
Chapter 22
Broad-Scale Soil Monitoring Schemes
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“Land, then, is not merely soil; it is a fountain of energy
flowing through a circuit of soils, plants and animals”.

Aldo Leopold, A Sand County Almanac, 1949

22.1 Introduction

Soil resources provide many important ecosystem goods and services. However,
they are at risk from a variety of threats operating over a broad range of scales.
Political awareness that soil is threatened by increasing pressures has been rising
for several years (European Commission 2006). Indeed, the demand for soil infor-
mation is increasing continuously (Richer de Forges and Arrouays 2010). Although
rates of soil degradation are often slow and only detectable over long timescales,
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they are often irreversible. Therefore, monitoring soil quality and condition is
essential in order to detect adverse changes in their status at an early stage.

Soil monitoring is the systematic determination of soil properties so as to record
their temporal and spatial variations (FAO/ECE 1994). In a recent review, Morvan
et al. (2008) defined a soil monitoring network (SMN) as a set of sites/areas where
changes in soil characteristics are documented through periodic assessment of an
extended set of soil properties. According to this definition, national frameworks
for soil monitoring exist in numerous countries and in most member states of
the European Union. However, while some countries have achieved uniformity in
methodology and coverage, this is far from common even among national systems
(Arrouays et al. 2008a; Morvan et al. 2008; van Wesemael et al. 2011). In addition
to achieving harmonisation, there are many generic issues that must be addressed
by scientists when establishing and operating SMNs, including the requirement
for these to be effective for different soil systems. Of particular importance is
the requirement for SMNs to detect change in soil over relevant spatial and
temporal scales with adequate precision and statistical power (Arrouays et al. 2008b;
Desaules et al. 2010; van Wesemael et al. 2011).

In this chapter, we present some of these generic issues including the design and
implementation of soil sampling in space and time, the development of statistical
techniques that are general enough to describe the complicated patterns of spatial
and temporal variations of soil properties and harmonisation issues.

22.2 Soil Monitoring Objectives

In a review of European SMNs, Arrouays et al. (1998) stressed that their establish-
ment may have several objectives:

1. Determination of the current characteristics and properties of soils as well as their
environmental stresses, which can be considered as an initial assessment of the
soil status, often called “baseline” values, although the term “baseline” may be
reserved for some assessment of soil state without the impact of human activities,
inferred, perhaps, from nearby soils under climax vegetation

2. Long-term and/or early determination of changes in soils as a consequence of
location-, stress- and use-specific factors, through periodic investigations

3. Assessment of the sensitivity of soils to changes and prediction of their future
development;

4. Development and validation of models for the simulation of ecosystem responses
and the use of these to estimate responses to actual or predicted changes and
stresses and to make regional assessments in concert with survey data

5. Establishment of reference sites for calibration of environmental measurements
6. Generation of information about soil trends, to inform future national policies to

protect soils from degradation and pollution, including the identification of new
threats to soil quality/condition and tests of the effectiveness of existing policies
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de Gruijter et al. (2006) grouped the objectives of SMNs into three broad
categories that have implications when developing the options for the design of a
SMN:

1. Status/ambient monitoring to characterise or quantify the status of soil and
follow how its properties change over time, such as topsoil carbon content under
different land uses

2. Trend/effect monitoring to assess the possible effects of pressures or drivers on
soils to determine not only status but also whether a change was caused by a
specific event or process

3. Regulatory/compliance monitoring to determine whether soils are failing to meet
set standards or targets

22.3 General Considerations About SMN Design
and Construction

The choice of design for a SMN is crucial, especially when assessing large areas and
several properties that are driven by numerous controlling factors of various origins
and scales.

22.3.1 Establishing a SMN

Several reviews have highlighted large differences between existing networks
(Arrouays et al. 1998; Morvan et al. 2008; Saby et al. 2008b; van Wesemael
et al. 2011). The geographical coverage of SMNs is very diverse between and
within countries. Three broad approaches to the establishment of SMNs can be
distinguished, including:

1. The design and construction of purpose-built SMNs
2. Resampling of the soil at sites where measurements have previously been made

for other purposes
3. Compilation and analysis of soil data that have previously been collected in other

soil analysis exercises or experiments

Purpose-built SMNs have been adopted by many countries (e.g. France, UK,
Denmark, Austria, Switzerland, Germany) although in most cases the sites have,
as yet, been sampled only once and hence remain inventories until sampling is
repeated. The sampling design is critical when establishing new SMNs. There are
continuing and extensive discussion about the choice between probability sampling,
which permits design-based analyses free of any statistical model, and model-based
sampling schemes, commonly regular grids with some supplementary points, which
are analysed by model-based statistical methods (Brus and de Gruijter 1993, 1997;
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de Gruijter et al. 2006). The probability designs include a random component in
the selection of sampling locations, whereas the purposive designs select sampling
locations such that a specified objective is best served (see Chap. 11). Often the
purposive design consists of a regular grid since this ensures that the study region
is evenly sampled. This design choice controls the types of statistical analyses that
can be performed. Probability designs are generally used to answer questions about
behaviour across the whole study area or within a restricted number of subareas
using design-based analyses. This means that inferences from the data are based
upon the probability that particular locations are included in the design. Designs
other than probability designs require model-based analyses (see Chap. 11) where
statistical models of the variation of the property are estimated. If these models truly
reflect the variation of the property, it is possible to make localised predictions and
maps and to quantify the uncertainty associated with these maps.

