
Chapter 14
Uncertainty and Uncertainty Propagation in Soil
Mapping and Modelling

Gerard B. M. Heuvelink

“We demand rigidly defined areas of doubt and uncertainty”!

Douglas Adams
The Hitchhiker’s Guide to the Galaxy

In previous chapters, the use of geostatistical modelling for soil mapping was
addressed. We learnt that one of the advantages of kriging is that it not only produces
a map of predictions but that it also quantifies the uncertainty about the predictions,
through the kriging standard deviation. In this chapter we will look into this in more
detail. We will also examine another way to assess the accuracy of soil prediction
maps, namely, through independent validation. This approach has the advantage that
it is model-free and hence makes no assumptions about the structure of the spatial
variation and relationships between the target soil property and covariates. Finally,
we will examine how uncertainties in soil maps propagate through environmental
models and spatial analyses. Throughout this chapter we will use the Allier data
set and case study, Limagne rift valley, central France, to illustrate concepts and
methods. We will only consider soil properties that are measured on a continuous-
numerical scale. Many of the concepts presented can also be extended to categorical
soil variables, but this is more complicated and beyond the scope of this chapter.

14.1 What Is Uncertainty?

Suppose that the bulk density of the topsoil at some location in some study area
equals 1.33 g/cm3. Suppose further that this value is unknown to us because we did
not measure the bulk density at the location. All that we have is a soil property map
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that contains predictions of the bulk density for all locations in the study area, also
at the location where the true bulk density is 1.33 g/cm3. Let the bulk density at that
location according to the map be 1.45 g/cm3. This shows that the soil map is in error.
The error equals 1.33–1.45 D �0.12 g/cm3. Here, error is defined as the difference
between the true and predicted value of the soil property.

In practice, we usually do not know the error, because we would need the true
value to calculate it and we do not have the resources to perfectly measure the soil
everywhere. In other words, we are uncertain about the error (and the true value).
Here, uncertainty refers to a state of mind of a person or people that expresses a lack
of confidence about reality (Heuvelink 2014). Note that uncertainty is a property of
people. It is not the soil bulk density that is uncertain; it is we that are uncertain
about the soil bulk density. We are uncertain because we have limited and imperfect
information (i.e. only a soil map) and are aware that the information we have may
be in error.

Although we are uncertain, this does not mean that we are completely ignorant.
For instance, we may know that the chances are equal that the error in the bulk
density prediction is positive or negative (because we used an unbiased mapping
method), we may know that it is unlikely that the absolute value of the error is
greater than 0.50 g/cm3, etc. Thus, it is not unreasonable to assume that we can
come up with a large number of possible error values and attach a probability to
each of these. Since the true value is the sum of the (known) prediction and the
error, we can also list all possible values of the soil property and attach a probability
to each. If we can do this, then we have characterised (our uncertainty about) the
soil property by a probability distribution.

Now that we have characterised the soil property by a probability distribution, it
has effectively become a random variable. After all, a random variable is nothing
else than a variable that can take on many values, where each value has a certain
probability of occurrence. Since we deal with spatially distributed variables, we
must extend this concept to that of a random field. A random field is a collection of
indexed random variables, where in our case the index is geographic location. We
can characterise the variable at each location by a (univariate, marginal) probability
distribution, but we must also characterise the (spatial) correlation between the
variables at multiple locations. Geostatistics provides the methods and tools to do
this (i.e. variogram estimation and kriging), and this has been explained in detail in
Chaps. 9 and 10 (but see also Goovaerts 2001). However, while in previous chapters
the focus was on the predictions made by kriging, in this chapter we will concentrate
on the uncertainty associated with these predictions. In the next section, we will
explain how geostatistics can be used to model uncertainty in mapped soil properties
by means of a cokriging example.

http://dx.doi.org/10.1007/978-3-319-63439-5_9
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14.2 Geostatistical Modelling of Uncertainty

14.2.1 Mapping Soil Properties for the Allier Study Area

As part of a research study in quantitative land evaluation, a crop simulation model
was used to calculate potential crop yields for floodplain soils of the Allier River in
the Limagne rift valley, central France. The moisture content at wilting point (‚wp,
cm3/cm3) is an important input attribute for the crop simulation model. Because
‚wp varies considerably over the area in a way that is not linked directly with soil
type, it was necessary to map its variation separately to see how moisture limitations
affect the calculated crop yield.

Unfortunately, because ‚wp must be measured on samples in the laboratory, it is
expensive and time-consuming to determine it for a sufficiently large number of data
points for creating the prediction map by kriging. An alternative and cheaper way is
to calculate ‚wp from other soil properties which are cheaper to measure or using
pedotransfer functions (see Chap. 7). Because moisture content at wilting point is
often strongly correlated with moisture content at field capacity (‚fc, cm3/cm3) and
soil porosity (ˆ, cm3/cm3), both of which can be measured more easily and cheaply,
it was decided to map these first and next derive a map of ‚wp from these using
multiple linear regression. We will come back to this in Sect. 14.4 and concentrate
first on the kriging of ‚fc and ˆ.

