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Abstract. In order to effectively analyze and build cyberphysical sys-
tems (CPS), designers today have to combat the data deluge problem,
i.e., the burden of processing intractably large amounts of data produced
by complex models and experiments. In this work, we utilize monotonic
parametric signal temporal logic (PSTL) to design features for unsu-
pervised classification of time series data. This enables using off-the-
shelf machine learning tools to automatically cluster similar traces with
respect to a given PSTL formula. We demonstrate how this technique
produces interpretable formulas that are amenable to analysis and under-
standing using a few representative examples. We illustrate this with case
studies related to automotive engine testing, highway traffic analysis, and
auto-grading massively open online courses.

1 Introduction

In order to effectively construct and analyze cyber-physical systems (CPS),
designers today have to combat the data deluge problem, i.e., the burden of
processing intractably large amounts of data produced by complex models and
experiments. For example, consider the typical design process for an advanced
CPS such as a self-driving car. Checking whether the car meets all its require-
ments is typically done by either physically driving the car around for millions
of miles [2], or by performing virtual simulations of the self-driving algorithms.
Either approach can generate several gigabytes worth of time-series traces of
data, such as sensor readings, variables within the software controllers, actu-
ator actions, driver inputs, and environmental conditions. Typically, designers
are interested not in the details of these traces, but in discovering higher-level
insight from them; however, given the volume of data, a high level of automation
is needed.

The key challenge then is: “How do we automatically identify logical struc-
ture or relations within such data?” One possibility offered by unsupervised
learning algorithms from the machine learning community is to cluster similar
behaviors to identify higher-level commonalities in the data. Typical clustering
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algorithms define similarity measures on signal spaces, e.g., the dynamic time
warping distance, or by projecting data to complex feature spaces. We argue later
in this section that these methods can be inadequate to learn logical structure
in time-series data.

In this paper, we present logical clustering, an unsupervised learning proce-
dure that utilizes Parametric Signal Temporal Logic (PSTL) templates to dis-
cover logical structure within the given data. Informally, Signal Temporal Logic
(STL) enables specifying temporal relations between constraints on signal val-
ues [3,10]. PSTL generalizes STL formulas by replacing, with parameters, time
constants in temporal operators and signal-value constants in atomic predicates
in the formula. With PSTL templates, one can use the template parameters as
features. This is done by projecting a trace to parameter valuations that cor-
respond to a formula that is marginally satisfied by the trace. As each trace is
projected to the finite-dimensional space of formula-parameters, we can then use
traditional clustering algorithms on this space; thereby grouping traces that sat-
isfy the same (or similar) formulas together. Such logical clustering can reveal
heretofore undiscovered structure in the traces, albeit through the lens of an
user-provided template. We illustrate the basic steps in our technique with an
example.

Consider the design of a lane-tracking controller for a car and a scenario
where a car has effected a lane-change. A typical control designer tests design
performance by observing the “overshoot” behavior of the controller, i.e., by
inspecting the maximum deviation (say a) over a certain duration of time (say, τ)
of the vehicle position trajectory x(t) from a given desired trajectory xref (t).
We can use the following PSTL template that captures such an overshoot:

ϕovershoot
def= F

(
lane change ∧ F(0,τ ] (x − xref > a)

)
(1)

When we project traces appearing in Fig. 1 through ϕovershoot, we find three
behavior-clusters as shown in the second row of the figure: (1) Cluster 0 with
traces that track the desired trajectory with small overshoot, (2) Cluster 1 with
traces that fail to track the desired trajectory altogether, and (3) Cluster 2 with
traces that do track the desired trajectory, but have a large overshoot value. The
three clusters indicate a well-behaved controller, an incorrect controller, and a
controller that needs tuning respectively. The key observation here is that though
we use a single overshoot template to analyze the data, qualitatively different
behaviors form separate clusters in the induced parameter space; furthermore,
each cluster has higher-level meaning that the designer can find valuable.

In contrast to our proposed method, consider the clustering induced by using
the dynamic time warping (DTW) distance measure as shown in Fig. 1. Note that
DTW is one of the most popular measures to cluster time-series data [17]. We
can see that traces with both high and low overshoots are clustered together
due to similarities in their shape. Such shape-similarity based grouping could be
quite valuable in certain contexts; however, it is inadequate when the designer
is interested in temporal properties that may group traces of dissimilar shapes.
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Fig. 1. An example of a pitfall when using the DTW measure compared to projec-
tion using a PSTL template. We perform spectral clustering [24] on a similarity graph
representation of 7 traces. Nodes of the graph represent traces and edges are labeled
with the normalized pairwise distance using (1) the DTW measure and (2) the Euclid-
ean distance between features extracted using the PSTL template ϕovershoot. Note how
under the DTW measure, the black and cyan traces are grouped together due to their
behavior before the lane change, despite the cyan trace having a much larger overshoot.
Contrast with the STL labeling in the second row, where both overshooting traces are
grouped together. The bottom right figure provides the projection of the traces w.r.t.
ϕovershoot with the associated cluster-labels shown in the second row.

In Sect. 3, we show how we can use feature extraction with PSTL templates
to group traces with similar logical properties together. An advantage of using
PSTL is that the enhanced feature extraction is computationally efficient for
the fragment of monotonic PSTL formulas [5,14]; such a formula has the prop-
erty that its satisfaction by a given trace is monotonic in its parameter values.
The efficiency in feature extraction relies on a multi-dimensional binary search
procedure [20] that exploits the monotonicity property.

A different view of the technique presented here is as a method to perform
temporal logic inference from data, such as the work on learning STL formulas
in a supervised learning context [5–7,18], in the unsupervised anomaly detection
context [15], and in the context of active learning [16]. Some of these approaches
adapt classical machine learning algorithms such as decision trees [7] and one-
class support vector machines [15] to learn (possibly, arbitrarily long) formulas
in a restricted fragment of STL. Formulas exceeding a certain length are often
considered inscrutable by designers. A key technical contribution of this paper
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is to show that using simple shapes such as specific Boolean combinations of
axis-aligned hyperboxes in the parameter space of monotonic PSTL to represent
clusters yields a formula that may be easier to interpret. We support this in
Sect. 4, by showing that such hyperbox-clusters correspond to STL formulas that
have length linear in the number of parameters in the given PSTL template, and
thus of bounded descriptive complexity.

