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Abstract. Deep neural networks have achieved impressive experimen-
tal results in image classification, but can surprisingly be unstable with
respect to adversarial perturbations, that is, minimal changes to the
input image that cause the network to misclassify it. With potential
applications including perception modules and end-to-end controllers for
self-driving cars, this raises concerns about their safety. We develop
a novel automated verification framework for feed-forward multi-layer
neural networks based on Satisfiability Modulo Theory (SMT). We focus
on safety of image classification decisions with respect to image manip-
ulations, such as scratches or changes to camera angle or lighting con-
ditions that would result in the same class being assigned by a human,
and define safety for an individual decision in terms of invariance of
the classification within a small neighbourhood of the original image.
We enable exhaustive search of the region by employing discretisation,
and propagate the analysis layer by layer. Our method works directly
with the network code and, in contrast to existing methods, can guar-
antee that adversarial examples, if they exist, are found for the given
region and family of manipulations. If found, adversarial examples can
be shown to human testers and/or used to fine-tune the network. We
implement the techniques using Z3 and evaluate them on state-of-the-
art networks, including regularised and deep learning networks. We also
compare against existing techniques to search for adversarial examples
and estimate network robustness.

1 Introduction

Deep neural networks have achieved impressive experimental results in image
classification, matching the cognitive ability of humans [23] in complex tasks
with thousands of classes. Many applications are envisaged, including their use
as perception modules and end-to-end controllers for self-driving cars [15]. Let
R

n be a vector space of images (points) that we wish to classify and assume
that f : Rn → C, where C is a (finite) set of class labels, models the human
perception capability, then a neural network classifier is a function f̂(x) which
approximates f(x) from M training examples {(xi, ci)}i=1,..,M . For example,
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a perception module of a self-driving car may input an image from a camera
and must correctly classify the type of object in its view, irrespective of aspects
such as the angle of its vision and image imperfections. Therefore, though they
clearly include imperfections, all four pairs of images in Fig. 1 should arguably
be classified as automobiles, since they appear so to a human eye.

Classifiers employed in vision tasks are typically multi-layer networks, which
propagate the input image through a series of linear and non-linear operators.
They are high-dimensional, often with millions of dimensions, non-linear and
potentially discontinuous: even a small network, such as that trained to classify
hand-written images of digits 0–9, has over 60,000 real-valued parameters and
21,632 neurons (dimensions) in its first layer. At the same time, the networks
are trained on a finite data set and expected to generalise to previously unseen
images. To increase the probability of correctly classifying such an image, reg-
ularisation techniques such as dropout are typically used, which improves the
smoothness of the classifiers, in the sense that images that are close (within ε
distance) to a training point are assigned the same class label.

automobile to bird automobile to frog automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified
wrongly)

Unfortunately, it has been observed in [13,36] that deep neural networks,
including highly trained and smooth networks optimised for vision tasks, are
unstable with respect to so called adversarial perturbations. Such adversarial per-
turbations are (minimal) changes to the input image, often imperceptible to the
human eye, that cause the network to misclassify the image. Examples include
not only artificially generated random perturbations, but also (more worryingly)
modifications of camera images [22] that correspond to resizing, cropping or
change in lighting conditions. They can be devised without access to the train-
ing set [29] and are transferable [19], in the sense that an example misclassified
by one network is also misclassified by a network with a different architecture,
even if it is trained on different data. Figure 1 gives adversarial perturbations
of automobile images that are misclassified as a bird, frog, airplane or horse by
a highly trained state-of-the-art network. This obviously raises potential safety
concerns for applications such as autonomous driving and calls for automated
verification techniques that can verify the correctness of their decisions.

Safety of AI systems is receiving increasing attention, to mention [10,33],
in view of their potential to cause harm in safety-critical situations such as
autonomous driving. Typically, decision making in such systems is either solely
based on machine learning, through end-to-end controllers, or involves some
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combination of logic-based reasoning and machine learning components, where
an image classifier produces a classification, say speed limit or a stop sign, that
serves as input to a controller. A recent trend towards “explainable AI” has led
to approaches that learn not only how to assign the classification labels, but
also additional explanations of the model, which can take the form of a justifi-
cation explanation (why this decision has been reached, for example identifying
the features that supported the decision) [17,31]. In all these cases, the safety
of a decision can be reduced to ensuring the correct behaviour of a machine
learning component. However, safety assurance and verification methodologies
for machine learning are little studied.

The main difficulty with image classification tasks, which play a critical role
in perception modules of autonomous driving controllers, is that they do not
have a formal specification in the usual sense: ideally, the performance of a clas-
sifier should match the perception ability and class labels assigned by a human.
Traditionally, the correctness of a neural network classifier is expressed in terms
of risk [37], defined as the probability of misclassification of a given image,
weighted with respect to the input distribution μ of images. Similar (statisti-
cal) robustness properties of deep neural network classifiers, which compute the
average minimum distance to a misclassification and are independent of the data
point, have been studied and can be estimated using tools such as DeepFool [25]
and cleverhans [27]. However, we are interested in the safety of an individual
decision, and to this end focus on the key property of the classifier being invari-
ant to perturbations at a given point. This notion is also known as pointwise
robustness [12,18] or local adversarial robustness [21].

Contributions. In this paper we propose a general framework for automated
verification of safety of classification decisions made by feed-forward deep neural
networks. Although we work concretely with image classifiers, the techniques
can be generalised to other settings. For a given image x (a point in a vector
space), we assume that there is a (possibly infinite) region η around that point
that incontrovertibly supports the decision, in the sense that all points in this
region must have the same class. This region is specified by the user and can be
given as a small diameter, or the set of all points whose salient features are of
the same type. We next assume that there is a family of operations Δ, which
we call manipulations, that specify modifications to the image under which the
classification decision should remain invariant in the region η. Such manipula-
tions can represent, for example, camera imprecisions, change of camera angle,
or replacement of a feature. We define a network decision to be safe for input x
and region η with respect to the set of manipulations Δ if applying the manip-
ulations on x will not result in a class change for η. We employ discretisation
to enable a finite exhaustive search of the high-dimensional region η for adver-
sarial misclassifications. The discretisation approach is justified in the case of
image classifiers since they are typically represented as vectors of discrete pixels
(vectors of 8 bit RGB colours). To achieve scalability, we propagate the analy-
sis layer by layer, mapping the region and manipulations to the deeper layers.
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We show that this propagation is sound, and is complete under the additional
assumption of minimality of manipulations, which holds in discretised settings.
In contrast to existing approaches [28,36], our framework can guarantee that a
misclassification is found if it exists. Since we reduce verification to a search for
adversarial examples, we can achieve safety verification (if no misclassifications
are found for all layers) or falsification (in which case the adversarial examples
can be used to fine-tune the network or shown to a human tester).

We implement the techniques using Z3 [8] in a tool called DLV (Deep Learn-
ing Verification) [2] and evaluate them on state-of-the-art networks, including
regularised and deep learning networks. This includes image classification net-
works trained for classifying hand-written images of digits 0–9 (MNIST), 10
classes of small colour images (CIFAR10), 43 classes of the German Traffic Sign
Recognition Benchmark (GTSRB) [35] and 1000 classes of colour images used
for the well-known imageNet large-scale visual recognition challenge (ILSVRC)
[4]. We also perform a comparison of the DLV falsification functionality on the
MNIST dataset against the methods of [28,36], focusing on the search strategies
and statistical robustness estimation. The perturbed images in Fig. 1 are found
automatically using our tool for the network trained on the CIFAR10 dataset.

This invited paper is an extended and improved version of [20], where an
extended version including appendices can also be found.

