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Abstract This chapter addresses sound scene and event classification in multiview
settings, that is, settings where the observations are obtained from multiple sensors,
each sensor contributing a particular view of the data (e.g., audio microphones, video
cameras, etc.). We briefly introduce some of the techniques that can be exploited to
effectively combine the data conveyed by the different views under analysis for a
better interpretation. We first provide a high-level presentation of generic methods
that are particularly relevant in the context of multiview and multimodal sound
scene analysis. Then, we more specifically present a selection of techniques used
for audiovisual event detection and microphone array-based scene analysis.
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9.1 Introduction

We now extend the study of sound scene and event classification to settings where
the observations are obtained from multiple sensors, which we refer to as multiview
data, each sensor contributing a particular view of the data. Instances of this include
both multichannel audio data, as acquired by microphone arrays, or more generally,
multimodal data, i.e., heterogeneous data that involves two or more modalities such
as the audio or visual modalities in video recordings.

Be it for applications in machine perception—at the heart of robots’ and virtual
agents’ intelligence systems—or video description—as part of video surveillance
or multimedia indexing systems—multiview approaches can lead to a significant
boost in performance in challenging real-world situations. Indeed, multiplying the
sources of information, through different views, should result in a more robust
overall “picture” of the scene being analyzed, where sensors, and consequently
views, which are not reliable, e.g., noisy, at a particular time instant, are hopefully
backed-up by others. This is, for instance, the case in video recordings where sound-
emitting target events are not visible onscreen because of poor lighting conditions
or occlusions.

Such an endeavor is actually as promising as challenging, primarily because
of the significant increase in the volume of the data to be analyzed, but also
owing to the potential heterogeneity of the different streams of information (e.g.,
audio and visual streams), which additionally may not be perfectly synchronized.
Another difficulty is that it is usually not possible to determine which streams
are not reliable at every time instant. To see this, consider the scenario of scene
analysis using a robot’s sensors. The data views available may then be composed
of the multiple audio streams acquired by the robot’s microphone array, as well as
RGB and depth-image streams captured by its cameras, possibly along with other
signals recorded by inertial measurement units. As the cameras are pointed at an
interactant, events of interest may appear only partially in their field of view, and
be present in the audio recording only at a very low signal-to-noise ratio. This may
be due to background noise (including the robot’s internal noise, the so-called ego-
noise, typically produced by its cooling fans or its actuators) and the voice of the
interactant, or the robot itself, in the foreground.

In this chapter, we briefly introduce some of the techniques that can be exploited
to effectively combine the data conveyed by the different views under analysis for
a better interpretation. Numerous good surveys have been written on the general
topic of multimodal data fusion, notably the paper by Atrey et al. [10] which is
quite comprehensive. Therefore, we first provide a high-level presentation of generic
methods that are particularly relevant in the context of multiview and multimodal
sound scene analysis (Sect. 9.3). It is worth noting that some of the techniques
presented have not necessarily yet been considered in the context of scene and event
recognition as envisaged in this book. We still briefly cover them in this chapter
as it is believed they hold a good potential for such applications. We then more
specifically present a selection of techniques used for audiovisual event detection
and microphone array-based scene analysis (in Sects. 9.4 and 9.5, respectively).
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9.2 Background and Overview

9.2.1 Multiview Architectures

Figure 9.1 depicts an overview of the main fusion strategies that are exploited
when analyzing multiview data, namely (1) fusion at the representation or feature
level (upper row of the figure), and (2) fusion at the decision-level, usually
implying integration of partial classifier-outputs. Each of these methods will be
discussed further in Sect. 9.3. In particular, we will focus on a special case of
representation/feature-level fusion that is here referred to as joint subspace learning
where the aim is to learn or non-trivially transform the representations based on
inter-relationships across the views.

As previously mentioned, views can be either of the same nature, in which case
they are referred to as channels (typically audio channels) each corresponding to
a particular microphone, or of different nature as in multimodal scenarios where,
for example, some of the views could correspond to different audio channels while
others to video images recorded by different cameras.

9.2.2 Visual Features

Since videos are central to the content of this chapter, a short note on commonly
employed visual features is in order. Features extracted from visual streams can
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Fig. 9.1 Overview of multiview data analysis approaches
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be broadly classified into two categories: appearance-based and motion-based fea-
tures. For the former, several local and global descriptors representing appearance
attributes namely, color, texture, and shape are extracted. While some works utilize
the raw pixel data or color histograms, others rely on standard features such as
scale-invariant feature transform (SIFT) [96] and histograms of oriented gradients
(HOG) [40]. Lately, features extracted from convolutional neural networks have
dominated [88].

Motion-based features are typically computed using optical flow or tracking
data. It is possible to represent temporal changes of segmented regions, objects,
and shapes by calculating velocity and acceleration, i.e., optical flow and its
derivative. Other popular features include histograms of optical flow (HOF) [154]
and motion boundary histograms (MBH) [154]. As MBH is computed from optical
flow derivatives, it is not affected by constant motion. This makes it robust to
camera motion. The reader is referred to [79, 101] for an extensive review of visual
representations used for multimodal analysis.

In multiview settings temporal synchronization across views is quite challenging.
Notably, in the audiovisual case, since the video frame rate, typically around 25–30
frames per second is significantly different from the audio one, features from both
modalities must be appropriately sampled for temporal correspondence. Moreover,
the natural asynchrony that exists between the two modalities must also be taken
into account. This means that cues for an audiovisual event might not appear
simultaneously in both modalities.

9.3 General Techniques for Multiview Data Analysis

Generally, the techniques discussed here (in the following two subsections) operate
at either the representation-level or the decision-level as further described in the next
sections.

9.3.1 Representation and Feature Integration/Fusion

Representation or feature integration/fusion is the process of combining different
types of features or low-level data representations from different views into a
common representation (usually to be exploited by a prediction system).

In practice, this can be primarily achieved by concatenating the feature vectors
om;t, extracted from views m, 1 � m � M, at the same time positions t, to build

integrated feature vectors Not D
�
oT

1;t; : : : ; oT
M;t

�T
; provided that the data analysis-rate

and cross-view synchronization issues have been previously addressed.
However, the dimensionality of the resulting representation is often too high,

which has led researchers to resort to dimensionality reduction methods. A common
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approach is then to use feature transform techniques, possibly principal component
analysis (PCA) [31], independent component analysis (ICA) [139], or linear dis-
criminant analysis (LDA) [31] (see Chap. 4, Sect. 4.5.1). An interesting alternative
is feature selection (see Chap. 4, Sect. 4.5.2). In fact, when applied to the feature
vectors Not, the selection will hopefully retain a subset of the most “relevant” features
across the various views (with respect to a selection criterion).

