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Preface

The recent progress on machine learning and signal processing has enabled the
development of technologies for automatic analysis of sound scenes and events
by computational means. This has attracted several research groups and companies
to investigate this new field, which has potential in several applications and also
has several research challenges. This book aims to present the state-of-the-art
methodology in the field, to serve as a baseline material for people wishing to enter
it or to learn more about it.

We would like to thank all the authors of the chapters of this book for their
excellent contributions. We gave you hard times by making several requests, many
of which were quite laborious to address. We would specifically like to thank those
authors who agreed to help by cross-reviewing other chapters to make this book
coherent. We would also like to thank the external reviewers, Joonas Nikunen,
Guangpu Huang, Benjamin Elizalde, Mikko Parviainen, Konstantinos Drossos,
Sharath Adavanne, Qiang Huang, and Yong Xu.

Tampere, Finland Tuomas Virtanen
Surrey, UK Mark D. Plumbley
New York, NY, USA Dan Ellis
June 2017
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Part I
Foundations



Chapter 1
Introduction to Sound Scene and Event Analysis

Tuomas Virtanen, Mark D. Plumbley, and Dan Ellis

Abstract Sounds carry a great deal of information about our environments, from
individual physical events to sound scenes as a whole. In recent years several
novel methods have been proposed to analyze this information automatically, and
several new applications have emerged. This chapter introduces the basic concepts
and research problems and engineering challenges in computational environmental
sound analysis. We motivate the field by briefly describing various applications
where the methods can be used. We discuss the commonalities and differences of
environmental sound analysis to other major audio content analysis fields such as
automatic speech recognition and music information retrieval. We discuss the main
challenges in the field, and give a short historical perspective of the development of
the field. We also shortly summarize the role of each chapter in the book.

Keywords Sound event detection • Sound scene classification • Sound tagging •
Acoustic event detection • Acoustic scene classification • Audio content analysis

1.1 Motivation

Imagine you are standing on a street corner in a city. Close your eyes: what do
you hear? Perhaps some cars and buses driving on the road, footsteps of people on
the pavement, beeps from a pedestrian crossing, rustling, and clunks from shopping
bags and boxes, and the hubbub of talking shoppers. Your sense of hearing tells you

T. Virtanen (�)
Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland
e-mail: tuomas.virtanen@tut.fi

M.D. Plumbley
Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, Surrey GU2
7XH, UK
e-mail: m.plumbley@surrey.ac.uk

D. Ellis
Google Inc, 111 8th Ave, New York, NY 10027, USA
e-mail: dpwe@google.com

© Springer International Publishing AG 2018
T. Virtanen et al. (eds.), Computational Analysis of Sound Scenes and Events,
DOI 10.1007/978-3-319-63450-0_1

3

mailto:tuomas.virtanen@tut.fi
mailto:m.plumbley@surrey.ac.uk
mailto:dpwe@google.com


4 T. Virtanen et al.

what is happening around you, without even needing to open your eyes, and you
could do the same in a kitchen as someone is making breakfast, or listening to a
tennis match on the radio.

To most people, this skill of listening to everyday events and scenes is so natural
that it is taken for granted. However, this is a very challenging task for computers;
the creation of “machine listening” algorithms that can automatically recognize
sounds events remains an open problem.

Automatic recognition of sound events and scenes would have major impact
in a wide range of applications where sound or sound sensing is—or could be—
involved. For example, acoustic monitoring would allow the recognition of physical
events such as glass breaking (from somebody breaking into a house), a gunshot,
or a car crash. In comparison to video monitoring, acoustic monitoring can be
advantageous in many scenarios, since sounds travel through obstacles, is not
affected by lighting conditions, and capturing sound typically consumes less power.

There exist also large amounts of multimedia material either broadcast, uploaded
via social media, or in personal collections. Current indexing methods are mostly
based on textual descriptions provided by contributors or users of such media
collections. Such descriptions are slow to produce manually and often quite
inaccurate. Methods that automatically produce descriptions of multimedia items
could lead to new, more accurate search methods that are based on the content of
the materials.

Computational sound analysis can also be used to endow mobile devices
with context awareness. Devices such as smartphones, tablets, robots, and cars
include microphones that can be used to capture audio, as well as possessing the
computational capacity to analyze the signals captured. Through audio analysis,
they can recognize and react to their environment. For example, if a car “hears”
children yelling from behind a corner, it can slow down to avoid a possible accident.
A smartphone could automatically change its ringtone to be most appropriate for a
romantic dinner, or an evening in a noisy pub.

Recent activity in the scientific community such as the DCASE challenges
and related workshops—including significant commercial participation—shows a
growing interest in sound scene and event analysis technologies that are discussed
in this book.

1.2 What is Computational Analysis of Sound Scenes and
Events?

Broadly speaking, the term sound event refers to a specific sound produced by a
distinct physical sound source, such as a car passing by, a bird singing, or a doorbell.
Sound events have a single source, although as shown by the contrast between a car
and its wheels and engine, defining what counts as a single source is still subjective.
Sound events typically have a well-defined, brief, duration in time. By contrast,
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the term sound scene refers to the entirety of sound that is formed when sounds
from various sources, typically from a real scenario, combine to form a mixture.
For example, the sound scene of a street can contain cars passing by, footsteps,
people talking, etc. The sound scene in a home might contain music from radio, a
dishwasher humming, and children yelling.

The overarching goal of computational analysis of sound scenes and events
is extracting information from audio by computational methods. The type of
information to be extracted depends on the application. However, we can sort typical
sound analysis tasks into a few high-level categories. In classification, the goal is
to categorize an audio recording into one of a set of (predefined) categories. For
example, a sound scene classification system might classify audio as one of a set
of categories including home, street, and office. In (event) detection, the goal is to
locate in time the occurrences of a specific type of sound or sounds, either by finding
each instance when the sound(s) happen or by finding all the temporal positions
when the sound(s) are active. There are also other more specific tasks, such as
estimating whether two audio recordings are from the same sound scene.

When the classes being recognized and/or detected have associated textual
descriptions, the above techniques (classification and detection) can be used to
construct a verbal description of an audio signal that is understandable by humans.
The number of sound events or scene classes can be arbitrarily high and in principle
it is possible to train classifiers or detectors for any type of sounds that might be
present in an environment. In practice the number of classes or the types of sounds
that can be classified is constrained by the availability of data that is used to train
classifiers, and by the accuracy of the systems. The accuracy that can be achieved is
affected by many factors, such as the similarity of classes to be distinguished from
each other, the diversity of each class, external factors such as interfering noises, the
quality and amount of training data, and the actual computational methods used.

The above vision of automatic systems producing abstract, textual descriptions
is quite different from the mainstream research on computational analysis methods
of a decade ago [21], where the main focus was on lower-level processing
techniques such as source separation, dereverberation, and fundamental frequency
estimation. Such low-level techniques are important building blocks in classification
and detection systems, but they do not yet produce information that can be
naturally interpreted by humans. The number of distinct sound classes handled by
current classification and detection technologies is still limited, and their analysis
accuracy is to be improved, but the capability of these methods to produce human-
interpretable information gives them a significantly broader potential impact than
more low-level processing techniques.

The core tasks of detection and classification require using several techniques
related to audio signal processing and machine learning. For example, typical com-
putational analysis systems first extract some acoustic features from the input signal,
and supervised classifiers such as neural networks can be used for classification
and detection. Therefore acoustic features and classifiers, as well as more complex
statistical techniques for integrating evidence, and mechanisms for representing
complex world knowledge, are all core tools in the computational analysis of sound
scenes and events, and hence are covered in this book.
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We refer to the domain of these sound analysis techniques as “everyday sounds,”
by which we mean combinations of sound sources of the number and complexity
typically encountered in our daily lives. Some sound events may be quite rare (it is
not every day that one encounters a snake hissing, at least for most of us), but when
it does occur, it is more likely to be in the context of several other simultaneous
sources than in isolation.

1.3 Related Fields

While computational analysis of non-speech, non-music sound scenes and events
has only recently received widespread interest, work in analysis of speech and
music signals has been around for some time. For speech signals, key tasks include
recognizing the sequence of words in speech (automatic speech recognition), and
recognizing the identity of the person talking (speaker recognition), or which of
several people may be talking at different times (speaker diarization). For music
audio, key tasks include recognizing the sequence of notes being played by one
or more musical instruments (automatic music transcription), identifying the genre
(style or category) of a musical piece (genre recognition), or identifying the
instruments that are being played in a musical piece (instrument recognition): these
music tasks are explored in the field of music information retrieval (MIR).

There are parallels between the tasks that we want to achieve for general
everyday sounds, and these existing tasks. For example, the task of sound scene
classification aims to assign a single label such as “restaurant” or “park” to an audio
scene, and is related to the tasks of speaker recognition (for a speech signal with a
single speaker) and musical genre recognition. Similarly, the task of audio tagging,
which aims to assign a set of tags to a clip, perhaps naming audible objects, is
related to the music task of instrument recognition in a multi-instrument musical
piece. Perhaps most challenging, the task of audio event detection, which aims to
identify the audio events—and their times—within an audio signal, is related to the
speech tasks of automatic speech recognition and speaker diarization, as well as the
task of automatic music transcription.

Since the analysis of everyday sounds can be related to speech and music tasks,
it is not surprising to find that researchers have borrowed features and methods
from speech and music, just as MIR researchers borrowed methods from the speech
field. For example, features based on mel-frequency cepstral coefficients (MFCCs)
[3], originally developed for speech, have also been used for MIR tasks such as
genre recognition [20], and subsequently for sound scene recognition. Similarly,
non-negative matrix factorization (NMF), which has been used for automatic music
transcription, has also been applied to sound event recognition [4].

Nevertheless, there are differences between these domains that we should be
aware of. Much of the classical work in speech recognition has focused on a
single speaker, with a “source-filter” model that can separate excitation from the
vocal tract: the cepstral transform at the heart of MFCCs follows directly from this
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assumption, but although music and speech do not fit this model, MFCCs continue
to be useful in these domains. Also, music signals often consist of sounds from
instruments that have been designed to have a harmonic structure, and a particular
set of “notes” (frequencies), tuned, for instance, to a western 12-semitone scale;
everyday sounds will not have such carefully constructed properties. So, while
existing work on speech and music can provide inspiration for everyday sound
analysis, we must bear in mind that speech and music processing may not have
all the answers we need.

Research on systematic classification of real-world sounds stretches back to the
1990s. One of the earliest systems was the SoundFisher of Wold et al. [22] which
sought to provide similarity-based access to databases of isolated sound effects by
representing each clip by a fixed-size feature vector comprising perceptual features
such as loudness, pitch, and brightness. Other work grew out of the needs of the
fragile speech recognizers of the time to avoid being fed non-speech signals such
as music [18, 19], or to provide coarse segmentation of broadcast content [24].
The rise of cheap and ubiquitous recording devices led to interest in automatic
analysis of unconstrained environmental recordings such as audio life-logs [5]. The
growth of online media sharing sites such as YouTube poses enormous multimedia
retrieval challenges which has fueled the current wave of interest in audio content
information, including formal evaluations such as TRECVID [12, 16] which pose
problems such as finding all videos relevant to “Birthday Party” or “Repairing an
Appliance” among hundreds of thousands of items using both audio and visual
information. While image features have proven most useful, incorporating audio
features gives a consistent advantage, showing their complementary value.

Image content analysis provides an interesting comparison with the challenge of
everyday sound analysis. For decades, computer vision struggled with making hard
classifications of things like edges and regions even in relatively constrained images.
But in the past few years, tasks such as ImageNet [17], a database of 1000 images
for each of 1000 object categories, have seen dramatic jumps in performance, thanks
to the development of very large “deep” neural network classifiers able to take
advantage of huge training sets. We are now in an era when consumer photo services
can reliably provide content-based search for a seemingly unlimited vocabulary of
objects from “cake” to “sunset” within unconstrained collections of user-provided
photos. This raises the question: Can we do the same thing with content-based
search for specific sound events within unconstrained audio recordings?

1.4 Scientific and Technical Challenges in Computational
Analysis of Sound Scenes and Events

In controlled laboratory conditions where the data used to develop computational
sound scene and event analysis methods matches well with the test data, it is possible
to achieve relatively high accuracies in the detection and classification of sounds
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[2]. There also exist commercial products that can recognize certain specific sound
categories in realistic environments [10]. However, current technologies are not able
to recognize a large variety of different types of sounds in realistic environments.
There are several challenges in computational sound analysis.

Many of these challenges are related to the acoustics of sound scenes and events.
First, the acoustic characteristics of even a single class of sounds can be highly
diverse. For example in the case of class “person yelling,” the acoustics can vary
enormously depending on the person who is yelling and the way in which they
yell. Second, in realistic environments there can be many different types of sounds,
some of whose acoustic characteristics may be very close to the target sounds. For
example, the acoustics of a person yelling can be close to vocals in some background
music that is present in many environments. Thirdly, an audio signal captured by a
microphone is affected by the channel coupling (impulse response) between the
source and microphone, which may alter the signal sufficiently to prevent matching
of models developed to recognize the sound. Finally, in realistic environments there
are almost always multiple sources producing sound simultaneously. The captured
audio is a superposition of all the sources present, which again distorts the signal
captured. In several applications of sound scene and event analysis, microphones
that are used to capture audio are often significantly further away from target
sources, which increases the effect of impulse responses from source to microphone
as well as other sources in the environment. This situation is quite different from
speech applications, where close-talk microphones are still predominantly used.

In addition to these complications related to the acoustics of sound scenes and
events, there are also several fundamental challenges related to the development
of computational methods. For example, if we are aiming at the development of
methods able to classify and detect a large number of sounds, there is need for a
taxonomy that defines the classes to be used. However, to date there is no established
taxonomy for environmental sound events or scenes.

The computational methods used are heavily based on machine learning, where
the parameters of a system are automatically obtained by using examples of the
target (and non-target) sounds. In contrast to the situation in image classification,
currently available datasets that can be used to develop computational scene and
event scene analysis systems are more limited in size, diversity, and number of event
instances, even though recent contributions such as AudioSet [6] have significantly
reduced this gap.

1.5 About This Book

This book will provide a comprehensive description of the whole procedure for
developing computational methods for sound scene and event analysis, ranging from
data acquisition and labeling, designing the taxonomy used in the system, to signal
processing methods for feature extraction and machine learning methods for sound
recognition. The book will discuss commonalities as well as differences between
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various analysis tasks, such as scene or event classification, detection, and tagging.
It will also discuss advanced techniques that can take advantage of multiple micro-
phones or other modalities. In addition to covering this kind of general methodology,
the most important application domains, including multimedia information retrieval,
bioacoustic scene analysis, smart homes, and smart cities, will also be covered. The
book mainly focuses on presenting the computational algorithms and mathematical
models behind the methods, and does not discuss specific software or hardware
implementations (even though Chap. 13 discusses some possible hardware options).
The methods present in the book are meant for the analysis of any everyday sounds
in general. We will not discuss highly specific types of sounds such as speech or
music, since analysis problems in their case are also more specific, and there already
exist literature to address them [7, 13, 23].

The book is targeted for researchers, engineers, or graduate students in com-
puter science and electrical engineering. We assume that readers will have basic
knowledge of acoustics, signal processing, machine learning, linear algebra, and
probability theory—although Chaps. 2 to 5 will give some background about some
of the most important concepts. For those that are not yet familiar with the above
topics, we recommend the following textbooks as sources of information: [9, 15],
and [11] on signal processing, [14] on psychoacoustics, [1] on machine learning,
and [8] on deep neural networks.

The book is divided into five parts. Part I presents the foundations of com-
putational sound analysis systems. Chapter 2 introduces the supervised machine
learning approach to sound scene and event analysis, which is the mainstream and
typically the most efficient and generic approach in developing such systems. It will
discuss the commonalities and differences between sound classification, detection,
and tagging, and presents an example approach based on deep neural networks that
can be used in all the above tasks.

Chapter 3 gives an overview of acoustics and human perception of sound
events and scenes. When designing sound analysis systems it is important to
have an understanding of the acoustic properties of target sounds, to support the
development of the analysis methods. Knowledge about how the human auditory
system processes everyday sounds is useful, and can be used to get ideas for the
development of computational methods.

Part II of the book presents in detail the signal processing and machine learning
methods as well as the data required for the development of computational sound
analysis systems. Chapter 4 gives an overview of acoustic features that are used to
represent audio signals analysis systems. Starting from representations of sound in
general, it then moves from features based on signal processing towards learning
features automatically from the data. The chapter also describes how to select
relevant features for an analysis task, and how to temporally integrate and pool
typical features extracted from short time frames.

Chapter 5 presents various pattern classification techniques that are used to map
acoustic features to information about presence of each sound event or scene class. It
first discusses basic concepts of supervised learning that are used in the development
of such methods, and then discusses the most common discriminative and generative



10 T. Virtanen et al.

classification models, including temporal modeling with hidden Markov models.
The chapter also covers various models based on deep neural networks, which
are currently popular in many analysis tasks. The chapter also discusses how
the robustness of classifiers can be improved by various augmentation, domain
adaptation, and ensemble methods.

Chapter 6 describes what kind of data—audio recordings and their annotations—
are required in the development of sound analysis systems. It discusses possible
ways of obtaining such material either from existing sources or by doing new
recordings and annotations. It also discusses the procedures used to evaluate analysis
systems as well as objective metrics used in such evaluations.

Part III of the book presents advanced topics related to categorization of sounds,
analysis of complex scenes, and use of information from multiple sources. In the
supervised learning approach for sound analysis which is the most typical and most
powerful approach, some categorization of sounds is needed that will be used as the
basis of the analysis. Chapter 7 presents various ways to categorize everyday sounds.
It first discusses various theories of classification, and how new categorizations can
be obtained. Then it discusses in more detail the categorization of everyday sounds,
and their taxonomies and ontologies.

Chapter 8 presents approaches for the analysis of complex sound scenes con-
sisting of multiple sound sources. It first presents a categorization of various
sound analysis tasks, from scene classification to event detection, classification,
and tagging. It discusses monophonic approaches that are able to estimate only
one sound class at a time, as well as polyphonic approaches that enable analysis
of multiple co-occurring sounds. It also discusses how contextual information can
be used in sound scene and event analysis.

Chapter 9 presents multiview approaches, where data from multiple sensors
are used in the analysis. These can include, for example, visual information or
multiple microphones. The chapter first discusses general system architectures
used in multiview analysis, and then presents how information can be fused at
various system levels (features vs. classifier level). Then it discusses in detail two
particularly interesting multiview cases for sound analysis: use of visual information
in addition to audio and use of multiple microphones.

Part IV of the book covers selected computational sound scene and event analysis
applications. Chapter 10 focuses on sound sharing and retrieval. It describes what
kind of information (e.g., audio formats, licenses, metadata, features) should be
taken into account when creating an audio database for this purpose. It then presents
how sound retrieval can be done based on metadata, using freesound.org as an
example. Finally, it presents how retrieval can be done using audio itself.

Chapter 11 presents the computational sound analysis approach to bioacoustic
scene analysis. It first introduces the possible analysis tasks addressed in bioa-
coustics. Then it presents computational methods used in the field, including core
methods such as segmentation, detection, and classification that share similarities to
other fields, advanced methods such as source separation, measuring the similarity
of sounds, analysis of sounds sequences, and methods for visualization and holistic
soundscape analysis. The chapter also discusses how the methods can be employed
at large scale, taking into account the computational complexity of the methods.

freesound.org
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Chapter 12 focuses on sound event detection for smart home applications. It first
discusses what kind of information sound can provide for these applications, and
challenges such as the diversity of non-target sounds encountered and effect of audio
channel. Then it discusses the user expectations of such systems, and how it affects
the metrics that should be used in the development. Finally, it discusses the privacy
and data protection issues of sound analysis systems.

Chapter 13 discusses the use of sound analysis in smart city applications. It first
presents what kind of possibilities there are for computational sound analysis in
applications such as surveillance and noise monitoring. It then discusses sound
capture options based on mobile or static sensors, and the infrastructure of sound
sensing networks. Then it presents various computational sound analysis results
from studies focusing on urban sound environments.

Chapter 14 presents some future perspectives related to the research topic, for
example, how to automatically obtain training data (both audio and labels) for the
development of automatic systems. We also discuss how unlabeled data can be used
in combination with active learning to improve classifiers and label data by querying
users for labels. We discuss how weakly labeled data without temporal annotations
can be used for developing sound event detection systems. The book concludes with
a discussion of some potential future applications of the technologies.

Accompanying website of the book http://cassebook.github.io includes supple-
mentary material and software implementations which facilitates practical interac-
tion with the methods presented.
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Chapter 2
The Machine Learning Approach for Analysis
of Sound Scenes and Events

Toni Heittola, Emre Çakır, and Tuomas Virtanen

Abstract This chapter explains the basic concepts in computational methods used
for analysis of sound scenes and events. Even though the analysis tasks in many
applications seem different, the underlying computational methods are typically
based on the same principles. We explain the commonalities between analysis tasks
such as sound event detection, sound scene classification, or audio tagging. We
focus on the machine learning approach, where the sound categories (i.e., classes)
to be analyzed are defined in advance. We explain the typical components of an
analysis system, including signal pre-processing, feature extraction, and pattern
classification. We also preset an example system based on multi-label deep neural
networks, which has been found to be applicable in many analysis tasks discussed in
this book. Finally, we explain the whole processing chain that involves developing
computational audio analysis systems.

Keywords Audio analysis system • Sound classification • Sound event detec-
tion • Audio tagging • Machine learning • Supervised learning • Neural net-
works • Single-label classification • Multi-label classification • Acoustic feature
extraction • System development process

2.1 Introduction

In each application related to computational sound scene and event analysis,
the systems doing the computation need to solve very different types of tasks,
for example, automatically detecting a baby crying, labeling videos with some
predefined tags, or detecting whether a mobile phone is indoors or outdoors.

T. Heittola (�) • E. Çakır
Tampere University of Technology, P.O. Box 527, FI-33101 Tampere, Finland
e-mail: toni.heittola@tut.fi; emre.cakir@tut.fi; tuomas.virtanen@tut.fi

T. Virtanen
Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland

© Springer International Publishing AG 2018
T. Virtanen et al. (eds.), Computational Analysis of Sound Scenes and Events,
DOI 10.1007/978-3-319-63450-0_2

13

mailto:toni.heittola@tut.fi
mailto:emre.cakir@tut.fi
mailto:tuomas.virtanen@tut.fi


14 T. Heittola et al.

Even though the tasks appear to be very different, the computational methods
used actually share several similarities, and follow the same kind of processing
architecture.

Sounds present in natural environments have substantial diversity, and, for
example, semantically similar sound events have generally different acoustic char-
acteristics. Because of this, the manual development of computational indicators of
sound scene or event presence is viable only in very simple cases, e.g., a gunshot
might be possible to detect simply based on loudness of the sound event. However,
in many practical computational analysis systems the target sounds have more
diverse characteristics and the system is required to detect more than one type of
sounds. Depending on the target application, the number of classes may vary quite
much between different analysis systems. In the simplest case, a detection system
uses only two classes of sounds: the target sound class vs. all the other sounds.
Theoretically there is no upper limit for the number of classes, but in practice it is
limited by the available data that is used to develop systems, the accuracy that can be
reached, and computational and memory requirements. In the scenario where there
are multiple target classes, systems can also be categorized depending on whether
they are able to detect only one event at a time, or multiple temporally overlapping
events (which are often present in natural environments). Analyzing a large variety
of sounds requires calculating a larger number of parameters from sound signals,
and using automatic methods like machine learning [3, 9, 13, 22] to differentiate
between various types of sounds.

Most of the computational analysis systems dealing with realistic sounds are
based on the supervised machine learning approach, where the system is trained
using labeled examples of sounds from each of target sound type [3, p. 3]. The
supervised learning approach requires that there is a set of possible scene (e.g.,
street, home, office) or event (e.g., car passing by, footsteps, dog barking) categories,
classes, defined by the system developer, and that there is sufficient amount of
labeled examples available to train the system. Other machine learning techniques
such as unsupervised learning [9, p. 17] and semi-supervised learning [9, p. 18] are
applicable, however, in this book we largely concentrate on the supervised learning
approaches, as they are the most frequently studied and used for the analysis of
sound scenes and events.

This chapter gives a general overview of the supervised machine learning
approach to analysis of sound scenes and events. Section 2.2 starts by presenting
the overview of audio analysis systems and introducing the main processing blocks
on such systems. Section 2.3 deals with the acquisition of learning examples,
and Sect. 2.4 introduces the processing pipeline to transform the audio signals
into a compact representations suitable for machine learning. Basics of supervised
learning, including acoustic models, generalization properties, and recognition
process are discussed in Sect. 2.5, followed in Sect. 2.6 by an example approach
based on neural networks. Lastly, Sect. 2.7 presents the development process of the
audio analysis systems from problem definition to functional application.
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2.2 Analysis Systems Overview

Analysis systems can be categorized into two types depending on whether or
not they output temporal information of sounds analyzed. Systems which output
information about the temporal activity of target sound classes are said to perform
detection. In this case, various temporal resolutions can be used, depending on the
requirements of the application. Detection can be performed for one or more sound
classes at a time. In the case where temporal information is not outputted, a system
only indicates whether the sound classes to be analyzed are present in the item
subject to analysis (e.g., a video recording, an audio file). A system is said to do
classification when it can output only one of the possible classes for an item to
be analyzed, and it is said to do tagging, when it can output more than one class
simultaneously for an item to be analyzed. In the machine learning terminology,
tagging would be equivalent to multi-label classification. Different analysis systems
types are illustrated in Fig. 2.1.

Figure 2.2 presents the block diagram of a typical computational sound scene
or event analysis system based on machine learning. The system takes an audio
signal as input, either in real-time, captured by a microphone, or offline, from an
audio recording. The methods presented in this book assume discrete-time signals,
obtained by using analog-to-digital converters. The audio processing block consists
of different processing stages and outputs acoustic features, as the actual analysis of
audio is rarely based on the audio signal itself, but rather on the compact signal
representation with features. The purpose of the feature extraction is to obtain
information sufficient for detecting or classifying the target sounds, making the
subsequent modeling stage computationally cheaper and also easier to achieve with
limited amount of development material.

At the development stage, the obtained acoustic features are used together with
reference annotations of the audio training examples, to learn models for the
sound classes of interest. Annotations contain information about the presence of
target sound classes in the training data, and are used as a reference information
to automatically learn a mapping between acoustic features and class labels. The
mapping is represented by acoustic models. At the usage stage, the learned acoustic

Fig. 2.1 System input and output characteristics for three analysis systems: sound scene classifi-
cation, audio tagging, and sound event detection
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Fig. 2.2 Basic structure of an audio analysis system

models are used to do recognition (detection or classification), which predicts labels
for the input audio. The recognition stage may also involve temporal models and
post-processing of labels.

2.3 Data Acquisition

Machine learning approaches rely on data to learn parameters of the acoustic
models, and to evaluate the performance of the learned acoustic models. The
data includes both audio material and reference metadata associated with it (e.g.,
class labels). Data acquisition is an important stage of the development, as the
performance of the developed system is highly dependent on the data used to
develop it. As implementations of machine learning approaches are typically
available, obtaining suitable training and development material is often one of the
most time-consuming parts of the development cycle.

The defined target application dictates the type of acoustic data, recording
conditions it is collected in, and type of metadata required. Essentially, the aim is
to collect as realistic as possible acoustic signals in conditions which are as close as
possible to the intended target application. Metadata should include a ground truth
information which is often manually annotated during the data collection. Collected
data should have sufficient amount of representative examples of all sound classes
necessary for the target application to enable the acoustic models to generalize well
[13, p. 107]. For preliminary feasibility studies, smaller datasets, containing only
most typical examples can be collected. This type of dataset should not be used
for the final system evaluation though, as there is higher danger that the acoustic
models learned based on the dataset do not generalize well, and the system is
optimized particularly for this small dataset. This section gives a brief overview
of factors affecting the selection of the material that should be used, and discusses
shortly potential ways to obtain material for development. Available data sources
are discussed in more detail in Chap. 6 of this book.
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2.3.1 Source Audio

The optimal performance of methods based on supervised classification is achieved
when the material used to train and develop the system matches with the actual
material encountered at the usage stage. Realistic sound sources commonly have
internal variations in sound producing mechanism which can be heard as differences
in the sound they produce. In classification tasks targeting such sounds, these
variations cause intra-class variability which should be taken into account when
collecting training material. The amount of examples required to sufficiently capture
this variability depends highly on the degree of intra-class variability as well as
similarity of target sound classes. As a general rule of thumb, easy classification
cases may require tens of sound examples whereas more challenging scenarios can
require easily hundreds or thousands of examples to capture intra-class variability
sufficiently.

Depending on the application, there can be also variability in the sound signal
caused by, e.g., characteristics of acoustic environment (e.g., size of room, type
of reflective surfaces), relative placement of the source and the microphone, the
used capture device, and interfering noise sources. In the ideal case, the above
factors should be matched between actual usage stage and the training material to
ensure optimal performance. However, in typical realistic audio analysis scenarios
many of these variabilities cannot be fully controlled, leading to some level of
mismatch between the material used to train and develop the system and the
material encountered in the usage stage, and eventually to poor performance. These
variations can be taken into account in the learning stage by making sure that the
training material contains a representative set of signals captured under different
conditions [20, p. 116]. This technique is called multi-condition or mixed condition
training.

Most of the factors causing the variability (acoustic space, relative placement
of the source and microphone, and capturing device) are reflected in the overall
acoustic characteristics of the captured sound signal, called impulse response or in
specific cases room impulse response [20, p. 206]. Different impulse responses can
be artificially added to the signals, essentially easing the data collection process
when using multi-condition training [41]. An effective strategy to achieve this is
to obtain recordings of the target source with as little external effects as possible,
and then simulate the effect of various impulse responses by convolving the signal
with a collection of measured impulse responses from real acoustic environments.
If measured impulse responses are not available, room simulation techniques can be
used to generate room impulse responses for different type of acoustic environments
[42, p. 191]. Similar strategies can be applied to interfering noise sources. If the
noise source is known and stationary at the usage stage, the training material is
relatively easy to collect under similar conditions. In the case where there are
different types of noise sources at varying positions related to the microphone, the
best resort is to use multi-condition training, i.e., include as many expected noise
sources in the training material as possible. If it is feasible to obtain recordings of
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target sound sources without any interfering noise and recordings with the noise
sources alone, the best strategy is to simulate noisy source signals by artificially
mixing these two types of recordings with various signal-to-noise ratios (SNR).
This typically allows producing larger quantities of relevant training material in
comparison to directly recording noisy material. On the other hand, the amount and
diversity of the available recordings will influence and perhaps limit the variability
of the produced material.

In order to start development quickly, source material can be obtained from
external sources such as sound libraries (see Chap. 6 for more information).
However, the availability of datasets that are collected for the development of
supervised classification methods is limited, and the above discussed factors in
the available datasets cannot be controlled properly. Therefore many audio analysis
applications require collection of additional material for the development in order
to achieve the best performance.

2.3.2 Reference Annotations

Supervised learning approaches that are discussed in this book require reference
annotations, which indicate in which parts of the source audio each of the source
classes is present. Depending on how the annotations are acquired, the annotations
can be in different forms. Ideally the annotations will contain temporal information
about each class, i.e., when a sound corresponding to the target class starts and when
it ends. In practice, accurate temporal information can be difficult to obtain. Often
the annotations are segment-level, i.e., each annotation indicates which classes are
present in a segment of audio, but there is no temporal information about the class
activities [19]. These two annotation types are illustrated in Fig. 2.3.

Fig. 2.3 Annotation with segment-level temporal information and with full temporal information
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Reference annotations can be obtained in various ways. The most generic way to
obtain annotations is to do it manually, i.e., by having persons listening to the audio
to be used and indicating the activities of each class. This is a very time-consuming
process, and annotating a piece of audio accurately takes easily much more time than
the length of the audio. On the other hand, human annotation is often the only option
to obtain annotations for certain types of sound classes. Human annotation is also
the most generic approach since human annotators can be trained to annotate various
types of classes. In addition to being slow, human annotation can be inaccurate
at least if the material to be annotated is very noisy. Human annotations can also
be subjective, which should be taken into account when the annotations are used
as a reference when measuring the performance of developed methods. Details on
producing annotations and validating their quality can be found in Chap. 6.

Sometimes it is possible to use other sensors to acquire the reference annotations.
For example, the activity of a machine can be measured based on the electric power
used by the machine or presence of moving cars can be detected from a video signal.
This type of extra information may be available only during the development stage,
while in the actual usage scenario the system must rely only on audio capture.

When training material is obtained from sample libraries or databases, the
database often contains information about its content that can be used to obtain the
annotations. However, the descriptions of the database may not match one-to-one
the target classes and may therefore require some screening to identify and exclude
possible mismatches.

2.4 Audio Processing

Audio is prepared and processed for machine learning algorithms in the audio
processing phase of the overall system design. This phase consists of two stages:
pre-processing, in which the audio signal is processed to reduce the effect of noise
or to emphasize the target sounds, and acoustic feature extraction, in which the
audio signal is transformed into a compact representation.

2.4.1 Pre-processing

Pre-processing is applied to the audio signal before acoustic feature extraction if
needed. The main role of this stage is to enhance certain characteristics of the
incoming signal in order to maximize audio analysis performance in the later phases
of the analysis system. This is achieved by reducing the effects of noise or by
emphasizing the target sounds in the signal.

If the audio data is collected from various sources, it is most likely captured in
non-uniform recording settings, with variations in the amount of captured audio
channel, and used sampling frequency. These variations can be addressed by
converting the audio signal into uniform format by down-mixing it into fixed number
of channels and re-sampling it into fixed sampling frequency.
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Knowledge about the recording conditions and characteristics of target sounds
can be utilized in the pre-processing stage to enhance the signal. The energy of audio
signal is concentrated on lower frequencies; however, for sound recognition higher
frequencies contain also important information. This issue can be addressed by pre-
emphasis—emphasizing high frequencies before feature extraction. In the case of
noisy environments, noise suppression techniques can be used to reduce interference
of environmental noise to the audio analysis [31], while interference of overlapping
sounds can be minimized by using sound source separation techniques [16].

2.4.2 Feature Extraction

The audio analysis is commonly based on acoustic features extracted from audio
signal to represent the audio in a compact and non-redundant way. For recognition
algorithms, the necessary property of the acoustic features is low variability among
features extracted from examples assigned to the same class, and at the same
time high variability allowing distinction between features extracted from example
assigned to different classes [12, p. 107]. The feature representations fulfilling this
property usually make the learning problem easier. A compact feature representation
also requires less amount of memory and computational power than direct use of
audio signal in the analysis.

The role of feature extraction is to transform the signal into a representation
which maximizes the sound recognition performance of the analysis system. The
acoustic features provide a numerical representation of the signal content relevant
for machine learning, characterizing the signal with values which have connection
to its physical properties, for example, signal energy, its distribution in frequency,
and change over time. The processing pipeline in feature extraction is similar for
many types of acoustic features used in analysis and consists of frame blocking,
windowing, spectrum calculation, and subsequent analysis, as illustrated in Fig. 2.4.

Digital audio signals are discretized in terms of both amplitude and time when
captured. For audio analysis, a significant amount of information is contained in
relative distribution of energy in frequency, suggesting use of frequency domain
features or time-frequency representations. The most common transformation used
for audio signals is the discrete Fourier transform (DFT), which represents the signal
with a superposition of sinusoidal base functions, each base being characterized
by a magnitude and phase [25]. Examples of other transformation methods used
for audio signals are constant-Q transform (CQT) [4] and discrete wavelet trans-
form (DWT) [35].

Audio signals are generally non-stationary as the signal statistics (i.e., magni-
tudes of the frequency components) change rapidly over time. Because of this, the
feature extraction utilizes the short-time processing approach, where the analysis is
done periodically in short-time segments referred to as analysis frames, to capture
the signal in quasi-stationary state. In frame blocking the audio signal is sliced into
fixed length analysis frames, shifted with a fixed timestep. Typical analysis frame
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Fig. 2.4 The processing pipeline of feature extraction

sizes are between 20 and 60 ms, and the frame shift is typically selected so that the
consecutive frames are overlapping at least 50%. The analysis frames are smoothed
with a windowing function to avoid abrupt changes at the frame boundaries that can
cause distortions in the spectrum. The windowed frame is then transformed into
spectrum for further feature extraction.

The most common acoustic features used to represent spectral content of audio
signals are mel-band energies and mel-frequency cepstral coefficients (MFCCs)
[7]. Their design is based on the observation that human auditory perception
focuses only on magnitudes of frequency components. The perception of these
magnitudes is highly non-linear, and, in addition, perception of frequencies is also
non-linear. Following perception, these acoustic feature extraction techniques use
non-linear representation for magnitudes (power spectra and logarithm) and non-
linear frequency scaling (mel-frequency scaling). The non-linear frequency scaling
is implemented using filter banks which integrate the spectrum at non-linearly
spaced frequency ranges, with narrow band-pass filters at low frequencies and with
larger bandwidth at higher frequencies.

Mel-band energies and MFCCs provide a compact and smooth representation of
the local spectrum, but neglect temporal changes in the spectrum over time, which
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are also required for the recognition of environmental sounds. Temporal information
can be included by using delta features, which represent the local slope of the
extracted feature values within a predefined time window. Another way to capture
the temporal aspect of the features is to stack feature vectors of neighboring frames
(e.g., five on each side of the current frame) into a new feature vector.

The feature design and parameters used in the extraction commonly rely on prior
knowledge and assumptions about the content of the acoustic signal, which in some
analysis tasks can lead to sub-optimal performance. For example, selected length
of the analysis frame or number of mel-bands might be optimal only for a subset
of sound classes involved in the analysis. Unsupervised feature learning can be
used to learn better fitted feature representations for specific tasks [29, 39]. The
feature learning can be also incorporated into the overall learning process through
end-to-end learning, thus avoiding explicit learning of the feature representation. In
this approach, the correspondence of the input signal (usually raw audio signal or
spectrogram) and desired recognition output is learned directly [8, 14, 17, 40].

2.5 Supervised Learning and Recognition

After the data acquisition and feature extraction steps, acoustic features and
reference annotations for each audio signal are available. The next step is to learn a
mapping between these features and class labels for sound classes, where the labels
are determined from the reference annotations. This is based on a computational
algorithm that can analyze and learn the similarities/differences between acoustic
features and the class labels for various sound classes. The learned acoustic model is
then used to assign a class label for acoustic features without reference annotations
in the usage stage. The study of developing such algorithms is called supervised
learning.

In supervised learning, we are given a set of input–target output pairs, and the
aim is to learn a general model that maps the inputs to target outputs. In the case
of classification of sound classes, we have acoustic features ot extracted from t D
1; 2; : : : T analysis frames and the reference annotations for each sound signal to be
analyzed. Depending on the sound classification task at hand, there are several ways
to define the input and the target output for the model (more details in Sect. 2.6). In
this chapter, we define the input as ot 2 R

F, acoustic features extracted from a single
analysis frame, where F is the number of features. The target output yt 2 R

C is a
binary vector which includes the annotation of present sound classes in the analysis
frame among C predefined class labels. If, according to the reference annotations,
the class with the cth label is present in the analysis frame t, then yc;t is set to 1
and 0 vice versa. Therefore, the acoustic features ot and the target outputs yt for
each analysis frame correspond to a single input–target output pair, and each pair is
called a training example for the model.

As illustrated in Fig. 2.5, the acoustic model is trained to learn the relationship
between ot, the input feature vectors, and yt, the target outputs obtained from
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Fig. 2.5 Overview of supervised learning process for audio analysis

reference annotations. When the target output is chosen in the range Œ0; 1�, the
model’s estimated output Oyc;t 2 Œ0; 1� is expected to be either (a): close to 0 when
class with cth label is not present, or (b): close to 1 when class with cth label is
present. Therefore Oyt can be regarded as the class presence probabilities.

The type of the classification problem is an important factor in designing the
model. If there can be at most one label present at a given frame, the task
is regarded as single-label classification. Scene classification and sound event
classification tasks are most often single label. The task of classifying multiple
labels simultaneously present in a given frame is called multi-label classification.
Sound event detection in real-life environments may belong to this category, since
multiple sound events can occur simultaneously in daily life.

2.5.1 Learning

The learning process is about searching for the optimal model that would separate
the examples from different classes on a given feature space. In Fig. 2.6, we illustrate
a simple learning task involving examples with two features fo1; o2g from two
different classes marked with blue triangles and orange circles. The curved line
that divides the examples from different classes is called the decision boundary.
It is composed of data points that the model estimates to be equally likely belong
to one of the two classes. In the given figure, it can be observed that some of the
examples end up in the wrong side of the decision boundary, so our model can be
deemed imperfect. The performance of the model is calculated through a loss (can
be also called error or cost) function that calculates the difference between the target
and estimated outputs for the training examples, and the model is updated in order
to decrease the loss through various optimization techniques. For instance, we can
initialize our model parameters so that the decision boundary is a flat line roughly
dividing the examples from two classes. Then, we can iteratively update the model
parameters by minimizing the mean squared error between the target outputs and
estimated outputs based on the decision boundary.
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Fig. 2.6 Examples from two different classes and the decision boundary estimated by the learned
model

Supervised learning methods are often grouped into two main categories:
generative and discriminative learning methods. In generative learning, the aim
is to model the joint distribution p.x; y/ for each class separately and then use
Bayes’ rule to find maximum posterior p.yjx/, i.e., from which class a given input
x is most likely to be generated. Some of the established generative classifiers
include Gaussian mixture models (GMM), hidden Markov models (HMM), and
naive Bayes classifiers. On the other hand, in discriminative learning, the aim is
to model the boundaries between the classes rather than the classes themselves and
find a direct mapping between the input and the target output pairs [23]. Neural
networks, decision trees, and support vector machines are some of the established
discriminative learning methods. When it comes to classification of sound classes,
discriminative learning has recently been the widely chosen method [5, 11, 26, 28].
This is due to the fact that high intra-class variability among the samples makes it
hard to model the individual class accurately and also there is only little benefit for
classification in doing so. For example, if our task is to classify an audio recording
as either a cat meow or a dog bark, there is no need to model the cat meow and dog
bark sounds individually, as long as we can distinguish these two classes from each
other.

2.5.2 Generalization

Supervised learning methods aim to learn a model that can map the inputs to their
target outputs for a given set of training examples. For the usage stage, the learned
model is used to estimate the outputs for a different set of examples, which have not
been used during learning stage. These examples are often called test (or unseen)
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examples. The underlying assumption in the usage stage is that the test examples
from a sound class have similar inputs compared to the inputs for the training
examples for the same class. Therefore, if the mapping between the input acoustic
features and the class label has been learned by the model during the learning
stage, then the learned model should be able to estimate the correct outputs for
test examples. However, in practice, the performance of the learned model may
differ between the training examples and the test examples. In machine learning,
the ability to perform well on unseen examples is called generalization [13, p. 107].

For sound classification tasks, there are several factors that make it challenging
to reach a good degree of generalization. Due to high levels of environmental noise
and multi-source nature of the recordings, there can be a large amount of variance
among the examples from the same class, i.e., intra-class variability. Besides, class
labels are often broadly defined to include a wide range of sound sources with high
variation in their acoustic characteristics, such as door bell or bird singing (see
Chap. 7 on taxonomy of sound events).

Modern supervised learning techniques, such as deep learning, are known for
their ability to express highly non-linear relationships between the input and the
output, given the high depth and large number of parameters [13, p. 163]. However,
high expressional capability may also cause overfitting [15]. Overfitting is the term
used when the difference between loss for training and test examples is large, i.e.,
the trained model can effectively model the examples for the training set but fails
to generalize for the examples in the test set. A learned model with high accuracy
in training examples and low accuracy in test examples may indicate that the model
has learned the peculiarities of the training examples for better performance on the
training set rather than to learn the general acoustic characteristics of the sound
classes. Therefore, a sufficiently large number of examples that can provide the gen-
eral characteristics of the classes and reflect the intra-class variability are required
in the training set. Overfitting can also be reduced by using simpler approximation
functions and regularization techniques such as L1/L2 weight regularization [24],
dropout [32], and batch normalization [18]. On the other hand, the model should be
complex enough to provide a good representation of the classes and low loss on the
training set to avoid underfitting [37]. To summarize, learning is about finding the
optimal model on the fine line between overfitting and underfitting.

2.5.3 Recognition

After an acoustic model for classification is obtained through the learning stage, the
model is ready to be used in an actual usage scenario. An overview of the recognition
process is shown in Fig. 2.7. First, acoustic features ot from the test examples are
extracted. Then, frame-level class presence probabilities Oyt for the acoustic features
are obtained through the learned model. Frame-level class presence probabilities
Oyt can be obtained both from acoustic features ot in each timestep, or one can
use a memory-based model such as recurrent neural networks to calculate Oyt from
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Fig. 2.7 Basic structure of recognition process

o.t�TM/Wt, where TM represents the memory capacity in timesteps. After obtaining
Oyt, there are several ways to obtain item-level binary estimates z 2 R

C, which is a
binary vector with only the assigned label elements as 1 and the rest 0, depending
on the type of the classification task and the item to be analyzed.

Classification For a single-label sound classification task, the item to be analyzed
(e.g., audio file or video recording) consists of multiple short analysis frames. In
order to combine the class presence probabilities of multiple analysis frames in
a single classification output, one can assign each frame the label with highest
class presence probability. This way, one would obtain 1-hot frame-level binary
estimates zt 2 R

C. Item-level binary estimates z can be obtained, e.g., by performing
a majority voting over the frame-level binary estimates of all the frames for the item,
i.e., the item would be assigned the label with the highest number of occurrences
among the estimated labels. Another way to obtain z would be to sum Oyt 2 R

C class-
wise among the frames of the item, and then assign the item the label with highest
combined probability.

For a multi-label sound classification task, such as tagging, the number of present
sound classes in each item is most often unknown, so a similar majority voting
approach cannot be applied. In that case, frame-level class presence probabilities
Oyt can be converted to item-level class presence probabilities Oy, e.g., by taking the
average or the maximum Oyt for each class among all the frames of the item. Taking
the maximum Oyt among all the frames would help to correctly classify the classes
with rare activity (and therefore low average presence probability over the frames).
On the other hand, taking the average Oyt would be useful for the cases when a class is
mistakenly assigned a high presence probability in a small portion of frames (since
the average probability over the frames would be low in this case).

Then, binary estimates z for the item can be obtained by converting Oy into a
binary vector over a certain binarization rule. A simple binarization rule would be
thresholding over a constant � subject to 0 < � < 1.

Detection and Temporal Post-processing In order to obtain the temporal activity
information of the sound classes in the usage stage, the acoustic features fotg

T
tD1 are

presented to the acoustic model in a time sequential form. The features are extracted
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Fig. 2.8 Temporal activity information for each class can be obtained from the class presence
probabilities for consecutive analysis frames

from the consecutive analysis frames of the item to be analyzed and frame-level
class presence probabilities are obtained through the learned model. Detection of
the temporal activity for a single class from frame-level class presence probabilities
is visualized in Fig. 2.8.

The simplest way of obtaining discrete decisions about source activities from
frame-level class presence probabilities Oyt is to first convert Oyt to frame-level binary
estimates zt over a certain binarization rule, such as the thresholding that was
presented above. Having a frame-level binary estimate zc;t for class c in consecutive
frames allows us to estimate the onset and offset information for this class. This
way, the temporal position of each sound class can be detected among the audio
signal.

When spectral domain acoustic features are used, the typical values selected for
the analysis frame length are quite small (often ranging from 20 to 50 ms). On the
other hand, the duration of an individual sound event is most often longer than
the analysis frame length, and a single event can span several consecutive frames.
For a given acoustic model, this may result in a correlation between classification
outputs for consecutive analysis frames. In order to make use of this correlation in
the detection tasks, temporal post-processing techniques can be applied over either
frame-level class presence probabilities Oyt or binary estimates zt. There are several
temporal post-processing techniques, and next, we will shortly describe two of them.

Sound signals may have short, intermittent periods which do not reflect the
acoustic characteristics of the sound class that they have been labeled with. For
instance, due to the overlap between the feature distributions over different sound
classes, acoustic features for an analysis frame for a sound class may be very similar
to the features from another class. Therefore, processing the audio signal in short,
consecutive analysis frames may introduce some noise in the detection outputs.
One simple way to filter this noise and smoothen the detection outputs is to use
median filtering. For each frame, the post-processed frame-level binary estimate Qzt

is obtained by taking the median of the binary estimates in a window of frames [5].
The method is continued by sliding this window by one frame when every new
frame is classified through the model.
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Hidden Markov model (HMM) is an established generative learning method
which can be used for temporal post-processing over class presence probabil-
ities [10, 11]. HMM can be used for (a): smoothing Oyt using class presence
probabilities from previous analysis frames, and (b): producing an estimate of a
hidden state variable for each state which allows segmenting a sequence of features
from consecutive frames to various sound classes, provided that HMM states are
class-specific. More detailed information about HMMs can be found in Chap. 5.

2.6 An Example Approach Based on Neural Networks

This section introduces a basic deep neural network (DNN) [13, 30] based approach
for general audio analysis. DNNs are discriminative classifiers that can model the
highly non-linear relationships between the inputs and outputs, and which can be
easily adapted to output multiple classes at a time (multi-label classification) [5, 26].
This is especially useful for real-life environmental audio, as sounds are very likely
to overlap in time. For example, a recording in street environment may include
sounds such as car horns, speech, car engines, and footsteps occurring at the
same time. DNNs also enable good scalability. Depending on the computational
resources available and performance requirements of the target application, the
network size can be adjusted accordingly. With larger network sizes, DNNs can
take advantage of large sets of examples in the learning process, thus covering a
high variability of sounds. This usually leads to better generalization of the acoustic
model and better overall performance. With smaller network sizes, the approach
can meet the computational limits of the application without compromising the
performance too much. DNN-based audio analysis systems have recently shown
superior performance over more traditional machine learning approaches (e.g.,
GMM and support vector machines) given that there is sufficiently large amount
of learning examples available [5, 26]. The presented basic system architecture is
followed in many current state-of-the-art systems with various extensions, for exam-
ple [1, 5, 11, 26]. The architecture is here differentiated for two target applications:
audio tagging and sound event detection. Even though these applications may seem
at first quite dissimilar, the system architectures for them are highly similar, allowing
easy switching between applications during the research and development as will
be explained. The basic system architecture is illustrated in Fig. 2.9. The system
uses DNNs to classify input audio in analysis frames, and using the frame-wise
classification results to get a system output matching the requirements of the target
application. Collected data, audio signals, and associated reference annotations are
divided into non-overlapping training and test sets.

Learning Stage In the learning stage, the training set is used to learn the acoustic
model. Training examples consist of acoustic features extracted in short analysis
frames from audio signals and target outputs defined for each frame based on
reference annotations. Acoustic features are extracted in 40 ms analysis frames with
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Fig. 2.9 Framework of the training and testing procedure for the example system. Grey processing
blocks are adapted according to the target application for the system

50% overlap over the audio signal. For each analysis frame, the magnitude spectrum
is calculated as the magnitude of the discrete Fourier transform (DFT) of the frame.
The bins are accumulated into 40 mel bands using non-linear frequency scaling
spanning from 0 to 22.05 kHz (assuming audio signal is sampled with 44.1 kHz) and
logarithm is applied to get the acoustic features—the log mel band energies [33, 34].
To include a temporal aspect of the features into the final feature vector, frame
stacking can be used: the acoustic features extracted from the current frame are
concatenated with features from neighboring frames, e.g., the previous four frames,
to create a single feature vector. The target output vectors for each analysis frame
are obtained by binary encoding of the reference annotations. In this process, classes
annotated to be active within the current analysis frame are marked with 1 and non-
active classes are marked with 0. The target outputs for the training set examples
will be used in training the acoustic model. A DNN acoustic model is used to
learn a mapping between acoustic features and the target outputs for the training
set examples [13, p. 163].

The DNN consists of multiple layers of inter-connected elements called neurons.
Each neuron outputs an activation through a weighted sum of previous layer
activations and a non-linear activation function. The first layer takes as input
the acoustic features and the following layers take as input the previous layer
activations. The class presence probabilities are obtained through the activations of
the final layer. The network parameters (weights of the neurons) are learned through
an iterative process where parameters are updated using an optimization algorithm
(e.g., gradient descent) and a loss function (e.g., cross-entropy) [13, p. 171]. Part of
the training examples are left out from the actual learning process, for validation,
being used to evaluate the performance of the system between the learning iterations
and to decide when the learning process should be stopped to avoid overfitting [13,
p. 239]. A comprehensive description of DNNs can be found in [13] and a review of
the DNN-based techniques can be found in [30]. After the network parameters are
trained, the system is ready to be used for test examples.

Usage Stage The usage stage shares the acoustic feature extraction part (same
parameters) with the learning stage. The same acoustic features are extracted from
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the input audio, and the previously learned acoustic model is used to get the class
presence probabilities for each analysis frame. The class presence probabilities are
acquired by a single forward-pass through the learned network. Frame-wise class
presence probabilities are then processed to obtain the output in correct format for
the target application as discussed in next subsections.

2.6.1 Sound Classification

The previously presented system structure for audio analysis can be adapted for
classification applications through specific use of training examples, output layer
for the network, and post-processing of the frame-wise class presence probabilities.
In the classification task, a segment of audio is classified into a single predefined
class for single-label classification, or into multiple predefined classes for multi-
label classification, depending on the target application. Audio analysis systems
performing multi-label classification are also referred to as audio tagging systems.
Illustrative examples of system inputs and outputs for these applications are shown
in Fig. 2.1.

Single-Label Classification For single-label classification, the learning examples
are audio segments with a single class annotated throughout. The annotations are
encoded into target outputs which are used in the learning stage together with
audio signals. In this case, classes are mutually exclusive. This condition is included
into the neural network architecture by using output layer with softmax activation
function, which will normalize outputted frame-level class presence probabilities
to sum up to one [13, p. 78]. In the usage stage, the frame-level class presence
probabilities within the classified item (e.g., audio segment) are first calculated.
These probabilities can be used to get the overall classification output in two
different ways: by doing classification at frame-level and combining results, or by
combining frame-level information and doing final classification at item level. In
the frame-level approach, classification is done first for each frame by assigning
each frame the label with the highest class presence probability, and then majority
voting is used among these frame-level results to get the final classification result.
In the item-level approach, the frame-level class presence probabilities are summed
up class-wise and the final classification is done by assigning the item the label with
highest combined probability. This type of system architecture has been utilized for
both acoustic scene classification [2, 27, 36] and sound event classification tasks
[21, 28].

Multi-Label Classification For multi-label classification or audio tagging, the
learning examples contain audio annotated similarly as for single-label classifica-
tion, only this time multiple classes can be active at same time in the annotations.
In this case, the neural network architecture is using an output layer with sig-
moid activation, which will output class presence probabilities independently in
the range .0; 1/ [13, p. 65]. In the usage stage, the frame-level class presence



2 The Machine Learning Approach for Analysis of Sound Scenes and Events 31

probabilities within the classified item (e.g., audio segment) are calculated and
collected over the item. The final class-wise activity estimation is done, for example,
based on the average frame-level class presence probability and binarization with
a threshold � . Since the average frame-level class presence probability is in the
range [0,1], an unbiased selection for � would be 0.5 [5]. The threshold � can be
adjusted if there is any bias towards less false-alarms (false positives) or less misses
(false negatives) in the usage stage. The same overall system architecture has been
used in many published works [6, 28, 38]. A system architecture for multi-label
sound classification is shown in Fig. 2.10, where highlighted blocks are modified
compared to the basic architecture (see Fig. 2.9 for comparison).

2.6.2 Sound Event Detection

The basic system structure can also be adapted for detection applications. In the
detection task, temporal activity is estimated along with actual class labels for the
events. A system architecture for sound event detection is shown in Fig. 2.11. The
highlighted blocks are the ones different compared to the basic architecture from
Fig. 2.9.

Fig. 2.10 Multi-label sound classification. Adapted blocks compared to the basic system architec-
ture shown in Fig. 2.9 are highlighted

Fig. 2.11 Sound event detection. Adapted blocks compared to the basic system architecture shown
in Fig. 2.9 are highlighted
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Fig. 2.12 Illustration of acoustic features, class presence probabilities, and estimated class
activities for a multi-label sound event detection task

Essentially this is the same architecture as the multi-label classification one, the
main difference being the temporal resolution of the acoustic modeling during the
learning and usage stages. Annotation of sound events provides detailed temporal
information about class presence at any given time, which is transformed into a
frame-level binary activity indicator that serves as target for the network learning
stage. In the usage stage, binarization of the class presence probabilities output
by the network is done at frame-level, resulting in estimated class activities that
are likely to be noisy. This procedure is illustrated in Fig. 2.12. Post-processing
is commonly applied to this binarized output by imposing minimum lengths (e.g.,
300 ms) for event instances and the gaps between them (e.g., 200 ms), to clean up
activity estimates. This system architecture has been used successfully for sound
event detection in recent years [1, 5, 11].

2.7 Development Process of Audio Analysis Systems

The previous sections presented the main building blocks of the audio analysis
system, and introduced basic system architectures for various target applications.
A majority of systems are nowadays based on machine learning methods, and to get
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these type of systems to work at the optimal level, rigorous development process is
required. The crucial steps required for successful system development are identified
and briefly introduced in this section, in order to give a general overview of the
development process.

In academia, the audio analysis systems are often developed from a research
perspective. The aim of this process is to push the technology in this field further,
including through academic publications. Once the technology reaches a sufficient
level, measured either in analysis performance or user experience, the development
focuses on refining the technology and making it work reliably in real use cases,
and possibly building a real product around it. Often in this stage the development
starts to shift towards industry either through joint projects between academia
and industry, or by moving intellectual properties to industrial partners. As the
development progresses, the aim of the development is to deploy a product into
actual use (either into commercial or non-commercial market).

The development of a audio analysis system consists of two main phases:
technological research, where research and development is done in a laboratory
environment, and product demonstration with a prototype system in a real operating
environment. This book concentrates mostly on topics related to the first phase.
The technological research phase uses fundamental research from different fields,
and applies them to the target application. Interesting supporting research fields
for sound scene and event analysis are, for example, human perception and
machine learning. The aim of technological research is to produce a proof-of-
concept system that shows the capability and feasibility of the analysis system,
with the system evaluated in laboratory environment with audio datasets. In the
product demonstration phase, the proof-of-concept system is further developed into
a prototype having all the key features planned for the final system. The prototype
is tested in realistic use cases, and demonstrated with real users, while continuing to
develop and refine the system for eventually being suitable for deployment into use.

2.7.1 Technological Research

Before entering the active research and development of the audio analysis system,
one has to identify the target application for the system and main characteristics of
this application, as these will dictate system design choices later on. By having
the target application identified, the research problem becomes easier to define.
Sometimes in academic research, one cannot identify a clear target application for
the system, especially in such early stage of the research. In these cases it is still
a good practice to envision a speculative application for the system to steer the
research and development.

In the research problem definition, the analysis system type is identified (detec-
tion vs. classification), the used sound classes are defined, and amount of classes
needed to be recognized at the same time is defined (e.g., classification vs. tagging).
For example, if our target application is the recognition of the sound scene in
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5 s intervals from a predefined set of scene classes, then the problem definition
would be the classification of input signal into a single class within predefined set
of 15 sound scene classes. Another example would have as target application to
recognize certain target sound events in office environment (e.g., mouse click); in
this case the problem definition would be the detection of occurrences of the one
predefined sound event in a predefined environment. Based on the defined research
problem, the system development moves into active research and development. In
this phase, three main stages can be identified: data collection, system design and
implementation, and system evaluation.

Data Collection The audio data and associated metadata is used to learn param-
eters of the acoustic models in the system design and implementation stage.
Furthermore, the data is used to evaluate performance in the system evaluation
stage. The defined target application dictates the type of acoustic data, recording
conditions it is collected in and type of metadata required. In general, the aim should
be to collect as realistic as possible acoustic signals in conditions which are as close
as possible to the target application. Details of the data collection and the annotation
process are discussed in Chap. 6.

System Design and Implementation The main goal of the system design and
implementation stage is to create a proof-of-concept system which solves the
defined problem. The stage starts with the design of the overall system architecture
and implementation of the initial version of the system. This initial version usually
contains basic approaches and it is used as comparison point (baseline system) when
developing the system further. The actual system design is a gradual process, where
different steps of the system are developed either independently or jointly, and
integrated into the overall system. Main steps involved in the processing chain for
system design are audio processing (containing, e.g., pre-processing and acoustic
feature extraction), machine learning (containing, e.g., learning, and recognition or
detection), and post-processing. To some extent, it is possible to isolate each step
in the development and optimize the corresponding parameters of the system while
keeping the other parts fixed. This allows to take into account the effect of each
processing step on the overall system performance, and will enable identification
of the error sources and their contribution to the overall performance. The system
integration stage uses the knowledge acquired in the development process to
maximize performance of the overall system. In particular cases, some steps can be
designed, implemented, and evaluated independently outside the system for optimal
performance: for example, a noise suppression method can be first evaluated using
specific data and metrics, before including it into the developed system as a pre-
processing step.

System Evaluation The evaluation of the system is based on the test data and
reference annotations assigned to it, and using a metric related to the target
application. Ideally the system should be evaluated in scenarios which match the
target application as much as possible, to get a realistic performance estimation.
During the development the evaluation is commonly done in steps by gradually



2 The Machine Learning Approach for Analysis of Sound Scenes and Events 35

increasing how closely the scenario matches the target application to better isolate
factors affecting the performance. At the beginning of the development, highly
controlled laboratory scenarios are preferred, and as the development progresses
evaluation switches to more realistic scenarios. An example of a highly controlled
scenario is the offline scenario where pre-recorded audio data is read directly from
audio files and the analysis can be done efficiently for large datasets repeatedly while
the core algorithms are developed. Depending on the target application, the system
should be evaluated also in online use case, where the system is capturing audio
in real-time. For example, the same pre-recorded audio data used in offline case
can be played back in a laboratory environment to verify that the system performs
similarly as in offline case and then move to more realistic usage environment.
The evaluation metrics are chosen to reflect performance that should be maximized
or errors that should be minimized in the system development. In some cases,
subjective evaluation of the system can be performed based on user opinions or
user satisfaction with system output, avoiding the need for reference annotations.
For objective evaluation, a part of the data is assigned to the training of the system
and a part is assigned to the testing of the system’s performance. For sound scene
recognition systems the most commonly used metric is accuracy, a percentage of
correctly classified items. For sound event detection systems the most commonly
used metrics are F-score (balanced mean of precision and recall) and error rate (ER).
They are both calculated based on correctly classified items and errors made by the
system, but emphasize different characteristics of the systems, namely the ability of
correctly detecting as much as possible of the content versus the ability of making as
small amount of mistakes as possible. The details of evaluation metrics are discussed
in Chap. 6. The performance of the system is compared against other solutions to the
same problem, for example, state-of-the-art methods or well-established (baseline)
approaches. The analysis of these alternative solutions and comparison against
developed system is necessary to put the obtained evaluation scores into larger
context while doing the research.

2.7.2 Product Demonstrations

Once the proof-of-concept system is ready, the development moves to the product
demonstration phase. In this phase, the desired use cases are first identified, and
acceptable error types and level of performance in these use cases are defined.
These factors are closely related to the end users’ requirements and perception on
good performing system, and thus they should be considered as early as possible
in the development of the product. The proof-of-concept system developed in
the technological research phase is used as a starting point for the development
targeting a prototype having all the key features planned for the final system.
When the prototype is ready, the technology is validated by testing it in real
operating environment with realistic use cases, and demonstrated with real users.
User experience studies can be used in this stage to get quantified feedback, and
these results can be further used to refine the overall system design.
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In the actual development project, there are often setbacks which force the
development to return back to the technological research phase and to reiterate
stages within it. Testing the system with realistic use cases can reveal problems
in the core system design which were not identified earlier in the development. For
example, the system could have poor user experience due to a wrongly selected
recognition approach which is producing results with too high latency, or the system
could have low recognition performance because of low noise robustness. These
type of problems are usually such fundamental design flaws that they have to be
addressed in the technological research phase.

Once the prototype is validated and achieves sufficient recognition performance
with good user experience, the system is developed into a final system which is
demonstrated with a small group of real users in actual operating environments.
Usually in this stage the core system is considered ready and development concen-
trates mainly on polishing the possible user interface and communication interfaces
with other applications. After the successful demonstrations, the system can be
deployed to the market with small scale pilots first, and finally in full scale.

2.7.3 Development Process

The previously introduced development stages often overlap, and are executed
multiple times during the overall development process. An example of one possible
development process is shown in Fig. 2.13. The figure shows main stages for both

Fig. 2.13 Process graph for audio analysis system development. Fundamental research is happen-
ing outside this graph. The actual development is divided into two phases, technological research
phase and product demonstration phase
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the technological research and the product demonstration phases to give a compre-
hensive view for the whole process. However, as the book mainly concentrates on
the technological research phase, in the following only the stages from technological
research phase are fully explained.

The technological research phase starts from the problem definition stage, where
the target application for the system is identified and the system characteristics
are defined. After this, the actual active development starts by data collection and
manual annotation of this collected data. The annotation stage is usually one of the
most time-consuming parts of the development, and in some cases the amount of
data is gradually increased as the annotation progresses during the development. It
is also a good practice to interlace the data collection and annotation, to get some
data ready for the development as early as possible. Once the dataset is complete, the
evaluation setup is designed by selecting the evaluation metrics, defining the cross-
validation setup, and selecting appropriate comparison systems. Before entering the
full system development, the overall system architecture has to be designed. As each
part of the system is developed in separate development stages but evaluated as a
part of entire system, the components of the whole system have to be defined in
general terms. The initial version of the entire system is implemented based on this
design by using basic approaches, and usually is also used as a baseline system.

After the initial version of the system is ready, the main development can start.
Individual parts of the system are designed, implemented, and evaluated in the order
which follows the logical signal path through the system: first audio processing
parts (pre-processing, acoustic feature extraction), followed by machine learning
parts, and finally the post-processing parts. The evaluation results are used to guide
the design choices within each part of the system. When the system performance
reaches the desired level or saturates, the development moves to the next part. In
the system integration stage, all parts of the system are optimized to get maximum
overall performance. The end result of this stage is a complete proof-of-the-concept
system which can be moved for further development to the product demonstration
phase.

2.8 Conclusions

This chapter introduced the basic concepts in computational methods used for audio
analysis, concentrating on supervised machine learning approaches. The focus is on
classification and detection applications such as scene classification, audio tagging,
and sound event detection. Systems for audio analysis have very similar architecture,
with building blocks such as data acquisition, feature extraction, and learning often
being identical between different systems. The learning process mirrors the selected
target application in its association between labels and features, guiding the mapping
between class labels and features performed during learning. An approach based on
deep neural networks was presented, illustrating a very general system architecture
that can be adapted for various sound classification and detection problems.
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The last section of this chapter brought into discussion the larger picture of
system development, from the definition of the problem all the way to the product
developed for the market. System development is often a lengthy and iterative
process involving stages of various difficulty and duration. Mid-way of this process
is the link between academic research and industry, where the focus switches
from proof-of-concept to the commercialization of a product. Industrial research
concentrates on the prototyping and product demonstrations with the goal of refining
and improving the user experience with the product. Specific solutions for this will
be presented in more detail in Chap. 12.
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Chapter 3
Acoustics and Psychoacoustics of Sound Scenes
and Events

Guillaume Lemaitre, Nicolas Grimault, and Clara Suied

Abstract Auditory scenes are made of several different sounds overlapping in time
and frequency, propagating through space, and resulting in complex arrays of acous-
tic information reaching the listeners’ ears. Despite the complexity of the signal,
human listeners segregate effortlessly these scenes into different meaningful sound
events. This chapter provides an overview of the auditory mechanisms subserving
this ability. First, we briefly introduce the major characteristics of sound production
and propagation and basic notions of psychoacoustics. The next part describes
one specific family of auditory scene analysis models (how listeners segregate
the scene into auditory objects), based on multidimensional representations of the
signal, temporal coherence analysis to form auditory objects, and the attentional
processes that make the foreground pop out from the background. Then, the chapter
reviews different approaches to study the perception and identification of sound
events (how listeners make sense of the auditory objects): the identification of
different properties of sound events (size, material, velocity, etc.), and a more
general approach that investigates the acoustic and auditory features subserving
sound recognition. Overall, this review of the acoustics and psychoacoustics of
sound scenes and events provides a backdrop for the development of computational
methods reported in the other chapters of this volume.
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3.1 Introduction

Everyday situations are rarely silent. In most situations, sound-producing events
are constantly happening, overlapping in time and frequency, propagating through
space, reflecting from surfaces, and being diffracted by obstacles, before finally
merging at a microphone or the listener’s ear. This complex acoustic array con-
stitutes the auditory scene. Imagine, for example, yourself relaxing at home with
a few friends and kids. In this case, the auditory scene is extremely cluttered and
busy, composed of different conversations and noises. Yet, listeners are able to
parse the scene, segregate different sound events from a background, identify these
sound events (different conversations, background music, the clinking of glasses, a
suspicious bang from the kid’s playground), follow the conversation they are taking
part in, switch their attention to a potentially more interesting conversation that is
happening nearby, monitor the kids’ antics, etc. This is the classical cocktail party
effect [4, 97, 124]. The goal of this chapter is to sketch the physics underlying these
sounds, and to provide an overview of a few basic psychoacoustic and cognitive
models subserving the ability to process, parse, and make sense of the sound events
composing an auditory scene.

Whereas the perception of speech and music has been studied for a long time,
the study of the perception of everyday scenes and events (non-speech, non-music
sounds occurring in a daily environment) is relatively new. The main characteristic
of everyday sound perception (“everyday listening”) is that its primary goal is to
make sense of what is happening in a listener’s environment, by segregating the
scene into different events and identifying the events. Music perception (“musical
listening”), in comparison, is more focused on the musical qualities of the signals,
and not so much on the precise identification of the sound sources [30]. Speech
perception finally is about decoding a linguistic message and identifying the identity,
gender, emotion of speakers.

The acoustic signals reaching the listeners’ ears in an auditory scene are first
processed by the peripheral auditory system (pinna, eardrum, ossicles, cochlea,
auditory nerve). The perception of auditory scenes and events involves in addition
two important perceptual abilities: segregation and grouping of spectro-temporal
regularities in the acoustic signal into auditory objects (auditory scene analysis);
Making sense of the auditory objects, i.e., identifying the sound events they
correspond to (sound event identification). An auditory object is a percept (a mental
entity resulting from the perception of a phenomenon) corresponding to a sound
(or a group of sounds) perceived as a coherent whole, e.g., the complex sequence
of noises emitted by a printer that is assigned (correctly or incorrectly) to a single
source or event in the environment (e.g., a printer printing out pages) [4, 7, 11].

This chapter reports on the current status of research addressing these three
aspects. Section 3.2 first briefly introduces the acoustics of auditory scenes, as well
as the models of peripheral auditory processing used as a front-end of many models
of auditory scene analysis and sound event identification. Then Sect. 3.3 uses the
framework of one model family of auditory scene analysis to overview several
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important perceptual phenomena involved in scene analysis (multidimensional
representation, temporal coherence). Section 3.4 reviews the literature on sound
event identification. As such, this subsection will review some studies dedicated to
evidence the effects of knowledge, attention, or multisensory integration to auditory
scene analysis.

3.2 Acoustic and Psychoacoustic Characteristics of Auditory
Scenes and Events

This section first introduces important features of a sound signal (amplitude,
periodicity, frequency, spectrum, etc.), how sounds are produced and propagate,
and basic notions of how sounds are perceived (psychoacoustics). To do so, it
first presents a simplified model of peripheral auditory processing (outer/middle
ear, cochlea, neural transduction) and the basic auditory percepts (pitch, loudness,
dimensions of timbre) that mirror the acoustic characteristics previously mentioned.

3.2.1 Acoustic Characteristics of Sound Scenes and Events

A sound is produced by some mechanical vibration in contact with the air (e.g.,
the soundboard of a guitar) or a rapid modulation of air flow (e.g., the vocal
folds periodically interrupting the expulsion of air from the lungs when speaking
or singing). These phenomena create oscillations of the pressure of the air that
propagate through this medium. These sound waves can be converted back into
physical motion by the eardrum or the diaphragm of a microphone, and are
generally represented as a waveform, shown in panel (c) of Fig. 3.1, where the
y-axis represents the amplitude of the pressure (generally represented in arbitrary
units) and the x-axis represents time. The level (L) of a sound is often represented
in decibels (dB): LdB D 20 log10.RMS/, where RMS is the root mean square value
of the signal. An important class of sounds, including speech and music consists
of waveforms repeating periodically over a certain amount of time (see panel (d)
of Fig. 3.1). The duration of an elementary waveform is called the period (in s),
and the inverse of the period is the frequency (in Hz). Other sounds do not repeat
periodically, but are made of random variations of air pressure. These are called
noises (see below). By application of the Fourier transform, any waveform can be
decomposed into a sum of elementary sinusoids at different frequencies. A common
representation of a sound signal is to plot its Fourier transform, as represented in
panel (a) of Fig. 3.1 (with frequency represented on the y-axis). The representation
of the Fourier transform is called the spectrum of the signal. The Fourier transform
can also be computed over short overlapping time windows (the short-time Fourier
transform), thus providing a time-frequency representation of sound signals: its
magnitude is represented as the spectrogram (represented in panel (b) of Fig. 3.1).
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Fig. 3.1 Example of a voice signal (one word pronounced by a male speaker followed by a word
pronounced by a female speaker). Panel (b) represents the spectrogram of the signal (x-axis is
time, y-axis is frequency, color codes amplitude). Panel (a) represents the spectrum of the female
speaker. Panel (c) represents the waveform. A closer look [panel (d)] at the waveform of the female
speaker shows that it consists of the repetition of an elementary waveform. A close-up on a noisy
consonant [panel (e)] shows that the waveform consists of random variations

3.2.1.1 Periodic and Non-periodic Signals

The class of sounds that can be described as multiple repetitions of an elementary
waveform (at least approximately) are called periodic signals. For example, Fig. 3.1
represents a speech signal, consisting of a first word uttered by a male voice
followed by a second word uttered by a female voice. Vowels are often periodic
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in the middle of their duration. The Fourier transform of a periodic signal is
made of a sum of pure tones (the “partials”) whose frequencies form a harmonic
series. The frequency of the lowest tone is called the fundamental frequency (F0).
It is approximately 100 Hz for the male voice and 250 Hz for the female voice
shown in Fig. 3.1. The frequencies of the other partials are integer multiples of the
fundamental (F0, 2F0, 3F0, etc., see the spectrogram of the female voice at the top
of Fig. 3.1). They are called the harmonics of the signal. The periodicity and the
fundamental frequency of a sound are related to the sensation of pitch, through a
complex relationship (see Sect. 3.2.2.2, “Pitch and loudness”). Most periodic sounds
occurring in a daily environment are produced by animal vocalizations (including
human speech), musical instruments, or human-made artifacts with rotating parts
(e.g., car engines).

In contrast, many non-human everyday sounds are not periodic. Non-periodic
sounds do not create any sensation of pitch. For example, rubbing together two
pieces of wood and waves breaking on a shore produce sounds that are non-periodic.
Sounds resulting from a random process (such as aerodynamic turbulences created
by wind gusts) are another example of non-periodic sounds called noisy. In the
speech domain, consonants are usually noisy (“unvoiced”—see, for example, the
consonant represented in panel (b) of Fig. 3.1; it clearly lacks the harmonic structure
of the vowels). Panel (e) of Fig. 3.1 represents a close-up on the waveform of a
consonant, showing the random fluctuations of air pressure.

3.2.1.2 Sound Production and Propagation

Sounds are usually produced by one or several physical objects set in vibration by
an action executed on that object. For example, banging on a door causes the door
to vibrate, and this vibration is transmitted (“radiated”) to surrounding air. Many
physical systems have linear regimes that support privileged vibration frequencies,
determined by their geometry. These are the modes of vibration. For example, a
string fixed at both ends (the most simple vibrating system) vibrates at frequencies
that form a harmonic series, and F0 is proportional to the inverse of the length of the
string. The sounds produced by an object set in vibration result from a combination
of these modes. The amplitude of each mode depends on how the object is set in
vibration, where it is struck, etc. For example, a string fixed at both ends and plucked
at a point one third of the way along its length will miss the 3F0, 6F0 modes, etc.
Other kinds of excitation may produce noisy sounds. For example, rubbing together
two pieces of wood creates a very dense and random series of micro impacts, which
results in a sound that lack any harmonic structure (i.e., noises).

Sounds propagate through air as pressure waves. The speed of sound in air
is approximately 343 m/s at 20 ıC. Close to the sound source, spherical radiation
leads to a pressure wave whose amplitude in linear units is inversely proportional
to distance. The attenuation in dB is proportional to the log of the distance (drops
by 6 dB for every doubling of distance). Farther away from the source, sound waves
can be considered as plane waves, and the attenuation (in dB) is proportional to the
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distance to the source and to the square of the frequencies: as sounds travel through
space, they become quieter and higher frequencies are attenuated. In free field (i.e.,
when sound waves travel freely without being reflected or diffracted by obstacles),
the sound pressure level and the frequency content of a sound could be used to
estimate the distance of a sound source. In most situations, however, the original
spectrum of sounds is unknown, sound sources move, and sound waves rarely travel
in free field.

In fact, sound waves also encounter obstacles as they travel. Depending on the
size of the obstacles, sound waves are diffracted (they “bend over”) or reflected by
the obstacles. An important case occurs when waves propagate in enclosed spaces
and bounce off walls. In that case, the sound wave created by the sound source
will reach a microphone or the listener’s ears through multiple paths: the wave
will first reach the microphone via the shortest path, but also later via multiple
reflections from the walls, floor, and ceiling of the space. In large spaces, early
reflections will be clearly separated from the direct sound (similar to an echo), and
later reflections will be merged together and interfere. The sum of these reflections
is called the “reverberation” (or room effect). The sound that reaches a listener’s ear
or a microphone is thus different from the sound that would be picked up close to
the source. These multiple paths can be modeled by the impulse response from the
source to the microphone. In addition, the comparison of the sound waves reaching
the microphone through direct and indirect paths can be used to estimate the distance
to a sound source [57].

When multiple sources are present, the sound waves generated by these sources
(and their reflections) will merge by simply summing the air pressure variations.
However, such summing can result in interference: Imagine, for instance, adding up
two pure tones at the same frequency. If the two pure tones are shifted in time by
half a period (phase opposition), the positive part of one sine wave will add to the
negative part of the other wave, thus resulting in no sound (destructive interference).
Sound do not simply add as the sum of their magnitude spectra: phase delays will
create interferences that can profoundly modify the spectrum of the sound sources
(and thus their timbre). The challenge for the auditory system is to disentangle the
mixture that reaches the listener’s ears to recover the individual sound sources.

3.2.2 Psychoacoustics of Auditory Scenes and Events

Psychoacoustics aims at establishing quantitative relationships between percepts
and acoustical properties of the signals. Pitch and loudness are probably the
best-known percepts. Others percepts are collectively denominated as “timbre.”
This section first introduces basic models of how the peripheral auditory system
processes sounds. Then, we describe loudness and pitch and some models (“acoustic
correlates”) of these percepts. Finally, we review the notion of timbre. These models
form the basis of the features used in many auditory scene analysis systems. A
more detailed account of the features used in computational systems is provided in
Chap. 4.
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3.2.2.1 Models of Peripheral Auditory Processing

Models of the outer (pinna and ear canal), middle (eardrum, auditory ossicles, and
oval window), and inner ears (cochlea) have existed for a long time. The outer
and middle ears can be simply simulated by a bandpass filter with a gain curve
following the minimum auditory field or other equal-loudness contours. The inner
ear is modeled by a bank of auditory filters that approximate the basilar membrane
motion followed by a model of neural firing to convert the motion of the basilar
membrane into a pattern of neural activity. More precisely, an auditory filter is
a linear bandpass filter designed to approximate data from psychoacoustical and
neurophysiological studies. An excitation pattern (see Fig. 3.2) is a representation
of the energy at the output of a bank of auditory filters with central frequencies
nonlinearly distributed in the audible frequency range. The shape and the bandwidth
of the auditory filters are still a matter of debate. Several mathematical models of
the auditory filters have been proposed and implemented in a wealth of applications,
ranging from the simplest (the Bark scale [127]) to more complicated models
defined in the spectral (e.g., the roexp filter family) or temporal domains (e.g., the
gammatone and gammachirp filter families [115]). Similarly, many mathematical
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i. Partial loudness Ni can then be computed from the excitation pattern using a compressive law
and summed to estimate the global loudness
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models of neural transduction have been proposed, from the simplest (half-wave
rectification, compression, and low-pass filtering) to physiological models based on
inner-hair cell and synapse properties [106, 126]. For example, the latest models of
inner-hair cells and auditory nerves can now account for the spontaneous activity in
the auditory-nerve fibers [106].

3.2.2.2 Pitch and Loudness

Pitch and loudness are the percepts that have been the most studied. Pitch is the
percept that enables listeners to order sounds from low to high on a musical scale.
For pure tones, pitch can be simply related to frequency. More generally, pitch is
related to periodicity cues for other complex sounds, and many authors have been
interested in modeling pitch perception [23].

For pure tones, the perception of pitch is generally assumed to be based both
on tonotopical cues (i.e., the place of excitation along the basilar membrane in the
cochlea) and phase locking cues (i.e., the temporal correlation between the phase of
the input signal and the discharge rate of the neurons) up to a spectral limit from a
few kHz to 5 kHz or even higher. Over this spectral limit, the inner-hair cells cannot
discharge as fast as necessary neither to follow the phase of the signal nor to even
be correlated with it. Temporal cues become then ineffective and only spectral cues
are available [45].

To explain the perception of pitch evoked by harmonic complex tones, autocor-
relative models that extract periodicities of the excitation in the auditory nerve [67]
are into the limelight as they can account for many experimental results from the
literature. However, such unitary models of pitch perception cannot account for all
data in the literature [39] and dual models taking both the periodicity and the place
of excitation should enable a better understanding of pitch perception as suggested
by Oxenham et al. [78]. In practical applications, YIN [24], Praat [12], and Straight
[48] are probably the three most used pitch detection algorithms (for monophonic
pitch).

Loudness is the percept that enables listeners to order sounds on a scale from
quiet to loud. For pure tones, loudness is simply related to sound pressure by
a power law, whose exponent depends on the frequency of the tone [101]. For
complex sounds, however, loudness depends on the intensity and the spectrum of the
sound, via complex nonlinear relationships. Several models have been proposed and
normalized over the years and are now commonly used in commercial applications
[70, 73, 128]. Most models share a common framework showed in Fig. 3.2: loudness
can be estimated by integrating partial loudness along the frequency bands and
partial loudness can be estimated either by adding a compressive stage to the
basilar membrane motion at the output of each auditory filter or directly from the
auditory nerve response pattern. Recent developments have refined the shape of the
auditory filters, the summation procedures, and modified the models to account for
the loudness of very short, very quiet, or time-varying sounds (e.g., [15, 86]).
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3.2.2.3 The Dimensional Approach to Timbre

One commonly used definition of timbre is summarized by Risset and Wessel: “the
perceptual attribute that enables us to distinguish among orchestral instruments1 that
are playing the same pitch, and are equally loud” [5, 91]. In this approach, timbre
is not considered as a single percept, as loudness or pitch. It is multidimensional:
it consists of several percepts (or dimensions) and the goal of the psychoacoustical
approach to timbre has precisely been to characterize the dimensions of timbre.

A widespread method to study the dimensions of timbre uses dissimilarity ratings
and multidimensional scaling (MDS) techniques, in a three-step procedure. First,
listeners rate the dissimilarities between each pair of sounds of a set. Second,
MDS techniques represent the dissimilarity data by distances in a geometrical
space (perceptual space), wherein the distance between two points represents the
dissimilarity between two sounds. It is assumed that the dimensions of the space
represent independent percepts. These dimensions are then interpreted by acoustical
parameters (called in this case acoustical correlates). This approach is based on the
assumption of common continuous dimensions shared by the sounds.

There is a long tradition of studies of the timbre of musical instruments
[17, 38, 64]. More recently, the technique has been adapted and applied to a variety
of sounds of industrial products [108]: air conditioning units, car horns, car doors,
wind buffeting noise [55, 80, 107]. Several dimensions have been found quite
systematically across this wide range studies (see, for example, [69] for a meta-
analysis): sharpness, roughness and fluctuation strength, attack time, tonalness,
spectral flux, odd-to-even ratio. The following paragraphs detail three of these
dimensions and their acoustic correlates. The acoustical correlates reported here
are computed on the basis of models of peripheral auditory processing reported in
Sect. 3.2.2. In short, they correspond to some statistical properties of the auditory
signal, either purely in the temporal or spectral domains [127]. They are practically
available in many commercial or freely distributed toolboxes (e.g., the “MIR
Toolbox” [53], the “Timbre Toolbox” [84], Head Acoustics’ Artemis,2 B&K’s
Pulse3). Note, however, that some more recent models also exist that use joint
spectro-temporal representations [27].

Sharpness and Brightness
Sharpness and brightness correspond to a similar percept: that sounds can be ordered
on a scale ranging from dull to sharp or bright. It is correlated with the spectral
balance of energy: sounds with a lot of energy in low frequencies are perceived
as dull whereas sounds with a lot of energy in high frequencies are perceived as
bright or sharp. The acoustical correlate of brightness is the spectral centroid. It is
calculated as the barycenter (i.e., first statistical moment) of the Fourier transform

1Note that this definition does only apply to musical instruments, though.
2https://www.head-acoustics.de.
3https://www.bksv.com/.

https://www.head-acoustics.de
https://www.bksv.com/
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of the acoustic signal. There are many variations to this formula. For example,
Zwicker’s sharpness is calculated as the barycenter of the output of the auditory
filter bank, weighted by a function that emphasizes high frequencies (Zwicker’s
sharpness is thus in fact a measurement of the amount of high frequencies) [127].