2 Background on Neural Networks

We consider feed-forward multi-layer neural networks [14], henceforth abbrevi-
ated as neural networks. Perceptrons (neurons) in a neural network are arranged
in disjoint layers, with each perceptron in one layer connected to the next layer,
but no connection between perceptrons in the same layer. Each layer Lk of a
network is associated with an nk-dimensional vector space DLk

⊆ R
nk , in which

each dimension corresponds to a perceptron. We write Pk for the set of percep-
trons in layer Lk and nk = |Pk| is the number of perceptrons (dimensions) in
layer Lk.

Formally, a (feed-forward and deep) neural network N is a tuple (L, T, Φ),
where L = {Lk | k ∈ {0, . . . , n}} is a set of layers such that layer L0 is the input
layer and Ln is the output layer, T ⊆ L × L is a set of sequential connections
between layers such that, except for the input and output layers, each layer has an
incoming connection and an outgoing connection, and Φ = {φk | k ∈ {1, . . . , n}}
is a set of activation functions φk : DLk−1 → DLk

, one for each non-input layer.
Layers other than input and output layers are called the hidden layers.

The network is fed an input x (point in DL0) through its input layer, which
is then propagated through the layers by successive application of the activation
functions. An activation for point x in layer k is the value of the corresponding
function, denoted αx,k = φk(φk−1(...φ1(x))) ∈ DLk

, where αx,0 = x. For percep-
tron p ∈ Pk we write αx,k(p) for the value of its activation on input x. For every
activation αx,k and layer k′ < k, we define Prek′(αx,k) = {αy,k′ ∈ DLk′ | αy,k =
αx,k} to be the set of activations in layer k′ whose corresponding activation in
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layer Lk is αx,k. The classification decision is made based on the activations in
the output layer by, e.g., assigning to x the class arg maxp∈Pn

αx,n(p). For sim-
plicity, we use αx,n to denote the class assigned to input x, and thus αx,n = αy,n

expresses that two inputs x and y have the same class.
The neural network classifier N represents a function f̂(x) which approx-

imates f(x) : DL0 → C, a function that models the human perception
capability in labelling images with labels from C, from M training examples
{(xi, ci)}i=1,..,M . Image classification networks, for example convolutional net-
works, may contain many layers, which can be non-linear, and work in high
dimensions, which for the image classification problems can be of the order of
millions. Digital images are represented as 3D tensors of pixels (width, height
and depth, the latter to represent colour), where each pixel is a discrete value in
the range 0. . .255. The training process determines real values for weights used
as filters that are convolved with the activation functions. Since it is difficult
to approximate f with few samples in the sparsely populated high-dimensional
space, to increase the probability of classifying correctly a previously unseen
image, various regularisation techniques such as dropout are employed. They
improve the smoothness of the classifier, in the sense that points that are ε-close
to a training point (potentially infinitely many of them) classify the same.

In this paper, we work with the code of the network and its trained weights.

3 Safety Analysis of Classification Decisions

In this section we define our notion of safety of classification decisions for a neural
network, based on the concept of a manipulation of an image, essentially per-
turbations that a human observer would classify the same as the original image.
Safety is defined for an individual classification decision and is parameterised
by the class of manipulations and a neighbouring region around a given image.
To ensure finiteness of the search of the region for adversarial misclassifications,
we introduce so called “ladders”, nondeterministically branching and iterated
application of successive manipulations, and state the conditions under which
the search is exhaustive.

Safety and Robustness. Our method assumes the existence of a (possibly
infinite) region η around a data point (image) x such that all points in the region
are indistinguishable by a human, and therefore have the same true class. This
region is understood as supporting the classification decision and can usually be
inferred from the type of the classification problem. For simplicity, we identify
such a region via its diameter d with respect to some user-specified norm, which
intuitively measures the closeness to the point x. As defined in [18], a network
f̂ approximating human capability f is said to be not robust at x if there exists
a point y in the region η = {z ∈ DL0 | ||z − x|| ≤ d} of the input layer
such that f̂(x) �= f̂(y). The point y, at a minimal distance from x, is known
as an adversarial example. Our definition of safety for a classification decision
(abbreviated safety at a point) follows he same intuition, except that we work
layer by layer, and therefore will identify such a region ηk, a subspace of DLk

, at
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each layer Lk, for k ∈ {0, . . . , n}, and successively refine the regions through the
deeper layers. We justify this choice based on the observation [11,23,24] that deep
neural networks are thought to compute progressively more powerful invariants
as the depth increases. In other words, they gradually transform images into a
representation in which the classes are separable by a linear classifier.

Assumption 1. For each activation αx,k of point x in layer Lk, the region
ηk(αx,k) contains activations that the human observer believes to be so close to
αx,k that they should be classified the same as x.

Intuitively, safety for network N at a point x means that the classification
decision is robust at x against perturbations within the region ηk(αx,k). Note
that, while the perturbation is applied in layer Lk, the classification decision is
based on the activation in the output layer Ln.

Definition 1. [General Safety] Let ηk(αx,k) be a region in layer Lk of a neural
network N such that αx,k ∈ ηk(αx,k). We say that N is safe for input x and
region ηk(αx,k), written as N, ηk |= x, if for all activations αy,k in ηk(αx,k) we
have αy,n = αx,n.

We remark that, unlike the notions of risk [37] and robustness of [12,18], we
work with safety for a specific point and do not account for the input distribution,
but such expectation measures can be considered, see Sect. 6 for comparison.

Manipulations. A key concept of our framework is the notion of a manip-
ulation, an operator that intuitively models image perturbations, for example
bad angles, scratches or weather conditions, the idea being that the classifi-
cation decisions in a region of images close to it should be invariant under
such manipulations. The choice of the type of manipulation is dependent on
the application and user-defined, reflecting knowledge of the classification prob-
lem to model perturbations that should or should not be allowed. Judicious
choice of families of such manipulations and appropriate distance metrics is par-
ticularly important. For simplicity, we work with operators δk : DLk

→ DLk

over the activations in the vector space of layer k, and consider the Euclidean
(L2) and Manhattan (L1) norms to measure the distance between an image
and its perturbation through δk, but the techniques generalise to other norms
discussed in [12,18,19]. More specifically, applying a manipulation δk(αx,k) to
an activation αx,k will result in another activation such that the values of
some or all dimensions are changed. We therefore represent a manipulation
as a hyper-rectangle, defined for two activations αx,k and αy,k of layer Lk

by rec(αx,k, αy,k) = ×p∈Pk
[min(αx,k(p), αy,k(p)), max(αx,k(p), αy,k(p))]. The

main challenge for verification is the fact that the region ηk contains potentially
an uncountable number of activations. Our approach relies on discretisation in
order to enable a finite exploration of the region to discover and/or rule out
adversarial perturbations.

For an activation αx,k and a set Δ of manipulations, we denote by
rec(Δ,αx,k) the polyhedron which includes all hyper-rectangles that result
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from applying some manipulation in Δ on αx,k, i.e., rec(Δ,αx,k) =⋃
δ∈Δ rec(αx,k, δ(αx,k)). Let Δk be the set of all possible manipulations for layer

Lk. To ensure region coverage, we define valid manipulation as follows.

Definition 2. Given an activation αx,k, a set of manipulations V (αx,k) ⊆ Δk

is valid if αx,k is an interior point of rec(V (αx,k), αx,k), i.e., αx,k is in
rec(V (αx,k), αx,k) and does not belong to the boundary of rec(V (αx,k), αx,k).

Figure 2 presents an example of valid manipulations in two-dimensional
space: each arrow represents a manipulation, each dashed box represents a
(hyper-)rectangle of the corresponding manipulation, and activation αx,k is an
interior point of the space from the dashed boxes.

δ1δ1

δ2δ2

δ3δ3

δ4δ4

αx,kαx,k

Fig. 2. Example of a set {δ1, δ2, δ3, δ4} of valid manipulations in a 2-dimensional space

Since we work with discretised spaces, which is a reasonable assumption
for images, we introduce the notion of a minimal manipulation. If applying a
minimal manipulation, it suffices to check for misclassification just at the end
points, that is, αx,k and δk(αx,k). This allows an exhaustive, albeit impractical,
exploration of the region in unit steps.

