
EAHyper: Satisfiability, Implication,
and Equivalence Checking of Hyperproperties

Bernd Finkbeiner, Christopher Hahn(B),
and Marvin Stenger

Saarland Informatics Campus, Saarland University,
Saarbrücken, Germany

{finkbeiner,hahn,stenger}@react.uni-saarland.de

Abstract. We introduce EAHyper, the first tool for the automatic
checking of satisfiability, implication, and equivalence of hyperproperties.
Hyperproperties are system properties that relate multiple computation
traces. A typical example is an information flow policy that compares
the observations made by an external observer on execution traces that
result from different values of a secret variable. EAHyper analyzes hyper-
properties that are specified in HyperLTL, a recently introduced exten-
sion of linear-time temporal logic (LTL). HyperLTL uses trace variables
and trace quantifiers to refer to multiple execution traces simultaneously.
Applications of EAHyper include the automatic detection of specifica-
tions that are inconsistent or vacuously true, as well as the comparison
of multiple formalizations of the same policy, such as different notions of
observational determinism.

1 Introduction

HyperLTL [3] is a recently introduced temporal logic for the specification of
hyperproperties [4]. HyperLTL characterizes the secrecy and integrity of a system
by comparing two or more execution traces. For example, we might express that
the contents of a variable is secret by specifying that an external observer makes
the same observations on all execution traces that result from different values
of the variable. Such a specification cannot be expressed as a standard trace
property, because it refers to multiple traces. The specification can, however, be
expressed as a hyperproperty, which is a set of sets of traces.

HyperLTL has been used to specify and verify the information flow in com-
munication protocols and web applications, the symmetric access to critical
resources in mutex protocols, and Hamming distances between code words in
error resistant codes [8,9,13]. The logic is already supported by both model
checking [8] and runtime verification [1] tools. In this paper, we present the first
tool for HyperLTL satisfiability. Our tool, which we call EAHyper, can be used

This work was partially supported by the German Research Foundation (DFG) in
the Collaborative Research Center 1223 and by the Graduate School of Computer
Science at Saarland University.

c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part II, LNCS 10427, pp. 564–570, 2017.
DOI: 10.1007/978-3-319-63390-9 29

EAHyper: Satisfiability, Implication, and Equivalence Checking 565

to automatically detect specifications that are inconsistent or vacuously true,
and to check implication and equivalence between multiple formalizations of the
same requirement.

HyperLTL extends linear-time temporal logic (LTL) with trace variables
and trace quantifiers. The requirement that the external observer makes the
same observations on all traces is, for example, expressed as the HyperLTL
formula ∀π.∀π′. G(Oπ = Oπ′), where O is the set of observable outputs.
A more general property is observational determinism [12,14,17], which requires
that a system appears deterministic to an observer who sees inputs I and out-
puts O. Observational determinism can be formalized as the HyperLTL formula
∀π.∀π′. G(Iπ = Iπ′) → G(Oπ = Oπ′), or, alternatively, as the HyperLTL formula
∀π.∀π′. (Oπ = Oπ′) W (Iπ �= Iπ′). The first formalization states that on any
pair of traces, where the inputs are the same, the outputs must be the same
as well; the second formalization states that differences in the observable out-
put may only occur after differences in the observable input have occurred. As
can be easily checked with EAHyper, the second formalization is the stronger
requirement.

EAHyper implements the decision procedure for the ∃∗∀∗ fragment of Hyper-
LTL [7]. The ∃∗∀∗ fragment consists of all HyperLTL formulas with at most one
quantifier alternation, where no existential quantifier is in the scope of a univer-
sal quantifier. Many practical HyperLTL specifications are in fact alternation-
free, i.e., they contain either only universal or only existential quantifiers. The
∃∗∀∗ fragment is the largest decidable fragment. It contains in particular all
alternation-free formulas and also all implications and equivalences between
alternation-free formulas.

