
Chapter 11
Model-Based Soil Geostatistics

Ben P. Marchant

“A model’s just an imitation of the real thing”.

Mae West

11.1 Introduction

In Chap. 10, we described how classical geostatistical methods can be used to
interpolate measurements of soil properties at locations where they have not been
observed and to calculate the uncertainty associated with these predictions. The idea
that soil properties can be treated as realizations of regionalized random functions
in this manner has perhaps been the most significant ever in pedometrics (Webster
1994). The approach has been applied in thousands of studies for every imaginable
soil property at scales varying from the microscopic to the global and has greatly
enhanced our understanding of the spatial variability of soil properties.

However, despite its popularity amongst pedometricians, the classical geostatis-
tical methodology has met with some criticism (e.g. Stein 1999). This has primarily
been because of the subjective decisions that are required when calculating the
empirical semivariogram and then fitting the variogram model. When calculating
the empirical semivariogram, the practitioner must decide on the directions of the
lag vectors that will be considered, the lag distances at which the point estimates
are to be calculated and the tolerance that is permitted for each lag distance bin
(see Sect. 10.2). Furthermore, when fitting a model to the empirical variogram,
the practitioner must decide which of the many authorized models should be used,
what criterion should be applied to select the best fitting parameter values and the
weights that should be applied when calculating this criterion for the different point
estimates. Researchers have given some thought to how these selections should be
made. For example, the Akaike information criterion (Akaike 1973) is often used
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to select the authorized model that best fits the data. However, the formula used
to calculate the AIC when using the method of moments variogram estimator is
only an approximation and is very much dependent on how the fitting criterion is
weighted for different lag distances (McBratney and Webster 1986). The selection of
these weighting functions is a particular challenge since the uncertainty of the point
estimates and hence the most appropriate choice of weights depend on the actual
variogram which the user is trying to estimate. Further complications arise because
the same observations feature in multiple point estimates of the experimental
variogram, and some observations can feature more often than others. Therefore,
these point estimates are not independent (Stein 1999). Strictly this correlation
between the point estimates should be accounted for when fitting the model
parameters. The correlation can result in artefacts or spikes in the experimental
variogram that might be mistaken for additional variance structures (Marchant et al.
2013b).

In all of the choices listed above, different subjective decisions (or indeed
carefully manipulated choices) can lead to quite different estimated variograms and
in turn to quite different conclusions about the spatial variation of the soil property.
Therefore, there is a need for a single objective function that quantifies how appro-
priately a proposed variogram model represents the spatial correlation observed in
a dataset without requiring the user to make subjective decisions. Model-based
geostatistics (Stein 1999; Diggle and Ribeiro 2007) uses the likelihood that the
observations would arise from the proposed random function as such an objective
criterion. The likelihood function is calculated using the observed data without
the need for an empirical semivariogram. The variogram parameter values that
maximize the likelihood function for a particular set of observations correspond to
the best fitting variogram model. These parameters are referred to as the maximum
likelihood estimate. Once a model has been estimated, it can be substituted into the
best linear unbiased predictor (BLUP; Lark et al. 2006; Minasny and McBratney
2007) to predict the expected value of the soil property at unobserved locations
and to determine the uncertainty of these predictions. The relative suitability of
two proposed variograms can be assessed by the ratio of their likelihoods or the
exact AIC. Hence, it is possible to compare objectively fitted models which use
different authorized variogram functions. Rather than selecting a single best fitting
variogram, it is also possible to identify a set of plausible variograms according to
the closeness of their likelihoods to the maximized likelihood. Thus, the uncertainty
in the estimate of the variogram can be accounted for by averaging predictions
across this set of plausible variograms (Minasny et al. 2011).

The linear mixed model (LMM) is often used in model-based geostatistical
studies. The LMM divides the variation of the observations into fixed and random
effects. The fixed effects are a linear function of environmental covariates that
describe the variation of the expectation of the random function across the study
region. The covariates can be any property that is known exhaustively, such as
the eastings or northings, the elevation and derived properties such as slope or a
remotely sensed property. The random effects have zero mean everywhere, and
they describe the spatially correlated fluctuations in the soil property that cannot
be explained by the fixed effects.
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The model-based approach does have its disadvantages. The formula for the
likelihood function for n observations includes the inverse of an n � n square matrix.
This takes considerably longer to compute than the weighted difference between an
empirical semivariogram and a proposed variogram function. Mardia and Marshall
(1984) suggested that maximum likelihood estimation was impractical for n > 150.
Modern computers can calculate the likelihood for thousands of observations (e.g.
Marchant et al. 2011), but it is still impractical to calculate a standard likelihood
function for the tens of thousands of observations that might be produced by
some sensors. The use of the likelihood function also requires strong assumptions
about the random function. The most common assumption being that the random
effects are realized from a second-order stationary multivariate Gaussian random
function. Such a restrictive set of assumptions is rarely completely appropriate for
an environmental property and therefore the reliability of the resultant predictions
is questionable. One active area of research is the development of model-based
methodologies where these assumptions are relaxed.

The software required to perform model-based geostatistics has been made
available through several R packages such as geoR (Ribeiro and Diggle 2001)
and gstat (Pebesma 2004). The software used in this chapter has been coded in
MATLAB. It forms the basis of the Geostatistical Toolbox for Earth Sciences
(GaTES) that before the end of 2017 will be available at http://www.bgs.ac.uk/
StatisticalSoftware. The Bayesian analyses require the DREAM package (Vrugt
2016).

11.2 The Scottish Borders Dataset

We illustrate some of the model-based geostatistics approaches that have been
adopted by pedometricians by applying them to a set of measurements of the
concentrations of copper and cobalt in soils from the south east of Scotland
(Fig. 11.1). This dataset was analysed using classical geostatistical methods in
Chap. 10. The measurements were made between 1964 and 1982. At that time,
there were concerns that livestock grazing in the area were deficient in copper and/or
cobalt. Therefore, staff from the East of Scotland College of Agriculture measured
the field-mean extractable concentrations of these elements in more than 3500
fields. Full details of the sampling protocol and laboratory methods are provided by
McBratney et al. (1982). The dataset has been extensively studied using a selection
of geostatistical techniques (McBratney et al. 1982; Goovaerts and Webster 1994;
Webster and Oliver 2007). These authors have mapped the probabilities that the
concentrations of copper and cobalt are less than acceptable thresholds (1.0 and
0.25 mg kg�1, respectively) and related their results to the previously mapped soil
associations.

