
Chapter 5
Statistical Methods for Scene and Event
Classification

Brian McFee

Abstract This chapter surveys methods for pattern classification in audio data.
Broadly speaking, these methods take as input some representation of audio,
typically the raw waveform or a time-frequency spectrogram, and produce seman-
tically meaningful classification of its contents. We begin with a brief overview
of statistical modeling, supervised machine learning, and model validation. This
is followed by a survey of discriminative models for binary and multi-class
classification problems. Next, we provide an overview of generative probabilistic
models, including both maximum likelihood and Bayesian parameter estimation.
We focus specifically on Gaussian mixture models and hidden Markov models,
and their application to audio and time-series data. We then describe modern
deep learning architectures, including convolutional networks, different variants of
recurrent neural networks, and hybrid models. Finally, we survey model-agnostic
techniques for improving the stability of classifiers.

Keywords Machine learning • Statistical modeling • Classification • Discrim-
inative models • Generative models • Deep learning • Convolutional neural
networks • Recurrent neural networks • Hidden Markov models • Bayesian
inference

5.1 Introduction

This chapter provides an overview of machine learning methods for pattern
classification. Throughout this chapter, our objective is to design algorithms which
take as input some representation of an audio signal, and produce some semantically
meaningful output, e.g., a categorical label indicating the presence of an acoustic
event in the audio signal.

The treatment of topics in this chapter will be relatively superficial: our goal is to
provide a high-level overview of methods for pattern classification, not an in-depth
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survey of advanced statistics and machine learning. We will assume familiarity
with linear algebra, multivariate calculus, and elementary probability theory and
statistics. We will not cover computational learning theory or optimization, but
references for those concepts will be provided.

The remainder of this chapter is structured as follows. Section 5.1 describes
the fundamentals and practical considerations of statistical learning. Section 5.2
introduces discriminative models for binary and multi-class prediction problems,
with a focus on linear models. Section 5.3 covers generative models, unsupervised
learning, and Bayesian inference, focusing on Gaussian mixture models and
hidden Markov models for audio applications. Section 5.4 provides an overview
of deep learning, including multi-layer perceptrons, one- and two-dimensional
convolutional networks, various formulations of recurrent neural networks, and
hybrid architectures. Section 5.5 describes some useful techniques to improve the
robustness and stability of classifiers. Finally, Sect. 5.6 concludes with pointers to
further readings on advanced topics.

Throughout this chapter, the input representation of audio is generally left
abstract, and may correspond to a summary of an entire recording or more localized
representations of individual audio frames. The fundamentals of binary and multi-
class discriminative classifiers described in Sect. 5.2 apply to both of these cases.
For example, a static acoustic scene classification system could apply a multi-class
discriminative classifier to a feature vector representing the acoustic properties of
the entire audio recording, resulting in a single categorical label predicted for the
entire recording. Similarly, a clip-level tagging system could apply several binary
classifiers to predict the presence of multiple concepts within a recording (e.g.,
speech, bird song, footsteps), but without localizing them in time. By contrast,
dynamic prediction tasks, such as sound event detection, would operate on localized
representations (e.g., individual frames) to produce a time-series of predictions.
Methods for exploiting temporal structure are described in Sect. 5.3.5 (Hidden
Markov models) and Sects. 5.4.3 and 5.4.4 (convolutional and recurrent networks).

5.1.1 Preliminaries

Input data will be generically denoted as x 2 X , and output variables will be
denoted as y 2 Y . The input domain X and output space Y will be left abstract
for much of this chapter, but it may be helpful to think of the concrete case where
X D R

d corresponds to some pre-computed frame-level features (e.g., mel-scaled
power spectra as described in Chap. 4) and Y D f�1;C1g are binary categorical
labels. Input–output pairs are assumed to be jointly distributed according to some
(unknown) probability distribution .x; y/ � D ; for brevity, we will sometimes write
z D .x; y/ to denote a labeled example. A classifier (or, more generally, a predictor)
will map an observed input x to an output (label) y, and be denoted as h WX ! Y .
Finally, we will characterize the accuracy of a predictor by using loss functions,
denoted by ` W Y � Y ! RC, to compare an estimated label h.x/ to a true label y.
Small values of ` indicate high accuracy, and high values of ` indicate low accuracy.
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This chapter is primarily concerned with the supervised learning model, wherein
a sample of labeled points S D f.xi; yi/gniD1 (the training set) are independently and
identically distributed (I.I.D.) by a probability distribution D , and used to estimate
the parameters of the algorithm. In general, we would like to find a predictor h that
minimizes the risk1:

ED Œ`.h.x/; y/� D
Z

x;y
`.h.x/; y/ � PD Œx; y�dxdy: (5.1)

Put plainly, (5.1) captures the expected error rate of a predictor h over the data
distribution D . When ` is the 0–1 loss:

`.y; y0/ WD
(

0 y D y0

1 y ¤ y0 (5.2)

then (5.1) is the probability of incorrectly classifying a randomly selected input x.
Since D is generally unknown, minimizing (5.1) over choices of h is not possible.
The supervised learning approach is to approximate (5.1) by the empirical risk
estimated over the sample:

1

n

nX
iD1

` .h.xi/; yi/ � ED Œ`.h.x/; y/� : (5.3)

The learning problem therefore amounts to minimizing an objective function (5.3)
to solve for h over some class of models.

The predictor h is generally defined in terms of parameters � 2 �, which
we denote as h.x j �/. Thus, the learning problem can be generally stated as
minimizing (5.3) over the choice of � from a space � of possible configurations:

min
�

1

n

nX
iD1

`.h.xi j �/; yi/: (5.4)

When ` is continuous and differentiable—such as in least-squares regression, where
`.y; y0/ D ky� y0k2—then (5.4) can be solved by iterative methods such as gradient
descent, or occasionally in closed form. However, for classification problems, `

is often discontinuous or non-differentiable; for example, the 0–1 loss (5.2) is
neither continuous nor differentiable with respect to � . In these cases, exactly
optimizing (5.4) can be a difficult computational problem [45, 74]. As a result, it
is common to replace the exact loss function ` with a surrogate function f that is
amenable to efficient optimization: typically this means that f is continuous and (at
least piece-wise) differentiable.

1The notation PD denotes the probability mass (or density) with respect to distribution D , and ED

denotes the expectation with respect to distribution D .
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Surrogate objective functions may operate not directly upon the predicted label
h.x j �/, but on some convenient, related quantity such as conditional probability of
a category given the observed x. In general, we will denote the surrogate loss as a
function f WX �Y �� ! RC. To summarize, this chain of steps leads to a general
formulation of learning:

min
�

1

n

nX
iD1

f .xi; yi j �/; (5.5)

where minimizing (5.5) approximately minimizes (5.4), which in turn approximates
the risk (5.3) which we would ideally minimize.2

Finally, one may wish to encode some preferences for certain configurations of �

over others. This can be achieved by including a regularization function or penalty
term g W � ! RC which takes low values for preferred configurations and high
values for undesirable configurations. The regularized learning objective then takes
the general form we will use for the remainder of this chapter:

min
�

1

n

nX
iD1

f .xi; yi j �/C g.�/: (5.6)

As we will see in Sect. 5.3, the general form of (5.6) can also be used for maximum
a posteriori Bayesian inference, where the g term takes the role of the prior
distribution on the model parameters.

5.1.2 Validation and Testing

The previous section outlines a generic recipe for building predictive models:

1. Collect a labeled training sample S,
2. Specify a surrogate loss function f and penalty g,
3. Solve (5.6) to find parameters ��,
4. Deploy the resulting model h.� j ��/.

In practice, before deploying the model ��, we would also like to have an estimate
of how well it performs on unseen data drawn from D . This can be estimated by
using a second independent sample ST � D known as the test set, which is only
used for evaluating �� and not for parameter estimation.

2Quantifying the relationships between (5.5), (5.4), and (5.3) lies within the purview of statistics
and computational learning theory, and is beyond the scope of this text. We refer interested readers
to [48, 106] for an introduction to the subject.
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By the same token, it is common for practitioners to develop multiple candidate
models, generally derived from different choices of .f ; g/. Before moving on to
testing and deployment, the practitioner must choose a particular model from
among the candidates. This process is commonly referred to as validation or hyper-
parameter optimization. It is important to note that the test set ST cannot be used for
validation. Any sample data which influences the selection of � must be interpreted
as training data, regardless of whether it appears in (5.6).

The typical approach to validation is to randomly partition the training set S into
two disjoint sets S0; SV . The subset S0 is used to optimize the parameters �fg for a
given model specification .f ; g/. The complementary subset SV , sometimes called
the validation set, is used to estimate the risk of �fg:

ED Œ`.h.x j �fg/; y/� � 1

jSV j
X

.xi;yi/2SV

`.h.xi j �fg/; yi/: (5.7)

This partitioning process is typically repeated several times and the results are
averaged to reduce the variance of (5.7) introduced by sub-sampling the data. The
validation procedure then selects �fg which achieves the lowest (average) validation
error.

There are virtually countless variations on this validation procedure, such as
cross-validation, stratified sampling, parameter grid search, and Bayesian hyper-
parameter optimization [12, 13, 110]. A full survey of these techniques is beyond
the scope of this chapter, but for our purposes, it is important to be comfortable with
the concepts of validation, hyper-parameter optimization, and testing.

5.2 Discriminative Models

This section provides an overview of discriminative approaches to classification.
Models will be described in terms of their objective functions, but we will omit the
details of implementing specific optimization algorithms for parameter estimation.

In simple terms, a discriminative model seeks to predict a label y as a function
of an input observation x, but does not explicitly model the input space X . In
this sense, discriminative models are simpler than generative models (Sect. 5.3),
which must model the joint distribution over X � Y . We will begin with an
overview of binary linear models, extend them to multi-class models, and discuss
their application to time-series data.

