
Chapter 8
Soil Material Classes

Nathan P. Odgers and Alex. B. McBratney

“When you get close to the raw materials and taste them at the
moment they let go of the soil, you learn to respect them”.

Rene Redzepi

Soil classification is really about answering the question what makes a soil? Or,
perhaps, what makes one soil different from another? To answer questions like these,
soil classifiers create taxonomic rules to separate one kind of soil from another and
categorise and make sense of the diverse pattern of the soil continuum. Traditionally
a great deal of consideration has been given to characterising and classifying the
whole soil profile in a top-down fashion. Pedometric methods allow us to answer
the same questions in a bottom-up trajectory. Thus, the starting point is not the
whole soil profile or even its major constituents, the soil horizons. Rather we start
by classifying the actual, tangible, skeleton of soil itself: the soil material.

8.1 Soil Material Classes

We classify soil because we think the soil varies sufficiently in its properties from
place to place for distinct kinds to be recognised. These various kinds of soil ought
to be identifiable in the physical space (the natural landscape) and, hopefully, in the
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attribute space—the n-dimensional space defined by n measurable soil attributes
(MacVicar 1969). In classifying soils, we aim to use soil information gathered
from the physical space to define soil classes that are as coherent as possible in
the attribute space.

Taxonomists classify objects we may call individuals. An individual is an object
that is “complete in itself” (Cline 1949). Individuals can be allocated to (can
become members of) classes, and a universe is a superclass that contains all
individuals. A particulate universe is one in which discrete objects can readily be
counted. Biological universes are frequently particulate universes: for example, in
the universe of birds, individual birds are readily discernible. On the other hand,
a universe of soils does not seem to fit the description of a particulate universe
since its characteristics frequently change from place to place more gradually than
sharply (Simonson and Gardiner 1960). Discrete, definitive bodies of soil are not
as discernible as individual organisms often are in a biological universe. Soil is, in
other words, a continuum and therefore occupies a continuous universe in which
individuals cannot readily be counted; individuals in a continuous universe must be
created arbitrarily (Knox 1965).

Because soils occupy a continuous universe, the identification of soil individuals
has been the source of some contention (Buol 2003). Yet as a practical matter, some
notion of a soil individual has traditionally been necessary in order to discretise the
soil continuum and simplify its classification.

8.1.1 Point Representation of Soil

The pedon is probably the most well-known soil individual. The pedon and the
polypedon were devised as three-dimensional soil individuals for the purpose of
soil sampling and classification, respectively (Soil Survey Staff 1993) and are
fundamental concepts in the Soil Taxonomy classification system (Soil Survey
Staff 1999). A polypedon is a collection of contiguous pedons of like taxa and is
considered internally homogenous for taxonomic purposes.

Delineation of pedons in the field is complicated by the fact that soil occupies a
continuous universe. For example, there is effectively an infinite number of pedons
since their boundaries in the landscape must be established arbitrarily (Knox 1965).
This means that their dimensions are also arbitrary, although guidelines dictate their
minimum and maximum limits (Soil Survey Staff 1993). Several methods of setting
the dimensions of a pedon have been proposed that are based on, for example, the
volume of soil occupied by plant roots or the minimum volume that can be sampled
by a particular instrument or the examination of lateral soil horizon variability
(Simonson and Gardiner 1960; Soil Survey Staff 1993).

In reality what we tend to examine and classify in the field are two-dimensional
soil profiles rather than three-dimensional soil bodies (Webster 1968). We often
assume, implicitly, that the variation in the third dimension is irrelevant for
taxonomic purposes because it is impractical in most circumstances to excavate and
describe a three-dimensional body of sufficient size and in sufficient detail.



8 Soil Material Classes 225

Since soil is a continuum, it seems appropriate that in our attempts to classify it
we should not ignore the lateral variation when sampling it; however, it appears that
little impetus is traditionally provided to collect such information. Since sampling
and classification are linked, it suggests that a revised philosophy of the soil
individual is necessary.

There is precedent in the literature. According to Holmgren (1986), the concep-
tualisation of a soil individual as an arbitrary volume is unsuitable because a soil
property measurement is actually made on a volume of material originating from a
specific location on Earth. Location is therefore a definitive “point of origin” with
respect to which a soil can be characterised and classified.

It makes sense that the observations themselves should consist of a small volume
representation, which we shall call a soil material. The soil material would logically
fit inside recognised soil horizons and as such is fairly congruent with Holmgren’s
(1988) sampling locule. In geostatistical terminology, we are saying that a soil
sample must have a defined geometric support. A soil material may or may not also
be the same as a representative elementary volume (REV), which Bouma (1985)
considered is the smallest volume that can represent a given soil horizon and lead
to a consistent population of data. In aggregated soils, REVs are peds and in sandy
soils they are individual sand grains.

The substance of Holmgren’s revised pedon seems to be more related to
the practice in soil physics, chemistry and biology. It may be aligned with the
geostatistical and REV concept above although the space-time geometric support
of this operationally defined object is not clear. A set of nine cores of fixed radius
sampled on a grid 20 m apart and centred on some location (x, y) on which a set of
measurements are made and attributes recorded according to some schema could be
considered an observational pedon. The set of data thus obtained could be called a
pedon description.

8.1.2 Soil Material as a Collection of Soil Properties

A large number of soil properties, for example, physical, geochemical and biolog-
ical, can be attributed to or measured on a particular soil material. We shall call a
collection of soil properties describing the soil material a soil material description
(Table 8.1). The infrared spectrum offers another multivariate description (Fidêncio
et al. 2001; Leone and Sommer 2000; Valeriano et al. 1995). The soil material is a
real entity, whereas a soil material description is a virtual one. If different sets of
properties are used to describe a soil material, then the soil material descriptions are
different entities.
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Table 8.1 Descriptions of soil material from three profiles observed at Pokolbin in the Lower
Hunter Valley, New South Wales, Australia

Australian Soil Classification
suborder Brown Dermosol Red Chromosol Brown Kandosol

Horizon designation A1 horizon B21 horizon B21 horizon
Texture grade Clay loam Light-medium clay Light clay
Moist colour hue 10YR 5YR 7.5YR
Moist colour value 4 3 3
Moist colour chroma 3 4 4
Dry colour hue 10YR 5YR 7.5YR
Dry colour value 5 3 5
Dry colour chroma 4 4 4
Structure Moderately pedal Strongly pedal Apedal massive
pH (1:5 H2O) 5.67 6.74 5.53
pH (1:5 CaCl2) 4.67 5.43 4.25
Electrical conductivity (�S cm�1) 145.6 54.9 87.3

8.2 Creation of Classes

Scientific classifications of soil have been made since at least the late nineteenth
century. These were often induced from supposed genesis. Later, more objective
classification schemes were devised. The most widely known is probably today’s
Soil Taxonomy and its antecedent, the so-called Seventh Approximation. Most
soil classifications in use today are hierarchical systems in which the soil universe
is segregated into progressively more detailed, mutually exclusive classes as one
proceeds down the hierarchy. This is the same model that has traditionally been
applied in biology, but researchers have occasionally questioned its application to
the classification of soils, in part because of the genetic assumptions implicit in the
hierarchical structure (e.g. Leeper 1956).

Hughes and Lindley (1955) were some of the first researchers to classify soils
using a statistical procedure although research into numerical soil classification of
soils really began in earnest in the 1960s (Bidwell and Hole 1964a, b; Campbell
et al. 1970; Grigal and Arneman 1969; Rayner 1966) based on work done in the
biological sciences (Sneath and Sokal 1962; Sokal 1963).

Cluster analysis is the application of numerical methods to the classification
of multivariate data. The goal of cluster analysis is to partition a population of
individuals into classes by finding groups of similar individuals in the multivariate
attribute space. The aim is that individuals allocated to the same class should be
similar to each other and dissimilar to individuals allocated to the other classes
(Fisher and van Ness 1971).

An individual being classified is known as a pattern, x, and is denoted as a vector
of d features or attributes xi:

x D .x1; x2; x3 : : : ; xd/
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The vector x is usually assumed to be a row vector. A pattern set is a set
of individuals, denoted X D fx1, x2, x3, : : : , xng. In our case the attributes xi are
soil attributes. They may be measured on a continuous scale or coded on an
ordinal or nominal scale. In practice, most researchers avoid the inclusion of
attributes measured on ordinal and nominal scales because they can complicate the
computation of pairwise similarities between individuals.