Sixty-two measurements of ‚fc and ˆ were made in the field at the sites indicated
in Fig. 14.1. From these data experimental variograms and an experimental cross-

Fig. 14.1 The Allier study area showing sampling points of moisture content at field capacity and
porosity. Circled sites are those where in addition moisture content at wilting point was measured

http://dx.doi.org/10.1007/978-3-319-63439-5_7
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Fig. 14.2 Experimental variograms (open circles) and fitted variogram models (solid lines) for
‚fc (top left), ˆ (bottom right) and the experimental and modelled cross-variogram (bottom left)

variogram were computed (see Sect. 10.5). These were then fitted using the linear
model of coregionalisation (Fig. 14.2). Next both soil properties were mapped to
a regular 50 � 50 m grid using ordinary cokriging. The cokriging yielded raster
maps of means and standard deviations for both ‚fc and ˆ, as well as a map of
the correlation of the cokriging prediction errors. Figure 14.3 displays these maps.

14.2.2 Interpreting the Kriging Standard Deviation Maps

The kriging standard deviation maps shown in Fig. 14.3 are summary measures
of the uncertainty about ‚fc and ˆ in the study area. These uncertainties are the
result of interpolation errors: while we know the true values of ‚fc and ˆ at the
62 observation locations (assuming that measurement errors are negligibly small),
we are uncertain about their true value at non-observation locations. As explained
in Sect. 14.1, we are uncertain because the true value is unknown to us, and so we
cannot identify a single true reality. At best we can list all possible values of the
soil property and attach a probability to each of them. This is exactly what we do in
kriging, because under the assumptions made (i.e. normality, stationarity, isotropy),
we derived a (conditional) probability distribution of ‚fc and ˆ for each grid
cell. In this case, the uncertainty at each grid cell is characterised by a zero-mean

http://dx.doi.org/10.1007/978-3-319-63439-5_10
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Fig. 14.3 Cokriging results for the Allier study area (50 � 50 m grid): conditional mean and
standard deviation of ‚fc (cm3/cm3), conditional mean and standard deviation of ˆ (cm3/cm3)
and correlation of cokriging prediction errors of ‚fc and ˆ

normal distribution with a standard deviation as given in Fig. 14.3. The magnitude
of uncertainty is captured by the width of the probability distribution, although
the shape of the distribution is important as well (see Fig. 14.4). Because of the
assumption of normality, the uncertainties of the kriged ‚fc and ˆ all have a shape
such as shown in the left-hand panels of Fig. 14.4. The width of the distribution
varies in space, as is clear from Fig. 14.3.
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Fig. 14.4 Examples of probability distributions to characterise uncertainty. Probability distribu-
tions can be narrow (small uncertainty, top) or wide (large uncertainty, bottom). They can also be
symmetric around zero (left) or asymmetric and biased (right)

The probability distributions shown in Fig. 14.4 refer to the value of a single
variable. In our case study, we considered two variables, ‚fc and ˆ, and so each
of these will have their own marginal probability distribution at any one location
in the study area. But the uncertainties associated with these two variables are also
correlated, because of the cross-correlation between ‚fc and ˆ, as characterised
by the cross-variogram. It is difficult to predict how large the correlation between
the prediction errors at any given location is, because the correlation between the
cokriging prediction errors is not the same as that between the variables themselves.

In other words, in general we have corr
�b‚fc � ‚fc; b̂ � ˆ

�
¤ corr .‚fc; ˆ/.

Fortunately, cokriging provides the correlations between the cokriging errors at each
location, as shown in the bottom map in Fig. 14.3. Note that there are clear spatial
variations in the correlation between the cokriging errors and that these may be
positive as well as negative, depending on location. A graphical illustration of the
joint (bivariate) probability distribution of two uncertain variables is shown in Fig.
14.5. If the correlation between the uncertain variables were zero, then the major
and minor axes of the ellipses would be along the axes of variables S1 and S2, i.e.
they would not be rotated. The example in the right panel of Fig. 14.5 shows a case
in which there is a non-zero correlation. In this example the correlation is positive
because the major axis has a positive angle. The contour lines would be circular if
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Fig. 14.5 Examples of a bivariate probability distribution of two uncertain variables S1 and S2. The
rotated ellipses of equal probability density shown in the right panel indicate positive correlation

the two variables would be uncorrelated and have equal standard deviation. Figure
14.5 refers to two uncertain variables S1 and S2, which could be S1 D b‚fc � ‚fc

and S2 D b̂ � ˆ, but note that it might as well refer to S1 D b‚fc.x/ � ‚fc.x/ and
S2 D b‚fc .x0/ � ‚fc .x0/ for two arbitrary locations x and x0 in the study area.