We consider a subset of the data. We randomly select 400 copper measurements
and 500 cobalt measurements from this dataset. The remaining copper observations
are kept for model validation (Fig. 11.2). We use soil information from the

http://www.bgs.ac.uk/StatisticalSoftware
http://www.bgs.ac.uk/StatisticalSoftware
http://dx.doi.org/10.1007/978-3-319-63439-5_10
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Fig. 11.1 Location of the
Scottish Borders study region
(shaded region) within Great
Britain

Fig. 11.2 Locations of (a) 400 copper observations used for calibration, (b) 500 cobalt observa-
tions used for LMCR calibration and (c) 2481 copper observations used for model validation. The
locations coloured red in (a) are the 50-point subset of these data, and the green crosses are the
locations of the predictions shown in Figs. 11.8 and 11.9. Coordinates are km from the origin of
the British National Grid

1:250,000 National Soil Map of Scotland (Soil Survey of Scotland Staff 1984).
These data are available under licence from http://www.soils-scotland.gov.uk/data/
soils. The study area contains eight soil types. We only consider four of these,
namely, mineral gleys, peaty podzols, brown earths and alluvial soils (Fig. 11.3),
within which more than 95% of the soil measurements were made. Our primary

http://www.soils-scotland.gov.uk/data/soils
http://www.soils-scotland.gov.uk/data/soils
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Fig. 11.3 Map of the soil types within the study region according to the 1:250,000 National Soil
Map of Scotland (Used with permission from the James Hutton Institute, © Crown copyright).
Coordinates are km from the origin of the British National Grid

objective is to use these data to map the concentration of copper and the probability
that it is less than 1.0 mg kg�1. We explore the extent to which the soil type
information and the observed cobalt concentrations can explain the variation of
copper concentrations and hence improve the accuracy of our maps. We validate our
maps using the remaining 2481 observations of copper. We explore the implications
of using fewer observations by repeating our analyses on a 50 sample subset of the
400 copper measurements (Fig. 11.2a). At the two sites marked by green crosses in
Fig. 11.2a, we describe the prediction of the copper concentration in more detail.
Site ‘A’ is 0.6 km from the nearest observation, whereas site ‘B’ is 1.3 km from an
observation.
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11.3 Maximum Likelihood Estimation

11.3.1 The Linear Mixed Model

We denote an observation of the soil property, in our case the concentration of cop-
per, at location xi by si D s(xi) and the set of observations by s D fs1, s2, : : : , sngT

where T denotes the transpose of the vector. We assume that s is a realization of an
LMM:

s D M“ C ©: (11.1)

Here, the M“ are the fixed effects and the © are the random effects. The design
matrix M is of size n � q where q is the number of covariates that are included in the
random effects model. The vector “D (ˇ1, ˇ2, : : : , ˇq)T contains the fixed effects
parameters or regression coefficients. Each column of M contains the value of a
covariate at the n observed sites. If the random effects include a constant term, then
each entry of the corresponding column of M is equal to one. A column of M could
consist of the values of a continuous covariate such as elevation or the output from
a remote sensor (e.g. Rawlins et al. 2009). Thus, the fixed effects include a term that
is proportional to the covariate. If the fixed effects differ according to a categorical
covariate such as soil type, then the columns of M include c binary covariates which
indicate the presence or absence of each of the c classes at each site. Note that if the
c classes account for all of the observations, then a constant term in the fixed effects
would be redundant.

The vector © contains the values of the random effects at each of the n sites.
The elements of © are realized from a zero-mean random function with a specified
distribution function. The n � n covariance matrix of the random effects is denoted
C(’) where ’ is a vector of covariance function parameters. The elements of
this matrix can be determined from any of the authorized and bounded variogram
functions described in Chap. 10 since

C.h/ D � .1/ � �.h/; (11.2)

where C(h) is a covariance function for lag h, � (h) is a bounded and second-order
stationary variogram and � (1) is the upper bound or total sill of the variogram. We
will focus on the nested nugget and Matérn variogram (Minasny and McBratney
2005) so that

C.h/ D
�

c0 C c1 if h D 0

c1G.h/ for h > 00 (11.3)

where

G.h/ D 1
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http://dx.doi.org/10.1007/978-3-319-63439-5_10
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Here, � is the gamma function and Kv is a modified Bessel function of the second
kind of order v. The random effects model parameters are c0 the nugget, c1 the partial
sill, a the distance parameter and v the smoothness parameter. Jointly, there are four
random effect parameters, i.e. ’D (c0, c1, a, �)T.

11.3.2 Coregionalized Soil Properties

In Sect. 10.4, we saw that it was possible to extend the classical geostatistical model
of a single soil property to consider the spatial correlation between observations
of two or more properties by using a linear model of coregionalization (LMCR).
Marchant and Lark (2007a) demonstrated how the LMM could also be extended
to include coregionalized variables. The LMCR consists of a variogram for each
soil property and a series of cross-variograms describing the spatial correlation
between each pair of properties. Each variogram or cross-variogram must have
the same variogram structure. This means they are based on the same authorized
models, and they have common spatial and, in the case of the Matérn model,
smoothness parameters. The nugget and sill parameters can differ for the different
soil properties. We denote these parameters by cd;e

0 and cd;e
1 , respectively, where the

d and e refer to the different soil properties. So, if d D e, these are parameters of a
variogram, whereas if d ¤ e, they are parameters of a cross-variogram. There are
further constraints to ensure that the LMCR leads to positive definite covariance
matrices. If we define matrices B0 and B1 by

B0 D

2
64

c1;1
0 � � � c1;v

0
:::

: : :
:::

cv;1
0 � � � cv;v

0

3
75 and B1 D

2
64

c1;1
1 � � � c1;v

1
:::

: : :
:::

cv;1
1 � � � cv;v

1

3
75 (11.5)

where v is the number of soil properties; then, both of these matrices must have a
positive determinant.

The LMCR can be incorporated into the LMM (Eq. 11.1) by altering the random
effects covariance matrix to accommodate the different variograms and cross-
variograms. In this circumstance, the observation vector s will include observations
of each of the v soil properties. It is likely that the random effects matrix M will
require sufficient columns to accommodate different fixed effects for each soil
property. If each variogram and cross-variogram consists of a nested nugget and
Matérn model, then element i, j of the random effects covariance matrix would be:

Ci;j D
(

c
vi;vj

0 C c
vi;vj

1 if hi;j D 0

c
vi;vj

1 G
�
hi;j
�

if hi;j > 0
; (11.6)

where the ith element of s is an observation of property vi, the jth element of s is
an observation of property vj and hi, j is the lag separating the two observations.

http://dx.doi.org/10.1007/978-3-319-63439-5_10\#Sec28
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In common with the LMCR from classical geostatistics, the cross-variogram
nuggets and sills must be constrained to ensure that the determinants of B0 and B1

are positive. For vi ¤ vj, the c
vi;vj

0 parameter only influences the covariance function
if there are some locations where both vi and vj are observed. If this is not the case,
then the parameter cannot be fitted. If v D 2, and both properties are observed at

some sites, then ’ D
�

c1;1
0 ; c1;2

0 ; c2;2
0 ; c1;1

1 ; c1;2
1 ; c2;2

1 ; a; �
�T

.

