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Abstract With the increasing complexity and larger size of modern advanced
engineering systems, the traditional reliability theory cannot characterize and
quantify the complex characteristics of complex systems, such as multi-state
properties, epistemic uncertainties, common cause failures (CCFs), etc. This chapter
focuses on the reliability analysis of complex multi-state system (MSS) with
epistemic uncertainty and CCFs. Based on the Bayesian network (BN) method for
reliability analysis of MSS, the DS evidence theory is used to express the epistemic
uncertainty in system through the state space reconstruction of MSS. An uncertain
state, which used to express the epistemic uncertainty is introduced in the new state
space. The integration of evidence theory with BN is achieved by updating the
conditional probability tables. When the multiple CCF groups (CCFGs) are con-
sidered in complex redundant systems, a modified factor parametric model is
introduced to model the CCF in systems. An evidence theory based BN method is
proposed for the reliability analysis and evaluation of complex MSSs in this
chapter. The reliability analysis of servo feeding control system for CNC
heavy-duty horizontal lathes (HDHLs) by this proposed method has shown that the
presented method has high computational efficiency and strong practical value.
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1 Introduction

The multi-state system (MSS) was firstly proposed by Barlow and Wu, it has been
proved that lots of industrial systems are typical MSS, such as electrical power
system, pipe transmission system, production and manufacturing system, aerospace
system, etc. [1, 5, 9]. Those systems can define the multi-state characteristics of
components accurately by analyzing the system failure process and the effect of the
change of component performance to the system performance and reliability. Four
types of methods can be used for reliability analysis of MSS, including multi-state
fault tree method [24], Markov process method [6, 7], Monte-Carlo simulation
(MCS) method [14, 31] and universal generation function (UGF) method [4].
The MSS plays a critical role in the reliability analysis and assessment of complex
systems and also has extensive application foreground.

The uncertainty caused by lack of data and scarcity of information is one of the
most important issues in MSS reliability analysis. When the system state perfor-
mances and state probabilities cannot be exactly defined and obtained, sometimes
the bounds of system states and state probabilities cannot be exactly defined and
obtained, so the probability-based methods are no longer applicable for this kind of
system. In this situation, the bounds of system states and state probabilities can be
expressed by some other data forms, such as linguistic variables. Then some
non-probabilistic methods are developed, such as Dempster-Shafer evidence theory
(DSET) [27], fuzzy theory [13], probability-box [10, 26], interval theory [17],
possibility theory [8], Bayesian method [22, 23], etc. The DS evidence theory has a
flexible axiomatic system to describe uncertainty, and also has an independent
frame to process uncertainty in system [18, 25]. It has been widely used for
uncertainty modeling, quantification, reasoning and management in engineering [3,
29, 30].

There are many researches on Bayesian network (BN) based on evidence theory.
Simon et al. [20, 21] analyzed reliability of complex system with epistemic
uncertainty by using BN, where evidence theory is used to quantify system
uncertainty. Then the evidential networks also have been used for the reliability and
performance evaluation of system with imprecise knowledge [19]. Zhao et al. [28]
studied the influence of incomplete original parameters and subjective parameters
on the reliability of distribution system by using BN and evidence theory. Sallak
et al. [16] has developed the combination method of BN and evidence theory for
reliability analysis of multi-state system (MSS). It has shown that evidence theory
can handle the imprecise information in system, and it can get more useful infor-
mation than interval analysis method.

This chapter introduces a multi-state BN method for reliability analysis of
complex system with CCFGs based on evidence theory. The remainder of this
chapter is organized as follows: Firstly, the node definition and BN reasoning of
multi-state BN under evidence theory are introduced in Sect. 2. Then, in Sect. 3,
when the multiple CCF groups (CCFGs) are considered in complex redundant
system, a modified β factor parametric model is introduced to model the CCF in
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system. This comprehensive method is used to analyze the reliability of an example
system and a feeding control system of CNC heavy-duty horizontal lathe (HDHL) in
Sect. 4. Finally, some conclusions are presented in Sect. 5.

