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Abstract This chapter presents a reliability assessment framework for
multi-component systems whose degradation processes are modeled by multi-state
and physics-based models. The piecewise-deterministic Markov process modeling
approach is employed to treat dependencies between the degradation processes
within one component or/and among components. The proposed method can handle
the dependencies between physics-based models, between multi-state models and
between these two types of models. A Monte Carlo simulation algorithm is
designed to compute the systems reliability. A case study on one subsystem of the
residual heat removal system of a nuclear power plant is illustrated as exemplifi-
cation of the proposed modeling framework.
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1 Introduction

Safety-critical plants, like the nuclear power plants (NPPs), are designed not to fail,
i.e. with very high reliability, because of the potentially catastrophic consequences
of their failures. Traditional data-based reliability analysis, based on failure data, is,
then, unsuitable. On the other hand, most failure mechanisms can be traced to
underlying degradation processes (e.g. wear, stress corrosion, shocks, cracking,
fatigue, etc.) [30], for which models exist.

In general, the reliability of a system decreases as the degradation processes
develop, eventually leading to failure [31]. In reliability engineering, degradation
processes have been widely studied and different degradation models have been
developed. The existing degradation models can mainly be classified into the fol-
lowing categories:

• statistical models of time to failure, based on degradation data (e.g. Bernstein
distribution [9], Weibull distribution [21]).

• stochastic process models (e.g. Gamma processes [14], inverse Gaussian process
[2]) describing the evolution of one or more degradation parameters by gradual
degradation increments over time, and the failure occurs when the degradation
parameter values reach predefined thresholds.

• physics-based models (PBMs), based on the knowledge of the physics of
degradation, which is translated into equations to give a quantitative description
(e.g. the physics functions based on critical environmental stresses, e.g.
amplitude and frequency of mechanical loads, used to model the pitting and
corrosion-fatigue degradation mechanisms [3]).

• multi-state models (MSMs) describing the underlying degradation process by
finite degradation states (e.g. semi-Markov models for the deterioration of
infrastructure systems [1]).

Among these categories, PBMs [6, 13, 27] and MSMs [18, 19, 23] can be used
to describe the evolution of degradation in structures, systems and components, for
which statistical degradation/failure data are insufficient, e.g. the highly reliable
devices in the nuclear and aerospace industries.

In reality, components and systems are often subject to multiple competing
degradation processes and any of them may cause failure [29]. The dependencies
among these processes within one component (e.g. the wear of rubbing surfaces
influenced by the environmental stress shock within a micro-engine [12]), or/and
among different components (e.g. the degradation of the pre-filtrations stations
leading to a lower performance level of the sand filter in a water treatment plant
[26]) need to be considered, under certain circumstances. This renders challenging
the analysis and prediction of the components and systems reliability [25]. Wang
and Pham [29] applied time-varying copulas for describing the dependencies
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between the degradation processes modeled by statistical distributions. Straub [28]
used a dynamic Bayesian network to represent the dependencies between degra-
dation processes modeled by multi-state models.

In this chapter, we present a reliability assessment framework for
multi-component systems whose degradation processes are modeled by MSMs and
PBMs, capturing dependencies among the components and among multiple
degradation processes within one component. The piecewise-deterministic Markov
process (PDMP) modeling approach is employed. The PDMP, firstly introduced by
Davis in [7, 8], and further studied by Jacobsen [11] and Cocozza-Thivent [4], is
well-suited to describe degradation dependence. The remainder of this chapter is
organized as follows. Section 2 presents the proposed degradation model for sys-
tems with degradation dependence. Monte Carlo simulation procedures to solve the
model are presented in Sect. 3. Section 4 presents a case study on one subsystem of
a residual heat removal system (RHRS) of a NPP. Section 5 concludes the work.

2 Dynamic Reliability Models for Systems
with Degradation Dependence

For highly reliable systems, such as nuclear safety systems, it is relatively difficult
to model their degradation and failure behaviors due to the limited amount of data
available. In these cases, PBMs and MSMs are two modeling frameworks that can
be used to model degradation. Systems are often subject to multiple competing
degradation processes and any of them may cause failure. The dependences among
these processes need to be considered under certain circumstances. In this chapter, a
PDMP modeling framework is developed to treat degradation dependence in a
system whose degradation processes are modeled by PBMs and MSMs.

