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Abstract This chapter presents a method for evaluating dynamic performance of
multi-state systems with a general series parallel structure. The system components
can be either repairable binary elements with given time-to-failure and repair time
distributions, or 1-out-of-N warm standby configurations of heterogeneous binary
elements characterized by different performances and time-to-failure distributions.
The entire system needs to satisfy a random demand defined by a time-dependent
distribution. Iterative algorithms are presented for determining performance
stochastic processes of individual components. A universal generating function
technique is implemented for evaluating the dynamic system performance indices.
Examples are provided to demonstrate applications of the proposed methodology.
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Nomenclature

T Mission time
I Number of system components
Ni Number of elements within component i
Gi(t) Random performance of component i at time t
gi,k K-th possible performance level of component i
gi Performance level vector of component i: gi = fgi, 0, . . . , gi,Nig
pi,k(t) Probability that component i operates at level gi,k at time t, i.e.,

Pr(Gi(t) = gi,k)
ϕðG1, . . . ,GIÞ System structure function
V(t) Random system performance at time t
v Vector of possible performance levels of MSS v= v0, . . . , vKf g
wj(t) Pr(V(t) = vj)
D(t) Random system demand at time t
d Vector of possible system demand levels: d = {d0, …, dL}
hl(t) Pr(D(t) = dl)
c(t) Expected system performance at time t
C(T) Expected amount of work system can complete in time T
e(t) Expected instantaneous unsupplied demand at time t
E Expected unsupplied demand over mission time T
a(t) Expected instantaneous system availability at time t
A Expected system availability over mission time T
θ Predetermined amount of work to be completed by system,
τ (θ) Expected time of completing amount of work θ
si(k) Index determining type of element that should be activated after

the (k − 1)th element failure in component i
Tk Random variable representing the time when the last element from

sequence si(1), …, si(k) fails
qk(t) pdf of random variable Tk
Fi,j(t), fi,j(t) cdf, pdf of lifetime of element j within component i in the

operation mode
ωi,j Nominal performance of element j within standby component i
δij Deceleration factor of element j within component i
ηi,j, βi,j Scale, shape parameters of Weibull time-to-failure distribution for

element j within component i
γmin
i , γmax

i Minimum, maximum repair time of element i
Ji Maximal number of failures of element i
πi Repair efficiency of element i
ωi Nominal performance of repairable element i
ζi(t) Hazard rate of element i
Xj Random time spent by element in operation mode before the j-th

failure
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Qj(t, x) Joint distribution of j-th failure event parameters
Γ Random repair time
Ψ i(t), ψ i(t) Cdf, pdf of random repair time
rijðtÞ Probability that element i is under repair after the j-th failure at

time t

1 Introduction

Many real-world systems, such as those with shared loads, performance degrada-
tion, standby sparing, imperfect coverage, or limited repair resources are multi-state
systems (MSSs) [1, 2]. In MSSs, the system and/or its components can exhibit
multiple different states or performance levels [3]. MSSs abound in applications
including (but not limited to) medical systems [4], power systems [5, 6], computing
systems [7], communication systems [8], and transportation systems [9, 10]. Due to
their critical applications, the MSS modeling and analysis have attracted lots of
research efforts. Diverse types of methods have been developed for MSS analysis
including for example, multi-state path/cut-vector based enumerations [3, 11],
simulations [12], branch-and-bound technique [13], Lz-transform techniques based
on Markov processes [14–16], universal generating functions (UGF) [3, 9, 17], and
binary or multi-valued decision diagrams [1, 8, 18, 19].

This chapter focuses on a class of MSSs with the general series parallel structure.
Different from the traditional structure of multi-state series parallel systems that has
been intensively studied [9, 20–23], the system considered in this chapter contains
an arbitrary combination of series and parallel configurations of system compo-
nents. Each system component can be either a warm standby configuration of basic
binary functional elements or a repairable binary element. In contrast, the traditional
structure contains subsystems connected in a purely series configuration with each
subsystem being a purely parallel configuration of functional components.