A manipulation δ1k(αy,k) is finer than δ2k(αx,k), written as δ1k(αy,k) ≤
δ2k(αx,k), if any activation in the hyper-rectangle of the former is also in the
hyper-rectangle of the latter. It is implied in this definition that αy,k is an
activation in the hyper-rectangle of δ2k(αx,k). Moreover, we write δk,k′(αx,k)
for φk′(...φk+1(δk(αx,k))), representing the corresponding activation in layer
k′ ≥ k after applying manipulation δk on the activation αx,k, where δk,k(αx,k) =
δk(αx,k).

Definition 3. A manipulation δk on an activation αx,k is minimal if there does
not exist manipulations δ1k and δ2k and an activation αy,k such that δ1k(αx,k) ≤
δk(αx,k), αy,k = δ1k(αx,k), δk(αx,k) = δ2k(αy,k), and αy,n �= αx,n and αy,n �=
δk,n(αx,k).

Intuitively, a minimal manipulation does not have a finer manipulation that
results in a different classification. However, it is possible to have different classi-
fications before and after applying the minimal manipulation, i.e., it is possible
that δk,n(αx,k) �= αx,n. It is not hard to see that the minimality of a manip-
ulation implies that the class change in its associated hyper-rectangle can be
detected by checking the class of the end points αx,k and δk(αx,k).
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Bounded Variation. Recall that we apply manipulations in layer Lk, but check
the classification decisions in the output layer. To ensure finite, exhaustive cov-
erage of the region, we introduce a continuity assumption on the mapping from
space DLk

to the output space DLn
, adapted from the concept of bounded

variation [9]. Given an activation αx,k with its associated region ηk(αx,k), we
define a “ladder” on ηk(αx,k) to be a set ld of activations containing αx,k and
finitely many, possibly zero, activations from ηk(αx,k). The activations in a lad-
der can be arranged into an increasing order αx,k = αx0,k < αx1,k < ... < αxj ,k

such that every activation αxt,k ∈ ld appears once and has a successor αxt+1,k

such that αxt+1,k = δk(αxt,k) for some manipulation δk ∈ V (αxt,k). For the
greatest element αxj ,k, its successor should be outside the region ηk(αx,k), i.e.,
αxj+1,k /∈ ηk(αx,k). Given a ladder ld, we write ld(t) for its t + 1-th activa-
tion, ld[0..t] for the prefix of ld up to the t+1-th activation, and last(ld) for the
greatest element of ld. Figure 3 gives a diagrammatic explanation on the ladders.

δkδk

δkδk

δkδk

δkδk

δkδk

δkδk

αx,k = αx0,kαx,k = αx0,k
αx1,kαx1,k

αx2,kαx2,k

αxj ,kαxj ,k

αxj+1,kαxj+1,kηk(αx,k)ηk(αx,k)

Fig. 3. Examples of ladders in region ηk(αx,k). Starting from αx,k = αx0,k, the acti-
vations αx1,k...αxj ,k form a ladder such that each consecutive activation results from
some valid manipulation δk applied to a previous activation, and the final activation
αxj ,k is outside the region ηk(αx,k).

Definition 4. Let L(ηk(αx,k)) be the set of ladders in ηk(αx,k). Then the
total variation of the region ηk(αx,k) on the neural network with respect to
L(ηk(αx,k)) is

V (N ; ηk(αx,k)) = sup
ld∈L(ηk(αx,k))

∑

αxt,k∈ld\{last(ld)}
diffn(αxt,n, αxt+1,n)

where diffn : DLn
× DLn

→ {0, 1} is given by diffn(αx,n, αy,n) = 0 if αx,n =
αy,n and 1 otherwise. We say that the region ηk(αx,k) is a bounded varia-
tion if V (N ; ηk(αx,k)) < ∞, and are particularly interested in the case when
V (N ; rk(αy,k)) = 0, which is called a 0-variation.
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The set L(ηk(αx,k)) is complete if, for any ladder ld ∈ L(ηk(αx,k)) of
j + 1 activations, any element ld(t) for 0 ≤ t ≤ j, and any manipulation
δk ∈ V (ld(t)), there exists a ladder ld′ ∈ L(ηk(αx,k)) such that ld′[0..t] = ld[0..t]
and ld′(t + 1) = δk(ld(t)). Intuitively, a complete ladder is a complete tree, on
which each node represents an activation and each branch of a node corresponds
to a valid manipulation. From the root αx,k, every path of the tree leading to a
leaf is a ladder. Moreover, the set L(ηk(αx,k)) is covering if the polyhedra of all
activations in it cover the region ηk(αx,k), i.e.,

ηk(αx,k) ⊆
⋃

ld∈L(ηk(αx,k))

⋃

αxt,k∈ld\{last(ld)}
rec(V (αxt,k), αxt,k). (1)

Based on the above, we have the following definition of safety with respect to
a set of manipulations. Intuitively, we iteratively and nondeterministically apply
manipulations to explore the region ηk(αx,k), and safety means that no class
change is observed by successive application of such manipulations.

Definition 5. [Safety wrt Manipulations] Given a neural network N , an input
x and a set Δk of manipulations, we say that N is safe for input x with respect
to the region ηk and manipulations Δk, written as N, ηk,Δk |= x, if the region
ηk(αx,k) is a 0-variation for the set L(ηk(αx,k)) of its ladders, which is complete
and covering.

It is straightforward to note that general safety in the sense of Definition 1
implies safety wrt manipulations, in the sense of Definition 5.

Theorem 1. Given a neural network N , an input x, and a region ηk, we have
that N, ηk |= x implies N, ηk,Δk |= x for any set of manipulations Δk.

In the opposite direction, we require the minimality assumption on
manipulations.

Theorem 2. Given a neural network N , an input x, a region ηk(αx,k) and a
set Δk of manipulations, we have that N, ηk,Δk |= x implies N, ηk |= x if the
manipulations in Δk are minimal.

Theorem 2 means that, under the minimality assumption over the manipula-
tions, an exhaustive search through the complete and covering ladder tree from
L(ηk(αx,k)) can find adversarial examples, if any, and enable us to conclude
that the network is safe at a given point if none are found. Though comput-
ing minimal manipulations is not practical, in discrete spaces by iterating over
increasingly refined manipulations we are able to rule out the existence of adver-
sarial examples in the region. This contrasts with partial exploration according
to, e.g., [12,25]; for comparison see Sect. 7.
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4 The Verification Framework

In this section we propose a novel framework for automated verification of safety
of classification decisions, which is based on search for an adversarial misclas-
sification within a given region. The key distinctive distinctive features of our
framework compared to existing work are: a guarantee that a misclassification
is found if it exists; the propagation of the analysis layer by layer ; and working
with hidden layers, in addition to input and output layers. Since we reduce ver-
ification to a search for adversarial examples, we can achieve safety verification
(if no misclassifications are found for all layers) or falsification (in which case the
adversarial examples can be used to fine-tune the network or shown to a human
tester).

4.1 Layer-by-Layer Analysis

We first consider how to propagate the analysis layer by layer, which will involve
refining manipulations through the hidden layers. To facilitate such analysis, in
addition to the activation function φk : DLk−1 → DLk

we also require a mapping
ψk : DLk

→ DLk−1 in the opposite direction, to represent how a manipulated
activation of layer Lk affects the activations of layer Lk−1. We can simply take
ψk as the inverse function of φk. In order to propagate safety of regions ηk(αx,k)
at a point x into deeper layers, we assume the existence of functions ηk that map
activations to regions, and impose the following restrictions on the functions φk

and ψk, shown diagrammatically in Fig. 4.