2.1 Degradation Models

We consider a multi-component system made of Q components denoted by
O= fO1,O2, . . . ,OQg. Each component may be affected by multiple degradation
mechanisms or processes, possibly dependent. The degradation processes can be
separated into two groups: (1) L= fL1,L2, . . . ,LMg modeled by M PBMs;
(2) K = fK1,K2, . . . ,KNg modeled by N MSMs, where Lm,m=1, 2, . . . ,M and
Kn, n=1, 2, . . . ,N are the indexes of the degradation processes.
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2.1.1 PBMs

The following assumptions on PBMs are made:

• A degradation process XLm tð Þ, Lm ∈ L in the first group, has dLm time-dependent
continuous variables

XLm tð Þ= x1Lm tð Þ, x2Lm tð Þ, . . . , xdLmLm tð Þ
� �

∈ℝdLm . A system of first-order differential

equations (i.e. physics equations)

XLm

⋅
tð Þ= f LmðXLm tð Þ, tjθLmÞ, are used to characterize its evolution, where θLm are

the environmental factors influential to Lm (e.g. temperature and pressure) and
the parameters used in f Lm . This assumption is made in [20] and widely used in
practice [5, 6]. Note that higher-order differential equations can be converted
into a system of a large number of first-order differential equations by intro-
ducing extra variables [33].

• XLm tð Þ can be divided into two groups of variables XLm tð Þ= XD
Lm tð Þ,XP

Lm tð Þ
� �

:

(1) XD
Lm tð Þ are the non-decreasing degradation variables describing the degra-

dation process (e.g. leak area of the piston of the valve [6]), where D is the set of
degradation variables indices; (2) XP

Lm tð Þ are the physical variables influencing
XD
Lm tð Þ (e.g. velocity and force [5]), where P is the set of physical variable

indices. For example, the friction-induced wear of the bearings is considered as
one degradation process in [5]. It is represented by the increase in friction
coefficients. The two friction coefficients associated with sliding and rolling
friction are considered as the degradation variables. The rotational velocity of
the pump is considered as the physical variable, since it influences the increase
in the coefficients of friction. The evolution of physical variables can be char-
acterized by physics equations. If the variables can be modeled by physics
equations and influence certain degradation variables, then, they are considered
as physical variables. As long as one xiLm tð Þ∈XD

Lm tð Þ reaches or exceeds its
corresponding failure threshold xðLmÞi

* the generic degradation process Lm fails.
Let F Lm denote the failure state set of Lm and x*Lm denote the set of all the failure
thresholds of XD

Lm tð Þ. An example of L1 is shown in Fig. 1.

2.1.2 MSMs

The following assumptions on MSMs are made:

• A degradation process, YKnðtÞ,Kn ∈K in the second group, takes values from a
finite state set denoted by SKn = 0, 1, . . . , dKnf g, where ‘dKn ’ is the perfect
functioning state and ‘0’ is the complete failure state. The transition rates
λi jjθKnð Þ,∀i, j∈ SKn , i> j characterize the degradation transition probabilities
from state i to state j, where θKn is the set of the environmental factors to Kn and
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the related parameters used in λi. We follow the assumption of Markov property
which is widely used in practice to describe components degradation processes
[10]. The transition rates between different degradation states are estimated from
the degradation and/or failure data from historical field collection. Let
FKn = 0f g denote the failure state set of Kn. An example of K1 is shown in
Fig. 2.

2.2 Degradation Model of the System Considering
Dependence

The dependencies between degradation mechanisms or processes may exist within
each group and between the two groups. The evolution trajectories of the contin-
uous variables in the first group may be influenced by the degradation states of the
second group. The transition times and transition directions of the degradation
processes of the second group may depend on the degradation levels of the com-
ponents in the first group [17]. PDMPs [4], which are a family of Markov processes

Fig. 1 An illustration of L1

Fig. 2 An illustration of K1
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involving deterministic evolution punctuated by random jumps, can be employed to
model this type of dependence (the detailed formulations are shown in Eqs. (2) and

(3)). Let X tð Þ=
XL1 tð Þ
⋮

XLM tð Þ

0
@

1
A denote the degradation processes of the first group and

Y tð Þ=
YK1 tð Þ
⋮

YKN tð Þ

0
@

1
A denote the degradation processes of the second group. The

overall degradation process of the system is presented as

Z(t) =
X tð Þ
Y tð Þ

� �
∈E=ℝdL × S ð1Þ

where E is a space combining ℝdL ðdL = ∑
M

m=1
dLmÞ and S= 0, 1, . . . , dSf g denotes

the state set of process Y tð Þ. The evolution of Z tð Þ has two parts: (1) the stochastic
behavior of Y tð Þ and (2) the deterministic behavior of X tð Þ between two consecutive
jumps of Y tð Þ, given Y tð Þ. The former is governed by the transition rates of Y tð Þ,
which depend on the states of the degradation processes in X tð Þ and also in Y tð Þ, as
follows:

lim
Δt→ 0

P Y t+Δtð Þ= jjX tð Þ,Y tð Þ= i, θK = ∪ N
n=1θKn

� �
̸Δt

= λi jjX tð Þ, θKð Þ, ∀t≥ 0, i, j∈ S, i≠ j
ð2Þ

The latter is described by the deterministic physics, which depends on the states
of the degradation processes in Y tð Þ and also in X tð Þ, as follows:

X ̇ðtÞ=
XL1

⋅ ðtÞ
⋮

XLM

⋅ ðtÞ

0
B@

1
CA=

f Y tð Þ
L1 ðXðtÞ, tjθL1Þ

⋮
f Y tð Þ
LM ðXðtÞ, tjθLM Þ

0
B@

1
CA

= f Y tð Þ
L ðXðtÞ, tjθL = ⋃M

m=1 θLm
� ð3Þ

Let F denote the system failure state set, which depends on the structure of the
system: then, the system reliability at mission time Tmiss can be obtained as follows:

R Tmissð Þ=P Z sð Þ∉F ,∀s≤ Tmiss½ � ð4Þ
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The system failure state set is dependent on system structure. To determine this
set, reliability analysis tools such as fault tree [15] can be used to identify the
combination of primary failure events leading to system failure.

3 System Reliability Estimation Method

Analytically solving the PDMP is a difficult task due to the complex behavior of the
system [22], which contains stochastic properties in the components modeled by
MSMs and the time-dependent evolutions of the components modeled by PBMs.
On the other hand, MC simulation methods are suited for the reliability estimation
of the system.

Refer to the system presented in Sect. 2.2. Let Zk = Z Tkð Þ= X Tkð Þ
Y Tkð Þ

� �
∈E, k ∈ℕ,

where Tk denotes the time of the k-th transition of Y tð Þ from the beginning. Then,
Zk, Tkf gk ≥ 0 is a Markov renewal process defined on the space E ×ℝ+ [4], which is

characterized as follows:

P Zk+1 ∈B,Tk +1 ∈ Tk,Tk +Δt½ �jZk = i, θ= θK ∪ θL½ �
=

ZZ
B* 0,Δt½ �

N i, dz, dsjθð Þ, ∀k≥ 0,Δt≥ 0, i∈E,B∈ ε ð5Þ

where ε is a σ-algebra of E and N i, dz, dsjθð Þ is a semi-Markov kernel on E, which
verifies that

RR
E* 0,Δt½ �

N i, dz, dsjθð Þ≤ 1, ∀Δt≥ 0, i∈E. It can be further developed as:

N i, dz, dsjθð Þ= dFi sjθð Þβ i, dzjs, θð Þ ð6Þ

where

dFi sjθð Þ ð7Þ

is the probability density function of Tk +1 − Tk given Zk = i and

β i, dzjs, θð Þ ð8Þ

is the conditional probability distribution of state Zk+1 starting from Zk = i given
Tk+1 −Tk = s.

The simulation procedure consists of sampling the transition time from Eq. (7)
and the arrival state from Eq. (8) for Y tð Þ, then, calculating X tð Þ within the tran-
sition times, by using the physics equation (3) until the time of system evolution
reaches a certain mission time Tmiss or the system enters the failure space F .

Reliability Assessment of Systems with Dependent Degradation … 219



To calculate the system reliability, the procedure of the MC simulation is pre-
sented as follows:

The estimated probability of occurrence of one path at time Tmiss can be obtained
by

bR Tmissð Þ=1− k′ ̸Nmax ð9Þ

with the sample variance [16] as follows:

varbP Tmissð Þ =
bR Tmissð Þ 1− bR Tmissð Þ

� �
̸ Nmax − 1ð Þ ð10Þ
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4 Case Study

The case study refers to one subsystem of the RHRS of a NPP. The system consists
of a centrifugal pump and a pneumatic valve in series. Given the series configu-
ration, the failure of anyone of the two components can lead the subsystem to
failure. Dependence in the degradation processes of the two components has been
indicated by the experts: the pump vibrates due to degradation [32] which, in turn,
leads the valve to vibrate, aggravating its own degradation processes [24].

The pump is modeled by a MSM, modified from the one originally supplied by
EDF upon discussion with the experts. It is a continuous-time homogeneous
Markov chain as shown in Fig. 3.