Mining parametric temporal logic properties in a model-based design has
also been explored [12,14]. We note that our proposed methods does not require
such a model, which may not be available either due to the complexity of the
underlying system or lack of certainty in the dynamics. We also note that there is
much work on mining discrete temporal logic specifications from data (e.g. [21]):
our work instead focuses on unsupervised learning of STL properties relevant to
CPS.

The reader might wonder how much insight is needed by a user to select the
PSTL template to use for classification. We argue the templates do not pose a
burden on the user and that our technique can have high value in several ways.
First, we observe that we can combine our technique with a human-guided (or
automated) enumerative learning procedure that can exploit high-level template
pools. We demonstrate such a procedure in the diesel engine case study. Second,
consider a scenario where a designer has insight into the data that allows them
to choose the correct PSTL template. Even in this case, our method automates
the task of labeleing trace-clusters with STL labels which can then be used
to automatically classify new data. Finally, we argue that many unsupervised
learning techniques on time-series data must “featurize” the data to start with,
and such features represent relevant domain knowledge. Our features happen
to be PSTL templates. As the lane controller motivating example illustrates, a
common procedure that doesn’t have some domain specific knowledge increases
the risk of wrong classifications. This sentiment is highlighted even in the data
mining literature [22]. To illustrate the value of our technique, in Sect. 5, we
demonstrate the use of logic-based templates to analyze time-series data in case
studies from three different application domains.

2 Preliminaries

Definition 1 (Timed Traces). A timed trace is a finite (or infinite) sequence
of pairs (t0,x0), . . ., (tn,xn), where, t0 = 0, and for all i ∈ [1, n], ti ∈ R≥0,
ti−1 < ti, and for i ∈ [0, n], xi ∈ D, where D is some compact set. We refer to
the interval [t0, tn] as the time domain T .

Real-time temporal logics are a formalism for reasoning about finite or infi-
nite timed traces. Logics such as the Timed Propositional Temporal Logic [4],
and Metric Temporal Logic (MTL) [19] were introduced to reason about sig-
nals representing Boolean-predicates varying over dense (or discrete) time. More
recently, Signal Temporal Logic [23] was proposed in the context of analog and
mixed-signal circuits as a specification language for real-valued signals.
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Signal Temporal Logic. Without loss of generality, atoms in STL formulas
can be be reduced to the form f(x) ∼ c, where f is a function from D to
R, ∼∈ {≥,≤,=}, and c ∈ R. Temporal formulas are formed using temporal
operators, “always” (denoted as G), “eventually” (denoted as F) and “until”
(denoted as U) that can each be indexed by an interval I. An STL formula is
written using the following grammar:

I := (a, b) | (a, b] | [a, b) | [a, b]
ϕ := true | f(x) ∼ c | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

(2)

In the above grammar, a, b ∈ T , and c ∈ R. The always (G) and eventually (F)
operators are defined for notational convenience, and are just special cases of
the until operator: FIϕ � true UI ϕ, and GIϕ � ¬FI¬ϕ. We use the notation
(x, t) |= ϕ to mean that the suffix of the timed trace x beginning at time t
satisfies the formula ϕ. The formal semantics of an STL formula are defined
recursively:

(x, t) |= f(x) ∼ c ⇐⇒ f(x(t)) ∼ c is true
(x, t) |= ¬ϕ ⇐⇒ (x, t) 	|= ϕ
(x, t) |= ϕ1 ∧ ϕ2 ⇐⇒ (x, t) |= ϕ1 And (x, t) |= ϕ2

(x, t) |= ϕ1 UI ϕ2 ⇐⇒ ∃t1 ∈ t ⊕ I : (x, t1) |= ϕ2 ∧
∀t2 ∈ [t, t1) : (x, t2) |= ϕ1

We write x |= ϕ as a shorthand of (x, 0) |= ϕ.

Parametric Signal Temporal Logic (PSTL). PSTL [5] is an extension of
STL introduced to define template formulas containing unknown parameters.
Formally, the set of parameters P is a set consisting of two disjoint sets of
variables PV and PT of which at least one is nonempty. The parameter variables
in PV can take values from their domain, denoted as the set V . The parameter
variables in PT are time-parameters that take values from the time domain T .
We define a valuation function ν that maps a parameter to a value in its domain.
We denote a vector of parameter variables by p, and extend the definition of the
valuation function to map parameter vectors p into tuples of respective values
over V or T . We define the parameter space DP as a subset of V |PV | × T |PT |.

A PSTL formula is then defined by modifying the grammar specified in (2)
by allowing a, b to be elements of PT , and c to be an element of PV . An STL
formula is obtained by pairing a PSTL formula with a valuation function that
assigns a value to each parameter variable. For example, consider the PSTL
formula ϕ(c, τ) = G[0,τ ]x > c, with parameters variables c and τ . The STL
formula G[0,10]x > 1.2 is an instance of ϕ obtained with the valuation ν = {τ 
→
10, c 
→ 1.2}.

Monotonic PSTL. Monotonic PSTL is a fragment of PSTL introduced as the
polarity fragment in [5]. A PSTL formula ϕ is said to be monotonically increasing
in parameter pi if condition (3) holds for all x, and is said to be monotonically
decreasing in parameter pi if condition (4) holds for all x.
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ν(pi) ≤ ν′(pi) =⇒ [x |= ϕ(ν(pi)) =⇒ x |= ϕ(ν′(pi))] (3)
ν(pi) ≥ ν′(pi) =⇒ [x |= ϕ(ν(pi)) =⇒ x |= ϕ(ν′(pi))] (4)

To indicate the direction of monotonicity, we now introduce the polarity of
a parameter [5], sgn(pi), and say that sgn(pi) = + if the ϕ(p) is monotonically
increasing in pi and sgn(pi) = − if it is monotonically decreasing, and sgn(pi) =
⊥ if it is neither. A formula ϕ(p) is said to be monotonic in pi if sgn(pi) ∈ {+,−},
and say that ϕ(p) is monotonic if for all i, ϕ is monotonic in pi.