The kriging standard deviations shown in Fig. 14.3 vary spatially and tend to
be small in the neighbourhood of observation locations and are large further away
from these, particularly at the boundary of the study area. This is as one would
expect intuitively, because the magnitude of the interpolation error depends on the
closeness of observations and their local density and because (spatial) extrapolation
is more error prone than interpolation. It can also be inferred from the kriging
variance equation (see Sect. 10.3):

�K
2 .x0/ D E

��bS .x0/ � S .x0/
�2

�
D

nX
iD1

�i � � .jxi � x0j/ C ' (14.1)

where n is the number of observations used in kriging, the �i are kriging weights,
the xi are observation locations and x0 is the prediction location, � is the variogram
model and ® is a Lagrange parameter. In most practical cases, the latter is relatively
small so that we can concentrate on the summation part. Inspection shows that
this part will be small when the distances between the xi and x0 are small, hence
when observation locations are close to the prediction location. Of course the exact
result also depends on the shape of the variogram model. For instance, in case
of a pure nugget variogram, the kriging variance (and hence its square root, the
kriging standard deviation) will be constant: if there is no spatial correlation, then
interpolation cannot benefit from nearby observations, and the interpolation error
(variance) will be equal everywhere. Note that the kriging variance can never be
smaller than the nugget variance, except when we interpolate to an observation
location. For ˆ, which has a nugget variance of 0.0008 (see Fig. 14.2), this means

http://dx.doi.org/10.1007/978-3-319-63439-5_10
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Fig. 14.6 Relative error (top) and lower and upper limits of the central 90% prediction interval of
the topsoil porosity for the Allier study area

that the uncertainty about the predicted ˆ at any non-observation location in the
Allier study area will be at least 0.028 cm3/cm3 (as confirmed by Fig. 14.3). Note
also that in the Allier example, the kriging variance will be calculated in a slightly
different way than using Eq. 14.1, because in that case predictions were made using
cokriging instead of kriging (Wackernagel 2003).

For users with little background in (geo)statistics, it may not be that easy to
interpret a standard deviation map. More appealing for uncertainty communication
are maps of the relative error (computed as the ratio of the kriging standard
deviation and kriging prediction maps, multiplied with 100%) and maps of the
lower and upper limits of a central 90% prediction interval, which are derived by
subtracting and adding 1.64 times the kriging standard deviation map from the
kriging prediction map, respectively. Note that here we assumed that the kriging
error is normally distributed. These maps are shown for the soil porosity in the
Allier study area in Fig. 14.6. The relative error is nowhere greater than 15%,
indicating that the uncertainty about soil porosity is small compared to its predicted
value. Nonetheless, the differences between the lower and upper limits of the 90%
prediction interval maps are large, indicating that the kriging interpolation error is
far from negligible.
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14.2.3 Spatial Stochastic Simulation

Kriging makes predictions, such that the expected squared prediction error is
minimised. This is attractive because it means that the predicted value is on average
closest to the true (unknown) value. As explained in Chap. 9, spatial stochastic
simulation has an entirely different objective. Here, the goal is to generate ‘possible
realities’ from the probability distribution of the uncertain variable. This is done
by sampling from the probability distribution using a pseudo-random number
generator. The result of a spatial stochastic simulation exercise is not unique,
because there are an infinite number of possible realities, from which just one
or several are taken. To illustrate the difference between optimal prediction and
stochastic simulation, take the example of the outcome of a throw of a fair die.
Optimal prediction would produce the value of 3.5, because on average this is
the number closest to any of the outcomes 1–6. However, stochastic simulation
would randomly take one of the numbers 1–6, where each of the six values would
have equal chance of being selected. Figure 14.7 shows four realisations (‘possible
realities’) from the kriging probability distribution of topsoil porosity in the Allier
study area. These were created using conditional simulation, meaning that the

Fig. 14.7 Four possible realities of the topsoil porosity for the Allier study area generated with
conditional spatial stochastic simulation

http://dx.doi.org/10.1007/978-3-319-63439-5_9
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62 observations of soil porosity were used as conditioning data. The differences
between the simulated maps convey the uncertainty about the true porosity, and
when shown in animation mode, they are an attractive means to communicate
the uncertainty of an interpolated map to non-experts. We will also make use
of simulated maps in Sect. 14.4, when we explain the Monte Carlo method for
analysing uncertainty propagation through environmental models.

If we would generate many more than four realisations of topsoil porosity, then
their average would equal the kriging prediction map shown in Fig. 14.3, while
their standard deviation would equal the kriging standard deviation map, also shown
in Fig. 14.3. Thus, although perhaps not easily noticeable from Fig. 14.7, the
differences between the realisations are greater far from observation locations than
close to observation locations.

