
Chapter 7
Pedotransfer Functions and Soil Inference
Systems

José Padarian, Jason Morris, Budiman Minasny, and Alex. B. McBratney

“You can’t make a silk purse out of a sow’s ear”.

Jonathan Swift
Anglo-Irish essayist (1667–1745)

7.1 Introduction

The term pedotransfer function (PTF) was coined by Bouma (1989) as ‘translating
data we have into what we need’. Pedotransfer functions are regression functions
used to predict soil properties that would be otherwise infeasible to obtain. Typical
reasons for this infeasibility include, but are not limited to, the cost, time, difficulty
or hazard involved in procuring direct measurements. Each PTF is developed around
some insight into a soil’s physical, chemical or biological properties that relates a
set of input parameters (predictor properties) to an output parameter (a predicted
property).

Pedotransfer functions (PTFs) have multiples uses. They are essential, for
example, in soil carbon stock assessment (Chap. 23) based on legacy soil data, where
bulk density is usually not measured. PTFs can also be used to estimate soil organic
carbon pools required in soil carbon evolution models. In digital soil mapping
(Chap. 12), the use of pedotransfer functions is to provide more useful information
in relation to soil attributes or soil functions. Pedotransfer functions can further be
used to estimate the soil’s condition or capability (e.g. available water capacity).
The predicted properties resulting from PTFs can be used as inputs into process-
based simulation models to run scenarios on the effects of different agricultural
management on soil functioning, drainage, evapotranspiration and biomass yields.
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Fig. 7.1 A Venn diagram
showing the relationship
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prediction functions (SSPFs)
and, their intersection, spatial
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Some consider prediction of soil attributes from environmental variables (e.g.
climate and topographic indices) in a spatial context as pedotransfer functions,
but we would caution against that. We called this particular case the soil spatial
prediction functions (SSPFs) (see Chap. 12 for more details). Pedotransfer functions
sensu stricto are when we are predicting soil attributes from other soil attributes, or
S D f (s). There is a possible intersection or area of overlap, between PTFs
and SSPFs (e.g. the spatial component), which results in what we call spatial
pedotransfer functions. Figure 7.1 illustrates the differences and possible overlap
between PTFs and SSPFs. Pachepsky et al. (2001) and Romano and Palladino
(2002) illustrate examples of spatial or contextual pedotransfer functions, but they
are examples of S D f (s,r).

7.2 A Brief History of Pedotransfer Functions

Reviews on the development and the use of PTFs can be found in Pachepsky
et al. (1999, 2015) and Wosten et al. (2001). Most of these reviews, however, are
limited to the prediction of soil hydraulic properties, which regulate the retention
and movement of water and chemicals in soils.

The concept of using empirical relations to predict soil properties can be traced
to Briggs and McLane (1907) and Briggs and Shantz (1912) in their work on
determining the wilting coefficient. Furthermore, various ‘rule of thumbs’ were
formulated to estimate various soil properties. Probably because of its particular
difficulty and cost of measurement, the most comprehensive research in developing
PTFs has been for the estimation of water retention. With the introduction of the
concepts of field capacity (FC) and permanent wilting point (PWP) by Veihmeyer
and Hendricksen (1927), research during the period of 1950–1980 attempted to
correlate particle-size distribution, bulk density and organic matter content with
water content at field capacity (FC, ™ at �33 kPa), permanent wilting point (PWP, ™

at �1500 kPa) and available water content (AWC D FC – PWP). Nielsen and Shaw
(1958), for example, presented a parabolic relationship between clay content and
PWP from 730 Iowa soils.

In the 1960s various papers dealt with the estimation of FC, PWP and AWC,
notably in a series of papers by Salter and Williams (1965a, b, 1966, 1967, 1969).

http://dx.doi.org/10.1007/978-3-319-63439-5_12
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These explored relationships between texture classes and available water capacity,
which are now known as class PTFs. Salter and Williams also developed functions
relating the particle-size distribution to AWC, now known as continuous PTFs.

In the 1970s more comprehensive research using large databases was developed.
A particularly good example is the study by Hall et al. (1977) who used soil samples
from England and Wales. Hall et al. (1977) established field capacity, permanent
wilting point, available water content and air capacity as a function of textural class,
as well as deriving continuous functions estimating these soil water properties. In
the USA, Gupta and Larson (1979) developed 12 functions relating particle-size
distribution and organic matter content to water content at water potentials ranging
from �4 to �1500 kPa.

With the flourishing development of hydraulic models (van Genuchten 1980)
and computer modelling of soil water and solute transport (de Wit and van Keulen
1972), the need for hydraulic properties as input to these models became more
and more evident. Clapp and Hornberger (1978) derived average values for the
parameters of a power-function water retention curve, sorptivity and saturated
hydraulic conductivity for different texture classes. In probably the first research
of its kind, Bloemen (1980) derived the relationships between parameters of the
Brooks and Corey hydraulic model and particle-size distribution.