11.3.3 The Likelihood Function

If the distribution function of the random effects is assumed to be multivariate
Gaussian, then the log of the likelihood function is equal to

ln l .sj’;“/ DL .sj’;“/ DConstant�1

2
ln jC .’/ j�1

2
.s�M“/TC.’/�1 .s�M“/ ;

(11.7)

where j j denotes the determinant of a matrix. The log-likelihood is the objective
function which we use to test the suitability of an LMM to represent the spatial
variation of a soil property.

The assumption of Gaussian random effects is restrictive and often implausible
for soil properties. For example, the histograms of observed copper and cobalt
concentrations in the Scottish Borders region are highly skewed (Fig. 11.4a, b).
A transformation s� D H(s) can be applied to the data so they more closely
approximate a Gaussian distribution. Figure 11.4c, d show the more symmetric
histograms that result when the natural log-transform, s� D ln(s), is applied to the
copper and cobalt concentrations. The Box-Cox transform might also be applied to
skewed data. It generalizes the natural log-transform via a parameter �:

H.s/ D
(

ln.s/ if � D 0;
s��1

�
otherwise:

(11.8)

If we assume that the observed data are multivariate Gaussian after the applica-
tion of a transformation, then the formula for the log-likelihood becomes

L .s j’;“ / D Constant�1

2
ln jC .’/j �1

2

�
s��M“

�T
C.’/�1

�
s��M“

�

C
Xn

iD1
ln .J fsig/

(11.9)

where J fsig D dH
ds is the derivative of the transformation function evaluated at s D si.

For the Box-Cox transform,
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Fig. 11.4 Histograms of the observations of (a) 400 soil copper concentrations, (b) 500 soil cobalt
concentrations, (c) the natural logarithm of the copper concentrations and (d) the natural logarithm
of the cobalt concentrations

ln .J fsig/ D .� � 1/ ln .si/ ; (11.10)

and the corresponding function for the natural log-transform is found by setting
� D 0.

Once a fixed-effect design matrix, a covariance function and any transformation
have been proposed, the problem of maximum likelihood estimation is reduced
to finding the elements of b’ and b“ vectors which lead to the largest value of the
log-likelihood and hence of the likelihood. This can be achieved using a numerical
optimization algorithm to search the parameter space for these parameter values. In
the examples presented in this chapter, we use the standard MATLAB optimization
algorithm which is the Nelder-Mead method (Nelder and Mead 1965). This is a
deterministic optimizer in the sense that if it is run twice from the same starting
point, the same solution will result each time. It is prone to identifying local rather
than global maxima. Therefore, Lark et al. (2006) recommends the use of stochastic
optimizers such as simulated annealing which permit the solution to jump away
from a local maximum. In our implementation of the Nelder-Mead method, we run
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the algorithm from ten different starting points in an attempt to avoid the selection of
local maxima. The parameter space is constrained to ensure that negative variance
parameters or negative definite covariance matrices cannot result.

The optimization problem can be simplified by noting that the log-likelihood
function is maximized when

“ D
�

MTC.˛/�1M
��1

MTC.˛/�1s: (11.11)

Hence, there is only a need to search the ˛ parameter space, and the corre-
sponding optimal value of “ can be found by using the above formula. However,
it is still a computational challenge to find an optimal ˛ vector within a four- or
higher-dimensional parameter space. Diggle and Ribeiro (2007) suggest reducing
the problem further to a series of optimizations in a lower-dimensional parameter
space. They search for the optimal values of c0, c1 and a for a series of fixed v values.
Then they plot the maximum log-likelihood achieved (or equivalently the minimum
negative log-likelihood) against the fixed v and extract best of these estimates. This
plot is referred to as a profile-likelihood plot.

It is possible to fit LMMs of varying degrees of complexity by adding more
terms to the fixed and random effects. If we add an extra term to a model (e.g. an
extra column to the M matrix), then the maximized likelihood of the more complex
model will be at least as large as the likelihood of the simpler model. We need a
test to decide whether the improvement that is achieved by adding extra terms is
worthwhile. If an LMM is too complex, there is a danger of overfitting. This means
that the model is too well suited to the intricacies of the calibration data, but it
performs poorly on validation data that were not used in the fitting process.

If two LMMs are nested their suitability to represent the observed data can
be compared by using a likelihood ratio test (Lark 2009). By nested, we mean
that by placing constraints on its parameters it is possible to transform the more
complex model to the simpler model. For example, if one LMM included a Box-Cox
transform of the data and another model was identical except that the natural log-
transform was applied, then these two models would be nested. The more complex
model could be transformed to the simpler model by setting � D 0. We denote
the parameters of the complex model by ’1, “1 and the parameters of the simpler
model by ’0, “0. Under the null hypothesis that the additional parameters in the
more complex model do not improve the fit, the test statistic:

D D 2L .sj’1;“1/ � 2L .sj’0;“0/ (11.12)

will be asymptotically distributed as a chi-squared distribution with r degrees of
freedom. Here, r is the number of additional parameters in the more complex
model. Therefore, it is possible to conduct a formal statistical test to decide whether
the more complex model has a sufficiently larger likelihood than the simpler one.
However, the likelihood ratio test does not always meet our needs. An LMM with a
nugget and exponential variogram and an identical model except that the variogram
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is pure nugget would not be properly nested. This is because the more complex
model has two additional parameters, c1 and a, but only the first of these needs to
be constrained to c1 D 0 to yield the simpler model. Therefore, it is unclear what
the degrees of freedom should be in the formal test. Lark (2009) used simulation
approaches to explore this issue.

In this chapter, we calculate the AIC (Akaike 1973) for each estimated model:

AIC D 2k � 2L; (11.13)

where k is the number of parameters in the model. The preferred model is the one
with the smallest AIC value. This model is thought to be the best compromise
between quality of fit (i.e. the likelihood) and complexity (the number of param-
eters). The AIC does not require the different models to be nested.

11.3.4 The Residual Maximum Likelihood Estimator

Patterson and Thompson (1971) observed that there was a bias in variance param-
eters estimated by maximum likelihood. This bias occurs because the “ parameters
are estimated from the data and are therefore uncertain, whereas in the log-
likelihood formula, they are treated as if they are known exactly. This problem
is well known when considering the variance of independent observations. The
standard formula to estimate the variance of a population with unknown mean that
has been sampled at random is:

Var .S/ D 1

n � 1

Xn

iD1
.si � s/2 (11.14)

where n is the size of the sample and s is the sample mean. Since the variance
is defined as E[fS � E(S)g2], one might initially be surprised that the denominator
of Eq. 11.14 is n � 1 rather than n. However, it can be easily shown that if the
denominator is replaced by n because the mean of the population is estimated, the
expectation of the expression would be a factor of n/(n � 1) times the population
variance.