An iterative algorithm is first presented for determining the performance
discrete-state continuous-time process (DSCTP) of an individual component in the
considered system. A UGF-based technique is then applied for evaluating
system-level performance indices of expected system availability and unsupplied
demand. Note that the integrated DSCTP and UGF technique has been applied to
model dynamic behavior of MSSs without general standby redundancies in [4–6,
14–16]. These works are based on the Markov process model, thus being limited to
exponential element time-to-failure distributions. In this chapter we extend the
dynamic MSS model to considering repairable elements with arbitrary repair time
distributions and to considering warm standby components (or subsystems) com-
posed of elements with non-identical, arbitrary time-to-failure distributions.

The rest of this chapter is organized as follows. Section 2 presents the generic
model and performance metrics of the MSS considered. Section 3 presents
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algorithms for obtaining the performance DSCTP for system components consist-
ing of either standby elements or repairable binary elements. Section 4 gives
examples of the DSCTP evaluation. Section 5 describes the UGF technique for
obtaining the DSCTP of the entire system performance based on DSCTPs of its
components’ performances. Section 6 presents illustrative examples of obtaining
the system performance DSCTPs. Section 7 concludes the chapter and outlines the
optimization problems that can be solved based on the presented methodology.

2 System Model and Performance Metrics

Two types of MSSs are considered in this chapter, both of which contain
I s-independent components composing a general series parallel structure.

In the first type of MSSs, each component i consists of Ni non-repairable binary
elements configured as a 1-out-of-Ni warm standby structure, where one element is
online and functioning with the remaining elements being kept in a warm standby
mode. In the case of the online element failing, according to a pre-defined sequence
a standby element is activated to take over the task of the component. If the chosen
standby element is not available (fails before it should be activated), the next
element in the sequence is checked etc. Elements within the same component can
be non-identical, characterized by different time-to-failure distributions and nominal
performance rates. Thus, depending on the element functioning at the moment, the
performance Gi(t) of each component i can vary dynamically, and be modeled using
a DSCTP.

In the second type of MSSs, each component consists of a single binary
repairable element with known time-to-failure and repair time distributions as well
as nominal performance. Depending on the status of the element at the instant of
time t, the performance Gi(t) of component i can dynamically change from zero
(failure) to nominal (operation), which constitutes a DSCTP with two discrete
states.

The entire system needs to meet a random demand that can be specified by a
distribution depending on weather conditions, time of day, season, etc. The demand
is also modeled using a DSCTP. In many applications the demand distribution is
obtained empirically for specific time periods (times of day, seasons, parts of
production cycle etc.)

The considered models are based on the following assumptions.

• The time-to failure and repair time distributions of elements are independent.
• Different components are statistically independent.
• The failure detection is perfect.
• The repair/replacement starts immediately after the failure.
• Specific elements have fixed performance during their operation.
• All the system elements are available in the beginning of the mission.
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2.1 Generic Model of Series Parallel MSSs

For modelling behaviour of an MSS, it is necessary to analyse characteristics of its
components. In the first type of MSSs, any system component i can assume Ni + 1
states, corresponding to different performance levels or rates. Specifically, com-
ponent i’s performance rate at a time instant t can be modelled using a discrete
random variable Gi tð Þ∈ gi = gi, 0, gi, 1, . . . , gi,Nif g. Let pi,k(t) be the probability that
component i operates at level gi,k at time t, i.e., pi,k(t) = Pr{Gi(t) = gi,k}. The two
vectors pi tð Þ= fpi, 0 tð Þ, pi, 1 tð Þ, . . . , pi,Ni ðtÞg and gi = fgi, 0, gi, 1, . . . , gi,Nig can
determine the performance distribution of random variable Gj(t) at any time instant
t. The second type of MSSs can be considered as a special case of the above model,
where pi tð Þ= pi, 0 tð Þ, pi, 1 tð Þf g and gi = gi, 0, gi, 1f g= f0,ωig determining the
DSCTP Gi(t) of component i consisting of a single repairable binary-state element
with nominal performance ωi.