Lamp and Kneib (1981) introduced the term pedofunction, while Bouma and
van Lanen (1986) used the term transfer function. To avoid confusion with the
terminology, transfer function which is used in other disciplines with many different
meanings, Bouma (1989) later termed the pedotransfer function.

From the 1990s to the early 2000s, the development of hydraulic PTFs became
a popular topic of research. Results of such research have been reported widely
from various countries globally, including the UK (Mayr and Jarvis 1999), Australia
(Minasny and McBratney 2000), the Netherlands (Wösten et al. 1995), Germany
(Scheinost et al. 1997b) and Iran (Ghorbani and Homaei 2002).

Since the late 2000s, the popularity of developing hydraulic PTFs continued
(Santra and Das 2008; Twarakavi et al. 2009; Haghverdi et al. 2012). Here, the
development of PTFs for special conditions is worth noting, such as saline and
saline-alkali soils of Iran (Abbasi et al. 2011), permafrost soils of China (Yi et al.
2013) and volcanic ash soils of Japan (Nanko et al. 2014), and the use and
development of PTFs for continental or global extent such as the work presented
by Dai et al. (2013) for China, Hollis et al. (2012) and Tóth et al. (2015) for Europe
and Glendining et al. (2011) for the world.

In addition, some PTFs consider adjustments because of the differences in
criteria and measurements from existing pedotransfer functions. For example, as
outlined in the previous chapter of this book (Fig. 5.3), sand fractions are different
according to the IUSS/Australian classification (particle diameter 20–2000 �m) and
the FAO/USDA criteria (particle diameter 50–2000 �m). Padarian et al. (2012) give
equations for converting between these two classification systems. On the other
hand, Henderson and Bui (2002) established relationships between pH measured
in water and pH measured in CaCl2.

http://dx.doi.org/10.1007/978-3-319-63439-5_5
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Although most PTFs have been developed to predict soil hydraulic properties,
they are not restricted to hydraulic properties only. PTFs for estimating soil
physical, mechanical, chemical and biological properties have also been developed
(Table 7.1). In addition, PTFs were developed to also predict processes such as deep

Table 7.1 Some examples of pedotransfer functions

Predicted soil properties Predictor variables Authors

Physical properties
Infiltration rate after a certain
period

Initial water content,
moisture deficit, total
porosity, non-capillary
porosity, hydraulic
conductivity

Canarache et al. (1968)

Soil thermal conductivity Texture, organic matter
content, water content

De Vries (1966), Hubrechts
and Feyen (1996)

Bulk density Particle-size distribution Rawls (1983)
Hollis et al. (2012)

Infiltration parameters Particle-size distribution,
bulk density, organic C
content, initial water content,
root content

van de Genachte et al. (1996)

Gas diffusivity Air-filled porosity at �10 kPa Moldrup et al. (2000)
Mechanical properties
Soil mechanical resistance Organic carbon content, clay

content, bulk density
Mirreh and Ketcheson
(1972), da Silva and Kay
(1997)

Soil shrinkage curve Clay content Crescimanno and Provenzano
(1999)

Volumetric shrinkage, liquid
limit, plastic limit, plasticity
index

Organic matter content, clay
content, CEC

Mbagwu and Abeh (1998)

Degree of overconsolidation Bulk density, void ratio McBride and Joose (1996)
Rate of structural change Organic matter content, clay

content
Rasiah and Kay (1994)

Soil erodibility factor Geometric mean
particle-size, clay and organic
matter content

Torri et al. (1997)

Chemical properties
Cation exchange capacity
(CEC)

Clay content, organic matter
content, pH

Bell and van Keulen (1995),
Curtin and Rostad (1997)

Critical P level, P buffer
coefficient

Clay content Cox (1994), Chen et al.
(1997)

Soil organic matter Soil colour Fernandez et al. (1988)
P sorption pH in NaF Gilkes and Hughes (1994)
pH buffering capacity Organic matter content, clay

content
Wong et al. (2013)

(continued)
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Table 7.1 (continued)

Predicted soil properties Predictor variables Authors

Al saturation Base saturation, organic
carbon content, pH

Jones (1984)

P saturation Extractable P, Al Kleinman et al. (1999)
K/Ca exchange Clay content, extractable K Scheinost et al. (1997a)
Total nitrogen Organic carbon content, pH,

sand and clay content
Glendining et al. (2011)

As and Cd sorption Clay content, pH, organic
carbon content, dithionite
extractable Fe

Schug et al. (1999)

Phosphorous (P) adsorption Clay content, pH, soil colour Sheinost and Schwertmann
(1995)

Cd sorption coefficient Clay content, organic carbon
content, pH

Springob et al. (1998)

Haematite content Soil colour Torrent et al. (1983)
Biological properties
Microbial phylotype richness
and diversity

pH Fierer and Jackson (2006)

Respiration rate Water content Wildung et al. (1975)
Nitrogen mineralisation
parameters

CEC, total N, organic carbon
content, silt and clay content

Rasiah (1995)

OC pools Total OC, clay Weihermueller et al. 2013

percolation. For example, Selle and Huwe (2005) used a regression tree approach
to simplify process-based models to identify key soil and environmental variables
which govern percolation. Wessolek et al. (2008) called these hydro-pedotransfer
functions, as soil and hydrological variables are used to predict other soil processes.
Wessolek et al. (2008) developed empirical functions that predict deep percolation
and evapotranspiration from soil conditions, vegetation and land uses.