Nevertheless, in multimodal settings, the previous methods often turn out to be
limited owing to the different physical nature of the features to be combined. In
particular, the features do not necessarily live in the same metric spaces, and are not
necessarily extracted from the same temporal segments. Consequently, there has
been a number of works attempting to address these limitations.

An interesting approach, within the framework of multiple kernel learning,
consists in considering separate kernels for different features, to build optimal
convex combinations of these in order to use them for classification, as done, for
example, in [30, 157].

Another approach that is worthy of note is the construction of joint multimodal
representations, as done in video analysis applications, where various types of
audiovisual representations have been envisaged. Examples include the creation of
audiovisual atoms [78] or audiovisual grouplets [76], both exploiting audiovisual
correlations. A joint audiovisual representation may in particular be built using one
of the joint subspace learning methods described in the following.

9.3.1.1 Feature-Space Transformation

A number of techniques have been suggested to map the observed feature vectors
from two modalities to a low dimensional space where a measure of “dependency”
between them can be computed. Let us assume the N observed feature vectors from
two modalities, o1;t 2 R

J1 and o2;t 2 R
J2 (t D 1; : : : ; N), are assembled column-wise

in matrices O1 2 R
J1�N and O2 2 R

J2�N , respectively.1 The methods we describe
here aim to find two mappings f1 and f2 (that reduce the dimensions of feature
vectors in each modality), such that a dependency measure S12.f1.O1/; f2.O2// is
maximized. Various approaches can be described using this same formalism. The
advantages of doing so are twofold: (1) it appropriately modifies the feature spaces
to uncover relationships between views specified by the measure of dependency, and
(2) by projecting data into the same space, dimensionality difference between views
is eliminated and direct comparison across views is made possible. Fisher et al. [51]
choose the mutual information [35] as a dependency measure and seek single-layer
perceptrons f1 and f2 projecting the audiovisual feature vectors to a 2-dimensional
space. Other more popular approaches (for which closed-form solutions can be
found) use linear mappings to project the feature streams:

1The underlying assumption is that the (synchronized) features from both modalities are extracted
at the same rate. In the case of audio and visual modalities this is often obtained by down-
sampling the audio features or upsampling the video features, or by using temporal integration
techniques [80].
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• Canonical correlation analysis (CCA), first introduced by Hotelling [67], aims at
finding pairs of unit-norm vectors t1 and t2 such that

.t1; t2/ D arg max
.t1;t2/2RJ1 �RJ2

corr
�
tT
1 O1; tT

2 O2

�
(9.1)

CCA can be considered equivalent to mutual information maximization for the
particular case where the underlying distributions are elliptically symmetric [83].
Several variants have been proposed to incorporate sparsity and non-negativity
into the optimization problem to resolve issues with interpretability and ill-
posedness, respectively [84, 138]. In the context of multimodal neuronal data
analysis, temporal kernel CCA [15] has been proposed to take into account the
temporal dynamics.

• An alternative to the previous methods (expected to be more robust than CCA) is
co-inertia analysis (CoIA). It consists in maximizing the covariance between the
projected audio and visual features:

.t1; t2/ D arg max
.t1;t2/2RJ1 �RJ2

cov
�
tT
1 O1; tT

2 O2

�
(9.2)

A possible reason for CoIA’s stability is that it is a trade-off between CCA and
PCA, thus it benefits from advantages of both [21].

• Yet another configuration known as cross-modal factor analysis (CFA), and found
to be more robust than CCA in [92], seeks two matrices T1 and T2, such that

.T1; T2/ D arg max
.T1;T2/

�
1 � kT1O1 � T2O2k2

F

�
D arg min

.T1;T2/

kT1O1 � T2O2k2
F

(9.3)
with T1TT

1 D I and T2TT
2 D I. kVkF denotes the Frobenius norm of matrix V.

Note that all the previous techniques can be kernelized to study nonlinear
coupling between the modalities considered (see, for instance, [64, 90]).

The interested reader is referred to [64, 67, 92] for further details on these
techniques, and to [58] for a comparative study.

9.3.1.2 Multimodal Dictionary Learning

While previous approaches relied on modeling the association between the features
across modalities, this class of techniques targets the extraction of meaningful
multimodal structures to jointly represent all the modalities. This is useful because
feature transformation techniques like CCA impose simplifying assumptions such
as linearity and are adversely affected by lack of data. To this end, Monaci et al.
[106] propose to learn multimodal dictionaries wherein the dictionary elements
are learned using an algorithm that enforces synchrony between modalities and
decorrelation between the learned dictionary elements. The learned templates can
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then be used for performing various tasks. Monaci et al. improve upon this
foundational work by proposing a bimodal matching pursuit algorithm which
integrates dictionary learning and coding [107]. The sparse shift-invariant generative
model used for the audiovisual case can be given by defining multimodal dictionary
elements f�dgD

dD1 D
�
�a

d.t/; �v
d .x; y; t/

�
consisting of audio, �a

d , and visual, �v
d , parts

and a spatio-temporal shift operator T.pqr/�d D
�
�a

d.t � r/; �v
d .x � p; y � q; t � r/

�

such that the multimodal signal s is approximated by the following equation:

s �

DX

dD1

ndX

iD1

cdi T.pqr/di�d (9.4)

where nd is the number of instances of �d and cdi specifies the weights for AV
components of �d at the ith instance. Several limitations of this approach have been
improved upon by proposing a new objective function and algorithm to balance the
two modalities, reduce computational complexity, and improve robustness [94].

9.3.1.3 Co-Factorization Techniques

Matrix factorization techniques can be profitably used to extract meaningful repre-
sentations for the data being analyzed.