In the remainder of this paper, we give a quick summary of the syntax and
semantics of HyperLTL, describe the implementation of EAHyper, and report
on experimental results.

2 HyperLTL

HyperLTL Syntax. HyperLTL extends LTL with trace variables and trace quan-
tifiers. Let V be an infinite supply of trace variables, AP the set of atomic propo-
sitions, and TR the set of infinite traces over AP . The syntax of HyperLTL is
given by the following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | ϕ

ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕ Uϕ

where a ∈ AP is an atomic proposition and π ∈ V is a trace variable. The derived
temporal operators F, G, and W are defined as for LTL. Logical connectives,
i.e., ∧, →, and ↔ are derived in the usual way. We also use syntactic sugar like
Oπ = Oπ′ , which abbreviates

∧
a∈O aπ ↔ aπ′ for a set O of atomic propositions.

The ∃∗ fragment of HyperLTL consists of all formulas that only contain
existential quantifiers. The ∀∗ fragment of HyperLTL consists of all formulas

566 B. Finkbeiner et al.

that only contain universal quantifiers. The union of the two fragments is the
alternation-free fragment. The ∃∗∀∗ fragment consists of all formulas with at
most one quantifier alternation, where no existential quantifier is in the scope of
a universal quantifier.

HyperLTL Semantics. A HyperLTL formula defines a hyperproperty, which is a
set of sets of traces. A set T of traces satisfies the hyperproperty if it is an element
of this set of sets. Formally, the semantics of HyperLTL formulas is given with
respect to trace assignment Π from V to TR, i.e., a partial function mapping
trace variables to actual traces. Π[π
→ t] denotes that π is mapped to t, with
everything else mapped according to Π. Π[i,∞] denotes the trace assignment
that is equal to Π(π)[i,∞] for all π.

Π |=T ∃π.ψ iff there exists t ∈ T : Π[π
→ t] |=T ψ

Π |=T ∀π.ψ iff for all t ∈ T : Π[π
→ t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬ψ iff Π �|=T ψ

Π |=T ψ1 ∨ ψ2 iff Π |=T ψ1 or Π |=T ψ2

Π |=T Xψ iff Π[1,∞] |=T ψ

Π |=T ψ1 Uψ2 iff there exists i ≥ 0 : Π[i,∞] |=T ψ2

and for all 0 ≤ j < i we have Π[j,∞] |=T ψ1

A HyperLTL formula ϕ is satisfiable if and only if there exists a non-empty trace
set T , such that Π |=T ψ, where Π is the empty trace assignment. The formula
ϕ is valid if and only if for all non-empty trace sets T it holds that Π |=T ψ.

3 EAHyper

The input of EAHyper is either a HyperLTL formula in the ∃∗∀∗ fragment, or an
implication between two alternation-free formulas. For ∃∗∀∗ formulas, EAHyper
reports satisfiability; for implications between alternation-free formulas, validity.
EAHyper proceeds in three steps:

1. Translation into the ∃∗∀∗ fragment: If the input is an implication between
two alternation-free formulas, we construct a formula in the ∃∗∀∗ fragment
that represents the negation of the implication. For example, for the impli-
cation of ∀π1 . . . ∀πn. ψ and ∀π′

1 . . . ∀π′
m. ϕ, we construct the ∃∗∀∗ formula

∃π′
1 . . . ∃π′

m∀π1 . . . ∀πn. ψ ∧ ¬ϕ. The implication is valid if and only if the
resulting ∃∗∀∗ formula is unsatisfiable.

2. Reduction to LTL satisfiability: EAHyper implements the decision procedure
for the ∃∗∀∗ fragment of HyperLTL [7]. The satisfiability of the HyperLTL
formula is reduced to the satisfiability of an LTL formula:

– Formulas in the ∀∗ fragment are translated to LTL formulas by discarding
the quantifier prefix and all trace variables. For example, ∀π1.∀π2. Gbπ1 ∧
G¬bπ2 is translated to the equisatisfiable LTL formula Gb ∧ G¬b.