Definition 6. The functions {η0, η1, . . . , ηn} and {ψ1, . . . , ψn} mapping activa-
tions to regions are such that

1. ηk(αx,k) ⊆ DLk
, for k = 0, . . . , n,

2. αx,k ∈ ηk(αx,k), for k = 0, . . . , n, and
3. ηk−1(αi,k−1) ⊆ ψk(ηk(αx,k)) for all k = 1, . . . , n.

η0(αx,0)η0(αx,0)

αx,0αx,0

αx,kαx,k

ηk(αx,k)ηk(αx,k)

αx,nαx,n

ηn(αx,n)ηn(αx,n)

layer 0 layer k layer n

ηk−1(αx,k−1)ηk−1(αx,k−1)

αx,k−1αx,k−1

ψkψk

layer k-1

DL0DL0 DLk−1DLk−1

DLk
DLk DLnDLn

φkφk

Fig. 4. Layer by layer analysis according to Definition 6
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Intuitively, the first two conditions state that each function ηk assigns a region
around the activation αx,k, and the last condition that mapping the region ηk

from layer Lk to Lk−1 via ψk should cover the region ηk−1. The aim is to compute
functions ηk+1, . . . , ηn based on ηk and the neural network.

The size and complexity of a deep neural network generally means that deter-
mining whether a given set Δk of manipulations is minimal is intractable. To
partially counter this, we define a refinement relation between safety wrt manip-
ulations for consecutive layers in the sense that N, ηk,Δk |= x is a refinement of
N, ηk−1,Δk−1 |= x if all manipulations δk−1 in Δk−1 are refined by a sequence of
manipulations δk from the set Δk. Therefore, although we cannot theoretically
confirm the minimality of Δk, they are refined layer by layer and, in discrete
settings, this process can be bounded from below by the unit step. Moreover, we
can work gradually from a specific layer inwards until an adversarial example is
found, finishing processing when reaching the output layer.

The refinement framework is given in Fig. 5. The arrows represent the impli-
cation relations between the safety notions and are labelled with conditions if
needed. The goal of the refinements is to find a chain of implications to justify
N, η0 |= x. The fact that N, ηk |= x implies N, ηk−1 |= x is due to the constraints
in Definition 6 when ψk = φ−1

k . The fact that N, ηk |= x implies N, ηk,Δk |= x
follows from Theorem 1. The implication from N, ηk,Δk |= x to N, ηk |= x under
the condition that Δk is minimal is due to Theorem 2.

We now define the notion of refinability of manipulations between layers.
Intuitively, a manipulation in layer Lk−1 is refinable in layer Lk if there exists
a sequence of manipulations in layer Lk that implements the manipulation in
layer Lk−1.

Definition 7. A manipulation δk−1(αy,k−1) is refinable in layer Lk if there
exist activations αx0,k, . . . , αxj ,k ∈ DLk

and valid manipulations δ1k ∈
V (αx0,k), . . . , δj

k ∈ V (αxj−1,k) such that αy,k = αx0,k, δk−1,k(αy,k−1) = αxj ,k,
and αxt,k = δt

k(αxt−1,k) for 1 ≤ t ≤ j. Given a neural network N and an input
x, the manipulations Δk are a refinement by layer of ηk−1,Δk−1 and ηk if, for
all αy,k−1 ∈ ηk−1(αz,k−1), all its valid manipulations δk−1(αy,k−1) are refinable
in layer Lk.

N, η0 |= xN, η0 |= x N, η1 |= xN, η1 |= x N, η2 |= xN, η2 |= x N, ηk |= xN, ηk |= x

N, η1,Δ1 |= xN, η1,Δ1 |= x N, η2,Δ2 |= xN, η2,Δ2 |= x N, ηk,Δk |= xN, ηk,Δk |= x

ΔkΔk is minimal

Fig. 5. Refinement framework

We have the following theorem stating that the refinement of safety notions
is implied by the “refinement by layer” relation.
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Theorem 3. Assume a neural network N and an input x. For all layers k ≥ 1,
if manipulations Δk are refinement by layer of ηk−1,Δk−1 and ηk, then we have
that N, ηk,Δk |= x implies N, ηk−1,Δk−1 |= x.

We note that any adversarial example of safety wrt manipulations
N, ηk,Δk |= x is also an adversarial example for general safety N, ηk |= x. How-
ever, an adversarial example αx,k for N, ηk |= x at layer k needs to be checked
to see if it is an adversarial example of N, η0 |= x, i.e. for the input layer. Recall
that Prek′(αx,k) is not necessarily unique. This is equivalent to checking the
emptiness of Pre0(αx,k) ∩ η0(αx,0). If we start the analysis with a hidden layer
k > 0 and there is no specification for η0, we can instead consider checking the
emptiness of {αy,0 ∈ Pre0(αx,k) | αy,n �= αx,n}.

4.2 The Verification Method

We summarise the theory developed thus far as a search-based recursive veri-
fication procedure given below. The method is parameterised by the region ηk

around a given point and a family of manipulations Δk. The manipulations are
specified by the user for the classification problem at hand, or alternatively can
be selected automatically, as described in Sect. 4.4. The vector norm to iden-
tify the region can also be specified by the user and can vary by layer. The
method can start in any layer, with analysis propagated into deeper layers, and
terminates when a misclassification is found. If an adversarial example is found
by manipulating a hidden layer, it can be mapped back to the input layer, see
Sect. 4.5.

Algorithm 1. Given a neural network N and an input x, recursively perform
the following steps, starting from some layer l ≥ 0. Let k ≥ l be the current layer
under consideration.

1. determine a region ηk such that if k > l then ηk and ηk−1 satisfy Definition 6;
2. determine a manipulation set Δk such that if k > l then Δk is a refinement

by layer of ηk−1,Δk−1 and ηk according to Definition 7;
3. verify whether N, ηk,Δk |= x,

(a) if N, ηk,Δk |= x then
i. report that N is safe at x with respect to ηk(αx,k) and Δk, and
ii continue to layer k + 1;

(b) if N, ηk,Δk �|= x, then report an adversarial example.

We implement Algorithm 1 by utilising satisfiability modulo theory (SMT)
solvers. The SMT problem is a decision problem for logical formulas with respect
to combinations of background theories expressed in classical first-order logic
with equality. For checking refinement by layer, we use the theory of linear real
arithmetic with existential and universal quantifiers, and for verification within a
layer (0-variation) we use the same theory but without universal quantification.
The details of the encoding and the approach taken to compute the regions and
manipulations are included in Sect. 4.4. To enable practical verification of deep
neural networks, we employ a number of heuristics described in the remainder
of this section.
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4.3 Feature Decomposition and Discovery

While Theorems 1 and 2 provide a finite way to verify safety of neural network
classification decisions, the high-dimensionality of the region ηk(αx,k) can make
any computational approach impractical. We therefore use the concept of a fea-
ture to partition the region ηk(αx,k) into a set of features, and exploit their
independence and low-dimensionality. This allows us to work with state-of-the-
art networks that have hundreds, and even thousands, of dimensions.

Intuitively, a feature defines for each point in the high-dimensional space DLk

the most explicit salient feature it has, e.g., the red-coloured frame of a street sign
in Fig. 10. Formally, for each layer Lk, a feature function fk : DLk

→ P(DLk
)

assigns a small region for each activation αx,k in the space DLk
, where P(DLk

) is
the set of subspaces of DLk

. The region fk(αx,k) may have lower dimension than
that of Dk. It has been argued, in e.g. [16] for natural images, that natural data,
for example natural images and sound, forms a high-dimensional manifold, which
embeds tangled manifolds to represent their features. Feature manifolds usually
have lower dimension than the data manifold, and a classification algorithm
is to separate a set of tangled manifolds. By assuming that the appearance of
features is independent, we can manipulate them one by one regardless of the
manipulation order, and thus reduce the problem of size O(2d1+...+dm) into a set
of smaller problems of size O(2d1), . . . , O(2dm).