5.2.1 Binary Linear Models

The simplest models that practitioners regularly encounter are linear models. For
binary classification problems with X � R

d, a linear model is parameterized by a
weight vector w 2 R

d and bias b 2 R, so that � D .w; b/. The model is linear in the
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sense that the parameters w and b interact with the data through an inner product
(and scalar addition) to produce a score hw; xi C b. The output space is defined as
Y D f�1;C1g, so that the decision rule takes the form:

h.x j �/ D sign.hw; xi C b/; (5.8)

and the typical loss function of interest is the 0–1 loss. As mentioned in Sect. 5.1.1,
the 0–1 loss is difficult to optimize directly, and different choices of surrogate
functions lead to different models and algorithms.

5.2.1.1 Support Vector Machines

One of the simplest surrogate functions for the 0–1 loss is the margin hinge loss:

fC.x; y j �/ WD max .0; 1 � y .hw; xi C b// ; (5.9)

which incurs 0 loss when the score hw; xi C b has the same sign as y—so that the
prediction is correct—and its magnitude is at least 1 (the margin). The choice of 1
for the margin coincides with the error for misclassification `.0; 1/ D `.1; 0/, and
ensures that fC provides an upper bound on the 0–1 loss as illustrated in Fig. 5.1.

Combined with a quadratic penalty on w, the hinge loss gives rise to the standard
linear support vector machine (SVM) [30]:

min
w;b

�

2
kwk2 C 1

n

nX
iD1

max .0; 1 � yi .hw; xii C b// : (5.10)

The hyper-parameter � > 0 balances the trade-off between accuracy (minimizing
loss) and model complexity (minimizing the norm of w).

2.5
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0.5
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Hinge loss
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y (áw, xñ + b)

1 2 3

Fig. 5.1 The 0–1 loss and the hinge loss with a margin of 1. The hinge loss provides a continuous,
convex upper bound on the 0–1 loss
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5.2.1.2 Logistic Regression

An alternative to the SVM method in the previous section is to suppose a
probabilistic model of the conditional probability P� Œy D C1 j x�. Since the output
space is binary, the Bernoulli distribution is a natural choice here:

PŒy D C1� WD p (5.11)

PŒy D �1� WD 1 � p D 1 � PŒy D C1�

where p 2 Œ0; 1� is the probability of a positive label. To parameterize a Bernoulli
distribution P� Œy D C1 j x� by the linear score function hw; xi C b, the score can be
mapped to the unit interval Œ0; 1� via the logistic function:

�.t/ WD 1

1C e�t
: (5.12)

This results in the following conditional distribution for the label y given the input x:

P� Œy D C1 j x� WD � .hw; xi C b/ D 1

1C e�hw;xi�b
(5.13)

P� Œy D �1 j x� WD 1 � P� Œy D C1 j x�:

As depicted in Fig. 5.2, the decision rule (5.8) coincides with choosing the most
probable label under this model.

Fig. 5.2 An example of logistic regression in two dimensions. The left plot illustrates the data
(white and blue points) and the learned linear model w (red arrow). The right plot illustrates the
linear score hw; xi C b for each point x compared to the model probability P� Œy D C1 j x�, where
each point is colored according to its label. The decision threshold (0.5) is drawn in red
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Taking the negative logarithm of (5.13) results in the following surrogate
function:

f� .xi; yi j �/ WD
(

log
�
1C e�hw;xii�b

�
yi D C1

hw; xii C bC log
�
1C e�hw;xii�b

�
yi D �1

D
�

1 � yi

2

�
.hw; xii C b/C log

�
1C e�hw;xii�b

�
: (5.14)

Because of its use of the logistic function in defining (5.13), this formulation is
known as logistic regression [32].

Although logistic regression and SVM share the same parameterization and have
equivalent prediction rules, there are some key distinctions to keep in mind when
deciding between the two methods. First, the scores produced by logistic regression
have a natural probabilistic interpretation, whereas the SVM’s scores do not directly
correspond to a probabilistic model.3 Probabilistic interpretation can be useful when
the classifier must produce confidence-rated predictions, or be integrated with larger
models, such as the hidden Markov models discussed later in Sect. 5.3.5. Second,
the choice of regularization g.w/ can have significant influence on the behavior
of the model. While SVMs use the `2 (quadratic) penalty, logistic regression is
often implemented with `1 or `2 penalties. The `2 penalty can be seen as limiting
the influence of any single feature, while `1 can be seen as encouraging sparse
solutions that depend only on a small number of features. In practice, the choice
of regularization functions is another modeling decision that can be optimized
for using cross-validation, since most common implementations of linear models
support a range of penalty functions [44, 92].

5.2.2 Multi-Class Linear Models

The binary formulations in Sect. 5.2.1 can be naturally extended to the multi-class
setting, where Y D f1; 2; : : : ; Cg, so that each example is categorized into exactly
one of the C distinct classes. Note that this is distinct from the similarly named
multi-label setting, where each example can be assigned to multiple, non-disjoint
classes. While the multi-label setting is often a natural fit for practical applications,
it can be handled directly by using C independent binary classifiers.4

A natural extension of binary logistic regression can be obtained by defin-
ing � D .wc; bc/

C
cD1, so that each class has its own set of parameters .wc; bc/.

3SVM scores can be converted into probabilities via Platt scaling [94] or isotonic regression [122],
but these methods require additional modeling and calibration.
4The notion of independence for multi-label problems will be treated more thoroughly when we
develop deep learning models.
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The probability that a given input x belongs to category j is then defined as

P� Œy D j j x� WD ehwj; xiCbjP
c ehwc; xiCbc

: (5.15)

Taking the negative log-likelihood of the observed training data results in the
following multi-class objective function:

f .x; y j �/ WD �hwy; xi � by C log

 X
c

ehwc; xiCbc

!
: (5.16)

Similarly, the linear hinge loss can be generalized by comparing the discriminant
score of the true label y for training point x to all other labels c [33]:

f .x; y j �/ WD max

�
0; 1 � hwy; xi � by Cmax

c¤y
hwc; xi C bc

�

D �hwy; xi � by Cmax
c

`.y; c/C hwc; xi C bc: (5.17)

Practically speaking, both objectives lead to the same prediction rule:

h.x j �/ WD argmax
y
hwy; xi C by; (5.18)

that is, take the label with the highest score.
In multi-class problems, the regularization function is typically applied indepen-

dently to each wc and summed: g.�/ WDPc gw.wc/.

5.2.3 Non-linear Discriminative Models

This section focused on linear models, primarily due to their simplicity, adaptability,
and ease of integration with methods discussed in the remainder of this chapter.
However, there are a wide range of effective, non-linear discriminative models
available to practitioners, which we will briefly describe here. Interested readers
are referred to [48] for thorough introductions to these methods.

Most closely related to the linear models described above are kernel meth-
ods [107]. These methods can be seen as implementing linear models after a
non-linear transformation of the data encoded by a kernel function k.x1; x2/ which
generalizes the notion of linear inner product hx1; x2i. Common choices of kernel
functions include the radial basis function or Gaussian kernel:

k˛.x1; x2/ WD exp
˚�˛kx1 � x2k2

�
(5.19)
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with bandwidth ˛ > 0, or the polynomial kernel:

kb;p.x1; x2/ WD .bC hx1; x2i/p (5.20)

with degree p � 1 and constant b � 0. Kernel formulations are available for a broad
class of suitably regularized models, including the SVM and `2-regularized logistic
regression [103].

Nearest neighbor classifiers [35, 47] operate by querying the training set X for
the nearest examples to a test example x, and predicting h.x/ as the majority vote
of labels within the nearest neighbor set. This approach is simple to implement, and
readily adapts to high-cardinality output label sets. The accuracy of nearest neighbor
classifiers depends on the choice of distance function used to determine proximity,
and there are a variety of methods available to optimize the metric from a labeled
training set [9].

Finally, decision trees [22] operate by recursively partitioning the training set by
applying a threshold to individual features. For example, the rule x3 � 0:75 would
send all examples with the third coordinate less than 0.75 to the left sub-tree, and all
others to the right. Recursively applying these rules produces a tree structure, where
each leaf of the tree is labeled according to the majority vote of training data that
maps to that leaf. Test examples are then classified by the label of the leaf into which
they map. Although decision trees are known to be prone to over-fitting, random
forests [21] ameliorate this by combining the outputs of multiple trees to produce the
final classifier. By generating an ensemble of trees from different (random) subsets
of the training set and random subsets of features, a random forest tends to be much
more robust than a single decision tree, and the general method is highly effective
in practice.

5.3 Generative Models

The models in the previous section were discriminative, in the sense that they only
need to describe the boundaries between categories, and not the distribution of data
within each category. By contrast, generative models seek to approximate the data
generating process itself by modeling the joint distribution P� Œx; y�, rather than the
conditional distribution P� Œy j x�.

Before getting into specific examples of generative models, we will first cast
the modeling process into the regularized optimization framework described at the
beginning of this chapter, and provide a general overview of statistical inference and
parameter estimation.
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5.3.1 Maximum Likelihood Estimation

When building a generative model, the primary goal is to describe the space of
observable data. Consequently, we should strive to make the model distribution P�

match the unknown data distribution D , and our notion of loss is tied not to the
accuracy of the resulting classifier, but to the dissimilarity between P� and PD . From
information theory, a particularly useful notion of dissimilarity between probability
distributions is the Kullback–Leibler (KL) divergence [31, 77]:

KL .PDkP� / WD
Z

z
log

�
PD Œz�

P� Œz�

�
PD Œz�dz: (5.21)

which measures the amount of information lost when using distribution P� to
approximate PD : the more similar the two distributions are, the smaller the KL-
divergence will be.

