
Chapter 10
Sound Sharing and Retrieval

Frederic Font, Gerard Roma, and Xavier Serra

Abstract Multimedia sharing has experienced an enormous growth in recent years,
and sound sharing has not been an exception. Nowadays one can find online sound
sharing sites in which users can search, browse, and contribute large amounts
of audio content such as sound effects, field and urban recordings, music tracks,
and music samples. This poses many challenges to enable search, discovery, and
ultimately reuse of this content. In this chapter we give an overview of different
ways to approach such challenges. We describe how to build an audio database
by outlining different aspects to be taken into account. We discuss metadata-based
descriptions of audio content and different searching and browsing techniques that
can be used to navigate the database. In addition to metadata, we show sound
retrieval techniques based on the extraction of audio features from (possibly)
unannotated audio. We end the chapter by discussing advanced approaches to
sound retrieval and by drawing some conclusions about present and future of sound
sharing and retrieval. In addition to our explanations, we provide code examples that
illustrate some of the concepts discussed.

Keywords Sound sharing • Sound retrieval • Multimedia • Audio metadata •
Sound description • Audio database • Audio indexing • Audio features • Simi-
larity search • Query by example • Sound taxonomy • Machine learning • Sound
exploration • Sound search

10.1 Introduction

Multimedia sharing is one of the areas in which the social web has experienced the
largest and quickest growth in recent years [73]. Just to name a few examples, every
minute 100 h of video are uploaded to YouTube [75], 2400 photos are uploaded
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to Flickr [32], and 12 h of music are uploaded to SoundCloud [79]. The case of
sound sharing—understanding sound as any kind of reusable audio material like
sound effects, environmental recordings, or music building blocks, but typically not
finished music tracks—even if at a smaller scale, is not an exception. Websites such
as Freesound, Looperman, CC-mixter, and the Radio Aporee project1 are examples
of sound sharing platforms in which users can not only search and browse content
but also contribute new audio recordings including sound scenes such as field and
urban recordings, sound events such as foley or animal sounds, and music samples
such as loops, melodies, and single notes. Furthermore, consumer-oriented websites
such as Sound Dogs, Sound Snap, and A Sound Effect2 sell sounds from extensive
collections of audio recordings that users can also navigate. In this chapter we focus
on the particular context of online sound sharing and give an overview of different
ways to approach sound sharing and retrieval challenges.

On a prototypical scenario of online sound sharing, a user might record a sound
and upload it to a web application so that other users can listen to it and possibly
download it. The intent with which users upload and share multimedia content can
vary widely, but we can identify some general patterns according to the usage that
the uploaders may expect of the contributed content. On the one hand, we can
identify content that is meant to be accessed and viewed or played through the online
sharing platform itself. Hence, the end use of the resource is its online consumption.
For example, someone may upload photos of an event to a photo sharing site so that
other participants of that event can have access to the photos, or a musical artist can
upload a music album to a music sharing site so that other users can listen to it.
On the other hand, there is an additional type of uploaded content which is meant
to be reused outside the sharing platform where it is hosted. Here, the display in
the sharing platform does not represent an end use per se. Some examples of this
situation include sharing recordings of sound events that can be later used in video
games, drum loops in music compositions, video backgrounds or transitions to be
used in audiovisual installations, or images to be used in collages or as a desktop
wallpaper. These latter cases of multimedia sharing particularly support Lawrence
Lessing’s definition of read/write culture [39]. In read/write culture, users are both
consumers and producers of content that is easily shared and reused through the
internet [80].

Such content potentially represents an incredibly valuable resource that can serve
several purposes, ranging from business and research applications to artistic creation
and the preservation of cultural heritage [34]. Nevertheless, the value of this content
is significantly dimmed by the ways in which it can be accessed and reused, i.e.,
the ways in which it can be retrieved. As the amount of content grows, so does
the difficulty of browsing and locating what one needs, and so do the challenges
that search engines have to face. For the content to be accessible, it needs to
be properly indexed. However, the quantity and variety of available content turns

1https://freesound.org, https://looperman.com, http://ccmixter.org, http://aporee.org/maps.
2https://sounddogs.com, https://soundsnap.com, https://asoundeffect.com.
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proper indexing into a very difficult task. This is particularly true for multimedia
resources like video, pictures, and audio which, as opposed to other kinds of media,
do not have a direct textual representation [5]. At the same time, the amount of
content generated is simply too much to be curated in scalable ways by groups of
experts.

The description, indexing, and retrieval of audio content is therefore a challenge
that needs to be faced in order to make audio shareable and increase its value.
Especially in the context of read/write culture, users need sophisticated and
specialized ways of accessing online resources that fit their particular requirements.
Users searching for content in sound sharing sites might be looking for audio
clips with very specific and detailed characteristics that can be represented by a
wide range of audio properties. For example, one user might be searching for the
sound of an opening door with a particular duration, size, and material of the door,
while another user might be searching for the sound of a melody being played by
a particular instrument with a specific tonality, tempo, and mood. Being able to
successfully retrieve such specific content poses a number of issues to both the
users and the sharing platform. Another relevant aspect of sound sharing is that
the assessment of the results returned by a search engine of a sound sharing site
requires the time to listen to them, and cannot be done as instantly as it could be
done with the search results of, for example, a photo sharing site. From this point of
view, the cost of iterating over several queries in order to find the desired resource
is higher for sounds than for images. This is one of the reasons why good quality
descriptions are crucial for indexing audio.