Performance rates of its constituent components unambiguously determine the
performance rate of a system; their mapping relation can be defined by a function
called system structure function ϕðG1, . . . ,GIÞ. The system structure function and
probability mass functions (pmf) of performances of system elements at any time
instant t give the generic model of the considered MSS, as shown in (1).

gi, piðtÞ, 1≤ i≤ I, 1≤ t≤ T ,

VðtÞ=ϕðG1ðtÞ, . . . , GIðtÞÞ, VðtÞ∈ fv1, . . . , vKg ð1Þ

The DSCTP V(t) in (1) can be determined by pmf of the entire system perfor-
mance at t as

wkðtÞ=PrfVðtÞ= vkg, where 0≤ k≤K. ð2Þ

The system must meet a random demand D(t), defined by two vectors d = {d0,
…, dL} and h(t) = {h0(t),…, hL(t)}, where hl(t) = Pr{D(t) = dl} for l = 0, 1,…, L.

2.2 MSS Dynamic Performance Metrics

Based on the DSCTPs of V(t) and D(t), the following dynamic performance metrics
can be defined for the considered MSSs.

• The expected system performance at time t

cðtÞ= ∑
K

k=0
vkwkðtÞ ð3Þ
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• The expected amount of work the system can complete in time T

CðTÞ=
ZT

0

cðtÞdt=
ZT

0

∑
K

k =0
vkwkðtÞdt; ð4Þ

• The expected instantaneous system availability at time t

aðtÞ= ∑
L

l=0
hlðtÞ ∑

K

k=0
wkðtÞ1 dl ≤ vkð Þ

� �
; ð5Þ

• The expected system availability during the system mission time T

A=
1
T

ZT

0

aðtÞdt= 1
T

ZT

0

∑
L

l=0
hlðtÞ ∑

K

k=0
wkðtÞ1 dl ≤ vkð Þ

� �
dt; ð6Þ

• The expected instantaneous unsupplied demand at time t

eðtÞ= ∑
L

l=0
hlðtÞ ∑

K

k=0
wkðtÞmax 0, dl − vkð Þ

� �
ð7Þ

• The expected total unsupplied demand during mission time T

E=
ZT

0

eðtÞdt =
ZT

0

∑
L

l=0
hlðtÞ ∑

K

k=0
wkðtÞmax 0, dl − vkð Þ

� �
dt. ð8Þ

• If the system must complete a predetermined amount of work θ, the expected
mission time is

τðθÞ= arg
Zτ

0

∑
K

0
vkwkðtÞdt= θ

0
@

1
A. ð9Þ

To evaluate system performance metrics (3)–(9), an iterative algorithm is pre-
sented in Sect. 3, which is used for obtaining the description of DSCTP character-
izing components’ performances in the form of gi, pi(t), 1 ≤ i ≤ I, 1 ≤ t ≤ T in (1).

Then a generalized reliability block diagram (RBD) method based on the UGF
technique is implemented in Sect. 5 to derive the description of the DSCTP for the
entire MSS performance in the form of (2).
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3 Obtaining Performance DSCTP for Individual
Components

The DSCTP Gi(t) for each individual component i is derived for both types of
MSSs in this section.

3.1 Performance DSCTP for Warm Standby Components

To determine the DSCTP Gi(t) for 1-out-of-Ni standby component i in the first type
of MSS, vector pi tð Þ= fpi, 0 tð Þ, pi, 1 tð Þ, . . . , pi,Ni tð Þg is derived in this subsection
while vector gi = fgi, 0, gi, 1, . . . , gi,Nig is given as input parameters, where gi, 0 = 0,
gi, k = ωi, siðkÞ for k=1, . . . ,Ni.

Let the order si(1), si(2), …, si(Ni) determine the predetermined activation
sequence of elements composing component i, Tk be a random variable modeling
the time when the last element from sequence si(1), …, si(k) fails during the
operation mode, and qk(t) be the probability density function (pdf) of this random
variable. For k = 1, since only one element si(1) belongs to the sequence,
q1 tð Þ= fi, sið1ÞðtÞ, where fi, sið1ÞðtÞ is the pdf of element si(1).

With qk−1(t) and fi, siðkÞðtÞ qk tð Þ can be derived for k = 2, …, Ni. Specifically,
there exist two scenarios that can cause failure of the last element from sequence
si(1), …, si(k) at time t.