When D is fixed, minimizing (5.21) over the choice of � is equivalent to
minimizing the cross-entropy between PD and P� :

argmin
�

KL .PDkP� / D argmin
�

�
Z

z
log .P� Œz�/ PD Œz�dz: (5.22)

When D is unknown, except through an I.I.D. sample fzigniD1 � D , we can
approximate (5.22) by the empirical average log-likelihood:

�
Z

z
log .P� .z// PD Œz�dz D �ED Œlog P� Œz�� � �1

n

nX
iD1

log P� Œzi�: (5.23)

This leads to the standard formulation of maximum likelihood parameter estimation:
maximizing the probability of P� generating the training data observed is approxi-
mately equivalent to minimizing the KL-divergence between P� and PD . For labeled
observations z D .x; y/, the corresponding objective function f is then the negative
log-likelihood given the model parameters � :

f .x; y j �/ D � log P� Œx; y�: (5.24)

Once � has been estimated, the prediction rule for an input example x then takes
the form:

h.x j �/ WD argmax
y

P� Œx; y�: (5.25)

5.3.2 Bayesian Estimation: Maximum A Posteriori

In Sect. 5.3.1, there was no explicit mechanism to specify a preference for certain
configurations of � over others (aside from how well it approximates D). The
Bayesian approach to resolve this issue is to treat � as a random variable, alongside
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the observable data .x; y/. In this view, the model probability distribution P� can be
interpreted as conditional on a specific value of � :

P� Œx; y� WD P Œx; y j �� ; (5.26)

and we suppose a prior distribution PŒ� � to express preference for some values of
� over others. Similarly, the corresponding prediction rule for a given value of �

becomes

h.x j �/ WD argmax
y

PŒx; y j ��: (5.27)

Bayesian inference consists of computing the posterior distribution PŒ� j S� after
observing samples S D f.xi; yi/gniD1 � D by using Bayes’ rule:

PŒ� j S� D PŒS j �� � PŒ� �

PŒS�
; (5.28)

where PŒS j �� DQn
iD1 PŒxi; yi j �� factorizes because S is assumed to be drawn I.I.D.

Computing (5.28) is difficult because the denominator PŒS� is an unknown quantity
(i.e., D) that is generally difficult to estimate. However, if we are only interested
in finding a single value of � which maximizes (5.28), then the PŒS� factor may be
safely ignored, since it is constant with respect to the choice of � . This leads to the
maximum a posteriori (MAP) formulation of parameter estimation:

argmin
�

�1

n

nX
iD1

log PŒxi; yi j �� � 1

n
log PŒ� �: (5.29)

This is derived by taking the logarithm of (5.28), which is equivalent to maximum
likelihood inference (5.23), but with an additive term g.�/ WD � 1

n log PŒ� �.5 MAP
inference can thus be viewed as a special case of the generic regularized learning
objective (5.6).

The choice of prior distribution PŒ� � is of utmost importance, and generally
depends on several contributing factors such as model structure, existing domain
knowledge, and computational convenience. In the following sections, we will
discuss the choice of priors for specific models.

5.3.3 Aside: Fully Bayesian Inference

The MAP estimation approach described in the previous section results in classifiers
that depend on a single value of � . If the posterior distribution PŒ� j S� is not strongly

5The factor of 1=n is not strictly necessary here, but are included for consistency with (5.6).
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peaked, or has multiple modes which result in disagreeing predictors, then MAP
estimation can become unstable. These situations call for fully Bayesian inference,
where the uncertainty in � is explicitly accounted for when making predictions.

Instead of (5.27), a fully Bayesian predictor would marginalize � out of the joint
distribution PŒx; y; � � to find the most likely label:

h.x/ WD argmax
y

PŒx; y� D argmax
y

Z
�

PŒx; y j �� � PŒ� �d�: (5.30)

In general, this marginal likelihood calculation does not have a closed-form
solution, and it can therefore be difficult to compute exactly. When fully Bayesian
inference is necessary, it is typically performed by sampling methods such as
Markov chain Monte Carlo (MCMC) [62, 87], which can estimate PŒx; y� by drawing
samples � � PŒ� � and averaging the likelihood estimates PŒx; y j ��. Once the
posterior distribution (5.28) has been computed from a training set S, (5.30) can
be approximated by sampling from the posterior PŒ� j S� rather than the prior PŒ� �.

There is a rich literature on sampling methods for marginal likelihood, and these
methods lie outside the scope of this text [4, 50]. For the remainder of this chapter,
we will stick primarily with MAP inference for probabilistic models.

5.3.4 Gaussian Mixture Models

A Gaussian mixture model (GMM) consists of a weighted mixture of K multivariate
Gaussian distributions [91]. Formally, � D .!k; �k; ˙k/

K
kD1 where !k are non-

negative weights which sum to 1, and �k 2 R
d and ˙k 2 S

dCC denote the mean
vector and covariance matrix of the kth mixture component.6 The probability density
at point x is then defined as:

P� Œx� WD
X

k

!k �N .�k; ˙k/

D
X

k

!k � j2 ˙kj�1=2 � e� 1
2 kx��kk2

˙k ; (5.31)

where kzk2˙ WD zT˙�1z. Given a sample .xi/
n
iD1, the parameters � can be inferred

by a variety of different strategies, but the most common method is expectation-
maximization (EM) [36].

6
S

d
CC

denotes the set of d � d positive definite matrices: Hermitian matrices with strictly positive
eigenvalues.
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5.3.4.1 Classification with GMMs

Note that (5.31) does not involve the labels y, and can therefore be considered an
unsupervised model of the data. This can be extended to a multi-class supervised
model by fitting a separate GMM P�y Œxjy� for each category y. The objective then
becomes to find GMM parameters � D .�y; py/, where �y contains the parameters of
the GMM corresponding to class y, and py models the probability of class y. Given
an unlabeled example x, the label is predicted as

h.x j �/ WD argmax
y

P� Œy j x� D argmax
y

P� Œx j y� � P� Œy�; (5.32)

where the latter equality follows from Bayes’ rule:

P� Œy j x� D P� Œx j y� � P� Œy�

P� Œx�
/ P� Œx j y� � P� Œy� (5.33)

because P� Œx� is (an unknown) constant when searching over y for a given x. The
interpretation of (5.32) is similar to that of the multi-class linear models of the
previous section: the predicted label is that for which the corresponding generative
model assigns highest probability to the input x.

5.3.4.2 Simplifications

There are a few commonly used simplifications to the GMM described in (5.31),
as illustrated in Fig. 5.3. The first simplification is to restrict the parameter space
so that each ˙k is a diagonal matrix. This reduces the number of parameters in
the model, and simplifies the matrix inverse and determinant calculations in (5.31).
This restriction prohibits the model from capturing correlations between variables.
However, if the training data has already been decorrelated by a pre-processing step
(such as principal components analysis), the diagonal restriction may perform well
in practice.

Spherical covariance constraints force ˙k D �kIk, so that each component
has equal variance along each dimension, but that variance can differ from one
component to the next. An even more extreme constraint is to force all ˙k to equal
the identity matrix. This restriction, known as isotropic covariance, eliminates all
variance parameters from the model, so all that are left are the mixture coefficients
!k and the means �k. The spherical restriction may be justified if in addition to being
decorrelated, the data are pre-processed to have unit variance along each coordinate,
and variance is expected to be independent of component membership. In this case,
the GMM can be interpreted as a soft-assignment variant of the K-means clustering
algorithm [82].
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Fig. 5.3 Gaussian mixture models with different covariance constraints applied to the same data
set (blue). Component means �k are indicated by red plus markers, and the covariance structures
are indicated by yellow ellipses covering ˙3 standard deviations from �k

5.3.4.3 Aside: Maximum Likelihood, or MAP?

As described in the introduction to this section, we have a choice between
classical (maximum likelihood) and Bayesian (MAP) inference when estimating
the parameters � of a generative model. For the GMM as described above in (5.31),
it should be noted that the classical approach has certain degeneracies that can be
avoided by the Bayesian approach.

Specifically, given a training sample, it is possible to make the likelihood
arbitrarily large by selecting one component .�k; ˙k/ and setting �k D xi (for some
training point xi), and letting ˙k D �I for some arbitrarily small value � > 0

so that the determinant j˙kj approaches 0. Although it may be rare to encounter
this degenerate case in practice, it is possible—especially when the training sample
contains outliers (examples far in feature space from most of the training samples).
Similar degeneracies can occur when modes of the data lie close to a low-rank
subspace. This suggests that maximum likelihood inference may not be the most
appropriate choice for estimating GMM parameters.

This situation can be avoided by incorporating prior distributions on the model
parameters !; �k; ˙k which assign low probability to known degenerate configura-
tions. The choice of prior distributions should be guided by domain knowledge and
some conceptual understanding of the data, so any general-purpose recipes should
be taken as suggestions and treated with skepticism. That said, for computational
reasons, it is often preferable to use conjugate priors, which can lead to simple
parameter updates and computationally efficient learning algorithms.7

7A probability distribution PŒ� � is a conjugate prior if the posterior PŒ� j S� has the same form as
the prior PŒ� � [97].
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In the case of the GMM, there are three prior distributions in need of definition:
PŒ!�, PŒ˙�, and PŒ��. Because ! is a categorical random variable, the (symmetric)
Dirichlet distribution can be used since it is conjugate to the categorical distribution:

P˛Œ!� WD Γ.˛K/

Γ.˛/K

KY
kD1

!˛�1
k : (5.34)

The ˛ > 0 variable is a hyper-parameter: for ˛ � 1, ! tends to be dense; for
˛ < 1, ! tends to concentrate on a few components, which can be used to effectively
eliminate unused components.

The covariance prior PŒ˙� can be somewhat more difficult to define. For diagonal
covariance models, it is common to factor the prior over each variance component
PŒ˙� D PŒ�2

i �, and use a prior with support limited to positive reals, such as the
log-normal or gamma distributions. If the prior assigns 0 probability to �2

i D 0—
as the log-normal distribution does, or gamma with shape parameter ˛ > 1—then
the degenerate cluster issue described above can be effectively prevented. For full-
covariance models, the Wishart distribution (a multivariate extension of the gamma
distribution with support over positive definite matrices) can be used to achieve
similar results. Each of these prior distributions has additional hyper-parameters
which specify the location and dispersion of probability mass.

