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Abstract We investigate reliability of network-type systems under the assumption

that the network has K > 1 types of i.i.d. components. Our method is an extension

the D-spectra method to K dimensions. It is based on Monte Carlo simulation for

estimating the number of system failure sets having ki components of i-th type,

i = 1, 2,… ,K. We demonstrate our approach on a Barabasi-Albert network with 68

edges and 34 nodes and terminal connectivity as an operational criterion, for K = 2
types of nodes or edges as the components subject to failure.

Keywords Network terminal reliability ⋅ Several types of components ⋅
Two-dimensional spectrum ⋅ Monte Carlo simulation ⋅ Two-dimensional quantile

1 Introduction

Networks play a major role as critical infrastructures underpinning our societies and

economies. Very often networks function in the presence of various disruptions from

hacker attacks, natural disasters like earthquakes and natural degradations, as well as

unforseen military and terrorist strikes [2, 5, 8, 11, 15, 17]. All these circumstances

create growing interest to the problems of network robustness, reliability, and pre-

disaster management [2, 4, 5, 15]. Reliability and resilience of network-type struc-

tures attracted major attention in the framework of general network theory, see e.g.
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[2, 5, 9, 13, 17]. Typically, the basic model of a network functioning in the presence

of random “attacks” on its nodes or edges assumed random structure of the network

itself, like Poisson or Barabasi-Albert [1, 3, 9] and focused on random and indepen-

dent removal of nodes and edges. The components subject to failure were assumed

to be identical and independent and the network failure criterion was network disin-

tegration or disappearance of the so-called giant component [2, 9, 11]. The research

in this direction was successfully advanced in [1] by using the results of percolation

theory which provided the threshold value of network components to be removed

to cause network failure. The limitation of this approach, however, is that it is not

applicable to some other network failure criteria, like loss of terminal connectivity,

decrease of the largest network component below some critical size (for finite net-

works), and network disintegration into critical number of isolated clusters [5, 6].

A very promising direction in the reliability study of network-type structures is the

use of so-called signatures, first suggested by Samaniego [12–14]. The essential fea-

ture of this approach is that it is based on system structural invariant which depends

only on system structure function and does not depend of probabilistic properties

(like lifetime distribution) of system components. Despite its elegance and univer-

sality with respect to system failure criteria, it has been efficiently applied only to

systems consisting of one type i.i.d. or exchangeable components.

The main purpose of the present work is to extend the signature (or so-called

D-spectra) approach [5, 6] to network systems consisting of several groups of i.i.d.

components. As a principal example to illustrate our approach and its abilities we

consider a transportation (or supply) network of realistic size (34 nodes, 68 edges),

having as the operational criterion the terminal connectivity. We consider the case

when the nodes or the edges are subject to failure. In both cases, the components

subjected to failure consist of two different groups of i.i.d. components.

The exposition in the paper is the following. Our approach is an extension of the

D-spectra methodology to the case of heterogeneous network. Therefore, we start

with a short overview of the D-spectra approach to the systems consisting of one-type

components. In this case, the D-spectrum or signature allows to count the number

C(k) of failure sets having k failed components. With the knowledge of C(k), system

DOWN probability can be expressed automatically. Since the case of K > 2 groups

of independent components is a rather straightforward generalization of the case of

K = 2 groups of components, we devote the main part of Sect. 3 to the description

of our approach to the K = 2 case.

When the system has two types of components, the key to the reliability analysis

is estimation of the number C(k, r) of so-called (k, r)-failure sets which have k and

r failed components of the first and the second type, respectively. C(k, r) are system

structural invariants. Similar to the one-dimensional case, the estimation of C(k, r)
is made via the so-called two-dimensional spectrum which estimates the frequencies

of the (k, r)-failure sets in a sample of simulated random permutations. We present

an efficient Monte Carlo algorithm for estimating the two-dimensional spectrum.
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In Sect. 3, we demonstrate how our approach works for a realistic example of

a transportation/supply network with 34 nodes and 68 edges. The network was

designed by using Barabasi-Albert preferential attraction method [1]. We consider

the case of edge failures and two versions of node failures. We demonstrate how

relocation of so-called strong nodes can change network reliability.

Section 4 is devoted to the analysis of the network failure state under a random

attack on network nodes by a two-type shocks process. Our analysis allows to define

two-dimensional quantile area for the random location of the “hitting point” of net-

work failure. Finally, in the last Sect. 5 we present the formulas generalizing our

approach for K > 2 types of components and some concluding remarks.