Fluctuation Strength and Roughness
Fluctuation strength and roughness both correspond to the perception of modula-
tions of the amplitude of the signal, but different ranges of modulation frequency
result in two different percepts. When modulations are slow (around 4 Hz), the
sounds are perceived as fluctuating (wobbling): This is the percept of fluctuation
strength. Faster modulations (around 70 Hz) are perceived as rough (harsh): This is
the percept of roughness.

Zwicker and Fastl have proposed an acoustic correlate of fluctuation strength
[127], calculated by estimating the modulation depth and modulation frequency in
each Bark band. Note that this method does not work very well for noisy signals. In
that case, the method described by [100] is better suited.

The calculation of an acoustic correlate to the percept of roughness cannot be
simply described. A commonly used algorithm is described in [20]. It consists of
calculating an index of modulation in 47 channels (overlapping Bark band), and
then summing the contribution of each channel, weighted by the cross-correlation
of the signal’s envelope in adjacent channels.

Onset
Onset is the percept related to the time a sound takes to start. Onset corresponds to
a sensory continuum ranging from slow onsets (e.g., bowed strings, sanding a piece
of wood) to impulsive sounds (e.g., plucked strings, knocking on a door). Onset
is best correlated with the logarithm of the attack time [84]. There are different
methods to estimate the attack time. The most common method consists of using a
fixed threshold (e.g., 10% of the maximum of the envelope, see Fig. 3.3). However,
Peeters et al. have developed a more robust method (“weakest effort”) [83].

3.3 The Perception of Auditory Scenes

To attend to sound events in natural environments, the auditory system is generally
confronted with the challenge of analyzing the auditory scene and parsing the scene
into several auditory objects. Ideally, each auditory object corresponds to a distinct
sound source. To decide to group or to segregate sounds, one theory of perceptual
organization suggests that the auditory system applies rules named the “Gestalt
laws of grouping”: Proximity, similarity, good continuation, and common fate.
Proximity groups together sounds coming from the same spatial position. Similarity
groups together sounds sharing some perceptual features (e.g., pitch, timbre). Good
continuation considers that a new sound is occurring when an abrupt change occurs
and common fate groups together sounds that are congruent in time. This theory is
still a matter of debate and remains an open question.
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Fig. 3.3 The calculation of the attack time. In this example, the attack time is calculated between
the times where the envelope of the signal increases from 10 to 90% of its maximal value [83]

Computational auditory scene analysis (CASA) is a wide field of research that
has been successively and extensively reviewed by Cooke and Ellis [19], Wang and
Brown [121], and more recently Szabó et al. [109]. In this field, several approaches
coexist based on different theoretical basis. Szabó et al. [109] have classified the
models of auditory scene analysis in three categories labeled as Bayesian, neural,
and temporal coherence models. Bayesian models use Bayesian inferences to update
continuously the probability of occurrence of auditory events. Neural models are
based on neural networks with excitatory and inhibitory neurons. Each auditory
event corresponds then to a population of neurons that interact with the others.
Finally, temporal coherence models are based on the idea that a sound event can
be characterized by stabilized acoustic features with some coherent fluctuations.
Bayesian and neural models are discussed in Chaps. 2 and 5. Here, we focus on the
particular model family, based on a temporal coherence approach.

These specific models of auditory scene analysis [26, 50, 95] are based on
three stages. First a multidimensional representation of the signal is computed as a
function of time with each axis corresponding to an auditory dimension. Second,
this multidimensional space is interpreted in terms of auditory objects using a
temporal coherence analysis. The general idea is to group all parts of the signal
that are temporally coherent along one or more dimensions. The last stage involves
attentional processes to make the foreground pop out from the background.
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3.3.1 Multidimensional Representation

Any salient perceptual difference [71] and its corresponding acoustic correlates can
be potentially used to segregate sounds from each other’s [72]. Pitch, timbre dimen-
sions, or temporal dynamics (see Sect. 3.2.2) are prominent but the contribution of
any other percepts (related, for example, to loudness differences [116] or spatial
position of the sound source) can also contribute to this perceptual organization
[21, 68]. As these acoustic correlates can be independently expressed as functions
of time, they can then be seen as axes of a multidimensional perceptual space, with
time as one of the dimensions. The Gestalt laws of grouping then apply to this
perceptual space. Proximity and similarity laws are simply related to a perceptual
distance in this space.

3.3.2 Temporal Coherence

In this perceptual space, the time dimension is rather special and is characteristic of
sound perception: Sounds unfold in time and require time to be perceived, which is
not the case for visual stimuli. As such, the Gestalt laws of good continuation and
common fate can be interpreted in terms of temporal coherence across or within the
other perceptual dimensions. Temporal coherence within a perceptual dimension is
related to the average correlation of this perceptual dimension between two different
instances in time, where the strength of the effect decreases with increasing time
separation. This section will review how temporal coherence influences grouping
and how this has been modeled. The first attempt to assess the effect of temporal
coherence with sequences of pure tones was to vary the time delay between tones
of different frequencies f1, f2 [116]. The general idea was that a change from f1 to
f2 in the signal will be less incoherent if the change is smooth (f2 � f1 is small) or
if the time delay that occurs between the change increases. Many studies reviewed
in Bregman’s book [13] evidence that when the time delay increases (increasing
the cross-frequency coherence), the degree of segregation decreases. These studies
only involve pure tones of two different frequencies but this result generalizes to
more realistic sounds as vowels differing in fundamental frequencies [29]. Early
computational models defined temporal coherence as an onset/offset coincidence
detector across frequency bands (for example, in Brown and Cook’s model [14])
whereas more recent models propose an integrated model of temporal coherence
across and within all dimensions [95]. In this case, coherence is continuously
computed as the cross-correlation coefficients between the frequency channel
responses integrated over a time windows between 50 and 500 ms. For example, in
panel (b) of Fig. 3.1, the channels containing the harmonics of 100 Hz will be highly
coherent during the first milliseconds (low pitched voice) and grouped together
as an integrated auditory object while the channels containing the harmonics of
250 Hz will be highly coherent during the high pitched voice. At the transition point
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between the voices, the bands centered on multiples of 100 Hz and those centered
on multiples of 250 Hz will not be coherent and segregation will occur. Such a
coherence analysis can apply simultaneously to each perceptual dimension, and
each dimension can be allocated with a particular weight to guide the segregation
decision. In some extreme situations, incoherent signals can even be integrated in the
same auditory object. For example, the high-frequency unvoiced consonant in panel
(b) of Fig. 3.1, which is pronounced by the same speaker, should be perceptively
linked to the preceding high pitched voice, as recently evidenced [22]. The strong
incoherences in the frequency channels should then be ignored (allocated with a
weight close to zero) and coherences in other perceptual dimensions should then
dominate the segregation/grouping process. For now, rules to tell these situations
apart are not known and remain to be defined by further studies.

3.3.3 Other Effects in Segregation

Since the publication of Bregman’s book [13], the concept of schema-based
segregation has been largely acknowledged in the literature. A schema can be
seen as a memory trace related to a well-known sound event and this intuitive
concept of schema involves numerous cognitive processes that could all contribute
to segregation. As such, this subsection will review some studies dedicated to
evidence the effects of knowledge, attention, or multisensory integration to auditory
scene analysis. It is possible to view the concept of schema as an aspect of the
temporal coherence that has been previously described. In fact, in the temporal
coherence analysis, the importance of the temporal coherence of a single dimension
(i.e., the allocated weight) could be enhanced by predictability based for example,
on knowledge, attention, or other higher-level processes. As illustrated by Shamma,
segregating a female voice from a background could imply to give more importance
to the sounds coming from a particular position (because you can see where the
female speaker is) or to high-frequency regions of the spectrum because you can
predict that the voice will be high-pitched [95]. The effect of predictability from the
experimental point of view has been reviewed by Bendixen et al. [8]. For example,
Bendixen et al. [9, 10] showed that the predictability of a frequency pattern of
pure tones can promote segregation, whereas other authors showed an effect of
temporal regularities (temporal predictability) on segregation [25, 90]. From the
modeling point of view, some authors also integrate a prediction-driven approach.
For example, in the context of speech/non-speech mixtures, Ellis [28] has proposed
a model architecture that compares and reconciles the stimulus-driven extracted
speech signal with the words predicted by a knowledge-based word-model. Another
overlooked aspect of auditory scene analysis is the contribution of congruent visual
cues. From the early 1950s, it was well established that lip reading improves speech
recognition in noise [105]. However, it is unclear if the improvement is due to the
amount of phonetic information contained in the visual cue per se or if the congruent
visual cues enhanced the segregation process. Few studies addressed this question
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[94]. When the visual cues contain some information about another feature useful
for segregation (i.e., pitch variation), a clear effect of visual cues on segregation has
been reported [62]. This effect of the visual cues on segregation remains significant
but the effect size is, however, strongly reduced when the visual cues, providing only
congruent temporal information, do not provide any helpful cues by themselves for
segregation [25].

3.4 The Perception of Sound Events

As well as parsing an auditory scene into distinct sound sources, listeners also
have to perform the closely related task of identifying the individual sources.
In fact, humans are remarkably able to recognize complex and natural sound
sources reliably and without any apparent effort. We report on two approaches that
have investigated this ability. A first approach (“psychomechanics”) has focused
on different properties of the physical events causing sounds (e.g., material,
size, velocity) and sought the acoustic correlates subserving the identification of
these properties. Another more global approach has sought to identify minimal
features in biologically inspired representations of auditory signals that allow sound
recognition.

3.4.1 Perception of the Properties of Sound Events:
Psychomechanics

Psychomechanics studies the perception of the physical properties of sound sources
[63]. In fact, mechanical sounds are produced by an action executed on an object
or several objects interacting among themselves. In principle, listeners can therefore
perceive both the properties of the objects (e.g., size, shape) and actions (e.g., type of
action, speed, force). For example, Chap. 7 describes how cognitive representations
of these properties are organized, with certain properties being more accessible
than some others. Here, this section describes the results of studies that have
investigated how accurately listeners identify these different properties, and the
acoustic correlates that subserve their identification.

3.4.1.1 Material

Material has probably been the most-studied causal property of sounds [51]. Some
researchers have searched for an acoustic feature unique to each material which
does not vary despite changes in other object and action properties such as shape,
size, and force. Wildes and Richards were the first to propose such a feature for
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Fig. 3.4 Calculation of the coefficient of internal friction. This figure represents the partials of
a metal pipe being impacted [54]. The decay of each partial decreases with frequency (lower
frequencies ring for a longer time than higher frequencies). The rate of decay with frequency is
characteristic of each material [123]

anelastic linear solids: the coefficient of internal friction tan� [123] (see Fig. 3.4).
This coefficient determines the damping of vibration in a solid object. They showed
that this coefficient could be estimated by first measuring the time te required by the
amplitude of each partial to decrease to 1=e of its starting value: tan� D 1=.� fte/
(where f is the frequency of the partial). Then defining ˛.f / as the decay of the
sound over time (the inverse of te, in s�1), the decay of the partials with frequency
is modeled with a linear function whose parameter is the coefficient of internal
friction: ˛.f / D tan� � f .

The coefficient of internal friction is characteristic of each material. However,
several studies have shown that human listeners’ sensitivity to this feature is limited
[59]. Listeners are generally only able to distinguish coarse categories of material
from sounds: they can tell metal from wood, but not metal from glass or wood
from plastic [31, 113]. In fact, listeners do not use only the damping: they also
use purely spectral features such as the frequency of the first partial, which are
inaccurate predictors of the material [49, 65].
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3.4.1.2 Shape and Size

The question of whether it is possible to hear the shape of an object first interested
mathematicians [33, 46]. In contrast to material perception, the conclusions of the
studies of the auditory perception of the size and shape of objects are less clear.
Regarding shape, Lakatos et al. have shown that listeners can discriminate the
sounds of impacted bars of different sections, and that their judgments were based
on the frequencies from torsional vibrational and transverse bending modes4 [52].
Similar results were found for impacted plates of different shapes [51]. Lutfi et al.
showed that the combination of decay rate, frequency, and amplitude of partials
could be used in theory to determine whether an object is hollow or solid, but that
listeners are not necessarily adopting optimal strategies, thus resulting in inaccurate
identification [58].

Several studies have also sought to find the acoustic correlates of the size of an
object [35, 36, 42, 76]. The major issue is that a sound is often produced by two
objects in interaction. For example, the sound of ball hitting a plate is produced
by both the ball and the plate resonating. Furthermore, other parameters of the
interaction also influence acoustic parameters. For example, the sound of a ball
dropped on a plate is louder when the ball is larger, but also when the ball is dropped
from a greater height. Overall these studies have shown that listeners use two main
types of cues to determine the size of the objects: loudness and spectral content
(e.g., spectral centroid). The weighting of these cues depends on the particular
context, and varies from individual to individual. For example, Giordano et al. have
shown that the perceptual weight of acoustic features depends on whether they are
informative, but also on the ability of the listeners to exploit the features [32].

3.4.1.3 Parameters of Actions

The last result is not surprising when considering that listeners are actually much
more accurate at identifying the actions than the objects that have caused the sounds
[54]. Surprisingly, less data is available about the acoustic correlates of the actions.

Studies have shown that listeners can distinguish objects bouncing or breaking
apart, based on the temporal patterns of the individual events [122]. They can also
estimate the time when a receptacle filled with water will overflow, based on rate
of frequency change [16], and hear the subtle characteristics of a person’s gait
(stride length and cadence) [125]. But the auditory perception of the velocity of
an object in motion is probably the action parameter that has received the most
interest [40], even though empirical results suggest that the auditory system is less

4Physical objects have some privileged vibration frequencies, determined by their geometry. These
are the modes of vibration. The sounds produced by an object set in vibration result from a
combination of these modes. The particular combination depends on how the object is set in
vibration (e.g., where it is struck).



3 Acoustics and Psychoacoustics of Sound Scenes and Events 57

accurate than the visual system to estimate velocity [18]. There are actually two
theories as to how the auditory system could estimate the velocity of an object
in motion [75]. One possibility is that the auditory estimates the location of the
source at different instants (“snapshots”) and compares the distance traveled and
the time taken to travel that distance. Another possibility is that the auditory uses
acoustic cues that directly specify azimuth and thus (indirectly) velocity: interaural
temporal differences, Doppler shift,5 and loudness changes. Psychoacoustic studies
have confirmed that listeners may use these different cues [47, 60, 93].

Overall, these results suggest that listeners strive to make sense of what they
hear, and use whatever piece of information may help them. When unambiguous
information is available (e.g., the coefficient of internal friction in a impact, Doppler
shift, etc.), they use it. When relevant information is not fully available, they may
rely on strategies that are sub-optimal in general, but that will nevertheless provide
them with some coarse approximation.

3.4.2 Minimal and Sparse Features for Sound Recognition

Whereas the psychomechanics approach focuses on isolated properties of the
sound sources, another line of research has sought to investigate more globally
the important and necessary features of auditory representation subserving sound
recognition. In short, the rationale behind this approach is that studying the ability
of listeners to identify sounds sources when the sounds are degraded will highlight
the features that are necessary for recognition.

The processing of natural stimuli may recruit specific mechanisms derived from
adaptation to natural environments [56, 74, 111]. For example, Smith and Lewicki
have developed a theoretical approach in accordance with neurophysiological
data, which shows that the auditory code and especially the auditory filters (see
Sect. 3.2.2) are optimal for natural sounds [99]. They have shown, among others,
that all information in a sound is not necessary for its recognition.

3.4.2.1 Spectral Regions, Minimal Durations, and Spectro-Temporal
Modulations

This is in fact a well-known phenomenon for speech stimuli: the auditory stimuli
can be drastically distorted and modified (for example, with a noise-band vocoder
method) but still remain recognizable [96]. More recently, Gygi et al. have applied
the same technique to environmental sounds, and identified the important spectro-
temporal regions for recognition [41]. Although less spectacular than for speech,

5The Doppler effect causes a dramatic change of the perceived pitch of a moving object as it passes
the observer.
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this study shows that, for environmental sounds as well, recognition is possible even
with highly filtered sounds (same frequency regions than for speech, with slightly
more high frequencies useful for environmental sounds recognition). However, the
results were highly variable depending on the environmental sounds considered:
for a given experimental condition, results spanned the entire range of recognition
accuracy, which is easily explained by the large acoustical variability of the
environmental sounds.

To avoid this drawback of the difficult study of environmental sounds, a useful
distinction between pulse-resonance (like speech or melodic music) and noisy
sounds has been developed by Patterson [82]. Future studies will probably benefit
from this distinction, as they will probably lead to different set of characteristic
features.

To deal with the question of the features useful for sound recognition in a more
systematic way, the different studies have applied multiple constraints to the signal
or the task in order to see how listeners can still perform the task in degraded
conditions.

An obvious candidate that can be applied to an acoustic waveform is a temporal
constraint (i.e., gating). This approach has mainly been used with pulse-resonance
sounds (speech and music). For example, in 1942, Gray proposed the technique
of “phonemic microtomy” [37]: he extracted short segments of vowels sounds,
pronounced at different fundamental frequencies, and presented them to listeners.
He showed that, for some vowels, recognition was possible for segments as short
as 3 ms, which was less than one cycle of sound. This result was confirmed with
various vowel types [88, 102]. This gating technique was also applied to the sounds
of musical instruments [92]. Interestingly, the results showed that recognition was
possible for durations shorter than what was required to identify the pitch or the
octave of a sound. More recently, Suied et al. used the gating paradigm with a much
more diverse set of musical sounds (singing voices and instruments), and a larger
acoustical variability (the short segment of sound heard by the listeners was, on
each trial, extracted randomly from the original sound) [104]. They confirmed that
a very short segment of sound is sufficient for recognition to be above chance, with
better recognition for voices (4 ms) than for musical instruments (8 ms). They have
also shown, comparing their results to the prediction of the multiple-looks model
[119], that, for gate durations up to 16 ms, perceptual results outperformed an ideal
observer model, thus suggesting that timbre cues are available at a variety of time-
scales, even very short ones [110].

Although the large majority of studies have focused on pulse-resonance sounds
like speech or music, because of their direct relevance for humans, natural sounds
are also often noisy: wind, rain, fire, etc. These categories of sounds have recently
been studied as acoustic textures [66, 77]. Noisy natural sounds can be statistically
modeled with neuroscience-inspired algorithms, on different time-scale modu-
lations, to take into account the variety of time-scales present in the auditory
analysis [114]. On a similar vein, McDermott et al. have shown that sound textures
perception can be modeled with a relatively small number of summary statistics
based on early auditory representations [66].
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3.4.2.2 Sparse Features

All these methods can reduce drastically the signal, but they are not particularly
sparse. This is in contrast with the growing body of evidence from physiology,
suggesting that cortical coding of sounds may in fact be sparse [43]. Two studies
have addressed this question by proposing a new method to reveal sparse features
for sound recognition, using “auditory sketches” [44, 103]. Auditory sketches are
sparse representations of sounds, severely impoverished compared to the original,
which nevertheless afford good performance on a given perceptual task. Starting
from biologically grounded representations (auditory models), a sketch is obtained
by reconstructing a highly under-sampled selection of elementary “atoms” (i.e.,
non-zero coefficients in a given representation; here, an auditory representation).
Then, the sketch is evaluated with a psychophysical experiment involving human
listeners. These studies have shown that even very simplified sounds can still be
recognized, although there is variability across categories of sounds. One limitation
of these sketch studies is the choice of the features.

The selection of these features, or atoms, which are the dictionary elements, is
obviously of prime importance. Two selection methods have been compared [103],
with a slightly better result for a simple peak-picking algorithm, which kept only
the larger amplitude values, compared to an analysis-based iterative thresholding
method [87]. This study was a first proof of concept, but did not take a full advantage
of the current major trend of signal processing for audio coding to use sparse
representations [85].

An outstanding issue for these signal processing techniques is to choose
the appropriate feature dictionary for sparse coding. Most of the state-of-the-
art dictionary-based methods (e.g., using non-negative matrix factorization or
probabilistic latent component analysis) operate on some spectral representation
[120]. Other approaches (for example, the k-SVD technique [2]) attempt to learn
dictionaries of elementary waveforms by maximizing some cost criteria that
balances the coding cost/sparsity and the average approximation error, on a set
of training signals. However, only a few current optimization criteria for building
these dictionaries have been proposed that explicitly take into account human
perception. This should also be explored in a near future, with the goal of being
used for perception-related applications, such as hearing aids. For example, Patil
et al. have reported very accurate classification of musical instrument sounds by
using joint spectro-temporal representations modeling auditory cortical responses
[81].

Another option would be to infer the feature set used for recognition from the
behavioral data. This idea has been developed very recently for speech recognition
[61, 117, 118] and musical instruments recognition [112], with techniques inspired
by reverse correlation, wherein features are initially chosen randomly and then
selected based on behavioral performance (the “bubble” technique used in vision
[34]). These reverse correlation techniques, originally developed for feature detec-
tion in audition [3], have proven very effective to reveal important spectro-temporal
modulations for speech intelligibility, and should be a good path to follow for natural
sound and environmental sounds recognition in general.
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Taken together, the results in this section suggest that our auditory system can
retain few diagnostic features of a given sound, for recognition and further use,
although it is obvious that it depends on the task, as we can still easily differentiate
a sketch from its natural version, in the same way as we can differentiate a visual
sketch from a photography. Perhaps through experience, listeners seem to be able
to learn these discriminant features, and can then afford fast and robust recognition
of sometimes very impoverished signals.

3.4.3 Discussion: On the Dimensionality of Auditory
Representations

The concepts of auditory dimension and features have been used extensively
throughout this chapter: timbre studies have highlighted a few systematic dimen-
sions across a wide range of sounds, the segregation of auditory scene analysis is
based on the temporal coherence of auditory dimensions, and recent approaches
have shown that recognition of sound sources relies on a few features of sparse
representations of the signals. It is important to note that these results do not support
the idea that auditory perception could be based on a limited, reduced, and rigid
set of features used in every situation. On the contrary, auditory features seemed
to be task- and listener-dependent. As an example, recent studies have shown that
prior exposure to complex, abstract noise textures with little structure improves the
performance at a subsequent repetition detection task [1]. This suggests that auditory
representations for noise encode some complex statistical properties of sounds,
and that these properties may in fact be noise- and listener-dependent. Another
important consideration comes from the music information retrieval community.
In fact, the techniques that best recognize musical instruments or styles are not
based on a few recurrent dimensions: they use and create whichever pieces statistical
information are useful for a given classification task, relying on high-dimensional
representations [6, 79, 81, 98]. Although this does not prove that the auditory
system necessarily uses such a strategy, it shows that high-dimensional, redundant
representations can yield performances similar to human listening.

Taken as a whole, these results show that, whereas similarity judgments (such
as those used in timbre studies reported in Sect. 3.2.2.3) may be based on a small
number of common dimensions, identifying sounds may in fact rely on diagnostic
features, idiosyncratic to each sound class, learned by listeners through their
individual experience [89]. In other words, these results suggest a versatile auditory
system that uses whichever pieces of auditory information fit its purpose, sampled
from an optimized representation of the acoustic environment. In fact, the auditory
system may have evolved to provide optimized representations of the variability
of the acoustic environment (including speech signals) [99]. Such representations
may capture the complexity of the acoustic environment in a very effective way. A
current challenge of auditory research is to discover these representations. Another
challenge is to understand how the auditory system uses such representations to
parse complex auditory scenes.
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3.5 Summary

Auditory scenes result from a myriad of sound waves merging at a microphone
or the listener’s ears, originating from many sound sources, propagating through a
medium (air) whose attenuation is frequency-dependent, bouncing off rigid surfaces
and bending over smaller obstacles, adding one with another through complex
patterns of interferences. The complex mixture at the listener’s ears is thus very
different from the sounds of each individual source, yet listeners make sense of
these complex auditory scenes effortlessly. This ability relies on three aspects of
audition: The auditory system processes and encodes incoming auditory signals,
segregates the scenes into auditory objects, and associates the auditory objects
with sound sources. This chapter has reviewed studies of these mechanisms as
well as their current models. The peripheral auditory system is usually modeled
by a bank of overlapping auditory filters followed by a nonlinear component.
The outputs of such models are used to compute a variety of features correlated
with basic auditory dimensions: loudness, pitch, and the dimensions of timbre.
The coherence of these dimensions over time for different auditory objects then
serves the purpose of segregating the complex mixture reaching a listener’s ears into
auditory objects. Segregation mechanisms benefit in addition from attention, prior
knowledge and expectations, and multisensory integration. Listeners also associate
auditory objects with their sources with no apparent effort: they identify the sound
events that have caused the sounds. Research has identified the acoustic correlates
of certain perceived properties of sound events (e.g., material, size, velocity), yet
the perception of these properties is not accurate in every case. Recent approaches
have tackled the issue of sound identification from a different perspective, seeking to
identify features of biologically inspired sparse representations of auditory signals
that subserve sound recognition.
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Abstract Most of the time it is nearly impossible to differentiate between
particular type of sound events from a waveform only. Therefore, frequency-domain
and time-frequency domain representations have been used for years providing
representations of the sound signals that are more in line with the human perception.
However, these representations are usually too generic and often fail to describe
specific content that is present in a sound recording. A lot of work has been devoted
to design features that could allow extracting such specific information leading to a
wide variety of hand-crafted features. During the past years, owing to the increasing
availability of medium-scale and large-scale sound datasets, an alternative approach
to feature extraction has become popular, the so-called feature learning. Finally,
processing the amount of data that is at hand nowadays can quickly become
overwhelming. It is therefore of paramount importance to be able to reduce the
size of the dataset in the feature space. The general processing chain to convert a
sound signal to a feature vector that can be efficiently exploited by a classifier and
the relation to features used for speech and music processing are described in this
chapter.
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4.1 Introduction

The time domain representation of a sound signal, or waveform, is not easy to
interpret directly. Most of the time it is nearly impossible, from a waveform, to
identify or even localise sound events (unless they occur at different dynamic
range, e.g., a loud noise in a quiet environment) and to discriminate between sound
scenes. Therefore, frequency-domain representations and time-frequency domain
representations (including multiscale representations) have been used for years
providing representations of the sound signals that are more in line with the human
perception.

However, these representations are usually too generic and often fail to describe
specific content that is present in a sound recording. A lot of work has been devoted
to design features that could allow extraction of such specific information, leading
to a wide variety of hand-crafted features. One problem with these types of features
is that, by design, they are specific to a task and that they usually do not generalise
well. They often need to be combined with other features, leading to large feature
vectors. During the past years, owing to the increasing availability of medium-scale
and large-scale sound datasets, an alternative approach to feature extraction has
become popular, the so-called feature learning that has proven competitive with
most finely tuned hand-crafted features.

Finally, in both cases, using either feature engineering or feature learning,
processing the amount of data that is at hand nowadays can quickly become
overwhelming. It is therefore of paramount importance to be able to reduce the
size of the dataset in the feature space either by reducing the feature vectors
dimensionality or by reducing the amount of feature vectors to process.

The general processing chain to convert a sound signal to a feature vector that can
be efficiently exploited by a classifier is described in this chapter. The standard steps
are presented sequentially (see also Fig. 4.1). It is also crucial to design features that
are robust to perturbation. Therefore, the possibility to enhance signals or enforce
robustness at each step is discussed in the corresponding section when applicable.
Finally, the relation to features used for speech and music processing is briefly
discussed in Sect. 4.7 and conclusions are presented in Sect. 4.8.

4.2 Signal Representations

Over the years, a large amount of work has been devoted to finding appropriate
representations that allow extraction of useful information from sound signals. Some
of the main classes of sound signals representations are presented in this section.
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Fig. 4.1 Standard feature
extraction process

Feature engineering
(Sect. 4.3)

Signal representations
(Sect. 4.2)

Feature learning
(Sect. 4.4)

Feature selection
(Sect. 4.5.2)

Temporal pooling/integration
(Sect. 4.6)

Dimensionality reduction
(Sect. 4.5.1)

4.2.1 Signal Acquisition and Preprocessing

In general terms, sound is the result of a vibration that propagates as waves through
a medium such as air or water. Sounds can be recorded under the form of an electric
signal x.t/ by means of an electroacoustic transducer such as a microphone. This
analog signal x.t/ can then be converted to a digital signal xŒn� and stored on a
computer before further analysis. The necessary steps to perform this analog-digital
conversion include:

• A filtering stage: the analog signal x.t/ is low-pass filtered in order to limit its
frequency bandwidth in the interval Œ0;B� where B is the cut-off frequency of the
low-pass filter.

• A sampling stage: the low-passed analog signal is then digitally sampled at a
sampling rate fs D 2B to avoid the well-known frequency aliasing phenomenon.

• A quantification stage: the obtained digital signal is then quantised (e.g. the
amplitude of the signal can only take a limited number of predefined values to
preserve storage capacity).
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• Optional additional stage: in some cases, additional preprocessing stages can
be performed such as pre-emphasis. This step can be performed under the form
of a simple first order finite impulse response (FIR) high-pass filter. Historically,
this step was performed on speech signals prior to linear prediction (LP) analysis
to cope with its typical �6 dB spectral tilt which was shown to be detrimental
for LP parameters estimation. In other situations, this step is less justified and is
therefore not mandatory.

Typical values for audio CD quality are a sampling rate of fs D 44:1 kHz and a
quantisation on 16 bits per sample leading to a bit rate of 705,600 kbit/s for a single
channel audio signal. Higher quality standards include sampling rates of 48, 96 or
192 kHz and quantisation on 24 bits.

4.2.2 General Time-Frequency Representations

The sound signals are usually converted to the frequency-domain prior to any
analysis. The frequency-domain representation of a signal xŒn� on a linear-frequency
scale can be obtained with the discrete-time Fourier transform (DFT):

XŒf � D
1X

nD�1

xŒn�e�i2� fn (4.1)

The spectrum XŒf � is fs-periodic in f with fs the sampling frequency. The frequency
f D fs

2
represents the Nyquist-frequency.

The spectrum XŒf � can be transformed back to time domain with the inverse
discrete-time Fourier transform (IDFT):

xŒn� D
1

fs

Z fs
2

�
fs
2

XŒf �ei2� fndf (4.2)

In practice, the spectrum XŒf � is approximated by applying the DFT on a windowed
frame of length N of the signal xŒn�. This is referred to as the short-time Fourier
transform (STFT). The f th component of the DFT of the tth frame of xŒn� is
computed as follows:

XŒt; f � D
N�1X

kD0

wŒk�xŒtN C k�e
�i2�kf

N (4.3)

where wŒk� is a window function (e.g. rectangular, Hamming, Blackman, etc.) used
to attenuate some of the effects of the DFT approximation and to enforce continuity
and periodicity at the edge of the frames. Equation (4.3) is given with a hop between
frames equal to the length of the frames (N). This means that there is no overlap



4 Acoustic Features for Environmental Sound Analysis 75

between consecutive frames. It is common to choose a hop size that is smaller
than the frame length in order to introduce overlap that allows for smoother STFT
representation and introduces statistical dependencies between frames.

The tth frame of time domain signal xŒn� can be obtained from the discrete
spectrum XŒt; f � by applying the inverse STFT. Both the STFT and the inverse STFT
can be efficiently computed using the fast Fourier transform (FFT) and the inverse
fast Fourier transform (IFFT), respectively.

The STFT allows for defining the linear-frequency spectrogram which is a 2D
representation of a sound where energy in each frequency band is given as a function
of time. The spectrogram is then the matrix where each column is the modulus of
the DFT of a sound signal frame (see also Fig. 4.2b).
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Fig. 4.2 Different time domain and time-frequency domain representations of a sound signal
recorded in a restaurant: at 0.5 s someone is clearing his throat, at 2 s there is some cutlery
noises [66]. (a) Temporal waveform. (b) Linear-frequency spectrogram. (c) Mel spectrogram. (d)
Constant-Q spectrogram
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4.2.3 Log-Frequency and Perceptually Motivated
Representations

It is often desirable to search for information in specific frequency bands. This may
be achieved by computing energy or energy ratios in predefined frequency bands
(see also Fig. 4.2c). The bands can be equally spaced on the frequency axis, placed
according to logarithm or perceptual laws. The number of bands, the shape of the
prototype filter and the overlap between bands can also vary greatly.

1. Critical bands were introduced by Fletcher [33]. The key idea is that critical
bands describe the bandwidth of the auditory filters in the cochlea. Conceptually,
this means that two tones within the same critical band will interfere with
each other, this is the so-called frequency masking phenomenon. The equivalent
rectangular bandwidth scale (ERB) provides a way to compute the central
frequency and bandwidth of the rectangular filters approximating the auditory
filters [35]:

ERB.f / D 24:7 �

�
4:37

f

1000
C 1

�
(4.4)

with f in Hertz. The Bark scale is another scale relying on the concept of critical
bands but that was derived from different experiments [95].

2. Gammatone filters are linear filters whose impulse response gammaŒn� is
composed of a sinusoidal carrier wave (a tone) modulated in amplitude by an
envelope that has the same form as a scaled gamma distribution function:

gammaŒn� D an��1e�2�bn cos .2� fcnC ˚/; (4.5)

where a is the amplitude, � is the filter order, b is a temporal decay coefficient
(related to the bandwidth of the filter), fc the frequency of the carrier (related
to centre frequency of the filter) and ˚ the phase of the carrier (related to the
position of the envelope on the carrier). Similarly to ERB, gammatone filters of
order 4 have been shown to provide a good approximation to auditory filters [71].

3. Mel scale corresponds to an approximation of the psychological sensation of
heights of a pure sound (e.g. a pure sinusoid) [86]. Several analytical expressions
exist [68], a common relation between the mel scale mel.f / and the Hertz scale
f was given by Fant [31]:

mel.f / D
1000

log 2
log

�
1C

f

1000

�
(4.6)

4. Constant-Q transform (CQT) is closely related to DFT. One major difference is
that instead of using a frequency scale with constant spacing between frequencies
(as in DFT), the frequencies are distributed geometrically [13]. This yields a
constant ratio Q between the central frequency of a band fk and the frequency
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resolution fk � fk�1, therefore the name CQT. The central frequency for the kth
band is given by:

fk D f0 � 2
k
b ; (4.7)

with f0 the central frequency of the first band and b the number of frequencies
per octave (see also Fig. 4.2d). This transform was originally introduced to map
the western musical scale.

4.2.4 Multiscale Representations

Multiscale approaches allow for flexible decompositions, representing the sound
signal on multiple scales for both time and frequency. Some of the most common
approaches are presented below :

1. Pyramids are multiscale representations that were originally introduced for
image processing [14]. Pyramids are built recursively by applying at each step
a convolutive operation (filtering) followed by a down-sampling operation on
a signal. This procedure allows to extract information at different resolutions.
There are two main type of pyramids: the so-called Gaussian pyramids (where
a low-pass filtering is applied) [14] and the Laplacian pyramids (where a band-
pass filtering is applied) [15]. Pyramids with quadratic mirror filters (QMF) [22]
have been shown to be closely related to wavelets [58].

2. Wavelets are functions that can generally be visualised as a brief oscillation and
that should integrate to zero [36, 59]. Given a discrete-time wavelet �.x/, it is
possible to define a wavelet basis by applying translation and dilatation on the
wavelet

�ab.x/ D
1
p

a
�

�
x � b

a

�
; (4.8)

with a 2 R
C the dilatation factor and b 2 R the translation factor. The translation

then allows for covering different time instants while the dilatation of the wavelet
enables multiscale analysis [58]. Note that in practice a and b often take their
value in a discrete subspace of R, defining the so-called discrete wavelets bases.

3. Scattering transform builds invariant and stable representations by cascading a
wavelet transform, a modulus operation and a low-pass filtering operation [60].
Scattering transform can capture non-stationary behaviour and can be interpreted
as an operation that calculates modulation spectrum coefficients of multiple
orders. This approach can enable the modelling of signal dynamics as well as
sound textures that are important aspects in the characterisation of environmental
sounds.



78 R. Serizel et al.

4.2.5 Discussion

Time-frequency representations such as STFT were designed mainly according
to mathematical rules leading, for example, to linear-frequency scales. Human
perception studies have shown that we do not perceive sound similarly in each
region of the spectrum and that the resolution of the human ear also varies along
the frequency axis. Therefore, non-linear-frequency scales have been introduced
in an attempt to mimic human perception and provide a better way to extract
information from sound signals. The frequency scale can be tuned to map the
auditory filters (critical bands, ERB, bark scale), to match perceptual behaviour (mel
scale) or according to the intrinsic properties of the signal to represent (CQT). In
any case, adjusting the granularity of the frequency scale usually allows designing
more accurate representations of the signal of interest and can therefore lead
to increased robustness. It is also possible to apply standard frequency-domain
filtering [29, 39, 93] to time-frequency domain representations in order to attenuate
the effects of additive perturbations.

Perceptually motivated time-frequency representation often constitutes an impor-
tant part of sound scene and event analysis systems. They serve, either as a
way to visually observe the time-frequency content of the sound scene, or as
an input representation to more complex classification systems. Therefore, in
many cases, their computation is one of the first steps for applying some of the
feature engineering or feature learning techniques presented in Sects. 4.3 and 4.4.
Extracting representations based on mel or gammatone filterbanks can be necessary
to compute cepstral features (see Sect. 4.3.3), which are widely popular in the
field [73, 90]. Other representations such as the CQT are often used to build time-
frequency images from which image-based features are extracted [10, 78, 94]. Such
representations are also considered as inputs to feature learning techniques such as
nonnegative matrix factorisation [6, 11, 21], or can be directly used as features for
deep neural network-based systems [70, 75].

Yet, in these approaches there is only one fixed frequency scale that is non-linear
and the time scale remains linear. As sound signals contain information at different
time and frequency scales, parts of the signal might be overlooked with these
representations. Some works based on variants of the scattering transform proved
the usefulness of multiscale representations to perform sound event classification in
real-life conditions [56, 82].

4.3 Feature Engineering

Similarly to other sound processing tasks, feature extraction for sound scene and
event analysis has often relied on the so-called feature engineering. This is the art
of carefully crafting ad-hoc features from low-level representations heavily relying
on expert knowledge about class invariances. Some of the most common feature
classes are presented in this section (see also Fig. 4.3).
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Fig. 4.3 Feature engineering process

4.3.1 Temporal Features

These features are computed directly on the temporal waveform and are therefore
usually rather straightforward to compute. Some of the most common temporal
features are described below.

1. Time domain envelope can be seen as the boundary within which the signal is
contained. A simple implementation relies on the computation of the root mean
square of the mean energy of the signal xŒn� within a frame t of size N spanning
over the time indexes n 2 fnt; nt C 1; : : : nt C Ng :

e.t/ D

vuut 1

N

ntCNX

nDnt

xŒn�2 :

It is a reliable indicator for silence detection.
2. Zero crossing rate (ZCR) is given by the number of time the signal amplitude

crosses the zero value. For a frame t of size N, it is given by:

zcr.t/ D
1

2

ntCNX

nDnt

jsign.xŒn�/ � sign.xŒn � 1�/j ; (4.9)

where sign.xŒn�/ returns the sign of the signal amplitude xŒn�.
It is a very popular feature since it can, in a simple manner, discriminate

periodic signals (small ZCR values) from signals corrupted by noises that are
random to a certain degree (high ZCR values).

3. Temporal waveform moments allow the representation of different characteris-
tics of the shape of the time domain waveform. They are defined from the first
four central moments and include the following characteristics:

• centre of gravity of the waveform: temporal centroid,
• spread around the mean value: temporal width,
• waveform asymmetry around its mean: temporal asymmetry,
• overall flatness of the time domain waveform: temporal flatness.

Note that these moments can also be computed on the spectrum (see below).
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4. Autocorrelation coefficients can be interpreted as the signal spectral distribution
in the time domain. In practice, it is common to only consider the first K
coefficients which can be obtained as:

R.k/ D

PN�k�1
nD0 xŒn�xŒnC k�

qPN�k�1
nD0 x2Œn�

qPN�k�1
nD0 x2ŒnC k�

4.3.2 Spectral Shape Features

Studies on the perception of sound widely rely on the frequency content of
sound signals. Therefore, it is a natural choice to derive features from frequency
representations of a signal, for example, its spectrogram. Some of the most common
spectral features are described below.

1. Energy is one of the most straightforward yet important spectral feature. This
feature can be computed directly as a sum of the squared amplitude components
jXŒt; f �j in the band. It is also common to compute the log energy in a band.

2. Spectral envelope is conceptually similar to time domain envelope but in the
frequency domain. It can be seen as the boundary within which the spectrum of
a signal is contained. The spectral envelope can be approximated, for example,
using linear predictive coding (LPC) [69].

3. Spectral moments describe some of the main spectral shape characteristics.
They include the spectral centroid, the spectral width, spectral asymmetry and
spectral flatness. They are computed in the same way as the temporal waveform
moments features by replacing the waveform signal xŒn� by the Fourier frequency
components XŒt; f � of the signal.

4. Amplitude spectral flatness is an alternative to the spectral flatness feature. It
is computed as the ratio between the geometric and the arithmetic means of the
spectral amplitude (globally or in several frequency bands).

5. Spectral slope measures the average rate of spectral decrease with frequency
(more details can be obtained in Peeters [72]).

6. Spectral roll-off is defined as the frequency under which a predefined percentage
(typically between 85% and 99%) of the total spectral energy is present.

7. Spectral flux characterises the dynamic variation of the spectral information. It is
either computed as the derivative of the amplitude spectrum or as the normalised
correlation between successive amplitude spectra.

8. Spectral irregularity features aims at a finer information description linked to
the sound partials (e.g. individual frequency components of a sound). Several
approaches have been proposed to estimate these features [72].

In sound scene and event analysis, the temporal and spectral shape features are
rarely used separately. In fact, they are mostly simple features designed to model
specific aspects of the signal and thus are most often combined with several other
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features. The log mel energy features are a notable exception, they are powerful
enough to be used on their own as input for classification or feature learning. Only a
few earlier studies have compared their individual effectiveness for the task [17, 73].
Instead, the temporal and spectral shape features are more often considered and
evaluated together as one set of features sometimes referred to as low-level features.

4.3.3 Cepstral Features

Cepstral features allows the decomposition of the signal according to the so-called
source-filter model widely used to model speech production. The signal is then
decomposed into a carrier (the source, for speech it can be the glottal excitation)
and a modulation (the filter, for speech it includes the vocal tract and the position of
the tongue).

1. Mel frequency cepstral coefficients (MFCC) are the most common cepstral
coefficients [23]. They are obtained as the inverse discrete cosine transform of
the log energy in mel frequency bands:

mfcc.t; c/ D

s
2

Mmfcc

MmfccX

mD1

log
�
QXm.t/

�
cos

 
c
�
m � 1

2

�
�

Mmfcc

!
; (4.10)

where Mmfcc is the number of mel frequency bands, m the frequency band index,
QXm.t/ is the energy in the mth mel frequency band and c is the index of the
cepstrum coefficient .c 2 f1; 2; : : : ;Mmfccg/ (see also Fig. 4.4b).

In practice, a common implementation uses a triangular filterbank where each
filter is spaced according to a mel frequency scale (4.6) (see also Fig. 4.4a). The
energy coefficients QXm.t/ in the band m are obtained as a weighted sum of the
spectral amplitude components jXŒt; f �j (where the weights are given according
to the amplitude value of the corresponding triangular filter). The number Mmfcc

of filters typically varies between 12 and 30 for a bandwidth of 16 kHz. MFCC
are widely used for speech processing but they are also among the most popular
features for sound scene analysis [73].

2. Alternative cepstral decompositions can be obtained similarly to MFCC from
other frequency-domain representations. This had led to the introduction of
features such as the linear prediction cepstral coefficients (LPCC) based on LPC
coefficients, the gammatone feature cepstral coefficients (GFCC) or constant-Q
cepstral coefficients (CQCC). None of these features are as popular as the MFCC
but GFCC, for example, have been applied to sound scene analysis [74, 90].
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Fig. 4.4 Mel filterbank (a) and MFCC decomposition (b)

4.3.4 Perceptually Motivated Features

Studies on human perception have allowed for a better understanding of the human
hearing process. Some results from these studies (such as results on auditory filters)
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have been exploited in feature engineering and led to widely used features such as
MFCC. However, there is still a large variety of perceptual properties that could be
exploited in feature extraction (see [80] for a list of common perceptually motivated
features for audio classification). To illustrate this category, three perceptual features
are described below:

1. Loudness (measured in sones) is the subjective impression of the intensity of
a sound in such a way that a doubling in sones corresponds to a doubling of
loudness. It is commonly obtained as the integration of the specific loudness
L.m/ over all ERB bands:

L D
MERBX

mD1

L.m/ ; (4.11)

with MERB the number of ERB bands. The loudness in each band can be
approximated [72] by :

L.m/ D QX0:23m (4.12)

where QXm is the energy of the signal in the mth band [see also (4.4)].
2. Sharpness can be interpreted as a spectral centroid based on psychoacoustic

principle. It is commonly estimated as a weighted centroid of specific loud-
ness [72].

3. Perceptual spread is a measure of the timbral width of a given sound. It is
computed as the relative difference between the largest specific loudness and
the total loudness:

Sp D

�
L �maxm.L.m//

L

�2
(4.13)

4.3.5 Spectrogram Image-Based Features

Features can also be extracted from the time-frequency representation of a sound
scene. Spectrogram image-based features rely on techniques inspired by computer
vision to characterise the shape, texture and evolution of the time-frequency content
in a sound scene. Such features have proven to be competitive with more traditional
audio features on some sound scene classification tasks [47, 78].

1. Histogram of oriented gradients (HOG) are image-based features used in
computer vision to perform shape detection in images. They are computed from
a spectrogram image of a sound scene with the goal of capturing relevant time-
frequency structures for characterising sound scenes and events [78]. They are
usually extracted by computing a gradient image containing the gradients of each
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pixel in a spectrogram image. Each pixel of the gradient image represents the
direction of the change in intensity in the original image. After separating the
image in non-overlapping cells, a histogram of the gradient orientations for each
pixel is computed in each cell. Variations for the HOG features include the choice
of the cells, the normalisation of the histograms and the number of orientations.

2. Subband power distribution (SPD) relies on a transformation of a time-
frequency image into a two-dimensional representation of frequency against
spectral power [24]. They are computed by estimating the spectral distribution
in each subbands of a spectrogram. In practice the distributions are estimated by
extracting a histogram of the pixel values in each subband. The SPD image can
directly be used either as features [24] or as an intermediate representation for
extracting other image-based features [10].

3. Local binary pattern (LBP) analysis is a feature extraction technique used
in image recognition to characterise textures in an image. The LBP features
are binary vectors associated with each pixel in an image. They are built by
comparing the value of a given pixel to others in a fixed neighbourhood. For
example, local binary patterns can formed by comparing a given pixel to its
eight neighbours, leading to a vector of size eight filled by attributing a value of
one to neighbour pixels that have a value above the centre pixel and zero to the
others. Similarly to the HOG features, the final LBP features are often obtained
by computing the distribution of the different local binary patterns in regions of
the image. LBP have been applied sound scene analysis in order to capture the
texture and geometrical properties of a scene’s spectrogram [4, 47].

4.3.6 Discussion

“Hand-crafted” features are generally very successful for sound analysis tasks, but
very few works in sound scene and event analysis focused on creating features
adapted to the specificity of the problem. Instead, a more common approach is to
select and adapt features initially introduced for other tasks. A now well-established
example of this trend is the popularity of MFCC features in sound scene and event
analysis systems. Although many studies have proved the superiority of other “hand-
crafted” features for the task, many systems limit themselves to the use of MFCCs
while mostly focusing on the classification and detection stage.

One advantage of this approach is that it allows to re-use the work done on
MFCC. For example, time domain and frequency-domain filtering [29, 39, 93] to
enforce robustness to additive perturbations or cepstral mean normalisation [51] to
attenuate the effects of convolutive perturbations. One of the main drawbacks of
feature engineering is that it relies on transformations that are defined beforehand
and regardless of some particularities of the signals observed at runtime (recording
conditions, recording devices, etc.).
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4.4 Feature Learning

Representation learning techniques have recently proven superior to manually
designed features in many classification and other sound analysis tasks. Indeed
more and more datasets of significant size have become available that can be
used to develop feature learning techniques. Developments in nonnegative matrix
factorisation [52], sparse representation learning [40], dictionary learning [57]
and deep learning [8] are manifestations of this trend. This approach allows for
extracting features that reflect the underlying structure of the data considered in
a particular task, providing high level representations that can generalise, to some
extent, to data configurations unseen during the training phase.

The potential of feature learning techniques is particularly clear for sound scene
event analysis. In fact, real-life sound events can be of very different nature resulting
in a wide variety of possible time-frequency structures present in a sound scene.
Moreover, for tasks like sound scene or event classification, only parts of the
information are relevant to discriminate the different target sound object classes.
The usefulness of feature learning has already been demonstrated on many scene
and event classification datasets. For example, works relied on clustering [83], bag-
of-features [76, 94] or nonnegative matrix factorisation [5, 11, 65] techniques in
order to learn more discriminative representations of sound scenes and events.

4.4.1 Deep Learning for Feature Extraction

During the past decade, advances in terms of training algorithms [42, 92] and
computing power have led to the generalisation of the use of deep learning
techniques [7] that are now the state of the art in many audio applications. Besides
their most common application in pattern classification (see also Chap. 5) deep
learning techniques such as deep neural networks (DNN) (Chap. 5, Sect. 4.2),
convolutional neural networks (CNN) (Chap. 5, Sect. 4.3), recurrent neural networks
(RNN) (Chap. 5, Sect. 4.4) can be applied to learn features. A particular type
of network architecture that is often used in feature learning are the so-called
bottleneck networks (BN) that contain a hidden layer whose size is smaller than
other hidden layers. There are then two main different strategies that can be applied
to learn features with deep learning:

1. Supervised learning: When annotated data is available it is often desired to
train the network in a supervised manner in order to learn features that are
discriminative between the target classes. At runtime, in the case of DNN, the
last hidden layer is used to extract features [41] while in BN it is the bottleneck
layer [37] that provides the features.

2. Unsupervised learning: With the increasing amount of data at hands it is
often the case that at least part of the data available is not annotated. In this
case, feature learning will have to rely on unsupervised techniques in order to
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extract intrinsic properties of the sound signals. Deep networks can then be
trained with restricted Boltzmann machine [42] or stacked autoencoder [92].
In the latter approach, the network is built gradually by combining denoising
autoencoders [91]. An autoencoder is a neural network with one hidden layers
whose targets are low-level representations of the sound signal. The input of the
autoencoder is generally obtained from a (artificially) degraded version of the
sound signal. During the training phase the autoencoder then aims at learning
how to reconstruct a clean signal from a noisy signal. At runtime, the feature
extraction is generally performed similarly as in the supervised case.

More technical details about deep learning in general, network topologies and
learning algorithms in particular can be found in Chap. 5, Sect. 5.4.

4.4.2 Matrix Factorisation Techniques

Matrix factorisation (MF) techniques are non-supervised data decomposition tech-
niques, akin to latent variable analysis. In sound analysis applications it generally
consists in “explaining” a set of frequency representations for T frames fv1; : : : ; vTg,
as linear combinations of basis vectors, also called dictionary elements, atoms, ele-
mentary patterns or topics. This is accomplished by determining an approximation
of the matrix V D

�
vf ;t
�

assembled by stacking the observations column-wise, under
the form:

V � OV DWH (4.14)

where W D
�
wfk
�

is an F � K-matrix whose columns wk are the basis vectors; and
H D Œhkt� is a K�T-matrix whose elements are the so-called activation coefficients,
encodings or regressors.

In the following, the tth column of H will be denoted by ht, whereas hkW will
denote its kth row relating to the sequence of activations of basis vector wk.

Generally, MF has been employed as a means of addressing diverse machine
learning or signal processing tasks, including clustering, topics recovery, temporal
segmentation and structuring, source separation or feature learning. Here, we focus
on the latter usage, which have proven effective in sound scene and event analysis
applications [12].

In such scenarios, the observations correspond to an appropriate low-level
representation, usually a variant of time-frequency representations (described in
Sect. 4.2.2), e.g., mel-spectra. These time-frequency representations are analysed by
MF, in the training stage, in order to obtain a dictionary W to be used to decompose
both training examples and new test observations vt, yielding feature vectors ht, to
be processed by a classifier.

Various data decomposition methods may actually be described with the matrix
factorisation formalism, which optimises different criteria, notably principal com-
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ponent analysis (PCA) [43] (see Sect. 4.5.1), independent component analysis [20]
and nonnegative matrix factorisation (NMF) [52]. The latter has been found to be
a particularly effective feature learning approach in the context of sound scene
analysis [11, 21] and event classification [6, 65]. Hence it is briefly described
hereafter.

The technique, which has actually been known for more than 30 years, was
popularised by Lee et al. [52] who demonstrated its ability to learn “the parts of
objects” through an application to face image decomposition. This tendency to
decompose data in a “natural” way is due to the constraint imposed to both the
dictionary and the activation, that is, all coefficients of W and H are constrained to
be nonnegative.

W and H are obtained by minimising a measure of fit D.VjWH/, while imposing
the nonnegativity of W and H, which is approached as a constrained optimisation
problem. Unfortunately, this problem is not jointly convex in .W;H/, and hence
admits numerous local and global minima. This is one of the principal reasons that
have led researchers to consider imposing different types of additional constraints on
W or H, based on prior knowledge available when handling a particular application.
In many cases, constraints have been expressed through the choice of a form of
regularised objective function, such as:

C.W;H/ D D.VjWH/C �S.H/C 	R.W/ (4.15)

where S.H/ and R.W/ are constraints on the coefficients of H and W, respectively.
Different types of constraints have been imagined, notably sparsity constraints—
possibly group sparsity—on either W or H, which is usually translated into sparsity-
inducing penalties (e.g. [26, 44, 87]). Such strategies are quite natural in a feature
learning context where they are akin to sparse coding.

Fortunately, for many choices of measure of fit D.VjWH/ and penalties S.H/ and
R.W/, the objective function C(W;H) is separately convex w.r.t W for H fixed and
vice versa. Consequently, most methods aiming to solve the minimisation problem
adopt a block-coordinate descent approach whereby update rules are alternately
applied to iterates of W and H [53].

The choice of an appropriate measure-of-fit function D.VjWH/ is of course
crucial. It is usually chosen to be a separable matrix divergence, taking the form:

D.Vj OV/ D
KX

f D1

TX

tD1

d
�
vf ;tj Ovft

�
(4.16)

where d.xjy/ is a scalar divergence. A function d.xjy/ is said to be a divergence if it
is (1) continuous over x and y; (2) d.xjy/ � 0 8 x; y � 0 and (3) d.xjy/ D 0 if and
only if x D y.

Many variants have been considered in previous works including the
ˇ-divergence [28], the general Bregman divergences [25], the ˛-divergences [19]
and Csiszar’s divergences [18], to mention a few of them. When considering sound
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signals, it is common to exploit the ˇ-divergence, focusing on particular cases
which have proven sufficiently well adapted to our applications. Special cases
of the ˇ-divergence yield popular cost functions, namely: the Itakura–Saito (IS)
divergence [32] (ˇ D 0), Kullback–Leibler (KL) divergence (ˇ D 1) and the
`2-norm or squared Euclidian distance (ˇ D 2).

4.4.3 Discussion

Feature learning techniques have seen an increase in popularity for sound scene and
event analysis applications in the last few years. They mainly aim at addressing
the general limitations of hand-crafted features mentioned in Sect. 4.3.6 and have
proven to be viable alternatives. Techniques such as NMF have shown, on multiple
occasions, to provide better representations than most feature engineering-based
methods. For example, NMF allowed to reach improved performance on sound
scene and event classification problems, either by considering the dictionaries
learned on individual sounds as features [16] or by keeping the projections on
a common dictionary representing the full training data as features [11]. Further
improvements have been attained by using sparse and convolutive variants of
NMF [11, 21, 48]. Another commonly used dictionary learning technique is prob-
abilistic latent component analysis (a probabilistic equivalent of NMF), which has
mostly been applied in its temporally constrained shift-invariant version [5, 6]. Other
successful unsupervised feature learning approaches include the use of spherical
K-means [83], bag-of-features [76, 94] for classifying sound scenes and events.
Interested reader is referred to the corresponding references for further information
about these feature learning techniques.

Another trend in sound scene and event analysis has been to introduce super-
vised variants of some of the feature learning techniques mentioned above. For
classification problems, supervised feature learning mainly aims at incorporating
prior knowledge about the class labels during the feature learning stage in order to
learn more discriminant representations of the data. Once again, several supervised
extensions of NMF have been proposed. For acoustic event detection, some works
incorporated the sequence of labels in the data before decomposing with NMF or
convolutive NMF [48, 65]. Moreover, for sound scene classification, supervision has
been introduced to NMF either by learning a nonnegative dictionary and a classifier
in a joint optimisation problem [12] or by constraining each dictionary elements to
represent only one sound label [77].

4.5 Dimensionality Reduction and Feature Selection

A large number of potentially useful features can be considered in the design of
sound scene or event classification systems. Though it is sometimes practicable
to use all those features for the classification, it may be sub-optimal to do so,
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since many of them may be redundant or, even worse, noisy owing to non-robust
extraction procedures. Thus, feature selection or compression (by transformation)
become inevitable in order to reduce the complexity of the problem—by reducing its
dimensionality—and to retain only the information that is relevant in discriminating
the target classes.

4.5.1 Dimensionality Reduction

A common approach to cope with the potentially large dimensionality of the feature
space is to use transformation techniques such as PCA, linear discriminant analysis
(LDA) or more recent approaches such as the so-called bottleneck DNN. Here, we
focus on the popular PCA technique.

PCA, also known as the Karhunen–Loeve transform, computes low-dimensional
linear approximations Ov of the original data points v in the least-squares sense, that
is by seeking a transformation matrix U� such that U� D arg minU jjOv � vjj2, with
Ov D UUTv and rank.U/ < F. This can be viewed as a projection of the initial
data v on the new coordinate axes for which the variances of v on these axes are
maximised.

The method is actually a special case of matrix factorisation, previously
presented, where W D U and H D UTV. Thus, the procedure can be viewed
as a projection of the initial data points v on new coordinate axes, called principal
components. It is worth noting that other matrix factorisation variants (presented
in Sect. 4.4.2) can be used for dimensionality reduction, as long as K < F, merely
using the activation vectors ht as low-dimensional representatives of the original vt

data points.
Solving the PCA least-squares problem is shown to be equivalent to computing

an eigenvalue decomposition (EVD) of the covariance matrix Rvv of the data and
taking U to be the K dominant eigenvectors of this decomposition. This yields the
best K-dimensional approximation of the original data in the least-squares sense.
It can then be easily verified that the covariance matrix of the transformed data is
diagonal, hence the components of the transformed data Ov are uncorrelated, and
the first few components (the so-called principal components) capture most of the
variance of the original data x. The interested reader is referred to Murphy [67] for
more details about the method.

4.5.2 Feature Selection Paradigms

Feature selection is an interesting alternative to feature transform techniques such
as PCA as the latter present the inconvenience of requiring that all candidate
features be extracted at the test stage (before the transform found during training
is applied to them). Moreover, PCA does not guarantee that noisy features will be
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eliminated (since noisy features may exhibit high variance) and the transformed
features are difficult to interpret, which is a major drawback if one expects to gain
some understanding of the qualities that best describe the classes.

By feature selection (FS), a subset of K0 features is selected from a larger set
of K candidates with the aim to achieve the lowest classification loss. The task is
quite complex: not only is it impracticable to perform the exhaustive subset search
because of the extremely high combinatorics involved, as the size of search space is
2K when K0 is not given in advance, but also it is costly to evaluate the classification
loss for each candidate feature subset. Therefore feature selection is generally solved
in a sub-optimal manner, usually by introducing two main simplifications:

• Brute-force search is avoided by recurring to a near-optimal search strategy.
• Instead of using the classification loss, a simpler feature selection criterion

is preferred, which exploits the initial set of features intrinsically, as part of
preprocessing stage, before learning the classifiers (using only selected features).
This is referred to as filter approaches (Sect. 4.5.3), as opposed to the embedded
approaches (Sect. 4.5.4), where the selection is integrated in the classifier
learning process.

4.5.3 Filter Approaches

Such approaches rely on some subset search method [54] and selection criteria—
often heuristic ones, related to class separability (possibly described using a Fisher
discriminant), or a measure of the association between features and classes (e.g.
mutual information between them).

As for the subset search method, various strategies can be considered [54] which
entail choosing a feature subset generation procedure, generally in a sequential way
(e.g. forward/backward generation, sequential floating search, random generation,
etc.), as well as a sub-optimal search strategy, which may be either deterministic,
using heuristics in the choice of the search path (e.g. adding a new feature at a time
in a forward generation process), or stochastic (e.g. using simulated annealing or
genetic algorithms).

A simpler yet popular approach reduces the task to one of ranking each feature.
Here, each individual feature is first scored—independently from the others—using
some criterion (say a separability criterion, for example). Then the features are
sorted with respect to their scores and the K0 top-ranked elements are retained for the
classification. Such an approach is clearly sub-optimal compared with the previous
search strategies, which does not prevent it from yielding satisfactory performance
in practice. Its main advantage is naturally its low complexity.
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4.5.4 Embedded Feature Selection

The embedded methods have attracted most of the attention in recent years, taking
different forms. Hereafter, we briefly cover the most salient of such approaches.

4.5.4.1 Feature Selection by Sparsity-Inducing Norms

In linear models, including support vector machines (SVM) and generalised linear
models [9], feature selection is achieved using a form of regularisation, usually
`1-norm regularisation in order to promote sparsity of the linear weight vector, as
done in the LASSO [88]. The classification model estimation problem then takes the
general form:

min
ˇ2RK

1

T

TX

tD1

`
�
yt;ˇ

Tht
�
C ˛˝ .ˇ/ I (4.17)

where yf is the class label associated with feature vector observation ht, `.:; :/ is a
classification loss function and ˝ .ˇ/ is a sparsity-inducing norm. This norm may
be constructed in such a way to account for prior knowledge on the structure of the
data, especially to perform feature-group selection, as opposed to feature-coefficient
selection [3, 45]. Such a selection process (aka feature-subset selection) may be
more advantageous, since it may be known in advance that some variables do not
make sense when isolated from a “natural” group to which they belong. Moreover,
this may allow for implicitly selecting only a subset of channels, in multi-channel
setups (again provided that different feature groups are associated with them) which
in practice is very valuable, as this could result in a simplification of the hardware
used for capturing the data.

4.5.4.2 Multiple Kernel Learning

A set of advanced feature selection techniques have been developed for kernel-based
methods [84], especially SVM classifiers, within the framework of multiple kernel
learning (MKL) [50, 79, 85]. Here the main principle is to learn the kernel 
0 to
be used by the classifier as a convex combination of predefined base kernels 
r

according to: 
0.h;h0/ D
PR

rD1 �r
r.h;h0/. Now by defining the different base
kernels on different feature groups (possibly different feature coefficients in the
extreme case), and with a proper formulation of the classifier learning problem,
involving sparsity-promoting penalties [79], only a subset of the considered kernels
will have non-zero weights in the final solution, hence only a subset of features will
be retained.
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4.5.4.3 Feature Selection in Tree-Based Classifiers

In classification schemes based on trees, possibly under boosting or random-forest
settings [38, Chap. 10], feature selection often comes as a by-product of the classifier
learning process, which may occur at various levels: either at the stage of the actual
tree growing process, where at each node a particular feature (or feature set) is
naturally selected; or at the level of the ensemble meta-classifier, which through the
selection of the weak classifiers (in boosting schemes) or the random sub-sampling
of the variables (in random forests), retains at the end of the learning only the
subset of the most useful features. Additionally, further dimensionality reduction
can be accomplished as part of a post-processing stage where efficient procedures
for variable importance determination and pruning exist [38, Chap. 10].

4.6 Temporal Integration and Pooling

Most of the features described above (see Sect. 4.3) capture specific properties of
the given signal over short-time signal analysis windows (or frames) over which
the signal can be considered stationary. Then, it is commonly assumed that the
successive observations of features in different frames are statistically independent,
which means that the time evolution of these features is neglected for classification.
In this section, we describe several strategies, often termed temporal integration, to
take into account the information conveyed in the temporal evolution of the signal.

4.6.1 Temporal Integration by Simple Statistics

Temporal integration can be directly performed on the “instantaneous” features
computed locally over short analysis frames. This so-called early integration is then
commonly done over larger time windows called texture windows (see Fig. 4.5).
The early temporal integration process can be represented by a function g which is
applied on a sequence of feature vectors, noted ht D Œh1;t h2;t : : : hK;t� where hf ;t

corresponds to the f th scalar feature observed in the tth frame.
The aims of the integration function is to either capture short-time statistics

(such as the mean and covariance described below) or to more complex temporal
integration using some kind of models (see Sect. 4.6.2). A straightforward mean for
early integration is to compute first order statistics of the feature process. The mean
integration function is then defined as

gmean .ht; : : : ;htCN�1/ D �t D
1

N

tCN�1X

kDt

hk : (4.18)
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Fig. 4.5 Illustration of the different windows used (analysis frame and texture window)

This simple approach can be extended max-abs pooling (Chap. 5, Sect. 4.3) or to
higher order statistics using, for example, the full covariance matrix (or only the
empirical variance of the features), the skewness or kurtosis (see, for example, [46,
61, 89] for some examples on music signal processing applications).

4.6.2 Model-Based Integration

More sophisticated models can also be used to model the temporal dependency
between successive features. It is, for example, possible to model the sequence
of features as an autoregressive process. Such a model will capture some global
spectral properties, where the level of details depends on the order of the AR model.
Following the multivariate autoregressive model used in Meng [63] for music genre
classification, the corresponding integration function gMAR can be written as :

gMAR .ht; : : : ;htCN�1/ D
h

Ow OA1 : : : OAp

i
; (4.19)

where Ow and f OApgpD1;:::;P are the least-square estimators of the model parameters
for the t texture window and where the pth order model, denoted by MAR.p/ is
defined as:

ht D OwC
PX

pD1

ht�p OAp C "t ; (4.20)

with "t being a D-dimensional white noise vector.
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A number of variations of this model have been proposed including, for example,
the diagonal autoregressive model or the centred autoregressive model.

Direct extensions of the previous concepts aim at computing spectral character-
istics of the feature sequence. Such integrated features include, for example, the
modulation energy of “instantaneous” MFCC features [62], the spectral moments
of the feature sequence over a texture window, the STFT coefficients (or as more
recently proposed the coefficients of the scattering transform) for every feature over
a texture window.

An alternative strategy will consist in incorporating some learning or classifica-
tion paradigms in the feature calculation. It is, for example, possible to estimate
the probability density of the feature sequence over a texture window and to
model it using a Gaussian mixture model (GMM), GMM super-vectors or even
I-vectors [27]. Since these integration approaches can be considered as part of the
classification algorithm, they are not further discuss herein.

4.6.3 Discussion

In sound scene and event analysis, the importance accorded to temporal integration
of features largely depends on the target problem. First, for a task like sound event
detection, where precise estimation of event onset times is required, the use of
temporal integration is rather uncommon. Instead, the temporal information of the
sound scene is modelled during the classification stage by using technique such as
hidden Markov models [30, 64], RNN [1, 70] or CNN for finite context [75].

The importance of temporal integration is particularly clear for other tasks
like sound scene and event classification, where the decision is taken on longer
segments of sound. Because of the frame-based nature of many of these features, a
particular focus on temporal integration is required in order to model the distribution
of the features across the full duration of the sound examples. In that case, the
most common approaches are either to classify the frame-based features before
performing voting strategies or to directly classify statistics of frame-based features
computed over the full duration of the sound (see also late and early fusion
techniques in Chap. 5). In the latter case, the most common way of modelling the
temporal information is either to extend the feature set with their first and second
order derivatives or to compute their average over time, possibly combined with
more complex statistical functions [34, 49]. The use of Recursive Quantitative
Analysis [81] on frame-based features has also proven to be effective for modelling
temporal information.
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4.7 Relation to Work on Speech and Music Processing

Speech and music are specific examples of sound signals and, as such, share many
acoustical characteristics with sound scenes and sound events recordings. Speech
processing is a well-established field with a long history of research. Numerous
features have then been proposed to characterise speech signals and used in several
major classification tasks such as speech recognition or speaker identification.
Music signal processing, although more recent than speech, is nevertheless another
major domain of audio signal processing with a strong history.

It is therefore not surprising that a large body of features formerly introduced in
speech and music research has been directly applied to sound scene or sound event
recognition. ZCR, filterbanks, cepstral features and a number of perceptually moti-
vated features [80] were indeed proposed previously for varied sound classification
tasks.

In particular, the MFCC described in Sect. 4.3.3, remain, even today, one of
the most widely used features in sound classification since its initial use for a
music processing task by Logan [55]. This is surprising since MFCC were initially
designed for processing speech signals and in particular for speech recognition [23].
In fact, MFCC integrate some perception properties and, with reference to the
classic speech source-filter production model, mainly discard the source part making
the MFCC rather pitch independent. A direct application of MFCC for music and
environmental sound analysis is surprising since (1) the pitch range is much wider in
general sound signals than in speech; (2) for high pitches the deconvolution property
of MFCCs does not hold anymore (e.g. MFCC become pitch dependent) and (3)
MFCC are not highly correlated with the perceptual dimensions of “polyphonic
timbre” in music signals despite their widespread use as predictors of perceived
similarity of timbre [2, 64, 80]. It seems, however, that the MFCC’s capacity to
capture “global” spectral envelope properties is the main reason of their success in
sound classification tasks.

However, it is worth emphasising that some recent proposals targeted features
especially designed for sound scenes or sound events recognition. These include,
for example, the matching pursuit-based features proposed in Chu et al. [17], the
image-based histogram features proposed in Rakotomamonjy et al. [78] or the
learned matrix factorisation features [11]. Indeed, the problem of sound scene and
sound event recognition is different and calls for features that are adapted to the
specificities of the problem, to the scarcity of training (annotated) data and to the
fact that individual classes (especially events) may be only observed in mixtures.

4.8 Conclusion and Future Directions

In this chapter we have presented an overview of the different blocks of a standard
feature extraction process. The analysis of sound scene and events is a relatively new
field of research in the context of sound signal analysis in general. Thus, the majority
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of the techniques presented in this chapter were introduced for other applications
and have only later been applied to address sound scene analysis problems. In fact,
many early works focused on comparing the effectiveness of different previously
existing feature extraction techniques with strong inspirations from speech and
music processing techniques.

We have shown that the first step in most feature extraction techniques is the
choice of a suited time-frequency representation. Being at the beginning of the
processing chain they play crucial role in building a sound scene analysis system.
However, the choice of the representation and its parameters is rarely justified apart
from stating the perceptually motivated aspect of most of them. As mentioned, many
systems directly input such representations into the classification stage especially for
deep learning techniques. Therefore, the performance of such systems can be limited
to the quality of the representation/features used for training. Hence, the sound
scene and event analysis field would benefit more in-depth studies of the advantages
and drawbacks of certain representation to accurately describe and discriminate
the useful information in sound scenes. Moreover, new alternative representations
have emerged, mostly based on scattering transforms, and have provided significant
increases in performance for some problems.

We have also presented a selection of the most frequently used hand-crafted
features. It is still common to see the introduction of new features for sound scene
and event analysis mainly inspired from speech, music or image processing. The
study of hand-crafted features often brings interesting insight on the content and
behaviour of sound scenes. However, they are often limited to describing only
specific aspects of the time-frequency information. Multiple studies have exhibited
this limitation of hand-crafted features by showing that combining a large variety
of different features is often required to improve performance over features taken in
isolation.

Finally, the most recent performance breakthroughs in sound scene and event
analysis have been attained by using feature learning based on MF or deep
neural network techniques. These have the advantage of automatically learning the
relevant information in the data often directly from time-frequency representations.
Therefore they allow for bypassing the exploration and engineering effort of
choosing suited features for the task. However, deep learning techniques require
their own kind of engineering effort for finding the appropriate architecture for the
target task, which is highly dependent on the content and size of the datasets. In
contrary, MF techniques for feature learning demand a lot less tuning effort and
have shown on many occasions to be competitive with deep learning systems even
when using simple classifiers. We believe that future progress in the field will be
highly conditioned on the release of new larger datasets, which will further increase
the effectiveness of deep learning techniques, as well as future developments in
unsupervised or supervised feature learning techniques such as matrix factorisation.
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Chapter 5
Statistical Methods for Scene and Event
Classification

Brian McFee

Abstract This chapter surveys methods for pattern classification in audio data.
Broadly speaking, these methods take as input some representation of audio,
typically the raw waveform or a time-frequency spectrogram, and produce seman-
tically meaningful classification of its contents. We begin with a brief overview
of statistical modeling, supervised machine learning, and model validation. This
is followed by a survey of discriminative models for binary and multi-class
classification problems. Next, we provide an overview of generative probabilistic
models, including both maximum likelihood and Bayesian parameter estimation.
We focus specifically on Gaussian mixture models and hidden Markov models,
and their application to audio and time-series data. We then describe modern
deep learning architectures, including convolutional networks, different variants of
recurrent neural networks, and hybrid models. Finally, we survey model-agnostic
techniques for improving the stability of classifiers.

Keywords Machine learning • Statistical modeling • Classification • Discrim-
inative models • Generative models • Deep learning • Convolutional neural
networks • Recurrent neural networks • Hidden Markov models • Bayesian
inference

5.1 Introduction

This chapter provides an overview of machine learning methods for pattern
classification. Throughout this chapter, our objective is to design algorithms which
take as input some representation of an audio signal, and produce some semantically
meaningful output, e.g., a categorical label indicating the presence of an acoustic
event in the audio signal.

The treatment of topics in this chapter will be relatively superficial: our goal is to
provide a high-level overview of methods for pattern classification, not an in-depth
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survey of advanced statistics and machine learning. We will assume familiarity
with linear algebra, multivariate calculus, and elementary probability theory and
statistics. We will not cover computational learning theory or optimization, but
references for those concepts will be provided.

The remainder of this chapter is structured as follows. Section 5.1 describes
the fundamentals and practical considerations of statistical learning. Section 5.2
introduces discriminative models for binary and multi-class prediction problems,
with a focus on linear models. Section 5.3 covers generative models, unsupervised
learning, and Bayesian inference, focusing on Gaussian mixture models and
hidden Markov models for audio applications. Section 5.4 provides an overview
of deep learning, including multi-layer perceptrons, one- and two-dimensional
convolutional networks, various formulations of recurrent neural networks, and
hybrid architectures. Section 5.5 describes some useful techniques to improve the
robustness and stability of classifiers. Finally, Sect. 5.6 concludes with pointers to
further readings on advanced topics.

Throughout this chapter, the input representation of audio is generally left
abstract, and may correspond to a summary of an entire recording or more localized
representations of individual audio frames. The fundamentals of binary and multi-
class discriminative classifiers described in Sect. 5.2 apply to both of these cases.
For example, a static acoustic scene classification system could apply a multi-class
discriminative classifier to a feature vector representing the acoustic properties of
the entire audio recording, resulting in a single categorical label predicted for the
entire recording. Similarly, a clip-level tagging system could apply several binary
classifiers to predict the presence of multiple concepts within a recording (e.g.,
speech, bird song, footsteps), but without localizing them in time. By contrast,
dynamic prediction tasks, such as sound event detection, would operate on localized
representations (e.g., individual frames) to produce a time-series of predictions.
Methods for exploiting temporal structure are described in Sect. 5.3.5 (Hidden
Markov models) and Sects. 5.4.3 and 5.4.4 (convolutional and recurrent networks).

5.1.1 Preliminaries

Input data will be generically denoted as x 2 X , and output variables will be
denoted as y 2 Y . The input domain X and output space Y will be left abstract
for much of this chapter, but it may be helpful to think of the concrete case where
X D R

d corresponds to some pre-computed frame-level features (e.g., mel-scaled
power spectra as described in Chap. 4) and Y D f�1;C1g are binary categorical
labels. Input–output pairs are assumed to be jointly distributed according to some
(unknown) probability distribution .x; y/ � D ; for brevity, we will sometimes write
z D .x; y/ to denote a labeled example. A classifier (or, more generally, a predictor)
will map an observed input x to an output (label) y, and be denoted as h WX ! Y .
Finally, we will characterize the accuracy of a predictor by using loss functions,
denoted by ` W Y � Y ! RC, to compare an estimated label h.x/ to a true label y.
Small values of ` indicate high accuracy, and high values of ` indicate low accuracy.
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This chapter is primarily concerned with the supervised learning model, wherein
a sample of labeled points S D f.xi; yi/g

n
iD1 (the training set) are independently and

identically distributed (I.I.D.) by a probability distribution D , and used to estimate
the parameters of the algorithm. In general, we would like to find a predictor h that
minimizes the risk1:

ED Œ`.h.x/; y/� D
Z

x;y
`.h.x/; y/ � PD Œx; y�dxdy: (5.1)

Put plainly, (5.1) captures the expected error rate of a predictor h over the data
distribution D . When ` is the 0–1 loss:

`.y; y0/ WD

(
0 y D y0

1 y ¤ y0
(5.2)

then (5.1) is the probability of incorrectly classifying a randomly selected input x.
Since D is generally unknown, minimizing (5.1) over choices of h is not possible.
The supervised learning approach is to approximate (5.1) by the empirical risk
estimated over the sample:

1

n

nX

iD1

` .h.xi/; yi/ � ED Œ`.h.x/; y/� : (5.3)

The learning problem therefore amounts to minimizing an objective function (5.3)
to solve for h over some class of models.

The predictor h is generally defined in terms of parameters  2 �, which
we denote as h.x j /. Thus, the learning problem can be generally stated as
minimizing (5.3) over the choice of  from a space � of possible configurations:

min


1

n

nX

iD1

`.h.xi j /; yi/: (5.4)

When ` is continuous and differentiable—such as in least-squares regression, where
`.y; y0/ D ky� y0k2—then (5.4) can be solved by iterative methods such as gradient
descent, or occasionally in closed form. However, for classification problems, `
is often discontinuous or non-differentiable; for example, the 0–1 loss (5.2) is
neither continuous nor differentiable with respect to  . In these cases, exactly
optimizing (5.4) can be a difficult computational problem [45, 74]. As a result, it
is common to replace the exact loss function ` with a surrogate function f that is
amenable to efficient optimization: typically this means that f is continuous and (at
least piece-wise) differentiable.

1The notation PD denotes the probability mass (or density) with respect to distribution D , and ED

denotes the expectation with respect to distribution D .
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Surrogate objective functions may operate not directly upon the predicted label
h.x j /, but on some convenient, related quantity such as conditional probability of
a category given the observed x. In general, we will denote the surrogate loss as a
function f WX �Y �� ! RC. To summarize, this chain of steps leads to a general
formulation of learning:

min


1

n

nX

iD1

f .xi; yi j /; (5.5)

where minimizing (5.5) approximately minimizes (5.4), which in turn approximates
the risk (5.3) which we would ideally minimize.2

Finally, one may wish to encode some preferences for certain configurations of 
over others. This can be achieved by including a regularization function or penalty
term g W � ! RC which takes low values for preferred configurations and high
values for undesirable configurations. The regularized learning objective then takes
the general form we will use for the remainder of this chapter:

min


1

n

nX

iD1

f .xi; yi j /C g./: (5.6)

As we will see in Sect. 5.3, the general form of (5.6) can also be used for maximum
a posteriori Bayesian inference, where the g term takes the role of the prior
distribution on the model parameters.

5.1.2 Validation and Testing

The previous section outlines a generic recipe for building predictive models:

1. Collect a labeled training sample S,
2. Specify a surrogate loss function f and penalty g,
3. Solve (5.6) to find parameters �,
4. Deploy the resulting model h.� j �/.

In practice, before deploying the model �, we would also like to have an estimate
of how well it performs on unseen data drawn from D . This can be estimated by
using a second independent sample ST � D known as the test set, which is only
used for evaluating � and not for parameter estimation.

2Quantifying the relationships between (5.5), (5.4), and (5.3) lies within the purview of statistics
and computational learning theory, and is beyond the scope of this text. We refer interested readers
to [48, 106] for an introduction to the subject.
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By the same token, it is common for practitioners to develop multiple candidate
models, generally derived from different choices of .f ; g/. Before moving on to
testing and deployment, the practitioner must choose a particular model from
among the candidates. This process is commonly referred to as validation or hyper-
parameter optimization. It is important to note that the test set ST cannot be used for
validation. Any sample data which influences the selection of  must be interpreted
as training data, regardless of whether it appears in (5.6).

The typical approach to validation is to randomly partition the training set S into
two disjoint sets S0; SV . The subset S0 is used to optimize the parameters fg for a
given model specification .f ; g/. The complementary subset SV , sometimes called
the validation set, is used to estimate the risk of fg:

ED Œ`.h.x j fg/; y/� �
1

jSV j

X

.xi;yi/2SV

`.h.xi j fg/; yi/: (5.7)

This partitioning process is typically repeated several times and the results are
averaged to reduce the variance of (5.7) introduced by sub-sampling the data. The
validation procedure then selects fg which achieves the lowest (average) validation
error.

There are virtually countless variations on this validation procedure, such as
cross-validation, stratified sampling, parameter grid search, and Bayesian hyper-
parameter optimization [12, 13, 110]. A full survey of these techniques is beyond
the scope of this chapter, but for our purposes, it is important to be comfortable with
the concepts of validation, hyper-parameter optimization, and testing.

5.2 Discriminative Models

This section provides an overview of discriminative approaches to classification.
Models will be described in terms of their objective functions, but we will omit the
details of implementing specific optimization algorithms for parameter estimation.

In simple terms, a discriminative model seeks to predict a label y as a function
of an input observation x, but does not explicitly model the input space X . In
this sense, discriminative models are simpler than generative models (Sect. 5.3),
which must model the joint distribution over X � Y . We will begin with an
overview of binary linear models, extend them to multi-class models, and discuss
their application to time-series data.

5.2.1 Binary Linear Models

The simplest models that practitioners regularly encounter are linear models. For
binary classification problems with X � R

d, a linear model is parameterized by a
weight vector w 2 R

d and bias b 2 R, so that  D .w; b/. The model is linear in the
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sense that the parameters w and b interact with the data through an inner product
(and scalar addition) to produce a score hw; xi C b. The output space is defined as
Y D f�1;C1g, so that the decision rule takes the form:

h.x j / D sign.hw; xi C b/; (5.8)

and the typical loss function of interest is the 0–1 loss. As mentioned in Sect. 5.1.1,
the 0–1 loss is difficult to optimize directly, and different choices of surrogate
functions lead to different models and algorithms.

5.2.1.1 Support Vector Machines

One of the simplest surrogate functions for the 0–1 loss is the margin hinge loss:

fC.x; y j / WD max .0; 1 � y .hw; xi C b// ; (5.9)

which incurs 0 loss when the score hw; xi C b has the same sign as y—so that the
prediction is correct—and its magnitude is at least 1 (the margin). The choice of 1
for the margin coincides with the error for misclassification `.0; 1/ D `.1; 0/, and
ensures that fC provides an upper bound on the 0–1 loss as illustrated in Fig. 5.1.

Combined with a quadratic penalty on w, the hinge loss gives rise to the standard
linear support vector machine (SVM) [30]:

min
w;b

�

2
kwk2 C

1

n

nX

iD1

max .0; 1 � yi .hw; xii C b// : (5.10)

The hyper-parameter � > 0 balances the trade-off between accuracy (minimizing
loss) and model complexity (minimizing the norm of w).

2.5
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1.0

0.5

0.0
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y (áw, xñ + b)

1 2 3

Fig. 5.1 The 0–1 loss and the hinge loss with a margin of 1. The hinge loss provides a continuous,
convex upper bound on the 0–1 loss
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5.2.1.2 Logistic Regression

An alternative to the SVM method in the previous section is to suppose a
probabilistic model of the conditional probability P Œy D C1 j x�. Since the output
space is binary, the Bernoulli distribution is a natural choice here:

PŒy D C1� WD p (5.11)

PŒy D �1� WD 1 � p D 1 � PŒy D C1�

where p 2 Œ0; 1� is the probability of a positive label. To parameterize a Bernoulli
distribution P Œy D C1 j x� by the linear score function hw; xi C b, the score can be
mapped to the unit interval Œ0; 1� via the logistic function:

�.t/ WD
1

1C e�t
: (5.12)

This results in the following conditional distribution for the label y given the input x:

P Œy D C1 j x� WD � .hw; xi C b/ D
1

1C e�hw;xi�b
(5.13)

P Œy D �1 j x� WD 1 � P Œy D C1 j x�:

As depicted in Fig. 5.2, the decision rule (5.8) coincides with choosing the most
probable label under this model.

Fig. 5.2 An example of logistic regression in two dimensions. The left plot illustrates the data
(white and blue points) and the learned linear model w (red arrow). The right plot illustrates the
linear score hw; xi C b for each point x compared to the model probability P Œy D C1 j x�, where
each point is colored according to its label. The decision threshold (0.5) is drawn in red
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Taking the negative logarithm of (5.13) results in the following surrogate
function:

f� .xi; yi j / WD

(
log

�
1C e�hw;xii�b

�
yi D C1

hw; xii C bC log
�
1C e�hw;xii�b

�
yi D �1

D

�
1 � yi

2

�
.hw; xii C b/C log

�
1C e�hw;xii�b

	
: (5.14)

Because of its use of the logistic function in defining (5.13), this formulation is
known as logistic regression [32].

Although logistic regression and SVM share the same parameterization and have
equivalent prediction rules, there are some key distinctions to keep in mind when
deciding between the two methods. First, the scores produced by logistic regression
have a natural probabilistic interpretation, whereas the SVM’s scores do not directly
correspond to a probabilistic model.3 Probabilistic interpretation can be useful when
the classifier must produce confidence-rated predictions, or be integrated with larger
models, such as the hidden Markov models discussed later in Sect. 5.3.5. Second,
the choice of regularization g.w/ can have significant influence on the behavior
of the model. While SVMs use the `2 (quadratic) penalty, logistic regression is
often implemented with `1 or `2 penalties. The `2 penalty can be seen as limiting
the influence of any single feature, while `1 can be seen as encouraging sparse
solutions that depend only on a small number of features. In practice, the choice
of regularization functions is another modeling decision that can be optimized
for using cross-validation, since most common implementations of linear models
support a range of penalty functions [44, 92].