When dealing with multichannel data—i.e., with data views of the same nature
(e.g., multichannel audio or images)—observations from multiple channels may be
profitably assembled in multi-way arrays, i.e., tensors, before being modeled by
tensor factorization methods. As for multichannel audio data, a popular approach
consists in collecting the spectrograms of signals from different channels (originat-
ing from different microphones) in a 3-way tensor, as illustrated in Fig. 9.2, before
processing it with the so-called PARAFAC (PARAllel FACtor analysis) decompo-
sition method, possibly with non-negativity constraints. This can be interpreted as
an attempt to explain audio spectra observations vtm as being linear combinations
of elementary spectra wk, temporally weighted by activation coefficients okt up to
spatial modulation coefficients qmk.

Such decompositions were found particularly useful in multichannel audio
source separation [52, 118]. For more information about tensor factorization
methods, we refer the reader to [33, 87, 159].

In contrast to the previous setting, data from different modalities usually live in
feature spaces of completely different topology and dimensionality (think of audio
as opposed to video), preventing the possibility of “naturally” representing them
by the same tensor. In this case, one may resort to the so-called co-factorization
techniques, that is techniques performing two (or more) factorizations in parallel,
which are linked in a particular way. Because of the different nature of the
modalities, this link has usually to be characterized through temporal dependencies
between the temporal activations in cross-modal correspondence, and unlikely
through dependencies between dictionary elements of different modalities.
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Fig. 9.2 PARAFAC decomposition of multichannel audio spectra

Assuming that appropriate nonnegative features have been extracted at the same
rate from the two modalities being analyzed2—say the audio and images of a
video—so that two observation matrices V1 2 R

J1�N
C and V2 2 R

J2�N
C are available,

for the audio and visual data. One may seek a model .W1; W2; O/ such that:

8
ˆ̂<

ˆ̂:

V1 � W1O

V2 � W2O

W1 � 0; W2 � 0; O � 0 I

(9.5)

in such a way that the temporal activations be the same for both modalities. This is
referred to as hard co-factorization, an approach that has been followed in a number
of works (see, e.g., [53, 160, 161]). Clearly, this approach is limited in that it does
not account for possible local discrepancies across the modalities. This happens, for
example, when there is a mismatch between the audio and the images information,
say because of a visual occlusion in video analysis scenarios. This motivates the
soft co-factorization model of Seichepine et al. [134], which merely encourages
the temporal activations corresponding to each modality to be close, as opposed to
equal, according to:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

V1 � W1O1

V2 � W2O2

O1 � O2

W1 � 0; W2 � 0; O1 � 0; O2 � 0:

(9.6)

2To simplify, we consider the case of two modalities, but clearly the methods described here can
be straightforwardly generalized to more than two data views by considering the relevant pairwise
associations.
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The model (9.6) is estimated by solving the following optimization problem:
8
<

:
min

�
Cc.�/ I �

�
D .W1; O1; W2; O2/

W1 � 0; W2 � 0; O1 � 0; O2 � 0 I
(9.7)

Cc.�/
�
D D1.V1 j W1O1/ C �D2.V2 j W2O2/ C ıP .O1; O2/ I (9.8)

where:

• D1.: j :/ and D2.: j :/ are the measures of fit, respectively, relating to the first and
second modalities; note that they may be chosen to be different divergences, each
well suited to the corresponding feature space;

• P .:; :/ is a penalty on the difference between (properly rescaled) activation
values occurring at the same instant; they can be either the `1 or `2-norm of
the difference between the rescaled activations;

• � and ı are regularization parameters controlling, respectively, the relative
importance of each modality and the coupling penalty.

The interested reader is referred to [134] for more details on the algorithms.3

The soft co-factorization scheme has proven effective for multichannel [134] and
multimodal audio source separation [120], as well as multimodal speaker diarization
[133]. It is believed to be promising for audiovisual event detection tasks.

9.3.1.4 Neural Networks and Deep Learning

Lately, rapid progress in the application of deep learning methods to representation
learning has motivated researchers to use them for fusing multiview data [3, 112,
140]. The primary advantage of neural networks is their ability to model very
complex nonlinear correlations that exist between multiple views. Early insights
into their use for multiview data were provided by Yuhas et al. [163] who trained
a network to predict audio using visual input. Subsequently, Cutler et al. [39]
proposed to learn audiovisual correlations for the task of speaker detection using
a time-delayed neural network (TDNN). Recently, various multimodal autoencoder
architectures for learning shared representations have been proposed, even for the
case where only a single view is present at training and testing time [112]. Another
interesting work extends CCA to learning two deep encodings, one for each view,
such that their correlation is maximized [3]. Regularized deep neural networks [158]
have also been proposed to construct shared representations taking into account the
feature inter-relationships. Each of these methods has been developed independently
in different settings. Their application to event analysis and detection still remains
to be explored. This is a rapidly growing area of research; we refer the interested
reader to [56, 68] for recently proposed multimodal fusion architectures.

3Matlab implementations are available online at http://plato.telecom-paristech.fr/publi/26108/.

http://plato.telecom-paristech.fr/publi/26108/
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9.3.2 Decision-Level Integration/Fusion

Decision-level fusion, also known as late integration refers to the idea of combining
intermediate decisions, i.e., partial classifier-outputs, in order to achieve a more
accurate multimodal characterization of a content, an idea which has been explored
extensively, under various configurations. This can be seen as a particular case of
ensemble learning [125] where the base classifiers (to be combined) operate on
different views of the data.

Numerous works rely on majority voting procedures whereby final global
decisions are made based on a weighted sum of individual voters, each typically
corresponding to a decision taken on a particular view. The weights are often chosen
using either heuristics or trial-and-error procedures (see, for example, [93]). This
idea can be better formalized using a Bayesian framework that allows for taking
into account the uncertainty about each classifier decisions [71, 103].

9.3.2.1 Probabilistic Combination Rules

When using classifiers providing local probabilistic outputs p.Gc j om;t/ for the t-th
observation of the m-th view, om;t, a simplistic decision strategy assumes feature-
vector observations from different views to be independent, and the decision rule
consequently takes the form:

OG D arg max
c

logŒp.Gc j o0;t; : : : ; oM�1;t/� D arg max
c

M�1X

mD0

log p.Gc j om;t/ :

(9.9)

It is worth mentioning that alternative simple combination rules have also been
employed that are discussed in Kittler et al. [86].