Pachepsky et al. (2015) reviewed more recent developments in PTFs and
identified research gaps that require future work:

• The need for sufficient upscaling of PTFs. PTFs were mainly generated on
point observations, and many applications require simulations on regional or
continental extent. An example is saturated hydraulic conductivity which is
highly dependent on the measurement support.

• The need for more regional or specific PTFs for saline soils, calcareous and
gypsiferous soils, peat soils, paddy soils, soils with well-expressed shrink-swell
behaviour, and soils affected by freeze-thaw cycles.

• The need for parameters governing biogeochemical processes, such as in soil
carbon and nitrogen evolution models, where parameters are related to organic
matter pools (e.g. Weihermueller et al. 2013). For these cases, soil heat transfer
and water availability inputs can be improved.
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• The need to expand work on the spatial and temporal structure of PTFs which is
not well known.

• The use of PTFs in large-scale projects, where soil information is usually not
represented properly. In soil carbon stock assessment studies, bulk density is
usually not measured, so PTFs for bulk density are required, which can be a
main source of uncertainty (Hollis et al. 2012).

7.3 Developing Pedotransfer Functions

The basic steps for developing PTFs are simple – in theory, S D f (s), and
therefore:

1. Collect a sufficient data set of soil properties (S and s) that are suspected to having
empirical relationships to each other.

2. Set aside a certain fraction of the data for developing the PTFs, and use the
remaining data for testing the performance of the PTFs (e.g. an 80:20% split
of the data set).

3. Choose a modelling method f for analysing the data (e.g. linear regression, neural
networks or other machine learning algorithms), and subsequently develop the
empirical equations.

4. Test the empirical equations on the testing data to show their validity.
5. Calculate the output uncertainty.

7.4 Predictors

There are several sources of information that can be used to predict soil properties
and that can be considered as input for pedotransfer functions. Here, we will present
the use of PTFs and their potential predictors which are sourced from the laboratory,
field description (including soil morphology) as well as the soil electromagnetic
spectrum.

7.4.1 Laboratory Data

Laboratory analysis of soil samples is usually conducted to allocate a particular soil
profile to an existing soil class. The high cost of laboratory analysis, however, drove
the development of empirical relationships by relating more easily or routinely
measured soil properties to other attributes that are, for example, more useful for
soil management purposes. One of the well-known examples is the estimation
of available water capacity from particle-size distribution. The development in
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pedotransfer functions is boosted by the availability of large national or regional soil
databases, which allows the use of machine learning tools. The most useful variable
in predicting soil physical properties is perhaps clay content, as it affects moisture
retention, soil strength and many physical and chemical processes. Routine analysis
usually lacks of physical data. Research is still mainly focusing on improving the
prediction of hydraulic properties, such as water retention and saturated hydraulic
conductivity. Some simpler analysis, however, has also been utilised to estimate
more difficult-to-measure properties, such as pH in sodium fluoride which is an
indication of phosphorous sorption capacity (Gilkes and Hughes 1994).

7.4.2 Field Description and Soil Morphology

Most research has been focused on correlating laboratory-determined soil properties
with more difficult-to-measure properties, mainly because of the availability of
comprehensive soil survey databases and the presumption that these properties are
most appropriate for predictive purposes. However, it has also been recognised for
some time that soil morphological description could be used as predictor (O’Neal
1949, 1952; McKeague et al. 1984; McKenzie and McLeod 1989; McKenzie and
Jacquier 1997).

Calhoun et al. (2001) contended that soil morphology and field description have
been underutilised in the development of pedotransfer functions. They presented the
representation of Jenny’s state factors through the variables’ physiography, parent
material, horizon, field texture and structure as collected in soil surveys for predict-
ing bulk density. They demonstrated that morphology and field descriptors account
for more variability in predicting bulk density than laboratory measurement of
particle size and organic carbon. Physiographic description and soil morphological
characterisation (slope gradient, position of the slope and horizon classes) were also
found as useful predictors of water retention (Rawls and Pachepsky 2002).

Several studies have been successful in predicting hydraulic conductivity by
using soil morphological features (e.g. O’Neal 1952; McKeague et al. 1982).
However, the descriptive systems and interpretative guidelines in conventional soil
survey have been largely qualitative and only appropriate for a given range of
soils. McKenzie et al. (1991) found that several published descriptive systems
for inferring hydraulic properties provided poor predictions for a limited range
of soils from South Australia. McKenzie and Jacquier (1997) reasoned that good
predictive relationships should only be expected when the field criteria used have a
logical physical connection with hydraulic properties. They further postulated that
predictive systems that develop direct relationships between hydraulic properties
and field criteria of physical significance should be superior to systems that rely
on classified entities such as horizons or soil series. They devised a simple visual
estimate of areal porosity and found that saturated conductivity can be estimated
from field texture, grade of structure, areal porosity, bulk density, dispersion
index and horizon type. A similar idea was performed by Lin et al. (1999), who
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converted morphological properties to scores which are related to water flow. From
these studies, it was concluded that additional morphological descriptors to those
routinely surveyed may be needed to improve the predictive capacity.

