optimization [18] to handle potentially hetero-
geneous sets of problem instances. For some more details on the mechanisms used

598 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

in these configuration procedures, we refer the interested reader to the report on the
Configurable SAT Solver Challenge [47].

Our extension of algorithm configuration to parallel problem solving is called
parallel portfolio construction. The task consists of finding a parallel portfolio θ1:k of
k parameter configurations whose performance (e.g., wallclock time) is evaluated
by the first component of θ1:k that solves a given instance π . We formally define the
problem as follows.

Definition 4 (Parallel Portfolio Construction). An instance of the parallel portfo-
lio construction problem is a 7-tuple (A,Θ , I,D ,κ,m,k), where

• A is a parameterized target algorithm,
• Θ is the parameter configuration space of A,
• I is a set of problem instances,
• D is a probability distribution over I,
• κ ∈ R+ is a cutoff time, after which each run of A will be terminated if still

running,
• k is the number of available processing units, and
• m : Θ l× I → R quantifies the performance of a portfolio θ1:l ∈Θ l on instance

π ∈ I w.r.t. a given cutoff time κ for any given portfolio size l.

The objective is to construct a parallel portfolio θ ∗1:k ∈Θ k from the k-fold configura-
tion space Θ k that optimizes the expected performance across instances π ∈ I drawn
from D ; in the case of minimising a performance metric based on running time, as
considered here, we aim to find

θ ∗1:k ∈ argmin
θ1:k∈Θ k

Eπ∼D [m(θ1:k,π)] .

If the configurations in the portfolio θ ∗1:k are run independently, without any
interaction (e.g., in the form of clause sharing), and the overhead from running
configurations in parallel is negligible, this is identical to identifying

θ ∗1:k ∈ argmin
θ1:k∈Θ k

Eπ∼D

[
MINi∈{1...k}m(θi,π)

]
.

Compared to algorithm configuration, parallel portfolio construction involves
even larger configuration spaces. For a portfolio with k parameter configurations, an
algorithm configuration procedure has to search in a space induced by k times the
number of parameters of A, and therefore of total size |Θ |k.

15.3.2 Automatic Construction of Parallel Portfolios (ACPP)

In the following, we explain two methods to address automatic construction of parallel
portfolios (ACPP). Since this problem is an extension of the algorithm configuration

15 Selection and Configuration of Parallel Portfolios 599

Algorithm 15.1: Portfolio Configuration Procedure GLOBAL

Input :parametric algorithm with configuration space Θ ; desired number k of
component solvers; instance set I; performance metric m; configuration
procedure AC; number n of independent configurator runs; total configuration
time t

Output :parallel portfolio solver with portfolio θ̂1:k

1 for j := 1 . . .n :

2 obtain portfolio θ (j)
1:k by running AC for time t/n on configuration space Θ k on I

using m
3 choose θ̂1:k ∈ argmin

θ (j)
1:k | j∈{1...n}

∑π∈I m(θ (j)
1:k ,π) that achieved best performance on I

according to m
4 return θ̂1:k

problem, we consequently build upon an existing algorithm configuration procedure
and extend it for ACPP.

15.3.2.1 Multiplying Configuration Space: GLOBAL

Algorithm 15.1 shows the most straightforward method for using algorithm configu-
ration for ACPP. The GLOBAL approach consists of using the algorithm configuration
procedure AC on Θ k, the k-fold Cartesian product of the configuration space Θ .7

The remaining parts of the procedure follow the standard approach for algorithm
configuration: instead of running AC only once with configuration budget t, we
perform n runs of AC with a budget of t/n each (Lines 1 and 2). Each of these
AC runs ultimately produces one portfolio of size k. Performing these n runs in
parallel reduces the wallclock time required for the overall configuration process by
leveraging parallel computation. Of the n portfolios obtained from these independent
runs, we select the one that performed best on average on the given instance set I
(Lines 3 and 4).

In principle, this method can find the best parallel portfolio, but the configuration
space grows exponentially with portfolio size k to a size of |Θ |k , which can become
problematic even for small k.

15.3.2.2 Iterative Approach: PARHYDRA

To avoid the complexity of GLOBAL, the iterative, greedy ACPP procedure outlined
in Algorithm 15.2 can be used. Inspired by Hydra [79, 81], PARHYDRA determines
one parameter configuration in each iteration and adds it to the final portfolio. The

7 The product of two configuration spaces X and Y is defined as {x||y | x ∈ X ,y ∈ Y}, with x||y
denoting the concatenation (rather than nesting) of tuples.

600 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

Algorithm 15.2: Portfolio Configuration Procedure PARHYDRA

Input :parametric algorithm with configuration space Θ ; desired number k of
component solvers; instance set I; performance metric m; configurator AC;
number n of independent configurator runs; total configuration time t

Output :parallel portfolio solver with portfolio θ̂1:k

1 let θinit be the default configuration in Θ
2 for i := 1 . . .k :

3 for j := 1 . . .n :

4 obtain portfolio θ (j)
1:i := θ̂1:i−1||θ (j) by running AC on configuration space

{θ̂1:i−1}×{(θ) | θ ∈Θ} and initial incumbent θ̂1:i−1||θinit on I using m for
time t/(k ·n)

5 let θ̂1:i ∈ argmin
θ (j)

1:i | j∈{1...n}
∑π∈I m(θ (j)

1:i ,π) be the portfolio which achieved the best

performance on I according to m
6 let θinit ∈ argminθ (j)| j∈{1...n}∑π∈I m(θ̂1:i||θ (j),π) be the configuration that has the

largest marginal contribution to θ̂1:i

7 return θ̂1:k

configuration to be added is determined such that it best complements the configura-
tions that have previously been added to the portfolio.

In detail, our PARHYDRA approach runs for k iterations (Line 2) to construct a port-
folio with k components. In each iteration, we fix one further parameter configuration
of our final portfolio. As before, we perform n AC runs in each PARHYDRA-iteration
i (Lines 3–5). The configuration space consists of the Cartesian product of the (fixed)
portfolio θ̂1:i−1 constructed in the previous i−1 iterations with the full configuration
space Θ . Each AC run effectively determines a configuration to be added to the
portfolio such that the overall portfolio performance is optimised. As configuration
budget, each AC run is allocated t/(k ·n), where t is the overall budget.

An extension in comparison to Hydra [79, 81] is that the initial parameter con-
figuration θinit for the search is adapted in each iteration. For the first iteration, we
simply use the default parameter configuration (Line 1)—if no default parameter
configuration is known, we could simply use the mean parameter value from the
parameter domain ranges or randomly sample an initial configuration. At the end
of each iteration, we determine which returned parameter configuration θ (j) from
the last n AC runs (j ∈ {1, . . . ,n}) would improve the current portfolio θ̂1:i the most
(Line 6). This configuration is used to initialize the search in the next iteration. This
avoids discarding all of each iteration’s unselected configurations, keeping at least
one to guide the search in future iterations.8

8 Note that this strategy assumes multiple configuration runs per iteration (e.g., n independent runs
of a sequential algorithm configuration procedure) and would not be directly applicable if we used a
parallel algorithm configuration procedure [44] that only returned a single configuration. Whether
one can gain more from using parallel algorithm configuration or from having a good initializiation
strategy is an open question.

15 Selection and Configuration of Parallel Portfolios 601

Lingeling ala (application) clasp (hard combinatorial)

Solver Set #TOs PAR10 PAR1 #TOs PAR10 PAR1

DEFAULT-SP 72 2317 373 137 4180 481
CONFIGURED-SP 68 2204 368 140 4253 473

DEFAULT-MP(8)-CS 64 2073 345 96 2950 358
DEFAULT-MP(8)+CS 53∗ 1730∗ 299∗ 90∗ 2763∗ 333∗

GLOBAL-MP(8) 52∗ 1702∗ 298∗ 98 3011 365
PARHYDRA-MP(8) 55∗† 1788∗† 303∗† 96∗† 2945∗† 353∗†

Table 15.3: Running time statistics on the test set from application and hard combi-
natorial SAT instances achieved by single-processor (SP) and 8-processor (MP(8))
versions. DEFAULT-MP(8) was Plingeling in case of Lingeling and clasp -t 8
for clasp where we show results with (+CS) and without (-CS) clause sharing. The
performance of a solver is shown in boldface if it was not significantly different from
the best performance, and is marked with an asterisk (∗) if it was not significantly
worse than DEFAULT-MP(8)+CS (according to a permutation test with 100 000 per-
mutations and significance level α = 0.05). The best ACPP portfolio on the training
set is marked with a dagger (†)

15.3.2.3 Comparing GLOBAL and PARHYDRA

On the one hand, in comparison to GLOBAL, PARHYDRA has the advantage that
it only needs to search the original space Θ in each iteration (in contrast to the
exponentially larger |Θ |k). On the other hand, PARHYDRA has k times less time
per iteration, and the configuration tasks may get harder in each iteration because
fewer configurations will be complementary for growing portfolio size. It is also
not guaranteed that PARHYDRA will find the optimal portfolio because of its greedy
nature; for example, if our instance set I consists of two homogeneous subsets
I1∪ I2 = I, in principle GLOBAL can directly find a well-performing configuration
for each of the two subsets. In contrast, PARHYDRA will optimize the configuration
on the entire instance set I in the first iteration and can only focus on one of the
two subsets in the second iteration. Therefore, PARHYDRA may return suboptimal
solutions.

We note, however, that this suboptimality is bounded, since PARHYDRA’s portfolio
performance is a submodular set function (the effect of adding a further parameter
configuration to a smaller portfolio of an early iteration will be larger than adding
it to a larger portfolio of a later iteration). This property can be exploited to derive
bounds for the performance of Hydra-like approaches [73], such as PARHYDRA.

602 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

15.3.2.4 Empirical Study on SAT 2012 Challenge

We studied the effectiveness of our two proposed ACPP methods, i.e., GLOBAL
and PARHYDRA, on two award-winning solvers from the 2012 SAT Challenge: Lin-
geling [14] and clasp [25]. To this end, we compared the default sequential solver
settings (DEFAULT-SP), the configured sequential solvers (CONFIGURED-SP), the
default parallel counterparts of both solvers (i.e., Plingeling for Lingeling) without
(DEFAULT-MP(8)-CS) and with clause sharing (DEFAULT-MP(8)+CS) and finally,
with GLOBAL and PARHYDRA. As instance sets, we used the instances from the
application track and hard combinatorial track of the 2012 SAT Challenge for Lin-
geling and clasp, respectively. Both instance sets were split into a training set for
configuration and test set to obtain an unbiased performance estimate. The parallel
solvers used eight processing units (k = 8). We used SMAC [43, 42], a state-of-the-art
algorithm configuration procedure, to minimise penalized average running time, and
every configuration approach (i.e., CONFIGURED-SP, GLOBAL and PARHYDRA)
was given the same configuration budget t.

Table 15.3 summarizes our results. First of all, we note that algorithm configura-
tion on heterogeneous instance sets, such as the instance sets from SAT competitions
and challenges, is challenging, because various instances are solved best by poten-
tially very different configurations, which can pull the search process in different
directions. Therefore, the configured sequential version (CONFIGURED-SP) of Lin-
geling performed only slightly better than the default, and the performance of clasp
even slightly deteriorated due to overtuning [45], i.e., it showed a performance im-
provement on the training instances that did not generalize to the test instances. The
default parallel versions of Lingeling and clasp performed consistently better than
their sequential counterparts. Enabling clause sharing (CS) for both solvers improved
their performance even further.

Our automatically constructed parallel portfolio solvers performed well in com-
parison to the manually hand-crafted parallel solvers. To verify whether the observed
performance differences were statistically significant, we used a permutation test
to compare the best-performing approach against all others. This analysis revealed
that the portfolios manually built by human experts did not perform significantly
better than those automatically constructed using PARHYDRA. We emphasize that
our ACPP portfolios do not use any clause-sharing strategies, and the configuration
process was initialised with the parameter setting of DEFAULT-SP. Therefore, our
methods had no hint how to construct a parallel solver. Nevertheless, our automatic
approach produced parallel solvers performing as well as those designed manually
by experts within a few days of computing time on a small cluster.

15.3.2.5 ACPP with Multiple Solvers

Even though it is appealing to automatically generate a parallel solver from a sequen-
tial solver, our ACPP methods are not limited to a single solver as an input. Using
more than one solver often increases the opportunity for leveraging performance com-

15 Selection and Configuration of Parallel Portfolios 603

for each portfolio component

solver choice parameter

Lingeling
glucose clasp

. . .

Fig. 15.4: Conditional configuration space involving multiple solvers

plementarities, since SAT solvers often implement complementary strategies [82]. To
construct a parallel portfolio solver from a set of parameterized solvers as an input
using our ACPP methods, we only need to adapt our configuration space Θ . Follow-
ing the idea of Thornton et al. [76], we introduce a top-level parameter that indicates
which solver to use. The parameters of the individual solvers are then conditionally
dependent on this new selector parameter, leading to structured configuration spaces
as illustrated in Figure 15.4.

15.3.3 Automatic Construction of Parallel Portfolios from Parallel
Parameterized Solvers

The ACPP methods presented thus far always assumed that one or more sequential
SAT solvers are given. However, over the course of the last decade, many parallel SAT
solvers have been developed (e.g., [28, 72, 25, 8, 16]). On the one hand, these solvers
often expose performance-critical parameters (e.g., controlling clause sharing); on
the other hand, these solvers can also be used in our ACPP methods as components to
include in a parallel portfolio. In the following, we discuss both approaches to further
improve the performance of parallel SAT solvers by using algorithm configuration.

15.3.3.1 Configuration of Clause Sharing

Clause sharing is an important strategy to reduce redundant work in parallel SAT
solving and hence, to improve the performance of parallel SAT solvers. However,
clause sharing also has many open implementation options, e.g., communication
topology, how often to share learned clauses, which learned clauses to share, which
clauses to integrate in the clause database, etc. The best configuration of these

604 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

clasp variant #TOs PAR10 PAR1

No Clause Sharing 96 2945 353
Default Clause Sharing 90 2777 347
Configured Clause Sharing 88 2722 346

Table 15.4: Comparison of different clause sharing strategies on top of our con-
structed PARHYDRA-MP(8) portfolio with clasp on the test instances of the hard
combinatorial set

parameters can have a crucial impact on performance and depends on the nature of
the instances to be solved. Therefore, we can use algorithm configuration to optimise
the settings of the parameters that control clause sharing.

The results shown in Table 15.4 have been obtained using the same experimen-
tal setup as already described in Section 15.3.2.4 for clasp on hard-combinatorial
instances. As a starting point, we used the parallel clasp portfolio found by
PARHYDRA—without using any clause sharing. Adding the default clause shar-
ing policy on top of the PARHYDRA portfolio lead to solving 6 more instances,
which is equivalent to the performance of DEFAULT-MP(8)+CS (see Table 15.3).
However, clasp allows adjustment of the clause sharing distribution and integration
policies. Using automatic algorithm configuration to optimize these policies, the
clasp portfolio was able to solve two additional instances. We note that it is sub-
optimal to first configure a parallel portfolio without any communication between
component solvers, and then add clause sharing to the portfolio thus obtained. In
principle, configuring the portfolio and the clause sharing mechanism jointly should
result in better performance; therefore, the results presented here only give a lower
bound on what can be achieved.

15.3.3.2 Portfolio Construction Using Parallel Solvers

Another way of using existing parallel solvers is to allow them to be part of an
automated parallel portfolio solver. Similarly to ppfolio, we could run a parallel
solver, such as Plingeling, in some execution threads and some sequential solvers
in others. To do this, we can use the trick of adding a top-level parameter to decide
between different sequential and parallel solvers (see Section 15.3.2.5). If a parallel
solver gets selected l times by top-level parameters of each portfolio component,
we merge these components into one call of the parallel solver with l threads. By
using this approach, we can directly apply the GLOBAL methods to determine a
well-performing automatically constructed parallel portfolio including other parallel
SAT solvers.

Unfortunately, PARHYDRA cannot be directly applied to this setting because its
reliance on a greedy algorithm makes it suboptimal. For example, if the portfolio θ1:i
already includes a configuration of sequential solver As in iteration i, PARHYDRA will
never add the parallel counterpart Ap of As, because in each iteration, PARHYDRA can

15 Selection and Configuration of Parallel Portfolios 605

Algorithm 15.3: Portfolio Configuration Procedure PARHYDRAb

Input :set of parametric solvers A ∈A with configuration spaces ΘA; desired number
k of component solvers; number b of component solvers simultaneously
configured per iteration; instance set I; performance metric m; configurator
AC; number n of independent configurator runs; total configuration time t

Output :parallel portfolio solver with portfolio θ̂1:k

1 i := 1
2 let θinit be a portfolio with b times the default configuration in Θ of a default solver

A ∈A .
3 while i < k :

4 i′ := i+b−1
5 for j := 1..n :

6 obtain portfolio θ (j)
1:i′ := θ̂1:i−1||θ (j)

i:i′ by running AC for time t ·b/(k ·n) on
configuration space {θ̂1:i−1}× (∏b⋃

A∈A {(θ) | θ ∈ΘA}) and initial
incumbent θ̂1:i−1||θinit on I using m

7 let θ̂1:i′ ∈ argmin
θ (j)

1:i′ | j∈{1...n}
∑π∈I m(θ (j)

1:i′ , I) be the portfolio that achieved best

performance on I according to m
8 let θinit ∈ argmin

θ (j)
i:i′ | j∈{1...n}

∑π∈I m(θ̂1:i′ ||θ (j)
i:i′ ,π) be the portfolio that has the

largest marginal contribution to θ̂1:i′
9 i := i+b

10 return θ̂1:k

only pick Ap for one thread, which is outperformed by As.9 As a concrete example,
let us consider the highly parameterized sequential solver Lingeling and its non-
parameterized parallel counterpart, Plingeling. After a configuration of Lingeling
was added to the portfolio, PARHYDRA never added Plingeling with a single thread
in later iterations, because the optimized Lingeling outperformed Plingeling.

To permit a trade-off between the problems of GLOBAL (exponential increase
of the search space) and PARHYDRA (suboptimality in portfolio construction), we
propose an extension of PARHYDRA, called PARHYDRAb, which adds not just one,
but b configurations to the portfolio in each iteration. Algorithm 15.3 shows an outline
of the PARHYDRAb approach. The main idea is the same as that of PARHYDRA,
but we use an additional variable i′ to keep track of the parameter configurations
added in each iteration. For example, if we have already fixed a portfolio θ1:4 with
4 components and want to add two configurations (b = 2) per iteration, we are
in iteration i = 5, in which we will determine the fifth and sixth configuration
θi=5:6=5+2−1=i′ (Lines 4 and 6) to be added to θ1:i−1=4. Furthermore, the starting
point for the configuration process in the following iteration is now obtained by
adding a portfolio of size i′ − i+1 = b (Line 8) to θ1:4 from the previous iteration.
Other than that, PARHYDRAb is the same as PARHYDRA.

9 In principle, one could imagine grouping As and Ap to effectively treat them as the same solver,
allowing PARHYDRA to add Ap and join this with As into a 2-thread version of Ap. However, this
kind of grouping is not supported by PARHYDRA.

606 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

Solver #TOs PAR10 PAR1

Single-threaded solvers: DEFAULT-SP

glucose 2.1 55 1778 293

Parallel solvers: DEFAULT-MP(8)

Plingeling(ala)+CS 53 1730 299
pfolioUZK-MP8+CS 35 1168 223

ACPP solvers including a parallel solver

PARHYDRA-MP(8) 34 1143 225
PARHYDRA2-MP(8) 32 1082 218
PARHYDRA4-MP(8) 29 992 209

GLOBAL-MP(8) 35 1172 227

Table 15.5: Comparison of parallel solvers with 8 processors on the test set of
application. The performance of a solver is shown in boldface if its performance was
at least as good as that of any other solver, up to statistically insignificant differences
(according to a permutation test with 100 000 permutations at significance level
α = 0.05)

15.3.3.3 Empirical Study on 2012 SAT Challenge

Again, we demonstrate the effect of our ACPP methods using parallel SAT solvers on
the industrial instance set of the 2012 SAT Challenge. The winning parallel solver in
this challenge was pfolioUZK [78], a hand-designed portfolio consisting of sequential
and parallel portfolios. In particular, pfolioUZK uses satUZK, glucose, contrasat and
Plingeling with 4 threads, leaving one of the 8 available CPU cores unused; however,
the set of solvers considered during the design of pfolioUZK involved additional
solvers that do not appear in the final design. To fairly compare with this manually
constructed portfolio, we used the same underlying set of solvers as the starting point
for our ACPP methods:

• contrasat [26]: 15 parameters;
• glucose 2.0 [7]: 10 parameters for satelite preprocessing and 6 for glucose;
• Lingeling 587 [14]: 117 parameters;
• Plingeling 587 [14]: 0 parameters;
• march_hi 2009 [33]: 0 parameters;
• MPhaseSAT_M [21]: 0 parameters;
• satUZK [27]: 1 parameter;
• sparrow2011 [77]: 0 parameters10; and
• TNM [54]: 0 parameters.

We note that of these, Plingeling is the only parallel SAT solver and the only one to
make use of clause sharing.

10 Although sparrow2011 should be parameterized [77], the source code and binary provided with
pfolioUZK does not expose any parameters.

15 Selection and Configuration of Parallel Portfolios 607

Table 15.5 shows the performance of glucose 2.1 (which won the main application
SAT+UNSAT track of the 2012 SAT Challenge), Plingeling(ala) with clause sharing,
pfolioUZK (which won the parallel application SAT+UNSAT track) and our ACPP
methods. Surprisingly, on 8 cores, Plingeling performed only slightly better than
glucose. However, pfolioUZK solved 18 instances more than Plingeling within
the cutoff time used in the competition. By applying GLOBAL (i.e., PARHYDRAb
with b = k = 8), we obtained a parallel portfolio performing as well as pfolioUZK.
PARHYDRAb with b = 4 performed statistically better than pfolioUZK by solving 6
instances more.

Looking at the performance achieved by PARHYDRAb for different values of b
reveals that b is an important parameter of our method. One might be concerned
that PARHYDRA4-MP(8) performed as well as it did as a result of over-tuning on
b. We note, however, that PARHYDRA4-MP(8) also performed best on the training
instances used for configuration, which are different from the test instance results
shown in Table 15.5.

15.4 Conclusions and Future Work

In this chapter, we presented two generic approaches for automatically generating
parallel portfolio solvers for computationally challenging problems from one or more
sequential solvers. While our focus was on SAT, the techniques we discussed are in
no way specific to this particularly well-studied constraint programming problem,
and can be expected to give rise to similarly strong performance when applied to a
broad range of CP problems, and, indeed, to many other NP-hard problems. We note
that there are three fundamental assumptions that need to be satisfied in order for
these generic parallelisation methods to scale well with the number of processing
units k.