2 Multi-state Bayesian Network Under Evidence Theory

2.1 The Node Definition of Multi-state Bayesian Network
Under Evidence Theory

For a sample BN with three nodes which is shown in Fig. 1, assume that the nodes x1
and x2 are three state nodes, the state space is Λ= f0, 1, 2g. Let xi =0, 1, 2 represent
the reliable state, partial failure state and complete failure state of the corresponding
component. When the epistemic uncertainty exists in system, an added state
xi = ½0, 1, 2� is defined to represent the uncertain state of node xi. Then the frame of
discernment D= f0, 1, 2, ½0, 1, 2�g is defined under evidence theory, and the basic
probability assignment (BPA) is m: 2D → ½0, 1�. Its power set can be expressed as

2D = m x=∅ð Þ=0;m x=0ð Þ;m x=1ð Þ;f m x=2ð Þ;m x= 0, 1, 2½ �ð Þg. ð1Þ

For an event A: fx=0g on the frame of discernment D, and B⊆A, the belief
function of event A is

Bel Að Þ= ∑
B⊆A

m Að Þ=m x=0ð Þ. ð2Þ

The (2) represents the belief degree of event A: x=0. It’s the lower bound of
belief interval when the probability of uncertain information is not counting in the
BPA [21]. Based on the definition of plausibility function, the plausibility function
of event A can be gotten by

Pl Að Þ= ∑
B∩A≠∅

m Bð Þ=m x=0f g+m x= 0, 1, 2½ �f g. ð3Þ

Then the interval probability of event A can be calculated by (2) and (3), and it
can be expressed as ½P�ðAÞ= ½BelðAÞ,PlðAÞ�. Similarly, the interval probabilities of
other nonempty events under the frame of discernment D can be computed.

x1

y

x2

Fig. 1 A sample multi-state
BN
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When the corresponding components of nodes x1 and x2 are parallel or series, the
conditional probability table (CPT) of node y under evidence theory can be derived.
Then the belief reliability of node y:Belðy=0Þ can be computed by BN reasoning
and

Bel y=0ð Þ= ∑
x1, x2

Bel y=0 x1, x2jð ÞBel x1ð ÞBel x2ð Þ. ð4Þ

The plausibility reliability Plðy=0Þ is

Pl y=0ð Þ= ∑
x1, x2

Pl y=0 x1, x2jð ÞPl x1ð ÞPl x2ð Þ. ð5Þ

The practical reliability of node y:Pðy=0Þ will belongs to interval
½Belðy=0Þ,Plðy=0Þ�.

2.2 The Multi-state Bayesian Network Reasoning Under
Evidence Theory

For a multi-state BN with n root nodes, which can be denoted as x1, x2, . . . , xn.
Assume that the state number of node xi and leaf node y are li and ly. The relation
between the state probability of leaf node y and root nodes can be expressed as

P y= y j x1 = xk11 , . . . , xn = xknn
��� �

=
P y= y j, x1 = xk11 , . . . , xn = xknn
� �
P x1 = xk11 , . . . , xn = xknn
� � , ð6Þ

where 1≤ j≤ ly, 1≤ i≤ n and 1≤ ki ≤ li. Suppose that the interval probability of
node xi at state ki is

P½ � xi = xkii
� �

= Bel xkii
� �

,Pl xkii
� �� �

, ð7Þ

where Belðxkii Þ and Plðxkii Þ can be calculated by the CPTs of nodes xi.
The conditional probability of node y of BN under evidence theory is

P½ � y= y j x1 = xk11 , . . . , xn = xknn
��� �

= Bel y j
� �

,Pl y j
� �� �

. ð8Þ

The mid-value of conditional probability is chosen as the static conditional
probability of this node [21], that is

P y= y j x1 = xk11 , . . . , xn = xknn
��� �

=
Bel y jð Þ+Pl y jð Þ½ �

2
. ð9Þ
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Similarly, the static conditional probability of root node xi on state xkii is

P xi = xkii
� �

=
Bel xkii
� �

+Pl xkii
� �� �

2
. ð10Þ

The probability of node y on j-th state can be gotten by

P y= y j
� �

=P y= y j x1 = xk11 , . . . , xn = xknn
��� �

P x1 = xk11
� �

⋯P xn = xknn
� �

. ð11Þ

For a BN with n root nodes xiði=1, 2, . . . , nÞ, m non-leaf nodes
yjðj=1, 2, . . . ,mÞ and leaf node T. Based on the former reasoning method, the
probability of leaf node T =Tv can be expressed as

P½ � T =Tvð Þ= Bel T = Tvð Þ,Pl T =Tvð Þ½ �, ð12Þ

where the lower bound BelðT = TvÞ is the belief probability and can be calculated
by