EAHyper: Satisfiability, Implication, and Equivalence Checking 567

– Formulas in the ∃∗ fragment are translated to LTL formulas by introduc-
ing a fresh atomic proposition ai for every atomic proposition a and every
trace variable πi. For example, ∃π1.∃π2. aπ1 ∧ G¬bπ1 ∧ Gbπ2 is translated
to the equisatisfiable LTL formula a1 ∧ G¬b1 ∧ Gb2.

– Formulas in the ∃∗∀∗ fragment are translated into the ∃∗ fragment (and
then on into LTL) by unrolling the universal quantifiers. For example,
∃π1.∃π2.∀π′

1.∀π′
2. Gaπ′

1
∧ Gbπ′

2
∧ Gcπ1 ∧ Gdπ2 is translated to the equisat-

isfiable ∃∗ formula ∃π1.∃π2. (Gaπ1 ∧Gbπ1 ∧Gcπ1 ∧Gdπ2) ∧ (Gaπ2 ∧Gbπ1 ∧
Gcπ1 ∧Gdπ2)∧ (Gaπ1 ∧Gbπ2 ∧Gcπ1 ∧Gdπ2)∧ (Gaπ2 ∧Gbπ2 ∧Gcπ1 ∧Gdπ2).

3. LTL satisfiability: The satisfiability of the resulting LTL formula is checked
through an external tool. Currently, EAHyper is linked to two LTL satisfia-
bility checkers, pltl and Aalta.

– Pltl [15] is a one-pass tableaux-based decision procedure for LTL, which
not necessarily explores the full tableaux.

– Aalta 2.0 [11] is a decision procedure for LTL based on a reduction to
the Boolean satisfiability problem, which is in turn solved by minisat [6].
Aalta’s on-the-fly approach is based on so-called obligation sets and out-
performs model-checking-based LTL satisfiability solvers.

EAHyper is implemented in OCaml and supports UNIX-based operating sys-
tems. Batch-processing of HyperLTL formulas is provided. Options such as the
choice of the LTL satisfiability checker are provided via a command-line interface.

4 Experimental Results

We report on the performance of EAHyper on a range of benchmarks, including
observational determinism, symmetry, error resistant code, as well as randomly
generated formulas. The experiments were carried out in a virtual machine run-
ning Ubuntu 14.04 LTS on an Intel Core i5-2500K CPU with 3.3 GHZ and 2 GB
RAM. We chose to run EAHyper in a virtual machine to make our results easily
reproducible; running EAHyper natively results in (even) better performance.1

– Observational Determinism [12,14,17]. Our first benchmark compares the
following formalizations of observational determinism, with |I| = |O| = 1:
(OD1) : ∀π1.∀π′

1. G(Iπ1 = Iπ′
1
) → G(Oπ1 = Oπ′

1
), (OD2) : ∀π2.∀π′

2. (Iπ2 =
Iπ′

2
) → G(Oπ2 = Oπ′

2
), and (OD3) : ∀π3.∀π′

3. (Oπ3 = Oπ′
3
)W (Iπ3 �= Iπ′

3
).

EAHyper needs less then a second to order the formalizations with respect
to implication: OD2 → OD1 , OD2 → OD3 , and OD3 → OD1 .

– Quantitative Noninterference [2]. The bounding problem of quantitative non-
interference asks whether the amount of information leaked by a system is
bounded by a constant c. This is expressed in HyperLTL as the requirement
that there are no c + 1 distinguishable traces for a low-security observer [16].

QN (c) := ∀π0 . . . ∀πc. ¬((
∧

i

Iπi
= Iπ0) ∧

∧

i�=j

Oπi
�= Oπj

)

1 EAHyper is available online at https://react.uni-saarland.de/tools/eahyper/.

https://react.uni-saarland.de/tools/eahyper/

568 B. Finkbeiner et al.

Table 1. Quantitative noninterference benchmark: wall clock time in seconds for check-
ing whether QN(row) implies QN(column). “–” denotes that the instance was not solved
in 120 s.