1. Scenario 1: Tk = Tk−1 = t. The last element from sequence si(1), …, si(k − 1)
fails at time t; element si(k) fails earlier during the standby mode. This scenario
can occur with probability Fi, siðkÞðtÞ, where Fi, siðkÞðtÞ is the cdf of element si(k).

2. Scenario 2: Tk = t, Tk − 1 = t− τ. The last element from sequence si(1), …,
si(k − 1) fails at certain time before t, e.g., t − τ for 0≤ τ≤ t; element si(k) fails
after spending ðt− τÞ in the standby mode and then working for time τ in the
operation mode.

Based on the two scenarios, pdf of Tk is

qkðtÞ= qk− 1ðtÞFi, siðkÞðtÞ+
Z t

0

qk− 1ðt− τÞfi, siðkÞððt− τÞδi, siðkÞ + τÞdτ. ð10Þ

In (10), 0≤ δi, siðkÞ ≤ 1 represents a deceleration factor of element si(k) within
component i. Such a factor is utilized to reflect lower stresses experienced by the
element during the warm standby mode than during the operation mode in the
commonly-used cumulative exposure model [24]. Based on (10), qk(t) can be
obtained iteratively for k = 2, …, Ni.

Next the derivation of vector pi tð Þ= fpi, 0 tð Þ, pi, 1 tð Þ, . . . , pi,Ni tð Þg is given. The
probability pi,1(t) that component i operates with performance level ωi, sið1Þ provided
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by element si(1) at time t is simply the probability that element si(1) does not fail
before time t, which is given as:

pi, 1 tð Þ=1−Fi, sið1ÞðtÞ. ð11Þ

The probability pi,k(t) that component i works with performance level ωi, siðkÞ
(i.e., element si(k) is operational) at time t can be evaluated as the probability that
Tk− 1 = t− τ for any 0≤ τ≤ t and element si(k) waiting for time t− τ in the warm
standby mode does not fail before spending at least time τ in the operation mode:

pi, kðtÞ=
Z t

0

qk− 1ðt− τÞ 1−Fi, siðkÞðδi, siðkÞðt− τÞ+ τÞ� �
dτ ð12Þ

The probability that component i’s performance is zero (i.e., all the elements of
component i fail) at time t is thus

pi, 0ðtÞ=1− ∑
Ni

k=1
pi, kðtÞ ð13Þ

3.2 Performance DSCTP for Repairable Binary Elements

Todetermine theDSCTPGi(t) for component i consisting of a single repairable element
in the second type ofMSSs, vector pi(t) = {pi,0(t), pi,1(t)} is derived in this subsection,
while vector gi = f0,ωig is given as input parameters meaning that element i functions
with nominal performance ωi and has performance 0 while under repair.

It is assumed that the repair starts immediately when an element fails. The repair
time of element i is dependent on external factors such as availability and efficiency
of repair manpower and equipment. Assume the repair time of element i is ran-
domly distributed within interval ½γmin

i , γmax
i � ð0> γmin

i > γmax
i >∞Þ with known cdf

Ψ i tð Þ ðΨ i tð Þ≡ 0 for t< γmin
i , Ψ i tð Þ≡ 1 for t> γmax

i ).
The number of repairs experienced by element i during considered mission time

T cannot exceed T ̸γmin
i . Thus, the maximal number of failures that can be expe-

rienced by this element is Ji =1+ ⌊T ̸γmin
i ⌋.

According to the repair model in [25], a coefficient πi can be used to model the
repair efficiency of element i. Particularly, πi can vary from 0 corresponding to
perfect repair (the element after repair is as good as new) to 1 corresponding to
minimal repair (the element after repair is as bad as old). Under the model of [25],
for element i with hazard rate ζi tð Þ before a repair, its hazard rate after the repair is
ζiðπit0 + tÞ, where t0 and t represent operation times of element i before and after the
repair, respectively. The pdf fi