But how should sounds be described so that users can effectively search them?
As it might be expected, this question does not have a single definitive answer.
Nevertheless, we can intuitively differentiate at least two ways in which sounds can
be described. On the one hand, sounds can be generally described by referring to
the source that produces them. In other words, we can describe a sound by denoting
an object and (possibly) an action that produces it (e.g., “the sound of a closing
door”). On the other hand, sounds can be described by referring to their perceptual
qualities regardless of their source, that is to say, by describing the timbre and
acoustic qualities of a perceived sound (e.g., “a loud high-pitched sound”). Both
approaches are complementary and both bear relevant information for indexing
and retrieval purposes [43]. Source-based descriptions can be effectively indexed
by using metadata annotations such as labels and textual descriptions. Conversely,
some perceptual qualities can be better represented using automatically extracted
audio features. In addition, other sound properties such as audio format and editorial
information can be used when indexing content. Once content is described and
indexed, different browsing and searching strategies can be implemented such as
text-based search, sound browsing based on category filtering, or search based on
audio similarity. All these strategies and many other possible ones ultimately enable
sound search and discovery.

In this chapter we go through the different components and the typical issues
and solutions of sound sharing systems, and show step by step how to build a basic
system with references to code examples. The components we describe are similar
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Fig. 10.1 Block diagram of Freesound’s main components. The arrows correspond to main
functionalities of Freesound and show the components that they need to access. Note that metadata
information and audio features are indexed separately and provide different functionalities. Also
note that audio files are not included in the database itself (see Sect. 10.2). This diagram serves as
a general example of the different components of a sound sharing and retrieval system

to those that can be found in a site such as Freesound, which we take as an example
(Fig. 10.1). We start by describing how to build an audio database (Sect. 10.2),
and continue by explaining metadata-based retrieval strategies (Sect. 10.3) as
well as other retrieval strategies based on audio analysis (Sect. 10.4). We end
this chapter with a discussion about advanced audio retrieval topics (Sect. 10.5)
and a conclusions section (Sec. 10.6). Code examples, written in the Python3

programming language and based on open source technologies, are available in the
book’s accompanying website4 and demonstrate some of the concepts discussed in
Sects. 10.2–10.4.

10.2 Database Creation

The concept of a database is traditionally associated with text and numerical
information. While many database programs can store binary objects, standard
practice for applications involving image, audio, or video files is to leave them in the
file system and store the paths in the database. The expression audio database has
been used during the last decades in research on audio analysis to refer to collections
of audio files (e.g., [20, 23, 25]). Much of this research was precisely trying to find a
way to index audio files and facilitate search and discovery. In this chapter, we will
refer to an audio database as the set of information used for indexing collections of

3https://python.org.
4www.TODO:bookwebsite.
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audio files. In the following subsections, we summarize the most important design
issues for designing an audio database. First we discuss practical aspects such as file
formats and licensing, then we highlight the key design issues related with the two
main types of information used for indexing audio: metadata and audio features.

The code examples provided in the accompanying website of this book show
how to build an audio database taking into account the design issues discussed
below. We show how to download a small number of sounds from Freesound in
a standardized preview format using the Freesound API.5 We retrieve sounds that
match the keywords dog bark, cat meow, lion roar, and nightingale, and also retrieve
its associated metadata and some pre-computed audio features. Then we show how
to store this information in a data structure and create a text index using popular
Python libraries. Both data structures are used in later sections of this chapter
to demonstrate metadata-based and audio-based retrieval strategies (Sects. 10.3
and 10.4, respectively).

10.2.1 Licensing, File Formats, and Size

Licensing terms for audio are more of a legal than a technical issue. However, they
will often be a key factor for anyone building an audio database, especially for
shared usage. Copyright licensing will be generally needed for audio recordings but
additional licensing may be required. For example, if the performance of a musical
composition appears in the recording, a license for the composition also applies.
There are two interactions to consider: first, the database developer or administrator
needs a license from the content author. Second, database users willing to play or
download audio files for reuse need a license too. In many social media applications
(such as Freesound or Flickr) a license is chosen by the content author at upload time
and is propagated by the database to the end users. The development of Creative
Commons6 (CC) licenses was instrumental in the emergence of this use case
because these allow re-distribution under clear terms. Re-distribution is generally
not permitted under traditional copyright. While their applicability depends on
the audio material (e.g., whether existing protected content is considered) and/or
possible commercial agreements, CC licenses provide mature legal terms curated
by copyright law experts that may be useful to developers with little or no expertise
on this subject.