1. Performance complementarity: within a given set A of solvers that are available
(as in algorithm selection) or within the parameter space of a single solver (as
in algorithm configuration), there is sufficient performance complementarity. In
algorithm selection with deterministic algorithms, algorithm selectors cannot
perform better than the virtual best solver (VBS) of the given algorithm portfolio.
Therefore, a parallel portfolio selector can scale at most to a number of processing
units that equals the number of candidate solvers in A . Unfortunately, this upper
bound will usually not be attained, because in most sets A , some solvers will
have little or no contribution to the virtual best solver [82].
In parallel portfolio configuration, the given parameter space Θ is often infinite;
still, in our experiments, little or no performance improvement was obtained
beyond a modest number of portfolio components (e.g., using PARHYDRA, the
performance of our automatically constructed parallel portfolio based on Lin-
geling improved only for the first 4 portfolio components – for details, see [58]).
This may indicate that our current approaches are too weak to find better and
larger portfolios (since the complexity of the search problems increases with the

608 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

size of the portfolio), or that such portfolios simply do not exist for the instance
sets we considered, and that the smaller portfolios we found basically exhaust
the complementarity of the parameter space. Which of these two explanations
holds is an interesting subject for future research.

2. Heterogeneity of instances: the given instance set I is sufficiently heterogeneous
given a set of solvers or parameter configurations. If the instance set is perfectly
homogeneous, a single solver or configuration is dominant on all instances,
and a parallel portfolio (without communication between component solvers)
cannot perform better. In contrast, if each instance in I requires a different solver
or configuration to be solved most effectively, our generic parallel portfolio
construction methods can in principle scale to a number of processing units
equal to the size of the instance set. Therefore, in practice, the performance
potential of these approaches depends on characteristics of the set or distribution
of problem instances of interest in a given application context—the more diverse
that set, the larger the potential for large speedups due to parallelisation. How to
assess the heterogeneity of an instance set in an effective yet computationally
cheap way is an open problem.

3. Minimal interference between runs: when sequential solvers are run concurrently,
there is only minimal impact on performance due to detrimental interference. If
each solver runs on a separate system, this assumption can easily be guaranteed,
and because neither of our approaches requires much communication between
portfolio component solvers, this scenario is quite feasible.
However, since modern machines are equipped with multi-core CPUs, it is
generally desirable to run more than one solver on a single machine with the
component solvers sharing resources, such as RAM and CPU cache. Since solver
performance can substantially depend on the available CPU cache [1], running
several solvers on multiple CPU cores with shared cache can lead to significant
slowdown due to cache contention.
The extent to which this happens depends on the characteristics of the execution
environment and on the solvers in question. For example, in the experiments
reported in Section 15.3, we observed that Lingeling suffered more from this
effect on the larger industrial instances than clasp did on the smaller crafted
instances. Furthermore, we have observed that Lingeling’s performance is less
affected on newer CPUs with larger amounts of cache. Therefore, we believe
that in the future, with the advent of CPUs with even more cache memory, this
issue might become less critical.

There are many prominent avenues for future work on generic parallelisation tech-
niques, and we see much promise in the combination of the two approaches discussed
in this chapter. For example, one could run PARHYDRAb to generate many comple-
mentary configurations of one or more parameterised solvers and then use parallel
portfolio selection on those configurations to create a per-instance parallel portfo-
lio selector for a given number of processing units. Another interesting extension
is the automatic configuration of parallel portfolio selectors, analogously to Aut-
oFolio [57]. Similarly, we see promise in the configuration of parallel algorithm
schedules, similarly to Cedalion [73]. It might also be interesting to use an approach

15 Selection and Configuration of Parallel Portfolios 609

such as aspeed [36] to post-optimize an automatically generated parallel portfolio
into a parallel algorithm schedule.

We see substantial promise in exploring instance features specifically designed for
parallel portfolio selection, e.g., probing features of parallel solvers possibly related
to the communication between solver components. Finally, it would be interesting to
improve the construction of portfolios that include randomized parallel component
solvers with clause sharing by estimating the potential risks and gains of adding such
component solvers based on their running time distributions.

Acknowledgement

M. Lindauer was supported by the DFG (German Research Foundation) under Emmy
Noether grant HU 1900/2-1 and project SCHA 550/8-3, H. Hoos and K. Leyton-
Brown by NSERC Discovery Grants, K. Leyton-Brown also by an NSERC E.W.R.
Steacie Fellowship, and F. Hutter also by the DFG under Emmy Noether grant HU
1900/2-1.

References

[1] Aigner, M., Biere, A., Kirsch, C., Niemetz, A., Preiner, M.: Analysis of
portfolio-style parallel SAT solving on current multi-core architectures. In:
Berre, D.L. (ed.) Proceedings of the Fourth Pragmatics of SAT workshop. EPiC
Series in Computing, vol. 29, pp. 28–40. EasyChair (2014)

[2] Alfonso, E., Manthey, N.: New CNF features and formula classification. In:
Berre, D.L. (ed.) Proceedings of the Fifth Pragmatics of SAT workshop. EPiC
Series in Computing, vol. 27, pp. 57–71. EasyChair (2014)

[3] Alfonso, E., Manthey, N.: Riss 4.27 BlackBox. In: Belov, A., Diepold, D.,
Heule, M., Järvisalo, M. (eds.) Proceedings of SAT Competition 2014. Depart-
ment of Computer Science Series of Publications B, vol. B-2014-2, pp. 68–69.
University of Helsinki, Helsinki, Finland (2014)

[4] Ansótegui, C., Malitsky, Y., Sellmann, M.: MaxSAT by improved instance-
specific algorithm configuration. In: Brodley, C., Stone, P. (eds.) Proceedings
of the Twenty-eighth National Conference on Artificial Intelligence (AAAI’14).
pp. 2594–2600. AAAI Press (2014)

[5] Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm
for the automatic configuration of algorithms. In: Gent, I. (ed.) Proceedings of
the Fifteenth International Conference on Principles and Practice of Constraint
Programming (CP’09). Lecture Notes in Computer Science, vol. 5732, pp.
142–157. Springer-Verlag (2009)

[6] Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.M., Piette, C.: Penelope, a
parallel clause-freezer solver. In: Balint et al. [10], pp. 43–44

610 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

[7] Audemard, G., Simon, L.: Glucose 2.1. in the SAT challenge 2012. In: Balint
et al. [10], pp. 23–23

[8] Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers.
In: Sinz, C., Egly, U. (eds.) Proceedings of the Seventeenth International Con-
ference on Theory and Applications of Satisfiability Testing (SAT’14). Lecture
Notes in Computer Science, vol. 8561, pp. 197–205. Springer (2014)

[9] Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race
algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T.,
Aguilera, M., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.)
International Workshop on Hybrid Metaheuristics. Lecture Notes in Computer
Science, vol. 4771, pp. 108–122. Springer (2007)

[10] Balint, A., Belov, A., Diepold, D., Gerber, S., Järvisalo, M., Sinz, C. (eds.):
Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions.
University of Helsinki (2012)

[11] Balint, A., Belov, A., Heule, M., Järvisalo, M. (eds.): Proceedings of SAT Com-
petition 2013: Solver and Benchmark Descriptions, Department of Computer
Science Series of Publications B, vol. B-2013-1. University of Helsinki (2013)

[12] Belov, A., Diepold, D., Heule, M., Järvisalo, M.: The application and the hard
combinatorial benchmarks in SAT competition 2014. In: Belov, A., Diepold,
D., Heule, M., Järvisalo, M. (eds.) Proceedings of SAT Competition 2014.
Department of Computer Science Series of Publications B, vol. B-2014-2, pp.
80–83. University of Helsinki, Helsinki, Finland (2014)

[13] Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010.
Tech. Rep. 10/1, Institute for Formal Models and Verification. Johannes Kepler
University (2010)

[14] Biere, A.: Lingeling and friends at the SAT competition 2011. Technical Report
FMV 11/1, Institute for Formal Models and Verification, Johannes Kepler
University (2011)

[15] Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT competition
2013. In: Balint et al. [11], pp. 51–52

[16] Biere, A.: Lingeling and friends entering the SAT race 2015. Tech. rep., Institute
for Formal Models and Verification, Johannes Kepler University (2015)

[17] Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Frechétte, A.,
Hoos, H., Hutter, F., Leyton-Brown, K., Tierney, K., Vanschoren, J.: ASlib: A
benchmark library for algorithm selection. Artificial Intelligence 237, 41–58
(2016)

[18] Brochu, E., Cora, V., de Freitas, N.: A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hi-
erarchical reinforcement learning. Computing Research Repository (CoRR)
abs/1012.2599 (2010)

[19] Cameron, C., Hoos, H., Leyton-Brown, K.: Bias in algorithm portfolio perfor-
mance evaluation. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence (IJCAI’16). pp. 712–
719. IJCAI/AAAI Press (2016)

15 Selection and Configuration of Parallel Portfolios 611

[20] Cheeseman, P., Kanefsky, B., Taylor, W.: Where the really hard problems are.
In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th International Joint
Conference on Artificial Intelligence. pp. 331–340. Morgan Kaufmann (1991)

[21] Chen, J.: Phase selection heuristics for satisfiability solvers. CoRR
abs/1106.1372 (v1) (2011)

[22] Cimatti, A., Sebastiani, R. (eds.): Proceedings of the Fifteenth International
Conference on Theory and Applications of Satisfiability Testing (SAT’12),
Lecture Notes in Computer Science, vol. 7317. Springer-Verlag (2012)

[23] Falkner, S., Lindauer, M., Hutter, F.: SpySMAC: Automated configuration and
performance analysis of SAT solvers. In: Heule, M., Weaver, S. (eds.) Proceed-
ings of the Eighteenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’15). pp. 1–8. Lecture Notes in Computer Science,
Springer-Verlag (2015)

[24] Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving:
From theory to practice. Artificial Intelligence 187-188, 52–89 (2012)

[25] Gebser, M., Kaufmann, B., Schaub, T.: Multi-threaded ASP solving with clasp.
TPLP 12(4-5), 525–545 (2012)

[26] van Gelder, A.: Contrasat - a contrarian SAT solver. Journal on Satisfiability,
Boolean Modeling and Computation 8(1/2), 117–122 (2012)

[27] Grinten, A., Wotzlaw, A., Speckenmeyer, E., Porschen, S.: satUZK: Solver
description. In: Balint et al. [10], pp. 54–55

[28] Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation 6, 245–262 (2009)

[29] Hamadi, Y., Schoenauer, M. (eds.): Proceedings of the Sixth International
Conference on Learning and Intelligent Optimization (LION’12), Lecture Notes
in Computer Science, vol. 7219. Springer-Verlag (2012)

[30] Harman, M., Jones, B.: Search-based software engineering. Information and
Software Technology 43(14), 833–839 (2001)

[31] Helmert, M., Röger, G., Karpas, E.: Fast Downward Stone Soup: A baseline
for building planner portfolios. In: ICAPS-2011 Workshop on Planning and
Learning (PAL). pp. 28–35 (2011)

[32] Herwig, P.: Using graphs to get a better insight into satisfiability problems.
Master’s thesis, Delft University of Technology, Department of Electrical Engi-
neering, Mathematics and Computer Science (2006)

[33] Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March_eq: Imple-
menting additional reasoning into an efficient look-ahead SAT solver. In: Hoos,
H., Mitchell, D. (eds.) Proceedings of the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04). Lecture Notes in
Computer Science, vol. 3542, pp. 345–359. Springer-Verlag (2004)

[34] Holte, R., Howe, A. (eds.): Proceedings of the Twenty-second National Confer-
ence on Artificial Intelligence (AAAI’07). AAAI Press (2007)

[35] Hoos, H.: Programming by optimization. Communications of the ACM 55(2),
70–80 (2012)

612 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

[36] Hoos, H., Kaminski, R., Lindauer, M., Schaub, T.: aspeed: Solver scheduling
via answer set programming. Theory and Practice of Logic Programming 15,
117–142 (2015)

[37] Hoos, H., Lindauer, M., Schaub, T.: claspfolio 2: Advances in algorithm selec-
tion for answer set programming. Theory and Practice of Logic Programming
14, 569–585 (2014)

[38] Hsu, E., Muise, C., Beck, C., McIlraith, S.: Probabilistically estimating back-
bones and variable bias: Experimental overview. In: Stuckey, P. (ed.) Proceed-
ings of the Fourteenth International Conference on Principles and Practice of
Constraint Programming (CP’08). Lecture Notes in Computer Science, vol.
5202, pp. 613–617. Springer (2008)

[39] Huberman, B., Lukose, R., Hogg, T.: An economic approach to hard computa-
tional problems. Science 275, 51–54 (1997)

[40] Hutter, F., Babić, D., Hoos, H., Hu, A.: Boosting verification by automatic tun-
ing of decision procedures. In: O’Conner, L. (ed.) Formal Methods in Computer
Aided Design (FMCAD’07). pp. 27–34. IEEE Computer Society Press (2007)

[41] Hutter, F., Hoos, H., Leyton-Brown, K.: Automated configuration of mixed
integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) Pro-
ceedings of the Seventh International Conference on Integration of AI and
OR Techniques in Constraint Programming (CPAIOR’10). Lecture Notes in
Computer Science, vol. 6140, pp. 186–202. Springer-Verlag (2010)

[42] Hutter, F., Hoos, H., Leyton-Brown, K.: Bayesian optimization with censored
response data. In: NIPS workshop on Bayesian Optimization, Sequential Ex-
perimental Design, and Bandits (BayesOpt’11) (2011)

[43] Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C. (ed.) Proceedings of the Fifth
International Conference on Learning and Intelligent Optimization (LION’11).
Lecture Notes in Computer Science, vol. 6683, pp. 507–523. Springer-Verlag
(2011)

[44] Hutter, F., Hoos, H., Leyton-Brown, K.: Parallel algorithm configuration. In:
Hamadi and Schoenauer [29], pp. 55–70

[45] Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research
36, 267–306 (2009)

[46] Hutter, F., Hoos, H., Stützle, T.: Automatic algorithm configuration based on
local search. In: Holte and Howe [34], pp. 1152–1157

[47] Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.:
The configurable SAT solver challenge (CSSC). Artificial Intelligence Journal
(AIJ) 243, 1–25 (2017)

[48] Hutter, F., Xu, L., Hoos, H., Leyton-Brown, K.: Algorithm runtime prediction:
Methods and evaluation. Artificial Intelligence 206, 79–111 (2014)

[49] Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) Proceedings of the Seventeenth
International Conference on Principles and Practice of Constraint Program-

15 Selection and Configuration of Parallel Portfolios 613

ming (CP’11). Lecture Notes in Computer Science, vol. 6876, pp. 454–469.
Springer-Verlag (2011)

[50] Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific
algorithm configuration. In: Coelho, H., Studer, R., Wooldridge, M. (eds.)
Proceedings of the Nineteenth European Conference on Artificial Intelligence
(ECAI’10). pp. 751–756. IOS Press (2010)

[51] Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey.
AI Magazine pp. 48–60 (2014)

[52] Kotthoff, L.: Ranking algorithms by performance. In: Pardalos, P., Resende,
M. (eds.) Proceedings of the Eighth International Conference on Learning
and Intelligent Optimization (LION’14). Lecture Notes in Computer Science,
Springer-Verlag (2014)

[53] Kotthoff, L., Gent, I., Miguel, I.: An evaluation of machine learning in algorithm
selection for search problems. AI Communications 25(3), 257–270 (2012)

[54] Li, C.M., Wei, W., Li, Y.: Exploiting historical relationships of clauses and
variables in local search for satisfiability. In: Cimatti and Sebastiani [22], pp.
479–480

[55] Lindauer, M., Bergdoll, D., Hutter, F.: An empirical study of per-instance algo-
rithm scheduling. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) Proceedings
of the Tenth International Conference on Learning and Intelligent Optimization
(LION’16). pp. 253–259. Lecture Notes in Computer Science, Springer-Verlag
(2016)

[56] Lindauer, M., Hoos, H., Hutter, F.: From sequential algorithm selection to
parallel portfolio selection. In: Dhaenens, C., Jourdan, L., Marmion, M. (eds.)
Proceedings of the Ninth International Conference on Learning and Intelli-
gent Optimization (LION’15). pp. 1–16. Lecture Notes in Computer Science,
Springer-Verlag (2015)

[57] Lindauer, M., Hoos, H., Hutter, F., Schaub, T.: Autofolio: An automatically
configured algorithm selector. Journal of Artificial Intelligence Research 53,
745–778 (Aug 2015)

[58] Lindauer, M., Hoos, H., Leyton-Brown, K., Schaub, T.: Automatic construction
of parallel portfolios via algorithm configuration. Artificial Intelligence 244,
272–290 (2017)

[59] López-Ibáñez, M., Dubois-Lacoste, J., Caceres, L.P., Birattari, M., Stützle,
T.: The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives 3, 43–58 (2016)

[60] Malitsky, Y., Mehta, D., O’Sullivan, B.: Evolving instance specific algorithm
configuration. In: Helmert, M., Röger, G. (eds.) Proceedings of the Sixth Annual
Symposium on Combinatorial Search (SOCS). AAAI Press (2013)

[61] Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Parallel SAT solver
selection and scheduling. In: Milano, M. (ed.) Proceedings of the Eighteenth
International Conference on Principles and Practice of Constraint Programming
(CP’12). Lecture Notes in Computer Science, vol. 7514, pp. 512–526. Springer-
Verlag (2012)

614 Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown

[62] Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm port-
folios based on cost-sensitive hierarchical clustering. In: Rossi, F. (ed.) Pro-
ceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI’13). pp. 608–614 (2013)

[63] Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Parallel lingeling,
CCASat, and CSCH-based portfolio. In: Balint et al. [11], pp. 26–27

[64] Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set
programming. Theory and Practice of Logic Programming 14, 841–868 (2014)

[65] Nudelman, E., Leyton-Brown, K., Andrew, G., Gomes, C., McFadden, J., Sel-
man, B., Shoham, Y.: Satzilla 0.9 (2003), solver description, International SAT
Competition

[66] Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., Shoham, Y.: Under-
standing random SAT: beyond the clauses-to-variables ratio. In: Wallace, M.
(ed.) Proceedings of the international conference on Principles and Practice of
Constraint Programming. Lecture Notes in Computer Science, vol. 3258, pp.
438–452. Springer (2004)

[67] O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Bridge, D.,
Brown, K., O’Sullivan, B., Sorensen, H. (eds.) Proceedings of the Nineteenth
Irish Conference on Artificial Intelligence and Cognitive Science (AICS’08)
(2008)

[68] Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified
boolean formulas. Constraints 14(1), 80–116 (2009)

[69] Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

[70] Roussel, O.: Description of ppfolio (2011), available at http://www.cril.
univ-artois.fr/~roussel/ppfolio/solver1.pdf

[71] Schneider, M., Hoos, H.: Quantifying homogeneity of instance sets for algo-
rithm configuration. In: Hamadi and Schoenauer [29], pp. 190–204

[72] Schubert, T., Lewis, M., Becker, B.: Pamiraxt: Parallel SAT solving with threads
and message passing. JSAT 6(4), 203–222 (2009)

[73] Seipp, J., Sievers, S., Helmert, M., Hutter, F.: Automatic configuration of
sequential planning portfolios. In: Bonet, B., Koenig, S. (eds.) Proceedings of
the Twenty-ninth National Conference on Artificial Intelligence (AAAI’15).
AAAI Press (2015)

[74] Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic
problems. In: Kullmann, O. (ed.) Proceedings of the Twelfth International
Conference on Theory and Applications of Satisfiability Testing (SAT’09).
Lecture Notes in Computer Science, vol. 5584, pp. 244–257. Springer (2009)

[75] Streeter, M., Golovin, D., Smith, S.: Combining multiple heuristics online. In:
Holte and Howe [34], pp. 1197–1203

[76] Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In:
I. Dhillon, Koren, Y., Ghani, R., Senator, T., Bradley, P., Parekh, R., He, J.,
Grossman, R., Uthurusamy, R. (eds.) The 19th ACM SIGKDD International

http://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf
http://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf

15 Selection and Configuration of Parallel Portfolios 615

Conference on Knowledge Discovery and Data Mining (KDD’13). pp. 847–855.
ACM Press (2013)

[77] Tompkins, D., Balint, A., Hoos, H.: Captain Jack – new variable selection
heuristics in local search for SAT. In: Sakallah, K., Simon, L. (eds.) Proceedings
of the Fourteenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’11). Lecture Notes in Computer Science, vol. 6695,
pp. 302–316. Springer (2011)

[78] Wotzlaw, A., van der Grinten, A., Speckenmeyer, E., Porschen, S.: pfolioUZK:
Solver description. In: Balint et al. [10], p. 45

[79] Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algo-
rithms for portfolio-based selection. In: Fox, M., Poole, D. (eds.) Proceedings
of the Twenty-fourth National Conference on Artificial Intelligence (AAAI’10).
pp. 210–216. AAAI Press (2010)

[80] Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research 32,
565–606 (2008)

[81] Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Hydra-MIP: Automated algo-
rithm configuration and selection for mixed integer programming. In: RCRA
workshop on Experimental Evaluation of Algorithms for Solving Problems
with Combinatorial Explosion at the International Joint Conference on Artificial
Intelligence (IJCAI) (2011)

[82] Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver
contributions to portfolio-based algorithm selectors. In: Cimatti and Sebastiani
[22], pp. 228–241

[83] Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: SATzilla2012: im-
proved algorithm selection based on cost-sensitive classification models. In:
Balint et al. [10], pp. 57–58

[84] Yun, X., Epstein, S.: Learning algorithm portfolios for parallel execution. In:
Hamadi and Schoenauer [29], pp. 323–338

Chapter 16

An Application of Parallel Satisfiability Solving

to the Verification of Complex Embedded

Systems

Orlando Ferrante, Alberto Ferrari, Christos Sofronis, Leonardo Mangeruca, and
Luca Benvenuti

Abstract Model checking has reached a maturity level that allows its techniques to
be applied to the verification of industrial systems. Several algorithms and methods
have been proposed to increase its effectiveness to tackle models of increasing
complexity. In this chapter we present an application of Parallel Satisfiability Solving
to the verification of embedded control systems. The adopted toolchain is part of the
Formal Specs Verifier framework for the formal verification of Simulink/Stateflow
models. The experiments we performed show that the use of a parallel satisfiability
solver allows for an average speedup of an order of magnitude or more on industrial
strength models.