*(t0, t) and cdf F*
i t0, tð Þ of the time-to-failure of

element i after the repair performed at time t0 are, respectively,
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f *i t0, tð Þ= fiðπit0 + tÞ ̸½1−Fiðπit0Þ� ð14Þ

and

F*
i t0, tð Þ= ½Fiðπit0 + tÞ−Fiðπit0Þ ̸� ½1−Fiðπit0Þ� ð15Þ

For element i, consider a random event denoted by ⟨Tj,Xj⟩, meaning that the j-th
failure of element i occurs at time Tj from the beginning of the mission after element
i has spent time Xj ≤ Tj in the operation mode and additional time Tj −Xj in repair.
Each event ⟨Tj,Xj⟩ corresponds to the initiation of a repair action that takes random
time Γ. For any realization of Xj, the time elapsed from the beginning of the mission
Tj can range from Xj + j− 1ð Þγmin

i to Xj + j− 1ð Þγmax
i , corresponding to the cases

where the element spends minimal and maximal time in each of the j − 1 repairs,
respectively.

Define Qj(t, x) as the joint distribution of random event parameters Tj and Xj.
Because the element spends no time in repair before the first failure and X1 =T1

Q1ðt, xÞ= fiðtÞ if x= tð Þ
0 otherwise

�
. ð16Þ

The element in the second type of MSSs must have event transition from ⟨Tj,Xj⟩

to ⟨Tj+1,Xj+1⟩ with Tj+1 ≥ Tj + γmin
i and Xj+1 ≥Xj. Note that when element i fails

immediately after the j-th repair, Xj+1 =Xj The event transition
⟨Tj,Xj⟩→ ⟨Tj+1,Xj+1⟩ happens when the element has functioned for time
Xj+1 −Xj
� �

after a repair that takes time Γ = Tj+1 −Tj
� �

− Xj+1 −Xj
� �

. Because
γmin
i ≤Γ ≤ γmax

i , the condition (17) must hold to make the event transition possible.

Tj+1 +Xj −Xj+1 − γmax
i ≤ Tj ≤ Tj+1 +Xj −Xj+1 − γmin

i ð17Þ

With functions Qj t, xð Þ, ψ i tð Þ and fi tð Þ, Qj+1 t, xð Þ can be obtained in a recursive
manner for j=1, . . . , Ji − 1 as

Qj+1ðt, xÞ=
Zx

0

Zmin x̃+ ðj− 1Þγmax
i , t+ x̃− x− γmin

ið Þ

max x̃+ ðj− 1Þγmin
i , t+ x ̃− x− γmax

ið Þ
Qjðt,̃ x̃Þψ i t− t −̃ x+ x̃ð Þf *i x ̃, x− x̃ð Þdtd̃x ̃

=
Zx

0

Zmin x̃+ ðj− 1Þγmax
i , t+ x̃− x− γmin

ið Þ

max x̃+ ðj− 1Þγmin
i , t+ x ̃− x− γmax

ið Þ
Qjðt,̃ x̃Þψ i t− t −̃ x+ x̃ð Þ fi πix̃+ x− x̃ð Þ

1−Fi πix̃ð Þ dtd̃x̃.

ð18Þ

Note that for t< x+ jγmin
i or t> x+ jγmax

i , Qj+1 t, xð Þ=0.
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The element can be under repair at time t since the mission beginning if the last
failure occurred at time t− ξ and the last repair took at least time ξ Hence, the prob-
ability that the element is under repair at time t after the occurrence of the j-th failure is

rijðtÞ=0 for t < j− 1ð Þγmin
i ð19Þ

rijðtÞ=
Zmin t, γmax

ið Þ

0

Zt− ξ− j−1ð Þγmin
i

max 0, t− ξ− j−1ð Þγmax
ið Þ

Qjðt− ξ, xÞ 1−Ψ i ξð Þð Þdxdξ for t ≥ j−1ð Þγmin
i

ð20Þ

Observe that for any k≠ j rijðtÞ and rikðtÞ are probabilities of mutually disjoint
events corresponding to different numbers of failures occurred before time
t. Therefore the overall probability that the element i undergoes repair at time t can
be obtained as sum of probabilities rijðtÞ for all the possible numbers j of
failure/repair events. Because the minimal time when the j-th element failure may
occur is j− 1ð Þγmin

i , the number of failures that can occur at time not later than
t cannot exceed 1+ t ̸γmin

i . The overall occurrence probability that element i is
under repair at time t is thus

pi, 0ðtÞ= ∑
⌊1+ t ̸γmin

i ⌋

j=1
rijðtÞ= ∑

⌊1+ t ̸γmin
i ⌋

j=1

Zmin t, γmax
ið Þ

0

Zt− ξ− j− 1ð Þγmin
i

max 0, t− ξ− j− 1ð Þγmax
ið Þ

Qjðt− ξ, xÞ 1−Ψ i ξð Þð Þdxdξ.

