
Chapter 13
Sound Analysis in Smart Cities

Juan Pablo Bello, Charlie Mydlarz, and Justin Salamon

Abstract This chapter introduces the concept of smart cities and discusses the
importance of sound as a source of information about urban life. It describes a wide
range of applications for the computational analysis of urban sounds and focuses
on two high-impact areas, audio surveillance, and noise pollution monitoring,
which sit at the intersection of dense sensor networks and machine listening. For
sensor networks we focus on the pros and cons of mobile versus static sensing
strategies, and the description of a low-cost solution to acoustic sensing that supports
distributed machine listening. For sound event detection and classification we focus
on the challenges presented by this task, solutions including feature design and
learning strategies, and how a combination of convolutional networks and data
augmentation result in the current state of the art. We close with a discussion about
the potential and challenges of mobile sensing, the limitations imposed by the data
currently available for research, and a few areas for future exploration.
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13.1 Introduction

13.1.1 Smart Cities

Current estimates put the share of the world population living in urban environments
at 50%, a number that is expected to grow to as much as 80% by 2050. In OECD
member countries, for example, including most of Europe and North America,
already 80% of the population lives in cities, with China seeing a net increase
of 40% in its share of urban inhabitants during the last 50 years.1 This rapid
trend of urbanization creates massive opportunities for economic development, job
diversification, and innovation, but also creates significant problems related to the
environmental impact of human activity, the stress to systems and infrastructure, the
difficulty of effectively policing and securing public spaces, and potential reductions
in health and quality of living for city dwellers.

Unsurprisingly, there is a well-established and growing trend of leveraging
technological systems and solutions towards addressing some of the most pressing
issues facing urban communities. These smart cities initiatives benefit from recent
advances in ubiquitous and intelligent sensing, widespread connectivity, and data
science to collect, distribute and analyze the data needed to understand the situation
on the ground, anticipate future behavior and drive effective action.

13.1.2 Urban Sound Sensing and Analysis

The term urban soundscape refers to the sound scenes and sound events commonly
perceived in cities. While the specific characteristics of urban soundscapes vary
between cities and even neighborhoods, they still share certain qualities that set them
apart from other soundscapes. Perhaps most importantly, while rural soundscapes
primarily contain geophony (naturally occurring non-biological sounds, such as
the sound of wind or rain) and biophony (naturally occurring biological sounds,
i.e., non-human animal sounds), urban soundscapes are dominated by anthrophony
(sounds produced by humans), which consists not only of the human voice, but of all
sounds generated by human-made artifacts including the sounds emitted by traffic,
construction, signals, machines, musical instruments, and so on.

Sound is an important source of information about urban life, with great potential
for smart city applications. The increase in smart phone penetration and the growing
development of specialized acoustic sensor networks mean that urban sound
monitoring is becoming an increasingly appealing alternative, or complement, to
video cameras and other forms of environmental sensing. Microphones are generally
smaller and less expensive than cameras and are robust to environmental conditions

1http://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS.

http://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
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such as fog, pollution, rain, and daily changes in light conditions that negatively
affect visibility. They are also less susceptible to occlusion and are capable of omni-
directional sensing.

The automatic capture, analysis, and characterization of urban soundscapes can
facilitate a wide range of novel applications including noise pollution mitigation,
context-aware computing, and surveillance. The automatic analysis of urban sound-
scapes is also a first step towards studying their influence on and/or interaction with
other quantifiable aspects of city-life, including public health, real estate, crime, and
education.

However, there are also important challenges in urban sound monitoring. Urban
environments are among the most acoustically rich sonic environments we could
study—the number of possible sounds is unlimited and densely mixed. Furthermore,
the production mechanisms and resulting acoustic characteristics of urban sounds
are highly heterogeneous, ranging from impulse-like sounds such as gun shots to
droning motors that run non-stop, from noise-like sources like air-conditioning units
to harmonic sounds like voice. They include human, animal, natural, mechanical,
and electric sources, spanning the entire spectrum of frequencies and temporal
dynamics.

Furthermore, the complex interaction between this multiplicity of sources and
the built environment, which is often dense, intricate and highly reflective, creates
varying levels of “rumble” in the background. Therefore, it is not unusual for
the sources of interest to overlap with other sounds and to present low signal-to-
noise ratios (SNR) that change intermittently over time, tremendously complicating
the analysis and understanding of these acoustic scenes.

Importantly, while some audio analysis tasks have a relatively clear delineation
between what should be considered a “source of interest” and what should be con-
sidered “background” or “noise” (e.g., specific instruments versus accompaniment
in music, or individual speakers against the background in speech), this distinction
is far less clear in the case of urban soundscapes. Almost any sound source can be
a source of interest, and many “noise-like” sources such as idling engines or HVAC
units can have similar acoustic properties even though their type and function are
very different.

Finally, urban soundscapes are not composed following top-down rules or
hierarchical structures that can be exploited as in the case of speech and most music.
However, natural patterns of activity resulting from our circadian, weekly, monthly,
and yearly rhythms and cultural cycles abound.

13.1.3 Overview of this Chapter

The rest of this chapter is organized as follows. Section 13.2 will briefly discuss the
range of applications of automatic sound event analysis and dense sensor networks
in urban environments, with a focus on audio surveillance and noise pollution
monitoring. Section 13.3 discusses existing solutions for large-scale urban acoustic
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sensing and presents the design of a low-cost, scalable, and accurate acoustic sensor
network. Section 13.4 provides an in-depth view of the problem of urban sound
source identification, and the lessons learned from research efforts to date. Finally,
Sect. 13.5 provides a summary of the chapter and some perspectives on future work
in this field.