16.1 Introduction

Model checking has reached a high maturity level that allows its techniques to be
applied to the verification of complex embedded systems. Several techniques and
tools have been proposed to tackle industrial-sized models. In [1] the authors describe
the verification of a Flight Control System modeled in MATLAB Simulink using
the NuSMV model checker. In [2] the verification of embedded avionics software
is performed using three different model checkers (namely NuSMV [3], SAL [4]
and PROVER [5]). In addition, model checkers have been successfully applied to
the verification of software using both static and dynamic analysis [6, 7, 8]. In recent
decades several techniques have been developed in order to tackle the state explosion

Orlando Ferrante, Alberto Ferrari, Christos Sofronis, Leonardo Mangeruca
Advanced Laboratory on Embedded Systems - United Technologies Research Center
e-mail: name.surname@utrc.utc.com
·
Luca Benvenuti
“Sapienza” University of Rome
e-mail: luca.benvenuti@uniroma1.it

617© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_16

name.surname@utrc.utc.com
luca.benvenuti@uniroma1.it
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_16&domain=pdf

618 Ferrante, Ferrari, Sofronis, Mangeruca, and Benvenuti

problem, which limits the application of formal methods. The use of binary decision
diagrams allowed the application of model checking to industrial case studies [9].
Bounded model checking [10] introduced the use of SAT solvers in the context of
symbolic model checking and provided the basis for its extension to the unbounded
case. During the last decade increased research and industrial efforts have been
spent on the area of Satisfiability Modulo Theories (SMT) [11] trying to improve
the efficiency of formal verification tools by exploiting the integration of SAT-based
reasoning methods with specific theories; promising results have been obtained in
particular in the field of software model checking. However, the application of such
theories to complex industrial embedded systems which usually expose nonlinear
dynamics and complex numeric control algorithms, is still an open research area.
Parallel algorithms have been shown to be capable of providing a significant speedup
in solving hard combinatorial problems by leveraging multi-core computers and
clusters. In Chapter 1, Parallel Satisfiability an overview of the evolution of such
algorithms is provided. In this chapter we present some experimental results on
the application of parallel solvers to the verification of embedded control systems
modeled as Simulink models, we present a toolchain obtained by composing the
Formal Specs Verifier toolset and a modified version of the NuSMV2 model checker
that integrates the ManySAT parallel SAT solver [12]. The Formal Specs Verifier
is a framework for the formal verification of Simulink/Stateflow models. The ex-
perimental results have been collected using a rich set of industrial use cases and
they show the existence of a relevant speedup of the verification process when the
bounded model checking technique is used for checking invariants. The designed
toolchain allows for the exploitation of recent advances in SAT solver techniques
with the strength of the Formal Specs Verifier environment and the Bounded Model
Checking verification. In this chapter we present the application of the toolchain to a
cruise control system and an additional set of logic models of industrial size. The
main contributions of the chapter are (1) the description of the integration of the
ManySAT parallel SAT solver (2) the description of experimental results that show
the speedup for the verification of invariant properties of industrial sized embedded
systems compared to the use of classical SAT solvers when using the bounded-model
checking technique and (3) the integration of the tool with the Formal Specs Verifier
framework for the verification of Simulink/Stateflow models and its application to a
cruise control case study.

16.2 FormalSpecs Verifier Verification Framework

The experiments described in this chapter were performed using the FormalSpecs
Verifier (FSV) framework for the verification of discrete systems for the MATLAB
Simulink environment [13]. The framework supports several operative modes. In this
work we focus on the capability of verifying properties described as invariants via
temporal logic formulae. The FSV tool can be seen as a translator from a Simulink
model and specification to the NuSMV tool’s native language. The transformation

16 An Application of Parallel SAT Solving to Verification of complex ES 619

process produces a semantically equivalent NuSMV representation of the input
model taking into account the non-determinism that may be introduced during the
transformation step. In Figure 16.1 the flow is described in detail. As a first step
the Simulink textual file is parsed. Then the parsed Simulink model is processed,
generating a semantically equivalent NuSMV model that is used to generate the
concrete NuSMV artifact with a model-to-text step.

Fig. 16.1: FormalSpecs Verifier transformation flow

The technology used to perform the model transformation step is an internally
developed Java embodiment of the OMG Query/View/Transformation [14] language
called JQVT. The JQVT library aims at providing an industry-level operational
implementation of the QVT language. It supports the definition of QVT mappings
and the definition of mapping inheritance, disjunction and merging. JQVT allows the
capture of the mapping relation that links a source-model element to a target-model
element, and it supports the resolve and resolveIn operators to retrieve the set of
mapping source model elements from a given mapped target model element. JQVT
does not support the entire QVT specification. However, it has been extensively
used as translation infrastructure of different tools for the translation of industrial-
sized models [15]. The Formal Specs Verifier has been used in both industrial and
research projects [16, 17, 18], and several additional components are available for
the verification of systems [19], synthesis of failure scenarios [20], automatic test
generation [21, 22] and requirements validation [16].

16.3 Integration of the ManySAT Solver

In this section we discuss how we integrated the ManySAT parallel SAT solver into
the toolchain used to perform the experiments. The overall picture of the integration
is provided in Figure 16.2.

620 Ferrante, Ferrari, Sofronis, Mangeruca, and Benvenuti

Fig. 16.2: Parallel NuSMV layered structure

The integration was performed modifying the NuSMV 2.5.2 open-source model
checker, which is a state-of-the art tool for the formal verification of discrete systems.
NuSMV2 provides both BDD (binary decision diagrams) and SAT-based model
checking, providing a flexible API for the integration of several SAT solvers such as
Minisat [23] and zChaff [24]. To integrate the ManySAT solver, a Facade component
(the SAT Solver Controller) was developed to act as an intermediate layer between
the model checker problem formulation component and the SAT solver. The role of
the controller is to properly instantiate, initialize and coordinate several SAT solvers
and to provide a glue layer between the SAT solver component public API and the
NuSMV2 SAT solver interface. Currently we successfully integrated the MiniSat
v2.2.0 and the ManySAT 2.0. The latter is the last iteration of the parallel SAT solver
that won SAT-Race 2008 and SAT Competion 2009. The availability of multicore
platforms allows the efficient exploitation of the parallel nature of the solver, easily
obtaining an average speedup of an order of magnitude for several industrial-level
models as described in Section 16.6.

16.4 Cruise Control Use Case

To show the performance of the tool using a concrete application we describe a cruise
control system modeled using MATLAB Simulink and translated with the Formal
Specs Verifier tool. Cruise control is the term used to describe a control system that
regulates the speed of an automobile. The basic operation of a cruise controller is
to sense the speed of the vehicle, compare this speed to a desired reference, and
then accelerate or decelerate the car as required. A simple control algorithm for
controlling the speed is to use a “proportional plus integral” feedback based on the
error between the current and the desired speed. The model of the truck is based on a
force balance for the body as depicted in Figure 16.3. For a detailed description of
the example please refer to [25]. Let v be the speed of the truck, m the total mass, FT
the traction force generated by the engine on the wheels, and Fd the force generated
by additional elements (such as gravity and aerodynamic drag). The mathematical
model of the system is given by the equation

16 An Application of Parallel SAT Solving to Verification of complex ES 621

Fig. 16.3: Cruise control model

m
dv
dt

= FT −Fd (16.1)

where m = 3450 kg and FT is the force of the engine. The force Fd is composed of
the gravitational force (Fg), the rolling friction (Fr) and the aerodynamic drag (Fa) as
follows

Fg = mgsin(a) (16.2)

with a the road slope and g the gravitational constant. The rolling friction is

Fr = mgCrsign(v) (16.3)

with Cr the friction coefficient. Finally

Fa =
1
2

ρCxA(v+ω)2 (16.4)

where ρ is the air density, Cx is the aerodynamic drag coefficient, A is the area of the
truck and ω models the wind gusts. In our model the values of the parameters of the
equations are ρ = 1.228 kg/m3, Cx = 0.55 and A = 2.4 m2.

The control algorithm regulates the traction force FT by acting on the throttle
aperture on the basis of the error e = vREF − v between the desired speed vREF and
the current speed v of the car. The algorithm consists of a proportional integral control
as follows:

α(kT) = kPe(kT)+ kI

k

∑
h=0

e(hT) (16.5)

and

FT (kT) = FMAX (kT)∗α(kT) (16.6)

622 Ferrante, Ferrari, Sofronis, Mangeruca, and Benvenuti

where α(kT) is the throttle aperture, FMAX (kT) is the maximum available tractive
force, T = 40 ms is the ECU sampling rate and kP = 2, kI = 2 are the proportional
and integral gain, respectively.

16.5 Simulink Model and Specification

The cruise control system was modeled in MATLAB Simulink using the following
workflow:

• First a non-linear infinite state system model was developed. This model rep-
resents the mathematical model of the cruise control for both the plant and the
control law with the intent of validating the design of the controller using a
higher-fidelity model.

• After validating the correct behavior of the controlled system, a discrete-time and
discrete-value version of the model was developed. This model can be translated
into a finite-state machine and is amenable to analysis using model checking
techniques.

• Finally, a set of invariant properties was defined to enable the verification of the
discrete model using the latest advances in parallel SAT-solving to search for
potential violation of the properties.

• If a counterexample is found to the discrete-time version it is also used to evaluate
the behavior of the original higher-fidelity model in order to evaluate wether the
counterexample is an artifact of the discretization (spurious counterexample) or
an effective redesign of the controller is required.

In the following sub-section a detailed description of the model is provided.

16.5.1 Continuous-Time Non-linear Model

The original model captures the controller and the plant using a continuous time,
non-linear formulation of the physical laws that governs the dynamical system. The
model is decomposed into three subsystems, namely the ECU, the Engine and the
Vehicle. Each component will be described in the following subsections.

16.5.1.1 ECU Subsystem

The ECU subsystem has as input the cruise reference speed, the actual speed and the
initial throttle aperture. Its output is the effective throttle aperture which is controlled
in order to obtain an actual vehicle speed that is equal to the reference speed. The
controller is based on a Proportional-Integration control scheme (PI) that sets the

16 An Application of Parallel SAT Solving to Verification of complex ES 623

Fig. 16.4: Continuous-time non-linear model

throttle value based on an error signal computed as the difference between the
reference speed and the actual speed. (Figure 16.5)

Fig. 16.5: ECU component

16.5.1.2 Engine Subsystem

The engine subsystem models the effective engine dynamic as represented in Fig-
ure 16.6

The system computes the effective tractive force taking into account the maximum
tractive force and the throttle aperture. Note that the maximum tractive force depends
on the speed of the car, which in turn, depends on the throttle aperture through the
vehicle dynamics captured in the vehicle component model. In addition a first non-
linear computation is performed in this part of the model since the maximum tractive
force is obtained by multiplying the current throttle aperture and the maximum
tractive force which depends on the current vehicle speed. Note also that all these
variables are physical values (real values) approximated as double-precision floating-
point variables in the Simulink environment.

624 Ferrante, Ferrari, Sofronis, Mangeruca, and Benvenuti

Fig. 16.6: Engine Component

16.5.1.3 Vehicle Dynamics Subsystem

The vehicle sub-system model computes how the tractive force and the road affect
the vehicle speed. In particular a model of the road slope and the rolling force is used
to compute how the road slope (input of the subsystem) affects the vehicle speed
(output of the subsystem) given the tractive force. Note that in order to compute
this value a non-linear multiplication is required by the physical model, which add
another element of non-linearity.

Fig. 16.7: Vehicle Component

Also for this component all the physical variables and related constants (road
slope, tractive force, speed etc.) are real values approximated as a double-precision
floating-point. The overall model has been instrumental in providing a correct design
of the PI coefficients in order to have a controlled system that behaves as desired. As

16 An Application of Parallel SAT Solving to Verification of complex ES 625

an example of the expected behavior of the system, consider the case in which the
cruise reference speed is set to a constant (130 km/h) and a road slope changes from
-2% to 6%. The graphical representation of this is captured in Figure 16.8.

Fig. 16.8: Road and Speed profiles

16.5.2 Discrete-Time Discrete-Value Model

The original cruise control model is a continuous-time, infinite-state non-linear
system. This system cannot in general be validated using finite-state model checking
techniques. In order to enable the application of standard finite-state model checking
techniques and leverage recent advances in SAT solving, the model was modified by
applying several transformations. In this section we briefly introduce the final model
obtained by applying the different discretization transformations. It is important
to stress that each transformation has been performed to obtain a model that is
conservative w.r.t. counterexample generation. As a first step a discrete-time version
of the model was produced in which the continuous-time dynamics of the model
(e.g. continuous-time integrators) were replaced by the equivalent discrete-time
components. This discretization step needs to be performed taking into account the

626 Ferrante, Ferrari, Sofronis, Mangeruca, and Benvenuti

ECU sampling rate of 40 ms. A second transformation was performed to introduce
fixed point representation of all the real variables, substituting when necessary the
floating-point representation. During the second discretization step the structure of
the model was rearranged to simplify some blocks and propagate the constant values
whenever possible. The new simplified model is represented in Figures 16.9, 16.10
and 16.11. This model has an additional input (wind gusts) that was added to take
into account the effect of wind on the vehicle.

Fig. 16.9: Discrete model

The ECU block has the same input as the original block (reference speed, speed
and throttle initial values) and implements a fixed-point, discrete-time PI controller.

Fig. 16.10: ECU

Executing the discretization process, the plant was abstracted by collapsing the
dynamics of the vehicle into one sub-system only. Also for the discretized plant
model the real variables of the system were represented using fixed-point notation
and adopting a bit vector representation to represent the fixed point variables. The

16 An Application of Parallel SAT Solving to Verification of complex ES 627

dynamic of the plant has been modeled using discrete-time blocks. Note that the orig-
inal non-linearity is present, with the difference that all the non-linear computations
are represented as bit vector operations. This discrete model due to its finite-state
nature can be translated into a finite state machine representation and validated using
model checkers to check its correctness with respect to the high-level requirements.

Fig. 16.11: Discrete Vehicle and Dynamics

16.5.2.1 Verification Subsystems

The specification of the properties to be checked was captured using the Formal Specs
Verifier properties toolbox following the contract-based methodology that allows for
the specification of requirements in terms of contracts C = (A;G) where A is the
assumption and G the guarantee (or promise). Intuitively a contract is a requirement
of the form A implies G where the guarantee represents the set of possible system
behaviors under the hypothesis that the environment behaves as described in the
assumption (i.e., A represents the set of acceptable environments). The contract-
based theory and its application to the verification of complex distributed embedded
systems has been investigated by the authors in the context of several EU projects
such as SPEEDS, SPRINT, MBAT and DANSE projects [26].

In this section we briefly describe one contract to be verified against the system.
It can be informally stated as follows:

• Assumptions: the road slope assumes values in the set {−8,−4,0,4,8} m/s, the
wind gusts are in the set {−15,0,15} m/s and the derivative of the wind gusts is
bounded to be at most 15 m/s2

628 Ferrante, Ferrari, Sofronis, Mangeruca, and Benvenuti

• Guarantee: under any admissible wind gusts, and for every admissible road
slope, the closed-loop system will always be capable of maintaining the effective
speed within the bounds [95%,105%] of the reference speed value.

The verification of this property using model checking techniques consists of evalu-
ating whether the invariant defined by the property φ = A→ G can be violated by
searching for a sequence of values of the road slope and wind gusts that does not
allow the cruise control to maintain the speed within the given range. An example of
the encoding of the guarantee is provided in Figure 16.12.

Fig. 16.12: Guarantee model

16.6 Experimental Results

In this section we describe the performance results obtained by executing a set of
experiments with the designed toolchain using both the ManySAT and MiniSAT
solvers. The host machines used for the execution of the experiments are an Intel
iCore 7@1.87 GHz with 8 GB RAM platform hosting a Linux 64-bit Ubuntu 10.04
operating system (platform A) and an Intel(R) Xeon(R) CPU X5550 @ 2.67 GHz
with 50 GB RAM platform hosting an Ubuntu Linux 10.04 64-bit operating system
(platform B).

16.6.1 Cruise Control Model

For the cruise control we developed several experiments in order to exercise the
verification tools in different ways. The model was designed to falsify the property
previously described after 33 execution steps. The translated NuSMV model has
size 88 bits, which that is small compared to the size of the other models used in
another set of experiments (thousands of bits). However, the model represents a good

16 An Application of Parallel SAT Solving to Verification of complex ES 629

Table 16.1: First experiment results

Steps ManySAT (s) MiniSAT (s) AV. SP. Plat

8 6.53±0.65 34.47±7.01 5.28 A

15 40.02±5.92 856.41±275.07 21.19 A

20 121.86±119.72 6220.72±2127.13 51.05 B

25 516.89±118.37 49149.79±219.51 95.09 B

33 5446.32±456.08 N/A N/A B

benchmark for automotive applications models, which usually contains 32-bit signals,
complex arithmetic operators and multiple feedback control loops. In addition, the
model is hard to verify and the satisfiability problem produced by the encoding of the
invariant checking as bounded model checking problem has not been found SAT or
UNSAT by the MiniSAT solver after several days of computation, hence it represents
an interesting benchmark for the quantitative evaluation of ManySAT speedup.

16.6.1.1 Bounded Model Checking Verification with Incremental Bounds

As a first experiment we executed a bounded model checking verification of the
property using different bound lengths. The verification was performed using the
check_invar_bmc_inc command with the forward strategy. The average
execution time of each set of runs is summarized in Table 16.1. For each length
bound a set of executions were performed using both MiniSAT and ManySAT and
the average value and standard deviation of execution times have been computed.
The collected data give us the opportunity to propose some comments. The speedup
factor (computed as MiniSat execution time/ManySAT execution time) is always
greater than one and it increases with the dimension of the bound length. This is in
line with the ManySAT solver’s expected performance. In particular we notice that
the parallel solver fully exploits the available CPUs. A noticeable drawback of the
use of the ManySAT solver is the increasing consumption of memory that, however,
did not explode exponentially, making the approach usable for industrial applications.

16.6.1.2 Bounded Model Checking Verification with Fixed Bound Value

As a second experiment we performed a bounded model checking verification of
the property to try to show its violation. The ManySAT solvers was able to prove
the satisfiability of the formula produced by the BMC (hence producing a valid
counterexample) in an average time of 5446 seconds (approximately 1 hour and
30 minutes). The same model was processed using the MiniSAT software but a
valid counter example has not been found before the 11000 minutes timeout. In

630 Ferrante, Ferrari, Sofronis, Mangeruca, and Benvenuti

Figure 16.13 we represent the execution time for both ManySAT and MiniSAT and
we extrapolate an approximate super-linear trend function between the number K of
BMC step performed and the average execution time. We can notice how the speedup
gain is approximately of the form aebK with b" 0.16.

Fig. 16.13: ManySAT and MiniSAT performance graph

16.6.2 Additional Experiments

The cruise control model is an open-source model developed for the evaluation of
the ManySAT’s performance on automotive domain applications and we collected
promising results in terms of verification speedup. In order to better evaluate the tool
performance for a larger set of applications we performed additional experiments
using another set of models based on synthetic logic systems. Compared to cruise
control model these contains mainly logical operators and the reduced number of
arithmetic blocks allows for the efficient verification of models with sizes in the
thousands of bit in few hours (in contrast with the cruise control model, which is
two order of magnitudes smaller in size but requires two orders of magnitude more
time to verify the property). In our experiments, two models were analyzed both
with size in the thousands of bits and we performed a BMC incremental verification
of an invariant property falsified in fixed number of steps using both MiniSAT and
ManySAT. The value of the speedup factors are summarized in Table 16.2 (all
experiments were executed on platform B). For this class of models we noticed
significant variability in the speedup factor. This is in line with the reported behavior
of the ManySAT engine w.r.t. the reproducibility of the performance. As a final
remark let us observe that the average speedup value grows by a factor of 3 (from
7 to 20) with the increase of the size of the model. This is in line with what we
experienced in the first set of experiments.

16 An Application of Parallel SAT Solving to Verification of complex ES 631

Table 16.2: Logic-based tests execution results

Model ManySAT (s) MiniSAT (s) AV. SP.

I 440±75 3094±925 7

II 639±208 14074±12629 20

16.7 Conclusions

In this chapter we described a toolchain that allows for the analysis of the speedup of
the ManySAT 2.0 parallel SAT solver. The experimental results report a promising
speedup for both control-based models, such as the cruise control model described in
this paper, and logic-based models.