File format can be naively seen as a trivial issue. Even though it may be trivial
for a database designed for individual usage, for collective usage it is convenient
to support multiple formats. Choice is complicated due to the plethora of available
options, each with its own implications, often due to commercial factors. For this
reason, early planning is advised. As a general rule, variety of formats is convenient

5https://freesound.org/docs/api/resources_apiv2.html.
6https://creativecommons.org.
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for collecting sounds from different authors (who may use different equipment),
and uniformity is convenient to facilitate reuse. An obvious general way to classify
formats is to distinguish between uncompressed, lossy (i.e., when the compression
implies loss of information), and lossless compressed formats. In some cases, a
distinction between container and codec may be relevant, especially when dealing
with video files. In pure audio formats there is often no distinction between container
and codec, so we will not make that distinction in this chapter either. In addition to
the format, there are numerous possible combinations of sampling rate and sample
bit depth. Audio production textbooks are a good source for conventional choices
of sampling rate and bit depth [29]. The most universal is the one defined by
the compact disc standard, 44.1 kHz and 16 bits. With respect to uncompressed
formats, WAV and AIFF are the most common. As an example of non-trivial issue,
24-bit integers are a very common choice, yet some high-level languages such as
Python lack a specific 24-bit primitive data type, and as a consequence reading
24-bit wav files in some Python packages will not work. Similar situations may
be encountered with 32-bit audio and for any obscure combinations: libraries for
dealing with different audio formats may surprisingly fail to recognize many files.
Lossy compression has been instrumental in the popularization of digital audio in
the Internet age. Perhaps the main issue is that many formats are covered by patents.
At the time of this writing, MP3 patents are progressively expiring. Open formats
such as OGG are free to use but often not supported in commercial players and
devices. A similar situation is found with respect to lossless compressed formats:
while open formats such as FLAC are available, companies often develop their own
formats and protect them, so they are mostly used in specific platforms. Compressed
formats will introduce more possibilities for variation, typically a bit rate or quality
parameter. A common sense strategy is to allow authors to contribute content with
the format they want, and then convert to a standardized format. For large scales,
if an uncompressed format is chosen as standard and/or the originals are preserved,
this approach may require large amounts of storage space.

File size and duration is also something to consider when creating an audio
database, not only in order to plan the storage needs but also for deciding the
way in which files are accessed. Short audio recordings will usually contain sound
events, while longer recordings may contain music, speeches, or environmental
sound scenes. Analysis and segmentation of longer recordings may be of interest
for some applications in order to isolate specific events or to allow streaming. Large
file sizes also complicate transmission for authors, for example, when using HTTP
to upload files to a database server.

10.2.2 Metadata

Metadata can be defined as “data about data.” In the case of audio it usually refers
to textual information that is used to describe and index an audio file or segment.
Virtually all existing sound sharing platforms implement some kind of metadata-
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based retrieval strategy. Text is the most established way to deal with any sort of
information stored in computers, so for most applications, some kind of metadata
is necessary. Audio files already contain some sort of metadata in the headers, such
as sampling rate, bit depth, bit rate, and potentially editorial information, that can
be added to the database for indexing. Nevertheless, sound sharing platforms often
delegate the responsibility of providing metadata to the content authors or editors.
This will typically include a name (which may or may not coincide with the file
name), a textual description of the content of the sound, a number of labels or tags,
or other more structured bits of information such as audio file format properties,
time of recording, or geo-location information. Even though audio features could
also be considered to be metadata, these are typically excluded from the definition.

A general concern is the consistency of the provided metadata, which is affected
by the original design of the data model. Like in the case of file formats, some degree
of freedom in terms of required metadata will allow to make an audio database
more attractive to different users. For example, tags have become a very popular
way to attach text labels to pieces of information without any predefined structure.
Conversely, more structured and strict metadata layouts may benefit indexing and
retrieval in some cases. In Sect. 10.3.1 a more detailed discussion is given regarding
metadata fields and consistency.

In order to index and retrieve content based on text metadata, a full-text
search engine is especially useful. Full-text search engines are specialized software
programs that are useful for searching in text documents or textual representations
of documents as metadata fields. The choice of indexing algorithms depends on
the type of information stored in a database and the way it is to be retrieved.
The availability of implementations will typically determine the choice of a given
database program or library. Traditional relational databases typically rely on B+
trees for indexing. Other tree structures can be used for spatial queries as described
in Sect. 10.4. While the plethora of available database software is beyond the scope
of this chapter, it is useful to distinguish three main groups that are commonly
helpful for large-scale applications. Traditional relational databases, also known
as relational database management systems (RDBMS), are used via the structured
query language (SQL) in many corporate and web applications. The more modern
trend of NoSQL databases comprises a heterogeneous group including document
databases, key-value stores, and graph databases. Some of these use text formats
commonly used for audio metadata, such as XML or JSON. For information
indexed using complex ontologies, specialized graph databases or triple-stores may
be needed (see Sect. 10.5) [59].