13.2 Smart City Applications

The intelligent and automated analysis of urban soundscapes has a number of
valuable applications. For example, it can be used to enhance context-aware
computing, particularly for robotic navigation in changing urban environments
including for autonomous vehicles (private, public transport, cargo), drones, robotic
assistants, wheelchairs, or even tour guides [24, 25, 88, 94]. In these applications,
sound analysis can be used to recognize and focus attention on sources outside the
field of vision of autonomous devices, e.g., incoming traffic, emergency vehicles,
someone calling; or to shape the system’s response to contextual variables such as
the terrain in which a robotic wheelchair is operating, or the soundscape level and
composition to which an intelligent hearing aid needs to adjust.

These technologies can also contribute to content-based retrieval applications
dealing with urban data, such as personal audio archiving [34], highlight extraction
[93], video summarization [55], and searching through CCTV or mobile phone data
[82]. In these scenarios sound analysis can help characterize patterns of similarity,
novelty, anomaly, and recurrence in audio and multimedia content that can facilitate
search and navigation.

However, there are two application domains in particular that are driving
increased interest in automatic urban sound analysis: audio surveillance and noise
pollution monitoring.

Audio Surveillance The need for automatic or semi-automatic surveillance in
urban areas has experienced progressive and rapid growth, particularly in the past
three decades. This is due to the increased threat posed by crime and terrorism.
Surveillance systems were originally operated solely by humans, who had to
constantly monitor video streams coming from the large number of cameras required
to cover wide and complex areas of interest. In order to guarantee safety, however,
full coverage of such areas would often require an unreasonably large number of
operators. In addition, while it is difficult to outperform human monitoring with
machines, this is only true when human attention is at its peak, which cannot be
guaranteed over a lengthy period of time.

As a result, much effort has been devoted to the development of high-end
technologies capable of alerting humans of potential hazards before they turn into
a full-blown threat or calamity. Examples include the detection of fights/brawls
[29, 53, 80] and intrusion [36, 97]. Technology improvements mean that infrared
cameras for night-time operation have become affordable and less noisy; video
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resolution can now guarantee an interocular distance of tens of pixels even from
afar (for face recognition), and the dynamic range has grown to withstand the most
adverse outdoor/indoor conditions. At the same time, signal processing for hazard
detection has become more sophisticated, accommodating advanced illumination
models; complex machine intelligence algorithms for video analytics; and advanced
multimodal sensor fusion techniques, making fully automated surveillance systems
effective and reliable enough to be fruitfully employed.

Many potentially dangerous events, however, can only be detected at an early
stage through the analysis of an audio stream. Relevant examples range from the
detection of specific sound sources such as gunshots, screams, and sirens; to actions
like a car suddenly screeching to a stop; to scenes such as a brawl outside a night
club, or a mugging. Audio surveillance is particularly beneficial in highly cluttered
scenes, where visual events are likely to be occluded. Hence, the past decade has
seen audio-based surveillance systems on the market, and new research focusing
on the identification of dangerous events from the analysis of audio streams alone
[27, 50, 69, 89] or from joint audio–video analysis [28, 96]. Crucially, sound event
detection across dense sensor networks enables important surveillance capabilities
such as localization and tracking of acoustic sources [9].

Noise Monitoring: Noise pollution is one of the topmost quality of life issues for
urban residents worldwide [37]. In the United States alone, it has been estimated that
over 70 million urban residents are exposed to harmful levels of noise [42, 62]. Such
levels of exposure have proven effects on health such as sleep disruption, stress,
hypertension, and hearing loss [8, 15, 43, 61, 90]. There is additional evidence of
impact on learning and cognitive impairment in children [8, 14], productivity losses
resulting from noise-related sleep disturbance [35, 92], and impact on real estate
markets [63, 64].

Most major cities have ordinances that seek to regulate noise generation as a
function of time of day/week and location. These codes define and measure noise
in terms of overall sound pressure level (SPL) and its derivative metrics [87].
Such standards are in marked contrast with the emphasis on sound sources that
is prevalent in noise surveys and complaints, as well as throughout the literature on
the effect of noise pollution. The need for source-specific metrics is acknowledged
by noise experts [87], especially in urban environments that are constantly reshaped
by a large numbers of sources. As with audio surveillance, the benefits of applying
sound classification technologies are evident and motivate recent efforts from the
research community [68, 75–77].

The shortcomings of noise monitoring using SPL metrics are compounded by the
difficulties of monitoring at scale. Site inspections by city officials are often few and
far between and insufficient to capture the dynamics of noise across time and space.
Alternatively, cities rely on civic complaint systems for noise monitoring such as
New York City’s 311, effectively the largest noise reporting system anywhere in
the world [66]. However, research shows that noise information collected by such
systems can be biased by location, socio-economic status, and source type, failing
to accurately characterize noise exposure in cities [65]. Therefore, recent years have
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seen a proliferation of work on using dense networks of mobile or fixed acoustic
sensors as an alternative and complementary solution to noise monitoring. In this
context, sound analysis can contribute to the identification of specific sources of
noise and their characteristics (e.g., level, duration, intermittence, bandwidth). This
can in turn empower novel insights in the social sciences and public policy regarding
the relationship of urban sound to citizen complaints, reported levels of annoyance,
stress, activity, as well as health, economic and educational outcomes.