7.4.3 Handheld and On-the-Go Proximal Soil Sensing
and Remote Sensing

7.4.3.1 Handheld, Stationary, Proximal Soil Sensing

As outlined in Chap. 5, in traditional soil surveys, soil scientists used the visible
light spectrum through the Munsell soil colour chart to determine soil colour and
the presence of pedological features like mottles or concretions. Furthermore, it was
discussed in the previous chapter that developments in spectroscopy have resulted
in an increase in the potential for soil analysis, and we will include a short summary
of its capability here (Fig. 7.2). Diffuse reflectance infrared spectroscopy in both
the visible-near (400–700–2500 nm) and mid-infrared ranges (2500–25,000 nm)
allows rapid acquisition of soil information in the field or in the laboratory.
Diffuse reflectance infrared spectroscopy is based on the fact that molecules have
specific frequencies at which they rotate or vibrate corresponding to discrete energy
levels. Absorption spectra of compounds are a unique reflection of their molecular
structure. Spectral signatures of soil materials are characterised by their reflectance
to a particular wavelength in the electromagnetic spectrum. Soil spectra in the vis-
NIR and MIR ranges can be used to estimate a range of soil physical, chemical and
biological properties simultaneously. Good results were reported for measurement
of total C, total N, clay and sand content, CEC and microbial activity (Soriano-Disla
et al. 2014).

Mid-infrared (MIR) spectroscopy usually produces better predictions than vis-
NIR. The use of MIR also enables estimation of various soil organic carbon pools
derived from tedious and time-consuming physical fractionation procedures. These
pools can be used as inputs in soil carbon evolution models. Vis-NIR spectrometers
particularly are used extensively and gained popularity in soil science because they
are also available in a portable format and easy and ready to use in the field and
require minimal or even no sample preparation. Reviews on the use of vis-NIR for
predicting soil properties can be found in Stenberg et al. (2010) and Soriano-Disla
et al. (2014).

Because soil is a complex mixture of materials, it is difficult to assign specific
features of the spectra to specific chemical components. Ultraspectral data obtained
from infrared spectrometers contain thousands of reflectance values as a function
of wavelength. Since there are more predictor variables than the observations and
predicted soil attributes as outlined in the previous chapter, methods that reduce the
dimension of the spectra are required. Principal component regression and partial
least squares (PLS) methods are commonly utilised. Principal component regression
reduces the dimension of the spectra via principal component analysis and then form

http://dx.doi.org/10.1007/978-3-319-63439-5_5
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linear regression between the principal components and soil attributes (Martens and
Naes 1989; Chang et al. 2001). Partial least squares (PLS) (Martens and Naes 1989)
extracts successive linear combinations of the spectra, which optimally address the
combined goals of explaining response variation and explaining predictor variation.
Other machine learning techniques that are capable of variable (wavelength)
selection have also been found useful (e.g. Minasny and McBratney 2008; Sarajith
et al. 2016).

In addition to vis-NIR spectroscopy, the direct measurement of the elemental
concentration of soils in the field also became possible using energy-based portable
X-ray fluorescence (XRF) devices (Weindorf et al. 2012). Bulk density can also
be estimated utilising photogrammetry via a digital single-lens camera or laser
scanning (Bauer et al. 2014; Rossi et al. 2008).

7.4.3.2 On-the-Go Proximal Soil Sensing

While we can collect detailed soil information at limited locations using conven-
tional methods of soil analysis and interpolate resulting values across space and
time using geostatistics, in some instances it would be more beneficial if we could
directly measure soil information at a fine spatial scale (e.g. measurements every
2–20 m). In this instance, proximal soil sensing offers a cost- and time-effective
solution (Viscarra Rossel et al. 2010). Proximal soil sensing acquires information
about soil through the use of field-based sensors that are placed in proximity to the
soil (within 2 m) or within the soil body, which is in contrast to remote sensing
(McBratney et al. 2011a, b). The development and use of on-the-go proximal
soil sensing techniques is motivated by the need for high-resolution spatial and
temporal soil information. Proximal soil sensors operate on a range of frequencies
in the electromagnetic spectrum, from microwaves to gamma rays. These sensing
devices either measure soil properties directly or can be used to make inferences
via PTFs about specific soil properties. Often sensors are also used simultaneously
to overcome the limitations of single-sensor data interpretation (Wong et al. 2010).
For example, electromagnetic induction instruments (EMI) are used to measure the
soil’s electrical conductivity, a highly valuable soil property that is influenced by soil
porosity, moisture content, salinity, temperature and the amount and composition of
soil colloids.