Patterson and Thompson (1971) devised a method for correcting the analogous
bias in the maximum likelihood estimates of random effects parameters. They
transformed the data into stationary increments prior to calculating the likelihood.
The likelihood of these increments was independent of the fixed effects and hence
the bias did not occur. The expression for the residual log-likelihood that resulted is:

LR .sj’/ D Constant C 1

2
ln jWj C 1

2
ln jC .’/j C 1

2
sTC.’/�1Qs; (11.15)

where W D MTC(’)�1M and Q D I � MW�1MTC(’)�1.
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11.3.5 Estimating Linear Mixed Models for the Scottish
Borders Data

We illustrate maximum likelihood estimation of an LMM using the 400 copper
concentration measurements from the Scottish Borders. We initially assume that
the fixed effects are constant and that a log-transform is sufficient to normalize
the data. Thus, we assume that the Box-Cox parameter œ is zero. In fact, when
the Box-Cox parameter was unconstrained, the increase to the log-likelihood was
negligible and did not improve the AIC. We estimated the c0, c1 and a parameters
for fixed v equal to 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75,
2.0 and 2.5. The profile-likelihood plot of the minimized negative log-likelihoods
that resulted is shown in Fig. 11.5a. The smallest negative log-likelihood occurred
for v D 0.1. When � was unfixed, a smaller negative log-likelihood resulted with
v D 0.12. The best fitting variogram is plotted in Fig. 11.5b. It sharply increases
as the lag is increased from zero, reflecting the small value of the smoothness
parameter. This maximum likelihood estimate of the variogram is reasonably
consistent with the empirical variogram (see Fig. 11.5b).

Figure 11.6 shows the maximum likelihood estimates of the variograms and
cross-variograms when the s vector contained the 400 observations of copper and
the 500 observations of cobalt. The natural log-transform was applied to each soil
property, and the fixed effects consisted of a different constant for each property.
Again, there is reasonable agreement between the maximum likelihood estimate
and the empirical variograms. However, some small discrepancies are evident.
The maximum likelihood estimate for cobalt has a longer range than might be

Fig. 11.5 (a) Plot of minimized negative log-likelihood of 400 ln copper concentrations for
different fixed values of v. The black cross denotes the minimized negative log-likelihood when
v is unfixed, (b) maximum likelihood estimate of the variogram (continuous line) of ln copper
concentrations and the corresponding method of moments point estimates (black crosses)
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Fig. 11.6 Maximum likelihood estimate of (a) the LMCR ln copper auto-variogram, (b) the
LMCR ln copper and ln cobalt cross-variogram and (c) the LMCR ln cobalt auto-variogram. The
black crosses are the corresponding method of moments point estimates

fitted to the empirical variogram, and the maximum likelihood estimate of the
cross-variogram appears to be consistently less than the corresponding empirical
variogram. This was probably caused by the constraints placed on the parameters,
such as the requirement that all the variograms had the same range.

In Table 11.1, we show the negative log-likelihood and AIC values that result
when different LMMs are estimated for the Scottish Borders data. The simplest
models only consider copper observations and assume constant fixed effects and a
pure nugget variogram. Then, the pure nugget variogram is replaced by a nugget
and Matérn model. The third model also replaces the constant fixed effects by ones
that vary according to the soil types displayed in Fig. 11.3. The final model considers
observations of both copper and cobalt and assumes that each of these properties has
constant fixed effects. The models are estimated for both the 50 and 400 observation
samples of copper. Both coregionalized models include 500 cobalt observations.

For both sample sizes, the negative log-likelihood decreases upon inclusion of
the Matérn variogram function and the nonconstant fixed effects. In the case of the
400 observation samples, the AIC also decreases in the same manner. However, for
the 50-point sample, the addition of these extra terms to the model causes the AIC
to increase. This indicates that there is insufficient evidence in the 50-point sample
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Table 11.1 Number of parameters (p), minimized negative log-likelihood (�L) and AIC value for
models with different fixed effects (M), variogram models, number of copper observations (nCu)
and number of cobalt observations (nCo)

nCu D 50 nCu D 400
M Variogram nCo p �L AIC �L AIC

Constant Nugget 0 2 �82.25 168.50 �640.26 1284.53
Constant Matérn 0 5 �81.36 172.72 �594.52 1199.04
Soil type Matérn 0 8 �78.20 172.39 �590.68 1197.37
Constant Matérn 500 9 �34.38 86.76 �225.26 468.52

to indicate that copper is spatially correlated or that it varies according to soil type.
For both sample sizes, the lowest AIC occurs when the 500 cobalt observations
are included in the model. Note that the models of coregionalized variables were
estimated by minimizing the negative log-likelihood function which included both
properties. However, the negative log-likelihood that is quoted in Table 11.1 is the
likelihood of the copper observations given both the estimated parameters and the
cobalt observations. This means that the corresponding AIC value is comparable to
those from the other three models.

11.4 Bayesian Methods and Variogram Parameter
Uncertainty

The model-based methods described in this chapter are compatible with Bayesian
methodologies which can be used to quantify the uncertainty of the random effects
parameters (Handcock and Stein 1993). Classical statistical methodologies assume
that model parameters are fixed. Generally, when applying classical or model-based
geostatistics, we look for a single best fitting variogram model and take no account
of variogram uncertainty. In Bayesian analyses, model parameters are treated as
probabilistic variables. Our knowledge of the parameter values prior to collecting
any data is expressed as a prior distribution. Then the observations of the soil
property are used to update these priors and to form a posterior distribution which
combines our prior knowledge with the information that could be inferred from the
observations.

Minasny et al. (2011) demonstrated how Bayesian approaches could be applied
to the spatial prediction of soil properties. They placed uniform priors on all
of the random effects parameters and then used a Markov chain Monte Carlo
(MCMC) simulation approach to sample the multivariate posterior distribution of
these parameters. Rather than a single best fitting estimate, this approach led to a
series of parameter vectors that were consistent with both the prior distributions and
the observed data. The MCMC approach generates a chain of parameter vectors
which follow a random walk through the parameter space. The chain starts at some
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value of parameters, and the log-likelihood is calculated. Then the parameters are
perturbed and the log-likelihood is recalculated. The new parameter values are
accepted or rejected based on the difference between the likelihoods before and
after the perturbation according to Metropolis-Hastings algorithm (Hastings 1970).
If the log-likelihood increases, then the new parameter vector is always accepted.
If the likelihood decreases, then the proposal might be accepted. The probability of
acceptance decreases as the difference in likelihood increases.

Under some regularity conditions, the set of parameter vectors that result
from the Metropolis-Hastings algorithm are known to converge to the posterior
distribution of the parameters. However, the algorithm requires careful tuning of
some internal settings within the algorithm. These settings particularly relate to the
distribution from which a proposed parameter vector is sampled. If this distribution
is too wide, then too many of the proposed parameter vectors will be rejected and the
chain will remain at its starting point. If the proposal distribution is too narrow, then
nearly all of the parameter vectors will be accepted, but the perturbations will be
small, and it will take a considerable amount of time to consider the entire parameter
space. Therefore Vrugt et al. (2009) developed a DiffeRential Evolution Adaptive
Metropolis (DREAM) algorithm to automate the selection of these internal settings
and to produce Markov chains that converge efficiently. The DREAM algorithm
simultaneously generates multiple Markov chains. The information inferred from
acceptances and rejections within each chain is pooled to select efficient proposal
distributions. MATLAB and R implementations of the DREAM algorithm are freely
available (Vrugt 2016; Guillaume and Andrews 2012).