Finally, the prior on cluster means PŒ�� is often taken to be a standard,
multivariate Gaussian when X D R

d. However, if additional constraints are
known, e.g., observations are non-negative magnitude spectra so X D R

dC, then
a coordinate-wise log-normal or gamma distribution might be more appropriate.
For a more thorough discussion of priors for generative models, we refer interested
readers to [85, Chap. 5].

5.3.4.4 Parameter Estimation

While it is relatively straightforward to implement the expectation-maximization
(EM) algorithm for the maximum likelihood formulation of a GMM, the task can
become significantly more complex in the MAP scenario, as the update equations
may no longer have convenient, closed-form solutions. Variational approximate
inference methods are often used to simplify the parameter estimation problem
in this kind of setting, usually by computing the MAP solution under a surrogate
distribution with a more computationally convenient factorization [118]. A proper
treatment of variational inference is beyond the scope of this text, and it should
be noted that although the resulting algorithms are “simpler” (more efficient), the
derivations can be more complex as well. Software packages such as Stan [23]
and Edward [114] can ease the burden of implementing variational inference by
automating much of the tedious calculations.
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5.3.4.5 How Many Components?

Throughout this section, we have assumed that the number of mixture components
K was fixed to some known value. In practice, however, the best K is never known
a priori, so practitioners must find some way to select K. There are essentially
three data-driven approaches to selecting K: information criteria, Dirichlet process
mixtures, and utility optimization.

The first approach comes in a wide range of flavors: Akaike’s information
criterion (AIC) [2], Bayesian information criterion (BIC) [105], or widely applicable
information criterion (WAIC) [119]. The common thread throughout these methods
is that one first constructs a set of models—for a GMM, each model would
correspond to a different choice of K—and select the one which best balances
accuracy (likelihood of observed data) against model complexity. The methods
differ in how “model complexity” is estimated, and we refer interested readers to
Watanabe [119] for a survey of the topic.

The second approach, Dirichlet process mixtures [5], implicitly supports a
countably infinite number of mixture components, and estimates K as another
model parameter along with mixing weights, means, and variances [15, 98]. This
model can be approximated by setting K to some reasonable upper limit on the
acceptable number of components, imposing a sparse Dirichlet prior (˛ < 1)
over !, and estimating the parameters just as in the case where K is fixed [69].
Then, any components with sufficiently small mixture weights !i (e.g., those whose
combined weight is less than 0:01) can be discarded with negligible impact on the
corresponding mixture density.

Finally, utility-based approaches select the model which works best for a
given application, i.e., maximizes some expected utility function. In classification
problems, the natural utility function to use would be classification accuracy of the
resulting predictor (5.32). Concretely, this would amount to treating K as another
hyper-parameter to be optimized using cross-validation, with classification accuracy
as the selection criterion.

5.3.5 Hidden Markov Models

So far in this chapter, the models described have not directly addressed temporal
dynamics of sound. To model dynamics, we will need to treat a sequence of feature
observations as a single object, which we will denote by x D .xŒ1�; xŒ2�; : : : ; xŒT�/.8

8Note that although we use T to denote the length of an arbitrary sequence x, it is not required that
all sequences have the same length.
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In general, the likelihood of a sequence observation P� Œx� can be factored as
follows:

P� Œx� D P� ŒxŒ1�; xŒ2�; : : : ; xŒT��

D P� ŒxŒ1�� �
T�1Y
tD1

P� ŒxŒtC 1� j xŒ1�; xŒ2�; : : : ; xŒt�� : (5.35)

The Markov assumption asserts that this distribution factors further:

P� Œx� WD P� ŒxŒ1�� �
T�1Y
tD1

P� ŒxŒtC 1� j xŒt�� : (5.36)

That is, the distribution at time t C 1 conditional on time t is independent of any
previous time t0 < t. A hidden Markov model (HMM) asserts that all dynamics
are governed by hidden discrete “state” variables zŒt� 2 f1; 2; : : : ; Kg, and that an
observation xŒt� at time t depends only on the hidden state zŒt� [7, 96].

Formally, an HMM is defined by a joint distribution of the form:

P� Œx; z� WD
TY

tD1

P� ŒzŒt� j zŒt � 1�� � P� ŒxŒt� j zŒt�� : (5.37)

There are three distinct components to (5.37):

• P� ŒzŒ1� j zŒ0�� is the initial state model, which determines the probability of
starting a sequence in each state9;

• P� ŒzŒt� j zŒt � 1�� is the transition model, which governs how one hidden state
transitions to the next; and

• P� ŒxŒt� j zŒt�� is the emission model, which governs how each hidden state
generates observed data.

If there are K possible values for a hidden state, then the transition model can be
defined as a collection of K categorical distributions over the K hidden states. The
parameters of these distributions are often collected into a K � K stochastic matrix
known as the transition matrix V , where

Vij D P� ŒzŒt� D i j zŒt � 1� D j� : (5.38)

Similarly, the initial state model can also be defined as a categorical distribution
over the K hidden states.

9For ease of notation, we denote the initial state distribution as P� ŒzŒ1� j zŒ0��, rather than the
unconditional form P� ŒzŒ1��.
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The definition of the emission model depends on the form of the observed data.
A common choice, when xŒt� 2 R

d is to define a multivariate Gaussian emission
model for each hidden state:

P� Œx j zŒt� D k� WD N .�k; ˙k/: (5.39)

This model is commonly referred to as the Gaussian-HMM. Note that the speci-
fication of the emission model does not depend on the transition model, and any
reasonable emission model may be used instead. Emission models can themselves
also be mixture models, and GMMs are particularly common.

Once the parameters of the model have been estimated (Sect. 5.3.5.2), the most
likely hidden state sequence z for an observed sequence x can be inferred by
the Viterbi algorithm [117]. The resulting state sequence can be used to segment
the sequence into contiguous subsequences drawn from the same state. In audio
applications, this can correspond directly to the temporal activity of a class or sound
source [64].

5.3.5.1 Discriminative HMMs

The most common way to apply HMMs for classification is to impose some
known structure over the hidden state space. For example, in speech recognition
applications, we may prefer a model where each hidden state corresponds to a
known phoneme [73]. If labeled training data is available, where each observation
sequence x D .xŒ1�; xŒ2�; : : : ; xŒT�/ has a corresponding label sequence y D
.yŒ1�; yŒ2�; : : : ; yŒT�/, then we can directly relate the hidden state space to the label
space Y . While one could use a discriminative model to independently map each
observation to a label, this would ignore the temporal dynamics of the problem.
Integrating the classification with an HMM can be seen as a way of imposing
temporal dynamics over model predictions.

Recall that there are three quantities to be estimated in an HMM: the initial state
distribution, the state transition distribution, and the emission distribution. When
labeled training data is available—i.e., the state variable for each observation is also
observed—the first two distributions can be estimated directly from the labels, since
they are conditionally independent of the input data x given the state. In practice, this
amounts to estimating the parameters of K C 1 categorical distributions—K for the
transition distributions and one for the initial state distribution—from the observed
labeled sequences.

All that remains is to characterize the emission distributions. This can be done by
applying Bayes’ rule to the observation model, now using y to indicate states instead
of z:

P� ŒxŒt� j yŒt� D k� D P� ŒyŒt� D k j xŒt�� � P� ŒxŒt��

P� ŒyŒt� D k�
(5.40)
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which expresses the emission probability in terms of the conditional class likelihood
P� ŒyŒt� D k j xŒt��, the marginal probability of the class occurring P� ŒyŒt� D k�,
and the marginal probability of the observation P� ŒxŒt��. The conditional class
likelihood can be estimated by any probabilistic discriminative classifier, e.g.,
logistic regression (Sect. 5.2.1.2) or a multi-layer perceptron (Sect. 5.4.2). The
marginal probability of the class is a categorical distribution that can be estimated
according to the statistics of the labeled training data.

Finally, the marginal probability of the observation P� ŒxŒt�� is generally difficult
to estimate, but luckily it is not often needed. Recall that the practical application
of the HMM is to produce a sequence of labels y D .yŒ1�; yŒ2�; : : : ; yŒT�/

from an unlabeled observation sequence x D .xŒ1�; xŒ2�; : : : ; xŒT�/ following the
prediction rule:

h.x j �/ WD argmax
y

P� Œx; y�: (5.41)

Substituting (5.40) and (5.37) into (5.41) yields

P� Œx; y� D
TY

tD1

P� ŒyŒt� j yŒt � 1�� � P� ŒxŒt� j yŒt�� (5.42a)

D
TY

tD1

P� ŒyŒt� j yŒt � 1�� � P� ŒxŒt�� � P� ŒyŒt� j xŒt��

P� ŒyŒt��
(5.42b)

D
 

TY
tD1

P� ŒyŒt� j yŒt � 1�� � P� ŒyŒt� j xŒt��

P� ŒyŒt��

!
�

TY
tD1

P� ŒxŒt�� (5.42c)

/
TY

tD1

P� ŒyŒt� j yŒt � 1�� � P� ŒyŒt� j xŒt��

P� ŒyŒt��
; (5.42d)

where the P� ŒxŒt�� factors can be ignored since they do not affect the maximization
over choice of y. Consequently, the sequence prediction (5.41) can be computed
by the Viterbi algorithm using only the discriminative classifier’s point-wise output
and the empirical unigram- and bigram-statistics, P� ŒyŒt�� and P� ŒyŒt� j yŒt � 1��, of
observed label sequences.