10.2.3 Audio Features

Audio features or descriptors are numerical representations obtained through
automatic analysis of audio, often attempting to capture some aspect of human
perception. A large number of such descriptors have been developed over the
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years through research in automatic speech recognition (ASR), music information
retrieval (MIR), and environmental sound recognition (ESR), including sound scene
and sound event analysis (see Chap. 4). The use of audio features has been
historically different in each of these domains. For speech, features were used
most of the time as a spectral representation of sound used to train discrete models
(e.g., hidden Markov models) informed by human speech and language. For music,
features have been traditionally organized in different levels, according to their
proximity to music theory concepts. For environmental sound most of the time
very generic features are used in order to recognize specific semantic categories.
Creating a database of audio features involves feature extraction software. One
example can be found in the Freesound Extractor,7 which extracts a number of
audio features using the Essentia [8] audio analysis library. The most important
question when designing a database using audio features is to know which features
are relevant to the expected type of content and use case. So far there are mainly
two interaction paradigms that have been extensively researched for audio retrieval
based on features: range queries can be used with descriptors that are understandable
for humans. A simple example is finding pitched sounds within a given range of
pitches. Query by example (often also called similarity search) refers to using an
example sound to find similar sounds in the database (see Sect. 10.4). In the field
of data-driven music creation a special case is to find sequences of shorter sounds
in the database that are optimally close to an audio query. This technique has been
named musical mosaicing [81] or concatenative sound synthesis [67].

10.3 Metadata-Based Sound Retrieval

Metadata is the most common way through which audio databases can be navigated
and their content retrieved. In this section we describe in more detail the use of
user-provided metadata for indexing audio content (Sect. 10.3.1) and explain some
of the most common sound retrieval strategies based on metadata (Sect. 10.3.2). The
code examples referenced along with the explanations build up from the examples
referenced in the previous section.

10.3.1 Metadata for Audio Content

Content authors or editors typically provide metadata in the form of a number of
annotations or descriptions. As described in Sect. 10.2, it is common for sound
sharing platforms to rely on such user-provided metadata for audio indexing and
retrieval. Nevertheless, the nature of content annotations may vary on each particular

7https://github.com/MTG/essentia/tree/master/src/examples/freesound.

https://github.com/MTG/essentia/tree/master/src/examples/freesound
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sharing platform, and is highly dependent on the description strategy used in every
particular site. Description strategies that look for the most uniform annotations
can use forms with a number of predefined metadata fields with fixed responses.
For each field, users will chose one of the available responses when describing a
resource. For example, users might be asked to classify a sound effect by selecting
a category from a fixed list of categories. However, these strategies lack flexibility
when new resources are uploaded because their characteristics can be unexpected
and not contemplated in the description form [27, 42, 71]. Other description
strategies provide more flexibility by not limiting metadata fields to a specific set
of responses. In that case, annotations typically consist of a textual description and
a number of tags which are not restricted to a particular vocabulary.

Using tags as keywords for annotating resources has become standard practice in
many online sharing sites of very different nature. Just to name a few examples,
multimedia sharing sites like YouTube, Vimeo, Flickr, SoundCloud, Bandcamp,
Last.fm, or Freesound8 have content labeled using tags. However, despite the
popularity of tagging systems and their successful implementation in many online
sharing sites, there are a number of well-known problems which limit the possibili-
ties of these functionalities [26]. These problems range from the use of different tags
to refer to a single concept (synonymy) and the ambiguity in the meaning of certain
tags (polysemy), to tag scarcity and typographical errors [24, 27]. Furthermore,
the quality of the indexing, searching, and browsing functionalities enabled by
tagging systems strongly relies on the coherence and comprehensiveness of the
tags assigned to the resources. It is not only important that individual resources
are properly tagged, but also that descriptions are consistent across the database.
For that reason, it has been often discussed whether a tagging system, after a
certain time of being in use, reaches a point of implicit consensus where the
vocabulary converges to a certain set of tags and tagging conventions that are widely
adopted by all users of the system [27, 58, 70, 74, 78]. According to these authors,
the point of consensus may be reached because of imitation patterns and users’
shared cultural knowledge. Reaching that point of consensus is desirable to improve
indexing and overall sharing experience [26]. It is a common strategy in sharing
platforms to use tag recommendation methods to help users during the description
process [19, 24, 27, 44]. By using such methods, user annotations are expected to
be more uniform and comprehensive, thus helping in reaching the aforementioned
point of consensus.

Overall, the choice of using a flexible description strategy or a more strict one
strongly depends on the nature of the data that needs to be collected. Flexible
systems are a better fit for heterogeneous data, while strict systems can work well
for cases in which the information to annotate is very well defined. In the case of
audio material a mixed approach can be a good option, using well-defined metadata
fields relating to aspects such as audio format (e.g., sample-rate, bit depth, number

8https://youtube.com, https://vimeo.com, https://flickr.com, https://soundcloud.com, https://
bandcamp.com, https://last.fm, https://freesound.org.
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of channels) or other recording properties (e.g., duration, date of recording, duration
of recording, used microphone, etc.), and also using more flexible fields such as a
textual description of the activities being recorded. In the specific case of sound
events and sound scenes, it is important to put an emphasis on describing the sound
sources that are captured in a recording (i.e., what produces the sound). Because of
the potential variety of sound sources, tagging systems are typically appropriate for
annotating that kind of information. For sound scenes, it is also desirable to attach
annotations to particular regions of a recording, being able in this way to provide
specific descriptions for different fragments of the scene.