(a) Aalta

QN 1 2 3 4 5

1 0.04 0.04 0.54 – –
2 0.03 0.09 1.58 – –
3 0.03 0.05 0.68 – –
4 0.03 0.11 0.34 8.68 –
5 0.06 0.34 – – –

(b) pltl

QN 1 2 3 4 5

1 0.05 0.05 0.08 0.13 0.23
2 0.05 0.11 0.25 0.39 0.79
3 0.07 0.25 0.77 2.02 5.12
4 0.16 0.73 3.12 17.73 43.26
5 0.26 2.57 15.67 71.82 –

In the benchmark, we check implications between different bounds. The per-
formance of EAHyper is shown in Table 1. Using Aalta as the LTL satisfiabil-
ity checker generally produces faster results, but pltl scales to larger bounds.

– Symmetry [8]. A violation of symmetry in a mutual exclusion protocol indi-
cates that some concurrent process has an unfair advantage in accessing a
critical section. The benchmark is derived from a model checking case study,
in which various symmetry claims were verified and falsified for the Bakery
protocol. EAHyper checks the implications between the four main symme-
try properties from the case study in 13.86 s. Exactly one of the implications
turns out to be true.

– Error resistant code [8]. Error resistant codes enable the transmission of data
over noisy channels. A typical model of errors bounds the number of flipped
bits that may happen for a given code word length. Then, error correction
coding schemes must guarantee that all code words have a minimal Ham-
ming distance. The following HyperLTL formula specifies that all code words
o ∈ O produced by an encoder have a minimal Hamming distance [10] of
d: ∀π. ∀π′. F (

∨
i∈I ¬(iπ ↔ iπ′)) → ¬HamO(d − 1, π, π′). HamO is recur-

sively defined as HamO(−1, π, π′) = false and HamO(d, π, π′) = (
∧

o∈O oπ ↔
oπ′)W (

∨
o∈O ¬(oπ ↔ oπ′) ∧ X HamO(d − 1, π, π′)). The benchmark checks

implications between the HyperLTL formulas for different minimal Hamming
distances. The performance of EAHyper is shown in Table 2.

– Random formulas. In the last benchmark, we randomly generated sets of
250 HyperLTL formulas containing five atomic propositions, using randltl [5]
and assigning trace variables randomly to atomic propositions. As shown in
Table 3, EAHyper reaches its limits, by running out of memory, after approx-
imately five existential and five universal quantifiers.

5 Discussion

EAHyper is the first implementation of the decision procedure for the ∃∗∀∗

fragment of HyperLTL [7]. For formulas with up to approximately five universal
quantifiers, EAHyper performs reliably well on our broad range of benchmarks,
which represent different types of hyperproperties studied in the literature as
well as randomly generated formulas.

EAHyper: Satisfiability, Implication, and Equivalence Checking 569

Table 2. Error resistant codes benchmark: wall clock time in seconds for checking
whether Ham(row) implies Ham(column).