14.2.4 Change of Support

Often users do not want to predict soil properties at points but instead are interested
in the average value over a larger piece of land. For instance, perhaps for a farmer
it is not that relevant to know ‚fc and ˆ at point locations within the Allier study
area, but instead the real interest is in parcel averages. Such averages over spatial
units or ‘blocks’ can be predicted using block kriging, as explained in Sect. 10.3.
The blocks need not be rectangular or square but may take irregular shapes as well.
They may even be as large as the entire study area. When the blocks are relatively
small, then block kriging produces similar predictions as point kriging, but the
associated kriging standard deviation is usually much smaller, especially when the
nugget variance is large. Figure 14.8 shows the cokriging standard deviation maps
of ‚fc and ˆ for the case where the blocks are equal to the grid cells. Note that
the standard deviations are substantially smaller compared to those of point kriging
shown in Fig. 14.3. The explanation is that within-block spatial variation averages

Fig. 14.8 Block cokriging standard deviation maps of ‚fc and ˆ using blocks of 50 � 50 m

http://dx.doi.org/10.1007/978-3-319-63439-5_10
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out when the block mean is predicted. In other words, in case of large short-distance
spatial variation (i.e. high nugget), predictions of block averages are much more
accurate than point predictions. This tells us that it is crucially important to choose
the right support when addressing uncertainty in interpolated soil maps.

Block kriging is used when spatial aggregation is the objective, in other words it
is used in a case where the observations have a smaller support than the predictions.
The opposite, i.e. making predictions at a smaller support than the observations, is
known as area-to-point kriging. It will be no surprise that in this case uncertainty
increases instead of decreases. There are not many examples of area-to-point kriging
in soil science, because usually the starting point is observations at point support,
but an exception is vertical spatial interpolation. In this case observations are often
averages over soil horizons or layers, while predictions may be required for smaller
or different depth intervals (Orton et al. 2016).

14.2.5 Extension to Kriging with External Drift

So far we discussed the uncertainty resulting from ordinary (co)kriging. But in
recent years ordinary kriging is used less frequently and often replaced with kriging
with external drift (KED), also termed universal kriging and regression kriging
(Odeh et al. 1995; Hengl et al. 2004). Chapter 9 provides the details. This is
because we rarely have only soil point observations as a source of information,
but in addition we may have a large suit of covariate maps that provide valuable
information about the soil property of interest. The additional information may
then be used to improve the mapping and reduce uncertainty. The mathematical
expression for the KED variance, which quantifies the uncertainty in the resulting
map, is more complicated than that of the ordinary kriging variance given in Eq.
14.1. It is the sum of the trend estimation variance and the kriging variance. Even
though the trend estimation variance is added, in practice the KED variance will
usually be smaller than the ordinary kriging variance. This is because the KED
variance is based on the variogram of the residual (defined as the difference between
the soil property and the trend), which typically is much smaller than the variogram
of the soil property itself, and hence the kriging component of the KED variance
will decrease. See Sect. 10.3 for a more detailed discussion of KED and comparison
with ordinary kriging.

Recall from Sect. 14.2.2 that the kriging standard deviation tends to be small
near observation locations and large further away from them. As noted, this can be
explained from a closer look at Eq. 14.1, which shows that the kriging variance will
be larger if the distance between observation and prediction locations is large. Note
also from Eq. 14.1 that the kriging variance does not depend on the observations
themselves but only on the variogram and configuration of the observation locations.
This allows optimisation of spatial sampling designs that minimise the spatially
averaged kriging variance, as explained in Sect. 11.6. Sampling design optimisation
under the ordinary kriging model typically leads to a fairly uniform distribution of

http://dx.doi.org/10.1007/978-3-319-63439-5_9
http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_11
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the sampling locations, with a slightly higher concentration of sampling locations
near the study area boundary. In case of KED another aspect is also included in
the sampling design optimisation. In that case the trend estimation error variance
needs also to be minimised, which calls for a joint optimisation in geographic and
‘feature’ space. In other words, we must make sure that the observations also cover
the covariate space well (Minasny and McBratney 2006; Brus and Heuvelink 2007).

14.2.6 Uncertainty Quantification of a Given Soil Map

The geostatistical uncertainty quantification approach works well in situations
where one starts from scratch and where it is feasible to build a geostatistical
model of reality. However, what to do in situations in which a soil property map
has already been derived, without using geostatistical models? These could be maps
made using deterministic algorithms, such as inverse distance or nearest neighbour
interpolation. Alternatively, soil property maps may have been derived from an
existing soil class map, by assuming that soil properties within each soil class are
constant and assign these map-unit mean values using expert judgement or data from
‘representative’ profiles. It may also be that a soil property map is provided without
additional information about how the map was made and without quantification of
the uncertainty.

In such situations the map uncertainty may still be modelled geostatistically if
there are sufficient independent observations of the soil property. This boils down
to building a geostatistical model of the differences between the soil property map
and the independent observations and kriging these errors (Heuvelink 2014). Here,
it is essential that the observations are truly independent, i.e. have not been used for
map making, because otherwise it might result in a severe underestimation of the
map uncertainty. In practice, truly independent data are rarely available unless a new
sampling campaign is initiated after the map was made. If uncertainty quantification
is important, it is worthwhile to spend extra budget on collecting new data and
quantifying the map uncertainty as described above. Note that this will not only
quantify the map uncertainty but will also improve the map accuracy, because the
existing map could be adjusted by adding the interpolated error to it. In a way, this
approach comes close to the KED approach described in Sect. 14.2.5, but now using
a single external covariate that is an existing map of the target soil property.