Sp = 0, 1, 2, 3f g denotes its degradation states set, where 3 is the perfect func-
tioning state and 0 is the complete failure state. The parameters λ32, λ21 and λ10 are
the transition rates between the degradation states. Due to degradation, the pump
vibrates when it reaches the degradation states 2 and 1. The intensity of the
vibration of the pump on states 2 and 1 is evaluated as by the experts ‘smooth’ and
‘rough’, respectively. We assume that λ32 = λ21 = λ10 = 3e− 3 ̸s.

The simplified scheme of the pneumatic valve is shown in Fig. 4. It is a normally
closed, gas-actuated valve with a linear cylinder actuator.

By regulating the pressure of the pneumatic ports to fill or evacuate the top and
bottom chambers, the position of the piston can be controlled. A return spring is
linked with the piston to ensure the closure of the valve, when pressure is lost. The

3 2 1 0
λ32 λ21 λ10

Fig. 3 Degradation process
of the pump

Return Spring

Piston
Bottom chamberBottom 

pneumatic port

Top chamber

Top
pneumatic port

Fluid 

Fig. 4 Simplified scheme of
the pneumatic valve [9]

Reliability Assessment of Systems with Dependent Degradation … 221



external leak at the actuator connections to the bottom pneumatic port due to
corrosion and other environmental factors is chosen as the degradation mechanism
of the valve, which is much more significant than the other degradation mechanisms
according to the results shown in [6].

Let Db tð Þ denote the area of the leak hole at the bottom pneumatic port at time t,
the development of the leak size is described by:

Db
⋅

tð Þ=ωb 1+ βYp tð Þ
� �

ð11Þ

where ωb =1e− 8m2 ̸s is the original wear coefficient and where βYp tð Þ is the rel-
ative increment of the developing rate of the external leak at the bottom pneumatic
port, caused by the vibration of the pump at degradation state ‘2’ or ‘1’. We assume
that β2 = 10% and β1 = 20%.

The leak will lead the valve to be more difficult to open but easier to close than
in case without leak. The threshold of the area of the leak hole D*

b =1.06e− 5m2 is
defined as the value above which ðDb tð Þ>D*

bÞ the valve cannot reach the fully open
position from the fully closed position, within the 15 s time limit, after an opening
command is executed.

The degradation processes affecting the system are modeled by PDMP as
follows:

Z tð Þ= Db tð Þ
Yp tð Þ

� �
∈ℝ+ × Sp ð12Þ

where Yp tð Þ denotes the degradation state of the pump at time t and Db tð Þ denotes
the area of the leak hole at the bottom pneumatic port of the valve at time t. The
space of the failure states of Z tð Þ is F = 0, +∞½ Þ× ′0′

� 	
∪ D*

b, +∞

 �

× 1, 2, 3f g.
The initial state of the system is assumed as follows:

Z0 =
Db 0ð Þ
Yp 0ð Þ

� �
=

0
3

� �
ð13Þ

which means that the two components are both in their perfect states. The initial
probability distribution of the processes Db tð Þ, Yp tð Þ� �

t≥ 0, p0 dzjθð Þ, hence, equals
to δZ0 dzð Þ, where δ is the Dirac delta function.

We perform MC simulation for the estimation of the system reliability over a
time horizon of Tmiss = 1000 s. The results of 106 trials are shown in Fig. 5. We can
see from the Figure that the system reliability decreases more rapidly after around
885 s, because at that time the valve could fail, corresponding to the situation when
the pump jumps to the state ‘1’ very quickly and stays there until the valve fails.
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We further consider a relative uncertainty of ±10% of the original parameters
values. In this case study, higher parameters values lead to rapider degradation
development and lower system reliability. The results of 106 trials are shown in
Fig. 6. The lower bound of the system reliability decreases more sharply after
around 790 s. It is seen that the system fails after around 964 s, because at that time
the valve is completely failed. The upper bound of the system reliability does not
experience a rapid decrease because the valve is mostly functioning over the time
horizon.
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Fig. 5 Estimated system
reliability
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Fig. 6 Estimated system
reliability in consideration of
uncertainty
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5 Conclusion

We have illustrated a PDMP modeling approach for modeling multiple, dependent,
competing degradation processes. The significance of the proposed method lies in
its capability to describe the degradation dependence. A MC simulation algorithm
for the system reliability assessment has been designed and an example from a real
industrial system has been used to illustrate the capabilities of the modeling and
simulation framework.

Limitation of the MC simulation lies in the computational burden. As future
work, we plan to study acceleration techniques to improve computation efficiency,
thus, enabling to extend the applications to systems of larger sizes.
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