Ham 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.03 0.04 0.08 0.10 0.18 0.25 0.46 0.74 1.35 2.62
1 0.03 0.02 0.03 0.03 0.04 0.03 0.05 0.04 0.06 0.08 0.13 0.21 0.40 0.49 0.82 1.50 2.99
2 0.01 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.04 0.07 0.12 0.21 0.36 0.55 0.88 1.59 3.09
3 0.03 0.04 0.04 0.05 0.04 0.04 0.03 0.04 0.05 0.07 0.12 0.23 0.36 0.52 0.87 1.56 3.12
4 0.04 0.04 0.04 0.06 0.10 0.02 0.03 0.05 0.08 0.08 0.16 0.21 0.36 0.52 0.86 1.66 3.05
5 0.03 0.03 0.05 0.07 0.07 0.19 0.14 0.17 0.05 0.08 0.14 0.22 0.30 0.52 0.92 1.55 2.99
6 0.03 0.04 0.05 0.06 0.09 0.22 0.35 0.21 0.25 0.11 0.25 0.26 0.36 0.53 0.87 1.57 3.00
7 0.04 0.05 0.05 0.05 0.14 0.24 0.32 0.37 0.38 0.42 0.14 0.20 0.37 0.52 0.89 1.65 3.05
8 0.05 0.05 0.07 0.10 0.17 0.23 0.26 0.36 0.50 0.56 0.47 0.40 0.53 0.53 1.13 1.61 3.18
9 0.07 0.08 0.08 0.10 0.16 0.19 0.21 0.43 0.70 0.64 0.48 0.52 0.90 0.65 1.03 1.71 3.08
10 0.09 0.13 0.15 0.15 0.21 0.20 0.34 0.43 0.54 0.76 1.38 1.55 0.61 0.89 1.03 1.78 3.22
11 0.16 0.23 0.22 0.24 0.24 0.26 0.41 0.53 0.62 0.81 1.30 1.29 1.81 1.05 1.86 2.33 3.17
12 0.27 0.30 0.36 0.30 0.32 0.41 0.45 0.46 0.85 0.91 1.69 1.28 2.81 2.82 1.14 3.91 4.49
13 0.38 0.46 0.51 0.47 0.57 0.52 0.57 0.86 1.03 1.27 1.47 2.16 3.19 8.22 5.48 8.64 7.08
14 0.69 0.87 0.91 0.84 0.84 0.98 0.94 1.02 1.46 1.30 2.01 3.82 3.96 6.35 7.50 9.06 11.11
15 1.22 1.52 1.58 1.70 1.69 1.65 1.67 1.74 1.87 2.73 3.02 3.08 5.87 7.25 13.04 34.17 12.26
16 2.26 3.04 2.97 3.00 3.10 3.11 3.35 3.29 3.57 4.17 3.76 5.78 7.45 17.31 17.75 31.51 48.09

Table 3. Random formulas benchmark: instances solved in 120 s and average wall
clock time in seconds for 250 random formulas. Size denotes the tree-size argument for
randltl.

size 40 60 40 60 40 60 40 60 40 60 40 60 40 60 40 60 40 60

∃0∀0 ∃1∀0 ∃2∀0 ∃3∀0 ∃4∀0 ∃5∀0 ∃6∀0 ∃7∀0 ∃8∀0

solved 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250

avgt 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

∃0∀1 ∃1∀1 ∃2∀1 ∃3∀1 ∃4∀1 ∃5∀1 ∃6∀1 ∃7∀1 ∃8∀1

solved 250 250 250 250 250 250 250 249 250 250 249 247 250 248 249 247 247 248

avgt 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.05 0.02 0.06 0.02 0.01 0.02 0.01 0.13 0.02 0.04 0.08

∃0∀2 ∃1∀2 ∃2∀2 ∃3∀2 ∃4∀2 ∃5∀2 ∃6∀2 ∃7∀2 ∃8∀2

solved 250 250 250 250 248 249 249 247 247 247 248 246 246 246 244 246 244 247

avgt 0.01 0.01 0.01 0.01 0.03 0.12 0.03 0.01 0.26 0.02 0.32 0.02 0.09 0.02 0.02 0.02 0.05 0.03

∃0∀3 ∃1∀3 ∃2∀3 ∃3∀3 ∃4∀3 ∃5∀3 ∃6∀3 ∃7∀3 ∃8∀3

solved 250 250 250 250 249 247 248 246 247 245 245 246 245 246 244 247 243 246

avgt 0.01 0.01 0.01 0.01 0.03 0.02 0.07 0.02 0.06 0.03 0.14 0.05 0.17 0.08 0.23 0.16 0.45 0.25