13.3 Acoustic Sensor Networks

13.3.1 Mobile Sound Sensing

In recent years consumer mobile devices , namely smart phones have seen rapid
improvements in processing power, storage capacity, embedded sensors, and net-
work data rates. These advances coupled with their global ubiquity have paved
the way for a new paradigm in large-scale remote urban sensing: participatory
sensing [18, 21]. The idea behind this approach is to utilize the sensing, processing,
and communication capabilities of consumer smart phones to enable members of
the public to collect and upload environmental data from their surroundings. This
approach benefits from the use of existing infrastructure (sensing platform and
cellular networks) meaning that deployment costs are effectively zero, provides
unrivaled spatial coverage and also allows for the gathering of the subjective
response to these environments, in situ. The drawbacks of this approach mainly
lie in the low temporal resolution of its data resulting from the submission of short
term measurements and the quality of the gathered data, as the model, physical,
and handling conditions of the smart phones may not be consistent, resulting
in aggregated environmental data of variable accuracy. A number of initiatives
have sought to crowdsource sound and noise monitoring using mobile devices
[31, 45, 56, 72, 73, 79, 81]. Their apps are typically limited to logging geo-located
instantaneous SPL measurements. The EveryAware project [4, 10, 11] is an EU
project intending to integrate environmental monitoring, awareness enhancement
and behavioral change by creating a new technological platform combining sensing
technologies, networking applications, and data-processing tools. One of its sub-
projects is the WideNoise application, which allows for the compilation of noise
pollution maps using participants’ smart phones, including objective and subjective
response data. In addition to this, they are examining the motivations for participa-
tion among their user base, as well as monitoring behavior change resulting from
the access to personalized sound information. The OnoM@p project [41] follows
some of the same goals and strategies of the above initiative. Notably, they attempt
to address the issue of erroneous data through a cross-calibration technique between
multiple device submissions, a welcome development for mobile noise sensing, with
the caveat that it requires large-scale public adoption to be successful.



13 Sound Analysis in Smart Cities 379

13.3.2 Static Sound Sensing

Static sound sensing solutions can take many forms with varying abilities and
price points. Their main advantage over mobile sensing solutions is the ability
to monitor continuously with increased levels of data quality. Highly accurate
(˙0.7 dB), dedicated, commercially made networks such as the Bruel & Kjaer Noise
Sentinel 3639-A/B/C [17] can produce legally enforceable acoustic data, but can
cost upwards of $15,000 USD per node. The high cost means that deployments
are spatially sparse with durations usually in the order of a few months. Lower
cost commercial solutions include the $560 USD Libelium Waspmote Plug & Sense
Smart Cities device [52] which, amongst other things, measures decibel (dB) values
with a ˙3.0 dB accuracy. The reduced cost per sensor node brings with it new
possibilities for larger network deployments but a trade-off on data accuracy may
mean its suitability is limited for large-scale urban deployments. Other examples
[60] make use of hybrid deployments of low-cost, low-accuracy sensors with higher-
cost, higher-accuracy sensors in an attempt to strike a balance between accuracy and
scalability. Networks utilizing even lower cost sensors at the $150 USD per sensor
price point provide the potential for more network scalability, but make sacrifices in
sensor capabilities. Examples of these [12, 46] make use of low-power computing
cores that limit their ability to carry out any advanced in situ audio processing. With
these acoustic sensor networks, it is desirable to have low-cost, powerful sensor
nodes able to support the computational sound analysis techniques described in this
book. The rest of this section will present the design and implementation of an
acoustic sensor network capable of satisfying the cost, accuracy, and performance
considerations described above.

13.3.3 Designing a Low-Cost Acoustic Sensing Device

In this section we describe the design of an acoustic sensing device developed
in the context of the SONYC project,2 a research initiative concerned with novel
smart city solutions for urban noise monitoring, analysis, and mitigation. The device
is based around the popular Raspberry Pi single-board computer (SBC) outfitted
with a custom USB microelectromechanical systems (MEMS) microphone module
where low-cost, acoustic accuracy, and high processing power are the primary
considerations.

2https://wp.nyu.edu/sonyc/.

https://wp.nyu.edu/sonyc/
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Fig. 13.1 Acoustic sensing
module—back of board on
left with MEMS microphone
in center, front of board on
right with microphone port in
center

13.3.3.1 Microphone Module

In recent years, interest in microelectromechanical systems (MEMS) microphones
has expanded due to their versatile design, greater immunity to radio frequency
interference (RFI) and electromagnetic interference (EMI), low-cost and environ-
mental resiliency [6, 7, 91]. Current MEMS models are generally 10� smaller than
their more traditional electret counterparts. This miniaturization has allowed for
additional circuitry to be included within the MEMS housing, such as a pre-amp
stage and an ADC to output digitized audio in some models. The production process
used to manufacture these devices also provides an extremely high level of part-to-
part consistency, making them more amenable to multi-capsule and multi-sensor
arrays. The sensing module shown in Fig. 13.1 uses an entirely digital design, utiliz-
ing a digital MEMS microphone (including a built-in ADC), and an onboard micro
controller (MCU) enabling it to connect directly to the nodes computing device
as a USB audio device. The digital MEMS microphone features a wide dynamic
range of 32–120 dBA, ensuring all urban sound pressure levels can be effectively
monitored. The use of an onboard MCU also allows for efficient, hardware level
filtering of the incoming audio signal to compensate for the frequency response of
the MEMS microphone before any further analysis is carried out. The standalone
nature of this acoustic sensing module also means it is computing core agnostic, as
it can be plugged into any computing device.