While restrictive, the monotonic fragment of PSTL contains many formulas
of interest, such as those expressing steps and spikes in trace values, timed-
causal relations between traces, and so on. Moreover, in some instances, for
a given non-monotonic PSTL formula, it may be possible to obtain a related
monotonic PSTL formula by using distinct parameters in place of a repeated
parameter, or by assigning a constant valuation for some parameters (Example
in AppendixA).

Example 1. For formula (1), we can see that sgn(a) = −, because if a trace
has a certain overshoot exceeding the threshold a∗, then for a fixed τ , the trace
satisfies any formula where a < a∗. Similarly, sgn(τ) = +, as an overshoot over
some interval (0, τ∗] will be still considered an overshoot for τ > τ∗.

Orders on Parameter Space. A monotonic parameter induces a total order
�i in its domain, and as different parameters for a given formula are usually
independent, valuations for different parameters induce a partial order:

Definition 2 (Parameter Space Partial Order). We define �i as a total
order on the domain of the parameter pi as follows:

ν(pi) �i ν′(pi)
def=

{
ν(pi) ≤ ν′(pi) if sgn(pi) = +
ν(pi) ≥ ν′(pi) if sgn(pi) = − (5)

Under the order �i, the parameter space can be viewed as a partially ordered
set (DP ,�), where the ordering operation � is defined as follows:

ν(p) � ν′(p) def= ∀i : ν(pi) �i ν′(pi). (6)

When combined with Eqs. (3), (4) this gives us the relation that ν(p) �
ν′(p) implies that [ϕ(ν(p)) =⇒ ϕ(ν′(p))]. In order to simplify notation, we
define the subset of X that satisfies ϕ(ν(p)) as �ϕ(ν(p))�X . If X and p are
obvious from context, we simply write: �ϕ(ν)�. It follows that (ν � ν′) =⇒
(�ϕ(ν)� ⊆ �ϕ(ν′)�). In summary: � operates in the same direction as implication
and subset. Informally, we say that the ordering is from a stronger to a weaker
formula.

Example 2. For formula (1), the order operation � is defined as ν � ν′ iff
ν(τ) < ν′(τ) and ν(a) > ν′(a). Consider ν1(p) def= (τ : 0.1, a : −1.1) and
ν2(p) def= (τ : 3.3, a : −1.3). As sgn(a) = −, sgn(τ) = +, ν1 � ν2, and
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ϕovershoot(ν1(p)) =⇒ ϕovershoot(ν2(p)). Intuitively this means that if x(t) satis-
fies a formula specifying a overshoot > −1.1 (undershoot < 1.1) over a duration
of 0.1 time units, then x(t) trivially satisfies the formula specifying an undershoot
of < 1.3 over a duration of 3.3 time units.

Next, we define the downward closure of ν(p) and relate it to �ϕ(ν(p))�.

Definition 3 (Downward closure of a valuation). For a valuation ν, its
downward closure (denoted D(ν)) is the set {ν′ | ν′ � ν}.

In the following lemma we state that the union of the sets of traces satisfying
formulas corresponding to parameter valuations in the downward closure of a
valuation ν is the same as the set of traces satisfying the formula corresponding
to ν. The proof follows from the definition of downward closure.

Lemma 1.
⋃

ν′∈D(ν)�ϕ(ν′)� ≡ �ϕ(ν)�

Lastly, we define the validity domain of a set of traces and ϕ.

Definition 4 (Validity domain). Let X be a (potentially infinite) collection
of timed traces, and let ϕ(p) be a PSTL formula with parameters p ∈ P. The
validity domain1 V(ϕ(p),X) of ϕ(p) is a closed subset of DP , such that:

∀ν(p) ∈ V(ϕ(p),X) : ∀x ∈ X : x |= ϕ(ν(p)) (7)

Remark 1. The validity domain for a given parameter set P essentially contains
all the parameter valuations s.t. for the given set of traces X, each trace satisfies
the STL formula obtained by instantiating the given PSTL formula with the
parameter valuation.

Example 3. In Fig. 2, we show the validity domain of the PSTL formula (1) for
the three traces given in the subplot labeled STL cluster 0 in Fig. 1. The hatched
red region contains parameter valuations corresponding to STL formulas that are
not satisfied by any trace, while the shaded-green region is the validity domain
of the formula. The validity domain reflects that till the peak value a∗ of the
black trace is reached (which is the smallest among the peak values for the three
signals), the curve in τ -a space follows the green trace (which has the lowest
slope among the three traces). For any value of τ , for which a > a∗, the formula
is trivially satisfied by all traces.

3 Trace-Projection and Clustering

In this section, we introduce the projection of a trace to the parameter space of
a given PSTL formula, and discuss mechanisms to cluster the trace-projections
using off-the-shelf clustering techniques.

1 If X is obvious from context (or does not matter), we write V(ϕ(p), X) as V(ϕ).
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τ

Fig. 2. Validity domain and
projection of traces in STL
Cluster 0 from Fig. 1.

Trace Projection. The key idea of this paper is
defining a projection operation π that maps a given
timed trace x to a suitable parameter valuation2

ν�(p) in the validity domain of the given PSTL for-
mula ϕ(p). We would also like to project the given
timed trace to a valuation that is as close a repre-
sentative of the given trace as possible (under the
lens of the chosen PSTL formula).

One way of mapping a given timed trace to a
single valuation is by defining a total order � on
the parameter space by an appropriate linearization
of the partial order on parameter space. The total
order then provides a minimum valuation to which
the given timed trace is mapped.