Bel T =Tvð Þ= ∑
x1, ..., xn, y1, ..., ym

Bel x1, . . . , xn, y1, . . . , ym,T = Tvð Þ

= ∑
π Tð Þ

Bel T =Tv π Tð Þjð Þ ∏
m

j=1
∑
π y1ð Þ

Bel yj π yj
� ���� �

∏
n

i=1
Bel xkii
� �

= ∑
π Tð Þ

Bel T =Tv π Tð Þjð Þ ∑
π y1ð Þ

Bel y1 π y1ð Þjð Þ×⋯

× ∑
π ymð Þ

Bel ym π ymð Þjð Þ×⋯×Bel x1 = x1, k1ð Þ×⋯×Bel xn = xn, knð Þ.

ð13Þ

The upper bound PlðT = TvÞ is the plausibility probability and can be computed
by

Pl T =Tvð Þ= ∑
x1, ..., xn, y1, ..., ym

Pl x1, . . . , xn, y1, . . . , ym,T = Tvð Þ

= ∑
π Tð Þ

Pl T = Tv π Tð Þjð Þ ∏
m

j=1
∑
π y1ð Þ

Pl yj π yj
� ���� �

∏
n

i=1
Pl xkii
� �

= ∑
π Tð Þ

Pl T = Tv π Tð Þjð Þ ∑
π y1ð Þ

Pl y1 π y1ð Þjð Þ×⋯

× ∑
π ymð Þ

Pl ym π ymð Þjð Þ×⋯×Pl x1 = x1, k1ð Þ×⋯×Pl xn = xn, knð Þ.

ð14Þ

The probability of leaf node can be obtained by the former forward reasoning of
BN, and the posterior probability of root nodes can be gotten by backward reasoning.
When T =Tv, the posterior probability of root node xi = xi, ki can be computed by
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P½ � xi = xi, ki T = Tvjð Þ= min Bel xi = xi, ki T = Tvjð Þ,Pl xi = xi, ki T = Tvjð Þð Þ,
max Bel xi = xi, ki T =Tvjð Þ,Pl xi = xi, ki T =Tvjð Þð Þ
� �

, ð15Þ

where

Bel xi = xi, ki T = Tvjð Þ= Bel xi = xi, ki , T =Tvð Þ
Bel T =Tvð Þ , ð16Þ

Pl xi = xi, ki T = Tvjð Þ= Pl xi = xi, ki , T =Tvð Þ
Pl T =Tvð Þ , ð17Þ

where Belðxi = xi, ki ,T = TvÞ and Plðxi = xi, ki , T = TvÞ are the belief and plausibility
joint probability of root nodes and leaf node. The root nodes and leaf node of BN
reflect the fault causes and fault state properties of system. Therefore, the system
state probability can be computed by forward reasoning of BN, which can also
realize a quantitative description of system fault states. The backward reasoning of
BN can get the posterior probability of fault causes based on system failure state,
and also can implement the system failure prediction and judgment, which has
certain guiding significance for the reliability improvement of system.

3 Reliability Modeling of System with Multiple CCFGs

3.1 A Modified β Factor Model for CCFGs

Considering the dependent failure caused by interior component physical interac-
tions and human interactions in system, the beta factor parametric model has been
widely used for such cases [15]. Assume that Pt is the total failure probability of a
component; it can be expanded into an independent contribution Pind and a
dependent contribution Pccf, which are functions of time t respectively. When the
component is assumed to follow the exponential distribution, λt, λind and λccf are the
failure rates of entire system, independent part, and the dependent part respectively.
Then the parameter β can be defined as the fraction of the total failure probability
attributable to dependent failures [11, 15], and it can be mathematically described as

β=
Pccf

Pt
=

Pccf

Pind +Pccf
=

ð1− expð− λccf ⋅ tÞÞ
ð1− expð− λt ⋅ tÞÞ

=
ð1− expð− λccf ⋅ tÞÞ

ð1− expð− λind ⋅ tÞÞ+ ð1− expð− λccf ⋅ tÞÞ .
ð18Þ

The value of β-factor can be obtained by the direct use of field data and experts’
experience [11, 12, 15].
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In order to present how the beta factor model works, a simple deduction is
performed for single component within the FTA model. For a parallel system with
two identical components A1 and A2, and PðA1Þ=PðA2Þ=PA, the failure proba-
bility of system Psys can be computed as:

Psys =P A1ð ÞP A2ð Þ=P2
A ð19Þ

For the basic component A, as shown in Fig. 2, the failure probability of A can
be divided into two proportions: independent part and CCF part, and it can be
expressed as

PA =PA ind +PA ccf ð20Þ

Adding the CCF part, the failure probability is

PA ccf = βPA ð21Þ

By using the former explicit modeling method, the failure probabilities of
component A1 and A2 are both divided into independent part and CCF part. Then
based on the standard β-factor model and (18), the probability of CCF part can be
obtained and PA1 ccf =PA2 ccf = βPA. The two components parallel system also can
be further expressed as Fig. 3a. The system failure event Sys can be simplified by
using Boolean algebra operation rules and expressed as

Sys=A1A2 = A1 ind+A1 ccfð Þ A2 ind+A2 ccfð Þ
= A1 ind+A ccfð Þ A2 ind+A ccfð Þ
=A1 ind ⋅A2 ind+A ccf ⋅ A ccf +A1 ind+A2 indð Þ
=A1 ind ⋅A2 ind+ A ccf ⋅A ccf|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

A ccf

+ A ccf ⋅A1 ind|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0

+ A ccf ⋅A2 ind|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0

=A1 ind ⋅A2 ind+A ccf

ð22Þ

Finally, the system with consideration of CCF can be simplified and shown as
Fig. 3b.

A1_ccf

OR

A1

A1_ind

Fig. 2 FTA explicit
modeling method for
component with CCF
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Then the failure probability of system can be obtained by (22) and

P Sysð Þ=P A1 ind ⋅A2 ind+A ccfð Þ
=P A1 indð Þ ⋅P A2 indð Þ+P A ccfð Þ
= 1− βð ÞP Að Þ ⋅ 1− βð ÞP Að Þ+ βP Að Þ

ð23Þ

When a single component fails simultaneously within multiple CCFGs [2, 12], a
modified beta factor parametric model is used to express the coupling mechanism.
The explicit modeling of component A with multiple CCFGs is shown in Fig. 4.

The failure probability of component A is then given as

A1_ccf

OR

A1

A1_ind A2_ccf

OR

A2

A2_ind

Sys

AND

APβ

( )1 APβ−

APβ

( )1 APβ−

AP AP

A2_ind

A_ind

A1_ind

A_ccf

Sys

APβ

( )1 APβ− ( )1 APβ−

OR

AND

(a)FT of two components parallel system; (b) Simplify FT of system

Fig. 3 FT modeling and simplification of two components parallel system with common cause
events

A_CCFG1 A_CCFG2

OR

A

A_ind A_CCFGk

Fig. 4 Explicit modeling of
multiple CCFGs within FT
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P Að Þ=P A indð Þ+P A ccfð Þ
=P A indð Þ+P A CCFG1 ∪⋯∪A CCFGkð Þ
=P A indð Þ+P A CCFG1ð Þ+⋯P A CCFGkð Þ

ð24Þ

In this way, the failure probability of component A is divided into CCF parts and
independent part as follow

PA ccf =PA CCFG1 +PA CCFG2 +⋯+PA CCFGk

= β1PA + β2PA +⋯+ βkPA =PA ∑
k

i=1
βi

ð25Þ

PA ind = ð1− ∑
k

i=1
βiÞPA ð26Þ

3.2 Model Limitation and Solution

Because the beta factors are obtained by expert judgments, there exists the limi-
tation of this modified beta factor parametric model for β1 + β2 +⋯+ βkð Þ>1. In
this case, the failure probability of CCF part is bigger than the probability of total
components. To cope with this limitation in this model, a proportional reduc-
tion factor (PRF) method [2, 12] is applied in this chapter. The PRF factor is
defined as

PRF=
1

∑k
j=1 βj

ð27Þ

Then a set of new reduced beta factor are generated as

β= β′1, β
′

2, . . . , β
′

k

� �
=PRF β1, β2, . . . , βk½ �. ð28Þ

In this way, the failure probability of CCF parts and independent part are
rewritten as

PA ccf =PA ∑
k

i=1
β′k ð29Þ

PA ind = ð1− ∑
k

i=1
β′kÞPA =0 ð30Þ
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The essence of the PRF method is an equilibrium process of the accumulated
common cause parts on β factor, which has weaken the contradiction of the common
cause part beyond the total failure probability to some extent. And the PRF method is
just one of the methods which can be used to solve this kind of logical contradiction;
any other method capable of dealing with such contradictions may be applicable.

