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Abstract We present an extension of the phase-type methodology for modeling of

lifetime distributions to include the case of competing risks. This is done by consid-

ering finite state Markov chains in continuous time with more than one absorbing

state, letting each absorbing state correspond to a particular risk. The special struc-

ture of Coxian phase-type models is considered in particular. The chapter emphasizes

the use of phase-type models in statistical modeling and inference for survival and

competing risks data.
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1 Introduction

Phase-type distributions represent the time to absorption for a finite state Markov

chain in continuous time. The simplest examples are mixtures and convolutions of

exponential distributions and phase-type distributions have therefore received much

attention in applied probability, in particular in queuing theory. Here they generalize

the celebrated Erlang distribution. Nowadays, phase-type distributions are applied

in various areas such as reliability analysis and medical statistics.

In its generality, the class of phase-type distributions is both flexible and con-

ceptually simple to work with. Interestingly, the class of phase-type distributions is

dense in the sense that any lifetime distribution can be approximated arbitrarily close

by a phase-type distribution. For a comprehensive introduction to the topic we refer

to Neuts [16], while a shorter and very useful introduction is given by Aalen [1].
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The potential usefulness of phase-type distributions in statistical modeling and

inference has more recently been revealed in the literature. In statistical applica-

tions there seems to be a particular interest in the use of so-called Coxian phase-type

models, first suggested by Cox [8]. These are models for phenomena where the units

go through stages (phases) in a specified order, and may transit to the absorbing

state (corresponding to the event of interest) at any stage. Coxian phase-type mod-

els have recently been successfully applied in health care studies ([10, 11, 15, 18]).

The problem of fitting more general phase-type distributions to lifetime data has also

been considered in the literature, both in a frequentist setting using the EM-algorithm

(Asmussen et al. [3]), and in a Bayesian setting using MCMC (Bladt et al. [5]).

The main purpose of the present chapter is to give the necessary tools and results

in order to extend the phase-type methodology to include competing risks. The lat-

ter concept has been introduced for cases where one in addition to a lifetime have

information about the specific cause of failure or death. The classical examples of

competing risks consider individuals subjected to multiple causes of death. A famous

example is due to David Bernoulli who around 1760 studied the problem of how to

disentangle the risk of dying from smallpox from other causes. In cancer research

one may consider both the age at onset of cancer and the cancer type. In reliability

engineering, one may observe both the time to breakdown of a mechanical compo-

nent and the root cause, for example vibration or corrosion. An introduction to the

theory can be found in, e.g., Lawless [13, Chap. 9].

The basic ingredient in a competing risks phase-type model is a finite state

Markov chain in continuous time with more than one absorbing state, where each

absorbing state corresponds to a particular risk. Expressions for cause specific hazard

functions, cumulative incidence functions etc. can now be given in terms of the tran-

sition matrix of the underlying Markov chain. Special structures like Coxian models

may still be studied in the competing risks framework. Statistical inference for com-

peting risks using phase-type models is of particular interest in the chapter. This

extends approaches in the literature for ordinary phase-type models, and some basic

aspects of this extension will be emphasized by studying simple examples involving

Coxian models.

2 Phase-Type Distributions

A phase-type distribution can be described in terms of a Markov process {X(t); t ≥
0}, say, where the system moves through some or all of K transient states, or phases,

before moving to a single absorbing state K + 1. The time of absorption, T , is then

said to have a phase-type distribution. A simple illustration is given in Fig. 1, where

K = 7 and state K + 1 = 8 is absorbing (state 9 will be considered later).

A Coxian phase-type distribution is obtained when all the transitions from the

transient states are either from i to i + 1 or to the absorbing state K + 1, see Fig. 2.

The resulting restriction on the permitted transitions is in fact not as strong as it may
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Fig. 1 The state-space and permitted transitions of an absorbing Markov chain, with absorbing

state(s) 8 (8 and 9)

Fig. 2 A coxian phase-type model

look, since any phase-type distribution based on a Markov chain where each move

is to a higher numbered state, can be brought on Coxian form (see, e.g., O’Cinneide

[17]).

2.1 Model Specification

The infinitesimal transition matrix 𝐀 of the Markov chain producing the phase-type

distribution is a (K + 1) × (K + 1) matrix given on block form as

𝐀 =
[
𝐐 𝓵
𝟎 0

]
. (1)

Here 𝐐 is the K × K matrix corresponding to the transitions between the transient

states; 𝓵 is the K × 1 vector defining direct transition intensities from the transient

states to the absorbing state; while 𝟎 is a 1 × K vector of zeros. Letting 𝐏(t) be the

matrix of transition probabilities Pij(t) = P(X(t) = j|X(0) = i) it is well known (e.g.,

Ross [19, Chap. 5]) that
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𝐏(t) = e𝐀t =
∞∑
i=0

𝐀i
,

and it is then straightforward to show that (1) implies

𝐏(t) =
[
e𝐐t 𝐐−1(e𝐐t − 𝐈)𝓵
𝟎 1

]
.