The decision about the scale over which results should be reported presents issues
in itself. To some extent it should be controlled by the scale at which policymakers
require information (see Chaps. 23 and 17). However, some effects may only be
observable at particular spatial scales. For example, Wang et al. (2010) demonstrated
that effects of climate on soil organic carbon (SOC), which were evident at the
provincial scale, were less evident at smaller spatial scales.

Discussions are still ongoing in Europe about the effectiveness of stratified
random sampling compared to purposive sampling on a grid. Previous simulations
have shown that a 16 � 16 km grid is representative of most soil-type/land cover
combinations at European and national scales (Arrouays et al. 2001; Van-Camp
et al. 2004; Morvan et al. 2008). In a report about the design and implementation
of a future SMN for the UK, Black et al. (2008) provided an extensive review of
the advantages, limitations and relative performances of these sampling options.
This study compared two purposive designs (grid and optimised grid) and two
probability designs (stratified random and stratified cluster random sampling). The
stratified random scheme was found to be the most suitable option for some of
the specific questions being addressed, particularly in terms of the assessment of
status and changes in SOC. In a review of ten national SMNs focused on SOC
changes, van Wesemael et al. (2011) showed that most of these SMNs (seven out
of ten) are based on stratified random sampling. Indeed, several studies dedicated to
sampling schemes for SOC monitoring have pointed out that a stratified sampling
design would be more efficient (Walter et al. 2003; Goidts et al. 2009b; Viaud
et al. 2010; Meersmans et al. 2011). In view of these studies, there appears to be
a consensus that stratified designs should be selected if the aim of the SMN is to
determine the average status and change of soil properties over large regions and if
the spatial patterns of factors which control the variation of all of the soil properties
are known. Major soil groups and land use categories are often suitable factors for
the stratification of the design.

However, grid-based surveys have the advantage of achieving good spatial
coverage, with proportional representation of the regions of interest. Overall, the
grid-based sampling scheme should be more flexible for incorporating unknown
future requirements such as the impact of new pressures and monitoring of new

http://dx.doi.org/10.1007/978-3-319-63439-5_11
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soil quality indicators and indicators for which spatial patterns are not yet known.
Also, grid-based designs will in general be more appropriate if a key objective is to
produce maps of status or change.

A further consideration is how the design of different phases of a SMN should
relate to each other. With reference to probability sampling, de Gruijter et al. (2006)
classified designs according to whether they are static and all sampling takes place
at a fixed set of locations or whether the set of locations changes for each phase
of the survey. Rotational designs are a compromise where only a proportion of the
locations from the previous phase are resampled and new locations are selected for
the remainder of the observations. de Gruijter et al. (2006) defined synchronous
designs as those where multiple observations are made at the same time. There
are trade-offs between these different classes of design. If locations are resampled,
then the temporal variation at these sites will be well understood, but the spatial
resolution of estimates can be improved if the locations change and more sites are
visited. If the measurement approach is destructive or alters the soil properties at
the site, then it might not be possible to revisit a particular location. Also static
designs mean that any bias in the initial sample design persists throughout the
life of the SMN. Static designs might be required if it is expensive to move and
reinstall monitoring devices such as the lysimeters used by Brus et al. (2010). This
SMN used a nonsynchronous design because the aim was to estimate the space-
time means of the measured indicators. Other surveys favour synchronous designs
because estimates of the indicators are required on different dates or because they
lead to simple estimators (Brus and Knotters 2008). The aim of model-based surveys
is often to produce a series of maps of soil indicators on different dates, and these are
most easily predicted from synchronous designs (Marchant et al. 2009). However,
the number of samples and the time taken to travel between them might mean it
is not practical to use truly synchronous designs for national-scale SMNs; it may
take more than 1 year to complete the sampling as in the National Soil Inventory of
England and Wales (Bellamy et al. 2005).

Regardless of the choice between probability-based and purposive approaches,
it is important to estimate, prior to implementation of the scheme, how many
measurements will be sufficient to predict status and change of key soil properties
with the precision required by policymakers (e.g. Black et al. 2008). The expected
errors from a particular purposive sample design can only be determined if the
variogram of the status and/or change of each indicator is known. The variogram
(Webster and Oliver 2007) is a function which describes the variance and spatial
correlation of a property (see Chaps. 10 and 21). It is the model in much model-
based analysis of soil data. It is unlikely that the variograms are known exactly
prior to monitoring, but approximate variograms can be estimated from previous
surveys of similar indicators in similar circumstances. This approach has been used
to design both probabilistic (Brus and Noij 2008) and purposive (Marchant et al.
2009) sample schemes. Often the required precision of a SMN is unclear because
neither the rate of change of an indicator nor the implications of changes are known
prior to sampling. In a recent study, Lark (2009) emphasised that the current status of
a particular indicator and the rate of change of that indicator are different variables,

http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_21
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and so their variability may differ. Some plausible statistical models of change
in the soil were examined, and their implications for sampling to estimate mean
change in large regions were considered. These results show that taking account of
knowledge of soil processes may improve the design of the SMN. Some authors
recommend adapting (or calculating) the sampling time interval to make sure that
the observed changes will be significantly higher than the differences that might
be due to sampling and other methodological issues (Smith 2004; Bellamy et al.
2005; Saby et al. 2008b), while others (e.g. Desaules et al. 2010) argue that given
these uncertainties, reducing the time interval increases the power of the scheme to
observe short-term and potentially important changes in the observed trends.