The previous approach does not allow for incorporating prior knowledge about
the dependency structure in the data, in particular the cross-modal and temporal
dependencies. To this end, sophisticated dynamic classifiers have been utilized,
ranging from variants of (multistream) hidden Markov Models (HMM) [7, 60, 85,
111], through more general dynamic Bayesian networks [32, 59, 109], to even more
general graphical models such as conditional random fields (CRF) [20].

9.3.2.2 Neural Networks

Neural networks can also be used for late integration. Some works have utilized
them to adaptively learn the weights for fusing multiple classifiers or system outputs
[74, 113]. This is typically carried out by training the network to minimize the error
between estimated and oracle weights [74]. Besides, in order to take into account
the temporal and multiview dependencies, a frequently used strategy is to perform
end-to-end training with “fusion” integrated as a layer (usually close to the output
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layer) into the architecture [49, 82]. Such methods cannot be termed as late fusion
in the conventional sense as feature learning and decision fusion stages are not
independent.

9.3.2.3 Other Methods

Another widespread strategy consists in using the monomodal classifier-outputs as
features, on the basis of which a new classifier, that is expected to optimally perform
the desired multimodal fusion, is learned [13, 156]. Also, solutions to deal with the
potential imprecision of some views have been proposed using the Dempster–Shafer
theory [54].

Finally, it is important to note that the techniques described in this section are
not mutually exclusive: in practice one may jointly consider different integration
strategies for different features and views (possibly being driven by some expert
knowledge), and different analysis time-horizons. This raises the difficult issue
of effectively and efficiently exploiting, at the final prediction stage, hetero-
geneous representations: low-level instantaneous features, possibly over varying
time-scales, intermediate prediction results—sometimes seen as outputs of event or
concept detectors—bags-of-words or bags-of-systems extracted over longer texture-
windows, etc.

9.4 Audiovisual Event Detection

9.4.1 Motivation

The target of audiovisual event detection (AVED) is to detect specific events that
occur in an audiovisual recording or real-time stream, and to identify the class
of those events. Though the task is more widely addressed through the analysis
of the video images, information conveyed by the sound track may become key
for a proper detection. Indeed, the visual information may not be sufficient since
occlusions may occur and events may be localized in space, hence not visible in the
images, given that the camera field of view is necessarily restricted. Also the images
may not be usable because of poor lighting conditions, or fast camera motion. AVED
then enables a more reliable detection of these events, by combining audio and
visual cues.

9.4.1.1 Examples in Video Content Analysis and Indexing

Researchers continue to explore various techniques for improving video content
analysis and indexing for better navigation and user experience. In this context,
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AV event analysis at various levels of granularity provides useful insights into the
composition of such data in terms of objects, activities, and scenes. This not only
improves retrieval but also provides a representation closer to our understanding of
the physical world. For example, a user could search a database for activity videos
such as “dribbling a basketball” or “playing a violin.” Evidently, these are two very
distinct tasks where the differences can be readily detected based on auditory and
motion information. Moreover, joint analysis could reveal the presence of various
objects (e.g., violin, basketball) and also the surroundings (e.g., concert hall, court).

Such an analysis makes object detection and segmentation [72], concept classifi-
cation [75, 76, 78], scene segmentation and change detection[149], activity analysis,
and various other related tasks possible. Several systems submitted to TRECVID4

video content analysis tasks of multimedia event detection, story segmentation, and
search rely on AV analysis [2, 77, 156].

9.4.1.2 Examples in AV Surveillance and Robot Perception

Video has recently become an increasingly important resource for forensics and
surveillance [104, 124]. Video captured by CCTV systems or video recorded from
mobile devices (and possibly shared on multimedia platforms) can provide essential
clues in solving criminal cases. For example, when considering an investigation
about a missing person, video documents can help to localize the missing person
or a suspect, providing crucial information about their whereabouts. The analysis
of videos linked with a missing person or her/his social network can also help to
understand the conditions of the disappearance (was it a kidnapping, a runaway,
etc.) and largely influence the investigation.

An investigator looking for a video in a large dataset may want to retrieve
information based on the type of scene where the video was recorded or also, at
a finer granularity level, based on specific events that occurred during the recording.
In addition, the detection of specific events can help to confirm (or deny) the fact that
a video was recorded in a particular scene. Some events are indeed representative of
particular scenes. For example, train noise in all probability indicates the scene takes
place in a train station. Plates and cutlery noises indicate the scene is probably taking
place in a restaurant [22]. On the other hand, some events are unlikely to happen in
particular scenes. AVED can then help tracking anomalies to detect abnormal events
(gunshots, crowd panic, etc.) [97] or to identify a recording scene where information
has voluntary been concealed. This is the case, for example, when a kidnapper sends
a ransom video recorded from inside a building but a church bell or a train passing
nearby can be heard during the video. This type of information that is not present
visually can help to localize the place where the video was recorded [136].

4TREC Video Retrieval Evaluation: http://www-nlpir.nist.gov/projects/trecvid/.

http://www-nlpir.nist.gov/projects/trecvid/
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9.4.2 AV Event Detection Approaches

9.4.2.1 AV Event Detection and Concept Classification

Approaches to AV event detection have been very varied and data dependent.
Many works for traditional event detection utilize Markov model variants such as
the duration dependent input–output Markov model (DDIOMM)[110], multistream
HMM, or coupled HMM [69]. The former uses a decision-level fusion strategy and
the latter two do it at an intermediate level. These methods have been shown to
perform better than single modality-based approaches with coupled-HMMs being
particularly useful for modeling AV asynchrony.

Specifically, with regard to event detection in surveillance videos, Cristiani et
al. [37] propose to use the AV concurrence matrix to identify salient events. The
idea is to model the audio/video foreground and construct this matrix based on
the assumption that simultaneously occurring AV foreground patterns are likely
to be correlated. Joint AV analysis has also been employed extensively for sports
video analysis and for broadcast analysis in general. In one approach, several feature
detectors are built to encode various characteristics of field sports. Their decisions
are then combined using a support vector machine (SVM)[127]. Several approaches
for structuring TV news videos have also been proposed.

