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Abstract In this work we are focused on multi-state systems modeled by means of

a special type of semi-Markov processes. The sojourn times are seen to be indepen-

dent not necessarily identically distributed random variables and assumed to belong

to a general class of distributions closed under extrema that includes, in addition to

some discrete distributions, several typical reliability distributions like the exponen-

tial, Weibull, and Pareto. A special parametrization is proposed for the parameters

describing the system, taking thus into account various types of dependencies of the

parameters on the the states of the system. We obtain maximum likelihood estimators

of the parameters and plug-in type estimators are furnished for the basic quantities

describing the semi-Markov system under study.

Keywords Multi-state system ⋅ Reliability theory ⋅ Survival analysis ⋅ Semi-

Markov processes ⋅ Parameter estimation ⋅ Time-varying model ⋅ Scale parameter

1 Introduction

Technical and technological systems assuming multiple possible states are known as

multi-state systems (MSS). Any system that is allowed to assume a finite number of

performance rates can be modeled by means of a multi-state system.

Such modeling approaches, which are more realistic and provide more accu-

rate representations of engineering systems, are much more complex and present

major difficulties in system definition and performance evaluation. MSS reliability

has received a substantial amount of attention in the past four decades with basic

concepts being introduced in the 70s by [1–4]. Extensions and generalizations can

V.S. Barbu

Laboratoire de Mathématiques Raphaël Salem, Université de Rouen,

Avenue de l’Université, BP.12, UMR 6085, F76801 Saint-Étienne-du-Rouvray, France

e-mail: barbu@univ-rouen.fr

A. Karagrigoriou (✉)

Department of Mathematics, University of the Aegean, Samos, Greece

e-mail: alex.karagrigoriou@aegean.gr

© Springer International Publishing AG 2018

A. Lisnianski et al. (eds.), Recent Advances in Multi-state Systems Reliability,

Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-63423-4_4

59



60 V.S. Barbu and A. Karagrigoriou

be found in [5–7]. Essential achievements that were attained up to the mid 1980s

are reflected in [8, 9], where one can find the state of the art in the field of MSS

reliability. For theoretical advances and significant applications in MSS reliability

theory in recent years, the reader is referred to [10–12]. For general references on

continuous-time semi Markov systems and associated reliability topics, one can see

[13–17].

Consider a process defined on a probability space (𝛺,F ,ℙ) with state space

E = {1, 2,… ,N}. For example, state “N” is associated with nominal performance

of the system and state “1” is associated with total failure. Markov processes repre-

sent typical tools for modelling such a system. In this work we focus on multi state

systems that we model by means of semi-Markov processes, which generalize typi-

cal Markov jump processes by allowing general distributions for sojourn times [13].

For this reason, the semi-Markov processes are more adapted for reliability studies

(and for applications in general).

The sojourn times in a given state are assumed to belong to a general class of dis-

tributions, cf. Relation (2). The interest of this distribution class is twofold. First, it

is worth noticing that the class is closed under extrema (cf. [18]) and secondly it uni-

fies under a single umbrella, not only some discrete distributions but also and more

importantly, several typical reliability distributions like the exponential, Weibull,

Rayleigh and Pareto distributions.

In this chapter we consider a special case of the semi-Markov system introduced

in [19]. In that article, the system under study depended on some parameters aij,
with i, j belonging to the state space E. In the present work, the dependence of the

parameters aij on the states i and j is made explicit through a function g(i, j). We also

provide several examples of such a function g that could be of interest in different

modeling situations, according to the application under study. It is important to indi-

cate that time- and state-varying parameters become quite popular since more and

more systems are subject to dynamic changes. Note that the problem of time- and

state-varying parameters has received in recent years, increased attention (see e.g.

[20–23]) because of an ever-growing body of evidence that typical assumptions of

stable parameters often appear invalid.

The chapter is organized as follows. Some preliminaries regarding semi-Markov

processes are presented in Sect. 2; here we also describe the special case of the semi-

Markov system introduced in [19], developed in a multi-state system framework. In

Sect. 3 we describe the class of distributions considered in this work and we propose

a special parametrization of these distributions. In Sect. 4 the likelihood function

and the associated maximum likelihood estimators of the parameters of interest are

provided.