Ground-penetrating radar, electrical resistivity as well as electrical conductivity
sensors are available to monitor the spatial distribution of soil moisture (Adamchuk
et al. 2004). In addition, gamma ray spectrometers have been used to measure
the amount of potassium, uranium and thorium in the upper soil profile which
is most likely directly related to the parent material the surveyed soil originated
from (Dickson and Scott 1997). Local PTFs have been developed to estimate soil
attributes (such as clay and organic carbon content) from the sensed variables (e.g.
bulk electrical conductivity, gamma K).

As outlined in Chap. 5, portable sensors can now be used in the field on profile
and core faces for pedological studies, which is termed digital soil morphometrics

http://dx.doi.org/10.1007/978-3-319-63439-5_5
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(Hartemink and Minasny 2014). Field observation via proximal sensors and PTFs
should be fused in an inference system into a powerful approach for estimating a
range of soil properties for pedological studies, precision farming or contamination
assessment (Horta et al. 2015).

7.4.3.3 Remote Sensing

The value of remote sensing over proximal sensing is that large spatial extents can
be covered quickly with many estimates. The inferred value of remotely sensed
data either airborne or satellite sourced has been shown to be an efficient means
of assessing the condition of natural resources at reasonably broad scales (and
this will be discussed further in Chap. 13). The remotely sensed data can include
spectral, radar, thermal and radiometric signals. These reflect the environmental and
soil condition and are known to be associated with soil properties. Mulder et al.
(2011) reviewed the application of optical and microwave remote sensing for soil
and terrain mapping. Soil properties that have been measured include mineralogy,
texture, soil iron content, soil moisture content, soil organic carbon content, soil
salinity and carbonate content. Its use for soil mapping is, however, hampered by
vegetation cover. Nevertheless, indicators, such as plant functional groups, NDVI
and productivity changes, can be used as indications of soil properties.

The application of remotely sensed infrared data for mapping soil clay content
and mineralogy is demonstrated by Mulder et al. (2013) and Gomez et al. (2015).
Some studies demonstrated that time series data collected from remotely sensed data
can be used to derive soil hydraulic properties. Dimitrov et al. (2014) derived soil
hydraulic parameters, surface roughness and soil moisture of a tilled bare soil plot
using measured brightness temperatures at 1.4 GHz (L-band), rainfall and potential
soil evaporation. This required a radiative transfer model and a soil hydrologic
model combined with an optimisation routine.

7.5 Modelling Approaches

Approaches to develop PTFs can be purely empirical or physico-empirical. Empir-
ical approaches attempt to find relationships between the predictor and predicted
variables using regression analysis or various machine learning models. In a
physico-empirical approach, the soil properties are derived based on some physical
principles. For example, in water retention curve prediction, Arya and Paris (1981)
translated the particle-size distribution into a water retention curve by converting
solid mass fractions to water content and pore-size distribution into hydraulic
potential by means of the capillary equation. Zeiliguer et al. (2000) proposed an
additive model for soil water retention, which assumed that water retention of a soil
can be approximated by the sum of the components of water retention of its textural
composition.

http://dx.doi.org/10.1007/978-3-319-63439-5_13
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Considering the type of data we wish to predict, we can distinguish single point
and parametric PTFs. Single point PTFs predict a soil property, while parametric
PTFs predict parameters of a model.

Most survey agencies have their own ‘rule of thumb’ for predicting soil
properties. One form is a look-up table, which usually relates field texture class
to properties such as clay content, available water capacity, etc. These rules or
tables are usually derived from experience and expert knowledge or from means
of properties for a particular class in a soil database.

For the continuous predicted variables, a range of machine learning models can
be used to derive PTFs, finding relationships between the predictor and predicted
variables. Many of the modern regression techniques are described in Hastie et al.
(2009). The methods range from linear regression, generalised linear models (GLM)
and generalised additive models (GAM) to regression trees, random forests, neural
networks, genetic programming and fuzzy systems. Most of these tools are available
in commercial and open-source projects. R (https://www.r-project.org) and Python
(https://www.python.org/) are commonly used by the scientific community, because
they offer many free-of-use advanced mathematical and machine learning tools.

The predictive power and interpretability vary between models depending on
their complexity. Tables 7.2 and 7.3 provide a guideline for various models. The
more complex the model, the more parameters it will have, so users need to be
aware of the principle of parsimony (which is a general principle that for any model,
which provides an adequate fit for a set of data, the one with the fewest parameters

Table 7.2 Common machine learning algorithms used for developing PTFs

Multiple regression

The general purpose of multiple regression is to analyse the relationship between several
independent or predictor variables and a dependent or predicted variable. Multiple regression
analysis fits a straight line (or plane in an n-dimensional space, where n is the number of
independent variables) to the data
Generalised linear models (GLM)

A class of models that arise for a natural generalisation of ordinary linear models. The
transformed dependent variable values are predicted from (are linked to) a linear combination
of predictor variables; the transformation is referred to as the link function; also different
distributions can be assumed for the dependent variable values
Generalised additive models (GAM)

