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for Improving Reliability Assessment
of Non-repairable Multi-state Systems
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Abstract Due to limited reliability testing resources (e.g., budget, time, and
manpower etc.), the reliability of a sophisticated system may not be able to accu-
rately estimated by insufficient reliability testing data. The book chapter explores
the reliability testing resources allocation problem for multi-state systems, so as to
improve the accuracy of reliability estimation of an entire system. The Bayesian
reliability assessment method is used to infer the unknown parameters of multi-state
components by merging subjective information and continuous/discontinuous
inspection data. The performance of each candidate testing resources allocation
scheme is evaluated by the proposed uncertainty quantification metrics. By intro-
ducing the surrogate model, i.e., kriging model, the computational burden in
seeking the optimal testing resources allocation scheme can be greatly reduced. The
effectiveness and efficiency of the proposed method are exemplified via two
illustrative case.
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1 Introduction

Multi-state is one of the characteristics of advanced manufacturing systems and
complex engineered systems [1, 2]. Both systems and components may manifest
multiple states ranging from perfect working, through deterioration, to completely
failed over time [1, 2]. Multi-state system (MSS) reliability modeling has, therefore,
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received considerable attentions in recent years as it is able to characterize the
complicated deteriorating process of systems in a finer fashion than that of tradi-
tional binary-state models [1-3]. In engineering practice, many systems can be
regarded as multi-state systems, e.g., manufacturing systems, power generating
systems, flow transmission systems, etc. Various tools, such as the stochastic
models, the universal generating functions, the recursive algorithms, and the
simulation-based methods etc., have been developed to assess reliability and per-
formance of MSSs in a computationally efficient manner.

Nevertheless, all the reported studies on MSS reliability assessment are based on
the critical premise that the transition intensities and/or the state distributions of
components and systems are exactly known in advance. Very limited attention has
been placed on the parameter inference, which is a preceding task before con-
ducting reliability assessment and enhancement of MSSs. Lisnianski et al. [4]
introduced the point estimation of the transition intensities of a multi-state
power-generating unit by defining a special Markov chain embedded in the
observed capacity process. However, the results of point estimation are biased when
data are sparse. The parameter uncertainty due to limited data and/or vague
information has been taken into account in several existing works. For example, the
transition intensities or the state distributions of components in an MSS were treated
as fuzzy numbers [5, 6], interval values [7], and belief function [8]. Although these
methods can quantify the uncertainty associated with reliability measures of interest
from various angles, such uncertainty cannot be progressively reduced by collecting
additional data. The Bayesian approach, which treats the unknown parameters to be
inferred as random variables, enables reliability engineers to systematically syn-
thesize the subjective information from experts and intuitive judgements with actual
observed data. The estimates can be progressively updated as more data and
information become available. In our earlier work, a Bayesian framework has been
proposed to assess reliability and performance of MSSs [9]. Two scenarios, i.e.,
components are continuously and discontinuously inspected, have been discussed.
The uncertainty of estimates will eventually propagate to the reliability measures of
interest via a simulation method. Yet, as demonstrated in our illustrative cases,
adding the same amount of additional observations to each component of an MSS
may not yield an even contribution to uncertainty reduction of system reliability
function. Therefore, it raises a new research question: how to allocate the additional
reliability testing resources strategically if reliability engineers aim at further
reducing the uncertainty associated with the reliability measures of interest?

The testing resources allocation problem has been reported in the existing lit-
erature. A methodology for allocating additional testing resources across the fault
tree events with the purpose of minimizing the uncertainty of the top event prob-
ability has been investigated in Hamada et al. [10]. The events in a fault tree were
binary-state in their work. Anderson-Cook et al. [11] developed an approach to
assess the relative improvement in system reliability estimation for additional data
from various types of aging components. The data for components could be
pass/fail observations, degradation data, and lifetime data, and components can
be in one of only two states, either functioning or failed. The aforementioned
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optimization question has been extended to a multi-objective optimization problem,
in which the widths of the credible intervals of system and two subsystem reliability
estimates were maximally reduced simultaneously by allocating limited testing
resources [12]. Nonetheless, to date, the reliability testing resources allocation
problem has rarely been studied for MSSs, and this chapter serves this purpose.

The remainder of this chapter is organized as follows: In Sect. 2, the Bayesian
reliability assessment method developed in our earlier work is briefly reviewed first.
It is followed by the proposed reliability testing resources allocation approach in
Sect. 3. The details of evaluating performance of candidate allocation schemes, the
kriging metamodel, and the optimization algorithm are elaborated. Two illustrative
examples are presented in Sect. 4 to demonstrate the effectiveness of the proposed
approach. A brief conclusion is given in Sect. 5.

2 Review of Bayesian Reliability Assessment for MSS

The MSS with ordered states [13] in question is assumed to be composed of
M non-repairable statistically independent multi-state components, each of which
has k; (1€ {1, 2, ..., M}) different states distinguished by the possible performance
capacities g ={g(.1)> &(1,2)» - - - » &, k) }» Where gy <g(; for i <j. The stochastic
deteriorating behaviors of components are governed by the homogenous
continuous-time Markov model. In this case, the probability of component / re-
maining at any particular state in a future time is statistically independent of its
previous state. Many engineering systems can be characterized by the aforemen-
tioned stochastic model, such as manufacturing systems [2], power systems [1], and
flow transmission systems [3].