ð21Þ

For the binary repairable element i, pi, 1 tð Þ=1− pi, 0 tð Þ which defines the com-
ponent’s instantaneous availability.

4 Examples of Component Performance Evaluation

4.1 Warm Standby Components

Consider a warm standby component denoted by component 1, consisting of three
elements characterized by Weibull time-to-failure distributions. The scale (ηj) and
shape (βj) parameters of the distributions, deceleration factor (δj) and nominal
performance (ωj) of elements are presented in Table 1.

Figure 1 illustrates the performance level probabilities p1, j tð Þ=PrfG1 tð Þ=ωjg
for two different element activation sequences 1, 2, 3 and 3, 2, 1. According to
Table 1, the component performance can take three different values, G1(t) ∈ (20,
27, 32). Thus,
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Pr G1 tð Þ≥ 20ð Þ=Pr G1 tð Þ>0ð Þ=Pr G1 tð Þ=20ð Þ+Pr G1 tð Þ=27ð Þ+Pr G1 tð Þ=32ð Þ,
Pr G1 tð Þ≥ 27ð Þ=Pr G1 tð Þ=27ð Þ+Pr G1 tð Þ=32ð Þ, Pr G1 tð Þ≥ 32ð Þ=Pr G1 tð Þ=32ð Þ.

Figure 2 shows the cumulative performance distribution Pr(G1(t) ≥ x) of
component 1 under the two activation sequences. It can be observed that the
probability Pr(G1(t) ≥ 32) is always larger for sequence 3, 2, 1 where element 3
with the greatest performance is activated first; the probability Pr(G1(t) ≥ 20) is
always slightly larger for sequence 1, 2, 3 where the most reliable element 1 is
activated first.

4.2 Repairable Binary Element

Consider a repairable element with a Weibull time-to-failure distribution having cdf

of F tð Þ=1− exp − t ̸20ð Þ2
h i

. The random repair time follows a truncated normal

Table 1 Parameters of
elements composing standby
component 1

Element j ηj βj δj ωj

1 280 1.5 0.2 20
2 250 1.1 0.4 27
3 180 2 0.2 32

(A) Sequence 1,2,3 (B) Sequence 3,2,1

Fig. 1 Performance level probabilities p1,j(t) [27]. a Sequence 1, 2, 3 b Sequence 3, 2, 1
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distribution with the following parameters: γmin = x+5, γmax = x+10, μ= x+7
(mean), σ =2 (standard deviation). Figure 3 illustrates the reliability 1−F tð Þ,
instantaneous availability a tð Þ and repair time pdf ψ tð Þ for x=0, x=10 and x=30
of the element. The perfect repair is assumed, i.e., π =0. As the value of x increases
(i.e., the repair time increases), the element instantaneous availability reduces
significantly.

(A) Sequence 1,2,3 (B) Sequence 3,2,1

Fig. 2 Cumulative performance distributions Pr(G1(t) ≥ x) [27]. a Sequence 1, 2, 3 b Sequence
3, 2, 1

Fig. 3 Performance metrics of the example element for different repair time distributions
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5 Obtaining Performance DSCTP for Entire MSS5

5.1 UGF (U-Function) Technique

The polynomials in (22) give the u-function modeling the DSCTPs of random
performance of s-independent component i at time t.

ui(z, t) = ∑
Ni

ni =0
pi, niðtÞzgi, ni . ð22Þ

The composition operator of (23) is used to obtain the u-function modeling the
DSCTP of the system random performance VðtÞ at time t.