From this we obtain an expression for the cumulative distribution function of T ,

F(t) = P(T ≤ t) = P(X(t) = K + 1) = 𝐩𝐐−1(e𝐐t − 𝐈)𝓵.

Here 𝐩 is the 1 × K-vector with entries pi = P(X(0) = i) for i = 1,… ,K, which

defines the initial distribution of the Markov chain.

3 Classical Competing Risks

In survival analysis one basically considers the time to failure, T , of a unit. Suppose

now that the unit can experience any one of k competing failure causes. Then for

each unit one observes both the time to failure, T , and the cause of failure, C ∈
{1, 2,… , k}. The pair (T ,C) is the observation in the case of competing risks.

In the so called latent failure time approach to competing risks one assumes that

the k causes are represented by potential failure times T1,… ,Tk, where one only

observes the smallest time, T = minj Tj and its index C = argminj Tj.

3.1 Distributional Properties of Competing Risks

The joint distribution of the observed pair (T ,C) is completely specified by the sub-

distribution functions and their derivatives, the subdensities,

Fj(t) = P(T ≤ t,C = j), fj(t) = F′
j (t).

The interpretation of Fj(t) is as the probability of failing from cause j before time t.
In biostatistics literature, the Fj(t) are also called cumulative incidence functions.

As an extension of the concept of hazard function of a lifetime distribution, one

considers the cause-specific hazard functions,

𝜆j(t) = lim
𝛥t→0

P (t < T ≤ t + 𝛥t,C = j|T > t)
𝛥t

=
fj(t)
̄F(t)

.

The interpretation is that 𝜆j(t) is the failure rate from cause j conditional on survival

up to time t.
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3.2 The Identifiability Problem of Competing Risks

Consider here the latent failure time approach. The main interest is often in the joint

and marginal distributions of the latent failure times T1,… ,Tk. The classical problem

of competing risks is, however, that the distribution of the observable pair (T ,C) in

general does not determine the distribution of the latent failure times. In fact, several

different joint distributions of T1,… ,Tk will give rise to same distribution of (T ,C).
This non-identifiability property was noted by Cox [9] and formalized by Tsiatis [21].

The main result of Tsiatis is that for a given set of sub-distribution functions Fj(t),
there is always a unique (proxy) model with independent Tj yielding these Fj(t).

Biostatisticians have for several decades abandoned the latent failure time

approach and claim that statistical conclusions from data only should be based on

observable (i.e., identifiable) quantities like the cumulative incidence functions and

the cause-specific hazard functions.

4 Phase-Type Models for Competing Risks

As already indicated in Fig. 1, a Markov chain may have more than one absorbing

state. In the figure, both states 8 and 9 are absorbing. If we let T be the time of

absorption, and C be the identity of the absorbing state, then it is seen that (T ,C) is

of the form of the observation of a competing risks case.

More generally, consider the general setup of Sect. 2 where the Markov process

{X(t); t ≥ 0} moves among the K transient states before it is absorbed in state

K + 1. Suppose now instead that there are m > 1 absorbing states, named K + 1,K +
2,… ,K + m, say. Letting T be the time of absorption (in any one of the absorb-

ing states), and letting the cause C represent the state where absorption occurs, by

defining C = K + j if X(T) = K + j; j = 1, 2,… ,m, the pair (T ,C) can be viewed

as an observation from a classical competing risks process with possible causes

K + 1,… ,K + m.

The Coxian phase-type model can now in a straightforward manner be extended

to the competing risks case by allowing transitions to any of the m absorbing states

K + 1,… ,K + m from each of the transient states. The case m = 2 is illustrated in

Fig. 3.

4.1 Model Specification for Phase-Type Based
Competing Risks

By extending the matrix (1) to encompass m absorbing states, we obtain the infini-

tesimal matrix of the modified Markov process to be the (K + m) × (K + m) matrix

given on block form as
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Fig. 3 A coxian phase-type model for m = 2 competing risks

𝐀 =
[
𝐐 𝐋
𝟎1 𝟎2

]
. (2)

As before, 𝐐 is the K × K matrix corresponding to the transitions between the tran-

sient states. The vector 𝓵 is now replaced by the K × m matrix 𝐋 which contains

transition intensities from the transient states to the absorbing states. Further, 𝟎1 and

𝟎2 are, respectively, m × K and m × m matrices of zeros.