The analysis of activations in hidden layers, as performed by our method,
provides an opportunity to discover the features automatically. Moreover, defin-
ing the feature fk on each activation as a single region corresponding to a specific
feature is without loss of generality: although an activation may include multi-
ple features, the independence relation between features suggests the existence
of a total relation between these features. The function fk essentially defines for
each activation one particular feature, subject to certain criteria such as explicit
knowledge, but features can also be explored in parallel.

Every feature fk(αy,k) is identified by a pre-specified number dimsk,f of
dimensions. Let dimsk(fk(αy,k)) be the set of dimensions selected according to
some heuristic. Then we have that

fk(αy,k)(p) =
{

ηk(αx,k)(p), if p ∈ dimsk(fk(αy,k))
[αy,k(p), αy,k(p)] otherwise. (2)

Moreover, we need a set of features to partition the region ηk(αx,k) as follows.

Definition 8. A set {f1, . . . , fm} of regions is a partition of ηk(αx,k), writ-
ten as π(ηk(αx,k)), if dimsk,f (fi) ∩ dimsk,f (fj) = ∅ for i, j ∈ {1, . . . , m} and
ηk(αx,k) = ×m

i=1fi.

Given such a partition π(ηk(αx,k)), we define a function acts(x, k) by

acts(x, k) = {αy,k ∈ x | x ∈ π(ηk(αx,k))} (3)

which contains one point for each feature. Then, we reduce the checking of 0-
variation of a region ηk(αx,k) to the following problems:
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– checking whether the points in acts(x, k) have the same class as αx,k, and
– checking the 0-variation of all features in π(ηk(αx,k)).

In the above procedure, the checking of points in acts(x, k) can be con-
ducted either by following a pre-specified sequential order (single-path search)
or by exhaustively searching all possible orders (multi-path search). In Sect. 5 we
demonstrate that single-path search according to the prominence of features can
enable us to find adversarial examples, while multi-path search may find other
examples whose distance to the original input image is smaller.

4.4 Selection of Regions and Manipulations

The procedure summarised in Algorithm 1 is typically invoked for a given image
in the input layer, but, providing insight about hidden layers is available, it can
start from any layer Ll in the network. The selection of regions can be automated,
as described below.

For the first layer to be considered, i.e., k = l, the region ηk(αx,k) is
defined by first selecting the subset of dimsk dimensions from Pk whose activa-
tion values are furthest away from the average activation value of the layer1.
Intuitively, the knowledge represented by these activations is more explicit
than the knowledge represented by the other dimensions, and manipulations
over more explicit knowledge are more likely to result in a class change. Let
avgk = (

∑
p∈Pk

αx,k(p))/nk be the average activation value of layer Lk. We let
dimsk(ηk(αx,k)) be the first dimsk dimensions p ∈ Pk with the greatest values
|αx,k(p) − avg| among all dimensions, and then define

ηk(αx,k) = ×p∈dimsk(ηk(αx,k))[αx,k(p) − sp ∗ mp, αx,k(p) + sp ∗ mp] (4)

i.e., a dimsk-polytope containing the activation αx,k, where sp represents a small
span and mp represents the number of such spans. Let Vk = {sp,mp | p ∈
dimsk(ηk(αx,k))} be a set of variables.

Let d be a function mapping from dimsk(ηk(αx,k)) to {−1, 0,+1} such that
{d(p) �= 0 | p ∈ dimsk(ηk(αx,k))} �= ∅, and D(dimsk(ηk(αx,k))) be the set of
such functions. Let a manipulation δd

k be

δd
k(αy,k)(p) =

⎧
⎨

⎩

αy,k(p) − sp if d(p) = −1
αy,k(p) if d(p) = 0
αy,k(p) + sp if d(p) = +1

(5)

for activation αy,k ∈ ηk(αx,k). That is, each manipulation changes a subset of
the dimensions by the span sp, according to the directions given in d. The set
Δk is defined by collecting the set of all such manipulations. Based on this, we
can define a set L(ηk(αx,k)) of ladders, which is complete and covering.

Determining the Region ηk According to ηk−1. Given ηk−1(αx,k−1) and
the functions φk and ψk, we can automatically determine a region ηk(αx,k)
1 We also considered other approaches, including computing derivatives up to several

layers, but for the experiments we conduct they are less effective.
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satisfying Definition 6 using the following approach. According to the func-
tion φk, the activation value αx,k(p) of perceptron p ∈ Pk is computed from
activation values of a subset of perceptrons in Pk−1. We let V ars(p) ⊆ Pk−1

be such a set of perceptrons. The selection of dimensions in dimsk(ηk(αx,k))
depends on dimsk−1(ηk−1(αx,k−1)) and φk, by requiring that, for every p′ ∈
dimsk−1(ηk−1(αx,k−1)), there is at least one dimension p ∈ dimsk(ηk(αx,k))
such that p′ ∈ V ars(p). We let

dimsk(ηk(αx,k)) = {arg max
p∈Pk

{ |αx,k(p) − avgk| | p′ ∈ V ars(p)} | p′ ∈

dimsk−1(ηk−1(αx,k−1))} (6)

Therefore, the restriction of Definition 6 can be expressed with the following
formula:

∀αy,k−1 ∈ ηk(αx,k−1) : αy,k−1 ∈ ψk(ηk(αx,k)). (7)

We omit the details of rewriting αy,k−1 ∈ ηk(αx,k−1) and αy,k−1 ∈ ψk(ηk(αx,k))
into Boolean expressions, which follow from standard techniques. Note that this
expression includes variables in Vk, Vk−1 and αy,k−1. The variables in Vk−1 are
fixed for a given ηk−1(αx,k−1). Because such a region ηk(αx,k) always exists, a
simple iterative procedure can be invoked to gradually increase the size of the
region represented with variables in Vk to eventually satisfy the expression.

Determining the Manipulation Set Δk According to ηk(αx,k),
ηk−1(αx,k−1), and Δk−1. The values of the variables Vk obtained from the
satisfiability of Eq. (7) yield a definition of manipulations using Eq. (5). How-
ever, the obtained values for span variables sp do not necessarily satisfy the
“refinement by layer” relation as defined in Definition 7. Therefore, we need to
adapt the values for the variables Vk while, at the same time, retaining the
region ηk(αx,k). To do so, we could rewrite the constraint in Definition 7 into
a formula, which can then be solved by an SMT solver. But, in practice, we
notice that such precise computations easily lead to overly small spans sp, which
in turn result in an unacceptable amount of computation needed to verify the
relation N, ηk,Δk |= x.

To reduce computational cost, we work with a weaker “refinable in layer Lk”
notion, parameterised with respect to precision ε. Given two activations αy,k

and αm,k, we use dist(αy,k, αm,k) to represent their distance.