5.2.2 Multi-Class Linear Models

The binary formulations in Sect. 5.2.1 can be naturally extended to the multi-class
setting, where Y D f1; 2; : : : ;Cg, so that each example is categorized into exactly
one of the C distinct classes. Note that this is distinct from the similarly named
multi-label setting, where each example can be assigned to multiple, non-disjoint
classes. While the multi-label setting is often a natural fit for practical applications,
it can be handled directly by using C independent binary classifiers.4

A natural extension of binary logistic regression can be obtained by defin-
ing  D .wc; bc/

C
cD1, so that each class has its own set of parameters .wc; bc/.

3SVM scores can be converted into probabilities via Platt scaling [94] or isotonic regression [122],
but these methods require additional modeling and calibration.
4The notion of independence for multi-label problems will be treated more thoroughly when we
develop deep learning models.
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The probability that a given input x belongs to category j is then defined as

P Œy D j j x� WD
ehwj; xiCbj

P
c ehwc; xiCbc

: (5.15)

Taking the negative log-likelihood of the observed training data results in the
following multi-class objective function:

f .x; y j / WD �hwy; xi � by C log

 
X

c

ehwc; xiCbc

!
: (5.16)

Similarly, the linear hinge loss can be generalized by comparing the discriminant
score of the true label y for training point x to all other labels c [33]:

f .x; y j / WD max

�
0; 1 � hwy; xi � by Cmax

c¤y
hwc; xi C bc

�

D �hwy; xi � by Cmax
c

`.y; c/C hwc; xi C bc: (5.17)

Practically speaking, both objectives lead to the same prediction rule:

h.x j / WD argmax
y
hwy; xi C by; (5.18)

that is, take the label with the highest score.
In multi-class problems, the regularization function is typically applied indepen-

dently to each wc and summed: g./ WD
P

c gw.wc/.

5.2.3 Non-linear Discriminative Models

This section focused on linear models, primarily due to their simplicity, adaptability,
and ease of integration with methods discussed in the remainder of this chapter.
However, there are a wide range of effective, non-linear discriminative models
available to practitioners, which we will briefly describe here. Interested readers
are referred to [48] for thorough introductions to these methods.

Most closely related to the linear models described above are kernel meth-
ods [107]. These methods can be seen as implementing linear models after a
non-linear transformation of the data encoded by a kernel function k.x1; x2/ which
generalizes the notion of linear inner product hx1; x2i. Common choices of kernel
functions include the radial basis function or Gaussian kernel:

k˛.x1; x2/ WD exp
˚
�˛kx1 � x2k

2



(5.19)
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with bandwidth ˛ > 0, or the polynomial kernel:

kb;p.x1; x2/ WD .bC hx1; x2i/
p (5.20)

with degree p � 1 and constant b � 0. Kernel formulations are available for a broad
class of suitably regularized models, including the SVM and `2-regularized logistic
regression [103].

Nearest neighbor classifiers [35, 47] operate by querying the training set X for
the nearest examples to a test example x, and predicting h.x/ as the majority vote
of labels within the nearest neighbor set. This approach is simple to implement, and
readily adapts to high-cardinality output label sets. The accuracy of nearest neighbor
classifiers depends on the choice of distance function used to determine proximity,
and there are a variety of methods available to optimize the metric from a labeled
training set [9].

Finally, decision trees [22] operate by recursively partitioning the training set by
applying a threshold to individual features. For example, the rule x3 � 0:75 would
send all examples with the third coordinate less than 0.75 to the left sub-tree, and all
others to the right. Recursively applying these rules produces a tree structure, where
each leaf of the tree is labeled according to the majority vote of training data that
maps to that leaf. Test examples are then classified by the label of the leaf into which
they map. Although decision trees are known to be prone to over-fitting, random
forests [21] ameliorate this by combining the outputs of multiple trees to produce the
final classifier. By generating an ensemble of trees from different (random) subsets
of the training set and random subsets of features, a random forest tends to be much
more robust than a single decision tree, and the general method is highly effective
in practice.

5.3 Generative Models

The models in the previous section were discriminative, in the sense that they only
need to describe the boundaries between categories, and not the distribution of data
within each category. By contrast, generative models seek to approximate the data
generating process itself by modeling the joint distribution P Œx; y�, rather than the
conditional distribution P Œy j x�.

Before getting into specific examples of generative models, we will first cast
the modeling process into the regularized optimization framework described at the
beginning of this chapter, and provide a general overview of statistical inference and
parameter estimation.
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5.3.1 Maximum Likelihood Estimation

When building a generative model, the primary goal is to describe the space of
observable data. Consequently, we should strive to make the model distribution P
match the unknown data distribution D , and our notion of loss is tied not to the
accuracy of the resulting classifier, but to the dissimilarity between P and PD . From
information theory, a particularly useful notion of dissimilarity between probability
distributions is the Kullback–Leibler (KL) divergence [31, 77]:

KL .PDkP / WD
Z

z
log

�
PD Œz�

P Œz�

�
PD Œz�dz: (5.21)

which measures the amount of information lost when using distribution P to
approximate PD : the more similar the two distributions are, the smaller the KL-
divergence will be.

When D is fixed, minimizing (5.21) over the choice of  is equivalent to
minimizing the cross-entropy between PD and P :

argmin


KL .PDkP / D argmin


�

Z

z
log .P Œz�/PD Œz�dz: (5.22)

When D is unknown, except through an I.I.D. sample fzig
n
iD1 � D , we can

approximate (5.22) by the empirical average log-likelihood:

�

Z

z
log .P .z//PD Œz�dz D �ED Œlog P Œz�� � �

1

n

nX

iD1

log P Œzi�: (5.23)

This leads to the standard formulation of maximum likelihood parameter estimation:
maximizing the probability of P generating the training data observed is approxi-
mately equivalent to minimizing the KL-divergence between P and PD . For labeled
observations z D .x; y/, the corresponding objective function f is then the negative
log-likelihood given the model parameters  :

f .x; y j / D � log P Œx; y�: (5.24)

Once  has been estimated, the prediction rule for an input example x then takes
the form:

h.x j / WD argmax
y

P Œx; y�: (5.25)

5.3.2 Bayesian Estimation: Maximum A Posteriori

In Sect. 5.3.1, there was no explicit mechanism to specify a preference for certain
configurations of  over others (aside from how well it approximates D). The
Bayesian approach to resolve this issue is to treat  as a random variable, alongside
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the observable data .x; y/. In this view, the model probability distribution P can be
interpreted as conditional on a specific value of  :

P Œx; y� WD P Œx; y j � ; (5.26)

and we suppose a prior distribution PŒ � to express preference for some values of
 over others. Similarly, the corresponding prediction rule for a given value of 
becomes

h.x j / WD argmax
y

PŒx; y j �: (5.27)

Bayesian inference consists of computing the posterior distribution PŒ j S� after
observing samples S D f.xi; yi/g

n
iD1 � D by using Bayes’ rule:

PŒ j S� D
PŒS j � � PŒ �

PŒS�
; (5.28)

where PŒS j � D
Qn

iD1 PŒxi; yi j � factorizes because S is assumed to be drawn I.I.D.
Computing (5.28) is difficult because the denominator PŒS� is an unknown quantity
(i.e., D) that is generally difficult to estimate. However, if we are only interested
in finding a single value of  which maximizes (5.28), then the PŒS� factor may be
safely ignored, since it is constant with respect to the choice of  . This leads to the
maximum a posteriori (MAP) formulation of parameter estimation:

argmin


�
1

n

nX

iD1

log PŒxi; yi j � �
1

n
log PŒ �: (5.29)

This is derived by taking the logarithm of (5.28), which is equivalent to maximum
likelihood inference (5.23), but with an additive term g./ WD � 1n log PŒ �.5 MAP
inference can thus be viewed as a special case of the generic regularized learning
objective (5.6).

The choice of prior distribution PŒ � is of utmost importance, and generally
depends on several contributing factors such as model structure, existing domain
knowledge, and computational convenience. In the following sections, we will
discuss the choice of priors for specific models.

5.3.3 Aside: Fully Bayesian Inference

The MAP estimation approach described in the previous section results in classifiers
that depend on a single value of  . If the posterior distribution PŒ j S� is not strongly

5The factor of 1=n is not strictly necessary here, but are included for consistency with (5.6).
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peaked, or has multiple modes which result in disagreeing predictors, then MAP
estimation can become unstable. These situations call for fully Bayesian inference,
where the uncertainty in  is explicitly accounted for when making predictions.

Instead of (5.27), a fully Bayesian predictor would marginalize  out of the joint
distribution PŒx; y;  � to find the most likely label:

h.x/ WD argmax
y

PŒx; y� D argmax
y

Z



PŒx; y j � � PŒ �d: (5.30)

In general, this marginal likelihood calculation does not have a closed-form
solution, and it can therefore be difficult to compute exactly. When fully Bayesian
inference is necessary, it is typically performed by sampling methods such as
Markov chain Monte Carlo (MCMC) [62, 87], which can estimate PŒx; y� by drawing
samples  � PŒ � and averaging the likelihood estimates PŒx; y j �. Once the
posterior distribution (5.28) has been computed from a training set S, (5.30) can
be approximated by sampling from the posterior PŒ j S� rather than the prior PŒ �.

There is a rich literature on sampling methods for marginal likelihood, and these
methods lie outside the scope of this text [4, 50]. For the remainder of this chapter,
we will stick primarily with MAP inference for probabilistic models.

5.3.4 Gaussian Mixture Models

A Gaussian mixture model (GMM) consists of a weighted mixture of K multivariate
Gaussian distributions [91]. Formally,  D .!k; �k; ˙k/

K
kD1 where !k are non-

negative weights which sum to 1, and �k 2 R
d and ˙k 2 S

d
CC denote the mean

vector and covariance matrix of the kth mixture component.6 The probability density
at point x is then defined as:

P Œx� WD
X

k

!k �N .�k; ˙k/

D
X

k

!k � j2 ˙kj
�1=2 � e� 1

2 kx��kk2˙k ; (5.31)

where kzk2˙ WD zT˙�1z. Given a sample .xi/
n
iD1, the parameters  can be inferred

by a variety of different strategies, but the most common method is expectation-
maximization (EM) [36].

6
S

d
CC

denotes the set of d � d positive definite matrices: Hermitian matrices with strictly positive
eigenvalues.
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5.3.4.1 Classification with GMMs

Note that (5.31) does not involve the labels y, and can therefore be considered an
unsupervised model of the data. This can be extended to a multi-class supervised
model by fitting a separate GMM Py Œxjy� for each category y. The objective then
becomes to find GMM parameters  D .y; py/, where y contains the parameters of
the GMM corresponding to class y, and py models the probability of class y. Given
an unlabeled example x, the label is predicted as

h.x j / WD argmax
y

P Œy j x� D argmax
y

P Œx j y� � P Œy�; (5.32)

where the latter equality follows from Bayes’ rule:

P Œy j x� D
P Œx j y� � P Œy�

P Œx�
/ P Œx j y� � P Œy� (5.33)

because P Œx� is (an unknown) constant when searching over y for a given x. The
interpretation of (5.32) is similar to that of the multi-class linear models of the
previous section: the predicted label is that for which the corresponding generative
model assigns highest probability to the input x.

5.3.4.2 Simplifications

There are a few commonly used simplifications to the GMM described in (5.31),
as illustrated in Fig. 5.3. The first simplification is to restrict the parameter space
so that each ˙k is a diagonal matrix. This reduces the number of parameters in
the model, and simplifies the matrix inverse and determinant calculations in (5.31).
This restriction prohibits the model from capturing correlations between variables.
However, if the training data has already been decorrelated by a pre-processing step
(such as principal components analysis), the diagonal restriction may perform well
in practice.

Spherical covariance constraints force ˙k D �kIk, so that each component
has equal variance along each dimension, but that variance can differ from one
component to the next. An even more extreme constraint is to force all ˙k to equal
the identity matrix. This restriction, known as isotropic covariance, eliminates all
variance parameters from the model, so all that are left are the mixture coefficients
!k and the means�k. The spherical restriction may be justified if in addition to being
decorrelated, the data are pre-processed to have unit variance along each coordinate,
and variance is expected to be independent of component membership. In this case,
the GMM can be interpreted as a soft-assignment variant of the K-means clustering
algorithm [82].
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Fig. 5.3 Gaussian mixture models with different covariance constraints applied to the same data
set (blue). Component means �k are indicated by red plus markers, and the covariance structures
are indicated by yellow ellipses covering ˙3 standard deviations from �k

5.3.4.3 Aside: Maximum Likelihood, or MAP?

As described in the introduction to this section, we have a choice between
classical (maximum likelihood) and Bayesian (MAP) inference when estimating
the parameters  of a generative model. For the GMM as described above in (5.31),
it should be noted that the classical approach has certain degeneracies that can be
avoided by the Bayesian approach.

Specifically, given a training sample, it is possible to make the likelihood
arbitrarily large by selecting one component .�k; ˙k/ and setting �k D xi (for some
training point xi), and letting ˙k D �I for some arbitrarily small value � > 0

so that the determinant j˙kj approaches 0. Although it may be rare to encounter
this degenerate case in practice, it is possible—especially when the training sample
contains outliers (examples far in feature space from most of the training samples).
Similar degeneracies can occur when modes of the data lie close to a low-rank
subspace. This suggests that maximum likelihood inference may not be the most
appropriate choice for estimating GMM parameters.

This situation can be avoided by incorporating prior distributions on the model
parameters !;�k; ˙k which assign low probability to known degenerate configura-
tions. The choice of prior distributions should be guided by domain knowledge and
some conceptual understanding of the data, so any general-purpose recipes should
be taken as suggestions and treated with skepticism. That said, for computational
reasons, it is often preferable to use conjugate priors, which can lead to simple
parameter updates and computationally efficient learning algorithms.7

7A probability distribution PŒ � is a conjugate prior if the posterior PŒ j S� has the same form as
the prior PŒ � [97].
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In the case of the GMM, there are three prior distributions in need of definition:
PŒ!�, PŒ˙�, and PŒ��. Because ! is a categorical random variable, the (symmetric)
Dirichlet distribution can be used since it is conjugate to the categorical distribution:

P˛Œ!� WD
Γ.˛K/

Γ.˛/K

KY

kD1

!˛�1
k : (5.34)

The ˛ > 0 variable is a hyper-parameter: for ˛ � 1, ! tends to be dense; for
˛ < 1, ! tends to concentrate on a few components, which can be used to effectively
eliminate unused components.

The covariance prior PŒ˙� can be somewhat more difficult to define. For diagonal
covariance models, it is common to factor the prior over each variance component
PŒ˙� D PŒ�2i �, and use a prior with support limited to positive reals, such as the
log-normal or gamma distributions. If the prior assigns 0 probability to �2i D 0—
as the log-normal distribution does, or gamma with shape parameter ˛ > 1—then
the degenerate cluster issue described above can be effectively prevented. For full-
covariance models, the Wishart distribution (a multivariate extension of the gamma
distribution with support over positive definite matrices) can be used to achieve
similar results. Each of these prior distributions has additional hyper-parameters
which specify the location and dispersion of probability mass.

Finally, the prior on cluster means PŒ�� is often taken to be a standard,
multivariate Gaussian when X D R

d. However, if additional constraints are
known, e.g., observations are non-negative magnitude spectra so X D R

d
C, then

a coordinate-wise log-normal or gamma distribution might be more appropriate.
For a more thorough discussion of priors for generative models, we refer interested
readers to [85, Chap. 5].

5.3.4.4 Parameter Estimation

While it is relatively straightforward to implement the expectation-maximization
(EM) algorithm for the maximum likelihood formulation of a GMM, the task can
become significantly more complex in the MAP scenario, as the update equations
may no longer have convenient, closed-form solutions. Variational approximate
inference methods are often used to simplify the parameter estimation problem
in this kind of setting, usually by computing the MAP solution under a surrogate
distribution with a more computationally convenient factorization [118]. A proper
treatment of variational inference is beyond the scope of this text, and it should
be noted that although the resulting algorithms are “simpler” (more efficient), the
derivations can be more complex as well. Software packages such as Stan [23]
and Edward [114] can ease the burden of implementing variational inference by
automating much of the tedious calculations.
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5.3.4.5 How Many Components?

Throughout this section, we have assumed that the number of mixture components
K was fixed to some known value. In practice, however, the best K is never known
a priori, so practitioners must find some way to select K. There are essentially
three data-driven approaches to selecting K: information criteria, Dirichlet process
mixtures, and utility optimization.

The first approach comes in a wide range of flavors: Akaike’s information
criterion (AIC) [2], Bayesian information criterion (BIC) [105], or widely applicable
information criterion (WAIC) [119]. The common thread throughout these methods
is that one first constructs a set of models—for a GMM, each model would
correspond to a different choice of K—and select the one which best balances
accuracy (likelihood of observed data) against model complexity. The methods
differ in how “model complexity” is estimated, and we refer interested readers to
Watanabe [119] for a survey of the topic.

The second approach, Dirichlet process mixtures [5], implicitly supports a
countably infinite number of mixture components, and estimates K as another
model parameter along with mixing weights, means, and variances [15, 98]. This
model can be approximated by setting K to some reasonable upper limit on the
acceptable number of components, imposing a sparse Dirichlet prior (˛ < 1)
over !, and estimating the parameters just as in the case where K is fixed [69].
Then, any components with sufficiently small mixture weights !i (e.g., those whose
combined weight is less than 0:01) can be discarded with negligible impact on the
corresponding mixture density.

Finally, utility-based approaches select the model which works best for a
given application, i.e., maximizes some expected utility function. In classification
problems, the natural utility function to use would be classification accuracy of the
resulting predictor (5.32). Concretely, this would amount to treating K as another
hyper-parameter to be optimized using cross-validation, with classification accuracy
as the selection criterion.

5.3.5 Hidden Markov Models

So far in this chapter, the models described have not directly addressed temporal
dynamics of sound. To model dynamics, we will need to treat a sequence of feature
observations as a single object, which we will denote by x D .xŒ1�; xŒ2�; : : : ; xŒT�/.8

8Note that although we use T to denote the length of an arbitrary sequence x, it is not required that
all sequences have the same length.
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In general, the likelihood of a sequence observation P Œx� can be factored as
follows:

P Œx� D P ŒxŒ1�; xŒ2�; : : : ; xŒT��

D P ŒxŒ1�� �
T�1Y

tD1

P ŒxŒtC 1� j xŒ1�; xŒ2�; : : : ; xŒt�� : (5.35)

The Markov assumption asserts that this distribution factors further:

P Œx� WD P ŒxŒ1�� �
T�1Y

tD1

P ŒxŒtC 1� j xŒt�� : (5.36)

That is, the distribution at time t C 1 conditional on time t is independent of any
previous time t0 < t. A hidden Markov model (HMM) asserts that all dynamics
are governed by hidden discrete “state” variables zŒt� 2 f1; 2; : : : ;Kg, and that an
observation xŒt� at time t depends only on the hidden state zŒt� [7, 96].

Formally, an HMM is defined by a joint distribution of the form:

P Œx; z� WD
TY

tD1

P ŒzŒt� j zŒt � 1�� � P ŒxŒt� j zŒt�� : (5.37)

There are three distinct components to (5.37):

• P ŒzŒ1� j zŒ0�� is the initial state model, which determines the probability of
starting a sequence in each state9;

• P ŒzŒt� j zŒt � 1�� is the transition model, which governs how one hidden state
transitions to the next; and

• P ŒxŒt� j zŒt�� is the emission model, which governs how each hidden state
generates observed data.

If there are K possible values for a hidden state, then the transition model can be
defined as a collection of K categorical distributions over the K hidden states. The
parameters of these distributions are often collected into a K � K stochastic matrix
known as the transition matrix V , where

Vij D P ŒzŒt� D i j zŒt � 1� D j� : (5.38)

Similarly, the initial state model can also be defined as a categorical distribution
over the K hidden states.

9For ease of notation, we denote the initial state distribution as P ŒzŒ1� j zŒ0��, rather than the
unconditional form P ŒzŒ1��.
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The definition of the emission model depends on the form of the observed data.
A common choice, when xŒt� 2 R

d is to define a multivariate Gaussian emission
model for each hidden state:

P Œx j zŒt� D k� WD N .�k; ˙k/: (5.39)

This model is commonly referred to as the Gaussian-HMM. Note that the speci-
fication of the emission model does not depend on the transition model, and any
reasonable emission model may be used instead. Emission models can themselves
also be mixture models, and GMMs are particularly common.

Once the parameters of the model have been estimated (Sect. 5.3.5.2), the most
likely hidden state sequence z for an observed sequence x can be inferred by
the Viterbi algorithm [117]. The resulting state sequence can be used to segment
the sequence into contiguous subsequences drawn from the same state. In audio
applications, this can correspond directly to the temporal activity of a class or sound
source [64].

5.3.5.1 Discriminative HMMs

The most common way to apply HMMs for classification is to impose some
known structure over the hidden state space. For example, in speech recognition
applications, we may prefer a model where each hidden state corresponds to a
known phoneme [73]. If labeled training data is available, where each observation
sequence x D .xŒ1�; xŒ2�; : : : ; xŒT�/ has a corresponding label sequence y D
.yŒ1�; yŒ2�; : : : ; yŒT�/, then we can directly relate the hidden state space to the label
space Y . While one could use a discriminative model to independently map each
observation to a label, this would ignore the temporal dynamics of the problem.
Integrating the classification with an HMM can be seen as a way of imposing
temporal dynamics over model predictions.

Recall that there are three quantities to be estimated in an HMM: the initial state
distribution, the state transition distribution, and the emission distribution. When
labeled training data is available—i.e., the state variable for each observation is also
observed—the first two distributions can be estimated directly from the labels, since
they are conditionally independent of the input data x given the state. In practice, this
amounts to estimating the parameters of K C 1 categorical distributions—K for the
transition distributions and one for the initial state distribution—from the observed
labeled sequences.

All that remains is to characterize the emission distributions. This can be done by
applying Bayes’ rule to the observation model, now using y to indicate states instead
of z:

P ŒxŒt� j yŒt� D k� D
P ŒyŒt� D k j xŒt�� � P ŒxŒt��

P ŒyŒt� D k�
(5.40)
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which expresses the emission probability in terms of the conditional class likelihood
P ŒyŒt� D k j xŒt��, the marginal probability of the class occurring P ŒyŒt� D k�,
and the marginal probability of the observation P ŒxŒt��. The conditional class
likelihood can be estimated by any probabilistic discriminative classifier, e.g.,
logistic regression (Sect. 5.2.1.2) or a multi-layer perceptron (Sect. 5.4.2). The
marginal probability of the class is a categorical distribution that can be estimated
according to the statistics of the labeled training data.

Finally, the marginal probability of the observation P ŒxŒt�� is generally difficult
to estimate, but luckily it is not often needed. Recall that the practical application
of the HMM is to produce a sequence of labels y D .yŒ1�; yŒ2�; : : : ; yŒT�/
from an unlabeled observation sequence x D .xŒ1�; xŒ2�; : : : ; xŒT�/ following the
prediction rule:

h.x j / WD argmax
y

P Œx; y�: (5.41)

Substituting (5.40) and (5.37) into (5.41) yields

P Œx; y� D
TY

tD1

P ŒyŒt� j yŒt � 1�� � P ŒxŒt� j yŒt�� (5.42a)

D

TY

tD1

P ŒyŒt� j yŒt � 1�� � P ŒxŒt�� �
P ŒyŒt� j xŒt��

P ŒyŒt��
(5.42b)

D

 
TY

tD1

P ŒyŒt� j yŒt � 1�� �
P ŒyŒt� j xŒt��

P ŒyŒt��

!
�

TY

tD1

P ŒxŒt�� (5.42c)

/

TY

tD1

P ŒyŒt� j yŒt � 1�� �
P ŒyŒt� j xŒt��

P ŒyŒt��
; (5.42d)

where the P ŒxŒt�� factors can be ignored since they do not affect the maximization
over choice of y. Consequently, the sequence prediction (5.41) can be computed
by the Viterbi algorithm using only the discriminative classifier’s point-wise output
and the empirical unigram- and bigram-statistics, P ŒyŒt�� and P ŒyŒt� j yŒt � 1��, of
observed label sequences.

In addition to attaching specific meaning to the “hidden” state variables (i.e.,
correspondence with class labels), there are two computational benefits to this
approach. First, it can be applied to any probabilistic classifier, and it is often used as
a post-processing technique to reduce errors resulting from frame-wise classifiers.
Second, discriminative classifiers are often easier to train than generative models,
since they typically require less observation data, and the resulting models tend to
be more accurate in practice.

The discriminative HMM approach described here can be viewed as a special
case of a conditional random field (CRF) [78], where the model parameters have
been estimated independently. A more general CRF-based approach would jointly
estimate all model parameters, which can improve accuracy in practice.
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5.3.5.2 Priors and Parameter Estimation

Parameter estimation for HMMs can be done either in maximum likelihood or MAP
formulations, and the resulting algorithms are qualitatively similar to the case for
Gaussian mixture models.10 In particular, a Bayesian formulation of the HMM looks
nearly identical to that of the GMM—with the initial state model P ŒzŒ1� j zŒ0�; �
acting in place of the mixture weights PŒ! j �—and the only additional set of
parameters in need of a prior is the transition matrix. Since each row V�;j of the
transition matrix is a categorical distribution, it is again natural to impose a Dirichlet
prior over each row of V . For details on Bayesian HMM inference, we refer readers
to Beal [8].

Just as in the GMM case, the number of hidden states K is another hyper-
parameter to be estimated, and it can be done via any of the methods described
in Sect. 5.3.4.5. In the discriminative case where hidden states are matched to
observable labels, this issue does not arise.

5.4 Deep Models

In this section, we provide a brief overview of the so-called deep learning
architectures. While the term deep learning can apply to a wide range of different
types of models, we will focus specifically on discriminative classification models
which include a non-linear transformation of input data that is jointly optimized
with the classifier. For a more thorough introduction, we refer interested readers to
Goodfellow et al. [54].

5.4.1 Notation

Deep models are often characterized by compositions of non-linear functions. For
brevity, we will denote the sequential composition of k functions by the } symbol,
defined as:

�}m
iD1fi

	
.x/ WD .fm ı fm�1 ı � � � ı f1/.x/: (5.43)

Each fi should be interpreted as a stage or layer of processing, which transforms the
output of fi�1 to the input of fiC1.

10The well-known Baum–Welch algorithm for HMM parameter estimation is a special case of
expectation-maximization [96].
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Fig. 5.4 An example illustration of a multi-layer perceptron (MLP) with four layers. The input
x 2 R

100 is mapped through three intermediate layers with d1 D 256, d2 D 128, and d3 D 64

and rectified linear unit (ReLU) transfer functions. The output layer in this example maps to 32
independent classes with a logistic transfer function

5.4.2 Multi-Layer Perceptrons

The simplest, and oldest family of “deep” models is the multi-layer perceptron
(MLP) [99, 101]. As illustrated in Fig. 5.4, an MLP is defined by a sequence of
layers, each of which is an affine transformation followed by a non-linear transfer
function �:

fi.z j / WD �i
�
wT

i zC bi
�
; (5.44)

where the parameters  D .wi; bi; �i/
m
iD1 have weights wi 2 R

di�1�di , biases bi 2

R
di , and transfer functions �i W R

di ! R
di . Each layer maps data from R

di�1 to R
di ,

which dictates the shape of the resulting MLP.11 For input data x 2 R
d, we define

d0 WD d, and for categorical prediction tasks, we define dm WD jY j as the number of
labels.

The final (output) layer fm of an MLP is typically defined as a linear model
in one of the forms described in Sect. 5.2. The “internal” layers f1 : : : fm�1 can be
interpreted as a “feature extractor.” One motivation for this architecture is that by
jointly optimizing the internal and output layers, the model finds a feature extractor
which separates the data so that the output layer performs well. In contrast to the
linear models described in Sect. 5.2, this approach directly benefits from multi-
class and multi-label data because it can leverage observations from all classes in
constructing the shared representation.

The surrogate loss f is defined in terms of the output of the final layer:

f .x; y j / WD ferr

��}m
iD1fi

	
.x/; y

	
; (5.45)

11Some authors refer to the layer dimension di as width. This terminology can be confusing when
applied to spatio-temporal data as in Sect. 5.4.3, so we will use dimension to indicate di and retain
width to describe a spatial or temporal extent of data.
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where ferr is a standard surrogate loss function as described in Sect. 5.2 that compares
the output of the final layer fm to the target label y. Just as in the previous sections, the
prediction rule corresponding to (5.45) is to choose the label which would minimize
the objective:

h.x j / WD argmin
y

f .x; y j /: (5.46)

Typically, this will simplify to an argmax over the output variables (for multi-class
problems), or a thresholding operation (for binary problems).

5.4.2.1 Transfer and Objective Functions

The transfer function �i—also known as an activation function or non-linearity—
allows the model to learn non-linear structure in data.12 As illustrated in Fig. 5.5,
there are a variety of commonly used transfer functions.

Fig. 5.5 A comparison of various transfer functions �. Note that some saturate on both negative
and positive inputs (logistic, tanh, soft-sign), while others saturate only on negative inputs (ReLU,
soft-plus), or not at all (leaky ReLU)

12To see this, observe that if �i is omitted, then the full model f .x j / is a composition of affine
functions, which is itself an affine function, albeit one with rank constraints imposed by the
sequence of layer dimensions.
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The choice of �i for internal layers (i < m) is generally at the practitioner’s
discretion. As illustrated in Fig. 5.5, some non-linearities approach saturating
values, such as tanh going to ˙1, or logistic going to f0; 1g as z diverges from 0.
When the non-linearity saturates to a constant, its derivative goes to 0 in that region
of its domain, and as a result, the error signal cannot (easily) propagate through to
earlier layers. Although techniques exist to limit this behavior (e.g., by scaling the
activations to stay within the non-saturating regions [68]), it is simpler in practice to
use a one-sided or non-saturating transfer function, such as the rectified linear unit
(ReLU) [86] or leaky ReLU [81].

Typically the choice of �m (the output layer) is dictated by the structure of the
output space. If the output is a multi-label prediction, then the logistic function
(�m D � ) provides a suitable transfer function that can be interpreted as the
likelihood of each label given the input data. In this setting, the label is usually
encoded as a binary vector y 2 f0; 1gC (for C labels), and the standard loss function
is the sum of log-likelihoods for each label:

ferr.Oy; y/ WD
CX

cD1

�yc log Oyc � .1 � yc/ log .1 � Oyc/ ; (5.47)

where Oy D .}m
iD1fi/.x/ is the output of the MLP on input x. This loss function

is also known as the binary cross-entropy loss, since it is equivalent to the sum of
cross-entropies between K pairs of Bernoulli random variables.

For multi-class problems, the soft-max function provides a normalized, non-
negative output vector that can be interpreted as a categorical probability distri-
bution:

�softmax.z/k WD
exp.zk/P

j exp.zj/
: (5.48)

In multi-class problems, the label y is typically encoded as a binary vector with
exactly one non-zero entry. The standard loss function is the categorical cross-
entropy:

ferr.Oy; y/ WD �
CX

cD1

yc log Oyc: (5.49)

5.4.2.2 Initialization

Related to the choice of transfer function is the issue of weight initialization.
Because gradients do not propagate when the input to the transfer function lies in
its saturating regions, it is beneficial to randomly initialize weights wi and biases
bi such that Ewi;b

�
�
�
wT

i zC bi
��

has non-zero derivative. Glorot and Bengio [52]
derive an initialization scheme using weights wij sampled randomly from the
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interval ˙d�1=2
i�1 , with the implicit assumption that the input z is bounded in Œ�1; 1�,

as is the case when using symmetric, saturating transfer functions (e.g., logistic or
tanh).

He et al. [63] argue that this scheme is ill-suited for networks in which the input z
has non-zero expectation, as is the case for networks with ReLU activations. Instead,

He et al. recommend that weights be initialized as wij � N
�
0;
p
2=di�1

	
for ReLU

networks, or more generally,

wij � N

 
0;

s
2

.1C ˛2/di�1

!
(5.50)

for leaky ReLU networks with parameter ˛ � 0.
We note that most common implementations provide these initialization schemes

by default [1, 27, 38], but it is still up to the practitioner to decide which initialization
to use in conjunction with the choice of transfer function.

5.4.2.3 Learning and Optimization

In general, the form of f does not lend itself to closed-form solutions, so the
parameters are estimated by iterative methods, usually some variation of gradient
descent:

 7!  � 	r f .x; y j / (5.51)

where r denotes the gradient operator with respect to parameters  , and 	 > 0 is a
learning rate that controls how far to move  from one iteration to the next.

Because f is defined as a composition of simpler functions, the gradient r f is
decomposed into its individual components (e.g., rwi or rbj ), which are computed
via the chain rule. This process is also known as back-propagation, since the
calculation can be seen as sending an error signal back from the output layer
through the sequence of layers in reverse-order [101]. In the past, calculating the
gradients of (5.45) was a tedious, mechanical chore that needed to be performed for
each model. However, in recent years, nearly all deep learning frameworks include
automatic differentiation tools, which remove this burden of implementation [1, 11,
28, 71].

Due to the computational and memory complexity of computing gradients over
a large training set, the common practice is to use stochastic gradient descent
(SGD) [18], which estimates the gradient direction at each step k by drawing a small
mini-batch Bk of samples from the training set S, and approximating the gradient:

Or f WD
1

jBkj

X

.x;y/2Bk

r f .x; y j / (5.52a)
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�
1

jSj

X

.x;y/2S

r f .x; y j / D r f (5.52b)

� ED Œr f .x; y j /� : (5.52c)

It is also common to accelerate the standard SGD approach described above by
using momentum methods [88, 95, 111], which re-use gradient information from
previous iterations to accelerate convergence. Similarly, adaptive update schemes
like AdaGrad [41] and ADAM [75] reduce the dependence on the step size 	, and
can dramatically improve the rate of convergence in practice.

Finally, to prevent over-fitting of MLP-based models, it is common to use early
stopping as a form of regularization [109], rather than minimizing (5.45) over the
training set until convergence. This is usually done by periodically saving check-
points of the model parameters  , and then validating each check-point on held-out
data as described in Sect. 5.1.2.

5.4.2.4 Discussion: MLP for Audio

Multi-layer perceptrons form the foundation of deep learning architectures, and can
be effective across a wide range of domains. However, the MLP presents some
specific challenges when used to model audio.

First, and this is common to nearly all models discussed in this chapter, is
the choice of input representation. Practitioners generally have a wide array of
input representations to choose from—time-domain waveforms, linear-frequency
spectrograms, log-frequency spectrograms, etc.—and this choice influences the
efficacy of the resulting model. Moreover, the scale of the data matters, as described
in Sect. 5.4.2.2. This goes beyond the simple choice of linear or logarithmic
amplitude spectrogram scaling: as discussed in the previous section, training is
difficult when transfer functions operate in their saturating regions. A good heuristic
is to scale the input data such that the first layer’s transfer function stays within non-
saturating region in expectation over the data. Coordinate-wise standardization (also
known as z-scoring) using the training set’s mean and variance statistics .�; �2/
accomplishes this for most choices of transfer functions, since each coordinate maps
most of the data to the range Œ�3;C3�13:

xi 7!
xi � �i

�i
: (5.53)

In practice, coordinate-wise standardization after a log-amplitude scaling of spectral
magnitudes works well for many audio applications.

13Note that batch normalization accomplishes this scaling implicitly by estimating these statistics
during training [68].
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Second, an MLP architecture requires that all input have a fixed dimension d,
which implies that all audio signals must be cropped or padded to a specified
duration. This is typically achieved by dividing a long signal (or spectrogram)
x 2 R

T�n into small, fixed-duration observations xi 2 R
ı�n. Observations xi can

be interpreted as vectors of dimension d D nı, and processed independently by
the MLP. In doing so, care must be taken to ensure that the window length ı is
sufficiently long to capture the target concept.

Finally, MLPs do not fully exploit the structure of audio data implicit in time or
frequency dimensions. For example, if two observations x1; x2 are derived from a
signal spanning frame indices Œt; tC ı� and ŒtC 1; tC ıC 1�, respectively, the MLP
outputs for f .x1/ and f .x2/ can diverge significantly, even though the inputs differ
only by two frames. Consequently, MLPs trained on audio data can be sensitive
to the relative positioning of an observation within the window. For non-stationary
target concepts, this presents a great difficulty for MLP architectures, since they
effectively need to detect the target event at every possible alignment within the
window. The remaining sections of this chapter describe methods to circumvent this
problem by exploiting the ordering of time or frequency dimensions.

5.4.3 Convolutional Networks

Convolutional networks are explicitly designed to overcome the limitations of MLPs
described in the previous Sect. [79]. There are two key ideas behind convolutional
networks:

1. statistically meaningful interactions tend to concentrate locally, e.g., within a
short time window around an event;

2. shift-invariance (e.g., in time) can be exploited to share weights, thereby reducing
the number of parameters in the model.

Convolutional networks are well-suited to applications in which the desired output
is a sequence of predictions, e.g., time-varying event detection, and the concepts
being modeled derive only from local interactions. In this section, we will describe
one-dimensional and two-dimensional convolutional networks. Though the idea
generalizes to higher dimensions, these two formulations are the most practically
useful in audio applications.

5.4.3.1 One-Dimensional Convolutional Networks

Given an input observation z 2 R
T�d, a one-dimensional convolutional filter with

coefficients w 2 R
n�d and bias b produces a response � .w 	 zC b/, where w 	 z
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denotes the “valid”14 discrete convolution of w with z15:

.w 	 z/Œt� WD
nX

jD1

hwŒj�; z ŒtC j � dn=2e�i : (5.54)

Here, n 
 T denotes the size of the receptive field of the filter w, j indexes the filter
coefficients and position within the input signal, and d indicates the dimensionality
(number of channels) in the input. By convention, the receptive field n is usually
chosen to be an odd number so that responses are centered around an observation.

A convolutional layer fi W RTi�1�di�1 ! R
.Ti�1�niC1/�di consists of di convolu-

tional filters, collectively denoted as wi, and bias terms (collected as bi):

fi.z j / WD �i .wi 	 zC bi/ : (5.55)

The output of fi, sometimes called a feature map is of slightly reduced extent than
the input (due to valid-mode convolution), and can be interpreted as sliding an MLP
with weights w 2 R

di�1�di over every position in the input z. An example of this
architecture is illustrated in Fig. 5.6.

Note that although the input and output of a convolutional layer are two-
dimensional, the first dimension is assumed to encode “temporal position” (over
which the convolution ranges) and the second dimension encodes (unordered) filter
channel responses as a function of position. When the input has only a single
observation channel (e.g., waveform amplitude), which is represented as x 2 R

T0�1.
For higher-dimensional input—e.g., spectrograms—d0 corresponds to the number
of observed features at each time step (e.g., number of frequency bins).

Cascading convolutional layers can be interpreted as providing hierarchical
representations. However, in the form given above, the receptive field of the ith
layer’s filter is linear in i. Pooling layers down-sample feature maps between
convolutional layers, so that deeper layers effectively integrate larger extents of data.
A one-dimensional pooling layer has two parameters: width r and stride s:

fi.z j /Œt� WD agg
�

zŒtsC j�
ˇ̌
ˇ j 2

h
�
j r

2

k
;
j r

2

ki	
; (5.56)

where agg denotes an aggregation operator, such as max./ or sum./, and is applied
independently to each channel. Max-pooling is particularly common, as it can be
interpreted as a softened version of a logical-or, indicating whether filter had positive
response anywhere within the window around zts. Usually, the pooling stride is set
to match the width (s D r), so that there is minimal redundancy in the output of the
pooling layer, and the result is a downsampling by a factor of s.

14A valid-mode convolution is one in which the response is computed only at positions where the
signal z and filter w fully overlap. For z 2 R

T and w 2 R
n, the valid convolution w � z 2 R

T�nC1.
15Technically, (5.54) is written as a cross-correlation and not a convolution. However, since the
weights w are variables to be learned, and all quantities are real-valued, the distinction is not
important.
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Fig. 5.6 An example of a one-dimensional convolutional network using a spectrogram as input;
convolution is performed only over the time dimension (horizontal axis). The vertical axis
corresponds to the dimension of each layer. The shaded regions indicate the effective receptive
field of a single filter in the subsequent layer at the center position. This network takes input in
R

T�252 (in this example, T D 94 frames), and applies: d1 D 128 convolutional filters (n1 D 13

frames) with ReLU activation, a downsampling of r D 2; d3 D 64 convolutional filters (n3 D 5

frames) with ReLU activation, and finally a convolutional soft-max layer (n4 D 3 frames) mapping
to d4 D 16 classes

Typical convolutional architectures alternate convolution layers with pooling
layers, which ultimately results in an output layer of shape Tm � dm, where Tm < T0
is the result of successive pooling and valid-mode convolution operations. Note that
Tm is generally a function of T0, and will differ for inputs of different length. Care
should be taken during training to align the sampling rate of labels y to that of the
model’s output layer fm, but this is usually a simple task (e.g., downsampling y).

However, when the desired output exists only at the recording level, then some
form of aggregation is required so that the output layer’s shape conforms to that of
the labels. The two most common approaches to reconciling output shapes are

1. use global pooling operators across the convolutional dimension—e.g., max over
the entire time axis—followed by a standard MLP architecture; or

2. pass the convolutional outputs directly into fully connected MLP layers
(Sect. 5.4.5).

Note that for the global pooling approach to work in general, the model must be
able to accommodate input of variable length; this is a common enough operation
that most software implementations support global pooling operators. The second
approach implicitly limits the model to operate on fixed-dimensional inputs, even
at test time. This can make the resulting model inconvenient to deploy, since
observation windows must be manually extracted and passed through the model, but
the models tend to perform well in practice because they preserve temporal relations
among feature activations within the observation.

One-dimensional convolutional networks are often applied to spectrogram repre-
sentations of audio [65, 80, 116]. While this approach is often successful, it is worth
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noting that it cannot learn filters which are invariant to frequency transposition. As
a result, it may require a large number of (redundant) first-layer filters to accurately
model phenomena which move in frequency.

5.4.3.2 Two-Dimensional Convolutional Networks

The one-dimensional convolutional method described in the previous section
generalizes to higher-dimensional data, where multiple dimensions possess a proper
notion of locality and ordering. Two-dimensional convolutional architectures are
especially common, due to their natural application in image processing [79], which
can in turn be adapted to time-frequency representations of audio. The benefits
of two-dimensional convolutional architectures on time-frequency representations
include a larger effective observation window (due to temporal framing, as in
one-dimensional convolutional networks), the ability to leverage frequency decom-
positions to more clearly locate structures of interest, and the potential for learning
representations which are invariant to frequency transposition.

Technically, two-dimensional convolutional layers look much the same as their
one-dimensional counterparts. An input observation is now represented as a three-
dimensional array z 2 R

T�U�d where T and U denote temporal and spatial extents,
and d denotes non-convolutional input channels. The filter coefficients similarly
form a three-dimensional array w 2 R

n�p�d, and the convolution operator w 	 z
is accordingly generalized:

.w 	 z/Œt; u� WD
nX

jD1

pX

kD1

hwŒj; k�; z ŒtC j � dn=2e; uC k � dp=2e�i : (5.57)

The corresponding layer fi W R
Ti�1�Ui�1�di�1 ! R

Ti�Ui�di otherwise operates
analogously to the one-dimensional case (5.55), and pooling operators generalize
in a similarly straightforward fashion. For a spectrogram-like input x 2 R

T0�U0�d0 ,
we take T0 to be the number of frames, U0 the number of frequency bins, and
d0 D 1 to indicate the number of channels. Note that larger values of d0 are
possible, if, for instance, one wished to jointly model stereo inputs (d0 D 2, for left
and right channels), or some other time- and frequency-synchronous multi-channel
representation.

Two-dimensional convolutional networks can be used to learn small, localized
filters in the first layer, which can move both vertically (in frequency) and horizon-
tally (in time) [67, 102]. Unlike one-dimensional convolutions, two-dimensional
convolution is only well-motivated when the input representation uses a log-
scaled frequency representation (e.g., a constant-Q transform), so that the ratio of
frequencies covered by a filter of height p bins remains constant regardless of its
position.

An example of this architecture is illustrated in Fig. 5.7. The first layer filters
in this kind of architecture tend to learn simple, local features, such as transients
or sustained tones, which can then be integrated across large frequency ranges by
subsequent layers in the network.
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Fig. 5.7 An example of a two-dimensional convolutional network with spectrogram input and
local filters. The depth axis corresponds to the dimensionality of each layer, and both horizontal
and vertical dimensions are convolutional. This network takes input x 2 R

T�U�1, and applies the
following operations: d1 D 32 convolutional filters (13 frames by 13 frequency bins) with ReLU
activations, d2 D 24 convolutional filters (9� 9), 3� 3 max pooling, d4 D 24 convolutional filters
(1� 5), and a softmax output layer (all 73 vertical positions) over 16 classes

When the desired output of the model is a time-varying prediction, it is common
to introduce a full-height layer (i.e., pk D Uk�1), so that all subsequent layers
effectively become one-dimensional convolutions over the time dimension. Just as
with the one-dimensional case (Sect. 5.4.3.1), global pooling or hybrid architectures
(Sect. 5.4.5) can be used in settings that call for fixed-dimensional outputs.

5.4.4 Recurrent Networks

The convolutional networks described in the previous section are effective at mod-
eling short-range interactions, due to their limited spatial locality. While pooling
operators can expand the receptive field of convolutional filters, they are still not
well-suited to modeling long-range interactions, or interactions with variable-length
dependencies, which are common in certain forms of audio (e.g., spoken language
or music). Recurrent networks [43, 100, 120] provide a more flexible framework
in which to model sequential data. Rather than modeling a finite receptive field,
observations are encoded and accumulated over temporal or spatial dimensions as
latent state variables.

5.4.4.1 Recursive Networks

Like MLPs and convolutional networks, recurrent networks—also called recurrent
neural networks (RNNs)—are built up by layers of processing units. In the simplest
generic form, a recurrent layer defines a state vector hŒt� 2 R

di (at time index t),
which is driven by input zŒt� 2 R

di�1 and the state vector at the previous time hŒt�1�:

hŒt� WD �
�
wTzŒt�C vThŒt � 1�C b

�
; (5.58)



134 B. McFee

where the layer parameters  D .w; v; b/ consist of input weights w 2 R
di�1�di ,

recurrent weights v 2 R
di�di , bias vector b 2 R

di , and element-wise non-linearity �.
The model is recurrent because the state at time t depends on the state at time t � 1
(which in turn depends on t � 2, and so on) through the recurrent weights v, which
play a role similar to the transition matrix in a hidden Markov model (5.37).16 A
recurrent layer therefore integrates information over all t0 
 t to produce the output
state vector ht at time t, and can thus be used to model sequential data with variable-
length dependencies. The initial hidden state hŒ0� is typically set to the all-zeros
vector, so that hŒ1� D �

�
wTzŒ1�C b

�
is driven only by the input and bias.

Just as with MLPs or convolutional networks, recursive networks can be stacked
in a hierarchy of layers. The output of a recurrent layer fi W RT�di�1 ! R

T�di is the
sequence of state vectors:

fi.z j / WD .hŒt�/
T
tD1; (5.59)

which can in turn be used as inputs to a second recursive layer, or to a convolutional
layer which maps the hidden state vectors hŒt� to predicted outputs.

Learning the weights w and v for a recurrent layer is computationally challeng-
ing, since the gradient calculation depends on the entire state sequence. The standard
practical approach to this problem is back-propagation through time (BPTT) [121],
which approximates the full gradient by unrolling (5.58) up to a finite number k
of time steps, and applying standard back-propagation to estimate gradients over
length-k sub-sequences of the input. The BPTT approach for standard recurrent
networks is known to suffer from the vanishing and exploding gradient problem, due
to the cumulative effect of iteratively applying the state transformation v [10, 90]. In
practice, this can limit the applicability of the recurrent formulation defined in (5.58)
to relatively short sequences, though attempts have been made to apply the method
to sequential tasks such as musical chord recognition [19] or phoneme sequence
modeling [20]. For a comprehensive introduction to recursive networks and their
challenges, we refer readers to Graves [56].

5.4.4.2 Gated Recurrent Units

The recently proposed gated recurrent unit (GRU) [25] architecture was explicitly
designed to mitigate the challenges of gradient-based training of recurrent networks
described in the previous section. Although the GRU architecture was proposed as
a simplification of the long short-term memory (LSTM) architecture (Sect. 5.4.4.3),
we present it here first to ease exposition.

Formally, a GRU consists of a reset vector rŒt� 2 R
di and an update vector

uŒt� 2 R
di , in addition to the hidden state vector hŒt� 2 R

di . The state equations

16A key distinction between recurrent networks and HMMs is that the “state space” in a recurrent
network is continuous, i.e., ht 2 R

di .
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are defined as follows:

rŒt� WD �
�
wr

TzŒt�C vr
ThŒt � 1�C br

�
(5.60a)

uŒt� WD �
�
wu

TzŒt�C vu
ThŒt � 1�C bu

�
(5.60b)

OhŒt� WD �
�
wh

TzŒt�C vh
T .rŒt�ˇ hŒt � 1�/C bh

�
(5.60c)

hŒt� WD uŒt�ˇ hŒt � 1�C .1 � uŒt�/ˇ OhŒt�; (5.60d)

where ˇ denotes the element-wise (Hadamard) product, � is the logistic function,
and the weights wr;wu;wh 2 R

di�1�di and vu; vr; vh 2 R
di�di and biases br; bu; bh 2

R
di are all defined analogously to the standard recurrent layer (5.58).The transfer

function � in (5.60c) is typically taken to be tanh. Non-saturating transfer functions
are discouraged for this setting because they allow hŒt�, and thus vThŒt � 1� to grow
without bound, which in turn causes both exploding gradients (on v weights) and
can limit the influence of the inputs zŒt� in the update equations.

The gate variables rŒt� and uŒt� control the updates to the state vector hŒt�, which
is a convex combination of the previous state hŒt � 1� and a proposed next state
OhŒt�. When the update vector uŒt� is close to 1, (5.60d) persists the previous state
hŒt � 1� and discards the proposed state OhŒt�. When uŒt� is close to 0 and rŒt� is close
to 1, (5.60d) updates hŒt� according to the standard recurrent layer equation (5.58).
When both uŒt� and rŒt� are close to 0, hŒt� “resets” to �.wT

h zŒt�C bh/, as if zŒt� was
the first observation in the sequence. As in (5.59), the output of a GRU layer is the
concatenation of hidden state vectors .hŒt�/TtD1.

Like a standard recurrent network, GRUs are also trained using the BPTT
method. However, because a GRU can persist state vectors across long extents—
when ut stays near 1—the hidden state ht does not result directly from successive
applications of the transformation matrix v, so it is less susceptible to the vanish-
ing/exploding gradient problem. Similarly, the reset variables allow the GRU to
discard state information once it is no longer needed. Consequently, GRUs have
been demonstrated to perform well for long-range sequence modeling tasks, such as
machine translation [26].

5.4.4.3 Long Short-Term Memory Networks

Long short-term memory (LSTM) networks [66] were proposed long before the
gated recurrent unit model of the previous section, but are substantially more
complicated. Nonetheless, the LSTM architecture has been demonstrated to be
effective for modeling long-range sequential data [112].

An LSTM layer consists of three gate vectors: the input gate iŒt�, the forget gate
f Œt�, and the output gate oŒt�, as well as the memory cell cŒt�, and the state vector hŒt�.
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Following the formulation of Graves [57], the updates are defined as follows17:

iŒt� WD �
�
wT

i zŒt�C vT
i hŒt � 1�C bi

�
(5.61a)

f Œt� WD �
�
wT

f zŒt�C vT
f hŒt � 1�C bf

�
(5.61b)

oŒt� WD �
�
wT

o zŒt�C vT
o hŒt � 1�C bo

�
(5.61c)

OcŒt� WD �c
�
wT

c zŒt�C vT
c hŒt � 1�C bc

�
(5.61d)

cŒt� WD f Œt�ˇ cŒt � 1�C iŒt�ˇ OcŒt� (5.61e)

hŒt� WD oŒt�ˇ �h .cŒt�/ : (5.61f)

The memory cell and all gate units have the standard recurrent net parameters w 2
R

di�1�di , v 2 R
di�di , b 2 R

di .
Working backward through the equations, the hidden state hŒt� (5.61f) can be

interpreted as a point-wise non-linear transformation of the memory cell cŒt�, which
has been masked by the output gate oŒt�. The output gate (5.61c) thus limits which
elements of the memory cell are propagated through the recurrent updates (5.61a–
5.61c). This is analogous to the reset functionality of a GRU.

The memory cell cŒt� (5.61e) behaves similarly to the hidden state hŒt� of the
GRU (5.60d), except that “update” variable has been decoupled into the input and
forget gates iŒt� and f Œt�. When the forget gate f Œt� is low, it masks out elements
from the previous memory cell value cŒt � 1�; when the input gate iŒt� is high, it
integrates the proposed value OcŒt�. Because f Œt� and iŒt� do not necessarily sum to 1,
an additional transfer function �h is included in (5.61f) to preserve boundedness of
the hidden state vector hŒt�. As in the GRU, tanh is the typical choice for the transfer
functions �h and �c.

Recently, two empirical studies have studied the importance of the various
components of the LSTM architecture [60, 72]. Taken together, their findings
indicate that the forget gate f Œt� is critical to modeling long-range interactions. In
particular, Józefowicz et al. note that it is helpful to initialize the bias term bf to
be relatively large (at least 1) so that the f Œt� stays high (propagates previous state)
early in training [72]. Both studies also found that across several tasks, the simplified
“update” logic of the GRU performs comparably to the more elaborate forget/input
logic of the standard LSTM.

17The presentation of Graves [57] differs slightly in its inclusion of “peephole” connections [51].
We omit these connections here for clarity of presentation, and because recent studies have not
demonstrated their efficacy [60].
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5.4.4.4 Bi-directional Networks

The RNN, GRU, and LSTM architectures described in the previous sections are all
designed to integrate information in one direction along a particular dimension, e.g.,
forward in time. In some applications, it can be beneficial to integrate information
across both directions. Bi-directional recurrent networks (BRNNs) achieve this by
a simple reduction to the standard one-directional architecture [104].

A BRNN layer fi.z j / consists of two standard recurrent layers: the forward

layer
�!
fi and the backward layer

 �
fi . The BRNN layer fi W RT�di�1 ! R

T�di is the
concatenation:

fi.z j / WD

" �!
fi .z j /

rev
� �

fi .rev.z/ j /
	
#
; (5.62)

where rev.�/ reverses its input along the recurrent dimension, and di combines the
dimensionality of the forward and backward layers.18 The output fi.z j /Œt� at time
t thus includes information integrated across the entire sequence, before and after t.
This approach can be easily adapted to LSTM [59] and GRU architectures [6].

Bi-directional networks—in particular, the B-LSTM approach—have been
demonstrated to be effective for a wide range of audio analysis tasks, including
beat tracking [17], speech recognition [58, 84], and event detection [89]. Unless
the application requires forward-sequential processing, e.g., online prediction, bi-
directional networks are strictly more powerful, and generally preferred.

5.4.5 Hybrid Architectures

The previous sections covered a range of architectural units for deep networks, but
in practice, these architectures are not often used in isolation. Instead, practitioners
often design models using combinations of the techniques described above. Here,
we briefly summarize the two most commonly used hybrid architectures.

5.4.5.1 Convolutional + Dense

As briefly mentioned in Sect. 5.4.3, many applications consist of variable-length
input with fixed-length output, e.g., assigning a single label to an entire audio
excerpt. This presents a problem for purely convolutional architectures, where in the
absence of global pooling operators, the output length is proportional to the input

18Some authors define the BRNN output (5.62) as a non-linear transformation of the concatenated
state vectors [55]. This formulation is equivalent to (5.62) followed by a one-dimensional
convolutional layer with a receptive field ni D 1, so we opt for the simpler definition here.



138 B. McFee

Fig. 5.8 An example of a convolutional-dense architecture. Two convolutional layers are followed
by two dense layers and a 16-class output layer

length (or spatial extents, in two-dimensional convolutional models). While global
pooling operators can resolve this by aggregating over the entirety of the variable-
length input dimensions, the resulting summaries cannot model the dynamics of
interactions between features over the convolutional dimension. As a concrete
example,

max.Œ0; 1�/ D max.Œ1; 0�/ D 1 (5.63)

discards the ordering information of the input, which may be relevant for describing
certain phenomena.

A common solution to this problem is to replace global pooling operators with
dense connections—i.e., one or more MLP layers, also called “fully connected” in
this context—to map convolutional outputs to a fixed-dimensional representation.
An example of this type of architecture is illustrated in Fig. 5.8.

Note that the convolutional-dense architecture requires all input data x be
truncated or padded to a fixed length. Consequently, when deploying the resulting
model, the input data must be sliced into fixed-length observation windows, and
the resulting window predictions must be collected and aggregated to produce the
final prediction. With this approach, care must be taken to ensure that the model
evaluation corresponds to quantity of interest (e.g., recording-level rather than
window-level prediction). Nonetheless, the general convolutional-dense approach
has been demonstrated to perform well on a wide array of tasks [37, 93, 102, 116].

5.4.5.2 Convolutional + Recurrent

Another increasingly common hybrid architecture is to follow one or more convolu-
tional layers by recurrent layers. This approach—alternately known as convolutional
encoder-recurrent decoder, or convolutional-recurrent neural network (CRNN)—
combines local feature extraction with global feature integration. Although this
architecture is only recently becoming popular, it has been demonstrated to be
effective in several applications, including speech recognition [3], image recogni-
tion [123], text analysis [113], and music transcription [108].
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5.5 Improving Model Stability

In audio applications, the efficacy of a model is often impeded by limited access to a
large, well-annotated, and representative sample of training data. Models trained on
small, biased, or insufficiently varied data sets can over-fit and generalize poorly
to unseen data. Practitioners have developed several techniques to mitigate this
issue, and in this section, we briefly summarize three important concepts: data
augmentation, domain adaptation, and ensemble methods.

5.5.1 Data Augmentation

Data augmentation is an increasingly popular method to help mitigate sampling
bias: the general idea is to perturb the training data during training to inject more
variance into the sample. By doing so, the model is exposed to a larger and more
varied training sample, and may therefore be better able to characterize the decision
boundaries between classes.

Perturbations can range from simple effects like additive background noise,
constant pitch shifting, and time stretching [83, 102], to more sophisticated, domain-
specific deformations like vocal tract length perturbation [34, 70] or variable speed
perturbation [76]. In general, the idea is that training on these modified examples can
help the model become invariant to the chosen deformations. Care must be taken to
ensure that the deformations applied to the input audio leave the labels unmodified
(or at least modified in a controlled way) [83].

5.5.2 Domain Adaptation

Throughout this chapter, there has been an underlying assumption that the training
sample S is drawn I.I.D. from the test distribution D . In practice, this assumption is
often violated. Training data can be biased, e.g., when labeled examples produced
in one recording environment are used to develop a model which is deployed in a
different environment. In general, this problem is known as domain adaptation [16]:
a model is trained on a sample S drawn from a different domain (distribution) than
the eventual target domain.

In general, methods for domain adaptation require access to a labeled training
set S drawn from a source distribution Ds, and an unlabeled sample S0 drawn from
the target distribution D . The majority of domain adaptation techniques operate
by example weighting. These methods replace the unweighted sum in the learning
objective (5.6) by a weighted sum so that it better approximates the loss on the target
distribution D [14, 29, 61]. Alternatively, feature transformation methods distort the
training data features so that it is difficult to distinguish samples of Ds from those
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of D [46, 49, 53]. In both cases, the underlying goal is to minimize the discrepancy
between the training distribution (or the loss estimated on the training sample) and
the target distribution.

5.5.3 Ensemble Methods

Many of the methods described throughout this chapter can be sensitive to certain
modeling decisions, such as input representation, network architecture, initialization
schemes, or sampling of training data. As mentioned in the beginning of this chapter,
a common remedy is to optimize over these decisions by using withheld validation
set. However, this can still bias the resulting model if the validation sets are too
small or insufficiently varied.

A complementary approach to combine multiple predictors .h1; : : : ; hn/ in an
ensemble. There are many ways to go about this, such as majority voting over
predictions, or weighted averaging over scores/likelihoods [21, 39]. In practice,
when a single model appears to be reaching a performance plateau for a given task,
an ensemble can often provide a modest improvement.

5.6 Conclusions and Further Reading

This chapter aimed to provide a high-level overview of supervised machine learning
techniques for classification problems. When faced with a specific classification
problem, the abundance and diversity of available techniques can present a difficult
choice for practitioners. While there is no general recipe for selecting an appropriate
method, there are several factors to consider in the process.

The first, and most important factor, is the availability and form of training data.
Discriminative models generally require strongly labeled examples, both positively
and negatively labeled. For example, in implementing a discriminative bird song
detector, it’s just as important to provide examples that do not include birds, so
that the model can learn to discriminate. If negative examples are not available, a
generative, class-conditional model may be more appropriate, but it may require a
larger training sample than a discriminative method, due to the increased complexity
of modeling the joint density P Œx; y�.

In audio applications, the characteristics of the target concept can also play an
important role. Some concepts are obviously localized in time (e.g., transient sound
events like gunshots), while others are diffused over long extents (e.g., in scene
classification), and others are distinguished by dynamics over intermediate durations
(e.g., musical rhythms). These characteristics should be taken into consideration
when deciding between localized models (e.g., convolutional networks), dynamic
models (HMMs or recurrent networks), or global models that integrate across the
entirety of an observation (e.g., the bag-of-frames models described in Chap. 4).
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Although machine learning algorithms are generally characterized by the loss
functions they attempt to minimize, the treatment presented in this chapter only
covers the relatively well-understood binary and multi-class categorization loss
functions. In practical applications, the utility of a model can be measured according
to a much broader space of evaluation criteria, which are discussed in Chap. 6.
Bridging the gap between evaluation and modeling is an area of active research,
which broadly falls under the umbrella of structured output prediction in the
machine learning literature [78, 115].

Additionally, this chapter presents the simplest learning paradigm, in which a
fully annotated sample is available for parameter estimation. In reality, a variety
of learning paradigms exist, each making different assumptions about the training
and test data. These formulations include: semi-supervised learning [24], where
unlabeled observations are also available; multiple-instance learning, where a
positive label is applied to a collection of observations, indicating at least one of
which is a positive example [40]; and positive-unlabeled learning, where labels are
only available for a subset of the target concepts, and unlabeled examples may or
may not belong to those classes [42]. The choice of learning paradigm ultimately
derives from the form of training data available, and how the resulting model will
be deployed to make predictions.
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Chapter 6
Datasets and Evaluation

Annamaria Mesaros, Toni Heittola, and Dan Ellis

Abstract Developing computational systems requires methods for evaluating their
performance to guide development and compare alternate approaches. A reliable
evaluation procedure for a classification or recognition system will involve a
standard dataset of example input data along with the intended target output, and
well-defined metrics to compare the systems’ outputs with this ground truth. This
chapter examines the important factors in the design and construction of evaluation
datasets and goes through the metrics commonly used in system evaluation,
comparing their properties. We include a survey of currently available datasets for
environmental sound scene and event recognition and conclude with advice for
designing evaluation protocols.

Keywords Audio datasets • Reference annotation • Sound scene labels • Sound
event labels • Manual audio annotation • Annotation process design • Evalu-
ation setup • Evaluation metrics • Evaluation protocol • Event-based metrics
• Segment-based metrics

6.1 Introduction

Systematic engineering methodology involves quantifiable goals and accurate
ways to measure progress towards them. In the context of developing systems
for computational analysis of sound scenes and events, we often adopt goals
in terms of specific performance metrics to be evaluated on carefully prepared
evaluation datasets. Well-constructed evaluations can clarify and guide research,
and allow direct comparisons between different approaches, whereas poorly chosen
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evaluations can confuse and misdirect a whole field. In this chapter, we examine the
considerations in choosing or constructing evaluation datasets, and we examine the
different metrics relevant for use in sound scene and event evaluations.

Systematic evaluations have been a central part of several research communities,
most notably the automatic speech recognition evaluations pioneered by NIST as
part of DARPA’s speech recognition programs from the mid-1980s onward [34].
For more than three decades, the speech recognition community has coalesced
around a single performance metric—word error rate or WER—and a series of
transcribed audio datasets of steadily increasing difficulty, ranging from isolated
digits through to real, informal telephone conversations. While it is not uncommon
to hear grumbles about the tyranny of WER evaluations, and while very small
marginal improvements are sometimes ridiculed, the unquestionable success and
impact of speech recognition is testament to the success of this regime in driving
steady, cumulative improvements in speech recognition technology.

In some ways it is remarkable that speech recognition has been able to use a
single evaluation paradigm for so long. A more common experience is to have no
clear, single choice for performance metric, and instead to need to consider and
customize metrics for each specific project or application. Speech recognition was
also fortunate in having, for many years, a central sponsor willing to fund the
significant expense of preparing high-quality, relevant evaluation datasets. From
DARPA’s point of view, this was a rational investment to ensure the money spent
funding research was demonstrably well spent, but for less centrally organized fields
it can be difficult for any single research group to have the resources to construct
the kind of high-quality, large-scale evaluation dataset and tools needed to promote
research progress.

In the following sections, we discuss specific properties and issues relating to the
datasets and metrics relevant to sound source and event recognition. Although the
field is at present too diverse to easily be served by a single evaluation process, we
hope to make clear the different qualities that evaluation procedures and datasets
should possess. We will conclude with specific advice on the choice of data and
metrics.

6.2 Properties of Audio and Labels

Labeled data has a crucial influence on algorithm development and evaluation in
research fields dealing with classification and detection. Any machine learning algo-
rithm is only as good as the data behind it in terms of modeling and generalization
properties. Well-established and easily accessible benchmark databases attract the
interest of the research community as readily available support for research, thus
accelerating the pace of development for related fields. There are many well-known
databases in related research areas, such as TIMIT [17] and WSJ [36], for speech
recognition or RWC [20] and the Million Song Dataset [7] for various tasks in
music information retrieval. In view of this critical influence, the process of creating
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a dataset for research is, naturally, very delicate. The content must be carefully
selected to provide sufficient coverage of the aspects of interest, sufficient variability
in characterizing these aspects, and a sufficient quantity of examples for robust
modeling. Unfortunately, there is no rule on what “sufficient” means, as it usually
depends on the projected use of the data.

Compared to speech, which has a relatively small, closed set of different cate-
gories (phonemes) and rules for how they can follow each other (language model)
or music that follows certain rules (notes in certain frequency ratios forming chords,
key and pitch evolution during a musical piece), the categories and sequences of
environmental sounds are not so straightforward to define, as any object or being
may produce a sound. Sounds can be organized into categories based on different
properties, such as the sound source (e.g., cup), its production mechanism (e.g.,
hit), or even the source properties (e.g., metal), and the same sound can belong to
many different categories, depending on the chosen property (sound when hitting
a metallic cup). In addition, there are no specific rules on how environmental
sounds co-occur. For this reason, building a database for environmental sounds
is a complicated task, with the choice of classes usually dictated by the targeted
research, and the size limited by practical aspects of data collection.

An important component of a dataset is the annotation—the link between the data
content (audio, image, or anything else) and the formal categories that associate this
content with its meaning for humans. These are the categories to be learned and
recognized, and they define the tasks and uses of the data. The textual labels used
in annotation must provide a good description of the associated category and not
allow misinterpretation. The properties of audio and labels in a dataset are closely
interconnected, and it is difficult to discuss one without the other. Also, there is a
close relationship between the properties of a dataset and the type of application for
which it is meant or can be used for.

We now look at these two components, audio, and labels, in more detail.

6.2.1 Audio Content

From the machine learning perspective, the properties of the audio data facilitate
model robustness: The audio must represent the modeled phenomena such that
the models learned from it will represent the variability in the acoustic properties
expected in the application. As presented in Chap. 5, during training the features
extracted from audio are used to create acoustic models for the target categories.
Models learned from suitable audio data will be robust and generalize well, resulting
in good performance in test situations. To support good representation in machine
learning, the audio content of a database should have the following properties:

– Coverage: The dataset should contain as many different categories as are relevant
to the task (perhaps including future evolutions).
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– Variability: For each category, there should be examples with variable conditions
of generation, recording, etc.

– Size: For each category there should be sufficiently many examples.

These three properties are inter-related: For the necessary categories to be well
modeled, it is required to have many examples from many different acoustic
conditions. Comparable requirements have been identified for selection of suitable
sounds for environmental sound research in human perception [51], presented as
practical considerations in building a representative set of audio examples for
a particular experimental task. Similarly, the selection of a representative set of
audio examples is important for machine learning algorithms. In addition, current
algorithm development is closely focused on deep learning methods, which continue
to benefit from expanded training sets seemingly without limit. A property related
to data size is the balance of the amount of data between categories, which is
usually necessary to ensure no class is under-represented in the training process
[23]. However, a large training dataset is not sufficient to achieve high performance
if the training examples fail to span the variability exhibited in the test data and
application.

6.2.1.1 Sound Scene Audio Data

A sound scene is the audio environment as recorded in a specific physical or
social context, e.g., in a park, in the office, or during a meeting. The sound scene
represents the general acoustic circumstances of the given situation; it does not refer
to individual sounds, but to the combination of them seen as a whole.

For sound scene classification, coverage in audio content means that the dataset
must contain all the scene categories which have to be represented in the task. This is
somewhat obvious in closed-set classification problems, where a test audio example
is meant to be classified as belonging to one of the existing categories. However,
in some cases it is necessary to detect if a test example belongs to a known or
unknown category—in the so-called open-set problem. In this situation, there is a
need for audio content to represent the unknown category, and the considerations of
coverage must still apply.

For each category, audio examples from many different locations are necessary in
order to achieve sufficient acoustic variability. This means recordings from different
streets, different offices, different restaurants, etc., with different acoustic conditions
(weather, time of day, number of people at the scene, . . . ). Such variety will support
generalization in learning the characteristics of the acoustic scene class. If, however,
the goal is to recognize a specific location, only variability in recording conditions
is needed. Size-wise, a large number of examples for each category and for each
recording condition are desired, aiming so that no case is under-represented.
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6.2.1.2 Sound Events Audio Data

A sound event is a sound that we perceive as a separate, individual entity that we can
name and recognize, and, conversely, whose acoustic characteristics we can recall
based on its description. Sound events are the building blocks of a sound scene and
facilitate its interpretation, as explained in Chap. 3.

The presence of all categories relevant to a sound event detection task will
provide the required coverage, making a dataset suitable for the given task. In an
open-set problem, the test data can belong to a category that was not encountered in
training or is not of interest in the task, usually marked as “unknown”; the choice of
audio content for this category depends mostly on the expected test situation; sounds
that are extremely unlikely to be encountered provide limited value to the dataset.

Compared to other types of audio, sound events generally have a very high
acoustic variability. For example, the words in speech exhibit acoustic variability
due to aspects like intonation, accent, speaker identity, and mood, but they always
have the same underlying structure of phonemes that is employed when building
acoustic models. Some sound categories do exhibit structure, for example, footsteps
that are composed of individual sounds of a foot tapping the ground, therefore
having a temporal structure which can differ due to walking speed, surface, etc.
Other sound categories are very broad, and a structure is noticeable only in the
subcategories, for example, birdsong being similar only for the same species,
possibly requiring a different and more detailed labeling scheme.

Variability for a dataset of sound events can be achieved by having multiple sound
instances from the same sound source, recorded in different acoustic conditions
(similar to examples of speech from the same person in different situations), and
also examples from multiple sound sources that belong to the same category (similar
to collecting speech from multiple persons). The acoustic variability of the specific
sound sources can be considered as a factor: Variability of natural sound sources
is much greater than of non-natural sources (the same dog will bark in many
different ways but a given fire alarm will always make the same sound); therefore,
for some sound categories it may be unnecessary to have many examples with the
exact same acoustic content. Due to the high acoustic variability of sound events,
it is impossible to obtain examples of all categories in all conditions; therefore,
the acceptable size and variability for a training dataset depends strongly on the
expected variability of the application as represented by the test data.

6.2.2 Textual Labels

In supervised learning, the labels are a critical component of the database and in
many cases they drive the dataset design. The choice of target application typically
dictates the need for specific categories of sounds, which in turn defines the data
collection process in terms of content and diversity.
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The labels attached to the training data define the categories to be learned;
on the test data, the labels dictate the desired output against which to evaluate
recognition performance. Unsupervised learning methods can take advantage of
unlabeled training data, but labeled data is always necessary for objective evaluation
of performance. In consequence, the labels should be representative of natural
grouping of phenomena, while also being explicit for the end user, to provide an
intuitive understanding of the modeled problem. For this, the labels should have the
following properties:

– Representation: A label should be a good descriptor of the sound scene or event,
of sufficient descriptive power to allow understanding of the sound properties
based on the label.

– Non-ambiguity: A label should be unequivocal and have a clear one-to-one
correspondence to the type of sound to which it applies.

6.2.2.1 Sound Scene Labels

Sound scene labels usually consist of a very short textual description of the scene
that provides a meaningful clue for identification: e.g., park, office, meeting, etc. To
enable consistent manual annotation, each label needs to be connected to a clearly
defined situation, including a specification of the level of detail for the description—
to fulfill the necessary representation requirement. A general sound scene may be
home, to mark scenes happening in the home, but in some cases one may want to
differentiate between scenes happening in the kitchen, living room, etc., therefore
using a finer level of detail in drawing distinctions between scenes. After a certain
level, it becomes hard to distinguish separate categories, increasing the risk of
confusion among human labelers.

Ambiguity in sound scene labels can arise from interpretation of the scene or the
label due to personal life experience—the level of traffic that warrants the labeling
of a scene as busy street is likely to be different for someone living in a densely
populated city compared to someone living in a small town, while train station can
be indoor or outdoor. For non-ambiguity, additional descriptive information of the
label may be important to both annotator and end user of the system.

A sound scene label may refer to an entire recording. In this case the main
characteristics of the scene around the recording device do not change during
the recording, while the recording device can be stationary or moving within
the same acoustic scene. Such data is meant for typical classification tasks, with
the expected system output being a single label that characterizes the entire test
example. There are also cases where segmentation of an audio recording into
different scenes is required—for example, when dealing with long recordings in
life-logging applications, in which the scene can change multiple times according
to movements of the user carrying the recording device. In this case the annotated
scene labels refer to non-overlapping segments of a single recording. It follows that
in related applications the expected system output is a segmentation providing the
scene change points, and multiple labels, each associated to a segment of the test
example. Different granularities of sound scene annotation are illustrated in Fig. 6.1.
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Fig. 6.1 Annotation of sound scenes for classification and segmentation

6.2.2.2 Sound Event Labels

Sound event labels usually consist of a very short and concise description of the
sound as perceived by humans. The interpretation of the sound in terms of its
source is related to so-called everyday listening (introduced in Chap. 3), while the
interpretation in terms of its acoustic qualities is related to musical listening [18].
According to Gaver [18], sounds are caused by the interaction of materials and
convey information about those materials and interactions; at the most basic level
sounds can be categorized as involving solids, liquids, or gases, with a few basic-
level events (e.g., impacts, pouring, explosions). When asked to describe a sound,
people describe it most often in terms of its source, meaning the object or being
that produces the sound, or the action that causes the sound, with a more complete
description consisting of an object-action pair [5]. Sound event labels characterize
the content of a sound scene in terms of individual sounds, for instance, with sound
events such as people talking, children shouting, and dog barking being possible
elements of a living room or home sound scene.

Since it depends on personal life experience and perception, the labeling of sound
events is highly subjective [22]. The most common everyday sounds will likely
be similarly described by people of similar cultural background, but differences
may still appear, for example, from using synonyms (car vs. automobile) or using
related words that offer a correct description at a different level of detail (car vs.
vehicle) [21, 29]. Increased detail in descriptions provides specificity, whereas a
more general term is more ambiguous. The choice of terms must also fulfill the
representation requirement—therefore non-informative textual descriptions like car
noise are best avoided in favor of labels allowing interpretation of the sound [21],
e.g., car engine running, car passing by, or car horn.

Similar to the case of sound scene labels, a sound event label may be attached
to an entire recording, indicating the presence of the described sound in the audio
without specifying the actual temporal location of the sound event. In this case,
the label is referred to as a weak label or a tag. A single audio example may have
multiple associated tags [16]. In its most informative form, a sound event label has
associated temporal boundaries to mark the sound event’s onset and offset, making
it a strong label. In this case, an event label characterizes a certain segment of the
audio recording which represents a sound event instance, with multiple instances
of the same category being possible in the same recording. In real-life situations
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Fig. 6.2 Tagging and polyphonic annotation of sound events

it is very common for multiple sounds to overlap. If multiple overlapping sounds
are annotated, the resulting annotation is a polyphonic annotation [32], which is
practically the most complex form of annotation of environmental audio. Figure 6.2
illustrates these types of annotation for sound events.

6.3 Obtaining Reference Annotations

To allow supervised learning and evaluation, the audio must have corresponding
reference annotations. These annotations can be produced manually or in various
semi-automatic ways, with the quality and level of detail available in the obtained
annotation often depending on the procedure used. Manual annotation involves
human annotators that will produce a mapping of the audio content into textual
labels. Manually annotating sound scene audio material is relatively fast, while for
sound events the process is much slower, with annotation using weak labels being
much faster than with strong labels. Manual annotation is prone to subjectivity
arising from the selection of words for labels and placing of temporal boundaries.

Automatic methods for creating annotations may take advantage of the specific
content of the audio, for example, using endpoint detection to find segments of
interest or using a pre-trained classifier for assigning labels to segments of audio.
Automatic methods are prone to algorithm errors; therefore, human verification
of the annotations is necessary to ensure that the outcome has sufficient quality.
Endpoint detection has been used, for example, to annotate the ITC-irst data
[57], with subsequent verification of the sound event boundaries. In the case
of synthetically created audio mixtures (discussed below), annotations can be
automatically produced at the same time as the audio mixtures.

Another method to obtain annotations is crowdsourcing. Crowdsourcing
annotations is possible for certain types of data and can make use of existing
tools such as Mechanical Turk,1 making it a convenient way to obtain labels for

1Amazon Mechanical Turk, https://www.mturk.com.

https://www.mturk.com
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categorization tasks, where the annotator must only provide or assign a label for a
given segment. With crowdsourcing it is possible to obtain many judgments in a
short time and to produce high-quality annotations using inter-annotator agreement
measures. Crowdsourcing is also appropriate for the verification of weakly labeled
data available from sources like Freesound or YouTube, but segmentation, with or
without labeling, is less easily achieved via crowdsourcing.

6.3.1 Designing Manual Annotation Tasks

Designing the manual annotation procedure is a difficult part of the data collection
process. Ideally, the annotation procedure should be broken down into simple
unit tasks that can be performed quickly, without requiring much effort from the
annotator. A unit task is, for example, labeling of a single segment of audio, or
selecting the category from a list of available labels that was decided in advance.
When the audio is presegmented, the annotator is free of the burden of positioning
event or scene boundaries and needs only concentrate on labeling the presented
audio segment. When the categories to be annotated are selected in advance, the
annotator is free of the burden of selecting representative and non-ambiguous labels,
and only needs to identify and locate the required categories, ignoring other content.
These are good methods for simplifying the annotation process by giving a clear
task to the annotator, but are not always suitable choices in data collection, as will
be detailed below.

6.3.1.1 Annotation with Preselected Labels

This approach frees the annotator from choosing terms for the labels and is
applicable to most cases dealing with a specific detection/classification problem.
In this case, the labels are selected such that they match the classes defined by the
target application, and the annotator only needs to know what kind of content is
relevant to each of the provided labels.

Preselected labels will significantly speed up the annotation process for sound
scenes, as long as each label has a precise definition to clearly mark the main
characteristics on which identification is based. Studies show that human subjects
have a very high sound event identification accuracy in a closed-set response format
[51]; therefore, this method should result in high-quality category annotations.
The annotator can be provided with additional information (e.g., general recording
conditions, location, geographical information or physical characteristics) to help in
resolving situations that cannot be solved using only the acoustic characteristics.
Differentiation between acoustically similar scenes may then be based on the
additional information.

When annotating sound events, a predefined set of labels will help annotators
use consistent labels. This results in well-defined categories for the research task, but
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does not allow any flexibility in differentiating between acoustically or conceptually
similar sounds and may cause difficulties when target categories are very similar, for
example, verbs expressing objects being hit: bang, clack, clatter, clink. The greater
the number of classes, the more difficult it is to differentiate between the relevant
sounds, which increases the importance of training annotators about what each label
means.

Annotation using predefined labels requires careful consideration of the labels
and their definitions. While labels can be based on clearly defined characteristics, the
definitions must solve ambiguities: for example, when annotating an outdoor cafe
scene with no outdoor cafe label available in the provided list of labels, is it more
appropriate to select cafe or street? In the case of sound events, it is recommended
to select labels indicating clear sound sources or actions such as air conditioning or
door slam, as sources are easy for the annotators to recognize and label, compared
to more abstract concepts like broadband noise or percussive sound which do not
facilitate fast identification and interpretation of the sound.

6.3.1.2 Annotation of Presegmented Audio

Another option to speed up the annotation process is to segment the audio in
advance—leaving the annotator only the labeling of the segments. Combining this
with predefined labels results in a greatly simplified annotator task. The simplest
way is to segment the audio into fixed-length segments, without taking into account
natural boundaries of its content. Annotation of these segments will provide a
coarse time resolution of annotated content [16, 19], which may be sufficient
for applications that only require tagging. Such a method is, however, unsuitable
for obtaining a detailed annotation that requires segmentation of content into
acoustically or conceptually meaningful units such as different scenes or individual
sound events.

To obtain such meaningful units through segmentation, one option is to use
human annotators to first perform segmentation without labeling, and provide the
labeling task later based on the segmentation task’s results. Automatic segmentation
techniques may also be applicable, but their performance needs to be assessed
before trusting them for the annotation task. In general, segmentation techniques
are fairly successful for scene segmentation and for sequences of non-overlapping
sound events with mostly silent background, but they are likely to underperform for
highly polyphonic or noisy mixtures.

6.3.1.3 Free Segmentation and Labeling

Completely unrestricted annotation involves segmentation and labeling performed
by the annotator at the same time—allowing free choice of labels and selection
of the relevant segment boundaries. Both aspects pose difficulties and introduce
subjectivity into the annotations. In this annotation procedure, the level of detail for
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Fig. 6.3 Annotating onset and offset of different sounds: boundaries of the sound event are not
always obvious

the label is selected by the annotator and cannot be controlled [21]. The resulting
variability in labels may be undesired, but a dataset that is freely annotated is
typically not targeted to any specific classification or detection task, allowing full
flexibility in its future use and development. Such general data can be adapted
to specific applications by narrowing it down to target classes directly based
on the available labels, or by postprocessing to map available labels into more
uniform annotations. Because there is no restriction on the annotation categories,
the annotation process may result in diverse and unbalanced classes, some of which
may be arbitrarily rare. A level of control can be set by imposing rules on the labels,
such as the use of noun/verb pairs [5], and by devising methods for refining the
resulting annotations.

Segmentation subjectivity is mostly related to positioning of onsets and offsets,
which may prove difficult for some categories. Figure 6.3 illustrates two sounds:
car horn and car passing by. It is clear that for the car passing by sound it is much
more difficult to pinpoint an exact onset or offset. The resulting subjectivity in
event boundaries could be alleviated by combining multiple annotators’ opinions
[26] or by using appropriately designed metrics when measuring the boundary
detection performance. For example, in speaker diarization the possible subjectivity
of annotation at speaker change points is counteracted by allowing a tolerance of,
for example, ˙250 ms at the boundaries when evaluating performance [3]. A study
on measure annotation for western music indicates a similar tolerance is necessary
for this task [55], but up until now there are no systematic studies of this dimension
for annotations of sound events.

Performing segmentation and annotation at the same time is quite demanding,
yet reduced annotator effort is the key to success in obtaining reliable annotations.
Simplification of either aspect (labeling or segmentation) will discard some level
of detail that could be obtained, either descriptive or temporal. On one hand, it is
important to find solutions that simplify the annotation process, but on the other
hand, oversimplification will limit the generality and reusability of the resulting
dataset. There will always be a trade-off between the speed and amount of data
that can be collected and the quality and detail of annotations; this deserves careful
consideration when making a data collection plan.
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6.3.2 Inter-Annotator Agreement and Data Reliability

Ideally the annotation offers a true representation of the audio content and can be
considered as ground truth. In reality, this is not the case, and in the best scenario
the annotation is to be trusted as a suitable gold standard reference in evaluation.
For this reason, testing the reliability of the annotation process should be a common
requirement. Reliability measures reflect the trustworthiness of the annotations and
help refine the annotation process to produce consistently good annotations. Up until
now, work in environmental sound detection and classification has not considered
the subject of data reliability, but in other fields, such as computational linguistics,
reliability testing is more common.

There are two aspects to be considered: reliability of the annotator and reli-
ability of the produced annotations. On one hand, when the annotation process
is well understood by the human annotators, the same annotator should perform
consistently and identify the target categories with equal confidence. On the other
hand, a good annotation procedure should be independent of the annotator, such
that different annotators should identify the target categories in the same way.
Measuring inter-annotator variability can offer corrections for improving both the
annotation procedure and the quality of annotations by identifying categories on
which disagreement is higher and concentrating on better defining the corresponding
labels. The previously discussed annotation procedures are based on different
rules, and agreement needs to be measured differently for segmentation and for
categorization (labeling of fixed segments). Different measures for agreement exist,
but there is no universal procedure for how to measure it and how to interpret the
obtained values.