2 A Special Case of Semi-Markov Multi-state Systems

As previously mentioned, we assume that the random system has finite state space

E = {1,… ,N}, N < ∞ and its time evolution is governed by a stochastic process

Z = (Zt)t∈ℝ+
. Let us denote by S = (Sn)n∈ℕ the successive time points when state
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changes in (Zt)t∈ℝ+
occur and by J = (Jn)n∈ℕ the successive visited states at these

time points. Set also X = (Xn)n∈ℕ for the successive sojourn times in the visited

states. Thus, Xn = Sn − Sn−1, n ∈ ℕ∗
, and, by convention, we set X0 = S0 = 0.

Let us first recall the definition of a Markov renewal and semi-Markov process

(cf. [13]). If (J, S) = (Jn, Sn)n∈ℕ satisfies the relation

ℙ(Jn+1 = j, Sn+1 − Sn ≤ t|J0,… , Jn; S1,… , Sn)
= ℙ(Jn+1 = j, Sn+1 − Sn ≤ t|Jn), j ∈ E, t ∈ ℝ+,

then

∙ (J, S) is called a Markov renewal process (MRP);

∙ Z = (Zt)t∈ℝ+
is called a semi-Markov process (SMP) associated to (J, S), where

Zt ∶= JN(t) ⇔ Jn = ZSn ,

with

N(t) ∶= max{n ∈ ℕ ∣ Sn ≤ t}, t ∈ ℝ+, (1)

the counting process of the number of jumps in the time interval (0, t]. Thus, Zt
gives the state of the system at time t.

If (Jn, Sn)n∈ℕ is a MRP, it can be immediately checked that (Jn)n∈ℕ is a Markov chain,

called the embedded Markov chain.

All along this work we assume that the SMP (or equivalently, the MRP) is regular,

irreducible and positive-recurrent (see, e.g., [13, 24, 25] for more details on these

notions).

A SM model is characterized by its initial distribution 𝛼 = (𝛼1,… , 𝛼N)

𝛼j ∶= ℙ(J0 = j), j ∈ E,

and by the semi-Markov kernel

Qij(t) ∶= ℙ(Jn = j,Xn ≤ t|Jn−1 = i).

Let us also introduce the transition probabilities of the embedded Markov chain

(Jn)n∈ℕ,

pij ∶= ℙ(Jn = j|Jn−1 = i) = lim
t→∞

Qij(t),

and the conditional sojourn time distribution functions

Wij(t) ∶= ℙ(Sn − Sn−1 ≤ t|Jn−1 = i, Jn = j)
= ℙ(Xn ≤ t|Jn−1 = i, Jn = j).
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Observe that

Qij(t) = pijWij(t).

In the sequel, we will consider a special case of semi-Markov system introduced

in [19]. As it will be seen in the next section, we will consider here a particular

parametrization of this system.

Let us assume that we have at our disposal a collection of positive random vari-

ables Tij, that can be seen as potential times spent in state i before moving (directly)

to state j. We denote by Fij(t; 𝜃ij) its cumulative distribution function (cdf), where 𝜃ij
is the m-dimensional parameter involved in the underlying distribution. We assume

that the distribution of Tij is absolutely continuous with respect to the Lebesgue mea-

sure; an associated density is denoted by fij(t; 𝜃ij).
The dynamic of the system is as follows: the next state to be visited after state

i is the one for which Til is the minimum, l ∈ E. This is the way the next state to

be visited, say j, is “chosen”, namely j = argminl∈E(Til). Thus, for our semi-Markov

system, the semi-Markov kernel becomes

Qij(t) = ℙ(min
l

Til ≤ t & the min occurs for j|Jn−1 = i)

= ℙ(min
l

Til ≤ t,Tij ≤ Til,∀l|Jn−1 = i)

= ℙ(min
l

Til ≤ t|Jn−1 = i, Jn = j) × ℙ(Tij ≤ Til,∀l|Jn−1 = i)

= pijWi(t),

where

pij = ℙ(Jn = j|Jn−1 = i) = ℙ(Tij ≤ Til,∀l|Jn−1 = i)

and

Wij(t) = ℙ(Sn − Sn−1 ≤ t|Jn−1 = i, Jn = j)
= ℙ(min

l
Til ≤ t|Jn−1 = i, Jn = j)

= ℙ(min
l

Til ≤ t|Jn−1 = i) =∶ Wi(t), independent of j,

which represents the cdf of the sojourn time in state i (unconditional to the next state

to be visited). Note that

∑

j
Qij(t) = Wi(t).