Definition 9. A manipulation δk−1(αy,k−1) is refinable in layer Lk with pre-
cision ε > 0 if there exists a sequence of activations αx0,k, . . . , αxj ,k ∈ DLk

and
valid manipulations δ1k ∈ V (αx0,k), . . . , δd

k ∈ V (αxj−1,k) such that αy,k = αx0,k,
δk−1,k(αy,k−1) ∈ rec(αxj−1,k, αxj ,k), dist(αxj−1,k, αxj ,k) ≤ ε, and αxt,k =
δt
k(αxt−1,k) for 1 ≤ t ≤ j. Given a neural network N and an input x, the manip-
ulations Δk are a refinement by layer of ηk, ηk−1,Δk−1 with precision ε if, for
all αy,k−1 ∈ ηk−1(αx,k−1), all its legal manipulations δk−1(αy,k−1) are refinable
in layer Lk with precision ε.
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Comparing with Definition 7, the above definition replaces δk−1,k(αy,k−1) =
αxj ,k with δk−1,k(αy,k−1) ∈ rec(αxj−1,k, αxj ,k) and dist(αxj−1,k, αxj ,k) ≤ ε. Intu-
itively, instead of requiring a manipulation to reach the activation δk−1,k(αy,k−1)
precisely, this definition allows for each δk−1,k(αy,k−1) to be within the hyper-
rectangle rec(αxj−1,k, αxj ,k). To find suitable values for Vk according to the
approximate “refinement-by-layer” relation, we use a variable h to represent the
maximal number of manipulations of layer Lk used to express a manipulation
in layer k − 1. The value of h (and variables sp and np in Vk) are automatically
adapted to ensure the satisfiability of the following formula, which expresses the
constraints of Definition 9:

∀αy,k−1 ∈ ηk(αx,k−1)∀d ∈ D(dimsk(ηk(αx,k−1)))∀δd
k−1 ∈ Vk−1(αy,k−1)

∃αy0,k, . . . , αyh,k ∈ ηk(αx,k) : αy0,k = αy,k ∧ ∧h−1
t=0 αyt+1,k = δd

k(αyt,k)∧
∨h−1

t=0 (δd
k−1,k(αy,k) ∈ rec(αyt,k, αyt+1,k) ∧ dist(αyt,k, αyt+1,k) ≤ ε).

(8)

It is noted that sp and mp for p ∈ dimsk(ηk(αx,k)) are employed when expressing
δd
k. The manipulation δd

k is obtained from δd
k−1 by considering the corresponding

relation between dimensions in dimsk(ηk(αx,k)) and dimsk−1(ηk−1(αx,k−1)).
Adversarial examples shown in Figs. 8, 9, and 10 were found using single-path

search and automatic selection of regions and manipulations.

4.5 Mapping Back to Input Layer

When manipulating the hidden layers, we may need to map back an activa-
tion in layer k to the input layer to obtain an input image that resulted in
misclassification, which involves computation of Pre0(αy,k) described next. To
check the 0-variation of a region ηk(αx,k), we need to compute diffn(αx,n, αy,n)
for many points αy,x in ηk(αx,k), where diffn : DLn

× DLn
→ {0, 1} is given

by diffn(αx,n, αy,n) = 0 if αx,n = αy,n and 1 otherwise. Because αx,n is
known, we only need to compute αy,n. We can compute αy,n by finding a point
αy,0 ∈ Pre0(αy,k) and then using the neural network to predict the value αy,n.
It should be noted that, although Pre0(αy,k) may include more than one point,
all points have the same class, so any point in Pre0(αy,k) is sufficient for our
purpose.

To compute αy,0 from αy,k, we use functions ψk, ψk−1, . . . , ψ1 and compute
points αy,k−1, αy,k−2, . . . , αy,0 such that

αy,j−1 = ψj(αy,j) ∧ αy,j−1 ∈ ηj−1(αx,j−1)

for 1 ≤ j ≤ k. The computation relies on an SMT solver to encode the functions
ψk, ψk−1, . . . , ψ1 if they are piecewise linear functions, and by taking the corre-
sponding inverse functions directly if they are sigmoid functions. It is possible
that, for some 1 ≤ j ≤ k, no point can be found by SMT solver, which means
that the point αy,k does not have any corresponding point in the input layer. We
can safely discard these points. The maxpooling function ψj selects from every
m ∗ m dimensions the maximal element for some m > 0. The computation of
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the maxpooling layer ψj−1 is combined with the computation of the next layer
ψj , that is, finding αy,j−2 with the following expression

∃αx,j−1 : αy,j−2 = ψj−1(ψj(αy,j))∧αy,j−1 ∈ ηj−1(αx,j−1)∧αy,j−2 ∈ ηj−2(αx,j−2)

This is to ensure that in the expression αy,j−2 = ψj−1(ψj(αy,j)) we can reuse
m ∗ m − 1 elements in αx,j−2 and only need to replace the maximal element.

Figures 8, 9, and 10 show images obtained by mapping back from the first
hidden layer to the input layer.

5 Experimental Results

The proposed framework has been implemented as a software tool called DLV
(Deep Learning Verification) [2] written in Python, see Appendix of [20] for
details of input parameters and how to use the tool. The SMT solver we employ
is Z3 [8], which has Python APIs. The neural networks are built from a widely-
used neural networks library Keras [3] with a deep learning package Theano [6]
as its backend.

We validate DLV on a set of experiments performed for neural networks
trained for classification based on a predefined multi-dimensional surface (small
size networks), as well as image classification (medium size networks). These net-
works respectively use two representative types of layers: fully connected layers
and convolutional layers. They may also use other types of layers, e.g., the ReLU
layer, the pooling layer, the zero-padding layer, and the dropout layer. The first
three demonstrate the single-path search functionality on the Euclidean (L2)
norm, whereas the fourth (GTSRB) multi-path search for the L1 and L2 norms.

The experiments are conducted on a MacBook Pro laptop, with 2.7 GHz
Intel Core i5 CPU and 8 GB memory.

Two-Dimensional Point Classification Network. To demonstrate exhaus-
tive verification facilitated by our framework, we consider a neural network
trained for classifying points above and below a two-dimensional curve shown in
red in Figs. 6 and 7. The network has three fully-connected hidden layers with
the ReLU activation function. The input layer has two perceptrons, every hidden
layer has 20 perceptrons, and the output layer has two perceptrons. The network
is trained with 5,000 points sampled from the provided two-dimensional space,
and has an accuracy of more than 99%.

For a given input x = (3.59, 1.11), we start from the input layer and define
a region around this point by taking unit steps in both directions

η0(αx,0) = [3.59−1.0, 3.59+1.0]×[1.11−1.0, 1.11+1.0] = [2.59, 4.59]×[0.11, 2.11]

The manipulation set Δ0 is shown in Fig. 6: there are 9 points, of which the point
in the middle represents the activation αx,0 and the other 8 points represent the
activations resulting from applying one of the manipulations in Δ0 on αx,0. Note
that, although there are class changes in the region η0(αx,0), the manipulation
set Δ0 is not able to detect such changes. Therefore, we have that N, η0,Δ0 |= x.
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Fig. 6. Input layer Fig. 7. First hidden layer (Colour
figure online)

Now consider layer k = 1. To obtain the region η1(αx,1), the tool selects two
dimensions p1,17, p1,19 ∈ P1 in layer L1 with indices 17 and 19 and computes

η1(αx,1) = [αx,1(p1,17)−3.6, αx,1(p1,17)+3.6]×[αx,1(p1,19)−3.52, αx,1(p1,19)+3.52]

The manipulation set Δ1, after mapping back to the input layer with function
ψ1, is given as Fig. 7. Note that η1 and η0 satisfy Definition 6, and Δ1 is a refine-
ment by layer of η0,Δ0 and η1. We can see that a class change can be detected
(represented as the red coloured point). Therefore, we have that N, η1,Δ1 �|= x.

Image Classification Network for the MNIST Handwritten Image
Dataset. The well-known MNIST image dataset contains images of size 28×28
and one channel and the network is trained with the source code given in [5]. The
trained network is of medium size with 600,810 parameters, has an accuracy of
more than 99%, and is state-of-the-art. It has 12 layers, within which there are
2 convolutional layers, as well as layers such as ReLU, dropout, fully-connected
layers and a softmax layer. The images are preprocessed to make the value of
each pixel within the bound [0, 1].

Given an image x, we start with layer k = 1 and the parameter set to at
most 150 dimensions (there are 21632 dimensions in layer L1). All ηk,Δk for
k ≥ 2 are computed according to the simple heuristic mentioned in Sect. 4.2
and satisfy Definitions 6 and 7. For the region η1(αx,1), we allow changes to the
activation value of each selected dimension that are within [−1, 1]. The set Δ1

includes manipulations that can change the activation value for a subset of the
150 dimensions, by incrementing or decrementing the value for each dimension
by 1. The experimental results show that for most of the examples we can find
a class change within 100 dimensional changes in layer L1, by comparing the
number of pixels that have changed, and some of them can have less than 30
dimensional changes. Figure 8 presents examples of such class changes for layer
L1. We also experiment on images with up to 40 dimensional changes in layer
L1; the tool is able to check the entire network, reaching the output layer and
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claiming that N, ηk,Δk |= x for all k ≥ 1. While training of the network takes
half an hour, finding an adversarial example takes up to several minutes.