In simple categorization problems, in which annotators only have to choose a cat-
egory for already identified units, inter-annotator agreement can be measured using
percentage agreement or specific coefficients such as Cohen’s kappa [9], Scott’s pi
[48] and its generalization for more than two annotators, Fleiss’s kappa [14], as well
as Cronbach’s alpha [10]. Each of these measures attracts some criticism, related
to accounting or not for chance agreement, systematic biases introduced by the
number of annotators or their use of categories, or the minimum value acceptable for
concluding reliability. Nevertheless, in computational linguistics these coefficients
are well known and have been widely used since 1950.

An example of an inter-annotator agreement study for environmental sound
labels is presented in [16]. Audio segments with a length of 4 s were tagged by
three annotators using seven predefined labels. The inter-annotator agreement was
measured using Jaccard index which measures similarity between two sets. The
study showed significant differences in annotator opinion for the seven available
labels. Samples with very low agreement score were eliminated for subsequent use,
but many others with relatively low score were kept in the dataset, without providing
any guidance for dealing with such cases.

Measuring reliability for segmentation—marking boundaries of units—or simul-
taneous segmentation and labeling has been mostly neglected, being treated instead
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as categorization of fixed length units, thus artificially reducing the measuring of
reliability to the same known coefficients. The lack of a methodology to assess
annotator reliability and inter-annotator agreement for more complex styles of
annotation, including the polyphonic case, is a hurdle that remains to be overcome
for creating reliable annotations.

6.4 Datasets for Environmental Sound Classification and
Detection

For developing systems that can be successfully applied in real-life applications,
the data used in development and testing should be either naturally recorded in
similar conditions, or created artificially with sufficient realism to achieve the same
result. Training and developing with audio data that resembles the application
ensures that the trained models are suitable and the system performs at its best.
Specific applications that target certain sound categories may use examples of the
sounds recorded in isolation, but often real-life applications will require methods to
overcome the presence of concurrent sounds.

The data collection procedure must be defined at the beginning of the process. It
may be useful to perform a few test recordings and annotations or test the data
selection procedure if the workflow is unclear, or simply to verify all the steps
involved. The data collection should be planned according to the desired properties
of the outcome, including aspects such as low/high audio quality, single device/multi
device, closed/open set, etc. If a target application is already in sight, the audio
properties are selected so as to match the expected system use, and the set of classes
is selected to match the application needs. In the ideal, using a very general setup
to collect a large amount of data will make it possible to subsequently narrow down
the dataset for a variety of more specific purposes.

6.4.1 Creating New Datasets

6.4.1.1 Recording New Data

Recording real-world audio is the obvious data collection method for obtaining
realistic data. Creating a new dataset by recording new data has the advantage of
producing a collection with controlled audio quality and content. When planning
the recording process, details such as microphone types, recording devices, audio
quality (sampling frequency, bit depth, monaural/binaural) can be decided. Use
of the same settings and device(s) throughout the data will result in a uniform
quality set.

There are unfortunately some disadvantages to collecting new data. One disad-
vantage of recording new data is that in order to cover as much acoustic variability
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and diversity as possible, recordings must be done in many different conditions.
For location-specific modeling, this may mean different weather or human activity
conditions, while for more general modeling, it would also require traveling to
other locations, adding significant time and effort to the data collection procedure.
For the algorithm development stage, however, this is an advantage: A highly
diverse dataset gives very good foundation for developing algorithms with good
generalization properties. If annotation of the newly recorded data is planned, the
annotation process adds to the disadvantages. Depending on the purpose of the
data, annotation may be relatively effortless—for example, sound scene annotation
for classification—or slow and tedious, as for polyphonic sound event data. As a
consequence, this method for creating datasets is more attractive to applications
where the recording and possibly annotation effort is offset by the resulting
controlled data quality.

Recording new data is popular for sound scene classification, because for this
task the single label per recording can be easily provided [12, 33, 53]. In some cases,
the annotation process can be embedded in the data recording process, for example,
when recording through a mobile application [41]. Collecting and annotating new
data for sound event detection is much less common, but it was done, for example,
in the DCASE challenges [33, 53].

6.4.1.2 Collecting a Set of Existing Recordings

It is possible to take advantage of already-recorded data by collecting audio
from various existing collections—whether freely available or commercial. This
approach has the advantage of speed, since it does not involve physically doing
any recordings. In this approach there is no direct control on the properties of
the audio, and while acoustic diversity can possibly be achieved by collecting a
sufficiently large number of examples, the audio quality is something that needs to
be reviewed. It is possible to simply disregard audio examples that do not fulfill
certain requirements, for example, by imposing a minimum sampling rate or bit
rate, but the resulting dataset will likely contain audio recorded with different
microphones and devices and will not have uniform quality. Having audio of varying
recording condition and quality may be a disadvantage in some situations, but also
useful for creating robust algorithms.

This method for creating new datasets is most often used to collect isolated sound
examples for sound event classification [46], or for creating artificial mixtures [13]
as will be explained next. When creating datasets this way, the usual method is
retrieval of examples from the original source collections based on textual queries.
Often these queries involve or are the exact target labels. Audio samples are selected
from the retrieval output along with their labels or tags. A broader search can be
performed by using semantically equivalent or similar terms in the queries, in which
case it is necessary to create a mapping between the query terms and the labels
assigned in the new dataset to the retrieved examples.
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6.4.1.3 Data Simulation

A fast way to produce sound scenes data with reliable annotations is data simulation.
Complex audio examples can be created by mixing isolated sound tokens with the
desired complexity of overlapping target sounds as well as possible ambient or noise
background [28]. This method has the advantage of generating reliable reference
annotations during the process of creating the mixture audio, based on the placing
of the individual sound event instances. It also offers the possibility of controlling
the relative levels of different sound events and background, making it possible to
create the same combination of sounds at many different signal-to-noise ratios.

The main disadvantage of this method is that in order to obtain a realistic sound
scene it is necessary to consider rules for sound co-occurrence and overlap, thereby
creating a kind of “language model” of our everyday environment. While it is
possible to generate a wide variety of scenes, this method has the inherent limitation
of using a restricted set of source samples that may not fully model the complexity
of real world data.

Audio capture in a variety of acoustic environments can be also simulated to
introduce diversity into data. A simple way to accomplish room simulation is to
collect room impulse responses measured from differently sized and shaped rooms,
capture the source audio in low reverberant space, then simulate audio capture in
different rooms by convolution of the clean audio signal with the available room
impulse responses [58, pp. 191]. This process will introduce the reverberation
characteristics of the selected room into the acoustic signal. Another possibility to
simulate room response is to use image method [2].

6.4.1.4 Typical Pitfalls in Data Collection

To satisfy the need for diversity when recording new audio, the goal is to record
multiple instances of the same situation, such as different locations and multiple
conditions for each acoustic scene class, e.g., rainy/sunny/windy, winter/summer,
crowded/quiet, and multiple examples for each sound event, e.g., footsteps of
different people, at different speeds, on different surfaces, etc. For audio scenes,
a record of the geographical location should be also kept to be used later in
the experiment setup, to avoid training and testing with data from the same
location, unless this is specifically desired (location-specific models). If the recorded
audio is intended to be cut into smaller pieces and distributed as such (as in the
DCASE 2016 Acoustic Scene Classification task [33], as well as the Rouen set
[8]), information that identifies which pieces originate from the same underlying
recording is necessary for the same reason. This can pose a problem when building
datasets from existing audio recordings if there is no such information on common
origin available for the collected files.

When creating synthetic audio, a similar issue arises in order to avoid using
mixtures containing the same instances in train and test sets. When creating artificial
mixtures, another challenge is to create data such that the systems using it will be
able to generalize, which means that a large number of source examples with high
diversity are necessary.
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Perhaps the biggest pitfall of evaluation datasets concerns their size. Typically,
the effort involved in designing the task is much less than the labor required to
collect and then annotate the data, so the overall cost is roughly linear in the size
of the dataset. As these costs can be significant (months of annotator effort, for
example), there is a natural tendency to create the smallest acceptable dataset.
However, a small dataset provides few examples (particularly for rarer classes),
meaning that estimates of performance are correspondingly “noisier” (exhibit
high variance). “Noisy” performance metrics can be corrosive and misleading,
resulting in spurious conclusions about the merits of different approaches whose
relative performance may be entirely due to chance. A rigorous research process
includes estimating the confidence intervals of any measures, and/or the statistical
significance of conclusions. However, these measures can be difficult to calculate
for some metrics and are too frequently overlooked [56]. Researchers are advised
to run evaluations with many minor variations of system parameters or random
initializations to acquire at least some sense of the scale of variation of performance
metrics that can occur at random.

6.4.2 Available Datasets

As explained above, benchmark datasets are important in research for compar-
ing algorithms and reproducing results in various conditions. Currently available
datasets include all previously mentioned dataset creation methods: data specifically
recorded for a certain task, data retrieved from existing free-form collections,
and data artificially created to model different degrees of complexity in everyday
environments.

Free-form collections are a valuable resource for creating specific datasets.
Freesound2 is an example of such a collection, its most important asset being
that it is freely available. Of the disadvantages, probably the most apparent is the
unstructured annotation of the data, but many studies have performed a careful
selection or filtering of the labels when creating the datasets. Freesound is the source
for the ESC datasets [38], NYU UrbanSound [46], and Freefield [52]. Other audio
data sources are the commercially available audio samples from BBC, Stockmusic,
and others.

A list of freely available datasets for sound classification and tagging and sound
event detection is presented in Table 6.1. The list is not meant to be comprehensive
(particularly since many new datasets are appearing at this time), but it provides
examples that illustrate disparities between different datasets.

Among the sound scene datasets in Table 6.1, Dares G1 [21] has been recorded
for general environmental sound research, but due to free annotations resulting in
over 700 sound event classes (distributed among only around 3000 annotations),

2www.freesound.org.

www.freesound.org
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Table 6.1 Datasets for sound classification, tagging, and sound event detection. Datasets for
sound scene classification are newly recorded (rec), while datasets for sound event classification
are often collected (col) from available repositories. Most sound event detection datasets are newly
recorded or produced synthetically (syn)

Dataset name Type Classes Examples Size (min) Usage, publications

So
un

d
sc

en
es Dares G1 rec 28 123 123 [21, 31]

DCASE 2013 Scenes rec 10 100 50 [53]

LITIS Rouen rec 19 3026 1513 [8, 40]

TUT Sound Scenes 2016 rec 15 1170 585 DCASE 2016, [33]

YouTube-8M col 4716 >7M >27M [1]

E
nv

ir
on

m
en

ta
ls

ou
nd

s ESC-10 col 10 400 33 [25, 37]

ESC-50 col 50 2000 166 [37, 38]

NYU Urban Sound8K col 10 8732 525 [46]

CHIME-Home rec 7 6137 409 DCASE 2016, [16]

Freefield1010 col 7 7690 1282 [52]

CICESE Sound Events col 20 1367 92 [6]

AudioSet col 632 >2M >340k [19]

So
un

d
ev

en
ts

Dares G1 rec 761 3214 123 [21, 31]

DCASE 2013 Office Live rec 16 320 19 DCASE 2013, [53]

DCASE 2013 Office Synthetic syn 16 320 19 DCASE 2013, [53]

TUT Sound Events 2016 rec 18 954 78 DCASE 2016,[33]

TUT Sound Events 2017 rec 6 729 92 DCASE 2017

NYU Urban Sound col 10 3075 1620 [43, 44, 46]

TU Dortmund Multichannel rec 15 1170 585 [27]

it is rather difficult to use for sound classification. DCASE 2013 [53] datasets are
balanced, but they are very small. LITIS Rouen [40] and TUT Sound Scenes [33]
are larger sets but formed of 30 s segments cut from longer recordings, and while
providing a recommended cross-validation setup, LITIS Rouen does not include
complete information linking the segments to the original recordings, leading to
difficulties in the experimental setup. The YouTube-8M collection of audio and
video features includes a very large number of classes, but these are not specifically
audio, nor even specific scenes, being categories assigned to the videos on YouTube
such as “Animation” or “Cooking” [1]. The datasets of environmental sounds
are generaly larger than the others, most being created by collecting audio from
Freesound or YouTube [19]. These sites also provide rich sources for unsupervised
learning approaches [4].

Datasets for sound event detection are the most varied, including newly recorded
and annotated data, as well as synthetically generated mixtures and data collected
from Freesound. DCASE 2013 and 2016 synthetic datasets contain overlapping
sound events and have polyphonic annotation, DCASE 2013 Office Live contains
sequences of events separated by silence, NYU Urban Sound contains a single event
instance, while TUT Sound Events 2016 and 2017 contain overlapping sound events
recorded in everyday situations and with polyphonic annotation.
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Fig. 6.4 Data augmentation by block mixing and time stretching

6.4.3 Data Augmentation

Data augmentation refers to methods for increasing the amount of development data
available without additional recordings. With only a small amount of data, systems
often end up overfitting the training data and performing poorly on unseen data.
Thus, it is desirable to artificially increase the amount and diversity of data used in
training.

Approaches for modifying existing data include straightforward methods like
time stretching, pitch shifting or dynamic range compression [45], or convolution
with various impulse responses to simulate different microphones and different
room response. More complicated modifications are sub-frame time shifting [35],
frequency boosting/attenuation, mixing of sounds from same class, or random
block mixing [54]. Other modifications can include mixing of available audio with
external data to add background noise with various SNRs, simulating different noise
conditions.

Block mixing and time stretching procedures are illustrated in Fig. 6.4. Block
mixing is based on the superposition of the individual waveforms of two or more
sound sources active at the same time. Based on this, new signals can be created
by summing sections of the original recordings. For the resulting data, labels are
created as the framewise union of the set of labels of the original recordings. Under
the serviceable assumption of linearity for the magnitude spectra, the spectrogram
of the new data can be obtained by direct summing of the spectrograms of the
two sections to be combined, shortening the feature extraction process by avoiding
calculation of the spectrogram of the mixture. This can then be further processed to
obtain the desired feature representation.
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6.5 Evaluation

Evaluation is usually framed as estimating the performance of a system under test
when confronted with new data. For an objective evaluation, the system is fed
previously unseen data for which reference annotations are available. The system
output is then compared to the reference to calculate measures of its performance.
What performance means and how it should be measured may vary depending
on the specifications and requirements of the developed system: We can measure
accuracy to reflect how often the system correctly classifies or detects a sound, or
we can measure error rates to reflect how often the system makes mistakes. By using
the same data and the same methodology to evaluate different systems (perhaps in
different places and/or at different times), a fair and direct comparison can be made
of systems’ capabilities.

Subjective evaluation of systems is also possible and relies on human ratings of
the system performance. Subjective evaluation often involves listening experiments,
combined with agreement or satisfaction ratings of the system outputs. Subjective
evaluation is useful when there is no available reference annotation for the test data,
or the system clearly targets customer satisfaction. Below, we limit our discussion to
objective evaluation, since measuring user experience through qualitative methods
is application-specific and out of the scope of this book, being more common in
usability engineering and human-computer interaction.

6.5.1 Evaluation Setup

During system development, iterative training and testing of the system is necessary
for tuning its parameters. For this purpose, the labeled data available for develop-
ment is split into disjoint training and testing sets. However, labeled data is often
in short supply, and it is difficult to choose between using more data for training
(leading to better-performing systems) or for testing (giving more precise and
reliable estimates of system performance). For an efficient use of all the available
data, system development can use cross-validation folds [11, p. 483] to artificially
create multiple training/testing splits using the same data; overall performance is
then the average of performance on each split. Cross-validation folds also help avoid
overfitting and supports generalization properties of the system, so that when the
system is used on new data it is expected to have similar performance as seen with
the data used for development.

If available, a separate set of examples with reference annotation can be used to
evaluate the generalization properties of the fully tuned system—we refer to this set
as evaluation set, and use it to evaluate how the system would perform on new data.
Figure 6.5 illustrates an example partitioning of a dataset into development data and
evaluation data, with further partitioning of the development data into training and
testing subsets in five folds. The split here is done so that all data is tested at most one
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Fig. 6.5 Splitting a dataset into development and evaluation data, with five folds for cross-
validation during system development

time, but it is also possible to create the train/test subsets by randomly selecting data
into each subset. There are, however, some details to take into account, depending
on the way the original dataset was created.

When splitting a dataset into train and test subsets, metadata available for
the audio examples is useful for ensuring that data coming from same location
(segments of the same original long recording), or data with same content (synthetic
data in which same instance has been used) is never split across train and test sets.
This is necessary in order to ensure that the system learns the general properties of
the data, rather than the details of specific instances.

Stratification of the data is recommended, if possible. This means splitting the
data into folds in a supervised manner, such that each fold is representative for
the data. The aim of stratification is to ensure that the train and test sets used in
development contain balanced data, with all classes present in all folds, with similar
amounts of data for each class [50]. Unfortunately, this is not always feasible,
especially with multilabel classification or polyphonic sound event detection. Most
often, the available data is not perfectly balanced, and in this case the train/test
splits should be constructed at least to ensure that there are no classes being tested
that were not present in the corresponding training data.

Repeated evaluation of the system is often necessary during its development,
which involves calculating the metrics of choice after testing the system. With
unbalanced data, different folds will have different amounts of data for classes, or
even classes completely missing from the test set of a given fold. In such cases,
calculating the overall performance as an average of the fold-wise performance
will depend on how data is distributed within the folds and will differ for any
different split. This can be avoided by treating the folds as a single experiment and
evaluating system performance only after performing the complete cross-validation,
thus ensuring that all classes are fully represented in the test set [15].
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6.5.2 Evaluation Measures

Evaluation is done by comparing the system output with the reference annotations
available for the test data. Metrics used in detection and classification of sound
scenes and sound events include accuracy, precision, recall, F-score, receiver
operating characteristic (ROC) curve, area under the curve (AUC), acoustic event
error rate (AEER), or simply error rate (ER). There is no consensus over which
metric is universally good for measuring performance of sound event detection, as
they each reflect different perspectives on the ability of the system.

6.5.2.1 Intermediate Statistics

Many performance measures rely on trials, the notion of atomic opportunities for
the system to be correct or make a mistake, and the metrics are calculated based on
counts of the correct predictions and different types of errors made by the system.
These counts are referred to as intermediate statistics and are defined depending on
the evaluation procedure. Given class c they are defined as follows:

– True positive: A correct prediction, meaning that the system output and the
reference both indicate class c present or active.

– True negative: The system output and the reference both indicate class c not
present or inactive.

– False positive or insertion: The system output indicates class c present or active,
while the reference indicates class c not present or inactive.

– False negative or deletion: The system output indicates class c is not present or
inactive, while the reference indicates class c present or active.

A false positive can appear at the same time as a false negative, when the system
output indicates class c while the reference indicates class g. In this situation, some
metrics consider that the system makes a single error—a substitution—instead of
two separate errors. More details on how substitutions are defined for specific cases
are presented with the description of the metrics that use them.

The intermediate statistics are calculated based on the trial-wise comparison
between the system output and the available reference for the test data [47].
Individual trials can be formed by specific items identified in the annotations, or
simply from fixed length intervals. The fixed length intervals can be any small
temporal unit, such as a frame of 20–100 ms, similar to the typical audio analysis
frame [39, 53], or a longer interval such as 1 s [24]. In item-level comparisons
the item can be an entire audio clip from start to end, or a sound event instance.
Corresponding metrics are referred to as segment-based metrics and item-based or
event-based [32] metrics in the case of sound events.

Acoustic scene classification is usually a single-label multiclass problem, and
the resulting intermediate metrics reflect whether the single true class is correctly
recognized for each example. In this task there is no role for substitutions, and each
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erroneous output is counted; there is no distinction between false positives and false
negatives. In scene segmentation the intermediate statistics can be counted in short
time intervals or based on segmentation boundaries.

In sound event detection, the choice of measurement determines the interpre-
tation of the result: With a segment-based metric, the performance shows how
well the system correctly detects the temporal regions where a sound event is
active; with an event-based metric, the performance shows how well the system
is able to detect event instances with correct onset and offset. If we consider the
scenario of polyphonic sound event detection, the segment-based metric essentially
splits the duration of the test audio into fixed length segments that have multiple
associated labels, reflecting the sound events active anywhere in the given segment.
In this respect, evaluation verifies if the system output and reference coincide in the
assigned labels, and the length of the segment determines the temporal resolution of
the evaluation. Event-based metrics compare event instances one to one. Since the
time extents of the events detected by the system may not exactly match the ground
truth, a common approach is to allow a time misalignment threshold, either as a fixed
value (e.g., 100 ms) or as a fixed proportion of the total event duration (e.g., 50%)
[53]. Time thresholds can be applied to onset times only, or to both onset and offset
times. True negatives (i.e., correctly recording that no event occurred at a given
time) do not occur in this kind of evaluation, as no instance-based true negatives
can be counted. Figure 6.6 illustrates the comparison between a system output
and the reference in segment-based and event-based evaluations, for obtaining the
intermediate statistics.

6.5.2.2 Metrics

Measures of performance are calculated based on accumulated values of the inter-
mediate statistics. We denote by TP, TN, FP, and FN the sums of the true positives,
true negatives, false positives, and false negatives accumulated throughout the test
data. With same convention, we will use S for the total number of substitutions, I
for insertions, and D for deletions.

Considering a simple binary classification, where we compare the reference and
the system output for class c, we can construct the contingency table, or confusion
matrix presented in Fig. 6.7. Based on the total counts of the intermediate statistics,
many different measures can be derived, of which the most commonly used are
recall (R, also known as true positive rate (TPR) or sensitivity), precision (P), false
positive rate (FPR), specificity, and accuracy (ACC). These measures are presented
and defined in Fig. 6.7.

When dealing with a multiclass problem, accumulation of intermediate statistics
can be performed either globally or separately for each class [49], resulting in
overall metrics calculated accordingly as instance-based or class-based. Highly
unbalanced classes or individual class performance can result in very different
overall performance when calculated with the two methods. In instance-based
averaging, also called micro-averaging, intermediate statistics are accumulated over
the entire data. Overall performance is calculated based on these, resulting in metrics



6 Datasets and Evaluation 169

tp tp tp tp

fp tn fn fn

fn tn tn tn
tp tp fn tn
fp tp tp tp

Segment-based intermediate statistics
Reference System output

Class-wise
TP FN FP TN

Comparison

4   0   0   0

0   2   1   1

0   1   0   3

2   1   0   1

3   0   1  0

TP FN FP TN

Event-based intermediate statistics
Reference System output

9   4   2   5

Overall

Class-wise
TP FN FP

fn tp

tp

fn fp tp

1   1   0

1   0   0

1   1   1

fp fp tp

Comparison

1   0   2

TP FN FP
4   2   3

Overall

Fig. 6.6 Comparing system output with reference for polyphonic sound event detection in
segment-based and event-based evaluation to calculate the intermediate statistics

with values that are most strongly affected by the performance on the most common
classes in the considered problem. In class-based averaging (the results of which
are also known as balanced metrics), also called macro-averaging, intermediate
statistics are accumulated separately for each category (scene or event class), and
used to calculate class-wise metrics. Overall performance is then calculated as the
average of class-wise performance, resulting in values that emphasize the system
behavior on the smaller classes in the considered problem. A hybrid approach is to
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Fig. 6.7 Contingency table and derived measures most commonly used in classification

calculate class-based metrics, then to use nonuniform weighting to combine them to
create an average that reflects some relative importance of the different classes that
may be different from their frequency of occurrence in the test data.

Accuracy Accuracy measures how often the classifier makes the correct decision,
as the ratio of correct system outputs to total number of outputs. As shown in
Fig. 6.7, accuracy is calculated as:

ACC D
TPC TN

TPC TNC FPC FN
(6.1)

Accuracy has the advantage of offering a simple measure of the ability of the system
to take the correct decision; it is the most-used metric in sound scene and sound
event classification, being straightforward to calculate and easy to understand. It
has, however, a critical disadvantage of being influenced by the class balance: for
rare classes (i.e., where TP C FN is small), a system can have a high proportion
of true negatives even if it makes no correct predictions, leading to a paradoxically
high accuracy value. Accuracy does not provide any information about the error
types (i.e., the balance of FP and FN); yet, in many cases these different types of
error have very different implications.

Precision, Recall, and F-Score Precision, recall, and F-score were introduced in
[42] in the context of information retrieval, but have found their way into measuring
performance in other applications. Precision and recall are also defined in Fig. 6.7:
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P D
TP

TPC FP
; R D

TP

TPC FN
(6.2)

and based on them, balanced F-score is calculated as their harmonic mean:

F D
2

1=PC 1=R
D

2PR

PC R
(6.3)

Precision and recall are the preferred metrics in information retrieval, but are used
also in classification under the names positive prediction value and sensitivity. In
detection theory terms, recall is equal to true positive rate, but precision has no
simple equivalent.

F-score has the advantage of being a familiar and well understood metric. Its
main drawback is that its value is strongly influenced by the choice of averaging
and the data balance between classes: in instance-based averaging the performance
on common classes dominates, while in class-based averaging (balanced metrics) it
is necessary to at least ensure presence of all classes in all folds in the test data, to
avoid cases when recall is undefined (when TPC FN D 0); estimates of metrics on
classes with very few examples are also intrinsically noisy. Any dataset of real-world
recordings will most likely have unbalanced event classes; therefore, the experiment
setup must be built with the choice of metric in mind.

Average Precision Because precision and recall rely on hard decisions made for
each trial, they typically depend on a threshold applied to some underlying decision
variable, such as a distance from a decision boundary or the output of a neural
network. Lowering the threshold will increase likelihood of accepting both positive
and negative examples, improving recall but in many cases hurting precision. F-
measure combines these values at a single threshold in an attempt to balance this
tradeoff, but a fuller picture is provided by plotting precision as a function of
recall over the full range of possible thresholds—the precision–recall (P-R) curve.
Figure 6.8 shows an example of P-R curve for a binary classification problem.

Fig. 6.8 Examples of PR, ROC, and DET curves for evaluating and comparing two classifiers. All
three curves show classifier A as superior, as reflected in the AP and AUC values, as well as the
equal error rate
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While P-R curves carry rich information, they can be difficult to compare, so a
single figure of merit summarizing the precision–recall tradeoff is desirable. The
information retrieval community most commonly uses average precision (AP),
which is defined as the precision averaged over all thresholds at which a new positive
example is accepted:

AP D
1

NP

X

2�P

TP./

TP./C FP./
(6.4)

where NP D TPC FN is the total number of positive examples, �P is the set of NP
thresholds at which a new positive example is accepted, and TP./ and FP./ are the
true and false positive counts, respectively, of the system running with threshold  .
This value is close to the area under the P-R curve; however, it avoids problems that
arise from the non-monotonicity of the curve—while recall grows monotonically as
the threshold is reduced, precision may go up or down, depending on the balance of
positive and negative examples being included under the new threshold. Compared
to the single operating point (i.e., threshold) summarized by an F-score, AP reflects
performance over the full range of operating points. Because it is based on a larger
set of measurements (integrating a curve), it is typically more stable (less noisy)
than point measures such as F-score, which is one reason for its popularity. Average
precision combined across the categories of a multi-class problem is called mean
average precision, or mAP.

ROC Curves and AUC The receiver operating characteristic (ROC) curve and
corresponding area under the curve (AUC) are used to examine the performance
of a binary classifier over a range of discrimination thresholds. An ROC curve, as
illustrated in Fig. 6.8, plots the true positive rate (TPR) as a function of the false
positive rate (FPR), or sensitivity vs. .1�specificity/ as the decision threshold is
varied. TPR and FPR are calculated as shown in Fig. 6.7:

TPR D
TP

TPC FN
; FPR D

FP

FPC TN
D 1 �

TN

TNC FP
(6.5)

AUC summarizes the entire ROC curve into a single number and permits the com-
parison of classifiers across all operating points, with better classifier having a higher
AUC. AUC can equivalently be specified by the more intuitively comprehensible d-
prime, defined as the separation between the means of two unit-variance Gaussians
whose ROC curve yields the given AUC. A related measure is equal error rate
(EER), which is the point on the ROC curve where true positive rate and false
positive rate are equal (i.e., the intersection of the ROC curve with the y D 1 � x
line); therefore, a better classifier has a smaller EER. Like F-measure, EER is a point
measure and is typically more variable than AUC, which integrates over a range
of operating points. EER has the advantage, however, of being expressed directly
in terms of a interpretable value, the classification error rate (of both positive and
negative examples).
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An alternative to the ROC curve is the DET curve (for Detection Error Tradeoff)
[30]. A DET curve, as shown in the third pane of Fig. 6.8, plots false negative rate
(FNR D 1�TPR) as a function of FPR, where both axes are warped by the “probit”
function. If the underlying class-conditional score distributions are Gaussian, the
resulting plot becomes a straight line whose slope reflects the relative variance of
the score distribution for positive and negative classes, and whose intercept with the
y D x line indicates overall class separability.

The main disadvantage of ROC curves is that they are only applicable to
binary classifiers, and generalizations for multiclass problems are not well defined.
The most usual generalization, as with precision/recall measurements, is to treat
each class performance separately as a binary classifier output, and calculate the
performance as average of the class-wise AUC or EER. This method conceals any
variations in performance across classes in the service of producing a single figure
of merit to characterize the system.

Error Rate Error rate quantifies errors in the system output with respect to
the reference. The precise definition of an error varies to reflect the target of
the evaluation; for example, speech recognition uses word error rate (WER)
which measures the proportion of words erroneously recognized, whereas speaker
diarization uses diarization error rate (DER) to measure temporal errors as the
fraction of time that is not correctly attributed to the appropriate speaker. Error
rate has been adapted to sound event detection, but with separate definitions for
the intermediate statistics in segment-based and event-based evaluation procedure.

At the segment level, the joint occurrence of a false positive and a false negative
is merged to be a substitution (i.e., an event was detected but it was given the
wrong identity), without needing to designate which false positive substitutes which
false negative. Any remaining false positives in the system output are counted as
insertions, or if there are remaining unrecognized reference events, they are counted
as deletions. For segment k, this can be expressed mathematically as follows:

SŒk� D min.FNŒk�;FPŒk�/

DŒk� D max.0;FNŒk� � FPŒk�/ (6.6)

IŒk� D max.0;FPŒk� � FNŒk�/

For segment-based evaluation, the number of substitutions, deletions, and insertions
are calculated segment by segment and accumulated for all test data.

Event-based intermediate statistics are determined based on the temporal location
and label of the detected sound events with respect to the location and label of
reference events. A detected event is considered a true positive if a reference
event with the same label is present at a temporal location within the allowable
misalignment. Usually this allowance is referred to as a collar expressed in time
units (ms), or replaced by a minimum required event length. Examples of conditions
for a true positive could be: the same collar for onset and offset, or a collar only
for onset with no offset condition, or a collar for onset and a minimum duration
for the event as offset condition. With no consensus on the appropriate values of
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the collar or minimum required event length, these parameters of the metric are
left to the choice of the developer. Correctly aligned but mislabeled sound events
are considered substitutions, while mislabeled or misaligned sound events are false
positives (if in the system output) or false negatives (if in the reference). The count
of event-based D, I, S is accumulated for all test data.

Error rate is calculated based on the overall D, I, S values as:

ER D
DC I C S

N
(6.7)

where N is the total reference “count”; for segment-based ER, N is the sum of active
events accumulated segment by segment, while for event-based ER, N is the number
of reference events. Because the calculation is made with respect to the number of
events in the reference, ER can be larger than 1.0. This can happen even for a system
that makes many correct predictions, if it simultaneously makes a large number of
false positives (insertions).

As well as characterizing the system performance with a single value, ER has
the attraction of paralleling similar error rate measures in other areas. On the other
hand, the multiple different definitions (depending on use) can confuse researchers.
Note also that a degenerate system emitting no outputs has ER D 1 (because it
makes N deletion errors); a system that performs some useful classifications while
committing sufficient insertion errors to push its ER > 1 appears worse than
doing nothing by this measure, even though other measures may reflect its actual
achievements.

Normalized Decision Cost To control the relative influence of specific errors and
correct predictions on the performance measure, it is possible to use a weighting of
the intermediate statistics. For example, by assigning weights to TP and TN when
calculating accuracy, we obtain balanced accuracy:

BACC D w �
TP

TPC FN
C .1 � w/ �

TN

TNC FP
(6.8)

With equal weights (w D 0:5), the balanced accuracy is the arithmetic mean of
sensitivity and specificity.

Weighting the intermediate statistics offers the advantage of tuning the chosen
metric for the relative significance of error types, but requires some principle
for assigning different costs to the different outcomes. The disadvantage of this
approach is that it results in many different metrics rather than a universally
comparable value and thus complicates system comparison and selection.

Weighted measures also offer an opportunity to soften the problematic time-
misalignment collar in event-based metrics. Rather than having a binary decision
that an event is correct if it occurs within the collar time of the reference, but
incorrect beyond that, a per-event weighting can be applied that ramps up the
contribution to the normalized cost from zero to the cost of an insertion plus
a deletion as the timing misalignment grows from some minimum value to the
maximum collar.
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6.6 Advice on Devising Evaluation Protocols

By presenting a crisp target for optimization, evaluation metrics often have a
profound influence on the development of a field. If a particular topic or problem
is sufficiently interesting to deserve sustained attention to its solution, perhaps from
several independent research groups, it is very important to devise and agree shared,
repeatable performance measures to avoid publications degenerating into empty
argument. But once a well-defined evaluation task is constructed, it can exert an
overpowering influence on most or all researchers involved to recast their own work
towards optimizing for that evaluation—not least because funders, like DARPA in
the original NIST speech recognition evaluations—find direct quantitative metrics
very reassuring and thus measurably good performance can become an existential
priority. Moreover, the availability of a well-defined evaluation can help attract new
researchers to a field, which is very healthy; however, newcomers may naturally
assume that the evaluation indicates the only important problems in a field.

For all these reasons, devising evaluation procedures for some field of interest
is both an urgent priority that should be addressed sooner rather than later, but also
something incredibly delicate that should be considered carefully and not rushed. In
the preceding sections, we have examined the different considerations of data and
labels, and defined a range of commonly used measures. In conclusion, we offer
some summary points of advice for devising evaluations.

Task Choice Choose a task that is as close as possible to something that is useful
in itself, rather than some more contrived proxy. Of course, a more realistic task
is more likely to share all the properties of real applications (including possibly
unrecognized factors in the real-world data). But more importantly, at the end of
the day, a specific evaluation task will attract an enormous amount of effort on
optimizing for that one task, only some of which may generalize to other tasks.
If excessive attention is to be paid to one task, it may as well be something that
could actually be useful beyond the evaluation.

Data Amount Go for quantity. Quality is of course important, but there is a strong
risk of underestimating the size required to make an evaluation dataset useful.
Systems improve with time, and what may have been hundreds or thousands of
errors initially may drop to tens or fewer as systems mature. When systems are
differing in their results on only a handful of test samples, the value of the task in
differentiating performance is lost. Also, tasks can benefit from multiple separate
evaluation sets, for instance, to “refresh” a task after participants have begun to
overfit a particular set, and if these replacement tasks are drawn from a large pool
of data that was all collected in a single effort under the same conditions, evaluation
measures will have better continuity.

Statistical Significance Pay attention to statistical significance. Look for a sig-
nificance test that can be applied to your domain (for example, error counts that
are binomially distributed according to a fixed per-trial probability of error), and
use it to calculate the theoretical limits of discriminability of your evaluation. In
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parallel, make measurements across multiple supposedly equivalent versions of your
system and task (varying initialization, splits of data into train/test, small changes in
system parameters, etc.) to get an empirical sense of the “error bars” in your metrics.
For instance, when using the cross-validation approach illustrated in Fig. 6.5, while
averaging the per-fold performance gives a result more stable than that of any single
fold, reporting the variance among the individual folds’ contributions to the average
can serve as a useful confidence interval.

Baseline System Compare results against a well-established technique, and also
against a random or degenerate baseline. If your system is worse than “doing
nothing” (e.g., if your error rate exceeds the 100% deletion of simply reporting
nothing), then either reconsider your approach (!), or choose a different metric that
better reflects whatever useful thing you believe your system is doing. Be very
careful when comparing metrics across different datasets, even if they are related.
For instance, precision (and hence average precision) is strongly influenced by the
underlying prior probability of the target class. Doubling the size of an evaluation
set by adding more, consistently distributed negative examples while keeping the
same set of positives ought not to change ROC measures like AUC or F-score, but
it will halve precision measures, all else being equal.

Metric Choice Choose one or more metrics that emphasize what you care about.
Sometimes it is only after comparing the results of different metrics with more qual-
itative impressions of system performance that you can gain a full understanding
of which metrics best track your intentions. Sometimes the best metric may be
very specific, such as true positive rate at a particular value of false alarm rate,
set according to research into what customers will accept. It is a good idea to start
with a diverse set including more metrics than you need; practical experience will
then show you which ones are redundant, which are noisy, and which give the best
correlation with useful systems.

Error Analysis Recognize that errors are not all created equal: False alarms
(insertions) and false rejects (misses) are almost never equivalently undesirable,
and normally some classes (and confusions) are much more important than others.
Measures like NDC can be constructed to give different costs for each of these
outcomes; while the ideal weights may be difficult to establish, even guesses are
likely better than implicitly assuming that every error counts equally.

In conclusion, there is no simple formula for devising an evaluation procedure,
and there is rarely a way to construct it without investing substantial resources.
Ultimately, the real value of evaluations may take years to appear, so the process is
inevitably one of trial and error. We hope this chapter has at least illuminated some
of the choices and considerations in this critically important task.
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Chapter 7
Everyday Sound Categorization

Catherine Guastavino

Abstract This chapter reviews theories and empirical research on the ways in
which people spontaneously and effortlessly categorize sounds into meaningful
categories to make sense of their environment. We begin with an overview of
prominent theories of categorization in the psychological literature, followed by
data collection and analysis methods used in empirical research on categorization
with human participants. We then focus on auditory categorization, synthesizing the
main findings of studies on isolated sound events as well as complex sound scenes.
Finally, we review recently proposed taxonomies for everyday sounds and conclude
by providing directions for integrating insights from cognitive psychology into the
design and evaluation of computational systems.

Keywords Everyday sounds • Categorization • Cognitive psychology • Sound-
scape • Prototype theory • Linguistic labelling • Similarity • Taxonomies •
Holistic perception • Top-down processes • Context

7.1 Introduction

The human ability to categorize is essential to make sense of the world by dividing
it up into meaningful categories. Grouping together entities of the same kind serves
to reduce the complexity of the environment. In our everyday life, we categorize
things, objects, people, sounds, and situations continuously and effortlessly to
infer further knowledge about them (e.g., what to do with them). Categorizing
sounds in particular is of vital importance to handle the variety and complexity of
complex environments and subsequently guide action (e.g., avoid an approaching
car, attend to a crying baby, or answer a ringing phone). While speech sounds
and music have been studied extensively, everyday sounds have long been under-
investigated. Hearing research traditionally focused on artificial, synthetic sounds
(e.g., pure tones or noise bursts) in controlled laboratory experiments. This was

C. Guastavino (�)
School of Information Studies, McGill University, 3661 Peel street, Montreal, QC,
Canada H3A 1X1
e-mail: catherine.guastavino@mcgill.ca

© Springer International Publishing AG 2018
T. Virtanen et al. (eds.), Computational Analysis of Sound Scenes and Events,
DOI 10.1007/978-3-319-63450-0_7

183

mailto:catherine.guastavino@mcgill.ca


184 C. Guastavino

partly due to the limitations of the available technology and instrumentation with
regard to generating and analyzing complex dynamic sounds (see [44] for an
historical perspective of technological developments in psychoacoustics research),
and partly due to the dominant psychophysical approach to perception. This body
of research has provided a better understanding of the functioning of the auditory
system with a focus on lower level sensory processing. However, the sounds and
listening conditions tested bear little resemblance to listening situations encountered
in everyday life.

More recently, everyday sounds garnered increased research attention within the
cognitive ecological approach to auditory perception as important components of
everyday experiences. In contrast to artificial, synthetic sounds, everyday sounds
are defined as sounds occurring in real-life environments [1]; they are also referred
to as environmental sounds in the literature (e.g., [22, 29, 61]) or domestic sounds
for everyday sounds typically heard inside the home [28]. From an evolutionary
perspective, it can be argued that the ability to make sense of everyday sounds
around us preceded speech and music abilities. Everyday sounds also provide a
gateway into understanding intricate spectro-temporal structures (other than speech)
and to study auditory perception in a broader context of cognition and action (e.g.,
how we give meanings to sounds and rely on sound to make sense of and interact
with our environment). Research on everyday sounds has also been motivated by
practical applications including:

• medicine and related areas (e.g., diagnostic tools for hearing impairments,
hearing aids to restore environment awareness through sound);

• audio for computer-mediated environments (e.g., virtual reality, videoconferenc-
ing, video games, media arts installation);

• auditory comfort, product sound quality and soundscape design and assessment;
• and computational systems (e.g., acoustic monitoring, automated sound recogni-

tion and/or classification).

This chapter aims to review a body of research of particular significance to the
current volume, that illuminates converging evidence for ways in which people
spontaneously and effortlessly categorize sounds into meaningful categories. This
area of inquiry is critical to inform the design and evaluation of sound recognition
systems in terms of sound events that would be perceived as meaningful for listeners
in particular situations. There is also insight and guidance to be had from the
wider groupings and abstractions made by listeners: they can point to those features
or correlates of attributes that are most important for categorization, and dictate
the kinds of confusions and generalizations that will or will not be acceptable
to users. We begin with an overview of prominent theories of categorization in
the psychological literature in Sect. 7.2. Section 7.3 describes data collection and
analysis methods used in empirical research with human participants to study
categorization. Section 7.4 focuses on auditory categorization, synthesizing the
main findings of studies on isolated sound events as well as complex sound scenes.
Finally, in Sect. 7.5, we review some recently proposed taxonomies for everyday
sounds and conclude by providing directions for making research-based connections
between cognitive psychology and computational systems.
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7.2 Theories of Categorization

7.2.1 Classical Theory of Categorization

While the classical theory of categorization goes back to the ancient Greeks, its
influence has been pervasive and long lasting in psychology (and cognate fields such
as philosophy, linguistics, information science) and prevailed throughout much of
the twentieth century. In the classical approach of Aristotle, categorization relies on
a conjunction of sufficient and necessary conditions [2]. The conditions are binary:
an entity either possesses a feature or it does not. Category membership is also
binary (an entity either belongs to a category or it does not, sometimes referred to
as the all-or-none principle) and based on deduction: an entity is a member of the
category if and only if it possesses all the defining features of the category. This
theory establishes clearly delineated boundaries between categories. Categories are
mutually exclusive and collectively exhaustive, and all members of a category have
equal status. Although the classical theory of categorization was a philosophical
position, arrived at through speculation rather than grounded in empirical evidence,
it became an unquestionable assumption in many disciplines for centuries. In this
view, categorization is conceived of as a deductive analytic process: one needs to
identify features to determine category membership. While this analytic view is
relevant for categories of biological kinds, abstract concepts, or artificial stimuli, it
has been challenged by perceptual research on the categorization of concrete objects
(e.g., furniture, vehicles) in the twentieth century. This line of research led to the idea
that more holistic processes are at play in everyday categorization.

7.2.2 Holistic Perception

Holism is a central tenet of Gestalt psychology, which argues that we perceive
perceptual objects as sensory wholes (Gestalts) rather than the sum of their parts.
These wholes possess features that cannot be derived from their constituent parts
and are structured using grouping principles based on similarity, proximity, common
fate, and good continuation. While these grouping principles have thoroughly
been investigated and modeled in the visual domain (e.g., face perception), they
were originally motivated by auditory considerations. Wertheimer [62] discusses
the emergence of a holistic perceptual object (a melody) in response to the
sounding of disparate sound events (individual notes). The separation of melody
and accompaniment in music listening motivated the formulation of figure-ground
segregation. The need to explain the preservation of perceived melodic identity
under key transposition inspired the grouping principles later named similarity and
common fate, where similar sound events or sound events moving together (in pitch
and time) are likely to be perceived as a perceptual object [16]. These principles
inspired research on auditory scene analysis to determine how a sequence of sound
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events are fused or segregated into different streams/units by generating boundaries
between perceptual objects [5] (see Chap. 3 of this volume for a summary). In the
field of philosophy, Wittgenstein introduced the notion of “family resemblance” to
characterize the relationships of different instances of a category whose members
have no one feature or set of features in common [64]. He exemplifies this notion
with games, comparing different kinds of games (e.g., board games, card games,
ball games) and concluding that they are related by a “complicated network of sim-
ilarities overlapping and criss-crossing.” This view challenges the classical theory
of categorization, specifically the all-or-none principle of category membership and
the rigid boundaries between categories, and provides further support for holistic
processes in categorization.

7.2.3 Prototype Theory of Categorization

The pioneering work of Eleanor Rosch constitutes a radical departure from the clas-
sical theory of categorization based on the study of natural categories (as opposed to
artificial stimuli), bringing categorization to the central stage of cognitive science in
the 1970s. Rosch’s landmark studies relies on categorization principles that go far
beyond shared features [49, 50]. Within the Roschian model, categorization is not
just deductive but also inductive, insofar as we can infer properties of an entity
from observing characteristic features of its category members. Rosch proposes
that a category members are related to one another through family resemblance
and that certain category members can be more or less typical exemplars of that
category (e.g., a robin is more typical of the category bird than a penguin). A
family resemblance relationship exists when each category member has certain
features1 in common with one or more members, but no, or few, features in common
with all members of the category. The most central member of the category is
called a prototype; it is a member that best reflects the category, having more
common features with other category members and least with members of other
categories. Prototype theory posits that the internal structure of a category is based
on similarity to a prototypical exemplar: category membership is defined by the
extent to which a member of a category resembles the prototype. Rosch further
formalized different levels of abstraction in categorization: superordinate (furniture,
animal), basic (chair, bird), subordinate (office chair, blue jay) in a number of
influential studies. These different levels are represented in Fig. 7.1. The basic level
is at a middle level of specificity and contains relatively more information (lots of
features) at a relatively low cost, making it the most natural, preferred level for
identification and categorization. Given that something is a chair, you can predict

1It should be noted that Rosch talks about attributes rather than features, but we use features as
distinctive characteristics, properties, or quality for the sake of consistency in this chapter (although
features itself has multiple meaning within this book, e.g., acoustic features in Chap. 4).



7 Everyday Sound Categorization 187

Fig. 7.1 Different levels of abstractions for natural categories (Rosch [49])

more about its appearance (it likely has a seat, a back and legs) and its function
(used to sit on) than if you know only that it is a piece of furniture. Knowing that
it is an office chair rather than a different type of chair would not change these
prediction much, only further specify form or function. In Rosch’s terms, the basis
level maximizes cue validity, that is, the probability that a particular entity belongs
to some category given that it possesses a particular feature, or cue. Basic level
categories are both informative (knowing that it something is a bird, you can infer
that it has feathers, a beak, etc.) and reasonably distinctive (different from other
categories at the same level, e.g., cats). Subordinate categories are also informative
(even more than basic categories) but less distinctive (many features in common,
e.g., a blue jay is not very different from a cardinal). Superordinate categories, on
the other hand, are very distinctive (e.g., furniture and tools do not have much in
common) but not very informative (few features in common, e.g., different pieces of
furniture can vary considerably in size, shape and functions). According to Lamberts
and Shanks [35, p. 100], “the basic level can be seen as a compromise between the
accuracy of classification at a maximally general level and the predictive power of
a maximally specific level”. This basic level is associated with lexicalization. Basic
category names are typically nouns and are used more frequently by adult speakers
(e.g., in picture naming tasks). There is also developmental evidence that the basic
level categories are the first acquired by children. The other levels (superordinate
and subordinate) are harder to learn and to describe with names. In Sect. 7.3, we will
discuss what these basic levels are in the context of everyday sound categorization.

7.2.4 Examplar Theory of Categorization

Recent theories, including exemplar theory, posit that categorization relies on the
comparison of a new entity with members (exemplars) of the category previously
stored in memory (e.g., [47, 56]). Categorization is then determined by the degree
of similarity between the new object and the stored exemplars, rather than a pro-
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totypical exemplar (which can been seen as an abstracted category representation).
In this view, an entity is categorized into the category with the most similar stored
exemplars (rather than the category with the most similar prototype). This theory
has met considerable success at predicting human categorization, but typically in
the context of experiments using concrete objects (e.g., bird, chair) rather than
more abstract concepts (e.g., beauty, the number five) which require abstracting
essential information from particular instances. In addition, there is evidence that
the two theories are not mutually exclusive and various studies have investigated
conditions under which categorization will be guided by prototype or exemplar
theories. Although there are differences between prototype and exemplar theories,
they both consider that categorization is based on the similarity between the entity
to-be-categorized and the category representation. These theories account for the
flexibility and plasticity of the cognitive process of categorization and provide
grounds for probabilistic models of category membership with graded structure and
category boundaries that are not sharply delimited.

7.2.5 Bottom-Up and Top-Down Processes

Under most recent theories, categorization is achieved using a mixture of bottom-
up processes triggered by features of the signal and top-down processes based on
expectations and previous knowledge. Bottom-up processing goes from the low
level of sensory registration to higher cognitive levels. These processes (a.k.a data-
driven or stimuli-driven), directly influenced by features of the stimuli, serve as
grounds for the information-processing approach to human perception. Conversely,
top-down processes (a.k.a. concept or theory or hypothesis-driven) shape sensory
registration based on an individual’s expectations, prior knowledge, and contextual
factors. In this view, perception is driven by high-level cognitive processes as
opposed to strictly processing incoming signals. Many models of identification and
categorization initially relied on a serial account of processing where bottom-up
processing needs to be completed at a first stage before it is passed on to higher
levels of processing. However, there is converging evidence from behavioral and
neurophysiological studies on object identification [31] as well as speech perception
providing support for an integrated model of bottom-up and top-down processing2

rather than a serial model. This is also consistent with current computational
approaches, in which the interaction of low-level features with high-level constraints
is blurred. Speech recognizers, for example, neither attempt to fully transcribe into
phonemes before matching to words, nor to exhaustively enumerate all possible
word sequences before rating the presence of phonemes.

2Based among other things on the evidence for top-down activation in early stages of visual
processing (e.g., for figure-ground segmentation).
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Bottom-up processes rely on the similarity between items while top-down
processes rely on the theories3 people hold about the world. Goldstone reviewed
evidence that categorization cannot be accounted for completely by similarity as it
involves properties that are not obtainable from only individual item similarity [20].
Even the notion of similarity is context-dependent, as many researchers observed,
when manipulating the context of a similarity comparison. In particular, similarity
is dependent on the context defined by the stimulus set (e.g., Tversky, 1977), on
cultural context (e.g., [10, 63]), on the level of expertise and goals of the subjects
(e.g., [60]) and on the presentation context of the item. For example, Medin and
Shoben found that similarity between adjectives is influenced by the accompanying
noun [41]. In their study, white was selected more often than black as being similar
to grey when accompanying the noun hair, and the opposite trend was observed
when the adjectives were accompanying the noun clouds.

In the context of everyday perception, person-related factors (e.g., prior knowl-
edge), as well as situational factors, play an important role in categorization. In the
absence of established shared knowledge of the categories, categorization principles
rely mostly on experiential knowledge. Barsalou investigated the construction and
use of goal-derived ad hoc categories (e.g., “places to go on vacation”) [3]. He
found that entities categorized using basic category names (e.g., “chair” as part of
“furniture”) can be cross-classified in other situations that serve particular goals
(e.g., as part of “things that can be stood on”). Dubois argues that the influence
of prior knowledge on categorization refers not only to individual knowledge but
rather knowledge grounded in shared socialized activities [14]. As an example,
the category “things to bring to a birthday party” will be influenced by a number
of social factors determining what would be appropriate in a given context based
on envisaged activities, age group, relationship to the guests, etc. Similarly in the
auditory domain, honking car horns could be associated with a celebratory gesture
for a wedding party in certain social contexts, or to traffic jams or road crossing in
other contexts. To mediate between individual experience and shared knowledge, the
analysis of free-format verbal descriptions provides relevant insights since language
is by essence both shared and individual.

Also, research on food categories revealed organization principles based on
situational factors. Ross and Murphy observed the salience of script categories,
i.e., categories referring to the situation or time in which the food is eaten (e.g.,
foods to eat at breakfast time) [51]. It was further shown that food could be
cross-classified either into taxonomic categories on the basis of similarity (foods
of the same constitutive kinds, e.g., “vegetables”) or into script categories on the
basis of human interactions (e.g., “breakfast foods”). Script categories can be of
importance to generate plans in larger goal-oriented tasks (e.g., deciding what to
eat). Most importantly, cross-classification highlights the co-existence of different
categorization principles for everyday objects.

3Here, theory is understood to mean any organized system of knowledge, “folk” as well as scientific
theories.
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This cross-classification into taxonomic and script categories has been observed
in adults but also in children as young as 3 years old [45], indicating that even at a
young age, children do not rely on a single form of categorization but are flexible
in the types of categories they form and use in everyday life.4 This suggests that
cross-classification is an essential ability to get a full understanding of the world
around us (e.g., being able to think of someone as a man, a father, a friend, a
music lover or a Frenchman can be useful to understand the complex behavior of
a person). The extent to which these different aspects contribute to everyday sound
categorization will be discussed in Section 7.4. In Section 7.3 we first describe the
data collection and data analysis methods most commonly used in listening tests
investigating sound categorization.

7.3 Research Methods for Sound Categorization

This section provides an overview of data collection methods and data analysis
techniques used in categorization studies of sound stimuli with human participants.
As discussed above, similarity is a central construct to study categorization, even if it
does not tell the whole story (discussed below). Empirical studies on categorization
often aim to model similarity as a function of the features of the presented stimuli.
We first present methods most commonly used to gather similarity judgments.

7.3.1 Data Collection

7.3.1.1 Dissimilarity Estimation

Among the various methods for auditory research, dissimilarity estimation is
perhaps the most widely used in the context of psychoacoustics, a field that has
mainly developed along the psychophysical tradition of comparing “subjective”
perceptual judgments with “objective” description of stimuli in terms of their
physical properties. Dissimilarity ratings are collected for each of the N.N � 1/=2
pairwise combinations of N stimuli. On each trial, participants rate how similar or
different two stimuli presented in paired comparison are, along on a scale. The scale
can be discrete or continuous; the end points are sometimes labeled “very different”
and “very similar.” Each pair is presented twice in counterbalanced order and the
order of presentation across trials is randomized to nullify order effects. This method
is appropriate for homogenous data sets, or to determine how sensitive listeners are

4Children also use thematic categories of entities formed on an associative basis (e.g., dog and
leash). Members of thematic categories are not similar and do not share many features but they are
often spatially and temporally contiguous and play complementary roles (contrary to members of
script categories which play the same role).
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to a particular dimension of the acoustic signal. But it orients the listeners’ strategies
toward adopting an analytical approach with ratings on a single dimension, in
response to the manipulation or selection of stimuli introduced by the researcher.
This method also requires a large number of trials (increasing quadratically with the
number of sounds tested), which makes it prone to fatigue or boredom effect with
large data sets.

7.3.1.2 Sorting Tasks

As an alternative to dissimilarity estimation, sorting methods rely on participants
creating groups of similar sounds. Different variants of the sorting task exist. The
number of groups could be pre-defined by the experimenter (fixed sorting) or left up
to the participants (free sorting). The categorization principle can be pre-defined by
the experimenter (closed sorting, e.g., “group sounds produced by the same object”)
or decided on by participants (open sorting). In an open, free sorting task (a.k.a. free
categorization task), participants are presented with N sounds and asked to create
groups of sounds that belong together. Participants are free to decide how many
groups they want to create and on which criteria they group sounds together. While
open free sorting tasks rely on similarity judgment, they also involve more holistic
decisions and do not restrict the strategies used by participants. This method is
appropriate for exploratory studies with heterogeneous data sets to identify relevant
features or correlates of attributes along which participants spontaneously organize
stimuli in the absence of a priori assumptions regarding the number of categories.
It is also relevant to identify different categorization principles across participants
as well as for a given participant across different subsets of sounds. Furthermore, it
allows researchers to test a fairly large number of sounds in a relatively short amount
of time. Other methods for collecting similarity ratings include hierarchical sorting
tasks in which participants start with sounds in different groups and merge the two
most similar groups or sounds in a recursive manner until all sounds are grouped
together. A detailed comparison of the methods of dissimilarity ratings, free sorting,
and hierarchical sorting in terms of efficiency, reliability, and accuracy can be found
in [19].

7.3.2 Data Analysis

Similarity ratings can be summarized in the form of a dissimilarity matrix �. An
individual matrix is then generated for each participant. The value in the ith row and
the jth column of the dissimilarity matrix �, denoted @ij, is defined as follows:

• @ij D 0 if i and j are in the same category,
• @ij D 1 if i and j are not in the same category.

A global dissimilarity matrix can be obtained by summing the individual dissimi-
larity matrices.
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7.3.2.1 Multidimensional Scaling

Multidimensional scaling (MDS) is a set of mathematical techniques to represent
the similarity between N items (here the global dissimilarity matrix) in terms of
fewer dimensions in a way that best approximates the observed similarity. Each
item is represented as a point in that space. Similar items are represented by
points that are close in space while dissimilar items are represented by points that
are far apart. The space is usually a 2-D or 3-D Euclidian space, but different
distances (metric, non-metric) and more dimensions can be used. The goodness
of fit of the representation can be estimated using metrical criteria (screes and
percentage of explained variance). The goodness of fit increases with the number
of dimensions. The scree plot (representing stress as a function of dimensions)
can be used to determine the optimal number of dimensions. The analysis aims
to identify underlying attributes explaining similarity judgments. The interpretation
of the underlying attributes relies on the visual inspection of spread and clusters in
the scatterplots and on the use of multiple regression techniques [34] to interpret
these dimensions of the stimulus space in terms of similarities between items.
MDS also provides models to represent individual differences as weights on each
underlying dimensions [a.k.a. as weighted model or Individual Difference scaling
(INDSCAL)]. An example of a 2-D MDS representation is shown in Fig. 7.2.
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Fig. 7.2 The two-dimensional representation of the data derived from MDS analysis of a
dissimilarity matrix (adapted from [22]). The dissimilarity between two objects is represented by
the Euclidean distance between the two corresponding points in space
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7.3.2.2 Additive-Tree Representations

Additive-tree representations (a.k.a. phylogenetic trees) are used in a variety of
disciplinary fields, ranging from computer science to biology, as a graphical repre-
sentation of dissimilarity data. In cognitive psychology, categorization research has
been a fruitful source of inspiration for the additive tree theory. Rosch’s prototype
theory initiated the development of a new theory of psychological similarity,
which can be represented by additive trees [53]. Additive trees were designed to
account for several empirical observations, including the fact that some members
are more typical of a category than others. Indeed, the traditional taxonomic tree
representation, in which all items are at the same distance from the root, forces all
members of a category to be equivalent. The additive tree representation, with edges
of varying lengths, seems more appropriate to represent a gradient of typicality.
Formally, an additive tree is a connected, non-directed, and acyclic graph, together
with an additive distance. The items are represented by the “leaves” (or terminal
nodes) of the tree, and the observed similarity between items is represented by
the distance between leaves along the edges. The goodness of fit is expressed
in terms of both metrical criteria based on edge lengths (stress, percentage of
variance explained), and topological criteria based on the tree topology (arboricity,
percentage of well represented quadruplets) [27]. An example is shown in Fig. 7.3.

Fig. 7.3 Additive tree representation of the same dissimilarity matrix with verbal descriptors of
the main categories (adapted from [22]). Here, the dissimilarity between two objects is proportional
to the length of the edge path connecting them in the tree. The number between 0 and 1 shown at
each node is a topological indicator of goodness of fit of a given edge. The greater this number is,
the more reliable the grouping between the corresponding nodes is
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7.3.2.3 Mantel Test

In order to compare dissimilarity matrices directly (e.g., between two groups of
participants or two experimental conditions), the Mantel test can be used for
significance testing [39]. A straightforward correlation analysis of two distance
matrices cannot be carried out because the distances in the matrices are not
independent. The Mantel test provides a way to overcome this difficulty. The
rationale behind the Mantel test is that, if there is no correlation between the
matrices, then a random permutation of their rows and columns will produce equally
likely low correlation coefficients. Thus, the test performs random permutations
of the rows and columns of the matrices and computes the normal correlation
coefficient; after that, it counts the proportion of those permutations that led to high
correlation coefficients. A hypothesis testing is then computed to determine the final
correlation of the distance matrices (see [26] for an application of the Mantel to test
for differences between groups of participants evaluating rhythmic similarity).

7.4 How Do People Categorize Sounds in Everyday Life?

We present in this section the main findings of selected behavioral studies on
everyday sound categorization. We first examine studies using isolated sound events
and then studies investigating complex auditory scenes.

7.4.1 Isolated Environmental Sounds

In a seminal study, Vanderveer conducted a free sorting task and a free identification
task of recordings of isolated everyday sound events, asking participants to group
and describe each sound in their own words [61]. Participants described and
organized the sounds in terms of sound source, i.e., the object producing sound or
the action generating the sound (e.g., “tearing paper”). They referred to descriptions
of the acoustic signal only when they could not identify the sound event. These
findings provide support for Schubert’s view that “identification of sound sources
and the behavior of those sources is the primary task of the auditory system” [55].
Gaver argued for an ecological approach to auditory perception and introduced
the distinction between musical listening and everyday listening [17]. Musical
listening focuses on perceptual attributes of the sound itself (e.g., pitch, loudness),
whereas everyday listening focuses on events to gather relevant information about
our environment (e.g., car approaching), that is, not about the sound itself but rather
about the source and actions producing the sounds, and what they might mean.
Gaver further explains that a given acoustic phenomenon can give rise to both
modes of listening depending on whether the listener focuses on the properties of the
sound itself or rather on the event that caused the sound: “The distinction between
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Fig. 7.4 Gaver’s taxonomy of sound everyday sounds (adapted from [17]’s Figs. 6 and 7). Basic
level shown using a thicker outline and square boxes for represent sound sources, circles represent
actions

everyday and musical listening is between experiences, not sounds” [17, p. 1]. Gaver
also proposed a taxonomy of sound events based on the physical description of
sound production. Sound events are organized, first, in terms of interacting materials
at a higher level, then sound producing events (three categories: solids, gasses
and liquids), and finally interactions that cause sound (e.g., impact, rolling). This
taxonomy is represented in Fig. 7.4 (adapted from [17]). Gaver also mentions hybrid
events involving more than one sort of material (e.g., rain on a surface). It should be
noted that his taxonomy includes sound sources and actions. For the sake of clarity,
in all the figures in this chapter, we represent sources with square boxes and actions
with circles. When a basic level of categorization is explicitly mentioned by the
authors, we use a thicker outline for the boxes representing the basic level.

Guyot et al. conducted a free sorting task of recordings of domestic sounds
and asked participants to describe each category and the relationships between
categories [28]. Similar to Vanderveer [61], they observed two categorization
principles, one based on sound source similarity and the other based on the similarity
between event, or action, causing the sound. It should be noted that the same
acoustic phenomenon could be categorized either based on action generating noise
(e.g., “squeaking”) or based on the sound source (e.g., “door sounds”). Relying
on psycholinguistic analyses within the Roschian categorization framework, the
authors proposed a hierarchical organization of everyday sounds. For sounds
resulting from a mechanical excitation, the basic level (shown in thick outlines in
Fig. 7.5) is represented by actions generating sounds (e.g., “scratching”, “rubbing”,
shown in round boxes), while the subordinate level represents sound sources (e.g.,
“dishes”, “Velcro”, shown in square boxes) or correlate of sources and actions
(e.g., “pen sharpening”, rounded square boxes). The superordinate level represents a
higher level of abstraction in terms of sound production as mechanical vs. electrical.

Marcell et al. [40] and Gygi et al. [29] extended this investigation to large
collections of sound events. Their findings confirmed evidence for categorization
principles based on source identification and event producing sound but also
highlighted principles based on situational factors such as the location (kitchen,
office) or context (sports) in which the sounds would be heard, as well as
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Fig. 7.5 Categories of domestic sounds adapted from [28]. Basic level shown in thick outlines,
square boxes represent sound sources, circles represent actions, rounded squares for combinations
of source and action

Fig. 7.6 Taxonomy of sound-producing actions adapted from [30]

hedonic judgments associated with emotional responses (e.g., annoying). In [30],
Houix et al. validated Gaver’s taxonomy through free sorting tasks and lexical
analysis of verbal descriptions. In a first free sorting task using a heterogeneous set
of (kitchen) sounds, participants based their categorization on the different types of
sound sources, namely solids, liquids, gasses, and machines. In a second experiment
using only sounds produced by solids (in an indoor environment), participants were
asked to organize sounds according to the action generating sounds. The authors
observed a distinction between discrete interactions (e.g., impact) and continuous
interactions (e.g., deformation) as shown in Fig. 7.6. But they observed fewer
categories of actions than proposed by Gaver [17]. These results suggest that the
set of actions is constrained by the type of objects, suggesting a close interaction
between action and sound source. This can be contrasted with Gaver’s view that
action and sound source are independent categorization principles.

Furthermore, these different studies indicate that sounds can be cross-classified
according to different categorization principles depending on the context of pre-
sentation and the participants’ goals and theories. The extent to which participants
rely on acoustic properties of the sound vs. semantic properties of the sound source
also varies for different types of sounds. For example, Giordano, McDonnell and
McAdams found that participants rely more on semantic properties of the source
for sounds produced by living agents (referred to as animate sounds) and more on
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acoustical properties of the sound itself for sounds produced by non-living agents
(referred to as inanimate sounds) [18]. This is also reflected in linguistic resources:
while there are lexical forms for sound produced by humans (e.g., voice, laughter,
footstep, burp), there are few single words on which people agree as spontaneous
descriptions of sounds [11, 14, 15].

7.4.2 Linguistic Labelling of Auditory Categories

Indeed, most natural languages reflect conceptualizations of everyday sounds as
individual experiences rather than shared knowledge, even in specialized industries
focused on sound. The absence of collective norms and negotiated meaning of
lexical forms for everyday sounds can be contrasted with firmly shared meanings
for visual objects [9]. In the visual domain, categories of colors and shapes are
elaborated as abstract categories autonomously from the colored object. As an
example, one can easily think of the color red without having to think of a red
object, that is, the color property (red) can be abstracted from individual instances
of colored entities (a red apple, a red car or a red shirt). This is reflected in discourse
with lexical forms for visual properties such as colors (e.g., red, green, blue) and
shapes (e.g., circle, square, triangle). However in the auditory domain, categories are
primarily structured based on the sources (object or agents) producing sound (e.g.,
car sounds, baby crying). In that sense, they are less abstracted from the source
(e.g., car, baby) and are conceptualized as indicating the presence of an object or
an agent and the effect it has on the listener. Discourse analyses conducted on
free descriptions of everyday sounds reveal a large variety of linguistic devices.
From what is being said and how it is being said, psycholinguistic analysis can
be used to derive inferences about how people process and conceptualize sensory
experiences [14]. This analysis mediates between individual sensory experiences
and collective representations shared in language and elaborated as knowledge. The
most frequent phrasings (see [14] for a review) spontaneously used to describe
everyday sounds are:

• denominations constructed with a generic term (noise, sound) and a noun
referring to the source (door sounds, sound of a car),

• suffixed nouns derived from verbs referring to the action generation the noise
(braking of a car)

• adjectives derived from verbs referring mostly to hedonic or emotional factors
(pleasant, unbearable) suggesting that sounds are conceptualized as effects of
a world event on the listener (see [12] for an interpretation of the different
suffixations in French).

The lack of basic lexicalized terms or a priori established categories questions the
relationship between words and knowledge representations and suggests broadening
the analysis beyond single words to complete statements provided by language in
discourse.
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7.4.3 Factors Influencing Everyday Sound Categorization

Over the past decade, there has been a growing body of literature of the categoriza-
tion of everyday sounds. This section aims to synthesize previous research in terms
of factors that have been found to influence categorization.

Similarity plays a critical role in categorization, but different types of similarities
have been proposed in [36] based on a review of the literature.

• Acoustical similarity of the acoustic phenomena (see Chap. 3 for a review of the
psychoacoustics of sounds scenes and events)

• Causal similarity defined as “the similarity of the identified physical event
causing the sound” [36, p. 18], often reflected in the temporal structure of the
sound (e.g., [30]).

• Semantic similarity, which refers to the meaning attributed to the sounds. This
can be based on situational factors (locations and context in which sounds occur,
referred to as context-based similarity, e.g., kitchen sounds) or based on the
semantic properties of the sound source (referred to as source-based or object-
based similarity) or the agent producing sound.

These different principles of categorization can operate together. Indeed, Morel
et al. investigated road traffic noise and found that participants elaborated categories
of sounds that combined the type of vehicle (e.g., car, truck, motorcycles) as
well as the driving conditions (e.g., acceleration, deceleration) causing sound [42].
Furthermore, in a study using recordings of cylinders of different sizes and material
(wood, plastic, glass, metal) undergoing different actions (scraping, rolling, hitting,
bouncing), material perception was found to be fragile across different actions [36].
Participants were able to identify both the object (in term of size and material)
and action producing sounds, but that they were always more accurate and faster
at identifying actions.

Furthermore the influence of person-related factors on everyday sound catego-
rization has been demonstrated. These include:

• Expertise of the listeners: Guyot at al. found that acousticians freely categorized
sounds according to the properties of the acoustic signal (e.g., pitch, temporal
evolution), while non-acousticians based their categorization on the sound
sources or the actions generating sound [28]. The linguistic analysis of free-
format verbal descriptions indicates that acousticians conceptualize sounds as
abstract acoustic phenomena (i.e., as a perceptual object in itself), whereas non-
acousticians conceptualize sounds as indicating the presence of an object that
is not abstracted from the sound source. Lemaitre et al. further investigated the
effect of prior knowledge by contrasting “expert” listeners (defined as musicians,
sound artists, acousticians, or sound engineers) and untrained listeners and found
similar results [36]. Similarly, expert listeners tended to categorize sounds on the
basis of acoustical similarity,

• Age: Berland et al. conducted a developmental study of everyday sound cat-
egorization based on free-sorting tasks with young children, teenagers, and
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adults [4]. They found that all three groups tended to rely on semantic similarity
suggesting that the bases for this form of sound categorization are present in
childhood. However the authors observed that several strategies could co-exist
within a given development stage and that younger children created more script
categories than adults.

• Preferences: Hedonic judgments have been found to be relevant and even
discriminant to sort out unpleasant sounds from neutral and pleasant ones. In
this case, categorization operates in relation to the perceived identity of the
object/agent producing sound based on memory representations.

Situational factors such as mood, attention paid to the sound, and the activity
carried out by a person while hearing the sound have had demonstrated modulating
effects on auditory judgments. These findings have been reported in the context
of sound quality evaluation of product sound and complex sonic environments
(see [59]). While their effect on categorization has not been formally investigated
(e.g., using free-sorting tasks or dissimilarity ratings), we can speculate that they
would influence categorization since categorization relies on hedonic judgments.

7.4.4 Complex Auditory Scenes

A growing body of literature in the field of soundscape research has shed light
on the cognitive and perceptual mechanisms people use to sort out mixtures of
sounds into discrete categories in their everyday lives. The notion of soundscape
was introduced by Schafer in the context of acoustic ecology in the 1970s [54] and
has grown to connect with other related fields like community noise, acoustics, and
psychoacoustics. Soundscape research emerged as a field in the late 1990s and the
community of researchers working on urban soundscapes is particularly active in
Europe and Asia. While different definitions had been proposed earlier, a recently
formed ISO working group defines soundscape as “the acoustic environment as
perceived or experienced and/or understood by a person or people, in context” [33].
This view emphasizes the importance of person-related and situational factors in
everyday listening.

7.4.4.1 Categories of Soundscapes as “Acts of Meaning”

In her seminal paper [14], Dubois discusses auditory categories as “acts of meaning”
extending Bruner’s conviction “that the central concept of a human psychology
is meaning and the processes and transactions involved in the construction of
meaning” [7, p. 33] to the auditory domain. This framework combined with
Rosch’s prototype theory of categorization laid the theoretical and methodological
groundwork for a cognitive approach to everyday sounds as meaningful events [15]
in close relationship to linguistic labelling. What are these categories of soundscapes
and how are the conveyed in language?
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Maffiolo et al. investigated memory representations of familiar urban sound-
scapes with open questionnaires and mental maps [38]. The analysis of verbal and
graphical descriptions made by city users suggests that soundscapes are structured
into complex script categories integrating notions of time, location, and activities.
These notions are reflected in discourse by complex prepositional phrases with
multiple complements such as “riding motorcycles at Bastille on Saturday night”.
In a similar vein, Guastavino analyzed free-format descriptions of familiar and
ideal urban soundscapes [21]. The main categories of sounds identified were human
sounds, traffic noise, natural sounds, and music. They were described in relation
to hedonic judgments spontaneously evoked by respondents. Human and natural
sounds gave rise to positive judgments (except when reflecting anger), whereas
mechanical sounds gave rise to negative judgments. This distinction was even
observed within certain categories such as music, which gives rise to two opposite
qualitative evaluations depending on whether it reflected human activity directly
(“musician”) or indirectly (“loudspeakers,” “car radio”). In the first case, it is
perceived as lively and pleasant; in the latter, it is perceived as intrusive and
therefore annoying. As regards mechanical sources, only electric cars and public
transportation noise gave rise to positive judgments, in relation to environmental
concerns. The evaluation of acoustic phenomena is therefore closely linked to the
appraisal of the sound source and the meaning attributed to it, highlighting the
importance of semantic features in categorization.

At a higher level of abstraction, results from free sorting tasks [37] and
psycholinguistic analyses of verbal descriptions [23, 24] highlight a first distinction
between sound events, attributed to clearly identified sources, and ambient noise,
in which sounds blur together into collective background noise. Sound events are
spontaneously described with reference to specific sources, by nouns referring to the
object (truck, bus) or part of the object (engine, muffler) generating the noise. These
metonymies—substituting the name of the source producing sound for the name
of the sound itself—indicate confusions between sounds and sources producing the
sound, and further suggest that the acoustic phenomenon is not abstracted from the
object generating the sound. On the contrary, in the descriptions of ambient noise,
there are few references to the object source and a majority of simple adjectives
referring to the physical features of the acoustic signal (namely temporal structure
and spectrum), suggesting a more abstracted conceptualization of the sound itself
(that is, as a perceptual object in itself rather than as indicating the presence of an
object in the world).

Finally, the comparison of verbal free-format description collected in actual
environments and in laboratory experiments indicates that the sense of spatial
immersion contributes to the cognitive representation of urban ambient noise
[23, 24]. Guastavino at al. further showed that a multichannel surround sound
reproduction, providing a strong feeling of immersion compared to low-channel
setups, was necessary to ensure that urban noise reproduced in a laboratory setting
is processed and subsequently evaluated in a similar manner to everyday life
situations [25]. At a more generic level, Guastavino identified two main categories
of urban soundscapes in a free sorting task, based on the perceived absence or
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Fig. 7.7 Categories of soundscapes adapted from [22] corresponding to the representation shown
in Figs. 7.2 and 7.3. Hexagons for activities/contexts, square boxes for sound sources, circles for
actions

presence of human activity in the sound recording in relation to judgments of
pleasantness [22]. Soundscapes in which traffic sounds dominated were tightly
grouped together. They were subcategorized at a subordinate level according to
sounds sources (the type of vehicles producing sound). Soundscapes in which
human sounds dominated subdivided into subcategories related to the different
types of activities ranging from busy markets to quiet parks (see Fig. 7.7). These
findings provide support for another form of interaction between categorization
principles based on sound sources, activities, and hedonic judgments. Furthermore,
these findings are in line with the distinction between animate and inanimate agents
observed with isolated everyday sounds [18].

A recent line of research further investigates the relationship between soundscape
evaluation and activity. These evaluations rely on cultural values attributed to the
different types of activities rather than on inherent properties of the sounds pro-
duced. Nielbo et al. asked participants to rate how appropriate different soundscapes
were for different envisaged activities (e.g., studying, meeting with a friend) [46].
Findings showed that some of the tested soundscapes were rated as appropriate for
all of the activities, some appropriate for no activities and a few of the soundscapes
were appropriate for some of the activities but not others. Conversely, Steffens et al.
collected soundscape evaluations “in situ” using the experience sampling method
[58, 59]. Participants were prompted 10 times per day by a smart phone application
to evaluate their soundscape and report on situational factors. The authors found the
activity had a significant effect on soundscape evaluation: soundscapes were rated
as more pleasant during recreational activities than during commuting or shopping.
The effect could not simply be explained by different locations. A separate analysis
of ratings collected in home environments also shows a significant effect of activity
on soundscape evaluation, with recreational or entertainment activities associated
with higher soundscape pleasantness than work, study, or other personal activities.

Other findings indicate that sounds contribute to the sense of place and encourage
activities appropriate for the environment (e.g., marketplace sounds encourage con-
versation and purchasing). In addition, the context in which sounds are experienced
plays a critical role in their evaluation. As an example, a study in a large pleasant
park found that participants reported airplane noise as neutral rather than the
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negative rating is usually attracts in studies conducted within the home [57]. Similar
evidence that soundscapes provide relevant information about possible interactions
with the environment comes from studies on auditory comfort evaluation inside
passenger trains [43]. Passengers’ auditory judgments were collected during a
train ride using open-ended questions. Respondents evaluated sounds in relation
to specific activities they were involved in. The evaluation of physical properties
of sounds (e.g., sound level) was modulated by the activities of respondents. For
instance, a given sound could be judged as “quiet enough to sleep” but “too loud to
have a discussion.”

Together these findings suggest that the activity of the participants (task at hand
or intended interaction with the environment) is a determining factor for everyday
sound categorization and potentially even the factor that should be considered first.

7.5 Organizing Everyday Sounds

We now review some systematic classification schemes that have been proposed
to account for the categorization of everyday sounds, and the extent to which
they are informed by behavioral studies. Classification schemes can include either
taxonomies and ontologies. Taxonomies are hierarchical structures of entities.
The only relationship between entities in a taxonomy is class/subclass (a.k.a. as
broad/narrow or parent/child relationship) based on class inclusion (e.g., animal
kingdom taxonomy). Ontologies on the other hand model a broader range of
relationships between entities.

7.5.1 Taxonomies of Sound Events

Murray Schafer proposed three different classification schemes for sound events,
according to physical characteristics (duration, frequency, fluctuations, dynamics),
according to aesthetic qualities and according to referential aspects [54]. These
referential aspects refer to categories of sound sources and functions, described as

• natural sounds (e.g., sounds produced by water, animals, fire)
• human sounds (directly produced by humans, e.g., voice, footsteps)
• sounds and society which refers to the sounds of human activities (e.g., cere-

monies) or different types of environments (city, domestic)
• mechanical sounds (e.g., machines, transportation)
• quiet and silence
• sounds as indicators (sounds that serve a particular informative function, e.g.,

warning signals, bells)

In [13], Delage proposed a classification of urban sounds according to the degree
of human activity, with three classes of sounds:
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• sounds not produced by humans (e.g., sounds of nature)
• reflecting human activity indirectly (e.g., traffic or construction noise)
• reflecting human activity directly (e.g., voices, footsteps)

In the context of soundscape ecology in natural ecosystems such as large parks
and reserves, Pijanowski et al. proposed to categorize sounds into geophony (sounds
from the geophysical environments such as rain and wind), biophony (sounds
produced by biological organisms), and anthrophony (sound produced directly or
indirectly by human activity) [48].

So far, the classification schemes reviewed are categories of sound sources. While
these categorizations were not informed by empirical studies with listeners, similar
principles have been observed in the results of empirical studies with isolated sound
events as well as auditory scenes. However these proposed classification schemes
do not account for the structure of sound events at different levels of abstraction
(general to specific).

Furthermore as discussed in Sect. 7.4, different categorization principles co-exist,
particularly in terms of sound sources and actions producing sounds. Salamon,
Jocoby and Bello proposed a taxonomy of urban sounds that incorporates to some
extent the action causing the sound [52]. At a superordinate level, the four categories
are human, nature, mechanical, and music (a combination of categories of sources
and sound production mechanisms). At lower levels, the leaves of the taxonomies
represent categories of sound sources derived from the content analysis of noise
complaints (filed through New York City’s 3115 service between 2010 and 2014).
Some of these sources are associated with different actions (e.g., under Engine:
idling, decelerating, accelerating). This is in agreement with the typology of vehicle
sounds elaborated in [42] on the basis of free sorting tasks revealing two criteria,
namely vehicle type and vehicle driving condition. In Fig. 7.8, we redraw a subset
of their taxonomy adapted to clearly indicate sound sources (using square boxes),
actions (using circles) or combinations of the two (rounded square boxes).

7.5.2 Taxonomies of Complex Auditory Scenes

Brown et al. proposed a categorization of soundscapes, with different categorization
principles at different levels of specificity [6]. The superordinate level operates in
terms of the type of environment (first distinction between indoor vs. outdoor, then
between different types of environments within each), followed by a distinction
in terms of presence or absence of human activity at the basic level, and then a
classification in terms of sound sources at the subordinate level, as shown in Fig. 7.9.

The proposed distinction between different types of environment corresponds to
different areas of expertise (soundscape researchers tend to specialize in a specific

5This special telephone number provides access to non-emergency municipal services (comments,
complaints, questions or requests).



204 C. Guastavino

Fig. 7.8 Subset of urban sound taxonomy adapted from [52], with square boxes for sound sources,
circles for actions, rounded squares for combinations of source and action

Fig. 7.9 Categorization of soundscapes adapted from [6], with square boxes for sound sources,
circles for actions, hexagons for contexts

type of environment such as natural ecosystems or urban environments). From the
perspective of the listeners, these could be conceived of as environments that lend
themselves to particular activities, thus orienting the listening strategies to sounds
that match the envisaged activity.
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Fig. 7.10 Soundscape ontology proposed by and adapted from [8]

7.5.3 Toward a Soundscape Ontology

In [8], Choe and Ko discuss the growing use of Web technologies for online
sound archives and databases as well as sound maps6 around the world and
review the limitations of existing ontologies to model complex soundscapes. They
propose an ontology for archiving soundscapes based on Functional Requirements
for Bibliographic Records (FRBR) [32]. The design of this ontology, shown in
Fig. 7.10, relies on a pre-existing Music Ontology as well as on Pijanowski’s
classification of sound producing agents (geophony, biophony, and anthrophony,
see [48]) for the entity Actor and Shafer’s classifications of different functions of
sound for the entity Function.

This ontology has been developed to preserve recorded soundscapes for archival
purposes. It might however be of interest to inform the development of a rich
metadata scheme to describe sound events and sound scenes in the context of
machine learning.

6For example, www.montrealsoundmap.com/.

www.montrealsoundmap.com/
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7.5.4 Sound Events

Research on everyday sound perception and categorization suggests that sound
events give rise to complex cognitive categories based on a correlate of attributes
related to sound source(s), action(s), and context(s). We reviewed converging
evidence that different principles of categorization co-exist and operate together, and
that listeners are flexible in the types of categories they form and use in everyday life.
As an example in the auditory domain, a dog lapping water produces a sound event
that could be categorized as sound of liquid, alimentation sound, animal sound,
and/or kitchen sound. Similarly, shouting can be categorized as a speech sound
(e.g., cheering for a sports team) or a warning signal depending on the situation.
This cross-classification into different categorization schemes allows listeners to
get a full understanding of their environments in a goal-oriented view (e.g., based
on the function of the sound, the identity of the sound source, to anticipate further
action or inaction appropriate in a given context).

Based on the perceptual studies reviewed in Sect. 7.4, we now derive taxonomies
in an attempt to represent and reconcile the different categorization schemes
observed for sound events based in the literature. While these categories are not
exhaustive, they represent a synthesis of what has been documented in the literature.
We believe that these separate taxonomies might be useful for the design of
computational systems to provide a more detailed representation of sound events
in terms of a combination of sound source(s), action(s), and context(s). Such a
representation could provide additional cues for computational systems to resolve
ambiguity (e.g., identify context based on sound sources) and guide what could be
considered an acceptable generalization or confusion (e.g., misclassifying an action
but correctly identifying the source and context, or confusing the sound of a small
kitchen appliance with another appliance while staying in the kitchen context).

A taxonomy of sound sources derived from previous studies is presented in
Fig. 7.11. At a first level, a distinction is made between sounds produced by either
animate agents or inanimate agents (e.g., [18, 22]). Animate agents then subdivide
into humans and animals, while inanimate agents subdivide into different types of
material (e.g., [17, 30]), and then into different types of objects. We refer the reader
to research on everyday objects (e.g., Rosch’s work on natural categories) for further
detail on subordinate levels of categorization.

A taxonomy of actions producing sound derived in shown in Fig. 7.12. Different
organizational principles have been observed for actions produced by animate
and inanimate agents, a distinction also shown in terms of sources in Fig. 7.11.
For animate agents, there is a first distinction between action and non-action
sounds. Non-action sounds involve nothing by the body as a source, they include
vocalization and body sounds, while action sounds subdivide into locomotion,
alimentation, and others. At a lower level, the possible set of actions is constrained
by the type of agents. As an example, under vocalization, while humans might talk,
laugh, and cry, different animals might call, bark, or moo. Similarly for locomotion,
while humans can walk, run, and swim, only birds can flap wings and fly. This close
interaction between action and sound source is captured in Fig. 7.12 by using italics
for animal-specific actions.
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Fig. 7.11 Taxonomy of sound sources derived from a synthesis of previous studies

Fig. 7.12 Taxonomy of actions producing sound derived from a synthesis of previous studies. The
set of actions is constrained by the type of agents (animal-specific actions shown in italics)

Finally a taxonomy of contexts is presented in Fig. 7.13. This form of catego-
rization based on contexts in which everyday sounds are heard is closer to the
notion of script categories that rely on routines (e.g., eating out, commuting, jogging
in the park, doing the dishes). Context is particularly relevant for computational
systems. Users are more likely to forgive the occasional infelicity in sound event
identification as long as the broader context in preserved.