The state-space diagram of multi-state component / is given in Fig. 1, where
A’(l.’ i G,je{l,2, ..., k}, i#)) denotes the constant intensity of component
[ transitioning from state i to state j. Given the initial condition that component / is
at state u at =0, the corresponding Kolmogorov differential equations can be
formulated as:

Fig. 1 The state-space
diagram of non-repairable
multi-state component /
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where p! . (1) is the probability of component / being at state i at time instant 7 if it
Pu,i) P y p g

is initially at state u at r=0. The initial condition is set to be péu,u) (0)=1 and
!

Plui (0)=0 (i#u) (G, ue{l, 2, ..., k}). By resolving the differential equations,
one can get the state probability péu’ i>(t) as a function of A (a vector of /12[’ i)
i,je{l,2, ..., k}, i#j) and time. Nevertheless, in this work, the transition
intensities A’ are unknown parameters to be estimated by observations.

In our earlier work, a Bayesian framework has been developed to infer the
unknown parameters A’ of multi-state components and assess reliability measures of
a multi-state system [2]. It enables reliability engineers to systematically synthesize
the subjective information from experts and intuitive judgements with actual
observations, thereby, obtaining a balanced estimate. On the other side, the esti-
mates from the Bayesian approach can be progressively updated as more data
become available, and the uncertainty due to the limited data can also be quantified.
The proposed Bayesian reliability assessment method for MSSs is composed of six
steps as illustrated in Fig. 2. In Step 1, data are collected by conducting inspections.
According to the data collection strategy, two types of data, i.e., continuous
inspection data and discontinuous inspection data, are involved. The likelihood
functions of the two types of data are constructed in Step 2. By merging the
collected data with the prior knowledge of the unknown parameters, i.e., A, from
Step 3, the Bayesian inference can be performed in Step 4 to yield the posterior
distributions of the unknown parameters. In Step 5, by the Monte Carlo
(MC) simulation, a set of samples of A’ is randomly generated to get the corre-
sponding universal generating functions (UGFs) of component /. The UGFs of the
entire system, representing the system state distribution, can be derived by aggre-
gating the UGFs of all the components. Consequently, reliability measures, such as
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Fig. 2 The steps of the proposed Bayesian reliability assessment method for MSSs
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the reliability function, the state probabilities, the instantaneous expected perfor-
mance capacity, etc., can be evaluated in Step 6 via the UGFs of the entire system.
The ensuing sections will review the technical details of this method.

2.1 Bayesian Parameter Inference for Multi-state
Components

Following the general framework of Bayesian inference, the posterior distribution
of the unknown parameters, i.e., A', of component / can be readily estimated by [9]:

(data‘)\,l)fprior()\,l)
[ l(data|") frrier (\)dA!"

f7 (W |data) = )

where fP"(\!) is the prior distribution of unknown parameters A', whereas
fPo"(M|data) is the posterior distribution of A’ given observations. /(data|)') is the
likelihood function.

In accordance to the data collection strategy, two common scenarios, i.e., con-
tinuous inspection data and discontinuous inspection data, are studied to construct
the corresponding likelihood functions.

Scenario I: Continuous Inspection Data

In this scenario, components are continuously inspected all the time, and the exact
times of components transitioning from one state to another can be recorded. Thus,
one can evaluate the following quantities:

(1) The number of the transitions from state i to state j among all the observations,
denoted as m; ;)(i>j,i€1{2,3, ..., k}.j€{1,2, ...k —1});

(2) The total time that components are remaining at state i, denoted as
T; (ie{2,3, ..., k});

(3) The total number of the transitions from state i, denoted as m;(i=2, 3, ...,n),

and it can be computed by m; = Zj';i m j)-

Bear in mind that the deterioration of each component is assumed to comply
with a homogenous continuous-time Markov model, m; follows a Poisson process,
ie., m; ~Poisson(zjl.;} ll(i’ s T;), and its probability density function is expressed
as:

<Zl_1/ll ‘)m[ i—
AlmlZjaddyy 1) = T T )

m,-!
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If a transition occurs at state i, the conditional probability q (z >J,
i€{2,3,....k},je{1,2, ...,k —1}) that the transition is from state i to state] is
given by:

o

(i.j)

4Qij)~ Si=1 ., ° (4)
Z]—l A (i.))

Thereby, the set of quantities (m; 1), m ), ... .M i-1) ) i€{2,3,....k})
follows the multinomial distribution with parameters m; and q' = (g fi’ 1 qfl.l),

qii’i_ 1)), and the corresponding probability mass function can be formulated as:
m;! mg, m -
Blmg s - oomiioy|dim) = ——r——q gy T (5)

Hj= 175!

Hence, the likelihood function is the product of Egs. 3 and 5, and written as [9]:

i—1 4 i
k (ZFM(,-,]-)-T,-) T m! . N
l(datab»l) =] |{———F—e ~- iy T, T g D Lo Meisy

. Al i
i=2 m;: H]-:lm(,-'j)!