Finally, it should be stressed that resources for SMN establishment and operation
are always limited to some extent, and this affects the actual choice of sampling
strategy and places a premium on identifying an optimal scheme taking account of
the monitoring objectives and a requirement for resource efficiency. Considering
this limitation, Black et al. (2008) choose to test the design of a UK SMN on
SOC status and changes, as these properties are involved in processes controlling
a large number of threats to soil (e.g. decline in soil organic matter, erosion, soil
biodiversity, compaction, fate of contaminants). Similarly, Yu et al. (2011) assessed
the sampling required to detect a change of 1.52 g kg�1 in SOC under various
types of land management in South China. Chapter 23 gives a relevant example
of designing a cost-effective monitoring scheme for farm-scale soil carbon auditing.

Resampling inventory sites from past soil mapping surveys allows immediate
estimates of change and reduces the opportunity cost of establishing a SMN, as
the baseline sampling exercise is already completed. This strategy has been used
extensively in Belgium for monitoring SOC (Arrouays et al. 1996; Sleutel et al.
2007; Goidts et al. 2009a, b; Meersmans et al. 2009, 2011). It supports a focus
on the change in SOC stock at the point scale. Although Goidts et al. (2009a)
resampled within a radius of 11 m of the original site of the Belgian National
Soil Survey (1947–1974), the source of error related to imprecise resampling of
each location was quite large (i.e. relative RMSE ranging between 12% and 31%)
due to large variability in SOC concentration, bulk density, stone content and
sampling depth at very fine spatial scales (i.e. variability within the same field).
Consequently, given the response time of SOC to changes in management or land
use (i.e. in the order of decades), most soil inventories are probably not old enough,
and/or the rates of SOC changes at individual sites are too small to be detected
by resampling. Nevertheless, the latter study shows that uncertainty because of
positioning error was considerably lower when studying SOC stock changes for
homogeneous landscape units (characterised by same land use, agricultural region
and soil type) due to the fact that multiple locations (9–47) were sampled at this
aggregated level (i.e. relative RMSE ranging between 1% and 11%). Indeed, other
studies have been able to detect significant temporal changes when conducting SOC
stock comparisons for areas rather than individual monitoring sites. For example,
Meersmans et al. (2009) studied changes in the vertical heterogeneity of SOC by
resampling soil profile pits from the National Soil Survey and comparing modelled
depth distribution of SOC from both time periods within homogenous land use-soil-

http://dx.doi.org/10.1007/978-3-319-63439-5_23
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type combinations in North Belgium. Moreover, Sleutel et al. (2007) related average
SOC stock evolution between 1990 and 2000 by municipality (from 190,000 SOC
measurements) to agricultural variables (e.g. manure application, crop rotation, land
use change) in order to derive the main factors explaining the overall SOC change
over time in Flanders (North Belgium). Recently, Meersmans et al. (2011) identified
an overall countrywide significant increase under grassland and a decrease under
cropland after modelling the spatial distribution of SOC in all agricultural soils over
all of Belgium in 1960 using the initial sites from the National Soil Survey and data
for 629 locations resampled in 2006.

Analysing the results from existing soil measurement exercises, such as oper-
ational soil testing by farmers or fertiliser suppliers, is one potential option for
detecting large temporal trends in soil characteristics. Pre-existing data, such as
historic soil testing results, have often been used to assess temporal changes at
national and regional levels, e.g. for phosphorus by Skinner and Todd (1998) in
England and Wales, Cahoon and Ensign (2004) in eastern North Carolina (USA),
Wheeler et al. (2004) in New Zealand, Lemercier et al. (2008) in France and
Reijneveld et al. (2010) in the Netherlands and for carbon, Saby et al. (2008a) in
France and Reijneveld et al. (2009) in the Netherlands. These studies assessed the
change in soil test results with respect to land uses, cropping regimes and soil types.
A spatial analysis of a soil test database performed by Baxter et al. (2006) in England
and Wales contributed to designing future sampling approaches for monitoring soil
properties at the national scale.

The conclusions drawn using these kinds of data may be subject to several
sources of bias that are inherent in a noncontrolled sampling strategy. The farmers’
agronomic concerns for soil testing may have induced skews accentuating the
proportion of extreme values, especially for trace element contents. Indeed, farmers
are likely to require trace element soil testing when they suspect a crop or
animal deficiency or toxicity. Moreover, possible biases may arise from changes
in sampling resolution in space and time.