10.3.2 Search and Discovery of Indexed Content

As previously mentioned, a common choice for indexing metadata is the use of
a full-text search engine. In that case users typically introduce some search terms
(i.e., words) as a query. The search engine then matches these terms with indexed
metadata fields and returns a sorted list of results (sounds in our examples). For
each sound in the index, the search engine will compute a relevance score based
on how well the input terms match the information in the metadata fields and how
relevant the matched terms are. The classic relevance score in information retrieval
is based on calculating the relevance of a term with respect to a given document by
the TF*IDF measure [72]. TF stands for “term frequency,” and number of times the
specific term appears in a document. IDF stands for “inverse document frequency,”
and represents the inverse of the number of documents in the index that contain the
given term. The idea is that a given term will be relevant with respect to a document
if it appears many times, but the relevance will be penalized if it also appears in
many other documents. Using such a relevance function and given a number of
input query terms, a global score can be computed by aggregating the relevance of
each query term for the different metadata fields of each document in the index.
Other common score functions include the BM25F, which is a variation of TF*IDF
based on probabilistic information retrieval [57], and the PageRank algorithm [50],
which calculates the relevance of a document based on the relevance of documents
that point to it.

Besides the scoring functions for sorting results, search engines can include
query expansion mechanisms which perform pre-processing of user queries before
matching it with the index contents [14]. The idea behind query expansion is that
the input terms provided by a user can be expanded with other relevant terms before
matching with the index, potentially increasing the number of results. The way in
which new terms are added to the query can be based on simple strategies such as
using synonym lists or on more complex strategies such as the analysis of previous
queries or the use of domain-specific knowledge (see Sect. 10.5). Search results may
be further refined by allowing users to specify filtering criteria. In this way metadata
fields that are not taken into account in the scoring function can be used in the search
process to restrict the searchable space.
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Fig. 10.2 Example of faceted search as implemented in Freesound. Facets for licenses, type,
samplerate, and bitdepth metadata fields are displayed for the results of the query “dog barking.”
Clicking on these facets further filters the query results

Another typical retrieval strategy based on metadata is the use of facets when
displaying search results. This is typically referred to as faceted search [76]. Given
the results of a query, faceted search extends conventional search by dynamically
summarizing the distribution of values in a number of information facets (i.e.,
metadata fields) and showing this information to users. In this way, users can use
the information displayed in facets to further filter and update their queries (see
Fig. 10.2). Faceted search has become increasingly popular in sharing platforms
and provides a foundation for interactive information retrieval by allowing iterative
results-informed query refinement.

Faceted search allows the discovery of the database beyond conventional search
by providing users with a way to navigate the content (even without specifying
initial query terms). A particularly successful faceted search application is the use of
a tag cloud as a browsing interface. A tag cloud shows the most commonly used tags
in a database with the size of each tag set proportional to its frequency of occurrence
(Fig. 10.3) [33]. Users can typically navigate a collection by applying query filters
based on the tags in the tag cloud, and for each new filter a new tag cloud can
be computed and displayed only considering the filtered set of documents. Note
that when new content is indexed in a database, the tag cloud can be automatically
updated. Therefore tag clouds show an up to date overview of the contents of a
database.
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Fig. 10.3 Example tagcloud taken from Freesound (retrieved September 27th 2016)

Our provided code examples show a simple implementation of a number of
metadata-based sound retrieval strategies. We provide a basic text search system
which is configured to match input query terms with the information in name,
description, and tags metadata fields. We also provide examples for filtering search
results based on duration and sound license fields. Furthermore, our example
code shows how to define facets and group search results based on these (again
using license and duration metadata fields). Finally, we provide code to generate a
tagcloud which summarizes the contents of an audio database by displaying its most
important tags.

10.4 Audio-Based Sound Retrieval

Audio-based retrieval (also known as content-based retrieval) refers to the use of
descriptors computed automatically from the waveform in order to find audio files
in a database. The obvious advantage of using automatic descriptors is that it allows
indexing content when no labels or metadata are available. Manual labelling may
require significant amounts of work, which could be avoided by using automatic
analysis. On the other hand, currently available descriptors do not always bear an
intuitive meaning for non-expert (or even expert) users. Often they are used in
conjunction with machine learning algorithms in order to obtain meaningful labels
(i.e., typically through segmentation and/or classification). In this section we will
review basic retrieval techniques using audio descriptors. More details on specific
descriptors can be found in Chap. 4.
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10.4.1 Audio Features