Models that use smoothing techniques, such as splines to identify and represent possible
nonlinear relationships between the predictor and predicted variables. GAM is a generalisation
of GLM where the linear function of the predictor is replaced by an unspecified
(non-parametric) function, obtained by applying a scatterplot smoother to the scatterplot of
partial residuals (for the transformed dependent variable values)
Partial least squares (PLS)

This is an alternative to multiple linear regression that can deal with data having more
independent variables than observation points. PLS constructs a new set of components as
regressor variables which are a linear combination of the original variables. The components in
partial least squares are determined by both the response variable(s) and the predictor variables

(continued)

https://www.r-project.org
https://www.python.org/


7 Pedotransfer Functions and Soil Inference Systems 207

Table 7.2 (continued)

Artificial neural networks

A flexible mathematical structure modelled after the functioning of the nervous system,
capable of fitting nonlinear relationships. The essential feature is a network of simple
processing elements (neurons) joined together by weights
Regression tree

This is an alternative to multiple regression. Rather than fitting a model to the data, a tree
structure is generated by dividing the sample recursively into a number of groups, each division
being chosen so as to maximise some measurable difference in the predicted variable in the
resulting two groups. The resulting structure provides easy interpretation as variables most
important for prediction can be identified quickly
Random forests

Random forest is an extension of regression trees where many trees are generated, varying the
number of covariates used and using a bootstrap sampling of the training data. Then, an
ensemble model is generated by aggregating the individual trees
Genetic programming

Machine learning method for evolving computer programs, following the concepts of natural
selection and genetics, to solve complex problems
Support vector machine (SVM)

A method that looks for an optimal separating hyperplane between two classes by maximising
the margin between the closest observations of each class. In a regression case, the
observations lie in between the two borders of the margin (supporting vectors), which are
separated from the hyperplane by ˙ " (maximum error)

Based on Hastie et al. (2009)

is to be preferred) (Lark 2001). There is a limit for predictive models; here, users
should choose the simplest model that can adequately account for the variation in
the prediction. Models with high complexity will appear to fit the data very well;
however, these may also cause overfitting or include too many parameters in the
model; thus the model will fit the noise of the data. It is recommended to split the
data into a calibration and validation set, using the calibration data for fitting and
then testing or validating the model with a validation set (see Hastie et al. (2009)
for more detail). Wosten et al. (2001) compared the performance of three models to
predict water content at �33 kPa from basic soil properties using the same data set.
They reported that the accuracy of all three methods was similar and suggested that
the improvement of fit may not be expected from the use of different models, but
from a better set of data.

7.5.1 Ensemble Models

An alternative to selecting a single predictive model is model ensembles. This
consists of creating multiple models and combining them to obtain a single final
model. The advantage of this method is that, most of the time, the combined model
performs better than any of the individual models in terms of lower error and
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unaltered bias. This method has been used for almost 200 years as pointed out
in an interesting review by Clemen (1989). Baker and Ellison (2008a) discussed
various aspects of implementation of ensemble methods for soil studies. In soil
science, examples of its use are Baker and Ellison (2008b) who used ensemble
ANN for PTFs. Kim et al. (2015) combined two microwave satellite soil moisture
products, Malone et al. (2014) combined estimates of soil properties from soil maps
and regression kriging prediction, and Padarian et al. (2014) generated an ensemble
map of soil available water capacity in Australia.

Guber et al. (2009) suggested the use of all available PTFs in a multimodel
prediction technique. They used 19 published PTFs as inputs in Richards’ soil water
flow equation; the output of the 19 simulations was then combined to obtain a more
optimal soil water prediction. The challenge in this type of ensemble method is
how to calibrate and to use appropriate weighting for each of the PTF to obtain an
optimal prediction.

7.6 Characterising PTF’s Performance

As with all numerical methods, there are questions concerning how well any
prediction agrees with real observational data. In the literature, PTFs can be
characterised by their accuracy, reliability, uncertainty and validity, as well as their
ultimate utility. A brief survey of these concepts follows.

7.6.1 Accuracy

Accuracy refers to how well a PTF predicts its target property based on inputs taken
from the training data. It measures the performance of a PTF on its training data
(a PTF has ‘seen’ the data). Usually accuracy is expressed in terms of error, the
difference between observed and predicted values. Weynants et al. (2009) amongst
others used several common statistic measures for evaluating the accuracy of PTFs:
the root-mean-square error (RMSE), mean absolute error (MAE), mean error (ME)
or bias, coefficient of determination (R2) and the model efficiency. Accuracy in
PTFs can also be computed with other statistics, e.g. the concordance correlation
coefficient which measures how close the model predictions fall along a 45-degree
line from the origin with the measured data (or a slope of exactly 1) (Lawrence and
Lin 1989).
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7.6.2 Reliability

Reliability in PTFs refers to a PTF’s performance in making predictions on data
outside its original training data (data a PTF has not ‘seen’) (Pachepsky and Rawls
1999). A reliable PTF should produce accurate predictions for seen data (data used
in the model development process), as well as unseen data (data that had not been
used in the model development process) (Baker and Ellison 2008a). Pachepsky and
Rawls (1999) state that the reliability of PTFs can be estimated by cross validation,
or using an independent data set. In the cross validation method, the training data
set is split into two subsets – a calibration set and a validation set; two-thirds of the
data for calibration and one-third for testing are a common practice. However, the
results from such cross validation can be biassed against the data set used. If a PTF
is intended for prediction over a region, the independent test data set should contain
observations that are unbiased (in statistics, collected based on a random sampling
approach). PTFs that lack independent validation result in potentially optimistic
assumptions about the functions’ predictive performance.