It is rather straightforward to show that (2) implies that the matrix of transition

probabilities Pij(t) is given by

𝐏(t) =
[
e𝐐t 𝐐−1(e𝐐t − 𝐈)𝐋
𝟎1 𝐈

]
, (3)

where 𝐈 is the K × K identity matrix. From (3) we obtain expressions for the subdis-

tribution functions, given by

Fj(t) = P(T ≤ t,C = j) = P(X(t) = j) = 𝐩𝐐−1(e𝐐t − 𝐈)𝐋𝐯j (4)

for j = 1,… ,m. By differentiation we get the subdensities

fj(t) = F′
j (t) = 𝐩e𝐐t𝐋𝐯𝐣. (5)

In these formulas, 𝐩 is the K-vector defining the initial distribution of the Markov

chain. It is often natural to assume p1 = 1. Further, 𝐯j is them-vector with jth element

equal to 1 and the rest equal to 0.

Finally, the cause-specific hazard rate is given by

𝜆j(t) = lim
𝛥t→0

P(T ≤ t + 𝛥t,C = j|T > t)
𝛥t

=
F′
j (t)

P(T > t)
=

𝐩e𝐐t𝐋𝐯j
𝐩e𝐐t𝟏K

(6)

(e.g., Braarud [7]). Here 𝟏K is a K-vector of all 1s.
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5 Statistical Inference in Coxian Phase-Type Models

In the present and next section we consider the problem of statistical inference in

phase-type models, for data containing survival times only as well as for competing

risks data.

Suppose one has a sample of n independent units, where for the ith unit one

observes the lifetime Ti and, if applicable, a cause of failure, Ci. The task is to fit

phase-type models to the data, where Coxian models will be considered first.

In practice, some of the lifetimes may be censored. Most of the methods to be

considered are able to handle censorings, but this problem will not be pursued in the

following. This also applies to the inclusion of covariates in the data.

5.1 Coxian Survival Models

Faddy, Graves and Pettitt [10] and McGrory, Pettitt and Faddy [15] considered,

respectively, maximum likelihood estimation and Bayesian estimation for Coxian

models. In the latter article, the authors used a reversible jump MCMC in their analy-

sis, thus including also K as a parameter in the model. The authors analyze an exam-

ple dataset comprising lengths of hospital stays of a sample of patients collected

from two Australian hospitals to produce a model for a patient’s expected length of

stay. In particular, posterior distributions for the number of phases and the regression

parameters were produced.

In the former article, Faddy et al. [10] considered different variations of Cox-

ian models (Fig. 2), in particular an interesting model assuming 𝜇1 = 𝜇2 = ⋯ =
𝜇K−3 = 0 and 𝜆1 = 𝜆2 = ⋯ 𝜆n−3 = 𝜇n−2 + 𝜆n−2 = 𝜆. Such a structure corresponds to

a gamma-distributed component from the first n − 2 phases, which makes the model

more flexible.

Slud and Suntornchost [20] advocated the use of parametric models based on

phase-type distributions with a low number, say 3–8, of parameters. A main conclu-

sion of [20] is that simple phase type models can do almost as well as nonparametric

methods, where the latter are commonly the preferred choices in biostatistics and

partly in reliability analysis.

Motivated by the above mentioned articles and correspondng conclusions, we

shall next show by examples how corresponding statistical analyses can be made

with Coxian competing risks models.

5.2 Model 1: Coxian Competing Risks Model with K = 𝟐
Transient States and m = 𝟐 Absorbing States

This model is illustrated in Fig. 4. The corresponding infinitesimal intensity

matrix is
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Fig. 4 Model 1

𝐀 =
⎛⎜⎜⎜⎝

1 2 3 4
1 −a k l1 m1
2 0 −b l2 m2
3 0 0 0 0
4 0 0 0 0

⎞⎟⎟⎟⎠
,

where a = l1 + m1 + k, b = l2 + m2. Hence

𝐐 =
[
−a k
0 −b

]
, 𝐋 =

[
l1 m1
l2 m2

]
.

The subdistribution functions, subdensities and cause-specific hazard functions are

found from (4) to (6), and for cause 3 they are, respectively,

F3(t) =
(1 − e−at) l1 −

k(e−bt−e−at)l2
a−b

a
−

k
(
e−bt − 1

)
l2

ab

f3(t) =
[
l1 −

kl2
a − b

]
e−at +

kl2
a − b

e−bt (7)

𝜆3(t) =
l1(a − b)e−at + k

(
e−bt − e−at

)
l2

(a − b)e−at + k
(
e−bt − e−at

) .