We used the DREAM algorithm to sample parameters of the nested nugget and
Matérn model for both the 50 and 400 observations of ln copper. In each case, we
used four chains and sampled a total of 101,000 parameter vectors. The bounds on
the uniform prior distributions were zero and one fln(mg kg�1)g2 for c0 and c1, zero
and 40 km for a and 0.01 and 2.5 for v. For comparison, the variance of the ln copper
observations was 0.35. The first 1000 of the sampled vectors were discarded since
the MCMC was converging to the portion of parameter space that was consistent
with the observed data. This is referred to as the burn-in period. We used the R
statistic (see Vrugt et al. 2009) to confirm that the chain had converged. Successive
entries of the series of parameter vectors that remained were correlated because the
parameter vector was either unchanged or only perturbed a short distance. Therefore
every 100th entry of this series was retained. The final series contained 1000
vectors which were treated as independent samples from the posterior distribution
of the parameter vector. Figure 11.7 shows the 90% confidence intervals for the
variogram of each dataset. These confidence intervals stretch between the 5th and
95th percentiles of the semi-variances for each lag. It is evident that the variogram
from the 50 observation sample is uncertain across all lag distances. The uncertainty
is greatly reduced for the 400 observation sample.



356 B.P. Marchant

Fig. 11.7 Maximum likelihood estimates of the variogram for (a) 50 ln copper concentrations
and (b) 400 ln Cu concentrations. The grey shading indicates the 90% confidence interval for the
variogram function according to the MCMC sample of variogram parameters

11.5 Spatial Prediction and Validation of Linear Mixed
Models

11.5.1 The Best Linear Unbiased Predictor

Having estimated the fixed and random effects parameters b’ and b“, we can use
the LMM and the observations of the soil property to predict the expected value
and uncertainty of the possibly transformed soil property at a set of locations xp

where it has not been observed. We denote the fixed effects design matrix at these
locations by Mp, the matrix of covariances between the random effects of the soil
property at the observation and prediction locations by Cpo and the random effects
covariance matrix at the prediction locations by Cpp. These matrices are calculated
using the estimated b’ parameters. The best linear unbiased predictor (BLUP; Lark
et al. 2006; Minasny and McBratney 2007) of the expected value of the possibly
transformed soil property at the unobserved locations is:

bS�
p D E

	
s� �xp

�
 D Mpb“ C CpoC�1
�

s� � Mb“� ; (11.16)

and the corresponding prediction covariance matrix is:

V D �
Mp � CpoC�1M

� �
MTC�1M

��1�
Mp � CpoC�1M

�T C
�

Cpp � CpoC�1CT
po

�
:

(11.17)
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The first term in Eq. 11.17 accounts for the uncertainty in predicting the fixed
effects, whereas the second term accounts for the uncertainty in predicting the
random effects. The elements of the main diagonal of V, which we denote Vii,
are the total prediction variances for each site. Since we have assumed that s* is
Gaussian, we have sufficient information (i.e. the mean and the variance) to calculate
the probability density function (pdf) or cumulative density function (cdf) for s* at
each of the sites. Density functions are discussed in more detail in Sect. 14.2.2. We
might calculate the pdf for N equally spaced values of the variable with spacing �y
(i.e. yj D j�y for j D 1, : : : ,N). The formula for the Gaussian pdf is:

fj � f
�

yjjbS�
i ; Vii

�
D 1p

2�Vii
exp

8<
:�1

2

 
yj �bS�

ip
Vii

!2
9=
; (11.18)

If the density is zero (to numerical precision) for yi < yi and yi > yN , then the
area under the curve f will be one and the fj will sum to 1/�y. The cdf can then be
deduced from the fj:

Fj � Prob
�
si < yj

� D �y
Xj

kD1
fk; (11.19)

In Fig. 11.8, we show these pdf and cdf for ln copper concentration at site
‘A’ based on the maximum likelihood estimate of the LMM for 400 copper
observations. The area of the grey-shaded region is equal to the probability that
ln copper concentration is negative (i.e. that the concentration of copper is less than
1 mg kg�1). This probability can be more easily extracted from the value of the cdf
when ln copper is equal to zero (Fig. 11.8b).

Fig. 11.8 Predicted (a) pdf and (b) cdf for ln copper at location ‘A’

http://dx.doi.org/10.1007/978-3-319-63439-5_14\#Sec4
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If we have a MCMC sample of variogram parameter vectors rather than a single
estimate, then we might calculate the pdf for each of these variograms. Then we
could calculate a pdf that accounted for variogram uncertainty by averaging these
individual pdfs and calculate the cdf using Eq. 11.19. This is an example of the
Monte Carlo error propagation method described in Sect. 14.4.2. In Fig. 11.9b, we
show the cdf of ln copper at site ‘A’ based on the 400 observation sample. The
grey-shaded region is the 90% confidence interval for this cdf using the MCMC
sample of variogram parameters to account for variogram uncertainty. It is apparent
that variogram uncertainty does not have a large effect on the cdf. However, when
the pdfs are based on the MCMC for 50 observations, a larger effect of variogram
uncertainty is evident (Fig. 11.9a). Recall that site ‘A’ is only 0.6 km from the
nearest observation. We will see in Sect. 11.6 of this chapter that such a prediction
is sensitive to uncertainty in the variogram parameters. When we repeat the exercise
at site ‘B’ which is 1.3 km from an observation, the effects of variogram uncertainty
are small using the MCMC samples based on both 50 and 400 observations.

The BLUP encompasses many of the kriging algorithms described in Chap. 10.
For example, when the fixed effects are constant, it performs the role of the ordinary
kriging estimator; when covariates are included in the fixed effects, it performs
the role of the regression or universal kriging predictor; and when multiple soil
properties are included in the observation vector, it performs the role of the co-
kriging estimator. Equations 11.16 and 11.17 lead to predictions on the same support
as each observation. If we wish to predict the soil property across a block that has
a larger support than each observation, then Cpo and Cpp should be replaced by
Cpo, the covariances between the observations and the block averages, and Cpp the
covariances between the block averages.

We previously noted that when multiple properties are included in the obser-
vation vector of an LMM, the nugget parameters for the cross-variograms can
only be estimated if there are co-located observations of the two properties. This
parameter will be required in the BLUP if we wish to predict one soil property
at the exact location where another one was observed or if we wish to know the
covariance between the predictions of the two properties at the same site. However,
this parameter is not required to produce maps of each soil property on a regular grid
that does intersect the observation locations or to calculate the prediction variances
for each property.