One of the most critical aspects for audio-based retrieval is devising a set of features
that are relevant for the application. The standard representation of audio as a
waveform in the time domain allows for visual inspection and graphical editing,
but conveys only limited information (i.e., amplitude) about the sound. Since time-
frequency transforms such as the Short-time Fourier Transform (STFT) became
affordable and ubiquitous in audio processing, the spectrogram has been used as
a more intuitive representation. Most descriptors used for content-based indexing
of audio data are related to some time-frequency transform, and attempt to describe
some aspect of it that is relevant to some application or is intuitively useful. An
obvious example would be detecting the pitch for harmonic signals. A large number
of software libraries are available for feature extraction, mainly in the context of
MIR research [8, 10, 11, 36, 45, 46, 54, 77]. It is common in MIR to distinguish
low-level features (i.e., closer to the spectral representation but with little intuitive
meaning) and higher-level features related with musical concepts. Environmental
audio can be seen as a very general case where it is still possible to find music
(e.g., street music, the radio in a car) and very likely pitched sounds such as human
or other animal vocalizations, or human-originated sounds like alarms. Finding a
generic representation is not straightforward and in most cases it may depend on the
application. Low-level features can still be used for most kinds of sounds. A popular
set of low-level features was compiled in the definition of the MPEG-7 standard
[55]. As generic descriptors, Mel-frequency cepstral coefficients (MFCCs) are still
very widely used, like in the case of music and speech. More recently, deep learning
architectures make it possible to automatically learn the required representations
from spectral frames [38], or even from raw audio waveforms [30]. A strategy
for supporting many potential applications is computing a comprehensive set of
features. This is the strategy adopted in the aforementioned Freesound Extractor
(Sect. 10.2.3), and does not bear a large computational cost in respect to the whole
operation.

10.4.2 Feature Space

Audio features are typically aggregated along time in order to represent each audio
file as a single vector. This process may depend on the content of the file: for sound
events, the temporal evolution of spectral features may be taken into account, while
for sound scenes global statistics may suffice. Statistics can also be computed from
delta features, producing higher-dimensional vectors that capture some of the short-
term temporal evolution. The idea of ignoring the actual order of spectral features
and computing statistics has been dubbed the “bag of frames” approach [3], by
analogy to the “bag of words” model in text retrieval. Feature vectors can also be
extracted from events detected in long recordings.
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The set of selected features can then be seen to form a vector space, defined
by some distance metric between feature vectors. Typical choices are distance
metrics associated with p-norms, or cosine distance for large dimensions. Feature
vectors represent audio documents, and can be added as records to any conventional
database software. On the other hand, it is very convenient if the collection can
be kept in computer memory. As an example, for an arbitrary distance metric,
a naive query-by-example approach would require traversing all the vectors and
compute the distance to the query vector (see Sect. 10.4.4). Since there may be some
redundancy in the feature space (for example, when a very large set of features is
computed), dimensionality reduction algorithms (e.g., principal component analy-
sis) can be helpful. Another common practice is to quantize features into typically
sparse spaces, e.g., using data clustering [37, 64]. However, keeping the original
features allows defining distance metrics over meaningful subsets. This is especially
useful if many different kinds of sounds are mixed, so different feature sets can be
used by different applications.

10.4.3 Descriptor-Based Queries

Using descriptors directly in user interfaces is not very common, especially when
dealing with general audio, since low-level features often lack an intuitive meaning.
Moreover, the distribution of features across the database must be taken into account
in order to find sensible values.9 Queries based on hand-picked descriptor targets or
ranges are still possible for some low-level features. An intuitive example is a rough
division of the power spectrum in a few frequency bands (as is used frequently in
audio production and mixing, e.g., low, mid-low, mid-high, high). A non-specialist
user could use these bands to select sounds where most of the energy is in the higher
frequencies (e.g., selecting bird sounds), or in the lower frequencies (e.g., to find
sounds of passing cars). Descriptor-based queries can also be devised by an expert
and presented as discrete choices to the user. An even simpler example is using the
spectral centroid (see the code examples provided in the book website). Since audio
descriptors are often floating point numbers, a common strategy is to specify a query
range for a given descriptor or for a set of them. However, more complex queries can
be made using specialized languages like SQL or other database query languages.
In concatenative sound synthesis research, it was also common to use audio features
as axes of interactive scatterplots of audio collections [68]. The exploration can also
be driven by gestures [17].

9For this reason, histograms are provided as part of the documentation of the Freesound API:
https://www.freesound.org/docs/api/analysis_docs.html.

https://www.freesound.org/docs/api/analysis_docs.html
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10.4.4 Query by Example

Query by example (Qbe) refers to a kind of content-based retrieval technique where
the target descriptors are extracted from examples, so users do not need to know
about them. The idea of QbE has become widespread for music (e.g., singing
a melody, or recording a fragment of audio to retrieve a song title and author).
The same idea has been tried for general audio, where users try to imitate the
sound they are looking for [6, 15] (see [62] for an example implementation using
Freesound). For Qbe to work, the query example must be analyzed by the same
extractor program that has been used to create the database, since small differences
in parameters can lead to complete different ranges for descriptors. Again it is
also possible to devise ideal targets by experts, for example, specifying a given
value for pitch. Similarity queries will normally return a list of records ordered by
similarity to the target. This can be seen as a nearest-neighbors search in the vector
space. Common algorithms for nearest-neighbor search are KD-trees, R-trees, and
ball trees. Relaxation of the problem to approximate nearest neighbors (where the
returned vector is not guaranteed to be the nearest one to the target) may perform
several orders of magnitude faster, and thus is indicated for large data sets and high-
dimensional spaces.