In deciding upon the monitoring approach to be used in SMN, managers
must weigh the efficiency of purpose-built designs against the reduced costs and
immediacy of change estimates from the other types of designs. The benefits of the
purpose-built design might be strongly felt if the SMN has a long lifetime and is
to be resampled on several occasions. If soil monitoring is required to quantify an
immediate threat in the short term, then the use of existing soil observations becomes
more important. If the resampling of an existing inventory is being proposed, then
the suitability of the inventory design for soil monitoring must be assessed. If
the initial inventory was a non-probability survey, then it will not be possible to
apply design-based analyses to the SMN. Model-based analyses will require that
the design of the inventory is adequate to estimate a model of the spatial variation
in the change of key properties and to predict this change across the study region.
The data from existing soil measurement exercises should only be used if they are
considered to be representative of the underlying variability of the soil.
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22.3.2 Within-Site Sampling

Site area and number of subsamples. When planning sampling in a site where a
soil indicator is expected to change, it is necessary to know how many samples
should be taken to demonstrate a given change and after how long this change
will be detectable. At the site level, numerous studies have addressed these issues
(Hungate et al. 1996; Garten and Wullscheleger 1999; Conen et al. 2003, 2004;
Saby and Arrouays 2004; Smith 2004). Arrouays et al. (2008a) reviewed within-site
variability using data from the literature. One hundred and twenty references were
collected, providing information about the short-range variability of soil indicators,
for sites having areas ranging from 1 m2 to 20 ha. The data were used to derive
quantitative estimates of the mean variances, standard deviations and coefficients
of variation for all available parameters. They examined the possible relationships
between within-site variability and site area and/or mean values, and they found a
strong relationship between the within-site variability of some parameters and the
size of the site area. A marked relative increase in variability was observed for sites
having areas >1 ha. This was particularly the case for some trace elements which
are known to exhibit large spatial variations over quite short distances (Pb, Cd, Zn
and Cu). In view of the increase in variability with site area and its implications
for the number of samples that should be collected, they recommended using site
areas not exceeding 1 ha to keep the number of subsamples practically feasible. If
the aim of the SMN is to report the mean of an indicator over large scales such as
soil-landscape units, then within-site variability is less important provided that the
effect of this variability on the overall error of the mean is controlled, perhaps by
forming a soil sample for analysis by aggregation of aliquots from across the site.

Due to resource constraints, most of the national monitoring sites are sampled
using composite sampling, i.e. taking subsamples and bulking them. However, as
has been stressed, studies of the subsampling error of monitoring sites are crucial
for the interpretation of results and changes. In a study of results from the Swiss
soil monitoring network (NABO), Desaules et al. (2010) showed that no certified
trends can be stated after three measurement campaigns over a period of 10 years.
Moreover, these authors stressed that the only way to detect reliable signals and
trends earlier is to improve the overall measurement quality (precision and bias)
and to shorten the sampling time interval.

Sampling depth. In their review of European SMNs, Arrouays et al. (2008a) and
Morvan et al. (2008) showed that fixed-depth increments are predominantly used
for core sampling (in more than 70% of the SMNs). This sampling method ensures
standardisation between sites. It is also the most relevant for some anthropogenic
characteristics (e.g. anthropogenic heavy metals, radionuclides, organo-chemicals)
and for properties showing a strong gradient near the soil surface where the soil is
often sampled over smaller increments.

Pedogenic horizons are often sampled in soil pits, outside the monitoring site, but
close to it. This method of sampling is relevant for some parameters (e.g. particle-
size distribution, water retention properties, mineralogy). It is also the most relevant
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unit to link SMN observations to geographical soil information systems derived
from soil mapping activities.

For nearly all the SMNs, the organic layers at the soil surface are sampled
separately from the underlying organo-mineral soil, and this is our recommendation.

For organo-mineral layers, we recommend adoption of systematic depths in
order to avoid subjectivity in sampling, harmonise sampling protocols and facilitate
comparisons between SMNs.

The best practice would be to sample both by depth increments in the site and
by pedogenetic horizons in soil pits, outside the monitoring area, but close to it.
Arrouays et al. (2008a) examined, for each European SMN, the depths to which
indicators are measured or can be calculated which were highly variable amongst
SMNs.

Another way to compare vertical sampling is to calculate for each SMN the
maximal depth to which sampling is realised. About 90% of the SMNs provided
information down to 20 cm, whereas nearly 65% of the SMNs reached at least
30 cm.

It is very difficult to recommend sampling depths which should be adopted for
all SMNs. Moreover, there may be good reasons for accepting a particular depth
in a particular SMN, and changing systematic depths for a national SMN might, in
some cases, make it very difficult to use the data from previous campaigns to assess
changes. For example, it is not possible to compare data for indicators based on
a 0–15 cm sampling depth with that for the same indicators based on a 0–30 cm
resampling depth. One way to harmonise reporting at the international level could
be to report the results on the basis of an equivalent mineral mass (Ellert and Bettany
1995). However, this would require the determination of bulk density at all sites and
at each sampling date. General considerations about using soil depth functions or
horizons and classes are given in Chap. 9.

22.3.3 Resampling the SMN

One objective when resampling should be to replicate as closely as possible
the original sampling methodology and location. This requires that the original
methodology is documented completely, but even when this is done, it is likely
that variation in detailed procedures will occur, for example, due to differences in
practice between different operators. This extends to laboratory testing as well as
field sampling. While the availability of global position system (GPS), especially if
this incorporates a ground station, means that the longitude and latitude for sampling
locations can be precisely recorded and repeat sampling can be exactly located, this
does not extend to altitude, and very often the soil surface has been altered and
sometimes eroded leading to uncertainty in the equivalence of sampling exercises.
Deviation from sampling and analytical protocols and location errors are likely to
be confounded with those arising from actual spatial and temporal variation in the
indicator being monitored. When making in situ measurements, it is possible in

http://dx.doi.org/10.1007/978-3-319-63439-5_9


678 D. Arrouays et al.

principle to resample a specific location and the soil within it, but where a sample
is extracted for laboratory testing, this is clearly impossible. In the latter case, it is
essential to establish an adequate sampling scheme that can be applied rigorously at
each sampling location, for example, by establishing a grid and removing samples
from randomly determined locations at each sampling exercise.