In addition to attaching specific meaning to the “hidden” state variables (i.e.,
correspondence with class labels), there are two computational benefits to this
approach. First, it can be applied to any probabilistic classifier, and it is often used as
a post-processing technique to reduce errors resulting from frame-wise classifiers.
Second, discriminative classifiers are often easier to train than generative models,
since they typically require less observation data, and the resulting models tend to
be more accurate in practice.

The discriminative HMM approach described here can be viewed as a special
case of a conditional random field (CRF) [78], where the model parameters have
been estimated independently. A more general CRF-based approach would jointly
estimate all model parameters, which can improve accuracy in practice.
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5.3.5.2 Priors and Parameter Estimation

Parameter estimation for HMMs can be done either in maximum likelihood or MAP
formulations, and the resulting algorithms are qualitatively similar to the case for
Gaussian mixture models.10 In particular, a Bayesian formulation of the HMM looks
nearly identical to that of the GMM—with the initial state model P ŒzŒ1� j zŒ0�; ��

acting in place of the mixture weights PŒ! j ��—and the only additional set of
parameters in need of a prior is the transition matrix. Since each row V�;j of the
transition matrix is a categorical distribution, it is again natural to impose a Dirichlet
prior over each row of V . For details on Bayesian HMM inference, we refer readers
to Beal [8].

Just as in the GMM case, the number of hidden states K is another hyper-
parameter to be estimated, and it can be done via any of the methods described
in Sect. 5.3.4.5. In the discriminative case where hidden states are matched to
observable labels, this issue does not arise.

5.4 Deep Models

In this section, we provide a brief overview of the so-called deep learning
architectures. While the term deep learning can apply to a wide range of different
types of models, we will focus specifically on discriminative classification models
which include a non-linear transformation of input data that is jointly optimized
with the classifier. For a more thorough introduction, we refer interested readers to
Goodfellow et al. [54].

5.4.1 Notation

Deep models are often characterized by compositions of non-linear functions. For
brevity, we will denote the sequential composition of k functions by the} symbol,
defined as:

�}m
iD1fi

�
.x/ WD .fm ı fm�1 ı � � � ı f1/.x/: (5.43)

Each fi should be interpreted as a stage or layer of processing, which transforms the
output of fi�1 to the input of fiC1.

10The well-known Baum–Welch algorithm for HMM parameter estimation is a special case of
expectation-maximization [96].
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Fig. 5.4 An example illustration of a multi-layer perceptron (MLP) with four layers. The input
x 2 R

100 is mapped through three intermediate layers with d1 D 256, d2 D 128, and d3 D 64

and rectified linear unit (ReLU) transfer functions. The output layer in this example maps to 32
independent classes with a logistic transfer function

5.4.2 Multi-Layer Perceptrons

The simplest, and oldest family of “deep” models is the multi-layer perceptron
(MLP) [99, 101]. As illustrated in Fig. 5.4, an MLP is defined by a sequence of
layers, each of which is an affine transformation followed by a non-linear transfer
function 	:

fi.z j �/ WD 	i
�
wT

i zC bi
�

; (5.44)

where the parameters � D .wi; bi; 	i/
m
iD1 have weights wi 2 R

di�1�di , biases bi 2
R

di , and transfer functions 	i W Rdi ! R
di . Each layer maps data from R

di�1 to R
di ,

which dictates the shape of the resulting MLP.11 For input data x 2 R
d, we define

d0 WD d, and for categorical prediction tasks, we define dm WD jY j as the number of
labels.

The final (output) layer fm of an MLP is typically defined as a linear model
in one of the forms described in Sect. 5.2. The “internal” layers f1 : : : fm�1 can be
interpreted as a “feature extractor.” One motivation for this architecture is that by
jointly optimizing the internal and output layers, the model finds a feature extractor
which separates the data so that the output layer performs well. In contrast to the
linear models described in Sect. 5.2, this approach directly benefits from multi-
class and multi-label data because it can leverage observations from all classes in
constructing the shared representation.

The surrogate loss f is defined in terms of the output of the final layer:

f .x; y j �/ WD ferr

��}m
iD1fi

�
.x/; y

�
; (5.45)

11Some authors refer to the layer dimension di as width. This terminology can be confusing when
applied to spatio-temporal data as in Sect. 5.4.3, so we will use dimension to indicate di and retain
width to describe a spatial or temporal extent of data.
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where ferr is a standard surrogate loss function as described in Sect. 5.2 that compares
the output of the final layer fm to the target label y. Just as in the previous sections, the
prediction rule corresponding to (5.45) is to choose the label which would minimize
the objective:

h.x j �/ WD argmin
y

f .x; y j �/: (5.46)

Typically, this will simplify to an argmax over the output variables (for multi-class
problems), or a thresholding operation (for binary problems).

5.4.2.1 Transfer and Objective Functions

The transfer function 	i—also known as an activation function or non-linearity—
allows the model to learn non-linear structure in data.12 As illustrated in Fig. 5.5,
there are a variety of commonly used transfer functions.

Fig. 5.5 A comparison of various transfer functions 	. Note that some saturate on both negative
and positive inputs (logistic, tanh, soft-sign), while others saturate only on negative inputs (ReLU,
soft-plus), or not at all (leaky ReLU)

12To see this, observe that if 	i is omitted, then the full model f .x j �/ is a composition of affine
functions, which is itself an affine function, albeit one with rank constraints imposed by the
sequence of layer dimensions.
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The choice of 	i for internal layers (i < m) is generally at the practitioner’s
discretion. As illustrated in Fig. 5.5, some non-linearities approach saturating
values, such as tanh going to ˙1, or logistic going to f0; 1g as z diverges from 0.
When the non-linearity saturates to a constant, its derivative goes to 0 in that region
of its domain, and as a result, the error signal cannot (easily) propagate through to
earlier layers. Although techniques exist to limit this behavior (e.g., by scaling the
activations to stay within the non-saturating regions [68]), it is simpler in practice to
use a one-sided or non-saturating transfer function, such as the rectified linear unit
(ReLU) [86] or leaky ReLU [81].

Typically the choice of 	m (the output layer) is dictated by the structure of the
output space. If the output is a multi-label prediction, then the logistic function
(	m D � ) provides a suitable transfer function that can be interpreted as the
likelihood of each label given the input data. In this setting, the label is usually
encoded as a binary vector y 2 f0; 1gC (for C labels), and the standard loss function
is the sum of log-likelihoods for each label:

ferr.Oy; y/ WD
CX

cD1

�yc log Oyc � .1 � yc/ log .1 � Oyc/ ; (5.47)

where Oy D .}m
iD1fi/.x/ is the output of the MLP on input x. This loss function

is also known as the binary cross-entropy loss, since it is equivalent to the sum of
cross-entropies between K pairs of Bernoulli random variables.

For multi-class problems, the soft-max function provides a normalized, non-
negative output vector that can be interpreted as a categorical probability distri-
bution:

	softmax.z/k WD
exp.zk/P

j exp.zj/
: (5.48)

In multi-class problems, the label y is typically encoded as a binary vector with
exactly one non-zero entry. The standard loss function is the categorical cross-
entropy:

ferr.Oy; y/ WD �
CX

cD1

yc log Oyc: (5.49)

5.4.2.2 Initialization

Related to the choice of transfer function is the issue of weight initialization.
Because gradients do not propagate when the input to the transfer function lies in
its saturating regions, it is beneficial to randomly initialize weights wi and biases
bi such that Ewi;b

	
	
�
wT

i zC bi
�


has non-zero derivative. Glorot and Bengio [52]
derive an initialization scheme using weights wij sampled randomly from the
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interval ˙d�1=2
i�1 , with the implicit assumption that the input z is bounded in Œ�1; 1�,

as is the case when using symmetric, saturating transfer functions (e.g., logistic or
tanh).

He et al. [63] argue that this scheme is ill-suited for networks in which the input z
has non-zero expectation, as is the case for networks with ReLU activations. Instead,

He et al. recommend that weights be initialized as wij � N
�
0;
p

2=di�1

�
for ReLU

networks, or more generally,

wij � N

 
0;

s
2

.1C ˛2/di�1

!
(5.50)

for leaky ReLU networks with parameter ˛ � 0.
We note that most common implementations provide these initialization schemes

by default [1, 27, 38], but it is still up to the practitioner to decide which initialization
to use in conjunction with the choice of transfer function.

5.4.2.3 Learning and Optimization

In general, the form of f does not lend itself to closed-form solutions, so the
parameters are estimated by iterative methods, usually some variation of gradient
descent:

� 7! � � 
r� f .x; y j �/ (5.51)

where r� denotes the gradient operator with respect to parameters � , and 
 > 0 is a
learning rate that controls how far to move � from one iteration to the next.

Because f is defined as a composition of simpler functions, the gradient r� f is
decomposed into its individual components (e.g., rwi or rbj ), which are computed
via the chain rule. This process is also known as back-propagation, since the
calculation can be seen as sending an error signal back from the output layer
through the sequence of layers in reverse-order [101]. In the past, calculating the
gradients of (5.45) was a tedious, mechanical chore that needed to be performed for
each model. However, in recent years, nearly all deep learning frameworks include
automatic differentiation tools, which remove this burden of implementation [1, 11,
28, 71].

Due to the computational and memory complexity of computing gradients over
a large training set, the common practice is to use stochastic gradient descent
(SGD) [18], which estimates the gradient direction at each step k by drawing a small
mini-batch Bk of samples from the training set S, and approximating the gradient:

Or� f WD 1

jBkj
X

.x;y/2Bk

r� f .x; y j �/ (5.52a)
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� 1

jSj
X

.x;y/2S

r� f .x; y j �/ D r� f (5.52b)

� ED Œr� f .x; y j �/� : (5.52c)

It is also common to accelerate the standard SGD approach described above by
using momentum methods [88, 95, 111], which re-use gradient information from
previous iterations to accelerate convergence. Similarly, adaptive update schemes
like AdaGrad [41] and ADAM [75] reduce the dependence on the step size 
, and
can dramatically improve the rate of convergence in practice.