The accompanying code examples include a simple implementation of both
descriptor and nearest-neighbors queries. We first query the database to get general
statistics about extracted audio features which allows to observe their distribution.
We focus on the spectral centroid feature, which is a rough indicator of how energy
is distributed across the frequency spectrum. The database is then queried for sounds
with a centroid below 50 Hz, which returns a roar sound with low frequencies, and a
nearest-neighbors ball tree algorithm is used to find the ten nearest neighbors using
MFCC statistics. This returns a list with mostly roar sounds and also some dog
barks.

10.4.5 Audio Fingerprints and Thumbnails

An audio fingerprint summarizes an audio recording into a small description
(typically an alphanumeric string) that is ideally unique. This is used to identify
copies of the same recording, since applying the same algorithm should result in the
same fingerprint. Systems are often designed to be robust to some distortions, such
as ambient noise or reverberation, but in general fingerprinting only works for copies
of the same recording (i.e., the same waveform), as opposed to multiple recordings
of similar sounds, such as a given utterance or a musical piece. The techniques
used for fingerprinting are generally based on feature extraction as described above,
typically with a more complex step of summarization of the time series of audio
features. For example, vector quantization or hidden Markov models can be used in
order to obtain a short and hopefully unique representation (see [12] for a review).
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Fingerprinting can be seen as a special case of hashing. Generic hashing algorithms
can be used to find and prevent exact duplicates of the same file in the database (e.g.,
MD5 is used in Freesound). Audio fingerprinting was developed mostly for music
but it can be used also for general audio content (e.g., commercial monitoring [31]).
Fingerprinting has also been used for identifying room ambiance [4], so it could
be used to group recordings from the same location in an audio database. Finally,
fingerprinting-like hashing has been proposed also as experimental indexing for
creative applications [16].

While fingerprints can be seen as summaries that uniquely identify audio
recordings for machines, audio thumbnails can be seen are sound fragments that
humans can use as previews to identify and remember recordings. Such previews
are required for browsing audio databases or analyzing search results. For musical
audio, the most common approach is identifying frequently repeated passages[2].
Contrastingly, for environmental sound, particularly for long recordings of sound
scenes, it is more useful to apply some detection strategy in order to find salient
events [82].

10.5 Further Approaches to Sound Retrieval

In the previous sections we have introduced standard sound retrieval strategies based
either on metadata or on audio information. In this section we introduce some
advanced strategies which are not as common as those introduced in the previous
sections but are also very relevant for sound retrieval.

If we have a closer look at the metadata-based strategies described in Sect. 10.3,
we will see that none of them are in fact particular or restricted to the sound
sharing domain. In other words, no knowledge specific to the audio domain is
used for any of the scoring functions, faceting or tagcloud examples shown above.
The inclusion of domain-specific knowledge is therefore something that can be
considered for enhancing sound retrieval strategies [48]. A simple form of domain-
specific knowledge that is relevant in sound retrieval are, for example, taxonomic
classifications of sound events as seen in Chap. 7. Such taxonomies can be used at
different stages of the information retrieval process. For example, a taxonomy can
be used to perform domain-specific query expansion [7] and increase in this way the
recall of search results. Taxonomies can be used to group search results in specific
concepts and present them accordingly [35].

Another more complex form of domain-specific knowledge is that represented
by ontologies [18]. Ontologies provide, for a given domain, an unambiguous
formalization of its concepts, entities, and their relations. Besides the work by
Nakatami and Okuno [49] in which an ontology for sound is provided, the use
of ontologies has not been much explored in the field of sound scene analysis.
Typically, simpler forms for representing structured domain-specific knowledge are
used as exemplified by Gaver’s map of everyday sounds [22] and the recent Urban
Sound Taxonomy [65]. Nevertheless, one advantage of using ontologies is that
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content can be annotated with labels which feature a very specific semantic meaning.
Hence, where tagging systems feature free-form textual labels with no predefined
semantic meaning, ontologies feature detailed concept hierarchies interlinked with
semantically meaningful relations. The accurateness and rigidity of ontologies is
often opposed to the flexibility and ambiguity of tagging systems, but these can also
be complementary [40, 47]. One common approach in this direction is the mapping
of user-provided tags with specific concepts of an ontology. This allows tackling
typical synonymy and ambiguity problems of tagging systems, but requires methods
for automatically matching tags with concepts of the ontology [1, 53]. Ontologies
can also be used in a sound retrieval context for optimizing sound annotations
provided by users. For example, an ontology that embeds information about types
of sounds and their relevant characteristics can be used during an annotation process
to suggest users to provide annotations about particularly relevant information
facets [19].