Remark 2. For technical reasons, we often adjoin two special elements � and
⊥ to V(ϕ(p),X) such that ∀ν(p) ∈ V(ϕ(ν(p)),X), ⊥ � ν(p) � � and ∀x ∈
X, x |= ϕ(�(p)) and ¬(x |= ϕ(⊥(p))). These special elements mark whether
V(ϕ(ν(p))) is the whole parameter space or empty.

We present the lexicographic order on parameters as one possible lineariza-
tion; other linearizations, such as those based on a weighted sum in the parameter
space could also be used (presented in AppendixA for brevity).

Lexicographic Order. A lexicographic order (denoted �lex) uses the specifi-
cation of a total order on parameter indices to linearize the partial order. We
formalize lexicographic ordering as follows.

Definition 5 (Lexicographic Order). Suppose we are given a total order on
the parameters j1 > · · · > jn. The total order �lex on the parameter space DP
is defined as:

ν(p) �lex ν′(p) ⇐⇒ ∃jk ∈ (j1, . . . , jn) s.t. ν(pjk
) �i ν′(pjk

) and,
∀� < k, ν(pj�

) = ν′(pj�
). (8)

Note that for a given total or partial order, we can define inf and sup under
that order in standard fashion. Formally, the projection function using lexico-
graphic order is defined as follows:

πlex(x) = inf
�lex

{ν(p) ∈ V(ϕ(p), {x })} (9)

2 For canonicity, π need not be a function from timed traces to DP . For example, it
may be expedient to project a trace to a subset of DP . For simplicity, we defer more
involved projections to future exposition.
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Algorithm 1. Iterated Binary Search to compute πlex(x)
Input: x(t), ϕ(p), P, DP , (j1, . . . , jn), ε > 0, �lex

Result: πlex(x)
1 ν�(p) ← inf�lex DP ; νu(p) ← sup�lex

DP
2 if ¬(x |= ϕ(νu(p))) then return �
3 if x |= ϕ(ν�(p)) then return ⊥
4 for i = 1 to |P| do
5 while |νu(pi) − ν�(pi)| > εi do

6 ν(pi) ← 1
2

(
ν�(pi) + νu(pi)

)

7 if x |= ν(p) then νu(p) ← ν(p)

8 else ν�(p) ← ν(p)

9 return πlex(x) ← νu(p)

Computing πlex. To approximate πlex(x), we recall Algorithm 1 from [14] that
uses a simple lexicographic binary search3.

We begin by setting the interval to search for a valuation in V(ϕ(p)). We
set the initial valuation to � since it induces the most permissive STL formula.
Next, for each parameter, (in the order imposed by �lex), we perform bisection
search on the interval to find a valuation in V(ϕ(p)). Once completed, we return
the lower bound of the search-interval as it is guaranteed to be satisfiable (if a
satisfiable assignment exists).

Crucially, this algorithm exploits the monotonicity of the PSTL formula to
guarantee that there is at most one point during the bisection search where the
satisfaction of ϕ can change. The number of iterations for each parameter index
i is bounded above by log

⌈
sup(DP i)−inf(DP i)

εi

⌉
, and the number of parameters.

This gives us an algorithm with complexity that grows linearly in the number
of parameters and logarithmically in the desired precision.

Remark 3. Pragmatically, we remark that the projection algorithm is inherently
very parallel at the trace level and as such scales well across machines.

Example 4. For the running example (PSTL formula (1)), we use the order
a �lex τ . As sgn(a) = −, and sgn(τ) = +, lexicographic projection has the
effect of first searching for the largest a, and then searching for the smallest τ
such that the resulting valuation is in V(ϕovershoot). The projections of the three
traces from STL cluster 0 from Fig. 1 are shown in Fig. 2. We use the same color
to denote a trace and its projection in parameter space.

3 For simplicity, we have omitted a number of optimizations in Algorithm 1. For exam-
ple, one can replace the iterative loop through parameters with a binary search over
parameters.
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Fig. 3. Three clusters represented
using the level sets of Gaussian func-
tions learned from Gaussian Mixture
Models (GMMs) (see Example 5). The
user specifies the number of clusters
to discover (3 in this case), and spec-
ifies that the GMM algorithm use
a diagonal covariance matrix (which
restricts cluster shape to axis-aligned
ellipsoids).

Clustering and Labeling. What does
one gain by defining a projection, π? We
posit that applying unsupervised learn-
ing algorithms for clustering in DP lets
us glean insights about the logical struc-
ture of the trace-space by grouping traces
that satisfy similar formulas together. Let
L be a finite, nonempty set of labels. Let
Y ⊂ X represent a user-provided set of
traces. In essence, a clustering algorithm
identifies a labeling function � : Y → 2L

assigning to each trace in Y zero or more
labels. We elaborate with the help of an
example.

Example 5. In Fig. 3, we show a possi-
ble clustering induced by using Gaussian
Mixture Models4 (GMMs) for the trace-
projections for the traces in Fig. 1. The
figure shows that the traces colored green,
red and black are grouped in the same cluster; this matches the observation that
all three traces have behaviors indicating overshoots, but of reasonable magni-
tudes. On the other hand, traces colored magenta and yellow have no overshoot
and are grouped into a second cluster. The final cluster contains the blue and
cyan traces, both with a large overshoot.

Supposing the clustering algorithm reasonably groups traces satisfying sim-
ilar parameter valuations/logical formulas, one may ask: “Can we describe this
group of traces in terms of an easily interpretable STL formula?” Using an ellip-
soid to represent a cluster, unfortunately, the answer is negative.

Example 6. For the cluster labeled 0 in Fig. 1, in (10), we show the formula
describing the ellipsoidal cluster. Here the cis are some constants.