13.3.3.2 Form Factor, Cost, and Calibration

The sensor’s prototype housing and form factor is shown in Fig. 13.2. The low-
cost unfinished/unpainted aluminum housing was chosen to reduce radio frequency
interference (RFI) from external sources, solar heat gain from direct sunlight and it
also allows for ease of machining. All of the sensor’s core components are housed
within this rugged case except for the microphone and Wi-Fi antenna which is
externalized for maximum signal gain.

In the prototype node shown in Fig. 13.2, the MEMS microphone is mounted
externally via a repositionable metal goose-neck allowing the sensor node to be
reconfigured for deployment in varying locations such as building sides, light poles,
and building ledges. Figure 13.2 also shows the sensors bird spikes to ensure
no damage is caused by perching birds. The total cost of the sensor excluding
construction and deployment costs is $83 USD, as of December 2016.
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Fig. 13.2 Acoustic sensor node showing core components viewed from the underside (left) and a
deployed node in NYC (right)

The sensing module was calibrated using a precision grade sound level meter
as reference (Larson Davis 831 [49]), under low-noise, anechoic conditions. The
sensor was then shown empirically to produce continuous decibel data at a level of
accuracy used by the NYC city agencies tasked with enforcing the city’s noise code.

13.3.4 Network Design & Infrastructure

The prototype node relies on a continuous power supply and wireless network con-
nectivity so its deployment locations are mainly determined by these prerequisites.
Security and wider localized spatial acoustic coverage of sensors is maintained by
mounting at a height of �4 m above street level with a distance between sensors
of around 2 city blocks or �150 m. Ideally acoustic sensors would be mounted
on poles, rather than on or close to building sides to reduce variations in SPL
response due to wall proximity. Partnering with infrastructure owners/managers
is crucial when selecting and deploying sensor nodes, and it is worth noting
that the cost of deploying a sensor on urban locations such as light poles can
spiral when lifting equipment and professional personnel are involved. Selection
of sites with the likelihood of high variation in sound sources is also prioritized in
order to facilitate the collection of a wide variation of ground-truth audio data as
discussed in Sect. 13.4. In order to maintain public privacy, audio data is captured,
losslessly FLAC3 compressed, and encrypted in 10 s snippets, interleaved with
random durations of time. This data is transmitted from the sensor via Wi-Fi,
directly to the project’s control server, which in turn transfers the data to the storage
servers, ready for further analysis. Each sensor also transmits its current state every
minute via a small “status ping”. This allows for near real-time remote telemetry
display of all deployed sensors for fault diagnosis. Further in-depth control and
maintenance of the deployed sensors is provided via a Virtual Private Network
(VPN) that provides a method for remote Secure Shell (SSH) access to each node.

3https://xiph.org/flac/.

https://xiph.org/flac/
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The VPN also enhances the wireless transmission security of the sensor as all data
and control traffic is routed through this secure network. Future versions of the
project’s acoustic network will utilize multi-hop mesh networking approaches for
sensor-server communications in order to increase the range of the network and
reduce its power consumption to open up the possibility of battery powered, energy
harvesting acoustic sensor nodes. Without the requirement of continuous power
and pre-existing wireless network infrastructure, many more urban deployment
possibilities become available.

13.4 Understanding Urban Soundscapes

Most prior work on understanding urban soundscapes has been focused on identify-
ing acoustic scenes that are commonly found in urban environments such as parks,
commercial streets, residential streets, construction sites, restaurants, or different
modes of transportation (e.g., inside a taxi, train or bus). However, it is difficult
to disambiguate work specific to urban environments from general acoustic scene
classification (ASC) as described in Chap. 8. This is because the most widely used
datasets for ASC research are largely or exclusively made from urban soundscapes.
To make this clear, we provide a summary of those datasets in Table 13.1, where
for each dataset we list the total number of audio recordings, the number of classes
(acoustic scenes) and the number of these classes that can be considered urban sound
scenes. As can be seen, all datasets contain a significant proportion of urban sound
scenes.

While the focus of these datasets (and the approaches evaluated on them) is not
necessarily urban sound scene analysis, they serve as a good proxy for it. Thus if we
wish to understand the current state of the art in urban sound scene classification,
we can refer to the DCASE 2016 acoustic scene classification challenge,4 which
was based on the TUT Acoustic Scenes 2016 dataset [59] listed in Table 13.1.
The challenge received close to 50 submissions spanning a variety of techniques,

Table 13.1 Some commonly used datasets for acoustic scene classification

Dataset Recordings Total scenes Urban scenes

UAE noise DB series 1 [84] 10 10 9

UAE noise DB series 2 [84] 35 12 11

DCASE 2013 [38] 100 10 10

DARES G1 [40] 123 28 25

TUT acoustic scenes 2016 [59] 1170 15 13

LITIS rouen [71] 3026 19 19

As seen from the table, all datasets contain a significant proportion of urban scenes

4http://www.cs.tut.fi/sgn/arg/dcase2016/.

http://www.cs.tut.fi/sgn/arg/dcase2016/
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ranging from a baseline system which uses MFCC features with a GMM classifier,
to deep learning architectures including fully connected and convolutional neural
networks trained on a variety of input representations. Since the general problem
of scene classification and the DCASE challenge are discussed in detail in previous
chapters, here we will only limit ourselves to point out that the maximum reported
classification accuracy was of 0.897, with incremental differences of 1% to the
second and third best performing systems, and that the best performing method in
the challenge was based on the late fusion of a deep and a shallow feature learner
[33]. For a detailed comparison of algorithmic performance and further details about
all participating methods the reader is referred to the challenge’s results page.5