If a transformation has been applied to the observations then it will be necessary
to back-transform the predictions before they can be interpreted. If we simply
calculate the inverse of the transformation for bS�

p.i/, the prediction of the mean of
the transformed property at the ith prediction location, the result is the prediction
of the median of the untransformed property. The 0.5 quantile of the transformed
property has been converted to the 0.5 quantile of the untransformed property.
It is possible to back-transform every quantile of the cdf in this manner. It is
generally more difficult to determine the mean of a back-transformed prediction.
Instead, the back-transformed mean can be approximated through simulation of the
transformed variable. If the mean and variance of the transformed prediction for a

http://dx.doi.org/10.1007/978-3-319-63439-5_14\#Sec13
http://dx.doi.org/10.1007/978-3-319-63439-5_10
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Fig. 11.9 Predicted cdf (red line) and 90% confidence interval accounting for variogram uncer-
tainty (shaded area) of ln copper concentration at (a) site ‘A’ conditional on the 400 observation
samples and the MCMC sample of variogram parameters calibrated on the 50 observation
subsamples, (b) site ‘A’ conditional on the 400 observation sample and the MCMC sample of
variogram parameters calibrated on the same 400 observations, (c) site ‘B’ conditional on the
400 observation sample and the MCMC sample of variogram parameters calibrated on the 50
observation subsample and (d) site ‘A’ conditional on the 400 observation sample and the MCMC
sample of variogram parameters calibrated on the same 400 observations

site arebS�
p.i/ and V�

p.i/, respectively, then one might simulate 1000 realizations of the
Gaussian random variable with this mean and variance, apply the inverse transform
to each realization and then calculate the mean (or other statistics) of these back-
transformed predictions.

11.5.2 Validation of the LMM

It is important to validate an LMM to confirm that the predictions are as accurate
as we believe them to be. Close inspection of validation results might also reveal
patterns in the model errors that indicate that an additional covariate is required in
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the fixed effects or a further generalization is required in the random effects. Ideally,
validation should be conducted using a set of data that were not used to calibrate the
LMM. However, in some instances, data are sparse, and then there is little choice but
to carry out cross-validation. In leave-one-out cross-validation, the model is fitted to
all of the measurements, and then one datum, si say, is removed, and the remaining
data and the BLUP are used to predict the removed observation. The process is
repeated for all n observations.

When conducting either cross-validation or validation, we wish to look at both
the accuracy of the predictions and the appropriateness of the prediction variances.
We can assess the accuracy of predictions by looking at quantities such as the mean
error (ME),

ME D 1

n

Xn

iD1

n
si �bSi

o
; (11.20)

and the root mean squared error (RMSE),

RMSE D
�

1

n

Xn

iD1

n
si �bSi

o2
� 1

2

: (11.21)

The appropriateness of the prediction variances are often explored by calculating
the standardized squared prediction errors at each site:

	i D
n
si �bSi

o2

Vi
; (11.22)

where Vi is the prediction variance for bSi. If, as we expect, the errors follow a
Gaussian distribution, then the 	 i will be realized from a chi-squared distribution
with one degree of freedom. Pedometricians often calculate the mean ™ and median
Q™ of the 	 i and compare them to their expected values of 1.0 and 0.45 (e.g. Minasny
and McBratney 2007; Marchant et al. 2009). If they are properly applied, the ML
and REML estimators tend to ensure that ™ is close to 1.0. However, although the
average standardized error is close to its expected values, the set of 	 i values might
not be consistent with the chi-squared distribution. Deviations from this distribution
are often indicated by values of Q™ that are far from 0.45. If Q™ is considerably less
than 0.45, this might indicate that the LMM should have a more highly skewed
distribution function.

It can also be useful to consider the entire cdf of the standardized errors. If the
errors are Gaussian, then the

pi D ˆ�1
0;1

 
si �bSip

Vi

!
; (11.23)
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should be uniformly distributed between zero and one where ˆ�1
0;1 is the inverse cdf

for a Gaussian distribution of zero mean and unit variance. We want to confirm
that the pi is consistent with such a uniform distribution. This can be achieved
through the inspection of predictive QQ plots (Thyer et al. 2009). These are plots
of the n theoretical quantiles of a uniform distribution against the sorted pi values.
If the standardized errors are distributed as we expect, then the QQ plot should be a
straight line between the origin and (1,1). If all the points lie above (or, alternatively,
below) the 1:1 line, then the soil property is consistently under-/over-predicted. If
the points lie below (above) the 1:1 line for small theoretical values of p and above
(below) the 1:1 line for large theoretical values of p, then the predictive uncertainty
of the MM is under-/overestimated. Alternatively, Goovaerts (2001) uses accuracy
plots rather than QQ plots. In these plots, the [0,1] interval is divided into a series of
bins bounded by the (1 � p)/2 and (1 C p)/2 quantiles for p between 0 and 1. The two
plots differ in that each bin of the accuracy plot is symmetric about 0.5. Therefore
it is not possible to consider the upper and lower tail of the distribution separately.
In contrast, with QQ plots, we can see how well the left-hand tail of the distribution
is approximated by looking close to the origin of the plot, and we can examine how
the right-hand tail is approximated by looking close to (1,1).

11.5.3 Predicting Copper Concentrations in the Scottish
Borders

Figure 11.10 shows maps of the expectation of ln copper across the study region for
models listed in Table 11.1. The model with a pure nugget variogram is not included
since the predictions are constant. The map based on 50 copper observations and
with constant fixed effects is much less variable than the other predictions. More
features of the copper variation are evident when the soil type is added to the fixed
effects. However, there are obvious and possibly unrealistic discontinuities in the
predictions at the boundaries between different soil types. The model including
cobalt observations retains the detail of the variable fixed-effect model, but there
are no discontinuities. Further detail is added to all of the maps when 400 rather
than 50 copper observations are used. The hotspots of copper that are evident occur
close to urban centres.

The most striking feature in the validation results (Tables 11.2 and 11.3) is
the difference in performance for the models based on 50 observations of copper
and those based on 400 observations. When 400 observations are used, the cross-
validation and validation RMSEs are very similar and smaller than those for the
50-point sample. For the 50-observation sample, there is also a greater difference
between the cross-validation and validation results indicating that these models
might well have been overfitted. For both sample sizes, the largest RMSEs occur
for the pure nugget model, but there is little difference in the RMSEs for the other
three LMMs. The prediction variances for the LMMs calibrated on 400 observations
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Fig. 11.10 Median prediction of copper concentration (mg/kg) across the study region from (a)
BLUP using 50 Cu calibration data with constant fixed effects, (b) BLUP using 50 Cu calibration
data with fixed effects varying according to soil type, (c) BLUP using 50 Cu calibration data and
500 Co calibration data represented by an LMCR with constant fixed effects, (d) BLUP using
400 Cu calibration data with constant fixed effects, (e) BLUP using 400 Cu calibration data with
fixed effects varying according to soil type and (f) BLUP using 400 Cu observations and 500 Co
observations represented by an LMCR with constant fixed effects