Uðz, tÞ=⊗ϕðu1ðz, tÞ, . . . , uIðz, tÞÞ=⊗ϕð ∑
N1

n1 = 0
p1, n1ðtÞzg1, n1 , . . . , ∑

NI

nI =0
pI, nI ðtÞzgI, nI Þ

= ∑
N1

n1 = 0
∑
N2

n2 = 0
. . . ∑

NI

nn =0
∏
I

i=1
pi, niðtÞzϕðg1, n1 , ..., gI, nI Þ

� �

ð23Þ

For each time instance t, the polynomial U(z, t) models all the possible disjoint
combinations of realizations of s-independent random variables G1ðtÞ, . . . ,GIðtÞ by
relating the occurrence probability of each combination to the value of the structure
function ϕðG1ðtÞ, . . . ,GIðtÞÞ for this particular combination. This polynomial can
eventually take the form of (24), representing performance distribution of the entire
system at time t.

U(z, t) = ∑
K

k=0
wkðtÞzvk , ð24Þ

With the MSS generic model in the form of (1), the system performance metrics
(3)–(9) can be obtained through the following 3-step procedure.

1. Apply the u-function (22) to represent the pmf of random performance distri-
bution of each component i at time t.

2. Apply the composition operator ⊗ϕ (23) to obtain the u-function U(z, t) of the
entire system random performance distribution V(t).

3. Evaluate metrics (3)–(9) based on pmf (2) modeled by the u-function U(z, t)
(24).

Steps 1 and 3 are straightforward. Step 2 often involves complex computations
because it can be difficult to derive the system structure functions. According to
studies in [17], representing the structure function recursively can be beneficial for
computation simplicity and derivation clarity. For a system with complex series
parallel structure, its structure function can be represented as a composition of
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structure functions of the system’s s-independent subsystems. Those subsystems
contain only components configured in purely series or in purely parallel. During
the aggregation process, the RBD method is commonly applied to distinguish
recurrent subsystems and replace them with equivalent single components in a
graphical representation of system structure, as detailed in Sect. 5.2.

5.2 Generalized RBD Method for Multi-state
Series-Parallel System

For obtaining the u-function of a series parallel system, the composition operators is
applied recursively to obtain u-functions of intermediate purely series or purely
parallel subsystems using the following procedure.

1. Identify any pair of components (i and j) that are connected in parallel or in
series in the considered MSS.

2. Obtain the u-function of each pair (i and j) by applying the composition operator
⊗φ over the u-functions of these two components:

Ufi, jgðz, tÞ= uiðz, tÞ⊗ϕujðz, tÞ= ∑
Ni

ni =0
∑
Nj

nj =0
pi, niðtÞpj, njðtÞzϕðgi, ni , gj, nj Þ, ð25Þ

The function ϕ in (25) depends on the interaction nature between the two s-
independent components’ performances. For example for a production system with
throughput being its performance metric, if components i and j operate in parallel,
the sum of throughputs of the two components gives the total throughput, as
determined in (26).

ϕ Gi tð Þ,Gj tð Þ
� �

=Gi tð Þ+Gj tð Þ ð26Þ

If two components process some material consecutively (i.e., forming a series
connection), the performance of the component with the minimal performance (i.e.,
the bottleneck) determines the entire system throughput, as shown in (27).

ϕ Gi tð Þ,Gj tð Þ
� �

=min Gi tð Þ,Gj tð Þ
� � ð27Þ

3. Replace the component pair with a single component that has the u-function
determined in step 2.

4. If there are more than one component remained in the system, then return to step 1.

The final u-function obtained from the above algorithm models performance
distribution of the entire series parallel system.

172 G. Levitin and L. Xing



6 Examples of System Performance Evaluation

6.1 Systems with Warm Standby Components

Figure 4 illustrates an example of MSS with each component consisting of several
binary elements configured in a warm standby subsystem. All elements have
Weibull time-to-failure distributions with parameters presented in Table 2.