It is important to note that the clustering process is agnostic about the true
partition structure amongst the population. Cluster algorithms generally partition
the population of individuals into a set of classes even if natural classes are not
present (Jain 2010).

8.2.1 Similarity Measures

Numerical classification relies on being able to assess the degree of similarity or
resemblance between a pair of individuals. Measures that can do so are generically
known as coefficients of similarity. Sneath and Sokal (1973) identified four classes
of similarity coefficients: distance coefficients, association coefficients, correla-
tion coefficients and probabilistic similarity coefficients. Association coefficients
typically measure similarity on the basis of agreement in the state of qualita-
tive attributes and include the Jaccard coefficient (Jaccard 1908) and the simple
matching coefficient (Sokal and Michener 1958). Correlation coefficients measure
similarity on the basis of proportionality and independence between a pair of
attribute vectors and include the Pearson product-moment coefficient. Probabilistic
similarity coefficients involve information statistics which measure the homogeneity
of a given partition of individuals; an example can be found in Estabrook (1967).

Distance coefficients measure the distance between individuals in various ways.
According to Sneath and Sokal (1973), they have the greatest intellectual appeal
to taxonomists compared to other kinds of similarity coefficients since they are the
easiest to visualise. They are the similarity coefficients used most frequently by
pedometricians over the last few decades. Strictly speaking distance coefficients
are measures of dissimilarity since their values increase with decreasing similarity
(Clifford and Williams 1976). In the remainder of this section, we briefly describe
several popular distance coefficients.

8.2.1.1 Euclidean Distance

The Euclidean distance is one of the most familiar measures of distance and was
introduced to numerical taxonomy by Sokal (1961). In the two-dimensional case,
it is equivalent to Pythagoras’ theorem but can easily be extended to compute
dissimilarities in higher-dimensional spaces. The Euclidean distance D2

E between
individuals i and j is computed as

D2
E

�
xi; xj

� D
Xd

pD1

�
xip � xjp

�2 D �
xi � xj

�T �
xi � xj

�
(8.1)
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Several pre- or post-treatments can be applied. For example, since D2
E grows

larger as the number of attributes increases, it is a common practice to divide it by d
(Clifford and Williams 1976; Webster and Oliver 1990). In addition, measurements
of soil attributes tend to have different natural numerical ranges, irrespective of units
of measurement. For example, soil particle-size fractions expressed gravimetrically
have a range of 0–100 g kg�1, whereas soil organic carbon measurements in mineral
soils are frequently in the range of 0–5%. This means that attributes with larger
ranges tend to have greater influence in the calculation of the Euclidean distance
(Clifford and Williams 1976; Jain et al. 1999; Kantardzic 2011; Moore and Russell
1967), which may be undesirable. To avoid this we can standardise each attribute by
range prior to computation of the distance (Arkley 1976):

x0 D .x � xmin/ = .xmax � xmin/ (8.2)

or by variance:

x0 D .x � x/ =SDx (8.3)

where x0 is the standardised value and x, xmin and xmax are the mean, minimum and
maximum values of the observed range of x.

Finally, distributions of soil attributes are often skewed. Moore and Russell
(1967) noted that the Euclidean distance appears to be sensitive to the shape of
attribute distributions. Skew may be reduced either by transformation of the values,
typically using a logarithmic or square root transformation, or by truncating extreme
but rarely occurring values (Arkley 1976).

8.2.1.2 Mahalanobis Distance

Unlike the Euclidean distance, the Mahalanobis distance (Mahalanobis 1936)
takes into account the differences in variance between the soil attributes and the
correlations between them. As a result the attributes do not need to be standardised
prior to calculation of the distance. The Mahalanobis distance is calculated as
follows (McBratney and de Gruijter 1992):

D2
M

�
xi; xj

� D �
xi � xj

�T
E�1

�
xi � xj

�
(8.4)

where E is the sample covariance matrix of X.

8.2.1.3 Gower Distance

Both the Euclidean distance and Mahalanobis distance require that the attributes
are quantitative continuous variables like clay content or electrical conductivity;
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Table 8.2 Values assign to
sijp and ıijp for dichotomous
nominal variables (Gower
1971)

Values of attribute p

i C C � �
J C � C �
sijp 1 0 0 0
ıijp 1 1 1 0

however, many soil attributes are measured on a qualitative scale. There are several
types of qualitative variables (Williams 1976a). The first kind are called nominal
variables and represent an attribute that may take many states, such as type of
aggregate coatings (clay, manganese, iron, organic, etc.). A given individual can
be in one state only. Although we may encode the states on an integer scale for
convenience, the ordering of the states implies no special meaning. A special case
of nominal variable is what Gower (1971) refers to as a dichotomous variable.
Dichotomous variables record the presence or absence of a feature, such as mottling
or stones. Two individuals have a higher degree of similarity to each other if both
are in possession of the same feature than if it is absent in one individual. Absence
of a feature in both individuals does not infer the same degree of similarity as its
presence in both individuals since it may not be known whether the feature can
occur in the populations to which the individuals belong.

Ordinal variables are similar to nominal variables in that they represent an
attribute that may take many states. In this case the order of the states when encoded
into an integer scale is important although the distance between states may be
unknown (Williams 1976a). An example of an ordinal-valued attribute is stone size
classes (e.g. 2–6 mm, 6–20 mm, 20–50 mm, >50 mm).

Gower (1971) described a general coefficient of similarity that is able to handle
qualitative and nominal quantitative attributes. It is calculated as follows:

Sij D
Xd

pD1
sijpıijp=

Xd

pD1
ıijp (8.5)

where sijp is the similarity score between individuals i and j for attribute p. The
quantity ıijp represents the possibility of making a comparison between individuals
i and j for attribute p; it takes a value of 1 when attribute p can be compared and 0
otherwise. When all d comparisons are possible,

Pd
pD1ıijp D d.

The method of computing the similarity score varies depending on the kind of
attribute. In the case of dichotomous nominal variables, sijp and ıijp are assigned the
appropriate values in Table 8.2.

In the case of multistate nominal variables, sijp D 1 if individuals i and j have the
same state for attribute p and sijp D 0 otherwise.

For quantitative variables, sijp is computed as follows:

sijp D 1 � ˇ̌
xi � xj

ˇ̌
=Rp (8.6)

where Rp is the numerical range of attribute p either in the population or the sample.
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Despite its flexibility, the Gower distance has not been widely used in pedometric
studies although examples exist in spatial prediction research (e.g. Mallavan et al.
2010; McKenzie and Austin 1993; Zhang et al. 2013) and soil classification research
(e.g. Beaudette et al. 2013; Oliver and Webster 1989; Roudier et al. 2016).

8.2.2 Preprocessing

Before we undertake a cluster analysis, it is frequently necessary to perform some
preprocessing operations on the attributes of the individuals we wish to cluster. We
may wish to do so for a number of reasons, including the following: we would like
to choose an optimal subset of attributes or we may want to modify the influence
that certain attributes have on the cluster analysis. Preprocessing objectives may
be realised by undertaking several common tasks including examination of the
correlations between attributes, standardisation to a common range of values,
transformation to reduce skew and determination of appropriate weights (Arkley
1976). The steps we need to take are frequently determined by the assumptions
underlying a particular clustering algorithm. In this section we briefly describe a
couple of the more common tasks.

8.2.2.1 Optimal Subset of Attributes

We may be presented with a large number of attributes and wish to select an optimal
subset. It is tempting to merely choose the several that we think are the most
important, or the most interpretable or that we have the most experience with, but
such a choice is likely to be suboptimal with respect to the information about the
individuals’ partition structure that a given set of attributes carry (Arkley 1976). In
any dataset of soil material attributes, it is likely that many will be correlated with
each other, and some highly so. For the sake of cluster analysis, an optimal set of
attributes is the set in which the correlations between the attributes are minimised.
On the other hand, for maximum pedological interpretability, they should also be as
correlated as possible with other attributes not used in the cluster analysis (Norris
1971). For quantitative attributes this can be achieved by examining the Pearson
correlation matrix arising from a pairwise comparison of all available attributes and
selecting a subset according to some heuristic. An example of such a matrix for
attributes of some undisturbed soils in Israel is presented in Table 8.3 (after Banin
and Amiel 1970). For example, Sarkar et al. (1966), after assembling a dataset of
61 soil attributes, examined pairs having a correlation greater than or equal to 0.90
and eliminated the attribute that was most highly correlated with other attributes. By
doing so they reduced the number of attributes to 51. Through trial and error, they
were able to make bigger reductions by lowering the pairwise comparison threshold.