These taxonomies could be integrated to provide a rich description of sound
events in terms of correlates of attributes across different descriptor layers (related
to context, source, and actions) corresponding to different categorization schemes,
each along different levels of abstraction, from general abstract descriptors to more
specific descriptors. This is illustrated in Fig. 7.14 in the case of the sound of dog
lapping water from a bowl, described in terms of context, agent, material, and action.
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Fig. 7.13 Taxonomy of contexts derived from a synthesis of previous studies

Fig. 7.14 Cross-classification of sound events into descriptors of context, agent, source, and
action, illustrated here with the sound of a dog lapping water from a bowl

7.5.5 Comparison

We reviewed categorization models proposed in the literature. These are primarily
based on taxonomies, that is, hierarchical classification schemes with mutually
exclusive categories. This model is in the logical continuation of the rule-based
view of the classical approach to categorization with strict category boundaries.
However, the different levels of abstraction are compatible with Rosch’s prototype
theory in terms of superordinate, basic, and subordinate levels. While the design of
these taxonomies has been informed or inspired by empirical studies, the complex
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cognitive strategies of human categorization cannot be entirely captured by these
models. Previous research on sound events has shown that people rely on multiple
categorization principles based on sound source(s), action(s), and context. We
synthesized the main categories of sources, actions, and context(s) investigated in
previous studies and argued that sound events should be characterized by correlates
of attributes from these different categorization schemes.

7.6 Conclusion

In this chapter, we started by reviewing the historical forces that have driven
categorization research and describing the most common methods for categorization
research. We then summarized the main findings of previous studies on everyday
sound categorization by humans to gain some perspective of what cognitive
psychology has to say about the computational analysis of sound scenes and
events. A first important aspect of human categorization is the existence of a basic
categorization level. This basic level for everyday sounds could be appealing for the
computational analysis of sound events. In computational systems, the enumeration
of the leaf nodes is usually the most important set, while human categorization tends
to favor a basic level, which is in the middle, with more general abstractions above
it, and specializations below it. In addition this basic level is typically associated
with simple words that could be used as explicit labels to supervise the training of
machine learning systems.

Another specificity of human categorization discussed in this chapter is the
ability to cross-classify into different forms of categorizations including different
taxonomies (of sources, of agents, of actions, etc. . . ) and script categories related to
the context in which these sounds are typically heard (e.g., sounds from an outdoor
market, kitchen sounds). Cross-classification implies that there is not a single way of
categorizing everyday sounds. A given sound can co-exist in different categorization
schemes simultaneously, each more or less appropriate in different contexts. This
idea challenges the latent assumption of a unique well-defined hierarchical structure
underlying many computational systems and highlights the context dependence of
categorization.

Further research is needed to provide a comprehensive model of sound event
categorization accounting for the different types of similarities (acoustic, causal,
and semantic) as well as person-related factors (e.g., expertise, developmental stage)
and situational factors (e.g., activity, context) and the interaction between these
different factors. Indeed there is converging evidence that sound events give rise
to complex categories relying on correlates of (non-independent) attributes related
to sound source, action, and context. The relationships between these different
categorization schemes could be modeled using faceted classification. Facets are
mutually exclusive and jointly exhaustive categories isolating one perspective.
Facets corresponding to sound sources, actions, and contexts could be combined
to provide a more comprehensive description of sound events. Future research
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should also investigate the heuristics governing sound scenes evaluation, including
attention and memory effects (see [58]) and the relationship between isolated sound
events and holistic sound scenes.

Acknowledgements Dan Ellis, Tuomas Virtanen, Mark Plumbley, Guillaume Lemaitre, Julian
Rice, Christopher Trudeau and Daniel Steele for insightful comments on previous versions of this
chapter.
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Chapter 8
Approaches to Complex Sound Scene Analysis

Emmanouil Benetos, Dan Stowell, and Mark D. Plumbley

Abstract This chapter presents state-of-the-art research and open topics for ana-
lyzing complex sound scenes in a single microphone case. First, the concept of
sound scene recognition is presented, from the perspective of different paradigms
(classification, tagging, clustering, segmentation) and methods used. The core
section is on sound event detection and classification, presenting various paradigms
and practical considerations along with methods for monophonic and polyphonic
sound event detection. The chapter will then focus on the concepts of context and
“language modeling” for sound scenes, also covering the concept of relationships
between sound events. Work on sound scene recognition based on event detection
is also presented. Finally the chapter will summarize the topic and will provide
directions for future research.

Keywords Scene analysis • Sound scene recognition • Sound event detection
• Sound recognition • Acoustic language models • Audio context recognition •
Hidden Markov models (HMMs) • Markov renewal process • Non-negative matrix
factorization (NMF) • Feature learning • Soundscape

8.1 Introduction

The field of sound scene analysis develops computational methods for analyzing
audio recordings or audio streams from various environments. Typical tasks involve
sound scene recognition (identifying the environment or context of an audio
recording) and sound event detection (identifying the sound sources within a
recording, along with the start and end times when a sound is produced). In
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realistic environments, sound scenes are inherently complex: there can be multiple
overlapping sounds (which is often referred to as polyphony), either from the
same or from different sound categories. The audio may also contain ambient or
background sounds. The content of in-the-wild audio is also affected by weather
conditions, e.g., wind or rain. Other factors that can enhance the complexity of
a recording include audio recordings from portable devices, e.g., mobile phones,
robot ears [49], or backpacks-on-birds [28, 65]; all the above cases add noise from
the “wearer” of the device. A final level of complexity refers to the occurrence
of extremely rare sound events (“black swan events”), which has applications in
security/surveillance; more information on such approaches is given in Chap. 12.

In this chapter, we introduce state-of-the-art approaches and future directions for
modeling and analyzing sound scenes in multisource environments. The chapter is
not restricted to a single application domain: it covers both urban and nature sounds,
as well as specialized applications, e.g., detection of office sounds. Our focus is on
presenting published work in the field. No explicit comparisons between methods
are made in terms of performance, however, useful comparisons can be inferred by
inspecting results from the DCASE 2013 [66] and DCASE 2016 [70] challenges.
We also draw inspiration from audio analysis approaches for modeling multisource
environments in related fields, most notably speech processing and music signal
processing.

We first describe in Sect. 8.2 approaches that model a sound scene as a whole.
Approaches for detecting specific sound events, both in a monophonic and a
polyphonic context, are presented in Sect. 8.3. Section 8.4 then bridges the two
previous sections, presenting systems for detecting sound events that take context
or more generally acoustic language information into account. Section 8.5 then
presents an alternate approach for modeling sound scenes, this time as a collection
of sound events. Conclusions are finally drawn in Sect. 8.6.

8.2 Sound Scene Recognition

The overall aim of sound scene recognition (also called acoustic scene classification
or audio context recognition) is to characterize the acoustic environment of an audio
stream by selecting one or more semantic labels for it [66]. In its basic form the
task refers to classifying an input audio recording with a single label, and can be
viewed as a machine learning single-label classification problem, with links to audio
classification problems in other domains such as music genre classification [68] and
speaker classification [45]. Another approach is to assign a set of labels to an audio
recording [25]; this is typically referred to as audio tagging, and can be viewed
as a form of multilabel classification. The concept of sound scene recognition can
also be applied to continuous audio streams, where an audio recording is segmented
into temporal regions, each corresponding to a different acoustic environment. The
sound scene label can refer either to a general setting (e.g., indoors/outdoors) or to a
specific context (e.g., restaurant); see Chap. 7 for more information on the taxonomy
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of sound scenes. A final approach for sound scene recognition centers on audio
similarity rather than explicit labelling, e.g., the work of Cauchi et al. [18] in which
a bag-of-frames model was used to derive a similarity matrix between sound scenes
recorded in train stations. The automatically derived similarities were compared
with a similarity matrix compiled by human participants.

8.2.1 Methods

As discussed in Stowell et al. [66], there are two main strategies found in the
literature for scene recognition. One is to consider the audio recording holistically
and use various types of features to characterize it as a whole. The other approach
is to derive an intermediate representation of sound events over time, and link the
occurrence of specific sound events or atoms to specific acoustic environments; this
approach will be described in detail in Sect. 8.5, with the more common feature-
based approaches described in this section.

One early attempt on the problem of sound scene classification was proposed
by Aucouturier and Pachet [2], who claimed that the bag-of-frames approach
is sufficient for modeling urban soundscapes (while not deemed sufficient for
modeling polyphonic music). Their approach used mel-frequency cepstral coef-
ficients (MFCCs) as features, with Gaussian mixture models (GMMs) used for
classification. This work was subsequently revised in [37], where it was shown that
the promising results of Aucouturier and Pachet [2] likely resulted from a dataset
with low within-class variability, which was not broad or natural enough to draw
conclusions.

Feature-based approaches can also be divided into two main categories:
approaches using hand-crafted features and approaches using feature learning.
The advantage of hand-crafted features lies in incorporating expert knowledge
about acoustics, sound perception, or specific attributes on the sound scenes or
sound events to be recognized. Another advantage is that hand-crafted features
typically result in a compact data representation that can be used as a front-
end to efficient sound scene analysis approaches. However, there is much expert
knowledge which is not straightforward to translate into feature engineering, and
there are many domains in which we have relatively little knowledge to help
us design features. The alternative is feature learning, which circumvents these
problems by analyzing datasets to determine automatically what transformations
should be applied to convert input into features. Unsupervised feature learning
methods operate without any data labelling, and are often used even when labels
are available, to learn generically across all classes. Such features might then be
useful across many tasks. Feature learning does not require domain knowledge and
so overcomes the bottleneck of expert feature engineering: it can select compact
feature representations using data characteristics not apparent to a human observer,
and it can be used to select high-dimensional representations with more features
than are feasible to engineer manually. The primary drawback is that feature learning
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Table 8.1 Feature-based sound scene recognition approaches

Hand-crafted features Learned features

Features Reference Approach Reference

MFCCs [2, 37] NMF [18]

Various low-level features [24, 26] Convolutive PLCA [6]

Gammatone features [52] Sparse RBM [39]

MFCCs + recurrence analysis [59] Spherical k-means [60]

HOG representation [12, 58] NMF/convolutive NMF [13]

requires a large sample of data from which to generalize, which may sometimes be
an issue, e.g., when working with very rare sound events.

Table 8.1 lists various feature-based scene recognition approaches, indexed
either by the types of features used (in the case of hand-crafted features) or by
the feature learning method used (in the case of unsupervised feature learning
methods). As can be seen, most approaches using hand-crafted features use low-
level features, e.g., MFCCs, zero-crossing rate, spectral flux. Certain methods use
descriptors adapted from image processing: in Bisot et al. [12], subband power
distribution and histogram of gradients (HOG) features are extracted from log-
frequency spectrograms. Likewise in Rakotomamonjy and Gasso [58] HOG features
are extracted from a constant-Q transform (CQT) spectrogram. In submissions for
the scene classification task of the DCASE 2013 challenge [66], the vast majority
of approaches likewise used MFCCs as features, while a subset used features
inspired by computational models of the human auditory system (cochleogram
representations, spectrotemporal modulation features). For the more recent DCASE
2016 challenge and its sound scene classification task [70], MFCCs are no longer
as dominant: a trend is observed towards time-frequency representations such as
mel spectrograms or CQT spectrograms which typically use a larger number of
coefficients/bins and thus have greater frequency resolution compared to MFCCs.
Such higher frequency resolution is often needed in order to analyze sound scenes
in multisource and noisy acoustic environments, whereas MFCCs are typically only
able to provide an estimate of the global spectral shape of an audio recording.

On feature learning approaches for sound scene recognition, most approaches
attempt to learn spectral or spectrotemporal representations in an unsupervised way
using matrix decomposition approaches such as non-negative matrix factorization
(NMF) [38]. For example, Bisot et al. [13] use CQT spectrograms as input and
learn features using several variants of NMF and convolutive NMF, where audio
recordings are classified using multiclass linear logistic regression. A different
approach is proposed by Salamon and Bello [60], where the feature learning pipeline
consists of computing mel spectrograms, followed by principal component analysis
(PCA) whitening. The spherical k-means algorithm is then applied to the whitened
log-mel-spectra in order to learn a feature codebook; finally, classification is
performed using a random forest classifier. For the DCASE 2013 scene classification
task, only one method relied on feature learning, using sparse restricted Boltzmann
machines (RBMs).
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For the DCASE 2016 challenge [70], several sound scene classification
approaches employed feature learning as part of deep neural network architectures.
In most deep learning approaches for sound scene classification in DCASE 2016
the input includes MFCCs, a mel spectrogram, or more generally a time-frequency
representation. On the recognition side, most deep learning-based approaches
for this challenge task used either frame-based deep neural networks (DNNs)
or convolutive neural networks (CNNs). Published methods for sound scene
recognition using deep learning include the work of Piczak [53], which used
CNNs with mel spectrograms as input features. More information on features and
feature learning for sound scene analysis can be found in Chap. 4.

8.2.2 Practical Considerations

There are a few practical considerations when creating a system for sound scene
recognition, beyond the choice of audio features and classifier. A first aspect is
whether the system only exploits a single channel or makes use of several channels.
Although the use of multiple channels can be beneficial in sound scene recognition
systems especially in the presence of multiple sound sources, so far in the literature
the vast majority of sound scene classification systems only exploit a single audio
channel, usually by converting a stereo input to mono. This is also evident from
submissions to the DCASE 2016 acoustic scene classification task [70], where the
input was a binaural recording: out of 49 systems, only 9 explicitly used information
from both audio channels. More information on multichannel approaches for sound
scene analysis can be found in Chap. 9.

Another consideration is whether a system assigns a single label to a record-
ing/segment or if multiple labels can be assigned. Again, most approaches for
sound scene recognition in the literature approach the problem as a single-class
classification task. This approach has, however, practical limitations; in Eronen
et al. [24] a first attempt was made to use a sound scene hierarchy, where results
are presented for each scene class individually, as well as for each high-level
context category. A related issue is on evaluating only on “hard” rather than
fuzzy classification decisions, which has so far been used in evaluating sound
scene recognition systems. Given that the vast majority of sound scene recognition
systems output a non-binary representation which expresses the probability that a
sound scene belongs to a certain class, the problem could be viewed in the future as a
multilabel regression task with an added temporal dimension. This is also related to
the concept of audio tagging [25], which can be viewed as multilabel classification
and can be applied to segments of varying duration. All above approaches also
assume that the scene labels are known beforehand, which is linked to the concept
of closed set recognition. In realistic cases, not all scenes can be attributed one or
more semantic labels (referred to as open set recognition). Recently, Battaglino et al.
[4] carried out an investigation of the sound scene classification problem in an open
set scenario, and proposed a classifier and evaluation methodology tailored for the
open set case.
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A final consideration involves the use of temporal information. Even though the
label of a sound scene can be described in terms of long-term temporal context
or the repetition of specific attributes, most systems in Table 8.1, as well as
submissions participating in the DCASE 2013 Scene Classification task [66], adopt
a frame-based approach and disregard any temporal information. Exceptions to that
include approaches that learn time-frequency patches [6, 13] or extract image-based
features [12, 58]. More recently, temporal information has been used for some scene
classification systems submitted to the DCASE 2016 challenge [70], in particular for
neural network-based systems that either learn spectrotemporal representations (i.e.,
CNNs) or explicitly integrate temporal information (recurrent neural networks, time
delay neural networks).

8.3 Sound Event Detection and Classification

Sound event detection refers to the process of identifying segments within an audio
recording, characterized by a start and end time, as well as a label referring to a
specific sound class. Firstly, paradigms and techniques for sound event detection
(SED) are presented. In Sect. 8.3.2, methods for monophonic SED are discussed,
followed by methods for polyphonic SED in Sect. 8.3.3. Post-processing methods
for SED are presented in Sect. 8.3.4, while a discussion on sound event detection
and classification is made in Sect. 8.3.5.

8.3.1 Paradigms and Techniques

In previous chapters we have worked with specific conceptions of a sound “event”:
often each event is defined by its onset time, offset time, and a single categorical
label (see in particular Chap. 2). Sometimes, however, the data under consideration
may be the simple presence/absence of an event type, with no further temporal
detail. We may think of these as different paradigms or merely different output
data formats—see Fig. 8.1 for an overview. In this chapter we consider various
computational techniques, and as we do we will need to reflect on the different
types of output that they are designed to infer.

To take a simple example, to detect events of just one “class” we might start with
events annotated as a list of onset times and offset times (Fig. 8.1c or e if events
may overlap). A detector could implement this by dividing the audio into small
frames, and inferring whether each of those frames contained energy from an event
(cf. Chap. 2). These fine-scale presence/absence decisions could then be translated
into (onset time, offset time) data in a post-processing step (as we will discuss in
Sect. 8.3.4). This is common, but this frame-based route implicitly neglects the
possibility of overlapping events, since a presence/absence decision does not give
us this information. A very different route to the same goal is to detect event onsets,
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Fig. 8.1 Output paradigms for sound event detection

and to detect event offsets, and to have some procedure for matching onsets and
offsets into suitable tuples [63]. In principle this can represent overlapping events,
and at any time-point the number of active events is represented, rather than “zero
vs. non-zero.” However, it is less common.

Events in a sound scene have diverse characteristics, but many sounds are
characterized by a relatively clear onset followed by decay to a gradual offset, the
offset then being difficult for either humans or machines to localize in time. (In a
few cases the onset may be ambiguous too: e.g., the sound of a car approaching and
passing.) Depending on the circumstance, it may be preferable to analyze events by
their onsets only, ignoring the question of when each event ends (Fig. 8.1b). This has
been widely used in music signal processing [5], and in the DCASE 2013 challenge
[66], where results were evaluated both for onset-and-offset and for onset-only event
detection. Some methods for analyzing the events that make up a sound scene (e.g.,
those based on point processes) consider events as single temporal points [67].

Conversely, it may sometimes be desirable to recover even more structured
information than onsets and offsets. Approaches based on template-matching of
spectrogram patches naturally yield a representation of time-frequency “boxes,”
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yielding events which are bounded in frequency as well as time (Fig. 8.1f). This is
common in animal sound detection, because animal sounds often occupy distinct
frequency ranges (see Chap. 11). If event types are bandlimited and appear in
different frequency bands from one another, this can simplify the detection of
different but simultaneous events.

8.3.2 Monophonic Event Detection/Classification

We first consider the simpler case of monophonic event detection. Monophonic
here means, as in music, a situation in which only one event can be active at once
(Fig. 8.1c): this is an unrealistic assumption for sound scenes in general, though
it facilitates some sorts of processing, and for scenes in which sounds occur only
sparsely it typically holds for most of the time. The monophonic event detection
paradigm is also used in the context of detecting the predominant event in a sound
scene, see, e.g., Mesaros et al. [42]. We start with the simple case with only one
event type to be detected. In speech technology, voice activity detection (VAD) is
an example of this scenario [10]. We will gradually move towards handling multiple
event types.

In controlled environments with low noise and low amounts of clutter from
unwanted event types, simple approaches can suffice. The simplest is perhaps energy
thresholding: for each audio frame, the event is considered active if its energy
(or power, magnitude) is above a threshold. This basic idea can be refined in
various ways, such as adaptive threshold levels, or comparing the energy in different
subbands of the signal. It is simple to implement and efficient, and so some variant
of this is used particularly in resource-constrained detectors such as mobile phone
VAD [10] or bioacoustic remote monitoring (Chap. 11), whether in itself or as a
first-level step.

Another related approach is to detect event onsets, which for many event types
(such as percussive sound events) can be characterized as sudden increases in
energy. This approach often yields an onset-only output (Fig. 8.1b). Detecting event
onsets is perhaps most well-developed in the field of music signal processing, in
which it is useful for rhythm analysis and automatic transcription, and in which
researchers have developed general onset detectors which are broadly applicable
across a wide range of sound types: drums, string instruments, wind instruments,
and so on [5]. Percussive onsets are generally the easiest to detect, due to their
localized and often broadband energy.

If the events of interest are highly stereotyped, with little variation in their time
and frequency characteristics (e.g., an alarm sound from an electronic device), then
template matching can be a simple and robust detection method. Typically this
operates by taking a time-frequency “patch” from a spectrogram as a template, and
then measuring the cross-correlation between the template and the spectrogram of
the signal to be analyzed. Strong peaks in the cross-correlation function are taken to
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correspond to event detections [41, pp. 357–358]. These are output as lists of onsets
(Fig. 8.1b) or in more detail as the bounding boxes of the time-frequency regions
that matched (Fig. 8.1f).

To develop more selective event detectors, a broad strand of research uses
automatic classification based on machine learning to make inferences about the
presence/absence of an event in each frame (discussed in Chaps. 2 and 5) [66]. This
paradigm also generalizes easily to scenarios with multiple event types of interest,
simply by using a multiclass classifier rather than a binary classifier, and even to
scenarios in which multiple event types can be active at once, by using a multilabel
classifier. An important issue in design of such systems is not only what classifier to
use, but also what feature representation to use for each audio frame. See Chap. 4 for
more on this issue. Having made decisions on a per-frame basis, there is typically a
need then to aggregate these into coherent event detections (see Sect. 8.3.4).

8.3.2.1 Detection Workflows

Most methods for monophonic event detection follow a process where the input
audio recording is pre-processed, followed by feature extraction, recognition, and
finally post-processing, as shown in Fig. 8.2. The output is typically a list of detected
events, each identified by its start time, end time, and event class; or alternatively by
a list of detected event classes for each time frame. Examples of pre-processing can
involve audio normalization or noise reduction. In the context of event detection,
feature extraction typically refers to computing a time-frequency representation of
the audio signal (see Chap. 4 for more information on features). Recognition, which
is typically done frame-by-frame, involves the use of a machine learning or signal
processing method for detecting the presence of sound events and assigning them
to a specific class (see Chap. 5 on common pattern classification methods). Finally,
post-processing involves grouping instances of a recognized event class over time,
in order to form a list of detected events identified with a start time, end time, and
sound event class (see Sect. 8.3.4 for more details on post-processing).

In the monophonic sound event detection literature, most classification
approaches are based on either probabilistic or neural network-based machine
learning methods, while some are based on signal processing techniques (e.g., using
hand-crafted features and rules or score functions). On feature-based methods,
Plinge et al. [54] propose a bag-of-features approach using mel and gammatone
frequency cepstral coefficients, with classification taking place using feature
histograms.

Input Audio

PostprocessingPreprocessing Features Recognition
Output

Fig. 8.2 Typical components of an event detection system
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Cotton and Ellis [19] use non-negative matrix factorization (NMF) and its
convolutive extension for monophonic SED; more information on NMF and spec-
trogram factorization approaches is given in Sect. 8.3.3. Given the temporal nature
of sound event detection, several approaches use probabilistic temporal models such
as hidden Markov models (HMMs), which are presented in detail in Sect. 8.3.2.2.
In addition, in submissions to the DCASE 2013 Office Live task on monophonic
event detection, common classifiers used include GMMs, support vector machines
(SVMs), and HMMs. Phan et al. [51] address the problem of non-overlapping sound
event detection using random regression forests. Finally, recent work in monophonic
sound event detection involves the use of deep neural network-based approaches.
These include frame-based deep neural networks [17, 23], recurrent neural networks
[50], and convolutional neural networks [73]. See Chap. 5 for more details on neural
network approaches for sound scene and event analysis.

8.3.2.2 Modeling Temporal Structure

In some cases it is possible to make clear decisions based only on a single audio
frame, e.g., the spectrum of a single 25 ms time window. However, in many cases
sound events have temporal continuity or temporal structure which means that
the immediate context before and after the current moment also supplies useful
information.

A principled way to make use of such structural knowledge is to apply a
probabilistic temporal model, which expresses in general terms how subsequent
audio frames relate to one another [3]. Although such models may be outperformed
by DNNs in large data scenarios with clear training objectives, they are useful in a
wide variety of situations to perform inference given some basic prior knowledge
about temporal structure.

The HMM has been widely used for this purpose. This is a model which assumes
a simple form of temporal dependence: each observation depends stochastically on
some unobservable “hidden state,” but only on the current value of that hidden state;
and the hidden state values depend only on the immediately previous hidden state(s)
(Fig. 8.3). See Chap. 5 for more details on the HMM model.

In the simplest monophonic case, the hidden state in the HMM is a binary
variable indicating whether an event is currently active. To accommodate the fact

Fig. 8.3 The temporal
structure expressed by a
(first-order) hidden Markov
model. Arrows represent
dependence relationships.
Filled circles represent
observed variables; empty
circles, unobserved variables
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that sound events may have different characteristics as they evolve (e.g., onset vs.
decay), the state space might be increased to include multiple active states for the
same event, such as onset-decay-offset, with a strict left-to-right transition between
these states [42]. Alternatively, or additionally, the state space might include a
different “active” state for each of a set of event types of interest. This allows a
single HMM to estimate for multiple event types, but please note that only one state
is active at each time point, and so this is not yet a way to perform polyphonic
detection.

The HMM is widely used in audio analysis, even though its temporal model is
actually quite an oversimplification of most situations: it assumes that the current
state, conditionally on the immediate history, is independent of all past history,
which means that long-term temporal structure can be missed. A notable implication
of the HMM is its effect on event durations. If the probability of exiting the present
state pexit is conditioned only on the state information, and not on knowledge of
how long we have been in the particular state, then it must be constant for all the
time we remain in the state. The prior probability of an event duration of 1 frame
is thus pexit, of 2 frames is pexit.1 � pexit/, of 3 frames pexit.1 � pexit/

2, and so
on. In other words it follows a geometric distribution. A geometric distribution (or,
in continuous time, an exponential distribution) is very unlike the distribution of
durations we expect for most sound events. For many sound events we could express
typical durations through an approximate minimum and maximum, for example,
or a unimodal distribution with a nonzero mode; to build this into the model we
would need something other than a geometric duration distribution. The practical
consequences of this mismatch may include a tendency towards short false-positive
“clutter” detections, or the inappropriate conjoining or splitting of events.

More control over durations can be achieved by augmenting the HMM with
explicit probability distributions over the dwell time in each state. This is referred
to as the explicit-duration HMM (EDHMM), a type of hidden semi-Markov model
(HSMM) [34, 71] (Fig. 8.4).1 In the EDHMM each step in the state sequence is
associated not with one observation but a variable number of observations; upon
entering state K, the number of observations to be sampled is drawn from some
distribution DK (Fig. 8.5). Figure 8.4 shows a simulation designed to illustrate
conditions in which an EDHMM provides a better fit than an HMM.

The EDHMM has not often been used in event detection/classification, perhaps
because of the additional implementation complexity. In some contexts there may
be little gain in performance relative to a standard HMM: if the data shows strong
evidence for events of specific durations, then an HMM may fit to this even if
its implicit prior disfavors those durations. However, there have recently been

1Some authors use the term HSMM to mean the same thing as EDHMM, while some use it to
refer to a broader class which includes the EDHMM but also allows for further temporal structure
within each state [71].
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Fig. 8.4 Simulation illustrating EDHMM vs HMM. We generated spectrogram-like observations
using a simple two-state model, in which the “off” state had durations drawn uniformly from
the range (20,25) and the “on” state had durations drawn uniformly from the range (2,4). At
each time step we sampled a observation from a Gaussian distribution whose mean depended
on the current state. (The spectrogram itself is not shown, because it is very noisy—the influence
of model choice is most apparent when the evidence from data is weak.) We then analyzed the
observations using an EDHMM with a Poisson-distributed duration model or using an HMM. The
upper panels show an excerpt from the timeline of on/off states, whether groundtruth (top panel)
or inferred. (Note that neither model can perfectly recover the uniform duration distributions we
used to generate the data.) Both models captured many events well, but the HMM inferred some
false-positive (“clutter”) and false-negative events. This is reflected in the mismatch in empirical
duration distributions of the recovered events (lower panels). Implementation details: This example
was generated using the pyhsmm Python module, fitting a nonparametric model by Gibbs sampling
[34]. We restricted the number of states to two, and for both HMM and EDHMM we ran Gibbs
sampling five separate times with 150 iterations each; we plot a sample drawn from the highest-
likelihood of the five runs

Fig. 8.5 The
explicit-duration HMM
(EDHMM), a kind of hidden
semi-Markov model
(HSMM) (after [34, Fig. 2]).
Compare this against Fig. 8.3
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methodological advances in efficient inference for EDHMMs and HSMMs [21, 34],
and their use could bring advantages in disambiguating situations given uncertain
evidence.

Temporal structure can be modeled in other ways than the HMM paradigm.
A notable example is the approach taken by Phan et al. [51], in which a regression-
forest method is used to predict from acoustic features, the time gap from each
individual 100ms frame to its nearest onset and offset. These per-frame predictions
are accumulated to create a kind of “heatmap” of where on the time axis we have the
strongest evidence for an onset or an offset. The heatmap can then be post-processed
to yield a list of events as onset-offset pairs.

One way to include temporal context is directly via the choice of features. For
example, instead of taking features from the current frame only, the features from a
few surrounding frames could be stacked together into a larger feature vector. In the
context of deep neural networks, this idea generalizes to the structure of a CNN (also
called ConvNet): each successive layer in a CNN calculates features from a local
region in the data. Recurrent neural networks (RNNs) offer an alternative approach
to modeling temporal context, enabling a system to make use of information
extracted arbitrarily far back in time. Common to these DNN methods (see also
Chap. 5) is their flexibility, but also their relative inscrutability: it is difficult to get
a clear picture of the key temporal structure that a trained network has learnt, or to
impose prior beliefs about that structure on a network a priori. For existing work on
SED using DNNs and extensions, see [17, 23, 50, 73].

Instead of stacking multiple frames together, one could encode the amount
of change in feature values from the previous frame to the current one. These
“delta” features estimate the instantaneous rate of change of the feature values;
likewise “delta-delta” features estimate their acceleration. Such features encode a
very similar type of local temporal information as do stacked frames. They have
long been used to add temporal change information into features such as MFCCs.

8.3.3 Polyphonic Sound Event Detection/Classification

So how can a system detect events while allowing for polyphony, i.e., allowing for
multiple events to be simultaneously active? This issue is particularly important
when analyzing dense sound scenes, or when the bias created by the monophonic
constraint may not be acceptable.

8.3.3.1 Multiple Monophonic Detectors

The simplest approach is to run multiple independent monophonic detectors in par-
allel, perhaps one for each event type. This has practical advantages: the independent
detectors can each be trained, calibrated, and modified without affecting the others,
and the set of detectors to deploy can even be determined at runtime (perhaps
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based on contextual information). A potential disadvantage is that, depending on
the detection method, the detectors lose the advantage of shared knowledge. For
example, detectors for two different but acoustically similar event types might tend
to both trigger when only one event is present, rather than interacting with each other
to trigger only the more likely. Cakir et al. [16] found that using a set of independent
detectors worked almost as well as a multilabel detector, and thus recommended the
approach on the basis of its flexibility: if the detectors are independent, then we can
select at runtime which detectors are relevant for the task at hand and use a subset.

Another clear route in to polyphonic analysis is to apply a source separation
algorithm, which takes an input signal and decomposes it as the sum of multiple
component audio streams. Each of the audio streams output from the source
separation process can then be subjected to event detection [30].

8.3.3.2 Joint Approaches

The above approaches are based on multiple monophonic detectors. Other recent
research instead attempts to perform polyphonic detection in a single integrated
system. In the following we will consider polyphonic versions of paradigms already
encountered—classifiers and HMMs—as well as matrix factorization methods and
deep learning approaches.

For systems based on per-frame classification, the modification is relatively
simple: one can use a multilabel classifier, which is a classifier in which any
number of the target classes rather than just one may be given a positive decision
[16, 17]. For multilabel classification one may need to pay special attention to the
choice of features used to represent the data: the best results may well be obtained
using a representation in which the energies due to the different simultaneously
active events do not interfere with each other, for example, if they lie on different
dimensions of the feature space. This is why polyphonic sound event detection
approaches use as input time-frequency representations with a high temporal and
frequency resolution (see, e.g., methods participating in the DCASE 2016 challenge,
Task 2 [70]). It is worth noting though that certain classifiers (e.g., neural networks)
allow multilabel classification easily, whereas others (e.g., decision trees, GMMs)
do not.

There are various ways that an HMM can be used to recover polyphonic sound
event sequences:

• Apply a monophonic HMM in a multi-pass scheme, merging the sequences
recovered from each pass [31].

• Use a single HMM in which the hidden states correspond to all event combi-
nations, i.e., for K classes there will be 2K hidden states. The number of states
can be reduced pragmatically, by only considering the state combinations that are
encountered in the training data. This is the approach used by Stowell et al. [65].

• Support multiple simultaneous streams using factorial HMMs [46, Ch. 17].
Factorial HMMs model multiple independent Markov chains under a single
observation. An example use of factorial HMMs in audio source separation was
proposed by Mysore et al. [48].
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A separate methodological strand has focused on matrix factorization techniques.
Such techniques treat a (non-negative) magnitude spectrogram or some other time-
frequency representation as a matrix to be decomposed as a product of two
lower-rank matrices. NMF decomposes the observed spectrogram/matrix X with
dimensions m � n as a product of two non-negative matrices: X � WH. Matrix W
has dimensions m � k and H is k � n [38]. When analyzing a spectrogram with m
frequency bins and n audio frames, the outcome of optimization is that W becomes a
matrix holding k spectral templates, and H a matrix holding k time-series activation
weights, specifying for each frame how the templates must be additively mixed to
produce the spectrogram approximation.

NMF can be used directly for the SED problem: if we imagine that each of the k
templates corresponds to a sound event type, then H directly tells us the strength of
presence of each event in each frame; this merely needs post-processing to recover
discrete events [43, 66]. An example NMF decomposition of a sound scene is shown
in Fig. 8.6; activations corresponding to the two sound event classes present in the
recording are clearly visible in Fig. 8.6c. An important question is how to encourage
the procedure to learn templates which correspond to individual event types. One
way to do this is to initialize or even hold the templates fixed, where templates
are learned in a training stage from isolated sounds [27]. Alternatively, if annotated
polyphonic event sequences are available for training, then NMF can be used in a
supervised fashion. In Mesaros et al. [44] this is achieved through coupled NMF:
learning NMF templates by analyzing a matrix in which the spectrogram and the
known activation matrix are stacked together.
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Fig. 8.6 NMF decomposition (with k D 2) of a sound scene consisting of three alarm sounds
followed by a door slam sound. (a) The input spectrogram X. (b) The spectral basis matrix W.
(c) The sound event activation matrix H



230 E. Benetos et al.

The basic NMF model imposes no temporal structure on the problem. Vari-
ous augmentations of NMF have been explored; the most significant is perhaps
convolutive NMF (cNMF), in which the templates are not single spectral slices,
but time-frequency patches. The signal is modeled as the additive combination
of the activations H convolved with their corresponding time-frequency patches.
Convolutive NMF was used in [19] for event detection in meeting room audio,

and found to give robust performance. An alternative to computationally expensive
cNMF for sound event detection was proposed by Gemmeke et al. [27], where time-
frequency patches are stacked as vectors and standard NMF is applied.

Recent methods for polyphonic SED that are based on deep learning methods
support polyphony as a multilabel classification problem, with the classifier applied
for each time frame of the signal under analysis. Deep architectures build a feature
hierarchy, where in each layer higher level features are extracted implicitly by the
composition of lower level features [17]. In the case of DNNs, they are composed
of an input layer, several hidden layers with nonlinear activation functions, and an
output layer. The input vector xt contains the features corresponding to time frame t.
The output vector hk (with dimensions M.k/) for the kth layer is calculated from the
weighted sum of the outputs for the previous layer hk�1 [17]: hk D f .Wkhk�1Cbk/,
where f .�/ is a nonlinear activation function, Wk is a weight matrix between the
.k� 1/th and kth layers with dimensions M.k�1/ �M.k/, and bk is the bias vector for
the kth layer, with dimensions M.k/. Algorithms such as stochastic gradient descent
are used for DNN learning.

Cakir et al. [17] used DNNs for polyphonic SED, where the network output is
a multilabel encoding of sound events present in a time frame. This approach was
extended in [50], where a multilabel bi-directional long- and short-term memory
(BLSTM) RNN was used for polyphonic SED in real life recordings. Finally, in
[73] CNNs were used for SED, using a de-noised spectrogram as input feature.

Regarding assumptions of polyphonic SED systems, Stowell and Clayton [63]
point out that many “polyphonic” event detectors, including many of those men-
tioned above, contain an implicit constraint on their polyphony. Although many
different event types may be active at once, often a system assumes that only one
event of each type can occur at once. This is clearly the constraint if applying one
monophonic detector for each event type, but it is also true of many multilabel
classifiers and of matrix factorization methods. The restriction can be problematic
in situations such as monitoring bird flocks in which many of the same call may
be heard at once; Stowell and Clayton [63] describe a method based on onset-
and offset-detection designed for this case. Note also that template-matching and
convolutive NMF avoid this issue in that they can detect separate but overlapping
events.
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8.3.4 Post-Processing

Many of the event detection methods we have encountered produce frame-by-frame
outputs of event presence/absence. For some applications this format may be useful
in itself, but more commonly the desired output is a transcript of coherent event
objects, specified as a list of items each having an onset time, an offset time, a label,
and perhaps additionally a confidence level in the event.

Since most frame-based event detection systems produce a non-binary represen-
tation of event presence over time (posteriograms or event activations such as in
Fig. 8.6c), a common post-processing approach is to perform simple thresholding
on the aforementioned representation. In [17, 23] the posteriogram outputs are
post-processed using a median filter prior to thresholding. Benetos et al. [7] apply
minimum duration pruning after thresholding, in order to remove sound events with
a small duration. In addition, Gemmeke et al. [27] used a moving average filter with
an event-dependent duration.

Another class of post-processing methods involve HMM-based post-processing.
For the case of monophonic event detection, [19, 27, 42] HMMs with Viterbi
decoding is typically applied, where each state corresponds to a sound event
class. The Viterbi decoding recovers a definite, discrete maximum-likelihood on/off
sequence from the probabilistic posterior. For polyphonic sound event detection,
Heittola et al. [31] use multiple restricted Viterbi passes, with the number of passes
depending on the expected polyphony of the acoustic material.

An alternative post-processing approach takes place in the study by Phan et al.
[51], where the confidence of onset and offset positions is computed using posterior
probabilities of onset and offset displacements, in the context of an event detection
system using random forests. Similar onset/offset presence posteriors are also
computed in the context of bird population monitoring [63].

Beyond the field of sound scene analysis, tracking multiple concurrent sound
events has been also addressed in the context of automatic music transcription.
While the vast majority of transcription approaches perform filtering followed by
thresholding and minimum duration pruning (e.g., [20]), an HMM-based approach
was also proposed by Poliner and Ellis [55] in which the output posteriogram is
binarized using class-independent 2-state on/off HMMs. While the 2-state HMMs
are not able to model class interactions, they do provide temporal smoothing in the
case of unconstrained polyphony.

8.3.5 Which Comes First: Classification or Detection?

So far we have encountered various methodologies which perform sound event
detection/classification. In a working system, should the detection step come first,
or the classification step, or can the steps be merged? The approaches taken differ
in their answer to this question.
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It may seem that detection must come before classification—after all, how can
something be classified if it has not been detected? Indeed, many approaches
follow this route, for example, by performing general-purpose onset detection,
segmentation, or energy thresholding, and then passing the selected audio region
to a classifier.

However, it is also common to use a system which makes fuzzy or frame-
wise classification decisions, and then to apply a method such as thresholding
or clustering to convert those intermediate decisions into detected events. This
has been standard in speaker diarization, in which individual frames would be
classified on a per-speaker basis, and speech regions would then be recovered
through agglomerative or divisive clustering [69]. More generally, a widespread
approach is to apply a Gaussian mixture model (GMM) or a DNN to each frame,
which yields likelihood (or pseudo-likelihood) values, one for each class having
been responsible for generating the frame; these values can be thresholded, or the
maximum likelihood class selected for each frame, to convert likelihoods into an
event transcript.

More recently though, the state of the art has featured single-pass methods, in
which there is not a clear separation between detection and classification. In speaker
diarization these are often HMM-based [1]. Since the advent of deep learning in
the 2000s, neural networks have been found to give strong performance for event
detection/classification, using architectures such as convolutional neural networks
[17, 60] (see also Chap. 5). These neural network approaches usually perform a
single integrated estimation step, although there may then be post-processing such
as binarization of the output.

8.4 Context and Acoustic Language Models

8.4.1 Context-Dependent Sound Event Detection

Almost all sound event detection approaches presented in Sect. 8.3 assume a specific
environment or context (e.g., an office environment). However, the environment of
a recording can change over time, for example, when recordings are made using
portable devices. So far this problem has received limited attention, although it is
clear that the types of sound events directly depend on the acoustic environment. By
creating an SED system with context awareness, different types of sound events can
be expected or supported according to the sound scene, leading to robust detection
systems. At the same time though, context recognition errors can propagate to SED
errors.

An approach for utilizing context information in order to improve sound event
recognition performance was proposed by Heittola et al. [31], where a context
recognition step is introduced prior to event detection. The context recognition
system was based on a GMM classifier using MFCCs as features, where each
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individual recording is labeled with a specific context. This allows for training
context-specific sound event detection systems (in this case, based on HMMs). More
recently, an approach for context-based sound event detection was presented in Lu
et al. [40], where a sound scene recognition and sound event recognition hierarchy
is introduced; sound scenes are recognized by a 2-layer HMM and a probabilistic
model is used to detect sound events given a context.

While the system of [31] is able to label each recording with a single semantic
label, there is also a possibility that the context would change within a recording.
A method that could be used for such cases is the switching state space model
(SSSM) [46], which is essentially a hybrid discrete/continuous dynamical system.
In an SSSM, assuming a sequence of observations yt, a state st (referred to as
the switching variable) is modeled as to take M discrete values. The observation
sequence is linked with the switching variable, as well as with M sequences of
latent variables z.m/t ;m 2 f1; : : : ;Mg, which can be either discrete or continuous.
Essentially, the value of the switch variable controls the appearance of the mth latent
chain. For the SED problem, st can represent the time-varying context label, which
can activate the sound event detection model z.m/t corresponding to the mth context.

Related is the hierarchical HMM [47] which could be used to model context at a
higher-lever component of its hidden state, and events at the lower-level component.
Challenges in these methods are often in the training, which usually require more
data and/or computation than standard HMMs.

8.4.2 Acoustic Language Models

So far, all models presented for sound scene recognition and sound event detection
only consist of an acoustic model, and only use local temporal constraints in order
to track sound events over time (e.g., frame-by-frame event transitions). This is in
contrast with automatic speech recognition systems, which typically consist of an
acoustic model and a language model [56]. In addition, music language models are
increasingly being used in conjunction with acoustic models as part of automatic
music transcription systems [14, 62]. In the context of sound scene analysis such an
acoustic language model can be used to track sequences of events over time, predict
the next occurrence and periodicity of an event, or distinguish between similar
events. For example, in the context of a street sound scene, a certain periodicity
of cars passing by can be observed; likewise in nature scenes a temporal regularity
in bird calls is also observed.

In the context of speech processing, language modeling can refer to a statistical
model [56], a grammar-based language model, or more recently to a connectionist
model [72]. Statistical language models typically assign a probability to a sequence
of words; a common approach for statistical language modeling is the use of n-gram
models. Grammar-based models are typically based on probabilistic context-free
grammars (PCFGs), which consist of production rules, each linked with a probabil-
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Fig. 8.7 Structure of a sound event detection system with language modeling and context
recognition

ity. Neural network language models represent words as non-linear combinations of
weights in a network, typically using a recurrent architecture [9].

However, unlike speech recognition, sound scenes can contain an unconstrained
number of concurrent sound events, thus making common tools such as n-grams
not directly applicable to the field of sound scene analysis. Recent developments,
however, in music information retrieval have shown that it is possible to construct
a recurrent neural network-based music language model without any constraint on
the polyphony level [14], which can be combined with an acoustic model in order
to create an automatic music transcription system [61]. A hierarchical approach
for creating a music language model was proposed in Raczynski et al. [57], using
dynamic Bayesian networks for tracking music at different levels of abstraction. To
that end, a polyphonic sound event detection system can be created by integrating
an acoustic model, a language model, as well as context recognition, as per Fig. 8.7.

Apart from tracking multiple concurrent sound events, acoustic language models
can also be used to model the relationships between events. In Mesaros et al.
[43], probabilistic latent semantic analysis was used to model the co-occurrence of
annotated events in audio. Benetos et al. [8] propose a method for tracking multiple
overlapping sound events using linear dynamical systems which explicitly models
the co-occurrence of sound event classes. An approach for multi-object tracking
applied to birdsong data was proposed by Stowell and Plumbley [64], where each
event stream is modeled by a Markov renewal process. Contrary to HMMs which
operate on regularly sampled time instants, a Markov renewal process (MRP)
considers tuples of hxn; �ni, where �n is the nth jump duration and xn its associated
latent state. Thus, a sequence of observations is defined as a collection of points
in the time-state space instead of continuous activations (Fig. 8.8). The model thus
relates very closely to a high-level model of a sound scene as an irregular sequence
of event onsets (Fig. 8.1), instead of dividing each event into multiple slices at a
fixed granularity. It thus offers the possibility of directly applying constraints that
reflect our prior beliefs about temporal structure in the sound scene. Related to
MRPs, a semi-Markov process can be defined, where a state is defined for every
time instant (not just at the jump times)—in that case the end result is rather like the
EDHMM discussed earlier. Note though the distinction in the observation model:
under the MRP, no observations occur between events. This means that the inference
procedure from data is different [64].
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Fig. 8.8 Illustration of a Markov renewal process (MRP). This figure actually depicts any
“marked” point process where each observation is characterized by its position Tn and its value
xn 2 S. This can be used as a model for the sequence of event onsets in a sound scene, where
xn indicates each event’s characteristics (such as its class or physical position). To make this a
Markov renewal process we add the Markovian assumption that both the state xn and the jump
duration �n D Tn � Tn�1 are conditionally independent of all history except for xn�1. Compare
against the HMM (Fig. 8.3) in which the time step is not stochastic but constant

8.5 Event Detection for Scene Analysis

We saw in Sect. 8.2.1 methods for sound scene recognition that directly model the
input audio signal as a whole, using either hand-crafted features or automatically
learned representations. One alternate approach to scene classification and recog-
nition is to use information from sound event recognizers to determine the likely
sound scene, based on the component events taking place in that scene.

Cai et al. [15] took this type of approach to recognize audio scenes from movies
and TV shows, although using the types of audio effects that would be present in
scenes rather than specific sound events. By detecting ten different key audio effects
such as laughter, explosion, or cheer, they inferred the auditory context using a
grammar network reflecting the sequences of key events together with background
sounds. They compared heuristic inference, SVM-based inference, and inference
based on Bayesian networks, with the Bayesian approach yielding the best results.

Heittola et al. [29] took a histogram-of-events approach to recognize real-world
audio scenes such as beach, bus, or restaurant. HMMs were used to recognize 61
types of sound event, with the frequency of each event type counted to form an event
occurrence histogram. Histograms were then compared using cosine difference.
The authors also investigated variations including k-nearest neighbors (k-NN)
classification, as well as term frequency–inverse document frequency (TF-IDF)
weighting, inspired by document classification using bag-of-words models. Their
best results combined their event-based recognizer with a global baseline model
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using a GMM classifier of MFCC features, suggesting that the two approaches
(global and event-based) bring complementary information to the scene analysis
task.

Kim et al. [35] and Imoto et al. [33] introduced the idea of acoustic topic models
to model collections of sound events (or audio words) that form part of a scene.
Rather than modeling the entire scene as a collection of events, the events are now
grouped together in topics, which in turn form the audio scene. For example, in their
hierarchical latent acoustic topic and event allocation (LATEA) model, Imoto et al.
[33] build a generative model of acoustic feature sequences, where the sequence
of acoustic features are generated by sequences of sound events, and the sound
events are in turn generated by acoustic topics. Thus a single audio scene of cooking
may be modeled by a sequence of acoustic topics that occur during preparation of
ingredients, others that occur during frying of food, and others while the food is
being placed onto plates. Each of the acoustic topics can be modeled by lower-level
events. This type of model can also handle situations where lower-level events are
missing, using HMMs to infer their presence from surrounding events [32].

In the examples we have considered so far in this section, we think of the audio
scenes as having a single label that gives its scene or context, such as “cooking”
or “restaurant.” However, this is not always the case. Instead, the scene may be
labeled (or tagged) with a collection of labels which correspond to the events within
the scene, but without any indication of the time or duration of those individual
events. Instead of a single label (e.g., “Changing a vehicle tire”), our audio scene
may therefore be labeled with a set of labels such as {Engine Noise, Hammering,
Scraping, Clanking}. These so-called weak labels provide information about what
is present (or absent) in the recording, but they do not provide any more specific
information such as how many events occur, when they occur, or the duration of the
events [36].

Kumar and Raj [36] tackle this problem using multiple instance learning [22].
Suppose that our audio recording is composed of a sequence of short segments
or frames. In a standard classifier, each segment would be labeled with positive
labels for the event (or events) taking place in that segment (e.g., “This segment
contains Hammering”), and, perhaps implicitly, negative labels for events which are
not taking place during that segment. Instead, in multiple instance learning, we only
have labels for the entire recording. All segments receive all positive and negative
labels for that recording. So if a segment has the positive label “Hammering,” we
know that this segment might contain Hammering, but we do not know for sure
whether it really does. On the other hand, if a recording has a negative label for
“Cheering,” meaning “This recording does not contain Cheering,” then we know
that none of the component segments in that recording can contain Cheering. Hence
negative labels are much stronger than positive labels.

Using this approach, Kumar and Raj [36] were able to infer events present in
each segment, therefore performing event detection using only scene-level tags.
Since tagging which events are present within a recording takes much less manual
labor than labelling which events occur together with the time and duration of each
individual event, methods like this for dealing with weak labels are likely to be
important for audio scene and event recognition to deal with large scale datasets.



8 Approaches to Complex Sound Scene Analysis 237

8.6 Conclusions and Future Directions

In this chapter, we have introduced the state-of-the-art approaches to modeling and
analyzing complex sound scenes in multisource environments.

Firstly, we described sound scene recognition or audio context recognition,
where the aim is to find a single label to describe the whole scene. We discussed
methods that use collections of features to estimate the scene label as well as feature
learning methods.

Drilling down to the constituent parts of a sound scene, we then described
methods to recognize events in a sound scene. We began with the simpler case of
monophonic event detection. For these, onset detection may be used to identify the
start of events; in some cases temporal structure may be modeled, for example, using
an HMM. This can be useful if the acoustic context before an event can help identify
which events are more likely than others, or if the “event” itself changes over time,
such as an event with a percussive onset followed by a decaying resonance.

In more complex scenes, multiple overlapping events may be present, so a single
1-of-N classification of event in each frame or segment is no longer appropriate. To
handle this, several options can be used, including multiple monophonic detectors,
a single classifier with multiple yes/no outputs, a classifier trained to recognize
all 2N combinations of classes, or a multilabel classifier. We also saw that a
popular approach for overlapping event recognition is based on matrix factorization
techniques, which decompose a time-frequency representation of the sound scene
into a time-weighted sum of underlying frequency-weighted components.

We saw that events in a sound scene do not simply happen in isolation: context-
dependent event detection uses the identity of the sound scene to determine which
individual events are more or less likely, and hence improve event detection
performance. Inspired by grammar models in speech recognition, we saw that
we could also use “acoustic language models” for more general sound scenes, to
represent the temporal relations between events in a sound scene.

Finally we saw how these approaches can be brought together to recognize the
whole sound scene from its constituent events, either by directly recognizing the
sound events as part of a scene or by introducing the idea that a sound scene is a
collection of acoustic topics. We also saw that the scene itself may be tagged not
with a single label, but instead with a collection of weak labels corresponding to the
sound events present in the scene.

There are many avenues of future work in this field. We have encountered
various methods for modeling the rich and polyphonic structure in sound scenes,
from HMM-related methods (EDHMM, HHMM) and switching SSMs through to
modern neural networks. Many of these methods are as yet little explored, and recent
innovations in modeling and inference offer strong potential. At the time of writing,
neural network methods such as RNNs are beginning to show strong performance
on audio scene analysis tasks; further developments will show which architectures
are best suited to this domain and can incorporate the types of prior information that
are typically available.
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Adaptation is an important topic deserving further attention. We have discussed
the context-relativity of events; related is the fact that a trained system may be
deployed in conditions which do not match those for which it was trained. The
mismatch may be dramatic, or it may be a gradual “concept drift” [11]. How can a
system accommodate this? Such adaptation may be automatic and continuous [11]
or it could involve a small amount of bootstrap data for re-training.

Tracking “actors” in a scene through the sequence of events they emit [64] is a
topic that has received little attention in the audio literature, although in the speech
community it relates to speaker diarization.

One final topic to mention, relevant for practical deployment, is computation-
efficient processing [62]. In most practical uses of technology, the amount of
computation for a particular outcome cannot be unbounded; see Chap. 12 for more
information.

The field of sound scene analysis is developing its own momentum in the specific
tasks concerned and its applications. The field has connections to other existing
research communities: speaker diarization, voice activity detection, robot audition,
bioacoustics, music information retrieval. All these communities address problems
related to the analysis of complex audio; bridging these communities brings benefit
from their respective insights.
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Chapter 9
Multiview Approaches to Event Detection and
Scene Analysis
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Abstract This chapter addresses sound scene and event classification in multiview
settings, that is, settings where the observations are obtained from multiple sensors,
each sensor contributing a particular view of the data (e.g., audio microphones, video
cameras, etc.). We briefly introduce some of the techniques that can be exploited to
effectively combine the data conveyed by the different views under analysis for a
better interpretation. We first provide a high-level presentation of generic methods
that are particularly relevant in the context of multiview and multimodal sound
scene analysis. Then, we more specifically present a selection of techniques used
for audiovisual event detection and microphone array-based scene analysis.
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9.1 Introduction

We now extend the study of sound scene and event classification to settings where
the observations are obtained from multiple sensors, which we refer to as multiview
data, each sensor contributing a particular view of the data. Instances of this include
both multichannel audio data, as acquired by microphone arrays, or more generally,
multimodal data, i.e., heterogeneous data that involves two or more modalities such
as the audio or visual modalities in video recordings.

Be it for applications in machine perception—at the heart of robots’ and virtual
agents’ intelligence systems—or video description—as part of video surveillance
or multimedia indexing systems—multiview approaches can lead to a significant
boost in performance in challenging real-world situations. Indeed, multiplying the
sources of information, through different views, should result in a more robust
overall “picture” of the scene being analyzed, where sensors, and consequently
views, which are not reliable, e.g., noisy, at a particular time instant, are hopefully
backed-up by others. This is, for instance, the case in video recordings where sound-
emitting target events are not visible onscreen because of poor lighting conditions
or occlusions.

Such an endeavor is actually as promising as challenging, primarily because
of the significant increase in the volume of the data to be analyzed, but also
owing to the potential heterogeneity of the different streams of information (e.g.,
audio and visual streams), which additionally may not be perfectly synchronized.
Another difficulty is that it is usually not possible to determine which streams
are not reliable at every time instant. To see this, consider the scenario of scene
analysis using a robot’s sensors. The data views available may then be composed
of the multiple audio streams acquired by the robot’s microphone array, as well as
RGB and depth-image streams captured by its cameras, possibly along with other
signals recorded by inertial measurement units. As the cameras are pointed at an
interactant, events of interest may appear only partially in their field of view, and
be present in the audio recording only at a very low signal-to-noise ratio. This may
be due to background noise (including the robot’s internal noise, the so-called ego-
noise, typically produced by its cooling fans or its actuators) and the voice of the
interactant, or the robot itself, in the foreground.

In this chapter, we briefly introduce some of the techniques that can be exploited
to effectively combine the data conveyed by the different views under analysis for
a better interpretation. Numerous good surveys have been written on the general
topic of multimodal data fusion, notably the paper by Atrey et al. [10] which is
quite comprehensive. Therefore, we first provide a high-level presentation of generic
methods that are particularly relevant in the context of multiview and multimodal
sound scene analysis (Sect. 9.3). It is worth noting that some of the techniques
presented have not necessarily yet been considered in the context of scene and event
recognition as envisaged in this book. We still briefly cover them in this chapter
as it is believed they hold a good potential for such applications. We then more
specifically present a selection of techniques used for audiovisual event detection
and microphone array-based scene analysis (in Sects. 9.4 and 9.5, respectively).
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9.2 Background and Overview

9.2.1 Multiview Architectures

Figure 9.1 depicts an overview of the main fusion strategies that are exploited
when analyzing multiview data, namely (1) fusion at the representation or feature
level (upper row of the figure), and (2) fusion at the decision-level, usually
implying integration of partial classifier-outputs. Each of these methods will be
discussed further in Sect. 9.3. In particular, we will focus on a special case of
representation/feature-level fusion that is here referred to as joint subspace learning
where the aim is to learn or non-trivially transform the representations based on
inter-relationships across the views.

As previously mentioned, views can be either of the same nature, in which case
they are referred to as channels (typically audio channels) each corresponding to
a particular microphone, or of different nature as in multimodal scenarios where,
for example, some of the views could correspond to different audio channels while
others to video images recorded by different cameras.

9.2.2 Visual Features

Since videos are central to the content of this chapter, a short note on commonly
employed visual features is in order. Features extracted from visual streams can

Ra
w

 m
ul

tiv
ie

w
 d

at
a

View 1

Feature/Representation 
Fusion

Output/Decision

Decision 
Fusion

Output 1
Model 1

Model 2

Model M

View 2

View M

Feature/Representation 
Extraction 

Output/Decision

Model

Decision 
Fusion

Feature/Representation 
Extraction 

Feature/Representation 
Extraction 

Ra
w

 m
ul

tiv
ie

w
 d

at
a

View 1

View 2

View M

Feature/Representation 
Extraction

Feature/Representation 
Extraction 

Feature/Representation 
Extraction 

Output 2

Output M

Fig. 9.1 Overview of multiview data analysis approaches
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be broadly classified into two categories: appearance-based and motion-based fea-
tures. For the former, several local and global descriptors representing appearance
attributes namely, color, texture, and shape are extracted. While some works utilize
the raw pixel data or color histograms, others rely on standard features such as
scale-invariant feature transform (SIFT) [96] and histograms of oriented gradients
(HOG) [40]. Lately, features extracted from convolutional neural networks have
dominated [88].

Motion-based features are typically computed using optical flow or tracking
data. It is possible to represent temporal changes of segmented regions, objects,
and shapes by calculating velocity and acceleration, i.e., optical flow and its
derivative. Other popular features include histograms of optical flow (HOF) [154]
and motion boundary histograms (MBH) [154]. As MBH is computed from optical
flow derivatives, it is not affected by constant motion. This makes it robust to
camera motion. The reader is referred to [79, 101] for an extensive review of visual
representations used for multimodal analysis.

In multiview settings temporal synchronization across views is quite challenging.
Notably, in the audiovisual case, since the video frame rate, typically around 25–30
frames per second is significantly different from the audio one, features from both
modalities must be appropriately sampled for temporal correspondence. Moreover,
the natural asynchrony that exists between the two modalities must also be taken
into account. This means that cues for an audiovisual event might not appear
simultaneously in both modalities.

9.3 General Techniques for Multiview Data Analysis

Generally, the techniques discussed here (in the following two subsections) operate
at either the representation-level or the decision-level as further described in the next
sections.

9.3.1 Representation and Feature Integration/Fusion

Representation or feature integration/fusion is the process of combining different
types of features or low-level data representations from different views into a
common representation (usually to be exploited by a prediction system).

In practice, this can be primarily achieved by concatenating the feature vectors
om;t, extracted from views m, 1 
 m 
 M, at the same time positions t, to build

integrated feature vectors Not D
�
oT
1;t; : : : ; o

T
M;t

�T
; provided that the data analysis-rate

and cross-view synchronization issues have been previously addressed.
However, the dimensionality of the resulting representation is often too high,

which has led researchers to resort to dimensionality reduction methods. A common
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approach is then to use feature transform techniques, possibly principal component
analysis (PCA) [31], independent component analysis (ICA) [139], or linear dis-
criminant analysis (LDA) [31] (see Chap. 4, Sect. 4.5.1). An interesting alternative
is feature selection (see Chap. 4, Sect. 4.5.2). In fact, when applied to the feature
vectors Not, the selection will hopefully retain a subset of the most “relevant” features
across the various views (with respect to a selection criterion).

Nevertheless, in multimodal settings, the previous methods often turn out to be
limited owing to the different physical nature of the features to be combined. In
particular, the features do not necessarily live in the same metric spaces, and are not
necessarily extracted from the same temporal segments. Consequently, there has
been a number of works attempting to address these limitations.

An interesting approach, within the framework of multiple kernel learning,
consists in considering separate kernels for different features, to build optimal
convex combinations of these in order to use them for classification, as done, for
example, in [30, 157].

Another approach that is worthy of note is the construction of joint multimodal
representations, as done in video analysis applications, where various types of
audiovisual representations have been envisaged. Examples include the creation of
audiovisual atoms [78] or audiovisual grouplets [76], both exploiting audiovisual
correlations. A joint audiovisual representation may in particular be built using one
of the joint subspace learning methods described in the following.

9.3.1.1 Feature-Space Transformation

A number of techniques have been suggested to map the observed feature vectors
from two modalities to a low dimensional space where a measure of “dependency”
between them can be computed. Let us assume the N observed feature vectors from
two modalities, o1;t 2 R

J1 and o2;t 2 R
J2 (t D 1; : : : ;N), are assembled column-wise

in matrices O1 2 R
J1�N and O2 2 R

J2�N , respectively.1 The methods we describe
here aim to find two mappings f1 and f2 (that reduce the dimensions of feature
vectors in each modality), such that a dependency measure S12.f1.O1/; f2.O2// is
maximized. Various approaches can be described using this same formalism. The
advantages of doing so are twofold: (1) it appropriately modifies the feature spaces
to uncover relationships between views specified by the measure of dependency, and
(2) by projecting data into the same space, dimensionality difference between views
is eliminated and direct comparison across views is made possible. Fisher et al. [51]
choose the mutual information [35] as a dependency measure and seek single-layer
perceptrons f1 and f2 projecting the audiovisual feature vectors to a 2-dimensional
space. Other more popular approaches (for which closed-form solutions can be
found) use linear mappings to project the feature streams:

1The underlying assumption is that the (synchronized) features from both modalities are extracted
at the same rate. In the case of audio and visual modalities this is often obtained by down-
sampling the audio features or upsampling the video features, or by using temporal integration
techniques [80].
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• Canonical correlation analysis (CCA), first introduced by Hotelling [67], aims at
finding pairs of unit-norm vectors t1 and t2 such that

.t1; t2/ D arg max
.t1;t2/2RJ1�RJ2

corr
�
tT
1O1; tT

2O2

�
(9.1)

CCA can be considered equivalent to mutual information maximization for the
particular case where the underlying distributions are elliptically symmetric [83].
Several variants have been proposed to incorporate sparsity and non-negativity
into the optimization problem to resolve issues with interpretability and ill-
posedness, respectively [84, 138]. In the context of multimodal neuronal data
analysis, temporal kernel CCA [15] has been proposed to take into account the
temporal dynamics.

• An alternative to the previous methods (expected to be more robust than CCA) is
co-inertia analysis (CoIA). It consists in maximizing the covariance between the
projected audio and visual features:

.t1; t2/ D arg max
.t1;t2/2RJ1�RJ2

cov
�
tT
1O1; tT

2O2

�
(9.2)

A possible reason for CoIA’s stability is that it is a trade-off between CCA and
PCA, thus it benefits from advantages of both [21].

• Yet another configuration known as cross-modal factor analysis (CFA), and found
to be more robust than CCA in [92], seeks two matrices T1 and T2, such that

.T1;T2/ D arg max
.T1;T2/

�
1 � kT1O1 � T2O2k

2
F

�
D arg min

.T1;T2/
kT1O1 � T2O2k

2
F

(9.3)
with T1TT

1 D I and T2TT
2 D I. kVkF denotes the Frobenius norm of matrix V.

Note that all the previous techniques can be kernelized to study nonlinear
coupling between the modalities considered (see, for instance, [64, 90]).

The interested reader is referred to [64, 67, 92] for further details on these
techniques, and to [58] for a comparative study.

9.3.1.2 Multimodal Dictionary Learning

While previous approaches relied on modeling the association between the features
across modalities, this class of techniques targets the extraction of meaningful
multimodal structures to jointly represent all the modalities. This is useful because
feature transformation techniques like CCA impose simplifying assumptions such
as linearity and are adversely affected by lack of data. To this end, Monaci et al.
[106] propose to learn multimodal dictionaries wherein the dictionary elements
are learned using an algorithm that enforces synchrony between modalities and
decorrelation between the learned dictionary elements. The learned templates can
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then be used for performing various tasks. Monaci et al. improve upon this
foundational work by proposing a bimodal matching pursuit algorithm which
integrates dictionary learning and coding [107]. The sparse shift-invariant generative
model used for the audiovisual case can be given by defining multimodal dictionary
elements f�dg

D
dD1 D

�
�a

d.t/; �
v
d .x; y; t/

�
consisting of audio, �a

d , and visual, �vd , parts
and a spatio-temporal shift operator T.pqr/�d D

�
�a

d.t � r/; �vd .x � p; y � q; t � r/
�

such that the multimodal signal s is approximated by the following equation:

s �
DX

dD1

ndX

iD1

cdi T.pqr/di�d (9.4)

where nd is the number of instances of �d and cdi specifies the weights for AV
components of �d at the ith instance. Several limitations of this approach have been
improved upon by proposing a new objective function and algorithm to balance the
two modalities, reduce computational complexity, and improve robustness [94].

9.3.1.3 Co-Factorization Techniques

Matrix factorization techniques can be profitably used to extract meaningful repre-
sentations for the data being analyzed.

When dealing with multichannel data—i.e., with data views of the same nature
(e.g., multichannel audio or images)—observations from multiple channels may be
profitably assembled in multi-way arrays, i.e., tensors, before being modeled by
tensor factorization methods. As for multichannel audio data, a popular approach
consists in collecting the spectrograms of signals from different channels (originat-
ing from different microphones) in a 3-way tensor, as illustrated in Fig. 9.2, before
processing it with the so-called PARAFAC (PARAllel FACtor analysis) decompo-
sition method, possibly with non-negativity constraints. This can be interpreted as
an attempt to explain audio spectra observations vtm as being linear combinations
of elementary spectra wk, temporally weighted by activation coefficients okt up to
spatial modulation coefficients qmk.

Such decompositions were found particularly useful in multichannel audio
source separation [52, 118]. For more information about tensor factorization
methods, we refer the reader to [33, 87, 159].

In contrast to the previous setting, data from different modalities usually live in
feature spaces of completely different topology and dimensionality (think of audio
as opposed to video), preventing the possibility of “naturally” representing them
by the same tensor. In this case, one may resort to the so-called co-factorization
techniques, that is techniques performing two (or more) factorizations in parallel,
which are linked in a particular way. Because of the different nature of the
modalities, this link has usually to be characterized through temporal dependencies
between the temporal activations in cross-modal correspondence, and unlikely
through dependencies between dictionary elements of different modalities.
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Fig. 9.2 PARAFAC decomposition of multichannel audio spectra

Assuming that appropriate nonnegative features have been extracted at the same
rate from the two modalities being analyzed2—say the audio and images of a
video—so that two observation matrices V1 2 R

J1�N
C and V2 2 R

J2�N
C are available,

for the audio and visual data. One may seek a model .W1;W2;O/ such that:

8
ˆ̂<

ˆ̂:

V1 �W1O

V2 �W2O

W1 � 0; W2 � 0; O � 0 I

(9.5)

in such a way that the temporal activations be the same for both modalities. This is
referred to as hard co-factorization, an approach that has been followed in a number
of works (see, e.g., [53, 160, 161]). Clearly, this approach is limited in that it does
not account for possible local discrepancies across the modalities. This happens, for
example, when there is a mismatch between the audio and the images information,
say because of a visual occlusion in video analysis scenarios. This motivates the
soft co-factorization model of Seichepine et al. [134], which merely encourages
the temporal activations corresponding to each modality to be close, as opposed to
equal, according to:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

V1 �W1O1

V2 �W2O2

O1 � O2

W1 � 0; W2 � 0; O1 � 0; O2 � 0:

(9.6)

2To simplify, we consider the case of two modalities, but clearly the methods described here can
be straightforwardly generalized to more than two data views by considering the relevant pairwise
associations.
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The model (9.6) is estimated by solving the following optimization problem:
8
<

:
min

�
Cc.�/ I �

�
D .W1;O1;W2;O2/

W1 � 0; W2 � 0; O1 � 0; O2 � 0 I
(9.7)

Cc.�/
�
DD1.V1 jW1O1/C �D2.V2 jW2O2/C ıP .O1;O2/ I (9.8)

where:

• D1.: j :/ and D2.: j :/ are the measures of fit, respectively, relating to the first and
second modalities; note that they may be chosen to be different divergences, each
well suited to the corresponding feature space;

• P .:; :/ is a penalty on the difference between (properly rescaled) activation
values occurring at the same instant; they can be either the `1 or `2-norm of
the difference between the rescaled activations;

• � and ı are regularization parameters controlling, respectively, the relative
importance of each modality and the coupling penalty.

The interested reader is referred to [134] for more details on the algorithms.3

The soft co-factorization scheme has proven effective for multichannel [134] and
multimodal audio source separation [120], as well as multimodal speaker diarization
[133]. It is believed to be promising for audiovisual event detection tasks.

9.3.1.4 Neural Networks and Deep Learning

Lately, rapid progress in the application of deep learning methods to representation
learning has motivated researchers to use them for fusing multiview data [3, 112,
140]. The primary advantage of neural networks is their ability to model very
complex nonlinear correlations that exist between multiple views. Early insights
into their use for multiview data were provided by Yuhas et al. [163] who trained
a network to predict audio using visual input. Subsequently, Cutler et al. [39]
proposed to learn audiovisual correlations for the task of speaker detection using
a time-delayed neural network (TDNN). Recently, various multimodal autoencoder
architectures for learning shared representations have been proposed, even for the
case where only a single view is present at training and testing time [112]. Another
interesting work extends CCA to learning two deep encodings, one for each view,
such that their correlation is maximized [3]. Regularized deep neural networks [158]
have also been proposed to construct shared representations taking into account the
feature inter-relationships. Each of these methods has been developed independently
in different settings. Their application to event analysis and detection still remains
to be explored. This is a rapidly growing area of research; we refer the interested
reader to [56, 68] for recently proposed multimodal fusion architectures.

3Matlab implementations are available online at http://plato.telecom-paristech.fr/publi/26108/.

http://plato.telecom-paristech.fr/publi/26108/
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9.3.2 Decision-Level Integration/Fusion

Decision-level fusion, also known as late integration refers to the idea of combining
intermediate decisions, i.e., partial classifier-outputs, in order to achieve a more
accurate multimodal characterization of a content, an idea which has been explored
extensively, under various configurations. This can be seen as a particular case of
ensemble learning [125] where the base classifiers (to be combined) operate on
different views of the data.

Numerous works rely on majority voting procedures whereby final global
decisions are made based on a weighted sum of individual voters, each typically
corresponding to a decision taken on a particular view. The weights are often chosen
using either heuristics or trial-and-error procedures (see, for example, [93]). This
idea can be better formalized using a Bayesian framework that allows for taking
into account the uncertainty about each classifier decisions [71, 103].

9.3.2.1 Probabilistic Combination Rules

When using classifiers providing local probabilistic outputs p.Gc j om;t/ for the t-th
observation of the m-th view, om;t, a simplistic decision strategy assumes feature-
vector observations from different views to be independent, and the decision rule
consequently takes the form:

OG D arg max
c

logŒp.Gc j o0;t; : : : ; oM�1;t/� D arg max
c

M�1X

mD0

log p.Gc j om;t/ :

(9.9)

It is worth mentioning that alternative simple combination rules have also been
employed that are discussed in Kittler et al. [86].

The previous approach does not allow for incorporating prior knowledge about
the dependency structure in the data, in particular the cross-modal and temporal
dependencies. To this end, sophisticated dynamic classifiers have been utilized,
ranging from variants of (multistream) hidden Markov Models (HMM) [7, 60, 85,
111], through more general dynamic Bayesian networks [32, 59, 109], to even more
general graphical models such as conditional random fields (CRF) [20].

9.3.2.2 Neural Networks

Neural networks can also be used for late integration. Some works have utilized
them to adaptively learn the weights for fusing multiple classifiers or system outputs
[74, 113]. This is typically carried out by training the network to minimize the error
between estimated and oracle weights [74]. Besides, in order to take into account
the temporal and multiview dependencies, a frequently used strategy is to perform
end-to-end training with “fusion” integrated as a layer (usually close to the output
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layer) into the architecture [49, 82]. Such methods cannot be termed as late fusion
in the conventional sense as feature learning and decision fusion stages are not
independent.

9.3.2.3 Other Methods

Another widespread strategy consists in using the monomodal classifier-outputs as
features, on the basis of which a new classifier, that is expected to optimally perform
the desired multimodal fusion, is learned [13, 156]. Also, solutions to deal with the
potential imprecision of some views have been proposed using the Dempster–Shafer
theory [54].

Finally, it is important to note that the techniques described in this section are
not mutually exclusive: in practice one may jointly consider different integration
strategies for different features and views (possibly being driven by some expert
knowledge), and different analysis time-horizons. This raises the difficult issue
of effectively and efficiently exploiting, at the final prediction stage, hetero-
geneous representations: low-level instantaneous features, possibly over varying
time-scales, intermediate prediction results—sometimes seen as outputs of event or
concept detectors—bags-of-words or bags-of-systems extracted over longer texture-
windows, etc.

9.4 Audiovisual Event Detection

9.4.1 Motivation

The target of audiovisual event detection (AVED) is to detect specific events that
occur in an audiovisual recording or real-time stream, and to identify the class
of those events. Though the task is more widely addressed through the analysis
of the video images, information conveyed by the sound track may become key
for a proper detection. Indeed, the visual information may not be sufficient since
occlusions may occur and events may be localized in space, hence not visible in the
images, given that the camera field of view is necessarily restricted. Also the images
may not be usable because of poor lighting conditions, or fast camera motion. AVED
then enables a more reliable detection of these events, by combining audio and
visual cues.

9.4.1.1 Examples in Video Content Analysis and Indexing

Researchers continue to explore various techniques for improving video content
analysis and indexing for better navigation and user experience. In this context,
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AV event analysis at various levels of granularity provides useful insights into the
composition of such data in terms of objects, activities, and scenes. This not only
improves retrieval but also provides a representation closer to our understanding of
the physical world. For example, a user could search a database for activity videos
such as “dribbling a basketball” or “playing a violin.” Evidently, these are two very
distinct tasks where the differences can be readily detected based on auditory and
motion information. Moreover, joint analysis could reveal the presence of various
objects (e.g., violin, basketball) and also the surroundings (e.g., concert hall, court).

Such an analysis makes object detection and segmentation [72], concept classifi-
cation [75, 76, 78], scene segmentation and change detection[149], activity analysis,
and various other related tasks possible. Several systems submitted to TRECVID4

video content analysis tasks of multimedia event detection, story segmentation, and
search rely on AV analysis [2, 77, 156].

9.4.1.2 Examples in AV Surveillance and Robot Perception

Video has recently become an increasingly important resource for forensics and
surveillance [104, 124]. Video captured by CCTV systems or video recorded from
mobile devices (and possibly shared on multimedia platforms) can provide essential
clues in solving criminal cases. For example, when considering an investigation
about a missing person, video documents can help to localize the missing person
or a suspect, providing crucial information about their whereabouts. The analysis
of videos linked with a missing person or her/his social network can also help to
understand the conditions of the disappearance (was it a kidnapping, a runaway,
etc.) and largely influence the investigation.

An investigator looking for a video in a large dataset may want to retrieve
information based on the type of scene where the video was recorded or also, at
a finer granularity level, based on specific events that occurred during the recording.
In addition, the detection of specific events can help to confirm (or deny) the fact that
a video was recorded in a particular scene. Some events are indeed representative of
particular scenes. For example, train noise in all probability indicates the scene takes
place in a train station. Plates and cutlery noises indicate the scene is probably taking
place in a restaurant [22]. On the other hand, some events are unlikely to happen in
particular scenes. AVED can then help tracking anomalies to detect abnormal events
(gunshots, crowd panic, etc.) [97] or to identify a recording scene where information
has voluntary been concealed. This is the case, for example, when a kidnapper sends
a ransom video recorded from inside a building but a church bell or a train passing
nearby can be heard during the video. This type of information that is not present
visually can help to localize the place where the video was recorded [136].

4TREC Video Retrieval Evaluation: http://www-nlpir.nist.gov/projects/trecvid/.

http://www-nlpir.nist.gov/projects/trecvid/
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9.4.2 AV Event Detection Approaches

9.4.2.1 AV Event Detection and Concept Classification

Approaches to AV event detection have been very varied and data dependent.
Many works for traditional event detection utilize Markov model variants such as
the duration dependent input–output Markov model (DDIOMM)[110], multistream
HMM, or coupled HMM [69]. The former uses a decision-level fusion strategy and
the latter two do it at an intermediate level. These methods have been shown to
perform better than single modality-based approaches with coupled-HMMs being
particularly useful for modeling AV asynchrony.

Specifically, with regard to event detection in surveillance videos, Cristiani et
al. [37] propose to use the AV concurrence matrix to identify salient events. The
idea is to model the audio/video foreground and construct this matrix based on
the assumption that simultaneously occurring AV foreground patterns are likely
to be correlated. Joint AV analysis has also been employed extensively for sports
video analysis and for broadcast analysis in general. In one approach, several feature
detectors are built to encode various characteristics of field sports. Their decisions
are then combined using a support vector machine (SVM)[127]. Several approaches
for structuring TV news videos have also been proposed.

On the other hand, joint codebook-based approaches have been quite popular
for the task of multimedia concept classification.5 In essence, each element of these
multimodal codebooks captures some part of a salient AV event. Work on short-term
audiovisual atoms (S-AVA) [78] aims to construct a codebook from multimodal
atoms which are a concatenation of features extracted from tracked short-term
visual-regions and audio. To tackle the problem of video concept classification,
this codebook is built through multiple instance learning. Following this work, AV
grouplets (AVG) [76] were proposed, where separate dictionaries are constructed
from coarse audio and visual foreground/background separation. Subsequently,
AVGs are formed based on the mixed-and-matched temporal correlations. For
instance, an AVG could consist of frames where a basketball player is seen in
the foreground with the audio of the crowd cheering in the background. As an
alternative, Jhuo et al. [75] determine the relations between audio and visual
modalities by constructing a bi-partite graph from their bag-of-words representation.
Subsequently, spectral clustering is performed to partition and obtain bi-modal
words. Unlike S-AVA and bimodal words, AVG has the advantage of explicitly
tackling temporal interactions. However, like S-AVA, it relies on video region
tracking, which is quite difficult for unconstrained videos.

5Here the term “concept classification” refers to generic categorization in terms of scene, event,
object, or location [78].
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9.4.2.2 AV Object Localization and Extraction

AV object localization and extraction refers to the problem of identifying sources
visually and/or aurally. This section serves to show how objects responsible for
audiovisual events can be extracted from either of the modalities through joint
analysis. The general approach is to first associate the two modalities using
methods discussed in Sect. 9.3. The parameters learned during the former step
can then be utilized for object localization and segmentation (visual part), audio
source separation (audio counterpart), or unsupervised AV object extraction in both
modalities. We now discuss approaches to each of these application scenarios.

Object localization and segmentation has been a popular research problem in the
computer vision community. Various approaches have leveraged the audio modality
to better perform this task with the central idea of associating visual motion and
audio. Fisher et al. [51] proposed to use joint statistical modeling to perform this
task using mutual information. Izadinia et al. [72] consider the problem of moving-
sounding object segmentation, using CCA to correlate audio and visual features.
The video features consisting of mean velocity and acceleration computed over
spatio-temporal segments are correlated with audio. The magnitude of the learned
video projection vector indicates the strength of association between corresponding
video segments and the audio. Several other works have followed the same line
of reasoning while using different video features to represent motion [84, 138].
Effectiveness of CCA can be illustrated with a simple example of a video with a
person dribbling a basketball [72] (see Fig. 9.3). Simplifying Izadinia et al.’s [72]
visual feature extraction methodology, we compute the optical flow and use mean
velocity calculated over 40� 40 blocks as the visual representation and mel-spectra
as the audio representation. The heat map in Fig. 9.3 shows correlation between
each image block and audio. Areas with high correlation correspond to regions with
motion. If we instead use a soft co-factorization model [134], it is indeed possible
to track the image blocks correlated with the audio in each frame.

Another approach worth mentioning is one that uses Gestalt principles for
locating sound sources in videos [105]. Inspired by Gestalt principle of temporal

Fig. 9.3 CCA illustration: heat map showing correlation between video image regions and audio.
Black squares indicate highest correlation
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proximity the authors propose to detect synchronous audiovisual events. A par-
ticularly different approach was taken by Casanovas et al. [29] who proposed an
audiovisual diffusion coefficient to remove information from video image parts
which are not correlated with the audio.

Audio source separation is the audio counterpart of the previously discussed
problem. The aim is to extract sound produced by each source using video
information. As done for videos, mutual information maximization has been used
to perform source separation in a user-assisted fashion by identifying the source
spatially. Recent methods perform this within the NMF-based source separation
framework [120, 132].

Several other approaches deal with both object segmentation and source sep-
aration together in a completely unsupervised manner. Work by Barzeley et al.
[11] considers onset coincidence to identify AV objects and subsequently perform
source separation. A particular limitation of this method is the requirement of setting
multiple parameters for optimal performance on each example. Blind AV source
separation work has also been attempted using nonnegative CCA [138] and sparse
representations [28]. Independent component analysis over concatenated features
from both modalities also extracts meaningful audiovisual objects [139]. However
its application is limited to static scenes. Finally, multimodal dictionary learning has
also been utilized in this context [94].

While the methods discussed in this section have been shown to work well
in controlled environments, their performance is expected to degrade in dense
audiovisual scenarios. Moreover, they make a simplifying assumption that all the
objects are seen onscreen. It must be emphasized that most of these techniques can
be considered symmetric, in the sense that they can be applied to tasks in either of
the modalities with appropriate representations.

9.5 Microphone Array-Based Sound Scene Analysis

In complex sound scenes the sounds coming from different sources can be over-
lapping in time and frequency. Single channel processing can discriminate sources
based on time or frequency as long as they are separated in either time or frequency.
Trying to detect or classify sound events that are overlapping both in time and
frequency directly from a single channel signal will generally result in a confusion
between events. An alternative approach is to attempt to separate individual events
prior to detection or classification. However, trying to separate sounds that are
overlapping both in time and frequency with single channel techniques is known
to be problematic and will inevitably introduce a loss of information resulting in a
degradation of the subsequent detection and classification performance. Microphone
arrays enable the usage of multichannel techniques that exploit not only temporal
and spectral diversity between sources but also spatial information about their
location.
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Historically microphone arrays were composed of a set of microphones placed
along a straight line (with constant spacing between microphones for linear arrays
or variable spacing for logarithmic arrays). Less constraint arrays have been used
for specific purposes such as spherical and circular arrays and more recently arrays
without spatial constraints in the case of wireless acoustic sensor networks became a
popular research topic. Some approaches and concepts presented here are applicable
only to specific array topologies or at least when the topology is known beforehand
(see also below). In this chapter we also assume that the signals coming from
different microphones are synchronized at the stage of sampling in order to allow
for the exploitation of spatial cues. Readers should keep in mind that at the time of
writing of this book, dealing with unsynchronized microphone arrays is still an open
research problem.

9.5.1 Spatial Cues Modeling

In order to exploit spatial information about the sound sources, audio scene analysis
algorithms usually first model the spatial cues and then estimate the corresponding
parameters. Both deterministic and probabilistic modeling of such spatial cues have
been widely considered in the literature. The former case usually relies on (a) the
point source assumption, where sound from a source is assumed to come from a
single position, and (b) the narrowband approximation, where a mixing process
from an audio source to the microphone array is characterized by a mixing frequency
dependent vector [98]. Probabilistic modeling is usually applied for reverberated or
diffuse sources, where sound from a source may come from many directions due to
the reverberation, e.g., source localization [18, 63, 116], separation [46, 73, 99], and
beamforming systems [17, 48]. This section will discuss some typical spatial cue
models, in both a deterministic and a probabilistic sense, for different audio scene
analysis applications.

9.5.1.1 Binaural Approach

Humans generally combine cues from several audiovisual streams to localize sound
sources spatially. The main cues for localization in the horizontal hemisphere are
related to binaural hearing (relying on the difference between the signal reaching
the right ear and the signal reaching the left ear). All these cues are encoded in the
so-called interaural transfer function (ITF) that includes the following:

• The interaural time difference (ITD) is the difference between the time-of-
arrival of a signal at the left ear and the right ear. It is useful to localize
sounds based on their onset and at low frequency (below 1.5 kHz) [89] (see also
Fig. 9.4a).
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Fig. 9.4 Artificial representation of the binaural cues. (a) ITD, (b) IPD, (c) IID

• The interaural phase difference (IPD) is the phase difference between the
signal at the left ear and the right ear. It is useful to localize on-going sound
as long as the wavelength is larger than the diameter of the head (below
1.5 kHz) [162] (see also Fig. 9.4b);

• The interaural intensity difference (IID) is the difference in level between the
signal at the left ear and the right ear due to the acoustic shadow produced by
the head for sounds above 3 kHz (below the so-called head shadow effect is not
present) [108] (see also Fig. 9.4c).