2 The Principal Model: Two Types of Components

2.1 Network Description

Our basic model is a network N = (V ,E,T) where V is a set of vertices (nodes),

|V| = n + k, E is a set of edges (links), |E| = m, and T is a set of special nodes called

terminals, |T| = k, T ⊂ V . Components subject to failures are either the links or the

nonterminal nodes. Edge failure means that this edge is erased, nonterminal node

failure means that all edges incident to this node are erased. In this paper we consider

only one form of network DOWN state-so-called loss of terminal connectivity which

means the network is DOWN if not all its terminal nodes are mutually connected.

In this section we consider the case when components subject to failure (nodes

or edges) consist of two independent groups of i.i.d. components having lifetime

CDF H1(t) and H2(t). So, if the edges fail, mi edges have lifetime CDF Hi(t), i =
1, 2,… and m1 + m2 = m, and nodes remain absolutely reliable. If the nodes fail,

then ni nodes have i.i.d. lifetimesHi(t), i = 1, 2,… and n1 + n2 = n, and edges remain

absolutely reliable.

To simplify the exposition, we consider in detail the case of two groups of com-

ponents in the network. Extension to K > 2 groups is straightforward and is left for

Sect. 5.

2.2 One Type of Components

Since the case of two-type of component network is almost a straightforward gen-

eralization of our method of dealing with the standard one-type case, we remind

shortly the basic definitions and principal steps for the “standard” situation where

all components have i.i.d. lifetimes with CDF H(t).
Let x = (x1, x2,… , xn) be the network component state vector. xi = 1∕0 if the i-th

component is up∕down respectively.
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Network state is determined via a binary function 𝜑(x) which is 1 or 0 if the

network is UP or DOWN, respectively. If 𝜑(x∗) = 0, x∗ is called a failure vector. If

we ignore the order of up /down components in this vector, then x∗ determines a

failure set, i.e. a set of j down components and n − j up components. For simplicity,

we call x∗ failure set.
Now define D-spectrum or signature for our network. Let us consider a random

permutation of component numbers

𝜋 = (i1, i2,… , in).

Suppose that all components are up and, moving from left to right, we turn them

down. The network state is controlled on each step of this destruction process.

Definition 1.1 The ordinal number in the permutation 𝜋 of the component whose

turning down causes network state change from UP to DOWN is called the anchor
of this permutation.

Assume that the permutations 𝜋 are taken randomly and independently from the set

of all n! permutations. Then the anchor becomes a discrete random variable with

support {1, 2,… , n}.

Definition 1.2 The distribution f = (f1, f2,… , fn) of the anchor is called D-spectrum
or signature, (where “D” stands for destruction process of anchor discovery).

Remark 1.1 Historically, the signature was first introduced by Samaniego [11] in a

form equivalent to Definition 1.2. Independently, it was described 6 years later in [3]

under the term Internal Distribution. The authors of [4–6] used the term D-spectra.

Definition 1.3 Denote by Y the discrete random variable with density f. Its cumu-
lative distribution function

F0(k) =
k∑

i=1
fi

is called cumulative D-spectrum or cumulative signature.

For networks having more than n = 7–8 components the calculation of D-spectra

is made by means of an efficient Monte Carlo algorithm, see for example [5, 6]. This

algorithm generates a sample of M permutations and estimates the frequency f̂ (k) of

anchor appearance on the k-th position.

Denote byC(k), k = 1,… , n, the number of failure sets which have k components

down and (n − k) remaining components up. C(k) is a combinatorial invariant of

the system. Knowing C(k) and the up/down probabilities p and q = 1 − p of network

components, we are able to compute system DOWN probability as

P(DOWN) =
n∑

k=1
C(k)qkp(n−k). (1)
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Let H(t) be CDF of component lifetime 𝜏: P(𝜏 ≤ t) = H(t). Denote by p the proba-

bility that the component is up at time t0. Then

p = 1 − H(t0), q = H(t0).

Therefore, (1) gives the probability that the network is DOWN at time t0. Thus, the

probability that system lifetime 𝜏sys does not exceed t0 is

P(𝜏sys ≤ t0) =
n∑

k=1
C(k)[H(t0)]k[1 − H(t0)](n−k). (2)

The crucial fact in obtaining Eqs. (1) or (2) is the following formula connecting

C(k) and F0(k):
C(k) = F0(k)

n!
k!(n − k)!