8 to 0 2 to 1 4 to 2 2 to 3 9 to 4

6 to 5 4 to 6 9 to 7 0 to 8 7 to 9

Fig. 8. Adversarial examples for a neural network trained on MNIST

Image Classification Network for the CIFAR-10 Small Image Dataset.
We work with a medium size neural network, trained with the source code from
[1] for more than 12 h on the well-known CIFAR10 dataset. The inputs to the
network are images of size 32× 32 with three channels. The trained network has
1,250,858 real-valued parameters and includes convolutional layers, ReLU layers,
max-pooling layers, dropout layers, fully-connected layers, and a softmax layer.

As an illustration of the type of perturbations that we are investigating,
consider the images in Fig. 9, which correspond to the parameter setting of up to
25, 45, 65, 85, 105, 125, 145 dimensions, respectively, for layer k = 1. The
manipulations change the activation values of these dimensions. Each image is
obtained by mapping back from the first hidden layer and represents a point
close to the boundary of the corresponding region. The relation N, η1,Δ1 |= x
holds for the first 7 images, but fails for the last one and the image is classified
as a truck. Intuitively, our choice of the region η1(αx,1) identifies the subset of
dimensions with most extreme activations, taking advantage of the analytical
capability of the first hidden layer. A higher number of selected dimensions
implies a larger region in which we apply manipulations, and, more importantly,
suggests a more dramatic change to the knowledge represented by the activations
when moving to the boundary of the region.

Fig. 9. An illustrative example of mapping back to input layer from the Cifar-10
mataset: the last image classifies as a truck.

We also work with 500 dimensions and otherwise the same experimental
parameters as for MNIST. Figure 13 in Appendix of [20] gives 16 pairs of original
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images (classified correctly) and perturbed images (classified wrongly). We found
that, while the manipulations lead to human-recognisable modifications to the
images, the perturbed images can be classified wrongly by the network. For each
image, finding an adversarial example ranges from seconds to 20 min.

Image Classification Network for the ImageNet Dataset. We also con-
duct experiments on a large image classification network trained on the popular
ImageNet dataset. The images are of size 224 × 224 and have three channels.
The network is the model of the 16-layer network [34], called VGG16, used by
the VGG team in the ILSVRC-2014 competition, downloaded from [7]. The
trained network has 138,357,544 real-valued parameters and includes convolu-
tional layers, ReLU layers, zero-padding layers, dropout layers, max-pooling lay-
ers, fully-connected layers, and a softmax layer. The experimental parameters
are the same as for the previous two experiments, except that we work with
20,000 dimensions.

Several additional pairs of original and perturbed images are included in
Figure 14 in Appendix of [20]. In Fig. 10 we also give two examples of street sign
images. The image on the left is reported unsafe for the second layer with 6346
dimensional changes (0.2% of the 3,211,264 dimensions of layer L2). The one on
the right is reported safe for 20,000 dimensional changes of layer L2. It appears
that more complex manipulations, involving more dimensions (perceptrons), are
needed in this case to cause a class change.

Fig. 10. Street sign images. Found an adversarial example for the left image (class
changed into bird house), but cannot find an adversarial example for the right image
for 20,000 dimensions. (Colour figure online)

5.1 The German Traffic Sign Recognition Benchmark (GTSRB)

We evaluate DLV on the GTSRB dataset (by resizing images into size 32 * 32),
which has 43 classes. Figure 11 presents the results for the multi-path search. The
first case (approx. 20 min to manipulate) is a stop sign (confidence 1.0) changed
into a speed limit of 30 miles, with an L1 distance of 0.045 and L2 distance
of 0.19. The confidence of the manipulated image is 0.79. The second, easy,
case (seconds to manipulate) is a speed limit of 80 miles (confidence 0.999964)
changed into a speed limit of 30 miles, with an L1 distance of 0.004 and L2
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distance of 0.06. The confidence of the manipulated image is 0.99 (a very high
confidence of misclassification). Also, a “go right” sign can be easily manipulated
into a sign classified as “go straight”.

“stop”
to “30m speed limit”

“80m speed limit”
to “30m speed limit”

“go right”
to “go straight”

Fig. 11. Adversarial examples for the network trained on the GTSRB dataset by multi-
path search

Figure 16 in [20] presents additional adversarial examples obtained when
selecting single-path search.

6 Comparison

We compare our approach with two existing approaches for finding adversarial
examples, i.e., fast gradient sign method (FGSM) [36] and Jacobian saliency map
algorithm (JSMA) [28]. FGSM calculates the optimal attack for a linear approx-
imation of the network cost, whereas DLV explores a proportion of dimensions
in the feature space in the input or hidden layers. JSMA finds a set of dimen-
sions in the input layer to manipulate, according to the linear approximation (by
computing the Jacobian matrix) of the model from current output to a nomi-
nated target output. Intuitively, the difference between DLV’s manipulation and
JSMA is that DLV manipulates over features discovered in the activations of
the hidden layer, while JSMA manipulates according to the partial derivatives,
which depend on the parameters of the network.

Experiment 1. We randomly select an image from the MNIST dataset.
Figure 12 shows some intermediate and final images obtained by running the
three approaches: FGSM, JSMA and DLV. FGSM has a single parameter,
ε, where a greater ε represents a greater perturbation along the gradient of
cost function. Given an ε, for each input example a perturbed example is
returned and we test whether it is an adversarial example by checking for mis-
classification against the original image. We gradually increase the parameter
ε = 0.05, 0.1, 0.2, 0.3, 0.4, with the last image (i.e., ε = 0.4) witnessing a class
change, see the images in the top row of Fig. 12. FGSM can efficiently manip-
ulate a set of images, but it requires a relatively large manipulation to find a
misclassification.



24 X. Huang et al.

Fig. 12. FGSM vs. JSMA vs. DLV, where FGSM and JSMA search a single path
and DLV multiple paths. Top row: Original image (7) perturbed deterministically by
FGSM with ε = 0.05, 0.1, 0.2, 0.3, 0.4, with the final image (i.e., ε = 0.4) misclassified
as 9. Middle row: Original image (7) perturbed deterministically by JSMA with ε = 0.1
and θ = 1.0. We show even numbered images of the 12 produced by JSMA, with the
final image misclassified as 3. Bottom row: Original image (7) perturbed nondetermin-
istically by DLV, for the same manipulation on a single pixel as that of JSMA (i.e.,
sp ∗ mp = 1.0) and working in the input layer, with the final image misclassified as 3.

For the JSMA approach, we conduct the experiment on a setting with para-
meters ε = 0.1 and θ = 1.0. The parameter ε = 0.1 means that we only consider
adversarial examples changing no more than 10% of all the pixels, which is suf-
ficient here. As stated in [29], the parameter θ = 1.0, which allows a maximum
change to every pixel, can ensure that fewer pixels need to be changed. The
approach takes a series of manipulations to gradually lead to a misclassification,
see the images in the middle row of Fig. 12. The misclassified image has an L2

(Euclidean) distance of 0.17 and an L1 (Manhattan) distance of 0.03 from the
original image. While JSMA can find adversarial examples with smaller distance
from the original image, it takes longer to manipulate a set of images.