A similar but more rigorous outcome can be achieved by subjecting a dataset
containing n soil attributes to the well-known method of principal components
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analysis (Hotelling 1933). In simple terms, PCA involves the rotation of the n
orthogonal axes of the feature space formed by the n attributes in such a way that
the rotated first axis accounts for the most variance in the dataset, the rotated second
axis accounts for the second largest component of variance in the dataset and so on.
The rotated axes are called principal components, and the values of the individuals
on each principal component axis are called scores. The principal component axes
are orthogonal with each other, which guarantees that the scores measured on them
are uncorrelated with each other. The full set of principal component axes are
needed to describe the rotated feature space entirely, but it is probable that most
of the variance is described by the first few components (Norris 1971). Thus, with
respect to reducing the number of attributes required for cluster analysis, the original
attributes can be replaced with the individuals’ scores on the first few principal
component axes with the certainty that the scores on each axis are independent of
each other and that minimal information has been lost compared to that contained
in the original dataset. The disadvantage is that the principal component scores are
more difficult to interpret than the original attribute values and the original attributes
cannot be recovered unless the scores of all the principal components are known.
Kyuma and Kawaguchi (1976) used the approach when classifying Japanese paddy
soils to reduce a set of 12 soil material attributes to the scores on two principal
components prior to classification using a dendrogram.

8.2.2.2 Weighting of Attributes

We may also wish to weight certain attributes prior to the cluster analysis according
to their perceived importance or by some other rule. Whether or not attributes
are weighted often depends on whether the resulting classification is intended to
reflect general-purpose or special-purpose use. If a general-purpose classification is
desired, then it is generally accepted that all attributes should remain unweighted
so that each has equal value and importance (Sneath and Sokal 1962). Arkley
(1976) noted that this is in conflict with traditional general-purpose hierarchical soil
classifications where attributes that are used as partitioning criteria at higher nodes
of the hierarchy have greater effective weight in the classification than attributes
appearing lower in the hierarchy.

Weighting specific attributes means that they can exert greater influence in the
cluster analysis compared to the attributes that remain unweighted, and this can
be reflected in the class definitions (Gibbons 1968). This has application in the
construction of special-purpose classification systems if certain soil uses can be
shown to depend on specific soil attributes.



8 Soil Material Classes 233

8.2.3 Kinds of Clustering Algorithms

The field of cluster analysis is broad, and researchers have devised many clustering
algorithms. Not all of them have been applied to soils, and, of those that have, some
have proved more popular than others. The algorithms themselves can be classified
in various ways. For example, Williams (1976b) made a classification with respect to
application in agricultural science that reflects a time when fuzzy classification was
still in its infancy. Clustering algorithms are often described in terms of (i) whether
or not the classes are known a priori (supervised versus unsupervised algorithms),
(ii) the trajectory of class formation (agglomerative versus partitional classification),
(iii) the structure of the resulting classification (hierarchical versus non-hierarchical
classification) and (iv) the exclusivity of their classes (exclusive versus nonexclusive
classification). Criteria (i)–(iii) relate to the structure of the classification systems,
whereas criterion (iv) relates to the nature of the classes. In this section we briefly
explore these concepts.

8.2.3.1 Supervised Versus Unsupervised Classification

Supervised classification is carried out when the classes are known a priori.
Supervised techniques were some of the first numerical classification techniques
applied to soils. The ordination techniques that appeared in the late 1950s enabled
researchers to group existing soil taxa on the basis of quantifiable similarity (Bidwell
and Hole 1964b). Hole and Hironaka (1960) published one of the first studies to
do so. They applied ordination to the grouping of soils in the Miami taxonomic
family from Ohio and to representative profiles of great soil groups collected from
around the world. Results of ordinations were often summarised using dendrograms
(Bidwell and Hole 1964a, b; Rayner 1966).

Contemporary methods of classification tree analysis and artificial neural net-
works are also supervised classification techniques although they are more fre-
quently used to calibrate environmental and landscape characteristics with soil
observations for the purpose of spatial prediction. A recent exception was the
study by Ribeiro et al. (2014) who used fuzzy classification trees to examine the
relationships between soil properties and classes in the Brazilian soil classification
system.

Unsupervised classification, on the other hand, attempts to discover natural
classes amongst a group of individuals. It does not assume any pre-existing soil
classification. For this reason it is often useful for exploring if natural groups are
present in an unclassified collection of soil material samples. In the soil literature,
popular unsupervised classification algorithms have included the k-means and, later,
fuzzy k-means algorithms and their derivatives, described later in this chapter.
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Fig. 8.1 Dendrogram of some Scottish soils produced via a single-linkage agglomerative hierar-
chical classification procedure (Muir et al. 1970, reproduced with permission)

8.2.3.2 Agglomerative Versus Partitional Classification

Agglomerative clustering works by grouping individuals together into larger and
larger groups on the basis of the similarity between them. Given a population of n
individuals, n initial clusters are formed that each contain one individual. Clusters
are successively joined in n–1 steps until all have been joined together into one
cluster (Fig. 8.1). At any stage, the two clusters that are chosen to be joined are
those that are the closest according to some distance or similarity metric, typically in
the Euclidean space. There are many versions of agglomerative clustering, and they
differ primarily in how the intercluster distance is calculated. They are reviewed in
detail by Anderson (1971) and Webster (1977).

The simplest agglomerative clustering method is known as nearest neighbour
clustering. In this method, the intercluster distance is defined as the smallest of the
distances between the members of each cluster. A more complex method known
as centroid clustering (Gower 1967) defines the intercluster distance as the squared
distance between cluster centroids.

Partitional, or divisive, clustering algorithms divide a population of individuals
into a set of k classes. A key problem with this kind of clustering is choosing the
number of clusters (Dubes 1987; Jain et al. 1999). Patterns corresponding to the
initial class centroids may be chosen at random or by using expert knowledge.
Using a similarity measure, individual patterns are allocated to the cluster whose
centroid is the closest. After all patterns have been allocated, the cluster centroids are
often recalculated and patterns reallocated. Iteration continues in this fashion until
some measure of goodness is acceptable. One of the most well-known partitional
clustering algorithms, k-means clustering, is frequently attributed to Lloyd (1982),
who devised it in the 1950s. Hartigan published a more efficient version in the late
1970s (Hartigan 1975; Hartigan and Wong 1979).
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8.2.3.3 Hierarchical vs. Non-hierarchical Classification

In a taxonomic hierarchy, individuals belong to groups at the lowest or most specific
level of the hierarchy. Figure 8.1 depicts a hierarchical classification of some
Scottish soils, although the lowest level of the hierarchy is at the top of the graph.
These groups belong to more general groups at the next hierarchic level, and so on
until all groups are united in a single, general group (Webster and Oliver 1990). Soil
classes are frequently organised in this way due to their simplicity and relative ease
of use for allocation. Hierarchies may be generated agglomeratively or divisively
(Anderson 1971; Webster 1977).

Many contemporary soil classification systems employ hierarchical structures.
Despite this, there are circumstances in which a hierarchical structure is neither
applicable nor ideal (Dale et al. 1989; Webster and Oliver 1990). For example,
hierarchies were commonly formed divisively by choosing one or a few so-called
diagnostic properties as the subdividing criterion (or criteria) at each hierarchic
level. The subdivision is typically mutually exclusive so, for instance, class A may
have a topsoil organic carbon content of less than 4% and class B greater than or
equal to 4%. The classes at the lowest level of the hierarchy are thus defined by a
unique set of attribute values because their class limits do not overlap with those
of other classes. Such classification has been called monothetic (Sokal and Sneath
1963). However, as Webster (1968) pointed out, soil is polythetic in the sense that a
set of classes may possess many shared attributes that cannot be subdivided mutually
exclusively.

8.2.3.4 Exclusive Versus Nonexclusive Algorithms

Clustering algorithms may also be classified according to the character of the
classes that they produce. Once we allocate an individual to a class, we say that the
individual has a degree of membership, m, in the class. This membership quantifies
the degree to which the individual possesses the characteristics of the central concept
of a class and can be expressed on a numerical scale from 0 to 1 (Burrough et al.
1997).