.

It can be proved analytically using the formulas of order statistics for random

variables with CDF H(t), see [4], or using combinatorial arguments, see for

example [5].

2.3 Two Types of Components

Now we turn to the network which has components of two types, namely there are

n1 components of type 1 and n2 components of type 2. For sake of brevity, we call

them x-type and y-type components, respectively, n1 + n2 = n. These x and y-type

components have i.i.d. lifetimes, with CDFs H1(t) and H2(t), respectively.

The key to the principal formula (1) is the knowledge of C(k), the number of

failure sets with k components down. Now, when we have two types of components,

we need to know the values of C(k, r), the numbers of failure sets which have k down
components of x-type and r down components of y-type, (the remaining (n1 − k)
and (n2 − r) components are up). Then, the DOWN probability for network with two

types of components equals

P⋆(DOWN) =
∑

0≤k≤n1

∑

0≤r≤n2

C(k, r)qk1p
(n1−k)
1 qr2p

(n2−r)
2 ,

where q1, q2 and p1 = 1 − q1, p2 = 1 − q2 are down and up probabilities for x-type

and y-type components, respectively.

Similar to the one-type component systems, C(k, r) are invariants depending on

system structure function and not depending on component lifetime distributions

[5, 14].
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2.4 Counting (k, r)-failure Vectors

In case of two types of components, we have to modify the notation for system state

vector x⋆. Now it will be an ordered sequence of n1 pairs (xi, I) for components

of x-type and n2 pairs (yj, I) for y-type components, where x1,… , xn1 are the names

(numbers) of x-components and y1,… , yn2 are the names of y-components. Indicator

I will be 1 or 0, if the corresponding component is up or down, respectively.

Example 1.1 Consider the network shown on Fig. 1. Components subject to fail-

ure are the edges, nodes are reliable. The network fails if there no connection

between terminals S and T . The network has n1 = 3 components of x-type x1 = (b, c),
x2 = (b,T), x3 = (c,T), and two components of y-type—y1 = (S, a), y2 = (a, b).
Consider, for example, a vector x∗ = (x1, 1), (x2, 0), (x3, 1), (y1, 0), (y2, 0). Obviously

𝜙(x∗) = 0. This failure vector contains one x-edge down and two y-edges down.

Sequential destruction of a random permutation. Consider a random permu-

tation 𝜋
⋆

of n1 x-type pairs mixed randomly with n2 pairs of y-type. Set I = 1 in all

pairs, i.e. initially set all components in up. Start turning down component after com-

ponent by moving along the permutation from left to right. Check system state on

each step and locate the first component (the anchor) when the system goes DOWN.

Let the first observed failure set has (u, v) components of type 1 and type 2, respec-

tively. Continue turning down sequentially all remaining (n1 + n2) − (u + v) compo-

nents in the permutation. Note that on each step appears a new failure set.

Definition 1.4 Random permutation is called of (u, v)-anchor type if its anchor pro-

duces failure set of type (u, v).

Definition 1.5 Random permutation is called a (k, r)-generator if among the failure

sets revealed during the destruction process after the anchor has been revealed, there

is a (k, r)-failure set.

Fig. 1 Network with 5

components. It is UP if there

is an S − T connection.

Edges (S, a), (a, b) are of

y-type, the remaining edges

are of x-type

S a b

c

T
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Example 1.1 continued. Suppose we have the following random permutation before

the destruction process starts: 𝜋
⋆ = [(x1, 1), (x3, 1)(y1, 1), (x2, 1), (y2, 1)]. Below are

5 stages of the sequential destruction:

1 ∶ [(x1, 0), (x3, 1), (y1, 1), (x2, 1), (y2, 1)].
2 ∶ [(x1, 0), (x3, 0), (y1, 1), (x2, 1), (y2, 1)].
3 ∶ [(x1, 0), (x3, 0), (y1, 0), (x2, 1), (y2, 1)].
4 ∶ [(x1, 0), (x3, 0), (y1, 0), (x2, 0), (y2, 1)].
5 ∶ [(x1, 0), (x3, 0), (y1, 0), (x2, 0), (y2, 0)].