also appear to be more accurate than those based on the 50 observation sample.
The mean standardized prediction errors upon cross-validation and validation for
all models calibrated on 400 copper observations are between 0.98 and 1.00, and
the median standardized prediction errors range between 0.38 and 0.47. Hence
both quantities are close to their expected values of 1.0 and 0.45. In the case
of the 50 observation samples, the ranges of these statistics are wider, stretching
between 0.78 and 1.34 for the mean and 0.32 and 0.67 for the median. The cross-
validation standardized prediction errors are closer to their expected values than the
corresponding validation values. Again, this is an indication of overfitting when only
using 50 observations. There is also evidence of overfitting in the QQ plot for the
LMM with constant fixed effects and calibrated on 50 observations (Fig. 11.11a).
The validation plot deviates a large distance from the 1:1 line. All of the other QQ
plots more closely follow the 1:1 line although some improvement in using the larger
sample size is evident.
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Table 11.2 Mean error (ME) and root mean squared error (RMSE) upon leave-one-out cross-
validation and validation of models for ln copper with different fixed effects (M), variogram
models, number of copper observations (nCu) and number of cobalt observations (nCo)

Calibration Validation
M Variogram nCu nCo ME RMSE ME RMSE

Constant Nugget 50 0 0.000 0.68 0.092 0.60
Constant Matérn 50 0 0.009 0.66 0.045 0.74
Soil type Matérn 50 0 0.011 0.64 0.023 0.58
Constant Matérn 50 500 �0.001 0.65 0.048 0.54
Constant Nugget 400 0 0.000 0.60 0.028 0.59
Constant Matérn 400 0 0.002 0.50 0.063 0.51
Soil type Matérn 400 0 0.002 0.50 0.011 0.50
Constant Matérn 400 500 0.002 0.50 0.013 0.50

Table 11.3 Mean standardized prediction errors
�
™
�
, median standardized prediction errors

�Q™�
and mean error in QQ plot

�
Qe

�
upon leave-one-out cross-validation and validation of models for

ln copper with different fixed effects (M), variogram models, number of copper observations (nCu)
and number of cobalt observations (nCo)

Calibration Validation
M Variogram nCu nCo

�
™
� �Q™� Qe

�
™
� �Q™� Qe

Constant Nugget 50 0 1.02 0.61 0.000 0.80 0.38 0.040
Constant Matérn 50 0 1.03 0.49 �0.007 1.34 0.67 0.197
Soil type Matérn 50 0 1.08 0.62 �0.022 0.90 0.38 0.012
Constant Matérn 50 500 1.03 0.33 �0.003 0.78 0.32 0.019
Constant Nugget 400 0 1.00 0.47 �0.002 0.99 0.45 0.012
Constant Matérn 400 0 1.00 0.42 0.003 0.99 0.39 0.028
Soil type Matérn 400 0 1.00 0.41 0.002 1.00 0.38 �0.001
Constant Matérn 400 500 1.00 0.44 0.003 0.98 0.39 0.000

11.6 Optimal Sample Design

It is often costly to obtain soil samples from a study area and then analyse them
in the laboratory to determine the properties of interest such as the concentrations
of cobalt and copper in the Scottish Borders survey. Therefore, it can be important
to optimize the locations where the samples are extracted from so that an adequate
spatial model or map can be produced for the minimum cost. Many spatial surveys
have been conducted using a regular grid design (see examples in Webster and
Oliver 2007) since this ensures that the observations are fairly evenly distributed
across the study region and that the kriging variances are not unnecessarily large at
any particular locations. Also, it is relatively easy to apply the method of moments
variogram estimator to a grid-based sample since the variogram lag bins can be
selected according to the grid spacing. Some authors (e.g. Cattle et al. 2002) have
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Fig. 11.11 QQ plots resulting from leave-one-out cross-validation of the calibration copper data
(black line) and validation of the validation copper data (red line). The predictors and observations
for plots (a–f) are identical to those in Fig. 11.10

included close pairs of observations in their survey designs since these ensure
that the variogram can be reliably estimated for short lag distances. However,
the decision as to how much of the sampling effort should be allocated to even
coverage of the study region and how much to estimating the spatial model over
short distances is often made in a subjective manner.

The kriging or prediction variance (Eq. 11.17) can form the basis of a more
objective criterion for the efficient design of spatial surveys. If the random effects are
second-order stationary and Gaussian, then the prediction variance does not depend
on the observed data. If the variogram model is assumed to be known, then prior to
making any measurements, it is possible to use Eq. 11.17 to assess how effective a
survey with a specified design will be. Alternatively, we can select the configuration
of a specified number of sampling locations that lead to the smallest prediction
variance.

Van Groenigen et al. (1999) suggested an optimization algorithm known as
spatial simulated annealing (SSA) to perform this task. The n samples are initially
positioned randomly across the study region and the corresponding kriging variance
(or any other suitable objective function) is calculated. Then the position of one of
these samples is perturbed a random distance in a random direction. The kriging
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variance is recalculated. If it has decreased, then the perturbation is accepted. If the
kriging variance has increased, then the perturbation might be accepted. In common
with the DREAM algorithm, described in Sect. 11.4 of this chapter, the probability
of acceptance decreases with the magnitude of the increase in the objective function
according to the Metropolis-Hastings algorithm (Hastings 1970). However, in
contrast to the DREAM algorithm, the probability of acceptances also decreases
as the optimization algorithm proceeds. The potential to accept perturbations that
increase the kriging variance is included to ensure that the optimizer does not
converge to a local rather than global minimum. The gradual decrease in the
probability of such an increase ensures that a minimum is eventually reached. If
a perturbation is rejected, then the sample is returned to its previous location. The
SSA algorithm continues, perturbing each point in turn until the objective function
settles to a minimum.

We illustrate the application of the SSA algorithm by optimizing 50 location
sample schemes for the Scottish Borders study area in Fig. 11.12. In all of the plots
within this figure, we consider a soil property where the random effects are realized
from a Gaussian random function with a nested nugget and Matérn covariance
function with c0 D 0.5, c1 D 0.5, a D 10 km and v D 0.5. The kriging variance
is the objective function for the designs shown in Fig. 11.12a, b. In plot (a), the
fixed effects are assumed to be constant. The optimized sample locations are spread
evenly across the region. The locations are randomly allocated to the four different
soil types (Fig. 11.12d) with the majority of samples being situated in the most
prevalent brown earth class. When the fixed effects are assumed to vary according
to soil type, the optimized samples are still fairly evenly distributed across the
region. However, the number of locations that are situated in the less prevalent soil
classes increases (Fig 11.12e). This ensures that a reasonably accurate estimate of
the fixed effects can be calculated for each soil type. When Brus and Heuvelink
(2007) optimized sample schemes for universal kriging of a soil property with an
underlying trend that was proportional to a continuous covariate, they found that
the soil was more likely to be sampled at sites where this covariate was particularly
large or particularly small. This ensured that the gradient of the trend function could
be reasonably accurately estimated.