Note that the formulas are valid only when a ≠ b. The case a = b follows by taking

limits as b → a (see next subsection). The corresponding formulas for cause 4 are

similar, replacing the lj by mj.
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5.3 Parametric Identifiability of Model 1

Suppose we will use Model 1 in a competing risks case where the pair (T ,C) is

observed, where C = 3 and C = 4 represent the absorbing states. In order to esti-

mate the five parameters of the model consistently, we will need the model to be

identifiable. This problem will next be considered in detail below, presumably indi-

cating the flavor of the problem also for larger models.

The general identifiability problem of competing risks has been described in

Sect. 3.2. The problem is that the underlying probability mechanism is not neces-

sarily identifiable from observations of the pair (T ,C). For the present model, the

question of identifiability is the following: Does the distribution of the pair (T ,C)
determine the five parameters of the model, k, l1, l2,m1,m2?

The functions f3(t) and f4(t) are from (7) necessarily given on the form

f3(t) = A3e−𝜆1t + B3e−𝜆2t, f4(t) = A4e−𝜆1t + B4e−𝜆2t.

Knowing the distribution of (T ,C) means that 𝜆1, 𝜆2,A3,B3,A4,B4 are known to

us. We may then without loss of generality assume that 𝜆1 < 𝜆2 (the case when they

are equal will be treated separately). To identify the parameters of the model, we

need to consider two cases, a < b and a > b.

Consider first the case a < b. By (7) we must have

a = 𝜆1, b = 𝜆2.

Further,

l1 −
kl2

a − b
= A3,

kl2
a − b

= B3, m1 −
km2
a − b

= A4,
km2
a − b

= B4

From this it is straightforward to show that the five parameters of the model are

uniquely given by

l1 = A3 + B3, l2 =
(𝜆1 − 𝜆2)B3

𝜆1 − A3 − B3 − A4 − B4
,

m1 = A4 + B4, m2 =
(𝜆1 − 𝜆2)B4

𝜆1 − A3 − B3 − A4 − B4
,

k = 𝜆1 − A3 − B3 − A4 − B4.

Suppose then that a > b. Then obviously a = 𝜆2 and b = 𝜆1 and it can be shown that

the five parameters are uniquely given by
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Table 1 Two different sets of parameter values corresponding to the subdensities (8)–(9)

Assumption k l1 m1 l2 m2

a < b 1 2 1 3 2

a > b 2 2 1 5∕2 3∕2

l1 = A3 + B3, l2 =
(𝜆2 − 𝜆1)A3

𝜆2 − A3 − B3 − A4 − B4
,

m1 = A4 + B4, m2 =
(𝜆2 − 𝜆1)A4

𝜆2 − A3 − B3 − A4 − B4
,

k = 𝜆2 − A3 − B3 − A4 − B4.

As an example, suppose we have “observed” that

f3(t) = 5e−4t − 3e−5t, (8)

f4(t) = 3e−4t − 2e−5t. (9)

By using the above results we conclude that there are exactly two different sets of

parameters that give the above functions f3(t) and f4(t), see Table 1.

If a = b in Model 1, then it follows by taking the limit as b → a in (7) that

f3(t) = l1e−at + kl2te−at, f4(t) = m1e−at + km2te−at.

The observed f2(t) and f3(t) are hence necessarily of the form

f3(t) = C3e−𝜆t + D3te−𝜆t, f4(t) = C4e−𝜆t + D4te−𝜆t.

It follows immediately that l1 = C3 and m1 = C4 and from this that l2,m2.k are

uniquely given as well.

5.4 Identifiability of Coxian Phase-Type Models

It follows from the above that the parameters of Model 1 are identifiable in the case

when a = b, but that, in the case where a ≠ b, an additional assumption on the rela-

tive size of a and b has to be made as part of the prior specification of the model.