Both FGSM and JSMA follow their specific heuristics to deterministically
explore the space of images. However, in some cases, the heuristics may omit
better adversarial examples. In the experiment for DLV, instead of giving fea-
tures a specific order and manipulating them sequentially, we allow the program
to nondeterministically choose features. This is currently done by MCTS (Monte
Carlo Tree Search), which has a theoretical guarantee of convergence for infinite
sampling. Therefore, the high-dimensional space is explored by following many
different paths. By taking the same manipulation on a single pixel as that of
JSMA (i.e., sp ∗ mp = 1.0) and working on the input layer, DLV is able to find
another perturbed image that is also classified as 3 but has a smaller distance
(L2 distance is 0.14 and L1 distance is 0.02) from the original image, see the
images in the last row of Fig. 12. In terms of the time taken to find an adver-
sarial example, DLV may take longer than JSMA, since it searches over many
different paths.

Experiment 2. Table 1 gives a comparison of robustness evaluation of the three
appraoches on the MNIST dataset. For FGSM, we vary the input parameter ε
according to the values {0.1, 0.2, 0.4}. For DLV, we select regions as defined
in Sect. 4.4 on a single path (by defining a specific order on the features and



Safety Verification of Deep Neural Networks 25

Table 1. FGSM vs. DLV (on a single path) vs. JSMA

FGSM
(ε = 0.1)

(0.2) (0.4) DLV
(dimsl = 75)

(150) (450) JSMA
(θ = 0.1)

(0.4)

L2 0.08 0.15 0.32 0.19 0.22 0.27 0.11 0.11

L1 0.06 0.12 0.25 0.04 0.06 0.09 0.02 0.02

% 17.5% 70.9% 97.2% 52.3% 79% 98% 92% 99%

manipulating them sequentially) for the first hidden layer. The experiment is
parameterised by varying the maximal number of dimensions to be changed, i.e.,
dimsl ∈ {75, 150, 450}. For each input image, an adversarial example is returned,
if found, by manipulating fewer than the maximal number of dimensions. When
the maximal number has been reached, DLV will report failure and return the
last perturbed example. For JSMA, the experiment is conducted by letting θ
take the value in the set {0.1, 0.4} and setting ε to 1.0.

We collect three statistics, i.e., the average L1 distance over the adversarial
examples, the average L2 distance over the adversarial examples, and the success
rate of finding adversary examples. Let Ld(x, δ(x)) for d ∈ {1, 2} be the distance
between an input x and the returned perturbed image δ(x), and diff(x, δ(x)) ∈
{0, 1} be a Boolean value representing whether x and δ(x) have different classes.
We let

Ld =
∑

x in test set diff(x, δ(x)) × Ld(x, δ(x))
∑

x in test set diff(x, δ(x))

and

% =
∑

x in test set diff(x, δ(x))
the number of examples in test set

We note that the approaches yield different perturbed examples δ(x).
The test set size is 500 images selected randomly. DLV takes 1–2 min to

manipulate each input image in MNIST. JSMA takes about 10 min for each
image, but it works for 10 classes, so the running time is similar to that of DLV.
FGSM works with a set of images, so it is the fastest per image.

For the case when the success rates are very high, i.e., 97.2% for FGSM with
ε = 0.4, 98% for DLV with dimsl = 450, and 99% for JSMA with θ = 0.4, JSMA
has the smallest average distances, followed by DLV, which has smaller average
distances than FGSM on both L1 and L2 distances.

We mention that a smaller distance leading to a misclassification may result
in a lower rate of transferability [29], meaning that a misclassification can be
harder to witness on another model trained on the same (or a small subset of)
data-set.

7 Related Work

AI safety is recognised an an important problem, see e.g., [10,33]. An early
verification approach for neural networks was proposed in [30], where, using the
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notation of this paper, safety is defined as the existence, for all inputs in a region
η0 ∈ DL0 , of a corresponding output in another region ηn ⊆ DLn

. They encode
the entire network as a set of constraints, approximating the sigmoid using con-
straints, which can then be solved by a SAT solver, but their approach only
works with 6 neurons (3 hidden neurons). A similar idea is presented in [32]. In
contrast, we work layer by layer and obtain much greater scalability. Since the
first version of this paper appeared [20], another constraint-based method has
been proposed in [21] which improves on [30]. While they consider more general
correctness properties than this paper, they can only handle the ReLU activa-
tion functions, by extending the Simplex method to work with the piecewise
linear ReLU functions that cannot be expressed using linear programming. This
necessitates a search tree (instead of a search path as in Simplex), for which a
heuristic search is proposed and shown to be complete. The approach is demon-
strated on networks with 300 ReLU nodes, but as it encodes the full network it
is unclear whether it can be scaled to work with practical deep neural networks:
for example, the MNIST network has 630,016 ReLU nodes. They also handle
continuous spaces directly without discretisation, the benefits of which are not
yet clear, since it is argued in [19] that linear behaviour in high-dimensional
spaces is sufficient to cause adversarial examples.

Concerns about the instability of neural networks to adversarial examples
were first raised in [13,36], where optimisation is used to identify misclassifica-
tions. A method for computing the perturbations is also proposed, which is based
on box-constrained optimisation and is approximate in view of non-convexity of
the search space. This work is followed by [19], which introduced the much faster
FGSM method, and [22], which employed a compromise between the two (iter-
ative, but with a smaller number of iterations than [36]). In our notation, [19]
uses a deterministic, iterative manipulation δ(x) = x + εsign(�xJ(x, αx,n)),
where x is an image in matrix representation, ε is a hyper-parameter that can
be tuned to get different manipulated images, and J(x, αx,n) is the cross-entropy
cost function of the neural network on input x and class αx,n. Therefore, their
approach will test a set of discrete points in the region η0(αx,0) of the input
layer. Therefore these manipulations will test a lasso-type ladder tree (i.e., a
ladder tree without branches) L(ηk(αx,k)), which does not satisfy the covering
property. In [26], instead of working with a single image, an evolutionary algo-
rithm is employed for a population of images. For each individual image in the
current population, the manipulation is the mutation and/or crossover. While
mutations can be nondeterministic, the manipulations of an individual image are
also following a lasso-type ladder tree which is not covering. We also mention
that [38] uses several distortions such as JPEG compression, thumbnail resizing,
random cropping, etc., to test the robustness of the trained network. These dis-
tortions can be understood as manipulations. All these attacks do not leverage
any specific properties of the model family, and do not guarantee that they will
find a misclassified image in the constraint region, even if such an image exists.

The notion of robustness studied in [18] has some similarities to our defini-
tion of safety, except that the authors work with values averaged over the input
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distribution μ, which is difficult to estimate accurately in high dimensions. As
in [22,36], they use optimisation without convergence guarantees, as a result
computing only an approximation to the minimal perturbation. In [12] point-
wise robustness is adopted, which corresponds to our general safety; they also
use a constraint solver but represent the full constraint system by reduction to
a convex LP problem, and only verify an approximation of the property. In con-
trast, we work directly with activations rather than an encoding of activation
functions, and our method exhaustively searches through the complete ladder
tree for an adversarial example by iterative and nondeterministic application of
manipulations. Further, our definition of a manipulation is more flexible, since
it allows us to select a subset of dimensions, and each such subset can have a
different region diameter computed with respect to a different norm.

8 Conclusions

This paper presents an automated verification framework for checking safety of
deep neural networks that is based on a systematic exploration of a region around
a data point to search for adversarial manipulations of a given type, and propa-
gating the analysis into deeper layers. Though we focus on the classification task,
the approach also generalises to other types of networks. We have implemented
the approach using SMT and validated it on several state-of-the-art neural net-
work classifiers for realistic images. The results are encouraging, with adversarial
examples found in some cases in a matter of seconds when working with few
dimensions, but the verification process itself is exponential in the number of
features and has prohibitive complexity for larger images. The performance and
scalability of our method can be significantly improved through parallelisation.
It would be interesting to see if the notions of regularity suggested in [24] permit
a symbolic approach, and whether an abstraction refinement framework can be
formulated to improve the scalability and computational performance.
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