3.3 The Bayesian Network Node with CCFGs

When CCFs is considered in system reliability modeling, the failure of system can be
divided into independent part and CCF part. The independent part means the fail of
system caused by a single cause, and the CCF part represents the simultaneous
failure of multiple components which caused by a common coupling mechanism,
then those components constitute a CCFG. Component A exists in multiple CCFGs,
CCFG1,CCFG2, . . . ,CCFGkð Þ. By using the fault tree explicit modeling of mul-
tiple CCFGs in Sect. 3.2, the fault tree can be translated into BN, as shown in Fig. 5.

When the independent failure probability of node A is PðAindÞ, the corresponding
β factors of common cause nodes are β1, β2, . . . , βk . When ðβ1 + β2 +⋯+ βkÞ<1,
the failure probability of node A can be calculated by (23)–(27) and

P′ Að Þ=P Aindð Þ+P Accf
� �

=P Aindð Þ+ ∑k
i=1 βi

1− ∑k
i=1 βi

P Aindð Þ= 1

1− ∑k
i=1 βi

P Aindð Þ ð31Þ

When the sum of β factors are larger than 1, that is ðβ1 + β2 +⋯+ βkÞ>1, by
using the PRF method in Sect. 3.2, the failure probability of node A can be com-
puted by (27)–(30) and

P′ Að Þ=P
′

A ccf +P′

A ind =PA ∑
k

i=1
β′i +0=PA ⋅PRF ⋅ ∑

k

i=1
βi ð32Þ

A_CCFG1 A_CCFG2A_ind A_CCFGk

A

Fig. 5 BN node with CCFGs
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4 Reliability Analysis of Feeding Control System
for CNC HDHLs with Multiple CCFGs

4.1 Fault Tree Modeling of Feeding Control System

The DL series horizontal lathes are computer numerical control (CNC) types and
have the following work axes: X axis of tool head lateral movement, Z axis of tool
head longitudinal movement, U1 axis of left gang tool movement and U2 axis of
right gang tool movement. The functional block diagram of the electrical control
and drive system for such DL series horizontal lathes is shown in Fig. 6. The
feeding control system include 3 subsystems: X, Z, as well as U1 and U2 axes
feeding control systems. A signal generated by 611D-type servo driven module
(Mo) is transmitted through electric wire (Ew) to control the motor (Mt) in X axis
feeding control system. There exists a speed feedback device (Sf). The grating
scales (Gr) feedback the straightness of X axis to Mo to adjust the feed speed and
direction. The electrical control of Z, U1 and U2 axes is almost the same as that of
X axis, excepting the difference introduced in Sect. 1. Although U1 and U2 axes
share a 611D-type servo driven module, they have different current relays (Re).

Based on the function analysis and failure mechanism analysis of feeding control
system, the “functional failure of feeding control system” has been chosen as the top
event in FTA, and the fault tree of feeding control system is built and shown in Fig. 7.

The meanings of the notations in Fig. 7 are as following: T denotes the func-
tional failure of feeding control system; XF, ZF, U1F and U2F are the functional
failures of X, Z, U1 and U2 axes feeding control systems. The basic components of
each axes feeding control system include Gr, Sf, Ew, Mo, Mt and Re. Therefore, in
the fault tree model, the failure events of basic components are noted by two parts:
the code of axes and the code of each component. For example, XEw represents the
Ew failure of X axis feeding control system, and the other notations follow the
similar interpretations.

PLC
(Input/Output)NCU

Machining
Program

Power Control 
System

Lubrication
System

Main Drive Control System

Drive
Control

X Feeding

Z Feeding

U1&U2 Feeding

Tailstock Movement Control System

Control Centre Frame Motion 
System

Signaling

Power supply Hydraulic

Feedback

Control
Fixed

Feeding Control System

Machining

Fig. 6 Functional block diagram of electrical control and drive system for the DL series CNC
HDHL
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4.2 The BN Modeling and CCFGs Fusion

From Fig. 7, the different subsystems of feeding control system have several
identical or similar components, an external shock or interior component physical
interactions may cause the failure of those components simultaneously. So when
considering the CCF caused by human interactions, system function correlation and
environment, the following common cause events or CCFGs will exist in system.