On the other hand, joint codebook-based approaches have been quite popular
for the task of multimedia concept classification.5 In essence, each element of these
multimodal codebooks captures some part of a salient AV event. Work on short-term
audiovisual atoms (S-AVA) [78] aims to construct a codebook from multimodal
atoms which are a concatenation of features extracted from tracked short-term
visual-regions and audio. To tackle the problem of video concept classification,
this codebook is built through multiple instance learning. Following this work, AV
grouplets (AVG) [76] were proposed, where separate dictionaries are constructed
from coarse audio and visual foreground/background separation. Subsequently,
AVGs are formed based on the mixed-and-matched temporal correlations. For
instance, an AVG could consist of frames where a basketball player is seen in
the foreground with the audio of the crowd cheering in the background. As an
alternative, Jhuo et al. [75] determine the relations between audio and visual
modalities by constructing a bi-partite graph from their bag-of-words representation.
Subsequently, spectral clustering is performed to partition and obtain bi-modal
words. Unlike S-AVA and bimodal words, AVG has the advantage of explicitly
tackling temporal interactions. However, like S-AVA, it relies on video region
tracking, which is quite difficult for unconstrained videos.

5Here the term “concept classification” refers to generic categorization in terms of scene, event,
object, or location [78].
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9.4.2.2 AV Object Localization and Extraction

AV object localization and extraction refers to the problem of identifying sources
visually and/or aurally. This section serves to show how objects responsible for
audiovisual events can be extracted from either of the modalities through joint
analysis. The general approach is to first associate the two modalities using
methods discussed in Sect. 9.3. The parameters learned during the former step
can then be utilized for object localization and segmentation (visual part), audio
source separation (audio counterpart), or unsupervised AV object extraction in both
modalities. We now discuss approaches to each of these application scenarios.

Object localization and segmentation has been a popular research problem in the
computer vision community. Various approaches have leveraged the audio modality
to better perform this task with the central idea of associating visual motion and
audio. Fisher et al. [51] proposed to use joint statistical modeling to perform this
task using mutual information. Izadinia et al. [72] consider the problem of moving-
sounding object segmentation, using CCA to correlate audio and visual features.
The video features consisting of mean velocity and acceleration computed over
spatio-temporal segments are correlated with audio. The magnitude of the learned
video projection vector indicates the strength of association between corresponding
video segments and the audio. Several other works have followed the same line
of reasoning while using different video features to represent motion [84, 138].
Effectiveness of CCA can be illustrated with a simple example of a video with a
person dribbling a basketball [72] (see Fig. 9.3). Simplifying Izadinia et al.’s [72]
visual feature extraction methodology, we compute the optical flow and use mean
velocity calculated over 40 � 40 blocks as the visual representation and mel-spectra
as the audio representation. The heat map in Fig. 9.3 shows correlation between
each image block and audio. Areas with high correlation correspond to regions with
motion. If we instead use a soft co-factorization model [134], it is indeed possible
to track the image blocks correlated with the audio in each frame.

Another approach worth mentioning is one that uses Gestalt principles for
locating sound sources in videos [105]. Inspired by Gestalt principle of temporal

Fig. 9.3 CCA illustration: heat map showing correlation between video image regions and audio.
Black squares indicate highest correlation
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proximity the authors propose to detect synchronous audiovisual events. A par-
ticularly different approach was taken by Casanovas et al. [29] who proposed an
audiovisual diffusion coefficient to remove information from video image parts
which are not correlated with the audio.

Audio source separation is the audio counterpart of the previously discussed
problem. The aim is to extract sound produced by each source using video
information. As done for videos, mutual information maximization has been used
to perform source separation in a user-assisted fashion by identifying the source
spatially. Recent methods perform this within the NMF-based source separation
framework [120, 132].

Several other approaches deal with both object segmentation and source sep-
aration together in a completely unsupervised manner. Work by Barzeley et al.
[11] considers onset coincidence to identify AV objects and subsequently perform
source separation. A particular limitation of this method is the requirement of setting
multiple parameters for optimal performance on each example. Blind AV source
separation work has also been attempted using nonnegative CCA [138] and sparse
representations [28]. Independent component analysis over concatenated features
from both modalities also extracts meaningful audiovisual objects [139]. However
its application is limited to static scenes. Finally, multimodal dictionary learning has
also been utilized in this context [94].

While the methods discussed in this section have been shown to work well
in controlled environments, their performance is expected to degrade in dense
audiovisual scenarios. Moreover, they make a simplifying assumption that all the
objects are seen onscreen. It must be emphasized that most of these techniques can
be considered symmetric, in the sense that they can be applied to tasks in either of
the modalities with appropriate representations.

9.5 Microphone Array-Based Sound Scene Analysis

In complex sound scenes the sounds coming from different sources can be over-
lapping in time and frequency. Single channel processing can discriminate sources
based on time or frequency as long as they are separated in either time or frequency.
Trying to detect or classify sound events that are overlapping both in time and
frequency directly from a single channel signal will generally result in a confusion
between events. An alternative approach is to attempt to separate individual events
prior to detection or classification. However, trying to separate sounds that are
overlapping both in time and frequency with single channel techniques is known
to be problematic and will inevitably introduce a loss of information resulting in a
degradation of the subsequent detection and classification performance. Microphone
arrays enable the usage of multichannel techniques that exploit not only temporal
and spectral diversity between sources but also spatial information about their
location.
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Historically microphone arrays were composed of a set of microphones placed
along a straight line (with constant spacing between microphones for linear arrays
or variable spacing for logarithmic arrays). Less constraint arrays have been used
for specific purposes such as spherical and circular arrays and more recently arrays
without spatial constraints in the case of wireless acoustic sensor networks became a
popular research topic. Some approaches and concepts presented here are applicable
only to specific array topologies or at least when the topology is known beforehand
(see also below). In this chapter we also assume that the signals coming from
different microphones are synchronized at the stage of sampling in order to allow
for the exploitation of spatial cues. Readers should keep in mind that at the time of
writing of this book, dealing with unsynchronized microphone arrays is still an open
research problem.

9.5.1 Spatial Cues Modeling

In order to exploit spatial information about the sound sources, audio scene analysis
algorithms usually first model the spatial cues and then estimate the corresponding
parameters. Both deterministic and probabilistic modeling of such spatial cues have
been widely considered in the literature. The former case usually relies on (a) the
point source assumption, where sound from a source is assumed to come from a
single position, and (b) the narrowband approximation, where a mixing process
from an audio source to the microphone array is characterized by a mixing frequency
dependent vector [98]. Probabilistic modeling is usually applied for reverberated or
diffuse sources, where sound from a source may come from many directions due to
the reverberation, e.g., source localization [18, 63, 116], separation [46, 73, 99], and
beamforming systems [17, 48]. This section will discuss some typical spatial cue
models, in both a deterministic and a probabilistic sense, for different audio scene
analysis applications.