The anchor is observed on the third step and therefore 𝜋
⋆

is of (2,1) anchor-type.

Analysing steps 4 and 5, it is seen that 𝜋
⋆

is also a (3,1) and (3,2) generator.

Definition 1.6 Denote by F(k, r) the probability that a random permutation is of

(k, r) anchor-type or is a (k, r)-type generator. Obviously,

F(k, r) = N(k, r)
(n1 + n2)!

, (3)

where N(k, r) is the number of permutations which are of (k, r)-anchor type or
(k, r)-generators. We call the matrix ‖F(k, r)‖(n1+1)×(n2+1) the two-dimensional or 2D-
spectrum.

Definition 1.7 Let g(k, r) be the probability that a random permutation is of (k, r)-
anchor type. Obviously,

g(k, r) = A(k, r)
(n1 + n2)!

,

where A(k, r) is the number of permutations which are of (k, r)-anchor type.

Example 1.1 continued Let us determine N(2, 1). All permutations of three x-es

and two y-s of type (xi, xj, yl, xs, yz) with one yl on third position and two x-es among

the first three positions, produce failure sets of type (2,1). By permuting the first

three elements and the remaining two elements, and also by replacing y1 by y2
among first three elements, we will have 24 permutations for a fixed pair of xi, xj.
Since we can choose this pair in three ways, there is a total of N(2, 1) = 72 per-

mutations. Among them, there are 8 anchor-type (2,1)-permutations. These per-

mutations must have yj on the third position, and two x-es on the first two posi-

tions, like 𝜋 = (x1, x3, y1, x2, y2). There are two ways to exchange the positions of

x1 and x3, two ways to exchange y1 by y2 on the third position, and two ways to

exchange components on the fourth and fifth positions. Therefore, for our network,

F(2, 1) = 72∕5! = 0.6 and a(2, 1) = 8∕120 = 0.0666.

In Table 1 we present the ‖F(k, r)‖ and ‖g(k, r)‖matrices for system shown on Fig. 1.
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Table 1 ‖F(k, r)‖ and ‖g(k, r)‖ matrices

r k = 0 k = 1 k = 2 k = 3 r = 0 k = 0 k = 1 k = 2 k = 3
0 0.0 0.0 0.2 0.1 0 0.0 0.0 0.2 0.0333

1 0.4 0.6 0.6 0.4 1 0.4 0.3 0.0666 0.0

2 0.1 0.3 0.6 1.0 2 0 0 0 0

2.5 Counting the Number C(k, r) of (k, r)-failure Sets

Here the main role is played by the following Theorem.

Theorem 1.1
C(k, r) = F(k, r)

(n1 + n2)!
(k + r)!(n1 + n2 − k − r)!

. (4)

Proof From the description of the sequential destruction of random permutation,

follows that a (k, r)-failure set is a “compact” block of (k + r) components located

at the first (k + r) positions of the permutation (the anchor-type or generated fail-

ure set). It is also obvious that one permutation can produce not more than a single

(k, r) failure set. Permutations between the members of one such set produce (k + r)!
copies of it, and each copy is a failure set. In addition, there are (n1 + n2 − k − r)!
permutations of the remaining components. Therefore N(k, r) permutations produce

N(k, r)
(n + k)!(n1 + n2 − k − r)!

original (k, r) failure sets. Remembering (3), we arrive at the desired

formula (4). □

The following Corollary establishes the connection between the cumulative one-

dimensional D-spectrum F0(k) (see Definition 1.3) and the 2D-spectrum.

Corollary 1.1

F0(w) =
min(n1,w)∑

k=0
F(k,w − k).

Proof Suppose that we declare n2 components of y-type to be identical to the com-

ponents of x-type. Then each (k, r)-failure set becomes a (k + r)-failure set in the

system having n1 + n2 identical components. Therefore,

min(n1,w)∑

k=0
C(k,w − k) = C(w),

or
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w∑

k=0
F(k,w − k)

(n1 + n2)!
w!(n1 + n2 − w)!

= F0(w)
(n1 + n2)!

w!(n1 + n2 − w)!
,

which proves the Corollary. □

Example 1.1 continued. Let us verify C(2, 1). By (4), C(2, 1) = 0.6 ⋅ 5!∕(3!2!)
= 6. Indeed, there are 6 failure sets having two x-type and one y-type component:

[x1, x2, y1, ], [x1, x3, y1], [x2, x3, y1], [x1, x2, y2, ], [x1, x3, y2], [x2, x3, y2].