Finally, to prevent over-fitting of MLP-based models, it is common to use early
stopping as a form of regularization [109], rather than minimizing (5.45) over the
training set until convergence. This is usually done by periodically saving check-
points of the model parameters � , and then validating each check-point on held-out
data as described in Sect. 5.1.2.

5.4.2.4 Discussion: MLP for Audio

Multi-layer perceptrons form the foundation of deep learning architectures, and can
be effective across a wide range of domains. However, the MLP presents some
specific challenges when used to model audio.

First, and this is common to nearly all models discussed in this chapter, is
the choice of input representation. Practitioners generally have a wide array of
input representations to choose from—time-domain waveforms, linear-frequency
spectrograms, log-frequency spectrograms, etc.—and this choice influences the
efficacy of the resulting model. Moreover, the scale of the data matters, as described
in Sect. 5.4.2.2. This goes beyond the simple choice of linear or logarithmic
amplitude spectrogram scaling: as discussed in the previous section, training is
difficult when transfer functions operate in their saturating regions. A good heuristic
is to scale the input data such that the first layer’s transfer function stays within non-
saturating region in expectation over the data. Coordinate-wise standardization (also
known as z-scoring) using the training set’s mean and variance statistics .�; �2/

accomplishes this for most choices of transfer functions, since each coordinate maps
most of the data to the range Œ�3;C3�13:

xi 7! xi � �i

�i
: (5.53)

In practice, coordinate-wise standardization after a log-amplitude scaling of spectral
magnitudes works well for many audio applications.

13Note that batch normalization accomplishes this scaling implicitly by estimating these statistics
during training [68].
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Second, an MLP architecture requires that all input have a fixed dimension d,
which implies that all audio signals must be cropped or padded to a specified
duration. This is typically achieved by dividing a long signal (or spectrogram)
x 2 R

T�n into small, fixed-duration observations xi 2 R
ı�n. Observations xi can

be interpreted as vectors of dimension d D nı, and processed independently by
the MLP. In doing so, care must be taken to ensure that the window length ı is
sufficiently long to capture the target concept.

Finally, MLPs do not fully exploit the structure of audio data implicit in time or
frequency dimensions. For example, if two observations x1; x2 are derived from a
signal spanning frame indices Œt; tC ı� and ŒtC 1; tC ıC 1�, respectively, the MLP
outputs for f .x1/ and f .x2/ can diverge significantly, even though the inputs differ
only by two frames. Consequently, MLPs trained on audio data can be sensitive
to the relative positioning of an observation within the window. For non-stationary
target concepts, this presents a great difficulty for MLP architectures, since they
effectively need to detect the target event at every possible alignment within the
window. The remaining sections of this chapter describe methods to circumvent this
problem by exploiting the ordering of time or frequency dimensions.

5.4.3 Convolutional Networks

Convolutional networks are explicitly designed to overcome the limitations of MLPs
described in the previous Sect. [79]. There are two key ideas behind convolutional
networks:

1. statistically meaningful interactions tend to concentrate locally, e.g., within a
short time window around an event;

2. shift-invariance (e.g., in time) can be exploited to share weights, thereby reducing
the number of parameters in the model.

Convolutional networks are well-suited to applications in which the desired output
is a sequence of predictions, e.g., time-varying event detection, and the concepts
being modeled derive only from local interactions. In this section, we will describe
one-dimensional and two-dimensional convolutional networks. Though the idea
generalizes to higher dimensions, these two formulations are the most practically
useful in audio applications.

5.4.3.1 One-Dimensional Convolutional Networks

Given an input observation z 2 R
T�d, a one-dimensional convolutional filter with

coefficients w 2 R
n�d and bias b produces a response 	 .w 	 zC b/, where w 	 z
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denotes the “valid”14 discrete convolution of w with z15:

.w 	 z/Œt� WD
nX

jD1

hwŒj�; z ŒtC j � dn=2e�i : (5.54)

Here, n 
 T denotes the size of the receptive field of the filter w, j indexes the filter
coefficients and position within the input signal, and d indicates the dimensionality
(number of channels) in the input. By convention, the receptive field n is usually
chosen to be an odd number so that responses are centered around an observation.

A convolutional layer fi W RTi�1�di�1 ! R
.Ti�1�niC1/�di consists of di convolu-

tional filters, collectively denoted as wi, and bias terms (collected as bi):

fi.z j �/ WD 	i .wi 	 zC bi/ : (5.55)

The output of fi, sometimes called a feature map is of slightly reduced extent than
the input (due to valid-mode convolution), and can be interpreted as sliding an MLP
with weights w 2 R

di�1�di over every position in the input z. An example of this
architecture is illustrated in Fig. 5.6.

Note that although the input and output of a convolutional layer are two-
dimensional, the first dimension is assumed to encode “temporal position” (over
which the convolution ranges) and the second dimension encodes (unordered) filter
channel responses as a function of position. When the input has only a single
observation channel (e.g., waveform amplitude), which is represented as x 2 R

T0�1.
For higher-dimensional input—e.g., spectrograms—d0 corresponds to the number
of observed features at each time step (e.g., number of frequency bins).

Cascading convolutional layers can be interpreted as providing hierarchical
representations. However, in the form given above, the receptive field of the ith
layer’s filter is linear in i. Pooling layers down-sample feature maps between
convolutional layers, so that deeper layers effectively integrate larger extents of data.
A one-dimensional pooling layer has two parameters: width r and stride s:

fi.z j �/Œt� WD agg
�

zŒtsC j�
ˇ̌
ˇ j 2

h
�
j r

2

k
;
j r

2

ki�
; (5.56)

where agg denotes an aggregation operator, such as max./ or sum./, and is applied
independently to each channel. Max-pooling is particularly common, as it can be
interpreted as a softened version of a logical-or, indicating whether filter had positive
response anywhere within the window around zts. Usually, the pooling stride is set
to match the width (s D r), so that there is minimal redundancy in the output of the
pooling layer, and the result is a downsampling by a factor of s.

14A valid-mode convolution is one in which the response is computed only at positions where the
signal z and filter w fully overlap. For z 2 R

T and w 2 R
n, the valid convolution w � z 2 R

T�nC1.
15Technically, (5.54) is written as a cross-correlation and not a convolution. However, since the
weights w are variables to be learned, and all quantities are real-valued, the distinction is not
important.
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Fig. 5.6 An example of a one-dimensional convolutional network using a spectrogram as input;
convolution is performed only over the time dimension (horizontal axis). The vertical axis
corresponds to the dimension of each layer. The shaded regions indicate the effective receptive
field of a single filter in the subsequent layer at the center position. This network takes input in
R

T�252 (in this example, T D 94 frames), and applies: d1 D 128 convolutional filters (n1 D 13

frames) with ReLU activation, a downsampling of r D 2; d3 D 64 convolutional filters (n3 D 5

frames) with ReLU activation, and finally a convolutional soft-max layer (n4 D 3 frames) mapping
to d4 D 16 classes

Typical convolutional architectures alternate convolution layers with pooling
layers, which ultimately results in an output layer of shape Tm � dm, where Tm < T0

is the result of successive pooling and valid-mode convolution operations. Note that
Tm is generally a function of T0, and will differ for inputs of different length. Care
should be taken during training to align the sampling rate of labels y to that of the
model’s output layer fm, but this is usually a simple task (e.g., downsampling y).

However, when the desired output exists only at the recording level, then some
form of aggregation is required so that the output layer’s shape conforms to that of
the labels. The two most common approaches to reconciling output shapes are

1. use global pooling operators across the convolutional dimension—e.g., max over
the entire time axis—followed by a standard MLP architecture; or

2. pass the convolutional outputs directly into fully connected MLP layers
(Sect. 5.4.5).

Note that for the global pooling approach to work in general, the model must be
able to accommodate input of variable length; this is a common enough operation
that most software implementations support global pooling operators. The second
approach implicitly limits the model to operate on fixed-dimensional inputs, even
at test time. This can make the resulting model inconvenient to deploy, since
observation windows must be manually extracted and passed through the model, but
the models tend to perform well in practice because they preserve temporal relations
among feature activations within the observation.

One-dimensional convolutional networks are often applied to spectrogram repre-
sentations of audio [65, 80, 116]. While this approach is often successful, it is worth
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noting that it cannot learn filters which are invariant to frequency transposition. As
a result, it may require a large number of (redundant) first-layer filters to accurately
model phenomena which move in frequency.

5.4.3.2 Two-Dimensional Convolutional Networks

The one-dimensional convolutional method described in the previous section
generalizes to higher-dimensional data, where multiple dimensions possess a proper
notion of locality and ordering. Two-dimensional convolutional architectures are
especially common, due to their natural application in image processing [79], which
can in turn be adapted to time-frequency representations of audio. The benefits
of two-dimensional convolutional architectures on time-frequency representations
include a larger effective observation window (due to temporal framing, as in
one-dimensional convolutional networks), the ability to leverage frequency decom-
positions to more clearly locate structures of interest, and the potential for learning
representations which are invariant to frequency transposition.

Technically, two-dimensional convolutional layers look much the same as their
one-dimensional counterparts. An input observation is now represented as a three-
dimensional array z 2 R

T�U�d where T and U denote temporal and spatial extents,
and d denotes non-convolutional input channels. The filter coefficients similarly
form a three-dimensional array w 2 R

n�p�d, and the convolution operator w 	 z
is accordingly generalized:

.w 	 z/Œt; u� WD
nX

jD1

pX
kD1

hwŒj; k�; z ŒtC j � dn=2e; uC k � dp=2e�i : (5.57)

The corresponding layer fi W R
Ti�1�Ui�1�di�1 ! R

Ti�Ui�di otherwise operates
analogously to the one-dimensional case (5.55), and pooling operators generalize
in a similarly straightforward fashion. For a spectrogram-like input x 2 R

T0�U0�d0 ,
we take T0 to be the number of frames, U0 the number of frequency bins, and
d0 D 1 to indicate the number of channels. Note that larger values of d0 are
possible, if, for instance, one wished to jointly model stereo inputs (d0 D 2, for left
and right channels), or some other time- and frequency-synchronous multi-channel
representation.