References

[1] Miller, S., Anderson, E., Wagner, L., Whalen, M., Heimdahl, M.: Formal
verification of flight critical software. In: Proceedings of the AIAA Guidance,
Navigation and Control Conference and Exhibit. (2005) 15–18

[2] Miller, S., Whalen, M., Cofer, D.: Software model checking takes off. Commu-
nications of the ACM 53(2) (2010) 58–64

[3] Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic
model checking. (2002) 359–364

[4] http://sal.csl.sri.com/
[5] http://www.prover.com/
[6] Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with

SLAM, Communications of the ACM, 54(7), pp 68–76, 2011.
[7] Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:

Technology transfer of formal methods inside Microsoft. pp 1–20, IFM, 2004.
[8] Godefroid, P.: Compositional dynamic test generation (extended abstract),

POPL 2007.
[9] Burch, J.R., Clarke, E.M., Mc Millan, K.L., Dill, D.L., Hwang, L.J.: Symbolic

model checking: 10ˆ20 states and beyond, LICS, 1990.
[10] Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. Tools and Algorithms for the Construction and Analysis of Systems
(1999) 193–207

[11] Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
Handbook of Satisfiability 4 (2009)

[12] Hamadi, Y., Sais, L.: ManySAT: a parallel SAT solver. Journal on Satisfiability,
Boolean Modeling and Computation (JSAT) (2009)

[13] http://www.mathworks.com/products/simulink/

http://sal.csl.sri.com/
http://www.prover.com/
http://www.mathworks.com/products/simulink/

632 Ferrante, Ferrari, Sofronis, Mangeruca, and Benvenuti

[14] http://www.omg.org/spec/QVT/index.htm
[15] Ferrari, A., Mangeruca, L., Ferrante, O., Mignogna, A.: DesyreML: a SysML

profile for heterogeneous embedded systems. In: Embedded Real Time Soft-
ware and Systems (ERTS). (2012)

[16] Mangeruca, L., Ferrante, O., Ferrari, A.: Formalization and completeness of
evolving requirements using contracts. In: 8th IEEE International Symposium
on Industrial Embedded Systems (SIES). (2013)

[17] Carloni, M., Ferrante, O., Ferrari, A., Massaroli, G., Orazzo, A., Petrone, I.,
Velardi, L.: Contract-based analysis for verification of communication-based
train control (CBTC) system. In: SAFECOMP. (2014)

[18] Carloni, M., Ferrante, O., Ferrari, A., Massaroli, G., Orazzo, A., Petrone, I.,
Velardi, L.: Contract modeling and verification with formal specs verifier tool-
suite - application to Ansaldo STS rapid transit metro system use case. In:
SAFECOMP. (2015)

[19] Ferrante, O., Benvenuti, L., Mangeruca, L., Sofronis, C., Ferrari, A.: Parallel
NuSMV: a NuSMV extension for the verification of complex embedded systems.
Lecture Notes in Computer Science: Computer Safety, Reliability, and Security
7613 (2012) 409–416

[20] Marazza, M., Ferrante, O., Ferrari, A.: Automatic generation of failure scenarios
for sytems-on-chip. In: Real Time Software and Systems (ERTS). (2014)

[21] Ferrante, O., Ferrari, A., Marazza, M.: An algorithm for the incremental gener-
ation of high coverage test suites. In: 19th IEEE European Test Symposium.
(2014)

[22] Ferrante, O., Ferrari, A., Marazza, M.: Formal Specs Verifier ATG: a tool for
model-based generation of high coverage test suites. In: ERTS. (2016)

[23] Een, N., Sörensson, N.: An extensible SAT-solver [ver 1.2] (2003)
[24] Herbstritt, M.: zChaff: Modifications and extensions. (2001)
[25] Murray, R.M., et al.: Feedback Systems An Introduction for Scientists and

Engineers. Princeton University Press (2009)
[26] http://www.danse-ip.eu/home/

http://www.omg.org/spec/QVT/index.htm
http://www.danse-ip.eu/home/

Chapter 17

Parallel Constraint-Based Local Search: An

Application to Designing Resilient Long-Reach

Passive Optical Networks

Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

Abstract Many network design problems arising in areas as diverse as VLSI circuit
design, QoS routing, traffic engineering, and computational sustainability require
clients to be connected to a facility under path-length constraints and budget limits.
These problems can be seen as instances of the Rooted Distance-Constrained Mini-
mum Spanning-Tree problem (RDCMST), which is NP-hard. An inherent feature of
these networks is that they are vulnerable to a failure. Therefore, it is often important
to ensure that all clients are connected to two or more facilities via edge-disjoint
paths. We call this problem the Edge-disjoint RDCMST (ERDCMST). Previous work
on RDCMST has focused on dedicated algorithms and, therefore, it is difficult to use
these algorithms to tackle ERDCMST. We present a constraint-based parallel local
search algorithm for solving ERDCMST. Traditional ways of extending a sequential
algorithm to run in parallel perform either portfolio-based search in parallel or paral-
lel neighbourhood search. Instead, we exploit the semantics of the constraints of the
problem to perform multiple moves in parallel by ensuring that they are mutually
independent. The ideas presented in this chapter are general and can be adapted
to other problems as well. The effectiveness of our approach is demonstrated by
experimenting with a set of problem instances taken from real-world passive optical
network deployments in Ireland, Italy, and the UK. Our results show that performing

Alejandro Arbelaez
Insight Centre for Data Analytics, University College Cork, Ireland
e-mail: alejandro.arbelaez@insight-centre.org

Deepak Mehta
Insight Centre for Data Analytics, University College Cork, Ireland
e-mail: deepak.mehta@insight-centre.org

Barry O’Sullivan
Insight Centre for Data Analytics, University College Cork, Ireland
e-mail: barry.osullivan@insight-centre.org

Luis Quesada
Insight Centre for Data Analytics, University College Cork, Ireland
e-mail: luis.quesada@insight-centre.org

633© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_17

alejandro.arbelaez@insight-centre.org
deepak.mehta@insight-centre.org
barry.osullivan@insight-centre.org
luis.quesada@insight-centre.org
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_17&domain=pdf

634 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

moves in parallel can significantly reduce the elapsed time and improve the quality
of the solutions of our local search approach.

17.1 Introduction

Many network design problems arising in areas as diverse as VLSI circuit design [20],
QoS routing [32], traffic engineering [27], and computational sustainability [11]
require clients to be connected to a facility under path-length constraints and budget
limits. Here the length of the path can be interpreted as distance, delay, signal loss,
etc. For example, in a multicast communication [12] setting where a single node is
broadcasting to a set of clients, it is important to restrict the path delays from the
server to each client. In Long-Reach Passive Optical Networks (LR-PON) [23], a
metro node (MN) is connected to a set of exchange sites via optical fibres; the length
of the fibre between an exchange site (ES) and its metro node is bounded by the signal
loss. The goal is to minimise the cost resulting from the total length of fibres [21]. In
VLSI circuit design, path delay is a function of the maximum interconnection path
length while power consumption is a function of the total interconnection length [19].
In package shipment services, guarantee constraints are expressed as restrictions
on total travel time from an origin to a destination, and the organisation wants to
minimise the transportation costs [24].

Many of these network design problems are instances of the Rooted Distance-
Constrained Minimum Spanning-Tree Problem (RDCMST) [19], which is NP-hard.
The objective is to find a minimum cost spanning tree with the additional constraint
that the length of the path from a specified root node (or facility) to any other node
(client) must not exceed a given threshold. Many networks are complex systems that
are vulnerable to a failure. A major fault occurrence would be a complete failure of
the facility, which would affect all the clients connected to the facility. Therefore
it is important to provide network resilience. We restrict our attention to networks
where all clients are required to be connected to two facilities via two edge-disjoint
paths so that whenever a single facility fails or a single link fails all clients are still
connected to at least one facility. We define this problem as the Edge-disjoint Rooted
Distance-Constrained Minimum Spanning-Tree Problem (ERDCMST). Given a set
of facilities and a set of clients such that each client is associated with two facilities,
the problem is to find a set of distance-constrained spanning trees rooted at each
facility with minimum total cost. Additionally, each client is connected to its two
facilities via two edge-disjoint paths. This would effectively mean that each pair of
distance-bounded spanning trees would be mutually disjoint in terms of edges.

Previous work on RDCMST [16, 25] has focused on dedicated algorithms, which
are hard to extend with side constraints, and therefore it is difficult to use these algo-
rithms to tackle ERDCMST. We present a mixed integer programming formulation
of ERDCMST and a constraint-based local search algorithm, which can easily be
extended to apply widely. We present two efficient local move operators and an
incremental way of maintaining the objective function, which is often a key element

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 635

for the efficiency of a local search algorithm. Our local search algorithm is able to
solve both RDCMST and ERDCMST. These move operators were proposed and
evaluated with respect to edge-disjointness, capacity, and distance constraints in [6]
and [5].

We extend our sequential algorithm and propose a parallel version of our
constraint-based local search algorithm. The traditional way of extending a sequential
algorithm to run in parallel is to perform either portfolio-based search in parallel or
parallel neighbourhood search. Instead, we exploit the semantics of the constraints
of the problem to perform multiple moves in parallel by ensuring that they do not
conflict with each other. The effectiveness of our approach is demonstrated by ex-
perimenting with a set of problem instances taken from real-world passive optical
network deployments in Ireland, the UK, and Italy. Our results show that performing
moves in parallel can significantly reduce the time required to find a target solution
and improves the anytime behaviour of our local search algorithm.

17.2 Formal Specification and Complexity

Let G be a directed graph with set of nodes N and set of edges L . We assume
that G is a complete graph without self-loops, so |L | = |N | × (|N | − 1) in our
case. Each edge has a cost and a distance value associated with it. Let M be a set of
facilities and let ui ∈U be a set of (users or) clients. We define N as the disjoint
union of M and U . Let Ui ⊆U be the set of clients that are associated with facility
mi ∈M . We use Ti to denote the tree network associated with facility i. We also use
Ni =Ui∪{mi} to denote the set of nodes in the tree Ti associated with the facility mi,
and a set of edges Li ⊆ N2

i .
Ti is a subgraph of G that contains a directed path from facility mi to all of its

clients and contains no cycles. The length of a path (or path-length) between two
nodes is the sum of the distances of the edges connecting the two nodes, and the cost
of Ti is the sum of the cost of its edges. In this chapter, without loss of generality, we
assume that the cost is symmetrical, i.e., the cost of an edge 〈i, j〉 is equal to the cost
of the edge 〈 j, i〉. As mentioned before, we also assume that the graph is complete
since non-existing edges in the original graph can be represented by edges with a
very large distance with respect to the distance threshold. Additionally, we remove
edges from nodes to themselves.

Definition 17.1 Rooted Minimum Spanning Tree Problem (RMST). Given a graph
G = (Ni, Li) with a facility mi ∈M and a real value c jk denoting the cost of each
edge (j,k) ∈ Li, RMST is to find a spanning tree of minimum cost in G .

Definition 17.2 Rooted Distance-Constrained Minimum Spanning-Tree Problem
(RDCMST). Given a graph G = (Ni, Li) with a facility mi ∈M , the set of clients Ui,
two real values c jk and d jk denoting the cost and the distance of each edge (j,k)∈ Li,
and a real value λ , RDCMST is to find a spanning tree Ti with minimum cost in G

636 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

such that the length of the path from the facility mi to any client u j ∈Ui is not greater
than λ .

Definition 17.3 Edge-Disjoint Rooted Distance-Constrained Minimum Spanning-
Trees Problem (ERDCMST). Given a graph G = (N , L) with a set of facilities M ,
a set of clients U , a set of edges L , two real values c jk, and d jk denoting the cost
and distance of each edge (j,k) ∈L , an association of clients with two facilities
π : U →M 2, and a real value λ , ERDCMST is to find a spanning tree Ti of G for
each facility mi such that

1. The length of the unique path for all mi to any of its clients is not greater than λ .
2. For each client uk, the two paths connecting uk to mi and m j, where π(uk) =
〈mi,m j〉, are edge disjoint.

3. The sum of the costs of the edges in all the spanning trees is minimum.

Figure 17.1 shows an example with two facilities F1 and F2 and N = {a, b, c,
d, e, f}, black (respectively grey) edges denote the set of edges used to reach F1
(respectively F2), the value of λ is 16 and the total cost of the solution is 46 for this
illustrative example. Figure 17.1a shows a valid solution satisfying both distance and
edge-disjointness constraints. The distance from the facilities to any node is less than
or equal to λ = 16. The paths connecting the set of nodes to the facilities are edge
disjoint. Figure 17.1b shows a cheaper solution replacing a grey edge 〈F2, b〉 with
〈a, b〉, but this solution is not edge disjoint since a failure in 〈a, b〉 would disconnect
node b from both facilities.

d

f

e

a
b

c

F2F1

5 7
8

3

4

2

11

6

3
24

(a) Satisfying both distance and edge
disjointness

d

f

e

a
b

c

F2F1

5 7
8

3

2

11

6

3
24

3

(b) Satisfying distance constraint but vi-
olating edge disjointness

Fig. 17.1: Example of an instance of the ERDCMST problem. λ=16

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 637

Complexity. ERDCMST involves finding a rooted distance-bounded spanning tree
for every facility whose total cost is minimum. This problem is known to be NP-hard
[19].

17.3 A Mathematical Model for ERDCMST

We present a mixed integer programming formulation of ERDCMST.

Variables

• Let xi
jk be a variable over {0,1} that denotes whether an edge from node j ∈ Ni

to k ∈ Ni of facility i ∈M is selected (1) or not (0).
• Let f i

j be a variable that denotes the upper bound on the length of the path from
the facility i to its client j.

We note that the partial order enforced by f helps to rule out cycles in the solution.

Constraints

Each facility is directly connected to at least one of its clients:

∀mi∈M : ∑
u j∈Ui

xi
i j ≥ 1.

The total number of edges in any tree Ti is equal to |Ui|:

∀mi∈M : ∑
u j∈Ni

∑
uk∈Ui,u j �=uk

xi
jk = |Ui|.

The graph cannot have an edge between a node and itself and the distance from the
root node (or facility) to itself is 0:

∀mi∈M ∀u j∈Ni : xi
j j = 0.

∀mi∈M : f i
i = 0.

The length of the path from any client to its facility is bounded by λ :

∀mi∈M ∀u j∈Ni : f i
j ≤ λ .

If there is an edge from u j ∈Ui to uk ∈Ui then the length of the path from mi to uk is
equal to the sum of the length of the path from mi to u j plus the distance between
u j and uk. We use the big-M method to model this implication as a linear constraint.

638 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

The value of the constant C has to be greater than λ plus the maximum distance
between any pair of edges in order to be consistent with the implication:

∀mi∈M ∀{u j ,uk}∈Ni : C (1− xi
jk)+ f i

k ≥ f i
j +d jk.

If mi and mi′ are the facilities of the client j, and if there exists any path in the
subnetwork associated with facility i that includes the edge 〈u j,uk〉, then facility i′
cannot use the same edge. Therefore, we enforce the following constraint:

∀{mi,mi′ }∈M ∀{u j ,uk}∈Ui∩Ui′ : xi
jk + xi′

jk ≤ 1.

Objective

The objective is to minimise the total cost:

MIN ∑
mi∈M

∑
{u j ,uk}∈Ni

c jk · xi
jk.

17.4 Iterated Constraint-Based Local Search

For large networks containing more than 10,000 clients and 100 facilities we cannot
expect to solve the previously presented problems using systematic search. In this
section we present an iterated constraint-based local search approach for solving our
problem.

The Iterated Constraint-Based Local Search (ICBLS) [14, 29] framework depicted
in Algorithm 17.1 comprises two phases. First, in a local search phase, the algorithm
improves the current solution, little by little, by performing small changes. The
algorithm employs a move operator in order to move from one solution to another in
the hope of improving the value of the objective function. Second, in the perturbation
phase, the algorithm perturbs the incumbent solution (s∗) in order to escape from
difficult regions of the search (e.g., a local minimum). The acceptance criterion
decides whether to update s∗ or not. The algorithm accepts s′∗ with probability p,
and s∗ otherwise. Furthermore, we limit the space of candidate solutions to valid
solutions satisfying the constraints of the problem.

Algorithm 17.1: Iterated Constraint-Based Local Search (move-op, s)
1 s∗ := ConstraintBasedLocalSearch(move-op, s)
2 repeat

3 s′ := Perturbation(s∗)
4 s′∗ := ConstraintBasedLocalSearch(move-op, s′)
5 s∗ := AcceptanceCriterion(s∗, s′∗)
6 until a given stopping criterion is met

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 639

11

4

108 9

5

2

6 7

3

1

(a) Initial state of the tree

11

4

108 9

5

2

6 7

3

1
5

(b) Node operator

11

4

108 9

5

2

6 7

3

1

1110

5

(c) Subtree operator

11

4

108 9

5

2

6 7

3

1

(d) Pham et al.’s edge operator

Fig. 17.2: Move Operators. Grey arrows indicate edges removed from the current
solution

Our algorithm requires two parameters: s the initial solution where all clients are
able to reach their facilities while satisfying all constraints (i.e., the upper bound in the
length and disjointness), and the move operation (move-op) which is a function. We
switch from the local search phase to the perturbation phase when a local minimum
is observed. In the perturbation phase we perform a given number of random moves.
In this chapter, unless otherwise stated, we use the trivial solution of connecting
all clients directly to their respective facilities as the initial solution. The stopping
criterion is either a timeout or a given number of iterations.

17.4.1 Move Operators

We describe the node, subtree, and edge move operators. We use Ti to denote the
tree associated with facility i. An edge between two clients u j and uk is denoted by
〈u j,uk〉. We have defined node and subtree in [6], and we take the edge operator
from the literature [10]. Informally speaking the location of a node u j (or the subtree
emanating from it) in a tree is a tuple (up j ,S j) where up j denotes the predecessor of
u j and S j denotes the list of immediate successors of u j in the tree.

640 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

Node Operator

In Figure 17.2b we move a given node ui from the current location to another in the
tree. The node (or subtree) changes location if either the predecessor or any successor
of the node is different. As a result of the move, all successors of ui will be directly
connected to the predecessor node of ui. ui can be placed as a new successor for
another node or in the middle of an existing edge in the tree.

Subtree Operator

In Figure 17.2c we move a given node ui and the subtree emanating from ui from the
current location to another in the tree. As a result of this, the predecessor of ui is no
longer connected to ui, and all successors of ui are still directly connected to ui. ui
can be placed as a new successor for another node or in the middle of an existing
edge.

Edge Operator

In this chapter we limit our attention to moving a node or a complete subtree. In [10]
the authors proposed to move edges in the context of the Constrained Optimum Path
problem. The Pham et al. move operator (Figure 17.2d) chooses an edge in the tree
and finds another location for it without breaking the flow.

17.4.2 Operations and Complexities

We first present the complexities of the node and subtree operators as they share
similar features. For an efficient implementation of the move operators, it is necessary
to maintain bi

j: the length of the path from u j to the farthest leaf associated with the
tree Ti, and the previously described variable f i

j: the distance from the facility to the
client. Let up j be the immediate predecessor of u j and let S j be the set of immediate
successors of u j in a given tree.

In order to complete a move the node and subtree operators require to execute the
following four steps:

1. Randomly select a node (u j) from a facility (mi) from the current solution;
2. Delete u j from Ti if the node operator is used, or u j and the emanating subtree

of the node in Ti if the subtree operator is used;
3. Identify the best location, i.e., a new predecessor up j and a potential new succes-

sor uns j for u j in Ti satisfying all constraints;
4. Insert u j as a new successor of up j , and if there is a new successor, add uns j as a

new successor of up j .

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 641

Table 17.1 summarises the complexities of the move operators. In this table n
denotes the maximum number of clients associated with a single facility. The last
row (move) indicates the time complexity of completing a move with a given move
operator, i.e., completing the four previously mentioned steps.

Table 17.1: Complexities of different operations

Node Subtree Edge

Delete O(n) O(n) O(1)
Feasible delete O(n) O(1) O(1)
Feasible insert O(1) O(1) O(n)
Best location O(n) O(n) O(n3)
Insert O(n) O(n) O(n)

Move O(n) O(n) O(n3)

Feasible Delete

Checking whether a solution is feasible after the node operator deletes a node u j in
Ti requires linear complexity with respect to the number of clients in S j since it is
necessary to check whether the new distance from the root to the furthest leaf for all
nodes uk ∈ S j satisfies the distance constraint:

f i
p j
+bi

k +dp j ,k ≤ λ .

Delete

Deleting a node or the subtree emanating from the node u j in Ti requires linear time
with respect to the number of clients of facility mi. For both operators, it is necessary
to update bi

j′ for all the nodes j′ in the path from the facility mi to the client up j

in Ti. In addition, the node operator updates f i
j′ for all the nodes j′ in the subtree

emanating from u j. After deleting a node u j or a subtree emanating from u j, the
objective function is updated as follows:

ob j := ob j− c j,p j .

Furthermore, the node operator needs to add to the objective function the cost of
disconnecting each successor element of u j and reconnecting them to up j :

ob j := ob j+ ∑
k∈S j

(ck,p j − ck j).

642 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

Feasible Insert

Checking feasibility of a move can be performed in constant time by using f i
j and bi

j.
If u j is inserted between the two nodes of edge 〈up,uq〉 then we check the following:

f i
p +dp j +d jq +bi

q ≤ λ .

If u j is inserted as a new successor of up we check the distance constraint as
follows:

f i
p +dp j +bi

j ≤ λ .

Best Location

Selecting the best location involves traversing all clients associated with the facility
and selecting the one with the maximum reduction in the objective function. Both
operators need to traverse the tree in order to evaluate the cost of breaking all existing
edges or adding a new node or subtree to the current solution. In this chapter we use
a depth-first exploration of the tree.

Insert

A move can be performed in linear time. We recall that this move operator might
replace an existing edge 〈up,uq〉 with two new edges 〈up,u j〉 and 〈u j,uq〉. This
operation requires us to update f i

j for all nodes in the subtree emanating from u j, and
bi

j in all nodes in the path from the facility acting as a root node down to the new
location of u j. The objective function must be updated as follows:

ob j := ob j+ cp j + c jq− cpq.

Now we switch our attention to the edge operator. This operator does not benefit
from using bi

j. The reason is that moving a given edge from one location to another
might require changing the direction of a certain number of edges in the tree as shown
in Figure 17.2d. Deleting an edge requires constant time. This operation generates
two separated subtrees and no data structures need to be updated. Checking the
feasibility of adding an edge 〈up′ ,uq′ 〉 to connect the two subtrees requires linear
time. It is necessary to traverse the new tree to obtain the distance from uq′ to
the farthest leaf in the tree associated with facility i. Performing a move requires
linear time. It involves updating f i

j for the new emanating tree of uq′ . Finding the
best location requires cubic time complexity as the number of possible locations is
bounded by n2 (total number of possible edges for connecting the two subtrees) and
for each possible move it is necessary to check feasibility. Due to the high complexity
(O(n3)) of completing a move with the edge operator, hereafter we limit our attention
to the node and subtree operators.

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 643

As pointed out earlier in this chapter, maintaining the backward distance does not
provide any reduction in the complexity of the moves for the edge operator. Notice
that deleting an edge does not necessarily require us to update the distance of the
affected nodes in the tree. In this case, only the affected edge is removed from the
solution.

Disjointness

To ensure disjointness among spanning trees we maintain a 2·|U | matrix, where
|U | represents the number of clients. Checking disjointness for every client requires
constant time complexity and only involves checking that the two integers indicating
the predecessors in the primary and secondary facilities are different. Therefore the
complexities presented in Table 17.1 remain valid when disjointness is considered.

Move

As pointed out in Table 17.1 completing a move for the node and subtree operators
requires linear time complexity and it involves deleting a node u j (or the complete
subtree emanating from u j), checking feasibility for all potential candidate locations,
and then inserting the node or subtree in the most suitable location. We randomly
select u j in order to balance the greediness and the complexity of the move. Alterna-
tively, one can select the best deletion-insertion pair. However, this option make the
complexity of completing a move O(n2) as it involves deleting all nodes in the current
solution and re-inserting them. Additionally, the use of the best deletion-insertion
pair may lead to premature convergence to local minima.

In [25] the authors proposed two move operators for RDCMST. Edge-Replace
is similar to the edge operator described above. The difference is that in this case
the authors only take into consideration the distance constraint, and therefore, the
authors use the cheapest alternative edge to reconnect the two trees. Similarly to
the edge operator, Edge-Replace might change the direction of some affected edges
and therefore the new solution might not satisfy the edge-disjointness constraint. An
alternative solution might be to limit the set of candidate neighbours to those not
changing the direction of the tree. This would be a particular case of the subtree
operator where the subtree is reconnected to an existing leaf of the current solution.
Component-Renew removes an edge in the tree. Nodes that are separated from the
root node are sequentially added to the tree using Prim’s algorithm. Nodes that violate
the length constraint are added to the tree using a pre-computed route from the root
node to any node in the tree. It is worth noticing that the Component-Renew operator
cannot be applied to ERDCMST as the pre-computed route from the root node to a
given node might not be available due to the disjointness constraint.

644 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

17.5 Sequential Algorithm

We describe a constraint-based local search algorithm, which is parameterised by a
move operator. A (node or subtree) move is composed of four sub-operations: delete,
best location, insert, and feasibility check. A move involves removing a node or
a subtree from the tree and adding it in the best location. In order to find the best
location a sequence of feasibility checks are carried out.