(1) CMO = fXMO, ZMO,UMOg, which means the motors of different subsystems fail
at the same time by one influence factor. Based on expert experience, the
common cause factor βMO =0.1.

(2) CGR = fXGR, ZGR,UGR
1 ,UGR

2 g,CSF = fXSF , ZSF ,USF
1 ,USF

2 g and βGR =0.2,
βSF =0.15.

(3) CEW = fXEW ,ZEWg,CRE = fXRE,ZREg and βEW = βRE =0.15.
(4) When XMT exists in multiple CCFGs, and expressed as CCFGMT

1 =
fXMT ,ZMTg, fXMT ,UMT

1 g, fXMT ,UMT
2 g, fZMT ,UMT

1 g, fZMT ,UMT
2 g,

fUMT
1 ,UMT

2 g; CCFGMT
2 =fXMT ,ZMT ,UMT

1 g, fXMT ,ZMT ,UMT
2 g, fZMT ,UMT

1 ,UMT
2 g

and CCFGMT
3 =fXMT ,ZMT ,UMT

1 ,UMT
2 g. The corresponding common cause fac-

tors of two components, three components and four components failure
simultaneously are βMT

1 =0.25,βMT
2 =0.2 and βMT

3 =0.15.

The failure rates and failure probabilities of system components at t=3000 h are
listed in Table 1. Based on the transformation method of fault tree to BN and the
modified β factor model, the fault tree of feeding control system can be transformed
to BN and decomposed by explicit modeling method. When CCFs are considered,

T

U2FU1FZFXF

Z_G

Z_G

XMO XMTXEW

XGR XSF

UMOU1
MTU1

RE

U1
GR U1

SF

U2
MT

U2
RE U2

GR

U2
SF

Fig. 7 Fault tree model of the feeding control system
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the root nodes of BN can be decomposed into independent parts and common
cause parts. Then the system BN with consideration of CCFGs can be gotten as
Fig. 8.

The BN of Fig. 10 is the same as system BN structure without considering CCF,
the difference is the redefinition of the probabilities of root nodes, then CCF of each
components can be taken into consideration. The failure probabilities of compo-
nents in Table 1 are independent probabilities, then the root nodes’ actual failure
probabilities can be updated by modified β factor model.

For component A which is not included in multiple CCFGs, the updated failure
probabilities of this kind of basic components can be calculated by (31) and
P′ðEWÞ=0.0021,P′ðREÞ=0.0071, P′ðGRÞ=0.0075,P′ðSFÞ=0.0018, P′ðMOÞ=
0.0007. For component MT which is included in multiple CCFGs, the failure
probability of MT can be computed by (31) since it does not meet the limitation that
the sum of β factors of different CCFGs is larger than 1, then

P′ MTð Þ=P MTindð Þ+P MTccf
� �

=P MTindð Þ+P CCFGMT
1

� �� �
+P CCFGMT

2

� �� �
+P CCFGMT

3

� �� �
=P MTindð Þ+ ∑3

i=1 β
MT
i

1− ∑3
i=1 β

MT
i

 !
P MTindð Þ= 1

1− ∑3
i=1 β

MT
i

P MTindð Þ

ð33Þ

Table 1 The failure rates and failure probabilities of components

Code Failure rate
λ (10−6/h)

Failure probability
(t = 3000 h)

Code Failure rate
λ (10−6/h)

Failure probability
(t = 3000 h)

MO 0.2 0.0006 MT 7 0.0208
EW 0.6 0.0018 SF 0.5 0.0015
GR 2 0.0060 RE 2 0.0060

XMO XMTXEW XGR XSF

UMO

U1
MT

U1
RE U1

GR

U1
SF U2

MTU2
RE

U2
GR U2

SF
XF

ZMO ZMTZEW ZGR ZSF

ZF

U1F U2F

T

Fig. 8 The system BN with consideration of CCF
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Because ðβMT
1 + βMT

2 + βMT
3 Þ<1, the logical contradiction of modified β factor

model is inexistence here. So, the failure probability of this kind of components
with consideration of CCFs can be calculated directly, and P′ðMTÞ=0.0520.