∃0∀4 ∃1∀4 ∃2∀4 ∃3∀4 ∃4∀4 ∃5∀4 ∃6∀4 ∃7∀4 ∃8∀4

solved 250 250 250 250 250 246 247 246 245 246 244 247 245 247 244 245 0 0

avgt 0.01 0.1 0.01 0.01 0.02 0.01 0.21 0.03 0.35 0.09 0.23 0.28 0.46 1.01 0.98 2.41 – –

∃0∀5 ∃1∀5 ∃2∀5 ∃3∀5 ∃4∀5 ∃5∀5 ∃6∀5 ∃7∀5 ∃8∀5

solved 250 250 250 250 249 247 248 247 243 245 245 246 0 0 0 0 0 0

avgt 0.01 0.01 0.01 0.01 0.26 0.02 0.18 0.07 0.27 0.37 0.51 2.81 – – – – – –

References

1. Bonakdarpour, B., Finkbeiner, B.: Runtime verification for HyperLTL. In: Falcone,
Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 41–45. Springer, Cham
(2016)

570 B. Finkbeiner et al.

2. Clark, D., Hunt, S., Malacaria, P.: Quantified interference for a while language.
Electron. Notes Theoret. Comput. Sci. 112, 149–166 (2005)

3. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54792-8 15

4. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

5. Duret-Lutz, A.: Manipulating LTL formulas using spot 1.0. In: Hung, D., Ogawa,
M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Cham (2013).
doi:10.1007/978-3-319-02444-8 31

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24605-3 37

7. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: Proceedings of the 27th
International Conference on Concurrency Theory, CONCUR 2016, pp. 13:1–13:14
(2016)

8. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL*. In: Kroening, D., Păsăreanu, C. (eds.) Computer Aided
Verification. LNCS, vol. 9206, pp. 30–48. Springer, Cham (2015)

9. Finkbeiner, B., Seidl, H., Müller, C.: Specifying and verifying secrecy in work-
flows with arbitrarily many agents. In: Artho, C., Legay, A., Peled, D. (eds.)
ATVA 2016. LNCS, vol. 9938, pp. 157–173. Springer, Cham (2016). doi:10.1007/
978-3-319-46520-3 11

10. Hamming, R.W.: Error detecting and error correcting codes. Bell Labs Tech. J.
29(2), 147–160 (1950)

11. Li, J., Zhang, L., Pu, G., Vardi, M.Y., He, J.: LTL satisfiability checking revisited.
In: 2013 20th International Symposium on Temporal Representation and Reason-
ing, TIME 2013, pp. 91–98 (2013)

12. McLean, J.: Proving noninterference and functional correctness using traces. J.
Comput. Secur. 1(1), 37–58 (1992)

13. Rabe, M.N.: A Temporal Logic Approach to Information-flow Control. Ph.D. the-
sis, Saarland University (2016)

14. Roscoe, A.W.: CSP and determinism in security modelling. In: Proceedings of the
1995 IEEE Symposium on Security and Privacy, pp. 114–127 (1995)

15. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: Swart, H. (ed.)
TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 277–291. Springer, Heidelberg
(1998). doi:10.1007/3-540-69778-0 28

16. Smith, G.: On the foundations of quantitative information flow. In: Proceedings of
the 12th International Conference on Foundations of Software Science and Com-
putational Structures, FOSSACS 2009, pp. 288–302 (2009)

17. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: 16th IEEE Computer Security Foundations Workshop CSFW-16 2003,
p. 29 (2003)

http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1007/978-3-319-02444-8_31
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-319-46520-3_11
http://dx.doi.org/10.1007/978-3-319-46520-3_11
http://dx.doi.org/10.1007/3-540-69778-0_28

	EAHyper: Satisfiability, Implication, and Equivalence Checking of Hyperproperties
	1 Introduction
	2 HyperLTL
	3 EAHyper
	4 Experimental Results
	5 Discussion
	References