9.5.1.1 Binaural Approach

Humans generally combine cues from several audiovisual streams to localize sound
sources spatially. The main cues for localization in the horizontal hemisphere are
related to binaural hearing (relying on the difference between the signal reaching
the right ear and the signal reaching the left ear). All these cues are encoded in the
so-called interaural transfer function (ITF) that includes the following:

• The interaural time difference (ITD) is the difference between the time-of-
arrival of a signal at the left ear and the right ear. It is useful to localize
sounds based on their onset and at low frequency (below 1.5 kHz) [89] (see also
Fig. 9.4a).
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Fig. 9.4 Artificial representation of the binaural cues. (a) ITD, (b) IPD, (c) IID

• The interaural phase difference (IPD) is the phase difference between the
signal at the left ear and the right ear. It is useful to localize on-going sound
as long as the wavelength is larger than the diameter of the head (below
1.5 kHz) [162] (see also Fig. 9.4b);

• The interaural intensity difference (IID) is the difference in level between the
signal at the left ear and the right ear due to the acoustic shadow produced by
the head for sounds above 3 kHz (below the so-called head shadow effect is not
present) [108] (see also Fig. 9.4c).

All the concepts mentioned above can be extended to general microphone array
setups. The ITD and IPD concepts directly generalize to linear microphone arrays
where they relate rather straightforwardly to time difference of arrival (TDOA) and
direction of arrival (DOA). In this case, however, the arrays have to be designed
carefully to prevent spatial aliasing. The IID concept is less applicable to small
linear arrays as it relies on the head shadow effect. Indeed, in small arrays the
level difference between the signal impinging two consecutive microphones might
not be significant. However, in ad-hoc arrays where the topology is unconstrained,
the microphones can be quite far apart and IID can become insightful as well,
granted that the microphone positions are known beforehand. These spatial cues
are extensively exploited to extract a signal of interest from the mixture using
beamforming approaches described in Sect. 9.5.1.2 (for example, the delay-and-sum
beamformer directly relies on ITD). Spatial cues can also be used directly for sound
source localization (see also Sect. 9.5.2.3) and, by proxy, for source separation (see
also Sect. 9.5.2.1) and sound event detection (see also Sect. 9.5.2.2).
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9.5.1.2 Beamforming Methods

Fixed beamformers compose a first simple class of multichannel algorithms which
can separate signals coming from different directions. A fixed beamformer tries to
steer toward the direction from where the desired sound signal comes and to reject
signals coming from other directions. The main categories of fixed beamformers
include delay-and-sum beamformers, filter-and-sum beamformers [66], superdirec-
tive microphone arrays [36], or the original formulation of the minimum variance
distortionless beamformer (MVDR) [26].
Adaptive beamformers try to steer toward the direction of the desired sound signal
and to adaptively minimize the contributions from the undesired sources coming
from other directions. This typically yields a constrained optimization problem.
Frost introduced the linearly constrained minimum variance beamformer (LCMV)
as an adaptive framework for MVDR [55].

The generalized side lobe canceler (GSC), also known as the Griffiths-Jim
beamformer, is an alternative approach to the LCMV where the optimization
problem is reformulated as an unconstrained problem [62]. The GSC can be
decomposed as a fixed beamformer steering toward the desired source, a blocking
matrix, and a multichannel adaptive filter [65].

The multichannel Wiener filters (MWF) represent another class of multichannel
signal extraction algorithms which are defined by an unconstrained optimization
problem [45]. MWF-based algorithms can be implicitly decomposed into a spatial
filter and a spectral filter, and can indeed be considered as beamformers [135].
Besides, a reformulation of MWF allows for explicitly controlling the spectral
distortion introduced [45, 135].

9.5.1.3 Nonstationary Gaussian Model

The nonstationary Gaussian framework has emerged in audio source separation
[46, 50, 114, 119] as a probabilistic modeling of the reverberated sources. It was then
also applied in, e.g., multichannel acoustic echo cancellation [144] and multichannel
speech enhancement [145]. In this paradigm, the short-time Fourier transform
(STFT) coefficients of the source images cj.t; f /, i.e., the contribution of the j-
th source (1 � j � J) at the microphone array, are modeled as a zero-mean

Gaussian random vector whose covariance matrix bRj.t; f / D E

�
cj.t; f /cH

j .t; f /
�

can be factorized as

bRj.t; f / D vj.t; f /Rj.t; f /; (9.10)

where vj.t; f / are scalar time-varying variances encoding the spectro-temporal
power of the sources and Rj.t; f / are I � I spatial covariance matrices encoding
their spatial position and spatial width. This model does not rely on the point
source assumption nor on the narrowband assumption, hence it appears applicable to
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reverberated or diffuse sources. In the general situation where the sound source can
be moving, the spatial cues encoded by Rj.t; f / are time-varying. However, in most
cases where the source position is fixed and the reverberation is moderate, the spatial
covariance matrices are time-invariant: Rj.t; f / D Rj.f /. Different possibilities
of parameterizing Rj.f / have been considered in the literature resulting in either
the rank-1 or the full-rank matrices, where the later case was shown to be more
appropriate for modeling the reverberated and diffuse sources as it accounts directly
for the interchannel correlation in the off-diagonal entries of Rj.f / [46].

9.5.2 Spatial Cues-Based Sound Scene Analysis

This section will discuss the use of spatial cue models presented in the previous
section in some specific applications, namely sound source separation, acoustic
event detection, and moving sound source localization and tracking.

9.5.2.1 Sound Source Separation

In daily life, recorded sound scenes often result from the superposition of multiple
sound sources which prevent both human and machines from well localizing and
perceiving the target sound sources. Thus, source separation plays a key role in
sound scene analysis, and its goal is to extract the signals of individual sound
sources from an observed mixture [98]. It offers many practical applications
in, e.g., communication, hearing aids, robotics, and music information retrieval
[6, 14, 100, 152].