Exclusive algorithms produce classes with boundaries that are discontinuous, or
hard, or crisp. Crisp classes are exclusive because an individual can belong to, or
have complete membership in, one and only one crisp class. Numerically, in an
exclusive system, an individual can have m D 1 to one and only one class and m D 0
to all others. A hard partition of n individuals into k classes can be represented by an
n � k matrix of memberships M D (mic). The following conditions apply in order
to ensure that the classes are mutually exclusive, jointly exhaustive and non-empty
(McBratney and de Gruijter 1992):

Xk

cD1
mic D 1; i D 1; : : : ; n (8.7)
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Pn
iD1mic > 0; c D 1; : : : ; k (8.8)

mic 2 f0; 1g ; i D 1; : : : ; nI c D 1; : : : ; k (8.9)

The first condition ensures that, for a given individual, the memberships across
all classes sum to unity; the second ensures that, for a given class, the sum
of memberships of all individuals is greater than zero; the third ensures that
membership can only take values of 0 or 1.

Class limits are often defined as a set of discriminating criteria using statements
such as the following:

members of class Alpha possess an A-horizon clay content of 10–20% clay.

In the preceding example, although some within-class variation in A-horizon clay
is permitted, the limits themselves are crisp because an individual with an A-horizon
clay content less than 10% or greater than 20% is excluded from membership
in class Alpha. It is implicitly assumed that all change between classes occurs
at the class boundaries and that the within-class variation is irrelevant at least
for interpretive purposes (Burrough 1989). An advantage of crisp classes is that
allocation is relatively simple and can often be achieved through the construction of
a device such as a dichotomous key.

Crisp classes are not without drawbacks, however. Fundamentally, that their
boundaries are hard means that they disregard the natural continuity in the soil
attribute space (McBratney et al. 1992). As such they are incapable of representing
vague concepts (Metternicht 2003). Furthermore, as variation in the soil attribute
space is continuous, any placement of crisp boundaries is arbitrary. Other concerns
are more practical. For example, although within-class variation in the diagnostic
properties may be ignored in practice, it must be adequately known for the class
limits to be established. A system of crisp classes is prone to misclassification in
certain circumstances. For example, measurement error may lead to misclassifica-
tion of an individual (Webster 1968) and a group of otherwise similar profiles may
be allocated to different classes because they vary with respect to a single diagnostic
property.

Nonexclusive algorithms produce classes with boundaries that are continuous, or
fuzzy, or overlapping. Continuous classes are nonexclusive because an individual
can belong to, or have partial membership in, more than one class simultaneously.
Thus, they allow for vagueness in the class definitions that crisp classes cannot
accommodate. In a nonexclusive system, the membership requirements are relaxed
so that m can vary continuously between 0 and 1. In other words, the third
assumption, above (Eq. 8.9), is replaced with the following:

mic 2 Œ0; 1� ; i D 1; : : : ; nI c D 1; : : : ; k (8.10)

Continuous classes are usually defined by a central concept or centroid which
is essentially a soil material description consisting of the modal values for a suite
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of soil attributes. Memberships are based on the degree of similarity between an
individual and the class centroid. Such a definition is compatible with what Cline
(1949) envisioned.

The vagueness in class allocation that is enabled by partial membership confers
several advantages to continuous classes. For example, the placement of arbitrary
class limits is avoided. Intergrade soils—soils with characteristics intermediate to
those of two or more class definitions—are better accommodated. Finally, some
of the risk of misallocation is avoided since an individual can still have partial
membership in an alternate class.

8.2.4 k-Means Clustering and Its Derivatives

In this section we discuss the k-means clustering algorithm and several of its
derivatives, which are amongst the most popular clustering algorithms used to
classify soil material.

8.2.4.1 k-Means Algorithm

The k-means clustering algorithm is an unsupervised, partitional, non-hierarchical
algorithm that partitions a population of individuals into crisp classes (Hartigan
1975).

The k-means clustering algorithm works as follows:

1. Choose a value of k with the restriction that 1 < k < n.
2. Initialise k cluster centroids. Cluster centroid patterns may be initialised ran-

domly or by using expert knowledge.
3. Compute distance between cluster centroids and patterns of individuals being

classified.
4. Recompute cluster centroids once all individuals have been allocated to a class.
5. Repeat steps 3–4 until some convergence criterion is met (e.g. the allocation has

not changed).

The similarity between individual patterns is typically computed using the
Euclidean distance, although the Mahalanobis distance may also be used (Mao and
Jain 1996). In step 3, an individual is allocated to the class of the cluster to which
it is closest in Euclidean space. In step 4, recomputation of the cluster centroids is
achieved by averaging the values of the attributes of the individuals assigned to it:

cj;p D
P

xi2X xipˇ
ˇCj

ˇ
ˇ ; 1 � p � d (8.11)

where jCjj is the cardinality of the cluster Cj.
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The algorithm reaches convergence when some criterion is met, such as when
individuals cease to move from one cluster to another or when the value of an
objective function ceases to decrease significantly from iteration to iteration (Jain
et al. 1999). A common objective function, which computes the total Euclidean
distance of the patterns to their cluster centres, is computed as follows:

J .M; C/ D
Xn

iD1

Xk

cD1
micd2 .xi; cc/ (8.12)

The k-means algorithm is easy to implement, which has made it a popular
choice in cluster analyses in many fields. Despite this, users need to be aware of
several factors. First, the algorithm is sensitive to the choice of the initial cluster
centroids. A random selection of initial cluster centroids is likely to lead to a
partition of individuals that is only locally optimal since an exhaustive search
for the combination of individuals that yields the global minimum value of the
objective function is computationally prohibitive. Indeed it may be impossible to
prove that a given partition is globally optimal (Steinley 2006). Some researchers
(Falkenauer and Marchand 2001; Hartigan 1975; Jain 2010) suggested selecting the
best partition, in terms of the minimal objective value, from a pool of partitions
created by running the k-means algorithm several times, but the best partition in this
case is still unlikely to be the global optimum.

Second, because the Euclidean distance is typically used to quantify similarity
between individuals, the algorithm produces convex, approximately spherical,
clusters in the attribute space (Jain 2010). Since soil classes are rarely this shape
(Odeh et al. 1992), this distance is likely to be inappropriate.

In soil science the k-means algorithm has been applied not only to soil classi-
fication (e.g. Bormann 2010; Minasny and McBratney 2006) but also digital soil
mapping (Bui and Moran 2001) and sampling design (Brus et al. 2006).

8.2.4.2 Fuzzy k-Means

The fuzzy k-means algorithm is an unsupervised, partitional, non-hierarchical clas-
sification algorithm that produces continuous classes. The fuzzy k-means algorithm
extends the notion of fuzzy logic (e.g. Zadeh 1965) to cluster analysis to allow
for classes to overlap in the attribute space. Introduced in the early 1980s (Bezdek
1981), the algorithm began to be used for soil classification in the early 1990s (Odeh
et al. 1990).

The fuzzy k-means algorithm functions in much the same way as the k-means
algorithm except in the computation of membership functions. In the fuzzy k-means
algorithm, the computation of cluster centroids is modified to account for the partial
memberships of all the individuals associated with each cluster.

The degree of fuzziness in the fuzzy clustering can be modified and is controlled
by the parameter ®, the so-called fuzziness exponent. The degree of fuzziness relates
to the degree of overlap of the resulting classes in the attribute space. The minimum
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value of ® is 1.0, which is equivalent to no fuzziness, and yields a hard partition
into non-overlapping classes, much like the k-means algorithm. As ® increases, the
degree of overlap of classes in the attribute space increases.

The membership m to class c of individual i is computed using the following:

mic D d�2=.'�1/

ic
Pk

j d�2=.'�1/

ij

; i D 1; : : : ; nI c D 1; : : : ; k (8.13)

The cluster centroids are computed using the following:

cc D
Pn

iD1 m'
icxiPn

iD1 m'
ic

; c D 1; : : : ; k (8.14)

Optimisation attempts to minimise the following objective function, which is a
weighted sum of the distances between every pattern and every cluster centroid:

JB .M; C/ D
Xn

iD1

Xk

cD1
m'

icd2
ic (8.15)

Compared to classes arising from the k-means algorithm, fuzzy classes are more
robust because they have been shown to contain more information (Lagacherie et al.
1997) and be less sensitive to errors in the attribute data (Heuvelink and Burrough
1993).