7.6.3 Validity

Validity has to do with how appropriate a particular PTF is in predicting a soil
property from a given soil sample. The greater the similarity of a soil sample to the
soil used to develop a PTF, the greater the assumed validity of that PTF. Validity
can be in terms of the geographical and pedological region over which a PTF’s
original training data were collected. If a PTF is used to predict soil properties
outside its original data boundaries, its validity is doubtful (Wösten et al. 1999).
Not surprisingly, PTFs perform best on soils having similar parent material and
pedogenesis to the soils used to develop them (Bruand et al. 2003). Acutis and
Donatelli (2003) stated that validity in PTFs is strictly related to the data set used
to develop them. They add that when many PTFs are available to predict the same
property, knowing which one to choose is a difficult task.

An important mechanism for establishing validity is stratification or the custom
creation of PTFs strictly on soil-type or classification scheme basis. Stratification
has been conducted according to soil horizons (Hall et al. 1977); soil classes (Batjes
1996); textural classes (Tietje and Hennings 1996); hydraulic-functional horizons
(Wösten et al. 1986); great soil groups, temperature regime and moisture regime
(Pachepsky and Rawls 1999); parent material and horizon morphology (Franzmeier
1991); numerical soil class (Williams et al. 1983); and management units (Droogers
and Bouma 1997).

Validity can also refer to the congruence between some input data set and the
original training set. Despite knowledge that the validity of a given PTF should not
be interpolated or extrapolated beyond the pedological origin or soil type on which it
is developed, there is still a lack of appropriate information that adequately describes
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the calibration data, and, thus, we know very little about where a published PTF
may be applied. There is still a lack of a mechanism that can automatically check
its validity. Tranter et al. (2009) give a method for determining the valid domain
of a PTF based on Mahalanobis distance of the predictor space, cautioning that it
is unwise to extrapolate PTFs beyond these bounds. The uncertainty estimates of a
PTF can also be a measure of its validity.

7.6.4 Uncertainty

Uncertainty refers to the variability in a prediction from its mean value. This
occurs because PTF inputs and outputs are random variables. Therefore, they
have a mean value and a variance. PTF uncertainty is typically reported as the
prediction variance. Uncertainty in PTF prediction can be quantified in terms of
structural uncertainty due to flaws in the PTF model, uncertainty due to sampling
and measurement errors and parameter uncertainty of the PTF.

Vereecken and Herbst (2004) suggest three approaches to handling uncertainty
in PTFs: (1) Compute the RMSE at 90% confidence; (2) Quantify parameter
uncertainty using a covariance in PTFs during the calibration process; and (3) Use
a Monte Carlo analysis to quantify parameter uncertainty associated with sampling
effects in the calibration database, e.g. the bootstrap method (Efron and Tibshirani
1993).

PTF uncertainty can be computed empirically based on the calibration error using
the fuzzy k-means with extragrade (FkME) method given by Tranter et al. (2010). It
does not seek to disseminate sources of error but rather expresses uncertainty in the
form of a prediction interval determined empirically from the calibration data. The
method partitions the predictor space into classes of similar model errors, with each
class represented by a prediction interval determined from the empirical distribution
of the error. In addition, it also identifies those observations that exist outside the
convex hull of the calibration data, thus ascertaining validity of the PTF. Those
observations outside the convex hull are considered outliers of the calibration data
and subsequently have their uncertainty penalised by a simple multiplier.

7.6.5 Utility

Wösten et al. (2001) stated that the utility of PTFs in modelling is defined as the
correspondence between measured and simulated functional soil behaviour. This
can be interpreted to mean that the authors advocate validating the final use (utility)
of the PTFs, not just the PTF predictions. An example would be to develop some
PTFs that predict water retention and conductivity and then to use those predictions
in crop simulations to predict seasonal water storage. Thus, the validation occurs
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at the seasonal water storage level, not at the level of the individual predictions of
water retention and conductivity.