22.4 Statistical Inference Issues

22.4.1 Design-Based or Geostatistical Methods

The variation of soil properties is very complex since soil is affected by many
processes acting over different spatial and temporal scales. Local factors such
as geological anomalies or anthropogenic pollution can distort and disguise the
underlying relationships of interest. Therefore statistical analyses are required to test
the significance of relationships and to determine the uncertainty associated with
estimates and predictions. We described previously how some SMNs such as the
Countryside Survey of Great Britain (Firbank et al. 2003) are based on probability
sampling, whereas others such as the French National Soil Monitoring Network are
based on purposive designs.

There are different statistical methods associated with these different types of
designs. Design-based analyses which are reviewed by Barnett (2002) and de
Gruijter et al. (2006) are associated with probability designs. These are well-
established statistical techniques which can estimate summary statistics such as
the mean, median or probability density function (PDF) of a soil property across
the entire study region or a portion of it. They can be used to understand the
underlying behaviour in the region and test hypotheses about the effect of particular
factors or threats. An estimation variance is also calculated that quantifies the
uncertainty associated with these estimates. Design-based methods can account for
different stratifications of the data, compare different temporal phases of SMNs
and determine whether a soil property has changed significantly between phases.
Kravchenko and Robertson (2011) stressed the importance of performing power
analyses prior to sampling to predict the sampling requirements and post sampling
to determine if observed changes are significant and exactly what can be inferred
from the absence of a significant change.

Soil monitoring networks based on purposive designs are generally analysed
by geostatistical techniques which can be used to make local predictions and
quantify uncertainties at any site of interest (see Chaps. 10, 11 and 14). Many of
the geostatistical methodologies commonly used today can be directly attributed
to Matheron (1965) and his analyses of the spatial variation of ore bodies. These
methodologies are based on a statistical model known as the variogram which is
fit to available data and describes the pattern of spatial variation of the observed
variable (see Chap. 21). The fitted variogram is used in kriging (Krige 1966; Chap.

http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_11
http://dx.doi.org/10.1007/978-3-319-63439-5_14
http://dx.doi.org/10.1007/978-3-319-63439-5_21
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10) to predict the variable across the region and to calculate a measure of the
uncertainty associated with the predictions, known as the kriging variance. These
methodologies, which are introduced in an accessible manner by Webster and Oliver
(2007), rely upon a number of assumptions about the statistical distribution of the
soil indicator and the regularity of its variation. Brus and de Gruijter (1997) consider
this a disadvantage of geostatistical methods since the inferences made from them
will be invalid when these assumptions are not appropriate. In contrast, design-based
methods do not fit models to the data but instead base inferences on the sample
design and the probability that a point is included in the sample. The development
of techniques to analyse SMNs which are sampled spatially by probability designs
but temporally by non-probability designs is an active area of research (Brus et al.
2010).

A major challenge associated with geostatistical techniques, but not design-based
techniques, is to ensure that the model of variation is appropriate everywhere in
the study region. In the remainder of this section, we focus upon this challenge in
various circumstances that might not be consistent with the standard geostatistical
model.

22.4.2 Generalising the Geostatistical Model

Often the variation of a soil property is sufficiently consistent with the assumptions
of standard geostatistical models for the methods of Matheron (1965) to produce
adequate results. However in general the variation of soil indicators is much
more complex. Therefore, since the 1960s, many methods have been proposed to
generalise the geostatistical model so that, for example, the expectation (Lark et al.
2006b) or variance (Marchant et al. 2009) of the indicator can vary according to
covariates such as soil type. Furthermore, in some situations, the kriging variance
does not give a sufficiently complete description of the uncertainty associated with
the SMN, and model-based geostatistical methods have been introduced to predict
the entire PDF of the soil indicator at each site (see Chap. 11). Then the PDF can be
interrogated to answer specific questions such as “What is the probability that the
concentration of the soil indicator exceeds the regulatory threshold?” or “What is
the probability that the concentration of the soil indicator has increased?”

The geostatistical analysis of national-scale SMNs can be particularly challeng-
ing. The vast area covered by these surveys means that the observed variation is the
combined effect of processes acting over disparate spatial scales. The number of
observations means that efficient computational methods are required to ensure that
the statistical analysis is tractable.

http://dx.doi.org/10.1007/978-3-319-63439-5_11
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22.4.3 Extreme Observations

Isolated geological anomalies or pollution can lead to outliers or extreme values
amongst SMN observations. Outliers are not consistent with standard geostatistical
models and can lead to the underlying uncertainty in the SMN being overestimated.
Standard kriging methods can exaggerate the spatial extent of hotspots around
outliers. In studies of trace elements, this can mean that excessive remediation is
conducted or the areas of potential deficiencies are missed. This issue was addressed
by Marchant et al. (2010) in a study of cadmium variation across France. They used
robust geostatistical methods which reduced the influence of outliers when they
fitted their models of variation. These models were used to identify outliers which
were censored prior to kriging (Hawkins and Cressie 1984). Their methodology
separated variation into geological, diffuse and anomalous components and meant
that underlying relationships could be investigated. When these methods were
applied to a wider group of trace elements (Saby et al. 2011), soil experts were
able to identify processes contributing to variation at each scale. Figure 22.1 shows
how the variation of lead across France is divided between these scales.