When soil property maps are derived without an underlying geostatistical model
and there are no independent observations to build a geostatistical model of the
map error, then the only resort is to base the uncertainty model of the map
on expert judgement (Truong and Heuvelink 2013). This introduces subjectivity
because different experts tend to have different opinions. Also, it will prove to
be practically impossible to extract from experts a full probabilistic uncertainty
model that also includes spatial and cross-correlations. Expert elicitation procedures
are cumbersome and often limited to estimation of quantiles of the (marginal)
distribution (O’Hagan et al. 2006).
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14.3 Uncertainty Assessment Through Statistical Validation

Uncertainty quantification as described in Sect. 14.2 takes a model-based approach,
by defining a geostatistical model of the soil property of interest and deriving an
interpolated map and the associated uncertainty from that or by constructing a
geostatistical model of the error in an existing map. The approach yields a complete
probabilistic characterisation of the map uncertainty, but such characterisation is
only valid under the assumptions made. Perhaps the stationarity assumption of
ordinary kriging can be relaxed by using a more elaborate geostatistical model, such
as that underlying kriging with external drift, but such a model typically needs more
data, and in the end no modelling approach is free of assumptions. Therefore it is
worthwhile to discuss an alternative, model-free approach to assess the accuracy of
soil property maps. This is achieved through (statistical) validation.

Validation is defined here as an activity in which the soil map predictions are
compared with independent observations. Unlike in Sect. 14.2.6, the outcomes are
not used to build a geostatistical model of the map error, but instead summary
measures of the observed errors are computed and reported. Common summary
measures are the mean error and the root mean squared error. As before, it is
essential that the validation observations are independent and have not been used
in map making. The safest way to ensure this is to collect validation data after the
map was made.

In practice, often we are not that much interested in how well the map predicts
the soil property at the limited set of validation locations, but instead we want to
know how well the map performs for the entire study area. Summary measures of
the entire area cannot be computed but only estimated, because we cannot afford to
collect validation observations everywhere. It is then strongly advised to select the
validation locations using probability sampling (Brus et al. 2011). The important
advantages are that in such case unbiased estimation of summary measures can be
ensured and that confidence intervals around the estimated summary measures can
be calculated, which is also a prerequisite for significance testing (e.g. to compare
whether map A is more accurate than map B). The simplest probability sampling
design is simple random sampling, but efficiency can be improved by using more
elaborate designs. In practice, stratified simple random sampling is often used.
Model-free estimation of map accuracy has the important advantage that it makes
no assumptions, but the disadvantages are that a probability sample is required and
that the method can only produce summary measures of the map accuracy.

Validation is based on a comparison of map predictions with independent obser-
vations. Typically the observed differences are attributed to map errors. However, it
is important to recognise that part of the differences may also be caused by errors
in the observations. It is not difficult to incorporate this if the observation error is
known in statistical terms (i.e. bias and variance). If observation error is negligibly
small compared to map error, as may be the case when a poor map is validated with
observations analysed in a high-quality lab, then the influence of observation error
on validation statistics may be ignored.
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Although it is advised to collect an independent validation data set using
probability sampling, this does not mean that summary measures of map accuracy
cannot be calculated in case of a non-probability sample, such as a convenience or
purposive sample. But in such case, it is important to be aware that there is a risk that
the measures may not represent the overall map accuracy very well, such as when
the validation data are from specific parts of the study area that have a different map
accuracy as other parts.

14.3.1 Cross-Validation

Summary accuracy measures may also be derived using cross-validation (see Sect.
11.5.2). In the case of leave-one-out cross-validation, all observations are put aside
one by one and the remaining data are used to calibrate the soil mapping model and
predict at the location that was put aside. Validation measures are then computed
by comparing the predictions with the put-aside observations for all observation
locations.

Table 14.1 shows the accuracy measures for ‚fc and ˆ as obtained using leave-
one-out cross-validation. The mean error is close to zero for both properties,
indicating that cokriging is unbiased. The root mean squared error is 0.050 cm3/cm3

for ‚fc and 0.044 cm3/cm3 for ˆ. These values are not much smaller than the spatial
variation of these properties, which can be gleaned from comparison with the square
root of the variogram sills shown in Fig. 14.2 (because the sill of the variogram is
approximately equal to the variance of the variable of interest). Poor prediction
performance is also evidenced by the low values for the amount of variance
explained, which is defined as one minus the ratio of the mean squared error and
the variance. Apparently the sampling density is insufficient to capture a large part
of the spatial variation. In fact this is already foretold by the variograms in Fig.
14.2, which have fairly high nugget variances and small ranges. The poor prediction
accuracy is also confirmed by the scatter plots of cross-validation predictions against
observations (Fig. 14.9). Note also that the cross-validation accuracy measures
might still be somewhat too optimistic about the overall map accuracy, since all
observations are on transects, and hence any cross-validation location always has
at least a few nearby observations. The last column of Table 14.1 shows the