All the concepts mentioned above can be extended to general microphone array
setups. The ITD and IPD concepts directly generalize to linear microphone arrays
where they relate rather straightforwardly to time difference of arrival (TDOA) and
direction of arrival (DOA). In this case, however, the arrays have to be designed
carefully to prevent spatial aliasing. The IID concept is less applicable to small
linear arrays as it relies on the head shadow effect. Indeed, in small arrays the
level difference between the signal impinging two consecutive microphones might
not be significant. However, in ad-hoc arrays where the topology is unconstrained,
the microphones can be quite far apart and IID can become insightful as well,
granted that the microphone positions are known beforehand. These spatial cues
are extensively exploited to extract a signal of interest from the mixture using
beamforming approaches described in Sect. 9.5.1.2 (for example, the delay-and-sum
beamformer directly relies on ITD). Spatial cues can also be used directly for sound
source localization (see also Sect. 9.5.2.3) and, by proxy, for source separation (see
also Sect. 9.5.2.1) and sound event detection (see also Sect. 9.5.2.2).
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9.5.1.2 Beamforming Methods

Fixed beamformers compose a first simple class of multichannel algorithms which
can separate signals coming from different directions. A fixed beamformer tries to
steer toward the direction from where the desired sound signal comes and to reject
signals coming from other directions. The main categories of fixed beamformers
include delay-and-sum beamformers, filter-and-sum beamformers [66], superdirec-
tive microphone arrays [36], or the original formulation of the minimum variance
distortionless beamformer (MVDR) [26].
Adaptive beamformers try to steer toward the direction of the desired sound signal
and to adaptively minimize the contributions from the undesired sources coming
from other directions. This typically yields a constrained optimization problem.
Frost introduced the linearly constrained minimum variance beamformer (LCMV)
as an adaptive framework for MVDR [55].

The generalized side lobe canceler (GSC), also known as the Griffiths-Jim
beamformer, is an alternative approach to the LCMV where the optimization
problem is reformulated as an unconstrained problem [62]. The GSC can be
decomposed as a fixed beamformer steering toward the desired source, a blocking
matrix, and a multichannel adaptive filter [65].

The multichannel Wiener filters (MWF) represent another class of multichannel
signal extraction algorithms which are defined by an unconstrained optimization
problem [45]. MWF-based algorithms can be implicitly decomposed into a spatial
filter and a spectral filter, and can indeed be considered as beamformers [135].
Besides, a reformulation of MWF allows for explicitly controlling the spectral
distortion introduced [45, 135].

9.5.1.3 Nonstationary Gaussian Model

The nonstationary Gaussian framework has emerged in audio source separation
[46, 50, 114, 119] as a probabilistic modeling of the reverberated sources. It was then
also applied in, e.g., multichannel acoustic echo cancellation [144] and multichannel
speech enhancement [145]. In this paradigm, the short-time Fourier transform
(STFT) coefficients of the source images cj.t; f /, i.e., the contribution of the j-
th source (1 
 j 
 J) at the microphone array, are modeled as a zero-mean

Gaussian random vector whose covariance matrix bRj.t; f / D E

�
cj.t; f /cH

j .t; f /
	

can be factorized as

bRj.t; f / D vj.t; f /Rj.t; f /; (9.10)

where vj.t; f / are scalar time-varying variances encoding the spectro-temporal
power of the sources and Rj.t; f / are I � I spatial covariance matrices encoding
their spatial position and spatial width. This model does not rely on the point
source assumption nor on the narrowband assumption, hence it appears applicable to
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reverberated or diffuse sources. In the general situation where the sound source can
be moving, the spatial cues encoded by Rj.t; f / are time-varying. However, in most
cases where the source position is fixed and the reverberation is moderate, the spatial
covariance matrices are time-invariant: Rj.t; f / D Rj.f /. Different possibilities
of parameterizing Rj.f / have been considered in the literature resulting in either
the rank-1 or the full-rank matrices, where the later case was shown to be more
appropriate for modeling the reverberated and diffuse sources as it accounts directly
for the interchannel correlation in the off-diagonal entries of Rj.f / [46].

9.5.2 Spatial Cues-Based Sound Scene Analysis

This section will discuss the use of spatial cue models presented in the previous
section in some specific applications, namely sound source separation, acoustic
event detection, and moving sound source localization and tracking.

9.5.2.1 Sound Source Separation

In daily life, recorded sound scenes often result from the superposition of multiple
sound sources which prevent both human and machines from well localizing and
perceiving the target sound sources. Thus, source separation plays a key role in
sound scene analysis, and its goal is to extract the signals of individual sound
sources from an observed mixture [98]. It offers many practical applications
in, e.g., communication, hearing aids, robotics, and music information retrieval
[6, 14, 100, 152].

Most source separation algorithms operate in the time-frequency (T-F) domain
with the mixing process formulated as

x.t; f / D
JX

jD1

cj.t; f / (9.11)

where x.t; f / 2 C
I�1 denotes the STFT coefficients of the I-channel mixture

at T-F point .t; f /, and cj.t; f / 2 C
I�1 is the j-th source image. As cj.t; f /

encodes both spectral information about the sound source itself and the spatial
information about the source position, a range of spectral and spatial models has
been considered in the literature resulting in various source separation approaches.
In the determined case where I � J, non-Gaussian modeling such as frequency-
domain independent component analysis (FDICA) has been well-studied [122, 128].
In the under-determined situation where I < J, sparse component analysis (SCA)
has been largely investigated [19, 61, 81]. As a specific example of the nonstationary
Gaussian modeling presented in Sect. 9.5.1.3, the parameters are usually estimated
by the expectation maximization (EM) algorithm derived in either the maximum
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likelihood (ML) sense [46] or the maximum a posteriori (MAP) sense [47, 117, 119].
Then source separation is achieved by the multichannel Wiener filtering. Readers
are referred to, e.g., [95, 150] for the survey of recent advances on both blind
scenarios and informed scenarios which exploit some prior knowledge about the
sources themselves [119] or the mixing process [47] to better guide the source
separation.

9.5.2.2 Sound Event Detection

As different sound events usually occur at different spatial locations in the sound
scene, spatial cues obtained from microphone array processing intrinsically offer
important information for SED. As an example, information about the source
directions inferred from the interchannel time differences of arrival (TDOA) was
used to help partitioning home environments into several areas containing different
types of sound events in [151]. The combination of these spatial features with the
classic MFCC was reported to improve the event classification in the experiment.
Motivated by binaural processing, in [1] the stereo log-mel-band energy is extracted
from stereo recordings to train the neural networks in order to obtain a meaningful
cue similarly to the IID.

9.5.2.3 Localization and Tracking of Sound Sources

Sound source localization and tracking are concerned with estimating and following
the position of a target source within a sound scene. This active field of research in
microphone array processing finds important applications, e.g., in surveillance or
video conferencing where the camera should be able to follow the moving speaker,
and even can automatically switch the capture to an active sound source in multiple
source environments [153]. Spatial cues offered by the multichannel audio capture
play a key role in deriving the algorithms.

The problem of acoustic source localization has been a relevant topic in the
audio processing literature for the past three decades because of its applicability
to a wide range of applications [41, 146]. The most effective solutions rely on the
use of spatial distributions of microphones, which sample the sound field at several
locations. Spurious events, reverberation, and environmental noise, however, can be
a significant cause of localization error. In order to ease the problem, at least for
those errors that are contained in a limited number of time frames, source tracking
techniques can come in handy, as they are able to perform trajectory regularization,
even on the fly. Typical approaches are based on particle [5, 91, 155], Kalman [4, 57],
or distributed Kalman filtering [143].

Different methodologies have been developed for the localization of acoustic
sources through microphone arrays. Those that gained in popularity are based on
measurements of the time delay between array microphones. Working on the time
domain is often a suitable choice for wideband signals, and most techniques tend to
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Fig. 9.5 Taxonomy of source localization techniques

rely on the analysis of the generalized cross-correlation (GCC) of the signals [27]
and variants thereof. Localization in the frequency domain, however, can be shown
to attain good results for narrowband or harmonic sources immersed in a wideband
noise and rely on the analysis of the covariance matrix of the array data. A taxonomy
of the localization techniques is represented in Fig. 9.5.

Time-Domain Localization

Steered response power (SRP, [42, 43, 102]) and global coherence field (GCF, [115])
proceed through the computation of a coherence function that maps the GCC values
at different microphone pairs on the hypothesized source location. A source location
estimate is found as the point in space that maximizes the coherence function. In
[23] the scenario of multiple sources is accommodated through a two-step procedure
that, after localizing the most prominent source, deemphasizes its contribution in the
GCC, so that other sources can be localized. These techniques are known for their
high level of accuracy, and are suitable for networks of microphone arrays, where
synchronization can only be guaranteed between microphones of the same array.
One limitation of such solutions is their computational cost, which is proportional to
the number of hypothesized source locations. This means that increasing the spatial
resolution results in higher computational costs. Some solutions have been proposed
in the literature to mitigate this problem. In [165] the authors propose a hierarchical
method that begins with a coarser grid, and refines the estimate at different steps
by computing the map for finer grids concentrated around the candidate locations
estimated at the previous step. In [44] a similar approach is adopted, but a stochastic
region contraction strategy is used for going from a coarser to a finer grid. An
example of steered response power with stochastic region contraction map is shown
in Fig. 9.6.
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Fig. 9.6 Example of a coherent map using the Steered Response Power with Stochastic Region
Contraction technique (SRP-SRC, from [44])

Less cumbersome are the solutions based on the time difference of arrival
(TDOA), which is estimated as the time lag of the GCC that exhibits the maximum
value. The TDOA is then converted into range difference (RD), which measures
the difference of the range between the source and the two microphones in the
pair. The locus of candidate source locations corresponding to a given TDOA is
a branch of hyperbola whose foci are in the microphones locations, and whose
aperture is proportional to the measured TDOA. The most straightforward technique
for localization consists in intersecting branches of hyperbolas corresponding to
the TDOA measurements coming from different pairs of microphones. The cost
function that is based on this procedure is strongly nonlinear, which makes the
method sensitive to measurement errors. Least squares cost functions provide a good
approximation [12, 34, 70, 129]. The main drawback of TDOA-based localization
is its sensitivity to outlier measurements. In [24, 25, 130] techniques for removal of
the outliers were presented. In particular, the DATEMM algorithm [130] is based on
the observation that TDOAs over a closed loop must sum to zero.

Frequency-Domain Localization

Techniques in the frequency domain are based on the observation that different
microphones in the array will receive differently delayed replicas of the source
signals. This, in the frequency domain, corresponds to a phase offset. For distant
sources the phase offset between adjacent microphones is constant throughout the
array. Delay-and-sum beamformers compensate the offsets so that the components
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related to a direction will sum up coherently and the others will not. The estimation
of the direction of arrival (DOA) of the target source proceeds by searching for the
direction that maximizes the output energy of the beamformer over a grid of direc-
tions [141, Chapter 6]. The most straightforward nonparametric beamformer is the
delay and sum, which is known for its low resolution capabilities, making it difficult
to distinguish sources that are seen under close angles from the array viewpoint.
The minimum variance distortionless response beamformer (MVDR, [26]) partially
improves the resolution capabilities. Parametric techniques, among which it is worth
mentioning multiple signal classification (MUSIC, [131]), and estimation of the
signal parameters through rotational invariance techniques (ESPRIT, [126]) bring
improvements in terms of resolution. However, they are known for their sensitivity
to noise and reverberation, which tends to introduce spurious localizations. The
superdirective data-independent beamformer [16] was shown to partially mitigate
this problem. An interesting solution to the sensitivity to reverberation was proposed
in [137] for the detection of gunshots using networks of sensors, each equipped with
four or more microphones. For each sensor, both DOA and TDOA are measured.
Source location is estimated by intersecting the loci of potential source locations
(hyperbolas and direction of arrival) for the two kind of measurements from all
the sensors. In reverberant conditions and in the presence of interferers, some
TDOAs and some DOAs could be related to spurious paths, thus providing multiple
estimates of the gunshot location. The actual gunshot location is found as the one
that maximizes the number of consistent TDOAs and DOAs.

It is important to notice that TDOA-based and frequency-domain source local-
ization techniques require the synchronization of the microphones within the array.
This, in fact, becomes an issue when multiple independent small arrays are deployed
in different locations. In [25] the authors propose a technique for the localization
without requiring a preliminary synchronization of the arrays by including the time
offsets between the arrays into the unknowns, along with the location of the source.
Another important issue is the self-calibration of the array, i.e., the estimation of the
mutual relative positions of the microphones [38, 147]. The widespread diffusion
of mobile phones and devices equipped with one or more microphones enables the
implementation of a wireless acoustic sensor network in seconds, for goals ranging
from teleconferencing to security. In this context, however, both calibration and
synchronization are needed before normal operation [123].

Acoustic Source Tracking

Independently of the adopted localization method, reverberation and interferers
could introduce spurious localizations. The goal of source tracking is to alleviate
the influence of outliers. The idea behind tracking is that measurements related to
the actual source must follow a dynamical model whereas those related to spurious
sources must not [155]. Another goal that can be pursued with tracking systems is
that of fusing information coming from both audio and visual localization systems
[9, 142]. Several solutions have been presented in the literature. The Kalman filter
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[57] is a linear system characterized by two equations. The state equation models the
evolution of the state of a system (location and speed of the source) from one time
frame to the next one. The observation equation links the state variables with the
observable measurements. The goal of the Kalman filter is to estimate the current
state from the knowledge of time series of the observations.

Recently, distributed Kalman filters have been used, which enable the tracking
of acoustic sources also in the case of distributed array networks [164], without
requiring that all nodes communicate the whole state of the system.

Inherent assumptions that lie in the use of the Kalman filter are the linearity and
Gaussianity of measurement and state vectors. In order to gain in robustness against
the nonlinearity, the use of the extended Kalman filter has been proposed [142],
which linearizes the nonlinear system around the working point. In order to gain in
robustness against non-Gaussian conditions, however, one has to resort to a different
modeling of the source dynamics. In recent years particle filter gained interest in the
source localization community due to the fact that it is suitable also to perform
tracking in nonlinear non-Gaussian systems and, more in general, for its higher
performance [155]. Particle filtering [8] assumes that both state and measurement
vectors are known in a probabilistic form. Once a new measurement vector is
available, the likelihood function of the current observation from a given state is
sampled through particles. Each particle is assigned a weight, which determines its
relevance in the likelihood function. Only relevant particles will be propagated to the
next step. The source location is determined as the centroid of the set of particles.
An example of tracking of one, two, or three acoustic sources on a given trajectory
for DOA measurements is shown in Fig. 9.7.

In audio surveillance contexts, it is important to enable localization also when
multiple sources are active at any time, with a small convergence time when acoustic
sources alternate. This is important, for example, in events that involve multiple
acoustic sources (brawls, people yelling, etc.). In recent years, swarm particle
filtering has shown to address this scenario particularly well [121]. It is based on
the idea that the propagation of each particle to the next step is determined not only
by the previous history of the particle itself, but also by the particle that exhibits
the best likelihood at the current time instant. Consequently, the overall behavior of
the systems resembles that of a bird flock, rapidly moving toward the active source.
An example of behavior of swarm particle filtering is shown in Fig. 9.8. Here two
sets of particles at four consecutive time frames estimate the location of a source
using particle filtering (PF) and swarm particle filtering (Swarm). The two sets are
initialized identically. It is possible to notice that after four steps, the swarm particles
cluster around the source location, while the PF is still converging.

9.6 Conclusion and Outlook

Multichannel and multimodal data settings represent opportunities to address
complex real-world scene and event classification problems in a more effective
manner. The availability of concurrent, hence potentially complementary streams
of data is amenable to a more robust analysis, by effectively combining them, using
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Fig. 9.7 Example of tracking of one, two, or three sources over a prescribed trajectory (from
[148])

Fig. 9.8 Example of
behavior of two sets of
particles propagated using
particle filtering (PF) and
swarm particle filtering
(SWARM). The two sets of
particles occupy the same
location at the first time frame
(from [121])

appropriate techniques, be it at the input representation-level, the feature-level, or
the decision-level. Successful applications of such techniques have been realized in
various multichannel audio and audiovisual scene analysis tasks.
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Yet, a number of research questions remain open in these settings. Notably, it is
still not clear how to generically detect when some of the data views are temporarily
not reliable (typically noisy or out of focus, with respect to the classes of interest)
and which strategies should be developed that can efficiently ignore such views and
proceed with the classification (or any other similar data processing) using models
which were perhaps trained assuming all views are available.

Also, given the complexity of accurately annotating all data views, especially
for instantaneous multi-label event classification tasks, that is when multiple events
may occur simultaneously, it is important to consider learning methods that can take
advantage of very coarse ground-truth labels, which may have been obtained based
on just one of the views, without necessarily being relevant for others. An example
of this is the “blind” annotation of the audio track of a video (without considering the
images) where sound events may not be visible onscreen at the same time stamps.
Multiple instance learning and weakly supervised learning techniques may turn out
to be effective learning paradigms to address these difficulties.
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Chapter 10
Sound Sharing and Retrieval

Frederic Font, Gerard Roma, and Xavier Serra

Abstract Multimedia sharing has experienced an enormous growth in recent years,
and sound sharing has not been an exception. Nowadays one can find online sound
sharing sites in which users can search, browse, and contribute large amounts
of audio content such as sound effects, field and urban recordings, music tracks,
and music samples. This poses many challenges to enable search, discovery, and
ultimately reuse of this content. In this chapter we give an overview of different
ways to approach such challenges. We describe how to build an audio database
by outlining different aspects to be taken into account. We discuss metadata-based
descriptions of audio content and different searching and browsing techniques that
can be used to navigate the database. In addition to metadata, we show sound
retrieval techniques based on the extraction of audio features from (possibly)
unannotated audio. We end the chapter by discussing advanced approaches to
sound retrieval and by drawing some conclusions about present and future of sound
sharing and retrieval. In addition to our explanations, we provide code examples that
illustrate some of the concepts discussed.

Keywords Sound sharing • Sound retrieval • Multimedia • Audio metadata •
Sound description • Audio database • Audio indexing • Audio features • Simi-
larity search • Query by example • Sound taxonomy • Machine learning • Sound
exploration • Sound search

10.1 Introduction

Multimedia sharing is one of the areas in which the social web has experienced the
largest and quickest growth in recent years [73]. Just to name a few examples, every
minute 100 h of video are uploaded to YouTube [75], 2400 photos are uploaded
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to Flickr [32], and 12 h of music are uploaded to SoundCloud [79]. The case of
sound sharing—understanding sound as any kind of reusable audio material like
sound effects, environmental recordings, or music building blocks, but typically not
finished music tracks—even if at a smaller scale, is not an exception. Websites such
as Freesound, Looperman, CC-mixter, and the Radio Aporee project1 are examples
of sound sharing platforms in which users can not only search and browse content
but also contribute new audio recordings including sound scenes such as field and
urban recordings, sound events such as foley or animal sounds, and music samples
such as loops, melodies, and single notes. Furthermore, consumer-oriented websites
such as Sound Dogs, Sound Snap, and A Sound Effect2 sell sounds from extensive
collections of audio recordings that users can also navigate. In this chapter we focus
on the particular context of online sound sharing and give an overview of different
ways to approach sound sharing and retrieval challenges.

On a prototypical scenario of online sound sharing, a user might record a sound
and upload it to a web application so that other users can listen to it and possibly
download it. The intent with which users upload and share multimedia content can
vary widely, but we can identify some general patterns according to the usage that
the uploaders may expect of the contributed content. On the one hand, we can
identify content that is meant to be accessed and viewed or played through the online
sharing platform itself. Hence, the end use of the resource is its online consumption.
For example, someone may upload photos of an event to a photo sharing site so that
other participants of that event can have access to the photos, or a musical artist can
upload a music album to a music sharing site so that other users can listen to it.
On the other hand, there is an additional type of uploaded content which is meant
to be reused outside the sharing platform where it is hosted. Here, the display in
the sharing platform does not represent an end use per se. Some examples of this
situation include sharing recordings of sound events that can be later used in video
games, drum loops in music compositions, video backgrounds or transitions to be
used in audiovisual installations, or images to be used in collages or as a desktop
wallpaper. These latter cases of multimedia sharing particularly support Lawrence
Lessing’s definition of read/write culture [39]. In read/write culture, users are both
consumers and producers of content that is easily shared and reused through the
internet [80].

Such content potentially represents an incredibly valuable resource that can serve
several purposes, ranging from business and research applications to artistic creation
and the preservation of cultural heritage [34]. Nevertheless, the value of this content
is significantly dimmed by the ways in which it can be accessed and reused, i.e.,
the ways in which it can be retrieved. As the amount of content grows, so does
the difficulty of browsing and locating what one needs, and so do the challenges
that search engines have to face. For the content to be accessible, it needs to
be properly indexed. However, the quantity and variety of available content turns

1https://freesound.org, https://looperman.com, http://ccmixter.org, http://aporee.org/maps.
2https://sounddogs.com, https://soundsnap.com, https://asoundeffect.com.
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proper indexing into a very difficult task. This is particularly true for multimedia
resources like video, pictures, and audio which, as opposed to other kinds of media,
do not have a direct textual representation [5]. At the same time, the amount of
content generated is simply too much to be curated in scalable ways by groups of
experts.

The description, indexing, and retrieval of audio content is therefore a challenge
that needs to be faced in order to make audio shareable and increase its value.
Especially in the context of read/write culture, users need sophisticated and
specialized ways of accessing online resources that fit their particular requirements.
Users searching for content in sound sharing sites might be looking for audio
clips with very specific and detailed characteristics that can be represented by a
wide range of audio properties. For example, one user might be searching for the
sound of an opening door with a particular duration, size, and material of the door,
while another user might be searching for the sound of a melody being played by
a particular instrument with a specific tonality, tempo, and mood. Being able to
successfully retrieve such specific content poses a number of issues to both the
users and the sharing platform. Another relevant aspect of sound sharing is that
the assessment of the results returned by a search engine of a sound sharing site
requires the time to listen to them, and cannot be done as instantly as it could be
done with the search results of, for example, a photo sharing site. From this point of
view, the cost of iterating over several queries in order to find the desired resource
is higher for sounds than for images. This is one of the reasons why good quality
descriptions are crucial for indexing audio.

But how should sounds be described so that users can effectively search them?
As it might be expected, this question does not have a single definitive answer.
Nevertheless, we can intuitively differentiate at least two ways in which sounds can
be described. On the one hand, sounds can be generally described by referring to
the source that produces them. In other words, we can describe a sound by denoting
an object and (possibly) an action that produces it (e.g., “the sound of a closing
door”). On the other hand, sounds can be described by referring to their perceptual
qualities regardless of their source, that is to say, by describing the timbre and
acoustic qualities of a perceived sound (e.g., “a loud high-pitched sound”). Both
approaches are complementary and both bear relevant information for indexing
and retrieval purposes [43]. Source-based descriptions can be effectively indexed
by using metadata annotations such as labels and textual descriptions. Conversely,
some perceptual qualities can be better represented using automatically extracted
audio features. In addition, other sound properties such as audio format and editorial
information can be used when indexing content. Once content is described and
indexed, different browsing and searching strategies can be implemented such as
text-based search, sound browsing based on category filtering, or search based on
audio similarity. All these strategies and many other possible ones ultimately enable
sound search and discovery.

In this chapter we go through the different components and the typical issues
and solutions of sound sharing systems, and show step by step how to build a basic
system with references to code examples. The components we describe are similar
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Fig. 10.1 Block diagram of Freesound’s main components. The arrows correspond to main
functionalities of Freesound and show the components that they need to access. Note that metadata
information and audio features are indexed separately and provide different functionalities. Also
note that audio files are not included in the database itself (see Sect. 10.2). This diagram serves as
a general example of the different components of a sound sharing and retrieval system

to those that can be found in a site such as Freesound, which we take as an example
(Fig. 10.1). We start by describing how to build an audio database (Sect. 10.2),
and continue by explaining metadata-based retrieval strategies (Sect. 10.3) as
well as other retrieval strategies based on audio analysis (Sect. 10.4). We end
this chapter with a discussion about advanced audio retrieval topics (Sect. 10.5)
and a conclusions section (Sec. 10.6). Code examples, written in the Python3

programming language and based on open source technologies, are available in the
book’s accompanying website4 and demonstrate some of the concepts discussed in
Sects. 10.2–10.4.

10.2 Database Creation

The concept of a database is traditionally associated with text and numerical
information. While many database programs can store binary objects, standard
practice for applications involving image, audio, or video files is to leave them in the
file system and store the paths in the database. The expression audio database has
been used during the last decades in research on audio analysis to refer to collections
of audio files (e.g., [20, 23, 25]). Much of this research was precisely trying to find a
way to index audio files and facilitate search and discovery. In this chapter, we will
refer to an audio database as the set of information used for indexing collections of

3https://python.org.
4www.TODO:bookwebsite.

https://python.org
www.TODO: book website


10 Sound Sharing and Retrieval 283

audio files. In the following subsections, we summarize the most important design
issues for designing an audio database. First we discuss practical aspects such as file
formats and licensing, then we highlight the key design issues related with the two
main types of information used for indexing audio: metadata and audio features.

The code examples provided in the accompanying website of this book show
how to build an audio database taking into account the design issues discussed
below. We show how to download a small number of sounds from Freesound in
a standardized preview format using the Freesound API.5 We retrieve sounds that
match the keywords dog bark, cat meow, lion roar, and nightingale, and also retrieve
its associated metadata and some pre-computed audio features. Then we show how
to store this information in a data structure and create a text index using popular
Python libraries. Both data structures are used in later sections of this chapter
to demonstrate metadata-based and audio-based retrieval strategies (Sects. 10.3
and 10.4, respectively).

10.2.1 Licensing, File Formats, and Size

Licensing terms for audio are more of a legal than a technical issue. However, they
will often be a key factor for anyone building an audio database, especially for
shared usage. Copyright licensing will be generally needed for audio recordings but
additional licensing may be required. For example, if the performance of a musical
composition appears in the recording, a license for the composition also applies.
There are two interactions to consider: first, the database developer or administrator
needs a license from the content author. Second, database users willing to play or
download audio files for reuse need a license too. In many social media applications
(such as Freesound or Flickr) a license is chosen by the content author at upload time
and is propagated by the database to the end users. The development of Creative
Commons6 (CC) licenses was instrumental in the emergence of this use case
because these allow re-distribution under clear terms. Re-distribution is generally
not permitted under traditional copyright. While their applicability depends on
the audio material (e.g., whether existing protected content is considered) and/or
possible commercial agreements, CC licenses provide mature legal terms curated
by copyright law experts that may be useful to developers with little or no expertise
on this subject.

File format can be naively seen as a trivial issue. Even though it may be trivial
for a database designed for individual usage, for collective usage it is convenient
to support multiple formats. Choice is complicated due to the plethora of available
options, each with its own implications, often due to commercial factors. For this
reason, early planning is advised. As a general rule, variety of formats is convenient

5https://freesound.org/docs/api/resources_apiv2.html.
6https://creativecommons.org.

https://freesound.org/docs/api/resources_apiv2.html
https://creativecommons.org
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for collecting sounds from different authors (who may use different equipment),
and uniformity is convenient to facilitate reuse. An obvious general way to classify
formats is to distinguish between uncompressed, lossy (i.e., when the compression
implies loss of information), and lossless compressed formats. In some cases, a
distinction between container and codec may be relevant, especially when dealing
with video files. In pure audio formats there is often no distinction between container
and codec, so we will not make that distinction in this chapter either. In addition to
the format, there are numerous possible combinations of sampling rate and sample
bit depth. Audio production textbooks are a good source for conventional choices
of sampling rate and bit depth [29]. The most universal is the one defined by
the compact disc standard, 44.1 kHz and 16 bits. With respect to uncompressed
formats, WAV and AIFF are the most common. As an example of non-trivial issue,
24-bit integers are a very common choice, yet some high-level languages such as
Python lack a specific 24-bit primitive data type, and as a consequence reading
24-bit wav files in some Python packages will not work. Similar situations may
be encountered with 32-bit audio and for any obscure combinations: libraries for
dealing with different audio formats may surprisingly fail to recognize many files.
Lossy compression has been instrumental in the popularization of digital audio in
the Internet age. Perhaps the main issue is that many formats are covered by patents.
At the time of this writing, MP3 patents are progressively expiring. Open formats
such as OGG are free to use but often not supported in commercial players and
devices. A similar situation is found with respect to lossless compressed formats:
while open formats such as FLAC are available, companies often develop their own
formats and protect them, so they are mostly used in specific platforms. Compressed
formats will introduce more possibilities for variation, typically a bit rate or quality
parameter. A common sense strategy is to allow authors to contribute content with
the format they want, and then convert to a standardized format. For large scales,
if an uncompressed format is chosen as standard and/or the originals are preserved,
this approach may require large amounts of storage space.

File size and duration is also something to consider when creating an audio
database, not only in order to plan the storage needs but also for deciding the
way in which files are accessed. Short audio recordings will usually contain sound
events, while longer recordings may contain music, speeches, or environmental
sound scenes. Analysis and segmentation of longer recordings may be of interest
for some applications in order to isolate specific events or to allow streaming. Large
file sizes also complicate transmission for authors, for example, when using HTTP
to upload files to a database server.

10.2.2 Metadata

Metadata can be defined as “data about data.” In the case of audio it usually refers
to textual information that is used to describe and index an audio file or segment.
Virtually all existing sound sharing platforms implement some kind of metadata-



10 Sound Sharing and Retrieval 285

based retrieval strategy. Text is the most established way to deal with any sort of
information stored in computers, so for most applications, some kind of metadata
is necessary. Audio files already contain some sort of metadata in the headers, such
as sampling rate, bit depth, bit rate, and potentially editorial information, that can
be added to the database for indexing. Nevertheless, sound sharing platforms often
delegate the responsibility of providing metadata to the content authors or editors.
This will typically include a name (which may or may not coincide with the file
name), a textual description of the content of the sound, a number of labels or tags,
or other more structured bits of information such as audio file format properties,
time of recording, or geo-location information. Even though audio features could
also be considered to be metadata, these are typically excluded from the definition.

A general concern is the consistency of the provided metadata, which is affected
by the original design of the data model. Like in the case of file formats, some degree
of freedom in terms of required metadata will allow to make an audio database
more attractive to different users. For example, tags have become a very popular
way to attach text labels to pieces of information without any predefined structure.
Conversely, more structured and strict metadata layouts may benefit indexing and
retrieval in some cases. In Sect. 10.3.1 a more detailed discussion is given regarding
metadata fields and consistency.

In order to index and retrieve content based on text metadata, a full-text
search engine is especially useful. Full-text search engines are specialized software
programs that are useful for searching in text documents or textual representations
of documents as metadata fields. The choice of indexing algorithms depends on
the type of information stored in a database and the way it is to be retrieved.
The availability of implementations will typically determine the choice of a given
database program or library. Traditional relational databases typically rely on B+
trees for indexing. Other tree structures can be used for spatial queries as described
in Sect. 10.4. While the plethora of available database software is beyond the scope
of this chapter, it is useful to distinguish three main groups that are commonly
helpful for large-scale applications. Traditional relational databases, also known
as relational database management systems (RDBMS), are used via the structured
query language (SQL) in many corporate and web applications. The more modern
trend of NoSQL databases comprises a heterogeneous group including document
databases, key-value stores, and graph databases. Some of these use text formats
commonly used for audio metadata, such as XML or JSON. For information
indexed using complex ontologies, specialized graph databases or triple-stores may
be needed (see Sect. 10.5) [59].

10.2.3 Audio Features

Audio features or descriptors are numerical representations obtained through
automatic analysis of audio, often attempting to capture some aspect of human
perception. A large number of such descriptors have been developed over the
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years through research in automatic speech recognition (ASR), music information
retrieval (MIR), and environmental sound recognition (ESR), including sound scene
and sound event analysis (see Chap. 4). The use of audio features has been
historically different in each of these domains. For speech, features were used
most of the time as a spectral representation of sound used to train discrete models
(e.g., hidden Markov models) informed by human speech and language. For music,
features have been traditionally organized in different levels, according to their
proximity to music theory concepts. For environmental sound most of the time
very generic features are used in order to recognize specific semantic categories.
Creating a database of audio features involves feature extraction software. One
example can be found in the Freesound Extractor,7 which extracts a number of
audio features using the Essentia [8] audio analysis library. The most important
question when designing a database using audio features is to know which features
are relevant to the expected type of content and use case. So far there are mainly
two interaction paradigms that have been extensively researched for audio retrieval
based on features: range queries can be used with descriptors that are understandable
for humans. A simple example is finding pitched sounds within a given range of
pitches. Query by example (often also called similarity search) refers to using an
example sound to find similar sounds in the database (see Sect. 10.4). In the field
of data-driven music creation a special case is to find sequences of shorter sounds
in the database that are optimally close to an audio query. This technique has been
named musical mosaicing [81] or concatenative sound synthesis [67].

10.3 Metadata-Based Sound Retrieval

Metadata is the most common way through which audio databases can be navigated
and their content retrieved. In this section we describe in more detail the use of
user-provided metadata for indexing audio content (Sect. 10.3.1) and explain some
of the most common sound retrieval strategies based on metadata (Sect. 10.3.2). The
code examples referenced along with the explanations build up from the examples
referenced in the previous section.

10.3.1 Metadata for Audio Content

Content authors or editors typically provide metadata in the form of a number of
annotations or descriptions. As described in Sect. 10.2, it is common for sound
sharing platforms to rely on such user-provided metadata for audio indexing and
retrieval. Nevertheless, the nature of content annotations may vary on each particular

7https://github.com/MTG/essentia/tree/master/src/examples/freesound.

https://github.com/MTG/essentia/tree/master/src/examples/freesound
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sharing platform, and is highly dependent on the description strategy used in every
particular site. Description strategies that look for the most uniform annotations
can use forms with a number of predefined metadata fields with fixed responses.
For each field, users will chose one of the available responses when describing a
resource. For example, users might be asked to classify a sound effect by selecting
a category from a fixed list of categories. However, these strategies lack flexibility
when new resources are uploaded because their characteristics can be unexpected
and not contemplated in the description form [27, 42, 71]. Other description
strategies provide more flexibility by not limiting metadata fields to a specific set
of responses. In that case, annotations typically consist of a textual description and
a number of tags which are not restricted to a particular vocabulary.

Using tags as keywords for annotating resources has become standard practice in
many online sharing sites of very different nature. Just to name a few examples,
multimedia sharing sites like YouTube, Vimeo, Flickr, SoundCloud, Bandcamp,
Last.fm, or Freesound8 have content labeled using tags. However, despite the
popularity of tagging systems and their successful implementation in many online
sharing sites, there are a number of well-known problems which limit the possibili-
ties of these functionalities [26]. These problems range from the use of different tags
to refer to a single concept (synonymy) and the ambiguity in the meaning of certain
tags (polysemy), to tag scarcity and typographical errors [24, 27]. Furthermore,
the quality of the indexing, searching, and browsing functionalities enabled by
tagging systems strongly relies on the coherence and comprehensiveness of the
tags assigned to the resources. It is not only important that individual resources
are properly tagged, but also that descriptions are consistent across the database.
For that reason, it has been often discussed whether a tagging system, after a
certain time of being in use, reaches a point of implicit consensus where the
vocabulary converges to a certain set of tags and tagging conventions that are widely
adopted by all users of the system [27, 58, 70, 74, 78]. According to these authors,
the point of consensus may be reached because of imitation patterns and users’
shared cultural knowledge. Reaching that point of consensus is desirable to improve
indexing and overall sharing experience [26]. It is a common strategy in sharing
platforms to use tag recommendation methods to help users during the description
process [19, 24, 27, 44]. By using such methods, user annotations are expected to
be more uniform and comprehensive, thus helping in reaching the aforementioned
point of consensus.

Overall, the choice of using a flexible description strategy or a more strict one
strongly depends on the nature of the data that needs to be collected. Flexible
systems are a better fit for heterogeneous data, while strict systems can work well
for cases in which the information to annotate is very well defined. In the case of
audio material a mixed approach can be a good option, using well-defined metadata
fields relating to aspects such as audio format (e.g., sample-rate, bit depth, number

8https://youtube.com, https://vimeo.com, https://flickr.com, https://soundcloud.com, https://
bandcamp.com, https://last.fm, https://freesound.org.
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of channels) or other recording properties (e.g., duration, date of recording, duration
of recording, used microphone, etc.), and also using more flexible fields such as a
textual description of the activities being recorded. In the specific case of sound
events and sound scenes, it is important to put an emphasis on describing the sound
sources that are captured in a recording (i.e., what produces the sound). Because of
the potential variety of sound sources, tagging systems are typically appropriate for
annotating that kind of information. For sound scenes, it is also desirable to attach
annotations to particular regions of a recording, being able in this way to provide
specific descriptions for different fragments of the scene.

10.3.2 Search and Discovery of Indexed Content

As previously mentioned, a common choice for indexing metadata is the use of
a full-text search engine. In that case users typically introduce some search terms
(i.e., words) as a query. The search engine then matches these terms with indexed
metadata fields and returns a sorted list of results (sounds in our examples). For
each sound in the index, the search engine will compute a relevance score based
on how well the input terms match the information in the metadata fields and how
relevant the matched terms are. The classic relevance score in information retrieval
is based on calculating the relevance of a term with respect to a given document by
the TF*IDF measure [72]. TF stands for “term frequency,” and number of times the
specific term appears in a document. IDF stands for “inverse document frequency,”
and represents the inverse of the number of documents in the index that contain the
given term. The idea is that a given term will be relevant with respect to a document
if it appears many times, but the relevance will be penalized if it also appears in
many other documents. Using such a relevance function and given a number of
input query terms, a global score can be computed by aggregating the relevance of
each query term for the different metadata fields of each document in the index.
Other common score functions include the BM25F, which is a variation of TF*IDF
based on probabilistic information retrieval [57], and the PageRank algorithm [50],
which calculates the relevance of a document based on the relevance of documents
that point to it.

Besides the scoring functions for sorting results, search engines can include
query expansion mechanisms which perform pre-processing of user queries before
matching it with the index contents [14]. The idea behind query expansion is that
the input terms provided by a user can be expanded with other relevant terms before
matching with the index, potentially increasing the number of results. The way in
which new terms are added to the query can be based on simple strategies such as
using synonym lists or on more complex strategies such as the analysis of previous
queries or the use of domain-specific knowledge (see Sect. 10.5). Search results may
be further refined by allowing users to specify filtering criteria. In this way metadata
fields that are not taken into account in the scoring function can be used in the search
process to restrict the searchable space.
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Fig. 10.2 Example of faceted search as implemented in Freesound. Facets for licenses, type,
samplerate, and bitdepth metadata fields are displayed for the results of the query “dog barking.”
Clicking on these facets further filters the query results

Another typical retrieval strategy based on metadata is the use of facets when
displaying search results. This is typically referred to as faceted search [76]. Given
the results of a query, faceted search extends conventional search by dynamically
summarizing the distribution of values in a number of information facets (i.e.,
metadata fields) and showing this information to users. In this way, users can use
the information displayed in facets to further filter and update their queries (see
Fig. 10.2). Faceted search has become increasingly popular in sharing platforms
and provides a foundation for interactive information retrieval by allowing iterative
results-informed query refinement.

Faceted search allows the discovery of the database beyond conventional search
by providing users with a way to navigate the content (even without specifying
initial query terms). A particularly successful faceted search application is the use of
a tag cloud as a browsing interface. A tag cloud shows the most commonly used tags
in a database with the size of each tag set proportional to its frequency of occurrence
(Fig. 10.3) [33]. Users can typically navigate a collection by applying query filters
based on the tags in the tag cloud, and for each new filter a new tag cloud can
be computed and displayed only considering the filtered set of documents. Note
that when new content is indexed in a database, the tag cloud can be automatically
updated. Therefore tag clouds show an up to date overview of the contents of a
database.
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Fig. 10.3 Example tagcloud taken from Freesound (retrieved September 27th 2016)

Our provided code examples show a simple implementation of a number of
metadata-based sound retrieval strategies. We provide a basic text search system
which is configured to match input query terms with the information in name,
description, and tags metadata fields. We also provide examples for filtering search
results based on duration and sound license fields. Furthermore, our example
code shows how to define facets and group search results based on these (again
using license and duration metadata fields). Finally, we provide code to generate a
tagcloud which summarizes the contents of an audio database by displaying its most
important tags.

10.4 Audio-Based Sound Retrieval

Audio-based retrieval (also known as content-based retrieval) refers to the use of
descriptors computed automatically from the waveform in order to find audio files
in a database. The obvious advantage of using automatic descriptors is that it allows
indexing content when no labels or metadata are available. Manual labelling may
require significant amounts of work, which could be avoided by using automatic
analysis. On the other hand, currently available descriptors do not always bear an
intuitive meaning for non-expert (or even expert) users. Often they are used in
conjunction with machine learning algorithms in order to obtain meaningful labels
(i.e., typically through segmentation and/or classification). In this section we will
review basic retrieval techniques using audio descriptors. More details on specific
descriptors can be found in Chap. 4.
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10.4.1 Audio Features

One of the most critical aspects for audio-based retrieval is devising a set of features
that are relevant for the application. The standard representation of audio as a
waveform in the time domain allows for visual inspection and graphical editing,
but conveys only limited information (i.e., amplitude) about the sound. Since time-
frequency transforms such as the Short-time Fourier Transform (STFT) became
affordable and ubiquitous in audio processing, the spectrogram has been used as
a more intuitive representation. Most descriptors used for content-based indexing
of audio data are related to some time-frequency transform, and attempt to describe
some aspect of it that is relevant to some application or is intuitively useful. An
obvious example would be detecting the pitch for harmonic signals. A large number
of software libraries are available for feature extraction, mainly in the context of
MIR research [8, 10, 11, 36, 45, 46, 54, 77]. It is common in MIR to distinguish
low-level features (i.e., closer to the spectral representation but with little intuitive
meaning) and higher-level features related with musical concepts. Environmental
audio can be seen as a very general case where it is still possible to find music
(e.g., street music, the radio in a car) and very likely pitched sounds such as human
or other animal vocalizations, or human-originated sounds like alarms. Finding a
generic representation is not straightforward and in most cases it may depend on the
application. Low-level features can still be used for most kinds of sounds. A popular
set of low-level features was compiled in the definition of the MPEG-7 standard
[55]. As generic descriptors, Mel-frequency cepstral coefficients (MFCCs) are still
very widely used, like in the case of music and speech. More recently, deep learning
architectures make it possible to automatically learn the required representations
from spectral frames [38], or even from raw audio waveforms [30]. A strategy
for supporting many potential applications is computing a comprehensive set of
features. This is the strategy adopted in the aforementioned Freesound Extractor
(Sect. 10.2.3), and does not bear a large computational cost in respect to the whole
operation.

10.4.2 Feature Space

Audio features are typically aggregated along time in order to represent each audio
file as a single vector. This process may depend on the content of the file: for sound
events, the temporal evolution of spectral features may be taken into account, while
for sound scenes global statistics may suffice. Statistics can also be computed from
delta features, producing higher-dimensional vectors that capture some of the short-
term temporal evolution. The idea of ignoring the actual order of spectral features
and computing statistics has been dubbed the “bag of frames” approach [3], by
analogy to the “bag of words” model in text retrieval. Feature vectors can also be
extracted from events detected in long recordings.
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The set of selected features can then be seen to form a vector space, defined
by some distance metric between feature vectors. Typical choices are distance
metrics associated with p-norms, or cosine distance for large dimensions. Feature
vectors represent audio documents, and can be added as records to any conventional
database software. On the other hand, it is very convenient if the collection can
be kept in computer memory. As an example, for an arbitrary distance metric,
a naive query-by-example approach would require traversing all the vectors and
compute the distance to the query vector (see Sect. 10.4.4). Since there may be some
redundancy in the feature space (for example, when a very large set of features is
computed), dimensionality reduction algorithms (e.g., principal component analy-
sis) can be helpful. Another common practice is to quantize features into typically
sparse spaces, e.g., using data clustering [37, 64]. However, keeping the original
features allows defining distance metrics over meaningful subsets. This is especially
useful if many different kinds of sounds are mixed, so different feature sets can be
used by different applications.

10.4.3 Descriptor-Based Queries

Using descriptors directly in user interfaces is not very common, especially when
dealing with general audio, since low-level features often lack an intuitive meaning.
Moreover, the distribution of features across the database must be taken into account
in order to find sensible values.9 Queries based on hand-picked descriptor targets or
ranges are still possible for some low-level features. An intuitive example is a rough
division of the power spectrum in a few frequency bands (as is used frequently in
audio production and mixing, e.g., low, mid-low, mid-high, high). A non-specialist
user could use these bands to select sounds where most of the energy is in the higher
frequencies (e.g., selecting bird sounds), or in the lower frequencies (e.g., to find
sounds of passing cars). Descriptor-based queries can also be devised by an expert
and presented as discrete choices to the user. An even simpler example is using the
spectral centroid (see the code examples provided in the book website). Since audio
descriptors are often floating point numbers, a common strategy is to specify a query
range for a given descriptor or for a set of them. However, more complex queries can
be made using specialized languages like SQL or other database query languages.
In concatenative sound synthesis research, it was also common to use audio features
as axes of interactive scatterplots of audio collections [68]. The exploration can also
be driven by gestures [17].

9For this reason, histograms are provided as part of the documentation of the Freesound API:
https://www.freesound.org/docs/api/analysis_docs.html.

https://www.freesound.org/docs/api/analysis_docs.html
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10.4.4 Query by Example

Query by example (Qbe) refers to a kind of content-based retrieval technique where
the target descriptors are extracted from examples, so users do not need to know
about them. The idea of QbE has become widespread for music (e.g., singing
a melody, or recording a fragment of audio to retrieve a song title and author).
The same idea has been tried for general audio, where users try to imitate the
sound they are looking for [6, 15] (see [62] for an example implementation using
Freesound). For Qbe to work, the query example must be analyzed by the same
extractor program that has been used to create the database, since small differences
in parameters can lead to complete different ranges for descriptors. Again it is
also possible to devise ideal targets by experts, for example, specifying a given
value for pitch. Similarity queries will normally return a list of records ordered by
similarity to the target. This can be seen as a nearest-neighbors search in the vector
space. Common algorithms for nearest-neighbor search are KD-trees, R-trees, and
ball trees. Relaxation of the problem to approximate nearest neighbors (where the
returned vector is not guaranteed to be the nearest one to the target) may perform
several orders of magnitude faster, and thus is indicated for large data sets and high-
dimensional spaces.

The accompanying code examples include a simple implementation of both
descriptor and nearest-neighbors queries. We first query the database to get general
statistics about extracted audio features which allows to observe their distribution.
We focus on the spectral centroid feature, which is a rough indicator of how energy
is distributed across the frequency spectrum. The database is then queried for sounds
with a centroid below 50 Hz, which returns a roar sound with low frequencies, and a
nearest-neighbors ball tree algorithm is used to find the ten nearest neighbors using
MFCC statistics. This returns a list with mostly roar sounds and also some dog
barks.

10.4.5 Audio Fingerprints and Thumbnails

An audio fingerprint summarizes an audio recording into a small description
(typically an alphanumeric string) that is ideally unique. This is used to identify
copies of the same recording, since applying the same algorithm should result in the
same fingerprint. Systems are often designed to be robust to some distortions, such
as ambient noise or reverberation, but in general fingerprinting only works for copies
of the same recording (i.e., the same waveform), as opposed to multiple recordings
of similar sounds, such as a given utterance or a musical piece. The techniques
used for fingerprinting are generally based on feature extraction as described above,
typically with a more complex step of summarization of the time series of audio
features. For example, vector quantization or hidden Markov models can be used in
order to obtain a short and hopefully unique representation (see [12] for a review).
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Fingerprinting can be seen as a special case of hashing. Generic hashing algorithms
can be used to find and prevent exact duplicates of the same file in the database (e.g.,
MD5 is used in Freesound). Audio fingerprinting was developed mostly for music
but it can be used also for general audio content (e.g., commercial monitoring [31]).
Fingerprinting has also been used for identifying room ambiance [4], so it could
be used to group recordings from the same location in an audio database. Finally,
fingerprinting-like hashing has been proposed also as experimental indexing for
creative applications [16].

While fingerprints can be seen as summaries that uniquely identify audio
recordings for machines, audio thumbnails can be seen are sound fragments that
humans can use as previews to identify and remember recordings. Such previews
are required for browsing audio databases or analyzing search results. For musical
audio, the most common approach is identifying frequently repeated passages[2].
Contrastingly, for environmental sound, particularly for long recordings of sound
scenes, it is more useful to apply some detection strategy in order to find salient
events [82].

10.5 Further Approaches to Sound Retrieval

In the previous sections we have introduced standard sound retrieval strategies based
either on metadata or on audio information. In this section we introduce some
advanced strategies which are not as common as those introduced in the previous
sections but are also very relevant for sound retrieval.

If we have a closer look at the metadata-based strategies described in Sect. 10.3,
we will see that none of them are in fact particular or restricted to the sound
sharing domain. In other words, no knowledge specific to the audio domain is
used for any of the scoring functions, faceting or tagcloud examples shown above.
The inclusion of domain-specific knowledge is therefore something that can be
considered for enhancing sound retrieval strategies [48]. A simple form of domain-
specific knowledge that is relevant in sound retrieval are, for example, taxonomic
classifications of sound events as seen in Chap. 7. Such taxonomies can be used at
different stages of the information retrieval process. For example, a taxonomy can
be used to perform domain-specific query expansion [7] and increase in this way the
recall of search results. Taxonomies can be used to group search results in specific
concepts and present them accordingly [35].

Another more complex form of domain-specific knowledge is that represented
by ontologies [18]. Ontologies provide, for a given domain, an unambiguous
formalization of its concepts, entities, and their relations. Besides the work by
Nakatami and Okuno [49] in which an ontology for sound is provided, the use
of ontologies has not been much explored in the field of sound scene analysis.
Typically, simpler forms for representing structured domain-specific knowledge are
used as exemplified by Gaver’s map of everyday sounds [22] and the recent Urban
Sound Taxonomy [65]. Nevertheless, one advantage of using ontologies is that



10 Sound Sharing and Retrieval 295

content can be annotated with labels which feature a very specific semantic meaning.
Hence, where tagging systems feature free-form textual labels with no predefined
semantic meaning, ontologies feature detailed concept hierarchies interlinked with
semantically meaningful relations. The accurateness and rigidity of ontologies is
often opposed to the flexibility and ambiguity of tagging systems, but these can also
be complementary [40, 47]. One common approach in this direction is the mapping
of user-provided tags with specific concepts of an ontology. This allows tackling
typical synonymy and ambiguity problems of tagging systems, but requires methods
for automatically matching tags with concepts of the ontology [1, 53]. Ontologies
can also be used in a sound retrieval context for optimizing sound annotations
provided by users. For example, an ontology that embeds information about types
of sounds and their relevant characteristics can be used during an annotation process
to suggest users to provide annotations about particularly relevant information
facets [19].

In the context of online sharing platforms in which users contribute and consume
audio content we can also think of retrieval strategies that take advantage of
user behavior information. The most prominent example of this type of retrieval
strategies are recommendation systems [56]. Recommendation systems can be
defined in different ways, but in the context of sound sharing a common application
is the recommendation of potentially relevant sounds for a user given previous
sounds that the user has retrieved. This problem is typically approached using
collaborative filtering techniques [66]. Such techniques are able to recommend
items to a user based on items that other similar users interacted with in the
past. For example, if user A has downloaded sounds 1, 2, and 3 and user B has
downloaded sounds 1 and 3; the recommendation system could recommend sound
2 to user B. Collaborative filtering techniques can be used for discovery through
sound recommendation in a way that evolves along with users’ activity. The more
users interact with sounds, the more information the system has to perform better
informed recommendations.

With respect to content-based approaches, sound retrieval often benefits from
machine learning approaches that map low-level features to more intuitive rep-
resentations. Machine learning algorithms for retrieval can be generally classified
between supervised and unsupervised. As shown elsewhere in this book, supervised
learning approaches have applications in acoustic event classification (Chap. 5),
annotation (Chaps. 6 and 7), and detection (Chap. 8) among others. Its appli-
cation to sound retrieval often implies dealing with scalability both in terms of
computational cost and concept generalization. For example, the statistics of a
large set of features have been used along with K-NN classifiers for large-scale
applications [13]. Another example approach for tackling concept generality is
combining classification based on existing taxonomies with free text queries [63].

Unsupervised machine learning methods are well suited for browsing and
discovery, typically by using clustering to discover underlying groupings in the
database. The most common approach is to map a collection of sounds to two-
dimensional space. Self-organizing maps (SOM) were used in a number of efforts
for this purpose [9, 28, 51, 52]. Another approach is using graph layout algorithms
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for visualizing nearest-neighbor graphs [69]. Nearest-neighbors graphs can also be
clustered using graph clustering to provide unsupervised hierarchical organizations
[60]. These browsing and discovery mechanisms do not require a textual query to
initially filter content, but can be effectively used in combination with textual queries
or supervised approaches to provide focused unsupervised interfaces. These are
especially useful when many kinds of sounds are mixed in the database. Two recent
examples of such interfaces are shown in Fig. 10.4. The first example, Floop10 (top),
is an experimental system for graphically browsing rhythmic sounds. Rhythimc
sounds are detected and classified in an unsupervised fashion using the Beat
spectrum [21], a classic descriptor that estimates the main periodicities in any kind
of sound [61]. A force-directed graph layout is used to organize a nearest-neighbors
graph (computed from content-based timbral similarity) for a subset of sounds that
share the same repetitive period and therefore can be played rhythmically together.
The second example (Fig. 10.4, bottom) shows an interface for exploring an audio
database in which the search results of a given textual query are organized according
to timbral similarity. Similarly to previous work by Heise et al. [28], results are
displayed in a map that can be explored and in which sounds can be listened to.11

The map is computed using the t-SNE [41] dimensionality reduction technique on
MFCC audio descriptors. Closer sounds in the map have closer timbral similarity. In
this way search results are placed in different parts of the map and users can browse
content by combining the semantic properties specified via the text search and the
timbre characteristics represented in the map of results.

10.6 Conclusions

The increasing popularity of sound sharing and the growing capabilities of portable
recording devices, including mobile phones, pose new challenges for sound retrieval
techniques. Sound retrieval is therefore a timely topic which will probably attract
more and more attention in the coming years.

In this chapter we have introduced the most important concepts related to sound
sharing and retrieval and have described the different ways in which content from
an audio database can be indexed, searched, and navigated. We have illustrated
the different parts of a sound retrieval system with code examples showing the
creation of an audio database and the addition of both metadata-based and audio-
based retrieval functionalities. This code can easily be extended to incorporate more
features and further experiment with sound retrieval techniques.

The introduction given in this chapter should be understood as a starting point
for future developments. In particular, promising research directions such as the use
of deep learning for the annotation of audio content and the use of domain-specific
ontologies for structuring metadata are likely to play an important role in future
sound sharing and retrieval systems.

10https://labs.freesound.org/floop/.
11https://ffont.github.io/freesound-explorer/.

https://labs.freesound.org/floop/
https://ffont.github.io/freesound-explorer/
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Fig. 10.4 Examples of two interfaces that exploit audio-features information to display sounds
in a two-dimensional space. The top figure shows Floop, an interface that organizes rhythmic
sounds according to an estimated periodicity. At the left, an interactive histogram indicates the
number of sounds available for each rhythmic cycle duration. When clicking on one of the bars, the
corresponding sounds are displayed and organized by timbral similarity. The bottom figure shows
a map in which sounds are organized by timbral similarity. Users can introduce some textual query
terms which are used to query Freesound and the results are displayed in a map where each circle
represents a sound. Closer circles in the map tend to sound more similar than circles which are
farther away
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Chapter 11
Computational Bioacoustic Scene Analysis

Dan Stowell

Abstract The analysis of natural and animal sound makes a demonstrable contri-
bution to important challenges in conservation, animal behaviour, and evolution.
And now bioacoustics has entered its big data era. Thus automation is important,
as is scalability in many cases to very large amounts of audio data and to real-
time processing. This chapter will focus on the data science and the computational
methods that can enable this. Computational bioacoustics has some commonalities
with wider audio scene analysis, as well as with speech processing and other dis-
ciplines. However, the tasks required and the specific characteristics of bioacoustic
data require new and adapted techniques. This chapter will survey the tasks and
the methods of computational bioacoustics, and will place particular emphasis on
existing work and future prospects which address scalable analysis. We will mostly
focus on airborne sound; there has also been much work on freshwater and marine
bioacoustics, and a small amount on solid-borne sounds.

Keywords Animal communication • Vocalisation • Ecoacoustics • Bioacous-
tics • Bird • Sound similarity • Species identification • Automatic species recog-
nition • Natural sound • Soundscape • Acoustic monitoring • Passive acoustic
monitoring • Animal calls • Vocal sequences

11.1 Introduction

Animals make use of sound for communication and exploration. Sound enables
rapid transfer of information with no need for visual contact with the receiver,
which is advantageous in dense forest, in nighttime activity, and over long distances,
both in the air and underwater. As scientists, ecologists, and technologists, we can
make use of such sound to gather information about animals for a wide variety of
important tasks.
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Bioacoustics is a term that covers a wide multidisciplinary span of the study of
sound in biological contexts, including topics such as the mechanical propagation
of sounds through the environment, the sound production mechanisms of animals,
and the phenomenology and neurology of sound perception in various species.
Bioacoustics is increasingly significant to biodiversity [40]. Many species and
ecosystems are threatened by human populations, by climate change and by natural
processes [57, 84], and a diverse array of projects now makes use of automatic
and semi-automatic bioacoustic analysis for monitoring [26, 54, 93]. Bioacoustic
analysis is also key to the scientific understanding of issues such as animal
communication, speciation and cultural evolution, and to the management of natural
sound archives.

So which types of sound do we wish to analyse? The sounds that animals make
are extraordinarily diverse. To give some examples: many mammals vocalise in a
manner roughly similar to human vowel sounds, resulting in sounds as harmonic
“stacks” with formant-like resonances; a familiar example is the howling of dogs
or wolves (Fig. 11.1a). The group dynamics of animals producing these overlapped

Fig. 11.1 Spectrograms illustrating sound scenes of interest in bioacoustics. Each one shows an
excerpt of approx 10–20 s, 0–11 kHz. (a) Small pack of wolves howling together, Ähtäri, Finland.
Source: Freesound 243495, YleArkisto. (b) “Dawn chorus” of many bird species, Devon, England.
Source: Freesound 275189, odilonmarcenaro. (c) Frogs (lower pitch) and insects (higher), Tybee
Island, Georgia. Source: Freesound 238878, Danjocross. (d) Risso’s and Pacific White-sided
dolphins, off Monterey, USA. Half-speed recording. Source: Freesound 53414, aguasonic
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sounds are an interesting challenge [34]. Some birds also produce harmonic sounds,
but many also produce relatively pure tonal sounds (by using the vocal tract
resonance actively to enhance the energy of the fundamental) or very noise-like
sounds; songbirds also have dedicated muscles to enable them to perform complex
sounds with very rapid frequency modulations (Fig. 11.1b). Other taxa such as
amphibians and insects produce simpler, more stereotyped vocal units; many of
these also engage in co-ordinated group calling in which it is difficult to identify
each individual’s sound (Fig. 11.1c). Many whales and dolphins produce variable-
pitch harmonic sounds as well as clicks and buzzes (Fig. 11.1d). Bioacousticians
typically have to deal with a wide array of sound types—harmonic or otherwise,
percussive or extended, stereotyped or highly variable—though the picture can
usually be simplified in single-species studies.

In this chapter we will focus particularly on how modern computational methods
can contribute to solving problems in bioacoustics, through various forms of
acoustic scene analysis. The computational aspect is important because of the
increasingly large amounts of data available to bioacousticians, making automation
a necessity, but also because modern computational techniques provide new tools
to help us gain new insights from available data, whether that be analysing a single
example in fine detail or data mining a large collection.

We start from a task-focussed perspective. This will make clear the connections
with, but also the differences from, scene analysis paradigms considered elsewhere
in this book. We start in Sect. 11.2 with a tour of various tasks in bioacoustics and
some existing approaches to them. In Sect. 11.3 we review cross-cutting method-
ological issues such as measuring similarity and dealing with sound sequences. In
Sect. 11.4 we focus particularly on large-scale processing, important for big data
and for many bioacoustic systems to be deployed in the field. Finally in Sect. 11.5
we consider open problems and general perspectives on computational bioacoustics.

11.2 Tasks in Bioacoustics

11.2.1 Population Monitoring, Localisation, and Ranging

Animal population monitoring has long been recognised as an important task.
Whether focussed on a particular species (for its importance or its representative-
ness) or on all members of an ecosystem, many decades of continued effort have
been invested in obtaining good estimates of the numbers of individual animals and
how they vary by time and by geographical location [84]. Much of this has been
based on manual observation. The prospect of automation offers the potential for
larger-scale and long-term monitoring, even in inhospitable environments [47].

A crucial issue is the level of accuracy of automatic monitoring, in general and
across varying weather conditions [8, 47, 77]. Automatic methods are rarely as
precise as manual monitoring by an expert. However, they do offer two relative
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benefits over human observers. Firstly, observations can often be independently
verified via the inspection of sensor data records. Secondly, automatic methods
may be able to give a much clearer indication of their level of confidence in their
decisions than can humans, and this probabilistic information can feed through
usefully into analysis.

Statistical ecology is a well-developed discipline with models for estimating
spatio-temporal population distributions of animals from manual observation data.
These manual observation data often consist of observations (of calls or of indi-
viduals) along with bearings or distance estimates, and these are integrated using
frameworks such as spatially explicit capture–recapture (SECR), distance sampling,
or occupancy models [47]. These frameworks account for various factors such as
missed detections and the limited area sampled. Thus, for bioacoustic monitoring, it
is desirable not just to detect the presence of a sound, but to estimate qualities such as
distance and bearing, and ideally to cluster vocalisations according to the individual
who produced them. These attributes are not commonly handled in general-purpose
audio algorithms. Indeed identifying individuals is a rather difficult task to automate
in general, and so the most direct route to automation is to use methods based on
call detections without individual ID.

Using acoustics to estimate the location (or the distance, the bearing) of a
vocalising individual is thus useful for population monitoring. It is also useful
for investigating animal behaviour (although in that case, GPS or other tracking
of focal individuals may be a more direct route). The most robust approaches
to acoustic estimates of location make use of multiple simultaneous recordings,
from microphones arranged in a fixed array of known dimensions. This enables
localisation by triangulation based on the speed of sound relative time-of-arrival of
a sound at each of the microphones [4]. Various types of microphone array have
been deployed and tested for localising animal sounds, on land [6, 36, 50, 81] and
underwater [26], and this remains an active area of development.

In many cases a microphone array is not available but rather a single-channel
recording. This may be because the data is from archives, but it will continue
to be the case even for new recordings because of the advantages such as cost
or equipment bulk, and data-gathering from crowdsourcing initiatives. Distance
estimation from a single microphone is difficult. In general the estimate makes
use of how a sound changes as it propagates through the air or water: as a sound
wave travels outward from its source in a spherical radiation its energy per unit
area decreases as 1=r2, and other atmospheric and refractive effects can modify
the sound differentially at different frequencies [7, 58]. For example, making use
of these propagation characteristics Dawson and Efford developed an extension of
SECR useful for automatic surveys, using the signal power of a vocalisation as a
proxy for its distance [17].
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11.2.2 Species and Subspecies Identification

The discrimination of different animal species and subspecies is clearly needed in
the majority of bioacoustic monitoring projects, for example, to avoid estimates
of one species’ population density being confounded by detections of some other
species. The only exception is in studies of general ecosystem or acoustic richness
(Sect. 11.3.5). Thus, various projects have sought to develop species identification
as a classification task, using the kind of acoustic data that might be collected
in a large-scale monitoring scenario [27, 54]. In developed countries the set of
terrestrial fauna to be detected is typically well specified and with sufficient data
to train a classifier. However, in developing countries, rich tropical ecosystems, and
inaccessible locations, the set of classes to be encountered may not be fully known.
Thus unsupervised analyses or open-set classifier designs (which account for the
potential occurrence of new unseen classes) are also appropriate.

The boundaries of “species” are not always fully settled. It is not uncommon
for taxonomic research to identify new subspecies or species that were previously
considered an undifferentiated part of some other species, or for the reverse to
happen. This occurs partly due to updated evidence, and partly due to evolutionary
processes which continue to act on populations and ecosystems [46, Chapter 10].
The behaviour of species, including communicative behaviour, has long formed
part of the evidence base for taxonomy [46, Chapter 12]. These decisions can
have profound consequences, since the identification of a population as a unique
(sub)species can directly lead to investment of resources into conservation efforts
[46, Chapter 12].

Modern data collection and computation means that computational bioacoustics
increasingly has a role to play in such decisions. The issue at heart is not purely
that of classification, but of delineating and interrogating the boundaries between
classes. This may benefit from clustering and visualisation methods, analysing the
sound units as well as their sequencing.

11.2.3 “Vocabulary” Analysis, and the Study of Invariance
and Change in Animal Communication Systems

Studying the “vocabulary” and “grammar” of animal communication systems is a
wide research field. It can assist with tasks already mentioned (population moni-
toring, species delineation) and is often a fundamental task in the characterisation
of a species and its behaviour. To give one example, the zebra finch Taeniopygia
guttata is a songbird used in a wide variety of research, and its vocal repertoire was
characterised by Zann through experience and through inspection of audio examples
[99]. More recently, data-driven approaches using automatic classification and
clustering have refined, challenged, and quantified the repertoire (for domesticated
populations of zebra finch) [20, 83].
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Labelling of the individual units (“syllables”) within a vocalisation is useful in
studies of animal communication and can be approached as an automatic classifi-
cation task [20, 67]. However, since the ground truth set of labels is rarely known,
it is often better treated as a clustering task. Giving a definitive characterisation is
challenging because even within a (sub)species there are often differences between
separate populations and often individual differences, meaning that generalising to a
whole species is not always warranted [38]. Individual differences arise particularly
in species which exhibit vocal learning [46, Chapters 3 and 4]. Characteristics can
change over time due to genetic or cultural evolution [39, 97]. These factors are
challenges for the development of automatic methods, but also research topics in
their own right, which can be aided by computational audio analysis [38].

Vocal learning in particular is a large research topic in itself, not least because
the human capacity for language depends in large part on our species’ own vocal
learning ability, which evolved separately from that in songbirds and some other
taxa. To answer research questions about what one songbird learns from the sounds
around it, it is useful to develop measures of acoustic similarity which aim to
highlight physical and perceptual relationships between different sound examples
(Sect. 11.3.3) [44].

The examples in Fig. 11.1 show that many animals vocalise together with
others—whether these be mating partners, group members, rivals or collaborators,
same or other species. To what extent do their sounds influence one another, and
how might this relate to other group aspects of animal behaviour such as flocking or
predator-prey dynamics? Howling wolves (Fig. 11.1a) match their timing and pitch
to some extent, as do other chorusing animals. Conversely, birds in a dawn chorus
(Fig. 11.1b) have been argued to avoid overlapping each other so they can maintain
their respective communication channels [98]. Evidence for these inter-individual
effects can be difficult to quantify. However, various approaches are now making
this possible [3, 50, 59, 73].

11.2.4 Data Mining and Archive Management, Citizen Science

Archives must be able to be browsed and searched in order for their contents to
be useful. The volume of natural sound data has increased exponentially in recent
decades, which presents practical problems for the management of archives and
research collections [63, 94]. As with other data, the full value cannot be extracted
without providing tools to help users to perform data mining tasks such as searching
for sound examples of a specific type or characterising the contents of sound files
to determine which ones may be relevant to a query. For this, classification and
clustering procedures can help to automatically annotate sound scenes and/or the
events within (Chap. 8). Visualisation tools are also needed to enhance manual
browsing of large audio data.
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For various types of project, it is increasingly beneficial to make use of
crowdsourced data (a “citizen science” approach) [94]. Compared against more
controlled data collection, this raises various issues such as provenance, privacy,
and varied data quality. For computational bioacoustics in particular it means that
audio recordings must be analysed which were recorded under varying and often
unknown conditions (hardware, background noise, distance). Tasks of particular
note in citizen science include automatic labelling or validation of user-submitted
labels, outlier detection, duplicate detection, and making inferences from ambiguous
data.

Bioacoustics covers many more audio-based tasks than we can cover here. For
example, for some species it may be possible to estimate properties of individuals
such as their age, size, health, or sex, if those are reflected in characteristics
such as the vocal tract shape, the frequency ranges produced, or the number and
diversity of vocal units produced [9, 87, 88]. Estimating health/welfare has industrial
applications in monitoring conditions for farming.

We next proceed to consider methodological aspects of relevance to people
working on various bioacoustic tasks.

11.3 Methods and Methodological Issues

There are many different tasks and research questions in bioacoustics, and compu-
tational workflows vary widely. In this section we discuss various methodological
issues of relevance in many areas of computational bioacoustics. We start with
detection, segmentation, and classification, which are different concepts but are
related and overlapping, and so we consider them together. We then consider
source separation, similarity measurement, vocal sequences, holistic analysis, and
visualisation, in each case focussing on the computational issues but with examples
from the literature covering specific animal studies.

11.3.1 Detection, Segmentation, and Classification

As in other domains of sound scene analysis, many bioacoustic analyses require a
sound scene to be decomposed into its component sound events, and for those events
to be labelled. Procedures for detection, segmentation, and classification therefore
may have much in common with procedures discussed elsewhere in this book: see
in particular Chaps. 2 and 8. However, there are also important differences, which
are driven by the nature of the sounds considered and by the specific questions that
bioacousticians wish to ask. A particular issue we will encounter is the relative lack
of ground truth, which emerges particularly when labelling the different sounds that
a particular species can make.
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The terms detection and segmentation are sometimes used interchangeably, both
concerning the presence/absence of the sound type(s) under consideration. Although
segmentation in general scenes can mean dividing the scene into multiple regions
each of which may be of a different kind, in bioacoustics and animal communication
it usually means dividing the scene into foreground (songs, calls) and background.
Detection/segmentation can be conceptualised in different ways (see Fig. 8.1 in
Chap. 8): some methods result in a yes/no decision about whether a sound is found in
an audio clip, while some result in onset/offset regions indicating temporal location,
and some result in time-frequency locations [77]. In bioacoustic analyses, many
investigators annotate data by drawing time-frequency boxes on spectrogram plots.
This is usually sufficient for the level of detail required and relatively intuitive and
efficient for manual annotation. This method goes hand-in-hand with a commonly
used method for detecting animal sounds in a sound scene: template-matching
by spectrogram cross-correlation, which uses identified time-frequency patches as
templates and finds matching regions in a query spectrogram [77, 85].

Although time-frequency location can be useful, for many applications the tem-
poral location is the more important aspect of detection. It can help with navigation
of long-duration audio recordings, and can also be used to divide recordings into
smaller segmented regions which then go forward to further analysis such as
classification. Manual segmentation has been used widely in previous decades,
and is still used when a high precision is particularly important, but automatic
segmentation is now common. Aside from template-matching, another common
method is to select contiguous regions with relatively high energy, perhaps in a
specified frequency band of interest [22, 28, 48, 69]. Ventura et al. compared various
segmentation methods, and introduced a method in which temporal segmentation
decisions are based on the results of morphological filtering (i.e. blob detection in
spectrogram data) [89].

One paradigm for analysis which is rarely used for everyday sound scenes
but potentially useful for bioacoustics is sinusoidal analysis or pitch tracking.
Its use depends on the species to be studied: many songbirds as well as whales
and dolphins produce tone-like vocalisations, although even in those taxa there
are many vocalisations which do not fit a tone-like model. While acknowledging
that caveat, researchers have developed various sinusoidal methods to detect and
characterise vocalisations of dolphins [31, 49] and birds [14, 30]. This results in a
different kind of output as in other detection methods: the objects being detected are
continuous pitch tracks, or groups of these. Methods in this category might be simple
or complex: recent work has found that highly simplified peak-picking methods
applied to birdsong lead to surprisingly robust analysis, which is encouraging for
large-scale application, though questions remain about generalisation to high-noise
environments [61, 76].

Various tasks in bioacoustics are based on automatic classification applied to
the regions segmented from a sound scene. One of the most widely studied is
classification of species. In early research, classification was used to make a decision
among a small number of potential species labels; however, in practical applications
the number of species potentially present is usually large, and recent work has
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Fig. 11.2 Specific examples from current literature of workflows for automatic species classifi-
cation from sound. The workflows are aligned to highlight analogies between processing steps.
We have omitted preprocessing steps such as noise reduction. Examples of algorithm choices, etc.,
are given in brackets. (a) Standard template-matching, using cross-correlation or dynamic time
warping [46]. (b) Template-matching as a feature-extraction technique [41]. (c) Feature learning
[75]. (d) Deep neural network (DNN). Some DNNs operate on summary features; here we depict
a DNN operating directly on spectrogram data, as in modern convolutional or recurrent neural
networks [27]. Some DNNs also operate on raw waveform audio, rather than on spectrograms; at
present this is unexplored for bioacoustics

been able to demonstrate strong results classifying among hundreds of species
[27, 41, 76]. Figure 11.2 illustrates the processing steps involved in some examples
of species classification workflows. Many of the classifiers used are similar to those
used for other types of sound scene. These include support vector machines (SVMs)
[10, 22], random forests [41, 76], and HMMs [30]. Up until 2016 there was very little
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application of deep learning to bioacoustic classification tasks. A few researchers
had used neural networks for bioacoustic analysis on a small scale [52]. This gap
is notable since deep learning should be useful in many bioacoustic applications,
especially large-scale ones; researchers are now starting to apply some of the deep
learning methods that have already reaped benefits in speech and other audio tasks
[27]. In Sect. 11.4 we will consider choice of classifier as well as other aspects from
the perspective of scalability to large data volumes.

For workflows in which classification is applied to individual segmented regions
of an audio scene, the overall performance of the system may be critically vulnerable
to the quality of the initial segmentation procedure. For this reason, various recent
methods operate on a sound recording as a whole, without attempting to remove
irrelevant (e.g. silent) sound regions from consideration [10, 27, 76]. Providing that
the classifier is designed/trained to allow for the irrelevant inputs, this approach can
work quite generally, even in real field recordings with a variety of distractor sounds.
However, there has not been a detailed study which evaluates segmentation-based
versus segmentation-free modern methods for their robustness to adverse conditions
such as high levels of weather noise.

Template-matching has been used in many bioacoustic projects, usually based
on automatic comparison of spectrogram patches. This works well when the sounds
to be identified are strongly stereotyped. It can fail to identify sounds correctly
when there is a high degree of variability, such as changing duration or ordering of
the units within a vocalisation (cf. Fig. 11.3). However, one recent methodological
strand has repurposed template-matching for flexible large-scale classification [41].
In this approach, a library of templates is used to analyse a spectrogram. However,
rather than using the strength-of-match for each template as a direct indicator of
species presence, those values are interpreted as “features” to be used as input to
a powerful classifier such as a random forest. If a query signal is similar but not
identical to sounds from some class, then its weak matching against those sounds is
a signal that a powerful classifier can use to infer an appropriate label.

Fig. 11.3 A synthetic example to show that spectrogram cross-correlation does not always
accord with perceptual similarity. We synthesised three syllables and then used spectrogram cross-
correlation to compare them, normalised so that a syllable matches 100% with itself. The syllable
on the right is the odd one out, yet it matches more strongly with the other two than they do with
each other. This is because the common structure in the other two syllables takes different durations
and so cannot all be aligned simultaneously
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Species labelling is not the only classification task that has been studied.
Labelling of individual units (“syllables”) within a vocalisation was mentioned
in Sect. 11.2.3. Separately, labelling of individuals of a particular species can be
useful for estimating population counts, or for analysing the interactions between
individuals [62]. In practice there is an important issue to be aware of when
using black-box machine-learning techniques for individual identification: sound
recordings for each individual tend to have distinct background sounds as well
as distinct foreground sounds, because in many cases the individuals have distinct
territories or home ranges. This creates a problem of confounding that may hinder
the true generalisability of the classifier, which is particularly critical if individual
detection is intended to be used to identify rare circumstances such as extra-pair
copulation.

One issue which has rarely been dealt with explicitly in automatic bioacoustic
classification is the possibility that a sound may come from a “new” class outside
the set of classes encountered during training—for example, an animal may emit
an uncommon call not present in the training data; or for individual recognition
we might record a previously unseen individual—and we wish these occurrences to
be detected explicitly. This is sometimes called the “open set” problem, and should
be a consideration for a bioacoustic recognition system deployed in the field. Ptacek
et al. developed an individual classification approach designed to account for the
open set problem [62]. The method makes use of a universal background model
(UBM), which is a general model intended to cover any individual of the target
species. During classification, the score of a query signal is evaluated against the
UBM as well as the models for specific individuals, allowing the system to decide
that the query comes from a known individual or from some unknown individual.

11.3.2 Source Separation

When a sound scene contains multiple animals vocalising or complex background
sound, it is common to want to separate sounds out from one another so that
each animal’s sounds can be analysed. Separating all sources simultaneously is a
difficult task in general [90], and goes beyond the ability of animals’ own perceptual
systems. In bioacoustic monitoring applications, the diverse range of foreground and
background sounds encountered means that source separation on single-microphone
recordings—based on models of signal properties—is of limited practical use.
Instead, multi-microphone setups that allow for source separation based on spatial
information (beamforming or spatial filtering) offer the most productive route for
source separation in bioacoustics [3, 6, 26]. This can include focusing on specific
individuals or species of interest, as opposed to analysing every single source: this
is analogous to the manual technique of a recordist in the field using a parabolic
microphone to record a focal individual.
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Another multi-microphone approach to extracting the sound of individuals is
to attach monitoring devices directly to each of the focal individuals [83]. This
requires the identification and capture of the individuals in advance. This has been
used widely for larger mammals such as marine mammals though for smaller
animals require care with regard to what an animal can carry without impacting its
behaviour or welfare [83]. Analysis of each animal’s close-mic recording can reveal
information not only about their own vocalisations, but also about the acoustic and
behavioural context in which they occur; some work has begun to provide automatic
analysis of this [72].

Alternatively to obtaining separate channels, it is prudent to consider methodolo-
gies that do not rely on the assumption that sources are not intermingled in audio.
This includes methods that analyse multi-individual sequences (Sect. 11.3.4) and
holistic sound scene analysis (Sect. 11.3.5).

11.3.3 Measuring Similarity Between Animal Sounds

If we are given two animal vocalisations, can we determine how similar they
are? This question arises in many contexts. Often researchers wish to characterise
an animal’s vocal repertoire [38]. This can be aided via cluster analysis, which
needs a way of measuring (dis)similarity in order to work. Other researchers
wish to measure vocal learning in songbirds: how faithfully has a bird learnt to
reproduce a sound made by its tutor? These questions can be asked of sequences
but are also pertinent for individual vocalised units. Similarity is also used in many
automatic analyses, implicitly or explicitly: some classifiers can operate directly on
(dis)similarity data rather than on the items themselves.

It is important to clarify what is meant by similarity. Acoustic perception often
differs from species to species. Perceptual similarity for the study species in question
is often the ideal, which must be determined from studies or from psychoacoustic
data [37]. Often human judgment is used as a stand-in; the extent to which this is
a problem depends on the species and the application. Similarity is often judged in
more pragmatic terms, for example, whether an acoustic similarity measure (such
as those described below) yields a clear/useful clustering of data, or repeatable
observations.

Early studies of bird sounds used easily understandable features measured
directly from a vocalisation: its duration, its minimum, and maximum pitch [46].
These measures can be used to create a “space” in which similar sounds sit closely
together, but in general these measures are not highly discriminative, since they
do not pick up on subtleties such as the fine timing details within a call, or small
modulations—subtleties which may be hard to measure directly even if they are
perceptually salient.

More common is to compare the audio files against each other using a measure of
similarity such as cross-correlation [46, Chapter 12]. This was originally performed
using the raw waveform, but it is now very common to perform cross-correlation
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of spectrograms, which has an advantage of ignoring small phase differences in the
waveform (which are often irrelevant or affected by external acoustic factors), and
can easily be made to focus on a frequency range of interest.

Cross-correlation is a good way to compare time series against each other when
the differences are in what happens at specific times (e.g. which frequencies are
heard at the onset). However, it is quite strict about the time basis: it does not do
a good job of reflecting cases where, for example, the same sounds occur, but with
different durations. In that case we might intuitively say that the sounds are rather
similar, but the cross-correlation process is unable to find a way of aligning the
two against each other which gives a strong match—see Fig. 11.3 for a synthetic
example. Animal sounds often vary widely in exactly these duration characteristics.
Hence we might seek a more flexible way of determining if two time series match
up well.

One way to add flexibility is to allow the sounds to be linearly “stretched” in
time relative to each other, and to find the amount of stretching that best lines up the
signals, before measuring distance [82]. Dynamic time warping (DTW) is a related
idea but even more general. Given two time series, it does not assume a one-to-one
correspondence between time points, but seeks a flexible temporal matching which
minimises an overall distance measure. The method offers flexibility in specifying
the maximum allowable amount of warping, and it can be performed relatively
efficiently via dynamic programming. Lachlan et al. provided evidence that it could
result in similarity measurements that accorded well with the judgments of human
listeners [38]. However it still often requires a larger computation than cross-
correlation, as will be discussed in Sect. 11.4. This means it may become impractical
for real-time or large-scale analysis, or when performing all-pairs comparison on
a dataset (requiring 1

2
.N2 � N/ separate comparisons where N is the number of

audio clips), due to the computation time required. The benefit of DTW over simpler
methods depends on the variability present in the vocalisations in question, and how
much precision is required in the application. Simpler matching is often preferred
for large-scale methods aimed at detecting presence/absence of bird species [41]. As
an example of work at finer detail, Lachlan et al. applied DTW to both spectrogram
and manual features for a close inspection of the question of whether species-
universal categories exist in birdsong, finding that the evidence for universals (across
different groups of the same species) is not as clear as might be assumed [38].

A different approach to similarity is based on probabilistic modelling. Instead
of warping the observed features of two sounds, we can consider them as the
products of some underlying generative system(s). How likely is it that they were
produced by the same underlying process, or processes with similar attributes?
Most commonly this is handled using a hidden Markov model (HMM) analysis [55,
Chapter 10]. Each audio frame (e.g. the vector of MFCCs or spectral powers from
each 10 ms chunk) of a sound signal is considered as an emission from a HMM,
which can parametrically accommodate variations in duration, as well as repetitions
and skipped elements. The model thus allows for even more flexibility than DTW,
and is particularly useful for complex vocalisations where such flexibility is needed
and sufficient training data is available. A specific HMM is trained either from one
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example or a collection of similar examples, and then the similarity of a query clip
is judged as the probability (the likelihood) that the model assigns to that clip. This
likelihood can be reinterpreted as similarity or distance, but there is relatively little
work using such distances: the most common application of this in bioacoustics
is to threshold the likelihoods for detection [12, 19]. Towsey et al. [85] report in
passing that they found MFCCs and HMMs to perform poorly for detection, hence
their use of other methods. Ren et al. [64] argue for the HMM paradigm for general
classification of animal sounds, applying it to the sounds of Asian elephants, ortolan
buntings, and poultry. Wichern et al. [95] use it to construct a query retrieval system
for general environmental sounds.

To summarise: when evaluating similarity by comparing the acoustic features of
sounds against each other, one must remember that such acoustic similarity is only a
proxy for perceptual similarity, and also that the results will be strongly affected by
both the features being compared (e.g. syllable pitch/duration? spectrogram pixels?)
and the similarity measure used (e.g. Euclidean distance, cross-correlation, DTW,
HMM).

11.3.4 Sequences of Vocalisations

Many bioacousticians are interested in the sequencing of individual units of
vocalisation—roughly equivalent to the sequencing of individual words in human
speech, and with only approximate consensus as to what constitutes a “unit”—for
a useful review of this topic, see [32]. The interest in call sequencing often comes
from a desire to understand the communication systems being used by animals.
Here we consider computational aspects and full automation of such analysis. For
computational bioacoustic analysis, the questions are how can sequences usefully
be modelled, how can their characteristics be estimated from data, and also how can
our knowledge of sequencing help with further audio analysis. The focus has often
been on the sequencing within the vocalisation of an individual animal; however,
we can also consider sequencing within a pair, whether parent–offspring, breeding
pair, or rivalrous pair, or for a larger set of animals such as a colony.

To analyse an audio clip, it is common to use Markov models or (equivalently) n-
gram models [55, Chapter 10] [32]. Note that the sequencing here is the sequencing
of individual calls, and not to the lower-level sequencing of brief audio frames as has
been encountered elsewhere in this book (Chaps. 2 and 8). Thus, the audio stream
must first be segmented into units, and those units must be labelled. In principle
the labels could be continuous (analysed via a “state space model” rather similar
to a Markov model; cf. Chap. 8 Sect. 8.4) but usually a discrete set of unit labels
is used. The labels may be applied by manual inspection of the audio, potentially
alongside other contextual information; but for automatic analysis it is common to
use similarity-based clustering to analyse a set of un-annotated data, or classification
if annotated examples are available (e.g. [20, 21, 38, 83]). This then converts an
audio clip to a symbol sequence such as AAABBCBC. You should not lose sight of
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the arbitrariness of this discretisation, and the limits it places on analysis. In many
cases it is unclear whether the range of expression should be treated as categorical,
continuous, or some mixture of the two. Even if unit categories do exist, there may
be additional information (such as motivational state) encoded in the variations
of expression, which are obscured by this conversion. The salient dimensions of
variation are not always apparent to a human observer, nor can we guarantee they
will be detected automatically, unless we have high confidence that our measures
of similarity correspond well to the production and/or perceptual abilities of the
species. Analysis based on symbol sequences can be useful, provided that the
underlying assumptions required to convert an audio symbol sequence to a symbol
sequence do not go unexamined.

Given a symbol sequence, the Markov modelling paradigm is common, and gen-
erally gives a useful characterisation of the basic sequential phenomena observed.
Extensions of the Markov model have been explored both to bring the model closer
to the presumed reality and to integrate other data. One is the semi-Markov model
(SMM) or explicit-duration Markov model (EDMM), in which each symbol is not
just emitted once, but repeated some number of times (governed by a suitably
chosen probability distribution) before the transition to the next state. This semi-
Markov or explicit-duration structure is considered in detail in Chap. 8 Sect. 8.3.2.2;
Kershenbaum et al. argue that this structure is better-suited to many animal
vocalisations than a basic Markov model [33]. (Please note that Kershenbaum et
al. use unconventional terminology: they describe their explicit-duration model as a
“renewal process”, but this term actually describes a slightly different model, which
we consider next.) Other possible extensions include context-dependent Markov
models or hierarchical Markov models, both of which make the sequence emission
probabilities depend on unseen higher-level state: respectively, contextual variables
or “parent” Markov models [56]. Such models might be used in cases where
they match our beliefs about the particular structure of a species’ vocalisations.
However, for animals which emit sequences that are complex enough to merit such
analysis, there is rarely scientific consensus about what structures underlie the vocal
production [1, 100].