Fig. 4 Example series parallel MSS with warm standby components

Table 2 Parameters of
elements composing
components

Component i Element j ηi,j βi,j δi,j ω i,j

1 1 280 1.5 0.2 20
2 250 1.1 0.4 27
3 180 2 0.2 32

2 1 300 1 0 18
2 200 1.4 0 25

3 1 380 2.2 0.5 10
2 360 1.8 0.7 12
3 270 1.1 0.5 15
4 210 1.1 0.6 17

4 1 400 1 0.2 37
2 400 1 0.2 37

5 1 400 1.4 0.3 30

2 540 1.2 0.1 40
6 1 380 1.1 0.2 35

2 340 1.1 0.1 40
3 280 1.4 0.1 45
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A random demand should be supplied by the system, which changes periodically
with distribution as follows: d = {63, 50, 46, 22}, for t < 50 and 100 < t < 150
h(t) = {0.2, 0.4, 0.4, 0}; for 50 ≤ t ≤ 100 and t ≥ 150, h(t) = {0, 0.3, 0.2, 0.5}.
The components’ interaction corresponds to functions (26) and (27). The time of
replacement by standby elements is negligible compared to the mission time
T = 200 (days).

Assume the elements within each component are activated according to their
numerical order. For mission time T = 200, the expected system availability is
obtained as A(T) = 0.629 and the expected unsupplied demand is obtained as
E(T) = 539.9. Figure 5 illustrates the system cumulative performance distribution
Pr(V(t) ≥ x), instantaneous availability a(t) and unsupplied demand e(t).

6.2 Systems with Repairable Binary Elements

Assume that the system presented in Fig. 4 consists of repairable binary elements
with Weibull time-to-failure distribution parameters and performances presented in
Table 3. Table 3 also gives repair efficiency coefficients πj and parameters related
to the truncated normal distributions of elements’ repair time. The time horizon of

Fig. 5 Performance metrics of the example series parallel system with standby components
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interest is T = 50. The random system demand can take four different values
d = {70, 50, 40, 20} and its distribution is h(t) = {0.05, 0.25, 0.45, 0.25}, which
does not change during T.

The performance metrics obtained for the considered system are A = 0.6704,
C = 2565, E = 267.3 and the expected time needed to complete the amount of
work θ=1700 is τ=29.75.

Figure 6 presents the system cumulative performance distribution Pr V tð Þ≥ xð Þ
as a function of time. Figure 7 presents the instantaneous system performance
metrics α tð Þ, c tð Þ and e tð Þ.

Table 3 Parameters of
repairable elements

Element j ηj βj ω,j πj dmin
j dmax

j μj σj

1 60 2.0 33 0.30 15 20 17 2
2 78 1.1 22 0.70 10 40 25 100
3 90 1.0 19 0.80 28 48 32 5
4 75 1.1 48 0.00 30 40 35 2
5 60 1.0 45 0.20 5 15 10 6
6 80 2.0 33 0.00 10 15 12 100

Fig. 6 Cumulative
performance distribution Pr(V
(t) ≥ x) of example series
parallel system with
repairable elements
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7 Summary

This chapter demonstrates a methodology that extends the state-of-the-art in system
modeling by considering multi-state series parallel systems with components sub-
ject to dynamic performance. Each system component can be either a heteroge-
neous warm standby configuration of binary elements or a repairable binary
element. The entire system is considered being available if it can meet a
pre-specified random system demand distribution. Iterative algorithms are described
for determining dynamic stochastic performances of individual components.
A generalized RBD method based on UGFs is implemented for analyzing expected
system availability, performance and unsupplied demand over a specific mission
time for the entire series parallel MSS.

The presented algorithms allow fast determination of system dynamic perfor-
mance metrics. Based on these algorithms different optimization problems can be
solved. For example, as shown in Sect. 4.1, standby element activation sequence
can have significant impacts on component and thus system performance metrics.
Therefore solving the following two problems can considerably improve system
performance. The optimal operation problem finds the element activation sequence
of each component maximizing system availability or minimizing unsupplied
system demand. The optimal design problem finds both component structures and
element activation sequences minimizing the total cost consisting of design and
operation expenses. In addition, increased elements loading can on one hand
improve the system performance; on the other hand, it can cause failures that are
more frequent and, thus reduces the system availability. Hence, the element loading
can be optimized to achieve a proper balance among different system performance
metrics. Examples of solving the optimization problems based on the suggested
methodology can be found in [26, 27].

Fig. 7 System instantaneous performance metrics α(t), c(t) and e(t)
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