Table 14.1 Accuracy measures of cokriging predictions of ‚fc and ˆ as obtained with leave-one-
out cross-validation

Mean error
(cm3/cm3)

Root mean
squared error
(cm3/cm3)

Amount of
variance
explained (�)

Standardised root
mean squared
error (�)

Water content at field
capacity (‚fc)

�0.002 0.050 0.30 1.05

Porosity (ˆ) �0.001 0.044 0.37 1.05

http://dx.doi.org/10.1007/978-3-319-63439-5_11
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Fig. 14.9 Scatter plots of predicted against observed ‚fc (left) and ˆ (right) as obtained using
leave-one-out cross-validation

Fig. 14.10 Spatial plot of leave-one-out cross-validation errors for ‚fc (left) and ˆ (right)

standardised root mean squared error (SRMSE), which is obtained by taking the
square root of the average squared zscore, where zscore is defined as the difference
between the observed and predicted soil property, divided by the cokriging standard
deviation. If the cokriging standard deviation is a proper measure of the map
prediction error, then SRMSE should be close to one. The obtained values are
fairly close to one and do not indicate a significant over- or underestimation of
the uncertainty. Figure 14.10 shows bubble plots of the spatial distribution of the
cross-validation errors.
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14.4 Uncertainty Propagation

Previous sections of this chapter explained that uncertainty about soil properties can
be conveniently represented using probability distributions. Specific attention was
paid to quantification of spatial interpolation errors using geostatistics. The methods
were illustrated using a case study on mapping water content at field capacity (‚fc)
and soil porosity (ˆ) in the Allier study area, France. This chapter takes the analysis
a step further by analysing how uncertainties in soil properties propagate through
an environmental model that uses these soil properties as input (Heuvelink 1998).
More specifically, we will analyse how uncertainties in ‚fc and ˆ propagate through
a multiple linear regression model that predicts the soil water content at wilting point
(‚wp) from ‚fc and ˆ. Before we do this, we first present the statistical uncertainty
propagation methodology.

The uncertainty propagation analysis can be formulated mathematically as
follows. Let U be the output of an environmental model g on m input variables Si:

U D g .S1; S2; : : : ; Sm/ (14.2)

The model g may be of various types, ranging from a simple pedotransfer
function to a complex soil erosion or crop yield model. The objective of the
uncertainty propagation analysis is to determine the uncertainty in the output U,
given the operation g and the inputs Si and their associated uncertainties. Let us
denote the means and variances of the Si by �i and �2

i , respectively. Since the inputs
are random variables or random fields, the output will be a random variable or
random field as well. Important parameters of U are its mean � and variance �2.
From an uncertainty propagation perspective, the main interest is in the uncertainty
of U, as contained in its variance �2.

It must first be observed that the uncertainty propagation problem is relatively
easy when g is a linear function of its inputs Si. In that case the mean and variance of
U can be directly and analytically derived. In case of non-linear models, analytically
driven methods exist only in a few cases, and one must nearly always rely on
approximation methods for a complete evaluation. Two of these methods will now
be discussed.

14.4.1 Taylor Series Method

The idea of the Taylor series method is to approximate g by a truncated Taylor series
centred at the means �i. In case of the first-order Taylor method, g is linearised by
taking the tangent of g in �i. Fig. 14.11 illustrates this for the one-dimensional case
(m D 1). The linearisation greatly simplifies the uncertainty analysis, but only at the
expense of introducing an approximation error.
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Fig. 14.11 Graphical illustration of the first-order Taylor method for the case where the model
has a single input. The model (red line) is approximated by a linear function (green line) that has
a small approximation error near the centre of the input probability distribution. Two cases are
depicted: model is sensitive to changes in input (blue), and model is insensitive to changes in input
(purple)

Using the first-order Taylor series method, the variance �2 of the output U is
given by (Heuvelink 1998):

�2 Š
mX

iD1

mX
jD1

�ij�i�jg
0
ig

0
j (14.3)

where �ij is the correlation coefficient between the uncertainties in Si and Sj and
g0

i is the first derivative of g with respect to Si, which is evaluated in the means
�i , i D 1 , : : : , m. Equation 14.3 shows that the variance of U is the sum of various
terms, which contain the correlations and standard deviations of the Si and the first
derivatives of g. These derivatives reflect the sensitivity of U to changes in the inputs
(see Fig. 14.11 for a graphical illustration). From Eq. 14.3 it also appears that the
correlations of the input uncertainties can have a marked effect on the variance of U.