Robust methodologies are not appropriate for compliance monitoring where
the risk of extreme values must be included and a model that can accommodate
them is required. Marchant et al. (2011a) demonstrated that copula-based methods
can accommodate general statistical distributions including the extreme value
distribution. The PDF of the indicator of interest can be calculated at any site in
the study region, and any relevant measure, such as the probability of exceeding
a threshold, can be determined. They used this model to map the probability of
cadmium exceeding a regulatory threshold of 0.8 mg kg�1 within France (Fig. 22.2).

Fig. 22.1 Components of lead variation at the geological (a), diffuse (b) and anomalous localised
(c) spatial scales estimated by robust geostatistical methods (Figure reprinted from Arrouays D,
Marchant BP, Saby NPA, Meersmans J, Orton TG, Martin MP, Bellamy PH, Lark RM, Kibble-
white M (2012) Generic issues on broad-scale soil monitoring schemes: A review. Pedosphere
22(4):456–469)
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Fig. 22.2 Map of probability that regulatory cadmium threshold of 0.8 mg kg�1 is exceeded
and (inset) PDF (probability density function) for cadmium at specified sites. Predictions are
derived from a copula-based model (Figure reprinted from Arrouays D, Marchant BP, Saby NPA,
Meersmans J, Orton TG, Martin MP, Bellamy PH, Lark RM, Kibblewhite M (2012) Generic issues
on broad-scale soil monitoring schemes: A review. Pedosphere 22(4):456–469)

22.4.4 Different Sources of Uncertainty

Geostatistical methods can be used to quantify the uncertainty that results from
the prediction of spatial maps based on observed data. However, the data obtained
from a SMN includes other sources of uncertainty (see Chap. 14). In the field,
there may be errors in locating observation sites. In the laboratory, there may
be measurement error; for some trace elements, many observed values might be
less than the detection limit, meaning that the value cannot be distinguished from
zero. Our discussion focuses on continuous data such as concentrations of elements
in the soil, but noncontinuous types of data such as radioactive emission counts
require that the uncertainty is expressed in a different manner. Also, there can be
errors in estimating spatial models. All of these components of uncertainty should
be understood if we are to fully appreciate the total uncertainty of a predicted
map (see Sect. 14.4.5). Rawlins et al. (2009) considered the relative influence of
errors from different sources and strategies that do exist to isolate these different
uncertainties. In large-scale SMNs that include many observations, the effects of
these uncertainties might well be negligible. However, it is prudent to confirm that
this is the case.

22.4.5 Location Uncertainty

Cressie and Kornak (2003) reviewed methods that account for location errors and
suggested novel kriging equations which included such errors. Area-to-point kriging
(Kyriakidis 2004) can be used to incorporate the uncertainty that results from data
that are averaged over geographical units of varying sizes. The method is based on
the assumption that the covariance between any two areal data units is the average
of point-to-point covariances between the two units; this assumption allows a point-

http://dx.doi.org/10.1007/978-3-319-63439-5_14
http://dx.doi.org/10.1007/978-3-319-63439-5_14
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to-point covariance function to be fitted to represent the variation of the areal data,
which can then be used to calculate the area-to-point kriging predictions.

22.4.6 Measurement Error and Detection Limit Data

Laboratory errors can be estimated if repeated measurements are made at a
small number of sites in a survey (Marchant et al. 2011b). Orton et al. (2009)
used information from such repeated measurements to define a simple Gaussian
measurement error model, and this was combined with the effects of the micro-
scale field variation (which was assumed to be Gaussian on a log scale) using a
Bayesian hierarchical modelling approach (Banerjee et al. 2004).

When laboratory measurements are reported as being less than a detection
limit (DL), it is important to consider how they should be included in a spatial
analysis. Commonly, measurements below the DL are incorporated in the analysis
by replacing them with some function of the limit (e.g. DL/2). Although this
approach is simple and allows analysis through the standard variogram estimation
and kriging methods, Helsel (2006) observed that it can lead to biased estimates of
the mean and variance. De Oliveira (2005) and Fridley and Dixon (2007) used data
augmentation in the Bayesian framework to incorporate DL data in geostatistical
prediction, in which the DL data were replaced by sampled values below the DL
using a Markov chain Monte Carlo method, and their uncertainty and effect on
variogram estimation and prediction were determined.