Let us assume that Wi(t) is absolutely continuous w.r.t. the Lebesgue measure and

has a density denoted by fi(t).
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As we will be dealing in the sequel with parametric inference, whenever a quantity

of interest will depend on a parameter 𝜃 ∈ 𝛩 ⊂ ℝm
, we may set this parameter as an

argument. For instance, if Qij(t) depends on some parameter 𝜃, we could denote it

by Qij(t; 𝜃).
Our intention is to provide estimators of pij, Wi(t), and Qij(t) under a general class

of distributions, with a specific parametrization. This class of distributions and the

corresponding parametrization are presented and discussed in the next section.

3 Parametric Specification of the System

The type of distributions considered for the random variables Tij are first presented

in this section. Then, a specific parametrization is considered. More specifically, we

consider the case where the distributions Fij(⋅; 𝜃ij), i, j = 1,… ,N, are of the same

functional form but with different parameters, i.e., we are focusing on independent

but not necessarily identically distributed (inid) random variables. Nonidentically

but independently distributed random variables are usually not easy to deal with. But,

when these belong to families of random variables closed under maxima or minima

then elegant expressions of various statistical characteristics such as order statistics

are possible. A member of such a class of distribution functions with parameter a is

assumed to verify the following distributional form

F(x; a) = 1 − (1 − F(x; 1))a . (2)

Let us assume that F(x; a) is absolutely continuous w.r.t. the Lebesgue measure

and let us denote its density by f (x; a), namely

f (x; a) = a (1 − F(x; 1))a−1 f (x; 1). (3)

The following result states that the minimum order statistic from an inid random

sample from the above class has a distribution belonging to the same class.

Lemma 1 (cf. [18]) Let X1,… ,XN be inid random variables such that Xi ∼ F(x; ai)
which belongs to class (2). Then the distribution function F(1) of the minimum order
statistic X(1) belongs also to (2).

It is worth noticing that examples of distribution that belong to class (2) are the

geometric distribution, the Pareto distribution, the Weibull distribution and its spe-

cial cases like the exponential, the Rayleigh and the Erlang truncated exponential.

Let us now assume that the random variables Tij considered in the previous section

belong to the class (2), with the corresponding parameters aij, i.e., the corresponding

cumulative distributions F(t; aij) verify (2). Moreover, we assume that we have a

parametrization for aij that makes explicit the dependence on the states i and j. To

be more specific, let us assume that aij has the expression



64 V.S. Barbu and A. Karagrigoriou

aij ∶= a∞
(
1 − eg(i,j)∕e1

)
, (4)

where a∞ and e1 are real parameters, while g(i, j) is a known function of states i and

j, depending on certain parameters. Typical examples of g(i, j) can be obtained by

considering

g(i, j) ∶= c1ik1 jl1 + c2ik2 jl2 , (5)

where cm, km, lm,m = 1, 2, are real parameters. Examples of such a function g that

could be of interest in different modeling situations, according to the application

under study, could be:

g(i, j) = i + j, (6)

g(i, j) = c1i + c2j,with c1 + c2 = 1, (7)

g(i, j) =
√
ij, (8)

g(i, j) = (ij)c, c ∈ ℝ. (9)

Remark 1 1. Note that this parametrization is done by analogy with a framework

considered in [20], where the times between two successive failures are assumed

to be inid random variables distributed according to a cumulative distribution

F(x; ai) belonging to the class (2) with different scale parameters ai. These para-

meters are assumed to be time varying; one type of variation along time proposed

in that article is of the type ai = a∞
(
1 − e−ti∕e1

)
, i = 1, 2,… , where t1, t2,… are

observed successive failure times. Nonetheless, note that, in the present chapter,

the variation is on both states i and j, while in [20] the variation is along time.

2. Note that, if we consider a semi-Markov system with only one state (E = {1}),

we are in the framework of [20], where Sn, n = 1, 2,… , are the successive failure

times of a system, Sn < Sn+1, and S0 ∶= 0, while Xn ∶= Sn − Sn−1, n = 1, 2,… ,

are the times between two successive failures. It is clear that, in this case, there is

no state variation anymore and a modeling like the one proposed in [20] would

be appropriate.

Under these conditions, the following result concerning the main semi-Markov

characteristics can be proved. For notational convenience, we set F(t) ∶= F(t; 1),
f (t) ∶= f (t; 1) and Qij

(
t; aik; k = 1,… ,N

)
∶= Qij(t).