F
(
lane change ∧ F[0,τ ] (x − xref > a)

) ∧
(
(c1τ − c2)

2 + (c3a − c4)
2

< c25

)

(10)

It is clear that formula (10) is inscrutable, and actually represents an infinite
number of STL formulas. In case of GMMs, we can at least have an abstract
4 A GMM assumes that the given parameter space can be modeled as a random

variable distributed according to a set of Gaussian distributions with different mean
and variance values. A given parameter valuation is labeled l if the probability of the
valuation belonging to the lth Gaussian distribution exceeds the probability of the
valuation belonging to other distributions. Another way to visualize clusters in the
parameter space is by level-sets of the probability density functions associated with
the clusters. For example, for the lth cluster, we can represent it using the smallest
level-set that includes all given points labeled l.



Logical Clustering and Learning for Time-Series Data 315

description of clusters using ellipsoid shapes in the parameter-space. If we use
spectral clustering (as described in Sect. 1), the representation of a cluster in the
parameter space is even less obvious. To mitigate this problem, we observe that
the distance between points in DP is a “good” proxy for whether they receive the
same label. Thus, another way to define the labeling function �, is via parameter
ranges. We argue that the use of axis-aligned hyperboxes enclosing points with
the same labels is a useful approximation of the clusters, particularly because as
we see in the next section, it has a compact STL encoding.

Remark 4. For a given set of points, the tightest-enclosing hyperbox may include
points that would not have received the same label by an off-the-shelf clustering
algorithm. This can lead to a scenario where hyperbox-clusters intersect (see
Fig. 5c in for an example). This means that we can now have points in the
parameter space that can have possibly two or more labels. We argue that this
can be addressed in two ways: (1) introduce a new hyperbox cluster for points
in the intersection, (2) indicate that points in the intersection represent traces
for which there is additional guidance required from the designer.

Hyperbox Clusters. In the previous section, we showed that we can construct
a labeling function � to assign labels to the user-provided set of traces Y . We
now see how we can extend this labeling function to all possible traces X.

Let ν�
def= supDP . A valid hyperbox B in the parameter space is defined in

terms of its extreme points (νs(p), νw(p)), (where νs � νw), where νs and νw

are the infimum and supremum resp. over the box w.r.t. �. Formally,

Definition 6 (Hyperbox)

B(νs, νw) def=
{∏

i[νs(pi), νw(pi)] if νw(pi) 	= ν�(pi)∏
i[νs(pi), νw(pi)] otherwise.

(11)

In other words, we assume that a hyperbox is open on all faces not connected
to the infimum of the box, unless the face is connected to the supremum of DP .
Let B denote the set of all such hyperboxes.

Definition 7 (Hyperbox Labeling Function). Given a trace x and a hyper-
box B, s.t. π(x) ∈ B, we define �box as the hyperbox labeling function from X to
2L as follows:

l ∈ �box(x) ⇐⇒ {π(x′) | x′ ∈ Y ∧ �(x′) = l} ⊂ B (12)

In other words, we only consider hyperboxes that contain the projections
of all traces with a specific label (say l), and then any trace that projects to
some point in the hyperbox gets all such labels l. We extend the definition
�box(x) to boxes, such that �B(B) = {l | π(x) ∈ B ∧ l ∈ �box(x)}. We note that
B∗ def= inf{B | l ∈ �B(B)} represents the smallest set containing all parameter
valuations that are labeled l. However, B∗ does not satisfy the definition of a
hyperbox as per Definition 6 as it is a closed set. Hence, we define an ε relaxation
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of this set as the smallest bounding hyperbox satisfying Definition 6 at Hausdorff
distance ε from B∗, and call it the ε-bounding hyperbox. In the next section, we
show how we can translate a cluster represented as an ε-bounding hyperbox to
an STL formula. We will further examine how, in some cases, we can represent
a cluster by a superset B′ of the ε-bounding hyperbox that satisfies l ∈ �B(B′),
but allows a simpler STL representation.

Example 7. For the example shown in Fig. 1, for each of the red, green and black
traces x, �box(x) = {0}, while for the blue and cyan traces, �box(x) = {2}. Any
hyperbox B satisfying Definition 6 that is a superset of the hyperbox enclosing
the red, green and black points shown in the bottom right figure has �B(B) = {0},
while the hyperbox shown in the figure is an ε-bounding hyperbox.

4 Learning STL Formulas from Clusters

A given ε-bounding hyperbox B simply specifies a range of valuations for the
parameters in a PSTL template ϕ. We now demonstrate that because ϕ is
monotonic, there exists a simple STL formula that is satisfied by the set of
traces that project to some valuation in B. Recall that we use �ϕ(ν)� to denote
the set of traces that satisfies ϕ(ν(p)). We define XB as the set of traces that
have a satisfying valuation in B: XB

def=
⋃

ν(p)∈B

�ϕ(ν(p))�.

Theorem 1. There is an STL formula ψB such that {x ∈ X | x |= ψB} ≡ XB.

Before proving this theorem, we introduce some notation:

Definition 8 (Essential Corners, EB). Let νw(p) = (w1, . . . , wn), and let
νs(p) = (s1, . . . , sn). A valuation corresponding to an essential corner has exactly
one i such that ν(pi) = si, and for all j 	= i, ν(pj) = wj.

Proof (Theorem 1). We first introduce the notion of essential corners of a box
B.