22.4.7 Other Forms of Data

Noncontinuous soil indicators, such as emission counts of radioactive material from
the soil, or the presence or absence of some bacteria can be observed in SMNs. In
such cases, interest will typically lie in a nonmeasurable quantity: the underlying
true quantity of the radioactive contaminant in the soil or the probability of the
presence of bacteria at each location. Although we can proceed with analysis as
if the measured quantity were our primary focus (e.g. by indicator kriging for
binary data), uncertainty in such cases can be more appropriately described by
some statistical description of the data-generating mechanism: count-type data can
often be described well by a Poisson distribution, and binary data might be better
described by the binomial distribution. For describing uncertainty resulting from
such data, the generalised linear mixed model (LMM, Diggle and Ribeiro 2007)
and Bayesian hierarchical modelling approaches (Banerjee et al. 2004) provide
powerful expansions of the classical kriging methods (see Sects. 11.3 and 11.4);
they provide more flexible statistical representations of the data than the classical
approaches, so that the processes that gave rise to the measurements can be more

http://dx.doi.org/10.1007/978-3-319-63439-5_11
http://dx.doi.org/10.1007/978-3-319-63439-5_11
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accurately modelled. These general methods seem to offer significant opportunities
for representing uncertainty in geostatistical analyses of these types of SMN data.

22.4.8 Uncertainty in Estimating Spatial Models

Parameters in spatial models can usually be separated into two sets: those that repre-
sent the expected value or a trend for the primary variable and those that represent its
variance and correlation in space/time. Since Matheron’s work (Matheron 1965), the
uncertainty about trend parameters has been accounted for through the ordinary or
universal kriging methodologies. For the variance parameters, the kriging methods
have adopted a plug-in approach: first, the parameters are estimated, and then the
estimated values plugged into the kriging equations to calculate the prediction
and associated kriging variance. Hence the uncertainty of the estimated spatial
model is ignored. Marchant and Lark (2004) used the Fisher information matrix to
further include variance parameter uncertainty in the resulting spatial predictions
in a maximum likelihood framework. Bayesian methods also incorporate fully
the effects of variance parameter uncertainty through Markov chain Monte Carlo
methods (Minasny et al. 2011) (see Sect. 14.4.2).

22.4.9 Inclusion of Temporal Variation

After more than one phase of a SMN has been completed, the model of variation
must be modified to quantify temporal variation in addition to spatial variation.
Then kriging algorithms can be used to map the change in indicators across
the study region. Different spatio-temporal models have been applied in existing
monitoring surveys. De Cesare et al. (2001) reviewed the use of space-time
covariance models. Papritz and Flühler (1994) suggested that different phases of
a survey can be treated as coregionalised variables, and Lark et al. (2006a) used
robustly estimated coregionalisation models to determine the sampling requirements
for mapping change in metals in the part of eastern England. Bellamy et al. (2005)
included the rate of change of SOC as a parameter in their model of variation.
The challenge is to determine the most appropriate model for a particular SMN.
It is important to validate the model once it has been fitted so deficiencies can be
identified and strategies introduced to rectify them. For example, in a monitoring
survey of phosphorus enrichment in the Florida Everglades, Marchant et al. (2009)
identified that phosphorus was more variable in parts of the study region adjacent to
pumping stations which input agricultural runoff. They used remotely sensed data
of dominant vegetation to automatically identify these regions and adjusted their
model to accommodate the larger variability.

http://dx.doi.org/10.1007/978-3-319-63439-5_14
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22.5 Laboratory Testing Methods

The question of which soil measurement methods to recommend is complex.
Most countries have long-established SMNs and use specific testing methods.
Changing these methods to a different one would impede data comparison with
previous results, unless parallel analyses are performed, using both national and
new reference methods. An important example relates to the assessment of global
SOC stocks or changes. The analytical methods may often be different in space
or time. For example, modern analytical methods such as dry combustion might
be used instead of the more common Walkley and Black method (Meersmans et
al. 2009). Therefore correction factors are needed to avoid methodological bias
when comparing SOC data from sampling campaigns using different analytical
procedures (e.g. Jolivet et al. 1998; Lettens et al. 2007; Meersmans et al. 2009).

Arrouays et al. (2008a) reported information on soil testing techniques gathered
by partners from all the European member states. They found that, in some cases, the
applied test procedures were not sufficiently detailed; the information provided was
often very vague, even after several requests, with partners reporting only the type
of extract or equipment used. Nevertheless, for SMNs for which this information
was available, the testing methods showed numerous differences, indicating that the
use of international standards (when they exist) is far from common. Indeed, as
numerous international standards for soil analysis are still lacking, standardisation
will be one of the main issues in setting up a SMN at an international level. Clearly,
there is a widespread need for agreeing testing methods and ensuring that these are
validated and conducted to produce data of known and documented quality.

As a minimum, for each testing method employed, the following is essential:
a fully documented procedure with details of calibration methods that ensure
traceability to international standards; data on the repeatability (within-batch error)
and reproducibility (between-batch error) of the method, based on repeated analysis
of standard samples (preferably certified reference materials); and a testing method
detection limit, based on an agreed multiple of the standard error for whole
procedure blanks. In addition, to support continuing quality assurance procedures,
repeated analysis is required of standard samples included within each batch and
analysis of the results using statistical process control charts. Participation in inter-
laboratory proficiency exercises is critical. Although using a single laboratory to
test all samples ensures consistency in the quality of results, it does not guarantee
adequate quality, and in this case, as when several laboratories are participating in
testing, it is imperative that inter-laboratory comparisons are conducted to support
and demonstrate sufficient inter-comparability between laboratories.