The Markov models discussed above omit to consider one notable aspect of
animal sound sequences: their timing. A transcription AAABBCBC does not tell
us if the sounds occurred regularly or irregularly, fast or slow, yet it is clear from
listening to animal sounds such as birdsong that there is significant structure in
the timing. The timing might therefore be used as part of source separation, or
identification of a species or an individual, irrespective of considerations about its
meaning to the animal itself.

Autocorrelation and cross-correlation have been used to analyse the timings
of vocalisations—often applied to the onset times of events, rather than to spec-
trograms as discussed above for detection. This produces descriptive statistics
which can be used to study similarities/differences in individuals or in groups of
animals [25, 59]. Alternatively, a generative model can be fit to the same type of
observations, which among other things can help to clarify cause and effect [73].
Such models are of interest in animal behaviour research, in which a variety of
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phenomena are studied such as duetting, social network structure, or interactions
between species. For general bioacoustic sound scene analysis, these timing-based
analyses also provide numbers which relate to the numbers of individuals, the
density of calling, and so forth, which can be used as features taken as input for
other inferences such as population estimation.

A Markov model can be augmented to include timing information. This is then
referred to as a Markov renewal process (MRP), so named because a renewal
process is a statistical model of the gaps between events on a continuous timeline.
An MRP model can be applied to a single stream of data in exactly the same way
as a Markov model, because the time-gap information can be thought of as just
one added dimension of the Markovian observation. A small complexity is added in
that the gap is typically characterised as continuous-valued while the unit is given a
discrete-valued label, but as long as the tools can accommodate this, the application
is then as broad as for Markov models: a model can be fit to data, can be used
for sequence decoding, or for classification by selecting among MRP models with
maximum likelihood, for example. Stowell and Plumbley illustrated an application
of MRPs which goes beyond what can be done with a standard Markov model [74].
They considered sound scenes having multiple individuals of the same species, and
thus modelled the observed vocalisation sequence as being the result of multiple
overlapping MRPs. They demonstrated that in that case the MRP model can be
used to segregate the observations into separate tracks per-individual, i.e. to cluster
the calls, or to perform a kind of source separation (of events rather than of audio
signals).

11.3.5 Holistic Soundscape Analysis: Ecoacoustics

We have seen that many bioacoustic analyses start by locating individual
units of vocalisation within a recording, whether these be syllables or entire
sequences/phrases. They then operate on these units. But identifying units is
not error-free; and there may be important contextual information in the audio
signal. What if we could extract the information we actually need, directly from a
soundscape recording as a whole, without ever having to divide it up into objects?

Classifying or auto-tagging an entire sound scene is one example of such holistic
analysis, and has been explored for various types of audio recording. Some systems
perform multilabel classification of bird species at the holistic level, classifying
without segmenting or otherwise subdividing the sound scene [27, 41, 75]. But for
monitoring purposes we may wish to extract other kinds of information than class
labels—such as a numerical indicator of the health or the diversity of an ecosystem.

In principle this is a regression problem, but an extremely difficult and ill-posed
problem: it is not even clear to what extent these ecosystem properties are encoded
in the audio. So as a step toward this goal, various researchers have developed ways
to characterise the acoustic diversity of an ecosystem soundscape. This type of



11 Computational Bioacoustic Scene Analysis 319

approach has been referred to as ecoacoustics—a term created to emphasise the
holistic soundscape-wide focus, in contrast to much bioacoustics [78].

Acoustic diversity is not in general a well-defined term. Researchers aim to
develop acoustic indices which match well against the intuitions of an analyst, e.g.
by ranking diverse/busy sound scenes higher than others, or by helping guide the
user to the (sections of) recording containing diverse sounds worthy of inspection.
These indices are evaluated by determining if they are good predictors of more
grounded labour-intensive measures such as the number/diversity of species audible
in a sound scene [24, 42, 80]. In general correlations are observed but at a moderate
level, particularly when tested on real field data, meaning that this paradigm is not
yet ready to stand as a direct proxy for species diversity, but a useful approach for
scalable monitoring, preprocessing, and data mining [42].

Sueur et al. [80] defined two kinds of acoustic index, inspired by measurements
previously applied to species count data (see also [79]). The ˛ indices characterise a
single audio clip, while the ˇ indices characterise the difference between two audio
clips. Both types were based on analysis of the spectral and/or temporal envelope
of the overall sound scene, i.e. on relatively simple features that can be efficiently
extracted from a large set of recordings. The goal was to combine both types to
characterise the diversity in a set of audio clips. From that work, the measurement
most commonly adopted by others has been the so-called Df measure of the spectral
dissimilarity between two audio clips:
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where Xi is the power spectrum of clip i, having F frequency bins. This results in Df

ranging from 0 to 1. (Note that the subscripted f in Df is distinct from the frequency
index f used in the summation terms.) An advantage of ˇ indices such as Df over
˛ indices is that, because they are based on differences rather than absolute values,
their numerical values are much less dependent on the exact recording context and
hardware, and so should be expected to lead to more robust comparisons across
conditions.

Lellouch et al. [42] developed related indices. They used mel spectra rather than
standard spectra as input, and defined a “cumulative frequency dissimilarity” index
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If the inner terms in Eq. (11.1) are interpreted as probability distribution functions
over frequency, then the inner terms in Eq. (11.2) can be said to be their corre-
sponding cumulative distribution functions. This cumulative index was introduced
to allow more tolerance to slight frequency shifts between the two clips.
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An ˛ index that has been explored empirically is the “acoustic complexity index”
(ACI), which is motivated by the idea that biotic sounds often contain much rapid
variability in intensity [60]. Similarly to the “spectral flux” measurement known in
music information retrieval [18], the ACI measures the amount of energy change
from one spectrogram frame to the next:
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where XŒt; f � is the spectrogram value at time t and frequency f . The sums over
t might be restricted to a time-window of interest rather than the whole audio
duration. The ACI, thus calculated for each frequency band, can be summarised
over frequency and/or over longer time spans. Farina et al. used the ACI to inspect
temporal changes in the acoustic environment [23].

All the measures considered in this section are relatively simple calculations
applied to spectrogram data. This renders them particularly vulnerable to “distrac-
tor” sounds such as weather noise (wind, rain) that may lead to a false impression
of biotic activity. Weather impact on remote recording devices is a common issue
in bioacoustic monitoring. This is true even for underwater sound where sounds
caused by wind and by sea ice can form substantial components of the soundscape
[51]. In many cases, time periods with unfavourable climatic conditions are simply
removed from analysis [23]. This is a practical limitation, undesirable not least
because it biases analysis: some weather conditions (which may correlate positively
or negatively with animal vocalisation) will be systematically underrepresented.
Future work should improve the robustness of this paradigm, either through noise
reduction or through further development of the indices to be measured.

Buscaino et al. evaluated the ACI in an underwater acoustic environment [11].
In the marine case, they found that the ACI was robust and reflected well the biotic
activity in the area. This is because the biotic sounds of interest were often short
impulsive sounds, whereas weather or human noise (due to passing ships) was
slowly varying—a situation which fits well with the ACI calculation. The authors
noted that when animal sound is dense enough, it can lead to a relatively static
spectral profile, and thus to an unexpectedly low ACI. To account for this they apply
an amplitude threshold.

In the terrestrial environment, surveying bird communities, evidence is mixed as
to the utility of holistic acoustic indices. Gasc et al. found moderate correlation
between indices such as Df and other indicators of community diversity, and
concluded that they could provide an acceptable surrogate [24]. Lellouch et al.,
however, concluded that although such indices were useful for scalable monitoring,
they were not yet ready to stand as a proxy for species diversity [42].
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11.3.6 Visualisation and Data Mining

Much of the focus in this book is on fully automatic methods for sound scene
analysis. However, there is also much to be gained from using computation to
improve manual or semi-automatic processes, such as data mining a large sound
collection for sound clips relevant to a particular research question.

A clear example is the spectrogram (also known as sonogram, when applied to
sound), which is a computational technique which greatly improved manual analysis
of sounds when it became widely available (see, e.g., [70, 96]). Many bioacousti-
cians routinely scan and annotate spectrograms visually. Additional information for
the user interaction can be added from procedures such as call detection. Although
call detection can in principle be automatic, an interaction step is typically needed
to refine the output and correct errors. These workflows are implemented in widely
available software such as Raven or SongScope [19]. Interactive analysis is not
merely for correcting errors, though, and can be a useful way to explore audio
data while developing research questions or gaining an understanding of an acoustic
environment.

There are many bioacoustic projects which record large amounts of audio,
because they use multiple sensors and because they record for very long durations
(e.g. years). It is difficult to navigate such long-duration audio using conventional
visualisation such as a spectrogram, because at a low zoom level fine details such
as calls can become invisible. Hence it is useful to design tools and visualisations
specifically for long-duration or large amounts of audio. Towsey et al. developed an
approach to long-duration false-colour spectrograms [86]. These are time-frequency
plots where each pixel, instead of representing simply the energy at a particular time
and frequency, represents an acoustic index measured at that time and frequency
(Fig. 11.4). The acoustic indices used include the ACI and the Df discussed above.
A pixel might, therefore, show up brightly if there is a lot of energy variation for
the time period it represents (which could be an hour, a day, or something else).
Note that in this application, the acoustic indices are calculated separately for each
frequency band, rather than overall. This means the output is a two-dimensional
image, passing a lot of information to the user, and having a frequency axis that is
easy to interpret for most people working with audio.

11.4 Large-Scale Analysis Techniques

Bioacoustics has entered its big data era. Many projects now capture many hours,
days, months of audio, from multiple recording locations [2, 68, 92]. Analysis of
recordings may occur off-line, but there may also be a need for real-time processing
in order to make low-latency decisions, such as decisions about which audio
recordings to preserve. The task is further constrained by the fact that many remote
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Fig. 11.4 Three spectrograms of the same 24-h recording made in bushland 30 km west of
Brisbane, Australia. The recording starts and ends at midnight, with midday in the centre of
each image. The time resolution is 60 s/pixel. The frequency range for the top image is 0–8 kHz
and for the other two, 0–11 kHz. The top grey-scale spectrogram illustrates the “compression by
averaging” performed by the audio-processing software, Audacity. The effect is to highlight only
general background noise, such as the cicada chorus at 1820 h and the insect chorus tracks at night.
The middle false-colour spectrogram is obtained by assigning three different acoustic indices (ACI,
ENT, and EVN) to the red, green, and blue colour channels, respectively. The morning chorus
is obvious but more surprisingly, several bird species can also be identified because their brief
calls nevertheless leave similar traces in consecutive minutes of spectrogram. The bottom false-
colour spectrogram is obtained by assigning the acoustic indices BGN, POW, and EVN to RGB,
respectively. Different indices provide different “views” into the soundscape. However, in case of
the lower spectrogram, two of the indices, POW and EVN are somewhat correlated and therefore
less information is revealed in the false-colour rendering

monitoring units need to have low power consumption so they can be left unattended
for long durations or powered, e.g. by solar panels.

Thus we will now consider a range of methods from the perspective of their
scalability and real-time suitability. One way to consider scalability is via the
“complexity” of an algorithm in terms of the amount of computation and/or storage
it requires. In computer science, this is summarised in “big O” notation: to say
an algorithm has time complexity of O.N2/ (where N might, for example, be the
number of datapoints) means that as N grows large, the computation time required
tends to follow some constant multiplied by N2. For example, if we have N audio
recordings and we wish to find all of the similarities between pairs of recordings,
there are 1

2
.N2 � N/ pairings to be considered and thus the time complexity must

be at least O.N2/. If an algorithm has time complexity O.N2/ or higher, then it may
well not be feasible to apply it to large datasets. Algorithms of lower order, such



11 Computational Bioacoustic Scene Analysis 323

as O.N log N/ or O.N/ are often sought. We will use this approach in some of our
discussion. For trained machine-learning methods we will distinguish between the
complexity of training a system and the complexity of applying the trained system—
usually the latter is the main concern. However, we also note that asymptotic
complexity is not always a perfect guide to practical feasibility. If an algorithm
requires kN bytes of memory for its calculations, then its usefulness also depends
on whether the constant k is small or large.

11.4.1 Classifiers and Detectors

Many approaches to classification/detection are instance-based, meaning that in
order to make a decision about a query datum, the algorithm compares it against a
set of data items previously stored in memory. This is the case for simple template-
matching methods which store templates of the target sound; other instance-based
methods include k nearest neighbours and support vector machines (SVM). For
template-matching the cross-correlation itself can be implemented through “fast”
algorithms with complexity O.TK/ where T is the duration of the audio being
searched and K the number of templates to match [43]. The memory required is
O.K/, assuming that the audio templates have some fixed maximum duration. It can
run in real time, though it is often one of the heavier computations running in a
system, especially if K is large. Thus it is most appealing for applications detecting
a small number of stereotyped animal sounds in which a small number of templates
will suffice. For larger problems, the reference data can be pruned, using a small
number of exemplars rather than all known instances. Efficient large-scale matching
can also be achieved by approximate matching methods such as locality-sensitive
hashing (LSH) [29]. This has been used for similarity-based audio retrieval in music
informatics [13].

Comparing two audio clips via dynamic time warping (DTW) has complexity
O.T1T2/ where the Ti are the audio durations. Thus if the duration of exemplar
templates has some fixed maximum duration (usually very much shorter than the
audio being searched), the formal complexity of DTW is linear in the duration of
the audio to be searched—the same as for cross-correlation. However, in practice it
still requires notably heavier computation than cross-correlation, which may explain
why it is not commonly used for large-scale analyses. Other methods with con-
ceptual advantages over simple template-matching include hidden Markov models
(HMM), non-negative matrix factorisation (NMF), and sparse representations (e.g.
[66]; see also Chap. 8 for discussion of these for sound event detection). As with
DTW, thus far these are little-used in bioacoustic monitoring, which may be due to
unfamiliarity, but from experience it appears unlikely that they would yield large
gains over cross-correlation for large-scale matching, and so the cost-benefit ratio
seems to argue in favour of cross-correlation as a default choice.
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Scalability is a particularly interesting question with regard to neural networks
and deep learning, which is now beginning to have its impact on bioacoustics [27].
The power of modern deep neural networks (DNNs) is partly due to their use of
very large datasets for training, which of course means that time taken to train a
system can be very long, even if accelerated by hardware technologies such as GPU
processing. This does not affect the computational complexity of applying a trained
DNN: applying a DNN typically consists of a fixed network of simple calculations
(such as multiplications and additions). However, a trained DNN may have many
layers and a large number of parameters, which can still mean that classifying using
a DNN takes a relatively large amount of computation.

Deep learning can exhibit another scalability issue for bioacoustics: since DNNs
often do not show powerful performance when trained on small datasets, they may
well be unsuitable for detecting/classifying sounds for which it is not feasible to
collect a large amount of audio examples.

Neural nets are usually trained in streaming fashion, by exposing them iteratively
to multiple small batches of examples. This allows them to train on large datasets
even on systems with small memory, and also means that they are updateable: they
can be trained further at any time by explosing them to further labelled data.

For further insight into the use of deep learning, the reader is encouraged to refer
to Chap. 5 but also to recent work in fields such as speech recognition and to the
useful handbooks on deep learning published since the advent of deep learning [53].

11.4.2 Reducing Computation Via Low-Complexity Front-Ends

If a relatively heavy-duty computation is required for good performance, or if
storage is limited, then one way of improving scalability is to reduce the number of
times the computation is invoked. This has often been used in bioacoustic surveys,
for example, by recording on a fixed schedule such as 5 min out of every hour,
which reduces the storage/analysis required by a fixed factor of 12; alternatively,
energy detection or the like can be used [68]. In survey designs these decisions are
made together with decisions about how often a monitoring station can be visited or
can transmit its results, or how much its power supply can provide. Even if data is to
be collected for an unknown amount of time, a fixed-size random sample of audio
segments can be obtained through simple “reservoir sampling” algorithms [91].

In a detection-then-classification workflow, the accuracy of the detector has a
strong impact on the number of times the classifier is invoked. The detector front-
end can be a simple energy-based method, or something more complex [85]. As
investigated by Ross and Allen, it may be desirable to use a simple low-complexity
detector as the first processing stage, set to reject silences but otherwise to have a
high recall factor, and then to refine the detection decisions using a more involved
algorithm such as a random forest [65].
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11.4.3 Features

Thus far we have given little consideration to the scalability implications of the
choice of features for representing the audio data. This is because, in particular
for template-matching approaches, the basic representation is relatively fixed, as
some variant of a standard spectrogram. The audio used to produce this spectrogram
may have been filtered or otherwise preprocessed; however, we note the advice of
Stoddard and Owren: “In bioacoustics applications, the best advice about filtering
is to use it sparingly” [71].

It is common to discard some frequency bands of the spectrogram to focus
on a frequency range of interest. This can reduce the computation required,
especially in single-species studies. Alternatively, to process a large number of
frequency bands relatively efficiently, Ruiz et al. apply a random projection, a
simple mathematical transformation to project the frequency bands into a lower-
dimensional representation [66]. This offers the same kind of dimension-reduction
benefit as does principal components analysis (PCA), but without needing to pre-
analyse the dataset.

Various methods do not work directly on spectrogram features but require
some processing of data into higher-level features, which might begin to have
some semantic interpretation. A good example is the estimation of time-varying
frequencies, known as F0 tracking, pitch tracking, or sinusoidal modeling. Many
such methods require a large amount of computation. Stowell et al. compared
four different feature types used to extract frequency and frequency-modulation
information from birdsong [76]. They found that some methods were extremely
time consuming, while by contrast the simplest method performed satisfactorily
as well as efficiently: it was based on picking the frequencies having peak energy
in each frame of the spectrogram. For detailed analysis, peak-picking might not
produce the most accurate frequency tracks, since peaks do not always correspond
to the fundamental frequency; nevertheless the information recovered can be useful
for large-scale as opposed to high-resolution analysis. Podos et al. made a similar
observation about features based on peak-picking [61].

Many of the acoustic complexity indices (ACIs) considered in Sect. 11.3.5 are
relatively simple calculations that could be performed in real time by a system.
This is why they are a suitable substrate for long-duration spectrograms (Fig. 11.4).
They could also be used as features for scalable machine-learning characterisation
of a sound scene.

For automatic detection/segmentation of audio in a remote monitoring unit,
Colonna et al. paid particular attention to the calculation of features with very low
memory and computation requirements [16]. They proposed to calculate energy
levels and zero-crossing rates (ZCRs) using an “exponential forgetting” method that
incrementally updates the previously remembered feature value with new data.

The use of feature learning deserves particular scrutiny in the present discussion,
with consideration of how it compares against basic features and how it relates
to neural network and other algorithms. As with deep learning, feature learning



326 D. Stowell

usually benefits from having a very large amount of training data available, which
has an impact on the training time required but does not make a notable difference
to runtime when deploying a trained system. Unsupervised feature learning via
spherical k-means was introduced as a highly efficient technique to learn features
from large datasets [15]. It is thus useful for analysis of very large training sets,
finding a transformation of the data that is fitted to characteristics of the data
(unlike random projections, mentioned above) and has been shown to give a strong
improvement to bioacoustic signal classification [75]. A related feature learning
approach was applied by Kohlsdorf et al. for dolphin vocalisations, applying
(standard non-spherical) k-means feature learning to small patches of spectrogram
[35]. Dictionary learning is closely related to feature learning, and has been
investigated for bioacoustic monitoring [66].

The transformation that is learnt by feature learning is similar to the trans-
formation performed by one layer of a neural network. One advantage of deep
learning is that multiple layers of transformation are stacked together, progressively
transforming the data to extract details. Mallat et al. introduced a different paradigm
for feature extraction, the scattering transform, which is not learnt but which like
a DNN consists of multiple stacked layers of non-linear transformations [45].
The scattering features have mathematical properties which are argued to capture
invariances that are relevant to natural sound analysis, and have thus been explored
for audio analysis. Unlike DNNs or feature learning, scattering features are not
learned and so can be applied even to small datasets. Scattering features have been
used as the basis for large-scale bird classification [5].

Further work will elucidate which of these approaches to feature extraction is
most appropriate for the bioacoustic context, which in many cases has large data
volumes but with rare or unknown sound event types which are of high importance
to detect.

11.5 Perspectives and Open Problems

Through this chapter we have seen that computational bioacoustics spans a range of
well-specified analysis tasks which have been studied in various ways over recent
decades, and which can be improved and made efficient through modern compu-
tational techniques. There has been much work on classification and detection, for
example, with connections to other work on computational audio scene analysis but
having specific adaptations to the characteristics of the sounds under consideration.
In this chapter we have seen tasks which computational bioacoustics has already
advanced, such as ecosystem monitoring, analysis of animal vocabularies, or data
mining bioacoustic archives. There are other tasks which would benefit from further
development—such as making sense of sound units and their sequencing, given
unlabelled audio data, and triangulating this against other data such as observed
behaviour or physiology. Many such tasks are difficult to provide ground truth
for, and so unsupervised analysis merits further development. There are also many
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examples of projects that are not yet as automated as we might wish, because of
accuracy or robustness issues. The field offers a wealth of interesting problems
in which computational work on signal processing and machine learning has the
potential to make great advances.

For remote monitoring, specific open problems encountered in practice include
the weather robustness of acoustic detection and classification, and its generalisa-
tion to new environments without manual re-tuning [77]. Reliable estimation of
location/distance, especially in mono-mic or ad-hoc mic setups, would increase the
types of survey design that could be conducted [6].

Identifying individual animals from individual vocalisations remains a difficult
task in general, and one that is of interest to practitioners working on different topics.
The field would benefit from general approaches which can avoid confounds such
as background sounds associated with territory.

The ecoacoustic question remains an open one: to what extent can acoustic
measures of a soundscape be used to estimate the health or diversity of an
ecosystem? So far, relatively simple measurements have been investigated, and this
is appropriate since the aim is to develop generic and low-cost methods. Further
improvements, without going so far as to require a full automatic transcription of
every item in the soundscape, could make use of source separation, unsupervised
clustering of acoustic elements, or black-box deep learning.

As discussed in Sect. 11.4, scalable methods are increasingly crucial to bioa-
coustic work, as data volumes grow. Deep learning has appealing characteristics
in this regard, a paradigm developed in and benefitting from big-data scenarios.
Deep learning has been applied in bioacoustics [27] but for high scalability and real-
time processing, even more efficient feature-extraction algorithms may prove useful.
Examples of alternative scalable analyses which have been applied for feature
extraction in bird classification include the scattering transform which requires no
training but has similarities with an unsupervised CNN analysis [5]; or spherical
k-means feature learning, based on a very simple streamable algorithm which can
be thought of as a simple single layer unsupervised CNN training [75].

Bioacoustics at grand scale should not obscure the continued importance of
small-scale analysis. In many situations there is a need for fine-detail analysis of
a single case study. In other situations there may only be a tiny amount of data
available, e.g. with rare or cryptic animal species, or infrequent behaviours.

There is also need to develop methods further for model-based analysis of
multi-animal interactions (within and between species, e.g. [73]). Much zoological
knowledge about interactive behaviour is qualitative, or at least not yet amenable
to encoding in a computational model of behaviour. With the development of such
models there is potential for a beneficial feedback loop, as fitting the models to
data and improving them enable us to apply these models to make inferences about
bioacoustic sound scene data, such as inferring the social networks revealed in the
patterns of a dawn chorus.
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Chapter 12
Audio Event Recognition in the Smart Home

Sacha Krstulović

Abstract After giving a brief overview of the relevance and value of deploying
automatic audio event recognition (AER) in the smart home market, this chapter
reviews three aspects of the productization of AER which are important to consider
when developing pathways to impact between fundamental research and “real-
world” applicative outlets. In the first section, it is shown that applications introduce
a variety of practical constraints which elicit new research topics in the field: clarify-
ing the definition of sound events, thus suggesting interest for the explicit modeling
of temporal patterns and interruption; running and evaluating AER in 24/7 sound
detection setups, which suggests to recast the problem as open-set recognition;
and running AER applications on consumer devices with limited audio quality and
computational power, thus triggering interest for scalability and robustness. The
second section explores the definition of user experience for AER. After reporting
field observations about the ways in which system errors affect user experience, it
is proposed to introduce opinion scoring into AER evaluation methodology. Then,
the link between standard AER performance metrics and subjective user experience
metrics is being explored, and attention is being drawn to the fact that F-score
metrics actually mash up the objective evaluation of acoustic discrimination with
the subjective choice of an application-dependent operation point. Solutions to the
separation of discrimination and calibration in system evaluation are introduced,
thus allowing the more explicit separation of acoustic modeling optimization from
that of application-dependent user experience. Finally, the last section analyses the
ethical and legal issues involved in deploying AER systems which are “listening”
at all times into the users’ private space. A review of the key notions underpinning
European data and privacy protection laws, questioning if and when these apply to
audio data, suggests a set of guidelines which summarize into empowering users
to consent by fully informing them about the use of their data, as well as taking
reasonable information security measures to protect users’ personal data.
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12.1 Introduction

Progress in IP networking and the miniaturization of network chips has made it
possible to connect virtually any object to the Internet, thus enabling new services
and value. This gave birth to a new concept, and related global market, known
as “the Internet of things” (IoT). As this market structured itself [6], distinctive
application segments have emerged such as, e.g., smart cities or wearables. The aim
of this chapter is to explore the applications of audio event recognition (AER)1 into
the IoT market segment known as the smart home or connected home [1, 53, 72],
as well as to analyze how applications in this market may inform AER research
and evaluation methods, thus establishing pathways to impact from AER research
to applications.

What are Smart Home Applications? Smart home applications, also known as
home automation and formerly known as domotics, aim at making use of technology
to provide comfort, convenience, security, and entertainment to the home’s inhab-
itants [2]. These applications can be divided into time saving applications, where
certain tasks are automated to gain time and comfort, and time using applications,
related to entertainment. Their evolution closely follows that of more generic
technological advances [2]. As a matter of fact, it is the general availability of
electricity in the early twentieth century which allowed homes to be equipped with,
e.g., washing machines and vacuum cleaners, a form of automation of common
household tasks, as well as TV sets, then a new form of entertainment. In the
early eighties, the availability of microprocessors triggered attempts at marketing
what was then branded as domotics, where a central processor would react to
simple sensors and trigger certain programmed actions, from simple ones such as
modulating the home’s heating system, to more far-fetched concepts such as pouring
a hot bath automatically upon detection of presence in the bathroom at certain times
of the day. Domotics at that time met limited success, due to the need for costly
wiring, and the lack of a universal communication protocol between appliances.
These blockers were subsequently lifted by three technological advances: Internet
protocol (IP) communication in the early eighties, wireless Internet technology in

1The term audio event recognition (AER) in this chapter corresponds to what is referred to as
sound event detection in other chapters of this book. Whereas consensus is currently forming
amongst the academic research community around the latter term, the industry prefers AER for
marketing reasons: firstly because it establishes a parallel with automatic speech recognition, and
secondly because “recognition” makes the system feel more intelligent by referring to semantics
and meaning, than “detection” which refers to “plain automation.”
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the nineties, and more recently the miniaturization of wireless communication chips.
Nowadays, almost any device can be equipped with such wireless communication,
leading to the concept know as the Internet of things [30].

The Rise of AI in the Smart Home One further and most recent technological
advance is that of artificial intelligence (AI). Although the concept of AI covers
a broad range of computer science techniques, one of its manifestations most
visible to the general public is the level of maturity and usability achieved by voice
interfaces, i.e., automatic speech recognition, speech synthesis, and artificial dialog
systems. While this maturation was first supported by the mobile phone industry and
later on by in-car hands-free applications, a new class of voice operated smart home
assistant appliances are also appearing, as exemplified by the Amazon Echo and
Google Home products [29]. The interesting point here is that via these devices, AI
applied in the audio domain has become a key driver of the smart home market [29].

How Does AER Fit Into Smart Home Applications? Li et al. mention three
generations of home automation technologies [39]:

1. the wireless technology and proxy server approach, where sensors are used to
monitor the occupant’s activities and report to a server in charge of operating
other electrical devices according to pre-defined programs;

2. the artificial intelligence (AI) approach, where a larger proportion of adaptive-
ness is introduced by resorting to AI methods to learn the occupant’s behavioral
patterns and adapt the programs automatically to changes in behavior, for greater
flexibility;

3. the robot buddy, where the system’s user interface and behavior aim at imple-
menting a basic form of personality into the system, to make it more user friendly.

Audio event recognition feeds in various ways into these three generations of smart
home applications:

1. at the simplest level, AER is able to supply a sophisticated sensing modality, by
flagging the presence of certain sounds or recognizing the occurrence of certain
scenes, beyond mere acoustic loudness measurements;

2. at the next level, it allows access to a semantic interpretation of what is happening
into the home, for example, the sound of a smoke alarm indicating the probability
of a fire;

3. in the case of an embodied home assistant, AER materializes the human-like
functions of hearing and listening, beyond the sounds of speech and music.

From a marketing perspective, Audio Event Recognition in the Smart Home thus
unlocks several types of value.

• Peace of mind: is something bad happening when I am away from home?
• Intelligent audio sensing: giving the home a form of smartness by enabling the

artificial awareness of what is happening, via machine listening.
• Improved audio sensing performance: AER aims at modeling and recognizing

complex audio patterns. Thus, it yields better false alarm rates than mere acoustic
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level sensing for applications which require the distinctive targeting of particular
audio events.

• Complementarity of sensing modalities: compared to video, sounds can be sensed
in the dark and around corners.

• Aggregation of sensing modalities: AER can help disambiguating other sensors,
e.g., switching off motion sensing if dog sounds have been detected in the home.

Thus AER can deliver lots of value in the context of smart home applications, some
of it unique to the sound sensing modality.

Examples of AER Applications for the Smart Home Success in the commer-
cialization of a piece of technology depends on more than algorithmic performance:
defining products and use cases is crucial, as it connects novel technical capabilities
with end user needs and aspirations, thus justifying purchase of the technology and
economical impact. Looking at Audio Analytic’s range of AER-based products,
branded ai3TM, gives an idea of a range of possible applications and use cases:

Window Break A window is broken in an unoccupied home. The sound is recog-
nized by the sound recognition system and the home’s HiFi system automatically
plays loud music or pre-recorded sounds to deter any intruder. Lights in the house
are automatically switched on. An alert is sent to the home owner’s phone so that
they can check their home cameras and if necessary alert the authorities.

Smoke&CO Alarms An alarm sounds in an unoccupied home. Regardless of the
tone pattern of the alarm or the number of devices sounding in the home at once,
the sound is recognized by the sound recognition system, and an alert is sent to the
home owner’s phone. If an alarm sounds at night when a family is asleep, the sound
recognition system recognizes the sound and lights automatically switch on to aid a
safe and rapid exit.

Baby Cry A baby stirs and begins to cry at night. The sound is recognized by
the sound recognition system and the home sound system automatically plays a
soothing lullaby to help baby back to sleep. If baby keeps crying for a given period
of time, the sound recognition system sends an alert to one of the parent’s wearable
device, waking one parent without disturbing the other. The sound recognition
system connects to the home lighting system turning on night lights so mum or
dad can make their way to the nursery safely.

Dog Bark A dog alone at home begins to bark. The sound is recognized by the
sound recognition system and an alert is sent to the owner’s mobile device. There are
two primary use cases for dog bark: security and pet care. A dog barking can be an
early warning sign of a potential intruder. The owner can choose to view the home
camera feed to check the property is secure, trigger lights to come on. Alternatively,
they can speak directly to the pet via the intercom and dispense snacks from the
automated feeding station.

Anomaly Detection the sound recognition system can establish the normative sound
profile for an individual home. Anomalies can include sounds such as aggressive
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shouting, calls for help, forced entry—or other anomalies in the home. An anomaly
in the sound profile of the home is recognized by the sound recognition system.
An alert is sent to the home owner or nominated carer so they can take appropriate
action.

Custom Sounds the sound recognition system can be programmed by the user to
recognize specific sounds around the home. Typical sounds a user might wish to be
alerted to include intruder alarms, white goods alerts (e.g., washing machine end-of-
cycle beeps, microwave oven beeps, etc.) or the sound of a doorbell. Once trained to
recognize the sound, the sound recognition system can trigger automated responses
such as message alerts to the home owner or connected device actions.

These are not the only possible use cases for AER, since professional security,
industrial machine surveillance, elderly care, smart cities and more can be imagined
as possible outlets. However, Audio Analytic has found smart home applications to
be the ones yielding the most dynamic and sizable commercial traction amongst the
wide variety of Internet of things sub-domains.

Relationship Between Academic Research and Industrial R&D Defining and
analyzing use cases for AER technology is an interesting element of the relationship
between academic research and industrial R&D. On the one hand, academic
research is expected to generate the fundamental knowledge which will support the
potential for future applications. It is generally accepted that the development of
scientific knowledge should not be restricted on the grounds of practical limitation,
e.g., an algorithm which requires some impractical amount of computation to gener-
ate sound recognition improvements still contributes to sound recognition science,
perhaps as an intermediate step towards something more tractable in the future.
Another difference from the industry is that academic research may not always
receive an amount of resourcing that would match the size of industrial investment.
For example, academic entities may struggle to get enough funding to realize large
data collections. Industrial R&D, on the other hand, is expected to deliver research
outcomes which are narrowly focused on improving the practical performance of
a viable product, as a matter of minding the return on private investment. From
there, the industry often looks at the academic body of work as a reservoir of
ideas which can be evaluated as solutions to practical application challenges, then
refined and complemented by an extra body of in-house, proprietary research and
development. Or, as we like to define it at Audio Analytic, “state-of-the-art, but
with our own extra twist.” In the industrial context, the R&D process thus takes
an iterative form which oscillates between (a) performing system evaluation across
field data, in order to study and define what practical challenges and performance
targets need to be solved in order to achieve a viable product, and (b) developing
solutions to the problems uncovered as the next wave of improvements, either by
channeling academic knowledge, itself often requiring significant modifications, or
by developing in-house solutions from the ground up, but with a view on “avoiding
to reinvent the wheel.” This requires to be creative but also to be well connected,
informed, and able to follow up with the academic state of the art.
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From that standpoint, knowledge transfer could be thought of as flowing
unidirectionally from the academia to the industry, through research contracts,
internships of early stage researchers, employment pipelines and more. Sometimes,
the deal can take the form of “knowledge against access to large data sets.” However,
there is a possibly more interesting way to conceive the relationship between
industrial applications and academic research: without restricting the freedom of
academic research, industrial applications can help steering academia towards useful
problems, for which the scientific generality is not lost, but the pathways to impact
are more clearly defined. Examples of this mindset have punctuated the history
of automatic speech recognition (ASR) research, e.g., with the fact that automatic
dictation, then meeting room transcription [31], then hands-free speech in cars, and
nowadays smart home assistants, have successively taken turns in creating traction
for the ASR domain by, respectively, surfacing the useful problems of connected
speech recognition, then speaker turns and naturally spoken speech, then robustness
to background noise, then far-field speech capture, themselves sparking research
interest into better language models, speaker diarization and array processing, to
name but a few. Thus, it may be important for the AER research community to
achieve a similar consensus around a small number of well-defined applications,
perhaps contributed by the industry, which could pull the domain forward in a
similar way, rather than “shooting in all directions.”

Such reference applications do not have to be smart home applications; however,
smart home applications are a good candidate. Indeed, their commercial dynamism
may help justifying the pathways to impact, as an asset to obtain research funding.
Focusing on the smart home would imply design choices for AER research, for
example, that of working with indoors sounds and room acoustic constraints,
but this does not reduce the generality of the AER research challenge, insofar
as home sounds still include a number of acoustic classes (e.g., resonances,
percussions, beeps, etc.) and acoustic phenomena (e.g., polyphony, reverberation,
channel distortions, etc.) whose variety is as wide as for other applications. Or in
other terms, dealing with smart home sounds can help focusing the research and
justifying its impact, without reducing the general nature of the AER problem when
studied within the context of this particular class of applications. To a large extent,
Sects. 12.2 and 12.3 of this chapter were precisely written with the mindset of
illustrating how smart home applications can contribute such useful problems to
the research community, both in the area of acoustic modeling and in the area of
systems evaluation.

Outline of this Chapter As a summary, smart home applications suggest certain
requirements on what the technology is expected to deliver. One of the goals of
this book chapter is precisely to analyze how smart home applications can inform
AER research methodology and research topics, in order to maximize the usefulness
of research and to optimize its pathways to impact. With this in view, the chapter
explores three aspects of the development and productization of AER for the smart
home. Section 12.2 analyses novel research directions elicited by the practical
constraints of deploying AER across real smart home devices, in particular when
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it comes to achieving a precise definition of sound events, evaluating the system
in a 24/7 listening setup, and running the system on consumer products with
limited audio capture quality and limited computational power. Section 12.3 looks
at user experience questions, by exploring the nature of user experience for AER,
proposing subjective performance metrics, and analyzing the gap which may still
exist between today’s standard AER performance metrics and the need to optimize
user experience. Finally, Sect. 12.4 reviews the ethical and privacy protection issues
posed by the 24/7 processing of private audio data, which in themselves play an
important part into the general public’s perception of AER technology.

12.2 Novel Research Directions Elicited by AER
Applications in the Smart Home

This section discusses three aspects in play when deploying an AER system into
smart home applications: the necessity to redefine sound events as interrupted units,
recasting 24/7 recognition as an open-set problem, and the constraints imposed by
imperfect sound capture and finite computational power. In relation to these topics,
new research directions or evaluation practices are being proposed.

12.2.1 Audio Events as Structured Interrupted Sequences

Chapter 8 of this book, entitled “approaches to complex sound scene analysis”,
mentions that many of the detection methods that can be encountered in the
literature produce frame-by-frame outputs of event presence/absence, with decisions
sometimes taken globally across a longer observation buffer, according to a
classification principle akin to the bag of frames (BoF) approach [3, 61]. However,
what users define as sound events may not exactly correspond to a continuous series
of consistent audio frames. For example, in the cases of intermittent baby cries or
smoke alarm patterns, the target sound is interleaved with silence or background
noise. Furthermore, what may define an audio event of interest for users may not be
pertaining solely to local acoustic patches: what may distinguish, say, a smoke alarm
from an alarm clock may not so much be a short bag of time-frequency atoms than
it may be some longer term sequential characteristics, such as the normalized T3/T4
beeping patterns [35]. Taking the example of baby cries, there may be a typical
length of crying related to babies’ average lung capacity. Furthermore, users may
be interested in alerts about long episodes of crying rather than isolated screams, or
may want to receive a single alert after the smoke alarm has sounded for 10 s versus
one alert for every beep or every matching audio frame.

The idea here is that users hear concepts, not acoustic frames: what users define
as a sound event may actually correspond to a long term, impure yet temporally
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structured sequence, whereas the bag of frame approach mostly assumes some form
of consistency between all the frames in the bag, for example, all the frames coming
from a given musical instrument or from a given audioscape. By definition, the BoF
approach discards the modeling of long-term temporal structure or interruption.

Chapters 5 and 8 report several research directions which aim at introducing
temporal modeling in AER, for example, hidden Markov models (HMMs), explicit
duration HMMs, score post-processing or various forms of recurrence or temporal
context models in deep neural networks. But when it comes to the modeling
of interruption, although polyphonic event detection techniques, also exposed in
Chap. 8, may bring a solution to the problem of modeling interleaved audio classes,
the above-mentioned approaches may not fully address the explicit modeling of
long-term temporal patterns (of the order of several seconds), or the potentially
very wide acoustic variability of the “in between” frames (e.g., the gaps between
smoke alarm beeps, where anything could happen). Both problems of impurity and
temporal modeling are related, insofar as the “in between” frames may not be good
predictors for the parts of the sequences which are actually of interest. Thus, if
thinking of standard implicit sequence predictors such as hidden Markov models or
recurrent neural networks, what happens in the gaps may not be a good predictor,
e.g., of the smoke alarm beeps or the baby cries themselves.

Furthermore, this ambiguity in the definition of sound events manifests itself as
a dilemma for standard evaluation metrics: in a 24/7 AER framework, target audio
events appear as series of variable length blobs across a continuum of background
sounds, and there does not seem to be a definitive consensus achieved on what
the right level of granularity should be for the definition of the countable acoustic
units used in F-score, precision, and recall [43] (see also Chap. 6). At one extreme,
counting whole events as recognition units may bias the evaluation: as a thought
exercise, a 2 h movie sound may have a higher chance to trigger a baby cry false
alarm than a 5 s cat meow, because of their difference in complexity, length, and
coverage. At the other extreme, counting frames as classification units misses out
on the longer term temporal modeling. In between these extremes, counting blocs
of a finite length [43] suffers from the problem of the variable presence of non-
target frames into the “arbitrary” acoustic unit. The same problem of granularity
and impurity also appears in weak labeling [28], where the contents of constant
length audio chunks is labeled rather than precise event boundaries.

The idea here is that there is a need for a richer definition of sound events, away
from the bag of frames, continuous acoustics, or “beads on a string” [50] mindsets
inherited from speech, speaker, or music recognition. The more explicit modeling
of inconsistent interruptions and long-term temporal patterns could find inspiration
from, e.g., automatic speech synthesis techniques. Indeed, in this domain, multi-
space densities [66] have been used to model the acoustic inconsistency between
the voiced and unvoiced parts of speech. Furthermore, the user’s definition of audio
events for practical application brings support to the suggestions made in Chap. 8
to resort to temporal modeling more explicitly. There again, additional inspiration
may come from the speech synthesis domain, where explicit duration densities [79,
81] or hidden semi-Markov models (HSMMs) [46, 80] have already been used to
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learn typical phoneme durations from data, instead of relying on implicit sequential
consistency. Solutions may also come from a notion of n-grams or multigrams [23]
similar in spirit to the language models used in the early days of speech recognition.
While results of applying such techniques to the AER domain remain to be more
widely published, the hope of this section is to trigger a change of mindset away
from the definition of sound events as bags of instantaneous acoustic frames and
higher up from frame-by-frame classification machines, towards the wider scope
of modeling sound events as interrupted acoustic sequences, in a way that would
integrate instantaneous acoustic modeling and wider sense temporal and structural
models more tightly.2

12.2.2 Continuous 24/7 Sound Recognition
as an Open-Set Problem

System evaluation in past scientific publications has often de facto reduced AER
to a closed set problem, by reporting experiments involving a limited number of
sound classes. For example, comparative evaluation campaigns such as DCASE
2013 [58] or CLEAR [62], respectively, involved 16 and 13 sound classes, thus
leading to investigate 16 � 16 or 13 � 13-sized confusion matrices. However, an
applied AER system actually listens 24/7. In this context, in contrast to speech
recognition systems, it makes no sense for an AER system to have a wake-up button
(e.g., long press on a mobile phone’s home button, or voice listening button on a
steering wheel) or to be triggered by a keyword (e.g., “Alexa” or “OK Google” to
wake up the system’s speech recognition function).

Although the set of non-target sounds can be thought of as somewhat bounded
by the target environment (e.g., a home indoors would most likely exclude loud
car engine noises), it remains difficult to enumerate the interfering non-target
sound classes exhaustively, i.e., more difficult than enumerating the phonemes of
speech or the notes of musical instruments. Thus, the confusion matrix for a real
AER problem might be better formalized as 1� near infinity, a case known as
open-set recognition [56]. Progress on this has been achieved in the domain of
image recognition. The underlying theory introduces a general notion of open-space
risk coming as a complement to the notion of empirical risk which supports the

2This suggestion may be reminiscent of speech recognition techniques, where the acoustic
models and the language model contribute almost equally to speech recognition accuracy [54].
However, the problem may be different in AER: the proportion of silence or interruption versus
target acoustic frames may be much smaller, and thus have less effect on the general acoustic
probabilities, in continuous speech than in the case of short interrupted audio events such as, e.g.,
smoke alarms or baby cries. Besides, the structure of non-speech audio events or audio scenes
may not be of a linguistic nature according to the strict definition of language as a system of
communication, thus questioning the structural nature of non-speech audio events at a deeper level
of cognitive concepts. More discussion on “acoustic language models” can be found in Chap. 8.
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standard posterior probability models. The minimization of empirical risk is thus
balanced and regulated by some extra optimization stages related to minimizing
the open-set risk. Concretely, this idea has been applied in [56] to extend binary
support vector machines (SVMs) and 1-class SVMs to “binary 1-vs-set” machines,
with significant improvements reported in terms of generalization and rejection
of completely unseen classes. The development of open-set deep neural networks
(DNNs) for image classification has also been reported more recently in [5], with
successful results in terms of resistance to adversarial images, as well as detection
of unknown classes. Early results of applying open-set methodology to audio scene
classification have been reported in [4], where a particular type of 1-class SVM
has shown promising generalization results across two public data sets which were
limited in size. Such results remain to be extended to audio event recognition rather
than audio scene recognition, testing over larger data sets, and possibly developing
other open-set machines than those derived from 1-class SVMs.

Recasting the 24/7 AER problem as an open-set problem underlines some of the
limitations of the current evaluation practice of using F-score, precision, recall and
related metrics (e.g., area under curve, see Chap. 6 for more definitions):

1. these metrics highly depend on the composition and balance of the considered
test set,

2. they assume that sounds are identifiable positive or negative units, whereas non-
target sounds may actually be a continuum in a 24/7 sound recognition context.

Indeed, in the 24/7 sound recognition context the system becomes exposed across
time to a growing amount of non-target sounds, with the prior probabilities on
non-target sounds tending to one and the probabilities of target sounds tending to
zero. Assuming that the amount of false positives is proportional to the exposure
to non-targets, this means that the precision, defined as TP

TPC FP where TP and FP
denote true positives and false positives, respectively, will tend to zero across time,
without anything having changed into the AER system itself. Similarly, the F-score,
defined as:

F D 2 �
precision � recall

precisionC recall
D 2 �

1
1

precision C
1

recall

where recall is defined as TP
TPCFN and FN means false negatives, will tend to zero as

the system’s exposure to non-targets tends to infinity much faster than the system’s
exposure to target sounds. System evaluation is thus stuck into a dilemma:

• either considering a test set including a balanced number of target and non-target
classes, by assuming or designing some adequate way of down-sampling the non-
target classes uniformly,

• or considering a test set where the size and coverage of the non-target sounds is
significantly larger than the coverage of the target sounds, in an attempt to model
the huge priors on the quasi-infinite amount of non-targets.
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The dilemma here is that although both approaches may be valid in principle,
they are likely to lead to different precision and F-score figures, whereas the
classification system itself has not changed. This implies that precision, recall, and
F-score report information about the dataset itself, in addition to information about
the system. Although these evaluation metrics remain appropriate for comparison
over a fixed data set, they become difficult to interpret as absolute indicators of
system performance in the context of 24/7 sound detection, thus suggesting that
approaching 24/7 detection as an open-set problem will require to redefine the AER
evaluation metrics.

One preliminary solution to that problem is to resort to false alarm rates per
unit of time rather than absolute false alarm counts. For example, the usage of
detection error trade-off (DET) curves [41] involving false alarm rates per time unit
rather than absolute FA rates has been published, e.g., in the context of keyword
spotting in [74]. DET curves themselves have another advantage over F-scores, that
of separating discrimination from calibration, which will be discussed in more detail
in Sect. 12.3.3.

12.2.3 “The Real World”: Coping with Limited Audio Quality
and Computational Power

In the context of smart home applications, AER has to run on consumer grade
electronics, and products have to be kept within an acceptable price range, a
proportion of which depends on the bill of materials for microphones, codec chips,
and computation processing units. Coping with such “imperfections” is actually
essential to applicative success, and emphasizes a need to focus on some research
directions which are currently understudied in the AER field.

Variations and Limitations of Audio Capture Channels In contrast to mobile
phones, where audio quality is deemed crucial to the perceived overall quality of the
product, many smart home devices offer only limited audio capture quality. Audio
device quality is indeed quite polarized between two extremes: on the one hand,
the most common smart home devices will have been designed to deliver 16 kHz,
mono, 16 bits digital audio, captured by MEMS or electret microphones of medium
quality which have large distortion tolerances, and backed up by low-cost digital
codec chips. Meanwhile, at the pricier end, smart home assistant appliances such as
Amazon Echo or Google Home have started introducing microphone arrays backed
up by powerful digital signal processing (DSP) hardware accelerated subsystems.
The latter came with the proof that array processing and source separation were
essential to the success of far-field speech recognition.

This has not yet happened in the field of AER, as many customers simply require
AER to run within the limitations of 16 kHz / 16 bits mono channels, and within
the tolerances of low-cost audio subsystems. Thus, one of the challenges of AER
research is to come up with methods and algorithms which are robust against low
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quality audio, the presence of channel distortions and the presence of additive noise.
While standard noise reduction techniques may work against simple additive white
noise, the challenges may be harder to solve for more complex and less stationary
distortions such as, e.g., electro-magnetic interference (EMI) noise, or interferences
related to digital communications over Wi-Fi.

Also, it should be noted that existing far field audio enhancement methods
are often geared towards speech signals, by including prior knowledge specific to
the acoustic nature of speech (e.g., [47]). Generalizing such audio enhancement
methods to the far-field capture of other sounds than speech remains an understudied
research topic.

The above considerations suggest the following points:

• From the standpoint of pathways to impact, it would be useful to identify channel
robustness more clearly as a topic of interest for AER research, just like it
has been a topic of interest for decades in the context of speech and speaker
recognition research.

• Interest for robustness uncovers a limitation of most publicly available data sets,
where the lack of either channel identification or channel variety precludes the
design and evaluation of methods geared towards coping with channel variability.

• The methods which are currently known to improve far field speech recognition
may or may not transpose gracefully to AER, due to the difference of acoustic
nature between speech and a more generic set of environmental sounds (includ-
ing, e.g., percussive sounds).

More generally, whereas AER research has so far focused a lot on the problem
of polyphony and source separation, the suggestion here is that a wider diversity
of topics related to audio quality, such as channel robustness for AER and the far
field capture of environmental sounds, may be worth identifying as salient research
topics.

Limited Computational Power and Memory Capacity Whereas a vast propor-
tion of applications in speech recognition, music classification and audio indexing
are supported by PC platforms, cloud computing and/or powerful smart phones,
most smart home applications are embedded into hardware product whose com-
putational power cannot be expected to match that of a PC. Indeed, IoT devices
can be broadly divided into two classes: (a) devices which are perceived as “doing
only one thing,” thus requiring the use of low-cost processors to hit a price point
that users are willing to pay for what the device does, or (b) embedded devices
where sound recognition comes as a bolt-on to add value to an existing product, for
example, adding AER capabilities to a consumer grade camera or to a set-top box,
thus requiring the algorithm to fit into the device’s existing design and price points.
These two cases rule out the use of higher end processors.

Generally speaking, the following features jointly define the financial cost of a
processor and the level of constraint imposed on embedded computing:
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• the clock speed is related to energy consumption;
• the instruction set is related to chip size and manufacturing costs, but in some

cases includes special instruction sets to parallelize more operations into a single
clock cycle;

• the architecture defines, e.g., the number of registers, number of cores, pres-
ence/absence of a floating point unit (FPU), a graphical processing unit (GPU)
and/or a digital signal processing (DSP) unit.

The above features affect applications in the obvious way of defining an upper
bound on the number and type of operations which can be executed in a given
amount of time, thus ruling the possibility to achieve real-time audio processing
at the proportion of processor load allocated to the AER application. In addition,
on-board memory size is an important factor related to processor cost, as it affects
both the computational performance, where repetitive operations can be cached to
trade speed against memory, and the scalability of an algorithm, by imposing upper
limits on the number of model parameters that can be stored and manipulated.

If trying to work within these limitations, and given that most IoT embedded
devices allow Internet connectivity, it could be argued that cloud computing can
solve the computational power constraints by abstracting the computing platform
and making it virtually as powerful as needed. However, a number of additional
design considerations may rule out the use of cloud computing for AESR applica-
tions:

• the latency introduced by cloud communications can be a problem for, e.g., time
critical security applications [9];

• regarding quality of service (QoS), network interruptions may introduce an extra
point of failure into the system;

• regarding bandwidth consumption, sending alerts rather than streaming audio or
acoustic features out of the sound recognition device requires less bandwidth;

• last but not least, the continuous streaming of smart home audio to a cloud
platform would cause serious privacy concerns, whereas running on the device
rules out any possibility of eavesdropping [42].

Thus, the reality of embedded industrial applications is that at the price points
acceptable into the marketplace, the majority of IoT devices will be devoid of an
FPU, will operate in the hundreds of megahertz clock speed range, will not offer
on-board DSP or specialized instruction sets, and may prefer to run AER on board
rather than in the cloud.

Introducing Computational Cost into the Evaluation In spite of the above-
mentioned computational constraints, most research works seem to be producing
AER performance evaluations with only limited interest for the computational cost
involved: experimental results are most often obtained with floating point arith-
metics on powerful computing platforms, and under the assumption that sufficient
computing power will sooner or later become available for the algorithm to be
practicable in the context of commercial applications. However, a methodology
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which disregards computational costs may lead to a roadblock further down the
line of pathways to impact. Indeed, the concrete limitations which were depicted in
this section suggest that the practicability of state-of-the-art AER algorithms is far
from being granted when it comes to running on an average consumer electronics
product. In turn, this suggests that the evaluation of AER algorithms at the research
level may want to include considerations of computational cost more rigorously as
part of the algorithms’ evaluation criteria, in a context where justifications of the
usefulness of research and clear statements of pathways to impact may be required
to obtain research funding, but without venturing too far into spending research
resources on porting the algorithm into an actual product, and without limiting the
research options on the grounds of practicability.

Our suggestion is that a good balance in this area can be achieved at the research
level by evaluating AER accuracy as a function of computational cost. Research
results on that topic have been published in [57], where the performances of three
types of classifiers commonly used for AER, namely Gaussian mixture models
(GMMs) [55], support vector machines (SVMs) [13] and various flavors of deep
neural networks (DNNs) [38], are compared as a function of their computational
cost over two AER tasks, namely the detection of baby cries and the detection of
smoke alarms against a large number of impostor sounds. Such comparison between
various types of acoustic models can be tricky, because the results depend to a large
extent on the nature of the data set used for the experiments. As a matter of fact, the
general consensus [73] is that DNNs require large amounts of data to outperform a
GMM or a SVM, or that SVMs tend to outperform other models on small data sets.
From that standpoint, the study in [57] can be considered a “fair” comparison insofar
as the used data set covers real use cases more closely than previously available data
sets and is large enough to avoid imposing a practical handicap on DNNs artificially.

The results, depicted in Fig. 12.1, suggest that GMMs provide a low-cost baseline
for classification across both data sets of Baby cry and Smoke Alarms. The GMM
acoustic models are able to perform reasonably well at a modest computational cost.
SVMs with linear and sigmoid kernels yield similar EER performance compared to
GMMs, but their computational cost is overall higher. The computational cost of
the SVM is determined by the number of support vectors. Unlike GMMs, SVMs
are non-parametric models which do not allow the direct specification of model
parameters, although the number of support vectors can be indirectly controlled with
regularization. Finally, the results suggest that deep neural networks consistently
outperform both the GMMs and the SVMs on both data sets. The computational
cost of DNNs can be controlled by limiting the number of hidden units and the
number of layers. While changes in the number of units in the hidden layers do not
appear to have a large impact on performance, deeper networks appear to perform
better in all cases. Additionally, neural networks with ReLU activations achieve
good performance, while being an attractive choice for deployment on embedded
devices because they do not require expensive look-up table (LUT) operations.

Beyond mere competition between the various compared models, the methodol-
ogy introduced in [57] is one of the important points, which is summarized visually
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Fig. 12.1 Acoustic frame classification performance (equal error rate percentage, EER) as a
function of the number of operations per frame, for each of the tested models, across the baby
cry and smoke alarms data sets (from [57]). (top) Baby cry data set. (bottom) Smoke alarm data set
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by Fig. 12.1: it is useful to map performance against computational cost in order to
choose which algorithm to implement into a particular embedded platform, given
the limited computational budget, and after realizing that the computational cost
may vary widely between and within particular classes of algorithms. In a similar
way, it is useful to investigate the performance of acoustic models as a function of
the memory efficiency, since memory is an important consideration when designing
models for embedded hardware. Other algorithms than the usual GMMs, DNNs, and
SVMs could also be assessed in the same way, and new research methods devised,
with the goal of incorporating more explicitly the optimization of computational
cost and memory requirements into algorithmic design and structure (e.g., [21]).

12.3 User Experience

At the outlet of pathways to impact, applying AER algorithms is expected to deliver
value to a user. Productizing AER thus involves users as a new stakeholder in
addition to researchers and algorithms. Users may not be educated in AER, may
have certain expectations about the system, or certain spontaneous opinions about
what the system does or should do. One relevant question is therefore the following:
are standard AER evaluation methods good predictors of user experience, user
opinion and thus system usefulness? This section explores such user experience
aspects.

12.3.1 User Interface Aspects

The fundamental problem behind predicting user experience relates to the under-
standing of how users interface with an AER system. Looking at automatic speech
recognition (ASR), the goal of ASR is to deliver the written transcription of a
spoken message: in the context of dictation, users can directly judge whether the
transcription returned by the service is consistent with what they have spoken into
the microphone, simply by reading the returned text. Thus, word error rate (WER)
metrics are by definition correlated with user experience and user opinion. Now
looking at automatic text-to-speech synthesis (TTS), user experience depends on the
naturalness and the intelligibility of the synthesized speech, two characteristics for
which automatic metrics [44, 45] have not been able to correlate well enough with
organic user opinions to fully replace human listening tests. Thus, TTS evaluation
still largely relies on opinion scoring techniques [16], where a focus group of users
actually listens to and rates the system, sometimes with the help of crowdsourcing
platforms [12, 24]. From these parallels, two questions arise:
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• Through which interface(s) are the results of AER experienced by the user? Or
in other words, what is the AER equivalent of reading a text transcription in the
case of ASR or listening to a voice in the case of TTS?

• Are there one or several objective metrics which correlate well with the quality
of the experience that users may get through the identified interface?

In the case of 24/7 AER systems, the goal is most often to alert the user of
the presence or absence of certain sounds into audio recordings. The alert may
come with a time stamp indicating when the target sound happened, but that is
not mandatory. The value of most AER systems also relates to the notion of
displacement in a linguistic sense [32, 77], i.e., the capacity of human beings to
conceive things which are happening elsewhere in space or time, for example, the
occurrence of a particular event at home when the user is away from home, or the
occurrence of some event of interest in the past rather than in the present. As such,
remote alerting has more value than the plain confirmation of the presence of a
sound that the user has already heard. This is in contrast, e.g., with ASR, where
the users know what they have spoken into the system, or TTS, where the user will
to understand the system is saying here and now. In that sense, user experience of
AER is more complex to define than user experience of ASR or TTS. As a matter
of fact:

• User experience of AER depends to a large extent on the reliability of the remote
alerting system. For example, if alerts are not transmitted due to a flaw of
the underlying messaging platform, users will think that the sound recognition
system as a whole is failing, regardless of the accuracy of the underlying AER
algorithm.

• Even in the hypothetical or simulated case where the alerting system would be
flawless, checking the truthfulness of a remote audio alert assumes the possibility
of double-checking that there was a reasonable cause for the audio alert.

The second point can be solved either directly by allowing the user to listen to
a sound snippet which would bracket the audio deemed to have triggered the
detection, or indirectly by allowing the user to cross-check that there is a cause
through other sensing modalities, e.g., checking a home surveillance camera’s video
feed for some visible audio source (presence of people, pet, moving objects, etc.).
The indirect case is less reliable than the direct one, since the sensor acting as a
proxy may not be consistent with audio capture, e.g., the sound source might be out
of the camera’s field of vision, or occurring in the dark.3

From the standpoint of being able to check audio event alerts against audio
snippets, using a true positive or a false positive rate (or the system’s precision
measure introduced in Chap. 6) would appear a reasonable way to measure user
experience. But two additional considerations then come into play:

3A requirement to be able to cross-check the triggering audio may seem to contradict the privacy
and eavesdropping concerns analyzed further down in Sect. 12.4.4. However, in practice there is
less of a privacy concern about transmitting short audio snippets, with pre and post bracketing time
kept to a minimum around the triggering audio event, than there is about streaming someone’s
personal audio to the cloud in a continuous 24/7 manner.



352 S. Krstulović

• What about missed detections? In what sense do they participate to user
experience?

• Is there room for subjectivity in any of the considered metrics?

12.3.2 The Significance of Subjectivity in AER Evaluation

Type of System Errors and their Impact on User Opinion As introduced in
Chap. 6, the system can make two types of errors: false positives, a.k.a. false alarms,
defined as sending an alert for a sound which is not the desired target sound, or false
negatives, a.k.a. missed detections, defined as not sending an alert when the target
sound was actually there.

Missed detections are tricky insofar as they are difficult to cross-check by users.
By definition they can only remain un-notified, thus suggesting low impact on user
experience. However, the possibility of incidental discovery of a missed detection
exists, e.g., discovering a broken window at home while no alert was sent, or being at
home while the smoke alarms sounds and seeing no alert coming. Such a discovery
could have a disastrous impact on user opinion, and could instantly void the AER
system’s credibility.

This brings about the question of subjectivity. In the case of ASR transcriptions,
the comparison of the automatic transcription against what was said leaves little
room for subjectivity. On the other hand, in the case of TTS, human judgment
on naturalness is fairly subjective. Where is AER sitting along that scale? Is a
proportion of subjectivity skewing the prediction of user experience from standard
classification error rates? While formal studies on that topic remain to be led, a few
field observations can be reported:

• False alarms have a negative impact on user opinion if they are too frequent.
• True positives are also annoying if they are too frequent, thus requiring either to

build black-out periods into the system, or to report a true positive after the sound
has sounded for a while, at the expense of system latency.

• Missed detections can have a dramatic impact on product reputation if the
application is related to controlling some critical smart home feature, in particular
security, but also comfort.

• Experiencing missed detection might be far from obvious and very rare for
certain sounds: most people will probably not break their own windows to test if
the system works. On the other hand, baby cries or smoke alarms can be more
easily accessed; therefore, potential missed detections for these sounds will be
more likely to trigger negative user opinions. The point here is that potential
missed detections might weigh differently on user experience, depending on the
level of ease with which the related sound can be voluntarily triggered by the
users themselves.

• False alarms, if they can be checked against the sound snippet which triggered
the alarm, do not all have the same level of negative impact on user’s opinions:
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they can be forgiven in the cases where users are able to form some concept of
sound proximity or to imagine a reason for the audio detection. As a thought
exercise, a potential confusion between baby cry and female opera singing might
trigger less of a negative opinion than a confusion between a baby cry and the
sound of a vacuum cleaner, because users may be able to imagine that baby cry
and female opera singing are both human, vocal, forceful, high-pitched sounds.
The hypothetical confusion between a human-generated sound and a machine
noise seems inherently harder to forgive because users hear semantic fields, not
the acoustics of sounds per se. In some cases, the distinction might be even
more subtle, due to involving more complex semantic connections beyond the
characterization of object or process which produced the sound: a hypothetical
confusion between a smoke alarm and a beepy phone ringtone may be hard
to forgive, in spite of both sounds being defined as alerts generated by similar
electronic processes, because the smoke alarm is a sign of danger, whereas the
phone ringtone may simply be a welcome sound.

Qualitative Assessment of Errors In relation to the notion of qualitative differ-
ence between false alarms, studies in the music information retrieval domain [48, 59]
have underlined that quantitative classification accuracy may not be enough to
characterize whether the underlying algorithm is delivering the functionality that
users expect from it. In particular, there is a possibility for any machine learning
system to behave as a “horse,” with reference to the story of “Clever Hans” [60, 76],
where the system may be altogether solving a different problem than the one it
is designed for, thus delivering different functionality than the one expected by the
users once it is deployed in the field. Indeed, horse behavior may not be immediately
apparent from the error rates, but it may become apparent from the deeper qualitative
assessment made by human listeners of what the system does in general, and in
particular the qualitative analysis of the errors made by the system in relation to the
desired use case and experience of that use case.

The suggestion here is that standard quantitative error rates, such as the F-scores
and equal error rates, are not necessarily good predictors of user experience due
to the “subjectivity gap” and the requirement to deliver on use cases rather than
error rates. There is therefore a need, at the product design and AER applications
level, to introduce metrics which are more directly involving user opinion, and
to propose metrics which would bridge the gap between standard error rates and
user experience. Access to user experience at the fundamental research level may
thus suggest to build a physical exemplar of a “listening object” to bridge the gap
between error rates and an actual application. At the simplest level, this can be
done with a standard computer, a microphone, and some simple form of alerting
system. As an example of how this may be very beneficial to research, a domain
where the building of physical instances of the system has considerably helped to
steer research directions is that of meeting room transcription [31], where virtually
every speech recognition research lab in the late nineties and early 2000s started
to build its own transcriber based on standard ASR technology, soon to realize that
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far field capture, speaker diarization and the processing of expressive speech were
going to become crucial research topics. In this line of idea, encouraging academic
researchers to build a sound recognition exemplar in order to surface salient research
problems might be a good idea, and can be done either independently or as a
partnership with industrial labs.

Subjective Metrics The development of metrics which correlate well with user
experience depends on having access to user experience measurements to begin
with. Opinion scoring methodology is a solution to that, which has been extensively
deployed and studied in the speech synthesis domain [16], and to some extent in
music information retrieval [48]. In that framework, two points need to be kept in
mind:

• Opinion scores are Likert-type scales and inherently ordinal, so standard arith-
metic means cannot be used reliably across such scores [16]. However, boxplots
and a careful analysis of significance intervals via the Wilcoxon signed rank
test [16] do yield useful ways of comparing systems with opinion scoring.

• In opinion scoring, what is being ranked depends strongly on the question which
is being asked to the users [20]. For example, in speech synthesis, it is a different
thing to ask:

“Do you like this system: (1) strongly dislike (2) dislike (3) neither like nor dislike (4)
like (5) strongly like”

than to ask:

“Please rate the naturalness of the system: (1) very dissimilar to human (2) somewhat
dissimilar to human (3) somewhat similar to human (4) similar to human (5) very similar
to human”.

In the above example, pleasantness and naturalness may be two different notions,
as it is possible to design TTS cartoon voices which are pleasant but unnatural.
Similarly, in the case of rating an AER system, it will be a different thing to ask,
e.g., about system usefulness, than to ask about system annoyance:

“Was this sound detection alert annoying: (1) very annoying (2) annoying (3) neither
annoying nor welcome (4) welcome (5) very welcome”

or about relevance of the alerts:

“Do you understand why the system sent a baby cry alert?”
or
“Did you expect to receive a baby cry alert for this sound?”

The above examples may all yield a different type of insight into the system, but
also different numerical ranges for the related opinion scores.

Opinion scoring questions can be included by design in the user interface of smart
home products, in order to measure system improvements in real time.
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12.3.3 Distinguishing Objectivity from Subjectivity in AER
Evaluation

Once human-generated opinion scores are available, then it becomes possible to
investigate if existing error metrics correlate well with these [44, 48], and also
to investigate new error metrics or algorithms which correlate better with user
experience. For example, it has been reported in [48] that optimizing a music
boundary detection system against F˛ scores rather than F1 scores, where the value
of ˛ was emphasizing precision over recall, was leading to a system receiving better
opinion scores. The idea here is that an extra parameter, ˛ in this example, may
allow the tuning of the correspondence between the “objective” metric and the
subjective opinion scores. “Objective” is put between quotes here, because it should
be kept in mind that the F-score, precision, and recall measures actually depend
on the subjective, application-dependent choice of an operation point by the system
designer.

As a matter of fact, most detection systems make a decision by thresholding
a score, which results by design in the amount of false alarms (FAs) and missed
detections (MDs)4 being interdependent: the threshold can be made either more
permissive, by letting more events though in general, which results in reducing the
false negatives at the expense or increasing the false alarms, or it can be made
more conservative, by letting less events through, with the effect of reducing the
false positives at the expense of increasing the false negatives. The determination
of the threshold and FA/MD compromise according to applicative constraints is
known as setting an operation point for the system, also known as performing the
calibration of the system, and it is subjective to the application of interest: some
users may subjectively prefer a more conservative system to a permissive one if
they are excessively annoyed by false alarms, whereas other users may prefer to
get as many alerts as possible, because worrying about the possibility of a missed
detection outweighs the annoyance related to false alarms.

This consideration affects the definition of what “the best system” means in a
comparative evaluation: are we talking about the system which has the best ability
to model acoustics and to discriminate between sounds, or the system which fits
the use case best? From that perspective, the possibility exists that precision, recall,
and F-score may miss the best acoustic model if the operation point was wrongly
chosen for the application of interest, or if a diversity of subjective operation point
assumptions were made across the compared systems.

This problem of distinction between objective discrimination and subjective
calibration in system evaluation is extremely well explained and studied in the
context of speaker recognition in [71], with more technical detail in [11] and further
developments in [10]. In these studies, solutions to this problem are proposed in the
form of:

4 False alarm (FA) is synonymous to false positive (FP), and missed detection (MD) is synonymous
to false negatives (FN). Usage varies across domains in the literature, e.g., speaker recognition
tends to use the former more often.
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Fig. 12.2 Example of DET
curves used to compare the
acoustic modeling power of
various systems in [57],
independently of the
subjective choice of an
operation point

• systematically using detection error trade-off (DET) curves [7, 41], to compare
sound discrimination globally across the full range of operation points,

• complementing DET curves with discrete cost function (DCF) figures [7, 41, 71],
log-likelihood ratio cost function (Cllr) measures and applied probability of error
(APE) curves [71], all described in more detail below, to achieve extra insight
into discrimination versus calibration.

DET curves [7, 41] are warped versions of the receiver operating characteristic
(ROC) curves introduced in Chap. 6, where the use of normal-deviate scaling flattens
the curve and facilitates the visual comparison of systems. In this type of plot, DET
curves globally closer to the origin correspond to better sound discrimination (e.g.,
Fig. 12.2). DET curves are often summarized into a single equal error rate (EER)
figure, which corresponds to the point where the curve crosses the Pmiss D PFA

diagonal. It can be demonstrated [10] that EERs allow to rank the discriminative
ability of various systems globally and independently of the choice of an operation
point. However, DET curves may cross each other, meaning that for some ranges
of operation points, the ranking of systems after calibration may end up inverted.
In this line of idea, it should be kept in mind that the EER operation point, where
the missed detection rate is equal to the false alarm rate, might be irrelevant to
open-set 24/7 applications, where the system should intuitively be more guarded
against false alarms due to the vast exposure of the system to non-target sounds.
For example, looking at Fig. 12.2, it might be the case that the dashed curve would
cross the solid curve for conservative operation points where the system would be
expected to achieve, e.g., false alarm rates under 1%, thus questioning which system
would be “the best” for that section of the curve.
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Following this, and in contrast to the EER, the discrete cost function (DCF)
seeks to incorporate information about the relative cost of false alarms and missed
detections, and is thus defined as:

Cdet .Pmiss;PFA/ D CmissPmissPtar C CFAPFA .1 � Ptar/ (12.1)

The above definition introduces the cost parameters Cmiss and CFA to subjectively
weigh the relative importance of the objective missed detection rate Pmiss and
objective false alarm rate PFA into the evaluation, given the prior probabilities
of occurrence of the target sound Ptar versus occurrence of non-target sounds
.1 � Ptar/ in the application of interest, and for an operation point .Pmiss;PFA/

subjectively chosen along the DET curve by setting an application-dependent
decision threshold  . As such, the role of Cmiss and CFA is similar to that of ˛ in
the F˛ measure, i.e., to tailor the evaluation metric to applicative subjectivity.

However, the DCF is a single number happening after the choice of a decision
threshold. The work in [10, 11, 71] therefore seeks to develop a more global
measure of performance across the whole range of possible thresholds and possible
subjective cost values. This is done by defining the log-likelihood ratio cost
function Cllr as the integral over all possible decision thresholds and costs of all
the possible DCFs. In the course of that, a set of mathematical tricks is used to
clarify the separation between the global measurement of classification errors and
the parameters related to calibration, by defining the following quantities:

• The total probability of error

Pe./ D QPtar./Pmiss./C .1 � QPtar.//PFA./ (12.2)

bundles the Pmiss./ and PFA./ into a single metric via weighting by the
prior log-odds QPtar./, which will be explained below. In this equation, all the
quantities in play are functions of the threshold  . As such, Pe./ expresses
the DCF as a function of the threshold rather than as a single number.

• In the above equation, the trick is to realize that the calibration parameters Cmiss,
CFA and  are redundant against the data set characteristic Ptar (please see [71]
for more detail), and can thus be grouped into a single definition for the decision
threshold  :

 D log

�
Ptar

.1 � Ptar/

Cmiss

CFA

�
(12.3)

Thus, the quantity QPtar, referred to as prior log-odds, can be defined as

QPtar D
PtarCmiss

PtarCmiss C .1 � Ptar/CFA
(12.4)

D
1

1C e�
D logit�1./ (12.5)
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where logit.x/ D log
�

x
1�x

�
. With this definition of the threshold, all the

calibration parameters are now grouped into  , or equivalently into the warping
function QPtar./. Thus, Pe./ can be plotted versus  via a warping of the
threshold scale, or equivalently a warping of the classification scores issued by
the classifier, via the logit warping function. This plot of Pe./ is called the
applied probability of error (APE) curve [71].

• From there, the log-likelihood ratio cost function Cllr can be defined as the
integral of Pe./ across  , or equivalently the integral of all the possible DCFs
across the range of decision thresholds and classification outcomes, i.e., across
the whole spectrum of operation points for a given DET curve, and where the
information about the calibration is now fully contained within the warping
function/prior log-odds QPtar./. This is different from the area under curve (AUC,
see Chap. 6), which is the integral of the DET curve (or rather its equivalent
ROC curve), and as such does not contain any information about calibration, only
about discrimination, and reports a quantity which is more difficult to interpret
as an error measure.

• From there, [11, 71] propose a way of minimizing the Cllr by optimizing the
warping function applied to  , or in other terms to optimize the QPtar./ function
which will non-linearly rescale the probability densities Pmiss./ and Ptar./ in
order to find the “truly minimal error” Pe globally across the whole  spectrum,
given considerations of both discrimination (Pmiss./ and Ptar./ contained into
the DET/ROC curve) and calibration (the calibration parameters contained into
the optimal warping curve QPtar./).

Along a similar line of thought, i.e., clarifying the separation of discrimination
from calibration, the open-set optimization method introduced in [56] makes room
for the explicit inclusion of applicative constraints into the optimization process, by
allowing to bound the precision and recall rates as one of the constraints playing
into the optimization method. As such, this method can be thought of as accounting
for user opinion directly into the training process, rather than operating calibration
and training independently from each other.

As of now, this general problem of discrimination versus calibration, or in
other terms achieving application-independent methodology for system comparison,
seems to have remained understudied into AER research. Indeed, we have not been
able to find mentions of the usage of Cllr and APE curves in AER literature, in spite
of the attractive solution that these methods represent to get around some of the
pitfalls of comparing systems on the basis of F-score, precision, and recall only.
On the short term, our suggestion would be to resort to the computation of the F-
score only as a by-product of setting an operation point along the DET curve, and
stating explicitly whether the evaluation was made under a subjective assumption of
conservatism or permissiveness of the system, or otherwise more explicitly stating
the chosen applicative constraints, in order to avoid implying that the ranking of
the compared systems qualifies some notion of best acoustic modeling power in
a universal and objective way. Or in simpler terms, the proportion of subjective
calibration that exists in today’s standard evaluation metrics should probably not be



12 Audio Event Recognition in the Smart Home 359

ignored, while interest for more application-independent metrics should probably
be further developed.

12.3.4 Summary: Objectivity, Subjectivity, and User
Experience

The research point generally made in this subsection is that AER systems, and
machine learning systems in general, are designed to be used by humans, with
some applications in mind (for example, smart home applications). The applications
themselves trigger constraints on system calibration, i.e., the choice of an operation
point which is agreeable to user in terms of the balance between false alarms
and missed detections, but also the acoustic and semantic nature of these errors.
User opinion can be measured on this, e.g., by using opinion scores. Insofar as
standard error metrics such as precision, recall, and F-score inform jointly about
the discrimination and the calibration, with possible adjustments towards particular
operation points in the case of the F˛ or the DCF scores, finding which AER system
is “the best” in the general terms of being the most acoustically discriminative across
a wide range of applications may currently suffer from the understudied dependency
on the application-related subjectivity of system calibration. The hope of this section
is to attract attention on this problem, and to trigger an evolution of mindsets
where AER methodology would either claim more explicitly the application within
which the comparison is being performed, including an explicit assessment of the
relative costs of false alarms and missed detection on user opinion, or would adopt
evaluation methods which would allow to find “the best system” more independently
from calibration and applications.

12.4 Ethical Issues: Privacy and Data Protection

Another aspect of AER applications which affects user opinion is the question
of privacy and ethics surrounding a system which artificially “listens” to people’s
personal environment. Indeed, the collection of audio data in people’s homes, for the
purpose of both AER fundamental research and commercial applications, generally
falls under the principles of data protection laws and ethical recommendations.
However, legal requirements vary widely between countries. After an overview
of the situation in this domain, this section will focus on European law, which is
the one introducing the most comprehensive set of data protection rules. European
requirements in this field can be summarized and understood through a list of key
concepts, which translate into best practice when it comes to gathering audio data
in home environments and processing it for AER research and development.
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12.4.1 Which Country are We Talking About?

The formal concept of a right to privacy has started to emerge in international law
following World War II. It is explicitly encoded in Article 12 of the Universal Dec-
laration of Human Rights [65], as well as in Article 8 of the European Convention
on Human Rights (ECHR) [26] which followed 2 years later with a similar but more
substantiated formulation. These declarations of right to privacy have entailed the
creation of data protection laws in various other countries internationally. Although
most of the data protection laws were written with the protection of textual data in
mind, the processing of audio data recorded in people’s personal space is usually
acknowledged to fall within the remit of these laws [68]. However, reference to
audio data is not always made explicitly, thus leaving room for interpretation and
complicating compliance checks. Furthermore, the requirements of data protection
laws are largely region dependent:

• Europe: Europe has established strict and elaborate data protection laws and
policies, the detail of which can be grasped by reading a number of docu-
ments [25, 27, 33], the most recent of which being the European General Data
Protection Regulation 2016/679 [63] which will take effect in May 2018 and
will unify and substitute for each Member State’s national laws in the domain
(e.g., [40, 67]). Each country usually implements a government body in charge
of explaining and controlling compliance to data protection laws, such as, e.g.,
the Commission Nationale de l’Informatique et des Libertés [17] in France or
the Information Commissioner’s Office [34] in the UK. It can be useful for AER
researchers to consult with these resources in order to get advice and checks on
the legal and ethical compliance of their research and data handling policies.

• USA: US data and privacy protection laws [8, 75] are very heterogeneous
as they are sector specific (e.g., different laws governing the collection and
disclosure of financial data, health-related data, etc.) as well as state specific
(i.e., 13 US states out of 50 have enacted a variety of digital privacy and data
protection laws over the years), yet contained within specific Federal laws which
empower US Federal agencies to process personal data. Although US citizens
may invoke protection through the Fourth Amendment and the Privacy Act, US
data protection laws are generally described as far less comprehensive than the
EU data protection framework [8, 75]. Because US law can be fairly complex,
legal compliance is usually facilitated by institutional review boards (IRBs) [78],
which are committees local to various research institutions (e.g., universities) and
are empowered to approve, require to modify, or disapprove research plans, from
the standpoint of preserving the rights and welfare of human research subjects.
As such, local IRBs would be the main point of contact to check the legal and
ethical compliance of AER research led in the USA.

• Asia and rest of the World : The situation varies widely across Asia and the
rest of the world. On the one hand, a number of countries have taken European
Directive 95/46/EC as a template, e.g., Japan [37] and South Korea [36].
In contrast, other countries have implemented only minimal data protection law



12 Audio Event Recognition in the Smart Home 361

through sector specific acts, mostly to answer demands from foreign investors.
For example, China [22], Vietnam [14], and many other countries [49] do not
have a data protection regime according to EU’s definitions, and their approaches
to personal data processing and the right to privacy remain mostly aimed at the
individual as a consumer.

This worldwide diversity suggests that the ethical notions surrounding the process-
ing of audio data, and related requirements of privacy protection, may depend on the
level of economic development, but also equally importantly on cultural factors, e.g.,
if realizing that the ancestry of European data protection laws is directly traceable
back to the traumas of World War II. From a practical perspective, the processing of
personal audio data may be less regulated and thus perceived as easier to manage in
certain countries than others, although it may be perceived as more or less ethical
according to various cultural standard. Finally, compliance checks and information
sources about ethical research in AER depend on a variety of country-dependent
institutions, which are useful sources of information on ethics and legal compliance.

Going forward, this section will focus on the most comprehensive and strictest
privacy and data protection scenario, which is the European data protection regime.

12.4.2 Is Environmental Audio Data Actually Private?

When it comes to fulfilling the legal and ethical responsibilities surrounding the
manipulation of audio data, two points are important to understand: what are
the legal rights attached to personal data, and in which cases audio data falls under
the definition of private data, thus triggering special attention to legal compliance.

What can and cannot be done with personal data in Europe is contained within
the definition of the rights given to individuals by the European data protection acts
(DPAs) [25, 63, 64, 69]5:

• a right of access to a copy of the information comprised in their personal data;
• a right to object to processing that is likely to cause or is causing damage or

distress;
• a right to prevent processing for direct marketing;
• a right to object to decisions being taken by automated means;
• a right in certain circumstances to have inaccurate personal data rectified,

blocked, erased, or destroyed; and
• a right to claim compensation for damages caused by a breach of the Act.

5Many of the definitions in this section are quoted from the ICO’s documentation [69, 70] and
the UK Data Service’s website [64]. Both services are local to the UK and government funded,
and they aim at helping researchers and businesses understanding the legal requirements set forth
into the UK’s Data Protection Act 1998. Because the UK’s DPA 1998 in itself seeks to implement
European recommendations and directives, the notions quoted in this list are echoing the general
definitions set forth in the various European laws and recommendations.
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The responsibility to comply with the law on that relies on the data controller [70],
who is legally responsible for determining the purposes for which and the manner in
which any personal data are collected and processed. A lab doing research on AER
may or may not be the data controller, as there is another legally distinct notion
of data processor, which means any person, other than an employee of the data
controller, who processes the data on behalf of the data controller, where processing
includes pretty much anything that can be done for data collection and AER research
and development: recording, altering, listening to, aligning, transferring, deleting,
etc. If there is evidence of a breach of the DPA, it is the data controller involved that
could be subjected to prosecution.

It should be understood that the above-mentioned rights aim specifically at the
protection of various levels of personal data, defined as follows [64, 69]:

• Personal data are data which relate to a living individual who can be identified
from those data or from those data and other information which is or is likely
to come into the posession of the data controller (for example, a name and and
address) and includes any expression of opinion about the individual and any
indication of the intentions of the data controller (for example, selling something
to persons of a certain age). This includes any other person in respect of the
individual, for example, someone’s parents or children. It is allowed to store and
process personal data, as long as it is not sensitive data, confidential data or does
not lead to profiling.

• Profiling is defined as the task of inferring sensitive data from derived data
capture.

• Sensitive data is defined as data that could be used for unlawful discrimination,
for example, data indicative of ethnic origin, political opinions, religious beliefs,
sexual orientations etc. according to the law’s definitions. The audio recordings
must not target such data, and any data that would be found in the recordings and
which could be qualified as sensitive according to the law’s definitions should be
immediately and permanently deleted.

• Confidential data are data given in confidence or agreed to be kept confidential,
i.e., secret, between two parties, that are not in the public domain such as
information on business, income, health, medical details, and political opinion.
There again, any confidential data captured in audio recordings should be deleted.

When it comes to environmental audio recordings, the question of compliance
with local DPAs therefore boils down to assessing whether any of the above data
categories are being processed by the AER system, and for what purpose.

As soon as soon as the recordings involve speech, it is more difficult to ensure
that the data does not contain any name, phone number or otherwise identifying
elements, and it can be argued that voice contains identity information of a biometric
nature. Therefore, it is safer to treat speech recordings as personal data, unless it
can be explicitly proven that the recordings cannot be traced back to a particular
individual in any way (e.g., in the case of incidental recordings in public places).
Recordings made in a home have a higher probability of containing identifying data
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and a relation to the home address, and should thus be treated as personal data for
the purpose of the local DPA.

When it comes to other types of sounds than speech, as of now it can be argued
that AER algorithms are unable to infer sensitive information or to provide profiling
according to the law’s definition. As a matter of fact, the direct goal of AER systems
is to label general audio events and audio scenes for practical events such as,
e.g., glass breaking or babies crying, which by themselves are not semantically
rich enough to deliver profiling or to help inferring sensitive data according to
the law’s definition. However, cases where sound recognition could allow profiling
when aggregated with other sensing modalities remain open to the imagination.
Therefore, it still belongs to the researcher, product manager or data controller
in general to carefully consider and justify the absence of such misuses of AER
technology. Indeed, most European funding application processes will ask for clear
statements on that, and companies as much as academic institutions will want to
prepare answers to avoid legal exposure.

It should also be noted that although the legal definition of sensitive data and the
associated rights are narrowly defined by the law and exclude a very vast majority of
what may be recorded or processed for AER purposes, legal and ethical guarantees
may not actually bring a full and complete answer to the public’s concerns related to
a broader and more intuitive sense of privacy or feelings about being eavesdropped,
especially if the audio data capture happens in a space as personal as home.
Additional notions, such as consent and data protection, are thus also feeding into
the management of the public’s perception of privacy.