The challenge supports the notion that current strategies are already capable of
providing robust solutions to urban ASC. This is not new, since high performance
in this task has been reported for close to a decade at the time of writing [5]. At the
same time, practically all datasets used for ASC evaluation to date are closed-set,
meaning the data are divided into a fixed, known number of scenes. In a real-world
scenario (for instance, a robot operating in a new environment) it is possible to
encounter previously unheard acoustic scenes, which a model would have to identify
as “unknown”. Existing models are not trained to perform this task, which requires
open-set data for training, and it is quite possible that model performance on this
(more challenging) scenario would be lower.

Next we turn our attention to the more challenging task of sound source identifi-
cation, which has received less attention and has ample room for improvement. As
was the case before, this task is covered in detail elsewhere in this book, which is
why for the rest of this section we will focus on research specifically targeting urban
environments.

13.4.1 Urban Sound Dataset

In Chap. 6 a number of annotated datasets for environmental sound event detection
and classification were discussed. While some of these contain sound events from
urban soundscapes, up to 2013 there was no dataset focusing specifically on urban
sounds. Previous work has focused on audio from carefully produced movies or
television tracks [19], from specific environments such as elevators or office spaces
[39, 70], and on commercial or proprietary datasets [23, 44]. The large effort
involved in manually annotating real-world data means datasets based on field
recordings tend to be relatively small (e.g., the event detection dataset of the IEEE
AASP Challenge [39] consists of 24 recordings per each of 17 classes). A second
challenge faced by the research community was the lack of a common vocabulary
when working with urban sounds. This meant the classification of sounds into
semantic groups varied from study to study, making it hard to compare results.

5http://www.cs.tut.fi/sgn/arg/dcase2016/task-results-acoustic-scene-classification.

http://www.cs.tut.fi/sgn/arg/dcase2016/task-results-acoustic-scene-classification
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Specific efforts to describe urban sounds have often been limited to subsets of
broader taxonomies of acoustic environments (e.g., [16]), and thus only partially
fulfill the needs of systematic urban sound analysis. To address this, Salamon et
al. proposed an urban sound taxonomy [77] based on the subset of the taxonomy
proposed by Brown et al. [16] dedicated to the urban acoustic environment. This tax-
onomy defines four top-level groups: human, nature, mechanical, and music, which
are common in the literature [67], and specifies that its leaves should be sufficiently
low-level to be unambiguous—e.g., car “brakes,” “engine,” or “horn,” instead of
simply “car.” Furthermore, it is built around the most frequently complained about
sound categories and sources—e.g., construction (e.g., jackhammer), traffic noise
(car and truck horns, idling engines), loud music, air conditioners and dog barks—
according to 370,000 noise complaints filed through New York City’s 311 service
from 2010 to 2013.6

A subset of the resulting taxonomy, focused on mechanical sounds, is provided
in Fig. 13.3. A scalable digital version of the complete taxonomy is available
online.7 Rounded rectangles represent high-level semantic classes (e.g., human,
nature, mechanical, music). The leaves of the taxonomy (rectangles with sharp
edges) correspond to classes of concrete sound sources (e.g., siren, footsteps). For
conciseness, leaves can be shared by several high-level classes (indicated by an
earmark).

From this taxonomy, a dataset [77] was developed by focusing on ten low-level
classes: air conditioner, car horn, children playing, dog bark, drilling, engine idling,
gunshot, jackhammer, siren, and street music. With the exception of “children
playing” and “gun shot” which were added for variety, all other classes were selected
due to the high frequency in which they appear in NYC urban noise complaints.

The audio data was collected from Freesound,8 an online sound repository
containing over 160,000 user-uploaded recordings under a creative commons
license. For each class, the authors downloaded all sounds returned by the Freesound
search engine when using the class name as a query (e.g., “jackhammer”), manually
inspected all recordings and kept only actual urban field recordings where the sound
class of interest was present, and used Audacity9 to label the start and end times
of every occurrence of the sound in each recording, with an additional salience
description indicating whether the occurrence was subjectively perceived to be in
the foreground or background of the recording. This resulted in a total of 3075
labeled occurrences amounting to 18.5 h of labeled audio. The distribution of total
occurrence duration per class and per salience is provided in Fig. 13.4a.

The resulting dataset of 1302 full and variable length recordings with correspond-
ing sound occurrence and salience annotations, UrbanSound, is freely available

6https://nycopendata.socrata.com/data.
7http://serv.cusp.nyu.edu/projects/urbansounddataset/.
8http://www.freesound.org.
9http://audacity.sourceforge.net/.

https://nycopendata.socrata.com/data
http://serv.cusp.nyu.edu/projects/urbansounddataset/
http://www.freesound.org
http://audacity.sourceforge.net/
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Fig. 13.3 Subset of the Urban Sound Taxonomy [77] focusing on mechanical sounds

online.10 Moreover, for research on sound source classification the authors curated
a subset of short audio snippets, the UrbanSound8K dataset (also available online
at the same url). Following the findings in [25], these snippets are limited to a
maximum duration of 4 s. Longer clips are segmented into 4 s clips using a sliding
window with a hop size of 2 s. To avoid large differences in the class distribution,
there is a limit of 1000 clips per class, resulting in a total of 8732 labeled clips
(8.75 h). The distribution of clips per class in UrbanSound8K with a breakdown
into salience is provided in Fig. 13.4b.