Note that B can be written in terms of downward closures of valuations:
B = D(νw)∩⋂

ν∈EB
D(ν). From Lemma 1, the set of traces satisfying a formula

in ϕ(D(ν)) is equivalent to �ϕ(ν)�. Further, using the equivalence between inter-
sections (∩) of sets of traces and conjunctions (∧) in STL, and equivalence of
set-complements with negations, we define ψB below and note that the set of
traces satisfying the formula ψB below is XB . �

ψB
def= ϕ(νw) ∧

∧

ν∈EB

¬ϕ(ν) (13)

Example 8. Consider the B ∈ B enclosing the projections for the yellow and
magenta traces (Cluster 1). The corner-points of the cluster in clockwise order
from bottom right corner are: (−1.3, 0.1), (−1.3, 3.3), (−1.1, 3.3), (−1.1, 0.1).
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Observe that as sgn(a) = − and sgn(τ) = +, νs = (a 
→ −1.1, τ 
→ 0.1), νw =
(a 
→ −1.3, τ 
→ 3.3). Thus, EB = {(−1.3, 0.1), (−1.1, 3.3)}. Thus:

ϕovershoot(a, τ) ≡ F
(
lane change ∧ F[0,τ ] (x − xref > a)

)

ψB ≡ ϕovershoot(−1.3, 3.3) ∧ ¬ϕovershoot(−1.3, .1) ∧ ¬ϕovershoot(−1.1, 3.3) (14)

Lemma 2. |ψB | ≤ (|P| + 1|)(|ϕ| + 2)

Proof. Recall from Definition 8 that corners in EB have exactly 1 param set
to si. There are |P| params, thus by pigeon hole principle, |EB | ≤ |P|. In ψB

for each corner in EB , the corresponding formula is negated, adding 1 symbol.
Between each |P|+1 instantiations of ϕ is a ∧. Thus |ψB | ≤ (|P|+1)(|ϕ|+2) �

Simplifying STL Representation. To motivate this section, let us re-examine
Example 8. From Fig. 1, we can observe that there is no hyperbox cluster to
the left of or above the chosen hyperbox cluster B, i.e., the one containing the
magenta and yellow trace-projection. What if we consider supersets of B that are
hyperboxes and have the same infimum point? For Example 8, we can see that
any hyperbox that extends to the supremum of the parameter space in τ or −a
direction would be acceptable as an enclosure for the yellow and magenta traces
(as there are no other traces in those directions). We formalize this intuition in
terms of relaxing the set of corners that can appear in EB .

Fig. 4. 2D shapes generated by different sub-
sets of corners.

For instance, suppose that we
replace EB in Eq. (13) with E′

B ,
where E′

B is any subset of the cor-
ners of B (excluding νw). We call
the collection of shapes induced by
this relaxation as B2. For |P| = 2,
the possible shapes of elements in
B2 are shown in Fig. 4. For conve-
nience, we use a bit-vector encod-
ing for hyperbox corners, where νs

corresponds to the bit-vector with
all 0s, νw has all 1s, and essential
corners are bit-vectors with exactly
one 0. Consider the L shaped
region, CL, created by E′

B = {00}.
The formula corresponding to CL has obviously less descriptive complexity than
EB = {01, 10}. Further notice, B2 \ B would have less descriptive complexity
than elements of B.

One critical feature that B2 (and thus B) has is comparable convexity :

Definition 9 (Comparable Convexity). If ∀ν, ν′ ∈ B ⊂ DP if ν � ν′ or
ν′ � ν then all convex combinations of ν and ν′ are in B.

Comparable convexity allows us to argue that one can gain some insight into
the set of traces by just examining the extremal cases and just “interpolating”
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the cases because of the associated parameters. We call these extremal cases the
“representatives” of a cluster.

Theorem 2. Each element in B2 is comparably convex. See Fig. 4 for examples.

Proof. Note that all elements of B ⊂ B2 are trivially comparably convex since
hyperboxes are convex. Thus we focus on elements of B2 \ B. Now observe that
any element C ∈ B2 is the union of a finite set, H, of boxes in B. C s.t. C =⋃

Bi∈H⊂B Bi where ν1 ∈ B1 and ν2 ∈ B2. If B1 ⊂ B2 or the other way around or
ν1 ∈ B1 ∩B2 or ν2 ∈ B1 ∩B2, then again there trivially the convex combination
of ν1 and ν2 is in C because hyperboxes are convex (and the intersection of two
hyperboxes is a hyperbox).

This leaves the case where ν1 ∈ B1 \ B2 and ν2 ∈ B2 \ B1 and neither
B1 ⊂ B2 nor B2 ⊂ B1. This implies that inf(B1) is not comparable to inf(B2).
W.L.O.G assume ν1 � ν2 and that the convex combination of ν1 and ν2 is
not a subset C. Note that the definition of downward closure and the fact that
ν1 � ν2 =⇒ ν1 ∈ B(sup(C), ν2)

def= B′. But, B′ is convex and B′ ⊂ B2 ⊂ C,
thus the convex combination of ν1 and ν2 is in C which is a contradiction. �

5 Case Studies

Implementation Details. We leveraged Breach [9] for performing projections
πlex, scikit-learn toolkit [11] for clustering and custom Python code for learn-
ing STL formulas for clusters. An IPython notebook with compressed versions of
the datasets studied in the case studies (and a replementation of πlex in Python)
is available for download at [1].

Diesel Engine. In this case study, we are provided with timed traces for a signal
representing the Exhaust Gas Recirculation (EGR) rate for an early prototype
of a Diesel Engine airpath controller. As the example comes from an automotive
setting, we suppress actual signal values for proprietary reasons. The controller
computes an EGR reference rate and attempts to track it. Typically, engineers
visually inspect the step-response of the control system and look for patterns such
as unusual overshoots, slow responsiveness, etc. The ST-Lib library [13] defines
a pool of PSTL formulas designed to detect violations of such properties. Using
a property from ST-Lib requires correctly setting the parameters in the PSTL
templates therein. In this case study, we show how we can use our technique
to determine parameters that characterize undesirable behavior. We focus on
two templates: Rising Step and Overshoot. Many ST-Lib formulas are “step-
triggered”, i.e., they are of the form: F(step∧φ) We first identify parameters for
the step template, as it is used as a primitive in further analysis. For example, in
the overshoot analysis we seek to characterize by what margin traces overshoot
the reference. We use the following templates for rising-step and overshoot:

step(m,w) � F(ẍ > m ∧ F[0,w](ẍ < −m)) (15)

ϕovershoot(c, w) � step∗ ∧ F[0,w](x − xr) > c (16)
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Equation (15) first reduces step detection (via a discrete derivative) to spike
detection and then applies the ST-Lib spike detection template (that introduces
a second derivative). As the view of PSTL is signal-centric, such operations
can be introduced as new timed traces of a new signal, and do not require
any modification of the logic. The step∗ that appears in Eq. (16) is result step
primitive we learn during our analysis. Finally, the lexicographic ordering used
in the projections of Eqs. (15) and (16) are: m �lex w and c �lex w resp. Finally,
each parameter is in R>0.