Scenario II: Discontinuous Inspection Data

Continuous inspections may be costly in engineering practice. Alternatively,
components can be inspected periodically or non-periodically. However, in this
case, only the state of components at each inspection time and the time interval
between two adjacent inspections are recorded. The collected data cannot reflect the
time duration that components resides in each state and the exact paths that com-
ponents degrade from the best state to the worst. If components are inspected
periodically with a time interval of Az, the following quantities can be derived from
discontinuous observations:

(1) The number of inspections in which components are observed at state i in the

last inspection and at state j after an inspection interval At, denoted as m(A’ IE

(2) The number of inspections in which the time interval between two adjacent
inspections is At and Components are observed at state i in the last inspection,

i A
denoted as m( ;> and one has m® =i m(i,r )

Under the assumption that a component’s deterioration follows a homogenous
continuous-time Markov model, all the observations with the same observed state
in the last inspection and the same time interval At between two adjacent inspec-
tions can be regarded as repeated s-independent trials. It can be characterized by a
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multinomial distribution. According to Eq. 1, on the condition that component [ is
observed at state i in the last inspection, the probability of component / being at
state j€ {1, 2, ..., i} after Az, denoted as péi j)(At), is a function of the inspection

interval Ar and A'. Hence, the set of quantities (m(‘l’ l),méfz), .. ,mA’ ) follows a
multinomial distribution with parameters m®’ and p!(Af) = éi’ ])(A ) ( 2 (A1),
e ,pfi‘ i>(At)), and it is written as:

Fr(miil sy miilays - ,mﬁfi)|p§(Az),m,.A’)
mi! i (7)
=,-7A”Pl(, )(At) P(i,z)(At) 02 P( )(At) w

H] 171G 5

To generalize this scenario to a non-periodical case, a vector
At=(At, An, ...Atf,) me{1,2,...}) with finite time intervals is used to rep-
resent the distinct time intervals between two adjacent inspections in the cases of
non-periodical inspections. The quantities miA"' i€{2,3,...,k}) and mét]) G<i,
ie{2,3,....k}, je{l,2,...,k}) for each individual time interval
Ar(v € {1,2, ...,n}) can be evaluated based on all the collected data. Thus, the
likelihood function of all the observations under non-periodical inspections can be
formulated as [9]:

At,
n 1 mi v Ar\ Ar\ \ty
)= I (H (Him.Po 1 (86)"60pl; 5) (Ar,)" 02 ~-~P1<w>(NV)mw>>'

v=hAI=2 i, j)

By plugging Eq. 6 or 8 into the Bayesian formula Eq. 2, together with the prior
knowledge 7" (A!), one can get the posterior distributions 7 (A!|data) of X' via
Eq. 2. Depending on the experts’ knowledge or historical data, a particular distri-
bution, such as the Gamma distribution, the Beta distribution, etc., can be chosen
for the prior distribution f’”’"”()»l ) [14]. Alternatively, the uniform distribution can
be used as a non-informative prior if the prior knowledge is unavailable. The
methods to determine the prior distribution in the Bayesian framework can be found
in Wang et al. [14], Smith [15], Hamada et al. [16], and Kelly [17].

However, it should be noted that the analytical solutions to the posterior dis-
tributions of A' may not exist. In our study, the Markov Chain Monte Carlo
(MCMC) method is used, as an alternative, to generate the posterior distribution via
simulation. The technical details of the MCMC method are available in Hamada
et al. [16] and Kelly [17].
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2.2 Bayesian Reliability Assessment for Multi-state Systems

Given a particular set of the transition intensities A (e{l, 2, ...,M}), the state
distributions of components and/or systems at any time instant can be evaluated. By

using the UGF, the state distribution of a multi-state component can be written as a

!

polynomial form as u(z, 1) = Y5, Plui

| (1)z8¢0, where p{, (r) derived by Eq. 1 is
a function of A/ and time. In the same fashion, the state distribution of an MSS can
also be represented by an UGF as Us(z,t)= vai pi(1)z8%, where p;(t) is the
probability of the system staying at state i at time ¢ and it is a function of péu’ i)(t)

(le{l,2, ...,M}). As such, p;(¢) is also a function of M (le {1,2, ...,M}). giis
the performance capacity of the system at state i. Ny is the number of system states.
The UGF of the system can be recursively derived by the UGFs of all the com-
ponents via composition operators [2, 18].

The reliability of the studied MSS is defined as the probability of the system’s
performance capacity being not less than a specified demand level W. Hence, the
system reliability function can be formulated as:

R(t)= X ¢; X pi(1) - 1(gi = w; 2 0), ©)

where w; (j€ {1, 2, ...,H}) is the possible value of W with the associated prob-
ability mass function Pr{W =w;} =¢g;. 1(-) is a unity function, i.e., 1(TRUE) =1
and 1(FALSE)=0. As p;(¢) is completely determined by ' (1€ {1, 2, ...,M}),
R(t) is, therefore, a function of U= {1,2, ...,M}).

However, unlike most reported works in which the transition intensities
A (e {1, 2, ...,M}) of all the components are assumed to be pre-specified pre-
cise values, in this work, the transition intensities are estimated from the proposed
Bayesian framework and characterized by a set of posterior distributions. Such
uncertainty associated with the parameter inference will eventually propagate to the
reliability measures of interests, say R(r), which are functions of the estimates.
Hence, at any time instant, the system reliability evaluated based on the posterior
distributions of the transition intensities is a random quantity. In our earlier work, a
simulation-based method was developed to approximate the posterior distributions
of system reliability at any time [9]. The basic procedures of the simulation method
are as follows:

(1) Nyq, say Ny, =1000~ 5000, samples of the transition intensities A for each
component are randomly generated based on the posterior distributions.