Users need to be aware of some of the same factors relating to k-means applica-
tions. For example, continuous classes still tend to form spherical or hyperspherical
classes in attribute space (Rousseeuw et al. 1996), which is inappropriate if we do
not expect our classes to take such a shape. Second, the choice of k is still somewhat
subjective although cluster validity measures can help to choose an appropriate
number. Even so, some (e.g. McBratney and Moore 1985; Odeh et al. 1990) have
cautioned that it may not be possible to know how many classes exist in our data
because we frequently do not know how representative our soil observations are.

We may also ponder what is the appropriate value of ®. As ® determines the
fuzziness of the fuzzy classification, a good value should reflect the fuzziness in
the attribute space. This is usually not known in advance (Lagacherie et al. 1997).
Odeh et al. (1992) suggested that the optimal ® should represent a balance between
preserving natural partitional structures in the dataset and continuity of the classes.
They reasoned that k should be established first by examining the partition entropies
associated with the different k, and then ® could be set to reflect the appropriate level
of fuzziness. The final choice remains somewhat arbitrary but should be guided by
solid expert knowledge of the data.

Researchers typically use values of ® in the range of 1.1–1.5 (e.g. Burrough
et al. 2000; Cockx et al. 2007; Dobermann et al. 2003; Triantafilis et al. 2001).
Although researchers often do not describe the manner in which they determine ® in
their fuzzy k-means cluster analyses, some have presented detailed studies in which
they attempted to determine an appropriate ® empirically. For example, McBratney
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and Moore (1985) used the derivative of JB (M, C) with respect to ® to determine
optimal values of ® and k. de Bruin and Stein (1998), in a fuzzy cluster analysis
of landform components across a valley hillslope in the Netherlands, determined
the optimal k and ® in terms of how well the fuzzy memberships could predict
the variation in topsoil clay content across the hillslope. They found that the optimal
fuzzy partition, with k D 4 and ® D 2.1, was able to account for about 70% variation
in the soil property.

We illustrate the use of the fuzzy k-means algorithm by cluster analysis of 81 soil
material samples from profiles observed at Pokolbin in the Lower Hunter Valley in
New South Wales, Australia. The soil material samples were taken from within a
pedogenetic horizon of their respective profile; while specific horizons were not
favoured, B2 horizons were the most frequent sources of the soil material because
profiles were sampled by auger and other horizons were often not thick enough
to contain the volume of material required for laboratory analysis. The samples
were attributed with a range of soil properties including clay content, pH and moist
Lab colour (converted from Munsell colour notation) and effective cation exchange
capacity (eCEC; Table 8.4). We ran the fuzzy k-means algorithm on the soil material
samples several times in order to produce a set of partitions from k D 2 to k D 25
classes. A locally optimal partition was obtained when k D 9 and ® D 1.2 (see
also Fig. 8.6 and associated discussion). The centroids of the resulting classes are
presented in Table 8.4. Relationships between attributes appear to be pedologically
sensible. For example, higher clay content is generally associated with lower sand
content and vice versa, and darker-coloured soils (those with smaller moist L) tend
to be associated with higher total carbon.

A biplot of the first two principal components of the observations’ attributes is
presented in Fig. 8.2. The 95% density ellipses were computed based on individuals
with membership of 0.5 or higher in each class (after Triantafilis et al. 2001). The
first two principal components account for about 74% of the variation in the data; the
first four principal components account for nearly 95% of the variation. While some
pairs of classes, such as E and G, are well separated, others, like A and C, transcend
the distribution of several other classes in the two-dimensional representation.
The loadings of the attributes enable an examination of the contribution of each
attribute to the principal components (Fig. 8.3). Thus, clay content, sand content
and electrical conductivity contribute most to the first principal component, whereas
total carbon and CaCO3 content contribute the most to the second principal
component. Relationships between the soil attributes as expressed by the directions
of their loadings vectors also affirm the relationships that are discernible in Table
8.4.

8.2.4.3 Fuzzy k-Means with Extragrades

Consider the synthetic dataset in Fig. 8.4a in which there are five natural classes
and several outlying individuals. A weakness of the fuzzy k-means algorithm is
that individuals with approximately equal memberships to all cluster centroids may
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Fig. 8.2 Distribution of the soil material samples along the first two principal components of their
attributes

Fig. 8.3 Vectors of the 10 attributes in the space formed by the first two principal components

receive about equal memberships to their classes, whether or not the individuals lie
in the centre or the outlying region of the attribute space (de Gruijter et al. 1997).
This may lead to a distortion of the locations of the centroids in the attribute space
(Fig. 8.4b).
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Fig. 8.4 Classification of a synthetic dataset (a) by several fuzzy variants of the k-means
algorithm: (b) the fuzzy k-means algorithm, (c) fuzzy k-means with extragrades and (d) akromeson,
after Hughes et al. (2014)

Fuzzy k-means with extragrades (de Gruijter and McBratney 1988; McBratney
and de Gruijter 1992) is a modification to the standard fuzzy k-means algorithm that
allows the modelling of an extragrade class of individuals. It attempts to overcome
the weakness of the fuzzy k-means algorithm caused by outlying individuals.
Although all individuals that do not possess a high degree of membership to any soil
class may be termed intergrades, de Gruijter and McBratney (1988) distinguished
intergrades located in the space between classes from those located in the outlying
space. They are termed intragrades and extragrades, respectively. As failure to
distinguish true outliers from mere intragrades may be misleading, de Gruijter and
McBratney (1988) defined an extragrade class in which the memberships mi� were
made directly dependent on the distances to the class centroids. The membership
and centroid-update equations are modified as follows (de Gruijter and McBratney
1988):
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mic D d�2=.'�1/

ic

Pk
jD1 d�2=.'�1/

ij C
�

1 � a

a

Pk
jD1d�2

ij

��1=.'�1/
; i D 1; : : : ; nI c D 1; : : : ; k

(8.16)

mi� D

�
1 � a

a

Pk
jD1d�2

ij

��1=.'�1/

Pk
jD1 d�2=.'�1/

ij C
�

1 � a

a

Pk
jD1d�2

ij

��1=.'�1/
; i D 1; : : : ; n (8.17)

cc D
Pn

iD1

�
m'

ic � 1 � a

a
d�4

ic m'
i�

�
xi

Pn
iD1

�
m'

ic � 1 � a

a
d�4

ic m'
i�

� ; c D 1; : : : ; k: (8.18)

The fuzzy objective function is modified accordingly:

JMG .M; C/ D a
Xn

iD1

Xk

cD1
m'

icd2
ic C .1 � a/

Xn

iD1
m'

i�
Xk

cD1
d�2

ic (8.19)

The memberships to the extragrade class, mi*, spread across regions at larger
distances from the class centroids, unlike the memberships of the regular classes
which tend to occupy fuzzy hyperspheres around the class centroids (McBratney
and de Gruijter 1992).

The parameter ˛ determines the mean extragrade membership; however, the
function relating both quantities is generally unknown. Because of this, de Gruijter
and McBratney (1988) estimated ˛ empirically using a Regula-Falsi procedure.
Lagacherie et al. (1997) estimated ˛ by examination of a two-dimensional represen-
tation of the multivariate attribute data in conjunction with their expert knowledge
of their study area.

8.2.4.4 Akromeson

The fuzzy k-means with extragrades algorithm enabled individuals lying in the outer
parts of the attribute space to be recognised and placed into their own extragrade
class. Doing so reduced the leverage the outlying points had on the formation of
regular fuzzy classes in the more densely populated parts of the attribute space.
Notwithstanding these advantages, estimation of the ˛ parameter which determines
the mean extragrade membership is not straightforward, and no clear procedure
for doing so exists. Incorrect estimation of the extragrade class may lead to some
extragrade individuals being treated as if they were individuals in the centre of the
data and vice versa (Fig. 8.4c). In addition extragrades are placed into a single
class regardless of their distribution in the attribute space. In reality there may be
clusters of individuals in the outlying space, but the fuzzy k-means with extragrades
algorithm is unable to resolve them if they exist.
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Hughes et al. (2014) introduced the idea of end points, which are the individuals
lying at the extremes of the attribute space (the points classified extrema in Fig.
8.4a). They can be detected as the vertices of a convex hull around the individuals in
attribute space. Hughes et al. (2014) developed an algorithm they called akromeson
that identifies end points and treats them as fixed centroids in a semi-supervised
fuzzy k-means cluster analysis (Bensaid et al. 1996). A heuristic process is used
to refine the number of end points, ke, that are used as fixed centroids. The aim of
the semi-supervised fuzzy k-means clustering algorithm, then, is to find additional
clusters, kd, in the attribute space so that k D ke C kd. The fuzziness exponent, ®,
can be determined using the usual methods (Odeh et al. 1992).