The location of a node in a tree is defined by its parent node and its set of successor
nodes. If the node operator is used then a new location for a node u j can be found by
either (1) selecting an existing edge 〈ua,ub〉 and inserting u j between the two nodes
such that the parent node of u j is ua and the set of successors is the singleton set {ub}
or (2) selecting any node ua and adding a new edge 〈ua,u j〉 such that the parent node
of u j is ua and the set of successor nodes is empty. Similarly, if the subtree operator
is used then a new location for a subtree emanating from a node u j can be found
by either (1) selecting an existing edge 〈ua,ub〉 and inserting u j between the two
nodes such that the parent node of u j is ua and the set of successors of u j is updated
by adding the node ub; or (2) selecting a node ua and adding a new edge 〈ua,u j〉
such that the parent node of u j is ua and the set of successor nodes of u j remains
unchanged. We use Locations(u j,Ti,move-op) to denote all the possible locations of
a node (or a subtree emanating from) u j in tree Ti using move-op.

Let list be a set of potential nodes for which we might be able to find better
locations. If the list is empty then it means that the algorithm has reached a local
minimum for the chosen move operator. We also compute a graph, which we call the
facility connectivity graph, denoted by fcg, where the vertices represent the facilities
and an edge between a pair of facilities represent that a change in the tree of a facility
might help in finding better locations for some nodes in the tree associated with the
other facility. An edge between two vertices in fcg is added if the facilities share at
least two clients. Notice that if two facilities do not share at least two clients then they
are independent from the disjointness point of view. Figure 17.3 shows an example
of an fcg of the problem with four facilities and 11 clients: clients {u1, u2, u3, u4} are
common to m1 and m2; clients {u7, u8, u9} are common to m2 and m4; clients {u5,
u6} are common to m1 and m4; and clients {u10, u11} are common to m1 and m3.

The pseudo-code of our constraint-based local search is shown in Algorithm 17.2.
It starts by initialising list and fcg (Lines 2 and 3). It repeatedly selects a client u j of
a facility mi randomly from Tree Ti (Line 4), saves its current location and deletes
it from the tree (Lines 6-7). The delete operation depends on the move operation
(move-op) and deletes a single node or the entire subtree emanating from the node.
The cost of the current location is saved in cost (Line 8). For a chosen node or subtree,
in each iteration (Lines 9-16), the algorithm identifies the best location. Line 10
verifies that the new move does not break any constraint and CostLoc returns the cost
of using the new location using the given move operator (Line 11). If the cost of the
new location is better then the best set of candidates is reinitialised to that location
(Lines 12-14). If the cost is equal to the best known cost so far then the best set of
candidates is updated by adding that location (Lines 15-16). The new location for a

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 645

m1 m2

m3 m4

u1, u2, u3, u4

 u5, u6
 u7, u8, u9 u10, u11

Fig. 17.3: Example of the facility connectivity graph (fcg) for a problem with 4
facilities (i.e., m1, m2, m3, and m4), and 11 clients

given node is randomly selected from the best candidates if there are more than one
(Line 18).

Instead of verifying that a local minimum is reached by exhaustively checking
all moves for all clients of all facilities, we maintain a list of pairs of clients and
facilities. The list is initialised at Line 1 with all pairs of facilities and clients. In each
iteration a pair consisting of a facility and a client, (mi,u j), is selected and removed
from the list (Line 25). When list is empty the algorithm reaches a local minimum. If
an improvement is observed then one simple way to ensure the correctness of the
local minimum is to populate list with all pairs of facilities and clients. However, this
can be very expensive in terms of time. We instead exploit the facility connectivity
graph (fcg) where an edge between two facilities is added (in Line 2) if they share at
least two clients. If an edge between mi and mk exists in fcg then it means that if there
is a change in Ti then it might be possible to make another change in Tk such that
the total cost can be improved. Consequently, we only need to consider the clients
of affected facilities. This mechanism helps to significantly reduce the time taken
by reducing the number of useless moves. We further strengthen the condition for
populating list by observing the fact that the set of clients that can be affected in a
facility mk is a subset of {u j}∪S j. The reason is that all the other clients of mk are
not subject to any constraint from the node u j of Ti (Line 20). Furthermore all the
clients of Ti are also added to the list.

The perturbation phase of the algorithm works similarly to Algorithm 17.2, by
selecting a random node, deleting this node or its subtree in the current solution,
and then instead of selecting the best location, the algorithm selects a random valid
location. In particular, for the perturbation phase, we replace Lines 10-16 with
Line 16, i.e., BestLoc := BestLoc ∪ {(u′p j

,S′j)}. Therefore, the algorithm selects a
new random location for u j.

We note that Algorithm 17.2 can tackle both RDCMST and ERDCMST. In the
case of RDCMST, there is only one facility, and FeasibleInsert only checks the
path-length constraint.

646 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

Algorithm 17.2: Constraint-Based Local Search (move-op, {T1, . . . ,T|M |})
1 list := {(mi,u j)|mi ∈M ∧u j ∈Ui}
2 fcg := {(mi,m j)|Ni∩Nj| ≥ 2}
3 while list �= /0 :

4 Select (mi,u j) randomly from list
5 if FeasibleDelete(Ti, u j , move-op) :

6 oldLoc := (up j ,S j)

7 Delete(Ti, u j , move-op)
8 cost := CostLoc((up j ,S j), u j,move-op)
9 for (u′p j

,S′j) in Locations(u j,Ti,move-op)−{oldLoc} :

10 if FeasibleInsert((u′p j
,S′j),u j,move-op) :

11 cost ′ := CostLoc((u′p j
,S′j), u j,move-op)

12 if cost ′ < cost :

13 BestLoc := {(u′p j
,S′j)}

14 cost := cost ′

15 elif cost ′ = cost :

16 BestLoc := BestLoc ∪{(u′p j
,S′j)}

17 if BestLoc �= /0 :

18 Select (u′p j
,S′j) randomly from BestLoc

19 loc := (u′p j
,S′j)

20 list := list∪{(mk,ul)|(mi,mk) ∈ fcg∧ul ∈ Nk ∩ (S j ∪{u j})}
21 list := list∪{(mi,ul)|ul ∈ Ni}
22 else:

23 loc := oldLoc
24 Ti :=Insert(Ti, loc, u j , move-op)
25 list := list−{(mi,u j)}
26 return {T1, . . . ,Tn}

17.6 Parallel Algorithm

Parallelisation has been widely studied to speedup and improve the performance
of local search algorithms to tackle a large variety of problems including TSP [7],
Capacitated Network Design [9], Steiner Tree [31], SAT [17], and CSPs [8] just to
name a few. These approaches employ the Multi-walk and/or Single-walk frame-
work [30] to devise the parallel algorithm. In particular we focus our attention on
constraint-based local search solvers.

17.6.1 Multi-Walk and Single-Walk

Multi-walk (also known as parallel portfolio) involves executing several algorithms
(or different copies of the same one with different random seeds) in parallel, with
or without cooperation, until a solution is found or a given timeout is reached. The

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 647

implicit assumption is that different processes handle different parts of the search
space. The multi-walk method has two important properties. First, no load balancing
is required to parallelise the sequential algorithm. Second, the speedup of the parallel
algorithm strictly depends on the performance of the sequential one. As discussed in
the literature (e.g., [28] and [26]) a high variance of the sequential algorithm usually
means good parallel speedup factors.

The Single-walk methods involves using parallelism inside a single search process.
In this approach, a typical way to develop the algorithm involves parallelising the
exploration of the neighbourhood, e.g., dividing the neighbourhood into several
sub-neighbourhoods and searching them in parallel to find the best move.

We observe the two mentioned levels of parallelism in the context of SAT (see [3]
for a recent survey). An elaboration on multi-walk approaches with and without
cooperation can be found in [1, 4], where the cooperation is implemented by sharing
the best solution in order to properly craft a new starting point. In SAT, the single-walk
approaches are implemented by flipping multiple variables at the same time [22].

The Comet solver [18] has been proposed in the context of constraint-based local
search. Comet provides abstractions for implementing multi-walk parallelism (with
and without cooperation) and single-walk parallelism.

17.6.2 Parallel Moves for ERDCMST

The aim of our parallel approach is to reduce the elapsed time for finding a target
solution (i.e., optimal or near-optimal solution) by taking advantage of the availability
of multiple cores and processors. In order to accomplish this, we propose a novel
approach to perform multiple moves in parallel, which can be applied both in single-
walk and multi-walk settings.

A move for ERDCMST can be defined as selecting and removing a node from
a tree and adding it back to the tree; preferably in a different location. The general
idea is to partition the set of all moves in such a way that when multiple moves are
performed by selecting them from different elements of the partition no constraint is
violated. We use this approach to develop a parallel algorithm for the ERDCMST
problem.

Informally speaking the algorithm takes into account the disjointness constraint to
divide the problem space into mutually exclusive subproblems and asynchronously
perform multiple moves in parallel. We use the fcg to decompose the problem. Let
us recall that if N facilities do not share any client we can use the LS algorithm
to optimise the local solution of individual facilities in parallel. For instance, in
Figure 17.3 m3 and m2 do not share clients, so we can improve the solution by
executing two parallel copies of Algorithm 17.2 limiting the input solution to m3
for one core, and m2 for the other one. In this section we describe two methods to
decompose the problem. The first method computes a set of independent facilities.
The second method randomly selects a set of facilities and resolves the conflicts
between clients before executing the LS algorithm.

648 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

Algorithm 17.3: Random Independent set(fcg, card)
1 S := /0
2 while fcg �= /0 and |S| < card :

3 v := random vertex in fcg
4 S := S ∪ v
5 Remove v and its neighbours from fcg
6 return S

Let Γi j be the set of all potential predecessors of client u j in Ti when considering
either a node move or a subtree move. Ideally, we would like to find a set of nodes
(or clients) whose sets of locations are pairwise mutually exclusive so that moving
all those nodes simultaneously in their trees is conflict-free. The advantage is that
finding a best location for all such nodes can be done in parallel without restricting
access to the data structures or creating duplicate copies of the same data structure.

As the sets of locations for the selected nodes must be independent, we select
at most one node from a tree. It is indeed possible to find two nodes in the same
tree whose sets of potential predecessors are mutually exclusive, but finding such
nodes is not straightforward. Therefore, the number of moves that can be performed
simultaneously is bounded by the number of facilities.

As mentioned before, changing the location of a node within a tree Ti is not
only constrained by the other nodes of Ti but also by the nodes of the other trees
sharing nodes with Ti because of the disjointness constraint. In order to determine the
number of subproblems, we use the previously defined facility connectivity graph. In
particular, we explore the following two mechanisms:

1. Independent set defines partitions by computing independent sets in fcg. In this
approach, we know beforehand that each client has at most one predecessor, so
all elements in the set can be safely executed in parallel without violating the
disjointness constraint. Algorithm 17.3 computes a random set of independent
elements in fcg. These elements will then be used in the parallel section of the
algorithm to solve the problem. card refers to the cardinality of the independent
set to be computed. Ideally, card should match the number of cores available.
However, the degree of parallelism of the algorithm is bounded by the cardinality
of the maximum independent set in fcg. For instance, let us revisit the fcg in
Figure 17.3. In this case, we will have at most two independent facilities (i.e., m3
and m4). Therefore, even if card is greater than two, Algorithm 17.3 will return
at most two vertices. In practice we expect sparse graphs in real networks, so the
cardinality of independent sets should be more than a few tens of elements for
realistically sized networks.

2. Random conflict selects, uniformly at random, n facilities and resolves the
conflicts between clients a priori. It is recalled that two facilities can be in
conflict if and only if they share at least two clients. Let us say that two facilities
mi and m′i are selected, and the clients u j and u j′ are connected to both facilities.
Let C = Γi j ∩Γi′ j′ be a non-empty set. To resolve the conflict we modify the sets

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 649

Algorithm 17.4: Iterated Constraint-based Parallel Local Search (move-op, t)
1 s∗ := Initial Solution
2 repeat

3 {s∗1, . . . ,s∗n} := s∗
4 {s′1, . . . ,s′n} := s∗
5 P := CreatePartition(s∗)
6 for pi ∈ P do in parallel

7 while local time limit t for parallelism has not been reached :

8 if s∗i is internally in a local minimum :

9 s′i := Perturbation(s∗i)
10 s′∗i := ConstraintBasedLocalSearch(move-op, s′i)
11 s∗i := AcceptanceCriterion(s∗i , s

′∗
i)

12 s∗ := {s∗1, . . . ,s∗n}
13 until a given stopping criterion is met

Γi j and Γi′ j′ such that they become mutually exclusive. We recall that Γi j (Γi′ j′)
represents the set of potential predecessors for u j (u j′) in the tree Ti (T ′i).

• If uk ∈C is already a predecessor of u j in Ti then we remove uk from Γi′ j′ ,
or viceversa.

• If uk ∈C is a predecessor of neither u j in Ti nor u j′ in T ′i then we remove
uk randomly from either Γi j or Γi′ j′ . We can say that the algorithm decides
beforehand to which set uk should belong.

Unlike independent set where the degree of parallelism is limited by the size
of the maximum independent set, random conflict allows as many processes
as the number of facilities in the problem, which in practice goes up to a few
hundred cores. The solution of a problem whose fcg is the one in Figure 17.3
will start by randomly selecting a set of facilities, e.g., m1, m3, and m4, and then
the random conflict method resolves conflicts beforehand for conflicting clients.
For instance, if edge 〈u10,u11〉 is present neither in the current solution of m1
nor in the current solution of m3, the algorithm randomly decides whether to
forbid the edge in m1 or in m3. The algorithm repeats this process for all pairs of
conflicting clients.

The Iterated Constraint-based Parallel Local Search algorithm (ICPLS) works
in two phases. First, the algorithm selects a set of facilities, denoted by P. If the
set is independent then the locations of the clients of the set facilities are mutually
exclusive. If the set is in conflict then the locations of the clients of the set facilities
are modified by restricting their locations to resolve the conflicts. Second, for each
facility pi ∈ P it performs, in parallel, the sequential local search algorithm for a
given amount of time t to explore the search space. As is the case for the sequential
algorithm, s∗ denotes the current incumbent solution of the problem, s′ denotes
the solution after perturbing the incumbent solution, s′∗ denotes the best solution
obtained after executing the constraint-based local search framework. s∗i (respectively
s′i and s′∗i) denotes the solution (or tree) associated with partition pi. In the parallel

650 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

section of the algorithm (Lines 6-11) we differentiate between the local minimum
for each partition and the local minimum of the problem. In the sequential algorithm
we diversify the current incumbent solution after finding a local minimum of the
problem, i.e., a state in which no neighbour solution leads to an improvement in the
objective. In the parallel algorithm we diversify when the solution si associated with
partition pi is in a local minimum but the global state of the whole problem is still
unknown.

The sequential algorithm scans the list of active clients (list), deleting clients from
the list when they cannot improve the objective function. The perturbation starts
when a local minimum in the problem is reached (i.e., list = { }). Following the same
approach in the parallel algorithm may introduce significant processor idle time, in
particular when approaching a local minimum. Therefore, we start the perturbation
locally for each tree as soon as an internal local minimum for a given tree is reached
to minimise idle time. Moreover, after applying a move in a tree, only nodes of the
same tree are added to list to reduce synchronisation among processors (Lines 23-24
in Algorithm 17.2).

Algorithm 17.4 shows the ICPLS proposed in this chapter. The algorithm starts
with an initial solution. CreatePartitions computes P using either independent set
of random conflict. We recall that random conflict computes the set of potential
predecessors for all nodes connected to the selected facilities. In the parallel section
of the algorithm (Lines 6-11), we check whether the tree associated with pi is
internally in a local minimum and if so perturb the solution associated with the
partition (Lines 8-9). Then, the Constraint-based Local Search procedure is invoked
with the current solution si associated with pi using the acceptance criterion of the
sequential algorithm. It is worth noticing that unlike the sequential algorithm, where
a local minimum is sure to be reached after invoking the local search procedure, in
the parallel algorithm it might be the case that the parallel algorithm has not reached
the local minimum due to the local time limit of each parallel execution.

17.7 Application: Long-Reach Passive Optical Networks

To demonstrate the effectiveness of our approach we consider a real-world problem
arising in the domain of optical networks. Long-Reach Passive Optical Networks (LR-
PONs) are attracting increasing interest as they provide a low-cost and economically
viable solution for fibre-to-the-home network architectures [21]. An example of a
Long-Reach PON is shown in Figure 17.4. In LR-PON each metro node is connected
to tens of thousands of customers via tens of hundreds of exchange sites. A major
fault occurrence would be a complete failure of the metro node that terminates
the LR-PON, which could affect tens of thousands of customers. The dual homing
protection mechanism for LR-PON enables customers to be connected to two metro
nodes via a local exchange site, so that whenever a single node fails all customers are
still connected to a backup [15]. Simply connecting two metro nodes to an exchange
site is not sufficient to guarantee the connectivity because if a link is common in

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 651

Fig. 17.4: Example of a Long-Reach Passive Optical Network

the routes of the fibre going from the exchange site to its two metro nodes then
both metro nodes would be disconnected. The part of the LR-PON that one wants
to protect is between the metro node and the old local exchange site. An important
property of such a network is resilience to a single metro node failure. Nevertheless,
connecting an exchange site to an additional metro node has a cost overhead. Here a
metro node is a facility and an exchange site is a client.

In the optical network fibres are distributed from the metro nodes to the exchanges
through cables that form a tree distribution network. As the association between
metro nodes and exchange sites is already given, we could treat each one-to-many
relation (i.e., tree) independently if disjointness were not an issue. However, the paths
from the metro nodes to the exchange sites may share edges since a pair of exchange
sites may be associated with the same pair of metro nodes. Therefore, we need to
make sure that the routes that we choose for connecting the exchange sites to their
metro nodes (i.e., main metro node and backup metro node) are disjoint. Otherwise,
this would void the purpose of having double coverage. In Figure 17.5 we show
two ways of connecting a given set of exchange sites to a metro node. In the first
case (Figure17.5a) we simply connect each exchange site. Certainly the option of
connecting each exchange site directly to the metro node leads to shorter connection
paths. However, the drawback of connecting each exchange site directly is the total
amount of cable used. In the second case (Figure 17.5b) we compute a minimum
spanning tree rooted at the metro node. Certainly this option minimises the total
length of cable but the drawback is that we might be violating the maximum cable
distance allowed between the metro node and any of its exchange sites.

652 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

(a) (b)

Fig. 17.5: (a) Local exchanges are directly connected to the metro node. (b) Local
exchanges are connected to the metro node through a spanning tree.

We are interested in both restricting the length of the paths and the total amount
of cable used. Keeping both requirements is known to be a hard problem [13]. As
mentioned before this problem is computationally complex [19]. Notice that our
problem is even more complicated than the bounded spanning tree problem. The
objective of our problem is to determine the optimal routes of cables in the context
of an already existing association of metro nodes with exchange sites such that the
total cable length required for connecting each exchange site to two metro nodes is
minimised subject to the maximum distance constraint and disjointness constraint.
In other words, the idea is to find two edge-disjoint paths for all exchange sites to
their respective metro nodes by maximising sharing (since we want to minimise the
cost of digging, for example), and reducing the amount of cable.

17.8 Empirical Evaluation

In this section we present experimental results for the sequential and parallel versions
of the local search algorithm proposed in this chapter to tackle ERDCMST. Moreover,
we also demonstrate the effectiveness of the algorithm when compared to a dedicated
algorithm for the RDCMST. We present results for random and real-world instances.
The real-world instances correspond to the optical networks of three EU countries:
Ireland, with 1,121 exchange sites and 18, 20, 22, and 24 Metro Nodes; the UK, with
5,393 exchange sites and 75, 80, 85, and 90 Metro Nodes; and Italy, with 10,709
exchange sites and 140, 150, 160, and 170 Metro Nodes. We present experimen-
tal results for the ERDCMST problem using both the sequential and parallel LS
algorithms.

All the experiments were performed on a four-node cluster; each node features
two Intel Xeon E5-2640 processors at 2.5 GHz, and 64 GB of RAM memory. Each
processor has six cores for a total of 12 cores per node. The local search algorithm
was implemented in C++ and used OpenMP to implement the parallel version

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 653

using shared memory. In all the experiments we use the following parameters for
Algorithm 17.1: p = 5%, 20 random moves in the perturbation phase of the algorithm,
and the algorithm stops after a given time limit is reached. Additionally, we use the
trivial solution, i.e., direct connections from the MNs to the ESs, as an initial solution
for the algorithm.

We now switch our attention to the ERDCMST problem. To this end, we evaluate
the proposed algorithms using the following scenarios:

• Real-life: We consider real-life instances from our industrial partners with real
networks in Ireland, the UK, and Italy. Figure 17.6 shows the histogram with
the distribution of the distances from the ESs to their MNs. In the following
experiments we use λ = 67 for the Ireland and λ = 62.5 for the UK and Italy.
Additionally, Figure 17.7 shows the resulting facility connectivity graph for the
three countries.

• Random: We generated 10 random instances extracted from the previous real-life
network in Ireland. Each instance is generated by using 18 facilities and for
each facility we randomly selected |U | ∈ {100, 200, . . ., 1000} nodes. Instances
were generated by iteratively selecting a random client from the Irish dataset and
balancing the load of clients per metro node.

17.8.1 ERDCMST Results: Sequential LS

Table 17.2 reports results for the Random experimental scenario, which depict the
median value across 11 independent executions of the node and subtree operators;
the best solution obtained with CPLEX; the best solution obtained with CPLEX
using the solution of the first execution of LS with the subtree operator as warm
start (LS+CPLEX); and the best known LBs for each instance obtained with CPLEX
using a larger time limit.1 The time limit for each local search experiment was set to
30 minutes, and 4 hours for the CPLEX-based approaches.