Experiments. We have 33 traces of variable time-length. As a preprocessing step,
we used a sliding window with a size of 1 second and a sliding offset of 0.5 s to
generate equal length traces. The sliding window size and the offset was chosen by
observation and experience to capture the significant local behaviors. In general,
such a selection could be automated based on statistical criteria. Further, as we
did not exploit the relationship between traces generated by the sliding window,
we effectively analyzed over 2 × 106 traces (1 GB). Each trace generated is then
prepossessed by numerically computing the second derivative5. After projecting
to the parameter space for each template, we normalize the parameters to lie
between 0, 1 and fit a Gaussian Mixture Model to generate labels, and learn the
STL formulas for each cluster.

Results. The Step template revealed 3 clusters (Fig. 5a), of which the cluster
labeled Step (Fig. 5b), was identified as an admissible “step” primitive. In picking

Fig. 5. DP for the overshoot and step experiments and representatives of select clusters.
5 As the discrete-time derivative can introduce considerable noise, we remark that the

discrete-time derivative can often be approximated by a noise-robust operation (such
as the difference from a rolling mean/median.).
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the appropriate bounding box in B we noted spikes have no inherit upper limit
to their peaks. Thus, we derived the characterizing STL: step∗ def= step(m∗, w∗),
where m∗, w∗ are suppressed for proprietary reasons. The overshoot analysis
revealed 5 clusters. We note that there are actually 2 distinct clusters which can
reasonably be called overshoots, given by label 1 and 4 in Fig. 5c. The interpreta-
tion, is that while the majority of the overshoots occur soon after the step, there
is a cluster that occurred later, either due to slow rise time or non-linear effects
causing the oscillation about the reference to increasing before dying away. In
either case, as with spike, we declare that any overshoot is still an overshoot as
the amplitude c rises. Thus for cluster 1 we again chose to use a box from B that
does not bound c. This lead to: ϕ∗

overshoot
def= ϕovershoot(c∗, w∗

2)∧¬ϕovershoot(c∗, w∗
1)

again suppressing values.

Traffic Behavior on the US-101 Highway. In order to model and pre-
dict driver behavior on highways, the Federal Highway Administration collected
detailed traffic data on southbound US-101 freeway, in Los Angeles [8]. The pre-
selected segment of the freeway is about 640 m in length and consists of five main
lanes and some auxiliary lanes. Traffic through the segment was monitored and
recorded through eight synchronized cameras, mounted on top of the buildings
next to the freeway. A total of 45 min of traffic data was recorded including
vehicle trajectory data providing lane positions of each vehicle within the study
area.

Here, we apply our method to analyze lane switching “aggressiveness” char-
acterized by how often a driver switches lanes and the dwell time in each lane
before switching. We focus on lanes 2, 3, and 4, ignoring the outer lanes 1 and 5
since they are used entering and exiting the freeway, and thus have qualitatively
different behavior. Each vehicle trajectory x(t), stores the lane position for the
vehicle, and we use the following STL formula to capture the dwell time in Li:

F
(
x 	= Li ∧ (F[0,ε]x = LiU[ε,τi]x 	= Li)

)
(17)

Results. For this experiment, from 4824 total vehicle trajectories, we discard tra-
jectories with no lane switching behavior and group them with the conservative
driving behaviors. We analyze the remaining 896 targeted trajectories that have
at least one lane-switch behavior, and each trajectory is at most 100 s long. As
all parameters are independent, lexicographic ordering has no impact on πlex.
After normalizing the parameters by centering and scaling, we apply GMMs to
label and generate bounding hyperboxes/STL formulas.

The resulting clusters are shown in Fig. 6a. Upon examining the representa-
tives,we classified the behaviors of each cluster into 4 groups:

– T1: No Weaving: only switching to adjacent lanes and never changing back.
– T2: Normal driving behavior, from switching to adjacent lanes and coming

back to overtake a slow vehicle in front.
– T3: Slightly aggressive behavior, weaving between 2 lanes.
– T4: Aggressive behavior, weaving between all three lanes.
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Fig. 6. (a) Lane Switching Behavior results. Columns: Cluster, parameters, cluster
type, num(traces). (b) shows the representatives of cluster 1, which upon the inspection
are qualitatively very different. The blue car moves from lane 5 to lane 4, remains for
≈60 s and then moves to lane 3. The red car appears to use lane 5 to pass another car,
move’s back into lane 4 and then to lane 3 shortly after. Inspecting the data, most of
cluster 1 large τ4 value. We subdivided the behavior further using a one class svm and
interpreted the small τ4 values as “aggressive”. New “aggressive” representatives given
in (c). (Color figure online)

The largest cluster, 0, contains behaviors without any weaving behavior.
Cluster 3 and 5 represent the weaving behavior involving 2 lanes. Cluster 6
represents aggressive behavior and one of the representative is shown in Fig. 6c.
We consider Cluster 7 as an anomaly for Cluster 2 as it has only 1 trajectory.

For clusters 1, 2, and 4, we cannot distinguish if drivers were rapidly weaving
or weaving within a short period of time, due to the scarcity of the data. As
seen in Fig. 6b, the representatives for cluster 1, demonstrated two different
behaviors; one involving rapid lane-switching (red trace), one where the driver
switched lanes more slowly (blue trace). Applying an additional 1-class SVM to
the points in cluster 1 was used to distinguish these two cases.