2.6 Simulation Algorithm for Estimating F(k, r)

Algorithm 1 2D-Spectra

Input: n1 and n2—the number of x-type and y-type components, respectively. N-number of repli-

cations.

Output: Ĝ and F̂ -the estimators of ‖g(k, r)‖ and ‖F(k, r)||, respectively.

1: Set t = 1 and let M1[i, j] and M2[i, j] be two matrices with n1 + 1 rows and n2 + 1 columns. Put

all elements of these matrices to be zero.

2: Generate
∏

t = (
∏(t)

1 ,… ,
∏(t)

n1+n2
) - a random component permutation.

3: Find the anchor Jt of
∏

t.

4: Set Kt and Rt be the number of x-type and y-type components in the first Jt elements

of
∏

t. Set M1[i = Kt + 1, j = Rt + 1] = M1[i = Kt + 1, j = Rt + 1] + 1 and M2[i = Kt +
1, j = Rt + 1] = M2[i = Kt + 1, j = Rt + 1] + 1.

5: Set: T1 = Kt and T2 = Rt.

6: for i = Jt + 1 to n1 + n2 do
7: if

∏(t)
i+1 is x-type component then set T1 ∶= T1 + 1,

8: else T2 ∶= T2 + 1.

9: end if
10: M2[T1 + 1,T2 + 1] = M2[T1 + 1,T2 + 1] + 1.
11: end for
12: If t < N set t = t + 1 and go to Step 2.

13: return: Ĝ = ‖M1‖∕N, F̂ = ‖M2‖∕N.

Exact calculation of F(k, r), like it was done in Example 1.1, becomes impractical

already for n exceeding 6–8. We suggest using a Monte Carlo simulation algorithm

for estimation of the F(k, r) probabilities. This algorithm is based on simulating a rel-

atively large (say 1,000,000) random permutations and extracting from them infor-

mation about the number of failure sets. The algorithm below allows rather efficient

and accurate estimation for networks with 50–70 components. Note that each random

permutation of size n which has a (k, r)-anchor, produces also n − (k + r) generated

failure sets.

This algorithm has been applied to a network with 34 nodes and 68 edges, see

Sect. 3. Quite accurate estimates of the G and F matrices were obtained by using

N = 106 replications. The CPU time did not exceed 16 s.
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3 Reliability of a Transportation Network

3.1 Description of the Network. Reliable Nodes, Unreliable
Edges

The network is shown on Fig. 2. This is a hypothetical geographically oriented road

network. It is designed as Barabasi-Albert system [1] with 34 nodes and 68 edges.

Centrally located node 31 represents the capital city.

Important strategic objects (e.g. hospitals, supply centers, etc.) are located in ter-

minal nodes 2, 5, 9, 33, 34. Thirteen edges are more reliable roads.

(14, 33), (31, 33), (33, 23), (22, 23), (5, 22), (5, 20), (29, 34),
(34, 14), (15, 14), (34, 31), (5, 31), (20, 31), (20, 29).

They form a ring around the capital and also contain several radial roads. These

edges in our notation are the “strong” x-type edges. The remaining 68 − 13 = 55
edges are the y-type edges. We remind that network failure means the loss of terminal

connectivity: the network is DOWN if at least one of the terminals gets separated

from other terminals. Edges can fail as a result of an enemy “attack”, natural disaster

or heavy road accidents, see [5, 7, 10, 15].

Table 2 presents P(DOWN) calculated by (3) and Algorithm “2D-spectra” for

F(k, r) estimation, on the basis of generating N = 106 random permutations. The

results were checked by crude Monte Carlo simulation, based also on 106 replica-

tions, see Pcmc. As it is seen from the table, the relative error is quite small which

means that the estimation by our algorithm is very accurate. We see from the table

that in order to provide P(DOWN) ≤ 0.05 it is necessary to have p1 ≥ 0.7 for type y
and about 0.8–0.9 for strong edges. Very interesting is the fact that increasing strong

edge reliability from 0.9 to 0.99 has relatively little effect on P(DOWN).