In addition to spatial prediction, the set of observed samples should also be
suitable for estimating the spatial model. Therefore, Marchant and Lark (2007b)
and Zhu and Stein (2006) expanded the objective function to account for uncertainty
in estimating the spatial model or variogram. These authors noted that for a linear
predictor such as the BLUP,

bSp.k/ D œTs; (11.24)

wherebSp.k/ is the prediction of the expectation of S at the ith prediction site, œ is
a length n vector of weights and s is a length n vector of observations; the extra
contribution to the prediction variance resulting from variogram uncertainty could
be approximated by a Taylor series:
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Fig. 11.12 Optimized sampling locations where the objective function is (a) the kriging variance
with no fixed effects, (b) the kriging variance with fixed effects varying according to soil type and
(c) the kriging variance plus the prediction variance due to variogram uncertainty with fixed effects
varying according to soil type. Plots (d–f) show the distribution of sampling locations amongst soil
types for the design above. The soil types are (1) alluvial soils, (2) brown earths, (3) peaty podzols
and (4) mineral gleys
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where 
2 is the expected squared difference between the prediction at the ith site
using the actual variogram parameters ’, and the prediction at this site using the
estimated parameters, b’; r is the number of variogram parameters and @œ

@˛i
is the

length n vector containing partial derivatives of the œ weights matrix with respect to
the ith variogram parameter. The covariances between the variogram parameters can
be approximated using the Fisher information matrix F (Marchant and Lark 2004):
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Here, Œ�ij denotes element i, j of the matrix inside the brackets, @C
@˛i

is the n � n
matrix of partial derivatives of the covariance matrix C with respect to ’i and Tr
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denotes the trace or sum of elements on the main diagonal of the matrix that follows.
The @œ

@˛i
can be calculated using a numerical approximation (e.g. Zhu and Stein 2006)

although Marchant and Lark (2007b) noted the standard linear algebra relationship
that if

L D A�1b; (11.27)

then

@L
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�
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�

: (11.28)

Thus, this equation can be used to exactly calculate the @œ
@˛i

matrices for the
universal kriging predictor formulation of the BLUP which is written in the form
of Eq. 11.27 with:
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where ® is the length q vector of Lagrange multipliers, 0q,q is a q � q matrix of zeros
and Cp(i)o is the ith row of matrix Cpo. For most authorized covariance functions,
the elements of the @C

@˛i
that are required to calculate Eq. 11.26 and Eq. 11.28 can

be determined exactly. However, in the case of the Matérn function, numerical
differentiation remains the most practical method to calculate @C

@�
.

Figure 11.12c shows an optimized 50-location design that results when the
objective function is the prediction variance (assuming that the fixed effects vary
according to soil type) plus the 
2. In this case, the sampling locations are less
evenly spread across the study region. Short transects of close locations are evident
which are suitable for estimating the spatial covariance function over small lags. The
prediction variance and £2 for this design are mapped in Fig. 11.13a, b, respectively.
The prediction variance is smallest close to sampling locations and increases for
locations where there are no nearby samples and that are at the boundary of the
region. The additional component of uncertainty because of the estimation of the
spatial model is largest close to sample locations and decreases at locations where
there are no nearby samples.

As previously discussed in Sect. 10.2, there is one obvious flaw in this strategy to
optimize sample designs. In reality, the spatial model is not known prior to sampling,
and therefore, it is not possible to calculate the prediction variance. A spatial model
must be assumed, perhaps using the results of previous surveys of the soil property
at similar locations or based on a reconnaissance survey (e.g. Marchant and Lark
2006). Alternatively, a prior distribution might be assumed for each covariance
function parameter and the objective function averaged across these distributions
(Diggle and Lophaven 2006). Also, the prediction variance cannot be calculated

http://dx.doi.org/10.1007/978-3-319-63439-5_10\#Sec2
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Fig. 11.13 (a) The kriging variance with fixed effects varying according to soil type for the
optimized sample design in Fig. 11.12c. (b) The contribution to the prediction variance due to
variogram uncertainty for the same sample design

prior to sampling if the property of interest has a skewed distribution, since the
prediction variances vary according to the observed data. Marchant et al. (2013a)
demonstrated how simulation could be used to optimise a multi-phase survey in
these circumstances.

11.7 Conclusions

The use of model-based rather than classical geostatistical methods removes many
of the subjective decisions that are required when performing geostatistical analyses.
The LMM is flexible enough to incorporate linear relationships between the soil
property of interest and available covariates and to simultaneously represent the
spatial variation of multiple coregionalized soil properties. The log-likelihood is
an objective function that can be used to compare proposed model structures and
parameters. Since a multivariate distribution function is specified in the model, it
is possible to predict the complete pdf or cdf of the soil property at an unsampled
location. From these predicted functions, one can easily determine the probability
that the soil property exceeds a critical threshold (e.g. Li et al. 2016).

The primary disadvantages of the model-based methods are the time required
to compute the log-likelihood and the requirement to specify the multivariate
distribution function from which the soil observations were realized. Maximum
likelihood estimation of an LMM for more than 1000 observations is likely to take
several hours rather than the seconds or minutes required to estimate a variogram
by the method of moments. However, we have seen that the uncertainty in LMM
parameters estimated from a 400 observation sample have little effect on the
uncertainty of the final predictions. Therefore, when estimating an LMM for a large
number of observations, it is reasonable to subsample the data. The complete dataset
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should be used when using the BLUP. Stein et al. (2004) suggested an approximate
maximum likelihood estimator. This uses all of the data but is faster to compute
because it ignores some of the covariances between observations. We have described
how the standard assumptions that the random effects of an LMM are realized from
a multivariate Gaussian random function can be relaxed. A Box-Cox or natural
log-transform can be applied to skewed observations so that their histogram more
closely approximates that of a Gaussian distribution. Alternatively, it is possible
to write the log-likelihood function in a different form that is compatible with
any marginal distribution function (Marchant et al. 2011). The assumption that the
expected value of the random variable is constant can be relaxed via the fixed effects
of the LMM. Some authors have also explored strategies to permit the variability of
the random variable to be related to a covariate (e.g. Lark 2009; Marchant et al.
2009; Haskard et al. 2010).

The model-based methods described in this chapter are also compatible with the
modelling of space-time variation (e.g. Heuvelink and van Egmond 2010). However,
space-time models do require more flexible models for the covariance function
because the pattern of temporal variation is likely to be quite distinct from the
temporal variation. De Cesare et al. (2001) review the covariance functions that are
commonly used for this purpose. Such models might also be used to represent the
spatial variation of soil properties in three dimensions when the vertical variation
is quite different to the horizontal variation (e.g. Li et al. 2016). The same models
could be estimated by classical methods. However, these models contain multiple
variogram structures, and it is challenging to appropriately select the different lag
bins and fitting weights required for each of these.
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