The end result is a set of k classes that includes ke end point classes (Fig. 8.4d).
In Fig. 8.4d, ke D 4 and kd D 5 so k D 4 C 5 D 9. The end point classes supersede
the single extragrade class completely and as such provide more information about
the distribution of individuals in outlying parts of the attribute space. This extra
information may be related to real environmental differences between akrograde
classes that in turn may be important for managing land.

8.2.4.5 Fuzzy c-Numbers

The fuzzy c-numbers algorithm (Yang and Ko 1996) is an extension of fuzzy k-
means clustering that allows the input attributes to be fuzzy numbers. As with
the fuzzy k-means algorithm, the basic steps are similar to the standard k-means
algorithm; however, unlike these two approaches, which cluster crisp attribute data,
the fuzzy c-numbers algorithm clusters attribute data that are fuzzy.

Fuzzy attribute data are actually somewhat commonplace in soil material descrip-
tions. For example, the pH value of a modal soil material representative might be
described by a modal value and perceived lower and upper limits. Fuzzy attribute
data can be represented using fuzzy numbers, which are fuzzy sets over the set of
real numbers and are specified via membership functions. There are many different
kinds of fuzzy numbers, but three of the most common are triangular, trapezoidal
and Gaussian fuzzy numbers (Liu and Samal 2002a; Yang and Ko 1996), so-called
due to the shape of their membership functions. Triangular fuzzy numbers may be
symmetric or asymmetric, and we may estimate their parameters from a collection
of soil profile measurements (Fig. 8.5). For example, say the distributions of pH (1:5
H2O) in the 40–50 cm depth interval of a collection of Chromosols and Kurosols
from the Lower Hunter Valley in New South Wales, Australia, take the values in
Table 8.5. Kurosols are strongly acidic (pH (1:5 H2O) less than 5.5) in the top
20 cm of the B2 horizon, whereas Chromosols are not. A symmetric triangular
fuzzy number Qxip representing the pH may have a maximum membership at the
mean pH—the so-called apex, xip, and minima of membership above and below this
value at a distance defined by the spread Sip, which we may choose to represent
as two standard deviations from the mean pH value. Thus, a symmetric triangular
fuzzy number Qxip can be represented as (xip, Sip).
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Fig. 8.5 Triangular numbers representing 40–50 cm pH (1:5 H2O) for Chromosols and Kurosols
in the Lower Hunter Valley, New South Wales, Australia

Table 8.5 Descriptive
statistics of the distribution of
pH (1:5 H2O) for Chromosols
and Kurosols observed at
Pokolbin in the Lower Hunter
Valley in New South Wales,
Australia

Chromosol Kurosol

Mean 6.23 5.07
Standard deviation 0.75 0.43
Minimum 4.97 3.85
Maximum 8.18 6.00
n 57 28

On the other hand, the membership minima of an asymmetric triangular fuzzy
number are not the same distance from the apex. We may choose to represent
them as the observed maximum and minimum pH. An asymmetric triangular fuzzy
number Qxip can be represented as (xip, aip, bip) where a and b are the lower and upper
minima of membership, respectively. Figure 8.5 demonstrates that the difference
between symmetric and asymmetric triangular fuzzy numbers is relatively subtle if
they are based on a distribution of values that is roughly normally distributed. For
mathematical simplicity the symmetric fuzzy numbers are used hereforth.

A soil material description is usually represented as a vector of several attributes
rather than a single attribute. A fuzzy vector of symmetric triangular fuzzy
numbers can be defined as Qxi D .xi; Pxi/ where xi is the standard pattern vector
xi D fxi1, xi2, : : : , xidg and Pxi is the panderance matrix that contains the spread
information (Celmiņš 1987):
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Liu and Samal (2002a) computed the distance between two fuzzy vectors Qa D
.a; Pa/ and Qb D .b; Pb/ as

d2
�Qa; Qb� D ka � bk2 C tr

�
.Pa � Pb/T .Pa � Pb/

�
(8.21)

where tr is the trace of the matrix product of (Pa � Pb)T (Pa � Pb).
The cluster centres are given by fQc1; Qc2; Qc3; : : : ; Qckg where Qcc D .cc; Pc/. The

membership of a fuzzy pattern Qxi in class c is computed as

mc .Qxi/ D 1
Pk

jD1 d2 .Qxi; Qcc/ =d2.Qxi; Qck/
1=.'�1/

(8.22)

Update of the centroid patterns Qcj is a two-step process because both the apex
vector cc and panderance matrix Pcj need to be recomputed for each centroid. The
apex vector is calculated as

cc D
Pn

iD1 mc.Qxi/
'xiPn

iD1 mc.Qxi/
' (8.23)

and the panderance matrix is calculated as

Pc D
Pn

iD1 mc.Qxi/
'PiPn

iD1 mc.Qxi/
' (8.24)

Liu and Samal (2002a, b) used the fuzzy c-numbers algorithm to identify
agroecozones in the state of Nebraska in the United States. Although we could
not find evidence of the application of the fuzzy c-numbers algorithm to soil
material classification, and only very infrequent application of fuzzy numbers in
the soil classification literature more generally (e.g. Bhattacharya and Solomatine
2006), fuzzy numbers have found application in other aspects of soil science and
related fields, including soil sampling (Lark 2000), engineering (Dodagoudar and
Venkatachalam 2000; Saboya Jr. et al. 2006), hydrology (Dou et al. 1999; Schulz
and Huwe 1999; Verma et al. 2009) and forestry (Kaya and Kahraman 2011).
Considering soil attributes are often recorded and presented as uncertain quantities,
it appears that the fuzzy c-numbers algorithm and others capable of handling fuzzy
attributes (e.g. d’Urso and Giordani 2006) could have natural application in soil
classification.
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8.3 Cluster Validation

Cluster validation usually involves the selection of the partition corresponding to the
optimal k from amongst several alternatives. Many cluster validity metrics have been
devised that assist in making this decision. Several authors have performed extensive
comparisons between a range of these metrics (e.g. Arbelaitz et al. 2013; Milligan
and Cooper 1985) although only few have been used in the numerical classification
of soil material.

Cluster validity metrics should ideally be independent of the essential parameters
of the cluster analysis, such as n, k and ® (Roubens 1982). They can be classified
into two categories: membership-based measures and geometry-based measures
(Liu and Samal 2002b). Membership-based validity measures attack the problem of
cluster validity by examining the fuzziness of a partition in the membership space.
On the other hand, geometry-based cluster validity measures attempt to solve the
problem of cluster validity by examining the separation of a partition in the attribute
space. This is achieved by quantifying the shape and distribution of clusters with
respect to their compactness and their separation from each other, which can be
measured via the intra-cluster distance and the intercluster distance, respectively.

8.3.1 Membership-Based Measures

A range of membership-based measures are commonly used. Two of the simplest
are the partition coefficient, F, and the partition entropy, H (Bezdek 1981):

F D 1

n

Xn

iD1

Xk

jD1
m2

ij (8.25)

H D �1

n

Xn

iD1

Xk

jD1
mij log

�
mij

�
(8.26)

The partition coefficient measures the fuzziness of the fuzzy classes and ranges
from 0.5, corresponding to the most fuzzy partition, to 1.0, corresponding to the
least fuzzy partition (Bezdek 1981). Thus, F is maximised when the partition is
hard. The partition entropy is inversely proportional to the goodness of the fuzzy
classes, and as such a better partition is indicated when H is minimised (Liu and
Samal 2002b).

Roubens (1982) stated that the search of an optimal value of k is complicated by
the fact that F and H tend to increase and decrease with k, respectively. He proposed
that the optimal k could be found more easily using the fuzziness performance index,
FPI, and the normalised classification entropy, NCE.