Two-dimensional convolutional networks can be used to learn small, localized
filters in the first layer, which can move both vertically (in frequency) and horizon-
tally (in time) [67, 102]. Unlike one-dimensional convolutions, two-dimensional
convolution is only well-motivated when the input representation uses a log-
scaled frequency representation (e.g., a constant-Q transform), so that the ratio of
frequencies covered by a filter of height p bins remains constant regardless of its
position.

An example of this architecture is illustrated in Fig. 5.7. The first layer filters
in this kind of architecture tend to learn simple, local features, such as transients
or sustained tones, which can then be integrated across large frequency ranges by
subsequent layers in the network.
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Fig. 5.7 An example of a two-dimensional convolutional network with spectrogram input and
local filters. The depth axis corresponds to the dimensionality of each layer, and both horizontal
and vertical dimensions are convolutional. This network takes input x 2 R

T�U�1, and applies the
following operations: d1 D 32 convolutional filters (13 frames by 13 frequency bins) with ReLU
activations, d2 D 24 convolutional filters (9 � 9), 3 � 3 max pooling, d4 D 24 convolutional filters
(1 � 5), and a softmax output layer (all 73 vertical positions) over 16 classes

When the desired output of the model is a time-varying prediction, it is common
to introduce a full-height layer (i.e., pk D Uk�1), so that all subsequent layers
effectively become one-dimensional convolutions over the time dimension. Just as
with the one-dimensional case (Sect. 5.4.3.1), global pooling or hybrid architectures
(Sect. 5.4.5) can be used in settings that call for fixed-dimensional outputs.

5.4.4 Recurrent Networks

The convolutional networks described in the previous section are effective at mod-
eling short-range interactions, due to their limited spatial locality. While pooling
operators can expand the receptive field of convolutional filters, they are still not
well-suited to modeling long-range interactions, or interactions with variable-length
dependencies, which are common in certain forms of audio (e.g., spoken language
or music). Recurrent networks [43, 100, 120] provide a more flexible framework
in which to model sequential data. Rather than modeling a finite receptive field,
observations are encoded and accumulated over temporal or spatial dimensions as
latent state variables.

5.4.4.1 Recursive Networks

Like MLPs and convolutional networks, recurrent networks—also called recurrent
neural networks (RNNs)—are built up by layers of processing units. In the simplest
generic form, a recurrent layer defines a state vector hŒt� 2 R

di (at time index t),
which is driven by input zŒt� 2 R

di�1 and the state vector at the previous time hŒt�1�:

hŒt� WD 	
�
wTzŒt�C vThŒt � 1�C b

�
; (5.58)
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where the layer parameters � D .w; v; b/ consist of input weights w 2 R
di�1�di ,

recurrent weights v 2 R
di�di , bias vector b 2 R

di , and element-wise non-linearity 	.
The model is recurrent because the state at time t depends on the state at time t � 1

(which in turn depends on t � 2, and so on) through the recurrent weights v, which
play a role similar to the transition matrix in a hidden Markov model (5.37).16 A
recurrent layer therefore integrates information over all t0 
 t to produce the output
state vector ht at time t, and can thus be used to model sequential data with variable-
length dependencies. The initial hidden state hŒ0� is typically set to the all-zeros
vector, so that hŒ1� D 	

�
wTzŒ1�C b

�
is driven only by the input and bias.

Just as with MLPs or convolutional networks, recursive networks can be stacked
in a hierarchy of layers. The output of a recurrent layer fi W RT�di�1 ! R

T�di is the
sequence of state vectors:

fi.z j �/ WD .hŒt�/T
tD1; (5.59)

which can in turn be used as inputs to a second recursive layer, or to a convolutional
layer which maps the hidden state vectors hŒt� to predicted outputs.

Learning the weights w and v for a recurrent layer is computationally challeng-
ing, since the gradient calculation depends on the entire state sequence. The standard
practical approach to this problem is back-propagation through time (BPTT) [121],
which approximates the full gradient by unrolling (5.58) up to a finite number k
of time steps, and applying standard back-propagation to estimate gradients over
length-k sub-sequences of the input. The BPTT approach for standard recurrent
networks is known to suffer from the vanishing and exploding gradient problem, due
to the cumulative effect of iteratively applying the state transformation v [10, 90]. In
practice, this can limit the applicability of the recurrent formulation defined in (5.58)
to relatively short sequences, though attempts have been made to apply the method
to sequential tasks such as musical chord recognition [19] or phoneme sequence
modeling [20]. For a comprehensive introduction to recursive networks and their
challenges, we refer readers to Graves [56].

5.4.4.2 Gated Recurrent Units

The recently proposed gated recurrent unit (GRU) [25] architecture was explicitly
designed to mitigate the challenges of gradient-based training of recurrent networks
described in the previous section. Although the GRU architecture was proposed as
a simplification of the long short-term memory (LSTM) architecture (Sect. 5.4.4.3),
we present it here first to ease exposition.

Formally, a GRU consists of a reset vector rŒt� 2 R
di and an update vector

uŒt� 2 R
di , in addition to the hidden state vector hŒt� 2 R

di . The state equations

16A key distinction between recurrent networks and HMMs is that the “state space” in a recurrent
network is continuous, i.e., ht 2 R

di .
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are defined as follows:

rŒt� WD �
�
wr

TzŒt�C vr
ThŒt � 1�C br

�
(5.60a)

uŒt� WD �
�
wu

TzŒt�C vu
ThŒt � 1�C bu

�
(5.60b)

OhŒt� WD 	
�
wh

TzŒt�C vh
T .rŒt�ˇ hŒt � 1�/C bh

�
(5.60c)

hŒt� WD uŒt�ˇ hŒt � 1�C .1 � uŒt�/ˇ OhŒt�; (5.60d)

where ˇ denotes the element-wise (Hadamard) product, � is the logistic function,
and the weights wr; wu; wh 2 R

di�1�di and vu; vr; vh 2 R
di�di and biases br; bu; bh 2

R
di are all defined analogously to the standard recurrent layer (5.58).The transfer

function 	 in (5.60c) is typically taken to be tanh. Non-saturating transfer functions
are discouraged for this setting because they allow hŒt�, and thus vThŒt � 1� to grow
without bound, which in turn causes both exploding gradients (on v weights) and
can limit the influence of the inputs zŒt� in the update equations.

The gate variables rŒt� and uŒt� control the updates to the state vector hŒt�, which
is a convex combination of the previous state hŒt � 1� and a proposed next state
OhŒt�. When the update vector uŒt� is close to 1, (5.60d) persists the previous state
hŒt � 1� and discards the proposed state OhŒt�. When uŒt� is close to 0 and rŒt� is close
to 1, (5.60d) updates hŒt� according to the standard recurrent layer equation (5.58).
When both uŒt� and rŒt� are close to 0, hŒt� “resets” to 	.wT

h zŒt�C bh/, as if zŒt� was
the first observation in the sequence. As in (5.59), the output of a GRU layer is the
concatenation of hidden state vectors .hŒt�/T

tD1.
Like a standard recurrent network, GRUs are also trained using the BPTT

method. However, because a GRU can persist state vectors across long extents—
when ut stays near 1—the hidden state ht does not result directly from successive
applications of the transformation matrix v, so it is less susceptible to the vanish-
ing/exploding gradient problem. Similarly, the reset variables allow the GRU to
discard state information once it is no longer needed. Consequently, GRUs have
been demonstrated to perform well for long-range sequence modeling tasks, such as
machine translation [26].

5.4.4.3 Long Short-Term Memory Networks

Long short-term memory (LSTM) networks [66] were proposed long before the
gated recurrent unit model of the previous section, but are substantially more
complicated. Nonetheless, the LSTM architecture has been demonstrated to be
effective for modeling long-range sequential data [112].

An LSTM layer consists of three gate vectors: the input gate iŒt�, the forget gate
f Œt�, and the output gate oŒt�, as well as the memory cell cŒt�, and the state vector hŒt�.
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Following the formulation of Graves [57], the updates are defined as follows17:

iŒt� WD �
�
wT

i zŒt�C vT
i hŒt � 1�C bi

�
(5.61a)

f Œt� WD �
�
wT

f zŒt�C vT
f hŒt � 1�C bf

�
(5.61b)

oŒt� WD �
�
wT

o zŒt�C vT
o hŒt � 1�C bo

�
(5.61c)

OcŒt� WD 	c
�
wT

c zŒt�C vT
c hŒt � 1�C bc

�
(5.61d)

cŒt� WD f Œt�ˇ cŒt � 1�C iŒt�ˇ OcŒt� (5.61e)

hŒt� WD oŒt�ˇ 	h .cŒt�/ : (5.61f)

The memory cell and all gate units have the standard recurrent net parameters w 2
R

di�1�di , v 2 R
di�di , b 2 R

di .
Working backward through the equations, the hidden state hŒt� (5.61f) can be

interpreted as a point-wise non-linear transformation of the memory cell cŒt�, which
has been masked by the output gate oŒt�. The output gate (5.61c) thus limits which
elements of the memory cell are propagated through the recurrent updates (5.61a–
5.61c). This is analogous to the reset functionality of a GRU.

The memory cell cŒt� (5.61e) behaves similarly to the hidden state hŒt� of the
GRU (5.60d), except that “update” variable has been decoupled into the input and
forget gates iŒt� and f Œt�. When the forget gate f Œt� is low, it masks out elements
from the previous memory cell value cŒt � 1�; when the input gate iŒt� is high, it
integrates the proposed value OcŒt�. Because f Œt� and iŒt� do not necessarily sum to 1,
an additional transfer function 	h is included in (5.61f) to preserve boundedness of
the hidden state vector hŒt�. As in the GRU, tanh is the typical choice for the transfer
functions 	h and 	c.