7.7 Spatial Pedotransfer Functions

Most PTFs have been calibrated from point source data and assume spatial indepen-
dence. In digital soil mapping, we are interested in estimating the spatial distribution
of soil properties. Pringle et al. (2007) recommended that an investigator who wishes
to apply a PTF in a spatially distributed manner first has to establish the spatial scales
relevant to their particular study site. Following this, the investigator must ascertain
whether these spatial scales correspond to those that are adequately predicted by
the available PTFs. Pringle et al. (2007) proposed three aspects of performance in
the evaluation of a spatially distributed PTF: (i) the correlation of observed and
predicted quantities across different spatial scales, (ii) the reproduction of observed
variance across different spatial scales and (iii) the spatial pattern of the model
error. For an example of predicting water retention across a 5 km transect, they
showed that the tested PTFs performed quite well in reproducing a general spatial
pattern of soil water retention; however, the magnitude of observed variance was
underestimated. Springer and Cundy (1987) compared the parameters of the Green-
Ampt infiltration equation from field measurements and those calculated from PTFs.
They showed that the mean and variance of the parameters when estimated by PTFs
were not preserved; the variances are always lower. The spatial trends and cross-
correlations amongst the parameters were also reduced. They further used the PTFs
to simulate overland flow and found that the results were significantly different when
using field-measured parameters.

When measured properties are spatially limited, spatial prediction is required to
generate a continuous map. Combination of spatial interpolation methods such as
kriging and PTFs can generate a continuous map, and there are two possibilities
to combine them. The first approach is to first interpolate related soil properties
at unvisited locations using kriging and then to apply PTFs to the interpolated
variables. The second approach applies PTFs to point measurements and then
interpolates the predicted results. Bocneau (1998) compared these approaches to
estimate CEC in West Flanders province, Belgium, and found that the performance
of both methods is almost equal. Sinowski et al. (1997) compared these approaches
in estimating the water retention curve and found that the first approach yields better
prediction.

Heuvelink and Pebesma (1999) discussed the role of support or scale. As most
PTFs were derived from point sources, they are not valid at the block support. This
means that in the situation where the PTF input is available at point support and
where output is required at block support, spatial aggregation should take place
after the functions are calculated. It is essential to separate spatial aggregation from
spatial interpolation. Interpolation should better take place before a function or
model is executed because this enables a more efficient use of the spatial distribution
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characteristics of individual inputs. When a model is executed with interpolated
inputs, it is important to note the uncertainty of the interpolation.

7.8 Soil Inference Systems

While there are many similar pedotransfer functions generated using new or
existing data sets, there seems to be much less effort in gathering and using
the available PTFs. McBratney et al. (2002) proposed a soil inference system
that would match the available input with the most appropriate PTF to predict
properties with the lowest uncertainty. The soil inference system was proposed
as a way of collecting and making better use of pedotransfer functions that have
been abundantly generated. McBratney et al. (2002) demonstrated the first approach
towards building a soil inference system is to create a very rudimentary system in
the form of a specially adapted spreadsheet. Such a rudimentary inference system
has two essentially new features. Firstly, it contains a suite of published pedotransfer
functions, and the output of one PTF can act as the input to other functions (if no
measured data are available). Secondly, the uncertainties in estimates are inputs, and
the uncertainties of subsequent calculations are performed. The input consists of the
essential soil properties.

The inference engine will work in the following manner:

1. Predict all the soil properties using all possible combinations of inputs and PTFs.
2. Select the combination that leads to a prediction with the minimum variance.

There have been some attempts at pattern matching of PTFs using a distance
metric (Tranter et al. 2009) or nearest-neighbour algorithm (Nemes et al. 2006).
However, there have been no research applications that do what soil inference
systems (SINFERS) aim to do, to build a system that would chain the PTF
predictions together while accounting for uncertainty.

Morris et al. (2016) built an expert system software, which uses rules to select
appropriate PTFs and predicts new property values and error estimates. SINFERS
can use the estimated property values as new inputs, which can trigger more
matching patterns and more PTFs to ‘fire’ cyclically until the knowledge base is
exhausted and SINFERS has inferred everything it can about what it was originally
given.

7.9 Soil Spectral Inference Systems

As discussed in Sect. 7.4.3, soil spectroscopy and proximal soil sensing research
have mainly focused on spectral calibration and prediction of a range of soil
properties using multivariate statistics. PTF research, on the other hand, is mainly
focusing on predicting soil model parameters from other soil properties. There is no
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Fig. 7.3 An example of a spectral soil inference system. Soil spectra were used to predict
important soil properties, and these properties were, in turn, used to predict other properties,
applying well established PTFs

real connection between these research areas which have the same aim, to predict
one soil property from other soil properties S D f (s).

It is desired to develop soil spectral calibrations for a complete suite of
soil physical, chemical and biological properties. However, this might not be
possible, mainly for two reasons: (i) Not all soil properties show a spectral
response and (ii) the development of a comprehensive soil spectral library is quite
challenging. McBratney et al. (2006) proposed a spectral soil inference system
(SPEC-SINFERS), where soil diffuse reflectance spectroscopy is linked with PTFs.
SPEC-SINFERS uses soil spectra to estimate various basic soil properties which
are then used to infer other important and functional soil properties via pedotransfer
functions (Fig. 7.3). An important feature to be considered is the propagation of
both input and model uncertainties. Tranter et al. (2008) demonstrated the use of the
SPEC-SINFERS approach in predicting volumetric soil water retention. This is for
sure a research area that requires future investigations.
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