CPS Grader. Massively Open Online Courses (MOOCs) present instructors
the opportunity to learn from a large amount of collected data. For example,
the data could be clustered to identify common correct solutions and mistakes.
Juniwal et al. [16] demonstrated a semi-supervised procedure for a CPS MOOC;
this involved first using DTW and K-Nearest Neighbors (KNN) to cluster traces
of student solutions, and then picking representatives from clusters to ask the
instructor to label. From the labeled data, they extract a characterizing STL for-
mula given a PSTL template. The techniques demonstrated in this paper offer
an alternative approach that can overcome some limitations of [16]. Firstly, as
demonstrated in the opening example (see Fig. 1), DTW does not necessarily
group traces in a way consistent with their logical classification. Second, the
burden of labeling traces can still be quite large for instructors if the number
of clusters is very large. Instead, unsupervised our approach offers a fully unsu-
pervised approach (e.g., based on GMMs or K-Means) which still offers some
degree of confidence that elements in the same cluster are similar w.r.t. a given
PSTL template.
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The tests in [16] involved the simulation of an IRobot Create and student
generated controllers. The controller needed to navigate the robot up an incline
and around static obstacles. To test this, the authors created a series of parame-
terized environments and a set of PSTL formula that characterized failure. In
this work, we attempt to reproduce a somewhat arbitrary subset of the results
shown in [16] that required no additional preprocessing on our part.

Obstacle Avoidance. We focus on 2 tests centered around obstacle avoidance.
The authors used an environment where an obstacle is placed in front of a
moving robot and the robot is expected to bypass the obstacle and reorient
to it’s pre-collision orientation before continuing. The relevant PSTL formulas
were “Failing simple obstacle avoidance” and “Failing re-orienting after obstacle
avoidance” given below as ϕavoid and ϕreorient resp.:

ϕavoid(τ, ymin) = G[0,τ ](pos.y < ymin) (18)
ϕreorient(ymin, xmax) = G[0,τ ](pos.y < ymin ∨ pos.x > xmax) (19)

Results. A surprising observation for both templates is that the vast majority of
data is captured in a relatively small parameter range. Upon investigation, it was
revealed that the students were able to submit multiple solutions for grading—
each corresponding to a trace. This biased the dataset towards incorrect solutions
since one expects the student to produce many incorrect solutions and then a
few final correct solutions. As seen in Fig. 7a, the results imply that a classifier
for label 0, which corresponded to the robot not passing the obstacle, would have
a low misclassification rate when compared against the STL artifact from [16].
Moreover, for obstacle avoidance, there are two other families of correct solutions
uncovered. One is the set of traces that just barely pass the obstacle in time

Fig. 7. CPS Grader Study Results, w. V(ϕavoid), (c), from [16] included for comparison
(valuations in the green region of (c) correspond to mistakes). We note that in (b) we
are able to identify 3 modes of failure (obstacle not avoided, 2x obstacle avoided but
did not reorient), an insight not present in [16]. (Color figure online)
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(label 2 in Fig. 7a), and the other is the spectrum of traces that pass the minimum
threshold with a healthy margin (label 1 in Fig. 7a). For the reorient template,
we discovered 3 general types of behaviors (again with GMMs), see Fig. 7b. The
first (label 1) is a failure to move past the obstacle (echoing the large group under
the obstacle avoidance template). The other 3 groups seem to move passed the
obstacle, but two (labels 0 and 3) of them display failure to reorient to the
original orientation of 45◦. One could leverage this behavior to craft diagnostic
feedback for these common cases.

Conclusion. In this work we explored a technique to leverage PSTL to extract
features from a time series that can be used to group together qualitatively
similar traces under the lens of a PSTL formula. Our approach produced a simple
STL formula for each cluster, which along with the extremal cases, enable one
to develop insights into a set of traces. We then illustrated with a number of
case studies how this technique could be used and the kinds of insights it can
develop. For future work, we will study extensions of this approach to supervised,
semi-supervised, and active learning. A key missing component in this work is a
principled way to select a projection function (perhaps via learning or posterior
methods). Other possible extensions involve integration with systematic PSTL
enumeration, and learning non-monotonic PSTL formulas.
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A Appendix

Related Monotonic Formula for a Non-monotonic PSTL Formula

Example 9. Consider the PSTL template: ϕ(h,w) def= F((x ≤ h)∧F[0,w](x ≥ h)).
We first show that the given formula is not monotonic.

Proof. Consider the trace x(t) = 0. Keep fixed w = 1. Observe that h = 0,
x(t) satisfies the formula. If h = −1, then x(t) 	|= ϕ(h,w), since x(t) ≤ h is
not eventually satisifed. If h = 1, then x(0) ≤ 1 implying that for satisfaction,
within the next 1 time units, the signal must becomes greater than 1. The signal
is always 0, so at h = 1, the formula is unsatisfied. Thus, while increasing h
from −1 to 0 to 1, the satifaction has changed signs twice. Thus, ϕ(h,w) is not
monotonic.

Now consider the following related PSTL formula in which repeated
instances of the parameter h are replaced by distinct parameters h1 and
h2. We observe that this formula is trivially monotonic: ϕ((w, h1, h2))

def=
F

(
(x ≤ h1) ∧ F[0,w] (x ≥ h2)

)
.
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Linearization Based on Scalarization
Borrowing a common trick from multi-objective optimization, we define a cost
function on the space of valuations as follows: J(ν(p)) =

∑|P|
i=1 λiν(pi). Here,

λi ∈ R, are weights on each parameter. The above cost function implicitly defines
an order �scalar, where, ν(p) �scalar ν′(p) iff J(ν(p)) ≤ J(ν′(p)). Then, the pro-
jection operation πscalar is defined as: πscalar(x) = argminν(p)∈∂V(ϕ(p))J(ν(p)).
We postpone any discussion of how to choose such a scalarization to future work.

References

1. Logical Clustering CAV2017 Artifact. https://archive.org/details/Logical
Clustering CAV2017 Artifact. Accessed 29 Apr 2017

2. Ackerman, E.: Google’s autonomous cars are smarter than ever at 700,000 miles.
IEEE Spectr. (2014). http://spectrum.ieee.org/cars-that-think/transportation/
self-driving/google-autonomous-cars-are-smarter-than-ever

3. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
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