Proposition 1 (cf. [19]) Under the setup of this section, the following results hold:

Qij(t) =
aij

∑

k∈E
aik

[

1 − (1 − F(t))
∑

k∈E
aik
]

, (10)

pij =
aij

∑

k∈E
aik

, (11)
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Wi(t) = 1 − [1 − F(t)]
N∑

j=1
aij

(12)

and

fi(t) =
N∑

j=1
aij (1 − F(t))

N∑

j=1
aij f (t)

1 − F(t)
. (13)

4 Maximum Likelihood Estimation

In this section we consider the problem of obtaining the maximum likelihood estima-

tors of the parameters of the system (a∞ and e1, or, equivalently, aij). Then we will

get the corresponding plug-in estimators of the main quantities defining the semi-

Markov system.

Basically, two important statistical settings could be considered: either we start

with one sample path, or with several sample paths. In both cases, it can be assumed

that the sample paths are complete or that the sojourn time in the last visited state

can be right censored (lost to follow-up, for instance). In the sequel we consider the

most general case, that is the one of several sample paths with possible censored last

sojourn time. The other cases can be obtained from the one we present, as a particular

case; we will also give some details on this point.

Given L sample paths of a semi-Markov process censored at time M,{

j(l)0 , x(l)1 , j(l)1 , x
(l)
2 ,… , j(l)Nl(M), u

(l)
M

}

, l = 1,… ,L, then the associated likelihood is

L =

(
∏

i∈E
𝛼
Ni,0(L)
i

)
⎛
⎜
⎜
⎝

∏

i,j∈E
p

L∑

l=1
N(l)
ij (M)

ij

⎞
⎟
⎟
⎠

×

×
⎛
⎜
⎜
⎝

L∏

l=1

∏

i∈E

N(l)
i (M)
∏

k=1
fi(x

(l,k)
i )

⎞
⎟
⎟
⎠

∏

i∈E

Ni,M(L)∏

k=1

(

1 −Wi(u
(k)
i )

)

, (14)

where we set

∙ N(L)
i,0 ∶=

L∑

l=1
1{J(l)0 =i}: the number of sample paths starting in state i;

∙ N(l)
i (M): the number of visits to state i up to time M of the lth trajectory,

l = 1,… ,L;

∙ Ni(L,M) ∶=
L∑

l=1
N(l)
i (M): the total number of visits to state i up to time M along the

L trajectories;

∙ N(l)
ij (M): the number of transitions from state i to state j up to time M during the

lth trajectory, l = 1,… ,L;
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∙ Nij(L,M) ∶=
L∑

l=1
N(l)
ij (M): the total number of transitions from state i to state j up to

time M along the L trajectories;

∙ x(l,k)i : the sojourn time in state i during the kth visit, k = 1,… ,N(l)
i (M) of the lth

trajectory, l = 1,… ,L;

∙ u(l)M ∶= M − SNl(M) is the observed censored time of the lth trajectory;

∙ Ni,M(L) =
L∑

l=1
1{J(l)

Nl (M)
=i} is the number of visits of state i, as last visited state, over

the L trajectories; note that
∑

i∈E
Ni,M(L) = L;

∙ u(k)i is the observed censored sojourn time in state i during the kth visit, k =
1,… ,Ni,M(L).

Note that, for L = 1, the likelihood given in (14) reduces to the likelihood of 1 tra-

jectory. Note also that, if the censoring time M in a certain trajectory l is a jump time,

then for the corresponding observed censored time we have u(l)M = 0. Consequently,

the contribution to the likelihood of the associated term will be equal to 1. For this

reason, if no censoring is involved, the uncensored likelihood can be obtained as a

particular case of (14).

For the class of distributions given in (2), the likelihood takes the form

L =

(
∏

i∈E
𝛼
N(L)
i,0

i

)( L∏

l=1

∏

i,j∈E
a
N(l)
ij (M)

ij

)

×

×
∏

l,i,k

⎡
⎢
⎢
⎢
⎣

(

1 − F
(

x(l,k)i

))∑

j∈E
aij
⎛
⎜
⎜
⎜
⎝

f
(

x(l,k)i

)

1 − F
(

x(l,k)i

)

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎦

×

×
⎛
⎜
⎜
⎝

∏

i∈E

Ni,M (L)∏

k=1

(

1 − F
(

u(k)i

))∑

j∈E
aij
⎞
⎟
⎟
⎠

, (15)

where aij has been given in (4). Consequently, the log-likelihood has the expression

log(L ) = log

(
∏

i∈E
𝛼
N(L)
i,0

i

)

+
L∑

l=1

∑

i,j∈E
N(l)
ij (M) log(aij)

+
∑

l,i,k

(
∑

j∈E
aij

)

log
(

1 − F
(

x(l,k)i

))

+ log
∏

l,i,k

⎛
⎜
⎜
⎜
⎝

f
(

x(l,k)i

)