In a practical application of Model 1 we might assume that state 2 involves a more

severe condition for the unit than state 1. As a result of this, the transition rates to the

absorbing states are expected to be higher from state 2 than from state 1. In this case

it might be reasonable to assume that a < b, in which case we have an identifiable

model.
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For Model 1, it is seen that the eigenvalues of Q determine the exponents of the

exponentials in the expressions for the subdensity functions f3(t) and f4(t). More

generally, considering the general Coxian competing risks model in Fig. 3, it is seen

that the eigenvalues of 𝐐 are

𝜌i = 𝜇i1 + 𝜇i2 + 𝜆i

for i = 1, 2,… ,K, where by convention we put 𝜆K = 0. It follows that the subdensity

function fK+1 is of the form

fK+1(t) =
K∑
i=1

Aie−𝜌it

provided the 𝜌i are all different, and similarly for fK+2(t). If, say, 𝜌i has multiplicity

r > 1, then terms of the form Ctje−𝜌it for j = 1, 2,… , r − 1 are included in the func-

tions. Motivated by the study of Model 1, we may in general have to consider all

permutations of the 𝜌i in order to check identifiability.

We close the discussion on identifiability by noting that identifiability problems

may also occur in ordinary Coxian models with a single absorbing state. To be

explicit, consider Fig. 4 and assume that m1 = m2 = 0. Then f3(t) in (7) is simply

the density function of the time T to absorption in state 3. We will now show by

an example that two different parameterizations can give rise to the same density

function. Namely, let (l1, l2, k) be given by either (2, 4, 1) or (2, 3, 2). In both cases

we obtain the density function of T equal to f (t) = 6e−3t − 4e−4t. Hence the model

is not identifiable from data on lifetimes T . Again, a prior choice of whether l1 + k
is greater or smaller than l2 has to be made.

5.5 Case Study: Pneumonia on Admission
to Intensive Care Unit ([4])

Beyersmann, Allignol and Schuhmacher [4] present data for 747 patients at an inten-

sive care unit, where the purpose is to examine the effect of hospital-acquired infec-

tions. The data set contains information on pneumonia status on admission, time of

intensive care unit stay and ‘intensive care unit outcome’, either hospital death or

alive discharge.

In order to increase flexibility compared to Model 1 we build on the earlier men-

tioned idea of Faddy et al. [10] by adding two states. The model is presented in

Fig. 5, and we shall denote it by Model 2. We may think of the extended model as

adding to the waiting time in state 3 a gamma-distributed length of time. Note that

the approach of [10] would make the additional assumption that l1 + m1 + k1 = k0.

In this case the total waiting time in state 3 is gamma-distributed.
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Fig. 5 Model 2

Table 2 Estimated parameters from Model 2 for the pneumonia data of [4]

k0 k1 l1 l2 m1 m2

Pneumonia 0.079642 0.064075 0.102990 0.015845 0.479752 0.000569

No

pneumonia

0.749985 0.072420 0.009248 0.008576 0.155579 0.047151

We made separate analyses for patients with and without pneumonia at admis-

sion. The absorbing states 5 and 6 correspond to, respectively, hospital death and

discharge from hospital. The estimates of the parameters are given with one line for

each analysis in Table 2.

In order to evaluate the results, we present in Fig. 6 plots of the cumulative

incidence functions obtained from Model 2, together with nonparametric estimates

found by using the Aalen-Johansen estimators (see, e.g., Borgan [6]). The parametric

estimates seem to perform very well, a conclusion which confirms the findings and

suggestions of [20] as reported earlier.

6 Statistical Inference for General Phase-Type
Distributions

Asmussen, Nerman and Olsson [3] presented a general approach to estimation of

phase-type distributions from lifetime data. Their idea was to consider the class of

phase-type distributions, for a fixedK, as a multi-parameter exponential family. Since

one then obviously is in the setting of incomplete observations, they suggested to

implement the EM algorithm. Lindqvist [14] gave some details on how to extend the

approach of [3] to the competing risks case.
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Fig. 6 Estimated cumulative incidence functions for the pneumonia-data of [4]. The smooth esti-

mates are based on model 2 and are compared to nonparametric estimates with corresponding point-

wise confidence intervals for each curve

Bladt, Gonzalez and Lauritzen [5] considered Bayesian estimation of phase-type

distributions, constructing a Gibbs sampler which draws phase-type parameters from

their posterior distribution. They reported as a main advantage of their method, that

the uncertainty of estimates of complex functionals of the phase-type distributions

could easily be obtained. It is not so clear, on the other hand, how to do this for

the EM-algorithm approach. Aslett and Wilson [2] have improved on the method

of Bladt et al. [5], and also provide an R-package for practical computation. The

approach of Bladt et al. [5] was extended to the competing risks case by Laache [12].

In practice, lifetime data will typically include measured covariates. Most of the

methods considered above can be extended to this case, and in some cases this is

already a feature of the methods (e.g., [10] and [15]). Lindqvist [14] presented some

ideas on a general approach for inclusion of covariates.
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