In these experiments we observe that the subtree operator generally outperforms
the node operator. We attribute this to the fact that moving a complete subtree helps
to maintain the structure of the tree in a single iteration of the algorithm. The node
operator might eventually reconstruct the structure, however, more iterations would
be required. For the CPLEX-based approaches we report the optimal solution for
100 and 200 clients, while the median execution of the local search approaches
reported the optimal solution for 100 clients, and the subtree operator reached the
optimal solution in five out of the 11 executions for 200 clients. After |U | = 500 LS
dominates the performance and a margin ranging between 1% (|U | = 500) to 12%
(|U |=900). LS+CPLEX was only able to improve the average performance of the
subtree operator (reached after executing LS for one hour) by a very small factor, i.e.,
up to 0.4% for |U | = 800, after running CPLEX for four hours. We also experimented

1 In this chapter CPLEX corresponds to solving the MIP model with IBM ILOG CPLEX Optimisa-
tion Studio version 12.5.1.

654 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

Fig. 17.6: Histogram of distances from exchanges to primary and backup metro
nodes

Table 17.2: Results for the small-sized instances of ERDCMST problem where
|M|= 18, λ = 67, 30 minutes time limit for LS approaches, 4 hours for CPLEX, and
5 hours for LS+CPLEX

|U | LS (Subtree) LS (Node) CPLEX LS+CPLEX LB

100 4674 4674 4674 4674 4674
200 6966 6988 6962 6962 6962
300 8419 8575 8404 8404 8152
400 9728 10008 9728 9721 9329
500 11203 11672 11318 11203 10298
600 11885 12559 12276 11924 10517
700 13148 13981 13812 13140 11485
800 14040 15133 15118 13977 12402
900 14770 16098 16438 14839 12860

1000 15962 17479 18174 16009 13943

with instances with |U | < 100 and |U | > 1000. In the first case the three algorithms
and the mixed approach (LS+CPLEX) reported similar results. In the second case,

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 655

(a) Ireland with 18 MNs (b) UK with 75 MNs

(c) Italy with 140 MNs

Fig. 17.7: Facility connectivity graph (fcg) for each country

656 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

Table 17.3: Results for Ireland, UK, and Italy with 30 minutes time limit (wall time)
for the LS algorithm and 4 hours time limit for CPLEX (wall time)

Country |M| Subtree CPLEX LB Gap-Subtree Gap-CPLEX

18 17155 26787 14809 13.67 44.71
Ireland 20 16884 83746 14845 12.07 82.27
|U |=1121 22 16715 79919 14990 10.32 81.24

24 16173 26918 14570 9.91 45.87
75 66367 285014 54720 17.54 80.80

UK 80 65380 301190 54975 15.91 81.74
|U |=5393 85 64189 281546 55035 14.26 80.45

90 62763 220041 55087 12.23 74.96
140 90796 – 76457 15.79 –

Italy 150 89519 – 76479 14.56 –
|U |=10708 160 89497 – 76794 14.19 –

170 88497 – 77013 12.97 –

only LS with the subtree operator was able to provide good quality solutions with a
gap of 10% with respect to the LB.

Our second set of experiments for the sequential version of the constraint-based
local search algorithms are showed in Table 17.3 where we report results for real
ERDCMST instances from Ireland, Italy, and the UK. In this case, we used a time
limit of 30 minutes for LS (using the subtree move operator), and four hours for
CPLEX. As can be observed, LS dominates the performance in all these experiments
and, once again, the solution quality of LS does not degrade with the problem size.
Indeed, the gap with respect to the LB for local search varies from 9.9% to 13.6% for
Ireland, 12.2% to 17.5% for UK, and 12.9% to 15.7% for Italy. CPLEX ran out of
memory when solving instances from Italy. We report ‘–’ when no valid solution was
obtained. For the UK instances CPLEX also ran out of memory before the time limit.
Once again we would like to recall that algorithms such as BKRUS, PBH, and KBH
cannot be used for the ERDCMST problem as they are dedicated algorithms for the
RDCMST that rely on the use of shortest paths to build valid solutions. However, in
the ERDCMST problem such paths might not be available due to disjointness.

17.8.2 ERDCMST Results: Parallel LS

In this section we evaluate the performance of the proposed parallel local search
algorithm. To this end we use the same real-world instances used for the sequential
algorithm for Ireland, the UK, and Italy. We limit our attention to the subtree operator
as it greatly outperforms the node operator in the sequential setting.

We define the gain of the parallel algorithm as the relative percentage gain with
respect to the sequential algorithm in the cost solution after a given time limit and
using a given number of cores. Let C(t, inst,c) be the cost of the best solution

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 657

obtained after t seconds using c cores to solve inst. Let T (cost, inst,c) be the time to
reach a solution whose cost is at least as good as cost for a given instance inst using
c cores.

Gain(inst,c, t) = C(t,inst,1)−C(t,inst,c)
C(t,inst,c) ×100.

Tables 17.4, 17.5, and 17.6 show the results of the empirical evaluation of the
parallel algorithm. In these tables we present the cost of the solution for the se-
quential algorithm, the parallel algorithms, and the relative cost gain of the parallel
algorithm after the 30-minute time limit. We use the multi-walk (MW) framework,
i.e., executing multiple copies of the algorithm with different random seeds, as a
baseline for comparison. We also include the proposed parallel algorithms using both
random conflict (RC) and independent set (IS) for selecting multiple moves. For each
instance and each approach we report the median value across 11 executions with a
time-limit of 30 minutes.

Figures 17.8, 17.9, and 17.10 show the performance evolution of the algorithms
(parallel and sequential) to tackle one instance for each dataset, i.e., Ireland with
18 facilities, the UK with 75 facilities, and Italy with 140 facilities. We remark that
similar results have been observed for the remaining instances. The y-axis indicates
the quality of the solution after certain time is reached (x-axis).

Ireland instance (Table 17.4 and Figure 17.8). The local search algorithms find
a very good solution within a very short time window (gap of up to 13% with
respect to the lower bound), and the variance between independent executions of
the algorithm is very low. For this reason, when increasing the number of cores we
observe very little difference in the performance of the algorithms.2 We observe that

Table 17.4: Performance summary of the parallel algorithms (Multi-walk (MW),
random conflict (RC) and independent set (IS)), with a 30-minute time limit (wall
time)

Country |M| Seq Alg 4 Cores 8 Cores 12 Cores
Cost Gain Cost Gain Cost Gain

18 17155
MW 17110 +0.26 17092 +0.37 17085 +0.41
RC 17293 -0.83 17287 -0.86 17266 -0.77
IS 17276 -0.69 17324 -0.76 17307 -0.85

20 16884
MW 16841 +0.26 16829 + 0.33 16828 +0.33
RC 17001 -0.68 16998 -0.78 17015 -0.75

Ireland IS 17007 -0.73 17014 -0.69 17006 -0.76
|U |=1121

22 16715
MW 16704 +0.07 16691 +0.14 16686 +0.17
RC 16891 -1.01 16888 -1.05 16896 -1.04
IS 16886 -1.00 16896 -1.02 16884 -0.98

24 16173
MW 16152 +0.13 16148 +0.15 16136 +0.23
RC 16315 -0.93 16318 -1.05 16347 -1.05
IS 16327 -0.86 16327 -0.89 16323 -0.86

2 Similar behaviour for other local search algorithms has been observed in [2] in the context of the
satisfiability problem.

658 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

Table 17.5: Performance summary of the parallel algorithms (Multi-walk (MW),
random conflict (RC) and independent set (IS)), with a 30-minute time limit (wall
time)

Country |M| Seq Alg 4 Cores 8 Cores 12 Cores
Cost Gain Cost Gain Cost Gain

75 66367
MW 66153 +0.32 66126 +0.36 66093 +0.41
RC 65083 +1.99 64988 +1.73 64972 +1.82
IS 65083 +1.96 64980 +1.81 64981 +1.89

80 65380
MW 65328 +0.08 65282 +0.15 65265 +0.18
RC 64290 +1.65 64227 +1.35 64217 +1.53

UK IS 64328 +1.62 64207 +1.45 64195 +1.55
|U |=5393

85 64189
MW 64168 +0.03 64146 +0.07 64131 +0.09
RC 63487 +1.11 63433 +0.97 63421 +1.02
IS 63486 +1.10 63403 +1.01 63414 +1.04

90 62763
MW 62726 +0.06 62651 +0.18 62641 +0.19
RC 62210 +0.86 62171 +0.73 62153 +0.84
IS 62260 +0.81 62191 +0.73 62140 +0.87

Table 17.6: Performance summary of the parallel algorithms (Multi-walk (MW),
random conflict (RC) and independent set (IS)), with a 30-minute time limit (wall
time)

Country |M| Seq Alg 4 Cores 8 Cores 12 Cores
Cost Gain Cost Gain Cost Gain

140 90796
MW 90669 +0.14 90633 +0.18 90621 +0.19
RC 88573 +2.51 88382 +2.71 88332 +2.80
IS 88529 +2.56 88358 +2.74 88330 +2.71

150 89519
MW 89427 +0.1 89357 +0.18 89309 +0.24
RC 87517 +2.27 87411 +2.42 87414 +2.41

Italy IS 87526 +2.26 87462 +2.37 87379 +2.43
|U |=10709

160 89537
MW 89421 +0.13 89360 +0.20 89309 +0.26
RC 87679 +2.15 87579 +2.24 87525 +2.29
IS 87666 +2.13 87564 +2.26 87528 +2.31

170 88497
MW 88433 +0.07 88359 +0.16 88359 +0.16
RC 86954 +1.76 86925 +1.83 86862 +1.89
IS 86955 +1.77 86869 +1.86 86869 +1.88

the sequential algorithm is slightly better than the parallel ones with a percentage
gain of between 0.68% to 1.05% within the 30-minute time limit. However, we note
that the parallel algorithm reaches good solutions faster than the sequential one as
depicted in Figure 17.8. This figure also helps to illustrate the difference between
using independent sets and random conflict for computing the partitions. Notice
that eight-core random conflict algorithm reports a better performance than 12-core
independent set. That is because the cardinality of the maximum independent set for
this problem is nine and the number of parallel processes is bounded by that number,
thus voiding the advantage of having three more cores. Random conflicts allows as
many parallel processes as the number of metro nodes in the problem.

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 659

UK instance (Table 17.5 and Figure 17.9). The UK instance is about four times
bigger (with respect to the number of clients) than the Irish instance. Except for
the multi-walk approach (where no significance improvement is seen), we observe
that the parallel algorithms improve the quality of the solutions when increasing the
number of cores. Summing up, the observed performance gain ranges from 0.81%
to 1.99% (four cores), from 0.73% to 1.81% (eight cores), and 0.84% to 1.89%
(12 cores). Moreover, as depicted in Figure 17.9, the parallel algorithm based on
single walk also reaches a very high-quality solution much faster than the sequential
algorithm, and the performance increases as the number of cores increases. However,
in this case, we observe similar performances between independent set and random
conflict. That is because the independent sets are always larger than 12 and therefore
both approaches exploit parallelism as much as possible.

Italy instance (Table 17.6 and Figure 17.10).The largest performance improvement
of the parallel algorithm is observed for Italy (Table 17.6). We attribute this to the
size of the problem: the larger the problem the better the parallel algorithms perform.
Here we observe a performance gain ranging from 1.76% to 2.56 (four cores), 1.83%
to 2.74% (eight cores), and 1.88% to 2.80% (12 cores). Similarly to the Irish and the
UK datasets, Figure 17.10 shows the performance in time of the parallel algorithm,
and once again it can be observed that the parallel version reaches very good solutions
faster than the sequential algorithm.

10
1

10
2

10
31.5

2

2.5

3

3.5

4x 10
4

Time (s)

C
os

t

1 core
4 cores indset
4 cores randconf
8 cores indset
8 cores randconf
12 cores indset
12 cores randconf

Fig. 17.8: Ireland (|M| = 18): Solution cost vs. wall clock time (range [2, 1800]
seconds)

As pointed out before, the sequential algorithm obtains better solutions for the
Irish dataset after the 30-minute time limit, however, the parallel algorithm computes
near-optimal solutions faster than the sequential algorithm. For instance, as shown in
Table 17.7, the average gain (out of the four scenarios for each country with respect
to the sequential algorithm) after 100 seconds using four cores is 1.62% (independent

660 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

10
1

10
2

10
30.5

1

1.5

2

2.5

3

3.5x 10
5

Time (s)

C
os

t

1 core
4 cores indset
4 cores randconf
8 cores indset
8 cores randconf
12 cores indset
12 cores randconf

Fig. 17.9: UK (|M| = 75): Solution cost vs. wall clock time (range [2, 1800] seconds)

10
1

10
2

10
30

1

2

3

4

5

6x 10
5

Time (s)

C
os

t

1 core
4 cores indset
4 cores randconf
8 cores indset
8 cores randconf
12 cores indset
12 cores randconf

Fig. 17.10: Italy (|M| = 140): Solution cost vs. wall clock time (range [2, 1800]
seconds)

set) and 1.69% (random conflict), and after 10 seconds we observe a gain of up to
4.29% for random conflict and 1.39 % for independent set. Once again we observe
that when the cardinality of the maximum independent set is small with respect to the
number of cores random conflict performs better than independent set. Interestingly,
the relative gain of the parallel algorithm with respect to the sequential one is more
than 100% on two occasions for the UK (up to 130% for RC with 12 cores and 100
secs) and on eight occasions for Italy (up to 182% for IS and RC with 12 cores and
100 secs).

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 661

Table 17.7: Average gain with different time settings for each country

Country Time 4 cores 8 cores 12 cores
Secs IS RC IS RC IS RC

Ireland

10 -3.70 -6.05 1.39 4.00 0.65 4.29
100 1.64 1.56 1.62 1.69 1.66 1.64
1000 -0.75 -0.79 -0.82 -0.78 -0.78 -0.82
1800 -0.82 -0.86 -0.83 -0.93 -0.86 -0.90

UK

10 6.88 5.29 66.53 77.37 125.85 130.32
100 3.86 3.82 4.70 4.58 5.06 5.01
1000 2.13 2.15 2.37 2.34 2.42 2.40
1800 1.37 1.40 1.25 1.19 1.33 1.30

Italy

10 30.99 30.34 78.36 79.13 131.27 128.50
100 167.63 168.96 181.79 180.87 182.30 182.17
1000 2.75 2.71 2.94 2.92 3.00 2.99
1800 2.19 2.16 2.30 2.3 2.33 2.34

Finally, Table 17.8 concludes the experiments reporting the average speedup factor
(out of the four scenarios for each country) to reach the best solution after a given
amount of time, i.e., 10, 100, 1000, 1800 seconds. We recall that the speedup factor
is the gain in the speed of the parallel algorithm. We compute the speedup factor of
the parallel algorithm with c cores after t seconds to solve a given instance inst as
follows:

Speedup(inst,c, t) = T (C(t,inst,1),inst,1)
T (C(t,inst,1),inst,c) .

Table 17.8: Average speedup factor with different time settings for each country

Country Time 4 cores 8 cores 12 cores
Secs IS RC IS RC IS RC

Ireland

10 0.86 0.79 1.19 1.76 1.06 2.62
100 6.90 5.86 9.45 10.34 8.74 12.78
1000 – – – – – –
1800 – – – – – –

UK

10 1.07 1.02 2.13 2.13 3.37 3.00
100 1.86 2.03 3.58 3.54 5.25 5.31
1000 10.02 9.81 18.43 16.80 26.31 24.26
1800 7.49 7.31 13.84 12.54 18.96 17.94

Italy

10 3.00 3.00 4.50 4.50 4.50 4.5
100 4.00 4.03 7.82 7.68 11.00 10.79
1000 7.71 7.97 15.54 15.65 21.18 22.30
1800 12.22 11.72 22.98 20.57 28.60 30.38

In Table 17.8 we report ‘–’ in those cases where a parallel solution was not
obtained within the timeout. In the 10 seconds time-limit scenario, we observe
a speedup factor close to 1 for the UK and Italy. The speedup factor improves
considerably after 1000 seconds. It goes up to a factor of 26 for the UK (IS with 12

662 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

cores and 1000 secs) to a factor of 30 with eight cores for Italy (RC with 12 cores
and 1800 secs).

17.9 Conclusions and Future Work

We have presented an efficient local search algorithm for solving the Edge-disjoint
Rooted Distance-Constrained Minimum Spanning-Tree problem. We presented two
move operators along with their complexities and an incremental evaluation of
the neighbourhood and the objective function. Furthermore, we have proposed a
parallelisation scheme for the local search algorithm, which significantly reduces
the time required by the sequential version to reach high-quality solutions. Any
problem involving tree structures could benefit from these ideas and the techniques
presented are relevant for a constraint-based local search framework where this type
of incrementality is needed for network design problems. The effectiveness of our
approach is demonstrated by experimenting with a set of problem instances taken
from real-world long-reach passive optical network deployments in Ireland, Italy,
and the UK.

In the future we would like to extend ERDCMST with the notion of optional nodes,
since this extension is a common requirement in several applications of ERDCMST.
Effectively this means that we would compute for every facility a Minimum Steiner
Tree where all clients are covered but the path to them may follow some optional
nodes. We also plan to investigate alternative heuristics for selecting the most suitable
node and subtree for deletion at each iteration of the local search algorithm.

Acknowledgments

This work was supported by DISCUS (FP7 Grant Agreement 318137), and Sci-
ence Foundation Ireland (SF) Grant No. 10/CE/I1853. The Insight Centre for Data
Analytics is also supported by SFI under Grant Number SFI/12/RC/2289.

References

[1] A. Arbelaez and P. Codognet. Massivelly parallel local search for SAT. In 24th
IEEE International Conference on Tools with Artificial Intelligence, ICTAI’12,
pages 57–64, Athens, Greece, November 2012. IEEE Computer Society.

[2] A. Arbelaez and P. Codognet. From sequential to parallel local search for SAT.
In 13th European Conference on Evolutionary Computation in Combinatorial
Optimisation, EvoCOP’13, volume 7832 of Lecture Notes in Computer Science,
pages 157–168. Springer, 2013.

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 663

[3] A. Arbelaez and P. Codognet. A survey of parallel local search for SAT. In
Theory, Implementation, and Applications of SAT Technology. Workshop at
JSAI’13, Toyama, Japan, June 2013.

[4] A. Arbelaez and Y. Hamadi. Improving parallel local search for SAT. In 5th
International Conference on Learning and Intelligent Optimization LION 5,
volume 6683 of Lecture Notes in Computer Science, pages 46–60. Springer,
2011.

[5] A. Arbelaez, D. Mehta, B. O’Sullivan, and L. Quesada. Constraint-based local
search for the distance-and capacity-bounded network design problem. In 26th
IEEE International Conference on Tools with Artificial Intelligence, ICTAI’14,
pages 178–185. IEEE, 2014.

[6] A. Arbelaez, D. Mehta, B. O’Sullivan, and L. Quesada. A constraint-based
local search for edge disjoint rooted distance-constrained minimum spanning
tree problem. In 12th International Conference on Integration of AI and OR
Techniques in Constraint Programming, CPAIOR’15, volume 9075 of Lecture
Notes in Computer Science, pages 31–46. Springer, 2015.

[7] R. Baraglia, J. I. Hidalgo, and R. Perego. A parallel hybrid heuristic for the TSP.
In Applications of Evolutionary Computing, EvoWorkshops 2001: EvoCOP,
EvoFlight, EvoIASP, EvoLearn, and EvoSTIM, volume 2037 of Lecture Notes
in Computer Science, pages 193–202. Springer, 2001.

[8] Y. Caniou, D. Diaz, F. Richoux, P. Codognet, and S. Abreu. Performance
analysis of parallel constraint-based local search. In 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP’12,
pages 337–338. ACM, 2012.

[9] T. G. Crainic and M. Gendreau. Cooperative parallel tabu search for capacitated
network design. J. Heuristics, 8(6):601–627, 2002.

[10] P. Q. Dung, Y. Deville, and P. Van Hentenryck. Constraint-based local search
for constrained optimum paths problems. In 9th International Conference on
Integration of AI and OR Techniques in Contraint Programming for Combina-
torial Optimzation Problems, CPAIOR’19, volume 7298 of Lecture Notes in
Computer Science, pages 267–281. Springer, 2010.

[11] E. Eaton, C. P. Gomes, and B. C. Williams. Computational sustainability. AI
Magazine, 35(2):3–7, 2014.

[12] C. Gao, Y. Shi, Y. T. Hou, H. D. Sherali, and H. Zhou. Multicast communica-
tions in multi-hop cognitive radio networks. IEEE Journal on Selected Areas
in Communications, 29(4):784–793, 2011.

[13] J. M. Ho and D. T. Lee. Bounded diameter minimum spanning trees and related
problems. In Proceedings of the Fifth Annual Symposium on Computational
Geometry, SCG ’89, pages 276–282, New York, USA, 1989. ACM.

[14] H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, 2005.

[15] D. K. Hunter, Z. Lu, and T. H. Gilfedder. Protection of long-reach PON traffic
through router database synchronization. Journal of Optical Communications
and Networking, 6(5):535–549, 2007.

664 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

[16] M. Leitner, M. Ruthmair, and G. R. Raidl. Stabilized branch-and-price for
the rooted delay-constrained Steiner tree problem. In J. Pahl, T. Reiners, and
S. Voß, editors, INOC, volume 6701 of Lecture Notes in Computer Science,
pages 124–138. Springer, 2011. ISBN 978-3-642-21526-1.

[17] R. Martins, V. M. Manquinho, and I. Lynce. An overview of parallel SAT
solving. Constraints, 17(3):304–347, 2012.

[18] L. Michel, A. See, and P. Van Hentenryck. Parallel and distributed local search
in comet. Computers and Operations Research, 36:2357–2375, 2009.

[19] J. Oh, I. Pyo, and M. Pedram. Constructing minimal spanning/Steiner trees
with bounded path length. Integration, 22(1-2):137–163, 1997.

[20] S. Pant. Design and Analysis of Power Distribution Networks in VLSI Circuits.
PhD thesis, The School of Electrical Engineering in The University of Michigan,
2008.

[21] D. B. Payne. FTTP deployment options and economic challenges. In Proceed-
ings of the 36th European Conference and Exhibition on Optical Communica-
tion (ECOC 2009), 2009.

[22] A. Roli. Criticality and parallelism in structured SAT instances. In 8th Inter-
national Conference on Principles and Practice of Constraint Programming,
CP’02, volume 2470 of Lecture Notes in Computer Science, pages 714–719,
Ithaca, NY, USA, 2002. Springer.

[23] M. Ruffini, L. Wosinska, M. Achouche, J. Chen, N. J. Doran, F. Farjady,
J. Montalvo-Garcia, P. Ossieur, B. O’Sullivan, N. Parsons, T. Pfeiffer, X. Qiu,
C. Raack, H. Rohde, M. Schiano, P. D. Townsend, R. Wessäly, X. Yin, and
D. B. Payne. DISCUS: an end-to-end solution for ubiquitous broadband optical
access. IEEE Communications Magazine, 52(2):24–56, 2014.

[24] M. Ruthmair and G. R. Raidl. A Kruskal-based heuristic for the rooted delay-
constrained minimum spanning tree problem. In R. Moreno-Díaz, F. Pichler,
and A. Quesada-Arencibia, editors, EUROCAST, volume 5717 of Lecture Notes
in Computer Science, pages 713–720. Springer, 2009. ISBN 978-3-642-04771-
8.

[25] M. Ruthmair and G. R. Raidl. Variable neighborhood search and ant colony
optimization for the rooted delay-constrained minimum spanning tree problem.
In R. Schaefer, C. Cotta, J. Kolodziej, and G. Rudolph, editors, PPSN (2),
volume 6239 of Lecture Notes in Computer Science, pages 391–400. Springer,
2010. ISBN 978-3-642-15870-4.

[26] O. V. Shylo, T. Middelkoop, and P. M. Pardalos. Restart Strategies in Optimiza-
tion: Parallel and Serial Cases. Parallel Computing, 37(1):60–68, 2011.

[27] R. Sigua. Fundamentals of Traffic Engineering. University of the Philippines
Press, 2008.

[28] C. Truchet, A. Arbelaez, F. Richoux, and P. Codognet. Estimating parallel
runtimes for randomized algorithms in constraint solving. J. of Heuristics, 22
(4):613–648, 2016.