(2) The state distribution of each component with respect to the ith sample of the
transition intensities A’ can be produced by solving Eq. 1.

(3) The system reliability function can be obtained by aggregating all the com-
ponents’ UGFs solved by the ith sample of the transition intensities A'.
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(4) By putting all the results from the N,, samples together, the posterior distri-
butions of the system reliability at any time instant can be approximated by
fitting all the Ny, results with either a parametric distribution (e.g., normal,
Weibull) or non-parametric distribution (e.g., the empirical distribution).

3 Optimal Testing Resources Allocation Strategy

The testing resources allocation problem concerns the sequential experiments in the
reliability field, with which the best strategy to allocate the future available
resources for a new data collection can be determined [11]. The role of the testing
resources allocation in the progressive reliability evaluation of a product is depicted
in Fig. 3. Reliability analysis is conducted based on the available initial data col-
lected at the present Phase 1. From the analysis, the system reliability can be
estimated and predicted. If the results are not credible enough, Phase 2 will be,
therefore, involved to collect more data to further update the estimates and pre-
dictions. The sequential experiment process of collecting new data will continue
whenever additional testing resources are available until the results of interest are
satisfactory. The testing resources allocation is a decision-making action bridging
the two adjacent phases, and it can provide a cost-efficient allocation strategy which
yields a maximum improvement to the reliability estimates and predictions.

In our particular study, due to the limited data collected from reliability tests, the
uncertainty of the estimates, i.e., the transition intensities A (le{L,2, ..., M}),
and the reliability measures, i.e., reliability function, cannot be completely elimi-
nated. These uncertainties have been quantified by the corresponding posterior
distributions in the Bayesian framework as introduced in Sect. 2. On the other hand,
by conducting sequential reliability tests, the newly collected data can be further
used to reduce the uncertainty associated with the estimates and the reliability
measures of interest. The specific objective of this study is, therefore, to determine
the optimal scheme for the reliability testing resources allocation of the next phase,

Phase 1
A
| 1

Available Data » Reliability ‘ Results of Estimates &
at Present Stage Analysis Predictions
[ Testing Resources
‘ Rellahlllty Allocation Strategy
Analysis
‘| New Data Collection |

\ J
T

Phase 2

New Results of
Estimates & Predictions

Fig. 3 The role of the testing resources allocation in the process of reliability analysis
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Fig. 4 The four steps of the proposed metamodel-based approach for seeking the optimal testing
resources allocation scheme

so as to reduce the uncertainty of the estimated reliability measures of interest as
much as possible.

As seeking the optimal testing resources allocation strategy is extremely
time-consuming, a metamodel-based approach is developed in this study to alle-
viate the computational burden. The basic steps of the proposed metamodel-based
approach to identify the optimal testing resources allocation strategy are plotted in
Fig. 4.

In Step 1, a set of candidate schemes for reliability testing resources allocation is
randomly generated by the design of experiment (DOE), such as the full factorial
experimental design, the Latin Hypercube Design (LHD), the Improved distributed
Hypercube Sampling (IHS). The candidate schemes produced by the DOE are
required to evenly spread over the decision space. In Step 2, the performance of
each scheme generated in Step 1 will be evaluated. In our particular study, we are
concerned with the uncertainty associated with the reliability measures of interest.
The improvement to the uncertainty of system reliability estimation/prediction will
be quantified by a metric. As evaluating, the performance of all the candidate
schemes is computationally unaffordable, the kriging model, as a surrogate model,
will be constructed in Step 3 to approximate the implicit relationship between the
decision variables and the performance of candidate schemes. New candidate
schemes together with their performance evaluation may be added into the initial
DOE to update the kriging model until the accuracy of the kriging model is
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acceptable. In Step 4, the optimization algorithm, such as the genetic algorithm, will
be directly performed on the kriging model to seek the global optimal solution,
and it corresponds to the optimal testing resources allocation strategy that
decision-makers are looking for. The technical details of some steps will be elab-
orated in the ensuing sections.

3.1 Evaluating Performance of Candidate
Allocation Schemes

To determine the optimal testing resources allocation scheme, it is necessary to
define a criterion to evaluate the performance of each candidate scheme. In this
study, we are concerned with the uncertainty associated with the reliability mea-
sures of interest, and the testing resources allocation scheme which can maximally
reduce the uncertainty of the estimated reliability measures is preferable. As
reported in Anderson-Cook et al. [11], several possible metrics can be used to
quantify the uncertainty of the reliability measures of interest, such as the width of a
particular (1 —a)x100% confidence bound and the entropy of the estimate.
Although these metrics are all asymptotically equivalent as claimed by Wynn [19],
the different metrics will lead to different relative rankings of the candidate allo-
cation schemes. In our study, as the system reliability function is uncertain due to
the uncertainty associated with the transition intensities A' ({€ {1, 2, ..., M}), we
choose the width of the (1 —a) x 100% confidence bound as a metric, denoted as
R(1 - ) x 1005 (|fP*" (M |data) ), to quantify the uncertainty of the system reliability at
a particular time instant, as shown in Fig. 5a. If decision-makers concern with the
uncertainty of the system reliability in a period of time, the integration of the width
of the (1 —a)x100% confidence bound over the particular period of time, as
depicted in Fig. 5b, can be used as an alternative metric. In this study, we will only
focus on the former case in the illustrative examples.