In the context of online sharing platforms in which users contribute and consume
audio content we can also think of retrieval strategies that take advantage of
user behavior information. The most prominent example of this type of retrieval
strategies are recommendation systems [56]. Recommendation systems can be
defined in different ways, but in the context of sound sharing a common application
is the recommendation of potentially relevant sounds for a user given previous
sounds that the user has retrieved. This problem is typically approached using
collaborative filtering techniques [66]. Such techniques are able to recommend
items to a user based on items that other similar users interacted with in the
past. For example, if user A has downloaded sounds 1, 2, and 3 and user B has
downloaded sounds 1 and 3; the recommendation system could recommend sound
2 to user B. Collaborative filtering techniques can be used for discovery through
sound recommendation in a way that evolves along with users’ activity. The more
users interact with sounds, the more information the system has to perform better
informed recommendations.

With respect to content-based approaches, sound retrieval often benefits from
machine learning approaches that map low-level features to more intuitive rep-
resentations. Machine learning algorithms for retrieval can be generally classified
between supervised and unsupervised. As shown elsewhere in this book, supervised
learning approaches have applications in acoustic event classification (Chap. 5),
annotation (Chaps. 6 and 7), and detection (Chap. 8) among others. Its appli-
cation to sound retrieval often implies dealing with scalability both in terms of
computational cost and concept generalization. For example, the statistics of a
large set of features have been used along with K-NN classifiers for large-scale
applications [13]. Another example approach for tackling concept generality is
combining classification based on existing taxonomies with free text queries [63].

Unsupervised machine learning methods are well suited for browsing and
discovery, typically by using clustering to discover underlying groupings in the
database. The most common approach is to map a collection of sounds to two-
dimensional space. Self-organizing maps (SOM) were used in a number of efforts
for this purpose [9, 28, 51, 52]. Another approach is using graph layout algorithms
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for visualizing nearest-neighbor graphs [69]. Nearest-neighbors graphs can also be
clustered using graph clustering to provide unsupervised hierarchical organizations
[60]. These browsing and discovery mechanisms do not require a textual query to
initially filter content, but can be effectively used in combination with textual queries
or supervised approaches to provide focused unsupervised interfaces. These are
especially useful when many kinds of sounds are mixed in the database. Two recent
examples of such interfaces are shown in Fig. 10.4. The first example, Floop10 (top),
is an experimental system for graphically browsing rhythmic sounds. Rhythimc
sounds are detected and classified in an unsupervised fashion using the Beat
spectrum [21], a classic descriptor that estimates the main periodicities in any kind
of sound [61]. A force-directed graph layout is used to organize a nearest-neighbors
graph (computed from content-based timbral similarity) for a subset of sounds that
share the same repetitive period and therefore can be played rhythmically together.
The second example (Fig. 10.4, bottom) shows an interface for exploring an audio
database in which the search results of a given textual query are organized according
to timbral similarity. Similarly to previous work by Heise et al. [28], results are
displayed in a map that can be explored and in which sounds can be listened to.11

The map is computed using the t-SNE [41] dimensionality reduction technique on
MFCC audio descriptors. Closer sounds in the map have closer timbral similarity. In
this way search results are placed in different parts of the map and users can browse
content by combining the semantic properties specified via the text search and the
timbre characteristics represented in the map of results.

10.6 Conclusions

The increasing popularity of sound sharing and the growing capabilities of portable
recording devices, including mobile phones, pose new challenges for sound retrieval
techniques. Sound retrieval is therefore a timely topic which will probably attract
more and more attention in the coming years.

In this chapter we have introduced the most important concepts related to sound
sharing and retrieval and have described the different ways in which content from
an audio database can be indexed, searched, and navigated. We have illustrated
the different parts of a sound retrieval system with code examples showing the
creation of an audio database and the addition of both metadata-based and audio-
based retrieval functionalities. This code can easily be extended to incorporate more
features and further experiment with sound retrieval techniques.

The introduction given in this chapter should be understood as a starting point
for future developments. In particular, promising research directions such as the use
of deep learning for the annotation of audio content and the use of domain-specific
ontologies for structuring metadata are likely to play an important role in future
sound sharing and retrieval systems.

10https://labs.freesound.org/floop/.
11https://ffont.github.io/freesound-explorer/.

https://labs.freesound.org/floop/
https://ffont.github.io/freesound-explorer/
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Fig. 10.4 Examples of two interfaces that exploit audio-features information to display sounds
in a two-dimensional space. The top figure shows Floop, an interface that organizes rhythmic
sounds according to an estimated periodicity. At the left, an interactive histogram indicates the
number of sounds available for each rhythmic cycle duration. When clicking on one of the bars, the
corresponding sounds are displayed and organized by timbral similarity. The bottom figure shows
a map in which sounds are organized by timbral similarity. Users can introduce some textual query
terms which are used to query Freesound and the results are displayed in a map where each circle
represents a sound. Closer circles in the map tend to sound more similar than circles which are
farther away
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