1 − F
(

x(l,k)i

)

⎞
⎟
⎟
⎟
⎠

+
∑

i∈E

Ni,M(L)∑

k=1

(
∑

j∈E
aij

)

log
(

1 − F
(

u(k)i

))

. (16)



Modeling and Inference for Multi-state Systems 67

Using aij = a∞
(
1 − eg(i,j)∕e1

)
, taking the derivatives of log(L ) with respect to a∞

and e1 we obtain the critical equations:

𝜕 logL
𝜕a∞

=
L∑

l=1

∑

i,j∈E
N(l)

ij (M) 1
a∞

+
∑

i∈E

L∑

l=1

N(l)
i (M)
∑

k=1

∑

j∈E

(
1 − eg(i,j)∕e1

)
log

(

1 − F
(

x(l,k)i

))

+
∑

i∈E

Ni,M (L)
∑

k=1

∑

j∈E

(
1 − eg(i,j)∕e1

)
log

(

1 − F
(

u(k)i

))

= 0, (17)

𝜕 logL
𝜕e1

=
L∑

l=1

∑

i,j∈E
N(l)

ij (M) eg(i,j)∕e1
1 − eg(i,j)∕e1

g(i, j)
e21

+
∑

l,i,k

∑

j∈E

(

a∞eg(i,j)∕e1
g(i, j)
e21

)

log
(

1 − F
(

x(l,k)i

))

+
∑

i∈E

Ni,M (L)
∑

k=1

∑

j∈E

(

a∞eg(i,j)∕e1
g(i, j)
e21

)

log
(

1 − F
(

u(k)i

))

= 0. (18)

Equation (17) provides an explicit expression of a∞ in terms of e1
a∞ = (19)

−

L∑

l=1

∑

i,j∈E
N(l)
ij (M)

∑
i∈E

∑
j∈E

(
1 − eg(i,j)∕e1

)
[
∑L

l=1
∑N(l)

i (M)
k=1 log

(

1 − F
(

x(l,k)i

))

+
∑Ni,M (L)

k=1 log
(

1 − F
(

u(k)i

))] .

This expression replaced in Eq. (18) provides an equation in e1 that has to be

solved numerically. Thus we obtain the corresponding MLEs â∞(L,M) and ê1(L,M)
and also the corresponding plug-in estimator of aij,

âij(L,M) = â∞(L,M)
(

1 − eg(i,j)∕ê1(L,M)
)

. (20)

Consequently, using Proposition 1, we get the plug-in estimators of the main quan-

tities that define the semi-Markov system, namely pij, Wi(t) and Qij(t):

p̂ij(L,M) =
âij(L,M)

∑

l∈E
âil(L,M)

=
Nij(L,M)
Ni(L,M)

, (21)

Ŵi(t;L,M) =
[

1 − (1 − F(t))
∑

j∈E
âij(L,M)

]

(22)
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and

Q̂ij(t;L,M) =
âij(L,M)

∑

k∈E
âik(L,M)

[

1 − (1 − F(t))
∑

k∈E
âik(L,M)

]

. (23)

Note also that, once we have obtained the estimators of the basic quantities asso-

ciated to a multi-state semi-Markov system, we can immediately obtain estimators

of the associated reliability indicators, following the lines presented in [19].

Remark 2 A more general framework may be considered if some or all of the para-

meters involved in the function g(⋅, ⋅) are assumed to be unknown. In such a case, the

appropriate derivatives of the loglikelihood in (16) with respect to cm, km, lm, m =
1, 2, should be considered and the normal equations in addition to (17) and (18)

should include the derivatives with respect to extra unknown parameters. In this

more general setting, the system of equations has to be solved numerically for the

estimators of the parameters to be obtained.

5 Concluding Remarks

In many settings the challenge is to determine if and where the parameters of the

underlying model change their value. The rationales for time-varying parameter

models may be several. For instance, the true coefficients themselves can often be

viewed directly as the outcome of a stochastic process. Furthermore, even when the

underlying parameters are stable, situations arise in which a time-varying coefficient

approach will prove to be effective. More considerations could be provided on this

topic. The present chapter deals with the problem in a general setting where a gen-

eral class of distributions is considered with state-varying parameters. In particular

in a multi-state system modeled by means of a special type of semi-Markov process,

the parameters involved are assumed to be affected by the present state as well as

the state to be visited and the likelihood together with the parameter estimates are

provided under various dependency types of the parameters involved on the states

of the system.
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