Except for those parameters for which a consensus exists, the question of
testing method harmonisation remains a very difficult issue. For several parameters,
combining several techniques, on all samples or on a subset of samples, from
archives can be a useful option to harmonise data obtained using different or
inadequately validated testing methods. This can allow samplestaken in previous
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campaigns to be used to detect changes and to establish pedotransfer functions
for prediction of non-measured indicators (e.g. estimation of bulk density based
on texture and organic matter content).

Generally, the main cost in soil monitoring is from sampling in the field,
and adding more indicator measurements has a relatively low opportunity cost
depending on the complexity of the testing procedure.

22.6 Archiving Samples

Soils are monitored through long-term networks that require long-term commitment
from researchers and from funding agencies. In numerous countries, soils are
monitored on the basis of national schemes. Despite these enormous efforts to
characterise soils, it is striking that in the European Union, for instance, about 40%
of the monitoring programmes do not archive soil samples that are collected and
analysed (Arrouays et al. 2008a; Morvan et al. 2008). However there are very good
reasons to retain samples.

We do not know what we will be interested in the future. When the Broadbalk
experiment was established in 1843 at Rothamsted, UK, researchers were certainly
not aware that their decision to carefully archive samples taken from the experi-
mental plots would enable monitoring a posteriori of the levels of polychlorinated
biphenyls in the environment (Alcock et al. 1993).

New analytical techniques will arise in the future. These will be more precise
and/or will allow the use of new tracers of environmental or biogeochemical
processes. A number of substances which cannot be detected using current testing
methods will become quantifiable. Progresses in microbiology and molecular tools
already enabled soil DNA libraries to be built to explore the micro-biodiversity and
its long-term changes in relation to global change or other pressures (Dequiedt et
al. 2009, 2011; Gardi et al. 2009; Ranjard et al. 2010; Bru et al. 2011). Techniques
and standards for soil analyses are evolving continuously. Thus it is good practice to
retain soil samples so that they can be tested in the future. However, archiving sam-
ples raises some scientific and technical issues concerning the effects of changes in
sample properties with time: effect of drying (temperature) and ageing on numerous
soil properties, e.g. volatilisation of persistent organic pollutants (Garmouma and
Poissant 2004), changes in trace element speciation and bioaccessibility (Martens
and Suarez 1997; Martinez et al. 2003; Furman et al. 2007), changes in pH
(Prodromou and Pavlatou-Ve 1998), changes in phosphorus solubility (Styles and
Coxon 2006) and changes in microbial communities identification (e.g. Clark and
Hirsch 2008; Tzeneva et al. 2009).
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22.7 Harmonisation Issues

The uniformity of methodologies and the scope of actual monitoring networks
are variable between national systems. A recent review identified the differences
between existing systems and described options for harmonising soil monitoring
in the member states and some neighbouring countries of the European Union
(Morvan et al. 2008). The present geographical coverage is uneven between and
within countries (Morvan et al. 2008; Saby et al. 2008b). The most serious
barrier identified, which limits the harmonisation of data from existing SMNs,
is the wide variety of soil testing methods that have been employed historically.
Harmonisation can be defined as the minimisation of systematic differences between
different sources of environmental measures (Keune et al. 1991). There are some
opportunities for harmonising data obtained using different testing methods, for
example, by regression analysis, but these are limited. Recently, Baume et al. (2011)
proposed a universal kriging approach that is able to deal with the issue of merging
data from different monitoring networks. The establishment of benchmark sites
devoted to harmonisation and inter-calibration has been advocated as a technical
solution by many authors (e.g. Theocharopoulos et al. 2001; Wagner et al. 2001;
Van-Camp et al. 2004; Kibblewhite et al. 2008; Morvan et al. 2008; Gardi et al.
2009). Cathcart et al. (2008) have recently set up 43 benchmark sites in Alberta,
Canada, to monitor agricultural soil quality, and the sites were selected to be
representative of a number of soil chemical and physical properties across the
region. However, at present, few studies have addressed crucial scientific issues
such as how many calibration sites are necessary and how to choose them (Louis
et al. 2014).

22.8 Conclusions

Numerous scientific challenges arise when designing a SMN, especially when
assessing large areas and several properties that are driven by numerous controlling
factors of various origins and scales.

Three broad approaches to the establishment of SMNs can be distinguished,
including:

1. The design and construction of purpose-built SMNs
2. Resampling of the soil at sites where measurements have previously been made

for other purposes
3. Compilation and analysis of soil data that have previously been collected in other

soil analysis exercises or experiments

It is essential to establish an adequate sampling protocol that can be applied
rigorously at each sampling location and time. The organic layers at the soil
surface should be sampled separately from the underlying organo-mineral soil, and
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organo-mineral soils can be sampled both by depth increments in the site and by
pedogenic horizons in soil pits, outside the monitoring area, but close to it. Different
statistical methods should be associated with the different types of sampling design.
Several studies propose new statistical methods that account for different sources of
uncertainty (e.g. location errors, measurement error and detection limit, estimation
of spatial model). Except for those parameters for which a consensus exists, the
question of testing method harmonisation remains a very difficult issue. For several
parameters, combining several techniques, on all samples or on a subset of samples,
from archives can be a useful option to harmonise data obtained using different
or inadequately validated testing methods. The establishment of benchmark sites
devoted to harmonisation and inter-calibration has been advocated as a technical
solution. However, no one has addressed crucial scientific issues such as how many
calibration sites are necessary and how to locate them.
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