A number of signal processing techniques and machine learning models have
been proposed to date for urban sound classification and evaluated on the Urban-
Sound8K dataset [68, 74–77]. In the following sections we will review and contrast
these approaches, comparing their performance in terms of classification accuracy.
A summary of the key characteristics of each approach is provided in Table 13.2.

10http://serv.cusp.nyu.edu/projects/urbansounddataset/.

http://serv.cusp.nyu.edu/projects/urbansounddataset/
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Fig. 13.4 (a) Total occurrence duration per class in UrbanSound. (b) Clips per class in Urban-
Sound8K. Breakdown by foreground (FG)/background (BG)

Table 13.2 Methods for urban sound classification

Method Input features Model

Baseline [77] MFCC summary statistics SVM

SKM-mel [75] Dictionary encoded log-mel-spectrogram Random forest

SKM-scattering [74] Dictionary encoded deep scattering spectrum SVM

Piczak-CNN [68] Log-mel-spectrogram + delta Deep CNN

SB-CNN [76] Log-mel-spectrogram Deep CNN + augmentation

13.4.2 Engineered vs Learned Features

The first step employed by all methods listed in Table 13.2 is feature extraction,
i.e., transforming the raw audio signal into a feature space that is more amenable to
machine learning. We can group audio feature spaces into two broad categories:
designed (or engineered) features, and learned features. The former includes all
features whose computation is independent of the input data, i.e., they are defined
as the concatenation of operations whose goal is to capture a certain characteristic
of the audio signal. The latter category includes features spaces that are learned
directly from the data, including, for example, dictionary learning and deep learning
methods.

Audio classification systems, including methods for environmental sound source
classification, have traditionally relied on engineered features [19, 44, 70]. Thus
the baseline system listed in Table 13.2 is a combination of a popular feature, the
Mel-Frequency Cepstral Coefficients (MFCC), and a standard classification model
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(Random Forest). However, most recent methods, including the remainder of the
methods listed in the table, fall under the category of feature learning.

The first method listed following the baseline, SKM-mel [75], is based on
unsupervised dictionary learning. The idea is to learn a dictionary of representative
codewords directly from the audio signal in a data-driven fashion. The learned
dictionary is then used to encode the samples in a dataset into feature vectors, which
are then used to train/test a discriminative model of choice. The method employs
the spherical k-means algorithm (SKM [26]) to learn the dictionary. Unlike the
traditional k-means clustering algorithm [54], the codewords are constrained to have
unit L2 norm (they must lie on the unit sphere, preventing them from becoming
arbitrarily large or small), and represent the distribution of meaningful directions
in the data. Compared to standard k-means, SKM is less susceptible to events
carrying a significant amount of the total energy of the signal (e.g., background
noise) dominating the dictionary. The algorithm is efficient and highly scalable, and
it has been shown that the resulting set of vectors can be used as a dictionary for
mapping new data into a feature space which reflects the discovered regularities
[26, 30, 86]. The algorithm is competitive with more complex (and consequently
slower) techniques such as sparse coding and has been used successfully to
learn features from audio for music [32], and birdsongs [86]. After applying this
clustering to the training data, the resulting cluster centroids can be used as the
codewords of the learned dictionary. The number of codewords learned is typically
much larger than the number of classes present in the data. It is also typically larger
than the dimensionality of the input representation, i.e., the algorithm is used to
learn an over-complete dictionary.

The clustering produces a dictionary matrix with k columns, where each column
represents a codeword. Every sample in the dataset is encoded against the dictionary
by taking the matrix product between each frame of its input representation, a mel-
spectrogram, and the dictionary matrix. Every column i (i D 1 : : : k) in the resulting
encoded matrix can be viewed as a time series whose values represent the match
scores between the input representation and the ith codeword in the dictionary: when
the input is similar to the codeword the value in the time series will be higher, and
when it is dissimilar the value will be lower.

To ensure that all samples in the dataset are represented by a feature vector
of the same dimensionality, the time series are summarized over the time axis by
computing the mean and standard deviation of each time series and using these as
features. The resulting feature vectors are thus all of size 2k and are standardized
across samples before being passed on to the classifier for training and testing.

Note that for learning, one can choose to learn features from individual frames
of the input representation, or alternatively group the frames into 2D patches and
apply the learning algorithm to the patches. In [75] the authors show that the
latter approach facilitates the learning of features that capture short-term temporal
dynamics, which proves to be important for urban sound classification. The best
result reported by the authors was obtained using patches with a time duration
of roughly 370 ms (16 frames). For training, patches are extracted from the mel-
spectrogram using a sliding window with a hop size of 1 frame. This results in
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Fig. 13.5 Classification accuracy obtained on the UrbanSound8K dataset by different models:
MFCC Baseline [77], spherical k-means dictionary learning from mel spectra [75] (SKM-mel),
SKM learned from deep scattering spectra [74] (SKM-scattering) and the deep CNN proposed by
Salamon and Bello [76] (SB-CNN). Models to the left of the dashed line were trained without data
augmentation. To the right of the dashed line we present the results obtained by SKM-mel and SB-
CNN when trained on an augmented training set: SKM-mel(aug) and SB-CNN(aug), respectively

significantly more training data for the unsupervised dictionary learning stage, and
also ensures that the learned codewords account for different time-shifts of each
sound source, hopefully increasing the robustness of the model to such shifts in the
data.