12.4.3 Consent and Ownership

From a legal and ethical perspective, whatever will be done with personal data
must be done with the recorded person’s consent, and must not consist in profiling
or discrimination that would be operated without that person’s knowledge and
consent [18]. Consent to data usage must be unambiguous, informed, freely given,
specific, and explicit. In practice, this translates into designing a set of documents
and procedures to inform the users about the purpose of the data collection and their
legal rights in this matter:

• Data usage information: In this document, the purpose of the data collection
must be clearly and credibly stated to be solely that of AER research, improving
sound recognition algorithms and the development and improvement of sound
recognition algorithms or products. The redaction of this document is the right
place to analyze the risks of the technology allowing potential usage for profiling,
and avoiding such risks.

• Data sign-off procedure: a process of audio data reviewing and sign-off can be
put in place to allow the recorded users to review the recorded data and address
any privacy concern before finalizing the data control and ownership transfer.
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• Data protection policy: this document should describe the measures put in place
by the data controller to protect the data, for example, secure storage accessible
only by the data controller and the data processors. It should also give details
about the rights of the recorded subjects to access a copy of their data, as well
as details on how to request deletion of the data if they can legally prove that its
processing is causing them damage or distress a posteriori from the transfer of
data ownership.

• Transfer of data control and ownership from the recorded subjects to the
research labs and/or the company involved in the audio data collection must
be legally framed by a contract between both parties. It is usual to mention
a fee in the contract to materialize consideration for the data exchange, even
if the recorded volunteers were keen to give their audio data for free. The fee
can range from a symbolic fee (e.g., symbolic Euro or symbolic British Pound),
or any other reward offered against the collected data (e.g., shopping vouchers
when dealing directly with volunteers), up to substantial licensing fees when
transferring the control of a fully post-processed data set between corporate
and/or academic entities.

It is important to keep in mind that all inhabitants of a household, or the legally
responsible person in the case of children, should give their consent to audio data
collection for the usage of this data to be lawful and ethical. Thus, households
whose inhabitants are all unable to give their informed consent should better be
avoided. Households involving inhabitants both able to give their informed consent
and unable to do so (e.g., families with children or handicapped relatives, who could
strongly benefit from the developed technology) should be considered and handled
with specific information and consent forms. In most cases, it is advisable to contact
the legal department of one’s academic institution or a private law firm to check the
legality of the information sheets and ownership transfer contracts, prior to starting
an AER data collection project.

Apart from the awareness of such legalities, technical solutions can be sought
to put the users themselves in control of their privacy. For example, audio data
capturing devices can be equipped with an “off” or “listening mute” button that
can be freely used by the end users whenever they would like audio to remain
excluded from the data collection or processing. Automating this by predicting or
preempting the desire for privacy is an open research question in itself, with, e.g.,
the automatic detection of whether the users are present in the room or not, or the
automatic preemption of privacy levels when the end users are still present in the
audio scene (e.g., at the simplest level, speech detection raising the privacy level).
Privacy preserving algorithms as discussed in the next section may also address this
issue.
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12.4.4 Data Protection and Security

The concept of machine listening immediately raises intuitive concerns about the
risk of eavesdropping [19], which is a general concern for any Internet of Things
application where sensor data gets streamed to the cloud [15].

At the surface level, appropriate data security and confidentiality measures must
be put in place to protect audio data transmission and storage, for example, access
control and encryption [15], thus ensuring that audio processing applications cannot
be breached into and cannot be used for eavesdropping. In the case where a lab is
a data processor rather than a data controller, the level of security must be as good
as, or exceed, the data controller’s own standards, which can be a pitfall if working
with industrial partners whose security standards are high and costly.

However, access control measures may not be sufficient to reassure the general
public, because they address the access to the contents but do not address the
scrambling of the contents itself, under the belief that access could be breached.
There is a dilemma for AER research and development there, as scrambled data
cannot be labeled and is thus of limited usefulness for debugging and system
training.

Thus, at the technical level, data protection and security may also trigger interest
into the following areas:

• Processing on the edge: realizing AER directly on embedded devices inside
people’s home and avoiding processing in the cloud guarantees that private
audio data does not leave the user’s home in any way, thus delivering a stronger
guarantee of privacy protection. But, this requires the deployed algorithms to run
at a sufficiently low computational cost to fit on embedded devices, as discussed
in Sect. 12.2.3. Privacy requirements may thus have the effect of indirectly
imposing a limit on sound recognition performance, if the infinite computational
power available in cloud computing is not an acceptable option.

• Investigating anonymization techniques [18]: similarly to vision, where object
detection solutions can be imagined to de-personalize the content (e.g., face
detection followed by blurring), investigating de-personalization techniques
could be done for AER. At the simplest level, the detection and deletion of speech
could be one way forward. However, for particular AER tasks such as automatic
scene classification or event detection related to human activities such as, e.g.,
aggression detection, removing speech runs the risk of destroying the coherence
of the audio scene entirely.

• Privacy preserving algorithms: Privacy preserving speech processing [51, 52]
has recently emerged as a full-fledged research topic in this area, and could
possibly be extended to more generic audio scenes.

So far, AER research seems to have focused more on sound recognition performance
than on such privacy aspects, which were more traditionally deferred to the
industrial development stages. However, the above points suggest that research on
AER algorithms can play a key role in finding solutions to address the public’s
concerns about audio data privacy and protection.



366 S. Krstulović

12.5 Conclusion

After giving a brief overview of the relevance and value of deploying automatic
audio event recognition (AER) in the smart home market, this chapter has reviewed
three aspects of the productization of AER which are important to consider when
developing pathways to impact between fundamental research and “real-world”
applicative outlets:

• In Sect. 12.2, it is shown that applications introduce practical constraints on
the productization of AER algorithms. One constraint is to achieve a precise
definition of what a sound event should be, a point which relates to evaluation
of the system but also to acoustic modeling. Proposals are made to move away
from the bag of frames approach, in order to focus more on the investigation
of temporal modeling as well as the explicit modeling of interruption. Another
constraint is to run and evaluate AER for 24/7 constantly listening applications,
where it becomes impractical to enumerate the set of non-target sounds. The
proposal there is to recast the problem as one of open-set recognition, with
pointers to preliminary work on that in the image recognition domain, as well as
a suggestion of evaluating false alarm rates as a function of time rather than using
absolute event counts. The final constraint is that of running AER applications on
consumer devices, which have imperfect microphones and limited computational
capabilities. In this context, new research should focus on directions which may
not have been extensively explored as of yet, e.g., robustness against channel and
room effects, and scalability or performance as function of the computational
cost.

• Section 12.3 explores the definition of user experience for AER, a notion
which it is crucial to optimize in order to achieve some usefulness of AER
for practical applications. After reporting field observations about the way
various errors may affect user experience and user opinion in various ways, it is
proposed to introduce opinion scoring in AER evaluation methodology. Then, the
question of whether standard AER performance metrics reflect the quality of user
experience is being explored, and attention is being drawn to the fact that standard
metrics mash up a proportion of objective evaluation of the system’s ability to
discriminate between sounds, with a proportion of subjectivity related to the
choice of an application-dependent operation point. Solutions to the separation of
discrimination and calibration in system evaluation are introduced, and inspired
from the speaker recognition domain. Generally, the point there is to distinguish
more explicitly between two separate definitions of “best system,” one which
focuses on finding the model which offers the best acoustic modeling power in
general, versus another one which focuses on optimizing user experience.

• Finally, in Sect. 12.4, the deployment of AER in the field is analyzed from the
standpoint of introducing the ethical and legal requirement to respect the users’
fundamental right to privacy, in particular with regard to systems which are
“listening” at all times into the users’ private spaces. A review of the key notions
underpinning European laws in the domain of data and privacy protection, which
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are the most comprehensive across the world, suggests that lawful and ethical use
of audio data amounts to empowering users to consent by fully informing them
about the use of their data, as well as taking reasonable information security
measures to protect the users’ personal data.

Insight into these three topics is being contributed with the hope of shortening the
path that leads from fundamental AER research to the social and economical impact
entailed by deploying AER in the field of smart home applications.
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12. Buchholz, S., Latorre, J.: Crowdsourcing preference tests, and how to detect cheating. In:
Proceedings of Interspeech 2011, pp. 3053–3056 (2011)

13. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl.
Disc. 2(2), 121–167 (1998)

14. Business Software Alliance: Global cloud computing scorecard - country report:
Vietnam (2012). http://cloudscorecard.bsa.org/2012/assets/PDFs/country_reports/Country_
Report_Vietnam.pdf

15. Celesti, A., Fazio, M., Villari, M.: Enabling secure XMPP communications in federated IoT
clouds through XEP 0027 and SAML/SASL SSO. Sensors 17, 301 (2017)

16. Clark, R.A.J., Podsiadło, M., Fraser, M., Mayo, C., King, S.: Statistical analysis of the blizzard
challenge 2007 listening test results. In: Proceedings of the Blizzard Challenge (2007). http://
www.festvox.org/blizzard/bc2007/

17. Commission Nationale de l’Informatique et des Libertés. https://www.cnil.fr/ (2017). Last
accessed 01/2017

18. Corti, L., Van den Eynden, V., Bishop, L., Woollard, M.: Managing and Sharing Research Data.
Sage Publishing, Thousand Oaks (2014)

19. Crossley, D.: Samsung’s listening tv is proof that tech has outpaced our rights.
The Guardian (2015). https://www.theguardian.com/media-network/2015/feb/13/samsungs-
listening-tv-tech-rights

20. Dall, R., Yamagishi, J., King, S.: Rating naturalness in speech synthesis: the effect of style and
expectation. In: Proceedings of the Speech Prosody Workshop (2014)

21. Davies, M.: C-Sense - exploiting low dimensional models in sensing, computation and signal
processing. http://cordis.europa.eu/project/rcn/204493_en.html (2016). European Research
Council project ID 694888, hosted at the University of Edinburgh. Online description last
accessed 05/2017

22. de Hert, P., Papakonstantinou, V.: The data protection regime in China. Technical report,
European Parliament (2015). http://www.europarl.europa.eu/studies

23. Deligne, S., Bimbot, F.: Inference of variable-length linguistic and acoustic units by multi-
grams. Speech Commun. 23, 223–241 (1997)

24. Eskénazi, M., Levow, G.A., Meng, H., Parent, G., Suendermann, D.: Crowdsourcing for Speech
Processing. Wiley, Chichester (2013)

25. European Council: Directive 95/46/EC of the European Parliament and of the Council (1995).
http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:31995L0046

26. European Court of Human Rights, Council of Europe: European Convention on Human Rights
(1950). http://www.echr.coe.int/Documents/Convention_ENG.pdf

27. European Parliament: Resolution of 6 July 2011 on a comprehensive approach on personal
data protection in the European Union (2011/2025(INI)) (2011). http://www.europarl.europa.
eu/sides/getDoc.do?type=TA&reference=P7-TA-2011-0323&language=EN&ring=A7-2011-
0244

28. Foster, P., Sigtia, S., Krstulovic, S., Barker, J., Plumbley, M.D.: CHiME-Home: a dataset for
sound source recognition in a domestic environment. In: Proceedings of the 11th Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA) (2015)

29. Fulford, N., Sutherland, T.: ‘One voice to bind them all’ - Smart home devices, AI, children
and the law. Digit. Bus. Lawyer 18(10), 12–15 (2016)

30. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision,
architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660
(2013)

31. Hain, T., Garner, P.N.: Speech recognition. In: Renals, S., Bourlard, H., Carletta, J., Popescu-
Belis, A. (eds.) Multimodal Signal Processing: Human Interactions in Meetings. Cambridge
University Press, Cambridge (2012)

32. Hockett, C.F.: The origin of speech. Sci. Am. 203, 88–96 (1960)

http://cloudscorecard.bsa.org/2012/assets/PDFs/country_reports/Country_Report_Vietnam.pdf
http://cloudscorecard.bsa.org/2012/assets/PDFs/country_reports/Country_Report_Vietnam.pdf
http://www.festvox.org/blizzard/bc2007/
http://www.festvox.org/blizzard/bc2007/
https://www.cnil.fr/
https://www.theguardian.com/media-network/2015/feb/13/samsungs-listening-tv-tech-rights
https://www.theguardian.com/media-network/2015/feb/13/samsungs-listening-tv-tech-rights
http://cordis.europa.eu/project/rcn/204493_en.html
http://www.europarl.europa.eu/studies
http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:31995L0046
http://www.echr.coe.int/Documents/Convention_ENG.pdf
http://www.europarl.europa.eu/sides/getDoc.do?type=TA&reference=P7-TA-2011-0323&language=EN&ring=A7-2011-0244
http://www.europarl.europa.eu/sides/getDoc.do?type=TA&reference=P7-TA-2011-0323&language=EN&ring=A7-2011-0244
http://www.europarl.europa.eu/sides/getDoc.do?type=TA&reference=P7-TA-2011-0323&language=EN&ring=A7-2011-0244


12 Audio Event Recognition in the Smart Home 369

33. Hustinx, P.: EU data protection law: The review of directive 95/46/EC and the proposed general
data protection regulation. Technical report, European University Institute’s Academy of
European Law (2013). https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/
Documents/EDPS/Publications/Speeches/2014/14-09-15_Article_EUI_EN.pdf

34. Information Commissioner’s Office. https://ico.org.uk/ (2017). Last accessed 01/2017
35. International Organization for Standardization: ISO 8201: Acoustics – Audible emergency

evacuation signal. International Organization for Standardization, Geneva (1987)
36. Kim, J.H., Chung, B.T.H., Keh, J.S., Lee, I.H., Kim, I.H., Chang, I.H.: Data protection in south

korea: overview. In: Data Protection Multi-Jurisdictional Guide 2015/16. Thomson Reuters,
New York (2015). http://global.practicallaw.com/2-579-7926

37. Kinoshita, M., Asayama, S., Kosinski, E.: Data protection in japan: overview. In: Data
Protection Multi-Jurisdictional Guide 2014/15. Thomson Reuters, New York (2014). http://
global.practicallaw.com/5-520-1289

38. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
39. Li, R.Y.M., Li, H.C.Y., Mak, C.K., Tang, T.B.: Sustainable smart home and home automation:

big data analytics approach. Int. J. Smart Home 10(8), 177–198 (2016)
40. Loi numéro 78-17 du 6 janvier 1978 relative à l’informatique, aux fichiers et aux libertés, et

convention 108 (1978). http://www.cnil.fr/
41. Martin, A., Doddington, G., Kamm, T., Ordowski, M., Przybocki, M.: The DET curve in

assessment of detection task performance. In: Proceedings of Eurospeech’97, pp. 1895–1898
(1997)

42. Medaglia, C.M., Serbanati, A.: An overview of privacy and security issues in the internet of
things. In: Giusto, D., Iera, A., Morabito, G., Atzori, L. (eds.) The Internet of Things, pp.
389–395. Springer, Berlin (2010)

43. Mesaros, A., Heittola, T., Virtanen, T.: Metrics for polyphonic sound event detection. Appl.
Sci. 6(6), 162 (2016)

44. Möller, S., Falk, T.H.: Quality prediction for synthesized speech: comparison of approaches.
In: Proceedings of the International Conference on Acoustics, pp. 1168–1171 (2009)

45. Möller, S., Kim, D., Malfait, L.: Estimating the quality of synthesized and natural speech
transmitted through telephone networks using single-ended prediction models. Acta Acust.
United Acust. 94, 21–31 (2008)

46. Murphy, K.P.: Hidden semi-Markov models (HSMMs). Technical report, Massachusetts
Institute of Technology (2002). http://www.cs.ubc.ca/~murphyk/papers/segment.pdf

47. Nesta, F., Koldovský, Z.: Supervised independent vector analysis through pilot dependent
components. In: Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 536–540 (2017)

48. Nieto, O., Farbood, M.M., Jehan, T., Bello, J.P.: Perceptual analysis of the F-measure for
evaluating section boundaries in music. In: proceedings of the 15th International Society of
Music Information Retrieval Conference (ISMIR) (2014)

49. Norton Rose Fulbright: Global data privacy directory (2014). http://www.nortonrosefulbright.
com/files/global-data-privacy-directory-52687.pdf

50. Ostendorf, M.: Moving beyond the ‘beads-on-a-string’ model of speech. In: Proceedings of the
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 79–84 (1999)

51. Pathak, M.A.: Privacy preserving machine learning for speech processing. Ph.D. thesis,
Language Technologies Institute, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA (2012)

52. Pathak, M.A., Raj, B., Rane, S., Smaragdis, P.: Privacy-preserving speech processing: cryp-
tographic and string-matching frameworks show promise. IEEE Signal Process. Mag. 30(2),
62–74 (2013)

53. Pragnell, M., Spence, L., Moore, R.: The Market Potential for Smart Homes. Joseph Rowntree
Foundation, York (2000)

54. Renals, S., Bourlard, H., Carletta, J., Popescu-Belis, A.: Speech Recognition. Cambridge
University Press, Cambridge (2012)

https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/EDPS/Publications/Speeches/2014/14-09-15_Article_EUI_EN.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/EDPS/Publications/Speeches/2014/14-09-15_Article_EUI_EN.pdf
https://ico.org.uk/
http://global.practicallaw.com/2-579-7926
http://global.practicallaw.com/5-520-1289
http://global.practicallaw.com/5-520-1289
http://www.cnil.fr/
http://www.cs.ubc.ca/~murphyk/papers/segment.pdf
http://www.nortonrosefulbright.com/files/global-data-privacy-directory-52687.pdf
http://www.nortonrosefulbright.com/files/global-data-privacy-directory-52687.pdf


370 S. Krstulović
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Chapter 13
Sound Analysis in Smart Cities

Juan Pablo Bello, Charlie Mydlarz, and Justin Salamon

Abstract This chapter introduces the concept of smart cities and discusses the
importance of sound as a source of information about urban life. It describes a wide
range of applications for the computational analysis of urban sounds and focuses
on two high-impact areas, audio surveillance, and noise pollution monitoring,
which sit at the intersection of dense sensor networks and machine listening. For
sensor networks we focus on the pros and cons of mobile versus static sensing
strategies, and the description of a low-cost solution to acoustic sensing that supports
distributed machine listening. For sound event detection and classification we focus
on the challenges presented by this task, solutions including feature design and
learning strategies, and how a combination of convolutional networks and data
augmentation result in the current state of the art. We close with a discussion about
the potential and challenges of mobile sensing, the limitations imposed by the data
currently available for research, and a few areas for future exploration.
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13.1 Introduction

13.1.1 Smart Cities

Current estimates put the share of the world population living in urban environments
at 50%, a number that is expected to grow to as much as 80% by 2050. In OECD
member countries, for example, including most of Europe and North America,
already 80% of the population lives in cities, with China seeing a net increase
of 40% in its share of urban inhabitants during the last 50 years.1 This rapid
trend of urbanization creates massive opportunities for economic development, job
diversification, and innovation, but also creates significant problems related to the
environmental impact of human activity, the stress to systems and infrastructure, the
difficulty of effectively policing and securing public spaces, and potential reductions
in health and quality of living for city dwellers.

Unsurprisingly, there is a well-established and growing trend of leveraging
technological systems and solutions towards addressing some of the most pressing
issues facing urban communities. These smart cities initiatives benefit from recent
advances in ubiquitous and intelligent sensing, widespread connectivity, and data
science to collect, distribute and analyze the data needed to understand the situation
on the ground, anticipate future behavior and drive effective action.

13.1.2 Urban Sound Sensing and Analysis

The term urban soundscape refers to the sound scenes and sound events commonly
perceived in cities. While the specific characteristics of urban soundscapes vary
between cities and even neighborhoods, they still share certain qualities that set them
apart from other soundscapes. Perhaps most importantly, while rural soundscapes
primarily contain geophony (naturally occurring non-biological sounds, such as
the sound of wind or rain) and biophony (naturally occurring biological sounds,
i.e., non-human animal sounds), urban soundscapes are dominated by anthrophony
(sounds produced by humans), which consists not only of the human voice, but of all
sounds generated by human-made artifacts including the sounds emitted by traffic,
construction, signals, machines, musical instruments, and so on.

Sound is an important source of information about urban life, with great potential
for smart city applications. The increase in smart phone penetration and the growing
development of specialized acoustic sensor networks mean that urban sound
monitoring is becoming an increasingly appealing alternative, or complement, to
video cameras and other forms of environmental sensing. Microphones are generally
smaller and less expensive than cameras and are robust to environmental conditions

1http://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS.

http://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
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such as fog, pollution, rain, and daily changes in light conditions that negatively
affect visibility. They are also less susceptible to occlusion and are capable of omni-
directional sensing.

The automatic capture, analysis, and characterization of urban soundscapes can
facilitate a wide range of novel applications including noise pollution mitigation,
context-aware computing, and surveillance. The automatic analysis of urban sound-
scapes is also a first step towards studying their influence on and/or interaction with
other quantifiable aspects of city-life, including public health, real estate, crime, and
education.

However, there are also important challenges in urban sound monitoring. Urban
environments are among the most acoustically rich sonic environments we could
study—the number of possible sounds is unlimited and densely mixed. Furthermore,
the production mechanisms and resulting acoustic characteristics of urban sounds
are highly heterogeneous, ranging from impulse-like sounds such as gun shots to
droning motors that run non-stop, from noise-like sources like air-conditioning units
to harmonic sounds like voice. They include human, animal, natural, mechanical,
and electric sources, spanning the entire spectrum of frequencies and temporal
dynamics.

Furthermore, the complex interaction between this multiplicity of sources and
the built environment, which is often dense, intricate and highly reflective, creates
varying levels of “rumble” in the background. Therefore, it is not unusual for
the sources of interest to overlap with other sounds and to present low signal-to-
noise ratios (SNR) that change intermittently over time, tremendously complicating
the analysis and understanding of these acoustic scenes.

Importantly, while some audio analysis tasks have a relatively clear delineation
between what should be considered a “source of interest” and what should be con-
sidered “background” or “noise” (e.g., specific instruments versus accompaniment
in music, or individual speakers against the background in speech), this distinction
is far less clear in the case of urban soundscapes. Almost any sound source can be
a source of interest, and many “noise-like” sources such as idling engines or HVAC
units can have similar acoustic properties even though their type and function are
very different.

Finally, urban soundscapes are not composed following top-down rules or
hierarchical structures that can be exploited as in the case of speech and most music.
However, natural patterns of activity resulting from our circadian, weekly, monthly,
and yearly rhythms and cultural cycles abound.

13.1.3 Overview of this Chapter

The rest of this chapter is organized as follows. Section 13.2 will briefly discuss the
range of applications of automatic sound event analysis and dense sensor networks
in urban environments, with a focus on audio surveillance and noise pollution
monitoring. Section 13.3 discusses existing solutions for large-scale urban acoustic
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sensing and presents the design of a low-cost, scalable, and accurate acoustic sensor
network. Section 13.4 provides an in-depth view of the problem of urban sound
source identification, and the lessons learned from research efforts to date. Finally,
Sect. 13.5 provides a summary of the chapter and some perspectives on future work
in this field.

13.2 Smart City Applications

The intelligent and automated analysis of urban soundscapes has a number of
valuable applications. For example, it can be used to enhance context-aware
computing, particularly for robotic navigation in changing urban environments
including for autonomous vehicles (private, public transport, cargo), drones, robotic
assistants, wheelchairs, or even tour guides [24, 25, 88, 94]. In these applications,
sound analysis can be used to recognize and focus attention on sources outside the
field of vision of autonomous devices, e.g., incoming traffic, emergency vehicles,
someone calling; or to shape the system’s response to contextual variables such as
the terrain in which a robotic wheelchair is operating, or the soundscape level and
composition to which an intelligent hearing aid needs to adjust.

These technologies can also contribute to content-based retrieval applications
dealing with urban data, such as personal audio archiving [34], highlight extraction
[93], video summarization [55], and searching through CCTV or mobile phone data
[82]. In these scenarios sound analysis can help characterize patterns of similarity,
novelty, anomaly, and recurrence in audio and multimedia content that can facilitate
search and navigation.

However, there are two application domains in particular that are driving
increased interest in automatic urban sound analysis: audio surveillance and noise
pollution monitoring.

Audio Surveillance The need for automatic or semi-automatic surveillance in
urban areas has experienced progressive and rapid growth, particularly in the past
three decades. This is due to the increased threat posed by crime and terrorism.
Surveillance systems were originally operated solely by humans, who had to
constantly monitor video streams coming from the large number of cameras required
to cover wide and complex areas of interest. In order to guarantee safety, however,
full coverage of such areas would often require an unreasonably large number of
operators. In addition, while it is difficult to outperform human monitoring with
machines, this is only true when human attention is at its peak, which cannot be
guaranteed over a lengthy period of time.

As a result, much effort has been devoted to the development of high-end
technologies capable of alerting humans of potential hazards before they turn into
a full-blown threat or calamity. Examples include the detection of fights/brawls
[29, 53, 80] and intrusion [36, 97]. Technology improvements mean that infrared
cameras for night-time operation have become affordable and less noisy; video
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resolution can now guarantee an interocular distance of tens of pixels even from
afar (for face recognition), and the dynamic range has grown to withstand the most
adverse outdoor/indoor conditions. At the same time, signal processing for hazard
detection has become more sophisticated, accommodating advanced illumination
models; complex machine intelligence algorithms for video analytics; and advanced
multimodal sensor fusion techniques, making fully automated surveillance systems
effective and reliable enough to be fruitfully employed.

Many potentially dangerous events, however, can only be detected at an early
stage through the analysis of an audio stream. Relevant examples range from the
detection of specific sound sources such as gunshots, screams, and sirens; to actions
like a car suddenly screeching to a stop; to scenes such as a brawl outside a night
club, or a mugging. Audio surveillance is particularly beneficial in highly cluttered
scenes, where visual events are likely to be occluded. Hence, the past decade has
seen audio-based surveillance systems on the market, and new research focusing
on the identification of dangerous events from the analysis of audio streams alone
[27, 50, 69, 89] or from joint audio–video analysis [28, 96]. Crucially, sound event
detection across dense sensor networks enables important surveillance capabilities
such as localization and tracking of acoustic sources [9].

Noise Monitoring: Noise pollution is one of the topmost quality of life issues for
urban residents worldwide [37]. In the United States alone, it has been estimated that
over 70 million urban residents are exposed to harmful levels of noise [42, 62]. Such
levels of exposure have proven effects on health such as sleep disruption, stress,
hypertension, and hearing loss [8, 15, 43, 61, 90]. There is additional evidence of
impact on learning and cognitive impairment in children [8, 14], productivity losses
resulting from noise-related sleep disturbance [35, 92], and impact on real estate
markets [63, 64].

Most major cities have ordinances that seek to regulate noise generation as a
function of time of day/week and location. These codes define and measure noise
in terms of overall sound pressure level (SPL) and its derivative metrics [87].
Such standards are in marked contrast with the emphasis on sound sources that
is prevalent in noise surveys and complaints, as well as throughout the literature on
the effect of noise pollution. The need for source-specific metrics is acknowledged
by noise experts [87], especially in urban environments that are constantly reshaped
by a large numbers of sources. As with audio surveillance, the benefits of applying
sound classification technologies are evident and motivate recent efforts from the
research community [68, 75–77].

The shortcomings of noise monitoring using SPL metrics are compounded by the
difficulties of monitoring at scale. Site inspections by city officials are often few and
far between and insufficient to capture the dynamics of noise across time and space.
Alternatively, cities rely on civic complaint systems for noise monitoring such as
New York City’s 311, effectively the largest noise reporting system anywhere in
the world [66]. However, research shows that noise information collected by such
systems can be biased by location, socio-economic status, and source type, failing
to accurately characterize noise exposure in cities [65]. Therefore, recent years have



378 J.P. Bello et al.

seen a proliferation of work on using dense networks of mobile or fixed acoustic
sensors as an alternative and complementary solution to noise monitoring. In this
context, sound analysis can contribute to the identification of specific sources of
noise and their characteristics (e.g., level, duration, intermittence, bandwidth). This
can in turn empower novel insights in the social sciences and public policy regarding
the relationship of urban sound to citizen complaints, reported levels of annoyance,
stress, activity, as well as health, economic and educational outcomes.

13.3 Acoustic Sensor Networks

13.3.1 Mobile Sound Sensing

In recent years consumer mobile devices , namely smart phones have seen rapid
improvements in processing power, storage capacity, embedded sensors, and net-
work data rates. These advances coupled with their global ubiquity have paved
the way for a new paradigm in large-scale remote urban sensing: participatory
sensing [18, 21]. The idea behind this approach is to utilize the sensing, processing,
and communication capabilities of consumer smart phones to enable members of
the public to collect and upload environmental data from their surroundings. This
approach benefits from the use of existing infrastructure (sensing platform and
cellular networks) meaning that deployment costs are effectively zero, provides
unrivaled spatial coverage and also allows for the gathering of the subjective
response to these environments, in situ. The drawbacks of this approach mainly
lie in the low temporal resolution of its data resulting from the submission of short
term measurements and the quality of the gathered data, as the model, physical,
and handling conditions of the smart phones may not be consistent, resulting
in aggregated environmental data of variable accuracy. A number of initiatives
have sought to crowdsource sound and noise monitoring using mobile devices
[31, 45, 56, 72, 73, 79, 81]. Their apps are typically limited to logging geo-located
instantaneous SPL measurements. The EveryAware project [4, 10, 11] is an EU
project intending to integrate environmental monitoring, awareness enhancement
and behavioral change by creating a new technological platform combining sensing
technologies, networking applications, and data-processing tools. One of its sub-
projects is the WideNoise application, which allows for the compilation of noise
pollution maps using participants’ smart phones, including objective and subjective
response data. In addition to this, they are examining the motivations for participa-
tion among their user base, as well as monitoring behavior change resulting from
the access to personalized sound information. The OnoM@p project [41] follows
some of the same goals and strategies of the above initiative. Notably, they attempt
to address the issue of erroneous data through a cross-calibration technique between
multiple device submissions, a welcome development for mobile noise sensing, with
the caveat that it requires large-scale public adoption to be successful.
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13.3.2 Static Sound Sensing

Static sound sensing solutions can take many forms with varying abilities and
price points. Their main advantage over mobile sensing solutions is the ability
to monitor continuously with increased levels of data quality. Highly accurate
(˙0.7 dB), dedicated, commercially made networks such as the Bruel & Kjaer Noise
Sentinel 3639-A/B/C [17] can produce legally enforceable acoustic data, but can
cost upwards of $15,000 USD per node. The high cost means that deployments
are spatially sparse with durations usually in the order of a few months. Lower
cost commercial solutions include the $560 USD Libelium Waspmote Plug & Sense
Smart Cities device [52] which, amongst other things, measures decibel (dB) values
with a ˙3.0 dB accuracy. The reduced cost per sensor node brings with it new
possibilities for larger network deployments but a trade-off on data accuracy may
mean its suitability is limited for large-scale urban deployments. Other examples
[60] make use of hybrid deployments of low-cost, low-accuracy sensors with higher-
cost, higher-accuracy sensors in an attempt to strike a balance between accuracy and
scalability. Networks utilizing even lower cost sensors at the $150 USD per sensor
price point provide the potential for more network scalability, but make sacrifices in
sensor capabilities. Examples of these [12, 46] make use of low-power computing
cores that limit their ability to carry out any advanced in situ audio processing. With
these acoustic sensor networks, it is desirable to have low-cost, powerful sensor
nodes able to support the computational sound analysis techniques described in this
book. The rest of this section will present the design and implementation of an
acoustic sensor network capable of satisfying the cost, accuracy, and performance
considerations described above.

13.3.3 Designing a Low-Cost Acoustic Sensing Device

In this section we describe the design of an acoustic sensing device developed
in the context of the SONYC project,2 a research initiative concerned with novel
smart city solutions for urban noise monitoring, analysis, and mitigation. The device
is based around the popular Raspberry Pi single-board computer (SBC) outfitted
with a custom USB microelectromechanical systems (MEMS) microphone module
where low-cost, acoustic accuracy, and high processing power are the primary
considerations.

2https://wp.nyu.edu/sonyc/.

https://wp.nyu.edu/sonyc/
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Fig. 13.1 Acoustic sensing
module—back of board on
left with MEMS microphone
in center, front of board on
right with microphone port in
center

13.3.3.1 Microphone Module

In recent years, interest in microelectromechanical systems (MEMS) microphones
has expanded due to their versatile design, greater immunity to radio frequency
interference (RFI) and electromagnetic interference (EMI), low-cost and environ-
mental resiliency [6, 7, 91]. Current MEMS models are generally 10� smaller than
their more traditional electret counterparts. This miniaturization has allowed for
additional circuitry to be included within the MEMS housing, such as a pre-amp
stage and an ADC to output digitized audio in some models. The production process
used to manufacture these devices also provides an extremely high level of part-to-
part consistency, making them more amenable to multi-capsule and multi-sensor
arrays. The sensing module shown in Fig. 13.1 uses an entirely digital design, utiliz-
ing a digital MEMS microphone (including a built-in ADC), and an onboard micro
controller (MCU) enabling it to connect directly to the nodes computing device
as a USB audio device. The digital MEMS microphone features a wide dynamic
range of 32–120 dBA, ensuring all urban sound pressure levels can be effectively
monitored. The use of an onboard MCU also allows for efficient, hardware level
filtering of the incoming audio signal to compensate for the frequency response of
the MEMS microphone before any further analysis is carried out. The standalone
nature of this acoustic sensing module also means it is computing core agnostic, as
it can be plugged into any computing device.

13.3.3.2 Form Factor, Cost, and Calibration

The sensor’s prototype housing and form factor is shown in Fig. 13.2. The low-
cost unfinished/unpainted aluminum housing was chosen to reduce radio frequency
interference (RFI) from external sources, solar heat gain from direct sunlight and it
also allows for ease of machining. All of the sensor’s core components are housed
within this rugged case except for the microphone and Wi-Fi antenna which is
externalized for maximum signal gain.

In the prototype node shown in Fig. 13.2, the MEMS microphone is mounted
externally via a repositionable metal goose-neck allowing the sensor node to be
reconfigured for deployment in varying locations such as building sides, light poles,
and building ledges. Figure 13.2 also shows the sensors bird spikes to ensure
no damage is caused by perching birds. The total cost of the sensor excluding
construction and deployment costs is $83 USD, as of December 2016.
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Fig. 13.2 Acoustic sensor node showing core components viewed from the underside (left) and a
deployed node in NYC (right)

The sensing module was calibrated using a precision grade sound level meter
as reference (Larson Davis 831 [49]), under low-noise, anechoic conditions. The
sensor was then shown empirically to produce continuous decibel data at a level of
accuracy used by the NYC city agencies tasked with enforcing the city’s noise code.

13.3.4 Network Design & Infrastructure

The prototype node relies on a continuous power supply and wireless network con-
nectivity so its deployment locations are mainly determined by these prerequisites.
Security and wider localized spatial acoustic coverage of sensors is maintained by
mounting at a height of �4 m above street level with a distance between sensors
of around 2 city blocks or �150 m. Ideally acoustic sensors would be mounted
on poles, rather than on or close to building sides to reduce variations in SPL
response due to wall proximity. Partnering with infrastructure owners/managers
is crucial when selecting and deploying sensor nodes, and it is worth noting
that the cost of deploying a sensor on urban locations such as light poles can
spiral when lifting equipment and professional personnel are involved. Selection
of sites with the likelihood of high variation in sound sources is also prioritized in
order to facilitate the collection of a wide variation of ground-truth audio data as
discussed in Sect. 13.4. In order to maintain public privacy, audio data is captured,
losslessly FLAC3 compressed, and encrypted in 10 s snippets, interleaved with
random durations of time. This data is transmitted from the sensor via Wi-Fi,
directly to the project’s control server, which in turn transfers the data to the storage
servers, ready for further analysis. Each sensor also transmits its current state every
minute via a small “status ping”. This allows for near real-time remote telemetry
display of all deployed sensors for fault diagnosis. Further in-depth control and
maintenance of the deployed sensors is provided via a Virtual Private Network
(VPN) that provides a method for remote Secure Shell (SSH) access to each node.

3https://xiph.org/flac/.

https://xiph.org/flac/
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The VPN also enhances the wireless transmission security of the sensor as all data
and control traffic is routed through this secure network. Future versions of the
project’s acoustic network will utilize multi-hop mesh networking approaches for
sensor-server communications in order to increase the range of the network and
reduce its power consumption to open up the possibility of battery powered, energy
harvesting acoustic sensor nodes. Without the requirement of continuous power
and pre-existing wireless network infrastructure, many more urban deployment
possibilities become available.

13.4 Understanding Urban Soundscapes

Most prior work on understanding urban soundscapes has been focused on identify-
ing acoustic scenes that are commonly found in urban environments such as parks,
commercial streets, residential streets, construction sites, restaurants, or different
modes of transportation (e.g., inside a taxi, train or bus). However, it is difficult
to disambiguate work specific to urban environments from general acoustic scene
classification (ASC) as described in Chap. 8. This is because the most widely used
datasets for ASC research are largely or exclusively made from urban soundscapes.
To make this clear, we provide a summary of those datasets in Table 13.1, where
for each dataset we list the total number of audio recordings, the number of classes
(acoustic scenes) and the number of these classes that can be considered urban sound
scenes. As can be seen, all datasets contain a significant proportion of urban sound
scenes.

While the focus of these datasets (and the approaches evaluated on them) is not
necessarily urban sound scene analysis, they serve as a good proxy for it. Thus if we
wish to understand the current state of the art in urban sound scene classification,
we can refer to the DCASE 2016 acoustic scene classification challenge,4 which
was based on the TUT Acoustic Scenes 2016 dataset [59] listed in Table 13.1.
The challenge received close to 50 submissions spanning a variety of techniques,

Table 13.1 Some commonly used datasets for acoustic scene classification

Dataset Recordings Total scenes Urban scenes

UAE noise DB series 1 [84] 10 10 9

UAE noise DB series 2 [84] 35 12 11

DCASE 2013 [38] 100 10 10

DARES G1 [40] 123 28 25

TUT acoustic scenes 2016 [59] 1170 15 13

LITIS rouen [71] 3026 19 19

As seen from the table, all datasets contain a significant proportion of urban scenes

4http://www.cs.tut.fi/sgn/arg/dcase2016/.

http://www.cs.tut.fi/sgn/arg/dcase2016/
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ranging from a baseline system which uses MFCC features with a GMM classifier,
to deep learning architectures including fully connected and convolutional neural
networks trained on a variety of input representations. Since the general problem
of scene classification and the DCASE challenge are discussed in detail in previous
chapters, here we will only limit ourselves to point out that the maximum reported
classification accuracy was of 0.897, with incremental differences of 1% to the
second and third best performing systems, and that the best performing method in
the challenge was based on the late fusion of a deep and a shallow feature learner
[33]. For a detailed comparison of algorithmic performance and further details about
all participating methods the reader is referred to the challenge’s results page.5

The challenge supports the notion that current strategies are already capable of
providing robust solutions to urban ASC. This is not new, since high performance
in this task has been reported for close to a decade at the time of writing [5]. At the
same time, practically all datasets used for ASC evaluation to date are closed-set,
meaning the data are divided into a fixed, known number of scenes. In a real-world
scenario (for instance, a robot operating in a new environment) it is possible to
encounter previously unheard acoustic scenes, which a model would have to identify
as “unknown”. Existing models are not trained to perform this task, which requires
open-set data for training, and it is quite possible that model performance on this
(more challenging) scenario would be lower.

Next we turn our attention to the more challenging task of sound source identifi-
cation, which has received less attention and has ample room for improvement. As
was the case before, this task is covered in detail elsewhere in this book, which is
why for the rest of this section we will focus on research specifically targeting urban
environments.

13.4.1 Urban Sound Dataset

In Chap. 6 a number of annotated datasets for environmental sound event detection
and classification were discussed. While some of these contain sound events from
urban soundscapes, up to 2013 there was no dataset focusing specifically on urban
sounds. Previous work has focused on audio from carefully produced movies or
television tracks [19], from specific environments such as elevators or office spaces
[39, 70], and on commercial or proprietary datasets [23, 44]. The large effort
involved in manually annotating real-world data means datasets based on field
recordings tend to be relatively small (e.g., the event detection dataset of the IEEE
AASP Challenge [39] consists of 24 recordings per each of 17 classes). A second
challenge faced by the research community was the lack of a common vocabulary
when working with urban sounds. This meant the classification of sounds into
semantic groups varied from study to study, making it hard to compare results.

5http://www.cs.tut.fi/sgn/arg/dcase2016/task-results-acoustic-scene-classification.

http://www.cs.tut.fi/sgn/arg/dcase2016/task-results-acoustic-scene-classification
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Specific efforts to describe urban sounds have often been limited to subsets of
broader taxonomies of acoustic environments (e.g., [16]), and thus only partially
fulfill the needs of systematic urban sound analysis. To address this, Salamon et
al. proposed an urban sound taxonomy [77] based on the subset of the taxonomy
proposed by Brown et al. [16] dedicated to the urban acoustic environment. This tax-
onomy defines four top-level groups: human, nature, mechanical, and music, which
are common in the literature [67], and specifies that its leaves should be sufficiently
low-level to be unambiguous—e.g., car “brakes,” “engine,” or “horn,” instead of
simply “car.” Furthermore, it is built around the most frequently complained about
sound categories and sources—e.g., construction (e.g., jackhammer), traffic noise
(car and truck horns, idling engines), loud music, air conditioners and dog barks—
according to 370,000 noise complaints filed through New York City’s 311 service
from 2010 to 2013.6

A subset of the resulting taxonomy, focused on mechanical sounds, is provided
in Fig. 13.3. A scalable digital version of the complete taxonomy is available
online.7 Rounded rectangles represent high-level semantic classes (e.g., human,
nature, mechanical, music). The leaves of the taxonomy (rectangles with sharp
edges) correspond to classes of concrete sound sources (e.g., siren, footsteps). For
conciseness, leaves can be shared by several high-level classes (indicated by an
earmark).

From this taxonomy, a dataset [77] was developed by focusing on ten low-level
classes: air conditioner, car horn, children playing, dog bark, drilling, engine idling,
gunshot, jackhammer, siren, and street music. With the exception of “children
playing” and “gun shot” which were added for variety, all other classes were selected
due to the high frequency in which they appear in NYC urban noise complaints.

The audio data was collected from Freesound,8 an online sound repository
containing over 160,000 user-uploaded recordings under a creative commons
license. For each class, the authors downloaded all sounds returned by the Freesound
search engine when using the class name as a query (e.g., “jackhammer”), manually
inspected all recordings and kept only actual urban field recordings where the sound
class of interest was present, and used Audacity9 to label the start and end times
of every occurrence of the sound in each recording, with an additional salience
description indicating whether the occurrence was subjectively perceived to be in
the foreground or background of the recording. This resulted in a total of 3075
labeled occurrences amounting to 18.5 h of labeled audio. The distribution of total
occurrence duration per class and per salience is provided in Fig. 13.4a.

The resulting dataset of 1302 full and variable length recordings with correspond-
ing sound occurrence and salience annotations, UrbanSound, is freely available

6https://nycopendata.socrata.com/data.
7http://serv.cusp.nyu.edu/projects/urbansounddataset/.
8http://www.freesound.org.
9http://audacity.sourceforge.net/.

https://nycopendata.socrata.com/data
http://serv.cusp.nyu.edu/projects/urbansounddataset/
http://www.freesound.org
http://audacity.sourceforge.net/
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Fig. 13.3 Subset of the Urban Sound Taxonomy [77] focusing on mechanical sounds

online.10 Moreover, for research on sound source classification the authors curated
a subset of short audio snippets, the UrbanSound8K dataset (also available online
at the same url). Following the findings in [25], these snippets are limited to a
maximum duration of 4 s. Longer clips are segmented into 4 s clips using a sliding
window with a hop size of 2 s. To avoid large differences in the class distribution,
there is a limit of 1000 clips per class, resulting in a total of 8732 labeled clips
(8.75 h). The distribution of clips per class in UrbanSound8K with a breakdown
into salience is provided in Fig. 13.4b.

A number of signal processing techniques and machine learning models have
been proposed to date for urban sound classification and evaluated on the Urban-
Sound8K dataset [68, 74–77]. In the following sections we will review and contrast
these approaches, comparing their performance in terms of classification accuracy.
A summary of the key characteristics of each approach is provided in Table 13.2.

10http://serv.cusp.nyu.edu/projects/urbansounddataset/.

http://serv.cusp.nyu.edu/projects/urbansounddataset/
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Fig. 13.4 (a) Total occurrence duration per class in UrbanSound. (b) Clips per class in Urban-
Sound8K. Breakdown by foreground (FG)/background (BG)

Table 13.2 Methods for urban sound classification

Method Input features Model

Baseline [77] MFCC summary statistics SVM

SKM-mel [75] Dictionary encoded log-mel-spectrogram Random forest

SKM-scattering [74] Dictionary encoded deep scattering spectrum SVM

Piczak-CNN [68] Log-mel-spectrogram + delta Deep CNN

SB-CNN [76] Log-mel-spectrogram Deep CNN + augmentation

13.4.2 Engineered vs Learned Features

The first step employed by all methods listed in Table 13.2 is feature extraction,
i.e., transforming the raw audio signal into a feature space that is more amenable to
machine learning. We can group audio feature spaces into two broad categories:
designed (or engineered) features, and learned features. The former includes all
features whose computation is independent of the input data, i.e., they are defined
as the concatenation of operations whose goal is to capture a certain characteristic
of the audio signal. The latter category includes features spaces that are learned
directly from the data, including, for example, dictionary learning and deep learning
methods.

Audio classification systems, including methods for environmental sound source
classification, have traditionally relied on engineered features [19, 44, 70]. Thus
the baseline system listed in Table 13.2 is a combination of a popular feature, the
Mel-Frequency Cepstral Coefficients (MFCC), and a standard classification model
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(Random Forest). However, most recent methods, including the remainder of the
methods listed in the table, fall under the category of feature learning.

The first method listed following the baseline, SKM-mel [75], is based on
unsupervised dictionary learning. The idea is to learn a dictionary of representative
codewords directly from the audio signal in a data-driven fashion. The learned
dictionary is then used to encode the samples in a dataset into feature vectors, which
are then used to train/test a discriminative model of choice. The method employs
the spherical k-means algorithm (SKM [26]) to learn the dictionary. Unlike the
traditional k-means clustering algorithm [54], the codewords are constrained to have
unit L2 norm (they must lie on the unit sphere, preventing them from becoming
arbitrarily large or small), and represent the distribution of meaningful directions
in the data. Compared to standard k-means, SKM is less susceptible to events
carrying a significant amount of the total energy of the signal (e.g., background
noise) dominating the dictionary. The algorithm is efficient and highly scalable, and
it has been shown that the resulting set of vectors can be used as a dictionary for
mapping new data into a feature space which reflects the discovered regularities
[26, 30, 86]. The algorithm is competitive with more complex (and consequently
slower) techniques such as sparse coding and has been used successfully to
learn features from audio for music [32], and birdsongs [86]. After applying this
clustering to the training data, the resulting cluster centroids can be used as the
codewords of the learned dictionary. The number of codewords learned is typically
much larger than the number of classes present in the data. It is also typically larger
than the dimensionality of the input representation, i.e., the algorithm is used to
learn an over-complete dictionary.

The clustering produces a dictionary matrix with k columns, where each column
represents a codeword. Every sample in the dataset is encoded against the dictionary
by taking the matrix product between each frame of its input representation, a mel-
spectrogram, and the dictionary matrix. Every column i (i D 1 : : : k) in the resulting
encoded matrix can be viewed as a time series whose values represent the match
scores between the input representation and the ith codeword in the dictionary: when
the input is similar to the codeword the value in the time series will be higher, and
when it is dissimilar the value will be lower.

To ensure that all samples in the dataset are represented by a feature vector
of the same dimensionality, the time series are summarized over the time axis by
computing the mean and standard deviation of each time series and using these as
features. The resulting feature vectors are thus all of size 2k and are standardized
across samples before being passed on to the classifier for training and testing.

Note that for learning, one can choose to learn features from individual frames
of the input representation, or alternatively group the frames into 2D patches and
apply the learning algorithm to the patches. In [75] the authors show that the
latter approach facilitates the learning of features that capture short-term temporal
dynamics, which proves to be important for urban sound classification. The best
result reported by the authors was obtained using patches with a time duration
of roughly 370 ms (16 frames). For training, patches are extracted from the mel-
spectrogram using a sliding window with a hop size of 1 frame. This results in
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Fig. 13.5 Classification accuracy obtained on the UrbanSound8K dataset by different models:
MFCC Baseline [77], spherical k-means dictionary learning from mel spectra [75] (SKM-mel),
SKM learned from deep scattering spectra [74] (SKM-scattering) and the deep CNN proposed by
Salamon and Bello [76] (SB-CNN). Models to the left of the dashed line were trained without data
augmentation. To the right of the dashed line we present the results obtained by SKM-mel and SB-
CNN when trained on an augmented training set: SKM-mel(aug) and SB-CNN(aug), respectively

significantly more training data for the unsupervised dictionary learning stage, and
also ensures that the learned codewords account for different time-shifts of each
sound source, hopefully increasing the robustness of the model to such shifts in the
data.

While one could use the resulting patches directly as input for the feature
learning, it has been shown that the learned features can be significantly improved
by decorrelating the input dimensions using, e.g., Zero-phase Component Analysis
(ZCA) whitening [47] or Principal Component Analysis (PCA) whitening [26].

Figure 13.5 presents classification accuracy results for UrbanSound8K in the
form of a boxplot computed from the per-fold accuracies obtained by each model.
Mean accuracies are indicated by the red squares. We will initially focus on the
two left-most boxes and will discuss the remainder of the results in the following
sections.

We clearly see that the SKM-mel model outperforms the MFCC baseline, with
mean accuracies of 0.74 and 0.68, respectively. The difference is robust to the
parameters of the mel-spectrogram, which are optimal for both reported results, but
depends on the size of the dictionary for SKM, with best results for k D 2000 [75].
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Such a significant improvement provides clear evidence of the advantage of feature
learning compared to off-the-shelf engineered features, even when using a simple
and shallow feature learning approach such as SKM.

13.4.3 Shift Invariance via Convolutions

The following method in Table 13.2, SKM-scattering [74], uses a different input
representation altogether—the scattering transform [1–3]. This representation can
be viewed as an extension of the mel-spectrogram that computes modulation
spectrum coefficients of multiple orders through cascades of wavelet convolutions
and modulus operators. Given a signal x, the first-order (or “layer”) scattering
coefficients are computed by convolving x with a wavelet filterbank  �1 , taking
the modulus, and averaging the result in time by convolving it with a low-pass filter
�.t/ of size T:

S1x.t; �1/ D jx 	  �1 j 	 �.t/: (13.1)

The wavelet filterbank  �1 has an octave frequency resolution Q1. By setting
Q1 D 8 the filterbank has the same frequency resolution as the mel filterbank, and
this layer is approximately equivalent to the mel-spectrogram. The second-order
coefficients capture the high-frequency amplitude modulations occurring at each
frequency band of the first layer and are obtained by:

S2x.t; �1; �2/ D jjx 	  �1 j 	  �2 j 	 �.t/: (13.2)

In [74] Q1 D 8 and Q2 D 1, the filterbank is constructed of 1D Morlet wavelets,
and T is set to the same duration covered by the 2D mel-spectrogram patches used
for dictionary learning in [75], i.e., 370 ms (for a sampling rate of 44,100 Hz this
implies T D 1024� 16). Higher order coefficients can be obtained by iterating over
this process, but it has been shown that for the chosen value of T , most of the signal
energy is captured by the first- and second-order coefficients [3].

For each frame the first-order coefficients are concatenated with all of the second-
order coefficients into a single feature vector. The second order coefficients are
normalized using the previous order coefficients as described in [3]. From this point
the process replicates the method described in the previous section: PCA whitening,
dictionary learning using SKM, projection into the feature space, summarization and
classification, in this case using a support vector machine (although the difference
with a random forest is minimal). Therefore, the main difference between [75] and
[74] is the addition of a phase-invariant convolutional layer, which is able to capture
amplitude modulations in the input representation, in a time-shift invariant manner.

Figure 13.5 shows that learning a dictionary from scattering coefficients as
opposed to the mel-spectrogram results in a relatively marginal improvement
in classification accuracy (0.75 vs 0.74). Notably, the authors did observe a 5
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percentage-point absolute improvement in the classification accuracy (i.e., C0:05)
of masked sounds, i.e., sounds that were labeled by the annotators of the dataset as
being in the background of the acoustic scene. This fits with findings in the sound
perception and cognition literature showing that modulation plays an important
role in sound segregation and the formation of auditory images [22, 57, 95],
further motivating the exploration of deep convolutional representations, such as
the scattering transform, for machine listening.

However, the most important finding is that the scattering transform’s inherent
invariance to local time shifts allows for the comparable performance between
SKM-scattering and SKM-mel, but using a dictionary that is an order of magnitude
smaller (k D 200 versus k D 2000) while reducing the amount of 2D patches
(samples) necessary for training by an order of magnitude too. In other words,
shift invariance results in smaller machines trained with less data that are equally
powerful, a finding that motivates further exploration using deep convolutional
approaches.

13.4.4 Deep Learning and Data Augmentation

The last two methods in Table 13.2, Piczak-CNN [68] and SB-CNN [76], are
based on deep (feature) learning [51]. This means that unlike the methods described
above, here there are multiple feature learning layers including both fully-connected
(like SKM) and convolutional (like scattering) layers, the feature learning is fully
integrated with the classifier, and the machine is trained using supervised methods
and a discriminative objective.

Since the two CNNs perform comparably when trained on the original Urban-
Sound8K dataset (and only SB-CNN was evaluated both with and without data
augmentation as discussed further below), for the remainder of the discussion we
shall focus on SB-CNN as an instance of a deep learning model. SB-CNN takes
log-scaled mel-spectrograms with 128 bands and a duration of 3 s as input to
the network. Each 3 s spectrogram “patch” is Z-score normalized. The model is
comprised of three convolutional layers interleaved with two pooling operations,
followed by two fully connected (dense) layers. Notably, the convolutional layers
of SB-CNN use a comparatively small receptive field of .5; 5/ compared to the
input dimensions of .128; 128/. This is intended to allow the network to learn
small, localized patterns, or cues, that can progressively build-up evidence for the
presence/absence of specific sources even when there is spectro-temporal masking
by interfering sources.

During training the model optimizes cross-entropy loss via mini-batch stochastic
gradient descent [13]. Each batch consists of 100 patches randomly selected from
the training data (without repetition). The model is trained using a constant learning
rate of 0.01 and dropout [85] with probability 0.5 is applied to the input of
the last two layers. L2-regularization is applied to the weights of the last two
layers with a penalty factor of 0.001. The model is trained for 50 epochs with
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a validation set used to identify the parameter setting (epoch) that achieves the
highest classification accuracy. Prediction is performed by slicing the test sample
into overlapping patches, making a prediction for each patch and finally choosing
the sample-level prediction as the class with the highest mean output activation over
all patches.

From Fig. 13.5 we see that SB-CNN, while outperforming the baseline, does not
outperform its “shallow” SKM counterpart. This suggests that the UrbanSound8K
dataset, despite being the largest dataset publicly available for urban sound clas-
sification, is not sufficiently large for the benefits of high-capacity, deep learning
models to become apparent.

To address this limitation and increase the model’s robustness to intra-class
variance, the authors also trained SB-CNN using data augmentation, that is, the
application of one or more deformations to the training set which result in new,
additional training data [48, 58, 83]. Assuming the deformations do not change the
validity of the labels, augmentation aims to increase the model’s invariance to said
transformations and thus generalize better to unseen data.

The authors applied four types of audio deformations: time stretching, pitch
shifting, dynamic range compression, and the addition of background noise at
different SNR, resulting in a training set an order of magnitude larger than the
original UrbanSound8K. Augmentation was performed using the MUDA library
[58]. After training SB-CNN with augmentation [Fig. 13.5: SB-CNN(aug)], the
model significantly outperforms the SKM approach. Furthermore, we see that this
improvement is not independent of the use of deep learning—training the SKM
approach with augmentation [Fig. 13.5: SKM-mel(aug)] failed to improve as much.
Increasing the capacity of the SKM model by increasing the dictionary size from
k D 2000 to k D 4000 did not yield any further improvement either, even with the
augmented training set. Instead, it is the combination of an augmented training set
and the increased capacity and representational power of the deep learning model
that results in this state-of-the-art performance.

13.5 Conclusion and Future Perspectives

In this chapter we have discussed intelligent acoustic sensing and analysis in the
context of urban environments, particularly as one component of a larger trend
towards smart city solutions. While we discuss a range of potential applications,
we focus on two, audio surveillance and noise monitoring, that motivate new
and exciting developments at the intersection of ubiquitous sensing and machine
listening capabilities such as sound event detection, classification, localization, and
tracking. These new technologies have the potential to improve the public safety
and quality of life of urban residents.
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In our discussion of acoustic sensor networks, we clearly favored the use of
static over mobile sensing, and presented an example of a low-cost, high-quality
solution intended for noise monitoring. However, the intended application greatly
influences that choice: precise source localization and tracking is desirable but
not necessary for noise monitoring, and the cyclic and seasonal nature of noise
patterns means that off-network responses can be estimated by exploiting spatial
correlations with other data types encoding information about, e.g., traffic, zoning,
nightlife, construction, and tourist activity. On the other hand, audio surveillance
requires relatively-dense arrays of sensors, something that is prohibitively expensive
for static sensor networks, even for low-cost solutions such as the one presented
in Sect. 13.3. One possibility is to deploy selectively and densely, as it is done
for specific applications such as gunshot detection in neighborhoods with high
gun crime incidences.11 However, this is not applicable to surveillance scenarios
(e.g., emergencies or terrorism) which are less predictable in space. Therefore,
future developments will most likely require leveraging sensing from smart phones
and other consumer-grade mobile devices, which in turn requires finding robust
solutions to on-the-fly calibration, synchronization, and embedded computing that
work well for acoustic data.

We devoted significant attention to the tasks of sound event detection and
classification in cities. While the results are promising and much improvement
has been accrued in a short period of time, there is still significant room for
improvement and important challenges ahead. For example, one of the challenges of
urban sound analysis is the heterogeneity of source types, a problem for which large-
capacity models and ensemble methods might prove beneficial, as has been shown
in acoustic scene classification [33] and bioacoustic classification [78]. However,
current annotated datasets are small, include only a handful out of hundreds of
possible sources, and are weakly labeled, meaning that comprehensive multi-source
annotations are the exception rather than the norm. This hinders the ability to test
such solutions.

Furthermore, real-world applications are intended to work on continuous audio
streams, but many of the datasets discussed only contain snippets and thus fail to
characterize the complex temporal dynamics of urban soundscapes. This scenario
calls for the exploitation of longer temporal relationships, making the combination
of convolutional and recurrent models an attractive direction for future research.
These problems and solutions have been studied in the context of general environ-
mental sound analysis (e.g., [20]), but remains to be explored for urban applications.

Finally, these sets only contain a small and arbitrary sample of the full range
of acoustic conditions one might encounter in urban outdoor environments, and
to which these systems are supposed to generalize. While data augmentation can
help to a certain extent, future developments will be dependent on significant data
collection from large-scale acoustic sensor networks, whether mobile or fixed.
Encouraging developments include the recent launch of the YouTube-8M dataset

11http://www.shotspotter.com/.

http://www.shotspotter.com/
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of tagged videos,12 which contain a sizable and diverse sample of urban acoustic
environments from mobile devices, and the ongoing deployment of audio sensor
networks by various smart cities initiatives such as SONYC.13
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Chapter 14
Future Perspective

Dan Ellis, Tuomas Virtanen, Mark D. Plumbley, and Bhiksha Raj

Abstract This book has covered the underlying principles and technologies of
sound recognition, and described several current application areas. However, the
field is still very young; this chapter briefly outlines several emerging areas,
particularly relating to the provision of the very large training sets that can be
exploited by deep learning approaches. We also forecast some of the technological
and application advances we expect in the short-to-medium future.

Keywords Audio content analysis • Sound catalogues • Sound vocabularies •
Audio database collection • Audio annotation • Active learning • Weak labels •
Applications of sound analysis

14.1 Introduction

The foregoing chapters of this book have provided a comprehensive view of the
state of the art in sound scene and event recognition, ranging from perceptual
and computational foundations, through core techniques and evaluation, to a series
of relatively advanced application areas. However, this is a young field which is
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developing rapidly. This chapter provides brief descriptions of emerging trends
that did not appear in earlier chapters, as well as some brief speculation about the
technologies and applications likely to be important in coming years.

Given the dominance of large-scale machine learning in so many fields, in the
next section we revisit the question of obtaining the data with which to train such
classifiers, including the problem of defining a vocabulary of labels to use, and
some approaches to working with imperfectly labeled data. We then go on to briefly
outline some applications and approaches we see on the horizon for this field.

14.2 Obtaining Training Data

In many fields, deep learning approaches (as described in Chap. 5) have shown
startling abilities to rival human abilities to recognize images, words, etc. In all
cases, however, the best performance has relied on a combination of massive
computational power with enormous training data. Because the sound scene and
event recognition community has a relatively short history, there are no well-
established sources for these kinds of “big data” training sets in our field. This deficit
is stimulating a variety of current research.

14.2.1 Cataloguing Sounds

A first step to automated content analysis of sound recordings is to compose a
catalogue of sound classes to detect in them. The catalogue has two components.
The first is the set of exemplars or models for each of the sound classes. The second
is the labels we assign to the classes, and by which we refer to them.

In principle the labels could be arbitrary, e.g., random character strings that
uniquely identify the sound class. In practice, the output of audio content recognition
is generally intended for downstream automated or manual analysis, and it becomes
convenient, or even necessary, for the labels to be semantically meaningful words
or phrases that a human analyst can interpret. In effect, we must “name” the
sounds in linguistic terms. It follows, therefore, that an essential part of building
sound catalogues is to “know” how to label sounds in linguistic terms.

Since the sound labels are intended to appeal to the human sense of semantics,
the simplest solution is to involve humans directly in the collection and labeling
of sounds, an approach we refer to as manual sound event vocabulary creation.
Eventually, though, in order to obtain a more comprehensive and current catalogue
of sound labels, we will require semi- or fully automated techniques that can mine
the web and other knowledge sources to create a list of sound labels, a process
we refer to as automatic vocabulary creation.
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14.2.1.1 Manual Sound Event Vocabularies

The most natural way to obtain the labeled data needed for supervised training is
to directly solicit labels for snippets of sound from human annotators. Supervised
classification generally requires a predefined vocabulary of possible labels, but
collecting unconstrained labels (such as the free-text tags on www.freesound.org)
can lead to very large vocabularies with many synonyms (distinct terms referring to
essentially the same sound event). Thus, it is preferable to establish a predefined,
fixed vocabulary and to constrain annotators to only use terms from the vocabulary.
This, however, raises several issues when compared to completely free annotation:
How to define the vocabulary, and how to make sure the annotators are familiar with
all the categories.

Both these problems become more serious as the size and scope of the vocabulary
grows. For the Urban Sounds taxonomy, Salamon et al. [38] chose to work with a
limited set of 10 sound event classes (from “car horn” to “children playing”) that
were both common and typical in their urban field recordings. These classes were
intended to be representative, so the exact choices were not important, and there was
no effort to cover all events. They then went through their raw data marking each
instance of each event; raters could be expected to quickly learn the full set of 10
events and identify them without further prompting.

For the TUT Sound Events 2016 database, Mesaros et al. [30] asked annotators
to mark every sound event they perceived with free-text labels specifying a noun
(object) and verb (action). These labels were subsequently manually merged,
yielding 18 sound event classes with adequate representation (at least 20–30
examples) to be used in classification experiments. The data were limited to two
acoustic contexts, “Residential area” (7 event categories) and “Home” (11 event
categories), making it possible to obtain reasonable coverage with few classes.

The AudioSet Ontology [15] adopts the ambitious goal of defining a sound
event vocabulary that covers all environmental sounds at a uniform level of detail,
manually constructed from seeds including WordNet [31] and “Hearst patterns”
[16] applied to web text. The resulting hierarchy of around 600 events arranged
under 7 top-level categories raises problems of making annotators aware of all
the categories. Annotation was primarily achieved via “verification” (presenting
annotators with a single or small set of candidate labels which were then marked as
present or absent, but without asking whether other sounds were also present); there
was some experimentation with an interactive labeling tool that allowed annotators
to search for events whose definitions included provided keywords.

14.2.1.2 Automatic Creation of Sound Event Vocabularies

A larger problem is to automatically generate a comprehensive vocabulary of the
set of all sound classes that one may expect to encounter in an audio recording. By
“listing” sound classes, we mean the listing of their labels—words or phrases that
represent distinct sounds (regardless of whether we actually have exemplars of these

www.freesound.org
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sounds or not). Generating such a list may be used as a precursor to identifying or
collecting associated sound samples, e.g., for strongly or weakly supervised learning
of classifiers, or more generally as an indicator of the awareness of the existence
of these sounds. Such a list will, however, be much longer than would be feasible
using the manual procedures mentioned in Sect. 14.2.1.1, and will require automated
methods to produce.

The obvious way to compose the vocabulary is to list sounds by name—i.e., the
noun or noun phrase canonically designated to represent the sound. Unfortunately,
while some sounds do have names, e.g., onomatopoeic terms such as “squeal”
and “chirp,” etymologically rooted terms such as “music,” or explicitly designated
names, e.g., “Beethoven’s ninth,” many more, possibly the majority, are referred to
by characteristics of their manner of production. In effect, the labels applied to the
sounds are “descriptors” rather than “names.”

Consequently, once past the named sounds, sound vocabularies must be extended
either by composing the sound-descriptor phrases that act as sound labels using
appropriate rules or by mining web corpora for them, or a combination of the two.

There are, however, several confounding factors. Sound-descriptor terms can
refer to the objects that produce the sound (e.g., “airplane” or “wind chime”), the
environment in which the sound is produced (e.g., “playground”), the mechanism
that produces the sound (e.g., “sawing wood”) or to more complex characterizations
of the entire sound-producing phenomenon (e.g., “metal scraping on concrete” or
“children in a playground”). The words composing the labels may themselves have
no direct implication of sound, e.g., the term “car idling” evokes a type of sound, but
“idling” by itself is not immediately associated with sound (consider “man idling”).
Naive construction of sound label lists will thus result in many spurious entries.

Vocabulary-generation mechanisms should therefore take a two-step approach:
first generate candidate sound labels, and subsequently filter them to eliminate
spurious candidates. For instance, as mentioned above, the AudioSet Ontology
[15] generated candidates by applying modified “Hearst patterns” [16] to identify
hyponyms of the word “sound,” but this set needed subsequent manual filtering.
Säger et al. [37] generated a much larger set of candidate sound terms based on the
principle that sound events arise from an object (i.e., a noun) engaged in a particular
action (i.e., a verb) or in some specific state (i.e., an adjective). They collected a
set of sound-relevant words including 1200 nouns, 40 verbs, and 75 adjectives, and
composed all possible adjective–noun pairs (ANPs) and verb–noun pairs (VNPs).
This overcomplete set was then pruned by keeping only the pairs that occurred as
tag combinations for sound files on www.freesound.org, then further pruning away
implausible results by rejecting combinations that relied on a single uploader, or that
only occurred in conjunction with the same other pairs. This resulted in over 1000
sound concepts; Table 14.1 shows some of their examples.

Kumar et al. [26] took the pattern-based approach used by CMU’s never-ending
language learner, “NELL” [32], to generate sound labels from the ClueWeb corpus
[11]. They noted that sound-descriptor phrases can often be disambiguated based
on whether they can be prefixed by the words “sound of ” without changing their
meaning. Consequently, by matching the template “sound(s) of <Y>” where Y is any
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Table 14.1 Examples of
detected “sound” ANPs and
VNPs

Howling dog Splashing water

Heavy rain Howling wolf

Crackling footsteps Echoing phone

Heavy metal Extreme noise

Gurgling water Breaking snow

Table 14.2 Patterns for
discovering sound concepts in
text

Pattern Example concept

P1 (DT) VBG NN(S) Honking cars

P3 (DT) NN(S) VBG Dogs barking

P5 (DT) NN NN(S) String quartet

P6 (DT) JJ NN(S) Classical music

VBG is the part of speech tag for verbs in the
gerund form, NN for nouns, DT for determin-
ers, and JJ for adjectives

phrase of up to four words to identify candidate phrases, followed by the application
of a rule-based classifier to eliminate noisy candidates, they obtained a list of over
100,000 sound labels. Table 14.2 shows some of their grammatical patterns along
with representative matches. Further, by applying a classifier to features extracted
from a dependency path between a manually listed set of acoustic scenes and the
discovered sound labels, they were also able to discover ontological relations, for
instance, that forests may be associated with the sounds of “birds singing,” “breaking
twigs,” “cooing,” and “falling water,” and that churches are associated with “children
laughing,” “church bells,” “singing,” and “applause.”

The solutions described so far only consider contiguous word sequences as
candidates for sound labels. More generally, sound-describing phrases may also be
extracted from longer noun or verb phrases in which not all constituents relate to
the sound. For instance, “a cat runs past a dog mewling” has the constituent “cat
mewling.” In preliminary experiments Pillai and Qazi [35] found that candidates
may be formed by parsing sentences into their components and evaluating combi-
nations of various constituents of the sentence. Subsequent classification of formed
candidates using a support-vector machine applied to vector-space representations
of the phrases derived from a neural network returned lists of sound labels that were
judged to be more than 80% accurate through manual inspection.

The lists obtained by these techniques can be further refined by considering
frequency of occurrence across different webpages, their co-occurrence or affinity
with one another, and the contexts they occur in. For instance, Pillai and Qazi
[35] found that phrases derived from sound-related Wikipedia pages had a much
higher likelihood of being valid candidates than those obtained from the larger web.
Eventually, however, the true test is whether these phrases can indeed be associated
with audio recordings. Thus a key feature that may be tested is to determine the
frequency with which the phrases co-occur with sound files, particularly in contexts
where phrases co-occurring with sounds may be expected (e.g., on sites such as
soundforge.org or YouTube, or on Wikipedia pages about sounds).
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14.2.2 Opportunistic Data Collection

When deep learning approaches were being developed for image recognition, the
need for large numbers of labeled examples was addressed by mining the many
billions of online digital images for examples whose captions suggested they
contained the desired object. Even if captioned images make up only a tiny fraction
of the billion-plus photos uploaded every day, there is still a very good chance of
finding labeled examples for any common subject, and very often those examples
will be clear, well-composed pictures.

Sound events are different. There is no widespread culture of uploading brief
recordings of specific sounds; the closest is www.freesound.org, which has only a
few hundred thousand sound files total. However, videos, while perhaps a thousand
times less numerous than photos, are still available in ample volumes, including a
proportion with associated text and other metadata. Users are perhaps more likely to
describe the objects in their videos instead of the sounds, but those sounds are often
associated with specific objects.

Thus, by a series of assumptions (some strong, some more reliable), we can
take soundtrack snippets from videos whose metadata makes us believe they could
contain the particular sound event for which we are collecting examples. Our
assumptions might not work out, in which case we have a snippet labeled positive
for containing sound X which in fact does not; we call this the “noisy labeling”
problem. Even if the sound event does occur, there may be a lot of uncertainty
about when it occurs; for instance, a 2 min video whose title is “AWESOME GLASS
SMASH” may contain only a single glass breaking sound lasting under a second;
this uncertainty around event timing we call the “weak labeling” problem.

Hershey et al. [17] use YouTube metadata to assign labels to videos; these labels
are both weak (each label is assumed relevant to the entire video, whereas in fact
it may only relate to specific time ranges within the soundtrack) and noisy (the
label inference may have assigned a label that is not relevant at all). Their 3000
labels (“song,” “motorcycle,” etc.) are oriented towards YouTube searching behavior
and thus may not necessarily relate to sound events, but their results—obtaining a
mean Average Precision of up to 0.2, where random guessing would give something
less than 0.01—show that, overall, the problems of weak and noisy labels are less
devastating than might be expected.

14.2.3 Active Learning

Since human annotators are the ultimate authority for labeling sound examples,
there is a strong incentive to maximize the value obtained for the expense of human
labeling by ensuring they are shown the most important examples. This is the
idea behind active learning, which includes a human annotator within a machine
learning “loop,” so that each new label provides maximum value to the automatic
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system [8]. Thus, instead of gathering labels for a large number of examples that
simply confirm the confident predictions of a classifier trained on existing labels,
only examples that the current system is most likely to misclassify (i.e., those on
the boundaries between decision regions) are labeled. As the new labels improve
the classifier, this boundary will shift, and the examples selected for labeling will
change. Another aspect of this approach is to reduce annotator load by asking
for less-precise judgments when the system can automatically refine them given
some initial guidance; this philosophy has been effectively applied in image object
segmentation, where annotators simply clicked a single point within an object,
leaving the system to infer the most likely bounding box of the clicked object [34].

14.2.4 Using Unsupervised Data

Obtaining labeled sound event data is difficult or at least expensive, but unlabeled
audio is plentiful, favoring any method able to exploit it. In [19], Jansen et al. process
a million YouTube soundtracks (about 5 years of audio) using an online clustering
system to produce millions of clusters. Although labels are not used in creating the
clusters, they show that the resulting clusters are correlated with labels for labeled
items, meaning that the unlabeled data can be used to help “regularize” a classifier
trained on a smaller amount of labeled data.

Unlabeled data can also be used as a source of candidates for annotation [45].
Since many sound classes are rare, simply annotating randomly selected sound
excerpts will have a very inefficient yield. Instead, given a few positive examples,
excerpts with high acoustic similarity (by some measure) can be prioritized for
annotation. An acoustic similarity measure that better approximates human simi-
larity judgments (such as the embedding layer of a trained classifier) will give a
correspondingly more useful prioritization.

14.2.4.1 Training with Weak Labels

While unlabeled data may be used to organize audio, eventually labeled data are
needed to train classifiers for sound events. Ideally, these data would comprise
isolated or cleanly segmented recordings of the target sound events. As mentioned
earlier, such “strongly” labeled data are hard to come by, since the effort required to
produce them is considerable.

It is much easier and cheaper to obtain weaker labels that merely indicate
whether a particular sound event is present within a recording, without specifying
additional details, such as the precise location of the event or even the number of
times it occurs. Such labels may be obtained through manual annotation, e.g., the
Google AudioSet corpus [15] which provides weak labels for 10-s snippets of audio.
Alternatively, the labels may be inferred from the metadata or text attached to a
recording, from analysis of any accompanying video, etc.
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The focus now shifts to how best to train sound event classifiers with such
weakly labeled data. How do we train classifiers to similarly tag (weakly label)
other similarly sized snippets? At a finer level, can we use the weak labels to actually
infer the location of the target sounds within the training data itself? Can we develop
detectors to find and localize instances of the target events in novel test data?

These questions are analogous to a well-studied problem in the machine-learning
literature: multiple-instance learning (MIL) [4]. Within the MIL paradigm, data
instances are assumed to be grouped into bags. It is assumed that only bag-level
labels are available, which indicate whether a bag contains representatives of a
target class or not. The MIL tasks are now to (a) learn to best classify other bags
(to determine what classes are present within them), and (b) to learn to classify
individual instances, including those in the training data bags themselves. A number
of algorithms have been proposed for MIL including methods based on boosting [2],
random forests [27], support-vector machines [1], and neural networks [47]. MIL
has been successfully applied to a variety of tasks including image recognition [29],
text categorization [23], drug activity prediction [46], and bioinformatics [5].

In the sound-classification framework, the analogue of a bag of instances is a
weakly labeled recording. The recording can in turn can be split into short temporal
or time-frequency segments, e.g., by uniformly segmenting it into fixed-length
sections, for instance, half a second or one second long. These would comprise
the individual instances in the bags. MIL techniques can now be directly applied.
Classifying the individual instances (segments) as belonging or not belonging to the
target sound event will naturally also localize the event to within the granularity of
the segments.

The earliest reported application of MIL to audio analysis was by Mandel and
Ellis [28], who applied it to music. Musical labels are generally applied to artists,
albums, or individual tracks. However, a label may not apply to the entirety of an
album or a track, e.g., a track tagged as “saxophone” may contain segments that
have no sax in them at all. Mandel and Ellis attempted to apply MIL to obtain
finer-grained tags from the high-level labels, i.e., to tag individual segments (at 10-
s granularity) within the music, and reported being able to do so with reasonable
accuracy.

Briggs et al. [6] applied a variant of MIL known as multiple-instance multiple
label (MIML) learning to identify bird sounds in recordings. In a typical natural
recording of bird sounds many different birds can be heard. The labels on training
data generally only identify all the birds heard in them, but do not (and often
cannot) isolate the individual birds. The authors demonstrated that the MIML
solution provides better accuracies than other methods at identifying all birds in
a test recording. Their solution was, however, restricted to performing bag-level
classification; they did not attempt to isolate individual bird calls in either the test or
the training data.

Kumar and Raj [24, 25] reported one of the earliest applications of MIL to the
problem of generic sound event detection, and proposed a variety of solutions based
on different classifier formalisms including support-vector machines and neural
networks. The primary task addressed in their work was that of learning to detect
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and localize sound events from weakly labeled training data. As a byproduct, their
solutions also obtained temporal localization of the sound events within the training
data itself. They were able to achieve both classification performance and temporal
localization of some sound event classes comparable to that achieved with strongly
labeled training data over a small vocabulary of sound events.

Xu et al. [44] and Kong et al. [22] proposed an alternative to the MIL approach,
which treats the problem of learning to classify from weak labels as one of learning
to pay attention to the right training instances in each bag. Their solution uses a
combination of two neural networks, one which determines the importance of each
instance in a bag, expressed as a weight assigned to the instance, and a second which
attempts to classify it. The bag-level classifier output is a weighted combination
obtained by summing the instance-wise multiplication of the outputs of both neural
networks over all the instances in the bag. Both networks are jointly trained to
minimize bag-level error. They showed that the resulting classifier is not only able
to achieve highly accurate recording-level classification of audio, but also able to
accurately localize events within both training and test recordings.

All of these proposed solutions have limited scope; their efficacy has only been
demonstrated on small datasets and vocabularies. More recently, DCASE has issued
a large-scale challenge on learning to classify sound events from weakly labeled
data [13] that greatly increases the size, if not the vocabulary of the datasets. The
challenge is expected to generate increased interest in the problem of learning from
weakly labeled data.

Other outstanding problems include that the weak labels are often noisy. For
instance, the AudioSet corpus reports that many of the weak labels in their
dataset are inaccurate, with the accuracy of the labels falling below 50% for some
categories, even with human annotators. Correia et al. [10] propose MIL solutions
for cases where a confidence in the annotation may be established; more generally,
however, the problem of training from noisy weak labels remains a challenge.
A secondary, associated problem lies with the annotation of negative bags. Weak
labels generally only indicate the presence of target sounds in a recording. The
absence of sound events in a recording is rarely, if ever, annotated. Thus, the bags
used as negative exemplars are only assumed to be negative, and are not guaranteed
to be so. MIL solutions for noisy labels generally focus on noisy positive labels;
the issue of noise in negative labels has been less considered. These are among the
issues that must be resolved for truly scalable solutions for training with weakly
labeled data.

14.2.4.2 Exploiting Visual Information

Thanks to the proliferation of smart phones, there are now billions of people
carrying devices able to make recordings of their everyday experiences in both audio
and video modalities; the hundreds of hours of video uploaded every minute to
YouTube and similar services present both an important application domain and a
rich source of training material for automatic sound scene and event recognition



410 D. Ellis et al.

systems. But the fact that these environmental audio recordings also include
simultaneous visual information is an opportunity not to be ignored. In particular,
given the difficulties in constructing accurate labels for audio recordings, can we
glean useful labels from the video channel?

As mentioned above, image recognition systems are already very powerful, so
a natural idea is to use existing image classifiers to provide the labels for training
sound classifiers. One problem is that the labels provided by the image classifier—
the objects visible in the scene, or some global label for the scene depicted—are
at best only related to the sound events we would want to detect. At worst, they
can be unrelated, either because the sound sources are not in the field of view or
perhaps because the video has had an unrelated soundtrack dubbed on. However, the
potential for enormous training sets can counterbalance these potential weaknesses
in the labels.

This line of thinking was neatly developed by Aytar et al. [3]. They trained an
audio classifier to predict the classification of the corresponding visual frame using
existing pre-trained visual object and scene classifiers; the internal representation
of this classifier was then used to train a simple SVM classifier for audio scene
and event recognition tasks, substantially outperforming the best published results
which did not have the benefit of the large audio-visual training set they were able
to exploit.

14.2.5 Evaluation Tasks

The astonishing progress in image classification bears a substantial debt to the
existence of the ImageNet [36] dataset and the associated evaluations. ImageNet
provided at least 1000 positive example images for 1000 object categories, giving
enough data to support the training of high-performance, deep network classifiers,
and a broad enough range of object categories to give a passable attempt at general-
purpose recognition.

ImageNet was the inspiration for AudioSet, a collection of manually labeled 10 s
excerpts from the soundtracks of YouTube videos, providing at least 100 examples
for over 500 sound event categories. While still much smaller than ImageNet, it
at least attempts to provide comprehensive coverage of sounds rather than being
limited to the small, specialized subsets of sound events that have been used in
evaluations to date such as CLEAR [41] and DCASE [30, 40]. A standard evaluation
based around AudioSet may similarly emerge as the common standard to push
forward sound event detection.
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14.3 Future Perspectives

14.3.1 Applications

Audio classification promises powerful applications in “embedded” intelligent
devices that can benefit from adapting to unpredictable environments, from smart
phones to self-driving cars. One significant recent development in this category
is the smart home assistant, pioneered Amazon’s Echo [43]. This kind of hands-
free smart assistant naturally relies on sound input for control; currently, this is
exclusively via speech commands, but it is natural for it to use other information
available in the acoustic channel, including the kind of home surveillance applica-
tions presented in Chap. 12, and raising all the privacy issues discussed there.

Another promising application area is personal hearing devices. Hearing aids
that adapt automatically to their environments have been under development since
at least 2005 [7], but the past few years have seen the emergence of intelligent
“hearables,” presented as augmented earphones that promise features such as
automatic removal of unwanted noise while passing through important or desired
sounds [12]. Given their extreme constraints of size and power consumption, today’s
devices merely suggest the kinds of functionality that will become possible as
technology improves.

14.3.2 Approaches

The current generation of acoustic recognizers, as typified by the DCASE eval-
uations, focuses on an explicit set of output categories—either scenes or specific
sound events. Despite recent efforts to develop a complete “ontology” of sound
events [15], this approach seems doomed since there is an unlimited variety of
sounds and subcategories within sounds that might be distinguished. One trend in
fields including text and vision analysis is to work with an “embedding space,” a
moderately sized feature space (e.g., 128 dimensions) where each object or event
is mapped to a point such that semantically similar objects are close together
[18]. Such a representation is intrinsically continuous, supporting arbitrarily fine
distinctions between similar objects. Classification is not required, but if desired
it can be accomplished by a simple quantization of the space. The embedding
space is conveniently obtained as the activation of an intermediate layer in a
neural net, trained by any method ranging from classical supervised training
on explicitly labeled examples through to “triplet loss” approaches that require
only same/different labels for pairs of examples, leaving implicit the underlying
classes [39].

A common problem in trained classifiers is mismatch between training and
test data: When tested on data that is systematically different from the examples
used for training, performance may be arbitrarily degraded. This kind of mismatch
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can include things that human listeners subconsciously ignore, for instance, the
difference between the same sound source recorded in differently sized rooms (i.e.,
room acoustics), or mixtures with different background noises. To achieve the goal
of human-level robustness at recognizing sound events, we will either need to collect
training sets that span all relevant combinations of sources and environments (which
becomes exponentially expensive) or devise alternative approaches to achieving
this kind of generalization. Work in speech recognition has attempted to identify
acoustic features that are relatively invariant to acoustic variations [20], although
the alternative solution of collecting speech in very many acoustic conditions has
ultimately proven more successful.

The idea of “transfer learning” [33] is aimed at situations where there is substan-
tial out-of-domain training data that can nonetheless contribute to a task. Embedding
space representations can be used for this kind of transfer: an embedding trained
on one set of sound events—in which data straddles a wide range of recording
conditions—can provide an embedding providing some invariance to recording
conditions; if the embedding preserves enough source-relevant information to
discriminate classes in a new task, then a classifier trained on the embedding
representation of a small set of in-domain examples may result in a classifier that
“inherits” the invariance from the larger dataset.

Current classifiers achieve robustness to background noise primarily through
training on noisy examples, so essentially it is the combined properties of target
event and interference that are being recognized. However, as discussed in Chap. 3,
human perception appears to analyze complex scenes into distinct representations of
individually perceived sources. Such a source separation or “Computational Audi-
tory Scene Analysis” [9, 42] approach is conceptually appealing: an independent
process able to divide a complex mixture into multiple, noise-free source sounds
(along the lines of the matrix factorization techniques described in Sect. 8.3.3.2)
would make the job of a subsequent event recognizer much easier. In practice,
however, it is unlikely that such ideal source separation can be achieved without
incorporating prior knowledge about source characteristics, so some kind of com-
bined source separation and recognition process (reminiscent of the joint estimation
of multiple sources in [14] and [21]) may turn out to be the most successful approach
to source separation, and ultimately to robust sound event detection as well.

Although we have considered the classification of sound scenes and sound events
as distinct tasks, they are of course related: a sound scene is essentially defined as a
particular combination of sound events. Ideally, these two tasks can be unified, with
scene classification emerging as a judgment over the set of detected events, although
this approach is, for the moment, unlikely to rival global classification applied to the
raw features from the scene.
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14.4 Summary

We can safely expect high-accuracy automatic sound scene and event recognition
in the near future, and it will lead to new and valuable applications in interactive
systems and archive management. Sound provides critical information for us as
inhabitants of the real world, and our automatic systems must and will take
advantage of that information at our behest. The chapters in this book have
provided detail on the current state of the art in the technology and applications of
environmental sound recognition, and we look forward to the exciting developments
that will unfold in the coming years.
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