Fig. 2 Transport network

with 34 nodes and 68 edges

1

2

3

20

4

5

7

8

9

10

11 33

12

13 14

32

28

31

27

23
22

29

34

15 16

30
18

17

19

21

26

25

6
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Table 2 P(DOWN) for edge failure: estimated and simulated values, N = 1,000,000

p2 p1 P(DOWN) Pcmc Rel.err. %

0.5 0.6 0.39536 0.39526 0.10

0.5 0.7 0.34776 0.34749 0.13

0.5 0.8 0.32061 0.31854 0.14

0.5 0.9 0.30799 0.30835 0.14

0.5 0.99 0.30615 0.31641 0.15

0.6 0.7 0.16621 0.16551 0.20

0.6 0.8 0.14808 0.14592 0.25

0.6 0.9 0.13862 0.13725 0.25

0.6 0.99 0.13754 0.13415 0.25

0.7 0.8 0.04932 0.04906 0.45

0.7 0.9 0.04551 0.04450 0.45

0.7 0.99 0.04442 0.04400 0.46

0.8 0.9 0.00877 0.00862 1.10

0.8 0.99 0.00844 0.00834 1.10

0.9 0.99 0.00053 0.00049 0.40

Fig. 3 Contour plot for data

of Table 2 (edge failures)

0.5 0.6 0.7 0.8 0.9
0.6

0.7

0.8

0.9

Interesting information is provided by the contour plot on Fig. 3. Area with

P(DOWN) < 0.05 is shown by deep blue color. The adjacent blue area corresponds

to DOWN probabilities in the interval [0.05–0.1].

We also investigated the situation with edges are deteriorating in time. It as

assumed that strong edge reliability p2(t) depends on time as p1(t) = e−t, and the

remaining edges have p2(t) = e−2t. The numerical results are presented in Table 3.



14 I.B. Gertsbakh et al.

Table 3 P(DOWN) as a function of time (edge failures)

t p2 = e−2t p1 = e−t P(DOWN)
0.1 0.819 0.905 0.0058

0.2 0.801 0.895 0.0086

0.3 0.779 0.882 0.0132

0.4 0.751 0.867 0.0214

0.5 0.716 0.846 0.0371

0.6 0.670 0.819 0.0692

0.7 0.606 0.779 0.1410

0.8 0.513 0.717 0.3142

0.9 0.368 0.607 0.7010

1.0 0.135 0.368 0.9990

3.2 Unreliable Nodes

We also have studied the network reliability when the nodes are subject to failure. Six

nodes 20, 22, 23, 28, 30 and 31 are declared to be the x-type1.4 presents the results of

the numerical investigation of network reliability. Again it is seen that our algorithm

provides quite accurate results with a small relative error. Figure 4 (right) shows the

area of parameters (p1, p2) where the DOWN probability is smaller than 0.05 (shown

by deep blue).

0.5 0.6 0.7 0.8 0.9

0.70

0.75

0.80

0.85

0.90

0.95

0.5 0.6 0.7 0.8 0.9
0.6

0.7

0.8

0.9

Fig. 4 Contour plots for data of Table 4. Nodes relocated (left), original (right)
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Table 4 P(DOWN) for node failure: estimated and simulated values, N = 1,000,000 runs

p2 p1 P(DOWN) Pcmc Rel. err. % P(DOWN)⋆

0.5 0.6 0.33666 0.33633 0.14 –

0.5 0.7 0.23340 0.23360 0.18 –

0.5 0.8 0.14375 0.14359 0.24 0.26697

0.5 0.9 0.06719 0.06660 0.30 0.20931

0.5 0.99 0.00647 0.00634 0.12 0.16008

0.6 0.7 0.16476 0.16541 0.22 0.19729

0.6 0.8 0.09654 0.09634 0.30 0.14738

0.6 0.9 0.04240 0.04259 0.47 0.10304

0.6 0.99 0.00394 0.00393 1.60 0.06956

0.7 0.8 0.05727 0.05686 0.40 0.06905

0.7 0.9 0.02374 0.02373 0.60 0.04076

0.7 0.99 0.00220 0.00211 2.12 0.02234

0.8 0.9 0.01030 0.01046 0.95 0.01214

0.8 0.99 0.00083 0.00089 3.40 0.00435

0.9 0.99 0.00024 0.00021 6.40 0.00029

In order to see how influential is the location of the strong nodes, we relocated

these nodes to periphery. Now nodes 14, 15, 18, 11, 10, 7 are declared to be strong

nodes of x-type. As it could be expected, the network with relocated strong nodes is

less reliable, as it is seen from last column P(DOWN)⋆ of Table 4, and the contour

surface plot on Fig. 4, on the left. Deep blue area shows lowP(DOWN) values, and is,

therefore, the area of high reliability. It is considerably larger for the original location

of the strong nodes (the plot on the right).