To decrease the approximation error invoked by the first-order Taylor method,
one option is to extend the Taylor series of g to include a second-order term as well.
This is particularly useful when g is a quadratic function, in which case the second-
order Taylor method is free of approximations and the first-order Taylor method is
not. The application to the Allier case study discussed later in this section gives an
example. However, it should be noted that in other cases including a second-order
term might worsen the results. For instance, this might happen if the variance of the
input is large and the approximation by a quadratic function, which is more accurate
locally, is less accurate than the linear approximation at a greater distance from the
approximation point.
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14.4.2 Monte Carlo Method

The Monte Carlo method uses an entirely different approach to analyse the
propagation of uncertainty. The idea of the method is to compute the result of the
model repeatedly, with input values si that are randomly sampled from their joint
distribution. The model results form a random sample from the distribution of U,
so that parameters of the distribution, such as the mean � and variance �2, can be
estimated from the sample.

The method thus consists of the following steps:

1. Repeat N times:

(a) Generate a set of realisations si , i D 1 , : : : , m.
(b) For this set of realisations si, compute and store the output u D g(s1, : : : , sm).

2. Compute and store sample statistics from the N outputs u.

A random sample from the m inputs Si can be obtained using an appropriate
pseudorandom number generator (Lewis and Orav 1989; Ross 1990). Note that a
conditioning step will have to be included when the Si are correlated. In case of
spatial inputs, these may be sampled using spatial stochastic simulation as explained
in Sect. 14.2.3.

The accuracy of the Monte Carlo method is inversely related to the square root
of the number of runs N. This means that to double the accuracy, four times as many
runs are needed. The accuracy thus slowly progresses as N increases.

14.4.3 Evaluation and Comparison of Uncertainty
Propagation Techniques

The main problems of the Taylor method are that it only works with models that
are continuously differentiable with respect to their uncertain inputs, that it only
provides estimates of the mean and variance of the model output and that the
results are approximate only. It will not always be easy to determine whether
the approximations involved using this method are acceptable. The Monte Carlo
method also involves approximation errors, but these can be made arbitrarily small
by increasing the number of Monte Carlo runs.

The Monte Carlo method brings along other problems, though. High accuracies
are reached only when the number of runs is sufficiently large, which may cause
the method to become extremely time-consuming. This will remain a problem
even when variance reduction techniques such as Latin hypercube sampling are
employed. Another disadvantage of the Monte Carlo method is that the results do
not come in an analytical form.

As a general rule, it seems that the Taylor method may be used to obtain crude
preliminary answers for simple models. These should provide sufficient detail to be
able to obtain an indication of the quality of the model output. When exact values or
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quantiles and/or percentiles are needed, the Monte Carlo method may be used. The
Monte Carlo method will probably also be preferred when uncertainty propagation
with complex models is studied, because the method is easily implemented and
generally applicable. It is no more than an extra loop around an existing model.
This, and the fact that computer power is ever increasing, means that nowadays the
majority of uncertainty propagation studies uses the Monte Carlo method. Some
examples from soil science are Brown and Heuvelink (2005), Bishop et al. (2006),
Hastings et al. (2010), Kros et al. (2012), Van Den Berg et al. (2012), Brodsky et al.
(2013), Poggio and Gimona (2014), Malone et al. (2015) and Xiong et al. (2015).

14.4.4 Sources of Uncertainty Contributions: The Balance
of Errors

When the uncertainty propagation analysis reveals that the output of g contains too
large an error, then measures will have to be taken to improve accuracy. When there
is a single input to g, then there is no doubt where the improvement must be sought,
but what if there are multiple inputs? Also, how much should the uncertainty of
a particular input be reduced in order to reduce the output uncertainty by a given
factor? It is useful to explore these questions briefly.

To obtain answers to the questions above, consider Eq. 14.3 again, which gives
the variance of the output U using the first-order Taylor method. When the inputs
are uncorrelated, this reduces to:

�2 Š
Xm

iD1
�2

i g02
i (14.4)

This shows that the variance of U is a sum of parts, each to be attributed to
one of the inputs Si. This partitioning property allows one to analyse how much
each input contributes to the output variance. Thus from Eq. 14.4, it can directly
be seen how much �2 will reduce from a reduction of �2

i . Clearly the output will
mainly improve from a reduction in the variance of the input that has the largest
contribution to �2. Note that this need not necessarily be the input with the largest
error variance, because the sensitivity of the model g to changes in the input is
also important. Figure 14.11 shows an example where in the purple case the input
uncertainty is greater than in the blue case, but where the output uncertainty still
is the greatest in the blue case. This is because in the blue case, the model is more
sensitive to changes in the input. Note also that Eq. 14.4 is derived under rather
strong assumptions. When these assumptions are not realistic, it may be advisable to
derive the uncertainty source contributions using a modified Monte Carlo approach.
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14.4.5 Application of Uncertainty Propagation to the Allier
Case Study

Recall from Sect. 14.2.1 that our aim is to map the soil moisture content at
wilting point ‚wp from maps of the moisture content at field capacity ‚fc and soil
porosity ˆ. We obtained maps of both input soil properties and their associated
uncertainties using cokriging in Sect. 14.2. We now need to discuss how these can
be used to derive a map of ‚wp and its associated uncertainty. Recall that we use a
multiple linear regression model to predict ‚wp from ‚fc and ˆ. The model is very
simple, and hence we can use the Taylor series method to analyse the uncertainty
propagation.