Recently, two empirical studies have studied the importance of the various
components of the LSTM architecture [60, 72]. Taken together, their findings
indicate that the forget gate f Œt� is critical to modeling long-range interactions. In
particular, Józefowicz et al. note that it is helpful to initialize the bias term bf to
be relatively large (at least 1) so that the f Œt� stays high (propagates previous state)
early in training [72]. Both studies also found that across several tasks, the simplified
“update” logic of the GRU performs comparably to the more elaborate forget/input
logic of the standard LSTM.

17The presentation of Graves [57] differs slightly in its inclusion of “peephole” connections [51].
We omit these connections here for clarity of presentation, and because recent studies have not
demonstrated their efficacy [60].
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5.4.4.4 Bi-directional Networks

The RNN, GRU, and LSTM architectures described in the previous sections are all
designed to integrate information in one direction along a particular dimension, e.g.,
forward in time. In some applications, it can be beneficial to integrate information
across both directions. Bi-directional recurrent networks (BRNNs) achieve this by
a simple reduction to the standard one-directional architecture [104].

A BRNN layer fi.z j �/ consists of two standard recurrent layers: the forward

layer
�!
fi and the backward layer

 �
fi . The BRNN layer fi W RT�di�1 ! R

T�di is the
concatenation:

fi.z j �/ WD
" �!

fi .z j �/

rev
� �

fi .rev.z/ j �/
�
#

; (5.62)

where rev.�/ reverses its input along the recurrent dimension, and di combines the
dimensionality of the forward and backward layers.18 The output fi.z j �/Œt� at time
t thus includes information integrated across the entire sequence, before and after t.
This approach can be easily adapted to LSTM [59] and GRU architectures [6].

Bi-directional networks—in particular, the B-LSTM approach—have been
demonstrated to be effective for a wide range of audio analysis tasks, including
beat tracking [17], speech recognition [58, 84], and event detection [89]. Unless
the application requires forward-sequential processing, e.g., online prediction, bi-
directional networks are strictly more powerful, and generally preferred.

5.4.5 Hybrid Architectures

The previous sections covered a range of architectural units for deep networks, but
in practice, these architectures are not often used in isolation. Instead, practitioners
often design models using combinations of the techniques described above. Here,
we briefly summarize the two most commonly used hybrid architectures.

5.4.5.1 Convolutional + Dense

As briefly mentioned in Sect. 5.4.3, many applications consist of variable-length
input with fixed-length output, e.g., assigning a single label to an entire audio
excerpt. This presents a problem for purely convolutional architectures, where in the
absence of global pooling operators, the output length is proportional to the input

18Some authors define the BRNN output (5.62) as a non-linear transformation of the concatenated
state vectors [55]. This formulation is equivalent to (5.62) followed by a one-dimensional
convolutional layer with a receptive field ni D 1, so we opt for the simpler definition here.
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Fig. 5.8 An example of a convolutional-dense architecture. Two convolutional layers are followed
by two dense layers and a 16-class output layer

length (or spatial extents, in two-dimensional convolutional models). While global
pooling operators can resolve this by aggregating over the entirety of the variable-
length input dimensions, the resulting summaries cannot model the dynamics of
interactions between features over the convolutional dimension. As a concrete
example,

max.Œ0; 1�/ D max.Œ1; 0�/ D 1 (5.63)

discards the ordering information of the input, which may be relevant for describing
certain phenomena.

A common solution to this problem is to replace global pooling operators with
dense connections—i.e., one or more MLP layers, also called “fully connected” in
this context—to map convolutional outputs to a fixed-dimensional representation.
An example of this type of architecture is illustrated in Fig. 5.8.

Note that the convolutional-dense architecture requires all input data x be
truncated or padded to a fixed length. Consequently, when deploying the resulting
model, the input data must be sliced into fixed-length observation windows, and
the resulting window predictions must be collected and aggregated to produce the
final prediction. With this approach, care must be taken to ensure that the model
evaluation corresponds to quantity of interest (e.g., recording-level rather than
window-level prediction). Nonetheless, the general convolutional-dense approach
has been demonstrated to perform well on a wide array of tasks [37, 93, 102, 116].

5.4.5.2 Convolutional + Recurrent

Another increasingly common hybrid architecture is to follow one or more convolu-
tional layers by recurrent layers. This approach—alternately known as convolutional
encoder-recurrent decoder, or convolutional-recurrent neural network (CRNN)—
combines local feature extraction with global feature integration. Although this
architecture is only recently becoming popular, it has been demonstrated to be
effective in several applications, including speech recognition [3], image recogni-
tion [123], text analysis [113], and music transcription [108].
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5.5 Improving Model Stability

In audio applications, the efficacy of a model is often impeded by limited access to a
large, well-annotated, and representative sample of training data. Models trained on
small, biased, or insufficiently varied data sets can over-fit and generalize poorly
to unseen data. Practitioners have developed several techniques to mitigate this
issue, and in this section, we briefly summarize three important concepts: data
augmentation, domain adaptation, and ensemble methods.

5.5.1 Data Augmentation

Data augmentation is an increasingly popular method to help mitigate sampling
bias: the general idea is to perturb the training data during training to inject more
variance into the sample. By doing so, the model is exposed to a larger and more
varied training sample, and may therefore be better able to characterize the decision
boundaries between classes.

Perturbations can range from simple effects like additive background noise,
constant pitch shifting, and time stretching [83, 102], to more sophisticated, domain-
specific deformations like vocal tract length perturbation [34, 70] or variable speed
perturbation [76]. In general, the idea is that training on these modified examples can
help the model become invariant to the chosen deformations. Care must be taken to
ensure that the deformations applied to the input audio leave the labels unmodified
(or at least modified in a controlled way) [83].

5.5.2 Domain Adaptation

Throughout this chapter, there has been an underlying assumption that the training
sample S is drawn I.I.D. from the test distribution D . In practice, this assumption is
often violated. Training data can be biased, e.g., when labeled examples produced
in one recording environment are used to develop a model which is deployed in a
different environment. In general, this problem is known as domain adaptation [16]:
a model is trained on a sample S drawn from a different domain (distribution) than
the eventual target domain.

In general, methods for domain adaptation require access to a labeled training
set S drawn from a source distribution Ds, and an unlabeled sample S0 drawn from
the target distribution D . The majority of domain adaptation techniques operate
by example weighting. These methods replace the unweighted sum in the learning
objective (5.6) by a weighted sum so that it better approximates the loss on the target
distribution D [14, 29, 61]. Alternatively, feature transformation methods distort the
training data features so that it is difficult to distinguish samples of Ds from those
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of D [46, 49, 53]. In both cases, the underlying goal is to minimize the discrepancy
between the training distribution (or the loss estimated on the training sample) and
the target distribution.

5.5.3 Ensemble Methods

Many of the methods described throughout this chapter can be sensitive to certain
modeling decisions, such as input representation, network architecture, initialization
schemes, or sampling of training data. As mentioned in the beginning of this chapter,
a common remedy is to optimize over these decisions by using withheld validation
set. However, this can still bias the resulting model if the validation sets are too
small or insufficiently varied.

A complementary approach to combine multiple predictors .h1; : : : ; hn/ in an
ensemble. There are many ways to go about this, such as majority voting over
predictions, or weighted averaging over scores/likelihoods [21, 39]. In practice,
when a single model appears to be reaching a performance plateau for a given task,
an ensemble can often provide a modest improvement.

5.6 Conclusions and Further Reading

This chapter aimed to provide a high-level overview of supervised machine learning
techniques for classification problems. When faced with a specific classification
problem, the abundance and diversity of available techniques can present a difficult
choice for practitioners. While there is no general recipe for selecting an appropriate
method, there are several factors to consider in the process.

The first, and most important factor, is the availability and form of training data.
Discriminative models generally require strongly labeled examples, both positively
and negatively labeled. For example, in implementing a discriminative bird song
detector, it’s just as important to provide examples that do not include birds, so
that the model can learn to discriminate. If negative examples are not available, a
generative, class-conditional model may be more appropriate, but it may require a
larger training sample than a discriminative method, due to the increased complexity
of modeling the joint density P� Œx; y�.

In audio applications, the characteristics of the target concept can also play an
important role. Some concepts are obviously localized in time (e.g., transient sound
events like gunshots), while others are diffused over long extents (e.g., in scene
classification), and others are distinguished by dynamics over intermediate durations
(e.g., musical rhythms). These characteristics should be taken into consideration
when deciding between localized models (e.g., convolutional networks), dynamic
models (HMMs or recurrent networks), or global models that integrate across the
entirety of an observation (e.g., the bag-of-frames models described in Chap. 4).
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Although machine learning algorithms are generally characterized by the loss
functions they attempt to minimize, the treatment presented in this chapter only
covers the relatively well-understood binary and multi-class categorization loss
functions. In practical applications, the utility of a model can be measured according
to a much broader space of evaluation criteria, which are discussed in Chap. 6.
Bridging the gap between evaluation and modeling is an area of active research,
which broadly falls under the umbrella of structured output prediction in the
machine learning literature [78, 115].

Additionally, this chapter presents the simplest learning paradigm, in which a
fully annotated sample is available for parameter estimation. In reality, a variety
of learning paradigms exist, each making different assumptions about the training
and test data. These formulations include: semi-supervised learning [24], where
unlabeled observations are also available; multiple-instance learning, where a
positive label is applied to a collection of observations, indicating at least one of
which is a positive example [40]; and positive-unlabeled learning, where labels are
only available for a subset of the target concepts, and unlabeled examples may or
may not belong to those classes [42]. The choice of learning paradigm ultimately
derives from the form of training data available, and how the resulting model will
be deployed to make predictions.
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