The performance of a candidate allocation scheme is evaluated by examining the
expected uncertainty of the reliability measures of interest after conducting the

@ A 90% Confidence Bound (b)) A 90% Confidence Bound
— Mean — Mean
& = <-— Uncertainty
= 2
] =
< )
& Uncertainty ~
h Time Lok Time

Fig. 5 The illustration of the metrics for uncertainty quantification. a Uncertainty at a particular
time instant; b uncertainty of a period of time
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Fig. 6 The flowchart of
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Step 6: Compute the expected
value of the N; metrics

End

sequential experiments. The scheme with smaller expected uncertainty is preferable.
Nevertheless, the expected uncertainty of the reliability measures cannot be derived
analytically for each candidate scheme. In this study, a simulation-based approach
is developed to evaluate the expected uncertainty of the reliability measures after
carrying out a testing resources allocation scheme. The flowchart of the
simulation-based approach is shown in Fig. 6. In Step 1, N; samples of transition
intensities A/ (ef{l,2, ..., M}) are randomly drawn from the posterior distribu-
tions f7°(\!|data). The posterior distributions are the estimates of A based on the
initial data at Phase 1 as shown in Fig. 3. And then, set the index i=1. It is
followed by Step 2 in which the deterioration paths of components are randomly
generated based on the ith random sample of A/, and a set of new artificial obser-
vations can be collected based on the candidate allocation schemes. By merging
both the initial observations from Phase 1 and the new artificial observations, the
Bayesian inference introduced in Sect. 2.1 can be executed to update the posterior
distributions of A’ in Step 3, and then, in Step 4, the reliability of the entire system
can be evaluated by the proposed approach in Sect. 2.2.

The uncertainty associated with the reliability measures of interest is quantified
by the metrics, such as the width of the (1 — a) X 100% confidence bound, in Step 5.
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If i<Ny, set i=i+1 and go to Step 2. Otherwise, go to Step 6 to compute the
expected value of the metrics, e.g., the expected width of the (1 —a)x 100%
confidence bounds of the reliability measures, based on the N, results.

It should be noted that,

(1) as the true values of A are unknown and the new observations are artificially
generated based on the posterior distributions of A, the expected uncertainty of
the reliability measures from the simulation-based approach is not a true value,
but a predictive value;

(2) the simulation-based approach is very time-consuming, and it is computa-
tionally unaffordable to enumerate the performance of all the candidate
schemes.

3.2 Kriging Model

To mitigate the computational burden in enumerating the performance of candidate
schemes, the metamodeling technique is adopted in this study to approximate the
implicit relationship between the decision variables (corresponding a particular
candidate allocation scheme) and the performance of schemes, i.e., the expected
width of (1 —a)x 100% confidence bound. Many metamodeling tools can be used
here, such as the polynomial response surface, the radial basis function, the kriging,
the artificial neural networks, and support vector machine, etc. It is desired that a
metamodel is capable of capturing both global and local trends with a few training
samples. A comparative study on the performance of various metamodels has been
reported in Jin et al. [20, 21]. In this study, we choose the kriging model as a
surrogate model because it has extremely widespread applications due to its flex-
ibility and high accuracy [22-24].

In essence, the kriging model is a semi-parametric interpolation technique based
on statistical theory. The kriging model is composed by a polynomial model and a
stochastic model as follows:

P
y(x) =pE(x) +2(x) = Zl Bif (%) +2(x), (10)
where P is the number of basic functions; f(x)=[fi(x), 4(x), ..., fp(x)]" and
B=1p1.52 ---» ﬂP}T are polynomial function of inputs x and the corresponding

coefficients, respectively, and they provide a global approximation. While z(x) is
the lack of fit and is represented by a realization of a random process with mean
zero and non-zero covariance. The covariance of the residuals at any two sites, say
z(x;) and z(x;), can be expressed by:
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Cov|[z(x;), z(x))] =’ R(xi, X;), (11)

where ¢ is the variance of z(x); R(x;, X;) is the spatial correlation function of any
two sites, i.e., z(X;) and z(x;) in the sample space. The correlation function R(x;, X;)
plays an important role in determining the accuracy of the model. Many correlation
functions can be chosen, such as linear, spherical, exponential, and Gaussian cor-
relation functions, etc. Among these options, the Gaussian correlation function is
the most popular, and it is given by:

R(x;, x;) = exp(— Y Ok
k=1

4-4f) (12

where x¥ and xf are the k th elements of x; and x;, respectively; 0=[0;, 05, ..., 0,)"
are the correlation parameters which measure how fast the correlation between x;
and x; decays with the distance between these two sites. {0, B, 02} are the unknown
parameters of a kriging model and they can be estimated via the maximum like-
lihood estimations with existing training samples.