Most source separation algorithms operate in the time-frequency (T-F) domain
with the mixing process formulated as

x.t; f / D

JX

jD1

cj.t; f / (9.11)

where x.t; f / 2 C
I�1 denotes the STFT coefficients of the I-channel mixture

at T-F point .t; f /, and cj.t; f / 2 C
I�1 is the j-th source image. As cj.t; f /

encodes both spectral information about the sound source itself and the spatial
information about the source position, a range of spectral and spatial models has
been considered in the literature resulting in various source separation approaches.
In the determined case where I � J, non-Gaussian modeling such as frequency-
domain independent component analysis (FDICA) has been well-studied [122, 128].
In the under-determined situation where I < J, sparse component analysis (SCA)
has been largely investigated [19, 61, 81]. As a specific example of the nonstationary
Gaussian modeling presented in Sect. 9.5.1.3, the parameters are usually estimated
by the expectation maximization (EM) algorithm derived in either the maximum
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likelihood (ML) sense [46] or the maximum a posteriori (MAP) sense [47, 117, 119].
Then source separation is achieved by the multichannel Wiener filtering. Readers
are referred to, e.g., [95, 150] for the survey of recent advances on both blind
scenarios and informed scenarios which exploit some prior knowledge about the
sources themselves [119] or the mixing process [47] to better guide the source
separation.

9.5.2.2 Sound Event Detection

As different sound events usually occur at different spatial locations in the sound
scene, spatial cues obtained from microphone array processing intrinsically offer
important information for SED. As an example, information about the source
directions inferred from the interchannel time differences of arrival (TDOA) was
used to help partitioning home environments into several areas containing different
types of sound events in [151]. The combination of these spatial features with the
classic MFCC was reported to improve the event classification in the experiment.
Motivated by binaural processing, in [1] the stereo log-mel-band energy is extracted
from stereo recordings to train the neural networks in order to obtain a meaningful
cue similarly to the IID.

9.5.2.3 Localization and Tracking of Sound Sources

Sound source localization and tracking are concerned with estimating and following
the position of a target source within a sound scene. This active field of research in
microphone array processing finds important applications, e.g., in surveillance or
video conferencing where the camera should be able to follow the moving speaker,
and even can automatically switch the capture to an active sound source in multiple
source environments [153]. Spatial cues offered by the multichannel audio capture
play a key role in deriving the algorithms.

The problem of acoustic source localization has been a relevant topic in the
audio processing literature for the past three decades because of its applicability
to a wide range of applications [41, 146]. The most effective solutions rely on the
use of spatial distributions of microphones, which sample the sound field at several
locations. Spurious events, reverberation, and environmental noise, however, can be
a significant cause of localization error. In order to ease the problem, at least for
those errors that are contained in a limited number of time frames, source tracking
techniques can come in handy, as they are able to perform trajectory regularization,
even on the fly. Typical approaches are based on particle [5, 91, 155], Kalman [4, 57],
or distributed Kalman filtering [143].

Different methodologies have been developed for the localization of acoustic
sources through microphone arrays. Those that gained in popularity are based on
measurements of the time delay between array microphones. Working on the time
domain is often a suitable choice for wideband signals, and most techniques tend to
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Fig. 9.5 Taxonomy of source localization techniques

rely on the analysis of the generalized cross-correlation (GCC) of the signals [27]
and variants thereof. Localization in the frequency domain, however, can be shown
to attain good results for narrowband or harmonic sources immersed in a wideband
noise and rely on the analysis of the covariance matrix of the array data. A taxonomy
of the localization techniques is represented in Fig. 9.5.

Time-Domain Localization

Steered response power (SRP, [42, 43, 102]) and global coherence field (GCF, [115])
proceed through the computation of a coherence function that maps the GCC values
at different microphone pairs on the hypothesized source location. A source location
estimate is found as the point in space that maximizes the coherence function. In
[23] the scenario of multiple sources is accommodated through a two-step procedure
that, after localizing the most prominent source, deemphasizes its contribution in the
GCC, so that other sources can be localized. These techniques are known for their
high level of accuracy, and are suitable for networks of microphone arrays, where
synchronization can only be guaranteed between microphones of the same array.
One limitation of such solutions is their computational cost, which is proportional to
the number of hypothesized source locations. This means that increasing the spatial
resolution results in higher computational costs. Some solutions have been proposed
in the literature to mitigate this problem. In [165] the authors propose a hierarchical
method that begins with a coarser grid, and refines the estimate at different steps
by computing the map for finer grids concentrated around the candidate locations
estimated at the previous step. In [44] a similar approach is adopted, but a stochastic
region contraction strategy is used for going from a coarser to a finer grid. An
example of steered response power with stochastic region contraction map is shown
in Fig. 9.6.
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Fig. 9.6 Example of a coherent map using the Steered Response Power with Stochastic Region
Contraction technique (SRP-SRC, from [44])

Less cumbersome are the solutions based on the time difference of arrival
(TDOA), which is estimated as the time lag of the GCC that exhibits the maximum
value. The TDOA is then converted into range difference (RD), which measures
the difference of the range between the source and the two microphones in the
pair. The locus of candidate source locations corresponding to a given TDOA is
a branch of hyperbola whose foci are in the microphones locations, and whose
aperture is proportional to the measured TDOA. The most straightforward technique
for localization consists in intersecting branches of hyperbolas corresponding to
the TDOA measurements coming from different pairs of microphones. The cost
function that is based on this procedure is strongly nonlinear, which makes the
method sensitive to measurement errors. Least squares cost functions provide a good
approximation [12, 34, 70, 129]. The main drawback of TDOA-based localization
is its sensitivity to outlier measurements. In [24, 25, 130] techniques for removal of
the outliers were presented. In particular, the DATEMM algorithm [130] is based on
the observation that TDOAs over a closed loop must sum to zero.