[29] P. Van Hentenryck and L. Michel. Constraint-based local search. The MIT
Press, 2009.

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 665

[30] M. Verhoeven and E. Aarts. Parallel local search. Journal of Heuristics, 1(1):
43–65, 1995.

[31] M. Verhoeven and M. Severens. Parallel local search for Steiner trees in graphs.
Annals of Operations Research, 90:185–202, 1999.

[32] X. Yuan and A. Saifee. Path selection methods for localized quality of service
routing. In 10th International Conference on Computer Communications and
Networks, ICCCN’01, pages 102–107. IEEE, 2001.

List of Algorithms

1.1 A Generic Local Search Algorithm . 6
1.2 The DPLL Algorithm . 7
1.3 The CDCL Algorithm . 8
2.1 The General Framework of the Procedure CreateCubes 39
2.2 The Procedure CreateCubes∗ with the Cutoff Mechanism 41
2.3 The Pseudo-Code of SolveCubes Using the Partition 43
3.1 Linear Search SAT-UNSAT Algorithm . 67
3.2 Linear Search UNSAT-SAT Algorithm . 68
3.3 WMSU3 Algorithm . 69
3.4 Fu-Malik for Weighted MaxSAT Algorithm . 70
4.1 Pseudocode of QCDCL . 109
4.2 Splitting Algorithm for QBF Evaluation . 112
5.1 The CS-SDSMT Algorithm . 150
5.2 An Interpolation-based Reconciliation Algorithm 159
7.1 Naive Computation of the Least Model . 241
7.2 Basic SMODELS Procedure . 243
7.3 Parallel Grounding on Beowulf Cluster (from [6]) 248
7.4 Component Level Parallelism . 249
7.5 Rule Level Parallelism (adapted from [68]) . 250
7.6 Single-Rule Level Parallelism (adapted from [68]) 251
7.7 Overall Structure of a Parallel Search ASP Computation 256
7.8 Naive Lookahead . 263
7.9 Parallel Lookahead . 263
7.10 GPU-ASP-Computation . 267
7.11 Stratified Datalog Computation . 272
8.1 A Generic Tree Search Algorithm . 284
8.2 A Generic Branch-and-Bound Algorithm . 287
8.3 Basic Racing Algorithm . 309
8.4 Static Load-Balancing Algorithm . 310
8.5 Master (Master-Worker) . 312
8.6 Worker (Master-Worker) . 312

667© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3

668 Alejandro Arbelaez, Deepak Mehta, Barry O’Sullivan, and Luis Quesada

8.7 Supervisor (Supervisor-Worker) . 314
8.8 Worker (Supervisor-Worker) . 315
8.9 Master (Master-Hub-Worker) . 316
8.10 Hub Master (Master-Hub-Worker) . 317
8.11 Worker (Master-Hub-Worker) . 318
8.12 Self Coordination Algorithm . 318
11.1 A* . 423
11.2 Simple Parallel A* (SPA*) . 427
11.3 Decentralized A* with Local OPEN/CLOSED lists 428
12.1 Depth-First Search Algorithm . 474
12.2 Sequential Emptiness Check for Weak TGBAs Based on DFS 476
12.3 Nested Depth-First Search Algorithm . 477
12.4 SCC-Based Emptiness Check . 480
12.5 A Parallel Search Algorithm for Checking the Emptiness of

Terminal Automata . 482
12.6 A parallel DFS algorithm for checking emptiness of weak automata 483
12.7 CNDFS, a Multi-Core Algorithm for LTL Model Checking 486
12.8 Concurrent Union-Find Data Structure . 489
12.9 Swarmed SCC-Based Algorithm . 490
12.10 UFSCC Algorithm: Improved Swarmed SCC Algorithm 491
12.11 OWCTY Algorithm . 495
12.12 MAP Algorithm . 496
13.1 The BDD Algorithm and, with the BDDs x and y as Parameters . . . 515
13.2 The Algorithm (left) is Implemented (right) Using SPAWN, SYNC

and CALL . 520
13.3 The Implementation of Work-Stealing Using Leapfrogging when

Waiting for a Stolen Task to Finish, i.e., steal from the thief 522
13.4 Parallelized BDD Algorithm exists, with the BDD x and V the

Cube of Variables that are Abstracted via Existential Quantification . 523
13.5 The Parallel Algorithm relnext, which Given the BDDs S

(representing a set of states), R (representing a transition relation)
and V (the cube of interleaved variables x∪x′) Computes the Set
of Successor States Defined on x, i.e.,

(∃x : (S∧R)
)
[x′ := x]. We

Assume that all Variables in R are also in V . 524
13.6 Algorithm for Parallel find-or-insert of the Hash Table,

with 512 Buckets per Region. The Variable myregion is a
Thread-Specific Variable . 530

13.7 The cache-put Algorithm . 532
13.8 The cache-get Algorithm . 533
14.1 Tree Search Algorithm . 552
14.2 HS-TREE ALGORITHM . 553
14.3 PROCESSNODE . 554
14.4 DIAGNOSELW: Level-Wise Parallelization . 563
14.5 DIAGNOSEFP: Full Parallelization . 564
14.6 QUICKXPLAIN (QXP) . 567

17 Parallel Constraint-Based LS: An Application to Designing Resilient LRPON 669

14.7 MERGEXPLAIN (MXP) . 568
15.1 Portfolio Configuration Procedure GLOBAL . 599
15.2 Portfolio Configuration Procedure PARHYDRA 600
15.3 Portfolio Configuration Procedure PARHYDRAb 605
17.1 Iterated Constraint-Based Local Search (move-op, s) 638
17.2 Constraint-Based Local Search (move-op, {T1, . . . ,T|M |}) 646
17.3 Random Independent set(fcg, card) . 648
17.4 Iterated Constraint-based Parallel Local Search (move-op, t) 649

Index

ω-regular language, 463

A* search algorithm, 423, 562
abstraction

algorithm, 295
communication, 306
implementation, 296
interface, 295

accepting run
definition, 464
lasso-shaped, 467

accepting SCC, 468
ACPP: Global, 599
ACPP: ParHydra, 600
ACPP: parHydrab, 605
adaptivity, 298
admissible heuristic, 424
agent-based modeling, 398
algorithm

abstract parallel, 308
abstraction, 295
comparison, 326
correctness, 290
deterministic, 17, 85, 290, 304, 319
effectiveness, 290, 291
framework, 295, 308, 321
integration, 295
parallel, 290, 326
phase, 292
separation, 298
sequential, 286, 325
underlying sequential, 293

algorithm configuration, 596, 597
algorithm parameters, 595
answer set, 242

computation, 246, 256, 267
constraint, 243, 275

grounder, 239, 247–252
antecedent clause, 39, 109
Aquarius, 180, 181, 202, 207
ASlib, 591
asserting clause, 110
assignment cache, 121
assignment tree, 103, 106, 108, 109, 113, 119
associative-commutative symbol, 208, 209
assumption-based reasoning, 121
automatic construction of parallel portfolios,

585, 596
automaton

Büchi, 463
degeneralization, 465
terminal, 471
weak, 471

backjumping, 9, 121, 212, 246
backtrack, 8, 108, 184, 255, 339, 445, 474
backward contraction, 186–188, 190, 195–197,

203, 205–208, 213
Beowulf, 248
binary decision diagram, 458, 509–541, 618,

620
bisimulation, 510, 535
bisimulation minimization, 537
blocking, 209
bloqqer, 117–119, 126, 128
bounded expansion, 104
bounding, 286, 288, 299
branching, 8, 16, 36, 39, 51, 79, 287–289,

319–322, 325, 340–342, 538
method, 288
pseudocost, 299
strategy, 285, 288
strong, 297

breadth-first search, 433, 474, 492, 553

671© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3

672 Index

C-reduction, 183
caching, 126, 183, 184, 473, 532
callback, 320
caqe, 115, 116, 118, 125
cardinality constraints, 66
CDCL, 7, 81, 103, 104, 108, 109, 212, 213,

215–217
CEGAR, 125, 129
CL-SDSAT, 214
clasp, 239, 247, 267, 270
claspfolio, 274
clausal simplification, 185, 186, 189, 206
clause diffusion, 180, 181, 190, 202–212, 214,

215
clause learning, 33, 81, 108, 128, 212, 255
clause sharing, 16, 17, 22–24, 44, 61, 72, 81,

82, 93, 594, 598, 602, 603, 609
clingo, 247
column generation, 319
communication protocol

MPI, 307
OpenMP, 307
PVM, 307

completion procedure, 187, 192, 196, 208
computational platform, see platform
concurrent rewriting, 192
configuration space, 596
conflict, 81, 245, 267–270, 552

analysis, 121, 269, 289
graph, 289
MERGEXPLAIN, 568
QUICKXPLAIN, 567
search algorithms, 566–567

conflict clause, 35, 39, 50, 126, 212–214, 216
contraction-based strategies, 181, 186, 187, 190,

201, 215
cooperative parallelism, 394, 404, 405
coordination, 303
coordination mechanism, 308

master-hub-worker, 313
master-worker, 310
multiple-master-worker, 313
parallel racing, 308
self coordination, 315
supervisor-worker, 311

CPTHEO, 199, 201
cube, 213, 214, 217
cube learning, 128
CUDA parallelism, 265
cut, see cutting plane
cutting plane, 287, 298

Datalog, 239, 244, 248, 252, 265, 271, 272
decomposition, 10, 157, 298, 345, 478, 561

degeneralization, 465
delta debugging, 131
dependency graph, 243, 244, 247, 249, 250,

253, 265
DepQBF, 115–121
depth-first search, 8, 184, 358, 474, 487, 575
determinism, 87, 303, 304, 319, 364
deterministic parallelism

strong, 304
weak, 305

deterministic solver, 85
diagnosis, 551

parallel algorithms
Boolean-HS-Tree, 577
evaluation, 569–574
full parallelization, 564
hybrid strategy, 575
join relation, 576
leading diagnoses, 574
level-wise parallelization, 563
MapReduce, 576
node and conflict search, 567
parallel random depth-first search, 575

parallelization strategies
node processing, 559
tree decomposition, 561
window-based processing, 560, 562

distributed fairness, 206, 207
distributed global contraction, 206, 207
distributed proof reconstruction, 206, 207
distributed search, 93, 191, 198, 202, 203, 206,

208–211, 213, 215, 217
distributed-memory algorithms, 9, 257, 315,

444, 445, 492
divide and conquer, 10, 151, 179, 211, 450, 486,

535, 565, 566
DLV, 239, 247, 248
DPLL, 5, 103, 108, 124, 189, 211–213, 215,

242, 245
duality-aware reasoning, 103, 129
dynamic synchronization, 91

efficiency, see parallel
parallel, 324

emptiness check
parallel scc based, 487
problem statement, 466

EQP, 208–210
existential quantification, 522–523
existential reduction, 107, 110, 111
expansion-based QBF solving, 104, 111, 129
expansion-based solving, 124
expansion-oriented strategies, 181, 186–188,

190, 213

Index 673

factoring, 184, 185, 205, 206
fairness, 189, 201, 207
feasible region, 284
folding-up, 183, 184
forward contraction, 186, 188, 189, 194, 195,

197, 203, 204, 206, 207, 213, 214
Fu-Malik algorithm, 70
fuzz testing, 131

gap
absolute, 287
optimality, 287
relative, 288

garbage collection, 533–535
geometric mean, 328, 363

shifted, 328
given-clause algorithm, 185, 194–196, 200,

208, 209
Google File System, 270
GPU parallelism, 264–265

ASP, 266
Datalog, 265

GPU thread, 265, 389
granularity, see task
gringo, 239, 247
grounding, 239, 247–252
guarantee formula, 471
guiding path, 79, 113, 114, 121, 126, 212, 213

hard clauses, 65
hash distributed A* (HDA*), 431
hashing, abstract Zobrist, 436
hashing, abstraction-based, 435
hashing, hyperplane work distribution, 438
hashing, operator-based Zobrist, 435
hashing, Zobrist, 434
helpful master scheduling, 125
Herbrand

function, 130
model, 241, 272

heterogeneous systems, 198, 199, 201, 202
heuristic

function, 424
primal, 287, 289, 298

hiqqer, 117
hiqqerfork, 111, 116, 117
hitting set tree search, 553–556
homogeneous systems, 198, 202
HordeQBF, 111, 116, 120, 121
HordeSAT, 111, 120
Horn clause, 182, 241
HPDS, 199
hqspre, 128
HS-Tree search, see hitting set tree search

hyperresolution, 185, 186, 199, 206, 215, 217

idle time, see overhead
implication graph, 81, 117
independent parallelism, 390
inequality

valid, 287, 299
infeasible, 287
initialization

direct, 301
enumerative, 300
racing ramp-up, 301
root, 300
selective, 301
spiral, 301
two-level root, 301

inprocessing, 48, 49, 104, 116
instance

features, 586
heterogeneous, 586
selection, 327
strategies, 180, 181, 189, 190, 194, 197, 215

integration, see algorithm
interface

abstraction, 295
communication, 307

interval splitting, 75
iterative deepening A* (IDA*), 443, 560

knowledge, 299, 320
broker, 322
global, 299
local, 299
sharing, 24, 116, 120–122, 128, 297, 299,

320, 584
Kripke structure

definition, 463
on-the-fly computation, 469
product with TGBA, 466

Lace, 521
language

ω-regular, 463
of a TGBA, 464

lasso-shaped accepting run, 467
learning, 7, 33, 81, 121, 151, 202, 255
lemmatization, 183, 212
lexicographic DFS, 459
linear optimization problem, 284, 298
linear resolution, 182, 184
linear search MaxSAT, 67
linear-time temporal logic, see LTL, see LTL
literal watching, 121
load balancing, 79, 248, 250, 267, 269, 299

674 Index

asynchronous round-robin, 302
dynamic, 301
nearest neighbor, 302
pure static, 310
quality, 301
quantity, 301
random polling, 302
static, 300
work-sharing, 302

local search methods, 381
lock-free programming, 516
lookahead, 262, 263
loop formula, 245
lower bound, 68
LP, see linear optimization problem
LP relaxation, see relaxation
lparse, 239, 247, 248
LTL, 462

subclasses, 471
translation to TGBA, 465

ManySAT, 19, 53, 213, 442, 596, 618, 619, 628,
630, 631

MAP algorithm, 494, 497
Map-Reduce parallelism, 270

ASP, 272
well-founded model, 272

master control object, 126
master process, 310
master-hub-worker, 313
master-worker, 310
maximal accepting predecessor, see MAP

algorithm
ME-ASP, 275
memory

contention, 306
lock, 306

MERGEXPLAIN, 568
metaheuristic methods, 383, 395
METEOR, 191, 194
MILP, see mixed integer linear optimization

problem
Minisat, 19, 37, 118, 620
mixed integer linear optimization problem, 284
model checking, 458, 536–537

automata-theoretic approach, 461
model elimination, 180, 182, 183, 199, 215
model-based diagnosis, 547

complexity, 556
conflict, 552
diagnosis, 551
hitting set tree search, 553–556
modeling, 549
tree search, 552

model-based reasoning, 180, 181, 211,
213–216, 547

model-based testing, 131
model-elimination tableaux, 180, 182, 215
Moufang identities, 210
MPI, 118, 120, 121, 123, 126, 209, 307, 315,

321, 324, 349, 366, 396, 397, 432
MPIDepQBF, 114, 116, 118, 119, 121, 127
MTBDD, 513
multi-search, 191, 198–202, 208–211, 213–215,

217
multi-terminal binary decision diagram, 513
mutiple-master-worker, 313

nearest neighbor, see load balancing
nested depth-first search, 476

CNDFS algorithm, 485, 486
ENDFS algorithm, 484
LNDFS algorithm, 484
NDFS algorithm, 484

Nick’s Class (NC), 459
node, 286, 299

child, 286
leaf, 286
parent, 286
terminal, 286

nogood, 245, 246, 267, 269
completion nogood, 245
forgetting, 270
learning, 255, 267
loop nogood, 245
propagation, 242, 246, 267, 268

non-variable overlap, 192
normalization, 185, 190, 193, 205, 206
NP-completeness, 101, 242

on-the-fly computation
Kripke structure, 469
product automaton, 470, 473

One-Way-Catch-Them-Young, see OWCTY
ordering-based strategies, 180, 181, 185, 187,

190, 191, 194, 197, 198, 200, 202, 206,
214, 215

OTTER, 194, 195, 201, 204, 207–209
overhead

communication, 293
idle time, 293, 294
parallel, 293, 324
redundant work, 294

OWCTY algorithm, 492, 497

P-completeness, 459, 460
pairs algorithm, 208, 209
PaMiraXT, 213

Index 675

PAQuBE, 114, 116, 121, 122, 124, 127
par-pd-depqbf, 111, 116–118, 130
parallel

performance, 291, 294
scalability, 291, 292
speed-up, 325

parallel algorithm, see algorithm
parallel linear search algorithms, 74
parallel overhead, see overhead
parallel portfolio construction, 598
parallel portfolio selection, 585–588
parallel presolving schedules, 591
parallel random depth-first search

fully synchronized, 486
swarming, 487

parallel retracting A* (PRA*), 446, 561
parallel rewriting, 190, 192, 193, 197
parallel speedup, 365, 387, 390–393, 396,

402–404, 406, 459, 499, 540, 647
parallel structured duplicate detection, 433
parallel unsatisfiability-based algorithms, 73
parallel window search, 445
parallelism

distributed memory, 306
node, 297
shared memory, 306
strong deterministic, 304
subnode, 297
subtree, 297
tree, 297
weak deterministic, 305

parallelism at the clause level, 190, 193, 194,
196, 197

parallelism at the search level, 190, 197, 198
parallelism at the term/literal level, 190, 191
paramodulation, 180, 184, 185, 205, 206, 208,

209
Parthenon, 191, 194
PARTHEO, 191, 194, 199
partial assignment, 105
partial MaxSAT, 65
PBNF, 433
pcaqe, 115–118, 125
PCNF, see prenex conjunctive normal form
Peers, 181, 202, 205, 208
Peers-mcd, 181, 202, 208–210
performance

measurement, 324
profile, 328
variability, 308, 325

performance complementarity, 585
period synchronization, 90
persistence formula, 471
phase, 292

primary, 293
ramp-down, 293
ramp-up, 292

Picosat, 118
pivot variable, 107
platform, 305

computational, 291
solution, 291
solver, 308

PMSat, 214
polynomial hierarchy, 102
Portfolio parallelism

ASP, 274
portfolio solving, 72, 111, 116, 117, 120, 181,

198, 202, 211, 406, 584
PQSAT, 115, 116, 123
PQSolve, 114–116, 122, 124, 125, 127
PQUABS, 115, 116, 118, 125
prenex conjunctive normal form, 105
prenex negation normal form, 125
preprocessing, 104, 116, 121, 126, 127, 193,

289
presolving schedule, 587
primary phase, see phase
product automaton

of TGBA and Kripke structure, 466
on-the-fly computation, 470

program
ASP program, 239, 242
CUDA program, 265
Datalog program, 252, 265
definite program, 241, 242
normal program, 242
program completion, 244, 245
range-restricted program, 244
stratified program, 252, 272
tight ASP program, 244, 245

programming by optimization, 584
Prolog Technology Theorem Proving, 184, 199
propositional satisfiability, 65, 101–102, 189,

211
PSATO, 179, 211, 212
pseudo-Boolean constraints, 66
PSPACE, 116
PSPACE-completeness, 103
PVM, 255, 307, 320, 390, 395, 561

Q-resolution, 106–110, 114
proof, 107, 130

Q-resolution calculus, 106
Q2CNF, 116
QBCP, 109
QBF, 102–132

assignment, 105–106

676 Index

assumption-based reasoning, 118
blocked clause elimination, 120
clause, 105
clause learning, 106, 108, 110
closed formula, 105
conflict, 103, 109
conjunctive normal form, 105
countermodel, 102, 106
cube, 105
cube learning, 106, 108, 110
decision making, 108–110
disjunctive normal form, 105
existential reduction, 107
expansion-based solving, 104, 115, 116, 129
free formula, 105
incremental solving, 116, 129
inprocessing, 116
knowledge sharing, 113, 116
learning, 108, 116
matrix, 105
model, 102, 106
negation normal form, 105
preprocessing, 104, 116, 119
pure literal, 108, 109, 126
quantifier scope, 105
restart, 120
satisfiability-equivalent, 106
search-based solving, 103, 108–111, 129
semantics, 106

existential player, 124
game, 124
universal player, 124

solution, 103, 109
strategy, 130
syntax, 105
unit clause, 111
unit literal, 109, 110
unit propagation, 108
variable assignment, 125

QBFEVAL, 104, 116, 117, 131, 132
QCDCL, 103, 104, 106, 108–111, 113, 114,

116, 118, 120, 126, 130
QCIR, 111
QMiraXT, 114, 116, 122, 124, 126, 127
QSAT, 102, 115, 116, 123
QSolve, 115, 116, 124
quabs, 115, 116, 125
quantified Boolean formulas, see QBF
quantifier elimination, 123
quantifier inversion, 124
Quantor, 126, 128
QuBE, 115, 116, 121
QUICKXPLAIN, 567
qxbf, 117

racing ramp-up, see initialization
ramp-down phase, see phase
ramp-up phase, see phase
random polling, see load balancing
reachability, 442, 477, 493, 535, 536, 540
redundancy, 181, 183, 188, 197, 207, 210, 214,

217
redundant work, see overhead
regressive merging, 183
rejecting SCC, 468
relational product, 523–525
relaxation

LP, 284
relaxation variables, 67
resolution, 7, 18, 35, 39, 50, 106, 107, 159, 180,

184, 185, 199, 205, 211, 212, 217, 238,
269, 342

resolution refutation, 7
restart, 16, 46, 75, 120, 169, 270, 344, 565
Robbins algebras, 209, 210
ROO, 181, 194–196
round-robin, see load balancing
runtime distribution, 387, 388

SAT local search, 5, 398
SAT solver, 109, 125, 179, 181, 190, 211,

213–215, 558, 618
SBA, 464
scalability, 92, see parallel
SCC, 468

computation algorithms, 478
scheduling, 255, 259–261
search, 288

best bound, 288
depth-first, 311
diving, 288
strategy, 284, 288
tree, 284

search overlap, 198, 204, 205, 210, 212, 214
search space splitting, 75, 111
search-based QBF solving, 103, 108–111, 129
selection heuristics, 269
self coordination, 315
semantic guidance, 185, 186, 190, 215, 216
semantic resolution, 185, 215
sequential algorithm, see algorithm
sequential algorithm selection, 586
sequential MaxSAT, 66
set of support, 185, 186, 194, 215
SGBA, 464
SGGS, 180, 216, 217
shared clauses, 17, 81, 126
simplification, 185, 187, 193, 206, 207, 209
SIMT parallelism, 265, 266