The predicted mean value of the estimated response y at any un-sampled site x
is:

(%) = (x)B + 1" ()R~ (v, ~ 1), (13)

and
p=(F'R™'f) " 'f'Ry,. (14)

Where the column vector y, contains the response values at all sample sites; f are
the values of the polynomial function at all of the sample sites; r(x) are the
correlations between the un-sampled site x and all of the sample sites; and R is a
correlation matrix of all of the sample sites. The predicted variance of the estimated
response y at the un-sampled site X is:

& (x) =a2(1 — (R "r(x) + (F(x) —F"R™"r(x)) (F'R~'F) 7 (£(x) —fTR-lr(x))),
(15)
where

=" ((v.~1B) R (v, 1B) ). (16)

n

and 63 (x) quantifies the interpolation uncertainty associated with the un-sampled
site X.
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Given a set of training samples, the unknown parameters, i.e., {0, B, 02}, in a
kriging model can be estimated, and then the responses ast un-sampled sites can be
predicted by Eq. 13 with the associated predicted variance given in Eq. 15. In this
particular study, the inputs x correspond to a candidate testing resources allocation
scheme, e.g., the number of additional specimens and/or the inspection interval for
each component, and the response y is the performance of each scheme, e.g. the
expected width of (1 —a)x100% confidence bound of the concerned reliability
measure. The implicit relationship between the inputs and the response can be built
up by the initial training samples from the DOE. The global accuracy of the kriging
model can be quantified by the metrics [20], such as the R square, the Relative
Average Absolute Error (RAAE), the Relative Maximum Absolute Error (RMAE),
etc. If the accuracy of the kriging model is not satisfactory, additional training
samples could be further generated by the sequential DOE to update the kriging
model [25, 26]. The kriging model with acceptable accuracy will be used in the next
step to seek the optimal testing resources allocation strategy.

3.3 Optimization Model and Algorithm

In this study, the reliability testing resources allocation for MSSs can be formulated
as an optimization problem as follows:

min  E[R(; -4 x 100% ({}f"*"' (M |data)) (s, At)]
st Cls,At) < Co

17

iy (17)
A >0

where s={s1, 2, ...,8su} and At={At, Atp, ..., Aty } are two sets of decision

variables, representing the number of additional specimens to be allocated to each
component and the inspection intervals for collecting data, respectively. A setting
for {s, At} corresponds to a candidate scheme for the reliability testing resources
allocation. If As; (I€{1, 2, ..., M}) is set to be zero, it is the case where com-
ponent [ will be continuously inspected to collect observations. Cy is the cost
constraint for the testing resources; s? is the constraint for the maximum number of
additional specimens of component . E[-] is expectation. The objective function,
ie., E[R(i—ax100%(t|f"* (M|data))|(s, At)], is replaced by the kriging model
introduced in Sect. 3.2 to mitigate the computational burden.

It should be noted that the optimization problem in Eq. 17 involves both integer
and real decision variables and the number of decision variables increases linearly
with respect to the types of components in a system. An exhaustive examination of
all the candidate solutions is not realistic due to the limited computational capa-
bility. In this study, the genetic algorithm (GA) is utilized to search the global
optimal solution owing to its flexibility in terms of representing mixed variables in
various optimization problems [27, 28].
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The main procedures of implementing the GA to solve the specific optimization
problem are as follows:

(1) Population initialization. For our specific problem, the chromosome is com-
posed of two parts, and it can be denoted as a string ¢ = {sy, 52, ..., sy, Afy,
Afy, ..., Afy}. The first M elements are non-negative integers, corresponding
to the additional specimens for components, whereas the last M elements are
non-negative real numbers, representing the inspection intervals for data col-
lection. A set of N, chromosomes, as the initial population, are randomly
generated in the first iteration.

(2) Fitness evaluation. The expected width of 90% confidence bounds of relia-
bility measures serves as the fitness value of each chromosome, and it is pre-
dicted by the kriging model introduced in Sect. 3.2. The smaller expected width
of 90% confidence bound, the higher the fitness value. The infeasible solutions
which violate the constraints are handled by the penalty function approach.

(3) New population generation. The roulette-wheel selection strategy is used to
select chromosomes based on their fitness values from the present population to
form a new generation of population for the next iteration. The crossover and
mutation operators are used to produce new chromosomes to explore the
unsearched solution space, while maintaining the diversity of a population. As
the chromosome is composed of mixed decision variables, the crossover and
mutation operators are performed separately for each of the two parts to keep
the digits within their allowable bounds. N, chromosomes with the highest
fitness values will be directly merge into the new generation.

(4) Iterative process termination. The optimization procedure terminates when
the iteration count reaches N.. Otherwise, go to Step 2 for the next iteration.

It is worth noting that many other advanced optimization algorithms, such as the
Tabu search, the simulated annealing (SA), the ant colony optimization (ACO), etc.,
can also be used here, instead of the GA, to solve the resulting optimization
problem.