Figure 14.1 shows 12 circled sites where all three properties ‚wp, ‚fc and ˆ

were determined in the laboratory. These measurements were used to set up a
pedotransfer function, relating ‚wp, ‚fc and ˆ, which took the form of a multiple
linear regression:

‚wp D ˇ0 C ˇ1‚fc C ˇ2ˆ C " (14.5)

The coefficients ˇ0, ˇ1 and ˇ2 were estimated using standard ordinary least
squares regression. The estimated values for the regression coefficients and their
respective standard deviations were ˇ0 D � 0.263 ˙ 0.031, ˇ1 D 0.408 ˙ 0.096
and ˇ2 D 0.491 ˙ 0.078. The standard deviation of the stochastic residual " was
estimated as 0.0114. The correlation coefficients of the estimation errors of the
regression coefficients were �01 D � 0.221, �02 D � 0.587 and �12 D � 0.655. The
regression model explains 94.8% of the variance of the observed ‚wp, indicating
that the model is satisfactory. Note that presence of spatial correlations between the
observations at the 12 locations was ignored in the regression analysis.

The maps of ‚fc and ˆ as derived in Sect. 14.2.1 were substituted in the
regression (Eq. 14.5) yielding a map of ‚wp. The associated uncertainty was
computed using the Taylor series method. Note that Eq. 14.5 is a quadratic function
of six uncertain inputs. To avoid approximation errors, it was therefore decided to
use the second-order Taylor method, which is a logical extension of the first-order
Taylor method. Because the model coefficients and the field measurements were
determined independently, the correlation between the ˇi and cokriging prediction
errors was taken to be zero. Also, the stochastic residual " is uncorrelated with all
other uncertain inputs.

The results of the uncertainty propagation are given in Fig. 14.12. The accuracy
of the map of ‚wp is reasonable: the standard deviation of ‚wp rarely exceeds 50%
of the predicted value. The uncertainty is much larger in those parts of the study area
where there are no observations. This suggests that uncertainty in the maps of ‚fc

and ˆ are the main source of uncertainty because these uncertainty maps had similar
spatial patterns. Indeed Fig. 14.13 shows that the contribution of the regression
model uncertainty is small. Improvement of the ‚wp map can thus best be done by
improving the maps of ‚fc and ˆ, for instance, by taking more measurements over
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Fig. 14.12 Prediction map (top) of soil moisture at wilting point computed from cokriging maps
of soil moisture at field capacity and porosity using a pedotransfer function, associated prediction
error standard deviation map (bottom left) derived using the second-order Taylor method and
relative error (bottom right)

Fig. 14.13 Contributions in percentages to the overall error variance of the soil moisture at wilting
point predictions as caused by cokriging errors in soil input maps (left) and by uncertainty in the
multiple linear regression model (right)
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the study area. The variograms and cross-variogram of ‚fc and ˆ could be used to
assist in optimising sampling. This technique would allow judging in advance how
much improvement is to be expected from the extra sampling effort.

14.5 Conclusions

No soil map is perfect. It is important to quantify the errors and uncertainties
associated with soil maps because this determines whether a map is usable for
an intended purpose. Any end user of soil maps should therefore require that the
maps are accompanied by accuracy measures. Such measures can be computed from
comparison of map predictions with independent validation data, but for spatially
explicit uncertainty measures, a geostatistical approach that quantifies the map
accuracy through the kriging standard deviation is recommended. Geostatistics also
provides the tools to generate ‘possible realities’ by sampling from the conditional
spatial probability distribution of the uncertain soil property. These possible realities
may be used to communicate uncertainty and are also useful in Monte Carlo
uncertainty propagation analyses.

Uncertainty propagation analysis is used to analyse how uncertainty in input
(soil) maps propagates through spatial analyses and environmental models. This
not only quantifies the uncertainty in the model output but can also tell us which are
the main sources of uncertainty, which is essential information for taking informed
decisions about how to improve the quality of maps and model results.

This chapter was limited to uncertainty quantification and uncertainty propa-
gation of continuous-numerical soil properties and variables, but generalisation to
categorical variables can be made, although it is more complicated.

This chapter concentrated on errors and uncertainties that arise from spatial
interpolation and from fitting and applying linear regression models. There are many
more sources of uncertainty, such as field and lab measurement error, positional
error, classification error and model parameter and structural errors. These can be
handled in similar ways, but the main challenge often is to characterise the error
sources with realistic probability distributions. Once this is done, the uncertainty
propagation analysis itself is not difficult, although it might be computationally
demanding.
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