4.3 Reliability Analysis of Feeding Control System by Using
DSET Based BN

As the main power take-off components of horizontal lathe, the work state of motors
will affect the processing efficiency directly. Therefore, in this chapter, there exists
an intermediate state between the perfect work state and failure state of the motors of
DL series horizontal lathes, called derating working state. So the state space of
motors can be expressed as f0, 1, 2g, where, 0 is the perfect working state, 1 is the
derating working state and 2 represents failure state. The other components of
system are all considered as two-state component. Due to the complexity of system
structure and the coupling relation between components, only a little reliability data
are available, an uncertain state [0 ,1, 2] is induced to the state space to represent the
uncertainty of system. Assume that the life of all components obey exponential
distribution, the basic components state probabilities of feeding control system can
be obtained by literature research and experts experience and listed in Table 2.

By using the BN node definition and probability reasoning method introduced in
Sects. 2.1 and 2.2, the conditional probability table (CPT) of non-leaf nodes of BN in
Fig. 8 can be gotten. Table 3 is the CPT of non-leaf nodesXF,ZF,U1F andU2F. Then
the system BN model under evidence theory can be shown as Fig. 9, and the CPT of
leaf node T is shown in Table 4. By using the multi-state BN reasoning method under
Evidence theory in Sect. 2, the belief probabilities and plausibility probabilities of
non-leaf nodes XF,ZF,U1F and U2F can be obtained and listed in Table 5.

The belief and plausibility probabilities of leaf node T can be calculated by (13)
and (14), and

Table 2 The state probabilities of components at t = 3000 h with CCF

Component State
0 1 2 [0,1,2]

MO 0.9993 – 0.0007 –

EW 0.9979 – 0.0021 –

GR 0.9925 – 0.0075 –

MT 0.9304 0.0089 0.0520 0.0087
SF 0.9982 – 0.0018 –

RE 0.9929 – 0.0071 –
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Bel T =0ð Þ=P T Bel=0ð Þ= ∑
XF,ZF,U1F,U2F

Bel XF,ZF,U1F,U2F, T =0ð Þ

= ∑
XF, ZF,U1F,U2F

Bel T =0 XF,ZF,U1F,U2Fjð Þ ∏
n

i=1
Bel xkii
� �

= ∑
XF, ZF,U1F,U2F

Bel T =0 XF,ZF,U1F,U2Fjð ÞBel XFð Þ

⋅Bel ZFð ÞBel U1Fð ÞBel U2Fð Þ

ð34Þ

Table 3 The CPT of non-leaf nodes under evidence theory

XEW

ZEW

URE

XGR

ZGR

UGR

XMO

ZMO

UMO

XSF

ZSF

USF

XMT

ZMT

UMT

(OR) XF,ZF,U1F,U2F

Bel Pl

0 1 2 0 1 2

0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 1 0 0 1 0
0 0 0 0 2 0 0 1 0 0 1
0 0 0 0 [0,1,2] 0 0 0 1 1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
2 2 2 2 2 0 0 1 0 0 1
2 2 2 2 [0,1,2] 0 0 1 0 0 1

XMO XMTXEW XGR XSF

UMO

U1
MT

U1
RE U1

GR

U1
SF U2

MTU2
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U2
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Fig. 9 System BN model under evidence theory
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Pl T =0ð Þ=P T Pl=0ð Þ= ∑
XF, ZF,U1F,U2F

Pl XF,ZF,U1F,U2F,T =0ð Þ

= ∑
XF,ZF,U1F,U2F

Pl T =0 XF,ZF,U1F,U2Fjð Þ ∏
n

i=1
Pl xkii
� �

= ∑
XF,ZF,U1F,U2F

Pl T =0 XF,ZF,U1F,U2Fjð Þ

⋅Pl XFð ÞPl ZFð ÞPl U1Fð ÞPl U2Fð Þ

ð35Þ

Then the state belief probabilities and plausibility probabilities of leaf node
T under epistemic uncertainty can be calculated, and the results of system state
probabilities when considering the influence of CCFs and without CCFs are listed
in Table 6. In order to illustrate the influence of epistemic uncertainty to system, the
uncertain state of component MT is classified as perfect work state 0. Then the state
probabilities of system at t = 3000 h are calculated and listed in Table 6.