The FPI is computed as (Odeh et al. 1992)

FPI D 1 � .kF � 1/ = .k � 1/ (8.27)
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Fig. 8.6 Curves of fuzziness partition index and normalised classification entropy derived from
runs of a fuzzy k-means clustering of soil material from the Lower Hunter Valley in New South
Wales, Australia, using integer values of k from 2 to 25

The FPI varies between 0 and 1. Like the partition coefficient, it describes the
fuzziness of a fuzzy partition. A low value of FPI implies that the continuous classes
are relatively hard and that there is little sharing of membership between any pair
of them. This suggests that there is a distinct natural partition structure amongst the
individuals in the dataset (Odeh et al. 1992). The converse applies when FPI is high.

The normalised classification entropy (NCE) describes the uncertainty of the
fuzzy partitioning of the individuals (Odeh et al. 1992):

NCE D H

log k
(8.28)

where H is Bezdek’s partition entropy (Bolliger and Mladenoff, 2005). The optimal
value of k is usually found by determining a local minimum of both FPI and NCE
(Odeh et al. 1992; Triantafilis et al. 2001). The set of classes at k D 9 satisfies this
criterion in Fig. 8.6 for fuzzy clustering of soil material in Sect. 8.2.4.2.

Membership-based measures of cluster validity have been criticised on account
of their lack of a direct connection to the geometry of the clusters (Xie and Beni
1991). Nevertheless, they remain relatively popular in pedometric research. While
some soil researchers have used F and/or H (Burrough et al. 2001), most have used
FPI and/or NCE (e.g. Bragato 2004; Cockx et al. 2007; Triantafilis et al. 2001; van
Alphen and Stoorvogel 2000; Verheyen et al. 2001).
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8.3.2 Geometry-Based Measures

Geometry-based measures can be classified as ratio-type and summation-type
measures based on how the intra- and intercluster distances are combined (Kim and
Ramakrishna 2005). Many of the more common geometry-based cluster validity
metrics are of the ratio type, and several are based on the measure that Dunn
originally devised (after Halkidi et al. 2001):

D D min1�i�k

(

miniC1�j�k�1

(
d

�
Ci; Cj

�

max1�c�k .diam .Cc//

) )

(8.29)

where d(Ci, Cj) is the dissimilarity function between two clusters Ci and Cj,
calculated as

d
�
Ci; Cj

� D minx2Ci;y2Cj .d .x; y// (8.30)

and diam(Cc) is the diameter of cluster c, calculated as

diam .Cc/ D maxx;y2C .d .x; y// (8.31)

Dunn’s index is primarily used to validate crisp classes. The numerator in the
central term of Dunn’s index pertains to the intercluster separation, whereas the
denominator pertains to the intra-cluster dispersion. Large values of Dunn’s index
ought to indicate the presence of compact and well-separated clusters (Halkidi et
al. 2001). The Dunn’s index has only rarely been used in the pedometric literature
(Ließ 2015).

The compactness and separation validity function, S (Xie and Beni 1991), is a
ratio-type measure of cluster validity that has been used to validate fuzzy clusters. It
has been used from time to time in the pedometric and related literature (e.g. Odgers
et al. 2011; Sun et al. 2012; Vrindts et al. 2005). It is calculated as

S D
Pk

jD1 �j

nd2
min

(8.32)

where � j is the sum of squares of the fuzzy deviation, mijkxi � cjk2, of individual i
from centroid j:

�j D
Xn

iD1
mij

��xi � cj

��2
(8.33)

The term kxi � cjk is simply the Euclidean distance between individual i and
centroid j. � j is a measure of non-compactness: that is, the higher the value of � j,
the further from the centroid are the members of class j (Liu and Samal 2002b).



8 Soil Material Classes 251

Fig. 8.7 Curve of the compactness and separation validity function, S, derived from runs of a fuzzy
k-means clustering of soil material from the Lower Hunter Valley in New South Wales, Australia,
using integer values of k between 2 and 25

Finally, d2
min is the separation of the fuzzy partition and is calculated as

d2
min D min

�
�ci � cj

�
�2

(8.34)

which is effectively the square of the minimum Euclidean distance between cluster
centroids. A larger value of d2

min indicates that all the clusters are well separated in
the feature space (Xie and Beni 1991).

As with other cluster validity criteria, local minima in a curve of S across several
values of k may indicate a locally optimal partition. Thus, Fig. 8.7 indicates that an
optimal partition of the Lower Hunter Valley soil material in Sect. 8.2.4.2 may occur
when k D 11.

Xie and Beni (1991) note that S is meaningless when c is very large and close
to n because of its tendency to monotonically decrease in these circumstances. In
practice this is not often a problem because the values of c that we are interested in
are usually much lower than n.

8.4 Allocation to Pre-existing Classes

The placement of new individuals into a class of some classification system is
known as allocation, identification or diagnosis (McBratney 1994) although the
term classification has often been misappropriated to refer to the same process.
The act of allocating an individual to a class implies that a classification system
exists a priori. In soil science, considerably less has been written about allocation
than classification although research has been performed for decades (Norris and
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Fig. 8.8 Two-dimensional example of parallelepiped allocation. Parallelepipeds established using
class limits for surface horizon clay content (%) and organic matter (%) of several soil series
from El Dorado County in California, United States. Data retrieved from SSURGO database (Soil
Survey Staff 2016)

Loveday 1971). Like classification itself, allocation can be crisp or fuzzy. Several
methods are available, including parallelepiped methods, discriminant analysis and
classification trees. Not all have been commonly applied in pedometric research.

8.4.1 Parallelepiped Method

Parallelepiped allocation is one of the most basic methods of allocation. It is some-
times also known as the box decision rule or the level slice procedure (Campbell
1996). For each of the k classes in a classification system, a parallelepiped is set up
in the d-dimensional feature space using the class limits of the d attributes to set
its boundaries. Alternatively the standard deviations of the attributes may also be
used to set their boundaries. We illustrate with a simple two-dimensional example
in Fig. 8.8 using class limits. It should be easy to see that classes are implicitly
hypercubic or hypertrapezoidal in many dimensions. Allocation of an individual to
class j is simply a matter of identifying which parallelepiped the individual is located
inside of. Parallelepiped allocation is therefore crisp. For example, in Fig. 8.8, soil
material A with surface horizon clay content of 30% and surface horizon organic
matter content of 5% is clearly a member of the Sites series.

Mather and Koch (2011) identify difficulties that occur in two extreme cases.
First, an individual may not lie inside any of the k parallelepipeds, making allocation
impossible (B in Fig. 8.8). Second, an individual may lie inside the overlapping
parallelepipeds of more than one class, in which case a protocol must be in place
to determine which class the individual should be allocated to (C in Fig. 8.8). In
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both these cases, more information (i.e. more attributes) is necessary to resolve the
appropriate class, if any.

Parallelepiped classification has been commonly used to classify land cover
from remotely sensed imagery (e.g. Goodenough and Shlien 1974; Jensen 1978;
Robinove 1979) but appears not to have been used in pedometric studies.

8.4.2 Minimum Distance Method

The minimum distance method allocates an individual to the class of the centroid
to which it has the shortest distance (i.e. is most similar to) in the d-dimensional
attribute space. Like the parallelepiped method, allocation is a fairly simple process.
Since the Euclidean or Mahalanobis distances are usually used to relate individuals
to centroids, classes are implicitly hyperspherical or hyperellipsoidal in the attribute
space, respectively. Minimum distance allocation may not be possible if classes do
not have centroids.

8.4.3 Discriminant Analysis

According to the principle of discriminant analysis (Fisher 1936), a linear function
of the attributes of a population of individuals belonging to two classes can be found
that best discriminates between the two classes. Such a function can be represented
as

X D a1x1 C a2x2 C a3x3 C � � � C adxd (8.35)

The coefficients of the linear function are chosen so as to maximise the distance
of separation between the class means (i.e. the class centroids) relative to the within-
class variability (Healy 1965). In matrix terms, they can be found by multiplying the
vector of separation distances x1 � x2 by S�1, the inverse of the variance-covariance
matrix of the attributes of the sample of individuals (Blackith and Reyment 1971):

a D S�1 .x1 � x2/ (8.36)

A linear function so found is known as a discriminant function. The discriminant
function is ideally calibrated on representative individuals chosen randomly from
members of each class (Webster 1977). A larger value of the function, when
evaluated, implies a clearer separation of a pair of classes than does a smaller value.
This brings us to an important point: as Blackith and Reyment (1971) point out,
without including S�1 in the computation of the discriminant coefficients, continued
weighted addition of attributes would cause X to increase indefinitely and thus
give a false impression of the degree of separation between the pair of classes.
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In other words, each attribute would contribute information about the separation
of the classes without respect to the information provided by the other attributes.
The incorporation of the correlations between the attributes in the computation of a
constrains the size of X and ensures that each attribute only contributes the amount
of information that is unique to it.