4 Illustrative Examples

The illustrative example is a three-unit multi-state power generating system as
shown in Fig. 7. Components 1 and 2 connected in parallel constitute a subsystem.
The performance capacities and the transition intensities of all the components are

Fig. 7 The system Subsystem
configuration




Optimal Testing Resources Allocation for Improving ... 257

Table. 1 The performance Component ID State 1 State 2 State 3 State 4
capacities of the three ] 0 1 3 ;
components (unit kW)

2 0 5 8 12

3 0 4 7 10

Table 2 The state transition

. - Component ID
intensities of the three

Nazy |Maz) | Moy | Mo M A

components (unit month™") 1 / / / 0.2 0.1 0.2
0.3 0.2 0.1 0.3 0.2 0.3
3 0.2 0.1 0.05 [0.2 0.1 0.2

Table 3 The continuous inspection data of component 1 from 50 specimens

Initial state i of a Total sojourning time Total number m; Destination state
transition (months) T; j of a transition
j=2 ji=2
m(i.2) M(i.2)
i=3 165.94 50 36 14
i=2 167.60 36 - 36

tabulated in Tables 1 and 2, respectively. The transition intensities are assumed to
be unknown to the reliability engineers, but can be inferred by the proposed
Bayesian approach. The system and subsystem are viewed as failure if their per-
formance capacities are less the required demand level. In Example 1, we only
focus on allocating the limited testing resources for components 1 and 2 to improve
the reliability estimation of the subsystem at a particular time, while the testing
resources are allocated for all the three components in Example 2.

4.1 Example 1

In this example, the testing resources allocation is only considered for components
1 and 2 to improve the reliability estimation of the subsystem at a specific time
t=3.0 months. In other words, we expect to reduce the uncertainty of the sub-
system reliability estimation at #=3.0 months. According to the transition inten-
sities given in Table 2, 50 deterioration paths are randomly generated for
components 1 and 2, respectively. Components 1 and 2 are supposed to be con-
tinuously inspected over time. The collected data are tabulated in Tables 3 and 4,
and will be used to infer the posterior distributions of transition intensities. The
prior distributions of transition intensities are set to be a uniform distribution in the
range of [0, 0.5] month™, together with the observations from 50 specimens,
the posterior distributions of the transition intensities of the two components can be
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Table 4 The continuous inspection data of component 2 from 50 specimens

Initial state i of a Total sojourning time Total number m; Destination state j
transition (months) T; of a transition
j=3 |j=2 |j=1
M(i,3) M, 2) mi, 1)
i=4 73.18 50 24 19 7
i=3 47.05 24 - 15 9
i=2 122.17 34 - - 34
15 20 : 15
2 10 w5 = 10
[a] Q10 &)
& s o & s
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
Asa) (month™) /1('3,” (month™) /‘L(‘z.n (month™)
| '''''' Posterior Distribution -—-— Prior Distribution True Valuel

Fig. 8 The prior distributions and the posterior distributions of the transition intensities of
component 1

10 10 15
<9 = 10
o] o]
=% =% 5
0 0 i 0 e Sy
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
Al (month™) Al (month™) Ay (month™)
10 10 10
B 53 B
a 35 a5 a s
~ ~ ~
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
/1(231) (month™) /1(2“) (month™) ﬂ.(zm (month™)
| """" Posterior Distribution-=-= Prior Distribution True Valuc‘

Fig. 9 The prior distributions and the posterior distributions of the transition intensities of
component 2

evaluated via the proposed Bayesian approach as shown in Figs. 8 and 9. Conse-
quently, the subsystem reliability function can be estimated, as shown in Fig. 10,
via the proposed simulation method in Sect. 2.2 if the required demand level W is
given as tabulated in Table 5. The width of the 90% confidence bound of the
subsystem reliability is 0.1087 at r=3.0 months. If the accuracy of the subsystem
reliability function at #=3.0 months is not satisfactory, the inference results at the
present stage can be viewed as Phase 1 shown in Fig. 3 and will facilitate the
reliability testing resources allocation at Phase 2.
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1
——mean
—_— 0, B
08 90% CB |
2
= 0.6
=
]
©
& 0.4
0.2
0 . . :
0 5 10 15 20 25 30

Time (months)

Fig. 10 The estimated reliability function of the subsystem

Table 5 The possible values of the required demand W for the subsystem (unit kW)

Possible required demand W 3 5 9
Probability 0.4 0.4 0.2

Suppose that the total budget for the reliability testing resources at Phase 2 is
Cy=29,500 US dollars. The costs for conducting a test with continuous inspec-
tions for components 1 and 2 are 400 US dollars and 800 US dollars, respectively.
A candidate testing resources allocation scheme, i.e., the additional number of
reliability tests for each component, is denoted as {si, s} where s; €0, 50]
(ie{l, 2}) is assumed as the decision space. By the Latin Hypercube Design
(LHD), 15 candidate testing resources allocation schemes are randomly generated
within the decision space. The performance, i.e., the expected width of 90% con-
fidence bound of the subsystem reliability at t=3.0 months, of these candidate
schemes are evaluated by the proposed approach in Sect. 3.1. However, it costs
around 10 min to evaluate the performance for a candidate scheme, in which the
sample size Ny is set to be 50. A kriging model, as depicted in Fig. 11, is therefore
constructed to approximate the relationship between candidate schemes and the
predicted performance of the schemes.

As seen in Fig. 11, with the increase of the numbers of reliability tests, the
expected width of 90% confidence bound of the subsystem reliability at r=3.0
months declines. Additionally, adding the specimens for component 2 is more
effective to reduce uncertainty than that of component 1, because the expected
width of 90% confidence bound has a steeper decreasing trend along the s, axis.