While one could use the resulting patches directly as input for the feature
learning, it has been shown that the learned features can be significantly improved
by decorrelating the input dimensions using, e.g., Zero-phase Component Analysis
(ZCA) whitening [47] or Principal Component Analysis (PCA) whitening [26].

Figure 13.5 presents classification accuracy results for UrbanSound8K in the
form of a boxplot computed from the per-fold accuracies obtained by each model.
Mean accuracies are indicated by the red squares. We will initially focus on the
two left-most boxes and will discuss the remainder of the results in the following
sections.

We clearly see that the SKM-mel model outperforms the MFCC baseline, with
mean accuracies of 0.74 and 0.68, respectively. The difference is robust to the
parameters of the mel-spectrogram, which are optimal for both reported results, but
depends on the size of the dictionary for SKM, with best results for k D 2000 [75].
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Such a significant improvement provides clear evidence of the advantage of feature
learning compared to off-the-shelf engineered features, even when using a simple
and shallow feature learning approach such as SKM.

13.4.3 Shift Invariance via Convolutions

The following method in Table 13.2, SKM-scattering [74], uses a different input
representation altogether—the scattering transform [1–3]. This representation can
be viewed as an extension of the mel-spectrogram that computes modulation
spectrum coefficients of multiple orders through cascades of wavelet convolutions
and modulus operators. Given a signal x, the first-order (or “layer”) scattering
coefficients are computed by convolving x with a wavelet filterbank  �1 , taking
the modulus, and averaging the result in time by convolving it with a low-pass filter
�.t/ of size T:

S1x.t; �1/ D jx �  �1 j � �.t/: (13.1)

The wavelet filterbank  �1 has an octave frequency resolution Q1. By setting
Q1 D 8 the filterbank has the same frequency resolution as the mel filterbank, and
this layer is approximately equivalent to the mel-spectrogram. The second-order
coefficients capture the high-frequency amplitude modulations occurring at each
frequency band of the first layer and are obtained by:

S2x.t; �1; �2/ D jjx �  �1 j �  �2 j � �.t/: (13.2)

In [74] Q1 D 8 and Q2 D 1, the filterbank is constructed of 1D Morlet wavelets,
and T is set to the same duration covered by the 2D mel-spectrogram patches used
for dictionary learning in [75], i.e., 370 ms (for a sampling rate of 44,100 Hz this
implies T D 1024� 16). Higher order coefficients can be obtained by iterating over
this process, but it has been shown that for the chosen value of T , most of the signal
energy is captured by the first- and second-order coefficients [3].

For each frame the first-order coefficients are concatenated with all of the second-
order coefficients into a single feature vector. The second order coefficients are
normalized using the previous order coefficients as described in [3]. From this point
the process replicates the method described in the previous section: PCA whitening,
dictionary learning using SKM, projection into the feature space, summarization and
classification, in this case using a support vector machine (although the difference
with a random forest is minimal). Therefore, the main difference between [75] and
[74] is the addition of a phase-invariant convolutional layer, which is able to capture
amplitude modulations in the input representation, in a time-shift invariant manner.

Figure 13.5 shows that learning a dictionary from scattering coefficients as
opposed to the mel-spectrogram results in a relatively marginal improvement
in classification accuracy (0.75 vs 0.74). Notably, the authors did observe a 5
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percentage-point absolute improvement in the classification accuracy (i.e., C0:05)
of masked sounds, i.e., sounds that were labeled by the annotators of the dataset as
being in the background of the acoustic scene. This fits with findings in the sound
perception and cognition literature showing that modulation plays an important
role in sound segregation and the formation of auditory images [22, 57, 95],
further motivating the exploration of deep convolutional representations, such as
the scattering transform, for machine listening.

However, the most important finding is that the scattering transform’s inherent
invariance to local time shifts allows for the comparable performance between
SKM-scattering and SKM-mel, but using a dictionary that is an order of magnitude
smaller (k D 200 versus k D 2000) while reducing the amount of 2D patches
(samples) necessary for training by an order of magnitude too. In other words,
shift invariance results in smaller machines trained with less data that are equally
powerful, a finding that motivates further exploration using deep convolutional
approaches.

13.4.4 Deep Learning and Data Augmentation

The last two methods in Table 13.2, Piczak-CNN [68] and SB-CNN [76], are
based on deep (feature) learning [51]. This means that unlike the methods described
above, here there are multiple feature learning layers including both fully-connected
(like SKM) and convolutional (like scattering) layers, the feature learning is fully
integrated with the classifier, and the machine is trained using supervised methods
and a discriminative objective.

Since the two CNNs perform comparably when trained on the original Urban-
Sound8K dataset (and only SB-CNN was evaluated both with and without data
augmentation as discussed further below), for the remainder of the discussion we
shall focus on SB-CNN as an instance of a deep learning model. SB-CNN takes
log-scaled mel-spectrograms with 128 bands and a duration of 3 s as input to
the network. Each 3 s spectrogram “patch” is Z-score normalized. The model is
comprised of three convolutional layers interleaved with two pooling operations,
followed by two fully connected (dense) layers. Notably, the convolutional layers
of SB-CNN use a comparatively small receptive field of .5; 5/ compared to the
input dimensions of .128; 128/. This is intended to allow the network to learn
small, localized patterns, or cues, that can progressively build-up evidence for the
presence/absence of specific sources even when there is spectro-temporal masking
by interfering sources.