In discriminant analysis the attribute distributions of each class are assumed
to be multivariate normally distributed and that the standard deviations are equal.
Oftentimes these assumptions are unrealistic in practice, and the technique appears
to be sufficiently robust against mild departures from them (Blackith and Reyment
1971).

Rao (1948) adapted the method for k > 2 classes, in which case there are always
k � 1 discriminant functions. Healy (1965), Blackith and Reyment (1971) and
Webster and Burrough (1974) are amongst those who have described discriminant
analysis in geometric terms. Consider two bivariate classes whose distributions are
plotted as ellipses in the discriminant space defined by their attribute axes. The
classes are best separated by a line that passes through the intersection of the two
ellipses. The axis drawn orthogonal to such a line has been called the discriminant
axis and is the best axis for discriminating between the two classes (Webster and
Burrough 1974). The concept can of course be extended into as many attribute
dimensions d as are necessary, in which case the ellipses become hyperplanes
(Webster and Oliver 1990).

In terms of allocation, distances in the discriminant space are Mahalanobis
distances. Thus, new individuals may be allocated to the class to whose centroid
it is closest in the Mahalanobis sense (Webster and Burrough 1974).

Discriminant analysis was first employed in soil science by Cox and Martin
(1937), who used it to quantify the significance of several soil properties for
predicting the presence of Azotobacter. It has been used subsequently by Hughes
and Lindley (1955), Oertel (1961), Norris and Loveday (1971) and Webster and
Burrough (1974), amongst others, for the purpose of allocation. Triantafilis et al.
(2003) generalised the theory to a fuzzy linear discriminant analysis.

8.4.3.1 Classification Trees

Classification trees are a hierarchical non-parametric example of supervised classifi-
cation as they require the set of classes to be known a priori. Because the classes are
known a priori, they are readily useful for class allocation. Classification trees can
be formulated algorithmically ab initio or by manual extraction of the classification
rules in existing classification systems (see Fig. 8.9 for an example). Classification
trees recursively subdivide a population of individuals into ever more specific
subgroups. Points of subdivision are called nodes, and subdivision is conducted
by performing a logical test on the threshold of some attribute. Attributes may
be continuous or discrete valued. The logical test is formalised in a decision rule
that also determines the subgroup implied by passing or failing the logical test. A
terminal subgroup is called a leaf and contains a single class rather than a pointer
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Fig. 8.9 Classification tree
for orders of the Australian
Soil Classification that
possess a clear or abrupt
textural B horizon

to a subsequent decision rule. Decision rules are analogous to the if-then rules that
are ubiquitous in software programming and may be expressed accordingly. For
example, a decision rule may be as follows:

If clay content �35%: subgroup A
Else subgroup B

When formulated algorithmically, decision rules are usually chosen to optimise
some measure of goodness in the subgroups formed by the split, such as within-
subgroup purity. According to Friedl and Brodley (1997), a range of metrics can be
used to quantify how well this is done; for example, Lagacherie and Holmes (1997)
used the Gini index. Pruning may be conducted in order to reduce the size of the
tree and to avoid overfitting to the calibration data. Pruning involves merging pairs
of leaves and may be accomplished by a cross-validation procedure (Scull et al.
2003).

Classification trees have several advantages over other approaches (Friedl and
Brodley 1997). For example, because they are non-parametric, they are insensitive
to the distributions of attribute values. They can handle nonlinear relationships
between classes and attribute values, and they are able to handle both continuous
and discrete-valued attributes. Finally, the tree structure is readily interpretable.

Lagacherie and Holmes (1997) were one of the first to apply classification trees
in soil survey, and since then they have become a popular supervised classification
tool. It appears, though, that their most frequent use has been in soil survey and
mapping rather than in classification of soil material.
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8.4.4 Fuzzy k-Means

McBratney (1994) demonstrated how individuals can be allocated to soil classes
created using the fuzzy k-means with extragrades algorithm. Allocation is a matter
of calculating the degree of membership of the unknown individual to each of the
fuzzy classes using Eq. 8.16 and to the extragrade class using Eq. 8.17 described
earlier. In order to do this, the parameters k, ® and ˛ must be known, along with
the matrix of class centroids and the variance-covariance matrix of the samples used
to produce the classification. Furthermore, the Mahalanobis distances between the
new individual and the class centroids must also be calculated.

Such an allocation scheme is not exclusively applicable to fuzzy soil classes
produced by a numerical soil classification procedure. For example, Mazaheri et
al. (1995) employed the technique in order to allocate new profiles to the classes of
the Australian Great Soil Groups classification scheme (Stace et al. 1968) Although
the Great Soil Groups classification scheme is not a numerical soil classification
system, the classes are considered by some (Moore et al. 1983) to be fuzzy in the
sense that they are described by a central concept, and, since no taxonomic key has
been devised for the purpose of allocation, the class boundaries are somewhat vague.

Despite the fact that the classification scheme is likely to be obsolete now, as
the universe of soils it caters for is too small for all Australian conditions (Moore
et al. 1983), Mazaheri et al. (1995) reported positive results when they used the
fuzzy allocation scheme to allocate six individuals to a class. They determined that
the numerical allocation system was not only useful for allocating individuals to
classes with partial membership but that it also enables a critical review of the
existing classification system in at least two situations: (i) if profiles are allocated
with more-or-less equal membership to several classes and (ii) if profiles possess a
large extragrade membership.

8.4.5 Soil Horizon Classes

Soil scientists have long recognised soil horizons as the fundamental building blocks
of the soil profile. For example, of the eight criteria Marbut (1920) proposed as
grounds for the differentiation of soil profiles, seven related to various characteris-
tics of soil horizons.

Attempts have been made to classify soil horizons since the late nineteenth
century (FitzPatrick 1967). Dokuchaev was the first to use the A-B-C-horizon
nomenclature in his description of Chernozem soils. By itself, though, the A-B-
C notation does not convey a lot of information about the character of soil material
belonging to a given horizon—or to put it more optimistically, the diversity of soil
horizons is greater than can be readily captured by the A-B-C notation (Nikiforoff
1931). For example, a Vertosol B horizon has a very different character to a Podosol
B horizon. Horizon subscripts were developed to provide more information in
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this respect although the precise meaning of them can vary from jurisdiction to
jurisdiction. Bridges (1990) describes a range of other difficulties with the A-B-C
system.

The USDA devised a system of diagnostic horizons during its development
of the Soil Taxonomy classification system (Soil Survey Staff 1999). Other soil
classifications also use their own versions of these horizons (e.g. FAO 2014;
Hewitt 2010). Diagnostic horizons are classes of horizons that possess specific
soil material characteristics. Their descriptions are often lengthy and complex.
They were developed as aids to soil profile classification because specific soil
profile classes often require the presence of specific diagnostic horizons. Despite
their utility, diagnostic horizons have not been without criticism. For example,
FitzPatrick (1976) points out that uncertainty arises in situations where a soil profile
contains more than one diagnostic horizon: because the profile is possibly eligible
for allocation to more than one soil profile class, a judgement must be made on
which diagnostic horizon is more important (or more diagnostic!).

Researchers have since developed more quantitative systems. The best-known
and most comprehensive is that of FitzPatrick (e.g. 1993, 1988, 1976, 1967), who
devised a system of about 81 classes of soil horizons, which he later called segments.
Each segment was given a name ending in -on and a two-letter code, much like the
chemical elements. The codes for a profile’s horizons could be assembled to produce
a code for the entire profile much like a chemical formula.

Researchers have also used fuzzy numerical classification to create soil layer
classes. For example Powell et al. (1992) used the fuzzy k-means with extragrades
algorithm (de Gruijter and McBratney 1988) to create a set of fuzzy soil layer classes
for their study area in the Lockyer Valley in Queensland, Australia. Triantafilis et al.
(2001) carried out a similar analysis for soils from the Edgeroi district in the Namoi
Valley of New South Wales, Australia. In both cases the researchers found that the
numerical soil layer classes were well able to explain pedological and landscape
features in their respective study areas.
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