4 ‖g(k, r)‖ Matrix and “Shock Process” Trajectories

Suppose that the network is subject to a two-dimensional “shock process” which is

a random sequence of type “x”-shocks which hit randomly the strong components

(strong nodes or strong edges), permuted randomly with type “y”-shocks which hit

the weak components.

This process stops when the network fails. As it follows from the definition of

the permutation destruction process, the networks fails at the “stopping point” deter-

mined by the permutation anchor. The distribution of the location (x = V , y = U)
of the “stopping point” is shown on Fig. 5 by means of surface contour plot. In this

example the “shocks” kill strong and weak nodes.

The exact probabilistic meaning of this plot is the following. The elements of

matrix G = ‖g(k, r)‖ present the conditional probabilities that the shock process

stops at coordinate (V = k,U = r), given that network is DOWN:
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Fig. 5 Contour plot for

‖g(k, r)‖ matrix

0 5 10 15 20
0

1

2

3

4

5

6

g(k, r) = P((V = k,U = r)|DOWN),

whereV ,U are the numbers of strong and weak destroyed components at the stopping

point, respectively.

Let us examine the plot on Fig. 5. The horizontal axis is for weak nodes, vertical

axis—for strong. By deep blue is shown the area where the trajectory does not stop.

Here the trajectory does not stop at all. The adjacent area (light blue) shows points

having stopping probability between 0.005 and 0.01. Next area closer to the center

shows the points having probabilities between 0.01 and 0.015, and so on. So,the point

g(V = 2,U = 7) lies in the probability interval [0.010, 0.015].
The ‖g(k, r)‖ matrix is a valuable structural characteristic of the network. Let us

demonstrate its use by investigating so-called “quantile areas”.

Contrary to the definition of a quantile for one-dimensional case, for more dimen-

sions there are many ways to determine the area which has probabilistic mass q, see

e.g. [16]. Let us consider here the triangular areas of type U + V ≤ D. Omitting the

routine calculations, we present the following results for D = 4, 5, 6, 7, 8, 9:

P(U + V ≤ 4) = 0.0068,P(U + V ≤ 5) = 0.015,P(U + V ≤ 6) = 0.030,

P(U + V ≤ 7) = 0.052,P(U + V ≤ 8) = 0.084,P(U + V ≤ 9) = 0.128.

So, for example, the network fails with probability 0.128 if the total number of failed

nodes is not more than 9.

Comparing the size of equal quantile areas may serve as an instrument to compare

the reliability of alternative structures. For example, structure A is more reliable than

structure B if the two dimensional 0.1-quantile area DA(q = 0.1) for A is larger than

the similar area DB(q = 0.1) for structure B.
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5 More Than Two Types of Components—Concluding
Remarks

Suppose that the network has K > 2 different groups of i.i.d. components. Then the

expression for network DOWN probability will be a natural extension of (3) to more

variables. Denote by ni the number of i-th type components, n1 + n2 +⋯ + nK = n,

and let C(x1,… , xK) be the number of failure sets having xi components of i-th type

down, i = 1, ..,K. Then

P(DOWN) =
∑

0≤xi≤ni,i=1,…,K
C(x1, x2,… , xK)

K∏

i=1
qxii

K∏

i=1
pni−xii .

The main problem remains estimation of C(x1,… , xK), the numbers of failure

sets. This can be done in the framework of the above described Algorithm, with

obvious modifications. Now the random permutation will have K types of symbols

for denoting components of K groups, and now the failure sets of anchor-type and

of generated type will have xi components of i-th type, i = 1,… ,K For K = 3, for

example, the F-matrix will become a three-dimensional cubic matrix.

There are several important issues left outside the scope of the present paper.

Let us mention on the first place the investigation of component importance, see

e.g. [6]. Similar to the networks with one type of components, for several types of

components, importance issues are the key to optimal network design and to the

“nomination” of the components to be the “strong” ones.

Very interesting would be also to compare several competing network structures

by analyzing their q-quantile “areas”, as it was briefly discussed in Sect. 4. We leave

these issues for the future research.
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