During training the model optimizes cross-entropy loss via mini-batch stochastic
gradient descent [13]. Each batch consists of 100 patches randomly selected from
the training data (without repetition). The model is trained using a constant learning
rate of 0.01 and dropout [85] with probability 0.5 is applied to the input of
the last two layers. L2-regularization is applied to the weights of the last two
layers with a penalty factor of 0.001. The model is trained for 50 epochs with
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a validation set used to identify the parameter setting (epoch) that achieves the
highest classification accuracy. Prediction is performed by slicing the test sample
into overlapping patches, making a prediction for each patch and finally choosing
the sample-level prediction as the class with the highest mean output activation over
all patches.

From Fig. 13.5 we see that SB-CNN, while outperforming the baseline, does not
outperform its “shallow” SKM counterpart. This suggests that the UrbanSound8K
dataset, despite being the largest dataset publicly available for urban sound clas-
sification, is not sufficiently large for the benefits of high-capacity, deep learning
models to become apparent.

To address this limitation and increase the model’s robustness to intra-class
variance, the authors also trained SB-CNN using data augmentation, that is, the
application of one or more deformations to the training set which result in new,
additional training data [48, 58, 83]. Assuming the deformations do not change the
validity of the labels, augmentation aims to increase the model’s invariance to said
transformations and thus generalize better to unseen data.

The authors applied four types of audio deformations: time stretching, pitch
shifting, dynamic range compression, and the addition of background noise at
different SNR, resulting in a training set an order of magnitude larger than the
original UrbanSound8K. Augmentation was performed using the MUDA library
[58]. After training SB-CNN with augmentation [Fig. 13.5: SB-CNN(aug)], the
model significantly outperforms the SKM approach. Furthermore, we see that this
improvement is not independent of the use of deep learning—training the SKM
approach with augmentation [Fig. 13.5: SKM-mel(aug)] failed to improve as much.
Increasing the capacity of the SKM model by increasing the dictionary size from
k D 2000 to k D 4000 did not yield any further improvement either, even with the
augmented training set. Instead, it is the combination of an augmented training set
and the increased capacity and representational power of the deep learning model
that results in this state-of-the-art performance.

13.5 Conclusion and Future Perspectives

In this chapter we have discussed intelligent acoustic sensing and analysis in the
context of urban environments, particularly as one component of a larger trend
towards smart city solutions. While we discuss a range of potential applications,
we focus on two, audio surveillance and noise monitoring, that motivate new
and exciting developments at the intersection of ubiquitous sensing and machine
listening capabilities such as sound event detection, classification, localization, and
tracking. These new technologies have the potential to improve the public safety
and quality of life of urban residents.
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In our discussion of acoustic sensor networks, we clearly favored the use of
static over mobile sensing, and presented an example of a low-cost, high-quality
solution intended for noise monitoring. However, the intended application greatly
influences that choice: precise source localization and tracking is desirable but
not necessary for noise monitoring, and the cyclic and seasonal nature of noise
patterns means that off-network responses can be estimated by exploiting spatial
correlations with other data types encoding information about, e.g., traffic, zoning,
nightlife, construction, and tourist activity. On the other hand, audio surveillance
requires relatively-dense arrays of sensors, something that is prohibitively expensive
for static sensor networks, even for low-cost solutions such as the one presented
in Sect. 13.3. One possibility is to deploy selectively and densely, as it is done
for specific applications such as gunshot detection in neighborhoods with high
gun crime incidences.11 However, this is not applicable to surveillance scenarios
(e.g., emergencies or terrorism) which are less predictable in space. Therefore,
future developments will most likely require leveraging sensing from smart phones
and other consumer-grade mobile devices, which in turn requires finding robust
solutions to on-the-fly calibration, synchronization, and embedded computing that
work well for acoustic data.

We devoted significant attention to the tasks of sound event detection and
classification in cities. While the results are promising and much improvement
has been accrued in a short period of time, there is still significant room for
improvement and important challenges ahead. For example, one of the challenges of
urban sound analysis is the heterogeneity of source types, a problem for which large-
capacity models and ensemble methods might prove beneficial, as has been shown
in acoustic scene classification [33] and bioacoustic classification [78]. However,
current annotated datasets are small, include only a handful out of hundreds of
possible sources, and are weakly labeled, meaning that comprehensive multi-source
annotations are the exception rather than the norm. This hinders the ability to test
such solutions.

Furthermore, real-world applications are intended to work on continuous audio
streams, but many of the datasets discussed only contain snippets and thus fail to
characterize the complex temporal dynamics of urban soundscapes. This scenario
calls for the exploitation of longer temporal relationships, making the combination
of convolutional and recurrent models an attractive direction for future research.
These problems and solutions have been studied in the context of general environ-
mental sound analysis (e.g., [20]), but remains to be explored for urban applications.

Finally, these sets only contain a small and arbitrary sample of the full range
of acoustic conditions one might encounter in urban outdoor environments, and
to which these systems are supposed to generalize. While data augmentation can
help to a certain extent, future developments will be dependent on significant data
collection from large-scale acoustic sensor networks, whether mobile or fixed.
Encouraging developments include the recent launch of the YouTube-8M dataset

11http://www.shotspotter.com/.

http://www.shotspotter.com/
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of tagged videos,12 which contain a sizable and diverse sample of urban acoustic
environments from mobile devices, and the ongoing deployment of audio sensor
networks by various smart cities initiatives such as SONYC.13
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