Frequency-Domain Localization

Techniques in the frequency domain are based on the observation that different
microphones in the array will receive differently delayed replicas of the source
signals. This, in the frequency domain, corresponds to a phase offset. For distant
sources the phase offset between adjacent microphones is constant throughout the
array. Delay-and-sum beamformers compensate the offsets so that the components
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related to a direction will sum up coherently and the others will not. The estimation
of the direction of arrival (DOA) of the target source proceeds by searching for the
direction that maximizes the output energy of the beamformer over a grid of direc-
tions [141, Chapter 6]. The most straightforward nonparametric beamformer is the
delay and sum, which is known for its low resolution capabilities, making it difficult
to distinguish sources that are seen under close angles from the array viewpoint.
The minimum variance distortionless response beamformer (MVDR, [26]) partially
improves the resolution capabilities. Parametric techniques, among which it is worth
mentioning multiple signal classification (MUSIC, [131]), and estimation of the
signal parameters through rotational invariance techniques (ESPRIT, [126]) bring
improvements in terms of resolution. However, they are known for their sensitivity
to noise and reverberation, which tends to introduce spurious localizations. The
superdirective data-independent beamformer [16] was shown to partially mitigate
this problem. An interesting solution to the sensitivity to reverberation was proposed
in [137] for the detection of gunshots using networks of sensors, each equipped with
four or more microphones. For each sensor, both DOA and TDOA are measured.
Source location is estimated by intersecting the loci of potential source locations
(hyperbolas and direction of arrival) for the two kind of measurements from all
the sensors. In reverberant conditions and in the presence of interferers, some
TDOAs and some DOAs could be related to spurious paths, thus providing multiple
estimates of the gunshot location. The actual gunshot location is found as the one
that maximizes the number of consistent TDOAs and DOAs.

It is important to notice that TDOA-based and frequency-domain source local-
ization techniques require the synchronization of the microphones within the array.
This, in fact, becomes an issue when multiple independent small arrays are deployed
in different locations. In [25] the authors propose a technique for the localization
without requiring a preliminary synchronization of the arrays by including the time
offsets between the arrays into the unknowns, along with the location of the source.
Another important issue is the self-calibration of the array, i.e., the estimation of the
mutual relative positions of the microphones [38, 147]. The widespread diffusion
of mobile phones and devices equipped with one or more microphones enables the
implementation of a wireless acoustic sensor network in seconds, for goals ranging
from teleconferencing to security. In this context, however, both calibration and
synchronization are needed before normal operation [123].

Acoustic Source Tracking

Independently of the adopted localization method, reverberation and interferers
could introduce spurious localizations. The goal of source tracking is to alleviate
the influence of outliers. The idea behind tracking is that measurements related to
the actual source must follow a dynamical model whereas those related to spurious
sources must not [155]. Another goal that can be pursued with tracking systems is
that of fusing information coming from both audio and visual localization systems
[9, 142]. Several solutions have been presented in the literature. The Kalman filter
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[57] is a linear system characterized by two equations. The state equation models the
evolution of the state of a system (location and speed of the source) from one time
frame to the next one. The observation equation links the state variables with the
observable measurements. The goal of the Kalman filter is to estimate the current
state from the knowledge of time series of the observations.

Recently, distributed Kalman filters have been used, which enable the tracking
of acoustic sources also in the case of distributed array networks [164], without
requiring that all nodes communicate the whole state of the system.

Inherent assumptions that lie in the use of the Kalman filter are the linearity and
Gaussianity of measurement and state vectors. In order to gain in robustness against
the nonlinearity, the use of the extended Kalman filter has been proposed [142],
which linearizes the nonlinear system around the working point. In order to gain in
robustness against non-Gaussian conditions, however, one has to resort to a different
modeling of the source dynamics. In recent years particle filter gained interest in the
source localization community due to the fact that it is suitable also to perform
tracking in nonlinear non-Gaussian systems and, more in general, for its higher
performance [155]. Particle filtering [8] assumes that both state and measurement
vectors are known in a probabilistic form. Once a new measurement vector is
available, the likelihood function of the current observation from a given state is
sampled through particles. Each particle is assigned a weight, which determines its
relevance in the likelihood function. Only relevant particles will be propagated to the
next step. The source location is determined as the centroid of the set of particles.
An example of tracking of one, two, or three acoustic sources on a given trajectory
for DOA measurements is shown in Fig. 9.7.

In audio surveillance contexts, it is important to enable localization also when
multiple sources are active at any time, with a small convergence time when acoustic
sources alternate. This is important, for example, in events that involve multiple
acoustic sources (brawls, people yelling, etc.). In recent years, swarm particle
filtering has shown to address this scenario particularly well [121]. It is based on
the idea that the propagation of each particle to the next step is determined not only
by the previous history of the particle itself, but also by the particle that exhibits
the best likelihood at the current time instant. Consequently, the overall behavior of
the systems resembles that of a bird flock, rapidly moving toward the active source.
An example of behavior of swarm particle filtering is shown in Fig. 9.8. Here two
sets of particles at four consecutive time frames estimate the location of a source
using particle filtering (PF) and swarm particle filtering (Swarm). The two sets are
initialized identically. It is possible to notice that after four steps, the swarm particles
cluster around the source location, while the PF is still converging.

9.6 Conclusion and Outlook

Multichannel and multimodal data settings represent opportunities to address
complex real-world scene and event classification problems in a more effective
manner. The availability of concurrent, hence potentially complementary streams
of data is amenable to a more robust analysis, by effectively combining them, using
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Fig. 9.7 Example of tracking of one, two, or three sources over a prescribed trajectory (from
[148])

Fig. 9.8 Example of
behavior of two sets of
particles propagated using
particle filtering (PF) and
swarm particle filtering
(SWARM). The two sets of
particles occupy the same
location at the first time frame
(from [121])

appropriate techniques, be it at the input representation-level, the feature-level, or
the decision-level. Successful applications of such techniques have been realized in
various multichannel audio and audiovisual scene analysis tasks.
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Yet, a number of research questions remain open in these settings. Notably, it is
still not clear how to generically detect when some of the data views are temporarily
not reliable (typically noisy or out of focus, with respect to the classes of interest)
and which strategies should be developed that can efficiently ignore such views and
proceed with the classification (or any other similar data processing) using models
which were perhaps trained assuming all views are available.

Also, given the complexity of accurately annotating all data views, especially
for instantaneous multi-label event classification tasks, that is when multiple events
may occur simultaneously, it is important to consider learning methods that can take
advantage of very coarse ground-truth labels, which may have been obtained based
on just one of the views, without necessarily being relevant for others. An example
of this is the “blind” annotation of the audio track of a video (without considering the
images) where sound events may not be visible onscreen at the same time stamps.
Multiple instance learning and weakly supervised learning techniques may turn out
to be effective learning paradigms to address these difficulties.
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