Index 677

single quantification level scheduling, 127
Skolem function, 130
smodels, 239, 243, 247, 253, 262
SMP parallelism, 248
SMT, 141, 180
SMT solver, 180, 181, 215
soft clauses, 65
solution, 284, 298, 299
solution analysis, 121
solution learning, 108
solution platform, see platform
solution quality, 391, 403, 406, 407
speedup, 209, 210, see parallel
SQLS, 122, 124
SqueezBF, 121, 122, 128
stable model, 238
standard synchronization, 89
state-space partitioning, 492
state-space search, 419
strongly connected component, 117, 247, 249,

468
structure

Kripke, see Kripke structure
structured duplicate detection, 432
subclasses

LTL, 471
subgoal-reduction strategies, 180, 181, 183,

184, 190, 191, 193, 197, 198, 201, 213
subsumption, 185, 186, 189, 199, 206
superposition, 184, 185, 187, 192, 193, 205,

206, 209
supervisor-worker, 311
SWARM, 485
Sylvan, 509–541
symbolic bisimulation minimization, 537
symbolic reachability, 536
synchronization, 303

barrier, 303
synchronization point, 85

task, 319

granularity, 297
sharing, 255, 258
stealing, 193

TBA, 464
TBGA

product with Kripke structure, 466
Team-Work, 181, 200–202, 214
TECHS, 201
temporal hierarchy, 471
terminal automaton, 471
TGBA, 464

degeneralization, 465
translation from LTL, 465

thread divergence, 267
transposition-driven scheduling, 444
trivial falsity, 124
trivial SCC, 468
trivial truth, 124
truth assignment, 4, 33, 149, 169, 268

UIP, 270
union-find, 478, 487
unit-resulting resolution, 199, 206
universal reduction, 107, 109, 110
unsatisfiable subformulas, 69
upper bound, 67

variable dependency, 104
variable-activity scaling, 121
VSIDS, 19, 79, 83, 126

weak automaton, 471
weighted MaxSAT, 66
WMSU3 algorithm, 69
work-sharing, see load balancing
work-stealing, 79, see load balancing, 337, 342,

343, 346, 351, 355, 358, 364, 365, 367,
368, 370, 371, 429, 444, 519–526, 534,
535, 540

young brothers wait scheduling, 125

	Foreword
	Preface
	Contents
	List of Contributors
	Part I Theory and Algorithms
	1 Parallel Satisfiability
	1.1 Introduction
	1.2 Preliminaries
	1.2.1 Satisfiability (SAT)
	1.2.2 Local Search Algorithms for SAT
	1.2.3 The DPLL Algorithm
	1.2.4 Resolution Refutation
	1.2.5 The CDCL Algorithm
	1.2.6 Parallel Computing Architectures
	1.2.7 Measuring Speedups

	1.3 Divide-and-Conquer Approaches
	1.3.1 Problem Decomposition and Load Balancing
	1.3.2 Implementations of Search-Space-Splitting Solvers
	1.3.3 Search Space Splitting in CDCL
	1.3.4 Cube and Conquer

	1.4 Parallel Portfolios – Diversify and Conquer!
	1.4.1 Virtual Best Solver
	1.4.2 Pure Portfolio Solvers and Diversification
	1.4.3 Clause-Sharing Portfolios
	1.4.4 Impact of Diversification and Clause Sharing
	1.4.5 Examples of Parallel Portfolio Solvers

	1.5 Parallel Local Search
	1.5.1 Multiple Flips
	1.5.2 Portfolios

	1.6 Future Challenges
	Acknowledgements
	References

	2 Cube-and-Conquer for Satisfiability
	2.1 Introduction
	2.2 Preliminaries
	2.3 Combining CDCL and Lookahead
	2.4 Creating Cubes: The Basic Method
	2.5 Creating Cubes: a General Methodology
	2.5.1 General Framework
	2.5.2 Cutoff Heuristic
	2.5.3 Heuristics for Splitting

	2.6 Solving Cubes
	2.6.1 Sequential Solving
	2.6.2 Solving Cubes in Parallel

	2.7 Interleaving the Cube and Conquer Phases
	2.7.1 Ineffective Lookahead Heuristics
	2.7.2 Concurrent Cube-and-Conquer
	2.7.3 Cubes on Demand

	2.8 Proofs of Unsatisfiability
	2.9 Experimental Evaluation
	2.9.1 Application Benchmarks
	2.9.2 The Boolean Pythagorean Triples Problem

	2.10 Conclusions
	Acknowledgements
	References

	3 Parallel Maximum Satisfiability
	3.1 Introduction
	3.2 Maximum Satisfiability
	3.2.1 Sequential MaxSAT Algorithms
	3.2.1.1 Linear Search Algorithms
	3.2.1.2 Unsatisfiability-Based Algorithms
	3.2.1.3 Other Algorithmic Solutions and Implementation Issues

	3.3 Parallel MaxSAT
	3.3.1 Portfolio Approaches
	3.3.1.1 Parallel Unsatisfiability-Based Algorithms
	3.3.1.2 Parallel Linear Search Algorithms
	3.3.1.3 Implementation Issues

	3.3.2 Search Space Splitting
	3.3.2.1 Interval Splitting
	3.3.2.2 Guiding Paths
	3.3.2.3 Other Splitting Schemes and Implementation Issues

	3.3.3 Clause Sharing
	3.3.3.1 Conditions for Safe Clause Sharing
	3.3.3.2 Clause-Sharing Heuristics
	3.3.3.3 Comparison Between Clause-Sharing Heuristics

	3.4 Deterministic Parallel MaxSAT
	3.4.1 Motivation
	3.4.2 Deterministic Solver
	3.4.2.1 Standard Synchronization
	3.4.2.2 Period Synchronization
	3.4.2.3 Dynamic Synchronization

	3.4.3 Comparison Between Non-deterministic and Deterministic Solvers

	3.5 Research Directions
	3.5.1 Scalability
	3.5.2 Clause Sharing

	Acknowledgments
	References

	4 Parallel Solving of Quantified Boolean Formulas
	4.1 Introduction
	4.2 Background
	4.3 Sequential Search-Based QBF Solving
	4.4 Parallel QBF Solving at a Glance
	4.5 Parallel QBF-Solving Approaches
	4.6 Challenges and Potential of Parallel QBF Solving
	4.7 Conclusion
	References

	5 Parallel Satisfiability Modulo Theories
	5.1 Introduction
	5.2 General Preliminaries
	5.2.1 Theories
	5.2.2 The Underlying Conflict-Driven, Clause-Learning SAT Solver
	5.2.3 Theory Combination
	5.2.4 Interpolants
	5.2.5 SMT Solvers

	5.3 Portfolios of SMT Solvers
	5.3.1 Parallel SMT Based on Algorithm Portfolios
	5.3.2 Lemma Sharing in Portfolios
	5.3.3 Centralized Lemma Databases
	5.3.4 Experiments on the Algorithmic Framework
	5.3.5 Lemma Sharing and Partitioning

	5.4 Search-Space Partitioning in SMT
	5.4.1 Plain Partitioning

	5.5 Decomposition
	5.5.1 Experimental Evidence
	5.5.2 Variations and Extensions

	5.6 Combinations of Parallelization Algorithms
	5.6.1 The Parallelization Tree
	5.6.2 Iterative Partitioning with Partition Trees
	5.6.3 Safe and Repeated Partitioning
	5.6.4 Constructing Partitions

	5.7 Further topics
	References

	6 Parallel Theorem Proving
	6.1 Introduction
	6.2 Theorem Proving Strategies
	6.2.1 Subgoal-Reduction Strategies
	6.2.2 Ordering-Based Strategies
	6.2.2.1 Expansion-Oriented Strategies
	6.2.2.2 Contraction-Based Strategies

	6.2.3 Instance-Based Strategies

	6.3 Parallelization of Theorem Proving
	6.3.1 Parallelism at the Term or Literal Level
	6.3.1.1 Parallelism at the Literal Level for Subgoal-Reduction Strategies
	6.3.1.2 Parallelism at the Term Level for Ordering-Based Strategies

	6.3.2 Parallelism at the Clause Level
	6.3.2.1 Parallelism at the Clause Level for Subgoal-Reduction and Instance-Based Strategies
	6.3.2.2 Parallelism at the Clause Level for Ordering-Based Strategies

	6.3.3 The Rise of Parallel Search
	6.3.4 Multi-search
	6.3.4.1 Multi-search for Subgoal-Reduction Strategies
	6.3.4.2 Multi-search for Ordering-Based Strategies

	6.3.5 Distributed Search
	6.3.5.1 Distributed Search for Ordering-Based Strategies
	6.3.5.2 The Basic Clause-Diffusion Mechanisms
	6.3.5.3 The Subdivision of Clauses in Clause-Diffusion
	6.3.5.4 The Subdivision of Inferences in Clause-Diffusion
	6.3.5.5 Distributed Global Contraction, Distributed Fairness, and Distributed Proof Reconstruction
	6.3.5.6 The Clause-Diffusion Provers

	6.4 Discussion
	6.4.1 Parallel Theorem Proving and Parallel Satisfiability
	6.4.2 Parallelism and First-Order Model-Based Reasoning

	References

	7 Parallel Answer Set Programming
	7.1 Introduction
	7.2 Background
	7.2.1 Definite Logic Programming
	7.2.2 Normal Logic Programs and Answer Set Programming
	7.2.3 Datalog
	7.2.4 Alternative ASP Computation Models
	7.2.4.1 Program Completion
	7.2.4.2 Conflict-Driven Search
	7.2.4.3 ASP Computation

	7.3 Parallelizing the Grounding Phase
	7.3.1 Introduction
	7.3.2 Naive Parallel Grounding
	7.3.3 Multi-level Parallel Grounding

	7.4 Parallelizing the Inference Phase I: Parallel Datalog
	7.5 Parallelizing the Inference Phase II: Parallel ASP
	7.5.1 Parallelizing the Search Process
	7.5.1.1 General Idea and Seminal Work
	7.5.1.2 Techniques for Task Sharing
	7.5.1.3 Scheduling and Load Balancing
	7.5.1.4 Parallelizing Lookahead

	7.5.2 GPU-Based Parallelism
	7.5.2.1 GPU-Based Datalog Solving
	7.5.2.2 GPU-Based Conflict-Driven ASP Solving

	7.5.3 Moving Towards Large-Scale Architectures
	7.5.3.1 The Map-Reduce Programming Model
	7.5.3.2 Datalog and Map-Reduce
	7.5.3.3 Towards ASP: Well-Founded Semantics and Map-Reduce
	7.5.3.4 Other Relevant Applications of Map-Reduce

	7.5.4 Portfolio Approaches for ASP

	7.6 Discussion and Conclusions
	References

	8 Parallel Solvers for Mixed Integer Linear Optimization
	8.1 Introduction
	8.2 Sequential Algorithms
	8.2.1 Basic Components
	8.2.2 Advanced Procedures

	8.3 Parallel Algorithms
	8.3.1 Scalability and Performance
	8.3.1.1 Scalability
	8.3.1.2 Performance

	8.3.2 Properties
	8.3.2.1 Abstraction and Integration
	8.3.2.2 Granularity
	8.3.2.3 Adaptivity
	8.3.2.4 Knowledge Sharing
	8.3.2.5 Load Balancing
	8.3.2.6 Synchronization and Coordination
	8.3.2.7 Determinism

	8.3.3 Implementation
	8.3.3.1 Platform
	8.3.3.2 Frameworks and Solvers
	8.3.3.3 Coordination Mechanisms

	8.4 Software
	8.4.1 Solvers
	8.4.2 Frameworks

	8.5 Performance Measurement
	8.5.1 Performance Variability
	8.5.2 Comparisons
	8.5.3 Instance Selection
	8.5.4 Alternative Performance Measures
	8.5.5 Summary Measures

	8.6 Concluding Remarks
	References

	9 Parallel Constraint Programming
	9.1 Introduction
	9.1.1 Filtering + Propagation
	9.1.2 Search
	9.1.2.1 Search Methods in Solvers

	9.1.3 Parallelism and Constraint Programming
	9.1.3.1 Parallel Propagators and Propagation
	9.1.3.2 Search Space Splitting
	9.1.3.3 Portfolio Algorithms
	9.1.3.4 Distributed CSPs
	9.1.3.5 Problem Decomposition

	9.2 Background
	9.2.1 Parallelism
	9.2.1.1 Parallelization Measures and Amdahl’s Law

	9.2.2 Embarrassingly Parallel Computation
	9.2.3 Internal and External Parallelization
	9.2.4 Constraint Programming

	9.3 Parallel Search Tree
	9.3.1 Static Partitioning
	9.3.2 Dynamic Partitioning
	9.3.2.1 Local Subtree Solving
	9.3.2.2 Subtree Definition

	9.4 Problem Decomposition
	9.4.1 Principles
	9.4.1.1 Sub-problems Generation: a Top-Down Method
	9.4.1.2 Sub-problems Generation: a Bottom-Up Method
	9.4.1.3 Implementation
	9.4.1.4 Size of the Partition

	9.4.2 Determinism

	9.5 Comparison Between the Work-Stealing Approach and EPS
	9.6 Experiments
	9.6.1 Benchmark Instances
	9.6.1.1 Implementation Details
	9.6.1.2 Execution Environments

	9.6.2 Multi-core
	9.6.3 Data Center
	9.6.4 Cloud Computing
	9.6.5 Comparison with Portfolios

	9.7 Conclusion
	References

	10 Parallel Local Search
	10.1 Introduction
	10.2 Local Search Metaheuristics
	10.3 Sources of Parallelism
	10.3.1 Single-Walk and Multiple-Walk Methods
	10.3.2 Parallel Speedups and Runtime Distributions

	10.4 Single-Walk Approaches
	10.5 Independent Multiple-Walk Approaches
	10.5.1 Early Independent Multiple-Walk Methods
	10.5.2 Recent Experiments and Performance Results

	10.6 Cooperative Multiple-Walk Approaches
	10.6.1 Metaheuristic Parallelization Approaches
	10.6.2 Agent-Based Approaches
	10.6.3 Framework Approaches

	10.7 Parallelism at Work
	10.7.1 Stable Matching Problem
	10.7.2 The Quadratic Assignment Problem

	10.8 Conclusion
	References

	11 Parallel A* for State-Space Search
	11.1 Introduction
	11.2 Preliminaries: Review of A*
	11.2.1 The A* Algorithm

	11.3 Parallel Best-First Search Algorithms
	11.3.1 Parallel Overheads
	11.3.2 Centralized Parallel A*
	11.3.3 Decentralized Parallel A*
	11.3.3.1 Termination Detection in Decentralized Parallel Search

	11.4 Hash-Based Decentralized A*
	11.4.1 Hash Distributed A*

	11.5 Decentralized Search Using Structure-Based Search Space Partitioning)
	11.6 Hash Functions for Hash-Based Decentralized Work Distribution
	11.6.1 Multiplicative Hashing
	11.6.2 Zobrist Hashing
	11.6.3 Operator-Based Zobrist Hashing
	11.6.4 Abstraction
	11.6.5 Abstract Zobrist Hashing
	11.6.6 Hyperplane Work Distribution
	11.6.7 Empirical Comparison of Hash Functions
	11.6.8 Domain-Independent, Automatic Generation of Hash Functions
	11.6.9 Hash-Based Work Distribution in Model Checking

	11.7 Parallel Portfolios Using A*
	11.8 Parallel, Limited-Memory A* (Parallel IDA*, TDS, PRA*)
	11.8.1 Transposition Table-Driven Scheduling (TDS)
	11.8.2 Work Stealing for IDA*
	11.8.3 Parallel Window Search
	11.8.4 Parallel Retracting A* (PRA*)

	11.9 Parallel A* in Cloud Environments with Practically Unlimited Available Resources
	11.9.1 Iterative Allocation Strategy

	11.10 Parallel A* and IDA* on Graphics Processing Units
	11.11 Other Approaches
	References

	12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic
	12.1 Introduction
	12.2 Preliminaries: LTL Model Checking and Automata
	12.2.1 Automata-Theoretic Model Checking
	12.2.2 Sequences and ω-Words
	12.2.3 Linear-Time Temporal Logic
	12.2.4 Kripke Structures
	12.2.5 Büchi Automata
	12.2.6 The Emptiness-Check Problem
	12.2.7 Implicit Models and Automata
	12.2.8 Simpler Subclasses

	12.3 Basic Sequential LTL Model Checking Algorithms
	12.3.1 On-the-Fly Algorithms
	12.3.2 Depth-First Search
	12.3.3 Nested-DFS
	12.3.4 Algorithms Based on SCC Decomposition

	12.4 Multi-core, DFS-Based Solutions
	12.4.1 Terminal and Weak Acceptance
	12.4.2 CNDFS
	12.4.3 Multi-core/DFS-Based SCC Decomposition

	12.5 Distributed, BFS-Based Solutions
	12.5.1 One-Way-Catch-Them-Young
	12.5.2 MAP
	12.5.3 Combining OWCTY and MAP

	12.6 Conclusion
	References

	13 Multi-core Decision Diagrams
	13.1 Introduction
	13.2 Preliminaries
	13.2.1 Boolean Logic and Notation
	13.2.2 Binary Decision Diagrams
	13.2.3 Multi-terminal Binary Decision Diagrams
	13.2.4 Algorithms on Decision Diagrams
	13.2.5 Parallelism
	13.2.6 Historical Perspective

	13.3 Parallel Decision Diagrams
	13.3.1 Work-Stealing
	13.3.2 Parallel Operations with Work-Stealing
	13.3.3 Conclusion

	13.4 Concurrent Data Structures
	13.4.1 Representation of Nodes
	13.4.2 Unique Table
	13.4.3 Computed Table

	13.5 Garbage Collection
	13.6 Empirical Results
	13.6.1 Symbolic Model Checking
	13.6.2 Symbolic On-the-Fly Reachability
	13.6.3 Symbolic Bisimulation Minimisation
	13.6.4 Probabilistic Model Checking

	13.7 Conclusions
	References

	14 Parallel Model-Based Diagnosis
	14.1 Introduction
	14.1.1 Background
	14.1.2 Outline of the Chapter

	14.2 Reiter’s Diagnosis Framework
	14.2.1 Example: A Diagnosis Problem Instance
	14.2.2 Diagnoses and Conflicts
	14.2.3 The Hitting Set Tree Algorithm
	14.2.4 Example: Hitting Set Tree Construction
	14.2.5 Complexity Considerations

	14.3 Alternative Approaches to Compute Diagnoses
	14.4 Parallelization of Tree Search Algorithms
	14.4.1 General Parallelization Strategies
	14.4.2 Applying Domain-Independent Parallelized Search Techniques

	14.5 Parallelized Hitting Set Tree Construction Schemes
	14.5.1 Computing Multiple Hitting Set Tree Nodes in Parallel
	14.5.1.1 Level-Wise Parallelization
	14.5.1.2 Full Parallelization

	14.5.2 Computing Nodes and Conflicts in Parallel
	14.5.2.1 Background: QUICKXPLAIN and MERGEXPLAIN
	14.5.2.2 Strategies for Combining Node and Conflict Computation

	14.6 Effectiveness of Computing Multiple Nodes in Parallel
	14.6.1 General Considerations
	14.6.2 Results for Standard Electronic Circuit Benchmark Problems
	14.6.3 Systematic Variation of Problem Characteristics
	14.6.3.1 Method
	14.6.3.2 Results

	14.7 Alternative Model-Based Diagnosis Parallelization Approaches
	14.7.1 Tree-Based Approaches To Find One or Few Diagnoses
	14.7.2 Distributed Hitting Set Algorithms with Known Conflicts

	14.8 Summary
	Acknowledgements
	References

	Part II Tools and Applications
	15 Selection and Configuration of Parallel Portfolios
	15.1 Introduction
	15.2 Per-Instance Selection of Parallel Portfolios
	15.2.1 Problem Statement
	15.2.2 Parallelization of Sequential Algorithm Selectors
	15.2.2.1 Performance-Based Nearest Neighbor (PNN)
	15.2.2.2 Distance-Based Nearest Neighbor (DNN)
	15.2.2.3 Clustering
	15.2.2.4 Regression
	15.2.2.5 Pairwise Voting

	15.2.3 Parallel Presolving Schedules
	15.2.4 Empirical Study on Satisfiability Benchmarks
	15.2.5 Other Parallel Portfolio Selection Approaches

	15.3 Automatic Construction of Parallel Portfolios from Parameterized Solvers
	15.3.1 Problem Statement
	15.3.2 Automatic Construction of Parallel Portfolios (ACPP)
	15.3.2.1 Multiplying Configuration Space:
	15.3.2.2 Iterative Approach:
	15.3.2.3 Comparing GLOBAL and PARHYDRA
	15.3.2.4 Empirical Study on SAT 2012 Challenge
	15.3.2.5 ACPP with Multiple Solvers

	15.3.3 Automatic Construction of Parallel Portfolios from Parallel Parameterized Solvers
	15.3.3.1 Configuration of Clause Sharing
	15.3.3.2 Portfolio Construction Using Parallel Solvers
	15.3.3.3 Empirical Study on 2012 SAT Challenge

	15.4 Conclusions and Future Work
	Acknowledgement
	References

	16 An Application of Parallel Satisfiability Solving to the Verification of Complex Embedded Systems
	16.1 Introduction
	16.2 FormalSpecs Verifier Verification Framework
	16.3 Integration of the ManySAT Solver
	16.4 Cruise Control Use Case
	16.5 Simulink Model and Specification
	16.5.1 Continuous-Time Non-linear Model
	16.5.1.1 ECU Subsystem
	16.5.1.2 Engine Subsystem
	16.5.1.3 Vehicle Dynamics Subsystem

	16.5.2 Discrete-Time Discrete-Value Model
	16.5.2.1 Verification Subsystems

	16.6 Experimental Results
	16.6.1 Cruise Control Model
	16.6.1.1 Bounded Model Checking Verification with Incremental Bounds
	16.6.1.2 Bounded Model Checking Verification with Fixed Bound Value

	16.6.2 Additional Experiments

	16.7 Conclusions
	References

	17 Parallel Constraint-Based Local Search: An Application to Designing Resilient Long-Reach Passive Optical Networks
	17.1 Introduction
	17.2 Formal Specification and Complexity
	17.3 A Mathematical Model for ERDCMST
	17.4 Iterated Constraint-Based Local Search
	17.4.1 Move Operators
	17.4.2 Operations and Complexities

	17.5 Sequential Algorithm
	17.6 Parallel Algorithm
	17.6.1 Multi-Walk and Single-Walk
	17.6.2 Parallel Moves for ERDCMST

	17.7 Application: Long-Reach Passive Optical Networks
	17.8 Empirical Evaluation
	17.8.1 ERDCMST Results: Sequential LS
	17.8.2 ERDCMST Results: Parallel LS

	17.9 Conclusions and Future Work
	Acknowledgments
	References

	List of Algorithms
	Index