The resulting optimization problem with a budget constraint, i.e.,
400s; +800s, <£29,500, can be resolved by the proposed GA algorithm. The
optimal allocation strategy is {s}k =17, sz =28}, and the corresponding expected
width of confidence bound of the subsystem reliability at # = 3.0 months is reduced
to 0.0852. By replacing the time-consuming performance evaluation with a kriging
model, the optimization algorithm takes less than 5.0 s via Matlab 2012 on a
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Fig. 11 The kriging model
and the samples from the
LHD

0124 ¢
014"
0.08
0.06
0.04 4"

0.02 4"

The Expected Width of
90% Confidence Bound

50

* DOE Sites

Table 6 The continuous inspection data of component 3 from 50 specimens

Initial state i of a Total sojourning time Total Destination state j of a
transition (months) T; number m; transition
j=3 |j=2 |j=1
mis) |M@2) | M)
i=4 155.09 50 30 15 5
i=3 94.31 30 - 20 10
i=2 163.21 35 - - 35

workstation with an Intel Xeon 2.10 GHz and 128 GB RAM when N, and N, are
set to 50 and 1000, respectively.

4.2 Example 2

The proposed testing resources allocation approach is further validated in the entire
system as shown in Fig. 7. The limited testing resources will be optimally dis-
tributed to the three components with the purpose of further reducing the uncer-
tainty of the system reliability estimation at # = 3.0 months. In addition to the data in
Tables 3 and 4, 50 specimens of component 3 are supposed to be continuously
inspected at Phase 1 and the collected data are tabulated in Table 6. The posterior
distributions of transition intensities of the three components are evaluated by the
proposed Bayesian method and depicted in Figs. 8, 9, and 12. They serve as the
inputs for the decision-making at Phase 2. The possible values and the corre-
sponding probabilities of the required demand W are given in Table 7. Therefore,
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15 15— 30
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Fig. 12 The prior distribution and the posterior distributions of the transition intensities of
component 3

Table 7 The possible values of the required demand W for the system (unit kW)

Possible required demand W 3 3 5 9
Probability 0.2 0.3 0.3 0.2
Fig. 13 The estimated 1 -
cohili : : ——mean
system reliability function in ——00%CB
Phase 1 0.8 i
)
£ 06
z
8
2 04
0.2
0 L L - e
0 5 10 15 20 25 30

Time (months)

the system reliability at any time instant can be evaluated via Eq. 9. The mean value
and the 90% confidence bound of the estimated reliability function are shown in
Fig. 13. At r=3.0 months, the width of the 90% confidence bound of the system
reliability is 0.1368, and such uncertainty needs to be further reduced in Phase 2.

The budget for the reliability testing resources at Phase 2 is Cy=97,500 US
dollars. The components can be continuously inspected or periodically inspected,
and thus, a candidate testing resources allocation scheme can be represented by
{s1, $2, 83, Ay, Ay, Atz} where the number of additional specimens for each
component s; € [0, 50] (€ {1, 2, 3}) and the inspection intervals for each com-
ponent At; € [0, 5] months (i€ {1, 2, 3}). The cost for conducting a test is asso-
ciated with the inspection interval for data collection. In general, the cost of a test
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increases monotonically with the frequency of inspections. The following rela-
tionships are defined to link the inspection intervals with the cost for a single
reliability test:

Component 1
02
¢1 =3000 — 1000(At )™,
Component 2
2 =400 — 100(A,)*?,
Component 3
3 =800 —200(A13)"2,

where At;=0 (i€ {1, 2, 3}) corresponds to the case of continuous inspections.

44 candidate allocation schemes are randomly generated via the LHD within the
decision space and evaluated, and then, a kriging model is constructed to predict the
performance, i.e., the expected width of 90% confidence bound of the system
reliability at r=3.0 months, of a candidate scheme. The genetic algorithm with
mixed decision variables is used to solve the optimal allocation scheme, and it takes
around 30.0 s via Matlab 2012 on a workstation with an Intel Xeon 2.10 GHz and
128 GB RAM when N, and N, are set to 60 and 1000, respectively. The optimal
testing resources allocation scheme is {s]=43, s; =39, 53 =22, At; = 3.7,
At; =1.1, Aty =1.64} with the expected width of 90% confidence bound equal to
0.0911 as predicted by the kriging model. By the flowchart in Fig. 6, the true
performance of the optimal scheme is 0.0909 which is extremely close to the
predicted value.

5 Conclusion

In this chapter, the testing resources allocation problem for MSSs is studied to
optimally distribute the limited reliability testing resources to improve the accuracy
of reliability estimation/prediction. The approach is on the base of the Bayesian
reliability assessment method for MSSs with which both subjective information and
actual continuous or discontinues inspection data can be merged to infer the
unknown parameters, i.e., transition intensities 2. The computational burden in the
performance evaluation of candidate schemes is alleviated by introducing the
kriging metamodel. The genetic algorithm is utilized to resolve the resulting opti-
mization problem with mixed decision variables. Two illustrative examples are
given to demonstrate the effectiveness and efficiency of the proposed method.
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As reliability tests can be conducted at various physical levels of a system,

allocating the limited testing resources across multiple levels of a system [29, 30],
say system-level test, component-level test, is worth exploring in our future work.
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