Based on the previous assumption, the lifetime of components obey exponential
distribution, and the derating work state is regarded as perfect working state. From
the belief and plausibility probability of feeding control system at state 2 in Table 6,
it has shown that the failure probability interval and failure rate interval of system at
t = 3000 h is [0.232005, 0.280306] and [8.7991 × 10−5, 1.0964 × 10-4]/h respec-
tively when consider the influence of epistemic uncertainty and CCFGs. When the

Table 4 The CPT of leaf node T under evidence theory

XF ZF U1F U2F (OR) T
T_Bel T_Pl
0 1 2 0 1 2

0 0 0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0 1 0
0 0 0 2 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
2 2 2 1 0 0 1 0 0 1
2 2 2 2 0 0 1 0 0 1

Table 5 The state belief and plausibility probabilities of non-leaf nodes of BN

Node State
Bel Pl

0 1 2 0 1 2

XF 0.919180 0.008793 0.063432 0.927775 0.017388 0.072027
ZF 0.919180 0.008793 0.063432 0.927775 0.017388 0.072027
U1F 0.914575 0.008749 0.068125 0.923127 0.017301 0.076677
U2F 0.914575 0.008749 0.068125 0.923127 0.017301 0.076677

34 J. Mi et al.



CCFGs are ignored, the system failure probability interval will be [0.119782,
0.161703], and failure rate interval is [4.2529 × 10-5, 5.8794 × 10-5]/h. The contrast
curves of system reliability with consideration of CCF are also obtained and shown
in Fig. 10. From Fig. 10 we know that when the influence of uncertainty is ignored,
the failure probability and failure rate of system are 0.238282 and 9.072629 × 10-5/
h. And when the CCF and uncertainty are both ignored, the corresponding failure
probability and failure rate of feeding control system are 0.122977 and
4.374068 × 10-5/h. Finally, the contrast curves of system reliability with epistemic
uncertainty are shown in Fig. 11.

Based on the system function analysis and failure mechanism analysis, this
section built an fault tree model of the feeding control system of a DL series
horizontal lathe. The evidence theory is introduced to quantify the epistemic

Table 6 The state probabilities of leaf node T

Leaf node T Considering CCFGs
State 0 1 2

Epistemic uncertainty Belief prob. 0.706706 0.027431 0.232005
Plausibility Prob. 0.733514 0.056553 0.280306

Ignore uncertainty State prob. 0.733514 0.028204 0.238282
Leaf node T Without considering CCFGs
Epistemic uncertainty Belief prob. 0.808964 0.030368 0.119782

Plausibility prob. 0.838640 0.062523 0.161703
Ignore uncertainty State prob. 0.838640 0.031195 0.122977
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Fig. 10 The contrast curves of the influence of epistemic uncertainty and CCFGs to system
reliability
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uncertainty caused by lack of data and information in this system, and BN model is
combined to realize the system reliability indexes calculation. A modified β factor
model is used to model the CCFGs existed in system. From Table 6 and Fig. 10,
when the influence of epistemic uncertainty to system is considered, system reli-
ability interval at t = 3000 h will be [0.808964, 0.838640] without consider CCFs,
and when the influence of CCFs is also considered, the reliability interval will be
[0.706706, 0.733514]. This shows that CCFs has evident effect on system relia-
bility. The system state probabilities in Table 6 when the epistemic uncertainty is
ignored are between the corresponding belief probabilities and plausibility proba-
bilities, which verify the accuracy of results. This chapter provides an effective
method for reliability analysis of complex system under epistemic uncertainty and
CCFGs.

5 Conclusions

This chapter introduces a reliability analysis method for complex MSS with epis-
temic uncertainty based on BN and evidence theory. The epistemic uncertainty of
system is quantified through adding an uncertain state of root nodes in multi-state
BN, and then the state space is constructed. The belief function and plausibility
function are defined under evidence theory. Based on the BN forward reasoning,
the system reliability and failure probability can be computed. The case study has
confirmed the feasibility of this comprehensive method, and realized a quantitative
analysis of system failure state. The backward reasoning can get the posterior
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Fig. 11 The contrast curves of the influence of CCFGs to system reliability without considering
epistemic uncertainty
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probability of failure causes based on the system failure state, and provide guidance
for prediction of system failure types.

CCF is an important failure mode in complex systems, so the reliability analysis
of MSS with consideration of both epistemic uncertainty and CCF are also studied
in this chapter. When CCFGs exist in system, a modified β factor model is intro-
duced and integrated with evidence theory based BN, and realize the state
expression and probability reasoning for complex system with epistemic uncer-
tainty and CCFGs. The reliability analysis of the feeding control system of DL
series HDHLs by this method has shown that, the proposed comprehensive method
has high computing efficiency and strong practical value.
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